
Tallinn 2017 

TALLINN UNIVERSITY OF TECHNOLOGY 

Faculty of Information Technology 

Department of Software Science 

 

Andrei Orehhov 132668 IAPM 

USING CUDA FOR SPEEDING UP IN-

MEMORY DATABASES WITH THE HELP 

OF GRAPHICS COPROCESSORS 

Master’s thesis 

Supervisor: Tanel Tammet 

 Professor 

  

  

  

  

  

  

  

  



Tallinn 2017 

TALLINNA TEHNIKAÜLIKOOL 

Infotehnoloogia teaduskond 

Tarkvarateaduse instituut 

 

Andrei Orehhov 132668 IAPM 

CUDA RAAMISTIKU KASUTAMINE 

MÄLUANDMEBAASIDE TÖÖ 

KIIRENDAMISEKS 

GRAAFIKAPROTSESSORI ABIL 

Magistritöö 

Juhendaja: Tanel Tammet 

 Professor 

  

  

  

  

  

  

  

  



Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Andrei Orehhov 

[dd.mm.yyyy] 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

In this thesis we will investigate the ways to use a graphic processing unit (GPU) to 

improve data querying capabilities in the context of in-memory databases.  At the 

beginning of the thesis, we outline the basics of GPU programing using a parallel 

computing platform known as CUDA. We explore examples of successful integration of 

CUDA with different Database Management Systems (DBMSs). With acquired 

knowledge, we define and code in C/C++ programing language a set of experimental 

scenarios that will enable us to understand CUDA behaviour in regards to memory 

allocation and threads manipulation. Using obtained results, we will highlight the 

advantages and disadvantages of using GPU memory vs RAM memory for the task of 

querying data. Finally, we attempt to integrate CUDA with an existing lightweight NoSql 

database library (WhiteDB) which was developed in Tallinn University of Technology 

and present the results and conclusions. 

 

This thesis is written in English and is 55 pages long, including 11 chapters, 11 figures 

and 9 tables. 

 

 

 

 



 

Annotatsioon 

CUDA raamistiku kasutamine mäluandmebaaside töö 

kiirendamiseks graafikaprotsessori abil 

Käesolevas magistritöös uuritakse võimalusi graafikakaardi (GPU) kasutamiseks 

mälupõhiste andmebaaside päringute kiirendamiseks. Töö alguses tutvustame GPU 

programmeerimise põhitõdesid CUDA raamistikus ning kirjeldame GPU rakendamise 

näiteid erinevates andmebaasisüsteemides. Seejärel defineerime mitu 

eksperimentaalstsenaariumit CUDA kasutusvõimaluste ja efektiivsuse uurimiseks ning 

realiseerime nad C ++ programmeerimiskeeles. Eksperimenteerimise fookuses on 

mälukasutus ja lõimed. Tulemuste baasil anname kokkuvõtte probleemidest ja 

võimalikest kiirusevõitudest. Töö lõpuks katsetame CUDA integreerimist olemasoleva 

NoSQL andmebaasiteegiga WhiteDB ning toome välja keerukusi ja takistusi, mis sellise 

integreerimise jaoks tuleks lahendada. 

Lõputöö on kirjutatud inglise keeles ning sisaldab 55 lehekülge teksti, 11 peatükki, 11 

joonist, 9 tabelit. 
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CPU Central processing unit 
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1 Introduction  

Graphics processing units (GPUs) are used today in a wide range of applications, mainly 

because they can dramatically accelerate parallel computing, are affordable and energy 

efficient. Driven by the market demand for real-time, high-definition 3D graphics, the 

programmable GPU has evolved into highly parallel, multithreaded, many core 

processors [1]. The desire to use GPU as a more general parallel computing device 

motivated NVIDIA to develop a new unified graphics and computing GPU architecture 

and the CUDA programming model [1]. CUDA programming model and software 

environment let programmers write scalable parallel programs using a straightforward 

extensions of the C language [2]. In the years since its release, many developers have 

used CUDA to parallelize and accelerate computations across various problem domains 

[2].  

Since high performance is a crucial part of database processing, there is constant research 

how CUDA can increase data mining capabilities. It has been proven that executing 

queries through the GPU virtual machine using CUDA can provide faster results in 

contrast to, for example, CPU SQLite virtual machine [3]. 

1.1 Goal 

The goal of the thesis to understand the basics of CUDA programming and highlight all 

the advantages and disadvantages of CUDA integration for querying in in-memory 

databases. We will write working CUDA code to experimentally perform search in a 

created fix-sized dataset which will be represented as a two-dimensional array consisting 

of 50 million values. The dataset will be filled with integer values. All the experimental 

programs will simply identify and count all the records that contain a specific targeted 

value. 

All CUDA operations including memory allocation, memory transfer and functions 

execution must be measured in real time. Results of GPU performance need to be 
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documented and compared to a standard CPU execution with the same fix-sized dataset. 

Provided results will identify the level of performance increase enabled by GPU vs CPU 

execution and determine the best suited scenarios for CUDA implementation. 

Finally, based on the acquired knowledge we will attempt to integrate CUDA with 

WhiteDB. Since full integration with CUDA is a very challenging task we will focus on 

a few concrete experiments. We will attempt to reproduce the same data arrays which 

were used in previous experimentations and count all the identified records. 

Integration steps: 

 Attempt to allocate memory for a local database on GPU using CUDA 

 Define and copy data for CUDA local database 

 Adapt necessary WhiteDB methods related to SELECT operations in CUDA 

 In case of successful implementation measure GPU execution time and compare 

to CPU 

1.2 Background 

In the modern world we always encounter challenges in regards to performance of our 

systems. The increasing volume of data (big data) generated by entities unquestionably, 

require high performance parallel processing models for robust and speedy data analysis 

[4]. Modern processing architectures exploit parallelism on a number of levels, including 

instruction-level parallelism, multitasking, and multithreading [5]. 

For demonstration purposes, let’s assume we have three arrays of integer type – array A, 

array B and C consisting of 100 random integer values. By defined scenario, values from 

A and B must be multiplied by their respective index and resulting array will be stored in 

array C. 

Solution in this case is very trivial. Programmers are required to write a standard “for” or 

“while” loop that will go through all the values and multiply by their respective index. 

End result is stored in a resulting array by their respective index as well. However, this 
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approach highlights the main drawback. Just like in any CPU program the process is 

sequential – we go through value after value which logically consumes time. 

 

 

Index Array A Array B Multiplication Array C 

0 1 6  6 

1 7 2  14 

2 9 1  9 

3 10 3  30 

4 15 2  30 

5 4 5  20 

… … …  … 

 

Table 1:Sequential multiplication 

 

It would have been beneficial if we have executed a prepared number of independent 

threads for each same indexed values from both arrays and have them executed at the 

same time. This approach can significantly boost the scaling performance of the 

application which can be enabled by integrating our source code with CUDA. 

1.3 Summary 

The thesis is divided into 4 parts. In first part we are introduced to the CUDA programing 

model. In the second part we explain how CUDA can have a relationship with database 

management systems. Third part introduces us to a set of experimentation scenarios with 

CUDA and CUDA integration attempts with NoSql library WhiteDB. Fourth part deals 

with analysis of all the experiments. Thesis ends with a conclusion and summary. 
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2 CUDA overview 

Since NVIDIA released CUDA in 2007, developers have rapidly developed scalable 

parallel programs for a wide range of applications, including computational chemistry, 

sparse matrix solvers, sorting, searching, and physics models [1]. 

2.1 GPU vs CPU 

A simple way to understand the difference between a GPU and a CPU is to compare how 

they process tasks. A CPU consists of a few cores optimized for sequential serial 

processing while a GPU has a massively parallel architecture consisting of thousands of 

smaller, more efficient cores designed for handling multiple tasks simultaneously [6]. 

 

Figure 1:GPU and CPU core architecture [6] 

 

The CUDA programming model is a heterogeneous model in which both the CPU and 

GPU are used. In CUDA, the host refers to the CPU and its memory, while the device 

refers to the GPU and its memory. Code run on the host can manage memory on both the 

host and device, and also launches kernels which are functions executed on the device. 

These kernels are executed by many GPU threads in parallel [7]. 
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2.2 Threads and thread blocks 

All threads which are called by the kernel run the same code. Each thread has an ID that 

it uses to compute memory addresses and make control decisions. CUDA threads are 

organized in blocks and can communicate within their own block. Blocks are organized 

into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks [8]. 

Developers can manipulate threads by using special built-in variables: threadIdx, 

blockIdx, blockDim, gridDim. Provided variables help developers to better understand 

the grid system and write more understandable code.  

 

 

Figure 2: The CUDA parallel thread hierarchy [7] 

2.3 Kernel execution 

Let’s return back to our example which was discussed in the introduction. We have two 

arrays A and B, and we what to perform multiplication operation. Result will have stored 

in the array named C. Resulting values will be located in the array according by their 

respected index. We will lock at the standard/sequential approach and parallel using a 

CUDA kernel. 

As it was mentioned in the introduction, we only need a function that can loop through 

both arrays sequentially and the task is complete.  
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// Standard CPU sequential looping     

void multiplyNumbers(int  * A, int  * B, int  * C) { 

 for (int i = 0; i < 1000; i++) { 

  C[i] = A[i] * B[i]; 

 } 

} 

 

CUDA solution is different but not difficult. CUDA kernel is defined by using the 

“__global__” declaration. This tells the compiler that this code will be performed on the 

GPU. We call the kernel from the CPU in main function. point. CUDA programs launch 

parallel kernels with the extended function-call syntax kernel 

<<<dimGrid, dimBlock>>> (... parameter list ...);  

where dimGrid and dimBlock are three-element vectors of type dim3 that specify the 

dimensions of the grid in blocks and the dimensions of the blocks in threads, respectively 

[1]. 

__global__ void multiplyNumbersOnCUDA(int  * A, int  * B, int  * C) { 

 // create a global id for every used thread     

 int id = blockIdx.x  *  blockDim.x + threadIdx.x; 

 if (id < 1000) {           // perform parallel multiplication               

  C[id] = A[id] * B[id]; 

 } 

} 

 

int main() { 

 // Call device kernel from host          

 multiplyNumbersOnCUDA <<<(1000 / 32) + 1, 32 >>> (A, B, C); 

 cudaDeviceSynchronize(); 

 //...  

} 

 

Since we want to cover all the elements of the array we need to make sure that we use 

enough threads. For this example, we will use 32 threads for every block, thus we divide 

1000 by 32 and get the number of blocks. When doing a division, we can get a non-integer 

so to avoid problems we increment resulting number by 1.  

Each thread receives a global id index which depends on the multiplication of block 

dimension and block id with the addition of a thread index inside the block. This allows 

developers to track every used thread in the kernel. 
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“cudaDeviceSynchronize()” blocks host until the device has completed all preceding 

requested tasks and returns an error if one of the preceding tasks has failed [29]. 

2.4 Transparent scalability 

The ability of kernels to transparently scale to different GPUs resolve from the hardware 

being able to schedule blocks to execute on parallel Streaming Multiprocessors (SM) 

where a multiprocessor is an array of processors that execute one or more blocks of 

threads.  

Let’s imagine we have a CUDA program which will execute 8 blocks with 32 threads 

each. We want to test this code on 2 different GPUs. First GPU has 2 SM processors, 

second has 4 SM processors. During execution first GPU will schedule 4 blocks for every 

SM. In case of second, each SM will execute only 2 blocks. All this occurs without any 

modification to the source code. This gives an ability run CUDA code on all NVIDIA 

cards and the more SMs GPU has the better is the performance. 

It is important to note that SMs instructions are issued per warp which consists of 32 

threads each [30]. 32 is the minimum number that was chosen by NVIDIA developers  

 

Figure 3:Automatic Scalability [8] 

 

 

http://horacio9573.no-ip.org/cuda/group__CUDART__DEVICE_gb76422145b5425829597ebd1003303fe.html#gb76422145b5425829597ebd1003303fe
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3 Databases and CUDA 

Database with huge amount of data requires much time to process. It is time consuming 

to perform many operations on it, resulting in degradation of performance. CUDA is such 

a programming model by which performance in terms of time for any computation is 

improved [18]. 

3.1 In-memory databases 

In-memory databases systems are database management systems where the data is stored 

entirely in main memory. In memory systems have been shown to be 50,000 times faster 

than disk based systems. This increase in speed along with a falling cost and non-volatility 

of computer memory has led to a greater interest in in-memory databases from the mid-

2000’s [15]. 

Current database management systems were designed assuming that data would reside on 

disk. However, memory prices continue to decline; over the last 30 years they have been 

dropping by a factor of 10 every 5 years. The latest Oracle Exadata X2-8 system ships 

with 2TB of main memory and it is likely that we will see commodity servers with 

multiple terabytes of main memory within a few years. On such systems the majority of 

OLTP databases will fit entirely in memory, and even the largest OLTP databases will 

keep the active working set in memory, leaving only cold, infrequently accessed data on 

external storage [16]. 

Both conventional disk management systems (DRDBMSs) and main memory database 

management systems (MMDBMSs) process data in main memory, and both keep a 

(backup) copy on disc. The key difference between them is that in an MMDBMS the 

primary copy of the database lives permanently in main memory. Even if the whole 

database of a DRDBMS is cached in main memory, it will not provide best performance 

since a DRDBMS is not tuned for this case. In MMDBMSs the situation is different: 

Since data is guaranteed to stay present in main memory, index structures and all the other 

parts of the database do not need to consider disk access and can be tuned for low 

computation cost [17]. 
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When it comes to indexing in a disk based system is to locate a record on disk as quickly 

as possible based on an index key and record identifier. In an in-memory system index 

keys do not need to be stored. Indexes are implemented as record pointers which point to 

the corresponding record containing the key. In effect the record identifier is implemented 

as the record pointer. Because an index key is not stored in the index there is no 

duplication of key values in the index structure which reduces it size. Also pointers are 

all the same size so the need to manage variable length keys goes away making index 

implementation simpler [15]. 

In regards to query processing, a common clause in SQL is ORDER BY. In a disk based 

system this is fast if the data in the table being targeted by the query is stored in the order 

requested. Often, in fact usually, this is not the case. The next best option is to use an 

index scan. This carries the overhead of random access to records which may result in a 

high input/output cost. The problem is exasperated if sorting is required on multiple 

columns. In an in-memory database, as seen in the indexing, the only entries in the index 

are the record identifiers which are implemented as record pointers. In other words, index 

entries point directly to the memory address where data resides, so a random scan is no 

more expensive than a sequential scan, and of course there is no disk I/O. Buffer pool 

management is also unnecessary because you don’t need to cache data in main memory 

because you are not doing any disk I/O [15]. 

3.2 Row-based and columnar-based databases 

Since we will work with data which consists of millions values, it is wise to think about 

its structure. As was said in the introduction, we will have a two-dimensional array in 

which it is important to set its dimensions. It is possible to have 10 millions of arrays each 

consisting of 5 element array or vice versa. It is logical to qualify this two-dimensional 

array as a matrix which consists of rows and columns. So we can approach the data 

structure as row based or as columnar based. In general, deciding what database structure 

must be used is important topic of discussion. Each structure has its advantages and 

disadvantages. 
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3.2.1 Row-based 

When developers talk about row-based approach it refers to traditional database 

management systems (RDBMS). RDBMS is the first database management system which 

we usually start to learn first. RDBMS is very useful and very straight forward way of 

storing data. 

 

Figure 4: Row-based data [20] 

When developers talk about row-based approach it refers to traditional database 

management systems (RDBMS). RDBMS is the first database management system which 

we usually start to learn first. RDBMS is very useful and very straight forward way of 

storing data. 

Unfortunately, we start to experience difficulties when volume of data becomes really 

big. Here is the list of issues that come with this approach: 

 Indexing 

This is the most serious problem as due to indexing the size of the database increases. 

Also the process is slowed down because search time for the record becomes more in 

large table due to record by record search. The number of indexes that can be made is 

also limited. Retrieving and writing operations take much of the computational time 

because of moving entire record. So, all columns cannot be indexed and used effectively 

[19]. 
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 Optimization in the case of many indices 

A second problem is that the traditional database management system can't resolve a 

query and optimize the process to use only indexed fields if there are too many indices 

involved in the query. This leads to degradation of the system performance [19]. 

 Fixed record structure 

The RDBMS has a fixed table structure. If new data or field is to be added, then table 

structure is to be modified or new field should be added at other place. It is very difficult 

to maintain the structure of table at all times [19]. 

 Time to time reorganization of database 

Real data is all the while modified or changed in a period of time. This change should be 

incorporated in the database. Because of this many times the index is modified. This is 

very tedious job to deal with. Thus maintaining the database structure becomes more 

difficult [19]. 

3.2.2 Column-based 

In columnar database the values stored in column one are stored in one set, all the values 

in column two in another set, and so on. In addition to the values, the information needed 

to reinsert them into the proper position in the original record format is stored with each 

set. From the simplicity of the columnar approach accrue many benefits, especially for 

those seeking a high performance environment to meet the growing needs of extremely 

large analytic databases. These key factors are seamlessly engineered into a column-

oriented database, which enable reasonably-priced, benchmark-busting performance to 

meet an organization's business intelligence needs [19]. 
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Figure 5: Column-based structure [19] 

 

The columnar database plays important role in data warehouse systems but when 

insertion, modification, deletion operations are considered the performance of columnar 

database becomes poor. The insertion of record at right place becomes costly in this case 

as finding the right position for insertion is difficult. Along with this, the performance of 

column-oriented database system degrades in the case of importing, exporting, tuple 

construction and bulk reporting [19]. 

3.3 Overview of CUDA for databases 

A database system performs a significant amount of repeated calculations on different 

data. This can occur in table joins or in conditional statements. Both of these database 

system functions can require significant computation time, slowing system performance 

and providing an opportunity for GPU programming to offer significant advantages [22]. 

3.3.1 Query speedups 

Before creating databases that run only on GPU, researchers and developers started 

experiment with SQL queries. The goal was to see how fast, for example, SELECT 

WHERE queries can work on a GPU and also try adding JOIN operations. For example, 

in 2009, there was an attempt to make a SQL accelerator which proved that SELECT 

WHERE query is much faster. In regards to SELECT JOIN a speed up was also detected. 
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Although, this has required an allocation of significantly big chunks of memory, since 

JOIN operation is a Cartesian product – result of merging two tables [21]. 

A similar experiment was done in 2010 in the University of Virginia, where they focused 

on attempting to accelerating SELECT queries using CUDA with a SQLite – an open 

source database which can be configured to work in main memory. SQLite was attractive 

primarily for its simplicity, having been developed from the ground up to be as simple 

and compact as possible. The source code is very readable, written in a clean style and 

commented heavily. The data used for performance testing has five million rows with an 

id column, three integer columns, and three floating point columns [3]. 

 

Figure 6: GPU Speedup per Query [3] 

This project simultaneously demonstrates the power of using a generic interface to drive 

GPU data processing and provides further evidence of the effectiveness of accelerating 

database operations by offloading queries to a GPU. Though only a subset of all possible 

SQL queries can be used, the results are promising and there is reason to believe that a 

full implementation of all possible SELECT queries would achieve similar results [3]. 

3.3.2 Database projects and extensions 

Constant working with CUDA allowed to create different extensions and one of them is 

PG-Storm. PG-Strom is an extension designed for PostgreSQL v9.5 or later, to off-load 

a part of CPU intensive workloads to GPU (Graphic Processor Unit) devices, and execute 

them in parallel asynchronously. This module is designed to reduce response time of 

complicated queries executed on large data set (like, data analytics or batch processing), 

on the other hands, it is not preferable to run transactional workloads or heavy concurrent 
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processing. It allows to perform full table scan, tables join, group by/aggregation and 

projection [24]. 

As time went on, more experiments took place. There were attempts to use CUDA with 

MapReduce[22] – programming model and an associated implementation for processing 

and generating large datasets that is amenable to a broad variety of real-world tasks[23]. 

This also was done to test searching operations on index file in database query processing. 

The time of execution of searching operation of index file shows that a GPU can be used 

to accelerate SQL databases whereas Map Reduce approach also takes less execution time 

for searching index file in Hadoop Environment. In this case it is possible to achieve 

better acceleration because very often more operations can be run independently than in 

a single SQL operation. It depends on the different versions of GPU card which can 

increase processing speed in terms of data retrieval from database. Future work in this 

system will require expanding the database implementation to tile databases that are too 

large for the system into the GPU memory. Even with the advent of direct GPU memory 

access in CUDA 6, direct management of the GPU memory spaces will yield much better 

performance results [22]. 

Since 2012, MapD was developed by gg. MapD Core is an in-memory, column store, 

SQL relational database that was designed from the ground up to run on GPUs. The 

parallel processing power of GPU hardware enables the MapD Core database to query 

billions of rows in milliseconds using standard SQL [26]. 
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Figure 7 Query response time in MapD [28] 

 

In 2016, BlazingDB introduced its database. BlazingDB started as a simple SQL database 

that helped handle large data sets on consulting projects. Eventually it was upgraded to 

become an elastic SQL data warehouse. BlazingDb thanks to computing power of the 

GPU, can scan millions and millions of rows in seconds [25]. 
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4 Goals and scenarios for experiments 

Before performing any experiments, we need to define the task and understand CUDA 

memory architecture. CUDA has access to different types of memory on the GPU will be 

discussed in fort coming subchapters. 

4.1 High level view of what we need 

In order to measure CUDA performance we will define a two-dimensional array which 

will be regarded as a “matrix”. The matrix will consist of 10 million records and 5 fields 

maximum. Matrix dimensions are defined by size parameters – R and C. For simplicity, 

stored data will be represented as integer values. Data range in matrix will be from 1 to 

10. 

After matrix definition and data insertion we will apply a search method that will count 

all the records which contain value of 10. This operation will be performed in RAM 

memory and in GPU memory using CUDA. 

Since memory transfer is an essential part of CUDA programing it is wise to apply search 

function more than once. Before applying search function, a second time we will update 

the data by replacing value 7 with 10 receiving a doubled result. 

Search and update functions execution will be measured in real time. CPU and GPU 

results will be stored in tables and compared to each other. 
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4.2 Explain CUDA memory structure 

 

Figure 8: CUDA memory access [10] 

Since memory transfer is an essential part of CUDA programing it is wise to apply search 

function more than once. Before applying search function, a second time we will update 

the data by replacing value 7 with 10 receiving a doubled result. 

Global memory takes the majority of memory on the GPU device, stored in off-chip 

DRAM, and with the slowest latency on board [12]. In order to work with global memory, 

we use a set of defined functions: 

 cudaMalloc() 

 cudaMallocManaged() 

 cudaMemcpy() 

 cudaFree() 

Developers can only use these functions from the CPU, because the GPU is a slave device 

that receives FDTD task information and data from host computer via a Peripheral 

Component Interconnect Express (PCIe) bus [13]. When creating code for kernel or 
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kernel execution, developers must use declarations such as “__global__” and 

“__device__” which also work on global memory. 

By default, register memory or file (another name) takes all CUDA variables that are 

created inside GPU functions. The number or registers is calculated during compilation 

process. If there are not enough registers variables are buffered to local memory. This 

process is also known as “spilling”. Local memory accesses have same high latency and 

low bandwidth as global memory accesses and are subject to the same requirements for 

memory coalescing [8]. Local memory can be regarded as SWAP on the CPU. 

The fastest memory is shared memory because it is on chip [8]. Shared memory accessible 

directly by threads and programmer managed. This hierarchy enables a programmer to 

control data flow and minimize access latency [12]. In order to work with shared memory 

directly and assigned threads in CUDA code we use “__shared__” declaration. 

Constant memory can be used to declare constant variables and can also allocate memory 

for array of elements. However, it is not possible to do dynamic allocation of constant 

memory. Dynamic allocation can be done in global memory using malloc and copy 

functions listed above. 

 

Figure 9 : GPU memory structure 
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4.3 Standard and unified memory 

The fastest memory is shared memory because it is on chip [8]. Shared memory accessible 

directly by threads and programmer managed. This hierarchy enables a programmer to 

control data flow and minimize access latency [12]. In order to work with shared memory 

directly and assigned threads in CUDA code we use “__shared__” declaration. 

Memory management is crucial part when attempting to transfer data from CPU to GPU. 

Initial data must be declared on the host. After data declaration it is necessary to declare 

a set of pointers for host data and a separate set of pointers for data on the device. By 

manipulating host and device pointers we allocate required space on the GPU and copy 

data from host to device. Every step of allocation and transfer must be verified since there 

is no guarantee that it will always be successful. If written code did not highlight any 

errors, then we can execute the kernel. After successful execution which must be verified 

as well we copy data back to host variables in order to continue working with it or display 

it on screen. 

The common programming model is as follows [12]: 

1. CPU serial code and data initialization 

2. Data transfer to the GPU 

3. Parallel computation execution 

4. Data transfer back to the CPU. 

5. CPU serial code 

Because of the complexity of data management NVIDIA started to look for a way to make 

this process much easier for developers. And since CUDA 6.0 Unified Memory Access 

(UMA) was introduced. 

Unified Memory creates a pool of managed memory that is shared between the CPU and 

GPU, bridging the CPU-GPU divide. Managed memory is accessible to both the CPU 

and GPU using a single pointer. The key is that the system automatically migrates data 

allocated in Unified Memory between host and device so that it looks like CPU memory 

to code running on the CPU, and like GPU memory to code running on the GPU [11]. 
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Figure 10: Introduction to Unified Memory [11] 

Programming model with UM [12]: 

1. CPU serial code and data initialization 

2. Parallel kernel execution 

3. Synchronization between CPU and GPU 

4. CPU serial code 

Further research into advantages and disadvantages of using unified memory to standard 

approach will be demonstrated in the next chapter. 
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5 Experiments with CUDA 

In this chapter we perform all the necessary experiments to determine how efficient is 

GPU with CUDA vs CPU with RAM. Here are displayed all the experiments and their 

results. 

All the experiments are done on my home PC which has these specifications: 

Operation system: UBUNTU 16.04 

Processor: Inrtel® Core(TM) i7-6700K CPU @ 4.00GHz (8 CPUs) 4.01 GHZ 

RAM: 8 GB 

System type: 64 bit 

Video card: GeForce GTX 970 4GB 

CPU test files were written using NetBeans IDE. CUDA test files were written using 

Nsign Eclipse IDE provided by the CUDA-8.0 toolkit. 

5.1 Experiments structure 

In this chapter we perform all the necessary experiments to determine how efficient is 

GPU with CUDA vs CPU with RAM. Here we have all experiments displayed with their 

results. 

The goal of the experiments to prove that CUDA can improve search capabilities on a 

two-dimensional array with dimensions of 50 million elements. Experiments will be 

performed in two types of memory. First in main memory or RAM, second on GPU 

memory using CUDA. 

Since we regard our matrix as a table we can approach its structure as columnar based or 

as row based. In theory which was establish in previous chapter columnar based 

representation must perform faster vs row based structure. Both structures will be tested 

on the CPU and on the GPU. 
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After measuring the performance an identical experiment will be performed in CUDA. 

Based on the established theory in previous chapters, performance in CUDA should 

produce faster results. In addition to that, it is important to measure how time consuming 

is the memory managing process which is an integral part of the CUDA programming 

model. 

Finally, when experimenting with CUDA it is necessary to verify CUDA performance 

with unified memory. How does really unified memory improve the code performance 

and code complexity? 

Test scenarios: 

• Row approach in RAM memory 

• Columnar approach in RAM memory 

• Row approach in CUDA without unified memory 

• Columnar approach in CUDA without unified memory 

• Columnar approach in CUDA with unified memory 

• Columnar approach in CUDA with unified memory 

 

For each scenario we have a working project – 6 in total. Every project consists of 3 files. 

Measurements and functions call are in the main file. Functionality for methods is in the 

second source file. Finally, all the constants and function declarations are in the header 

file. 

In this thesis results for every project will be demonstrated. However, in regards to code 

description, it was decided not to go through every project. Code description will be 

provided only for 3 projects total, since we want to highlight the usage of functionality 

provided by CUDA.  

First will be about using a standard CPU with row-based structure. Second will be on 

GPU using row-based structure without unified memory. The last will be also on GPU 

with same structure but with unified memory.  
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It is important to mention that every operation that the code does is measured in real time. 

Every important method is located between C library function “clock(void)” which 

returns the number of clock ticks elapsed since the start of the program in t_size format. 

This will not be demonstrated in code description since we concentrate on algorithms at 

this moment. Results of time measurements will be demonstrated in subchapters related 

to results and analysis. This can be seen in the source files.   

All created code for this thesis will be uploaded to github. Links will be provided. 

5.2 Structure of test code for standard CPU 

Project name: TestRowBasedHost 

First, we declare a two-dimension array using the “new” operator where R = 10 million 

and    C =5. In order to refer to the array, we will use a pointer to first 5 variable row 

(*tableRow)[5]. 

// We create row based table. It will have 10 million rows and 5 columns 

    int (*tableRow)[C] = new int[R][C]; 

 

Second, we will use this pointer as an argument for a “fillField” function. It will loop 

through every row by incrementing the pointer, adding data from 1 to 10 to specifically 

targeted field. In our experiment, we chose number 2. 
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/* Every row will have its second field with data 

 fillColumn will add numbers from 1 to 10 

 */ 

void fillField(int (*tableRow)[C]) { 

 

    int i = 0; 

    int current = StartValue; 

    int *row; 

 

    while (i < R) { 

        row = (int *) tableRow; 

        tableRow++; 

        if (current > EndValue) 

            current = StartValue; 

        row[TargetField] = current; 

        i++; 

        current++; 

    } 

} 

 

Third, we scan our filled table and try to count all rows which have index number 2 equal 

to 10. Function returns total number of counted values which is 1 million. 

// Function will find specific field in a row 

int scaleRows(int (*tableRow)[C]) { 

 

    int count = 0; 

    int *row; 

 

    for (int i = 0; i < R; i++) { 

        row = (int *) tableRow;   

        if (row[TargetField] == SearchTarget) 

            count += 1; 

         tableRow++; 

    } 

 

    return count; 

} 

 

After we successfully replace (re factor) array data. We scan the matrix once more. Since 

we have 10 million records and data is in range from 1 to 10 first scan result must be 1 

million values scanned. After re factor final result is 2 million. 

5.3 Present the results of test code for CPU 

Data structure: Row based 
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Command: $ g++ -o3 -o row TestRowBasedHost.cpp RowBased.cpp 

First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Total execution 

Operation Time Result 

Fill data 30,7 ms 

First search 18,1 ms 

Re-fill function 18 ms 

Second search 18,7 ms 

Total Result Ca 85,5 ms 

Table 2: Total execution time for row-based structure on CPU 

 

Data structure: Column based 

Command: $ g++ -o2 -o column TestColumnBasedHost.cpp ColumnBased.cpp 

First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Total execution 

Operation Time Result 

Fill data 21,4 ms 

First search 17,4 ms 

Re-fill function 17,3 ms 

Second search 16,7 ms 

Total Result Ca 72,8 ms 

Table 3:Total execution time for column-based structure on CPU 
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5.4 Explain the structure of test code for CUDA 

In case of CUDA experiment we will use 2 projects – “TestRowBasedDevice” and 

“TestRowBasedDeviceUnif”. First uses standard memory. Second – unified memory 

framework. 

5.4.1 Standard memory framework 

Matrix initialization and data filing is identical to a CPU program. After this step, we start 

working with CUDA functions. 

First we need to create a set of pointers. First set will be used for data used on the host 

and second set is for the device. 

First we need to start CUDA initialization. This can be done with calling cudaFree() 

function. 

// We create row based table. It will have 10 million rows and 5 fields 

int(*h_tableRow)[C] = new int[R][C]; 

 

int count = 0; 

 

int *h_count = &count; // initialize host variable for result 

 

int(*d_tableRow)[C]; // initialize cuda pointer for every row 

int *d_count; // initialize cuda variable for result 

 

Second, we need to initialize CUDA. 

//*************** Initialize cuda ******* 

 

cudaFree(0); 

 

Third, we allocate space for matrix on the device. Also need to allocate space for a result 

counter. Since there is no guarantee that CUDA function will work appropriately, we add 

if blocks for verification. 
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//**************** Copy cuda memory to device *********** 

 

if (cudaMemcpy(d_tableRow, h_tableRow, R * C * sizeof(int), 

 cudaMemcpyHostToDevice) != cudaSuccess) { 

 printf("\nFailed to copy d_tableRow to device"); 

 return 0; 

} 

 

if (cudaMemcpy(d_count, h_count, sizeof(int), cudaMemcpyHostToDevice) 

 != cudaSuccess) { 

 printf("\nFailed to copy d_count to device"); 

 return 0; 

} 

 

Fifth, after all the data copied we can launch the kernel execution. Number of block will 

be determining by division of number of rows, which is 10 million by number of threads 

which is 1024 – max threads per block. 

scaleCudaRow <<<R / 1024 + 1, 1024 >>>(d_tableRow, d_count); 

cudaDeviceSynchronize(); 

 

Functionality of the kernel is not as easy as in the standard CPU example. The difficulty 

comes when you have to do incrementing. We encounter a problem of race condition 

which is a common problem in multithreaded applications. It is necessary to make the 

process atomic – without any threads interference [14]. For this we have atomicAdd. 

Example: 

int atomicAdd(int* address, int val); 

 

This atomicAdd function can be called within a kernel. When a thread executes this 

operation, a memory address is read, has the value of ‘val’ added to it, and the result is 

written back to memory [14]. 

Although, just adding atomicAdd() is not enough. When we do an adding process inside 

a kernel. atomicAdd will provide us with a full result only after kernel will finish 

executing. However, in our test scenario it is required to move through every row by 

constantly incrementing the matrix pointer. To solve this challenge, it was decided to 

declare a global “__device__” variable “incrementor” which is initially equals to 0. 
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// Do a search in matrix using cuda 

__global__ 

void scaleCudaRow(int(*d_tableRow)[C], int *d_count) { 

 int id = blockIdx.x * blockDim.x + threadIdx.x; 

 

 if (id < R) { 

  d_tableRow += atomicAdd(&incrementor, 1); 

  int *row = (int *)d_tableRow; 

  if (row[TargetField] == SearchTarget) { 

   atomicAdd(d_count, 1); 

  } 

 } 

} 

 

Because we will continue to work with rows with CUDA, it is necessary to set 

“incrementor” back to 0. 

resetIncrementor <<< 1, 1 >>> (); 

cudaDeviceSynchronize(); 

 

__global__  void  resetIncrementor() { 

 incrementor = 0; 

 

} 

 

After completing first search, we return result variable “d_count” back from device to 

host. Result will be set in main memory and pointer “h_count” will be used for access. 

The result will be 1 million found rows. 

if (cudaMemcpy(h_count, d_count, sizeof(int), cudaMemcpyDeviceToHost) != 
cudaSuccess) { 

 printf("\nFailed to copy d_count to host"); 

 cudaFree(d_tableRow); 

 cudaFree(d_count); 

 return  0; 

 

} 

 

Having stored the first search result, we need to substitute matrix data.  This can also be 

done in CUDA. 
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substituteFieldCudaValue <<<R / 1024 + 1, 1024 >>> (d_tableRow); 

cudaDeviceSynchronize(); 

 

 

__global__  void  substituteFieldCudaValue(int(*d_tableRow)[C]) { 

 int id = blockIdx.x  *  blockDim.x + threadIdx.x; 

 if (id < R) { 

  d_tableRow += atomicAdd(&incrementor, 1); 

  int  * row = (int  *)d_tableRow; 

  if (row[TargetField] == SubstituteValue) { 

   row[TargetField] = SearchTarget; 

 

  } 

 

 } 

 

} 

 

Finally, after setting “h_count” to 0 and copying it back to device we launch search kernel 

for the last time. After doing same copy operation from device to host we will have our 

result who’s values equals to 2 million found rows.  

5.4.2 Unified memory framework 

When using unified memory framework code designed becomes more easy. We do not 

need separate pointer for the device and we do not need to copy data to device and back 

to host. Unified memory gives us a chance to use only one set of pointers. 

We will only use two pointers. 

int(*d_tableRow)[C]; // declare pointer for every row 

int *d_count; // declare pointer to variable that stores counting result 

 

We initialize our pointers in unified memory. 

//*****************Malloc data in 
unifiedcudamemory***************************** 

 

cudaMallocManaged(&d_tableRow, R * C * sizeof(int)); 

cudaMallocManaged(&d_count, sizeof(int)); 

 

Then we take the same steps as we took in the previous experiment only without the 

copying. 

 We set counter pointer to zero and need to initialize CUDA. 
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*d_count = 0; 

 

//*************** Initialize cuda ******* 

 

cudaFree(0); 

After that we use the same function from filling data to kernel execution with data 

substitution. 

fillField(d_tableRow); 

 

scaleCudaRows <<<R / 1024 + 1, 1024 >>>(d_tableRow, d_count); 

cudaDeviceSynchronize(); 

 

resetIncrementor <<<1, 1 >>>(); 

cudaDeviceSynchronize(); 

 

substituteFieldCudaValue <<<R / 1024 + 1, 1024 >>>(d_tableRow); 

cudaDeviceSynchronize(); 

 

resetIncrementor <<<1, 1 >>>(); 

cudaDeviceSynchronize(); 

 

scaleCudaRows <<<R / 1024 + 1, 1024 >>>(d_tableRow, d_count); 

cudaDeviceSynchronize(); 

  

The result is the same but code design became more understandable and compact. 

5.5 Present the results of test code for CUDA 

Before we demonstrate the result it necessary to mention that some operations worked 

faster than 1 ms. They did not have any impact on total execution so they were left out 

from the result tables. It is possible to see all the results for all the projects; this can be 

done by compiling the source files. All information will be displayed in the command 

prompt.  

Data structure: Row based 

Memory framework: standard memory framework  

First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Command: $ /usr/local/cuda-8.0/bin/nvcc - row RowBasedDevice.cu RowBased.cu 
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Total execution 

Operation Time Result 

Fill rows 62,2 ms 

Initialize CUDA 71,8 ms 

CUDA Malloc column to device 0,3 ms 

CUDA Malloc result variable to device 0,2 ms 

Copy rows info to device 23,1 ms 

First cuda search 1,342 ms 

Cuda Re factor function 1,7 ms 

Second cuda search 1,279 ms 

Total Result Ca 162,1 ms 

Table 4:Total execution time for row-based structure on GPU  

Data structure: Column based 

Memory framework: standard memory framework  

First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Command:  

$ /usr/local/cuda-8.0/bin/nvcc - column ColumnBasedDevice.cu ColumnBased.cu 

Total execution 

Operation Time Result 

Fill rows 19,4 ms 

Initialize CUDA 84,3 ms 

Cuda Malloc column to device 0,2 ms 

Cuda Malloc result variable to device 0,1 ms 
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Copy rows info to device 5,1 ms 

First cuda search 0,4 ms 

Second cuda search 0,4 ms 

Total Result Ca 110,5 ms 

Table 5: Total execution time for column-based structure on GPU 

Data structure: Row based 

Memory framework: unified memory framework  

First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Command:  

$ /usr/local/cuda-8.0/bin/nvcc - column RowBasedDeviceUnif.cu RowBased.cu 

Total execution 

Operation Time Result 

Initialize CUDA 2,2 ms 

Cuda Malloc column to device 108,8 ms 

Cuda Malloc result variable to device 124,2 ms 

Fill column 60,9 ms 

First cuda search 17,3 ms 

Cuda Re factor function 1,8 ms 

Second cuda search 1,5 ms 

Total Result Ca 317 ms 

Table 6: Total execution time for row-based structure on GPU with unified memory 

Data structure: Column based 

Memory framework: unified memory framework  
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First search: 1000000 fields with target value 10 

Second search: 2000000 fields with target value 10 

Command:  

$/usr/local/cuda-8.0/bin/nvcc –column ColumnBasedDeviceUnif.cu 

ColumnBased.cu 

Total execution 

Operation Time Result 

Initialize CUDA 1,9 ms 

Cuda Malloc column to device 97,6 ms 

Cuda Malloc result variable to device 113 ms 

Fill column 25,4 ms 

First cuda search 3,7 ms 

Cuda Re factor function 0,5 ms 

Second cuda search 0,4 ms 

Total Result Ca 243 ms 

Table 7: Total execution time for column-based structure on GPU with unified memory 
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6 Experiment with CUDA and WhiteDB 

WhiteDB is a lightweight NoSQL database library written in C, operating fully in main 

memory. There is no server process. Data is read and written directly from/to shared 

memory, no sockets are used between WhiteDB and the application program [31]. 

Our goal is to use WhiteDb on the GPU with CUDA instead of using it in shared or RAM 

memory and measure the performance. The idea is to reproduce the same experiment 

which was done in previous chapter. We need to create 10 million of rows of data. In each 

row we will have one field with a value from 1 to 10. WhiteDB will be instructed to count 

all the rows which have a value of 10. 

WhiteDB has complex functionality. It is a very time consuming task to properly integrate 

CUDA with WhiteDB. This requires deep understanding of in memory databases and 

shared memory properties. This can be master’s thesis in itself. The solution which was 

attempted in this thesis is to migrate WhiteDB code and to adapt to CUDA rules. 

Since WhiteDB can work in main memory and on local/disc memory, it was decided to 

try and reproduce local memory database initialization on CUDA. Initialization is done 

with function: 

void* wg_attach_local_database(int size) 

 

Returns a pointer to local memory database, NULL if failure. Size is given in bytes. The 

database is allocated in the private memory of the process and will neither be readable to 

other processes nor persist when the process closes. In every other aspect the database 

behaves similarly to a shared memory database. 

In order reproduce this, I wrote a separate CUDA function which uses the same 

functionality but adapted to CUDA. This is not a difficult step, since all defined structures 

and macros functions can be used in CUDA. 

__global__   void  initialize_db_on_cuda(void  * d_db, gint  * d_size) { 

 if (threadIdx.x == 0) { 

  d_db = wg_attach_local_cuda_database(*d_size); 

 } 

} 
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Compilation process was successful and during execution there was no null value 

returned. The end result was not guaranteed. In order to prove that database was properly 

initialized it was necessary to try and add integer values. 

Value insertion process is complex. It uses operations, definitions and macros from 

different files. All function calls very traced and the final result was 10 CUDA files. All 

the functionality needed to have __device__ declaration. 

Since we had multiple CUDA files, it is important to understand separate compilation in 

CUDA. 

 

Figure 11:  CUDA Separate Compilation Trajectory [27] 

 

 

Compilation requires special flags. 

 

Commands: 

 

/usr/local/cuda-8.0/bin/nvcc –dc main.cu ../../../C/cualloc.cu ../../../C/cumem.cu 

../../../C/cumem.cu ../../../C/culock.cu ../../../C/cudata.cu ../../../C/cuindex.cu 

../../../C/cuquery.cu ../../../C/cuindex.cu ../../../C/cuhash.cu  ../../../C/cucompare.cu 

 

Created object files are required to be linked in order to make an executable. 

 

/usr/local/cuda-8.0/bin/nvcc –rdc=true main.o cualloc.o cumem.o culock.o cudata.o 

cuindex.o cuquery.o cuhash.o custring.o cucompare.o -o executeMyCudaFile 

 

./executeMyCudaFile 
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First execution process failed because CUDA does not know some standard C functions 

from standard C library – strlen, strcmp, memcpy. 

To fix by creating a separate file custring.cu where code for these functions was written 

using open source sources. 

#include  < string.h >      

__device__   size_t  strlen(const  char  * str) { 

 const  char  * s; 

 for (s = str; *s; ++s) 

  ; 

 return  (s - str); 

} 

 

__device__   int  strcmp(const  char  * s1, 

 const  char  * s2) { 

 while (*s1 == *s2++) 

  if (*s1++ == 0)               return  (0); 

 return  (*(unsigned  char  *)s1 - *(unsigned  char  *) --s2); 

} 

 

__device__   int  memcmp(const  void  * s1, 

 const  void  * s2, size_t  n) { 

 if (n != 0) { 

  const  unsigned  char  * p1 = (const  unsigned  char  *)s1, 

   *p2 = (const  unsigned  char  *)s2; 

  do { 

   if (*p1++ != *p2++) 

    return  (*--p1 - *--p2); 

 

  } while (--n != 0); 

 

 } 

 return  (0); 

 

} 

 

After adding this file to the command line compilation was successful. 

Command: 

/usr/local/cuda-8.0/bin/nvcc –dc main.cu ../../../C/cualloc.cu ../../../C/cumem.cu 

../../../C/culock.cu ../../../C/cudata.cu ../../../C/cuindex.cu ../../../C/cuquery.cu 

../../../C/cuindex.cu ../../../C/cuhash.cu ../../../C/custring.cu ../../../C/cucompare.cu 
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Unfortunately, despite successful compilation, execution of result file did not give any 

results. Compiler did not catch and print out any errors. Program just successfully stops 

executing. By adding additional error checking functions or debugging also does not 

provide any information why program just stops and exit the process. 

7 Comparative analysis 

Provided results were very interesting. Judging by theoretical data, programs with CUDA 

should have improved the execution time. Instead we see that CPU programs (row and 

columnar based) complete their task faster. To understand the advantages and 

disadvantages we need to analyze the results more tediously.   

7.1 Review search speed 

Data structure First Search Re factor Second Search 

CPU Row Based 18,1 ms 18 ms 18,7 ms 

CPU Column Based 21,4 ms 17,4 ms 17,3 ms 

CUDA Row Based 1,3 ms 1,7 ms 1,3 ms 

CUDA Column 

Based 

0,4 ms 1,7 ms 0,4 ms 

CUDA with Unified 

memory Row Based 

17,3 ms 1,8 ms 1,5 ms 

CUDA with Unified 

memory Column 

Based 

3,7 ms 0,5 ms 0,4 ms 

Table 8: Search speed results 

By comparing search and re factor result of CPU and GPU we can confirm theoretical 

statements which for highlighted before. GPU with CUDA model managed to perform 

better that its CPU counterpart.  

Column based structure has advantages on the CPU and on the GPU. GPU results 

demonstrate the difference better. The fact that the difference is not that significant mostly 
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depends on the fact that used data was not very big, although we had 50 million fields. It 

is likely that the program on both devices took more time to initialization and memory 

allocation so that it could not feel the data structure advantages and disadvantages. Also 

optimization flags for the C++ compiler on the CPU did not boost the performance as 

well. For future analysis it is required to use high volumes of data from 100 of millions 

to billions. For these experiments more advanced software and hardware will be needed. 

This volume of data is mostly used in modern companies which are used for machine 

learning, fraud detection and other data mining operations. 

7.2 Review memory allocation speed 

Data structure CUDA initialization First malloc Second Malloc 

CUDA Standard Row 

Based 

71,8 ms 0,3 ms 0,2 ms 

CUDA Standard 

Column Based 

84,3 ms 0.2 ms 0,1 ms 

CUDA with Unified 

memory Row Based 

2,2 ms 108,8 ms 124,2 ms 

CUDA with Unified 

memory Column Based 

1,9 97,6 113 ms 

Table 9: Memory allocations speed result 

While working with CUDA an interesting pattern was noticed. Every first “malloc” 

function without using unified memory framework had a large time consuming spike. 

Second malloc operation did not have that issue. “Malloc” operations in C language have 

been usually fast, since we just allocate free space.  

In attempt to find a solution, it was discovered that it does not matter what first CUDA 

function is used. Every first CUDA “call” will have this time spike. It was decided later 

to use “cudaFree(0)” as the first CUDA function. This call is regarded in this thesis as 

“CUDA Initialization”.  

 “cudaFee(void** devPtr)” is a function that frees memory in CUDA, it is similar to 

“free()” in C/C++.  
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Unfortunately, this initialization process consumes all the advantages in mine experiment 

which is provided by CUDA in other operations. However, the situation is different when 

we use unified memory. 

Unified memory uses a new introduced cudaMallocManaged() function. As we can see 

in the results, first CUDA function takes maximum up to 2 ms. But memory allocation is 

a 100 times higher and it is shared between all allocation operations. In addition to this, 

row based first search is 15 times longer - 17,3 ms. As a result, unified memory 

framework made the execution time even longer. 

This is an interesting predicament. On the one hand unified memory usage allowed to 

drastically reduce to code volume and made the designed flow a lot easier, as it was 

intended by the NVIDIA developers. On the other, on simple operation memory 

allocation process takes significantly more time and in advanced programs can become 

an issue. 

In addition to that, the time spike can become on any allocation process. For example, 

second allocation is performed only for the result variable, which is only one integer and 

it takes more time than for a two-dimensional array of 50 million fields. 

The provided result demonstrates that CUDA is better to be used with high volume data. 

It is more meant for difficult calculation which are process through multiple loops which 

can be process for hour on the CPU based platforms. With the understanding of the 

CUDA basics, it is necessary to try integrate CUDA with BIG DATA applications, 

picking specific time consuming processes. 
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8 Conclusion 

This was our first interaction with CUDA programming model. It was an interesting 

opportunity to write code for a GPU than for CPU. By writing separate programs for CPU 

and GPU we managed to prove to ourselves that GPUs using CUDA can boost 

performance for specific of software’s functionality. We also attempted to integrate 

CUDA with WhiteDB. Unfortunately, despite successful compilation the execution could 

not provide us any specific results. 

In case of our thesis we managed to identify and measure the performance boost. 

However, all advantages that we achieved had been overshadowed by what we named as 

CUDA initialization process. This obstacle was an unexpected surprise. In addition to 

that, there is not much information about how to deal with this issue. 

I believe that the lack of information is because CUDA is used for more complex tasks 

with large datasets. In these scenarios, such spikes are not an issue, especially if are 

dealing with BIG DATA that often takes hours to process. Unfortunately, the lack of time 

and experience did not give us a chance to start with large data volumes. That being said, 

it was not possible to quickly take the optimal path when you do not know the basics of 

GPU programming.  

In regards, to WhiteDB, an attempt to compile an entire library was the first step but not 

the best one. When integrating CUDA with other software it is important to fully 

understand the algorithm, in our case WhiteDB. This would have allowed us to find a 

specific parts of the algorithm and migrate them to CUDA. Trying to launch a project 

directly on CUDA is a very risky task, since CUDA uses data that was defined and 

initialized on the CPU/host. 

Despite what was said, this thesis can become a first step into making a more complex 

piece of software that can be used in CUDA. Knowing what works and what does not can 

be a significant step forward for future developers, choosing this task.     
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9 Summary 

In this thesis we attempted to understand the basics of CUDA and attempt to optimize 

basic search procedures on two-dimensional arrays and on a NoSql library WhiteDB. 

At the beginning we emphasized on how CUDA importance grows in IT industry. 

Showed main reasons why parallel operations performed on the GPU can be interesting 

for developers and scientists. 

Described the difference between CPU and GPU architectures and demonstrated how 

parallel functions can be done in CUDA. Also showing the main parts of basic CUDA 

programming. 

Tried to demonstrate how CUDA and databases can have a relationship. First focused on 

in-memory databases because of their architecture and usefulness. Reminded about two 

main approaches when it comes to row based and column based data and discussed some 

achievements in CUDA-based databases. 

We demonstrated CUDA memory management and compiled experiments scenarios. 

With the acquired knowledge we attempted to use CUDA with a NoSQL library named 

WhiteDB. 

All experiments and integration results are documented and analysed. 
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10 Pointer to code files 

All the used code for this thesis is uploaded to github: 

 https://github.com/devrais/Andrei-Orehhov-Master-s-thesis-2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/devrais/Andrei-Orehhov-Master-s-thesis-2017


53 

 

11 References 

[1] Nickolls, John, et al. "Scalable parallel programming with CUDA." Queue 6.2 (2008): 

40-53. 

[2] Garland, Michael, et al. "Parallel computing experiences with CUDA." IEEE micro 

28.4 (2008). 

[3] Bakkum, Peter, and Kevin Skadron. "Accelerating SQL database operations on a 

GPU with CUDA." Proceedings of the 3rd Workshop on General-Purpose Computation 

on Graphics Processing Units. ACM, 2010. 

 

[4] Mivule, Kato, et al. "A review of cuda, mapreduce, and pthreads parallel computing 

models." arXiv preprint arXiv:1410.4453 (2014). 

 

[5] Gribble, Christiaan. "Introducing multithreaded programming: POSIX threads and 

NVIDIA's Cuda." American Society for Engineering Education. American Society for 

Engineering Education, 2009. 

 

[6] “What is GPU-Accelerating computing? (2017)” [WWW] 

http://www.nvidia.com/object/what-is-gpu-computing.html 

 

[7] “An Easy Introduction To CUDA and C++ (2017)” [WWW] 

https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/ 

[8] “CUDA C programming guide (2017)” [WWW] http://docs.nvidia.com/cuda/cuda-c-

programming-guide/ 

[9] “An Even Easier Introduction to CUDA (2017)” [WWW] 

https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/ 

[10] “Memory Architecture (2017)” [WWW] 

https://cvw.cac.cornell.edu/gpu/memory_arch?AspxAutoDetectCookieSupport=1 

[11] “Unified Memory in CUDA 6 (2017)” [WWW] 

https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/ 

[12] Landaverde, Raphael, et al. "An investigation of unified memory access performance 

in cuda." High Performance Extreme Computing Conference (HPEC), 2014 IEEE. IEEE, 

2014. 

http://www.nvidia.com/object/what-is-gpu-computing.html


54 

 

[13I lgner, R. G., and D. B. Davidson. "A comparison of the FDTD algorithm 

implemented on an integrated GPU versus a GPU configured as a co-processor." 

Electromagnetics in Advanced Applications (ICEAA), 2012 International Conference on. 

IEEE, 2012. 

[14] “CUDA – Tutorial 4 – Atomic Operations (2017)” [WWW] 

http://supercomputingblog.com/cuda/cuda-tutorial-4-atomic-operations/ 

[15] Lake, Peter, and Paul Crowther. "In-memory databases." Concise Guide to 

Databases. Springer London, 2013. 183-197. 

[16] Larson, Per-Åke, et al. "High-performance concurrency control mechanisms for 

main-memory databases." Proceedings of the VLDB Endowment 5.4 (2011): 298-309. 

[17] Meixner, Matthias. "Main Memory Databases." (2005): 341-344. 

[18] Kulkarni, Jyoti B., A. A. Sawant, and Vandana S. Inamdar. "Database processing by 

Linear Regression on GPU using CUDA." Signal Processing, Communication, 

Computing and Networking Technologies (ICSCCN), 2011 International Conference on. 

IEEE, 2011. 

[19] Kanade, Anuradha S., and Arpita Gopal. "Choosing right database system: Row or 

column-store." Information Communication and Embedded Systems (ICICES), 2013 

International Conference on. IEEE, 2013. 

[20] “How Do Column Stores Work? (2017) ” [WWW]  http://kejser.org/how-do-

column-stores-work 

[21] Pietron, Marcin, Pawel Russek, and Kazimierz Wiatr. "Accelerating select where 

and select join queries on a GPU." Computer Science 14.2 (2013): 243. 

[22] Sahoo, Abhaya Kumar, Sundar Sourav Sarangi, and Rachita Misra. "A comparison 

study among GPU and map reduce approach for searching operation on index file in 

database query processing." Man and Machine Interfacing (MAMI), 2015 International 

Conference on. IEEE, 2015. 

[23] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on 

large clusters." Communications of the ACM 51.1 (2008): 107-113. 



55 

 

[24] “PG-Storm Limit Breaker of PostgreSQL powered by GPU (2017)” [WWW] 

http://strom.kaigai.gr.jp/manual.html 

[25] “High Performance GPU Data for Big Data SQL (2017)” [WWW] 

https://blazingdb.com/index.html 

[26] “Meet the Future of Analytics (2017)” [WWW] https://www.mapd.com/products/ 

[27] “NVIDIA CUDA Compiler Driver NVCC (2017)” [WWW] 

http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#axzz4gwgrmYlU 

[28] “MapD Core Database (2017)” [WWW] https://www.mapd.com/products/core/ 

[29] ”NVIDIA CUDA Library (2017)” [WWW] http://horacio9573.no-

ip.org/cuda/group__CUDART__DEVICE_gb76422145b5425829597ebd1003303fe.ht

ml 

[30] “What is a warp in CUDA? (2017)” [WWW] http://cuda-

programming.blogspot.com.ee/2013/01/what-is-warp-in-cuda.html 

[31] “WhiteDB (2017)” [WWW] http://whitedb.org/ 

https://www.mapd.com/products/core/
http://horacio9573.no-ip.org/cuda/group__CUDART__DEVICE_gb76422145b5425829597ebd1003303fe.html
http://horacio9573.no-ip.org/cuda/group__CUDART__DEVICE_gb76422145b5425829597ebd1003303fe.html
http://horacio9573.no-ip.org/cuda/group__CUDART__DEVICE_gb76422145b5425829597ebd1003303fe.html
http://cuda-programming.blogspot.com.ee/2013/01/what-is-warp-in-cuda.html
http://cuda-programming.blogspot.com.ee/2013/01/what-is-warp-in-cuda.html

