ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 171 1960

16

СБОРНИК СТАТЕЙ По теории тонкостенных конструкций II

ТАЛЛИН, 1960

Ep. 6.7

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 171 1960

Сборник статей по теории тонкостенных конструкций II

ТАЛЛИН, 1960

Работы сборника выполнены членами кафедры строительных конструкций ТПИ, руководимой проф. докт. техн. наук Х. Х. Лаул.

Eesti NSI Teadustik **Ne**Rduste Raamatukogu Akadee

РАСЧЕТ ТОНКОСТЕННЫХ СТЕРЖНЕЙ МНОГОЗАМКНУТОГО СЕЧЕНИЯ НА КРУЧЕНИЕ

Предлагается приближенный метод расчета тонкостенных стержней с многозамкнутым прямоугольным сечением, где однопролетный стержень рассматривается как призматическая оболочка. Число замкнутых контуров в сечении не имеет принципиального значения; в дальнейшем для простоты оно взято равным трем (рис. 1).

Рис. 1.

Предположим, что сечение оболочки симметрично относительно вертикальной оси и что пластинки, жестко соединенные между собой на узловых линиях, постоянны по толщине вдоль оболочки.

Рассмотрим случай шарнирного закрепления оболочки при наличии жестких в своей плоскости опорных диафрагм.

Пусть на стержень многозамкнутого сечения действует нагрузка, равномерно распределенная в продольном направлении и приложенная перпендикулярно оси оболочки. В отношении же распределения нагрузки в поперечном направлении никаких ограничений нами не делается. Всякий *п*-замкнутый жесткий (недеформируемый) контур можно рассматривать как результат *n* — 1 замыкания однозамкнутого контура. Так как однозамкнутый жесткий контур статически определим, а каждое замыкание эквивалентно наложению одной обобщенной связи (накладываемой на все сечения оболочки), то *n*-замкнутый жесткий контур является статически *n* — 1 раз неопределимым.

Раскрытие статической неопределимости можно выполнить общими методами строительной механики [1].

Учитывая возможность деформирования замкнутого контура сечения, внешнюю нагрузку целесообразно разлагать на две системы сил — симметричную и антисимметричную относительно вертикальной оси сечения оболочки.

Под действием первой системы оболочка изгибается. Если пренебречь влиянием деформации сдвига, то задача сводится к известной задаче элементарной теории изгиба балок.

Действие второй системы сил ставит оболочку в условия кручения. На решении задачи кручения остановимся ниже.

а) Определение центра кручения

Как известно, внешняя нагрузка, проходящая через ось кручения, не вызывает кручения системы. Исходя из этого условия и определяются координаты центра кручения для любого сечения.

Для получения более общего решения рассмотрим несимметричное сечение (рис. 2).

Выберем начало координат на оси z в произвольной точке O. Пусть искомый центр кручения A находится в точке, расстояние которой от начала координат \overline{z} неиз-

вестно. Очевидно, что под действием силы Q_y , проходящей через точку A, в системе закручивания не возникнет. Теперь перенесём силу Q_y в точку O и учтем компенсирующий момент M. Угол закручивания, возникший под действием Q_y и M, должен равняться нулю.

Обозначим:

 φ_{Q} — угол закручивания от силы $Q_{y} = 1$, приложенной в точке O;

φ_м — угол закручивания от момента M = 1.

Тогда z определяется из условия

$$\varphi_{a}Q_{v} + \varphi_{\mu}M = 0, \qquad (1)$$

а так как M = Q z, то

$$\bar{z} = -\frac{\varphi_2}{\varphi_2} \tag{2}$$

Исходя из предположения о линейности деформации, углы закручивания определяются при помощи общей формулы Мора:

$$\delta_{io} = \sum_{g} \int_{EJ}^{M_i M_0} dx + \sum_{g} \int_{EF}^{N_i N_o} dx + \sum_{g} \int_{F} \frac{Q_i Q_g}{6F} dx.$$
(3)

Формула (3) выведена для определения перемещений в стержневых системах. В настоящем случае тонкостенную коробку можно рассматривать как совокупность бесконечно большого количества упругих полюсок, ориентированных вдоль стержня (рис. 3).

Рис. 3.

Следовательно знак суммы в формуле (3) должен быть заменен знаком интеграла. Тогда

 $\delta_{io} = \oint \int \frac{M_i M_o}{EJ} dx ds + \oint \int \frac{M_i N_o}{EF} dx ds + \oint \int \frac{Q_i Q_o}{GF} dx ds,$ (4)

где: δ_{i0}

 искомое перемещение по направлению *i*, вызванное заданной внешней нагрузкой;

- M₀, N₀, Q₀ изгибающий момент, нормальная и поперечная силы, развивающиеся под действием внешней нагрузки в сечении любой упругой полоски;
- *M*_i, *N*_i, *Q*_i те же силы, вызываемые единичной нагрузкой, приложенной по направлению *i*.

Поскольку положение центра кручения зависит только от геометрии сечения, а не от нагрузки, то для определения координат центра кручения возьмем самую простую статическую схему — консоль с неизменяемым прямоугольным профилем. Пусть к свободному концу консоли приложены: поперечная сила $Q_y = 1$ и закручивающий момент $M_{\kappa p} = 1$, обусловливающий возникновение угла закручивания $\varphi_{\rm M}$.

Так как выбранная нами консоль находится в условии чистого кручения, то нормальные напряжения в сечениях системы не развиваются. Вследствие недеформируемости контура сечения отсутствует и поперечный изгибающий момент. Величину поперечной силы необходимо еще определить.

Учитывая изложенное и введя в формулу Мора (4) обозначения $Q_0 = S_0 ds$, $Q_i = S_i ds$ и $F = \delta ds$, получим

$$\delta_{ig} = \varphi = \oint_{\sigma} \int_{\overline{GS}}^{S_i S_i} dx ds.$$
 (5)

В формуле (5) касательное усилие S_0 определяется из статически неопределимой системы, а S_1 может быть взято из статически определимой системы.

За основную (статически определимую) систему принята система, представленная на рис. 4.

Так как в основной системе замкнут лишь второй контур, то касательные усилия

$$S_{i} = \frac{\mathcal{M}_{i2}}{\Omega_{i}} = \frac{\mathcal{M}_{i2}}{\overline{\Omega}_{i}}$$
(6)

будут действовать только в его сечениях. В формуле (6) Ω_i обозначает удвоенную площадь, ограниченную *i*-м контуром.

Рис. 4.

Касательные усилия S₀ в любой точке поперечного сечения системы получаются в виде:

$$S_0 = \overline{S_0} + X_1 \overline{S_1} + X_2 \overline{S_2}, \qquad (7)$$

где X_1 и X_2 — истинные значения неизвестных касательных усилий, действующих в обобщенных связях. Эти усилия определяются из канонических уравнений

$$\begin{split} \delta_{11} \chi_1 + \delta_{12} \chi_2 + \delta_{1m} &= 0 \\ \delta_{21} \chi_1 + \delta_{22} \chi_2 + \delta_{2m} &= 0 \\ \end{split}$$

$$\end{split}$$

Следовательно углы закручивания от $M_{\rm kp} = 1$ можно получить по формуле

$$\mathcal{P}_{M} = \frac{1}{6\Omega_{i}} \oint_{i} \int_{0}^{i} \frac{S_{0}}{\delta} dx \, ds \tag{9}$$

Аналогично формуле (5) определяется и угол закручивания φ_0 от $Q_y = 1$.

Таким же способом находится и вторая координата центра кручения \overline{u} .

Для определения координат точки *А* однозамкнутого сечения можно вывести формулы в замкнутом виде. Например,

$$\bar{z} = -\frac{\Re \oint \frac{S}{\delta} ds}{J \oint \frac{ds}{\delta}} + \frac{\oint S_{gds}}{J}, \qquad (10)$$

где е — расстояние контура от произвольно выбранного полюса.

б) Определение внутренних сил

Считая координату x вдоль оболочки и координату s по контуру поперечного сечения, из условия равновесия элемента dx ds получаем

$$\frac{\partial T}{\partial x} + \frac{\partial S}{\partial s} = 0 \tag{11}$$

Предполагая, что приращение сдвигающих сил вдоль оболочки $\zeta = \frac{\partial S}{\partial x}$ является постоянным, из уравнения (11) находим

$$\frac{\partial^2 T}{\partial x^2} = -\frac{\partial^2 S}{\partial s \partial x} = -\frac{\partial}{\partial s} \mathcal{G}(s) = -t(s).$$
(12)

Внутренние силы системы выражаются теперь в следующем виде [2]:

$$T(s,x) = \frac{x}{2}(L-x)t(s)$$

$$\max T(s,x) = \frac{L^2}{\delta}t(s)$$

$$S(s,x) = (x - \frac{L}{2}) \mathcal{G}(s)$$

$$(13)$$

Из (13) следует, что внутренние силы выражаются при помощи функции t(s). В дальнейшем убедимся, что за основное неизвестное целесообразно выбирать именно эпюру t(s), описывающую состояние депланации поперечного сечения оболочки.

Сделаем предположение, что в деформированном состоянии прямолинейные элементы контурной линии поперечного сечения, выходя из плоскости x = const, будут оставаться прямыми [3, 4]. Теперь сконструируем эпюру искомой функции t(s) в представленном на рис. 5 виде. Ординаты t_a и t_b пока неизвестны. Для простоты дальнейших выкладок предположим, что поперечное сечение оболочки имеет две оси симметрии.

Теперь выразим эпюру t(s) в аналитическом виде для каждой пластинки отдельно. Путем интегрирования t(s)получим приращения сдвигающих сил, в данном случае $\zeta_1, \zeta_2, \ldots, \zeta_6$, содержащие 6 постоянных интегрирования c_1, c_2, \ldots, c_6 . Вместе с t_a и t_b имеется теперь 8 неизвестных. Для элиминирования некоторых из них можно

использовать четыре условия непрерывности на узловых линиях и одно условие равновесия $\Sigma M_x = 0$. Другое условие равновесия $\Sigma Z = 0$ уже выполнено из-за симметрии.

Рис. 5.

Остальные три неизвестных определяются из минимума потенциальной энергии внутренних сил.

Для нахождения поперечных изгибающих моментов M(s) рассмотрим элементарную поперечную полоску оболочки (dx = 1) как многозамкнутую раму с жесткими углами (рис. 6а). Такая рама в данном случае четырехкратно статически неопределима. Неизвестные X_1, X_2, X_3 и X_4 , а также ординаты эпюры изгибающих моментов (качественный вид которой представлен на рис. 6б) выразим при помощи пока неизвестных величин t_a , t_b и c_1 .

Рис. 6.

При составлении выражения потенциальной энергии системы предположим, что достаточная длина оболочки позволяет отказаться от влияния продольных изгибающих моментов и не вполне удовлетворенных граничных условий у диафрагм. Если теперь пренебречь влиянием сдвигающих сил, то из формулы (13) получим потенциальную энергию одной четверти оболочки:

$$\Pi = \int_{0}^{\frac{1}{2}} dx \int_{0}^{\frac{s_{0}}{2EJ}} ds + \int_{0}^{\frac{1}{2}} \left[\frac{4x(L-x)}{L^{2}}\right]^{2} dx \int_{0}^{\frac{s_{0}}{(moxT)^{2}}} ds$$
(14)

При интегрировании по х формула (14) примет вид

$$\frac{4E}{L}\pi = \int_{0}^{\infty} \frac{M^2}{J} ds + \frac{L^4}{120} \int_{0}^{\infty} \frac{t^2}{\tau} ds$$
(15)

Дифференцировав потенциальную энергию (15) по неизвестным, получим систему уравнений

$$\left. \begin{array}{c} \frac{\partial \Pi}{\partial t_{\sigma}} = 0\\ \frac{\partial \Pi}{\partial t_{b}} = 0\\ \frac{\partial \Pi}{\partial c_{c}} = 0 \end{array} \right\}$$

$$(16)$$

откуда находим t_a , t_b и c_1 .

Итак определены все величины:

1) $\varphi(s) = \int_{0}^{s_0} t(s) ds$,

2) из формул (13) вычисляется S(s, x) и T(s, x),

3) M(s) получается непосредственно из эпюры M.

Более подробное применение предлагаемого метода проследим на примере.

2. ПРИМЕР

Проведем вычисления для представленной на рис. 7 призматической оболочки при

H = 9 см;	$\delta = 0,4$ см;
B = 6 см;	p = 18 кг/см.
L = 200 cm;	

а) Эпюра t(s) и определение $\zeta(s)$.

Выберем эпюру t(s) в виде, изображенном на рис. 5. Как для сдвигающих сил, так и для текущей координаты s, отчитываемой от начала каждой пластинки, положительным будем считать направление против движения часовой стрелки. Индексы 1, 2, . . . обозначают соответствующие пластинки.

И

Следовательно

$$t_{i} = \frac{2s}{B} t_{\sigma},$$

$$t_{2} = \frac{s}{B} / t_{b} - t_{\sigma} / t_{\sigma},$$

$$t_{3} = -\frac{2s}{H} t_{b} + t_{b},$$

$$t_{4} = \frac{s}{B} (t_{b} - t_{\sigma}) - t_{b},$$

$$t_{5} = \frac{2s}{B} t_{\sigma} - t_{\sigma},$$

$$t_{6} = -\frac{2s}{H} t_{\sigma} + t_{\sigma}$$

$$(a)$$

$$\begin{split} \mathcal{G}_{r} &= \frac{s^{2}}{B} t_{0} + C_{r} , \\ \mathcal{G}_{2} &= \frac{s^{2}}{2B} (t_{0} - t_{0}) + t_{0}s + C_{2} , \\ \mathcal{G}_{3} &= -\frac{s^{1}}{H} t_{0} + t_{0}s + C_{3} , \\ \mathcal{G}_{4} &= \frac{s^{2}}{2B} (t_{0} - t_{0}) - t_{0}s + C_{4} , \\ \mathcal{G}_{5} &= -\frac{s^{2}}{B} t_{0} - t_{0}s + C_{5} , \\ \mathcal{G}_{6} &= -\frac{s^{2}}{H} t_{0} + t_{0}s + C_{6} \end{split}$$

Обозначая

 $q_{1} = \int g_{1}(s) ds$, $q_{2} = \int g_{2}(s) ds$ и т. д., получим

(B)

 $Q_{1} = \frac{B^{2}}{24}t_{0} + \frac{B}{2}C_{1};$ $q_2 = \frac{B^2}{5}(2t_0 + t_b) + Bc_2;$ $Q_{3} = \frac{H^{2}}{5}t_{b} + Hc_{3};$ $Q_{4} = -\frac{B^{2}}{5}(t_{0}+2t_{b})+Bc_{4}.$ $q_{5}=-\frac{B^{2}}{D}t_{0}+\frac{B}{2}c_{5}.$ $Q_{5} = \frac{H^{2}}{5}t_{0} + Hc_{5}$

б) Дополнительные условия для определения неизвестных

Из восьми неизвестных t_a , t_b , c_1 , c_2 , . . ., c_6 четыре элиминируем при помощи условий непрерывности:

- на узловой линии 1—2—6 ζ₂ + ζ₆ − ζ₁ = 0;
 на узловой линии 2—3 ζ₂ = ζ₃; $\zeta_2 = \zeta_3;$ 5) на узловой линии 3—4 $\zeta_3 = \zeta_4;$ 4) на узловой линии 4—5—6 $\zeta_5 - \zeta_4 - \zeta_6 = 0;$ 3) на узловой линии 3-4

и одно при помощи условия равновесия

5) $\Sigma M_{\rm x} = 0$ или

$$H(q_1 + q_2 + q_4 + q_5) + B(3q_3 + q_6 - p) = C$$

Решив эти уравнения, найдем

$$\begin{aligned} c_{*} &= \frac{2}{2H} - 2C_{3} - \frac{4}{4}(B + \frac{H}{3})t_{o} + \frac{2}{4}(\frac{B}{3} - H)t_{b}; \\ c_{2} &= c_{3} - \frac{B}{2}(t_{o} + t_{b}), \end{aligned}$$

 $C_{i} = C_{3};$

$$\begin{split} C_5 &= \frac{p}{2H} - 2C_3 - \frac{H}{42} t_o + \frac{i}{4} (\frac{B}{3} - H) t_b \,, \\ C_6 &= \frac{p}{2H} - 3C_3 + \frac{4}{2} (B - \frac{H}{6}) t_o + \frac{i}{4} (\frac{7}{3} B - H) t_b \end{split}$$

12

(r)

После подстановки и преобразований получим из (г)

 $C_{1} = 1 - 2C_{3} - 2.25t_{0} - 1.75t_{b};$ $C_{2} = C_{3} - 3(t_{0} + t_{b});$ $C_{4} = C_{3};$ $C_{5} = 1 - 2C_{3} - 0.75t_{0} - 1.75t_{b};$ $C_{6} = 1 - 3C_{3} + 2.25t_{0} + 1.25t_{b};$

в) Эпюра M(s)

Для определения эпюры поперечных изгибающих моментов рассмотрим элементарную поперечную полоску оболочки (dx = 1) как замкнутую раму с жесткими углами. Используя симметрию конструкции, примем за расчетную схему раму, изображенную на рис. 8а. На раму действуют внешняя нагрузка *p* и касательные усилия q_1, q_2, \ldots, q_6 .

Статически определимая основная схема и эпюры от единичных сил представлены на рис. 86-з. Величины ординат K, L и R эпюры m_0 следующие:

$$K = 81 + 81 c_3 - 101,25 t_a - 33,75 t_b;$$

$$L = 27 + 54 c_3 - 101,25 t_a - 74,25 t_b;$$

$$R = 108 + 81 c_3 - 202,50 t_a - 189,00 t_b.$$

Для нахождения неизвестных X_1 , X_2 , X_3 и X_4 получим одно уравнение с одним неизвестным и систему из трех уравнений:

 $\begin{cases} 81 X_{2} = 202,5 + 162 c_{3} - 759,375 t_{a} - 921,375 t_{b}; \\ 10 X_{1} - 30 X_{3} + 51 X_{4} = 499,5 + 459 c_{3} - 860,625 t_{a} - 631,125 t_{b} \\ -10 X_{1} + 52 X_{3} - 82 X_{4} = -837,0 - 738 c_{3} + 1383,750 t_{a} + 1014,750 t_{b} \\ 17 X_{1} - 82 X_{3} + 135 X_{4} = 1345,5 + 1215 c_{3} - 2278,125 t_{a} - 1670,625 t_{b}, \\ OTKYZA \end{cases}$

 $\begin{array}{l} X_1 = 0; \\ X_2 = 2,5+2\,c_3 - 9,375\,t_a - 11,375\,t_b; \\ X_3 = -9; \\ X_4 = 4,5+9\,c_3 - 16,875\,t_a - 12,375\,t_b. \end{array}$

Теперь возможно выразить эпюру поперечных изгибающих моментов при помощи t_a , t_b и c_3 . Качественный вид

13

(д)

9.

X4=1 |

-

эпюры M(s) представлен на рис. 83. В углах рамы возникают моменты:

$$\begin{split} M_{1-2} &= -13,50 - 27 \ c_3 + 50,625 \ t_a + 37,125 \ t_b; \\ M_{2-1} &= -2,25 - 18 \ c_3 + 8,4375 \ t_a - 14,0625 \ t_b; \\ M_{6-2} &= 11,25 + 9 \ c_3 - 42,1875 \ t_a - 51,1875 \ t_b; \\ M_{2-3} &= -2,25 + 9 \ c_3 + 8,4375 \ t_a + 26,4375 \ t_b. \end{split}$$

г) Определение неизвестных величин из условия минимума потенциальной энергии оболочки

При решении рассматриваемой задачи самым трудоемким является вычисление потенциальной энергии внутренних сил оболочки по формуле (15). Роль сдвигающих сил в общей потенциальной энергии системы ничтожна и их влиянием можно пренебречь. Эпюра M(s) и эпюра t(s)прямолинейные. Вследствие этого вычисление интегралов типа $\int M^2 ds$ крайне несложно.

Для потенциальной энергии одной восьмой оболочки (по длине половина и четверть в поперечном сечении) получим следующее выражение:

$$\frac{8E}{1125 L} \Pi = 410,063 + (5766.5 + 800\ 000)\ t_a^2 + + (7406.8 + 622\ 222)\ t_b^2 + (11533 + 355\ 556)\ t_a t_b - - 3075,47\ t_a - 3075,47\ t_b + 1458\ c_3^2 + 1093,5\ c_3 - - 1640,25\ t_a c_3 - 1913,63\ t_b c_3.$$

В скобках первые члены выражают роль изгибающих моментов, а вторые — продольных усилий.

Из формул (16) получим систему уравнений

1611 533 i	$t_{a} + 367$	089	$t_{\rm b}$ —	$1640 c_3$	=	3075,47
367 089 1	$t_{a} + 1259$	258	t _b	1914 c ₃	=	3075,47
-16401	$t_{a} - 1$	914	$t_{\rm b}$ +	2916 c ₃	=	-1093,50

и отсюда находим:

 $t_{a} = 0,001 \ 180;$ $t_{b} = 0,001 \ 531;$ $c_{3} = -0,3733.$ На основе (д) вычисляем и другие постоянные интегрирования:

$c_1 = 1,7413;$	$c_5 = 1,7431;$
$c_2 = -0,3815;$	$c_6 = 2,1246.$
$c_4 = -0,3733;$	

Теперь определяем касательные усилия из формул (в)

q_1	=	5,2258;	$q_4 =$	-2,2654;
q_2	=	-2,2654;	$q_{5} =$	5,2258;
q_3	=	—3,3393;	$q_{6} =$	19,1370.

Проверим правильность найденных величин. 1) Условие непрерывности на узловой линии 1—2—6 удовлетворено, так как

 $\zeta_2 + \zeta_6 - \zeta_1 = -0,3815 + 2,1246 - 1,7431 = 0,0000.$

2) Удовлетворены также условия равновесия:

$$\Sigma Z = q_1 + q_2 - q_4 - q_5 = 0$$

И

 $\Sigma M_{\rm x} = 9 \cdot 5,2258 - 9 \cdot 2,2654 - 9 \cdot 3,3393 +$ $+ 3(19,1370 - 18) = 0,0009 \approx 0.$

д) Внутренние силы в оболочке.

Согласно формуле (13) продольные силы в середине пролета

$$\max T_{\mathbf{a}} = \frac{L^2}{8} t_{\mathbf{a}} = \frac{1}{8} \cdot \cdot 200^2 \cdot 0,001180 = 5,90 \ \kappa z/cm;$$

$$max T_{\rm b} = \frac{L^2}{8} t_{\rm b} = \frac{1}{8} \cdot 200^2 \cdot 0,001531 = 7,66 \ \kappa c/cm;$$

и нормальные напряжения в углах поперечного сечения

$$max \sigma_{a} = \frac{max T_{a}}{\delta} = \frac{5,90}{0,4} = 14,75 \ \kappa \epsilon/cm^{2};$$
$$max \sigma_{b} = \frac{max T_{b}}{\delta} = \frac{7,66}{0,4} = 19,15 \ \kappa \epsilon/cm^{2};$$

T и σ изменяются вдоль оболочки по квадратной параболе. Эпюра нормальных сил T в сечении $x = \frac{L}{2}$ представлена на рис. 9а.

Поперечные изгибающие моменты получаются из формул (е). Так как по сделанному предположению ζ по длине оболочки не изменяется, то и поперечный изгибающий момент постоянен вдоль оболочки. Эпюра *M* изображена на рис. 9б.

$$\max M = 7,76 \ \kappa c \ cm/cm;$$
$$\max \sigma = \frac{M}{W} = \frac{7,76 \ 6}{0.16} = 291 \ \kappa c/cm^{2}.$$

Сдвигающие силы выражаются через $\zeta(s)$. При помощи (а) определим величину ζ в любой точке сечения и после этого сдвигающие силы S(s, x) по формуле (13). Например, в угле, где соединяются пластинки 1, 2 и 6, величины ζ_1 и ζ_6 следующие:

$$\zeta_1 = 1,5 \cdot 0,001180 + 1,7413 = 1,7431 \ \kappa c/cm^2;$$

 $\zeta_6 = c_6 = 2,1246 \ \kappa c/cm^2.$

Наибольшие сдвигающие силы возникают у диафрагм:

 $S_{1} = \frac{L}{2} \zeta_{1} = 100 \cdot 1,7431 = 174,3 \ \kappa c/cm;$ $S_{6} = \frac{L}{2} \zeta_{6} = 100 \cdot 2,1246 = 212,5 \ \kappa c/cm.$

Так как δ = 0,4 см, то

 $\tau_1 = 174,3:0,4 = 436 \ \kappa e/cm^2;$

 $\tau_6 = 212,5:0,4 = 531 \ \kappa c/cm^2$.

Эпюра сдвигающих сил в сечениях x = O и x = L представлена на рис. 9в.

ЛИТЕРАТУРА

- С. Н. Кан, Я. Г. Пановко, Элементы строительной механики тонкостенных конструкций. Оборонгиз, 1952.
- 2. Э. Ю. Соонурм, Стесненное кручение тонкостенных конструкций с замкнутым контуром, Труды ТПИ, А № 65, 1955.
- 3. В. З. Власов, Расчет тонкостенных призматических оболочек. «Прикладная математика и механика», т. VIII, 1944.
- 4. В. З. В ласов, Тонкостенные пространственные системы, Госстройиздат, 1958.

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ УРАВНЕНИЙ СОБСТВЕННЫХ КОЛЕБАНИЙ УПРУГОЙ КРУГОЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

Уравнения собственных колебаний тонкой упругой кругоцилиндрической оболочки были исследованы в работах [1, 3, 4, 5, 6, 7]. В этой статье приводятся некоторые результаты исследования свойств этих уравнений, применяя поперечные тригонометрические ряды. Для иллюстрации приводятся численные примеры.

1. ИСХОДНЫЕ УРАВНЕНИЯ И ПОСТАНОВКА ЗАДАЧИ В ПОПЕРЕЧНЫХ ТРИГОНОМЕТРИЧЕСКИХ РЯДАХ

1. Обозначения и исходные уравнения

Введем обозначения: δ, *R*₀, *l* — толщина, радиус срединной поверхности и длина оболочки; *E* — модуль упругости, μ — коэффициент Пуассона; ξ, φ — безразмерные координаты на срединной поверхности соответственно по длине и по поперечному кругу оболочки;

$$H = \frac{(1 - \mu^2) R_g^2}{E} , \quad \sigma^2 = \frac{\delta^2}{12 R_g^2} , \quad (1)$$

 ${f e}_1$ и ${f e}_2$ — единичные векторы касательных к координатным линиям ${f \xi}$, ${f \phi}$, и ${f e}_3={f e}_1 imes{f e}_2$ единичный вектор нормали к срединной поверхности.

Упругие перемещения срединной поверхности зададим вектором:

$$u = u e_1 + v e_2 + w e_3. \tag{2}$$

Для краткой записи некоторых формул временно будем применять обозначение:

$$u = \sum_{i=1}^{3} U_i \boldsymbol{e}_i , \quad U_i = U_i, \quad U_2 = V, \quad U_3 = w.$$
 (2a)

С точностью теории тонких упругих оболочек Кирхгофа-Лява уравнения равновесия в перемещениях можно представить в форме [2, 3]:

$$\sum_{i=1}^{3} L_{ri} u_{i} + H Q_{r} = 0; \quad r = 1, 2, 3;$$
(3)

где

$$L_{12} = L_{21}, \ L_{13} = -L_{31}, \ L_{23} = -L_{32};$$
⁽⁴⁾

$$L_{II} = \frac{\partial^{2}}{\partial \xi^{2}} + \frac{i-\mu}{2} \frac{\partial^{2}}{\partial \varphi^{2}}, \quad L_{I2} = \frac{i+\mu}{2} \frac{\partial^{2}}{\partial \xi \partial \varphi}, \quad L_{I3} = \mu \frac{\partial}{\partial \xi},$$

$$L_{22} = \frac{i-\mu}{2} \frac{\partial^{2}}{\partial \xi^{2}} + \frac{\partial^{2}}{\partial \varphi^{2}} + \alpha^{2} \left[2(i-\mu) \frac{\partial^{2}}{\partial \xi^{2}} + \frac{\partial^{2}}{\partial \varphi^{2}} \right],$$

$$L_{23} = \frac{\partial}{\partial \varphi} - \alpha^{2} \left[\frac{\partial^{3}}{\partial \varphi^{3}} + (2-\mu) \frac{\partial^{3}}{\partial \xi^{2} \partial \varphi} \right],$$

$$L_{33} = - \left\{ 1 + \alpha^{2} \left(\frac{\partial^{2}}{\partial \xi^{2}} + \frac{\partial^{2}}{\partial \varphi^{2}} \right)^{2} \right\}.$$
(5)

Применение уравнений (5) является допустимым, если выполняются условия:

$$u_i \gg \sigma^2 \left(1 + \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial \xi^2} \right) u_i$$
 (6)

2. Незатухающие собственные колебания

При незатухающих собственных колебаниях в уравнениях (3) Q_r имеет следующее значение:

$$Q_r = -\rho \frac{\partial^2 U_r}{\partial t^2},\tag{7}$$

где о — плотность массы, t — время.

Формула (7) написана без учета сил инерции поворота нормалей, что является допустимым, если выполняются условия:

$$U_{r} \gg H \rho \sigma^{2} \frac{\partial^{2} U_{r}}{\partial t^{2}}; \quad r = 1, 2, 3^{\binom{1}{2}}$$
(8)

В рассматриваемом случае можно искать решение системы (3) в форме:

$$u_i = \overline{u}_i f, \ \overline{u}_i = \overline{u}_i (\xi, \varphi), \ f = f(\omega t).$$
⁽⁹⁾

$$\frac{\partial^2 f}{\partial t^2} = -\omega^2 f. \tag{10}$$

где ω обозначает круговую частоту собственных колебаний. На основе (7), (9), (10) из системы (3) следуют уравнения:

$$\sum_{r_i} \bar{u}_i + N \bar{u}_r = 0; \quad r = 1, 2, 3;$$
 (11)

где

$$N = H \varphi \omega^2 = \frac{(t - \mu^2) R_0^2 \varphi \omega^2}{E}$$
(12)

При заданных стационарных краевых условиях система (11) имеет бесконечное количество решений, которые являются собственными функциями, определяющими формы собственных колебаний. Собственная функция, имеющая порядковый номер *i*, определяется вектором

$$\bar{\boldsymbol{u}}_{j} = \sum_{i=1}^{3} \bar{\boldsymbol{u}}_{ij} \boldsymbol{e}_{i} \cdot$$
(13)

Интегрируя уравнения (11) по всей срединной поверхности оболочки и пользуясь условиями (4), можно вывести условие ортогональности собственных функций

$$\iint_{j=1}^{\ell} \bar{u}_{j} d\xi d\varphi = 0, \quad (j \neq j.), \qquad (14)$$

где ϕ_0 угол раскрытия оболочки.

3. Затухающие собственные колебания

Предположим сопротивление пропорциональным скорости и обозначим коэффициент затухания через 2 s: тогда в уравнениях (3)

$$Q_r = -\varrho \left(\frac{\partial^2 u_r}{\partial t^2} + 2s \frac{\partial u_r}{\partial t} \right). \tag{15}$$

Решение уравнений (3) можно представить в форме:

$$J_i = \overline{u}_i e^{-st} f, \quad f = f(\overline{\omega}t), \tag{16}$$

$$\frac{\partial^2 f}{\partial t^2} = -\bar{\omega}^2 f, \quad \bar{\omega}^2 = \omega^2 - s^2. \tag{17}$$

4. Постановка задачи о собственных колебаниях в поперечных тригонометрических рядах.

Расположим собственные функции u_j в ряд возрастающем порядке собственных частот ω_j . Задача исследования собственных колебаний заключается в разыскании всех собственных функций до заданного предела частот. Далее предположим, что оболочка или является замкнутой, или свободно оперта по прямолинейным краям. В этих случаях общее решение системы (11) можно искать в форме:

$$\bar{u}_{,}=\bar{u}=\bar{u}\cos m\varphi, \ \bar{u}_{2}=\bar{v}=\bar{v}\sin m\varphi, \ \bar{u}_{3}=\bar{w}=\bar{w}\cos m\varphi, \ (18)$$

или в форме:

$$\bar{u}_{,} = \bar{u} = \tilde{u}sinm\varphi, \quad \bar{u}_{,} = \bar{v} = \tilde{v}cosm\varphi, \quad \bar{u}_{,} = \bar{w} = \tilde{w}sinm\varphi; \quad (18a)$$

где

$$\bar{u} = u_0 e^{\lambda \xi}, \quad \tilde{v} = v_0 e^{\lambda \xi}, \quad \tilde{w} = w_0 e^{\lambda \xi}; \quad (19)$$

 u_0, v_0, w_0 — постоянные; m — вещественное число. В случае замкнутой оболочки $m = 0, 1, 2,...\infty$; в случае открытой оболочки с свободно опертыми краями:

$$m = \frac{n\pi}{q_0}; \quad n = 1, 2, 3, \dots \infty.$$
(20)

При открытой оболочке в формулах (18) началом отчета, ф является ось симметрии; в формулах (18а) — один из краёв оболочки.

Как в случае (18), так и в случае (18а) уравнения (11) превращаются в следующие:

$$I \qquad (N + \lambda^{2} - \frac{1 - \mu}{2}m^{2})u_{0} + \frac{1 + \mu}{2}m\lambda v_{0} + \mu\lambda w_{0} = 0,$$

$$II \qquad \frac{1 + \mu}{2}m\lambda u_{0} + \left\{m^{2} - \frac{1 - \mu}{2}\lambda^{2} + \sigma^{2}[m^{2} - 2(1 - \mu)\lambda^{2}] - N\right\}v_{0} + \left\{m + \sigma^{2}[m^{3} - (2 - \mu)m\lambda^{2}]\right\}w_{0} = 0,$$

$$II \qquad \mu\lambda u_{0} + \left\{m + \sigma^{2}[m^{3} - (2 - \mu)m\lambda^{2}]\right\}v_{0} + \left\{1 + \sigma^{2}(\lambda^{2} - m^{2})^{2} - N\right\}w_{0} = 0.$$

$$II \qquad \mu\lambda u_{0} + \left\{m + \sigma^{2}[m^{3} - (2 - \mu)m\lambda^{2}]\right\}v_{0} + \left\{1 + \sigma^{2}(\lambda^{2} - m^{2})^{2} - N\right\}w_{0} = 0.$$

Из условий (6), (8) следуют условия применимости уравнений (21):

$$1 \gg \varepsilon, \quad \varepsilon \sim a^2 [1, m^2, |\lambda^2|, N],$$

$$(22)$$

т. е. уравнения (21) имеют асимптотическую погрешность порядка ε.

Пусть заданы геометрические размеры оболочки и однородные стационарные краевые условия на криволинейных краях оболочки. Выберем конкретное значение m и будем формально рассматривать N как вещественный положительный параметр. Каждому значению N соответствуют корни системы (21) $\lambda_s = \lambda_s$ (m, N) (в общем случае s = 1, 2, ...8) и каждому λ_s — определенные соотношения между коэффициентами u_{0s} , v_{0s} , w_{0s} . Следовательно в общем случае решение имеет вид:

$$\widetilde{\mathcal{U}} = \sum_{s=t}^{\delta} U_{os} e^{\lambda_{s} \xi}, \quad \widetilde{\mathcal{V}} = \sum_{s=t}^{\delta} v_{os} e^{\lambda_{s} \xi}, \quad \widetilde{\mathcal{W}} = \sum_{s=t}^{\delta} W_{os} e^{\lambda_{s} \xi}, \quad (23)$$

и содержит 8 произвольных постоянных. Из восьми заданных краевых условий вытекает система однородных уравнений, которая удовлетворяется при значениях параметра

$$N = H_j \qquad , j = 1, 2, \ldots \infty,$$

которые превращают в нуль определитель Ω (*N*) этой системы. Каждому *N*_j соответствуют определенные соотношения между 8-коэффициентами в формулах (23). Задачу разыскания *N*_j можно решить численно. Для этого надо построить численную зависимость $\lambda_s = \lambda_s$ (*m*, *N*), что является главным содержанием II части статьи. Поскольку λ входит во всех характеристические уравнения, вытекающие из системы (21) в четных степенях, введем обозначение:

$$\beta_{\kappa} = -\lambda_s^2$$
, $\kappa = 1, 2, 3, 4$: (24)

и подвергнем исследованию зависимость

$$\beta_{\kappa} = \beta_{\kappa}(m, N).$$

И. ИССЛЕДОВАНИЕ СВОИСТВ СИСТЕМЫ (21)

1. Частный случай m=0

В рассматриваемом частном случае система (21) распадается на две части. Из уравнения (21—II) получим:

$$N = \frac{t - \mu}{2} \beta_2 \,, \qquad (25)$$

из уравнений (21—I, III) вытекает характеристическое уравнение для определения β_1 , β_2 и β_4 ;

$$N^{2} - N - N\beta - \sigma^{2} N\beta^{2} + (1 - \mu^{2})\beta + \sigma^{2}\beta^{3} = 0.$$
(26)

Уравнение (25) можно также получить, предполагая $u \equiv w \equiv 0$ и ему соответствуют интегралы, описывающие чисто крутильные колебания оболочки как стержня с недеформируемым поперечным контуром. Уравнению (26) соответствуют осесимметрические формы колебания $(v \equiv 0)$, которые детально исследованы в работе [4]. С точки зрения численных расчетов важно отметить, что один корень уравнения (26), который назовем β_1 , всегда является вещественным и положительным. Практически удобно построить численную зависимость $\beta_1 = \beta_1 (N)$, подбирая значения β_1 и определяя N из уравнения (26) как меньший корень квадратного уравня относительно N. При известной β_1 можно определить β_3 и β_4 из уравнения

$$\beta^{2} + (\beta_{i} - N)\beta - \frac{N^{2} - N}{a^{2} \beta_{i}} = 0.$$
(27)

2. Частный случай β = 0.

В случае $\lambda = \beta = 0$ получим из уравнения (21—1):

$$N = \frac{1 - \mu}{2} m^2, \quad (\beta_2 = 0). \tag{28}$$

и из уравнений (21—II, III):

$$N^{2} - N \left[1 + m^{2} + a^{2} m^{2} (m^{2} + 1) \right] + a^{2} m^{2} (m^{2} - 1)^{2}.$$
(29)

Уравнение (28) можно также получить, предполагая $v \equiv w \equiv 0$ и оно соответствует чисто сдвигающим колебаниям оболочки. Уравнение (29) можно получить, предполагая $u \equiv 0$ и интегралы, соответствующие этому уравнению, описывают колебание оболочки кольцом.

Учитывая условия (22), выясним, что при $\beta_1 = 0$:

$$N \approx a^2 m^2 \frac{(m^2 - 1)^2}{m^2 + 1},$$
 (30)

и при $\beta_3 = 0$:

где

$$N \approx 1 + m^2. \tag{31}$$

3. Общий случай

При $m \neq 0$ и $\beta \neq 0$ из системы (21) вытекает характеристическое уравнение, которое представим в двух формах:

$$N^{3} - d_{1}N^{2} + d_{2}N = D$$
(32)

$$B^{4} + A_{1} B^{3} + A_{2} B^{2} + A_{3} \beta - A_{4} = 0, \qquad (33)$$

$$\begin{aligned} d_{i} &= 1 + \frac{3-\mu}{2} (\beta + m^{2}), \\ d_{2} &= \frac{1-\mu}{2} \left\{ (3+2\mu)\beta + m^{2} + (\beta + m^{2})^{2} \right\}, \\ D &= \frac{1-\mu}{2} \left\{ (1-\mu^{2})\beta^{2} + a^{2} [(\beta + m^{2})^{4} - 2m^{6} + m^{4} - 8m^{4}\beta] \right\}, \\ A_{i} &= 4m^{2}, \quad A_{2} &= 6m^{4} + \frac{1-\mu^{2}-N}{a^{2}}, \\ A_{3} &= \frac{3-\mu}{1-\mu} \frac{N^{2}}{a^{2}} - \frac{N}{a^{2}} (3+2\mu + 2m^{2}) + 4m^{4} (m^{2}-2), \\ A_{4} &= \frac{2}{1-\mu} \frac{1}{a^{2}} \left\{ N^{3} - N^{2} (1 + \frac{3-\mu}{2}m^{2}) + \frac{1-\mu}{2}m^{2} (m^{2}+1)N \right\} - m^{4} (m^{2}-1)^{2}. \end{aligned}$$
(34)

 $A_4 = 0$ только в случаях (28), (30), (31), рассмотренных в п. 2. В дальнейшем предполагаем, что $A_4 \neq 0$. При собственных колебаниях два корня уравнения (33) β_1 и β_2 являются вещественными; остальные два корня β_3 и β_4 могут быть как вещественные, так и комплексные. Чтобы избежать численного решения уравнения четвертой степени (33), можно задавать β_1 и β_2 и определить соответствующие им значения N из уравнения (32). При этом надо иметь в виду соответствия, приведенные в таблице 1.

Таблица 1

β>0	N _I	β1
	N _{II}	β2
(6))	N _{III}	β3
β<0	N _I и N _I	β2
	N _{III}	β4

Здесь $N_I < N_{II} < N_{III}$ обозначают вещественные положительные корни уравнения (32) при заданной величине β . Отметим, что при определении $N_I \leq 1$ целесообразно воспользоваться принципом последовательных приближений:

$$N_{I}^{(i)} = \frac{D}{d_{z}}, \qquad (35)$$

 $N_{T}^{(\alpha)} = \frac{D}{d_{z}} + \frac{d_{t}}{d_{z}} [N_{T}^{(e)}]^{2} - \frac{1}{d_{z}} [N_{T}^{(e)}]^{3}.$ (35a)

Формула (35) представляет собою формулу В. Е. Бреславского [1] и ее точность повышается с уменьшением N_I.

Имея численные значения β_1 и β_2 (при заданных *m* и *N*), можно определить остальные корни β_3 и β_4 из уравнения:

$$\beta^{z} + (A_{t} + \beta_{t} + \beta_{z})\beta - \frac{A_{\xi}}{\beta_{t}\beta_{z}} = 0.$$
(36)

4. Численные примеры

Применяя вышеприведенные формулы и изложенную методику расчета, вычислены корни β_k при исходных данных:

$$\frac{\delta}{R_{g}} = \frac{t}{30}; \quad \mu = 0.3.$$
 (37)

Корни уравнения (36) β₃ и β₄ оказываются вещественными выше линии (рис. 3):

$$\beta_3 = \beta_4 = s_1, \quad s_2 = 0. \tag{38}$$

и комплексными — ниже этой линии. Комплексные корни приняты в форме

$$\beta_3, \beta_4 = s_1 \pm i s_2. \tag{39}$$

В случае N <</ 1 этим корням соответствуют интегралы типа простых краевых эффектов [2].

Если ввести параметры z, r и y по формулам:

$$N = \sigma^{z}, \quad m = \sigma^{-r}, \quad |\beta| = \sigma^{\nu} \tag{40}$$

тогда

$$Y = Y(Z, P, \mu, q);$$

но оказывается, что у сравнительно мало зависит от *а*. Это обстоятельство позволяет воспользоваться приведенными диаграммами также при относительной толщине, немного отличающейся от 1/30. Для иллюстрации на рис. 4 приведены некоторые характерные линии для случаев $\delta/R_0 = 1/_{30}$ и $\delta/R_0 = 1/_{300}$.

Рис, 1

Рис. 2

Рис. 3

Appril 1 and the transfer of the state

The property of the second property of the second s

III. СОБСТВЕННЫЕ КОЛЕБАНИЯ В СЛУЧАЕ КРАЕВЫХ УСЛОВИЙ НАВЬЕ

1. Расчетные формулы

В случае краевых условий Навье при $\xi = 0$, $\xi = \xi_0 = \frac{L}{R_0}$ имеем:

$$\frac{\partial v}{\partial \xi} = v = w = \frac{\partial^2 w}{\partial \xi^2} = 0.$$
(41)

В формулах (23) отличны от нуля только эти коэффициенты, которым соответствуют корни λ, удовлетворяющие условию

$$\lambda = \pm i \kappa \ u \Lambda u \ \beta = \kappa^2. \tag{42}$$

где

$$\kappa = \frac{\bar{n}\pi}{\epsilon_0}, \quad \bar{n} = t, 2, 3, \dots \infty$$
(43)

Следовательно в данном случае u, v u w можно представить в форме:

$$\tilde{U} = U_0 COSK\xi, \quad \tilde{V} = V_0 SINK\xi, \quad \tilde{W} = W_0 SINK\xi^{(44)}$$

Задавая разные возможные значения m и k, непосредственно определим N_i

- а) в общем случае $m \neq 0$ из уравнения (32);
- б) в частном случае m = 0 из уравнений (25) и (26).

В данном случае эти характеристические уравнения и формулы, определяющие соотношения между коэффициентами u_0 , v_0 , w_0 , можно вывести также из уравнений (45), получаемых из системы (11) на основе (18), (44):

$$I \qquad (N - \kappa^{2} - \frac{1 - \mu}{2} m^{2}) u_{0} + \frac{1 + \mu}{2} \kappa m v_{0} + \mu \kappa w_{0} = 0.$$

$$\Pi \qquad \frac{1 + \mu}{2} \kappa m u_{0} + \left\{ N - \frac{1 - \mu}{2} \kappa^{2} - m^{2} - \sigma^{2} \left[m^{2} + 2(1 - \mu) \kappa^{2} \right] \right\} v_{0} - \frac{1 - m}{2} \left\{ 1 + \sigma^{2} \left[m^{2} + (2 - \mu) \kappa^{2} \right] \right\} w_{0} = 0.$$

$$(45)$$

$$\Pi \qquad \mu \kappa u_{0} - m \left\{ 1 + \sigma^{2} \left[m^{2} + (2 - \mu) \kappa^{2} \right] \right\} v_{0} - \left\{ 1 - N + \sigma^{2} (\kappa^{2} + m^{2})^{2} \right\} w_{0} = 0.$$

Отметим, что каждой паре заданных значений m и k соответствуют три решения кубического уравнения (32) N_i (i = I, II, III) и каждому N_i — свои соотношения между коэффициентами $u^{(i)}$, $v_0^{(i)}$, $w_0^{(i)}$. Следовательно каждой заданной паре m и k соответствуют три собственных функций.

Если рассматривать две собственные функции, при которых либо *m*, либо *k* отличаются друг от друга, то условие ортогональности (14) удовлетворяется в силу свойств тригонометрических функций. Для трех собственных функций, соответствующих одинаковым значениям *m* и *k* получим на основе (14) условия:

$$\begin{aligned} u_{0}^{(i)} u_{0}^{(2)} + v_{0}^{(i)} v_{0}^{(2)} + w_{0}^{(i)} w_{0}^{(2)} = 0, \\ u_{0}^{(i)} u_{0}^{(3)} + v_{0}^{(i)} v_{0}^{(3)} + w_{0}^{(i)} w_{0}^{(3)} = 0, \\ u_{0}^{(2)} u_{0}^{(3)} + v_{0}^{(2)} v_{0}^{(3)} + w_{0}^{(2)} w_{0}^{(3)} = 0. \end{aligned}$$

$$\tag{46}$$

2. Численный пример

При исходных данных (37) зависимость между величинами N, k^2 и m показана на рис. 5, которая по существу представляет собою сводную диаграмму всех вещественных положительных корней β .

Если для конкретной оболочки по формулам (20) и (43) выяснены возможные значения *m* и *k* и если задан предел

Π< 0-1/2

до которого требуется определить N (собственные частоты ω_j), то диаграмма на рис. 5 позволяет приблизительно определить все $N_j < \Pi$. Весьма удобно определить при помощи этой диаграммы min N (наименьшую собственную частоту $min \omega$) и соответствующее значение m = m по

$$\min \kappa = \frac{\pi R_0}{l} \tag{47}$$

В качестве примера в таблице 2 выписаны 21 наименьший *N*_i для замкнутой оболочки, имеющей длину

$$l = \pi R_0. \tag{48}$$

3 864

Рис. 5
Значения N_i, приведенные в таблице 2, соответствуют общим формам колебания. Для этой же оболочки получим по формулам (25) и (26):

а) при чисто крутильных колебаниях (m = 0):

$$min \ N = 0,350;$$

б) при осесимметрических колебаниях (m = 0):

min N = 0,700.

Таблица 2

6801 so jacob mile	$\overline{n} = k$	m	Nj
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array} $	$ \begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 1\\ 1\\ 2\\ 3\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 1\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$ \begin{array}{r} 3 \\ 4 \\ 2 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 3 \\ 6 \\ 1 \\ 6 \\ 5 \\ 4 \\ 2 \\ 6 \\ 7 \\ 3 \\ 7 3 7 1 $	$\begin{array}{c} 0,0146\\ 0,0250\\ 0,0295\\ 0,0566\\ 0,0647\\ 0,0852\\ 0,0888\\ 0,1169\\ 0,124\\ 0,146\\ 0,157\\ 0,161\\ 0,195\\ 0,210\\ 0,218\\ 0,235\\ 0,255\\ \end{array}$
17 18 19 20 - 21	2 4 4 3 4	7 5 4 7 6	0,250 0,275 0,302 0,314 0,317

Отметим, что в области $m \ge 1$, $N \le 0.35$ соответствует каждой паре m и k только одно значение N_j , определяемое малой погрешностью по формуле (35), которая в случае $m \ge k$ упрощается в формулу полубезмоментной теории [3, 6, 7]:

$$N \approx \frac{(1-\mu^2)\kappa^4 + a^2 m^4 (m^2-1)^2}{m^2 (m^2+1)}.$$
 (49)

Из данных, приведенных на рис. 4, 5 и в таблице 2, следует, что густота спектра собственных частот увеличивается с уменьшением l и $\frac{\delta}{R_2}$ и с увеличением j.

ЛИТЕРАТУРА

- 1. Бреславский В. Е. О колебаниях цилиндрических оболочек. Инж. сборник, т. XVI, АН СССР, 1953.
- 2. Гольденвейзер А. Л. Теория упругих тонких оболочек, 1953.
- Нигул У. К. Об общих формах колебания круговой замкнутой цилиндрической оболочки. Труды ТПИ № 147, 1958.
- 4. Оллик К. К. Об осесимметрических колебаниях кругоцилиндрических тонкостенных оболочек. Труды ТПИ № 147, 1958.
- 5. Ониашвили О. Д. Некоторые динамические задачи теории оболочек, АН СССР, 1957.
- 6. Поверус Л. Ю. и Ряямет Р. К. Малые неосесимметричные собственные колебания упругих тонких конических и цилиндрических оболочек. Труды ТПИ № 147, 1958.
- 7. Yi Yuan Yu, Free Vibrations of Thin Cylindrical Shells Having Finite Lengths with Freely Supported and Clamped Edges. Journal of Applied Mechanics, March, 1955.

КОЛЕБАНИЕ КРУГОЦИЛИНДРИЧЕСКОЙ УПРУГОЙ ОБОЛОЧКИ, ВЫЗВАННОЕ ДЕЙСТВИЕМ СОСРЕДОТОЧЕННОГО ИМПУЛЬСА

В этой статье при помощи метода Фурье исследуется колебание замкнутой кругоцилиндрической упругой оболочки, вызванное действием сосредоточенного импульса. В работе сохраняются обозначения и используются результаты предыдущей статьи; соответствующие ссылки на номера формул снабжены звездочками.

!. РАСЧЕТНЫЕ ФОРМУЛЫ

1. Постановка задачи по методу Фурье

Пусть оболочка находится в покое при t = 0 и пусть на нее действует в промежутке времени $0 \le t \le t_1$ импульсная нагрузка, заданная вектором

$$q_{r} = \sum_{r=1}^{3} q_{r} e_{r}, \quad r = 1, 2, 3;$$
 (1)

тогда в уравнениях (3)*:

$$Q_{r} = -\varrho \left(\frac{\partial^2 u_r}{\partial t^2} + 2s \frac{\partial u_r}{\partial t} \right) + q_r, \quad r = 1, 2, 3.$$
⁽²⁾

Перемещения будем искать в виде ряда [3]:

$$\boldsymbol{u} = \boldsymbol{u}\boldsymbol{e}_1 + \boldsymbol{v}\boldsymbol{e}_2 + \boldsymbol{w}\boldsymbol{e}_3 = \sum_{j=1}^{\infty} \boldsymbol{\tilde{u}}_j \boldsymbol{F}_j \ , \tag{3}$$

где

$$F_j = F_j(t), \quad \overline{u}_j = \overline{u}_j e_i + \overline{v}_j e_i + \overline{w}_j e_j, \tag{4}$$

Далее предполагается, что собственные функции u_j являются известными и пронумерованы индексом j в возрастающем порядке собственных частот ω_j (или N_j). На основе (2), (3),* получим уравнение

$$-\varrho \sum_{j=t}^{\infty} (\omega_j^2 F_j + 2s_j \frac{\partial F_j}{\partial t} + \frac{\partial^2 F_j}{\partial t^2}) \overline{u}_j + q = 0$$
(5)

Умножая уравнение (5) на u_i , интегрируя по всей срединной поверхности и учитывая условия ортогональности собственных функций (14)*, получим уравнения:

$$\mathbb{R} \cap \mathcal{V} \cap \Psi_{j}^{2} f_{j}^{2} + 2s_{j} \frac{\partial F_{j}}{\partial t} + \frac{\partial^{2} F_{j}}{\partial t^{2}} = \frac{\int \int \mathbf{q} \cdot \mathbf{u}_{j} d\xi d\varphi}{\int \int \mathbf{q} \cdot \mathbf{u}_{j} d\xi d\varphi} \quad j = 1, 2, 3, \dots \infty \quad (6)$$

. В случае сосредоточенного импульса P в точке (ξ_{*}/φ_{*}) имеем:

$$q(\xi, |\varphi_{\star}) = \frac{p}{R_o^2 d\xi d\varphi}$$
(7)

и во всех других точках: q = 0.

В дальнейшем предполагается, что импульс задан в форме:

$$P = P_{o}pp(t), \quad p = p_{t}e_{t} + p_{2}e_{2} + p_{3}e_{3}, \quad (8)$$

где P_0 , p_1 , p_2 , p_3 — постоянные и p(t) — заданная функция времени. В таком случае можно представить уравнение (6) в форме:

$$\omega_j^2 F_j + 2s_j \frac{\partial F_j}{\partial t} + \frac{\partial^2 F_j}{\partial t^2} = P_o \rho(t) R_j^2 , \qquad (9)$$

где

$$\kappa_{j} = \frac{\rho \cdot \bar{u}_{j} \left(\xi_{*} / \varphi_{*}\right)}{\varrho R_{o}^{2} \int_{0}^{j} \bar{u}_{j} \cdot \bar{u}_{j} d\xi d\varphi}$$
(10)

(Введем новую функцию времени по формуле:

$$F_j = \frac{P_0}{\omega_j^2} K_j \, \Phi_j \tag{11}$$

На основе (11) из уравнения (8) следует:

$$\omega_j^2 \phi_j + 2s_j \, \frac{\partial \phi_j}{\partial t} + \frac{\partial^2 \phi_j}{\partial t^2} = \omega_j^2 \rho(t). \tag{12}$$

Во второй части статьи рассмотрим численный пример, в котором

$$p = p_1 e_1 + p_3 e_3, \quad p_2 = 0$$
 (13)

(р_на криволинейных краях замкнутой оболочки наблюдаются краевые условия Навье (41)*. В таком случае чисто крутильные, чисто сдвигающие и чисто нормальные формы колебания не возбуждаются, и при всех возбуждаемых формах колебания амплитуда нормальных перемещений отличается от нуля. В таких задачах целесообразно выбрать начало координаты φ так, чтобы $\varphi_* = 0$ и представить на основе (18)*, (44)* компоненты вектора (4) в форме:

$$\begin{split} & \bar{U}_j = U_{oj} \cos m\varphi \cos \kappa_{\xi} \quad \bar{V}_j = V_{oj} \sin m\varphi \sin \kappa_{\xi}, \\ & \bar{W}_j = \cos m\varphi \sin \kappa_{\xi} \quad W_{oj} = 1. \end{split}$$

Соответственно свойствам системы (45)*:

27

$$U_{aj} = U_{am\kappa}^{(i)}, \quad v_{aj} = v_{am\kappa}^{(i)}, \quad \omega_j = \omega_{m\kappa}^{(i)}, \quad F_{m\kappa}^{(i)}, \quad (15)$$

где в случае $m \neq 0$:i = 1, 2, 3 и в случае m = 0: i = 1, 2.

На основе (13) и (11) получим из (10) для замкнутой оболочки следующие формулы: а) при $m \neq 0$:

$$\kappa_j = \frac{\rho_i u_{oj} \cos k_{\phi} + \rho_3 \sin k_{\phi}}{\frac{\pi}{2} \rho R_o l \left(1 + u_{oj}^2 + v_{oj}^2\right)}, \quad \text{result of a label}$$

б) при m = 0:

$$K_{j} = \frac{p_{i} u_{qj} \cos \kappa \epsilon_{s} + p_{3} \sin \kappa \epsilon_{s}}{\pi \varrho R_{\varrho} l(1 + u_{qj}^{2})} \qquad (17)$$

2. Функция времени Ф

Решение дифференциального уравнения (12) можно представить в следующем виде: при $0 \ll t \ll t_1$:

$$\Phi_{j} = \frac{\omega_{j}^{i}}{\bar{\omega}_{j}} \int_{\rho}^{t} \rho(\tau) e^{-s_{j}(t-\tau)} \sin \bar{\omega}_{j}(t-\tau) d\tau \,, \qquad (18)$$

при $t_1 < t$:

$$\Phi_j = a_j e^{-s_j t} \sin\left[\tilde{\omega}_j (t - t_i) + \varphi_j\right], \tag{19}$$

где ω_j , α_j и ϕ_j определяются по формулам:

$$\frac{\varphi_{j}(t_{i})}{c_{j}} = tg \varphi_{j} \qquad \sigma_{j} = \sqrt{\left[c_{j}\right]^{2} + \left[\phi_{j}(t_{i})\right]^{2}}$$

$$c_{j} = \frac{i}{\bar{\omega}_{j}} \left[\frac{\partial \phi(t_{i})}{\partial t} + s_{j} \phi_{j}(t_{i})\right], \quad \bar{\omega}_{j}^{2} = \omega_{j}^{2} - s_{j}^{2}$$

$$(20)$$

В дальнейшем предполагаем [2], что

$$s_j = \bar{\omega}_j \bar{s}$$
 $\bar{s} = const < t.$ (21)

Приведем формулы, найденные по (18), для двух случаев, в которых функция p(t) выбрана так, что

$$\int_{a}^{b} f(t) dt = t, \qquad (22)$$

(24)

а) Импульс постоянной величины: при $0 \ll t \ll t_1 : p(t) = 1$; при $t > t_1 : p(t) = 0$:

$$\begin{split} \hat{\Phi}_{j} &= ' - (\bar{s}sin\bar{\omega}_{j}t + \cos\bar{\omega}_{j}t)e^{-\bar{s}\bar{\omega}_{j}t} \\ c_{j} &= \bar{s} + (sin\bar{\omega}_{j}t - s\cos\bar{\omega}_{j}t)e^{-\bar{s}\bar{\omega}_{j}t} \end{split}$$

$$\end{split} \tag{23}$$

б) Параболический импульс:

при

$$0 \leq t \leq 1, \quad p(t) = 6 \frac{t}{t_1} (1 - \frac{t}{t_1}),$$

при $t_1 < t : p(t) = 0$:

$$\begin{split} \tilde{\Phi}_{j} &= 6 \left\{ \left(\frac{t}{t_{i}} - \frac{t^{2}}{t_{i}^{2}} \right) + \frac{4t}{t_{i}^{2}\bar{\omega}_{j}} \frac{\tilde{s}}{t + \tilde{s}^{2}} - \frac{2}{t_{i}\bar{\omega}_{j}} \frac{\tilde{s}}{1 + \tilde{s}^{2}} - \frac{t}{t_{i}\bar{\omega}_{j}} \frac{1}{1 + \tilde{s}^{2}} \left[\left(1 - \tilde{s}^{2} \right) \sin \bar{\omega}_{j} t - 2 \tilde{s} \cos \bar{\omega}_{j} t \right] e^{-s\bar{\omega}_{j}t} + \frac{2}{t_{i}^{2}\bar{\omega}_{j}^{2}} \frac{1 - 3\bar{s}^{2}}{(t + \bar{s}^{2})^{2}} - \frac{2}{t_{i}^{2}\bar{\omega}_{j}^{2}} \frac{1}{(1 + \bar{s}^{2})^{2}} \left[\frac{\tilde{s}}{(3 - \bar{s}^{2})} \sin \bar{\omega}_{j} t + 4 (1 - 3\bar{s}^{2}) \cos \bar{\omega}_{j} t \right] e^{-s\bar{\omega}_{j}t} \right\}, \\ c_{j} &= \frac{6}{t_{i} + \tilde{s}^{2}} \left\{ -\frac{1 - \tilde{s}^{4}}{t_{i}\bar{\omega}_{i}^{2}} + \frac{2\bar{s}(3 - \bar{s}^{2})}{t_{i}\bar{\omega}_{i}^{2}} + \left[-\frac{2\bar{s}\left((1 + \bar{s}^{2}) \right)}{t_{i}\bar{\omega}_{i}} + \frac{2(1 - 3\bar{s}^{2})}{t_{i}\bar{\omega}_{i}} \right] \sin \bar{\omega}_{j} t_{i} e^{-s\bar{\omega}_{j} t_{i}} - 2 \tilde{s}\bar{\omega}_{j} t_{i} \right\} \end{split}$$

$$-\left[\frac{t-\bar{s}^{2}}{t,\bar{\omega}_{j}}+\frac{2\bar{s}(3-\bar{s}^{2})}{t^{2}\bar{\omega}_{j}^{2}}\right]\cos\bar{\omega}_{j}t,e^{-\bar{s}\bar{\omega}_{j}t},$$

3. Практическая сходимость рядов перемещений.

В численных задачах приходится ограничиваться учетом конечного числа (h) членов ряда (3). При $t = t^* = const$ сходимость ряда (3) не является одинаковой во всех точках оболочки, но его «среднюю сходимость» можно характеризовать, исследуя сходимость ряда

$$\sum_{j''}^{\infty} F_j(t^{*}) \tag{25}$$

Во многих задачах величина K_i с возрастанием *j* систематически не увеличивается и в приближенных рассуждениях относительно сходимости ряда (25) его можно заменить более простым рядом

$$\sum_{j=1}^{\infty} \frac{\varphi_j(t^*)}{\omega_j^t} \overset{\mathcal{O}}{\longrightarrow}$$
(26)

Сходимость ряда (26) улучшается с увеличением t^* . В дальнейшем под t^* подразумевается *mint*, при котором требуется численное определение перемещений.

Обозначим

$$\alpha = \bar{\omega}t \qquad \alpha_1 = \bar{\omega}_1 t \qquad (27)$$

и введем в рассмотрение функцию

$$\mathcal{B} = \frac{\Phi(\alpha)}{\alpha^2} \tag{28}$$

Если заданы функция p(t) и число s, тогда можно построить диаграмму функции *B* и затем по α_1 определить такое значение $\alpha = \alpha_h$ (см. рис. 2), что

$$\frac{B(\alpha \ge \alpha_h)}{\max B(\alpha \ge \alpha_1)} \le \bar{\varepsilon}, \tag{29}$$

где є сколь угодно малое положительное число.

Перемещения, вызванные действием сосредоточенного импулься, определяются асимптотической погрешностью

порядка ε , если в ряде (3) сохранить члены до порядкового номера j = h, определяемого из условия

$$\tilde{\omega}_h \approx \frac{\alpha_h}{t^\circ} \,, \tag{30}$$

Число h с уменьшением t^* быстро увеличивается. Имея в виду замечания, сделанные в конце предыдущей статьи, можно констатировать, что при применении метода Фурье приходится учитывать в рядах тем больше членов, чем тоныше и короче оболочка и чем меньше t^* .

п. численный пример

Исходные данные:

$$R_0 = 42.5$$
 cm, $\delta = \frac{R_0}{30}$, $l = \pi R_0$,

$$E = 2,0. \ 10^6 \ \kappa c/cm^2 \ \mu = 0,3, \ \varrho = \frac{\gamma}{g}, \tag{31}$$

 $\gamma = 0,00785 \ \kappa e/cm^3, \ g = 981 \ cm/ce\kappa^2$

Импульс (ударная сила) действует в точке «31» (рис. 1);

$$t_1 = 0,001054 \ ce\kappa \approx rac{\pi}{2\omega_1}$$
.

Рассматриваются 4 варианта:

	Обозначение варианта	S	p(t)	e norsonja i p
Нормальный удар (импульс)	I . I A	0,10 0,01	$\frac{1}{6\frac{t}{t_1}\left(1-\frac{t}{t_1}\right)}$	$-e_3$ $-e_3$
ATECHACIAL ON	IB ····	0,01	1	— e ₃
Наклонный удар (импульс)	er (here)	0,10	1	$\cot 10^{\circ} e_1 - e_3$

На рис. 1 показаны точки, в которых определены нормальные перемещения w, сохраняя 21 первых членов ряда (см. табл. 2 предыдущей статьи). На рис. 2 представлены диаграммы функции *В* для двух случаев. На эти диаграммы нанесены ординаты $t^*\omega_1$, $t^*\omega_2$,..., $t^*\omega_{21}$ при $t^* = t_1$. Оказывается, что при h = 21; $t^* \leqslant 0.8 t_1$: $\varepsilon \leqslant 0.05$. Нор-

мальные перемещения вычислены при всех 4-х вариантах в 21 моментах времени $t = 0,5 t_1; 0,8 t_1; t_1; 0,015; 0,020; \ldots; 0,0100$ сек.

Результаты приведены на рисунках 3—14. Для сравнения на рисунках 3—12 показаны нормальные перемещения, вызванные статической силой $P = P_0 p$. Эти перемещения вычислены при помощи двухкратного тригонометрического ряда [1] с учитыванием 21 членов, соответств вующих тем же комбинациям *m* и *k*, как и собственные функции, учитываемые в динамической задаче.

Рисунки 13, 14 относятся к варианту І.

Автор выражает свою глубокую благодарность доктору техн. наук Н. А. Алумяэ за научное руководство.

" and

Рис. 14

ЛИТЕРАТУРА

1. Власов В. З. Общая теория оболочек, 1949.

2. Снитко Н. К. Методы расчета сооружений на вибрацию и удар, 1953.

3. Тимошенко С. П. Колебание в инженерном деле, 1959.

Л. А. Алликас

О РАСЧЕТЕ УПРУГОЙ АРМИРОВАННОЙ БАЛКИ-СТЕНКИ, ОПИРАЮЩЕЙСЯ НА ТОРЦЕВЫЕ РЕБРА

В настоящей работе приводится приближенный расчет однопролетной упругой балки-стенки, опирающейся на торцевые ребра и армированной продольной арматурой по нижнему краю плиты. Расчетная схема и обозначения приведены на рис. 1.

Рис. 1.

По аналогии с работой [1] при решении задачи используется метод Кастильяно-Ритца. Точно так же для упрощения расчетной схемы предполагается, что: 1) нормальные напряжения X_x в месте сопряжения плиты с торцевыми ребрами равны нулю, т. е. жесткость ребра (а также арматуры) при изгибе равна нулю; 2) коэффициент Пуассона $\gamma = 0$; 3) силы сдвига, нагружающие ребра и арматуру, приложены к их оси, и 4) напряжения в ребре и арматуре по поперечному сечению распределены равномерно.

Потенциальная энергия всей системы:

$$U = \frac{1}{2E} \iint_{-a \to b}^{+a \to b} [(X_x^2 + Y_y^2 + 2X_y^2) dx dy + \frac{1}{FE} \iint_{y}^{+b} \iint_{x=a}^{+b} \int_{y}^{+b} \int_{x=a}^{+b} \int_{y}^{2} \int_{x=a}^{+a \to b} \int_{y}^{2} \int_{x=a}^{+a \to a} \int_{y}^{a \to b} \int_{x=a}^{a \to b} \int_{x=a}^{a \to b} \int_{y}^{2} (X_x^2 + Y_y^2 + 2X_y^2) dx dy + \frac{1}{FE} \iint_{y=a}^{+b} \int_{y}^{2} \int_{x=a}^{+b} \int_{y}^{2} \int_{x=a}^{+a \to b} \int_{y}^{2} \int_{x=a}^{a \to b} \int_{y}^{2} \int_{x=a}^{2} \int_{y}^{2} \int_{x=a}^{2} \int_{y}^{2} \int_{x=a}^{2} \int_{y}^{2} \int_{x=a}^{2} \int_{x=a}^{2} \int_{y}^{2} \int_{x=a}^{2} \int_{$$

где первый член выражает потенциальную энергию плиты, второй член — потенциальную энергию торцевого ребра и третий — потенциальную энергию арматуры. В уравнении (1) F выражает площадь поперечного сечения ребра и F_a — приведенную площадь поперечного сечения арматуры. Поперечное сечение ребра принято F = ka = const.Поперечное сечение арматуры выражено формулой $F_a = n \mu 2bt.$ Здесь $n = E_a: E_6$ выражает отношение между модулями упругости стали и бетона и μ — коэффициент армирования.

Выражая напряжения через функцию напряжения φ , можем вариационное уравнение Кастильяно написать в следующем виде:

$$\begin{split} \delta U &= \frac{1}{2E} \delta \int \int \left[\left[\left(\frac{\partial^2 \varphi}{\partial x^2} \right)^2 + \left(\frac{\partial^2 \varphi}{\partial y^2} \right)^2 + 2 \left(\frac{\partial^2 \varphi}{\partial x \partial y} \right)^2 \right] dx \, dy + \\ &+ \frac{1}{FE} \delta \int \int \int \int \left[\int \frac{\partial^2 \varphi}{\partial x \partial y} \right] dy \int^2 dy + \frac{1}{F_0E} \delta \int \int \int \int \int \left[\frac{\partial^2 \varphi}{\partial x \partial y} \right] dx \, dx \end{split}$$

(2)

Сама функция напряжения ф избирается в виде:

$$\varphi = \varphi_0 + \sum_{1}^{L} \sigma_i \varphi_{i,2}$$

где i = 1, 2, 3, ...

При этом нулевой член. ϕ_0 должен удовлетворять следующим контурным условиям в напряжениях:

$$x = \pm a; \quad X_x = 0, y = +b; \quad Y_y = 0 m y = -b; \quad Y_y = q.$$

Соответственно предъявленным требованиям нулевой член взят в виде:

$$\varphi_{0} = \frac{1}{8} \sigma^{2} (\xi^{2} \eta^{3} - 3\xi^{2} \eta - \eta^{3} + 2\xi^{2}) q, \qquad (3)$$

где $\xi = \frac{x}{a}$ и $\eta = \frac{y}{b}$.

Члены функции φ_i избираются так, чтобы они на контуре дали нулевые напряжения, за исключением краев $x = \pm a$, где $Y_x \neq 0$, и y = -b где $X_y \neq 0$. Означенным условиям удовлетворяют функции:

$$\begin{split} \sum \sigma_{i} \varphi_{i}^{c} &= (\xi^{2} - 1)(\eta^{3} - \eta^{2} - \eta + 1)(\sigma_{0} + A_{0}\xi^{2} + B_{0}) + \\ &+ (\xi^{2} - 1)(\eta^{3} - \eta^{2} - \eta + 1)(\sigma_{1} + A_{1}\xi^{2} + B_{1}\eta) + \\ &+ (\xi^{2} - 1)(\eta^{4} - \eta^{3} - \eta^{2} + \eta)(\sigma_{2} + A_{2}\xi^{4} + B_{2}\eta) + \\ &+ (\xi^{4} - 1)(\eta^{5} - \eta^{4} - \eta^{3} + \eta^{2})(\sigma_{3} + A_{3}\xi^{2} + B_{3}\eta) + \\ &+ (\xi^{4} - 1)(\eta^{6} - \eta^{5} - \eta^{4} + \eta^{3})(\sigma_{4} + A_{4}\xi^{4} + B_{4}\eta) + \\ &+ (\xi^{6} - 1)(\eta^{7} - \eta^{6} - \eta^{5} + \eta^{4})(\sigma_{5} + A_{5}\xi^{2} + B_{5}\eta). \end{split}$$

В качестве дополнительных условий для определения коэффициентов A_0, A_1, \ldots, A_5 и B_0, B_1, \ldots, B_5 используется условие непрерывности между торцевым ребром и плитой, а также между арматурой и плитой. Непрерывность напряжений торцевого ребра и плиты можно удовлетворить лишь в отдельных точках, так как в точках $x = \pm a$ и y = -b, а также в примыкающей к ним зоне при упругой работе балки-стенки равновесия нет. Это объясняется тем, что в ребре действуют напряжения сжатия, в плите-же — напряжения растяжения. Условие непрерывности напряжений между арматурой и нижним краем плиты балки-стенки можно применить непрерывно по всему протяжению.

Означенное условие непрерывности напряжений между арматурой и плитой выражается в виде:

$$\frac{f}{F_{a}} \int_{y_{z-b}}^{+a} |X_{y}| \, dx = |X_{x}|$$

$$y_{z-b} \qquad (5)$$

и условие непрерывности напряжений в вертикальном се-

чении между опорным ребром и плитой выражается в виде:

 $\frac{i}{F_{y}} \int \left| -Y_{x} \right| dy = |Y_{y}|$ $x=\sigma \quad (6)$

При разработанном численном примере принимается: $a=b; t=t_1=1; k=0,5$ и $F=0,5a; \mu=1\%, n=10$ и $F_a=0,2a$.

Применяя соответственно приведенные исходные данные формулы (5), получим для коэффициентов B_0, B_1, \ldots, B_5 следующие значения:

 $\vec{v} \quad \mathcal{B}_{g} = -\frac{3}{112} \mathcal{O}^{2} \mathcal{Q} - \mathcal{O}_{g} - \mathcal{A}_{g} \xi^{2}, \\
\mathcal{B}_{f} = -\frac{7}{9} (\mathcal{O}_{f} + \mathcal{A}_{f} \xi^{2}), \\
\mathcal{B}_{f} = -\frac{9}{11} (\mathcal{O}_{f} + \mathcal{A}_{f} \xi^{4}), \\
\mathcal{B}_{g} = -\frac{11}{13} (\mathcal{O}_{g} + \mathcal{A}_{g} \xi^{4}), \\
\mathcal{B}_{4} = -\frac{15}{15} (\mathcal{O}_{4} + \mathcal{A}_{4} \xi^{4}) U \\
\mathcal{B}_{5} = -\frac{15}{17} (\mathcal{O}_{5} + \mathcal{A}_{5} \xi^{5})$ (7)

Подставив полученные таким путем результаты (7) в формулы (5), можем функцию напряжения выразить в виде:

$$\begin{aligned} \varphi &= \frac{1}{6} \left(\frac{1}{6} \left(\frac{1}{7} \right)^{3} - 3\frac{1}{6} \left(\frac{1}{7} \right)^{3} - \eta^{2} - \eta^{2} + 2\frac{1}{6} \left(\frac{1}{7} \right)^{2} \left(\frac{1}{7} \right)^{2} - \eta^{2} - \eta^{2} + 1 \right) 0^{2} Q + \\ &+ \frac{1}{9} \left(\frac{1}{6} \left(\frac{1}{7} \right)^{2} - 1 \left(\frac{1}{7} \right)^{2} - 2\eta + 1 \right) 0^{2} Q + \\ &+ \frac{1}{41} \left(\frac{1}{6} \left(\frac{1}{7} \right)^{2} \right) \left(\frac{1}{7} \right)^{2} + 2\eta^{2} - 20\eta^{3} - 2\eta^{2} + 11\eta \right) \left(\frac{1}{2} + A_{2} \frac{1}{6} \right)^{4} + \\ &+ \frac{1}{41} \left(\frac{1}{6} \left(\frac{1}{7} \right)^{2} \right) \left(\frac{1}{7} \right)^{2} + 2\eta^{2} - 20\eta^{3} - 2\eta^{2} + 11\eta \right) \left(\frac{1}{2} + A_{2} \frac{1}{6} \right)^{4} + \\ &+ \frac{1}{43} \left(\frac{1}{6} \left(\frac{1}{7} \right) \right) \left(11\eta^{6} + 2\eta^{5} - 2\eta^{7} - 2\eta^{7} + 13\eta^{6} \right) \left(\frac{1}{2} + A_{3} \frac{1}{6} \right)^{2} + \\ &+ \frac{1}{45} \left(\frac{1}{6} \left(\frac{1}{7} \right) \left(13\eta^{7} + 2\eta^{5} - 2\theta\eta^{5} - 2\eta^{4} + 15\eta^{3} \right) \left(\frac{1}{2} + A_{4} \frac{1}{6} \right)^{4} + \\ &+ \frac{1}{45} \left(\frac{1}{6} \left(\frac{1}{7} \right) \left(15\eta^{6} + 2\eta^{7} - 32\eta^{5} - 2\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 2\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 2\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 3\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 3\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 2\eta^{5} - 3\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} - 2\eta^{5} + 17\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{5} + 12\eta^{6} \right) \left(\frac{1}{2} - 3\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} + 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^{6} + 12\eta^{6} + 12\eta^{6} \right) \left(\frac{1}{2} - 12\eta^$$

Далее условие непрерывности (6) применяется в пяти точках: y = 0, $y = \pm \frac{3}{8}b$ и $y = \pm \frac{6}{8}b$ опорного вертикального сечения (x = a) балки-стенки.

Решив систему уравнений, получим:

$$A_1 = -0,09566 a^2 q - 0,42857 a_1,$$

 $A_2 = +0,04194 a^2 q - 0,27273 a_2,$
 $A_3 = -0,03742 a^2 q - 0,55555 a_3,$ н
 $A_4 = +0,18187 a^2 q - 0,38461 a_4,$
 $A_5 = -0,15441 a^2 q - 0,63636 a_5.$

(9)

Подставив результаты (9) в уравнения (8), получим фуркцию напряжения ф в виде:

 $\varphi = \left[0.12500 \left(\xi^2 \eta^3 - 3 \xi^2 \eta - \eta^3 + 2 \xi^2 \right) - 0.02679 \left(\eta^3 - \eta^2 - \eta + 1 \right) - \right]$

 $- 0.01063 [\xi^4 - \xi^3] [7\eta^4 + 2\eta^3 - 16\eta^2 - 2\eta + 9] +$

- + $0,00381(\xi^6 \xi^4)(9\eta^5 + 2\eta^4 20\eta^3 2\eta^2 + 11\eta) -$
- $= 0,00283(\xi^{6} \xi^{2})(11\eta^{6} + 2\eta^{5} 24\eta^{4} 2\eta^{3} + 13\eta^{2}) +$
- $= 0.00908[\xi^{8} \xi^{2}](15\eta^{8} + 2\eta^{7} 32\eta^{6} 2\eta^{5} + 17\eta^{4})]a^{2}q +$
- + $0.01588l 3\xi^4 + 10\xi^2 7)(7\eta^4 + 2\eta^3 16\eta^2 2\eta + 9)a_i +$
- + 0,09091(-0,27273 ξ^{5} +0,27273 ξ^{4} + ξ^{2} -1)(9 η^{5} +2 η^{4} -20 η^{3} -2 η^{2} +11 η) a_{2} +
 - + 0,07692(-0,55555 $\xi^6 + \xi^4 + 0,55555 \xi^2 1)(11\eta^5 + 2\eta^5 24\eta^4 2\eta^3 + 13\eta^2)\sigma_3 +$
 - + 0,05557/-0,38461\$⁶+0,38461 \pm ⁴-1//13 η ⁷+2 η ⁶-28 η ⁵-2 η ⁴+15 η ³/0₄+
 - + 0,05882[-0,63636 ξ^{6} + ξ^{6} + 0,63636 ξ^{2} -1](15 η^{8} +2 η^{7} -32 η^{6} -2 η^{5} +17 η^{4}] a_{5} .

Остальные пока неизвестные коэффициенты a_1, a_2, \ldots, a_5 определяются из условия минимума потенциальной энергии $\frac{\partial U}{\partial a_i} = 0$. Таким путем получаем канонические уравнения Кастильяно-Ритца:

 $a_{1} \delta_{11} + a_{2} \delta_{21} + a_{3} \delta_{31} + a_{4} \delta_{41} + a_{5} \delta_{51} = -\Delta p_{1}$ $a_{1} \delta_{12} + a_{2} \delta_{22} + a_{3} \delta_{32} + a_{4} \delta_{42} + a_{5} \delta_{52} = -\Delta p_{2}$ (11)

где множители при неизвестных δ_{ik} и свободные члены Δp_k определяются из уравнений:

$$\begin{split} \delta_{i\kappa} &= \iint_{-\sigma}^{*\sigma} f_{i\chi\chi} \varphi_{\kappa\chi\chi} + \varphi_{iyy} \varphi_{\kappayy} + 2 \varphi_{ixy} \varphi_{\kappa\chiy} / dx dy + \\ &+ \frac{2}{F_{p}} \iint_{\chi} f_{i\chi\chi} | dy \int_{\chi=\sigma}^{*\sigma} f_{\chi\chi} | dy + \frac{2}{F_{q}} \iint_{\chi=\sigma}^{*\sigma} f_{\chi\chi} | dx \int_{\chi=\sigma}^{*\sigma} f_{\chi\chi} | dx dx . \end{split}$$

$$\end{split}$$

$$(12)$$

68

(10)

 $\Delta p_{\kappa} = \iint \left(\varphi_{0xx} \varphi_{\kappa xx} + \varphi_{0yy} \varphi_{\kappa yy} + 2 \varphi_{0xy} \varphi_{\kappa xy} \right) dx dy +$

 $+ \frac{2}{F} \int \left\{ \int |\varphi_{0xy}| dy \int |\varphi_{xxy}| dy \right\} dy + \frac{2}{F_{a}} \int \left\{ \int |\varphi_{0xy}| dx \int |\varphi_{xxy}| dx \right\} dx$

Вычислив множители и свободные члены согласно выражениям (12) и решив систему канонических уравнений (11), получим для множителей ряда функции напряжений ф следующие значения:

$$a_1 = -0,06387 \ a^2 q, \ a_2 = +0,04494 \ a^2 q, \ a_3 = -0,01130 \ a^2 q,$$

 $a_4 = -0,04702 \ a^2 q$ h $a_5 = +0,09463 \ a^2 q.$

Поместив, значения коэффициентов a_1, a_3, \ldots, a_5 в выражение (10) и сгруппировав члены, получим функцию напряжения в виде

$$\begin{aligned} \varphi &= 0,12500(\xi^{2}\eta^{3}-3\xi^{2}\eta-\eta^{3}+2\xi^{2}) - 0,02679(\eta^{3}-\eta^{2}-\eta+1) + \\ &+ (-0,00759\xi^{4}+0,00049\xi^{2}+0,00710)/(7\eta^{4}+2\eta^{3}-16\eta^{2}-2\eta+9) + \\ &+ (+0,00270\xi^{6}-0,00270\xi^{4}+0,00409\xi^{2}-0,00409)(9\eta^{5}+2\eta^{4}-20\eta^{3}-2\eta^{2}+11\eta) + \\ &+ (-0,00239\xi^{6}-0,00087\xi^{4}+0,00239\xi^{2}+0,00087)/(11\eta^{5}+2\eta^{5}-24\eta^{4}-2\eta^{3}+13\eta^{2}) + \\ &+ (+0,01333\xi^{6}-0,01646\xi^{4}+0,00314)/(13\eta^{7}+2\eta^{6}-28\eta^{5}-2\eta^{4}+15\eta^{3}) + \\ &+ (-0,01262\xi^{6}+0,00557\xi^{6}+0,01262\xi^{2}-0,00557)/(15\eta^{6}+2\eta^{7}-23\eta^{6}-2\eta^{5}+17\eta^{4}) \end{aligned}$$
(13)

и составляющие напряжения:

$$X_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}} ,$$

$$Y_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}} ,$$

$$X_{y} = -\frac{\partial^{2} \varphi}{\partial x \partial y}$$

Составляющие напряжений в сечениях более характеризующих балку-стенку, приведены в таблице 1 и на рис. 21.

Рис. 2.

Так как соответственно описанному методу распределение напряжений в плите балки-стенки отличаются от ныне известных, то на черт. 3 приведены траектории главных напряжений. Для получения траекторий был произведен расчет направлений главных напряжений в 102 точках балки-стенки (на рис. 3 отмечены крестиками) на основании чего и были изображены приведенные траектории.

Расчет величины и распределения внутренних сил в

Рис. 3.

арматуре согласно исходным данным примера был проведен по формуле:

 $F_a = \int_{|X_y|}^{a} dx.$

Внутренняя сила в арматуре в средней части пролета балки-стенки остается примерно постоянной, и лишь в зоне опоры быстро становится равной нулю. Внутренняя сила арматуры в сечении x = 0 равна $N_a = 0,140$ aq, а максимальная внутренняя сила в сечении x = 5/8 *а* равна $N_a = 0,143$ aq. Посреди пролета высота нулевой линии $\eta = -0,535$, что означает, что плита практически растянута на протяжении четверти ее высоты. В том же сечении сила растяжения в плите равна $N_{na} = 0,285$ aq. Общая сила растяжения в среднем вертикальном сечении балки-стенки $N = N_a + N_{na} = 0,425$ aq.

Отношение $N_{n\pi}$: N = 0,680 означает, что приблизительно 2/3 из общей растянутой арматуры следует распределить в плиту и 1/3 концентрировать в нижнем крае плиты.

Плечо момента внутренних сил посредине пролета (x = 0):

$$Z = \frac{M}{D} = 1,19a = 0,6h,$$

$$Z\partial e M = \int_{-b}^{+b} X_{x} y dy + b \int_{a}^{a} |X_{y}| dx = 0,5a^{2}q, u \qquad (17)$$

$$D = \int_{-0,535b}^{+b} X_{x} dy = 0,419aq.$$

Проверка расчетов, была произведена двояко:

- 1) моменты внешних сил в сечении $(x = 0) \frac{1}{8} q (2a)^2$ равен моменту внутренних сил 0,5 a^2q в том же сечении;
- 2) условие проекции сил на ось y в вертикальном сечении x = 0 удовлетворяется, т. е.

 $\int_{0}^{+b} X_x dy + \int_{0}^{+d} |X_y| dx = 0.$

В заключение следует отметить, что приведенное распределение арматуры необходимо в случаях, когда не допускается возникновение трещин в плите балки-стенки. В случае же, когда возникновение трещин в плите допускается, приведенная расчетная схема конечно неприменима. В последнем случае целесообразнее продольную арматуру располагать в большей мере (до 2/3 от всей арматуры) в нижнем крае плиты балки-стенки.

A second to a state

Таблица 1

Составляющие напряжений

Напря- жения	У/в x/e	1	7/8	6/8	5/8	4/8	3/8	2/8	1/8	0	1/8	2/8	— ³ /8	-4/8	5/8	— ⁶ /8	7/8	
$\frac{X_{\rm x}}{q}$	$\begin{array}{c} 0 \\ \pm 0,5 \end{array}$	0,793 0,236	0,299 0,180	0,228 0,212	-0,274 -0,243	$-0,303 \\ -0,244$	0,287 0,222	0,250 0,199	0,228 0,192	$-0,242 \\ -0,208$	-0,283 -0,236	$-0,311 \\ -0,250$	$-0,263 \\ -0,215$	0,081 0,097	-0,257 + 0,118	0,679 +0,401	-0,966 + 0,654	$+0,669 \\ +0,673$
$\frac{y_y}{q}$	$0\\\pm 0,5\\\pm 1,0$	0 0 0	+0,030 -0,009 -0,024	$+0,083 \\ -0,018 \\ +0,007$	+0,136 0,010 +0,037	+0,186 +0,016 +0,002	+0,246 +0,062 -0,110	+0,310 +0,118 -0,243	+0,381 +0,180 -0,329	+0,455 +0,250 0,364	+0,533 +0,332 -0,387	+0,614 +0,430 -0,497	+0,700 +0,549 -0,763	+0,738 +0,681 -1,145	+0,874 +0,816 -1,436	+0,946 +0,926 -1,202	+0,988 +0,987 -0,404	+1,000 +1,000 +1,000
$\frac{X_{y}^{\text{ped.}}}{q}$	<u>+</u> 1,0	0	+0,009	+0,007	0,026	-0,064	-0,110	0,170	-0,254	0,364	0,494	0,630	—0,763	0,895	—1,055	—1,202	-1,622	—2,000
$\frac{y_{x}}{q}$	$\pm 0,5 \\ \pm 1,0$	0 0	+0,110 -0,021	+0,137 +0,075	+0,159 +0,137	+0,194 +0,166	+0,232 + 0,206	+0,263 +0,283	+0,285 + 0,389	+0,306 + 0,488	+0,334 +0,543	+0,374 +0,541	+0,414 +0,518	+0,431 + 0,558	+0,390 +0,753	+0,269 + 1,131	+0,093 + 1,518	-0,015 +1,327
	х/а У/в	1	7/8	8/9	5/8	4/8	³ /8	2/8	1/8	0	1/8	2/8	— ³ /8	4/8	— ⁵ /8	<u> </u>	7/8	
$\frac{X_{\mathbf{x}}}{q}$	-1	+0,325	+0,512	+0,660	+0,681	+0,673	+0,667	+0,666	+0,669	+0,670	0,669	+0,666	+0,667	+0,673	+0,681	+0,660	+0,512	+0,325
$\frac{N_a}{aq}$	-1	0	+0,100	+0,132	+0,138	+0,135	+0,132	+0,131	+0,132	+0,134	+0,132	+0,131	+0,132	+0,135	+0,138	+0,132	+0,100	0
$\frac{X_{y}}{q}$	-1	+1,327	+0,439	+0,095	-0,004	-0,015	-0,005	+0,002	+0,003	0	+0,003	+0,002	-0,005	-0,015	0,004	+0,095	+0,439	+1,327

ЛИТЕРАТУРА

- 1. Алликас Л. А. Расчет балок-стенок, опирающихся на торцевые ребра. Труды Таллинского политехнического института, № 147, 1958.
- 2. Алликас Л. А. Несущая способность железобетонных балокстенок. Труды Таллинского политехнического института, № 65, 1955.

JANTARETHE

ОГЛАВЛЕНИЕ

Стр

		orp.
	Соонурм Э. Ю. Расчет тонкостенных стержней много- замкнутого сечения на кручение.	3
2.	Нигул У.К. Некоторые результаты исследования уравнений собственных колебаний упругой кругоцилиндрической оболочки.	19
5.	Нигул У. К. Колебание кругоцилиндрической упругой оболочки, вызванное действием сосредоточенного импульса.	37
ł.	Алликас Л. А. О расчете упругой армированной балки- стенки, опирающейся на торцевые ребра	59

Рукописи сборника поступили в редакцию 27 января 1960 г.

СБОРНИК СТАТЕЙ ПО ТЕОРИИ ТОНКОСТЕННЫХ КОНСТРУКЦИЙ II *

Таллинский Политехнический Институт Редактор Х. Лаул Технический редактор А. Тамм Корректор М. Каска

Сдано в набор 4 II 1960. Подписано к печати 24 III 1960. Печатных листов 4,5. По формату 60×92 печатных листов 3,48. Учетно-издательских листов 2,73. Тираж 500. МВ-02409. Заказ № 864. Типография «Коммунист», ул. Пикк 2, Таллин

Цена 1 руб. 95 коп.

San and a start of the start of