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Abstract

Spoken language identification has many applications from speech recognition systems to

data analysis. The identification systems are commonly created using neural networks

that require a lot of training data. There are some existing datasets, specifically created

for the task, but most of them have problems like being quite costly, not containing the

required languages, etc. This thesis investigates the use of automatically collected web

audio data for the task of spoken language identification.

To collect the web audio datasets a data collection pipeline has to be developed. The

required speech data is collected from the YouTube platform. Suitable content is found by

using a set of pre-generated search phrases that have been created from Wikipedia data.

Automatically collected information inevitably contains much noise and false positive

results, therefore heavy filtering has to be applied during the data collection process. As

a result from the data collection step a large dataset is built, containing data for over 100

languages.

The spoken language identification models are built with neural networks and use the

collected datasets. The models follow the state-of-the-art x-vector approach for language

identification. Additionally, different noise robust loss functions are used to deal with

the noisy labels from web data. Results show, that the proposed solution can be very

effectively used for language identification and the models perform well.

The thesis is written in English and contains 61 pages of text, 8 chapters, 30 figures and

6 tables.
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Annotatsioon

Andmete masskogumine kõneldava keele tuvastamise mudelite

loomiseks

Kõneldava keele tuvastusel on rakendusi mitmes erinevas valdkonnas, alates kõnetuvastus-

süsteemidest ja lõpetades andmeanalüüsiga. Selliste keeletuvastussüsteemide loomiseks

kasutatakse tänapäeval tihti närvivõrke, mille treenimiseks on vaja suurel hulgal andmeid.

Keeletuvastuse jaoks on olemas mõned andmekorpused, kuid paljudel neist on probleeme.

Näiteks on need liiga kallid, vajaminevad keeleandmed puuduvad või on andmed täiesti eri

domeenidest. Antud magistritöö eesmärgiks on uurida automaatselt internetist kogutud

massandmete kasutamist kõneldava keele tuvastamise mudelite loomisel.

Andmestike kogumiseks on vaja luua tööriistad, mis võimaldaksid seda automaatselt

teha. Kõneandmed kogutakse YouTube’i platvormilt kastades eelnevalt genereeritud

otsingufraase. Otsingufraasid luuakse mitmekeelsetest Vikipeedia andmetest. Automaat-

selt internetist kogutud andmed sisaldavad paratamatult palju müraseid ja soovimatuid

tulemusi. Nende välja filtreerimiseks rakendadakse andmekogumisprotsesis mitmeid er-

inevaid meetmeid, et lõpptulemuses oleks võimalikult sobivad andmed. Lõpuks kogutakse

suur andmekorpus, rohkem kui 100-le keelele, mida kasutatakse keeletuvastusmudelite

treenimiseks.

Keeletuvastusmudelid luuakse kasutades närvivõrke ja eelnevalt kogutud andmeid. Mudelid

on koostatud viimasel ajal keeletuvastuse valdkonnas parimaid tulemusi saavutanud x-

vektorite meetodi järgi. Kuna tegemist on osaliselt müraste veebiandmetega, siis rak-

endatakse ka tuvastusmudelites erinevaid müraga arvestavaid kaofunktsioone, mis peak-

sid mudeli tulemusi parandama. Lõpptulemused näitavad, et sellisel kujul veebiandmete

kasutamine kõneldava keele tuvastamiseks on täiesti võimalik ja mudelite tulemused on

head.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 8 peatükki, 30

joonist ja 6 tabelit.

5



List of abbreviations and terms
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1 Introduction

This thesis investigates the use of automatically collected web data, such as YouTube

videos for building spoken language identification models with neural networks. The work

can be divided into two main parts. Firstly, the process of collecting the required datasets.

Secondly, the use of such datasets for creating the language identification models. In the

work a data collection pipeline for YouTube videos is created, a data validation process

is conducted and spoken language identification models are built and tested.

1.1 Problem

Nowadays, neural networks are frequently used to solve problems from a wide variety of

fields. Such networks can only be built if there is enough annotated data that can be

used for training the models. Such datasets are also required for tasks in the language

domain. In order to create a language identification model that is able to identify the

spoken language from a speech segment, datasets are required for each of the target

languages. They have to contain hours of audio clips with speech data. There are some

existing datasets created for the task, but they often contain resources for only a few

of the required languages or data for the language that the model needs to be able to

identify is not present at all. For example, since this thesis is written in Estonia, then the

Estonian language is not present in any of such large datasets for language identification.

If datasets for smaller languages like Estonian exist, then they usually have to be acquired

separately from different sources to use for the identification task. Other drawbacks of

the larger available datasets are that they are quite expensive and some of them contain

speech data from only one specific domain.

To solve the problem, the use of automatically collected web data for creating spoken

language identification models is investigated in this thesis. The problems solved in this

work can be divided into two parts - the dataset collection and building the language

identification models.

Firstly, in the data collection step, an effective way needs to be developed for automati-
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cally collecting the speech data required for the identification models. Since the datasets

need to be collected for many different languages, a universal collection process has to

be developed. Data for the neural networks has to be annotated, meaning that all of

the collected data has to have language labels associated with it. Data that is automati-

cally collected from the internet inevitably contains noise, false language labels and other

problems that also need to be addressed in this step.

In the second step an effective way needs to be found to use YouTube data for language

identification in neural networks. Some additional techniques and methods have to be

applied in order to deal with the potentially noisy and falsely labelled training data.

1.2 Objective

The first objective is to collect large multilingual datasets for the purpose of language

identification. During that step an automatic data collection and filtering process needs

to be developed. The YouTube platform is investigated as the primary resource for the

speech data. A validation experiment will be carried out on the collected datasets to find

out the quality of such automatically collected data and to create separate datasets that

can be used for validation when creating the identification models.

Secondly, the goal is to effectively use such web data for the spoken language identification

models. The models will be validated on data from the previous step and some external

datasets. The goal is to achieve similar language identification accuracy to other models

trained with already available datasets.

1.3 Outline

The first chapter describes the task of spoken language identification and the problems

with existing datasets, gives an overview of the goals and talks about the proposed solution

for the problem.

The second chapter gives an overview of previous work that is related to this thesis. The

problem of spoken language identification is described in more detail and also background
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topics like neural networks, i-vectors and x-vectors are shortly discussed.

The third chapter gives an in depth overview of the dataset collection process. The initial

data requirements and available data sources are described. The video collection and

audio extraction process is shown and finally an overview of the collected datasets is

given.

The fourth chapter covers the data validation process that is conducted on the collected

datasets. An overview of the validation process is given and then the findings from the

results are discussed.

The fifth chapter describes the neural network based language identification models and

shows some of the used noise robust loss functions.

The sixth chapter presents the results achieved by the spoken language identification

models. The models are evaluated on some of the validated data from previous steps and

also some external datasets.

The seventh chapter discusses some of the areas where current work can be improved on

further and what are the larger related topics that can be investigated in the future.

The last chapter concludes the work that was done and presents the most important

achieved results.
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2 Background

The following sections give an overview of some previous work that is related to this thesis.

For example, datasets and projects where YouTube data has been used for language

identification or other tasks in the same domain will be described. Background theory

and methods like i-vectors, x-vectors and neural networks will also be shortly covered.

2.1 Related work

The use of YouTube data is not new for the machine learning community. Datasets

have been created for many different tasks using the video and audio resources available

on YouTube. For example, a lot of such work has been done in the computer vision

and language processing domain. For the specific task of spoken language identification,

the use of YouTube data has been less popular. There has been work, where YouTube

data was used for language identification, but the amount of collected languages and the

dataset sizes were quite modest. Also, in many cases the YouTube data has not been the

primary data source for building the models. In the work most similar to what is done in

this thesis, YouTube data was used for tuning and testing the neural networks that had

previously been trained on TV broadcast data instead.

2.1.1 VoxCeleb

Similar work of using YouTube data in the audio-visual domain has been previously done

by the creators of VoxCeleb [32] dataset for speaker verification and identification tasks.

Since the data required for speaker identification and verification used to mostly be hand

annotated and therefore limited in size, the authors of VoxCeleb proposed an automatic

pipeline for collecting data from open-source media like YouTube.

The created pipeline combined techniques from computer vision and spoken language do-

main. The initial step in the process they used was to collect the celebrity names from

various sources. Then the top videos related to each of the celebrity names were auto-
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matically downloaded from YouTube. Some extensive face tracking and speaker and face

verification tasks followed. Finally, a dataset containing over 100 000 speech utterances

for 1251 speakers was formed [32].

VoxCeleb has been widely used in the machine learning community and proven to be very

valuable. Aside from its original goal of speaker verification and identification it has been

used for many other tasks, like face generation, face synthesis and emotion recognition,

making it even more versatile than originally intended.

2.1.2 KALAKA-3

In this thesis the use of YouTube audios for building language identification models can

most closely be compared with the KALAKA-3 database. KALAKA-3 is a database

based on YouTube data and built for identifying European languages to support the

Albayzin 2012 Language Recognition Evaluation (LRE) that was organized by the Spanish

Thematic Network on Speech Technologies [44], [43]. In the work by Rodŕıguez-Fuentes et

al. TV broadcast speech was combined with automatically collected data from YouTube

and used for the purpose of spoken language recognition.

In the data collection stage the goal for building KALAKA-3 was to collect around 300

YouTube audio clips for 21 target languages. The languages themselves were distributed

into different groups. There were six main target languages where plenty of training data

was available, four empty-training languages for which no training data was available and

11 Out Of Set (OOS) languages.

YouTube data was collected from six predefined categories (Education, News, Entertain-

ment, How-to, Nonprofit and Technology) and a list of videos was created for each of

the target languages by using the YouTube API. The videos were queried with keywords

formed by using the aspell1 dictionary for each language, choosing 2000 random words

and doing some additional processing. To increase the chance of videos having the ex-

pected spoken language, only content with available geographical information was used.

Such approach seems like a good solution to finding only the correct videos, but as the
1https://ftp.gnu.org/gnu/aspell/dict/0index.html
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work in this thesis shows, such hard limits usually decrease the amount of search results

drastically because only a small subset of YouTube videos actually contain such metadata

and for languages with less or lower grade YouTube video content there may be no results

at all.

After creating a list of suitable videos the authors of the paper validated a sample of videos

from each of the required language categories to verify their labels. After that the videos

were automatically downloaded. Audio was extracted from the videos and some additional

filtering and data converting was done. Data was distributed into training, tuning and

test datasets to be used for language identification models. In total the dataset contains

about 200 hours of audio that is ready to be used.

To benchmark the dataset the authors also proposed multiple language identification

models, all following the i-vector approach described in Section 2.5 and using the Kaldi [37]

framework. The results of the models were not close to state-of-the-art results, but they

still provide a challenging benchmark for the development of spoken language technology.

It was also concluded that using language specific data only for tuning the models is not

enough and having training data for all target languages is the key for attaining good

language identification performance [43].

2.1.3 How2 dataset

Another use for YouTube data has been proposed by the creators of How2 dataset [46].

It is a large-scale dataset that was created for the purpose of multimodal language under-

standing. Multimodal meaning that the text, speech, images and other means of carrying

information are not processed in isolation, but combined together and processed jointly.

The dataset has been put together from instructional videos collected from YouTube,

their English subtitles and other metadata, primarily the video description, which they

have concluded to be the video summary. Portuguese translations were crowd sourced for

the video subtitles so that the dataset would be multilingual. Data has been collected by

using an automatic keyword-spider that they have described in more detail in [60]. Total

size of the dataset is nearly 80 000 clips and this results in 2000 hours of audio.
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Together with the dataset the authors have provided many different applications that the

dataset can be used for. For example: automatic speech recognition, machine translation,

speech to text translation and content summarization. This shows that such automatically

acquired datasets can be applied on a wide variety of tasks with different problem areas.

2.2 Spoken language identification

Spoken language identification is the task of determining the identity of a language from

a speech sample [24]. There are many different areas where spoken language identification

is used or could be used [24], [48], [5], [31]:

� Automatic speech translation systems (switching between models or systems)

� Multilingual speech recognition (switching between models or systems)

� Spoken document retrieval and categorization (performing sorting and searching on

unlabelled audio data)

� Call centers (selecting an operator fluent in the required language)

Nowadays, spoken language identification is also of interest to different intelligence agen-

cies for data analysis and it is starting to be more widely used even in smart vehicles [28].

Since a lot of the systems mentioned work in real time the computational cost for the

identification task is often very important [61].

Research has shown that humans are able to identify languages quite successfully even

with minimal knowledge of the language and little previous exposure. For unknown

languages humans are often able to make subjective guesses, for example “It sounds like

Arabic” [24], [18]. For machines the task is harder. In more strict terms the problem can

be formalized as having a set of acoustic feature vectors O = {o1, o2, ..., oT}, where ot is

extracted from a waveform at a discrete frame t and there are T such vectors. The set of

languages under consideration {L1, L2, ..., LN} is equally probable. Identifying a language

out of the set of N possible languages involves an assignment of the most likely language

label L̂ to the acoustic observation O, such that
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L̂ = argmax
l

p(O|Ll) (1)

which follows a maximum-likelihood criterion [24], [5].

2.3 Methods

Over time different approaches have been used for solving the spoken language identifica-

tion task, from high level systems focusing on phones and the frequency of the sequences

of phones observed in each target language to systems based on spectral characteristics

of each language [10]. Many algorithms previously developed for all kinds of speech and

speaker recognition tasks can be effectively applied in language identification [5].

Typically the process can be divided into two separate problems: frontend modelling and

backend modelling [4], [3]. The frontend modelling part takes care of the feature extraction

process, extracting a sequence of features from the input audio data. The purpose of such

extraction is to find the most relevant data from the speech waveform and eliminate

as much useless data as possible. For language identification a good feature extraction

process would filter out all speech properties that are dependant on the speaker or noise

and try to assign a higher importance to the speech segments that would be the most

useful for differentiating between multiple languages [3]. One of the most used techniques

for feature representations are Mel Frequency Cepstral Coefficents (MFCC) which also

approximate the nonlinear frequency resolution of the human ear [56], [3]. After the

feature extraction process is finished, model training and language identification can be

done in the backend step. For that there are also many different methods that have

been used over time. In the past GMM-UBM models, Support Vector Machines (SVM)

and logistic regression have been very popular [18], [10]. Nowadays, in the state-of-the-

art systems neural networks have replaced them [27]. For language identification Deep

Neural Network (DNN) the input is a stacked set of spectral features extracted from short

segments of speech [42], [7].
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2.4 Neural networks

Neural networks are a popular machine learning method that is currently applied in very

many different areas, starting from image recognition and computer vision to language

technology and medical research [26], [16], [36]. These networks are used as computational

models that are able to extract important information out of large datasets and later make

predictions based on what they have learned.

As the name “neural” implies, the networks contain small computational units called

neurons. In the simplest form a single layer neural network is just a type of neuron called

a perceptron, shown in Figure 1. Neurons and perceptrons are lightly inspired by the

human brain and act as simple input-output devices. The simplest form of a perceptron

will take an input in terms of binary data x1, x2, ..., xn and produce a single binary output.

Each input has also a weight w1, w2, ..., wn which describes the importance of that value

relative to the output. In the most basic case the single binary output of the network is

either 0 or 1, depending on the weighted sum
∑

j wjxj and some initially set threshold

value. In other types of more complex neurons the output can be any value between 0

and 1 and also the simple threshold is replaced with a value called bias.

X2 W2

X3

W3

X1

W1

Output

Figure 1. A single perceptron with three inputs.

In larger neural networks, shown in Figure 2, neurons are combined into groups called

layers and there is more than just one computational layer. The leftmost layer is called

the input and the rightmost the output. The layers in between are referred to as hidden

layers, since the computations performed there are not visible to the end user. If a neural

network has two or more hidden layers then it is also referred to as a deep neural network.

If every neuron in a layer is connected to every neuron in the next layer then the layer is
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called fully connected or dense.

OutputInput 
layers

Hidden layers

Figure 2. Example of a neural network with four layers.

Overall the process of making neural networks do what is needed is called training them.

The training is enabled by the use of weights and biases in the neurons. By feeding

input data thorough the network in many steps called epochs we can adjust the weights

and biases at the end of each cycle by taking the prediction made by the network and

comparing that with a real known value for the particular input. Doing so we can calculate

the loss or error in the network and adjust the weights and biases accordingly to try to

minimize the loss. Such iterations are done many times in the training stage, until the

predefined number of steps is exceeded or some other form of criteria is met. Frequently

some kind of an early-stopping criteria is used that will stop the training if for example

the loss in the network has not decreased a considerable amount in the last n epochs.

The training process itself can be done in multiple ways. In supervised training the data

has labels that are known to be valid and the training process relies on the fact that they
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are correct. In unsupervised training there are no labels or the labels are called weak and

the model tries to learn the structure of the data on its own. In this work, supervised

learning is used, although the labels associated with the audio data are quite noisy and

may not be true.

2.4.1 Loss functions

In general the loss value in the network describes how close the predictions are to the

target towards which the training is done [35]. Choosing the right loss function for the

application at hand is quite critical, because a good choice for the loss can often increase

the networks accuracy noticeably. One of the simplest loss functions that is used is the

quadratic loss, also known as Mean Squared Error (MSE), defined in Equation 2

LMSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (2)

where n is the total number of training samples, Yi is the expected output vector of the

network and Ŷ is a vector of the network predictions [33], [6], [35]. When the network

predictions are equal with the expected values then the loss value decreases to zero and

when the Euclidean distance between the network targets and predictions grows then also

the loss value increases.

Different types of loss functions are used depending on whether the network has a single

binary output or the predictions have multiple possible classes. For binary classification

the previously shown MSE loss can be used. For multiclass predictions a softmax final

layer is commonly used in the neural network architectures which outputs a probability

distribution and requires a different type of loss function [33]. In such cases one of the

most commonly used losses is the Cross Entropy (CE) loss

LCE = −
n∑

i=1

yi log(oi) (3)

where y is the vector of outputs for the n mutually exclusive classes and o is the vector

of output probabilities [1].
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There are many more loss combinations and types that can be used based on specific

needs, for example some may be better suited for applications in the computer vision

field and others can be used quite well in all areas. Some of such loss functions that are

well suited for current work in the language domain and that are able to deal with noisy

or falsely labelled data will be described in Section 5.3.

2.4.2 Data augmentation

When training neural networks, then usually the intent is for them to generalize as well as

possible and to reduce overfitting [6], [1]. To do that as much training data as possible is

needed, but in many cases there may just not be enough labelled data available and there

is no way to collect more. In these cases (and sometimes even if there is enough data)

data augmentation can help. Data augmentation is the process of artificially creating

more data. It must be applied carefully, by knowing the limitations of the task at hand to

not ruin the results. One area where data augmentation is widely applied is in computer

vision and image recognition. An existing image can be flipped, rotated, warped, cropped,

scaled and transformed in many different ways to create new representations of the same

input image. Usually such transformations do not take much computing power, so they

do not need to be pre-generated and can be created during the training process [1].

Related to current thesis, data augmentation can be well applied in the spoken language

domain also. A common solution is to add all kinds of noises to the input audio or speech

samples, like music, babble and traffic. Audio files can be be speed perturbed, meaning

that the audio is either slowed down by some factor (commonly 0.9) or sped up (commonly

by a factor of 1.1). Additionally, time can be shifted or the pitch changed. Some of these

augmentation methods will be applied in the language identification models described in

Chapter 5.

2.5 I-vectors

In the past most systems built for spoken language identification were based on identity

vectors (i-vectors) [9]. Additionally they have been used for tasks like speaker and dialect
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recognition, speaker diarization, speech recognition and many more [22], [10], [56], [59].

I-vectors are a compact form of the speech data, as a fixed size representation of the speech

utterance (frequently 400 to 600 dimensions) [61]. The fixed-size representation means

that the sequence of frames for a given utterance can be mapped into a low-dimensional

vector space while preserving the total variability of the signal [22], [10], [4], [24]. Thus

the low-dimensional space is also called total-variability space.

The process of i-vector extraction is done by mapping a sequence of vectors obtained from

a speech utterance to a fixed length vector [15]. An audio segment is first analyzed to

find all the relevant information and to extract acoustic features that convey the language

information [41]. The i-vector mapping is done by using a Universal Background Model

(UBM), which is essentially a language independent Gaussian Mixture Model (GMM).

The Baum-Welch statistics from the utterances are collected and a supervector is con-

structed by appending together the statistics for each mixture component as in Equation

4

M = m+ Tw (4)

wherem is the speaker- and channel-independent supervector, T is a rectangular matrix of

low rank and w is a low-dimensional random vector having a standard normal distribution

N(0, I) [9], [24], [61], [56]. An i-vector is obtained for each utterance as the Maximum

Posterior Probability (MAP) point estimate of w [15].

2.6 X-vectors

X-vectors are the newer approach for solving problems in the language domain. They

have been indirectly introduced and used in [51] without being called x-vectors yet. The

method has been used for speaker recognition and diarization tasks with excellent results

[52], [54], [12]. Recently, it has been adapted for the language identification task and

has outperformed many existing systems in that area, being currently the state-of-the-art

approach for the task [53], [38].
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The x-vector system is built with a feed-forward DNN and the input to the network is a

sequence of T speech frames (raw audio in the form of MFCC-s) [53]. The network can

be divided into four major components. The first part processes the data at frame level

and is essentially a Time Delay Neural Network (TDNN) [39]. The second component is

the statistics pooling part, where the mean and standard deviation of all the vectors is

calculated and concatenated. Then the fully connected layers follow and finally a softmax

classifier layer. The x-vectors themselves can be extracted after the first fully connected

layer, that is the segment 6 in Table 1. Although for short utterance evaluations it has

been reported that better results can be achieved by doing the extraction one layer later,

after the seventh segment [21].

One of the good features of x-vectors is that after extracting they can be used like i-

vectors. That means that all of the technology that has been developed for i-vectors over

many years can be utilized. The x-vector DNN can also be used directly for classification

tasks without the need to extract the vectors.

Table 1. Standard x-vector DNN architecture [53].

Layer Layer context Total context In × out

frame 1 {t− 2, t+ 2} 5 5F × 512

frame 2 {t− 2, t, t+ 2} 9 1536 × 512

frame 3 {t− 3, t, t+ 3} 15 1536 × 512

frame 4 {t} 15 512 × 512

frame 5 {t} 15 512 × 1500

stat. pooling [0, T ) T 1500T × 3000

segment 6 {0} T 3000 × 512

segment 7 {0} T 512 × 512

softmax {0} T 512 × L

The authors of x-vectors have reported that in order to receive the best results with

language identification, data augmentation should be used. In their work a random aug-

mentation method from the following options was used to augment the speech utterance

at hand [53]:
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� speed perturbation

� music - a random sample from the Music Speech And Noise corpus (MUSAN) [50]

is added to the input

� noise (MUSAN noises)

� reverberation - recording is reverberated with simulated Room Impulse Responses

(RIR) [23]

The spoken language identification models in this work also use the x-vector approach,

but the implementation is based on different tools and has some additional components.
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3 Data collection

This section covers the process and tools that were used for collecting the speech data that

is required to build the language identification models. Additionally, the used data sources

and data acquisition methods are described and an overview of the collected datasets is

given.

3.1 Data requirements

In this work the methods used for the task of spoken language identification are neural

networks. In order to create the models and train the networks much data in audio form

is needed. In the case of language identification the data needs to be speech data, as the

goal is to recognize the language from audio clips that contain speech. As with many

neural networks training tasks the datasets need to be annotated. This means that for

each audio clip in the dataset there needs to be a corresponding label that refers to the

spoken language in that clip. To automatically collect such annotated data, two different

data sources are needed in this work. One for multilingual text data and the second one

for audio data.

3.1.1 Text data

Before starting any major work on the data collection process, some requirements were

set for both types of data sources that will be used. The text data is the first step in the

speech data collection process. It should be available for as many different languages as

possible, because the final amount of speech data collected depends on how much text

data can be used in the first step. The text dataset for each language should not be very

small in size and the content should cover a wide variety of categories. This greatly helps

to improve the results in the audio collection step and ultimately increases the language

identification models’ accuracy.
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3.1.2 Audio and video data

For the second audio data collection step six initial requirements were also set that would

give a general goal to aim for.

• Initial subset of 8 languages

• Long term goal for 100+ languages

• For each language 100–150 hours of audio

• Maximum audio clip duration is 1 hour

• Data from different categories, speakers and recording conditions

• Metadata for each audio clip

Before doing any experiments with the data collection process and not knowing the limits

of the used methods and the quality of the collected data it was not reasonable to aim

for a very large number of languages at first. Initially a goal of eight languages was set

that is shown in Table 2. The collected data quality for these languages could be quickly

and easily evaluated by a few people and if the results were satisfactory then the larger

target of 100+ languages would be tackled next.

Table 2. Languages in the initial target set of eight languages.

Languages
English, Estonian, Russian, Urdu,

Latvian, German, Finnish, Spanish

For the amount of data collected for each language it was decided that 100–150 hours of

speech should be enough for most cases. Doing some experiments showed that the data

post-processing steps may filter out a quite large portion of the collected data, so the

100–150 hour limit was chosen with a reasonable buffer. This ensures that even after all

of the filtering steps, there is still enough data remaining for the training of the neural

networks. In reality, for some languages it was not possible to collect that much data, but

30



this is still acceptable since even less than 50 hours of data can be used for creating the

models.

After doing some experiments it was concluded that the maximum duration of an audio

clip should be limited. It was decided that one hour is a good value that works well for

the majority of languages. The reason for such limits is that the automatic data collection

process used for finding the audio data, often comes across videos that are much longer.

For example, when dealing with data that was in Estonian the Parliament meetings were

often encountered and their durations are frequently many hours long. If many of such

videos would be added to a language’s dataset then the entire dataset would be made of

only a few very long videos which is not desired.

The requirement for videos to be from many different categories, speakers and recording

conditions is also important. It helps the trained language identification models recognize

the language from different types of recordings, speakers with varying ages, speech with

specific domain content etc.

3.2 Available data sources

Nowadays, there are many different platforms available that freely distribute all kinds of

open-source media and audio-visual information. In this work, for the purpose of language

identification, audio data extracted from videos works as well as any other source. One of

the most well known and popular video sharing platforms around the world is YouTube.

To take advantage of that popularity and the vast amount of data that can be collected

from there, YouTube is an excellent choice to use for the speech data.

YouTube being a large platform with billions of videos, there needs to be an effective way

to find the required content. Of course the main part of finding the required data is the

YouTube’s search engine, but for that some form of keywords, search phrases or query

strings are needed for all of the target languages. Such search phrases can be generated

from text data by using different text mining and analysis techniques, provided that there

is a large enough text corpus for each of the target languages. Since the text datasets

have to be multilingual and also contain content about different categories, a perfect data
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source that fits such requirements is the free encyclopedia – Wikipedia. It does contain

articles about a very wide range of topics and also has multilingual versions in more than

309 languages [57]. Figure 3 shows the dataset sizes for the 10 largest Wikipedias. It

can be seen that the largest Wikipedias contain millions of articles, which is more than

enough for this work. By collecting data from Wikipedia for many different languages

a large multilingual dataset can be put together that provides us the data needed for

generating the search phrases for each of the target languages. The phrases can then be

used to find relevant content from YouTube.
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Figure 3. Top 10 languages in Wikipedia with the most articles.

As an alternative to Wikipedia, another interesting multilingual dataset that has been re-

cently released and could also potentially be used is OSCAR [55]. It is a large collection of

multilingual text corpora that have been assembled by using the CommonCrawl2 dataset,

which contains automatically collected web-crawl data. This data has been filtered and

clustered by the authors of OSCAR and is now distributed as a large collection of datasets

for many different languages.

In this thesis the OSCAR dataset was experimented with initially, but since the Wikipedia
2https://commoncrawl.org/
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resources have currently been enough and in some ways easier to work with, the potential

of OSCAR has not been utilized. One of the reasons why OSCAR is a bit harder to use

in this thesis is the fact that the data is not categorized in terms of content in any way.

There are pieces of news articles, advertisements, random website texts, etc which makes

the search phrase generation results not as good as when using data from Wikipedia. This

could potentially be solved by using different methods for generating the phrases or by

trying to automatically categorize the data. In terms of the dataset size OSCAR in many

cases has considerably more data than Wikipedia. For example, Figure 4 shows the size

differences between the 10 largest Wikipedia’s and OSCAR. In the case of English OSCAR

has more than 100 times more (1.2 TB deduplicated) data than Wikipedia. On the other

hand for some languages required in this work OSCAR did not have any available datasets

at all.
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Figure 4. Dataset size difference between Wikipedia and OSCAR.
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3.3 Collection process

Overall the data collection process can be divided into multiple steps. A diagram de-

scribing the process and steps is shown in Figure 5. First, the Wikipedia data needs to

be downloaded, then the search phrases can be generated, videos collected and finally

downloaded. The following sections describe the process in more detail.

  
Lang. 1 Lang. 2 Lang. n

 
Lang. 1 Lang. 2 Lang. n

Search phrases

search

Lang. 1 Lang. 2 Lang. n

Audio downloadsikipedia dumps

Figure 5. High level overview of the data collection process.

3.3.1 Wikipedia data

To collect the required audio data from the YouTube platform search phrases for query-

ing the videos have to be generated. For the phrases Wikipedia data is used as described

before. Luckily, Wikipedia contents are quite well distributed and readily available, there

is no need to carry out a separate web crawling process to collect data from Wikipedia

pages. The encyclopedia’s data is distributed in terms of dumps3 that are created fre-

quently (roughly once a week) by dumping the entire Wikipedia contents into compressed

eXtensible Markup Language (XML) format. The dumps provide different types of data
3https://dumps.wikimedia.org/
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to choose from: database backups, static HTML pages, analytics data, etc. For generating

the search phrases database backup dumps are the most useful, they contain Wikipedia

pages and articles.

The amount of data and articles count for each language’s Wikipedia is quite different.

For some smaller or less active communities there may be less than 1000 articles. On the

other hand larger languages have hundreds of thousands of pages and articles. For the

initial set of eight languages that were used in this work, the article counts are shown in

Table 3. After doing some experiments with the eight languages and some additional less

active or smaller languages it was decided that only languages that have more than 10

000 articles can be used the most effectively in this thesis. That is not a problem, since

out of the 307+ languages available in Wikipedia 149 of them have more than 10 000

articles. In some cases the limit of 10 000 may not be enough because in some languages

a huge amount of articles are automatically generated or translated and the contents are

about all kinds of locations or geographical information which is not suitable.

Table 3. Number of Wikipedia articles for the initial eight target languages [57].

Language Number of articles

English 6 054 821

German 2 418 874

Russian 1 612 983

Spanish 1 589 671

Finnish 482 388

Estonian 207 555

Urdu 152 736

Latvian 101 007

Data from Wikipedia was collected by creating a script that would automatically down-

load the correct Wikipedia dumps for a predefined list of languages. Then the collected

dumps would be uncompressed and converted into more easily readable and processable

JavaScript Object Notation (JSON) format. This resulted in folders of Wikipedia’s JSON

data for each of the target languages. A segment from a random article in the dumps is

35



shown in Figure 6. To make processing the data easier all of the JSON files were con-

catenated into one long file per language. Articles shorter than 3000 characters and the

ones containing just a title were filtered out. This improved the results in the next phrase

generation step.

{

"id": "291260",

"url": "https://en.wikipedia.org/wiki?curid=291260",

"title": "Underwater photography",

"text": "Underwater photography\n\nUnderwater photography is

the process of taking photographs while under water.

...

allowing for tens of new records and even new species.

\n\n\n\n"

}

Figure 6. Segment of a random article from English Wikipedia dump.

3.3.2 Search phrases

After the Wikipedia datasets for each language had been downloaded and ready to use,

the search phrases could be generated. The idea behind the phrases is that if the dataset

from English Wikipedia is taken and some text mining or analysis methods applied then

we can generate some words or phrases that are also in English. If the source dataset is in

another language then the generated phrases will also be in that other language. If some

language’s phrases are used to query the content from YouTube, then usually there is a

quite high probability that the video results (or at least the top results) are in that same

language that the search phrase was. That is just how some part of the YouTube search

engine works and how it can be utilized in this work. Such automatic data collection

process will undeniably not be 100% accurate and there will be false positive video results

that have to be dealt with.
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To generate the search phrases there are quite many approaches that could be taken.

In this work the quality of the search phrases is not too critical, therefore there is no

need to use very complex or advanced methods. The method that will be used is Term

Frequency Inverse Document Frequency (TF-IDF). TF-IDF is a well known method that

helps to evaluate how important a word in a document is. If a word occurs many times

in a document, then its relevance should be increased and it should have more value than

other words in the same document. At the same time if a word occurs many times in many

documents, then it might just be a frequent word that should not have a high relevance.

We can apply TF-IDF on each language’s Wikipedia dataset and we will get a long list

of the “most important” phrases for each of the languages.

After doing some initial experiments with the collected datasets in different languages,

it was concluded that a good and universal phrase length to use in the YouTube search

engine is three words. Using shorter phrases resulted in quite vague results that also had

very many false positives. Longer phrases on the other hand decreased the amount of

results too much or there were no results at all.

Generating the phrases or trigrams for the initial set of eight languages showed that there

is still more false positive results than is desired. In this case the false positive results

are the search phrases that are in other languages than expected or contain too many

numbers, stop-words, etc. To alleviate the main problem of the phrases being in the

wrong language an extra step was introduced to the phrase generation process, in terms

of a text based language identification model. A few available tools were experimented

with and finally the Polyglot4 Python package was chosen, which supports a wide variety

of natural language processing tasks with multilingual data and also had the best balance

between supported languages and processing speed.

The text based language identification model could be applied on the generated phrases

and all phrases whose language was unknown or not the one that was expected were

filtered out. This step removed quite many generated phrases and now the final set of

phrases that was achieved was well usable. A randomly picked sample of the generated

phrases for the initial eight test languages can be seen in Table 4.
4https://polyglot.readthedocs.io
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Table 4. Sample of the generated search phrases for the initial eight languages.

Language Random search phrase

English “the northern territory”

Estonian “ameerika ühendriikide relvajõud”

Finnish “hiileen liittynyt hydroksyyliryhmä”

German “abgesetzten enameloliden zahnkappen”

Latvian “starptautiskajā šaha turn̄ırā”

Russian “совета рабочих депутатов”

Spanish “administración del estado”

Urdu “�
	
�@Q

	
¯ Pð@ í

f
J
	
K @”

3.3.3 Searching for videos

When search phrases for the required languages were collected and filtered, the next

step would be collecting the videos from which audio could be extracted. An overview

of the process is given in Figure 7. The first task is to use the generated phrases and

find videos that match the requirements set before, without downloading them yet. A

very convenient way to access YouTube search functionality is through the YouTube

Application Programming Inteface (API)5. The problem with that approach was that the

YouTube API limits were exceeded too quickly. If the video collection process would

have been distributed over a longer period of many months then it would not have been

a problem, but it was desired to perform the task relatively quickly. Another option to

search for videos is the YouTube web interface that is exposed to all users. To use that,

another script was created that would go through the generated search phrases and try to

find videos through the search functionality on main YouTube site. This approach raised

another problem, now the request rate limits were exceeded too quickly, meaning that

too many requests were made in a short period of time. A simple solution to the problem

was to add a delay between each search query, but it turned out to not be a permanent

fix. Some other approaches were experimented with, like using proxy servers, adding
5https://developers.google.com/youtube/v3
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HyperText Transfer Protocol (HTTP) headers and pre-validated cookies, also Virtual

Private Network (VPN) servers were tried. Final approach, that seemed to work in all

occasions was to use a single non-public proxy server. This allowed to continuously search

for videos without any delay and no restrictions. In the end it seemed like there could

have been some restrictions on the particular machine or network that the requests were

initially made from, because when doing some experiments with random Virtual Private

Servers (VPS) with no proxies there were no problems also.

"search phrase n"

"search phrase (n-1)"

"search phrase (n-2)"

"search phrase (n+1)

"search phrase (n+2)"

search

Result 1

Result 3
(wrong language)

Result 2

Result 4

Result 5
(too long duration)

Figure 7. Overview of the process of searching for videos.

Overcoming the obstacles on the technical side enabled to start the real video collection

process. All of the previously generated phrases were used one by one to find matching

videos. Even though the phrases were heavily processed and filtered this still resulted

in many false positive video results. In this case the search phrase was in the expected

language but the videos were in another. In rare cases even the video title would be in the

expected language but the content would not. To decrease the number of false positive

video results it was decided that the same text based language identification model could

be re-applied in this step. Now it would be applied on each of the video results. The

model could be applied on the title, description (which usually reflects the video content

and language most closely) and other metadata if available. After doing a search with a

phrase the top n results would be fed through the language identification model and all
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results with unknown or not expected language were filtered out, similarly to the search

phrase generation process before. This decreased the amount of false positive results

noticeably. Overall the process of searching for videos was the most time consuming. For

the initial target set of eight languages, collecting the required amount of video id’s took a

few days. In later stages, when a dataset of 107 languages was collected then the process

took many weeks of continuous searching.

3.3.4 Downloading audio

In the previous step videos were not yet downloaded. The id’s of suitable videos were

stored to be used in this step. This allowed to separate the time-wise long task of searching

for videos and also to run the two tasks simultaneously if needed. Now valid video id’s were

processed and videos downloaded, audio extracted and saved into datasets. In addition to

the extracted audio also video metadata was downloaded and stored. In the downloading

process the youtube-dl6 tool was used.

3.4 Collected data

As described before an initial set of eight languages was first used to experiment with the

process. An overview of data collected for the eight initial target languages is shown in

Table 5.
6https://github.com/ytdl-org/youtube-dl

40



Table 5. Overview of the dataset that contains the initial eight languages.

Language Number of files Duration (h) Size (GB)

English 759 180.5 19.4

Estonian 561 150.3 16.1

Finnish 573 122.0 13.1

German 516 136.0 14.6

Latvian 686 100.0 16.2

Russian 581 181.0 19.4

Spanish 479 131.0 14.0

Urdu 709 138.5 14.9

In later stages data was collected in total for 107 languages. The full list of languages in

the final dataset and the data properties are shown in the table in Appendix 2. In total

audio was collected from close to 78 thousand videos, resulting in a dataset with a size of

over 1 terabyte and 14 044 hours of audio content.

When looking at the video categories in the large dataset of 107 languages in Figure 8. It

can be seen that there is data from many different topics. The category with the highest

number of videos (“People & Blogs”) could actually have subcategories of it’s own, because

the contents of such videos have a wide range of topics.

41



Autos & Vehicle
s
Comedy

Education

Entertainment

Film & Animation
Gaming

Howto & Style
Music

News & Politic
s

Nonprofits 
& Activ

ism

People & Blogs

Pets &
 Animals

Science & Technology
Sports

Travel & Events

Category

0

5000

10000

15000

20000

25000
Nu

m
be

r o
f v

id
eo

s

Figure 8. Video category distribution for the large collected dataset of 107 languages.

All of the collected videos have a maximum duration of one hour. When looking at all the

durations in Figure 9 it can be seen that the majority of the dataset consist of relatively

short clips between 1–10 minutes. This is actually good, because then there are many

clips with different speakers, acoustic conditions, topics, etc, as the requirements asked

for.
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Figure 9. Video durations in the large collected dataset of 107 languages.

3.5 Audio processing

After downloading the audio datasets, two main steps were remaining. Firstly, the down-

loaded audio files need to be processed. Secondly, a validation experiment needs to be

carried out. Audio extracted from YouTube comes in various different formats like opus,

m4a, ogg. It is much simpler to deal with the data if every audio file is in same format

with similar properties. To accomplish that, all of the audio files were converted into

single channel 16k bit rate WAV files which can also be directly used by the language

identification models in next steps.

All of the filtering that was done during data collection process removed most of the

audio files with inappropriate content, but still some audios remained that contain only

music, non-speech content or just silence and that should not be in the dataset. Also

audio files with a maximum duration of one hour are quite long to use in the validation

and model building step and should be segmented into shorter pieces. To solve both of

these problems, speaker diarization process was applied on the dataset by using the LIUM
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SpkDiarization tool [45]. The process partitions all of the audio files into shorter segments

with a maximum duration of 20 seconds, grouped by the speaker identity. As much of

the music and non-speech or silent parts as possible will be removed. Figure 10 shows

the distribution of segmented audio clips in terms of their length in seconds. There are

a few short segments with a duration of 2-3 seconds and the majority of the clips have a

duration between 4 to 10 seconds.
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Figure 10. Audio clip lengths after speaker diarization and segmentation.
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4 Data validation

As seen from the previous sections, data collected by using an almost automatic pipeline

for many different languages inevitably contains false positive results. Even if many

filtering steps have been applied during the process. To use such collected datasets it is

important to first validate them. Validation means that a small subset of collected audio

clips is processed by a human and a true label indicating the spoken language in the clip

is attached to each of them. Validation results can then be used for multiple purposes.

First, we can get an overview of “label quality” in the collected data. Meaning that if

the expected labels from the automatic data collection process match the true labels

given by real people then dataset labels are accurate and there are no false positives or

true negatives. Secondly, by using validated audio clips, a separate dataset can be built

that contains only validated audio clips and can be used for development and validation

when training the neural networks. The final language identification models can also be

evaluated on such human annotated datasets.

Validation part was carried out in two stages. After collecting data for the initial eight

target languages they were validated by a small group of people. Later, after data for a

larger collection of 107 languages had been acquired, they were also added to the validation

process and more people were offered the opportunity to participate in the validation

process.

4.1 Validation application

To conduct the data validation experiment a custom web application was built that would

allow to share the validation task to a wide group of people who could have skills in

different languages. The application was built with Python and Flask7 framework as the

backend. On frontend Vue.js8 was used. Since the application logic is not very complex

and there is not too much data that needs to be stored, all of the validation results and

other information was stored in a SQLite database.
7https://flask.palletsprojects.com/
8https://vuejs.org/
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People who were willing to contribute some time to the validation process could sign in

through their Google accounts. Authentication was added to reduce the possibility of

luring in spammers and other misbehaving persons. A list of all collected languages was

displayed to the users and they could pick a language to validate. Before starting work on

a language for the first time users’ language proficiency on a scale of 1-5 was also asked.

One representing users with no skill at all in the language and five for native speakers.

This data could be used later to filter or group the validated audio clips if needed. After

selecting a language to validate a random selection of 10 audio clips was given to the user

to work on as shown in Figure 11. If possible, then some of the 10 clips were selected

from ones that had already been annotated once by another user. This would also allow

to filter out some unexpected results later.

The expected process was for the user to listen to an audio clip with a maximum length

of 20 seconds and then choose one of the following labels:

� Is <given language>

� Is not <given language>

� No speech

� Do not know

The <given language> part in the first two answers would be replaced by the expected

language name. The “No speech” option was needed because even after the speaker

diarization process and other filtering steps there still exists data that does not contain

speech. In some clips it is really hard to differentiate the spoken language or in some

cases there are multiple languages spoken simultaneously. That is why the final “Do not

know ” option was also needed.
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Figure 11. Screenshot of the main validating page in the audio validating application.

4.2 Validation results

During validation process people validated audio clips in 50 languages out of the total 107

available. 14 178 unique audio segments were processed which results in 18 560 labels for

the entire dataset. All 50 validated languages and their general validation information is

shown in a table in Appendix 3. For some languages only a few audio clips were validated

and that is currently not enough to be effectively used. Out of the 50 validated languages

for 31 more than 50 labels were collected (50 to 3810). These 31 languages are shown

in Figure 12. In terms of validation result counts top five most validated languages were

Estonian, Armenian, English, German and Finnish. They make up about 50% of the

validated segments.
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Figure 12. Number of validation results for languages with more than 50 results.

Validation process started initially in November 2019 and the final results in this work

reflect the state of April 2020. As can be seen from Figure 13 most of the validation

results were collected in the first days in November and secondly when the validation

application was distributed more widely in February 2020.
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Figure 13. Number of validation results per date.

As validating users were asked for their proficiency in the language that they were anno-

tating it is good to see on Figure 14 that actually the highest percentage of users validating

the clips speak the language at hand naively.

70.5%

19.1%

6.5%
3.7%0.2%

Native language
Speak the language
Usually recognize the language
If the speech is clear then recognize the language
Do not recognize at all

Figure 14. Validation results grouped by the validator’s language proficiency.
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One of the most valuable and interesting results from the validation process is how many

of the collected videos from YouTube with their expected label actually have the correct

label. For all 50 validated languages the results on label quality are shown in Appendix 3.

For the 31 languages with a considerable amount of data the results are shown in Figure

15.
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Figure 15. Validation results distribution in terms of expected and not expected language label.

In the previous figure all of the answers given by the annotators that were not “Expected

language” were considered as the orange part of the bar. In reality a lot of the “Not

expected language” data is made up by segments that were labeled to not contain speech

as seen in Figure 16. This could possibly be improved on by applying more strict prepro-

cessing. If not considering the no speech part as false then the expected label percentages

are much higher.
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Figure 16. Validation results grouped by answers and languages.

For all languages, on average the percentage of data with the expected label is 85.3%. If

not counting the no speech portion which could be improved on then the given language

percentage is over 92% as in Figure 17.

Given language
85.3%

No speech
7.5% Not given language5.8% Do not know1.4%

Given language 92.8%

Not given language5.8% Do not know1.4%

Figure 17. Validation results grouped by answers. In the left pie plot all four possible answers are shown

with their percentages. In the right figure the “no speech” answer has been ignored, since it can be

improved on.

Overall the validation process was successful. Thousands of labels were given to the au-

dio clips, which can be used for filtering the data and building the models. As a future
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improvement to get more validation results, the validation tasks could be distributed

to platforms like Amazon Mechanical Turk9 or Figure-Eight (Appen)10. This would re-

quire some financial investments, but the validated dataset sizes could be considerably

increased.

9https://www.mturk.com/
10https://appen.com/
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5 Language identification models

This section describes the spoken language identification models, built on the YouTube

datasets and gives an overview of the tools and frameworks that were used in the process.

5.1 Tools

The tools used for building the language identification models are based on Python pro-

gramming language. The main component used for neural networks is the popular ma-

chine learning framework Pytorch [34]. Around that a wrapper called Pytorch-Lightning

[13] has been used that simplifies and speeds up the process of building the models by

abstracting away parts of code that need to always be present in the training cycle and

decoupling science code from engineering. A tool that is also well integrated with the

Pytorch Lightning package is Tensorboard. It has also been very useful during the model

training process to visualise the model performance and other metrics. The work of train-

ing the models itself was performed on TalTech’s server with GPU availability, which

made the process of dealing with computationally heavy tasks and a lot of data much

easier. The grid engine features available on the server were often used to perform large

computations without disrupting others’ work.

5.2 Model architecture

The deep neural network models for language identification are trained on the datasets

collected in previous steps from YouTube. The datasets have been divided into training

and validation sets. Validation sets contain most of the validated data which is known

to have true labels. Model implementations are based on Tanel Alumäe’s work, that the

author of this thesis has contributed to and modified to experiment with noise adaption

methods and other improvement techniques.

The language identification model’s architecture is based on the x-vector approach de-

scribed in Section 2.6. There are four main blocks of layers. Firstly, the input and feature
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extraction layers, that take raw audio as WAV files, convert it into numerical form, cal-

culate the mel spectrograms and perform some other data transformations. Secondly, the

pre-pooling component that contains convolutional layers, batch normalization and Rec-

tified Linear Unit (ReLU) units. Then a statistical pooling layer and lastly a post-pooling

group with linear layers, more batch normalization, ReLUs and a final softmax output

layer. The x-vectors can be extracted from the last block of layers if needed. For some

models, that were experimented with in this work, some additional layers were added that

were expected to increase the performance.

Other parameters for the models that were used in this work were mostly similar. The

Adam optimizer was used to update the weights during training. A relatively small

learning rate of 0.0001 to 0.0005 was used depending on the model size. The input data

was augmented with speed perturbation, noise and reverberation.

5.3 Noise robust loss functions

When training with the automatically collected YouTube data there may be noisy labels

in the data. Some loss functions used in neural networks are somewhat robust to label

noise, meaning that even if some percentage of the training data has false labels then

the loss function itself is able to account for that (to some extent) and therefore improve

the overall accuracy of the model. The following subsections describe some of such loss

functions that were experimented with in this work. The results achieved with these losses

are described in Section 6.2.

5.3.1 Soft bootstrapping loss

Soft bootstrapping loss (Lsoft) has initially been proposed in [40] for the computer vision

and image recognition domain. It has then been successfully used in the audio domain

by [14] and [49]. The loss function dynamically updates target labels based on the state

of the model. The main goal is to pay more attention to the model predictions, which

should be more reliable as the learning continues and less attention to the noisy labels.

The loss function is shown in Equation 5
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Lsoft = −
K∑
k=1

[βyk + (1− β)ŷk] log ŷk, β ∈ [0, 1] (5)

where β is the parameter used to assign the weight of each component in the total loss, yk

is the k-th element of the target label, ŷk is the k-th element of the network predictions

and K is the total number of classes. The value of β used in this work is 0.3.

5.3.2 Lq loss

The Lq loss is a combination of the CCE and Mean Absolute Error (MAE) losses intro-

duced in [62]. By following [14] it can be written as

Lq =
1− (

∑K
k=1 ykŷk)

q

q
, q ∈ [0, 1] (6)

By using a generalized combination of the two losses a better robustness to noise should

be possible. CCE itself assigns less importance to the predictions that differ much from

the target labels, which should increase the noise robustness. On the other hand MAE

weighs all predictions equally, which should make it robust against false labels. The value

of q in this work is 0.7.

5.3.3 Batchwise loss masking

Another approach to minimize the loss caused by noisy labels is the use of loss masking.

The used method is based on [20]. By summing together the cross entropy losses for single

data points in a minibatch, we get the conventional loss for a minibatch

L =
∑
n

∑
c

tn,c log(yn, c) (7)

where t is the vector of true labels and y is the vector of network predictions.

Since some of the collected data has been validated and hand annotated we can treat

these data samples as correctly labelled. All of the other data might contain false labels
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and can be partially ignored. Now the loss function can be customized to take advantage

of this knowledge

∑
n

mn

∑
c

tn,c log(yn, c) (8)

where mn is now 1 if the n-th data point is validated and correct and otherwise 0.

The authors of [20] proposed two conditions that should be evaluated when deciding the

value for m. If the data is verified then it is a true label, otherwise if some data has very

high loss in the model then it can be considered an outlier with potentially false label

mn =

1 if vn = 1 or Cn < µ

0 otherwise
(9)

where vn shows if the n-th data is validated or not. µ is used as µ = α×max
n

Cn and the

value for α is 0.8.

In this work this final loss function was partially modified, by following [19] and ignoring

the top n data samples in a batch with the highest loss values, rather than setting a

threshold value. This also means that some of the potentially noisy data is ignored

during training. The value used for n in this work was 10. Increasing the amount of

masked elements started to degrade the network accuracy. Less ignored batches showed

no difference when compared to the baseline model.

5.3.4 Additive angular margin loss

A loss function called Additive Angular Margin (AAM) loss that has initially been de-

veloped for face recognition [11] (called ArcFace) and has then been adapted to speaker

recognition [2] has shown promising results and outperforming many other methods. In

current thesis this loss function has been used for language identification purposes. The

additive angular margin loss has been created by modifying the regular softmax loss and

can be seen in more detail in [58].
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In this work AAM loss was used in conjunction with NLL loss from the baseline model.

The model was trained for 10–15 epochs with NLL loss and then the loss function was

switched to AAM. With the initial 10–15 epochs the model was able to gain almost the

maximum accuracy that can be achived with NLL loss. Then for the following epochs it

could be tuned further by using the additive angular margin loss.
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6 Results and validation

This section gives an overview of the results that were achieved with the language iden-

tification models built on YouTube data. A baseline model is described and results from

models with different noise robust loss functions are shown. Model performance on val-

idation data is also provided. Most of the results are from models trained on a smaller

subset of languages but one of the sections shows the results from a large 107 language

identification model. In the end validation results on two other datasets are also shown.

6.1 Baseline model

Most of the development of language identification models was done on a smaller subset

of languages, initially eight and later ten. In the end the languages used in this smaller

collection were the ones that had the most validation results or that just were generally

important. In the 10 language subset were: Estonian, English, Finnish, Russian, Arabic,

German, Latvian, Swedish, French and Spanish. Since training the language identification

models takes a long time, the development process is much more easier and rapid if there

are less languages to work with.

The main model for ten languages was trained with the Negative Log Likelihood (NLL)

loss as a baseline. This model trained in total for 43 epochs, which took about 7 hours.

The best accuracy of 95.49% was achieved after the 33rd epoch, as seen in Figure 18.
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Figure 18. Validation loss and accuracy for the baseline 10 language model (trained with NLL loss).

The confusion matrix for the same model, in Figure 19 shows that Arabic, Spanish and

Swedish are the languages with the highest accuracies, where all of the validation data

points used as inputs have been predicted correctly. English has the worst performance

with an accuracy of 0.9. Also the Finnish language is predicted on 7% of the times as

Latvian which is quite interesting. For humans these last two languages do not sound too

similar, but for the model the confusion rate is higher than for other languages.
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Figure 19. Confusion matrix for the baseline 10 language model (trained with NLL loss).

Figure 20 shows the model accuracy when the speech segments used as inputs have been

grouped by their lengths (rounded to the nearest second) from 2 to 20 seconds. The

results are quite as expected, the longer the input audio sequence is the more accurate

the network prediction is. Dealing with really short utterance language detection is a

research topic on its own.

The average prediction accuracy of 80% for the really short clips with a duration of only

two seconds is actually quite good. Also the clips with a duration of three seconds seem

to performing well, compared to the audios with a duration that is a few seconds longer.
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Figure 20. Language identification model accuracies grouped by the input segment durations.

6.2 Models with noise robust loss functions

In this section the experiment results for the models that use the different loss functions

shown earlier are described and compared with the baseline model.

6.2.1 Soft bootstrapping loss

The first model was trained with the soft boostrapping (Lsoft) loss. The training cycle

ended after 76 epochs and the best accuracy of 97.05% was achieved after the 75-th epoch

as shown in Figure 21. Training process took in total about 9 hours. This model had the

best overall accuracy out of all the loss functions that were experimented with. Compared

with the baseline model, the prediction accuracy increased by 1.56%.
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Figure 21. Validation loss and accuracy for the 10 language model that was trained with Lsoft loss.

The same model’s confusion matrix in Figure 22 shows that the top three languages,

with the highest accuracies are again Arabic, Spanish and Swedish. The overall accuracy

for all of the languages has improved, when comparing to the baseline model. The least

performing language is Finnish again with an accuracy of 84%. With this model, Finnish

is being wrongly classified as Latvian and Russian.
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Figure 22. Confusion matrix for the 10 language model, trained with Lsoft loss.

6.2.2 Lq loss

Identification model trained with the Lq loss had no real improvements. It was trained

for 35 epochs and a best accuracy of 95.49% was achieved, which is same as the baseline

model. Figures 23 and 24 show the validation accuracy, loss and confusion matrix for this

model.
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Figure 23. Validation loss and accuracy for the 10 language model that was trained with Lq loss.
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Figure 24. Confusion matrix for the 10 language model, trained with Lq loss.
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6.2.3 Batchwise loss masking

A model with the batchwise loss masking approach was trained for 51 epochs and had a

best accuracy of 96.31%. The used method was quite simple, but the results shown in

Figure 25 were better than the baseline model.
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Figure 25. Validation loss and accuracy for the 10 language model that was trained with the batchwise

loss masking approach.

For this model, the confusion matrix in Figure 26 shows that the accuracy for the Finnish

language that had quite bad performance in the previous models, has actually grown.
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Figure 26. Confusion matrix for the 10 language model, trained with the batchwise loss masking approach.

6.2.4 AAM loss

In terms of validation accuracy the AAM loss performed the worse with an accuracy of

94.83%, as in Figure 27.
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Figure 27. Validation accuracy for the 10 language model that was trained with the AAM loss.

6.2.5 Conclusion on the noise robust losses

Overall the use of noise robust loss functions helps to increase the network accuracy by a

few percentage points. For evaluating and comparing the different loss functions also the

Detection Error Tradeoff (DET) [29] curves were calculated in Figure 28. The DET curves

display the false negative rate vs the false positive rate, while giving uniform treatment

to both types of error. As seen from the figure, most of the noise robust loss functions

improve the overall results of the models. The baseline model with the NLL loss is initially

performing the worst. According to this figure the Lq loss is performing quite well, but it

also has a slight curve when the false positive rate is around 40 percent.
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Figure 28. DET curve for five models that use different noise robust loss functions.

6.3 Identification model for 107 languages

Since the YouTube data had been collected for 107 languages, the last large step was

to train a model on the entire dataset. Training the 107 language model took almost

10 days. As shown in Figure 29, a best accuracy of 91.11% was achieved after the 28th

epoch. For a model this size that is able to distinguish between 107 input languages this

is quite good.
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Figure 29. Validation accuracy and loss for the 107 language model.

6.4 Validation on other datasets

With the help and contributions from Tanel Alumäe it was possible to get the model

evaluation results on KALAKA-3 and the proprietary LRE07 dataset. KALAKA-3 was

described in Section 2.1.2 and contains training data from TV broadcasts and tuning and

testing data from YouTube. LRE07 [17] is a dataset created by the National Institute

of Standards and Technology (NIST) for the purpose of language recognition evaluation

and contains telephone speech data.

6.4.1 KALAKA-3

The KALAKA-3 dataset has four different evaluation sets Plenty-Closed (PC), Plenty-

Open (PO), Empty-Closed (EC) and Empty-Open (EO). The PC and PO cover classi-

fication for six languages (Basque, Catalan, English, Galician, Portugese and Spanish).

The EC and EO sets handle classification for four languages (German, Greek, French,

Italian).

For KALAKA-3 a 21 language model was used that was trained on a subset of the 107

language data covering all of the KALAKA-3 development and evaluation data. For the

first model the final logistic regression classifiers were trained on the x-vectors extracted
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from our own language data. In the second approach KALAKA-3 development data was

used. Table 6 shows the evaluation results using KALAKA-3 official evaluation metric Fact

and EER. The baseline is a fusion of multiple i-vector and phonotactic systems reported

in [43]. In the four language tasks (EC and EO) our systems have quite similar scores.

For the PC and PO tasks using the official KALAKA-3 development data has better

results, probably because the automatically collected data that is in our datasets has a

high confusion rate between Catalan, Spanish and other similar languages.

Table 6. Results on KALAKA-3 dataset in terms of Fact/EER (lower is better).

Training data PC PO EC EO

Baseline [43] 0.079/5.74 0.115/6.67 0.104/6.16 0.169/6.96

Our x-vectors (our dev. data) 0.124/7.23 0.150/8.32 0.028/0.32 0.083/3.08

Our x-vectors (KALAKA-3 dev. data) 0.055/4.36 0.083/5.95 0.033/0.32 0.059/3.68

6.4.2 LRE07

The LRE07 dataset contains 26 language and dialect categories that are used as detection

targets [17]. As mentioned before, the LRE dataset contains telephone speech, which has

completely different domain when compared to the YouTube audio data collected in this

work. Table 7 shows the results between different systems that are evaluated on the LRE

dataset. The first one is the model from this work that uses the x-vector approach and is

trained on the automatically collected YouTube data.

Comparing the system from this work, that was trained on the collected YouTube data

with some older systems that used to be state-of-the-art before i-vectors and x-vectors,

then it can be seen that our work outperforms them in all cases.

When looking at the difference between our system and the i-vector systems [47] with

in-domain data, then our system has better results in terms of the Cavg metric and the

EER values are similar.

Other newer systems [25], [8] that use similar models and in-domain data perform better

as can be expected from the in-domain and out-domain data difference.

70



Table 7. Results from different systems on the LRE07 dataset.

System 3 sec 10 sec 30 sec Average

Current model (YouTube data) Cavg EER (%) Cavg EER (%) Cavg EER (%) Cavg EER (%)

x-vector DNN 14.46 30.31 5.89 14.18 2.62 7.65 7.65 17.38

Old state-of-the-art (in-domain data) [30] Cavg EER (%) Cavg EER (%) Cavg EER (%) Cavg EER (%)

GMM256-MMI 18.43 - 8.61 - 4.15 - 10.40 -

GMM256-MMI-chcf 20.98 - 9.81 - 3.73 - 11.51 -

GMM2048-eigchan 17.14 - 7.38 - 2.76 - 9.09 -

GMM512-SVM 20.14 - 8.77 - 3.80 - 10.90 -

I-vector systems (in-domain data) [47] Cavg EER (%) Cavg EER (%) Cavg EER (%) Cavg EER (%)

i-vector DNN 19.67 31.43 7.84 12.38 3.31 4.73 10.27 16.18

Modern systems (in-domain data) [25], [8] Cavg EER (%) Cavg EER (%) Cavg EER (%) Cavg EER (%)

CNN-SAP 8.59 9.89 2.49 4.27 1.09 2.38 4.06 5.51

CNN-LDE 8.25 7.75 2.61 2.31 1.13 0.96 4.00 3.67

DNN PPP features 8.99 6.90 2.20 1.43 0.61 0.32 3.93 2.88

6.5 Demo application

The trained spoken language identification models are quite interesting to experiment

with, in terms of feeding random audio clips through them and looking at the predictions.

To demonstrate the x-vector based models, trained on YouTube data in a more production

like real environment and to make using them with simple test inputs easier, a demo

application was built, shown in Figure 30. The application has two parts - a language

identification API that can be used by different clients and a demo client that provides a

web user interface for the same API.
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Figure 30. A screenshot of the demo application for spoken language identification.

On the backend side the previously trained identification model is loaded from its best

and final checkpoint and used in evaluation mode. The input to the service can be an

audio file, which is then fed through the identification model and a prediction is made

about the spoken language. The model is kept in application’s memory and therefore the

prediction speed is quite fast.

In the demo client users can upload a local audio clip or create a recording using their

microphone. Then the input is processed and top five identified languages with their

confidence scores are returned. Also an attempt was made on visualizing the input audio’s

attention. That being the most important parts of the audio clip that have the most effect

when making the decision between the spoken languages.
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7 Discussion and future work

In this work the experiments with using automatically collected web data, like the audio

from YouTube videos for building spoken language identification models proved to be

successful. There were two main problems that had to be dealt with. First, the task of

developing a pipeline for collecting such datasets without many falsely labeled audio clips.

Secondly, the use of such data to build the identification models that would work well on

the partially noisy data.

The main advantage of using such automatically collected datasets is that they are quite

easily reproducible, free and can have more languages than any of the already existing

ones. The datasets in this work are in some ways indefinitely scalable, as long as there

is enough content on YouTube. The predefined number of 100–150 hours of audio per

language, that was used in this work, could be increased for most of the collected lan-

guages. Currently, data was collected for 107 languages, but this number can also be

increased to some extent. For low resource languages the methods do not work as well

as for languages with plenty of content on YouTube. Dataset collection for these smaller

languages requires changes in the collection pipeline.

One of the main takeways from the work is that the quality of the collected data is very

important when creating the identification models. The less falsely labeled data there

is the higher the final model accuracies hopefully will be. If the initial data collection

process could be improved further in such a way that even more of the false positive

results would be filtered out then that would only be beneficial to the entire task. More

heavier filtering could be applied in the speaker diarization step to remove the non-speech

audio segments some of which were problematic in this work. This would increase the

data label quality noticeably over the 92% achieved in this work.

The identification models were trained for 10 and 107 languages. Both of these models

work well for the identification task when the input speech is clear and from native

speakers. However the model’s performance degrades when it is applied on non-native

accented speech. In reality it is not possible to collect training datasets for all language

and accent combinations, so extending the training datasets is not possible to improve the
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performance in that area. The solution to identifying the spoken language from accented

speech is a research topic on its own, that probably requires a completely different and

unique approach to be applied in conjunction with the current models.

In the real world when such identification models are used in practise there usually is a set

of target languages which are known to be in the input data that needs to be analyzed.

This means that smaller and more specific models can be created for the task at hand,

which should increase the performance. If it is known that the data that needs to be

analyzed can contain only three possible languages then there is no need to deploy a 107

language model which probably has lower accuracies.

74



8 Conclusion

The goal in this thesis was to use audio data extracted from open source media like

YouTube for the purpose of building spoken language identification models. The task

required two problems to be solved. First, the speech datasets for many different languages

had to be collected. For that a data collection pipeline had to be developed that would

find the required content from the internet and also filter out as many of the data that

does not fit the predefined requirements. Secondly, the automatically collected datasets

had to be used in the language identification models, while taking into account the noisy

properties of such web data.

In the data collection stage Wikipedia and YouTube were used as the multilingual data

sources. Wikipedia dumps were used to generate the search phrases that could be used

to find the required content from the YouTube platform. Using automatically collected

data without knowing its exact contents inevitably leads to falsely labelled elements in the

datasets. To filter out such problematic data a text based language identification model

was introduced to the data collection step. The models could be applied on the search

phrases and later the video results, which produces much cleaner datasets. Finally as a

result of the data collection process a dataset for 107 languages was acquired, resulting

in 14 044 hours of audio content.

Since the quality of the data in the automatically collected datasets is quite unknown

a separate validation experiment was carried out. For that a custom web application

was built that allowed to distribute the work to different people, who could then listen

to random audio clips in the collected datasets and assign true language labels to each

clip. The results from the validation process had two important outcomes. Firstly, they

showed that the average “label accuracy” for the collected data is between 85-92% which

is quite good. Secondly, by using the validation data, separate datasets could be created

that were used for the validation steps when evaluating the identification models.

The spoken language identification models themselves were built by following the state-

of-the-art approach of using the x-vectors. The collected YouTube audios were used for

training the models. To account for the label noise in the web data different noise robust
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loss functions were experimented with.

The accuracy for the baseline model, that was able to identify 10 different languages was

95.49%, which is close to other identification models that have been trained on entirely

validated datasets created for the exact purpose of language identification. A model able

to identify 107 languages achieved an accuracy of 91.11% which is also quite impressive

if taking into account the number of identifiable languages. The use of noise robust loss

functions increased the models’ accuracies by a few percentage points. On other datasets

our model, that was trained on YouTube data, had similar or better results than older

state-of-the-art and i-vector models that were trained on in-domain data. Current state-

of-the-art models trained on in-domain data outperformed our model as expected from

the data domain difference.

Overall the use of YouTube audios for many different languages for the task of language

identification proved to be successful. Identification accuracies were close to other results,

that used specifically created datasets and in-domain data. The large dataset collected

for the purpose of spoken language identification can be used in future work and could

also be useful to others who need to solve the same task. In terms of future work, the

models could be improved in areas like recognizing the language from accented speech,

distinguishing between similar languages and short input utterance identification. All of

which can be research topics on their own.
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Appendix 1 – Code for the work

The code written for most of the tasks in this thesis can be seen on GitHub.

Data collection scripts: https://github.com/jorgenvvv/youtube-lid-data

Audio validation application: https://github.com/jorgenvvv/audio_validator

Baseline spoken language identification model: https://github.com/jorgenvvv/lang-id-model

Language identification demo API: https://github.com/jorgenvvv/lang-id-server

Language identification demo client: https://github.com/jorgenvvv/lang-id-client
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Appendix 2 – Collected data

Table 8. Parameters of the audio data collected for 107 languages.

# Language Number of files Duration (h) Size (GB)

1 Abkhazian 176 13.27 1.42

2 Afrikaans 895 132.73 14.24

3 Albanian 676 85.26 9.15

4 Amharic 380 91.95 9.87

5 Arabic 698 100.72 10.81

6 Armenian 768 107.61 11.55

7 Assamese 2478 188.43 20.22

8 Azerbaijani 718 79.80 8.56

9 Bashkir 910 79.03 8.48

10 Basque 585 41.38 4.44

11 Belarusian 1190 172.15 18.47

12 Bengali 697 69.14 7.42

13 Bosnian 809 143.91 15.44

14 Breton 870 62.74 6.73

15 Bulgarian 400 62.25 6.68

16 Burmese 874 51.44 5.52

17 Cambodian 516 46.55 5.00

18 Catalan 1383 125.47 13.46

19 Cebuano 135 7.76 0.83

20 Chinese 381 57.68 6.19

21 Croatian 910 158.53 17.01

22 Czech 537 82.85 8.89

23 Danish 507 56.81 6.10

24 Dutch 621 68.28 7.33

25 English 759 180.49 19.37

26 Esperanto 113 12.09 1.30

27 Estonian 561 150.26 16.12
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# Language Number of files Duration (h) Size (GB)

28 Faroese 936 87.74 9.41

29 Finnish 573 122.03 13.09

30 French 681 113.48 12.18

31 Galician 951 103.17 11.07

32 Georgian 756 110.42 11.85

33 German 516 135.93 14.59

34 Greek 672 85.36 9.16

35 Guarani 87 3.00 0.32

36 Gujarati 783 60.76 6.52

37 Haitian 741 108.82 11.68

38 Hausa 883 110.20 11.82

39 Hawaiian 260 19.27 2.07

40 Hebrew 857 114.06 12.24

41 Hindi 962 105.95 11.37

42 Hungarian 585 88.52 9.50

43 Icelandic 1455 132.86 14.26

44 Indonesian 650 55.04 5.91

45 Interlingua 45 3.68 0.39

46 Italian 627 76.96 8.26

47 Japanese 820 79.96 8.58

48 Javanese 956 70.53 7.57

49 Kannada 790 62.90 6.75

50 Kazakh 920 91.51 9.82

51 Korean 680 92.31 9.91

52 Laotian 796 53.84 5.78

53 Latin 862 91.83 9.85

54 Latvian 686 100.04 16.20

55 Lingala 481 106.75 11.46

56 Lithuanian 602 99.78 10.71

57 Luxembourgish 829 92.19 9.89
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# Language Number of files Duration (h) Size (GB)

58 Macedonian 1191 143.05 15.35

59 Malagasy 1013 131.10 14.07

60 Malay 1520 119.78 12.85

61 Malayalam 629 58.21 6.25

62 Maltese 1273 78.06 8.38

63 Manx 109 5.36 0.58

64 Maori 652 44.90 4.82

65 Marathi 1160 102.68 11.02

66 Mongolian 566 87.98 9.44

67 Nepali 460 83.72 8.98

68 Norwegian 1228 149.28 16.02

69 Norwegian Nynorsk 1096 89.57 9.61

70 Occitan 333 26.99 2.90

71 Panjabi / Punjabi 481 65.79 7.06

72 Pashto 726 55.99 6.01

73 Persian 584 96.81 10.39

74 Polish 706 95.15 10.21

75 Portuguese 697 77.35 8.30

76 Romanian 547 78.81 8.46

77 Russian 581 181.03 19.43

78 Sanskrit 164 25.69 2.76

79 Scots 71 4.49 0.48

80 Serbian 322 73.15 7.85

81 Shona 484 37.41 4.01

82 Sindhi 1386 105.00 11.27

83 Sinhalese 648 84.94 9.11

84 Slovak 428 55.94 6.00

85 Slovenian 1197 155.73 16.71

86 Somalia 807 120.98 12.98

87 Spanish 479 130.08 13.96
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# Language Number of files Duration (h) Size (GB)

88 Sundanese 1140 87.28 9.37

89 Swahili 588 75.18 8.07

90 Swedish 481 68.95 7.40

91 Tagalog / Filipino 1134 119.56 12.83

92 Tajik 762 76.99 8.26

93 Tamil 531 64.15 6.88

94 Tatar 1379 128.89 13.83

95 Telugu 1033 99.42 10.67

96 Thai 686 78.17 8.39

97 Tibetan 550 117.24 12.58

98 Turkish 727 89.77 9.63

99 Turkmen 928 98.29 10.55

100 Ukrainian 550 72.68 7.80

101 Urdu 709 138.51 14.86

102 Uzbek 368 54.63 5.86

103 Vietnamese 573 81.80 8.78

104 Waray 319 14.70 1.58

105 Welsh 1501 100.26 10.76

106 Yiddish 573 62.44 6.70

107 Yoruba 547 107.25 11.51

Total 77 606 14 044.60 1004.38
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Appendix 3 – Data validation results

Table 9. Data validation results.

Language Given Not given No Do not Total Label

language language speech know accuracy

Estonian 3266 336 178 30 3810 85.7%

Armenian 1895 43 89 3 2030 93.3%

English 1021 83 112 4 1220 83.7%

German 1073 23 95 9 1200 89.4%

Finnish 997 70 100 3 1170 85.2%

Arabic 955 41 98 26 1120 85.3%

Russian 1000 14 55 1 1070 93.5%

Dutch 618 57 72 23 770 80.3%

French 548 12 36 24 620 88.4%

Latvian 489 24 88 9 610 80.2%

Swedish 480 19 54 17 570 84.2%

Urdu 339 127 44 0 510 66.5%

Persian 394 33 18 5 450 87.6%

Spanish 340 5 42 3 390 87.2%

Chinese 284 12 12 2 310 91.6%

Danish 244 8 34 14 300 81.3%

Turkish 211 3 22 4 240 87.9%

Norwegian 151 11 28 10 200 75.5%

Azerbaijani 163 8 7 2 180 90.6%

Slovenian 127 12 28 3 170 74.7%

Ukrainian 115 20 33 2 170 67.6%

Serbian 118 19 17 6 160 73.8%

Japanese 121 5 21 3 150 80.7%

Icelandic 110 9 15 6 140 78.6%

Italian 115 1 11 3 130 88.5%

Lithuanian 112 8 8 2 130 86.2%
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Language Given Not given No Do not Total Label

language language speech know accuracy

Slovak 66 26 12 6 110 60.0%

Pashto 96 13 1 0 110 87.3%

Afrikaans 61 6 3 0 70 87.1%

Hindi 54 4 2 0 60 90.0%

Yiddish 32 5 13 0 50 64.0%

Telugu 36 1 2 1 40 90.0%

Norwegian Nynorsk 16 6 5 3 30 53.3%

Hungarian 23 0 7 0 30 76.7%

Macedonian 19 0 0 1 20 95.0%

Tajik 18 1 1 0 20 90.0%

Greek 18 1 1 0 20 90.0%

Croatian 16 0 2 2 20 80.0%

Polish 15 0 4 1 20 75.0%

Portuguese 5 2 2 11 20 25.0%

Scots 3 7 7 3 20 15.0%

Latin 10 2 1 7 20 50.0%

Kazakh 9 0 1 0 10 90.0%

Albanian 10 0 0 0 10 100.0%

Bosnian 7 2 1 0 10 70.0%

Swahili 9 0 1 0 10 90.0%

Bengali 6 0 4 0 10 60.0%

Czech 8 0 1 1 10 80.0%

Bulgarian 8 0 1 1 10 80.0%

Georgian 9 1 0 0 10 90.0%
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