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Abstract 

In today's data-driven world, the influence of data applications is profound, impacting millions of 

lives daily. However, current implementations heavily rely on cloud storage services, which involve 

significant tradeoffs according to the CAP theorem. Exploring traditional disk storage approaches 

can unveil new possibilities, not limited to specific databases but encompassing real-time, batch data, 

master data, and metadata. This study focuses on utilizing disk storage for Business Intelligence (BI) 

applications, highlighting the critical importance of data preservation. In BI applications, the ability 

to compare and process both current and historical data is essential. Any loss of past data diminishes 

the value of real-time data, and vice versa. Therefore, ensuring fault tolerance is paramount. To 

address this challenge, we propose a decision-making framework leveraging RAID (Redundant 

Array of Independent Disks) data storage virtualization technology to enhance its positive impact. 

Our approach targets various categories of data and nodes within the application architecture, 

aligning with the architectures of prominent platforms like Druid, Dremel, and Snowflake, with a 

particular emphasis on Near Real-Time Data Vault. Our findings go beyond individual capabilities, 

offering a comprehensive guide for strategic decision-making in the dynamic landscape of modern 

BI applications. This framework serves as a compass for navigating the complexities and demands 

of data management in today's evolving environment
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Introduction 

Business intelligence applications play a crucial role in today's data landscape, enabling the 

representation of data insights in both quantity and quality. They significantly impact the decision-

making processes of executives in large corporations and institutions. The Industry 4.0 revolution 

has brought about profound changes in descriptive data applications, necessitating the integration 

of diverse data sources with varying latency requirements. The diverse data handling processes 

involved in business intelligence applications make them valuable assets for organizations seeking 

insights into business objects and events. Various factors significantly influence descriptive data 

applications, with many frameworks focusing on formalizing requirements and interactions. 

While non-technical factors can impact the interaction of business intelligence applications, 

technical limitations can affect the long-term vision of companies and organizations. In my 

previous research, I observed that storage models have a substantial impact on application 

performance and fault tolerance. My earlier work focused on geo-replicated storage models, 

highlighting their weaknesses under the CAP theorem. The CAP theorem formalizes a limited 

number of consistency models and replication policies applicable to geo-replicated storage models. 

Although many cloud vendors offer solutions that support enterprise profit-based products, radical 

improvements are necessary to gain a competitive advantage. 

Therefore, I propose to analyze the detailed impact of disk virtualization techniques on storage. 

Business intelligence applications can address these demands by leveraging enhanced components 

from data applications, categorized into stages. Consequently, I aimed to formalize data RAID 

levels based on the stages of data application aligned with the requirements of descriptive data 

applications. Modern data application requirements emphasize real-time data analytics and self-

service capabilities. Therefore, I chose to structure stages based on real-time data analytics OLAP 

databases like Druid and Snowflake, leveraging their advanced self-service features because they 

can provide valuable insights into RAID model selection, highlighting well-known limitations and 

use cases. Moreover, RAID models offer significant potential for performance enhancements 

compared to the stable consistency and policy offerings from cloud-based storage services of 

various vendors. Consequently, I aimed to introduce new rulesets within a comprehensive 

framework to optimize RAID model performance. 
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Rather than focusing on a high-level framework, I opted to develop a general opinion framework 

aimed at maximizing disk-based storage models to meet modern business intelligence (BI) 

requirements. This approach seeks to address the evolving needs of BI applications by providing 

a flexible and adaptable framework for disk-based storage optimization. 

To achieve this, the following tasks will be undertaken: 

1. Gather business intelligence requirements. 

2. Analyze and gather nodes and data types in data warehouse stages based on gathered BI 

requirements. 

3. Create rulesets to define the appropriate RAID level for each stage of the data warehouse, 

based on requirements for performance and fault tolerance. 

These tasks will collectively contribute to the development of a robust framework that aligns disk-

based storage models with the dynamic needs of modern BI applications, ensuring optimal 

performance and reliability. 

1. Requirements of Business Intelligence Applications 

Several types of enterprise applications can be employed as sources for descriptive data 

applications which require storing data as a single truth of source. In this way, we can eliminate 

duplicate data but it requires costly storage and storage management processes through the life 

cycle of data. 39 studies about industrial implementation of Business intelligence applications 

demonstrate that 56 percent of small and medium-scale corporations could benefit capabilities of 

Business intelligence applications in a long-term manner. Descriptive data applications help better 

decision-making processes for organizations to ensure business survival with counterintelligence. 

Also, it has significant benefits in the cost reduction process. Additionally, research studies 

[1][2][3] have demonstrated that putting Business Intelligence (BI) into practice has several 

benefits, including improved resource planning, cost savings, improved performance, increased 

productivity and efficiency, and support for business growth. Eventually, obtaining a competitive 

edge may be facilitated by these advantages [4]. Data-driven applications and market research play 

a crucial role in developing smart factories today. The cornerstone of effective marketing lies in 

market intelligence, which is essential for designing and implementing strategic marketing 

initiatives [6].  
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1.1 Quarterly Traditional Data Analysis 

Quarterly business intelligence applications keep significant space in the data analytics industry 

which processes batch-loaded data from data warehouses or data marts in one time of day. These 

legacy systems have been used by many private sector and governmental organizations [7] because 

they are reliable in showing the most common business insights such as comprehension of 

organizational value between different business entities. For example, customer loyalty, fraud 

analyses, and purchase behaviors over different customer groups can be easily analyzed and 

categorized by legacy traditional Business intelligence applications. However, these data strategic 

data descriptions require a large amount of data which will be stored against complex ad-hoc and 

analytical queries. Regarding to implementation of a goal-oriented CSRML4BI model on 

descriptive data applications. It is observable to notice collaborative intercommunication and 

information awareness take significant spaces for Business intelligence applications as main 

requirements [8]. Additionally, the adaptability of quick business changes on legacy Business 

Intelligence applications through the data application lifecycle was a main requirement to gain 

competitive business advantage for big organizations [9]. 

1.2 Real-Time Data Analysis 

The final framework emphasizes the importance of flexibility in both batch and real-time 

processing. It utilizes an event-driven architecture (EDA) that seamlessly integrates these two 

methods of data processing, as illustrated in Figure 1. Kafka, a robust framework for handling 

event streams, forms the core of our real-time capabilities. By leveraging Kafka to organize events 

into topics and partitions, the framework ensures message ordering and reliability through an 

append-only log structure. The EDA is specifically crafted to support analytics alongside event 

processing.  

The data entity structure is governed by an Activity Schema that we developed. These entities form 

the backbone of our event-driven analytics platform, representing various aspects of our business 

and interconnected through activities. In terms of event data management, we follow a systematic 

process documented as a clear guideline for transforming raw event data into actionable insights. 

This process involves carefully selecting relevant actions, identifying appropriate data sources, 

and executing SQL queries with temporal joins. 

The concept of hub and link tables is foundational to our architecture, providing the framework 

for efficiently tracking transactions and establishing relationships between business entities. We 
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utilize Snowpipe for real-time data loading, benefiting from its micro-batch ingestion capability to 

keep our analytics pipelines continuously updated with the latest data. Additionally, our 

architecture enables efficient management of semi-structured data through straightforward SQL 

operations.  

Ultimately, our architecture is designed to empower analytics rather than merely manage data. By 

harnessing real-time capabilities, robust data modeling, and advanced analytics techniques, we 

derive meaningful insights that drive business decisions and foster innovation [10]. 

1.3 Self-Service Business Intelligence Applications 

Self-service business intelligence must be a design pattern that offers individual data processing 

on different departments by interconnection with each other. Regarding to Structural Equation 

Model (SEM), we can see Self-Service Business intelligence tools easily adaptable for extending 

data-centric decision principles over the whole organization [11]. However, the mentioned 

descriptive data applications have certain requirements that are highly related to user abilities in 

work and design. Each department of an organization can easily access real-time or legacy data 

from understandable metadata and master data-enhanced data marts. In this, batch and stream data 

can be consumed to meet requirements for mass demand in organizations separately [11]. These 

requirements contain easy data accessibility and high data quality with offering addressing 

problems in data lineage sessions. To address these requirements, it is possible to decrease the 

workload on the data engineering and business intelligence departments dramatically because 

many departments can easily utilize their data sources. Unfortunately, it can be problematic for 

employees who lack knowledge about information about data and business objectives. To 

eliminate these pitfalls, we should provide recorded metadata and master data information under 

strong data governance principles. Additionally, attributes of this data governance can contain 

information about KPIs and created metrics in descriptive data reports with their accessible 

references. 

1.4 Integration of Real-Time and Batch Data Analysis 

Modern Business Intelligence (BI) platforms incorporate various solutions such as production 

reporting, end-user query and reporting tools, and OLTP (Online Transaction Processing) and 

OLAP (Online Analytical Processing) databases. These platforms handle both real-time and batch-

stored data from OLTP databases for reporting and analysis purposes. However, achieving unified 
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business insights poses challenges due to the diverse nature of data. Real-time data has different 

storage requirements compared to quarterly processed batch data, making it complex to establish 

a single unified truth of data. To address these challenges, adaptive systems have emerged that can 

integrate real-time data with batch loads effectively. The Near Real-Time Data Vault architecture 

is a standard framework used to manage and overcome integration challenges in such scenarios. 

Different database engines, like Druid, Snowflake, and Dremel, serve as notable references for 

handling real-time and batch data integration. These engines offer distinct nodes to address 

integration difficulties within BI applications. The selection of appropriate storage models for 

integrated data applications cannot solely rely on requirements and stored data types. The 

classification process for selecting these storage models will be elaborated upon in subsequent 

chapters, considering specific requirements and data characteristics. 

1.5 Types of Data in Modern Business Intelligence Applications 

Data shapes current technologies and capabilities of descriptive data applications. The current 

world of data is divided into many types and formats. Additionally, several emerging real-time 

and batch data sources are increased so dramatically even it can not predicted. These dramatic 

changes reflect the type of data storage and modeling of data to meet the requirements of predictive 

and descriptive data applications. If we take brief information about data which is divided into 

strictly batch and real-time data. Real-time data contains information about events occurring in the 

current time or timestamp. Most of the time real-time data consists of timestamps or events creating 

time, dimensions, and metrics. These timestamps attribute of data represents event creating time 

which is critical for real-time data analytics purposes. Also, it can be used for versioning data and 

determining whether data is historical or not. Regarding dimensions and metrics of real-time data, 

they should be in string and numeric data types respectively. However, batch data contains 

information about events or business objectives with additional technical and metadata attributes. 

These metadata columns can be inherited from source systems or ETL operations. But most of the 

time, they represent updated and inserted time. If we look at accepted data types of batch data, we 

can see that can be different for the stage of the data warehouse that is string or varchar for most 

common cases. 

Data comes with processing requirements which should meet demands of different workloads. 

Descriptive data applications should process and aggregate individual rows for quantitative data 
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analyses. Therefore online analytical processing and Online Transaction Processing databases 

differ in this point based on the processing of big amounts of data under technical and performance 

limitations. Priority of data in Online Transaction Processing databases is preventing data from 

different kinds of DML operations such as update, and delete anomalies, guaranteeing availability 

of data through low latency contained query results. It means operations will be row-based and we 

need to give access to each row more effectively instead of the whole columns. But in data for 

Business Intelligence applications instead of transactional ones, aggregated data analytics 

operations require to access data in column-based because we need to extract metrics from data. 

These metrics can route us to useful insights for business operations. Therefore, many enterprise 

data solutions should support complete drill-down aggregations rapidly and exploratory data 

analyses. 

1.5.1 Metadata 

Metadata plays a crucial role in descriptive data applications, aiding in the effective detection of 

insights and facilitating the integration of new data sources into data pipelines. Business 

intelligence (BI) applications often consume data from information marts established within data 

warehouses, emphasizing the need for efficient data pipelines to facilitate transactions to these 

marts. 

Type Description Examples 

Business Metadata 

Helps in 

understanding and 

using business data 

effectively 

Business definitions, 

ontologies, 

taxonomies, physical 

names 

Maintenance 

Metadata 

Facilitates efficient 

management of data 

warehouse 

components 

Record source 

metadata, table 

specifications, 

exception-handling 

rules 
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Technical Metadata 

Provides technical 

details about the data 

warehouse 

infrastructure 

Source system 

information, data 

models, volumetrics 

metadata, data quality 

metadata 

Table 1. Metadata Characteristics 

To address business problems and operational needs effectively, different metadata categorizations 

can be utilized which can be seen in Table 1. Business metadata encompasses several categories: 

1. Business Definitions: Includes business column names that should be converted into 

human-readable formats for better understanding. Clear business descriptions help in 

identifying and retaining relevant data objects. 

2. Ontologies and Taxonomies: Used in master data information marts to organize and 

categorize data effectively. 

3. Physical Table and Column Names: Matched to relevant business names for clear business 

definition metadata. 

In addition to business-related definitions, metadata for data warehouse maintenance and 

utilization is essential: 

1. Record Source Metadata: Provides understandable text and sectional names for record 

sources. 

2. Table Specifications: Includes size, purpose, list of columns, and constraints per attribute 

for efficient table management. 

3. Exception-Handling Rules: Addresses potential errors and data quality concerns in data 

pipelines, reducing resource consumption for ELT (Extract, Load, Transform) and ETL 

(Extract, Transform, Load) processes. 

Source system business definitions and business rules metadata offer insights into data patterns 

and definitions within source databases, benefiting BI applications. Technical metadata, focusing 

on the technical components of the data warehouse, includes: 

1. Source System Information: Details about storage locations, staging area tables, and cloud-

based data warehouses. 
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2. Data Models: Split into physical and logical models, encompassing table names, column 

names, data types, and constraints. 

3. Volumetrics Metadata: Provides information on table size increase patterns and source 

database workloads, aiding in data warehouse planning. 

4. Data Quality Metadata: Defines rules and metrics to measure data quality. 

Apart from metadata, Process Execution information provided by data warehouse teams assists in 

understanding performance metrics and maintenance tasks. This data is often stored in independent 

information marts derived from ETL (Extract, Transform, Load) systems, enhancing operational 

insights and efficiency within data pipelines. 

1.5.2 Master Data 

Master data plays a critical role in current descriptive and predictive data applications, especially 

in self-service environments where awareness of various business entities is essential. It serves as 

the source of truth, although its representation may vary depending on the maturity level of a data 

warehouse or application. The Enterprise Information Lifecycle leverages master data to manage 

multiple data objects and their representations. 

In essence, master data comprises entities related to people, processes, and technology, aiming to 

bridge the gap between business activities and the data collected from source systems to meet the 

requirements of Business Intelligence (BI) applications. Descriptive data applications rely on 

master data to ensure accurate and comprehensive data entities, often referred to as "golden 

records," aligning with essential business concepts. 

While establishing and maintaining master data can be resource-intensive, it is instrumental in 

achieving specific goals such as improving data quality, streamlining information processing, 

reducing data redundancy, and facilitating data exchange. Detecting and correcting data errors 

through data harmonization processes, guided by Total Quality Management (TQM) principles 

and Six Sigma methodologies, ensures data accuracy and reliability. 

Aspect Description Examples 

Core Business Entities 

Critical for business 

operations and decision-

making 

Customers, products, 

suppliers 



   

 

19 
 

Data Quality 

Improvement 

Ensures accuracy, 

consistency, and 

reliability through data 

harmonization 

Total Quality 

Management (TQM), Six 

Sigma methodologies 

Master Data 

Management 

Manages master data 

effectively and supports 

BI applications 

CMMI, self-service 

applications, dedicated 

master data databases 

Table 2. Master Data Characteristics 

Master Data Management (MDM) is key to utilizing and storing master data effectively, providing 

insights for self-service applications and facilitating data error corrections. MDM aligns with 

Capability Maturity Model Integration (CMMI), promoting good data flow, effective data control, 

and seamless implementation of Total Quality Management practices. 

In operational and analytical data systems, master data management caters to diverse consumer 

requirements, adapting its representation based on the maturity level of the data application: 

1. First Maturity Level: No dedicated Master Data Management; master data resides within 

databases or various data sources. 

2. Second Maturity Level: Master data is represented in a separate information mart within a 

data warehouse for easy consumption by other data applications. 

3. Third Maturity Level: Implementation of Master Data Management involves utilizing 

dedicated databases for master data collection and harmonization, ensuring consistency 

and accuracy across data applications. 

Master Data Management is instrumental in supporting self-service BI applications and Total 

Quality Management initiatives where we can see real examples in Table 2. Serving as a repository 

for data models, entities, members, and attributes critical to organizational insights and operational 

efficiency. 
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1.6 Requirements of Modern Business Intelligence Applications for Storage Models 

Requirements for modern descriptive data applications had been listed above such as integration 

of real-time and batch loads, information shareable, collaboration support, and offering 

information about data and business objects. However, it is not possible to limit data application 

in this way. The current market is so dynamic therefore our descriptive and predictive data 

applications can be affected. Any dramatic change occurring in data application needs unexpected 

pauses in data delivery to Business intelligence applications. For this reason, we should select a 

logical data model wisely to handle these changes effectively. Incremental business changes can 

be a good example of a quarterly challenge to big competitive corporations. Incremental business 

changes are the result of some change in company structure or they can be triggered by two or 

more organizations that acquire into one parent organization. We can keep track of changes in data 

pipelines. If there are some schema changes or data anomalies detected, workflow management 

tools can notify us. However, our descriptive real-time and traditional data applications need time 

to solve problems by employees. For this purpose, we need data isolation from source systems. 

Regarding functional requirements, we should meet the demands of data governance to address 

problems and support a collaborative work environment easily and data lineage is the most 

important part of data governance in the current acceptable data world [15]. 

1.6.1 Data Lineage 

Data lineage was the main responsibility while maintaining and improving the data quality of the 

data application. Many reasons can lead to data anomaly in upstreams which are Business 

Intelligence applications for us. Missing SQL clauses or delivery changes in data contractors can 

reflect data in reports which can be notified through workflow orchestration or assertions from 

data tests. Data lineage service is required in every data application which requires extra metadata 

and technical columns alongside business columns. Physical data storage models do not have a big 

impact through adding and processing these additional attributes. It relies on the unique futures of 

used data platforms. For example, through Druid timestamp, headers and keys can be tracked 

which is suitable for real-time descriptive data applications. Also, in Snowflake, Information 

Schema allowed us to use different views to access executed queries and addressed schema objects. 

But if we need to categorize data lineage methods, we can use pattern-based and SQL parsing. 

Pattern-based lineage services easily provide information about broken workflow logic via 

notification and we can easily address using a pattern-based lineage graph. Unfortunately, we do 
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not have a chance to track the context of executed queries and addressed database objects. It is a 

lightweight way of addressing data lineage problems with low delay which most of the workflow 

orchestration and database management tools provide us. Also, it does not allow us to analyze 

previously executed operations which we can compare and we can easily detect broken or missing 

logic through pipelines. 

Regarding the provided disadvantage of pattern-based lineage service, we can use SQL parsing to 

provide a lineage graph. The lineage graph should contain target and destination tables, and 

executed query contexts which should be extracted from the query. Additionally, we can provide 

error messages and execution time. SQL parsed-based lineage graphs make the anomaly detection 

process more accurate. If we look at Snowflake, Snowflake can provide executed query context at 

least 2 hours ago to Information Schema views which makes it impossible to use it for real-time 

analytics. We have market solutions but they can cost some money and it can lead to some legacy 

problems.  We can custom wrapper for this purpose or we can use other query execution tools such 

as dbt. But it is exactly predictive to Snowflake can be costly to provide SQL parsed data lineage 

service to real-time data analytics.  

If we look through logical data models such as Data Vault 2.0 and Kimball, we can examine them 

with their unique features. As I mentioned, for the data lineage system, we need some technical 

and metadata columns alongside business attributes. These additional table attributes can be added 

or we can use the default property of logical models at first glance. 

When we look Kimbal model, we can see all technical columns should be added to address specific 

data governance or continuous data flow promotion. We need to add a validality timestamp to each 

column which replaces natural keys with surrogate keys should be folwed. Additionally, we need 

to central metadata catalog solution to provide metadata columns to tables and pipelines. The 

kimbal model could keep its openness to modification because we can manipulate the model to 

get excellent results in analytical queries. Regarding the priority of performance, the paintability 

of the system decreased dramatically and we will need extra and resource-intensive extensions to 

address data lineage problems.  

If we look Data Vault 2.0 model and its implementation, we can see several technical attributes 

and metadata columns provided default. For instance, replacing natural keys with hashed surrogate 

keys should be provided beforehand which validate and load date timestamp technical columns 

follow it. Regarding to type of table in the Data Vault model, we can use extra technical columns 
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such as sequential keys in snapshot Point-in-Time tables or date columns in standard Point-In-

Time tables. Additionally, all table types must contain source metadata attributes that point source 

of tables. The source of tables can be other tables or external stages. From these facts, it is easily 

understandable that data lineage services are easily fed by technical and metadata columns in this 

way. 

1.6.2 Summary 

To meet the needs of Business Intelligence (BI) applications, it's essential to enable self-service 

capabilities that empower users to make data-driven decisions independently. This extends the 

ability to leverage comprehensive data analytics by ensuring access to both real-time streaming 

data and historical batch data. Consideration of technical debt is vital when integrating diverse 

data sources into self-service BI applications. This involves managing any development shortcuts 

or compromises to ensure the long-term maintainability and scalability of the system. Integrating 

master and metadata into the BI reporting lifecycle is critical for providing context and 

understanding to data analysts and decision-makers. This integration reduces the time required to 

analyze data and makes insights more accessible and actionable. By integrating master and 

metadata within the data application or data warehouse, organizations can reduce the cost per 

insight. Staff can make informed decisions more quickly, which minimizes the resources needed 

to derive insights from data. Throughout the data lifecycle, various challenges can arise that affect 

data quality and integrity. Implementing data lineage services under established data governance 

rules helps address these issues, ensuring consistent data quality and governance. We can see all 

mentioned requirements as follows 

1. Enable Collaboration: 

a. Enable easy sharing of data among teams. 

b. Utilize collaboration tools tailored for BI. 

c. Ensure comprehensive metadata and master data for clear problem understanding. 

2. Integrate Historical and Real-time Data Streams for Comprehensive Analysis. 

3. Establish Query Endpoints for Seamless Data Retrieval and Analysis. 

4. Integration of Data Lineage to Ensure Data Quality and Compliance under Data 

Governance principles. 

In summary, meeting the requirements for BI applications involves enabling self-service 

capabilities, managing technical debt, integrating master and metadata effectively, reducing the 
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cost per insight, and implementing robust data quality and governance measures. By addressing 

these aspects, organizations can build BI solutions that empower users to make informed decisions 

based on high-quality data. 

2 Tools and Components of Physical and Logical Data Models for Business 

Intelligence 

The effective storage models for modern Business Intelligence (BI) applications are defined by 

their underlying design principles, which can vary depending on specific requirements outlined in 

earlier chapters that discuss trends in descriptive data applications. This chapter aims to provide a 

concise overview of the physical components of data storage models, covering workloads, 

networks, and data storage distribution techniques. 

Furthermore, we will analyze nodes from Druid, Dremel, and Snowflake based on insights gleaned 

from their official industrial papers. Each node will undergo a comprehensive examination to 

identify its primary requirements, which will contribute to the decision-making framework 

presented in the final chapter of this thesis. 

The sources cited in this article primarily originate from research teams associated with Druid and 

Snowflake, leading commercial analytical data platforms. The arrangement of nodes within each 

schema will largely follow the structure of the Dremel distributed data engine, which has been a 

significant reference in the domain of data-sharing architectures. 

2.1 Physical Components of Storage Models in Modern Data Applications 

Physical and logical data modeling require specific hardware components to efficiently manage 

the storage and processing of large-scale data. Configuring hardware for descriptive data 

applications is crucial for optimizing data warehouses, enabling efficient data consumption and 

long-term retention. Despite the prevalence of cloud-based data solutions, this study will 

concentrate on exploring on-premise data warehouse setups to assess their advantages compared 

to cloud-based data warehouse engines. Understanding the expected workload characteristics is 

paramount due to diverse requirements in data processing and storage. 

2.1.1 Analyzing Fault Tolerance in Storage Models Using Different RAID Types 

RAID is used to manage independent disks to provide more fault tolerance over performance trade-

offs [16]. But firstly, I would like to highlight other relevant storage options such as SCSI and 
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Fiber Channels for data sharing and accessing desired data from remote servers [17]. Also, 

Network Attached Storage can be the case for transferring and keeping data over networks which 

has many real implementations in the current data industry. However, the easiness of RAID setup 

and big options for disk accessibility are the main causes for the selection of this data virtualization 

technology. It is possible to select budget-friendly options such as cloud storage services such as 

Network Attached Storage. It can provide parallel resource management and scaling as an initial 

advantage but it comes with some disadvantages. These disadvantages have been described under 

the CAP theorem which it is not possible to guarantee Consistency, Availability, and Partition at 

the same time. We can select the right consistency and replication model to address this problem 

but we just hide the problem and do not provide a real solution. 

Simply data is stored in disks and we can group these disks under some array groups to achieve 

some results. These results are specific to the type of application. If we want to high data write and 

read operations, we need to use RAID-0. RAID-0 offers high I/O performance over multiple disks. 

It enhances data by stripping it into several blocks and these blocks extend over disks. It is the 

perfect solution for data marts and data that has historical relevance in other nodes. Another level 

of RAID is RAID-1 which we can use the advantage of data mirroring into unified disks. Written 

data is mirrored into two disks and two disks are represented in one interface disk. It provides 

enough good fault-tolerance and performance compared to RAID-0 but mirroring decreases 

storage capacity dramatically. All touched RAID categories aim to provide read and write 

operations at the same level. In some cases, we need to prioritize write operations which we will 

see in data handling nodes of stages of data application. For this purpose, we can use the 

advantages of RAID-5 where need to access 3 disks at least. Two disks must be employed for 

stripping as same as RAID-0. The last disk is used to store parity data which can be easily 

recovered. It provides high data write because we have multiple blocks in several disks that contain 

desired data. However, it is not easy to write data because it should be written on three disks at 

least. It can be an efficient solution for intermediate stages in data applications that meet historical 

data and data-sharing requirements of Business Intelligence applications. If stored data is in the 

gold record category, another RAID level can assist us. For instance, RAID-6 requires 4 disks and 

parity striping occurs a second time through a block of disks. In this way, it provides easy data 

recovery and we can easily replace lost data. Also, a minimum of four disks are required to 
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conclude RAID-10 which is mixing striping and mirroring over several disk drivers. It provides 

high disk write and read operations alongside redundancy. It has some disadvantages which are 

inherited from RAID-1, it decreases the capacity of storage by half. It can be a good choice for 

nodes where data batch and stream data is stored and transferred into the Business Intelligence 

application without any intermediate layer. We have another mixing RAID level to achieve better 

data writes with a high level of fault tolerance. It is a mixing of the party and stripping together 

which RAID-5 and RAID-0 represent respectively. 

.   

 

Figure 1 Data Striping in RAID-5: Hot and Cold Disk Considerations 

Hot disks, in particular, are continually running at a greater speed and use more energy, whereas 

cool disks are always working at a lower speed and dissipate less energy. Furthermore, we use 

multispeed disks in the disk array to conserve energy. The goal is to balance the load between two 

disk zones: the hot disk zone, which contains popular files, and the cold disk zone, which contains 

unpopular files. The book describes how SEA allocates popular and unpopular files to these zones 

in a striping pattern to improve performance and energy efficiency. It also explains why a small 

percentage of disks are designated as hot disks, as well as the advantages of having a higher number 

of cool disks for energy savings and IntraRequest parallelism. Furthermore, it compares the 

performance and fault tolerance of the SEA0 and SEA5 algorithms, which are versions of SEA 
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paired with RAID (Redundant Array of Independent Disks) structures, with SEA0 favoring speed 

and SEA5 providing fault tolerance which is demonstrated in Figure 1. 

2.1.2 Analyses of Workload Characteristics for Storage Models 

Workloads are closely tied to the maturity level of Business Intelligence (BI) applications. When 

a BI application derives insights from data using straightforward business processes, it typically 

involves extracting data from an Online Transactional Processing (OLTP) Database. In this 

scenario, individual rows of data are accessed to retrieve specific values that reflect the current 

state of business or operations. However, relying solely on transactional databases for analytical 

queries in data descriptive applications can lead to performance issues. To address complex data 

analytics challenges effectively, it's advisable not to directly query data from transactional 

databases. Instead, dedicated data analytics databases offer hardware configurations optimized for 

handling the latency between data loading and processing by BI applications. The selection of 

appropriate hardware is influenced by various types of data loads, including batch, stream, and 

near-real-time data loads, each differing in execution schedules. While workloads serve as initial 

criteria for hardware selection, additional requirements such as latency, consistency, data type 

support, response time, and predictability also play significant roles in determining the ideal 

hardware setup. These factors collectively shape the hardware infrastructure needed to support 

advanced BI and data analytics applications effectively. 

One important aspect of data applications is latency. The lag or time interval between the 

generation of data and the process is called latency. For many descriptive and predictive data 

applications, this was a recognized drawback since each request necessitates a short wait between 

data serving and efficient query handling. Low latency is necessary for online transaction 

processing databases because users must be able to obtain pertinent data for everyday transaction 

processing. However, since batch loads are what create delays, we may take advantage of this in 

databases used for online analytical processing. The majority of batch loading happens late at night 

when no queries about analytical processing are being run. Our internal resources may manage 

data loading independently in this manner, allowing end users to take advantage of all available 

computing capacity. Data accessibility must be prioritized in today's distributed data applications 

in order to reduce the delay between data production and processing. First of all, multiple users 

using dispersed data infrastructure is suitable. When a user views and modifies a row of data, 
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should other users be able to see the changes immediately? Or are consumers willing to put up 

with this kind of animosity? The answers to these questions indicate the kind of application that 

may be business-critical or mission-critical. We may possibly be able to solve these issues by 

computing expected and desired workloads under the Byzantine fault problem. To make sure that 

any changes to the data are reflected to all consumers, we may use linearizability, which is also 

referred to as atomic consistency, sequential consistency, and eventual consistency.  Atomic 

consistency, which guarantees that all users see all changes, is useful for military and national 

security applications. Analogously, there exist two categories of methodologies for addressing 

business problems: eventual consistency and sequential consistency. Amazon, for instance, uses 

eventual consistency in most of its services. However, we should create a consistency model for 

the specific requirements of the descriptive data application. According to the CAP (Consistency 

Availability Partition) theorem, only two can be awarded from Consistency, Availability, and 

Partition. This selection procedure can be carried out in light of this finding. In three of them, 

satisfaction concerning the CAP theorem is not possible. 

The crucial characteristic of databases is updateability, which pertains to the ability to modify data 

within a data application. As previously discussed, databases are categorized into analytical and 

transactional databases, each treating data differently. In Online Analytical Processing (OLAP) 

databases, data is typically considered immutable, meaning it is not changed once it is stored. 

However, logical data modeling concepts allow for changes to the state of data, effectively treating 

data warehouses as structured archives with hot access capabilities. State changes in data 

applications involve updating data while retaining the previous state, a process that can be tracked 

and documented using the selected logical data model. Updateability becomes particularly 

significant in business intelligence applications where historical comparisons are essential. 

Without data changes over time, there would be no historical data available for descriptive data 

applications, which rely on historical trends and comparisons for analysis and decision-making 

purposes. Therefore, the ability to update data while preserving its history is fundamental to the 

functionality and value of data warehouses and analytical databases in supporting business 

intelligence operations. 

In contemporary data warehouses for data applications, updateable data types are becoming more 

and more significant. First and foremost, tabular data processing is the most practical method of 

handling data in business intelligence systems. Hierarchical data can be properly observed in this 
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manner. Present-day data applications, however, may encounter unstructured and semi-structured 

data from several data sources. Flattening and parsing these non-conventional data loads is 

necessary, and it should be consistent with using traditional data techniques as well. Although 

SQL-based data platforms and ELT pipelines are the limitations of this categorization, No-SQL 

data solutions offer an opportunity to handle semi-structured data imports. Furthermore, 

unstructured data can be handled more effectively by dynamic query capabilities than by 

declarative SQL language. 

As I mentioned earlier, data warehouses in data applications aren't just for storing data; they are 

responsible for efficiently processing and retrieving desired results quickly. This efficiency is 

achieved through the consistency, latency, and updateability of data. However, the focus is mainly 

on query response times, as user satisfaction depends on this. Users interact with data warehouses 

primarily through analytical or aggregational queries. Data warehouses fall under Online 

Analytical Processing (OLAP) databases, where we handle aggregation and processing queries 

instead of row-based single operations. Therefore, the need to scan and filter large amounts of data 

significantly impacts response times for users. Many databases can read large amounts of data 

from disks, process data, and perform calculations and aggregations in advance. 

Lastly, it's important to address predictability in this paper, as databases need to anticipate the 

expected results and response times based on the query context and the data involved. This 

predictability can be achieved by leveraging metadata information about tables and their attributes. 

This metadata includes details about aggregations and the cardinality of columns needed for 

queries. Cached query results can also serve as predictive references for many workloads. 

However, every database platform should possess the capability to forecast the expected resource 

usage and response times required to retrieve desired results. 

2.2 Optimizing Data Storage Efficiency with Logical Data Models 

Logical data models evolve over time to meet the diverse requirements of consumer data 

applications. Online Transaction Processing (OLTP) systems typically demand normalized data 

models to ensure consistency and maintain acceptable latency levels. Emphasizing consistency 

helps eliminate anomalies in data transactions related to write, update, and delete operations. 

Implementing normal forms ensures a structured approach to mixing data types and organizing 

column dependencies: 
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1. All tables should have a primary key attribute. 

2. Non-primary key attributes should depend on the primary key in a nontransitive manner. 

Small organizations can benefit from integrating predictive and descriptive data applications. 

Modern Data Stacks like Snowflake support OLTP databases as staging layers within data 

warehouses or lakehouses. However, normalized data models may introduce high latency in select 

queries out-of-the-box, which is not suitable for Business Intelligence (BI) applications. To 

enhance query performance, transactional data often needs to be denormalized. Two common 

approaches to denormalizing transactional data are the Kimball model and the Data Vault model: 

1. Kimball Model: Primarily focused on optimizing select query performance by 

denormalizing data. It emphasizes star schema or dimensional modeling, where data is 

organized into fact tables and dimension tables for efficient querying and reporting. 

2. Data Vault Model: Emphasizes data governance and isolates data applications from 

business changes. It utilizes a hub-and-spoke architecture with raw data vaults and business 

vaults, enabling flexibility and scalability while ensuring data quality and traceability. 

Both models serve distinct purposes: 

1. Kimball Model: Ideal for BI applications requiring fast query performance and 

straightforward data access for reporting and analysis. 

2. Data Vault Model: Suited for complex data environments requiring robust data 

governance, scalability, and flexibility to adapt to changing business needs without 

impacting existing data applications. 

Choosing between these models depends on specific business requirements, data complexity, 

scalability needs, and the balance between query performance and data governance. Each model 

offers unique benefits and considerations, contributing to effective data management and analytics 

within modern data architectures that given in Figure 2 detailed. 
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Figure 2 Framework for a Logical Data Warehouse Model in Enterprise Data Applications [18] 

In data applications, various upstream applications enable end users to interact, with a focus on 

both predictive and descriptive data applications. This thesis specifically emphasizes descriptive 

data applications to explore the impact of different data models. 

Descriptive Business Intelligence applications encompass quarterly reporting and real-time or 

customer behavior analytics.  

1. Quarterly Reporting: These applications consume data on a daily basis, utilizing batch data 

pipelines for data transformation and transfer. 

2. Real-time Analytics: In contrast, real-time Business Intelligence applications rely on 

stream data pipelines to process data promptly, supporting log analytics, event analytics, 

and customer behavior analytics. 

Quarterly Business Intelligence applications are well-suited for Modern Data Stacks, making data 

maintenance straightforward. Data for traditional BI applications is often sourced from various 

data contractors, with measures like masking and filtering applied to comply with Personal 

Identifiable Information (PII) requirements. This masked and filtered data is denormalized for ease 

of querying by BI reports, typically using data marts. Real-time data analytics demand immediate 

data availability without significant delays. These applications are effectively supported by Live 

Data Stacks, leveraging tools that process data with minimal or no delay. The architecture of Live 

Data Stack includes methods to enhance logical and physical data models for low-latency data 

processing. One prominent approach is the "set and forget" architecture, where data is retrieved 
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from the source and processed without formal ingestion, contrasting with Modern Data Stack 

methods. While Live Data Stack technologies are still evolving, this thesis will explore their 

maturation and effectiveness in enabling real-time Business Intelligence applications. 

In this thesis, data platforms will be analyzed to support both real-time and quarterly reporting use 

cases within physical data storage models. Specifically, the adaptability of Snowflake for self-

service BI reporting will be evaluated. Additionally, the impact of logical data models, specifically 

Data Vault 2.0 and Kimball, on the performance and maintainability of Business Intelligence 

applications will be explored. 

Several metrics will be used to assess the effectiveness of combining logical and physical data 

models: 

1. Delay Tolerance: The system's ability to handle data processing at different intervals 

ranging from one day to one hour or even one minute will be examined. This metric is 

crucial given the diverse timing needs of real-time versus traditional descriptive data 

applications. 

2. Adaptability to Data Pipelines: The storage architecture and logical models should be 

adaptable to both batch and stream data pipelines. This flexibility ensures that the system 

can support various data ingestion methods effectively. 

3. Easy Maintenance and Modification: In a competitive market environment, data platforms 

must be easily maintained and modified to accommodate incremental business changes. 

This metric assesses how well the system can evolve with organizational shifts, such as 

departmental changes or company acquisitions. 

4. Handling Out-of-Sequence or Late-Arriving Data: Business Intelligence applications may 

encounter data arriving out of sequence or delayed. The data architecture should handle 

such scenarios seamlessly to maintain data integrity and accuracy. 

5. Data Lineage: Understanding and documenting data lineage is essential, particularly in 

upstream data applications. Lineage graphs help detect null clusters or outlier data, 

providing insights for downstream data processing and troubleshooting. 

By evaluating these metrics, the thesis aims to provide insights into designing robust data 

architectures that support a range of data applications efficiently and effectively. This 

comprehensive analysis will contribute to improving the performance, reliability, and adaptability 

of Business Intelligence systems in today's dynamic business landscape. 
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2.2.1 Understanding Dimensional Modeling for Effective Data Representation 

The Kimball model is widely adopted in traditional data applications across various industries due 

to its effectiveness in efficiently handling ad-hoc and business intelligence queries with minimal 

delays. One of its notable strengths lies in its ability to provide detailed event information with 

high granularity, emphasizing events occurring throughout different business processes. 

In the Kimball model, events are organized and represented using Fact tables, which contain 

specific details about the events and their associations with Dimension tables that provide 

information about related stakeholders or entities. Fact tables serve to represent different types of 

events, with Transactional Fact tables being among the most common. Examples of events 

captured in Transactional Fact tables include sales transactions, orders, and requests that are 

anticipated to occur and conclude within specific time periods. 

Alternatively, events that occur over time can be captured using Periodic and Accumulating 

Snapshot Fact tables. Periodic Snapshot Fact tables gather data over intervals of time (e.g., daily, 

monthly), allowing for the tracking of events over specific periods. Accumulating Snapshot Fact 

tables record snapshots of changing data, making them useful for monitoring how events evolve 

across phases or milestones. 
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Figure 3. Insight Extraction from Multidimensional Kimball Model [18] 

The Kimball model's flexibility allows for the representation of various event types using suitable 

Fact tables, tailored to specific data collection and analysis needs within the business environment. 

To enhance granularity and provide deeper insights, the Kimball model leverages refined 

Dimension tables. These Dimension tables can be categorized into different types: 

1. Role Playing Dimension: Contains extended date data used to establish time hierarchies in 

BI applications. 

2. Conformed Dimension: Shared across multiple Fact tables, providing consistent event 

detail representations. 

3. Junk Dimension: Comprised of attributes representing states as flags, aimed at reducing 

the number of necessary joins in queries. 

Overall, the Kimball model's approach to organizing events through Fact and Dimension tables 

offers a structured and effective framework for capturing, analyzing, and understanding diverse 

business events with varying levels of granularity and detail. This model is instrumental in 
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supporting robust business intelligence and analytics capabilities within organizations which they 

can extract insights from modeled data as seen in Figure 3.  

Kimball's model can be extended intensively for each requirement. For example, we can represent 

event details with natural keys or we can replace natural keys with surrogate keys to enhance data 

governance. Also, we are free to select Snowflake or Star schema to address storage or query 

performance restrictions as well. Through data pipelines, we need extra configuration to address 

adding metadata columns as well. But for all disadvantages, the Kimball model has the noticeable 

performance to provide data or create data marts for predictive and descriptive data applications. 

It has conformed to best practices to address Change Data Capture, Slowly Changed Dimension 

functions, and Late Arriving Dimension kind of problems with just additional table attributes and 

small configuration in the continuous data flow.  

2.2.2 Near Real-Time Data Vault Architecture 

The Data Vault model is mainly used to ensure isolation between incremental business changes 

and represented data in data applications. The Data Vault model has different extensions but 

currently, Data Vault 2.0 is highly preferred regarding its extensions. Metadata and technical 

columns are also provided along with technical columns but regarding the type of table technical 

columns can be extended. In the Data Vault model, there are main tables that can be categorized 

into Hubs, Links, Satellites, and Reference tables. Additionally, we should have Query Assistant 

tables. Data, Bridge, and Poin-in-Time tables are the main components of Query Assistant tables 

which decrease required joins and enable access to data in the required period which is essential 

to Business intelligence applications and their used data marts.  

Hub tables in the Data Vault model represent business objectives which should contain the natural 

key as the business key, hashed surrogate key, load date as technical columns, and source metadata 

column. If we would like to show the interaction of business objects, we should use Link tables. 

Link tables should contain hashed surrogate keys of interacted business objectives alongside load 

date and source attributes. There are some extensions of Link tables to show transactional events 

as a result of different business objectives. This extension is called Transactional Link tables which 

can support descriptive data applications with transactional hierarical data. Regarding business 

objectives and interaction between them, most descriptive and predictive data applications need 

the state of business objectives and the result of their interactions as well. Satellite tables are 
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utilized to show the state of business objectives which should contain hashed surrogate keys of 

Hub or Link tables, descriptive payload data alongside standard technical and metadata attributes. 

We can use different types of Satellite tables to address the unique requirements of business 

intelligence applications. We can utilize Effective Satellite tables to represent discrete payload 

data of Link tables between valid periods. The mentioned valid period was generated using 

additional start date and end date technical columns. For instance, if we need to represent multiple 

engines of one customer, we can use Multi-Active Satellite tables which contain multiple valid at 

the same time time. Additionally, we can address out-of-sequence data, we can use Extended 

Tracking Satellite tables which keep track of loaded records. These tables help us keep detailed 

payload information of business objectives and their relation results efficiently. 

After keeping payload data and success isolation successfully, we need to optimize performance 

quieres because the Data Vault model needs to complex join operations to access a state of business 

objectives. For this purpose, we should use multiple, Query Assitant tables. The first and required 

table is the As of Date table which just keeps dates in certain order. The date attribute of the As of 

Date table is used to initiate Point-In-Time and Bridge tables. Point-in-time tables describe payload 

data from multiple satellites that split on the date column of the As of Date table. In this way, we 

decrease required joins to access a state of business objects and increase the performance of 

Business intelligence causing fetch heavy queries. Additionally, we can access current valid 

relations of business objectives and their results using Bridge tables. Bridge tables are a special 

version of Link tables that reduce required join operations. It uses descriptive payload data from 

Effective tables and contains current valid relationships between hub and link relations. 

2.2.3 Data Vault Techniques to Support Self-Service Business Intelligence Requirements 

To provide correct information to upstream data applications such as predictive and descriptive 

data applications, we should handle maintenance tasks. These maintenance tasks address inserted 

data to the data warehouse without any conflict but it causes data anomalies in Business 

Intelligence reports. The most common problem for this is out-of-sequence loads, it can occur 

related to some delayed or dependency-based data load. Out-of-sequence data can lead to 

erroneous reporting, delays, and reloads but we can have an automation pattern 

Batch files caused out-of-sequence loads mostly because file-based uploads can follow missing 

file distributions inside selected bucketing providers. We can not fully eliminate file-based batch 
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operations because many data platforms provide continuous data flow in this way. While we get 

out-ot-sequence problems through this traditional approach. We need to roll back the previous data 

batch and get sequence order in the data warehouse or data mart. Following rollback operation 

downstream, quantive and qualitative business intelligence reports need to be rolled back or they 

will be subject to data lineage in the worst scenario. File-based incremental data ingestion and 

processing use date attribute which relies on the source because the source data is presented in the 

most relevant. Data in the source are categorized as transactional data which just show the current 

state of business objectives at first glance. However, all upstream applications aim to rely on a 

sequential order of data and come with continuous dataflow over data application but for some 

reason, this logic can be broken. Thus broken sequential order leads to business data integrity 

issues which can be seen as data anomaly or in technical debt upstream reports. To address this 

problem, we should use exact automation patterns that they handle through data upload. Through 

data pipelines, we should divide data pipelines into two main parts. The first part of pipelines is 

responsible for reading data from source which we can use maximal timestamp or batch partition 

approaches. In our case of out-of-sequence data load, we should pay attention to the second part 

of incremental data pipelines which is responsible for writing operations. To address out-of-

sequence data, automatic tracking and correction patterns should be used. The advantages of Data  

In Data Vault 2.0, we can use a special kind of Satellite Table which this table keeps track of all 

loaded data of business objectives and the relation between these business objectives. These kinds 

of tables are called Extended Tracking Satellite tables which contain technical hashed surrogate 

keys from referenced Link, Hub, Satellite tables, load date, and source metadata column. We 

explain automatic tracking and correction patterns using the Extended Tracking Satellite table in 

real cases. We imagine we maintain a data warehouse of online payment services. Our ship of 

customers visits A city on Monday and Friday. He also visits hometown B on Tuesday. In logical 

order, the state of placement should be ordered A(Monday)->B(Tuesday)->A(Friday) but 

unfortunately batch file contains B replacement state faces abortion regarding dependency 

problem. Then we had A(Monday)->A(Friday) in currently, after we finish fixing the dependency-

related problem we insert data about B. Finally, we faced this data A(Monday)->A(Friday)-

>B(Tuesday) inheritance. Also, we can imagine just one row shown for each location because our 

descriptive payload checking is done through the location column in Satellite tables then data about 

Monday and Friday will contain the same as a different column which generates a derived column 
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based on descriptive payload data. Used logic in reading operation look A(Monday) and A(Friday) 

which they have the same hashdiff and it decides okay if ship stays on the same location and new 

data is coming which it has different hashdiff. In this case, it eliminates the record about A(Friday) 

and replaces it with B(Tuesday). Also, it replaces from date to Tuesday instead of Friday on data 

of A(Monday) because an update occurs on the data ingestion order. To address this problem, we 

need the table to save all load data and compare it for correction. Indeed, it has some similarities 

to the implementation of the reconciliation pattern which we use data from the third table. This 

third table in this case called the Extended Tracking Satellite table, is updated or inserted with 

data, and checking operations occur to keep timeline correctness. In technical depth, it can be 

accessed by using the Merge pattern through writing part of incremental ELT pipelines. Using the 

Merge pattern, we can go away from table locking which can occur regarding transaction policies 

of the utilized data platform. 

Extended Tracking Schemas can be used to store out-of-sequence concerns and handle them in 

data applications. These schemas record anomaly and discrepancy-related information that can be 

used to evaluate and control technical debt in the data pipeline. Out-of-sequence issues can appear 

as inaccurate depictions of the status of business objectives in the context of business intelligence 

systems unless the timetable is adjusted. Applications for descriptive data can be used to show and 

evaluate this disparity, Descriptive data applications can employ correlation differences and 

anomaly detection to track down the source of an issue by utilizing technical debt upstream. This 

method makes it easier to comprehend problems with data integrity and makes it easier to take 

corrective action to guarantee the correctness and dependability of data throughout the business 

intelligence ecosystem. 

2.3.1 Nodes for batch data handling over Dremel and Snowflake’s Data Cloud 

With several complex data governance options, Snowflake is a cloud-based SaaS data warehousing 

solution that allows ELT transformation using both Python and SQL. Since Snowflake does not 

support usage of the offline version of the product, our connection to Snowflake's global self-

isolated data mesh must be active.  Distributed computing improves it by enabling us to split the 

complexity of several queries and run them simultaneously. In addition to distributed computing 

using various cloud providers' virtual nodes, we may benefit from nearly infinite computational 

storage. The object storage of various bucketing systems improves virtual compute storage. More 
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elastic computing data processing is achieved by storing a significant amount of structured and 

semi-structured data in object-based storage services. Furthermore, it's worth noting that 

Snowflake is a versatile system. It serves multiple users (multi-tenant), ensures secure transactions, 

boasts high scalability and elasticity, and supports SQL comprehensively. Additionally, it comes 

with built-in features tailored for semi-structured and schema-less data. If we want to make our 

data application more accessible to other inner or outer organizations, we can do so using the 

sharing functionalities of Snowflake because it uses shared nothing architecture at all. These 

advantages allow us to collect and store data from different sources such as Enterprise Resource 

Planning, Customer relationships, and other company internal and external applications. Also, we 

have a great chance to collect and process schemaless and event-based data which came from logs, 

sensors, the Internet of Things, and different growing volumes. Many relevant solutions in the 

industry rely on Hadoop-based solutions but Snowflake uses Spark-based solutions which create 

suitable ground execute operations in-memory based. As was previously noted, Snowflake is a 

tool that can be used to build data warehouses. Its goal is to divide processing and storage, which 

is in accordance with the idea that data warehouses may improve ELT operations. Since SQL 

should be used to create declarative or dynamic pipelines, Snowflake provides the SnowSQL SQL 

standard, which supports ANSI SQL and allows ACID transactions. SnowSQL can be used to 

build dynamic data pipelines that manage semistructured data in real time and guarantee 

continuous data flow. Also, we can generate schemas from these semistructured files using 

different Snowflake functions. Snowflake could guarantee availability and durability against 

accidental data loss because all data rely on cloud infrastructure. Additionally, data are distributed 

over regions which leads to ensuring data expending. Snowflake does not need to execute 

maintenance tasks because the Snowflake Computing Layer handles many parts. One of the 

maintaining tasks is comparing data on tables. Using the compared algorithm on Snowflake is 

property and it is not open source. But it may have many similarities with generic compromised 

algorithms which Druid uses as well. In this way, I can mention all data on the Snowflake network 

is encrypted and Role Based Access Control exists which all compute resources require on a 

creational step. Additionally, we have a chance to ensure fine-grained access control on the SQL 

level through DDL and DML operations. 
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Table 3. Main features of nodes for handling and serving batch load in Snowflake global mesh 

We can select three main cloud vendors as infrastructure for our data warehouse or data application 

but the most well-suited is Amazon Web Services cloud vendor. Inside Snowflake, users can create 

accounts and these accounts can have databases that can use nodes in Table 3. It should be 

considered that the data of other users are isolated which means a single application serves multiple 

users over a global data mesh. For providing privacy and security Multi-tenancy has been adopted 

within Snowflake Row Access Policy (RAP). We can create different roles and roles can be 

assigned to different data sources such as tables, views, and materialized views. Also, it is 

guaranteed by Snowflake that the offered SaaS application will be deployed in the Virtual Machine 

solution of the selected provider. In this way, we can achieve high-level isolation of data and 

database objects which we can keep our data and properties invisible to others. Snowflake's other 

unique future is COTS (commercial off-the-shelf) software solutions in which you just need to pay 

executing time not for used data because all data are stored in object bucket storage with advanced 

data compressed algorithms. We can benefit massively from parallelism on Snowflake whose 

default provided consistency policy does not lock tables while query executions. Table point 

lookup queries are enhanced by SOS. A single or few different searches are returned by a point 

lookup query. It comes after clustering as a backup plan. 
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At first glance, Snowflake is an advocate of enterprise-ready data applications that can guarantee 

interoperability by providing high availability. Many large organizations and financial institutions 

leverage the unique features of Snowflake's service-oriented architecture. This approach allows 

competitive companies to develop independently scalable services and achieve high fault tolerance 

against undesired practices. Snowflake's architecture resembles different nodes in engines like 

Druid and Dremel (used by BigQuery). Each service within Snowflake communicates with others 

through a RESTful interface, enabling the implementation of best practices in microservice 

architecture within a finely-grained data warehouse platform. This architecture promotes 

modularity, scalability, and robust communication among components, enhancing the overall 

efficiency and reliability of the data warehouse ecosystem. If there is some need to talk about the 

services of Snowflake, I can start from the data storage layer of Snowflake which is mainly 

employed to store query results and table data. These table data can be external and internal which 

affects the capability of the data storage layer itself. Mentioned information about queries and table 

attributes mainly stored on object-based storage services of different cloud vendors. The second 

most important layer of Snowflake is the virtual warehouse which represents a distributed 

computing future. Virtual warehouses rely on different types of virtual machines of nodes based 

on utilized cloud vendors and the cloud environment provides elastic clusters for query executions. 

As previously mentioned all data layers are based on the Snowflake Cloud Service layer which is 

responsible for managing virtual warehouses, transactions, and quires. Additionally, it monitors 

and serves metadata information about database schemas, encryption keys, and usage statics about 

table attributes. These three service layers of Snowflake contain its main functional and 

competitive advantage against other SaaS-based cloud platforms. 

2.3.1.1 Virtual Worker or Warehouse Nodes 

Virtual warehouse on Snowflake represents the work power of nodes that aim to execute written 

queries and we can determine the size of virtual warehouses in different sizes to meet our special 

requirements. This variety of virtual warehouses comes from used nodes or virtual machines. 

Regarding shared-noting architecture, commodity and scalability of hardware should be 

guaranteed and all executions take place in the same hardware with others. However, we can see 

every query processor executes queries on its local disks. Giving the ability to execute and derive 

results in memory enhances the performance of data operations because we can access data in local 
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disks more efficiently. Additionally, each node in the spate local disk gives us a chance to store 

tables over nodes horizontally. Horizontal table storing is beneficial because each node can access 

the same part of data and we can keep different partitions of data in this way. Therefore, it should 

be mentioned that each separate node has the responsibility for storing rows of these tables in its 

local disk. These unique features of the shared-noting architecture are so suitable for logical modes 

one of which is a star schema. If we look start schema, we can see there are dimensions and fact 

tables to show event and event details that occur during a business process. When we look at 

shared-noting architecture, we can see little bandwidth can be used to join broadcast dimensions 

with portioned fact tables. This small bandwidth allows us to run expensive analytical queries with 

high performance. Most of the time, we need to share our data with other internal and external data 

consumers, and our data-sharing service benefits from this architecture. Shared-nothing 

architecture came with little contention for shared data sources and local disks where partitions of 

table information are stored. Unfortunately, we could not achieve pure shared-noting architecture 

at all. Before Snowflake, Spark and Hadoop-based solutions could not be part of pure-noting 

architecture because their approach has logical pitfalls. The first broken token in logic is each node 

has the same responsibility and runs on the same hardware. It means tightly coupling storage and 

compute resources inside nodes. Another not meted requirement is different priorities on 

workloads and hardware. We can consider, that different workloads or queries can be executed on 

our data platform which can be analytical, maintenance, or data load. All quires have their 

performance requirements. For example, data load queries need to write data from sources based 

on different data reading and writing patterns to provide continuous data flow through the data 

platform which requires high I/O operations alongside high processing capability. Most probably, 

stored and transformed data can be required by analytical operations which means low I/O 

operations with high processing capability. As we can see different quires require different 

performance requirements on the hardware side but most legacy shared-noting architecture can 

not meet this demand. All legacy aprachs rely on homogeneous hardware which nodes process and 

store data there. Therefore, homogeneous hardware can not meet the requirements of different 

focused workloads. Also, we should talk about another pitfall of legacy solutions,  

This architecture incorporates several critical components aimed at optimizing resource 

management, scalability, and performance within a distributed data system. Here's an overview of 

the key elements and their functions: 
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1. Combining Query Processing and Data Shuffling on Nodes: By consolidating query 

processing and data shuffling on the same node, data travel is minimized, and proximity is 

maximized, leading to improved efficiency in processing tasks. 

2. Impact of Membership Changes on System Performance: Significant changes in cluster 

membership, such as node additions or removals, may necessitate large-scale data 

redistribution to rebalance the cluster, potentially impacting system performance 

temporarily. 

3. Challenges of Upgrades or Modifications in Shared-Nothing Architectures: In shared-

nothing architectures where nodes share common hardware, upgrades or modifications can 

impact the entire system, requiring careful planning to minimize disruptions. 

4. Utilization of Various Node Types in Cloud Environments: Leveraging different node 

types like EC2 instances in cloud environments enables elastic scaling, allowing resources 

to dynamically adjust based on workload demands, leading to improved availability and 

performance. 

5. Separation of Storage and Computing Resources: By separating storage (e.g., S3) and 

computing (e.g., Snowflake shared-nothing engine), this architecture adopts a loosely 

coupled design that enhances flexibility and scalability. 

6. Optimization of Compute Nodes: Compute nodes utilize high-speed SSDs for faster 

read/write operations and local drives for temporary data storage and caching, optimizing 

performance and minimizing network traffic. 

7. Multi-Cluster, Shared-Data Architecture: This design enables different compute clusters to 

access shared data while ensuring data consistency and integrity. It supports parallel 

processing and scalability, facilitating efficient data processing across multiple clusters. 

In summary, these components collectively contribute to a robust and scalable architecture that 

addresses the challenges of distributed data processing, enabling efficient resource utilization and 

enhanced performance in cloud-based environments. 

2.3.2 Nodes for real-time data handling over Druid 

Druid contains several nodes and each node type has its responsibility. Additionally, 

intercommunication between nodes is minimal and livability would not be affected by 

communication failures of different types of Druid nodes. Real-time, broker, coordinator, and 



   

 

43 
 

historical nodes are the most used node types in data application infrastructure which are visualized 

in Figure 6. Druid is the implementation of concepts that must guarantee low latency, quick data 

exploration, and low latency. Druid is designed for real-time and batched data from different data 

sources while keeping access to data in state. Before Druid, we need to employ a stream processing 

platform to join and process data while event ingestion from real-time data sources or message 

buses. However, it provided many data-related operations such as Joins, and Look-ups to process 

data after ingestion. For processing efficiency, set and forget-based data processing applications 

can be used to reach and process data during data transmission between source and destination but 

they do not support data compression. Druid is designed to be utilized as a service layer for Kafka 

Flink Druid (KFD) architecture which is the presentation layer of a high throughput message bus. 

Therefore, it can be surely said that Druid can be the main source and query endpoint for the 

exploratory data analysis process. Another advantage of Druid is uses a concurrency control 

mechanism for decision-required scanable versions of segments and handles hieratical immutable 

files effectively. 

There should be data sources for stored and represented data in Druid. These data sources provide 

us with timestamped events which are used for first-level query pruning and partitioned into 

segments. Kafka is the best option for handling and serving this kind of event in low latency for 

us. We can create open and direct communication using APIs of microservices to ingest data into 

Druid but we need to message bus to increase fault-tolerance and eliminate duplicates in case of 

failure of real-time nodes which can be noticed from Figure 4. After ingestion is completed 

successfully, we will have a time interval of data that can be used to attach files to version string 

by the end of their name aliases. Time interval and string versions allow Druid to eliminate old 

and unused data which can increase the performance of queries on recent data.  
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Figure 4. Visual Representation of Data Flow in a Druid Cluster Architecture [19] 

Additionally, fault tolerance is another topic in Druid because different nodes are automatically 

yielded in specific periods. In this way, the availability of nodes for end-users and internal 

communication keeps them alive in most cases. Also, this coordination relation between internal 

communication between nodes guarantees a link between read and write operations. Therefore, 

Druid is called a self-contained database for different intervals of data sources. In this way, we can 

reach a high level of consistency and low latency when working with different DML operations 

on batch and real-time data. . Druid should be significantly paid attention to different nodes on 

main cases which is easily noticed in Table 4. 

Node Type Function Operations 

Fault 

Tolerance Scalability 

Real-Time Node 

Ingests and 

indexes real-time 

data. 

Indexes and merges 

data, informs 

ZooKeeper. 

Reloads 

indices via 

Kafka 

offsets, 

replicates 

data. 

Handles up to 

150,000 

events/second. 
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Historical Node 

Manages and 

serves historical 

data. 

Loads/drops 

segments, uses 

Local Cache. 

Uses 

current state 

for fault 

handling. 

Supports large 

data volumes via 

parallelization. 

Broker Node 

Merges query 

results, query 

endpoint for 

clients. 

Executes queries, 

caches results. 

Maintains 

previous 

cluster 

state. 

Balances high 

query loads, 

supports caching. 

Coordinator 

Node 

Manages 

segment 

distribution and 

replication. 

Manages segments, 

load balances, 

handles metadata. 

Ensures 

segment 

distribution 

with 

redundancy. 

Adapts to data 

access patterns. 

 

Table 4. Druid nodes on mission critical categories 

For a better understanding work process in Druid, we should realize the data handling process in 

Druid. Druid requires a message bus for eliminating duplicate values in case of some unexpected 

fault and comparing events if needed. We can consider that Kafka is selected as a message bus and 

we have two data about clicking and advertisements which is common for most real-time cases. 

First of all, we must know all streams or data pipelines are logically related to each other. In the 

first step, data shuffling must be done to guarantee two different local events on the same topics 

which will be used in the following step. In the second step, we join events and can add flag 

columns to represent metrics. Following the second step, we can process and clean data in the third 

step. After joining and clean operations are completed successfully, we can deliver final data to 

Druid Real-Time nodes or Historical nodes over Deep Storage.  

For a better understanding work process in Druid, we should realize the data handling process in 

Druid. Druid requires a message bus for eliminating duplicate values in case of some unexpected 

fault and comparing events if needed. We can consider that Kafka is selected as a message bus and 

we have two data about clicking and advertisements which is common for most real-time cases. 

First of all, we must know all streams or data pipelines are logically related to each other. In the 

first step, data shuffling must be done to guarantee two different local events on the same topics 
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which will be used in the following step. In the second step, we join events and can add flag 

columns to represent metrics. Following the second step, we can process and clean data in the third 

step. After joining and clean operations are completed successfully, we can deliver final data to 

Druid Real-Time nodes or Historical nodes over Deep Storage. 

2.3.2.1 Real-Time Node 

Real-time nodes are the initial and main power functionality of Druid. Real-time nodes are 

responsible for interacting with real-time consumers and buffer applications to handle ingestion 

row data, and persist and merge processed data to batch-ready data sources. Through Druid 

internally, it is inlined to communicate with Broker, MySQL metadata database, and with Deep 

Storage cluster to traffic metadata, segments, and query data access. The data handling process 

through Real-Time nodes contains ingestion of row data, assigning index to row data in heap 

memory, and directing indexed data to disk regarding heap overflow problems. If the default or 

configured time window is finished persist data off-heap memory and write to Deep Storage. 

Indexing data allows us to process this data during the validation of the window period if we get a 

query access request from the Broker node. Indexing coming row data and creating immutable 

blocks of data were the first processes in Druid's real-time data handling process. The indexing 

process occurs on disk which allows Druid to fast processing but merging and storing immutable 

blocks of data take place on Disk. Alongside with indexing process, the handoff process through 

Druid is highly selective. 

Through real-time data handling, our data will be accepted configured, or defaulted in the period. 

Regarding this period, our Real-Time nodes inform ZooKeeper which it serving data, and other 

services such as Broker can direct queries to process data. Also, as I mentioned we will have a 

window period time slot that follows in period for writing data from the in-memory index to disk 

which is ready for batch storing. The window period is important to increase the resistance of our 

data handling to process data loss from delays in event delivery. After the in period and the window 

period concluded successfully, Real-Time nodes inform ZooKeeper that segments or immutable 

blocks of data are available and queryable now which Real-Time nodes announce it will not serve 

data relying on a specific period. In case of data drop off required by some reason in Real-Time 

nodes, it can be done if Coordinator nodes can give the correct location of data in Real-Time nodes. 
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If we talk about data handling we should touch on availability and scalability at the same time. 

Foremost, the main data ingestion of Druid is Kafka applications. Therefore Druid adapts to 

increase durability against Kafka applications. For example, Real-Time nodes behave in Kafka 

applications as message buses which if there is some failure we can reload peristed index based on 

last commitment offset. Additionally, we can initialize multiple Real-Time nodes for replication 

of data. In this way, we can increase the performance of Real-Time nodes of Druid to 150000 

events per second. Our data processing scalability relies on a Real-time node schedule that aims 

to merge locally persisted indexes. 

2.3.2.2 Historical Node 

There is no direct communication between nodes inside the Druid database. For regulating 

segment loads and serving we need assist of Historical nodes. Historical nodes are powered by 

shared noting architecture which we can see in many Online Analytical Processing data platforms 

such as the Dremel engine of BigQuery. As I subsequently mentioned, all communication should 

be maintained through direct communication with the ZooKeeper. Historical nodes first announce 

to ZooKeeper about its online state and needed data serving. State and data announcements should 

lead to special instructions against segments. These instructions should be accepted and translated 

by ZooKeeper and they must contain information about where an immutable data block or segment 

is located, how it should be decomposed, and how it should be processed. Most of the time, these 

accepted instructions aim to drop or load immutable blocks of data or segments.  

Through Druid, we can improve the performance data access process using Local Cache for this 

purpose. At first glance, Historical nodes communicate the result of the desired query in Local 

Cache if it is found, They inform the ZooKeeper. In case it is not found in the Local Cache 

ZooKeeper look mentioned location in the instructions. If the segment is available, the ZooKeeper 

announces data source is ready for queries. Additionally, Historical nodes are inclined to process 

segments in available cores to avoid some unexpected faults. Therefore, we should understand 

each segment has its upper limits to storing immutable data. Historical Nodes are the most 

important part of Druid because all data are stored and served there. For this reason, it was called 

as usual Druid production node.  

We can look deeply at the consistency details of Historical nodes considering selected consistency 

policy and availability capabilities. Historical nodes rely on segments which segments are 
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immutable data blocks based on time auto-detected time partitions. Immutable time blocks give us 

the possibility to use a read consistency policy which improves the performance of our data fetch 

operations. Read consistency policy allows us to use the benefits of parallelization which default 

aggregation and concurrent scan mechanisms can exist without blocking data sources or tables. 

Additionally, if we look availability of Historical nodes we can see it is rely on ZooKeeper because 

all communication takes place over ZooKeeper. However, this dependency is not at a high level 

because Historical nodes keep the current state of data and it compares this state with ZooKeeper 

which means we can use the last state of data if there is some fail happens. 

2.3.2.3 Broker Node 

Druid is a real-time high-performance database that should accept SQL queries to retrieve results 

for us. To achieve this, Druid initializes Broker nodes. These nodes are responsible for merging 

partial results obtained from both real-time and historical nodes. They communicate with 

ZooKeeper to obtain information about the location of queryable segments. This communication 

with ZooKeeper enables executed queries to identify the root data sources necessary to return the 

desired results effectively. Most of the time same queries are executed at the same time for a long 

which means saving the results of queries in cache can increase result retrieval time in advance. 

We have different strategies to implement database disk buffering to change the results of 

subsequently executed queries. LRU-K is used in Druid to keep tracking recent K references to 

highly used database pages. LRU invalidation strategy mainly aims to assist local heap memory. 

Additionally, it simulates external Memcached stores which rely on distributed key-value sources. 

If we would like to understand workflow query execution and result delivery. First of all, the 

Broker gets an SQL query which leads to a search query result on chance if the result can not be 

found, it goes through Historical and Real-Time nodes. I should say Real-Time nodes rely on query 

results that can not be found in Cache because Real-Time data is mutable and it is open to change 

regarding new data from the message bus if some failure occurs. Real-time data can be 

permanently changed and caching results can be unreliable. Also, Caching inlined to add extra 

durability alongside query performance improvements. In case of all, big scale fail occurs on all 

nodes, some query results can be reachable to us. Same as per previous information about clusters, 

the livability of the Broker node does not fully rely on ZooKeeper because the Broker node saves 

the previous state of the cluster and segments which adds extra realized against accidents. As it 
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was described, Broker nodes are utilized as query end-points for most database clients. To 

understand and clarify the pictures, we should understand the relation between the Broker and the 

ZooKeeper. Indeed, the Broker does not rely on ZooKeeper to enhance of fault-tolerance but it is 

significant for Broker nodes. Desired data can be in Historical and Real-Time nodes which 

communication is provided by ZooKeeper. Also, expected data can be split between Real-Time 

and Historical nodes, and data are merged by ZooKeeper for accepted queries of the Broker node. 

If we talk about querying immutable files, we should keep intervals of query and timelines. Broker 

nodes easily handle intervals using look-ups into timelines to get the most recent data using 

metadata columns and string versioning of segments. The result of this timeline should be 

considered for remapping results into Broker nodes in case of addressing results of queries in cache 

and Historical. In this way, we can enhance the concurrency control mechanism of Druid more 

effectively. Additionally, these kept metadata can be used for the drop-off of unneeded segments 

more quickly instead of creating communication with other nodes over the ZooKeeper node. 

2.3.2.4 Coordinator Node 

We have segments of immutable data blocks in Historical nodes and we can query them with 

Broker nodes. But Broker nodes need to get required and must eliminate segments from Historical 

Nodes to which Coordinator nodes take responsibility. Historical Nodes know how they can load, 

respond, and drop immutable data blocks but they need the location of these blocks which the 

Coordinator establishes this important communication. Additionally, all communication occurs 

over ZooKeeper. However, there is no information is given about data management and 

distribution of segments over Historical nodes. If we would like to know the main cluster behind 

it, we should point Coordinator cluster of Druid. The coordinator cluster is responsible for loading 

new data, replicating segments, dropping outdated ones, and moving data to the load balancer. We 

can manage immutable segments using multi-version control concurrency control swapping 

protocol. In this way, we can maintain stable desired views of data. Redundant backups can 

be easily get using multiple Coordinator nodes which would be controlled by a single node. This 

single Coordinator node over others should be selected in the leader election process. Additionally, 

all Coordinator nodes should use ZooKeeper to maintain and establish connections between other 

nodes. When Coordinator nodes interact with ZooKeeper it aims to compare the state of expected 

and state of actual connection details over other Historical nodes. Coordinator nodes should 
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maintain two connections. The first connection should target to ZooKeeper to get ground 

for connection to other nodes. However, the second connection creates the same point with the 

internal MySQL database where the Coordinator cluster can access metadata information about 

segments in Historical nodes. This metadata information contains data about served segments and 

data governance. Served segments are mainly tagged after the window period is finished in Real-

Time nodes which means immutable data blocks are ready to use against query contexts from the 

Broker node on Historical nodes. At another glance, metadata about data governance contains how 

segments have been created, how should they be destroyed, and how they must be 

replicated. Also, segment creation related metadata point operational and configuration parameters 

in the same way. There are some roles between Coordinator nodes in which we can load and drop 

data from Historical clusters. Additionally, Coordinator nodes can assigned to segments or 

immutable blocks of data to different Historical node tiers. These Historical node tiers differ 

regarding data access rate and we can manage different replicas of segments in these tiers using 

rules. These rules came from an internal MySQL metadata database which executed in exact 

periods against segments on ordinary replicas or different replicas in multiple tiers of Historical 

nodes. All mentioned rules contain first fit apply logic which executes against the nearest segment 

that is suitable regarding information that came from ZooKeeper. As you consider, the reaction 

is important in retrieving the desired result of the query, therefore, the same load distribution 

algorithm is used for this purpose. Through rooting queries on the right data real-time and batch 

data sources, load balancing should be considered. Also, we should keep this simple logic 

in mind, smaller segments can boost the performance of queues and load balancing using this 

simple logic. Through load balancing, query patterns take a point for replication and 

distribution and these operations occur regarding segment source, recency, and size. The ability of 

Broker nodes to behave the same as other nodes was talked about in previous chapters. 

 

2.3.3 Compression of Immutable File Formation Methods for Data Applications 

The storage format of Druid is based on columnar storage format which is highly selective in 

Online Analytical Processing databases and file formats. Data and column aggregation can be 

stored in this columnar which makes it easy to access data through aggregation results of data. The 

main representative of data in Druid is the data source which contains segments. These segments 

are partitioned timestamped events from real-time data consumers or messaging services such as 
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Kafka. If we need to use metadata properties of data sources or tables in Druid, we should keep in 

mind that version strings on name aliases of data sources will be considered. When we input a 

query to the Broker node, Druid executes a read operation that relies on the latest one based on the 

version string. Additionally, the concurrency control mechanism of Druid benefits from version 

string which partition data into segments, and these segments are replicated and distributed by 

Coordinator nodes. As previously mentioned, version strings are significant in indicating the 

freshness of data. Therefore this specialty in the file of Druid allows us to access newer versions 

of data conveniently. Alongside data types in Druid, we can see there are three main data type 

representations. The first one must be a timestamp which is used for string versioning of data based 

on specific 1 hour time intervals. The second common data type is the string which is convenient 

for representing dimensions. The last one is numeric, numeric data type is highly used for metrics 

which can be generated during ingestion or after ingestion process. To increase the performance 

of data operations in dimension columns, inverted indexes have been used by default. Also, a log-

structured merge tree is utilized for data that have been newly added by Deep Storage or Real-

Time nodes. Real-time nodes mainly store new data in heap-based JVM stores in key-value pairs 

which are highly optimized for writing operations. Hadoop-leveraged MapReduce jobs are 

responsible for the partition of data for immutable blocks or segments and we can see the same 

approach for Spark nodes. As previously mentioned, traditional sources of data to segments are 

real-time nodes but Deep Storage can be employed for accepting static files. It leverages static 

files and creates immutable blocks that can be served over Historical nodes. The assistance of 

Hadoop-based technologies is not limited to establishing new immutable blocks. Also, they can be 

used for adding metadata to the MySQL metadata database of Druid. Hadoop Batch Indexer is 

used for adding metadata information to the metadata database of Druid which is kept for future 

usage in versioning segments based on ingestion time intervals. Additionally, I can clarify for 

clarifying all process segments are created when they are stored in Deep Storage. As I mentioned, 

metadata is used for the versioning of segments, but it was unknown when versioning was defined 

exactly. Version strings of segments have been defined when the Batch process started in Deep 

Storage. With the assistance of the Hadoop Batch Indexer, metadata is written and it will be used 

in Unifying Views where Coordinator Nodes can serve them to other nodes. 

Through Druid, we can experience several functionalities that can be seen on traditional databases. 

One of these functionalities is the compression process which makes data in a relatively small size. 
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It is known that a small immutable block of data or segments can bootstrap the performance of 

quires. Through establishing, segments and immutable blocks for real-time and batch data, we 

should keep in mind that HashMap is used by Druid. HashMap is employed to finalize to creation 

of immutable data blocks and provide incrementally populated segments. It is defined as a data 

ingestion process. HashMap should be used for real-time and batch ingestion operations to make 

ready data in our service. From the fault tolerance side, copies of one segment are stored in multiple 

nodes for handling unexpected disasters. Several copies can be selected in configuration files. 

However, data should be transformed against many well-known generic compression algorithms. 

Encoding is the first step for this purpose which encodes string-based columns into integer arrays 

which is more suitable for generic compression algorithms  

2.4 Optimized Query Handling for Logical and Physical Components of Storage Model 

Transactions involve sequential orders of Data Manipulation Language (DML) and Data 

Definition Language (DDL) queries, either individually or together. Stored Procedures (SP) and 

User Defined Functions (UDFs) can also participate in transactions, particularly in Extract-Load-

Transform (ELT) data transformations. Although nested queries and semistructured file formats 

are common in data processing, Snowflake transactions do not allow nested transformations for 

consistency improvements. Each transaction is associated with a specific session, and Snowflake 

prohibits the mixing of sessions within the same Snowflake account, even in multithreaded 

environments. 

In SnowSQL implementations, transaction management typically falls into two main states. The 

first state involves explicit declaration and management of transactions using transaction 

management keys. In the second state, transactions are automatically handled by Snowflake due 

to the default support of AUTOCOMMIT. However, certain scenarios, such as mixing data 

manipulation with data definition queries, can pose challenges that transaction management keys 

may not fully address. Yet, this is considered a minor issue within data warehousing operations. 

When dealing with multiple transactions, Snowflake offers a scoped transactions concept. For 

example, if one Stored Procedure (SP) calls another within a transaction, Snowflake creates 

autonomous sessions for each, thus avoiding true nested transactions. Transaction management 

clauses can be either explicit or implicit; for instance, within a session, the first block of queries 

might use explicit transaction statements, while the second block does not specify any transaction 
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management keywords. In this case, Snowflake defaults to AUTOCOMMIT, treating all implicitly 

managed transactions as part of a single transaction, eliminating the need to maintain separate 

queries. 

There are various isolation policies and levels implemented in data warehouse platforms to ensure 

transactional integrity and consistency. If we take our focus through Snowflake, we can see there 

is just one isolation level offered. This isolation policy is called READ COMMITTED Isolation 

which creates ground for queries using data from the table in the last commitment state. READ 

COMMITTED Isolation should be the main selection over Data Warehouse solutions because 

Data Warehouses must face reading-heavy queries from upstream such as Business intelligence 

applications. It comes with some disadvantages alongside high performance on data manipulation 

query executions. One of the most noticeable disadvantages is queries consider the last 

commitment state when they start processing data. We have query A which executes Table X but 

query B changes data in Table X during the execution of query A. Query A did not process or 

query data in the table because it was already changed by another query. In incremental continuous 

data flow, there can be situations where idempotency is violated during incremental writing 

operations. For this purpose, selecting a merge pattern allows us to consolidate multiple case-based 

operations under a single transaction, ensuring better transactional integrity and consistency. Our 

data operations can require other data manipulation operations such as updating, deleting, and 

inserting and we would like to keep track of data operations to avoid some disadvantages of READ 

COMMITTED Isolation level. We can use resource looking which can resist parallel operations. 

As previously mentioned, selecting the Merge pattern is important to ensure incremental and 

idempotent writing operations. However, it's important to note that write operations are not 

restricted by table locking alone in Snowflake. You can insert data into both internal and external 

tables within Snowflake alongside other Data Manipulation Language (DML) operations, even if 

the targeted resources are subject to resource locking. Snowflake's architecture allows for efficient 

handling of concurrent operations on tables, ensuring data integrity and consistency across 

different types of operations.  

Effects of Snowflake transaction and isolation policies can be easily seen in real examples. Many 

organizations power their data application with Data Vault 2.0. Through the Data Vault 2.0 model, 

we write data from sources to different tables to show business objectives states, and relations. 

Common Hub tables can serve multiple business objectives and should be updated consistently to 
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reflect changes across these objectives. This ensures that updates or modifications impacting 

various business processes are accurately reflected in the centralized Hub tables. New data to this 

Hub table require parallel updates from stage tables to the representation of these objectives. If we 

would like to update the Hub table same time from two different stage tables, we may face 

duplicate values because Snowflake employees READ COMMITTED Isolation level which 

parallel transactions can not see each other. Additionally, data Insert operations can not be subject 

to table locking in Snowflake. Neither Isolation nor resource locking can eliminate the possibility 

of duplicate values through Insert operations. Therefore Merge pattern should be consumed which 

resource locking can put on hold until other queries are finished. These different approaches of 

isolation and resource locking on different data manipulation operations split into passive 

integration and concurrency loads in more advance. For this reason, we can mention Hub tables 

which do not have dependency regarding isolation differences can leave target tables with the same 

integrity level. 

2.4.1 Search Optimization and Query Acceleration 

Search Optimization Service is designed to improve the performance of queries that return one or 

a relatively tiny number of rows. Additionally, scanned columns of the table should contain at least 

more than 100000 unique values. We can add lookup and analytical queries which they selective 

point lookup tables containing supported predicates. These selected predicates have importance 

because the Search Optimization Service just addresses queries in which there are equality 

searches, search columns in VARIANT data types, search relies on geography functions, and 

lookup operations are enhanced by substring and regular expressions search. If we look at industry 

implementations of Search Optimization Services, we can see fast response required descriptive 

data applications such as Business Intelligence offers open ground for it. Additionally, predictive 

data applications require to access the small values of data from big data sets which require 

extensive set filters. If these filters are based on selective predicates, the Search Optimization 

Service can bootstrap the performance of these queries as well. Search optimization Services can 

improve the performance of quires that use substring, regular, and equality operations because 

these quires can return relatively small numbers of results and we just need to look at immutable 

data blocks for small-size desired results. Also, queries that use data from variants, semi-structured 

arrays, and objects can benefit from Search Optimization Services if they use selective predicates. 
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The same thing is acceptable for geography functions that run against GEOGRAPHY columns in 

big volume distinct value columns. 

Search Optimization Services can improve the performance of search queries using special data 

structures. This data structure is called a search access path which is designed to use skip micro-

partitions based on looking data and the Snowflake Copmute Service layer does not need to scan 

unnecessary micro-partitions as well. We can manually enable Search Optimization Service to 

load this data to the search access path. In case any data update occurs during the optimization 

process Snowflake automatically handles new updates and reflects to our search access path data 

structure. Therefore, stakeholders of Snowflake data warehouse do not need to manually execute 

maintenance tasks or lock resources during the optimization process. Additionally, the cost for 

these operations is automatically factored into other services provided by Snowflake. Regarding 

noticeable performance improvements, addressed data sources should meet some requirements. 

The initial requirement is that the specified columns of the table should not be primary cluster 

keys. Following this, query-touched columns need to very high cardinality level which counts to 

100000 distinct values in each of the majority of involved columns. Lastly, we have restrictions 

on column data type granularity, column types can not be FLOAT and GEOMETRY. Additionally, 

we can see the same reactions over data types in sessions, there is no type casting accepted in table 

columns. But type casting in static values in filtering operations and type casting from int and float 

to string is acceptable for optimization by Search Optimization Service. Our views and secured 

views can benefit from the Search Optimization Service because views are created on SELECT 

statements if these statements contain accepted clauses and there is not any restring data type or 

casting operation, our views can benefit from it. As different types of views, our joint operations 

can benefit from this. Some filtering or selective predicated can be used to improve the 

performance of join operations which opens the door for Search Optimization service if addressed 

data types meet requirements too. Unfortunately, we have more restrictions for Search 

Optimization Service regarding to type of data sources and column definitions. Exactly, External 

and Dynamic tables cannot undergo alterations with the Search Optimization Service, unlike 

Materialized Views, which can indeed benefit from this service. Also, column definition that 

contains collate, column concatenation, and analytical operation are not suitable to be part of the 

optimization process as well. In some cases, we need to retrieve archive data or use the previous 

state of the table alongside with current state. It can be a costly query but we can not use a Search 
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Optimization Service with a Time Travel date because a Search Optimization Service can just 

work with current data. 

Query Acceleration Service is one of the unique services of Snowflake to improve performance 

queries without changing virtual processing power. Query Acceleration Service aims to share 

processing operations over suitable available servers and it costs a relatively small amount 

compared to waiting for execution queries in normal customers. We can imagine we create a virtual 

processing resource or warehouse in Snowflake for data analysts. Normally, they should execute 

ad-hoc and low resource-intensive queries but they execute unpredictable complex queries instead. 

However, the allocated warehouse force is to wait for us to get the desired result because the size 

of the warehouse is small compared to large queues. We have two options to address this problem. 

The first option is to change our warehouse or virtual processing power manually but the data 

analyst can forget to change it after the execution of a complex query concluded successfully and 

continuing with a changed warehouse can cost some money. However, the second option offers to 

usage of Query Acceleration Service which we can extend the warehouse if needed with a shared 

workload over available servers. 

Query Acceleration Service can be enabled to reduce the impact of outliers that offload portions 

to required sources. There are special types of queues which can benefit from this. If the query 

requires large scans and utilizes a selective filter to get desired results, we can use from 

acceleration service. The main advantage for us is reduced wait time over wall-clock time spent 

for scanning and filtering. Additionally, it opens the ground for execution in available nodes 

parallel. Therefore, Query Acceleration Service relies on the availability of virtual warehouse 

services. Before its enabling occurs, we can use certain system functions to detect virtual 

warehouses. The most important system function is ESTIMATE_QUERY_ACCELERATION for 

this purpose. In this way, we can get a virtual warehouse list and their options for each scalar. 

Scalar in Snowflake virtual warehouse leads to extra costs and can enhance performance in 

advance therefore it should be selected wisely to control costs 

2.4.2 Fast response data views 

In Snowflake, there are various types of views including standard views, secured views, and 

materialized views. These views can be leveraged for creating data marts, optimizing performance 

by pre-computing join operations, and providing secure access to query results. From a 
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performance improvement standpoint, materialized views will be examined alongside other 

optimization services. 

Snowflake provides Materialized Views to improve performance on particular data processing 

activities including range search, equality search, and sorting operations. When queries match 

particular conditions, they can be converted into table-based structures like as views. The 

prerequisites for materializing queries include ensuring that the intended return size is modest and 

that the query's underlying base database changes seldom. This stability guarantees that the 

materialized views are effective and reliable at optimizing query performance. After meeting 

requirements confirmed successfully, we can materialize the result of heavy operations such as 

semi-structured files and long-time needed aggregation operations and data processing through 

external tables and stages. Additionally, we do not need to run helper or maintenance tasks to up-

to-date our Materialized Views because Snowflake takes this responsibly automatically and 

implicitly. When there is some change or new data insertion occurs, transparency Materialized 

Views is going to be updated automatically. There are other alternatives for Materialized Views 

because it has some disadvantages such as frequent data changes on data sources not allowed, 

relying on intensive data sources, and requiring additional storage opposite to caching. Regarding 

these pitfalls, we can benefit from Materialized Views utilizing them in data mesh infrastructure, 

improve the performance of same join operations, and provide a secure way of materializing 

queries. 

Materialized views can be utilized to enhance the performance of satellite tables with parent keys 

by storing precomputed query results, which accelerates data retrieval significantly. It's important 

to note that materialized views are not compatible with window functions and are not suitable for 

point-in-time (PiT) analysis involving joins. 

For point-in-time (PiT) analysis without joins and leveraging JoinFilter efficiently, Current Point-

In-Time (CPIT) tables can be a preferable alternative over daily PiT data. CPIT tables optimize 

data access by directly accessing relevant properties from surrounding satellite tables. Conditional 

Multi Table Inserts can effectively manage Point-In-Time tables containing daily, weekly, and 

monthly data, ensuring the correctness and completeness of PiT datasets and enabling smooth data 

insertion based on predefined criteria. 

Data Vault architecture is advantageous for shared business data models and multitenancy 

scenarios. It enables multitenancy by accommodating multiple tenants within a single, scalable 
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data model. This approach ensures effective and secure data management while meeting diverse 

business requirements across various tenant companies.. 

3 Analysis and Findings  

3.1 Experimental System Setup 

Firstly, we need to complete the theoretical frameworks of an ideal data warehouse and data marts 

to align with the fundamental requirements of descriptive data applications. In the initial 

introduction chapter discussing Business Intelligence application requirements, along with the 

nodes and components of data applications, we can systematically categorize requirements based 

on these nodes per stage. Each specific requirement for effective modern descriptive data 

applications should correspond to stages, with each stage containing nodes. I observe that by 

configuring a data storage model for each stage, nodes can inherit this storage model. This 

configuration also allows for using these nodes in different architectures while maintaining the 

required storage model. Therefore, we must establish a common data application infrastructure for 

the data warehouse, where these nodes can be most commonly utilized, ensuring that the data 

application meets the requirements of modern Self-Service Business Intelligence (SSBI) 

applications.  

 

Figure 5. Near Real-Time Data Vault Architecture with Enhanced Batch and Real-Time Loading 

Capabilities [20] 
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I analyzed the dimensional Kimball and Data Vault 2.0 logical data models, which are significant 

for creating a Near Real-Time Data Infrastructure meeting the requirements of collaborative and 

unified data processing for batch and real-time loads. Data Vault 2.0 is utilized for managing data 

and generating hash keys based on descriptive data and business keys. The processed data with 

these hash keys is divided into hubs, links, and satellites to represent business objects, object 

relations, and descriptions of these business objects, respectively. Additionally, in the second 

chapter, we encounter different table types in Data Vault 2.0 that is described in Figure 5, including 

assistance tables designed to enhance query performance, meeting the requirements of ad-hoc 

queries and performance needs of Quarterly Business Intelligence applications.  

In addition, the final stage of the data application involves information marts that contain easily 

queryable data organized in a dimensional design. For our initial data warehouse setup, we need 

nodes capable of handling both real-time data processing and batch data processing. Real-time 

nodes write data to memory initially, with data being flushed to disk blocks after a guaranteed 

minimum time period. We primarily differentiate data based on its real-time processing needs. 

Both read and write operations occur at the same level, and faults can arise due to the data handling 

load. The data is considered temporary, meeting the data integration requirements of Business 

Intelligence applications. 
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Figure 6. Data Handling and Disk Persistence Process in Loading and Staging 

This stage of the data warehouse is highly technical, ensuring data integrity and providing metadata 

along with technical columns. Reading operations are minimal, with a predominant focus on write 

operations. Hash surrogate keys are generated from business keys and other descriptive payload 

data to meet the long-term requirements of the data warehouse where nodes has relation such as 

Figure 6. This approach allows us to fulfill the needs of descriptive data applications, which require 

adaptability to sudden business changes. The data stored in these tables is permanent and holds 

significant value for Data Lineage operations.  
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Figure 7. Reading Data and Writing Hash Surrogate Keys to Disk 

The Business Data Vault is a critical stage of the data warehouse where read operations are in high 

demand. It must also be strictly fault-tolerant because it retains both historical and current data. 

The primary objective of this stage is to meet the performance requirements of Business 

Intelligence applications by facilitating efficient data querying, enhancing data shareability, and 

enabling consistent collaboration. All types of tables within this stage are designed for 

permanence, and read operations are given high priority to ensure optimal performance and 

accessibility which nodes order reflect it based on Figure 7. 
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Figure 8. Data Reading Operations in Business Data Vault 

To meet the performance and collaboration requirements of Business Intelligence applications, it's 

essential to incorporate an Information Delivery layer into the data warehouse. This layer is 

responsible for creating data marts tailored to different collaborative departments and business 

groups. Any errors or changes to the data within this layer do not impact the entire dataset since it 

serves as a representation layer that is described in Figure 8. The Information Delivery layer 

predominantly supports heavy read operations, as most operations involve querying data. The data 

in this layer is temporary and can be regenerated based on intermediate layers if needed, 

prioritizing performance over fault tolerance. Despite the importance of fault tolerance, the ability 

to recreate data mitigates potential issues. This layer serves as a query endpoint where most queries 

are executed, making it a crucial stage for collaboration, data sharing, and ad-hoc query execution 

within descriptive data applications. 
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Figure 9. Reading Operations from Disk to Dimensional Model in the Information Delivery 

Stage of a Data Warehouse 

Master data and metadata are not typically stored within the data warehouse; instead, they are 

maintained in separate databases. The primary responsibility of information marts is to establish 

dynamic pipelines and provide additional information to the Data Lineage service. Additionally, 

the collaborative work environment demanded by Self-Service Business Intelligence applications 

relies on metadata and master data to reduce the time required per report. Most of the data in 

information marts is permanent, and read-based operations should be prioritized during the storage 

model selection process. All table types within these marts are designed to be permanent to ensure 

data integrity and accessibility which Figure 9 and Figure 10 supports statements.  
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Figure 10. Master Data and Metadata Management in Data Warehouse Environments 

3.2 Results 

3.2.1 Ruleset for selection RAID levels in data application based on impact on Business 

Intelligence application 

We have talked about the requirements of Business Intelligence which should provide coloration, 

unifying real-time and historical data. Also, query endpoints should be enhanced by metadata and 

master data management and this extra information about will be used in data lineage services. 

Regarding these requirements, we look through detailed components and methods which we can 

achieve by them. These components have been analyzed based on nodes of commercial data 

warehouse solutions such as Druid and Snowflake and distributed data OLTP database engine. In 
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this way, we have a chance to form and categorize these nodes, file types, and metadata processors 

based on logical data modeling to achieve requirements. And it is time to analyze the impact of 

data storage models. As was discussed in the introduction, cloud storage-based geo-replicated 

storage models are highly used and it is the most continent way but its disadvantage is described 

under the CAP theorem which points to fault-tolerance and performance tradeoffs in mission-

critical systems. For this purpose, we will analyze each stage of the data warehouse for high-

performance Business Intelligence applications. This stage will contain nodes, data categories, and 

loads and a simple decision-making ruleset will be provided based on these inputs to increase the 

performance of the data storage model based on the priority of fault-tolerance and performance. 

Lastly, we will set extra rules for making these processes more energy-efficient. 

The first stage of a data warehouse is for data loading and staging row data for a temporary time. 

Most of the time, its interacted stakeholder is object storage which data elimination process that 

occurs after data ingestion. Also, we can reload data from sources in case of some unexpected 

failure with idempotent metadata-based data pipelines. This stage contains Real-Time nodes and 

Deep Storage nodes to handle and unify real-time and batch data through transient tables. Data 

read and write operations occur frequently in high doses. Regarding these nodes, table type, 

and I/O activity, we should select RAID-0 which distributes data into multiple blocks of disks. 

The second stage is the intermediate stage which has special importance for enterprise data 

warehouse architecture and our requirements taken from this kind of large-scale decision-making 

system. This stage is responsible for processing and historical data which contains many viable 

assets for the company. Data isolation occurs in this stage which hashed surrogate key generation 

happens. All table types should be permanent which is the source of metadata. Micro-partied and 

segments are the main types of data in this stage. I/O operations are not in high frequency 

compared to the Staging and Loading stages. Most important our system should be highly fault-

tolerant because we keep every value data asset here. For these reasons, we can use RAID-1 data 

mirroring which is less costly but it has performance problems. To address these 

data problems we can use adding data parity methods in our disk storage. Intermediate Stages are 

divided into Raw Data Vault and Business Data Vault modes. Performance is a priority for the 

Business Data Vault Stage and RAID-5 can be selected for this stage. But performance is not a big 
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case in Raw Data Vault as fault-tolerance therefore RAID-1 can be used for keeping tradeoff cost 

and performance alongside fault-tolerance. 

The last stage of a data warehouse is the Information Delivery stage which is mainly used by 

predictive and descriptive data applications. Virtual warehouse nodes are the main part handling 

data under Broker nodes. Also, we do not need to strictly apply fault-tolerance because we can 

easily back up data from intermediate stages, especially from the Business Data Vault stage. For 

these reasons, we can use RAID-0.  

The stages of the data warehouse concluded with succeed from the selection of RAID-based disk 

virtualization based on performance degradations but our data applications for efficient Business 

Applications with a data warehouse. Also, we should pay attention to Metadata and Master data 

databases. Most data ingestion and procession based on metadata and master data should be 

available for data pipelines and Business Intelligence applications. For this reason, we can select 

RAID-1 and RAID-5 based on a load of data. 

3.2.2 Improve performance of data strips in real time based on current load changes in 

disks 

In many cases through the ruleset for selecting RAID levels, data striping is selected based 

on regarding their high performance. Striping can be utilized in each stage of the data warehouse 

standalone or parting data into blocks of disks. Therefore, it is enabled to striping is selected in 

RAID-0 and RAID-5. In the initial scenario, we can consider less amount of disks but the number 

of disks can be increased dramatically to handle and present data in enterprise-level descriptive 

data applications. For this reason, the provided ruleset should be enhanced by advanced algorithms 

to increase the capacity of data application. Mirroring data into multiple disks under RAID-1 is a 

mass data operation in which we replicate data to make more fault tolerance which we just copy 

written data into at least two or multiple add numbered disks. 

For this reason, striping data needs extra logic to write data into the most relevant disks. 

In modern, disk virtualization techniques, hot and cold disks are used to keep data in more logical 

parts. Hot disks are employed to store data that is acceded over data internal and external data 

queries through data applications. However, cold disks are used to store archive data which can be 
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determined from the size of the data based on the selected template. To optimize data striping, we 

should accept we will have multiple disks and a hot-cold template should be used. Under these 

curcumins, a dual-engine-based high-performance storage system (DSH) algorithm can be used. 

This algorithm has great advances in operating CPU power more effectively. Also, we can see the 

same positive effect on disk energy usage when we write data without opening extra 

disks. The DSH algorithm determines the size of the strip which decreases the size of 

strips following this operation. After size adjustment, frequency must determined based on 

accepted data loads. Additionally, some metrics should be measured before and after 

implementation. The first metric is disk consumption time which all should be equal. Also, we do 

not get data anomalies in delete operations. To meet these operational requirements, the algorithm 

first looks at openly available disks. If the disk is open and meet contains enough space 

for data then it can be can employed. If there is no open disk, an algorithm looks at cold and hot 

disks respectively. Cold and hot disk selection took place for size strips based on the selected 

template.  

We can see the DSH algorithm in the overall architecture in Figure 11. To optimize this process, 

the DSH communication framework transfers the task of generating verification data within the  

Figure 11 DSH Interaction Infrastructure [29] 
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DSH software algorithm to an FPGA. The data is communicated to the FPGA via PCIE and the 

Riffa architecture and then returned after processing. This approach effectively conserves 

significant CPU and GPU resources. The traditional software RAID setup starts with creating a 

software RAID in user space using the MDADM tool. This soft RAID creates a virtual hard disk 

(MD) in kernel space, which consolidates the disks forming the RAID. From the perspective of 

user space, there appears to be just one MD hard disk. Access to the individual disks occurs 

indirectly through read-and-write operations on the MD hard drive. 

3.2.3 Final framework   

 The final design framework will integrate RAID selection and optimize data striping across hot 

and cold disks. Initially, we determine the appropriate RAID type based on the stage of the data 

application, aligning with the migration of requirements across logical and physical components. 

Next, the striping optimization process involves two key parts. First, we select the appropriate 

disks or allocate new ones.  

function select_raid_configuration(stage): 

    if stage == "Data Loading and Staging": 

        return "RAID-0" 

    else if stage == "Intermediate Stages (Raw Data Vault)": 

        if "Raw Data Vault" in nodes: 

            return "RAID-1" 

    else if stage == "Intermediate Stages (Business Data Vault)": 

        if "Business Data Vault" in nodes: 

            return "RAID-5" 

    else if stage == "Information Delivery Stage": 

        if "Information Delivery" in nodes: 

            return "RAID-0" 

    else: 

        return "RAID-0" 
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Second, if we have an existing disk then we select a cold or hot disk as destination. I provide the 

pseudocode of each operation and an overview of the process instead of adding comments. 

 This function select_raid_configuration determines the appropriate RAID configuration based on 

the stage of data processing. It checks the stage parameter to decide which RAID level to 

recommend. If the stage is "Data Loading and Staging", it suggests using RAID-0 for performance. 

For the "Intermediate Stages (Raw Data Vault)", it recommends RAID-1 if the "Raw Data Vault" 

nodes are present. Similarly, for the "Intermediate Stages (Business Data Vault)", it advises RAID-

5 if the "Business Data Vault" nodes are detected. Finally, for the "Information Delivery Stage", it 

suggests RAID-0 if "Information Delivery" nodes are part of the setup. If none of these stages 

match or if no relevant nodes are detected, RAID-0 is recommended as a default. 
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This function calculates priority values for each disk based on the number of requested disks, disk 

free addresses, and total free addresses. It iteratively assigns priority values to disks starting from 

the highest priority down to accommodate the requested number of disks. 

 

This function prioritizes disks for striping based on their status (open or cold) and their associated 

priority values. It first selects all currently open disks and then chooses additional cold disks based 

on their priority, ensuring that the maximum number of disks for striping is respected. 

 

function calculate_first_priority(request_disks, disk_free_addresses, 

all_free_addresses): 

    N = total_number_of_disks 

    average_priority = 100 / N 

    priority_granularity = (disk_free_addresses / all_free_addresses) * 

average_priority 

    if request_disks <= N: 

        current_priority = average_priority 

        first_gradient_total_priority = 0 

        for i from 1 to request_disks: 

            ith_gradient_priority = current_priority - (i - 1) * priority_granularity 

            first_gradient_total_priority += ith_gradient_priority 

        Nth_gradient_priority = 100 - first_gradient_total_priority 

        Nth_gradient_priority_number = request_disks 

        for j from request_disks + 1 to N: 

            jth_gradient_priority = ith_gradient_priority - priority_granularity 

    return priority_values_for_each_disk 
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This particular opinion framework can be applied to green, mission-critical projects that involve 

extensive operations reliant on promises. Certain governmental and non-cloud applications can 

benefit from geo-replicated storage services. Moreover, major cloud vendors can leverage this 

option framework to improve their data warehouse solutions. By incorporating components from 

Druid and Snowflake, the final model is formalized, allowing this paper to address fault-tolerance 

issues and offer solutions.  

 

function calculate_second_priority(total_disks, open_disks, cold_disk_priorities): 

    max_disks_striping = total_disks 

    selected_disks = [] 

    for disk in open_disks: 

        selected_disks.append(disk) 

    sorted_cold_disks = sort_disks_by_priority(cold_disk_priorities, 

descending=True) 

    for disk in sorted_cold_disks: 

        if len(selected_disks) < max_disks_striping: 

            selected_disks.append(disk) 

    return selected_disks 
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Figure 12. Architecture of selection RAID levels with input of stage of data warehouse. 

In summary, the implemented decision-making process for selecting and configuring RAID levels 

in a data warehouse environment demonstrates a structured approach to optimizing storage 

solutions. The process begins by evaluating the stage of the data warehouse, along with nodes and 

table types, to determine the most appropriate RAID configuration. Specifically, the flowchart 

highlights a distinct pathway for RAID 5, a commonly used RAID level known for its balance of 

performance, redundancy, and storage efficiency as Figure 12 described. 

For RAID 5 configurations, the methodology includes two key steps: calculating the first priority 

based on requested disks, disk free addresses, and all free addresses, followed by calculating the 

second priority involving total disks, open disks, and cold disk priorities. This iterative process 

ensures a comprehensive evaluation and optimal allocation of disk resources. 

The feedback loop between the first and second priority calculations underscores the system's 

adaptability, allowing for refinements and adjustments based on evolving requirements and 

priorities. This iterative approach not only enhances the accuracy of disk configurations but also 

ensures that the data warehouse can maintain high performance and reliability. 

Overall, the decision-making process outlined in this study provides a robust framework for RAID 

configuration, particularly emphasizing the intricate requirements of RAID 5. The approach 

ensures that data warehouses can efficiently manage storage resources while maintaining the 

necessary levels of data redundancy and access speed. This methodical and adaptive framework 

can be instrumental in advancing data storage strategies in complex, large-scale data warehousing 

environments. 

4 Conclusions 

In this thesis, I investigate the complex link between data storage types and the performance of 

Business Intelligence (BI) systems. My inquiry dug into the sophisticated needs of current business 

intelligence systems, which involve the seamless integration of real-time and historical data, as 

well as the capacity to offer self-service analytics. 

I began by deconstructing the many phases of data application, methodically studying the 

components and procedures required to fulfill the expectations of business intelligence 

applications. Through this investigation, I discovered that storage models play an important role 

in influencing the performance and fault tolerance of these systems. My investigation took context 



   

 

73 
 

to the world of RAID (Redundant Array of Independent Disks) technology, where I developed a 

set of criteria for selecting RAID levels based on the individual requirements of each step of data 

application. By matching RAID configurations to the needs of data loading, intermediate stages, 

and information transmission, I created the basis for improved speed and fault tolerance. 

Furthermore, I investigated data striping, highlighting the need of optimizing data distribution 

across disks in real-time applications. I aimed to improve data application efficiency and capacity 

by proposing a complete framework for data striping optimization that included hot and cold disk 

methods.  

My study resulted in the creation of a comprehensive framework that combines RAID selection 

and data striping optimization, providing a strategic approach to improving the performance of BI 

applications. I want to help enterprises to confidently and effectively traverse the difficulties of 

modern data management by employing innovative algorithms and approaches. 

Looking ahead, our findings open the path for additional progress in the field of data storage 

optimization for BI applications. As technology advances, I believe that my framework will serve 

as a foundation for promoting innovation and efficiency in data-driven decision-making processes.  

In conclusion, this thesis represents a significant contribution to the field of Business Intelligence, 

offering actionable insights and strategies for optimizing data storage models to meet the evolving 

demands of modern business environments. 
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Appendix 2 – RAID selection algorithm 

The function employs a series of nested if-else conditions to evaluate specific criteria and return 

corresponding values based on the results of these evaluations. Each condition is checked 

sequentially, and upon meeting a true condition, the function executes the return statement 

associated with that condition, thus concluding the function's execution. 

 

 

 

 

 

 

 

function select_raid_configuration(stage): 

    if stage == "Data Loading and Staging": 

        return "RAID-0" 

    else if stage == "Intermediate Stages (Raw Data Vault)": 

        if "Raw Data Vault" in nodes: 

            return "RAID-1" 

    else if stage == "Intermediate Stages (Business Data Vault)": 

        if "Business Data Vault" in nodes: 

            return "RAID-5" 

    else if stage == "Information Delivery Stage": 

        if "Information Delivery" in nodes: 

            return "RAID-0" 

    else: 

        return "RAID-0" 
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Appendix 3 – First priority utilizing algorithm 

The function evaluates an initial condition and, if true, initializes a loop to iterate over a collection, 

performing specific actions within the loop. Subsequently, it executes a second loop to iterate over 

another collection and, after completing both loops, the function returns the computed or 

accumulated result. 

 

 

 

 

 

 

 

function calculate_first_priority(request_disks, disk_free_addresses, 

all_free_addresses): 

    N = total_number_of_disks 

    average_priority = 100 / N 

    priority_granularity = (disk_free_addresses / all_free_addresses) * 

average_priority 

    if request_disks <= N: 

        current_priority = average_priority 

        first_gradient_total_priority = 0 

        for i from 1 to request_disks: 

            ith_gradient_priority = current_priority - (i - 1) * priority_granularity 

            first_gradient_total_priority += ith_gradient_priority 

        Nth_gradient_priority = 100 - first_gradient_total_priority 

        Nth_gradient_priority_number = request_disks 

        for j from request_disks + 1 to N: 

            jth_gradient_priority = ith_gradient_priority - priority_granularity 

    return priority_values_for_each_disk 
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Appendix 4 – Second priority utilizing algorithm 

The function `calculate_second_priority` initializes a maximum number of disks for striping and 

an empty list to store selected disks. It first adds all open disks to the selected disks list, then sorts 

the remaining cold disks by priority in descending order and continues adding them to the selected 

disks list until the maximum number is reached, finally returning the list of selected disks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function calculate_second_priority(total_disks, open_disks, cold_disk_priorities): 

    max_disks_striping = total_disks 

    selected_disks = [] 

    for disk in open_disks: 

        selected_disks.append(disk) 

    sorted_cold_disks = sort_disks_by_priority(cold_disk_priorities, 

descending=True) 

    for disk in sorted_cold_disks: 

        if len(selected_disks) < max_disks_striping: 

            selected_disks.append(disk) 

    return selected_disks 


