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Abbreviations 

o/w – oil in water 

w/o – water in oil 

w/o/w – water-oil-water 

o/w/o – oil-water-oil 

PCR – Polymerase Chain Reaction 

DNA – Deoxyribonucleic acid 

CRISPR – Clustered Regularly Interspaced Short Palindromic Repeats 

PddCas – Polydisperse Droplet Digital CRISPR/Cas  

RNA – Ribonucleic acid 

SARS-CoV-2 – Severe Acute Respiratory Syndrome Coronavirus 2 

HPV 18 – Human Papillomavirus type 18 

ddIA – Digital Droplet Immunoassay 

DAPI – 4',6-diamidino-2-phenylindole 

CCM – cerebral cavernous malformation 

IgA – Immunoglobulin A 

GFP – Green Fluorescent Protein 

AMR – Antimicrobial resistance 

rRNA – ribosomal RNA 

IPC – Imperial Privy Council 

DIC – Differential Interference Contrast 

E. coli – Escherichia coli 

MP – microplastic  

CP – CellProfiler™  
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INTRODUCTION  

Droplet emulsions consist of dispersed and continuous phase mixtures. They can be made with 

microfluidics to create monodisperse droplets or by shaking to create polydisperse droplets. 

Microfluidics usually needs expensive equipment and special training of users, while polydisperse 

droplets can be done in any lab without equipment nor specialized training. 

One way droplets can be analysed is via imaging using a microscope. For image analysis, there 

have been developed many software. Most of them require programming skills or cost money. 

However, there are also software available, which are free of charge and user-friendly, meaning 

no programming skills are needed. These software have their own communities, which constantly 

strive to improve and broaden the scope of the software applications. 

One of the major problems currently in the world is currently plastic waste. The plastic can break 

down into microplastic and nanoplastic, which are a threat to our health and ecosystem. 

Microplastic can function as a surface for bacteria to form aggregates, eventually leading to 

biofilm formation. This concern has gone so far that we now have microplastic based ecosystems, 

called plastispheres. These systems are ideal places for microbes to form biofilm, thus endorsing 

antimicrobial resistance. 

The aim of this thesis is to investigate the impact of microplastic to bacterial aggregation. The 

methodology includes developing a pipeline in software CellProfiler™ in combination with 

software ilastik, to (i) detect microplastics, (ii) improve polydisperse droplet detection, and (iii) 

divide droplets based on their pixel texture into three groups: no growth, homogeneous growth 

and aggregated growth. 

The theoretical part presents an overview of droplet emulsion and commonly used software for 

image analysis, with focus on open-source ones. For the last part, it describes microplastic, 

antimicrobial resistance and biofilm. The methods and materials chapter includes the steps for 

developing the pipeline in CellProfiler™ and ilastik and explains how the used software work. In 

the last chapter, all the results about the developed pipeline are described in detail. This section 

highlights, how droplet detection has been optimized in CellProfiler™ and how microplastics are 

identified in ilastik. Additionally, it compares the bacterial viability and autoaggregation in 

polydisperse droplets with and without microplastics. 
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1. LITERATURE OVERVIEW 

1.1 Droplet emulsion 

Emulsions are mixtures of two immiscible liquid phases – discontinuous phase, also called internal 

phase, and continuous phase, also called external phase [1]. Although emulsion is a weak system, 

it can be stabilized with an emulsifier, also called the interphase between the two other phases. 

Emulsions can be classified based on the dispersed phase or the size of the droplets [1]. Types of 

emulsion based on dispersed phase are oil in water (o/w), water in oil (w/o) or multiple emulsion 

(w/o/w or o/w/o) (Figure 1). Droplets with sizes up to 0.2 micrometer are called microemulsion, 

0.2 to 50 micrometer are called macroemulsion and 50 to 1000 nanometer are called nanoemulsion 

[1]. It is a way to do small–scale experiments, which have many advantages – the cost of the 

reagents is lower and the toxic waste decreases [2].  

 

 
Figure 1. Types of emulsion based on dispersed phase. From left: oil in water, water in oil, water-oil-water and oil-water-
oil. 

Droplet microfluidics has made an impact on single cell research. The droplets function as chambers 

for cell cultures, while providing everything needed for successful cell growth. The 

microenvironment is easily controllable and by external intervention, the single cell can be simply 

manipulated. It is possible to observe immediate single – cell activity of enzyme, antibody, or rare 

cell screening [3]. Another large-scale usage of droplet microfluidics is drug screening, where 

millions of small compounds need to be filtered. For testing drugs such as antiviral antibodies and 

antibiotics, droplet-based flows are more frequently used. Despite making gradient 

determination more challenging, droplet-based flows can regulate sample distribution and 

duration of residence [2]. The droplets can be produced through microfluidics or bulk solution 

approaches, where polydisperse droplets are prepared more simpler way [4].  

 

1.1.1 Monodisperse droplets 
Monodisperse droplets mean that they all have the same size [5]. The main benefits of microfluidic 

systems are their ability to control droplet size and production speed. They are taking over the 

traditional emulsification techniques, like homogenization or sonication, by executing the 

experiments in small, isolated volumes [5]. Monodisperse droplets are especially needed for 

applications such as droplets digital polymerase chain reaction and biochemical analysis [6].  

  

Among the various channel designs, the T-junction, Y-junction, co-flow and flow focused designs 

are the most frequently used [3]. 

a) The T-junction is the simplest channel design, where the two phases get into contact at the 

inlet (Figure 2.a). One liquid is formed into droplets within another liquid. If the oil is 
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connected to the main channel, then it leads to the downstream part of water being 

squeezed and cut off, effectively generating small droplets (Figure 2.a) [3]. 

b) T-junction design can also work if the channels are reversed. The water phase is cut under 

pressure (Figure 2.b) [3]. The size of droplets depends on channel diameter, flow rate of 

the fluid or relative viscosity of the phases [7].  

c) The Y-type channel is like T-junction, except phases flow from an angle (Figure 2.c) [3].  

d) Co-flow design includes two concentric channels from which the inner one usually has a 

pointed tip. The droplets are formed due to the interfacial tension being surpassed by the 

viscous resistance, created by the oil phase (Figure 2.d) [3]. 

e) Flow focusing design is similar to co-flow design as it also includes two concentric channels 

from which the inner one usually has a pointed tip [3]. The faster the flow rate of the 

external phase, the smaller the forming droplets [7]. The flow-focusing design incorporates 

an additional narrow channel into the main flow channel (Figure 2.e) [3].  

f) Cross-focusing flow design is the newest design, where the oil phase flows through two 

channels and parts the water phase at the crossroad (Figure 2.f) [3].  

 

 
Figure 2. Different channel designs. T-junction is the easiest design (a,b). a) Water is being squeezed, which cuts water 
phase into droplets. b) Droplets are formed due to pressure from oil phase. c) Y – junction, where both phases flow from 
an angle. d) Co-flow and e) flow focusing designs are more complicated, which include inner channel with pointed tip. f) 
Cross focusing flow, the newest design, where the oil phase pushes against the water phase, thus generating droplets. 

 

Although lab-on-a-chip has had great improvement, one of the downsides of microfluidics is the 

need for expensive equipment and trained staff [4].  

 

1.1.2 Polydisperse droplets  
To overcome the restrictions of using microfluidics, an alternative possibility is to generate 

polydisperse droplets instead. Generation of polydisperse droplets does not require any need for 

unique equipment, so it can be done in any standard laboratory. These droplets are made by 

shaking with a hand or vortexed, so the two phases would mix and generate droplets. Since there 

is no special equipment, the droplet sizes vary, which depend on the viscosity ratio of the dispersed 

and continuous phases (Figure 3) [4], [8].  
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Figure 3. Example of water-in-oil polydisperse droplets from MSc thesis made by Fenella Lucia Sulp [37]. Droplets are able 
to contain bacteria and microplastic if needed. On the other hand, bubbles are byproducts of producing droplets when 
shaking. They are too small to contain anything.  

Polydisperse droplets can be used in many different biological assays, which will make the process 

simpler while still giving accurate results. 

 

Polymerase chain reaction (PCR) has proved to be highly sensitive and can detect specific diseases, 

which means more precise diagnosis and treatment [9]. There has been developed methods to 

separate single biomolecules to droplets, but to make it more suitable for everyone (which means 

no special training or expensive equipment), there is now an opportunity to execute droplet PCR in 

polydisperse droplets. The polydisperse method adapts to different input sample volumes and 

takes less time, while still accurately identifying the target DNA [9]. 

 

For pathogen diagnosis, the rising technology has been CRISPR – based assays and now there has 

been developed polydisperse droplet digital CRISPR-Cas-based assay (PddCas). To spot viral 

DNA/RNA, this method requires only a vortex mixer, and it has higher sensitivity than analogous 

bulk CRISPR assays. PddCas identified well SARS-CoV-2 and HPV 18, which shows its capability [10].  

 

Another way to detect diseases is through protein detection, for which immunoassays are vital [8]. 

The polydisperse digital droplet immunoassay (ddIA) does not need any wash steps and the process 

requires only one reagent addition step, which makes the whole system simpler. Benefits of 

polydisperse ddIA include sensitivity, cost efficiency and better suitability, since it is applicable for 

laboratories and also near-patient tests [8]. 

 

1.2 Commonly used software for image analysis 

There have been many image analysis software developed, but most of them expect skills in 

programming, such as MATLAB, or are more user-friendly, but only monetarily accessible, such as 

Zen [11]. Having free of charge and easily operated image analysis software is a high demand. Such 
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most popular software are CellProfiler™, ilastik, ImageJ, and QuPath. These four can be divided into 

two groups considering their workflow. CellProfiler™ and ImageJ belong to the rule-based software 

group. This means that software need settings to detect objects, which are manually provided. 

Qupath and ilastik are in the machine learning-based group, in which wanted objects are manually 

highlighted [11].  

 
Table 1. Comparison of different widely available software [11]. 

Software Price Batch processing Batch processing time, 

64 images (in 

seconds)  

Accuracy  Precision  

CellProfiler™ Free No extra programming steps  873.86 ± 15.42  96.2%  99.8%  

ilastik Free No extra programming steps  1081.59 ± 15.48  74.7%  80.2%  

QuPath Free Extra process and scripting  55.96 ± 3.60  80.9%  83.1%  

ImageJ Free Extra process and scripting  91.10 ± 0.97  92.7%  96.3%  

 

In this study two software were used - CellProfiler™ and ilastik. Of these four software, CellProfiler™ 

had the highest accuracy (96.2%) and precision (99.8%). CellProfiler™ and ilastik are from these four 

software more convenient for batch analysis [11]. Having user-friendly way to do batch analysis is 

vital, since droplet-based experiments generate thousands of droplets that need to analyzed. 

 

1.2.1 Cellprofiler™ 
CellProfiler™, open-source image analysis software, was first introduced in 2005 [12]. It is designed 

for biologists [13], while keeping in mind their low skills in programming [11]. Needing no special 

training, users can analyse their images using modular processing pipelines. There is a wide range 

of built-in modules, which can be turned into various pipelines, depending on the desired analysis. 

CellProfiler™ gets constantly improved from feedback from biologists. For CellProfiler™ 4.0, the 

goal was to make it more accessible and even easier for developing pipelines [12].  

 

 
Figure 4. How the first module Images look in CellProfiler™. On the left is pipeline with essential modules on top, followed 
by modifiable modules. Remaining space is for the module features. 
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The concept of how to operate the software is straightforward. First a pipeline, series of image-

processing modules, is needed. Then, considering the characteristics of analyte, settings must be 

adjusted. After everything is set, images can be processed automatically. Lastly, the data  will be 

exported to a spreadsheet (Figure 4) [13]. Another benefit of using CellProfiler™ is their helpful 

website, which has step by step guide how to get started, tutorials, manuals of every version and 

even examples of pipelines with images. Over time it grew its own community and there is a 

possibility to get help from support forum. People can write their issues and get help and/or advice 

[13]. 

 

CellProfiler™ has been used in numerous studies:  

1. During the study by Simona Bartkova et al., a pipeline was created that successfully 

identified droplets and measured fluorescence intensity of these droplets. In total the 

pipeline analyzed thousands of droplets [14].  

2. During the study by Yeh Siang Lau et al., the MuscleAnalyzer pipeline was created. This 

pipeline analyzed laminin and DAPI co-stained muscle images, giving quantitative 

measurements for muscle histological properties [15].  

3. CellProfiler™ was used by researchers at the University of Utah to uncover image-based 

traits connected to a monogenic rare disease, the hereditary stroke syndrome cerebral 

cavernous malformation (CCM) [13].  

 

1.2.2 ilastik 
One o currently popular supervised machine-learning-based software is ilastik. It is an interactive 

tool with many pre-defined workflows, such as pixel classification or object classification [16]. The 

software learns from labels provided by the user and once it has been trained, the data can be 

applied in batch processing. Of course, ilastik too has its own limits, such as colour and texture, but 

for general image analysis in different scientific fields, it produces quality results if supervised 

appropriately [17].  

 

The most popular workflow is pixel classification, which connects every pixel of an image to a label, 

which is defined by the user. Label may stand for example microplastic or background. The user 

must mark parts of the image under the right label. To do that, there are different coloured brushes. 

After the training, software probabilities are calculated and all the pixels are assigned to given labels 

[16]. As pixel classification cannot recognize characteristics of an object, such as shape, there is 

another workflow for that part. Object classification is similar to pixel classification, but it goes more 

into detail, as it needs e.g. smoothing and thresholding [16]. There are also detailed guidelines for 

getting started or descriptions of all the available workflows on the website. Additionally, there is 

a possibility to report a problem or give a suggestion for new features [18]. 

 

Example studies, where ilastik was used: 

1. During the study by Kathrin Moor et al. about high-avidity IgA, cells from caecal content 

were categorized into red (mCherry+) and green (GFP+) types [19]. 

2. During the study by William Menegas et al., ilastik was used to identify cell and non-cell 

pixels. In total there were eight different algorithms that were trained by hand [20]. 
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1.3 Microplastic and its influence on antimicrobial resistance (AMR) and 

aggregation 

Plastic waste is a pollutant that is everywhere and thus closely tied to our daily lives. Microplastics 

are fractions of plastic waste, which usually comes from decomposition of larger plastic debris. The 

particles are smaller than 5 mm [21]. The global plastic production has had a massive increase with 

Asian countries in the lead. Most of the waste is being dropped into the environment.  Microplastic 

pollution has been turned into a major concern for human health due to finding particles in 

biological samples, such as saliva and blood [22]. 

 

Another global health treat is antimicrobial resistance (AMR). Such pollutants as antibiotics or heavy 

metals are helping antibiotic resistant bacteria to develop and persist in the environment [23]. It is 

related to outspread abuse of antibiotics across various areas [24].  

 

1.3.1 Nano- and microplastic 
Plastic is not biodegradable, it just breaks down into smaller fragments such as microplastic or 

nanoplastic. Fragment sizes 0.1 µm to 5 mm are categorized as microplastic and fragments smaller 

than 0.1 µm fall into nanoplastic category [23]. Although plastic as a material is relatively new, the 

extreme production and use has led to it being a risk to the environment [22].  

 

 
Figure 5. Different ways to categorize microplastics. Microplastics can be categorized according to their chemical 
composition or whether it is a primary or a secondary microplastic. Primary microplastics are intentionally added to 
products while the forming of secondary microplastics is unpredictable  

 

Microplastics can be divided into two classes. Primary microplastics are deliberately made small 

and included into consumer and commercial products, for example cosmetics, pharmaceuticals, 

and personal care products. Secondary microplastics, for example fishing gear or plastic bags, are 

formed involuntarily [22]. Breakdown of larger polymers is a result of physical, chemical, or 
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biological factors. Another way for classifying microplastics is to divide them into five types: 

fragments, fibres, foam, pellets, and films. Furthermore, it is possible to sort them according to 

their chemical composition: polyethylene, polystyrene, polypropylene, polyurethane, polyvinyl 

chloride, and polyethylene terephthalate (Figure 5) [22].  

 

It is predicted that humans consume 0.1 - 5 g microplastics each week. The particles can be detected 

in human feces, blood, lungs, and placentas [25]. Primarily cellular and molecular components of 

living organisms are damaged by microplastic [22]. Consuming food that has plastic particles in it 

can lead to inflammatory, pulmonary, and infectious diseases. If the particles have reached the 

circulatory system, they have easy access to other organs. The toxic components are extracted from 

plastic particles and cause harm to the human body [25]. It is important to raise awareness already 

at school, so children can learn about this issue from early on. Also, media has a significant part of 

educating everyone as well. Releasing documentaries and television shows presenting the issue in 

a simply understandable way, it supports the public to be more conscious and make better choices 

[22].  

 

 
Figure 6. Cycle of plastic consumption. Humans produce plastic products that end up in water. First, small fishes ingest 
the microplastic particles, then smaller fishes are eaten by larger fishes followed sea birds etc. Humans go fishing an d 
when eating the caught fish, the same particles end up in their system, which causes harm [29]. 

Even more dangerous than microplastic, may be nanoplastic, since they are more reactive. Due to 

their smaller size, the particles can extend further and invade more living cells. They connect to the 

microbe, enter it and the toxic chemicals leached out from plastics cause toxicity [26]. Most 

frequent way to get in touch with nanoplastic, is through oral intake, that is by drinking water or 

consuming materials exposed to nanoplastic. Also, worn out car tires produce particles, which get 

to the streets and may be inhaled [27]. Nanoplastics, that are ingested through the food chain, have 

been shown to penetrate the blood-brain barrier, resulting in brain injury to fish [28]. 
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1.3.2 Antimicrobial resistance 
Antibiotic resistance (AMR) means that bacteria can avoid the effects of drugs, which makes 

treatment harder or not possible. AMR is linked to exploitation of antibiotics in humans, agriculture, 

farming and industry [24]. It is moreover connected to many types of microorganisms, such as fungi, 

parasites, viruses and bacteria [30].  

 

In the bacterial cell, antibiotics inhibit cell wall synthesis, nucleic acid synthesis and protein 

synthesis [31]. Cell wall synthesis inhibitors, which are from class β- lactams and Glycopeptides, are 

used to treat both Gram-negative and Gram-positive infections. The antibiotic resistance comes 

through a synthesis of penicillin-binding protein 2a, which alters the active site of an enzyme so the 

antibiotic cannot bind [32]. DNA synthesis inhibitors, such as Ciprofloxacin and Levofloxacin, 

suppress topoisomerase II and IV, which prevents DNA replication. Resistance is caused by 

chromosomal mutation that codes for protein targets, which lowers the compatibility between 

antibiotic and enzyme complex [33]. Protein synthesis inhibitors, like Aminoglycosides, Macrolides 

and Tetracycline, target processes including initiation, formation of the 70s, and elongation in 

making polypeptides. Antibiotic resistance happens due to different mechanisms, for instance 

methylation of 16s rRNA causes resistance to aminoglycosides and modification of 23s rRNA causes 

resistance to macrolide [34]. 

 

 
Figure 7. Antibiotic classifications, which inhibit cell wall synthesis, nucleic acid synthesis and protein synthesis [31]. 

AMR can be intrinsic, acquired and adaptive. Intrinsic resistance describes the resistance that 

originates from inherent characteristics. For instance, glycopeptide resistance is found in Gram-

negative bacteria, conferred by the impermeability of their outer cell membrane. Acquired 

resistance includes bacteria acquiring resistance through mutations or horizontal gene transfer, 

which can happen through transformation, transduction or conjugation. Adaptive resistance occurs 

as feedback from environmental changes. It is an outcome from modulations in gene expression 

[24].  

 

The correct way to handle AMR in health care is to have reasonable antimicrobial use and high IPC 

standards. Being a growing problem, AMR needs to be surveyed. The European Antimicrobial 

Resistance Surveillance Network (EARS-Net) and the Central Asian and European Surveillance of 
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Antimicrobial Resistance (CAESAR) network are in a close cooperation to collect data from both 

European Union countries and eastern Europe and central Asia. This helps to have an overview of 

the AMR situation [30]. 

 

1.3.3 Aggregation and biofilms 
Biofilms are developed by microorganisms’ capability of sticking to surfaces. Depending on the 

environment, noncellular components, such as mineral crystals or blood components, can also be 

found in the biofilm matrix (Figure 7d). Main composition of biofilms are extracellular polymeric 

substances (EPS), which can be up to 90% of the total organic carbon [35]. EPS, for instance proteins 

and nucleic acids, are there to protect microorganisms from photodegradation and physical scrape 

[26]. Biofilms can develop on a diverse range of surfaces, from living tissues to water system piping 

[35]. Factors that determine the development of biofilm are water salinity, temperature, and pH 

[26] Public health is greatly impacted by biofilms, as they cause certain infectious diseases and are 

common in a variety of device-related infections. Examples of such diseases are cystic fibrosis, otitis 

media and periodontitis [35].  

 

One of the first steps in forming a biofilm is autoaggregation, which means forming bacterial 

clumping at the bottom of culture tubes [36]. Aggregating bacteria may get protection from 

environmental stresses. While autoaggregation specifies that only same strain bacteria associate 

with each other (Figure 7b), aggregation includes any microbial clumpig (Figure 7a). There is also 

co-aggregation, where different bacterial species aggregate (Figure 7c) [36].  

 

 
Figure 8. Differences between aggregations. A) Aggregation consists of different particles. B) Autoaggregation is between 
same strain bacteria. C) Co-aggregation, where different strain bacteria associate with each other. D) In biofilm are also 
microorganisms and noncellular components. Aggregation can form without a surface, while biofilm forming is more 
linked with surface. 

 

“Plastisphere” describes microplastic based ecosystems, which have AMR promoting elements. In 

the plastisphere ecosystems, microbes can attach easier to the chemically and physically altered 

plastic surfaces. The enduring qualities and surface features of microplastics not only make them 
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an ideal host for microbes, but also contaminants such as heavy metals and antibiotics, all together 

making plastispheres very effective AMR promoting environments [23].   
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2. AIMS OF THE STUDY 

The main aim of the thesis was to develop an image analysis pipeline to investigate the impact of 

microplastic to bacterial aggregation. 

The specific sub-aims of this thesis were: 

1. Detection of microplastic inside polydisperse droplets 

2. Optimizing the detection of polydisperse droplets 

3. Comparison of bacterial viability in polydisperse droplets with microplastic versus without 

microplastic 

4. Comparison of bacterial aggregation in polydisperse droplets with microplastic versus 

without microplastic  
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3. MATERIALS AND METHODS 

This thesis is part of a bigger „ecosystem“ of theses projects in the TalTech Microfluidics group. It 

is connected to other past, present, and future projects within the group. The author of this thesis 

is using images from the past MSc thesis of Fenella Lucia Sulp [37] and collaborating partially, during 

the initial stages, with MSc student Merili Saar. The developed pipeline of this thesis will be used 

by BSc student Triini Olman, in her own thesis (Figure 9). 

 

 
Figure 9. The ecosystem of biofilm and aggregation-related theses in TalTech Microfluidics group. 

The MSc thesis of Fenella Lucia Sulp investigated the effect of microplastic on antimicrobial 

resistance via droplet-based platform. The experimental part consisted of polydisperse droplet 

generation and microscopy imaging. In short, Escherichia coli JEK 1036 with chromosome-

incorporated gene encoding the green fluorescence protein (GFP) was mixed with (i) Polystyrene 

10 μm microplastic spheres 10% solids (+- 0.5%) in milli-Q Ultrapure water, (ii) Dextran, Alexa 

Fluor™ 647, 10,000 MW, anionic, fixable (Invitrogen, Life Technologies Corporation), and (iii) nine 

different concentrations of the antibiotic Cefotaxime (Carbosynth Limited). Polydispersed droplets 

were generated by adding Novec HFE 7500 fluorocarbon oil with 2% concentration of 

perfluoropolyether (PFPE)−poly(ethylene glycol) (PEG)−PFPE triblock surfactant (obtained as a gift 

from Prof. Garstecki, ICHF PAN, Poland) to each sample, followed by vortexing of each sample 

Eppendorf tube and incubating overnight at 37°C.  

 

Droplets were imaged as a monolayer with LSM 900 Laser Scanning Microscope (Zeiss, Germany) 

running on ZEN 3.3 (blue edition) software with the following settings:  

 Objective Plan-Apochromat 10x (NA 0.45) 

 LED light source Colibri 7 

 Diode lasers 488 nm and 640 nm 

 Green channel: excitation 395 and emission 502 

 Red channel: excitation 653 and emissioon 668 

 Bright-field channel: DIC 
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The green channel was used for E. coli bacteria, the red channel was for detection of polydisperse 

droplets and DIC was used for detecting microplastic. In total were 328 images, which were 

analyzed also in this thesis.  

 

This thesis continues Fenellas’s previous work by developing the necessary analysis pipeline for (i) 

detecting individual microplastic particles inside polydisperse droplets, (ii) optimizing polydisperse 

droplet detection, and (iii) analysing bacterial growth (possible autoaggregation). This will enable 

taking a deeper look into the relationship between microplastic and possible bacterial aggregation 

pattern for future studies. 

 

3.1 Detection of microplastic  

An important part of this thesis was detecting microplastic particles in polydisperse droplets, which 

was done using the software ilastik (version 1.4.0.post1). The main idea of using ilastik is to train 

the software to find what is needed, which in this case are microplastic particles inside polydisperse 

droplets. 

 

1) Input data - The first step is to upload training images. In this study, 3 representative images 

were chosen – two from control sample without any antibiotic present and one from 

sample with Cefotaxime concentration of 0.008. 

2) Feature selection – this module determines how the different classes of pixels will be 

distinguished in the next steps. ilastik provides three features, which are colour/intensity, 

edge, and texture. The scales correspond to the sigma of the Gaussian used to smooth the 

image before applying the filter. Larger sigma gets information from larger area but 

balances out the details. 

3) Training – In this module are two labels. One is for identifying needed objects, and the other 

one is marking everything else that could disturb the classification, for example outline of 

droplets. In this study the objects were microplastic particles and the main disturbance 

came from small, similar in size bubbles that often arise during polydisperse droplet 

generation (Figure 10). 

4) Thresholding - First there is a choice between the simple and hysteresis method. Simple 

method means that thresholding will be done at one level, whereas hysteresis method 

performs it at two levels – first high threshold and then low threshold. This method makes 

it possible to separate connected objects and selects objects that have high probability. To 

find the best threshold, different values were tested – the automatic value for smoothing 

was one, so it was tested with 0.5 increments below and above one to see possible 

improvement in detection. The tested smoothing values, which will reduce noise, were 

different combinations of 1, 1.5 and 2. The tested threshold values stayed between 0.9 - 

0.5. 

5) Object classification – ilastik shows what it has identified, but there still could be some 

errors. For this reason, there are again the two labels from training module with the 

possibility to mark correctly and incorrectly identified objects. If needed, there is a 

possibility to go back to training module for further training. 
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6) Object information export – The pixel values range in every channel from 0.0 to 1.0, which 

show the probability that a pixel belongs into a certain class. In the end, there are two 

probabilities exported – one channel per label class. 

 

 
Figure 10. Training module in ilastik. Microplastics are marked with label one (yellow color) and other disturbing factors, 
for example small bubbles or bacteria, are marked with label two (blue color). 

To identify microplastic inside polydisperse droplets, an additional IdentifyPrimaryObjects module 

is then added in the CellProfiler™ (version 4.2.6) pipeline, which uses the binary output probability 

tiff files from ilastik as input files. 

 

To make sure that ilastik was well trained, accuracy was calculated using formula in Figure 11.  

In this case: 

1) True positive (TP) – there is microplastic and ilastik finds it 

2) False negative (FN) – there is microplastic, but ilastik cannot find it 

3) False positive (FP) – there is no microplastic, but ilastik counts something as microplastic 

4) True negative (TN) – there is droplet with no microplastic and ilastik does not find anything 

 

 
Figure 11. Formula to calculate accuracy. 

 

3.2 Optimizing droplet detection in CellProfiler™ 

CellProfiler™ contains four essential modules that are automatically included in any pipeline. The 

essential modules define how the images are organized for analysis. 

 

Essential modules: 

1) Images – allows to drop files and/or folders that need to be analysed  

2) Metadata – allows to extract information, which will be stored with the measurements 

3) NamesAndTypes – allows to name each image by which upcoming modules will refer to  

4) Groups – allows the list of images to be divided into subsets which will be processed separately 

of each other 
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For further analysis of specific images, additional modules are added, and settings adjusted to 

develop an optimal analysis pipeline. Prior analysis pipeline used in the MSc thesis by Fenella Lucia 

Sulp was therefore significantly modified in this thesis. For optimizing polydisperse droplet 

detection, emphasis was placed to specific settings in IdentifyPrimaryObjects module. 

 

Diameter of objects 

One of the modified module features was the maximum and minimum diameter of objects in pixels 

to know what to count as a droplet and what to discard. These numbers were found by manually 

measuring the smallest and biggest droplet diameter of 19 images (Appendix 2). Fenella Lucia Sulp 

had 19 folders of images, each folder containing 40 different images, which brings the total amount 

to 760 droplet images. From these folders 1-9 contained images with microplastic particles and 

folders 11-19 images without microplastic particles. Folders 1-9 and 11-19 contained different 

antibiotic concentrations - 0.075, 0.056, 0.042, 0.032, 0.024, 0.018, 0.013, 0.010, 0.008 μg/mL. 

Folder number 10 was control. All the images were picked randomly. 

 

Thresholding 

Another important part of IdentifyPrimaryObjects module is threshold. Determining the right 

smoothing scale and correction factor is needed for the best results. Threshold smoothing scale 

smooths the image before the threshold is applied, for example removing holes. Threshold 

correction factor adjusts the threshold by multiplying it by this value. Value between 0 and 1 makes 

the threshold more lenient, value of 1 makes no adjustments and value higher than 1 makes the 

threshold stricter. 

 

Smoothing 

During this thesis, nine combinations of smoothing scale and correction factor values were tested 

(Appendix 1). Tested values for smoothing scale were 1.3488, 3 and 5, where 1.3488 is the default 

setting. Due to the partial overlapping of polydisperse droplets during imaging, the intensity of 

fluorescence emission from Alexa dye may vary across different parts of the droplets. Higher 

smoothing values can even out these differences and enable better polydisperse droplet detection, 

thus the other two tested values were 3 and 5. As for the correction factor, values of 0.4, 0.8 and 

1.0 were tested, where 1.0 is the default setting. Having more lenient values prevents cutting off 

part of droplets due to possible uneven Alexa dye distribution in droplets, which is why the 

correction values of 0.8 and 0.4 were tested. 

 

 
Figure 12. a) Used pipeline in CellProfiler™ in the MSc thesis by Fenella Lucia sulp. With the red box are marked essential 
input modules and with the blue box are brought out all the additional modules, which are specific to every pipeline.  b) 
Image that will go as an input into CellProfiler™. c) The identified droplets after the first IdentifyPrimaryObjects module. 
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d) Unsuitable droplets are filtered out in FilterObjects module. Filtering is based on eccentricity and solidity of droplet 
area. 

To make sure that the results are valid, accuracy was calculated using formula in Figure 11: 

1) True positive (TP) – there is a droplet and CellProfiler™ finds it 

2) False negative (FN) – there is a droplet, but CellProfiler™ cannot find it 

3) False positive (FP) – there is no droplet, but CellProfiler™ counts something as a droplet 

In that instance there could be no true negative, as it is not possible to count non-existing droplets, 

there is only background. 

 

3.3 Measurement of bacterial viability 

For the bacterial viability, the pipeline includes the MeasureObjectIntensity module. If the 

measured intensity is higher than 0.025, then the droplets will be classified as positive (viable). The 

fraction of positive droplets is always found by dividing the total amount of positive droplets with 

the total amount of all detected droplets in each respective sample (i.e each antibiotic 

concentration). Lastly, data will be normalized, which means that the control group will have a value 

of one (its fraction of positive droplets being divided by itself). Fraction of positive droplets from all 

other samples will then be divided by the fraction of positive droplets from control sample, resulting 

in overall values more comparable to other experiments. 

 

To get the needed data for measuring bacterial viability in polydisperse droplets with and without 

microplastic, an additional IdentifyPrimaryObjects module, which identifies microplastic particles, 

is important for later differentiation between the two different types of droplets. After detecting 

all microplastics, the pipeline can connect droplets with the specific microplastic particles that are 

inside the droplet (RelateObjects module). During FilterObjects module all the droplets are 

separated into two categories (i) droplets with microplastic, and (ii) droplets without microplastic. 

Additionally, bacterial viability was found in control experiment, which was a separate experiment 

with polydisperse droplets that did not include microplastic particles. 

 

3.4 Measurement of autoaggregation 

Module MeasureTexture 

To analyse autoaggregation in polydisperse droplets, MeasureTexture module was chosen because 

based on the texture values, the droplets can be classified into different growth groups, which are 

no bacterial growth (Figure 13.a), homogeneous growth (Figure 13.b) and aggregated growth 

(Figure 13.c). MeasureTexture module analyses the texture of images and objects, generating 

numerical measurements to characterize their roughness or smoothness. The number of gray levels 

the images were binned into was 256, which is the maximum possible value. More levels give more 

detailed information about the image; however, it also slows down the speed of processing.  
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Figure 13. Output from CellProfiler™ after ClassifyObjects module and difference between bacterial growths. The 
diagrams show how the droplets are categorized (which growth group). The image next to diagram shows which droplets 
were used. The colours have no meaning since they are randomly chosen by CellProfiler™. The top images show how 
homogeneous growth, where the green intensity is smooth, differs from aggregated growth, which has spots with higher 
intensity.  

 

MeasureTexure calculates thirteen measurements. For this study, five of those were tested: 

1) AngularSecondMoment – measures homogeneity of image, where higher value indicates 

similar initensity and value of one means uniform image 

2) Variance – measures the variation of intensity values, where the value of zero means 

uniform intensity 

3) InverseDifferenceMoment – measures the image contrast, where homogeneous images 

have higher values  

4) SumVariance – measures the variance of the normalized grayscale image in the spatial 

domain 

5) DifferenceVariance – measures the image variation in a normalized co-occurrence matrix 

 

The texture scale is the distance between correlated intensities in the image, in pixel units. It is 

recommended to use smaller scale than the object’s size, otherwise the measurement is not 

accurate. During this study, three different texture scales were tested – 1, 3 and 10. The smallest 

scale is 1, 3 is the default and 10 was chosen from the diameter results. Since the texture scale must 

be significantly smaller than the droplets, the average of the smallest droplets, which is 100 pixels, 

is divided by ten (Appendix 2). 

 

To analyse one data set: 

1) CellProfiler™ exported in total of four values about one measurement method, which are 

the different directions the neighbouring pixel is comparing to. 

2) The average of these four values was found. 

3) The average values were sorted from the lowest to the highest value. 
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4) The data was plotted onto graphs to see whether three separate groups can be 

distinguished: (i) empty droplets, (ii) homogeneous growth of bacteria in droplets, and (iii) 

aggregated growth of bacteria in droplets. 

 

In total there were fifteen sets of data needed to be analysed – each chosen measurement with 

three different texture scale values.  

 

Module ClassifyObjects 

Based on the texture values and set threshold, ClassifyObjects module classifies objects into 

different given categories. The separating bin values were 80 and 390 pixels, which were found 

from the histogram (Appendix 3). This means that droplets with values lower than 80 are 

categorized as no growth, droplets with values between 80 and 390 are categorized as 

homogeneous growth and droplets with values over 390 are categorized as autoaggregation (Figure 

13.d,e). The output of ClassifyObjects module shows, which droplets contain microplastic (Figure 

13.e) and their location on the image, and the same with droplets without microplastic (Figure 

13.d). The module also shows diagrams of how many droplets belong to different category groups 

(no growth, homogeneous or aggregated) (Figure 13.d,e). 

 

For the calculations, aggregated growth groups are needed from ClassifyObjects module. The 

fraction of droplets with aggregated bacteria growth is always found by diving the total amount of 

droplets containing autoaggregation with the total amount of all detected droplets in each 

respective sample (in this thesis antibiotic concentration). Lastly, the fraction of droplets with 

aggregated bacteria growth will then be divided by the fraction of aggregated bacteria growth of 

control sample, resulting in overall values more comparable to other experiments.    
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4. RESULTS AND DISCUSSION 

The main aim of this thesis was to develop an image analysis pipeline to investigate the impact of 

microplastic to bacterial aggregation. The logic of the final developed pipeline is following:  

1) The polydisperse droplets are imaged as a monoloayer in red, green, and bright-field 

channels (Figure 14.1). 

2) The bright-field image will go through ilastik, which detects the microplastic particles and 

exports prediction files, where pixels belonging to microplastic particles are white, while 

pixels belonging to everything else are dark (Figure 14.2).  

3) As an input to CellProfiler™, the user inserts all the image formats and the prediction of 

microplastic from ilastik (Figure 14.3).  

4) CellProfiler™ then goes through the developed pipeline and exports .csv file results, which 

can be further analysed, for example in Excel (Figure 14.4). 

 

 
Figure 14. The journey from imaging the polydisperse droplets to getting data for further analysis.  

The final pipeline in CellProfiler™ has eleven modules in addition to the four essential ones (Figure 

15.b). First, it identifies all the droplets then all the microplastic particles ( IdentifyPrimaryObjects 

module). After identifying objects, it will measure the size of the droplets (MeasureObjectSizeShape 

module) and later filters out droplets that do not fit the set criteria (FilterObjects module). When 

there are only wanted droplets, the pipeline will connect droplets with microplastic particles 

(RelateObjects module) and filters droplets into to two groups – droplets with microplastic and 

droplets without microplastic (FilterObjects). Next will be texture (MeasureTexture module), 

intensity (MeasureObjectIntensity module) and again size (MeasureObjectSizeShape module) 

measured. Before exporting results, droplets with and without microplastic will be categorised into 

three different bins – no bacterial growth, homogeneous growth, and aggregated growth 

(ClassifyObjects module). 
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Figure 15. a) Used pipeline in CellProfiler™ from the MSc thesis by Fenella Lucia Sulp for detecting droplets and finding 
the average mean fluorescence. b) Finalized pipeline in CellProfiler™ for detection of droplets and microplastic and finding 
autoaggregation. With yellow is marked modified module and with blue are marked added modules.  

Overall, the developed pipeline can help to investigate the impact of microplastic to bacterial 

aggregation. Due to CellProfiler™ not analyzing bright-field images well, usage of two software is 

necessary but make analyzing more difficult and time consuming. MeasureTexture module can be 

improved by exploring the two measurements SumVariance and Variance with more data sets. In 

this study, SumVariance was the best option, but more analysis is needed in the future to be sure.  

 

4.1 Detection of microplastic 

The first specific sub-aim was the detection of microplastic inside polydisperse droplets. The 

software ilastik detected all the microplastic particles and exported the prediction of microplastic 

acceptable for further analysis in CellProfiler™. While working with ilastik, there are two major 

checkpoints before getting the final prediction. First one is training (Figure 16.b), where the user 

manually marks with different labels what needs to be classified and applies appropriate 

thresholding. During training, it was decided to move forward with smoothing values 2 - 1.5 and 

threshold values 0.8-0.7, since it gave the best results. For identifying microplastic in CellProfiler™, 

threshold smoothing scale is 1.3488 and correction factor is set to 1, which are the default settings. 

 

The second checkpoint is after training part (Figure 16.c), where the software gives out initial result.  

After the user checks the correctly identified objects and is overall satisfied with the output, the 

final prediction can be exported (Figure 16.d). The exported predictions from ilastik show (i) all the 

detected microplastic particles and (ii) background, which is all black (Figure 16.d). Also having 

accuracy of 93.40% with no false negatives indicate that ilastik was trained well (Figure 16).  
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Figure 16. Different stages of using ilastik. a) First is the original image, which goes as an input. b) This image is during 
training with yellow and blue labels marking different objects. c) Then comes after training part, where ilastik shows what 
it has identified, and the user marks correct and incorrect results. d) Last image is the exported prediction of microplastic 
that will go into CellProfiler™. Calculated accuracy came to 93.4%. 

Detection of microplastic via ilastik was successful, as the output files were suitable for further input 

and overall analysis in CellProfiler™. If wanted, ilastik can be trained with more images to get even 

higher accuracy. The more it is trained, the less it confuses non microplastics with real microplastic 

particles. However, more training also requires more manual labour of the trainee and cannot 

always guarantee a better outcome. 

  

4.2 Optimization of droplets detection in CellProfiler™ 

The second specific sub-aim was to optimze the detection of polydisperse droplets. It was done by 

finding the diameter range of wanted droplets and the threshold-smoothing combination in 

IdentifyPrimaryObjects module. The first parameter was the objects diameter, which was found 

when measuring the droplets by hand (Figure 17). From the diameter measurements, it was chosen 

that the setting “typical diameter of objects in pixel units” should be 20 to 400 pixels. The second 

crucial parameter is the smoothing – threshold combination. From the nine different combinations 

tested, the threshold smoothing scale was set to 3 and threshold correction factor was set to 0.8 

for identifying polydisperse droplets (Appendix 1). Given the few missed droplets and only one 

wrongly identified object, the accuracy came to 88.59%, which again was acceptable (Figure 17). 
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Figure 17. Example of measuring the smallest droplet on an image, which has diameter of 98.5 pixels (= 61.46 µm). The 
accuracy for detecting polydisperse droplets was 88.59%. 

The key to optimizing polydisperse droplet detection is in IdentifyPrimaryObjects module. In this 

study three key module features were tested. To improve the detection even more, other settings 

in this module could also be evaluated. Polydisperse droplets are harder to analyse because of their 

inconsistencies in behaviour due to their size variations and their likelihood of overlapping during 

imaging (imaging slide chamber height is 100 µm). The detection depends also on image quality. 

The contrast between the droplets and background becomes harder to distinguish the drier 

droplets are. During imaging it is important to have enough oil mixed with droplets to ensure that 

droplets do not start drying out during the imaging process. 

 

4.3 Antibiotic susceptibility in the presence of microplastic 

The third specific sub-aim was to compare viability in polydisperse droplets with microplastic versus 

without microplastic. Viability of bacteria was higher in droplets with no microplastic. To calculate 

viability (i) sum of positive and sum of total droplets were found, then (ii) the respective sums were 

divided to find the fraction of positive droplets. For making the graph, normalized data was used 

(Appendix 4). In the graph, antiobiotic concentration is in the X-axis and bacterial viability is in the 

Y-axis. Results that are shown in green are from droplets that do not contain microplastic particles 

and result in orange shows the bacterial viability in droplets with microplastic. It appears that the 

presence of microplastic decreases bacterial viability (Figure 18). 
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Figure 18. The comparison of bacterial viability in the presence of cefotaxime with microplastic versus without 
microplastic. Control experiment is done by using polydisperse droplets without any microplastic. 

When comparing the results from the control experiment (a separate experiment without any 

microplastic included) versus the main experiment, where some droplets had and some did not 

have microplastic particles in them, it can be concluded that they all have a similar trendline. The 

two datasets (Figure 18, light and dark green data), which consist only of droplets without 

microplastic particles, have more similar values, which is logical. This further indicates that the 

developed pipeline gives out accurate data. 

  

4.4 Antibiotic susceptibility in the presence of microplastic 

The fourth specific sub-aim was to compare bacterial aggregation in polydisperse droplets with 

microplastic versus without microplastic. Autoaggregation of bacteria was higher with sample that 

did contain microplastic particles. Before calculating the bacterial aggregation, first it was crucial to 

know how to measure the texture of droplets. In this study, five different texture measurements 

were tested. After consideration, it was decided to move forward with SumVariance. For example, 

compared to InverseDifferenceMoment, it was clear that SumVariance could distinguish between 

empty droplets, homogeneous growth, and autoaggregation, whereas InverseDifferenceMoment 

could only distinguish between empty droplets and droplets with bacteria growth (Figure 19). The 

same comparison was done by a master student Merili Saar, who obtained similar results. During 

this cooperation, it was decided to continue with SumVariance. 

 

As for the texture scale, from the three tested options 10 was chosen, because it separated needed 

three groups most noticeably. All the options were very similar, but when taking a closer look, the 

difference between homogeneous growth and aggregated growth groups is a little bit bigger with 

texture scale of ten (Appendix 5). 
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Figure 19. Comparison of two measuring methods. On the left is SumVariance, which enables categorization of droplets 
with no growth, homogeneous or aggregated growth. On the right is InverseDifferenceMoment, which has only one 
„jump“, so categorization of homogeneous versus aggregate growth is not possible. 

In the graph, antiobiotic concentration is in the X-axis and autoaggregation is in the Y-axis. If only 

looking at the datasets from polydisperse droplets with and without microplastic particles (Figure 

20, blue and light green data), it seems as if the presence of microplastic increases autoaggregation 

in droplets. Series, which is made from the control data without any microplastic particles (Figure 

20, dark green data), shows similar overall trendline of autoaggregation first increasing but soon 

decreasing with higher cefotaxime concentrations. Nevertheless, the control experiment 

autoaggregation dataset values do not match with the “No Plastic” dataset values, being even 

higher than values for the “Microplastic” dataset (Figure 20). 

 

 
Figure 20. The comparison of autoaggregation in the presence of cefotaxime in droplets with microplastic versus without. 
Control experiment is done by using polydisperse droplets without any microplastic. 

Knowing the accuracy of detection, it can be said that the output from the developed pipeline in 

this thesis is more precise than the previously used pipeline in the thesis of Fenella Lucia Sulp [37]. 

To get a deeper understanding of the relationship between autoaggregation and microplastic, more 

testing is needed, yet this pipeline is suitable for enabling aggregation analysis in droplets. It will be 

used in the BSc thesis by Triini Olman and it is fitting to use the pipeline in any other projects related 

to microplastic particles and aggregation. To improve this pipeline, more of the different settings 

in IdentifyPrimaryObjects module should be tested so see if it is possible to make the identification 

even more accurate. MeasureTexture module should be tested more thoroughly with the texture 

measurements SumVariance and Variance, to see which measurement is more fitting. To get even 

more accurate results, the testing should be done with better quality images. It is important that 
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the droplets are not dried out nor overlapping in the imaging chamber. It should be considered to 

do the testing with monodisperse droplets, since the images have usually better quality and overall 

they are easier to analyse. For further development, instead of ilastik, it is worth try to use some 

other software, since ilastik can be very time consuming and may not work on every computer. The 

software ilastik requires a 64-bit operating system and at least 8 GB of RAM (random access 

memory), but for smooth interaction at least 32 GB of RAM is needed [18].  
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ABSTRACT 

Polydisperse droplets, which contain two immiscible liquids, give a chance to make small-scale 

experiments, while not needing any expensive equipment nor trained staff. To analyse made 

droplets, there have been developed different software, from which some are demanding 

programming skills. Fortunately, there are also more user-friendly image analysis software 

available. These applications are providing easy access to guides and manuals to help new users. 

 

The main purpose of this thesis was to develop an image analysis pipeline to investigate the impact 

of microplastic to bacterial aggregation. The sub-aims were (i) to detect microplastic inside 

polydisperse droplets; (ii) to optimize the detection of polydisperse droplets; (iii) to compare the 

bacterial viability in polydisperse droplets with versus without microplastic; (iv) to compare the 

bacterial aggregation in polydisperse droplets with microplastic versus without microplastic. 

 

The final pipeline uses software CellProfiler™ and ilastik. Images from bright-field channel serve as 

an input to ilastik, which exports predictions of microplastic. CellProfiler™ requires four images 

formats (red channel, green channel, bright-field channel, and prediction of microplastic) as an 

input. The final pipeline in CellProfiler™ has eleven modules added to the four essential ones. After 

going through the pipeline, the software exports .csv file results. 

 

For the detection of microplastic, the software ilastik was trained. Most suitable correction factor 

and smoothing scale was found and in the end, it had 93.4% accuracy. To optimize detection of 

polydisperse droplets, diameter distribution was measured and different thresholds were tried. The 

typical diameter of objects in pixel units was set to 20 and 400 and threshold smoothing scale was 

settled to 3 and threshold correction factor was left to 0.8. The accuracy of droplet detection came 

to 88.59%. 

 

Bacterial viability was higher in droplets without microplastic. This result was supported by the 

control experiment, which did not include microplastic particles. Bacterial aggregation was higher 

in droplet with microplastic. However, this result was not backed up by the control experiment, 

since its dataset values were even higher than the values of droplets with microplastic. Bacterial 

growth was classified based on their texture values into three groups – no growth, homogeneous 

growth, and aggregated growth. In conclusion, the analyses hint that microplastic has a decreasing 

effect on bacterial viability. However, bacterial aggregation needs more investigation with better 

quality images. The developed pipeline works and can be used for further research. 
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KOKKUVÕTE 

Emulsioon koosneb kahest segunematu vedeliku faasist, milleks võib olla näiteks vesi ja õli. 

Emulsiooni tüüpe on erinevaid, kuid antud töös on kasutatud vesi-õlis tilkasid. Kasutades tilkasid 

katseklaasidena, saab kokku hoida reagentide kulu ja vähendada toksilisi jäätmeid. Monodispersed 

tilgad on sama läbimõõduga ning nende tootmiseks on välja töötatud erinevaid kanali disaine. Kuigi 

monodisperseid tilkasid on kergem uurida, nõuab nende tootmine erilisi seadmeid ning koolitatud 

personali. Polüdispersed tilgad seevastu on küll suuruselt erinevad, kuid nende tegemiseks ei ole 

vaja erilist seadmeid, tänu millele on seda võimalik teha igas laboris. Tehtud tilkade analüüsimiseks 

on välja töödeldud tarkvarasid, millest mõned vajavad teadmisi programmeerimises. Siiski on 

saadaval ka kasutajasõbralikumaid tarkavarasid nagu CellProfiler™, ilastik, QuPath ja ImageJ. Need 

rakendused pakuvad uutele kasutajatele lihtsat juurdepääsu juhenditele.  

 

Tänapäeval on suureks probleemiks plastik, mis ei ole biolagunev, vaid laguneb mikroplastikuks ja 

nanoplastikuks. Mikroplastiku reostusel on negatiivne mõju inimese tervisele, tekitades erinevaid 

haigusi sattudes vereringesse. Mikroplastiku osakesi leidub meie toidus, õhus ja vees, mistõttu 

tarbivad inimesed nädalas kuni 5 grammi mikroplastikut. Antimikroobne resistentsus (AMR) on 

mikroobide suutelisus muutuda vastupanuvõimeliseks antibiootikumidele. Seetõttu on haiguse ravi 

raskendatud või üldsegi võimatu. Mikroorganismide võime kinnituda pinnale loob biokile. Üks 

esimesi samme biokile moodustumisel on agregatsioon ehk bakterid koonduvad kokku. 

 

Käesoleva töö põhiliseks eesmärgiks oli pildianalüüsi töövoo arendamine mikroplastiku mõju 

uurimiseks bakterite agregatsioonile. Alaeesmärkideks olid (i) mikroplastiku tuvastamine 

polüdispersetes tilkades; (ii) polüdispersete tilkade tuvastamise optimeerimine; (iii) võrrelda 

bakterite elulisust polüdispersetes tilkades mikroplastikuga versus mikroplastikuta; (iv) võrrelda 

bakterite agregatsiooni polüdispersetes tilkades mikroplastikuga versus mikroplastikuta. 

 

Lõplik töövoog kasutab tarkvarasid CellProfiler™ ja ilastik. ilastikult saab mikroplastiku ennustuse, 

mis sisestatakse koos kolme teise pildiformaadiga tarkvarasse CellProfiler™. Lõplik töövoog 

CellProfiler™ tarkvaras sisaldab lisaks kohustuslikule neljale moodulile veel ühtteistkümmet 

moodulit. Pärast töövoo läbi töötamist, ekspordib tarkvara .csv failina tulemused. 

 

Mikroplastiku tuvastamiseks tuli ilastikut treenida. Leiti kõige täpema tulemuse andvad sätted. 

Arvutades saadi 93,4% täpsus, milles ükski mikroplastiku osa ei jäänud tuvastamata. Polüdispersete 

tilkade tuvastamise optimeerimiseks mõõdeti kõige suuremate ja väiksemate tilkade diameetreid 

ning lisaks prooviti erinevaid läveväärtusi. Lõpuks määrati tüüpiliseks objektide diameetriks 

vahemiku 20 ja 400 pikslit ning läve silumise skaalaks pandi 3 ja läve parandusteguriks jäeti 0,8.  

Tilkade tuvastamise täpsuseks arvutati 88,59%. 

 

Bakterite elulisus oli kõrgem tilkades, mis ei sisaldanud mikroplastikut. Seda tulemust kinnitas ka 

kontrollkatse, mis ei sisaldanud üldse mikroplastikut. Bakterite agregatsioon oli kõrgem tilkades, 

kus oli ka mikroplastiku osakesi. Siiski, seda tulemust ei kinnitanud kontrollkatse, mille väärtused 

olid isegi suuremad, kui mikroplastikuga tilkade väärtused. Bakterite kasv jaotati tekstuuri väärtuste 

alusel kolme gruppi – tühjad tilgad, homogeenne kasv ja agregatsioon. Kokkuvõttes, tehtud 

analüüsid vihjavad asjaolule, et mikroplastikul on mõju bakteri elulisusele. Siiski baketri 
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agregatsioon vajab edasist uurimist, kasutades parema kvaliteediga pilte. Arendatud töövoog 

töötab ning seda saab kasutada edasistes uuringutes. 
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Appendix 1 

 

   

  
Appendix 1. Different smoothing scales and correction factors. From left to right, smoothing scales are 1.3488, 3 and 5. 

From top to bottom, correction factors are 0.4, 0.8 and 1. 
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Appendix 2 

 

 
Appendix 2. Droplet diameter distribution. From each folder, one image was chosen. From that image was the smallest 

and biggest droplet found and its diameter measured. From all the measured droplets was brought up the smallest and 

biggest diameter found and also the average calculated. 
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Appendix 3 

 

 
Appendix 3. On the left, histogram of SumVariance measurement to determine the separating threshold values for the 

bins. On the right, scatter chart of SumVariance values, which show the “jumps” between different growth groups.  
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Appendix 4 

 

 
Appendix 4. Calculated fractions of positive droplets and normalized data, which was used to make graphs. Up is data 

from droplets without microplastic, down are the results from droplets with microplastic.  
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Appendix 5 

 

 
Appendix 5. Different tested pixel values. The clearest „jump“ between homogeneous growth and aggregated growth is 

on the left (10 pixels). 
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