
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Vladimir Kulagin 164225IAPB

WEB APPLICATION FOR CREATING

REPORTS ON SOFTWARE DEVELOPMENT

PROJECTS AND COLLECTING CUSTOMER

FEEDBACK

Bachelor's thesis

Supervisor: Deniss Kumlander

 Doctor's degree

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Vladimir Kulagin 164225IAPB

VEEBIRAKENDUS

TARKVARAPROJEKTIDE ARUANNETE

KOOSTAMISEKS JA KLIENTIDE

TAGASISIDE KOGUMISEKS

bakalaureusetöö

Juhendaja: Deniss Kumlander

 Doktorikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vladimir Kulagin

21.05.2019

4

Abstract

The goal of this thesis is to automate processes of creating reports on software

development projects, where the projects data should be acquired from Jira. This thesis is

focused on the back-end part developing and provides a detailed description of its

architecture. The result of this thesis is a web application, which provides all the required

functionality to prepare reports on software development projects.

This thesis is written in English and is 47 pages long, including 6 chapters, 14 figures and

19 tables.

5

Annotatsioon

Veebirakendus tarkvaraprojektide aruannete koostamiseks ja

klientide tagasiside kogumiseks

Antud bakalaureusetöö eesmärk on tarkavaraprojektide aruannete koostamise ja klientide

tagasiside kogumise protsessi automatiseerimine. Bakalaureusetöö on kontsentreeritud

back-end’i osa arendamisele ning annab detailne ülevaade selle arhitektuurist. Töö

tulemiks on veebirakendus, mis pakub kogu vajalikku funktsionaalsust

tarkavaraprojektide aruannete koostamise ja klientide tagasiside kogumise protsessi

automatiseerimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, 6 peatükki, 14

joonist, 19 tabelit.

6

List of abbreviations and terms

API Application Programming Interface

DB Database

DTO Data Transfer Object

IT Information Technology

JSON JavaScript Object Notation

JWT JSON Web Token

LOC Lines of Code

MD Man-Day

NCLOC Non-Commented Lines of Code

REST Representational State Transfer

SCRUM Agile framework for managing product development.

SDK Software Development Kit

SSL Secure Sockets Layer

UI User Interface

XML Extensible Markup Language

7

Table of contents

1 Introduction ... 11

1.1 Background ... 11

1.2 Problem ... 11

1.3 Purpose ... 11

1.4 Project scope ... 12

2 Problem analysis .. 13

2.1 General requirements .. 13

2.2 Functional requirements ... 13

2.3 Technological requirements ... 14

2.4 Application use scope ... 14

2.5 Defining application architecture ... 14

2.6 Choice of development tools .. 15

3 Database design ... 16

3.1 Project pulse physical model .. 16

3.2 Sprint pulse physical model .. 18

3.3 Sprint issue physical model .. 20

3.4 Sprint goal physical model ... 22

3.5 Sprint feedback physical model .. 23

3.6 Pulse user physical model ... 25

4 Implementation on Spring ... 27

4.1 Spring class model .. 27

4.2 Jira API integration ... 28

4.3 Application controllers ... 29

4.4 Project and sprint pulse creation and update flow .. 35

4.5 Survey sending and feedback results fetching .. 38

4.6 Application data flow ... 39

4.7 Authorization .. 41

5 Software quality assurance .. 44

5.1 Testing .. 44

8

5.2 Code metrics ... 44

6 Conclusion ... 46

References .. 47

9

List of figures

Figure 1. Project pulse physical model diagram... 18

Figure 2. Sprint pulse physical model diagram. ... 20

Figure 3. Sprint issue physical model diagram. ... 22

Figure 4. Sprint goal physical model diagram. ... 23

Figure 5. Sprint feedback physical model diagram .. 25

Figure 6. Pulse user physical model diagram. .. 26

Figure 7. Spring entity class model diagram. ... 28

Figure 8. Project pulse creation activity diagram. .. 36

Figure 9. Project pulse state diagram.. 37

Figure 10. Project pulse update activity diagram. .. 37

Figure 11. Sprint pulse update activity diagram. .. 38

Figure 12. Sprint pulse state diagram. .. 38

Figure 13. Application data flow diagram .. 40

Figure 14. User authorization activity diagram. ... 42

file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352498
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352500
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352501
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352502
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352503
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352504
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352505
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352506
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352507
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352508
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352509
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352510
file:///C:/Users/Vladimir/Desktop/Loputoo/Lõputöö.docx%23_Toc9352511

10

List of tables

Table 1. Project pulse database table description. .. 17

Table 2. Project pulse database table relations. .. 18

Table 3. Sprint pulse database table description... 19

Table 4. Sprint pulse database table relations... 19

Table 5. Sprint issue database table description. .. 21

Table 6. Sprint issue database table relations. .. 21

Table 7. Sprint goal database table description. ... 22

Table 8. Sprint goal database table relations. ... 23

Table 9. Sprint feedback list database table description. .. 24

Table 10. Sprint feedback list database table relations. .. 24

Table 11. Sprint feedback user table description. ... 24

Table 12. Sprint feedback user role table description. ... 25

Table 13. Pulse user table description. ... 25

Table 14. Authorization Spring controller description. .. 30

Table 15. Jira Spring controller description. .. 31

Table 16. Pulse Spring controller description. ... 31

Table 17. LOC metrics of the back-end excluding the test sources. 44

Table 18. LOC metrics of the back-end test sources. ... 44

Table 19. Complexity metrics of the back-end methods. ... 45

11

1 Introduction

1.1 Background

Kuehne + Nagel is a global transport and logistics company. It has more than 1000 of

offices among many countries, including IT centers, which belong to company’s IT unit.

These centers provide IT solutions for the company and one of these centers was the place

of this thesis author’s internship. The official name of this center is Kühne + Nagel IT

Service Centre AS.

1.2 Problem

One of this IT center tasks is software development. The most part of the software projects

are developed using SCRUM methodology and at the end of each sprint project team is

giving feedback to the client about how much of project budget has been spent and what

has been done during the sprint. For the project managing, the Jira is being used, thus all

the budget calculations are being done according to the time tracking data from Jira. In

addition, at the end of each sprint a questionnaire is being sent to the end users and the

project team, including developers, sponsors, stakeholders, etc. In this way, for each

sprint the report is being prepared. This report contains overview of sprint goals, sprint

tasks, sprint costs calculations and the results of sprint satisfaction survey.

The problem is that all report preparations are being done manually by a responsible

person: sprint costs calculations, sprint tasks overview, survey sending, calculation of

average satisfaction rating and charts drawing. The disadvantage of this approach is that

all these preparations take time and there is a possibility of human mistakes in the

calculations.

1.3 Purpose

The given bachelor’s thesis purpose is to automate processes of creating software project

reports. This would not only save a lot of time on creating these kind of reports, but also

12

will significantly reduce the possibility of human mistakes during the cost and rating

averages calculations. The main goal is to build software, which will provide all needed

functionality for automation the reports creating. The expected result is application,

which will allow getting overview of software projects, sprints and issues and calculate

their costs, send sprint surveys to the groups of users and provide the results.

1.4 Project scope

The project has been done by two-member team. This thesis author’s contribution to the

project is the whole back-end part development including the database design. The front-

end has been developed by another team member. Thus, this thesis is focused on the back-

end part developing and provides a detailed description of its architecture. Since the

application size regarding the code is not small, in this thesis a description is provided

only of those main components, which are needed to understand the project. Unimportant

and minor services are not described.

13

2 Problem analysis

This chapter provides a detailed description of all requirements regarding the application

and a list of chosen technologies for application development.

2.1 General requirements

The list of general requirements is represented below.

1. All data – projects data, sprints data and issues data, including time tracking data, has

to be taken from Jira environment.

2. Application (for viewing the reports) should be available also for these users, who

does not have access to Jira.

3. Only specific users should be able to login to the application and create reports. This

means that not all users, who have access to Jira, should have the possibility to login

to the application.

4. The data related to the projects, sprints and issues should not be updated in live mode.

This means that if, for example, the new issues are added to the certain sprint or the

time tracking data is changed in the Jira environment, this changes should not appear

in the application itself. All changes done in the Jira should appear in the application

only when user decides to update sprint or project report.

2.2 Functional requirements

The list of functional requirements is represented below.

1. It should be possible to get overview of the projects, project sprints and sprint issues

without logging into the system.

2. It should be possible to get overview of sprints and issues costs without logging into

the system.

14

3. It should be possible to create project reports which consist of sprint reports.

4. It should be possible to unpublish certain project or sprint report.

5. It should be possible to update sprint or project report. After update, all changes done

to the certain project or sprint in Jira have to be applied in application with costs

recalculations.

6. It should be possible to create sprint goals, which can be related to sprint issues and

which costs should be calculated according to related issues costs. In addition, it

should be possible to set status of sprint goal to „achieved” or „not achieved”.

7. It should be possible to send sprint satisfaction surveys to the users email.

8. It should be possible to get overview of sprint satisfaction survey results with

calculated averages.

9. It should be possible to give access to the application for creating reports to another

users.

10. It should be possible to modify project style and save the changes.

2.3 Technological requirements

There is only one technological requirement and it is regarding the database. The database

management system, which has to be used is PostgreSQL 10. For the rest there is no any

strict requirements and the technology choice for the development is free.

2.4 Application use scope

The use scope of the application will be a private corporate network, which is available

only for corporation members. This means that the application will not be accessible from

the global network.

2.5 Defining application architecture

According to the general requirements, it is impossible to build this application as Jira

plugin or stand-alone application with all business logic running on client side. These

15

solutions are not suitable, as non-Jira users should also have access to the published

reports. Moreover, there is requirement that the changes made to the data in Jira should

not appear immediately in report, so there is need to store the projects, sprints and issues

data in the database. Due to this reasons it has been decided to build this application as

web application with independent UI and server parts.

2.6 Choice of development tools

The list of all chosen technologies is represented below.

Back-end: Spring Boot, Java, Maven (later replaced with Gradle), Liquibase,

PostgeSQL

Front-end: React, npm

Deployment and production: Docker

As was mentioned before, there are no strict technological requirements. In this way for

the back-end part has been chosen Spring Boot. Firstly, the most part of web applications

in the company are also developed using this tool. Secondly, it reduces lots of

development time and increases productivity as it avoids writing lots of boilerplate code.

Finally, this thesis author has previous experience with using this tool. Thus, a Spring

Boot claims to be a good choice for the back-end part development.

The chosen build tool for the back-end is Maven, which has been later replaced with

Gradle by a person, who has been deploying the application. The reason of this

replacement has left unknown.

The chosen database management system is PostgreSQL 10, as it is technological

requirement, as was described above. For managing and applying database schema

changes has been chosen Liquibase as it is widely used in the company.

For the front-end part due to the similar reasons has been chosen React. This choice has

been made by a person who is responsible for the front-end development.

The deployment has been done using Docker by a responsible person from the company.

16

3 Database design

This chapter provides a detailed description of database tables and their relations. As the

most part of data validation is being done using Spring Boot, the database tables are not

overwhelmed with check constraints.

3.1 Project pulse physical model

A project pulse represents a project report. A detailed description of project pulse DB

table is provided in Table 1 and the project pulse model is represented in Figure 1.

17

Table 1. Project pulse database table description.

Column name Description Example value

project_key A unique identifier of the project. Is obtained

from Jira environment.

TP

name A name of the project. Is obtained from Jira

environment.

Test Project

rapid_view_id A Jira board or also called rapid view unique

identifier, integer value, which is related with

given project. It is needed to obtain from Jira

all the sprints that are related with the project.

0123456789

is_published A boolean value, which represents whether the

project pulse is published (visible for users).

true

sponsored_budget A double value, which represents a total

budget, which was sponsored for the project

development. This value has to be entered

manually by a project manager on project

pulse publishing.

50000.0

budget_spent A double value, which represents an amount of

spent budget for the project development. This

value is calculated automatically by the

application.

12500.0

total_max_per_sprint A double value, which represents a maximum

amount of budged which can be spent during

one sprint. This value has to be entered

manually by a project manager on project

pulse publishing.

4000.0

service_rate A double value, which represents a service rate

per man-day. This value has to be entered

manually by a project manager on project

pulse publishing.

450.0

A description of project pulse DB table relations is provided in Table 2.

18

Table 2. Project pulse database table relations.

Related table name Description

project_pulse_chart_color One-to-many relation. Represents a list of chart colors for

the style of given project.

project_pulse_background_color One-to-many relation. Represents a list of background

colors for the style of given project.

project_pulse_text_color One-to-many relation. Represents a list of text colors for

the style of given project.

project_pulse_sprint_pulses One-to-many relation. Table is needed to relate project

pulse with sprint pulses.

3.2 Sprint pulse physical model

A sprint pulse represents a sprint report. A detailed description of sprint pulse DB table

is provided in Table 3 and the sprint pulse model is represented in Figure 2.

Figure 1. Project pulse physical model diagram.

19

Table 3. Sprint pulse database table description.

Column name Description Example value

id A unique identifier of the sprint pulse. Is

generated by the system.

0123456789

sprint_id A unique identifier of the sprint among the

rapid view, but not among the project. Is

obtained from Jira environment.

0123456789

name A name of the sprint. Is obtained from Jira

environment.

Sprint 1

is_published A boolean value, which represent whether the

sprint pulse is published (visible for users).

true

start_date A start date of the sprint. Is obtained from Jira

environment.

08.04.2019

00:00:00

end_date An end date of the sprint. Is obtained from Jira

environment.

15.04.2019

00:00:00

A description of sprint pulse DB table relations is provided in Table 4.

Table 4. Sprint pulse database table relations

Related table name Description

project_pulse_sprint_pulses One-to-many relation. Table is needed to relate project

pulse with sprint pulses.

sprint_pulse_sprint_issues One-to-many relation. Table is needed to relate sprint

pulse with sprint issues.

sprint_pulse_sprint_goals One-to-many relation. Table is needed to relate sprint

pulse with sprint goals.

sprint_pulse_sprint_feedback_list One-to-many relation. Table is needed to relate sprint

pulse with sprint feedbacks.

20

Figure 2. Sprint pulse physical model diagram.

3.3 Sprint issue physical model

A detailed description of sprint issue DB table is provided in Table 5 and the sprint issue

model is represented in Figure 3.

21

Table 5. Sprint issue database table description.

Column name Description Example value

id A unique identifier of the sprint issue. Is

generated by the system.

0123456789

issue_key A unique identifier of the Jira issue. Is

obtained from Jira environment.

TP-12

type A type of the Jira issue. Is obtained from Jira

environment.

Task

status A status of the Jira issue represents a stage the

issue is currently at in its lifecycle. Is obtained

from Jira environment.

RESOLVED

summary A summary of the Jira issue. Is obtained from

Jira environment.

Implement new

feature.

time_spent A total amount of time in seconds spent for the

issue. Is obtained from Jira environment.

18000

cost A calculated amount of budget in euro spent

for the issue. This value is calculated

automatically by application according to the

spent time.

281.25

A description of sprint issue DB table relations is provided in Table 6.

Table 6. Sprint issue database table relations.

Related table name Description

sprint_pulse_sprint_issues One-to-many relation. Table is needed to relate sprint

pulse with sprint issues.

sprint_goal_sprint_issues One-to-many relation. Table is needed to relate sprint

goal with sprint issues. Related sprint issues are used to

calculate sprint goal cost.

22

3.4 Sprint goal physical model

A sprint goal is not Jira object mapping model. This model is required for creating goals

for the sprints and calculating their costs according to the related issues. A detailed

description of sprint goal DB table is provided in Table 7 and the sprint goal model is

represented in Figure 4.

Table 7. Sprint goal database table description.

Column name Description Example value

id A unique identifier of the sprint goal. Is

generated by the system.

0123456789

description A goal description. This value has to be

entered manually by a project manager.

Achieve 1.5

times better

performance.

is_achieved A boolean value, which represents whether is

sprint goal achieved during a related sprint.

true

A description of sprint goal DB table relations is provided in Table 8.

Figure 3. Sprint issue physical model diagram.

23

Table 8. Sprint goal database table relations.

Related table name Description

sprint_pulse_sprint_goals One-to-many relation. Table is needed to relate sprint

pulse with sprint goals.

sprint_goal_sprint_issues One-to-many relation. Table is needed to relate sprint

goal with sprint issues. Related sprint issues are used to

calculate sprint goal cost.

3.5 Sprint feedback physical model

A detailed description of sprint feedback list DB table is provided in Table 9 and the

sprint feedback model is represented in Figure 5.

Figure 4. Sprint goal physical model diagram.

24

Table 9. Sprint feedback list database table description.

Column name Description Example value

sprint_pulse_id A related sprint pulse unique identifier. 0123456789

comment A given comment for a related sprint. I am

completely

satisfied with

the sprint

results.

rating A given rating for the related sprint. 5

feedback_user_email A user email. user@mail.com

feedback_user_role_name A role name to which user belongs. Developers

A description of sprint feedback list DB table relations is provided in Table 10.

Table 10. Sprint feedback list database table relations.

Related table name Description

sprint_pulse Many-to-one relation. Table is needed to relate sprint

pulse with sprint feedbacks.

feedback_user One-to-many relation. Table is needed to relate sprint

feedback with feedback user.

feedback_user_role_name One-to-many relation. Table is needed to relate sprint

feedback with feedback user role.

A feedback user DB table description is represented in Table 11 and feedback user role

DB table description is represented in Table 12.

Table 11. Sprint feedback user table description.

Column name Description Example value

email A unique identifier of the feedback user. user@mail.com

sprint_pulse_id A related sprint pulse unique identifier. 0123456789

25

Table 12. Sprint feedback user role table description.

Column name Description Example value

name
A unique identifier of the feedback user role.

Represents a role name.

Developers

type An integer value that represents a role type,

which can be „End users” or „Project team”.

0

3.6 Pulse user physical model

A pulse user represents a user of the application, who is responsible for creating project

and sprint reports. A detailed description of pulse user DB table is provided in Table 13

and the sprint goal model is represented in Figure 6.

Table 13. Pulse user table description.

Column name Description Example value

email A unique identifier of the pulse user. user@mail.com

is_root A boolean value, which represent whether the

user is a root user.

true

Figure 5. Sprint feedback physical model diagram

26

Figure 6. Pulse user physical model diagram.

27

4 Implementation on Spring

This chapter provides a detailed description of back-end part implementation on Spring.

The description is provided only for those main components, which are needed to

understand the project. Unimportant and minor services and classes are not described.

During the implementation the best practices have been used, which are described in

Baeldung [1] and Mkyong [2] articles.

4.1 Spring class model

An entity class model diagram is provided in Figure 7. The diagram shows only entity

classes, no service or controller classes are listed here.

28

4.2 Jira API integration

There are an official Jira REST APIs, which provide methods to interact with the Jira

Server applications remotely. The Jira Server platform provides the REST API for

common features, like issues and workflows. The Jira Software and Jira Service Desk

applications have REST APIs for their application-specific features, like sprints (Jira

Software) or customer requests (Jira Service Desk) [3].

Figure 7. Spring entity class model diagram.

29

In order to save time on development has been used third party client library for Java,

which provides ready methods and models to interact with Jira REST API [4]. All

requests to the Jira are done using Jira client class objects, which provide both ready

methods and a manual way of requesting data. However, some ready methods of this class

do not work as expected and causes errors. In this way for the half Jira API request are

used Jira client methods and for another part, HTTP GET requests are made manually

using the same class object. The disadvantage of manual requests are that in response we

get a plain JSON object instead of corresponding Java object.

4.3 Application controllers

This chapter provides a detailed description of application REST controllers and their

methods. All controller methods are used by the front-end of this application.

There are three Spring REST controllers: the first one is used for authorization purposes,

the second one is used to interact with the Jira API directly and the last one provides

methods for creating and handling project and sprint reports.

The description of Authorization Controller, which is used for authorization purposes, is

represented in Table 14. The more detailed description of authorization is provided in

chapter 4.7.

30

Table 14. Authorization Spring controller description.

Method name

Method parameter

Method description

Method parameter description

/login Log user into Jira. Retrive a logged user email from Jira, if

email is not in the application users list, which is represented

by PulseUser DB table, then throw authorization exception, as

not all Jira users can log into the application. If the login to Jira

is succcesful and logged user is also a following application

user, then return a cookie with JWT in response.

username A Jira server username.

password A Jira server user password.

GET /isLoggedIn Retrieve JWT from the request and get corresponding Jira

client. If Jira client for corresponding user exists, the user is

logged in, in this case return true, otherwise return false.

/logout Retrieve JWT from the request and remove corresponding Jira

client.

GET /getUsers Return list of all application users, which are represented by

PulseUser DB table. This method is available only for the root

users of the application.

/register Register a new application user. This method is available only

for the root users of the application.

pendingEmail A Jira user email.

/unregister Unregister an application user. The corresponding user is

deleted from PulseUser DB table and Jira client of this user is

also removed. This method is available only for the root users

of the application.

pendingEmail A Jira user email, which is also registered as this application

user.

GET /userHasRootAccess Retrieve JWT from the request and the user email from it and

check wheter the corresponding user is a root user. If it is, then

return true, otherwise return false.

The description of Jira controller, which is used to interact with the Jira API directly, is

represented in Table 15.

31

Table 15. Jira Spring controller description.

Method name Method description

GET /projects This method returns list of all Jira projects.

GET /unpublishedProjects This method reurns list of these Jira projects for which

ProjectPulse instance has not been created.

The Pulse controller provides methods for creating and handling project and sprint

reports. The description of given controller is represented in Table 16.

Table 16. Pulse Spring controller description.

Method name

Method parameter

Method description

Method parameter description

GET /project/{projectKey}/createPulse Create a project pulse and sprint pulses

for sprints of this project. Sprint pulses

are initially not published. If project

pulse for given project already exists

and not published, then recalculate

project costs and publish it. Method

returns created instance of project pulse.

projectKey A Jira project key.

serviceRate A service rate per MD for the given

project.

sponsoredBudget Amount of a sponsored budget for the

given project.

totalMaxPerSprint Total maximum amount of budget

which can be spent during the single

sprint.

GET /project/{projectKey}/update Acquire new data from Jira for the

whole project pulse and every sprint

pulse of the given project. This method

adds new sprint pulses to existing

project pulse and updates already

existing sprint pulses. Sprint issues are

also updated and the project and sprint

costs are recalculated. Method returns

updated instance of project pulse.

projectKey A Jira project key, which refers to

existing project pulse.

32

Method name

Method parameter

Method description

Method parameter description

GET /project/{projectKey}/setPublished Set the project pulse published or vice

versa. On unpublishing project pulse

data is not being deleted and project

pulse can be published again using the

same method or with the costs

recalculation using the createPulse

method.

projectKey A Jira project key, which refers to

existing project pulse.

isPublished A boolean which defines whether the

project pulse should be published.

GET /project/{projectKey}/setProjectBudget Set the project budget values. This

method is used to change the budget of

existing project. Method returns project

pulse instance with updated budget

values.

projectKey A Jira project key, which refers to

existing project pulse.

sponsoredBudget Sponsored budget amount.

totalMaxPerSprint Total maximum amount of budget

which can be spent during the single

sprint.

GET /project/{projectKey}/setServiceRate Set new project service rate and

recalculate project issues costs. Method

returns project pulse instance with

updated service rate value.

projectKey A Jira project key, which refers to

existing project pulse.

dailyServiceRate A new service rate per MD for the given

project.

GET /project/{projectKey}/style Return instance of the project style for

the requested project pulse.

projectKey A Jira project key, which refers to

existing project pulse.

POST /project/{projectKey}/setStyle Replace current project style with new

one. Method returns new project style

instance.

33

Method name

Method parameter

Method description

Method parameter description

projectStyle A project style request body, see Figure

7 for more details. Project style consists

of lists of background, text and chart

colours.

GET /project/{projectKey}/pulse Return instance of project pulse. If

project pulse with given project key

does not exist, then throw exception.

projectKey A Jira project key, which refers to

existing project pulse.

GET /pulses Return all instances of published project

pulses.

GET

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/update

Acquire new data from Jira for the given

sprint. Sprint name, period and issues

are updated. Project costs are

recalculated according to the new data.

This method is similar to

/project/{projectKey}/update method,

the difference is that instead of the

whole project only single sprint is

updated. Method returns updated sprint

pulse instance.

projectKey A Jira project key, which refers to

existing project pulse.

sprintId Id of the sprint which pulse should be

updated.

GET

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/setPublished

Set the sprint pulse published or vice

versa. Sprint pulse data is not being

deleted and sprint pulse can be

published again using the same method.

On publishing, sprint pulse instance is

also updated as described in method

above. Method returns project pulse

instance.

projectKey A Jira project key, which refers to

existing project pulse.

sprintPulse Id of the sprint which pulse should be

published or vice versa.

POST

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/addGoal

Add new sprint goal to the sprint pulse

or update the existing one. Method

returns updated sprint pulse instance.

34

Method name

Method parameter

Method description

Method parameter description

projectKey A Jira project key, which refers to

existing project pulse.

sprintId Id of the sprint to which sprint goal

should be added or which goal should be

updated.

sprintGoal A sprint goal request body, see Figure 7

for more details. Can represent a new

goal or existing one. If goal already

exists, then its instance is updated.

issueKeys Key of the issues passed as URL

parameters. Issues with following keys

are related with sprint goal in order to

calculate the given goal cost.

GET

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/goal/{goalId}/remove

Delete sprint goal of the sprint pulse.

Method returns updated sprint pulse

instance.

projectKey A Jira project key, which refers to

existing project pulse.

sprintId Id of the sprint, which goal should be

deleted.

goalId Id of the goal, which should be deleted.

GET /project/{projectKey}/surveyGroups Return list of all survey groups of the

given project pulse. Survey group is a

DTO, which consists of feedback user

role and list of feedback users.

projectKey A Jira project key, which refers to

existing project pulse.

POST

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/sendSurvey

Send sprint survey to the users of survey

groups and save the empty feedback

instances to the database. Method

returns updated sprint pulse instance.

projectKey A Jira project key, which refers to

existing project pulse.

sprintId Id of the sprint, which survey should be

sent.

surveyGroups Request body, list of all survey groups

of the given project pulse. See previous

method.

35

Method name

Method parameter

Method description

Method parameter description

GET

/project/{projectKey}/pulse/sprintPulse/{sprintId}

/addFeedback

Update empty feedback instance created

on sprint survey sending.

projectKey A Jira project key, which refers to

existing project pulse.

sprintId Id of the sprint, which feedback instance

should be updated.

encodedEmail An encoded email string. Email is

related to feedback user.

comment A comment for the sprint. This

parameter is optional.

rating A rating for the sprint, an integer

between 1 and 5.

4.4 Project and sprint pulse creation and update flow

The project and sprint pulse creation and update are most important and complicated

processes of the given application, as during these processes is done synchronization with

Jira environment.

A project pulse instance can be:

1. Created

2. Unpublished

3. Republished

4. Updated

36

The project pulse instance is created only once per one project. During the project pulse

creation, the sprint pulse instances are also created, but only with name and period data,

the issues data is acquired during the sprint update. Project pulse can be unpublished, this

means only that it becomes invisible for the application users. If try to create project

pulse for the project that already has a project pulse, then the budget details of the existing

instance will be updated and the pulse will be published. The project pulse creation and

republishing flow is represented in Figure 8. The state transitions of the project pulse are

represented in Figure 9.

Figure 8. Project pulse creation activity diagram.

37

A project pulse instance can be also updated. This means that the new data is acquired

from Jira and the corresponding changes are done to the project pulse instance. During

the update, the sprint pulse instances, which are related to the updatable project pulse, are

also updated in the similar way. The update flow of sprint pulse is described in the next

paragraph. The update flow of project pulse is represented below in Figure 10.

The case with sprint pulse is very similar; the main difference is that the sprint pulse

cannot be created manually, as the sprint pulse instance is created automatically on project

pulse creation or project pulse update as was mentioned above. Thus a sprint pulse

instance can be:

1. Published

2. Updated

3. Unpublished

After the project pulse with sprint pulse instances is created, the sprint pulse instance can

be published. When sprint pulse is being published, it is also being updated automatically.

However, a published sprint pulse can be updated manually too. All published sprint

Figure 9. Project pulse state diagram.

Figure 10. Project pulse update activity diagram.

38

pulses are updated automatically also on project pulse update. The update flow of sprint

pulse is represented in Figure 11. The state transitions of the sprint pulse are represented

in Figure 12.

4.5 Survey sending and feedback results fetching

For the each sprint, it is possible to send a satisfaction survey. When the survey is sent,

the empty feedback instances are created. This means that they consist only of a user

giving a feedback. See feedback classes in Figure 7. The rating and comment remain

unfilled.

Figure 12. Sprint pulse state diagram.

Figure 11. Sprint pulse update activity diagram.

39

To receive feedback and save it to the system it is required a user email. Moreover, the

feedback is accepted only from those emails, to which the survey has been sent and for

which empty feedback instances have been created, as described above. For more details,

see corresponding API method in Table 16.

The rating average values, such as group average and group type average are calculated

also on the back-end side. The calculations are done in feedback report class on sprint

pulse request with the help of JSON property annotations.

4.6 Application data flow

The application data flow is represented in Figure 13. As it is shown in the diagram, the

data requests to the Jira server are made only on project or sprint pulse creation and

update. The data received from Jira is being saved to the application database and remains

immutable until the next project or sprint pulse update is called. The saved data is further

requested by a front-end. It is possible to modify non-Jira related data, such as project

style, project budget, sprint goals, sprint feedback.

40

Figure 13. Application data flow diagram

41

4.7 Authorization

The authorization to the application is done using the Jira credentials, as they are used

also to login to the Jira and acquire corresponding Jira client. However, according to the

general requirement number 3, which is described in chapter 2.1, not all users, who have

access to Jira, should have the possibility to login to the application.

Thus, there are three types of users in this application. The not logged in users, who can

only view the project and sprint pulses and have no other permissions. The second type

of users are users who can create project and sprint pulses and do all actions related to the

project and sprint pulses. This kind of users are also Jira users and they emails are stored

in the PulseUser DB table. Each user can create project pulses only for these projects to

which the user has access in Jira. This means that if user has no acces to some project in

Jira environment, he will also unable to create a project pulse for the corrresponding

project. The last kind of users are called root users. These users have all permissions as

the previous type users. The difference is that root users can register and unregister a

second type users and get an overview of all application users. The root users are defined

by the application properties.

The Jira API provides three methods of authentication:

1. Basic authentication with a username and password [5],

2. Cookie-based authentication [6],

3. OAuth [7].

As the Jira documentation says, the preferred authentication methods for the Jira REST

APIs are OAuth and HTTP basic authentication (when using SSL) [6]. Unfortunately, the

OAuth is not supported by the third-party library which is used to interact with Jira and

which is described in chapter 4.2. In this way, the basic authentication has been chosen

as a way of authentication to the Jira API.

On login to the application, a Jira client is built from user provided credentials, to validate

Jira credentials the request to the Jira server is done to retrieve a user email. If request is

successful, then it is checked whether the retrieved email contains in application users

email list. If user with corresponding email belongs to the application users, then the built

42

Jira client is saved to the clients list and the JWT is put to the response cookie. Otherwise,

the login is unsuccessful and the exception is thrown. The authorization flow is

represented in Figure 14.

Further, before each request, which requires authorization, the JWT is validated. If

interaction with Jira is required, then Jira client is taken from the list by retrieved from

the JWT user email. JWT does not contain user credentials such as username and

Figure 14. User authorization activity diagram.

43

password, as they are stored in the Jira client object. The Jira client is used to make

requests to the Jira using the basic authentication as was described above.

On logout, the JWT containing cookie is cleared and the corresponding Jira client is

removed from the clients list.

44

5 Software quality assurance

This chapter provides a testing overview and a code metrics of the application back-end

part.

5.1 Testing

To test application, have been created 171 unit tests and 1 integration test. The overall

test coverage is 86%. The tests cover validation of entity models, authorization, API

controller methods and all application services.

To test the whole application work, has been used a local database and a company Jira

server with a real data.

5.2 Code metrics

The LOC metrics of the back-end part, excluding the test sources, are provided in Table

17.

Table 17. LOC metrics of the back-end excluding the test sources.

File type LOC NCLOC

Groovy 41 41

Java 1628 1564

Properties 35 31

Text 252

XML 293 293

Total 2249 1929

The LOC metrics of the back-end part test sources are provided in Table 18.

Table 18. LOC metrics of the back-end test sources.

File type LOC NCLOC

Java 2257 2242

Thus, the total LOC of the back-end is 4506 and the NCLOC is 4171.

45

The complexity metrics such as essential complexity, module design complexity and

cyclomatic complexity are provided in Table 19. The total number of back-end methods

(test sources are not included) is 192; the table represents only minimum, maximum and

average values among all these methods.

Table 19. Complexity metrics of the back-end methods.

 ev(G) iv(G) v(G)

Min 1.00 1.00 1.00

Max 4.00 5.00 6.00

Average 1.07 1.19 1.27

The cyclomatic complexity of each method is in range 1-6 and does not exceed the good

complexity maximum value provided in article [8], this means that code is well structured

and the code testability is high.

46

6 Conclusion

The goal of this thesis is to automate processes of creating software project reports, where

the projects data should be acquired from Jira. During the application development, all

required functionality has been implemented. The built application provides the following

functionality:

1. Overview of the projects, sprint and issues;

2. Overview of the project, sprint and issue costs;

3. Project budget values, such as service rate and sponsored amount editing;

4. Overview of the sprint goals, sprint goals creation with possibility to set goal

status, possibility to link goal with the issue to calculate goal cost;

5. Sprint goal values, such as status, description and linked issues editing;

6. Possibility to unpublish certain sprint report or the whole project;

7. Possibility to update certain sprint report or the whole project;

8. Survey sending and the survey results fetching;

9. Possibility to create and save custom project style;

10. User management.

According to the application requirements, the goal of this thesis is achieved. The value

of the result is high as the application saves a lot of time on creating software development

project reports and minimizes the possibility of human mistakes during the costs and

rating averages calculation.

47

References

[1] Baeldung, “Baeldung | Java, Spring and Web Development tutorials,” [Online]. Available:

https://www.baeldung.com/. [Accessed 14 5 2019].

[2] Mkyong, “Mkyong.com – Collection of Java web development tutorials, FAQs, and

articles,” [Online]. Available: https://www.mkyong.com. [Accessed 15 5 2019].

[3] Atlassian, “REST APIs,” [Online]. Available:

https://developer.atlassian.com/server/jira/platform/rest-apis/. [Accessed 2 5 2019].

[4] B. Carroll, “jira-client,” [Online]. Available: https://github.com/rcarz/jira-client. [Accessed

2 5 2019].

[5] Atlassian, “Basic authentication,” [Online]. Available:

https://developer.atlassian.com/server/jira/platform/basic-authentication/. [Accessed 5 5

2019].

[6] Atlassian, “Cookie-based authentication,” [Online]. Available:

https://developer.atlassian.com/server/jira/platform/cookie-based-authentication/.

[Accessed 5 5 2019].

[7] Atlassian, “OAuth,” [Online]. Available:

https://developer.atlassian.com/server/jira/platform/oauth/. [Accessed 5 5 2019].

[8] C. Bertrand, “Coding Concepts! Cyclomatic Complexity,” 17 9 2018. [Online]. Available:

https://dev.to/designpuddle/coding-concepts---cyclomatic-complexity-3blk. [Accessed 19 5

2019].

	Author’s declaration of originality
	Abstract
	Annotatsioon Veebirakendus tarkvaraprojektide aruannete koostamiseks ja klientide tagasiside kogumiseks
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Purpose
	1.4 Project scope

	2 Problem analysis
	2.1 General requirements
	2.2 Functional requirements
	2.3 Technological requirements
	2.4 Application use scope
	2.5 Defining application architecture
	2.6 Choice of development tools

	3 Database design
	3.1 Project pulse physical model
	3.2 Sprint pulse physical model
	3.3 Sprint issue physical model
	3.4 Sprint goal physical model
	3.5 Sprint feedback physical model
	3.6 Pulse user physical model

	4 Implementation on Spring
	4.1 Spring class model
	4.2 Jira API integration
	4.3 Application controllers
	4.4 Project and sprint pulse creation and update flow
	4.5 Survey sending and feedback results fetching
	4.6 Application data flow
	4.7 Authorization

	5 Software quality assurance
	5.1 Testing
	5.2 Code metrics

	6 Conclusion
	References

