
6th Workshop on Fixed Points in Computer Science

FICS 2009

Coimbra, Portugal, 12-13 September 2009

Proceedings

Institute of Cybernetics at TUT

TTÜ KÜBERNEETIKA INSTITUUT

6th Workshop on Fixed Points in Computer Science

FICS 2009

Coimbra, Portugal, 12–13 September 2009

Proceedings

Institute of Cybernetics at Tallinn University of Technology

Tallinn ◦ 2009

6th Workshop on Fixed Points in Computer Science
FICS 2009
Coimbra, Portugal, 12–13 September 2009
Proceedings

Edited by Ralph Matthes and Tarmo Uustalu

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, EE-12618 Tallinn, Estonia
http://www.ioc.ee/

ISBN 978-9949-430-29-1

c© 2009 the editors and authors

Printed by Alfapress

Preface

This volume is the proceedings of the 6th Workshop on Fixed Points in Computer Science, FICS 2009,
to take place in Coimbra, Portugal, 12–13 September 2009. This workshop will be held as a satel-
lite workshop of the 23rd International Workshop on Computer Science Logic, the 18th EACSL Annual
Conference, CSL 2009 (7–11 September), in colocation with the 11th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, PPDP 2009 (7–9 September), and the 19th In-
ternational Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2009 (9–11
September).

FICS is intended as a forum for researchers to present their results to those members of the computer
science and logic communities who study or apply the theory of fixed points. FICS was initiated by
Zoltán Ésik. Previous workshops of the series were held in Brno (1998, MFCS/CSL workshop), Paris
(2000, LC workshop), Florence (2001, PLI workshop), Copenhagen (2002, LICS (FLoC) workshop),
Warsaw (2003, ETAPS workshop).

The two-day programme of FICS 2009 consists of three invited and 15 contributed talks, represented
in this volume by short resp. extended abstracts. Our invited speakers are Robin Cockett (University
of Calgary), Javier Esparza (Technische Universität München) and Yde Venema (Universiteit van Am-
sterdam). The contributed talks were selected from among 22 submissions by an international program
committee. Each submission was reviewed by three PC members or additional referees. But as the se-
lection was based on extended abstracts, not full papers, the nature of these proceedings is informal. A
formal post-proceedings, consisting of revised, full versions of selected contributions, will be published
as a special issue of the journal Theoretical Informatics and Applications of EDP Sciences.

We are grateful to Zoltán Ésik for entrusting us to organize this edition of FICS, to our PC and additional
referees for the work they did on the submissions to the workshop and have yet to do on the special issue,
to our invited speakers for accepting to come and talk in Coimbra, and to the authors of all submissions
for choosing FICS. We are indebted to the organizing committee of CSL/PPDP/LOPSTR 2009, in par-
ticular, Reinhard Kahle, José Carlos Espı́rito Santo and Pedro Quaresma, for offering to host FICS 2009
and for taking care of all practical arrangements concerning the workshop. To Christian Choffrut, we
extend our thanks for agreeing to publish the special issue, and to Andrei Voronkov, for powering us with
EasyChair.

FICS 2009 is sponsored by EXCS, the Estonian Centre of Excellence in Computer Science, funded
mainly by the European Regional Development Fund.

Ralph Matthes and Tarmo Uustalu

Toulouse—Tallinn, 24 August 2009

3

Organization

Programme Committee

Yves Bertot (INRIA Sophia Antipolis)
Anuj Dawar (University of Cambridge)
Peter Dybjer (Chalmers University of Technology)
Zoltán Ésik (University of Szeged)
Masahito Hasegawa (Kyoto University)
Anna Ingólfsdóttir (Reykjavı́k University)
Ralph Matthes (IRIT, Toulouse) (co-chair)
Jan Rutten (CWI and Vrije Universiteit Amsterdam)
Luigi Santocanale (LIF, Marseille)
Alex Simpson (University of Edinburgh)
Tarmo Uustalu (Institute of Cybernetics, Tallinn) (co-chair)
Igor Wałukiewicz (LaBRI, Bordeaux)

Additional Referees

Luca Aceto, Ichiro Hasuo, Shin-ya Katsumata, Kenshi Miyabe, Milad Niqui, Joshua Sack,
Alexandra Silva, Frank Stephan, Eijiro Sumii

Organizing Committee

Ana Almeida (co-chair), Sabine Broda, José Carlos Espı́rito Santo, Mário Florido, Gonçalo
Gutierres, Reinhard Kahle (co-chair), Isabel Oitavem, Pedro Quaresma, João Rasga, Carlota
Simões

Host Institution

Departamento de Matemática, Universidade de Coimbra

Sponsor

Estonian Centre of Excellence in Computer Science, EXCS
(funded mainly by the European Regional Development Fund)

4

Table of Contents

Invited Talks

Michael J. Burrell, Robin Cockett, and Brian F. Redmond
Pola: a language for PTIME programming 7

Javier Esparza, Stefan Kiefer, and Michael Luttenberger
Solving fixed-point equations on ω-continuous semirings 9

Yde Venema
Fixpoint logics and automata: a coalgebraic approach 10

Contributed Talks

Loredana Afanasiev and Balder ten Cate
On core XPath with inflationary fixed points 11

Lars Birkedal, Kristian Støvring and Jacob Thamsborg
Solutions of generalized recursive metric-space equations 18

Stephen L. Bloom and Zoltán Ésik
Scattered algebraic linear orderings 25

Balder ten Cate and Gaëlle Fontaine
An easy completeness proof for the modal µ-calculus on finite trees 30

Pierre Clairambault
Least and greatest fixpoints in game semantics 39

Martin Hofmann and Dulma Rodriguez
Membership checking in greatest fixpoints revisited 46

Stephan Kreutzer and Martin Lange
A note on the relation between inflationary fixpoints and least fixpoints of higher order 54

Robert Myers
Coalgebraic expressions 61

Omer Landry Nguena Timo and Pierre-Alain Reynier
On characteristic formulae for event-recording automata 70

Milad Niqui and Jan Rutten
Coinductive predicates as final coalgebras 79

Paweł Parys
Lower bound for evaluation of µ-ν fixpoint 86

Daniel Stamate
A bilattice based fixed point semantics for integrating imperfect information 93

Kohtaro Tadaki
Fixed points on partial randomness 100

5

Yoshinori Tanabe and Masami Hagiya
Fixed-point computations over functions on integers with operations min, max and plus 108

Lionel Vaux
A non-uniform finitary relational semantics of system T 116

6

Pola: A Language for PTIME Programming
Michael J. Burrell

Computer Science Department, University of Western Ontario,
London, Ontario N6A 5B7, Canada

Robin Cockett and Brian F. Redmond
Department of Computer Science, University of Calgary,

Calgary, Alberta T2N 1N4, Canada
robin@cpsc.ucalgary.ca

Pola is a functional style programming language—currently under development—whose type sys-
tem guarantees that all its programs run in polynomial time. Indeed, as every polynomial time (PTIME)
algorithm can be rendered in Pola, the language is complete for polynomial time programming. Further-
more, to someone familiar with functional programming, Pola enforces a style of programming which
is—relative to what is being achieved—quite natural.

Pola was inspired by the realization that Bellantoni and Cook’s system of safe recursion [1] can
be viewed as the proof theory of a polarized logic [4]. As polarized logic was developed to model
games, Pola has inherited some game theoretic terminology. In particular, rather than having “safe” and
“normal” types, Pola has “player” and “opponent” types. The game theoretic view is that the opponent
drives the iteration of computation while the player responds in constant time (and space) in the context
he is given. This semantics has a particularly appealing and simple categorical presentation using a
fibration whose fibers are affine categories together with a notion of “comprehended” inductive fixed
points.

The development of implicit systems for PTIME programs has considerable history. In particular,
Bellantoni and Cook’s system of safe recursion is a simplification of a slightly earlier system of Leivant
[8]. That system used tiered recursion and supported a general class of inductive data. Bellantoni and
Cook, besides simplifying the system of tiers by safe recursion, also abandoned general inductive data
in favor of modeling binary numbers: this limits their system as a basis for programming. Hofmann, in
his habilitationsschrift [6], aware of all the above, developed a modal type system for PTIME programs
which he modeled in a presheaf topos. In particular, Hofmann suggested that constant time affine com-
putations could be used as the basis for stepping up to polynomial time. Pola’s player world (in a given
opponent context) is, as mentioned above, both affine and populated by constant time computations.
Furthermore, in Pola these player worlds can additionally support arbitrary coinductive fixed points.

An important step in the development of Pola was to provide uniform recursion schemes both for
inductive and coinductive data. Pola’s recursion scheme derives from the circular proof systems of Luigi
Santocanale [11], which also appeared earlier (with other schemes) in Varmo Vene’s thesis [12]. This
recursion scheme, as used in Pola, is interesting as it has some built-in higher-order content which allows
one to avoid Colson’s objection [5, 10] to first-order recursion schemes and to express recursive programs
in a reasonably natural manner.

The original motivation behind Pola was driven by the investigation of implicit type systems for low
complexity programs. However, the fact that there is a relatively simple categorical semantics for this
system, suggests another important direction: perhaps, categorical techniques can be usefully employed
to obtain a deeper structural understanding of PTIME?

References
[1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Computa-

tional Complexity, 2:97–110, 1992.
[2] V.-H. Caseiro. Equations for Defining Poly-time Functions. PhD thesis, University of Oslo, 1997.
[3] A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, ed., Proc. of 1964 Interna-

tional Congress for Logic, Methodology, and the Philosophy of Science, pp. 24–30. North Holland, 1964.

7

mailto:robin@cpsc.ucalgary.ca

Pola: A Language for PTIME Programming Burrell, Cockett, and Redmond

[4] R. Cockett and R. Seely. Polarized category theory, modules and game semantics. Theory and Appl. of Categ.,
18:4–101, 2007.

[5] L. Colson. About primitive recursive algorithms. Theor. Comput. Sci., 83(1):57–69, 1991.
[6] M. Hofmann. Type Systems for Polynomial-Time Computation. Habilitation thesis, University of Darmstadt,

1999.
[7] M. Hofmann. Linear types and non-size-increasing polynomial time computation. Inform. and Comput.,

183(1):57–85, 2003.
[8] D. Leivant. Stratified functional programs and computational complexity. In Conf. Record of 20th ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL ’93 (Charleston, SC, Jan. 1993),
pp. 325–333. ACM Press, 1993.

[9] D. Leivant and J.-Y. Marion. Ramified recurrence and computational complexity II: substitution and poly-
space. In L. Pacholski and J. Tiuryn, eds., Selected Papers from 8th Int. Wksh. on Computer Science Logic,
CSL ’94 (Kazimierz, Sept. 1994), v. 933 of Lect. Notes in Comput. Sci., pp. 486–500. Springer, 1995.

[10] Y. N. Moschovakis. On Colson’s theorem. Invited talk at 2nd Panhellenic Logic Symp. (Delphi, July 1999).
Available at http://www.mathphys.ntua.gr/logic/symposium/articles/moschova.ps.

[11] L. Santocanale. A calculus of circular proofs and its categorical semantics. In M. Nielsen and U. Engberg,
eds., Proc. of 5th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2002
(Grenoble, Apr. 2002), v. 2303 of Lect. Notes in Comput. Sci., pp. 357–371. Springer, 2002.

[12] V. Vene. Categorical Programming with Inductive and Coinductive Types. PhD thesis, University of Tartu,
2000.

8

http://www.mathphys.ntua.gr/logic/symposium/articles/moschova.ps

Solving Fixed-Point Equations on ω-Continuous Semirings
Javier Esparza, Stefan Kiefer, and Michael Luttenberger
Institut für Informatik, Technische Universität München,

Boltzmannstr. 3, D-85748 München, Germany
esparza@in.tum.de

In the talk I will survey several results we have recently obtained on solving equations X = f (X),
where f (X) is a polynomial over a semiring. I will sketch a generalization of Newton’s method, and,
time permitting, a technique called derivation tree analysis.

9

mailto:esparza@in.tum.de

Fixpoint Logics and Automata: A Coalgebraic Approach
Yde Venema

Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Plantage Muidergracht 24, NL-1018 TV Amsterdam, The Netherlands

y.venema@uva.nl

A long and fertile tradition in theoretical computer science, going back to the work of Büchi and
Rabin, links the field of (fixpoint) logic to that of automata theory. In particular, automata operating on
potentially infinite structures such as streams, trees, graphs or transition systems, provide an invaluable
tool for the specification and verification of the ongoing behavior of systems. An interesting phenomenon
in this branch of automata theory is that some of key results (such as determinization) hold for stream
automata only, while many others hold of stream, tree and graph automata alike, and can even be proved
for automata operating on yet more complex structures. This naturally begs the question whether the
theory of automata operating on infinite objects can be lifted a higher level of generality.

The aim of the talk is to advocate Coalgebra as a nice framework for the development of such a the-
ory. The basic observation is that streams, trees and transition systems are all examples of coalgebras of
a certain type. In general, a coalgebra consists of a pair consisting of a set S of states together with a tran-
sition map from S to the set FS—here F is the type of the coalgebra, given as a functor F on the category
Set (with sets as objects and functions as arrows). Universal Coalgebra is the emerging mathematical
theory of such state-based evolving systems, in which concepts such as behavior, indistinguishability,
invariants, etc can be modelled in a natural way.

In the talk we give a quick introduction to coalgebra, and we introduce various kinds of automata that
are supposed to operate on coalgebras, generalizing the well-known automata that operate on streams,
trees, etc. The criterion under which such an automaton accepts or rejects a pointed coalgebra is formu-
lated in terms of a two-player parity game, and with each kind of coalgebra automaton we may naturally
associate a language of coalgebraic fixpoint logic. Concretely, we show that some of the central results
in automata theory can be generalized to the abstraction level of coalgebras. As examples of such re-
sults, we will see that the class of recognizable languages of coalgebras is closed under taking unions,
intersections, projections, and complementation. We also prove that if a coalgebra automaton accepts
some coalgebra it accepts a finite one of bounded size. Many of these results are based on an explicit
construction which transforms a given alternating F-automaton into an equivalent nondeterministic one,
of bounded size. Finally, we compare various notions of coalgebra automata, and discuss the foundations
of a universal theory of automata.

The point behind the introduction of automata at this level of abstraction is that, in the spirit of
Universal Coalgebra, we may gain a deeper understanding of automata theory by studying properties of
automata in a uniform manner, parametric in the type of the recognized structures.

10

mailto:y.venema@uva.nl

On Core XPath with Inflationary Fixed Points
Loredana Afanasiev

Informatics Institute, University of Amsterdam,
Science Park 107, NL-1098 XG Amsterdam, The Netherlands

lafanasi@science.uva.nl
Balder ten Cate

INRIA Saclay - Île-de-France and ENS de Cachan,
61 avenue du President Wilson, F-94235 Cachan Cedex, France

balder.tencate@gmail.com

Abstract

In this report, we prove the undecidability of Core XPath 1.0 (CXP) [6] extended with an In-
flationary Fixed Point (IFP) operator. We prove that the satisfiability problem of this language is
undecidable. In fact, the fragment of CXP+IFP containing only the self and descendant axes is
already undecidable.

1 Introduction

In [1], an extension of the XML query language XQuery with an inflationary fixed point operator was
proposed and studied. The motivation for this study stems from practical use cases. The existing mech-
anism in XQuery for expressive recursive queries (i.e., user defined recursive functions) is procedural
in nature, which makes queries both hard to write and hard to optimize. The inflationary fixed point
operator provides a declarative means to specify recursive queries, and is more amenable to query opti-
mization since it blends in naturally with algebra-based query optimization frameworks such as the one
of MonetDB/XQuery [3]. Indeed, it was shown in [1] that a significant performance gain can be achieved
in this way.

While the empirical evidence is there, a foundational question remains: how feasible it is to do
static analysis for recursive queries specified by means of the fixed point operator. Specifically, are there
substantial fragments of XQuery with the fixed point operator for which static analysis tasks such as
satisfiability are decidable?

In this paper we give a strong negative answer. Our main result states that, already for the downward-
looking fragment of Core XPath 1.0 with the inflationary fixed point operator (CXP+IFP), satisfiability
is undecidable. The proof is based on a reduction from the undecidable halting problem for 2-register
machines (cf. [4]), and borrows ideas from the work of Dawar et al. [5] on the Modal Iteration Calculus
(MIC), an extension of modal logic with inflationary fixed points.

A second question we address in this paper is the relationship between CXP+IFP and MIC. While
similar in spirit, it turns out that the two formalisms differ in subtle ways. Nevertheless, we obtain a
translation from 1MIC (the fragment of MIC that does not involve simultaneous induction) to CXP+IFP
node expressions.

In [5], after showing that the satisfiability problem for MIC on arbitrary structures is highly unde-
cidable, the authors ask whether there are still useful fragments, and also whether the logic has any
relevance for practical applications. Our results shed some light on these questions. We obtain as a part
of our investigation that the satisfiability problem for 1MIC is already undecidable on finite trees, and
the relationship between MIC and CXP+IFP adds relevance to the study of MIC.

11

mailto:lafanasi@science.uva.nl
mailto:balder.tencate@gmail.com

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

2 Preliminaries

2.1 Core XPath 1.0 Extended with IFP (CXP+IFP)

Core XPath 1.0 (CXP) was introduced in [6] to capture the navigational core of XPath 1.0. The definition
that we use here differs slightly from the one of [6]. We consider only the downward axes child and
descendant (plus the self axis), both in order to facilitate the comparison with MIC, and because this
will suffice already for our undecidability result. We will briefly comment on the other axes later. Other
differences with [6] are that we allow filters and union to be applied to any expressions.

We consider the extension of CXP, which we call CXP+IFP, with an inflationary fixed-point operator.
This inflationary fixed-point operator was first proposed in [1] in the context of XQuery, and is here
naturally adapted to the setting of CXP. We first give the syntax and semantics of CXP+IFP, and then
discuss the intuition behind the operator.

Definition 2.1. Syntax and Semantics of CXP+IFP
Let Σ be a set of labels and VAR a set of variables. The CXP+IFP expressions are defined as follows:

axis ::= self | child | desc
step ::= axis::l | axis::*

α ::= step | α1/α2 | α1∪α2 | | α[ϕ] | X | with X in α1 recurse α2
ϕ ::= false | 〈α〉 | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | X

where l ∈ Σ and X ∈ VAR. The α expressions are called path expressions, the ϕ expressions are called
node expressions. The with . . . in . . . recurse . . . operator is called the WITH operator, while X , α1,
and α2 in the expression with X in α1 recurse α2 are called the variable, the seed, and the body of the
recursion.

The CXP+IFP expressions are evaluated on finite node-labeled trees. Let T = (N,R,L) be a finite
node-labeled tree, where N is a finite set of nodes, R ⊂ N×N is the child relation in the tree, and L is
a function from N to a set of labels. Let g(·) be an assignment function from variables to sets nodes,
g : VAR→℘(N). Then the semantics of CXP+IFP expressions are as follows:

[[self]]T,g = {(u,u) | u ∈ N}
[[child]]T,g = R

[[axis::l]]T,g = {(u,v) ∈ [[axis]]T | L(u) = l}
[[axis::*]]T,g = [[axis]]T

[[α1/α2]]T,g = {(u,v) | ∃w.(u,w) ∈ [[α1]]T,g∧ (w,v) ∈ [[α2]]T,g}
[[α1∪α2]]T,g = [[α1]]T,g∪ [[α2]]T,g

[[α[ϕ]]]T,g = {(u,v) ∈ [[α]]T,g | v ∈ [[ϕ]]T,g}
[[X]]T,g = N×g(X),X ∈VAR

[[with X in α1 recurse α2]]T,g = union of all sets {w}×gk(X), for w ∈ N,
where gk is obtained in the following manner:
g1 := g[X 7→ {v ∈ N | (w,v) ∈ [[α1]]T,g}],
gi+1 := gi[X 7→ gi(X)∪{v ∈ N | (w,v) ∈ [[α2]]T,gi}], for i≥ 1,
and k is the least natural number for which gk+1=gk.

[〈false〉]T,g = /0
[〈〈α〉〉]T,g = {u ∈ N | (u,v) ∈ [[α]]T,g for some v ∈ N}
[〈¬ϕ〉]T,g = N \ [〈ϕ〉]T,g

[〈ϕ1∧ϕ2〉]T,g = [〈ϕ1〉]T,g∩ [〈ϕ2〉]T,g

[〈ϕ1∨ϕ2〉]T,g = [〈ϕ1〉]T,g∪ [〈ϕ2〉]T,g

[〈X〉]T,g = g(X),X ∈VAR

12

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

�

While the semantics [[α]]T,g of a path expression α is defined as a binary relation, it is natural to
think of it as a function mapping each node u to a set of nodes {v | (u,v) ∈ [[α]]T,g}, which we denote by
Resultg

u(α). It represents the result of evaluating α in the context node u (using the assignment g). The
semantics of the variables and of the WITH operator is most naturally understood from this perspective,
and can be equivalently stated as follows:

Resultg
u(X) = g(X), i.e., when X is used as a path expression, it evaluates to g(X) regardless

of the context node.

Resultg
u(with X in α1 recurse α2) = Xk, where X1 = Resultg[X 7→ /0]

u (α1), Xi+1 = Xi ∪
Resultg[X 7→Xi]

u (α2) for i≥ 1, and k is the smallest number such that Xk = Xk+1.

Note that, at each iteration, the context node of the evaluation of α1 or α2 remains u.
When a variable X is used as a node expression, it simply tests whether the current node belongs to

the set assigned to X .
The example query below yields the set of nodes that can be reached from the context node by

following the transitive closure of the child::a relation.

with X in child::a recurse X/child::a

The query below yields the set of nodes that are labeled with a and are at an even distance from the
context node.

(with X in . recurse X/child::*/child::*)/self::a

It is important to note that (unlike MIC) the language provides no way to test whether a given node
belongs to the result of with X in α1 recurse α2, it only allows to go to a node belonging to the result
set. From the point of view of XQuery and XPath, it is very natural to define the inflationary fixed point
operator in this way, i.e., as an operator on path expressions. However, it has some subtle consequences.

We remark that semantics of the WITH operator we give here differs slighly from the original seman-
tics used in [1]. According to the original semantics, when Resultg

u(with α1 in α2 recurse) is computed,
the result of α1 is only used as a seed of the recursion but is not itself added to the fixed point set. In
other words, Resultg

u(with X in α1 recurse α2) was defined there as Xk, where X0 = Resultg[X 7→ /0]
u (α1),

X1 = Resultg[X 7→X0]
u (α2), Xi+1 = Xi ∪Resultg[X 7→Xi]

u (α2) for i ≥ 1, and k is the least number such that
Xk = Xk+1. The semantics we use here is arguably mathematically more clean and intuitive since it is
truly inflationary: all the nodes assigned to the recursion variable during fixed-point computation end up
in the result.

2.2 Propositional Modal Logic Extended with IFP (ML+IFP)

The language ML+IFP we consider is an extension of Propositional Modal Logic (ML) [2] with a
monadic IFP operator. It is also known as 1MIC, the fragment of Modal Iteration Calculus (MIC) that
does not involve simultaneous induction, and it was first introduced in [5], where it was also shown that
its satisfiability problem is undecidable on arbitrary structures.

Definition 2.2. ML+IFP Let Σ be a set of labels and VAR a set of variables. Then the syntax of ML+IFP
is defined as follows:

ϕ ::= ⊥ | l | X |3ϕ | ¬ϕ | ϕ1∧ϕ2 |
(
ifp X ← ϕ

)
13

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

where l ∈ Σ, X ∈VAR.
The semantics of ML+IFP is given in terms of Kripke models. To facilitate the comparison with

CXP+IFP, we will assume that the Kripke models assign a unique label to each node, rather than a set of
labels. This is not essential. Let T = (N,R,L) be a Kripke model, where N is a set of nodes, R⊆ N×N
is a binary relation on the nodes in N, and L is a valuation function that assigns a label from Σ to to each
in N. Let g(·) be an assignment function from variables to sets of nodes, g : VAR→℘(N). Then the
semantics of ML+IFP formulas are as follows:

[[⊥]]T,g = /0
[[l]]T,g = {n ∈ N | L(n) = l}

[[X]]T,g = g(X)
[[3ϕ]]T,g = {u | ∃v.(u,v) ∈ R∧ v ∈ [[ϕ]]T,g}
[[¬ϕ]]T,g = N \ [[ϕ]]T,g

[[ϕ1∧ϕ2]]T,g = [[ϕ1]]T,g∩ [[ϕ2]]T,g

[[ifp X ← ϕ]]T,g = gk(X), where gk is obtained in the following manner:
g0 := g[X 7→ /0],
gi+1 := gi[X 7→ gi(X)∪ [[ϕ]]T,gi], for i≥ 0,
where k is the minimum number for which gk+1=gk.

We write T,g,u
 ϕ if v ∈ [[ϕ]]T,g. If a formula has no free variables, we may leave out the assignment
and write T,u
 ϕ or u ∈ [[ϕ]]T . �

It was shown in [5] that the satisfiability problem for ML+IFP on arbitrary Kripke models is highly
undecidable. As we will show below, it is undecidable on finite trees as well.

3 Relationship between ML+IFP and CXP+IFP

In this section, we give a truth-preserving translation from ML+IFP to CXP+IFP. In fact, the translation
yields CXP+IFP expressions that use only the self and descendant axes. It follows that this fragment of
CXP+IFP has already (at least) the expressive power of ML+IFP.

One of the main differences between ML+IFP and CXP+IFP is that, in the former, fixed-point ex-
pressions are node expressions that test whether the current node belongs to the fixed point of a formula,
while in the latter, fixed-point expressions are path expressions that travel to nodes belonging to the fixed
point of a formula. Another difference is that, in CXP+IFP, during the entire fixed point computation,
the expressions are evaluated from a fixed context node, whereas in ML+IFP, whether a node is added
to the set at some stage of the fixed point computation is determined by local properties of the subtree
below that node.

In our translation from ML+IFP to CXP+IFP we have to overcome these differences. The main
idea for the translation of ML+IFP formulas of the form ifp X ← ϕ will be that, during the fixed point
computation, we treat leaf nodes in a special way, never adding them to the fixed point set but keeping
track of them separely. More precisely, we first compute the set Y of all leaf nodes satisfying ifp X ← ϕ .
Next, we let X0 = /0 and Xi+1 is computed as Xi ∪ ([[ϕ]]T,g[X 7→Xi∪Y]−Y). Observe how the nodes in Y
are added to the input and substracted again from the output. Let Xk be the fixed point of the sequence
X0 ⊆ X1 ⊆ ·· · . Then we have that [[ifp X ← ϕ]]T,g = Xk ∪Y . The advantage of this construction is that,
since the leafs are never added during the fixed point computation, they can be freely used for signalling
that the context node was added to the set X : if the context node is added at some stage, we add a leaf
node as well, and the presence of a leaf node in the result set will be used as a sign that we test for
afterwards.

14

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

Before we give the details of the construction, we first note that when computing the inflationary
fixed point of an ML+IFP formula, any leaf node that is added to the fixed point set is in fact already
added at the first stage of the fixed point computation. This is expressed by the following lemma.

Lemma 3.1. Let u be any node in a Kripke model T , and let ϕ(X) be any ML+IFP formula and g an
assignment. If u has no successors, then u ∈ [[ifp X ← ϕ]]T,g iff u ∈ [[ϕ]]T,g[X 7→ /0].

In what follows we will use � as shorthand for self:: ∗ [false], desc-or-self::∗ as shorthand for
desc::∗∪self::∗, and leaf as shorthand for ¬〈child::∗〉. Also, for node expressions ϕ,ψ and a variable
X , such that X only occurs in ϕ in the form of node tests, we will denote by ϕX/ψ the node expression
obtained from by replacing all free occurrences of X in ϕ by the node expression ψ .

The translation τ(·) from ML+IFP formulas to CXP+IFP node expressions is given by Equation (1).

τ(⊥) = false
τ(l) = 〈self::l〉

τ(ϕ1∧ϕ2) = τ(ϕ1)∧ τ(ϕ2)
τ(¬ϕ) = ¬τ(ϕ)

τ(X) = X
τ(3ϕ) = 〈child::∗ [τ(ϕ)]〉

τ
(
ifp X ← ϕ

)
= 〈

(
with X in desc-or-self::*[τ(ϕ)X/false∧¬leaf] recurse

desc-or-self::*[τ(ϕ)X/(X∨τ(ϕ)leaf)∧¬leaf] ∪
self::∗ [X ∨ τ(ϕ)leaf]/desc::∗

)
[leaf]〉

where τ(ϕ)leaf = τ(ϕ)X/false∧ leaf

(1)

Theorem 3.2. Let T = (N,R,L) be a node-labeled finite tree, g an assignment, and u a node in T . Then
T,g,u
 ϕ ⇐⇒ T,g,u
 τ(ϕ).

We can conclude that CXP+IFP node expressions have (at least) the expressive power of ML+IFP.
Since the desc axis is definable from the child axis, the same holds of course for the fragment of
CXP+IFP without the desc axis. What is more surprising is that the same holds for the fragment of
CXP+IFP without the child axis. The next Lemma shows that the use of the child axis in the above
translation can be avoided (provided that we keep, of course, the desc axis). Note that the child axis was
only used in the translation of formulas of the form 3ϕ .

Proposition 3.3. For any node expression ϕ , 〈child::∗ [ϕ]〉 is equivalent to the following node expression
(which does not use the child axis):

〈
(

with X in desc::∗/desc::∗ [leaf] recurse self::∗ [〈desc::∗ [leaf∧¬X ∧ϕ]〉]
)
[¬leaf]〉

∨
〈
(

with X in desc::∗/desc::∗ [¬leaf] recurse desc::∗ [¬leaf∧¬X ∧ϕ]/desc::∗
)
[leaf]〉

4 The Undecidability of CXP+IFP and of ML+IFP on Finite Trees

We show that the satisfiability problem for ML+IFP on finite trees is undecidable, and therefore also (by
our earlier translation), the satisfiability problem for CXP+IFP.

Theorem 4.1. The satisfiability problem of ML+IFP on finite trees is undecidable.

Corollary 4.2. The satisfiability problem of CXP+IFP is undecidable, even if the child axis is disllowed.

15

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

The proof is based on a reduction from the halting problem for 2-register machines (cf. [4]). A 2-
register machine is a very simple kind of deterministic automaton without input and output. It has two
registers containing integer values, and instructions for incrementing and decrementing the content of
the registers. These 2-register automata form one of the simplest types of machines for which the halting
problem is already undecidable. The formal definition is as follows:

A 2-register machine M is a tuple M = (Q,δ ,q0,q f), where Q is a finite set of states, δ is a transition
function from Q to a set of instructions I, defined below, and q0, q f are designated states in Q, called
initial and final states, respectively. The set of instructions I consists of four kinds of instructions:

INCA(q′): increment the value stored in A and move to state q′;

INCB(q′): increment the value stored in B and move to state q′;

DECA(q′,q′′): if the value stored in A is bigger than 0 then decrement it by one and move to
state q′, otherwise move to state q′′ without changing the value in A nor B; and

DECB(q′,q′′): if the value stored in B is bigger than 0 then decrement it by one and move to
state q′, otherwise move to state q′′ without changing the value in A nor B.

The problem whether a given two-register machine M has a successful run (starting in the initial state
with both register values 0, and ending in the final state with both register values 0) is undecidable.

A run of M can be represented as a string over the alphabet Q ∪ {a,b,$} of the form
q1~a1~b1 . . .qn~an~bn$, where each qi ∈ Q represents the state of the automaton at the i-th step, and ~ai,~bi

are sequences of as respectively bs whose length represents the register content at the i-th step ($ is used
to mark the end of the string). We construct an ML+IFP formula which expresses that for each branch
from the current node, the string consisting of the letters of the nodes on the branch encodes an accepting
run of the 2-register machine. It follows that the formula is satisfiable if and only if M has a successful
run.

5 Discussion

One natural follow-up question is whether CXP+IFP node expressions are strictly more expressive than
ML+IFP formulas.

Other natural follow-up questions concern fragments of CXP+IFP. Recall that in CXP+IFP, the vari-
ables can be used both as atomic path expressions and as atomic node expressions. The former is the most
natural, but translation we gave from ML+IFP to CXP+IFP crucially uses the latter. We are currently
investigating the fragment of CXP+IFP in which variables are only allowed as atomic path expressions.

It is also natural to consider CXP+IFP expressions where the fixed point variables occur only under
an even number of negations, so that the WITH-operator computes the least fixed point of a monotone
operation. Note that this fragment is decidable, since it is contained in monadic second-order logic.

Acknowledgements

The first author is supported by the Netherlands Organization of Scientific Research (NWO) grant
017.001.190. The second author is supported NWO grant 639.021.508 and by ERC Advanced Grant
Webdam on Foundation of Web data management. We thank Anuj Dawar for a useful discussion.

16

On Core XPath with Inflationary Fixed Points Afanasiev and ten Cate

References
[1] L. Afanasiev, T. Grust, M. Marx, J. Rittinger, and J. Teubner. Recursion in XQuery: put your distributivity

safety belt on. In M. L. Kersten, et al., eds., Proc. of 12th Int. Conf. on Extending Database Technology, EDBT
2009 (St. Petersburg, March 2009), v. 360 of ACM Int. Conf. Proc. Series, pp. 345–356. ACM Press, 2009.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, v. 53 of Cambridge Tracts in Theoretical Computer
Science. Cambridge Univ. Press, 2001.

[3] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teuber. MonetDB/XQuery: a fast XQuery
processor powered by a relational engine. In Proc. of ACM SIGMOD Int. Conf. on Management of Data
(Chicago, IL, June 2006), pp. 479–490. ACM Press, 2006.

[4] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.
[5] A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in modal logic. ACM Trans. on Comput. Logic,

5(2):282–315, 2004.
[6] G. Gottlob and C. Koch. Monadic queries over tree-structured data. In Proc. of 17th Ann. IEEE Symp. on

Logic in Computer Science, LICS 2002 (Copenhagen, July 2002), pp. 189–202. IEEE CS Press, 2002.

17

Solutions of Generalized
Recursive Metric-Space Equations∗

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg
IT University of Copenhagen,

Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
birkedal@itu.dk, kss@itu.dk, and thamsborg@itu.dk

Abstract

It is well known that one can use an adaptation of the inverse-limit construction to solve recursive
equations in the category of complete ultrametric spaces. We show that this construction generalizes
to a large class of categories with metric-space structure on each set of morphisms: the exact nature of
the objects is less important. In particular, the construction immediately applies to categories where
the objects are ultrametric spaces with ‘extra structure’, and where the morphisms preserve this extra
structure. The generalization is inspired by classical domain-theoretic work by Smyth and Plotkin.
Our primary motivation for solving generalized recursive metric-space equations comes from recent
and ongoing work on Kripke-style models in which the sets of worlds must be recursively defined.

For many of the categories we consider, there is a natural subcategory in which each set of
morphisms is required to be a compact metric space. Our setting allows for a proof that such a
subcategory always inherits solutions of recursive equations from the full category.

As another application, we present a construction that relates solutions of generalized domain
equations in the sense of Smyth and Plotkin to solutions of equations in our class of categories.

1 Introduction

Smyth and Plotkin [17] showed that in the classical inverse-limit construction of solutions to recursive
domain equations, what matters is not that the objects of the category under consideration are domains,
but that the sets of morphisms between objects are domains. In this work we show that, in the case
of ultrametric spaces, the standard construction of solutions to recursive metric-space equations [5, 10]
can be similarly generalized to a large class of categories with metric-space structure on each set of
morphisms.

The generalization in particular allows one to solve recursive equations in categories where the ob-
jects are ultrametric spaces with some form of additional structure, and where the morphisms preserve
this additional structure. Our main motivation for solving equations in such categories comes from recent
and ongoing work in denotational semantics by the authors and others [7, 15]. There, solutions to such
equations are used in order to construct Kripke models over recursively defined worlds: a novel approach
that allows one to give semantic models of predicates and relations over languages with dynamically al-
located, higher-order store. See [8] for examples of such applications.

For many of the categories we consider, there is a natural variant, indeed a subcategory, in which
each set of morphisms is required to be a compact metric space [2, 9]. Our setting allows for a general
proof that such a subcategory inherits solutions of recursive equations from the full category. Other-
wise put, the problem of solving recursive equations in such a ‘locally compact’ subcategory is, in a
certain sense, reduced to the similar problem for the full category. The fact that one can solve recursive
equations in a category of compact ultrametric spaces [9] arises as a particular instance. (For various
applications of compact metric spaces in semantics, see the references in the introduction to van Breugel
and Warmerdam [9].)

∗See the full article for proofs and further details [8].

18

mailto:birkedal@itu.dk
mailto:kss@itu.dk
mailto:thamsborg@itu.dk

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

As another application, we present a construction that relates solutions of generalized domain equa-
tions in the sense of Smyth and Plotkin to solutions of equations in our class of categories. This con-
struction generalizes and improves an earlier one due to Baier and Majster-Cederbaum [6].

The key to achieving the right level of generality in the results lies in inspiration from enriched cate-
gory theory. We shall not refer to general enriched category theory below, but rather present the necessary
definitions in terms of metric spaces. The basic idea is, however, that given a cartesian category V (or
more generally, a monoidal category), one considers so-called V -categories, in which the ‘hom-sets’ are
in fact objects of V instead of sets, and where the ‘composition functions’ are morphisms in V .

Other related work. The idea of considering categories with metric spaces as hom-sets has been used
in earlier work [14, 9]. Rutten and Turi [14] show existence and uniqueness of fixed points in a particular
category of (not necessarily ultrametric) metric spaces, but with a proof where parts are more general. In
other work, van Breugel and Warmerdam [9] show uniqueness for a more general notion of categories
than ours, again not requiring ultrametricity. Neither of these articles contain a theorem about existence
of fixed points for a general class of ‘metric-enriched’ categories (as in our Theorem 3.1), nor a general
theorem about fixed points in locally compact subcategories (Theorem 4.1.)

Alessi et al. [3] consider solutions to non-functorial recursive equations in certain categories of met-
ric spaces, i.e., recursive equations whose solutions cannot necessarily be described as fixed-points of
functors. In contrast, we only consider functorial recursive equations in this work.

Wagner [18] gives a comprehensive account of a generalized inverse limit construction that in par-
ticular works for categories of metric spaces and categories of domains. Another such construction has
recently been given by Kostanek and Waszkiewicz [11]. Our generalization is in a different direction,
namely to categories where the hom-sets are metric spaces. We do not know whether there is a common
generalization of our work and Wagner’s work; in this work we do not aim for maximal generality, but
rather for a level of generality that seems right for our applications [8].

2 Ultrametric Spaces

We first recall some basic definitions and properties about metric spaces [13, 16]. A metric space (X ,d)
is 1-bounded if d(x,y)≤ 1 for all x and y in X . We shall only work with 1-bounded metric spaces. One
advantage of doing so is that one can define coproducts and general products of such spaces; alternatively,
one could have allowed infinite distances.

An ultrametric space is a metric space (X ,d) that satisfies the ‘ultrametric inequality’ d(x,z) ≤
max(d(x,y),d(y,z)) and not just the weaker triangle inequality (where one has + instead of max on the
right-hand side). It might be helpful to think of the function d of an ultrametric space (X ,d) not as a
measure of (euclidean) distance between elements, but rather as a measure of the degree of similarity
between elements.

Let CBUlt be the category with complete, 1-bounded ultrametric spaces as objects and non-expansive
(i.e., non-distance-increasing) functions as morphisms [5]. This category is cartesian closed [16]; here
one needs the ultrametric inequality. The terminal object is the one-point space. Binary products are
defined in the natural way: the distance between two pairs of elements is the maximum of the two
pointwise distances. The exponential A → B, sometimes written BA, has the set of non-expansive func-
tions from A to B as the underlying set, and the ‘sup’-metric dA→B as distance function: dA→B(f ,g) =
sup{dB(f (x),g(x)) | x ∈ A}. For both products and exponentials, limits are pointwise. It follows from
the cartesian closed structure that the function CB ×BA → CA given by composition is non-expansive;
this fact is needed in several places below.

19

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

2.1 M-Categories

The basic idea of this work is to generalize a theorem about a particular category of metric spaces to a
theorem about more general categories where each hom-set is an ultrametric space. In analogy with the
O-categories of Smyth and Plotkin (O for ‘order’ or ‘ordered’) we call such categories M-categories.

Definition 2.1. An M-category is a category C where each hom-set C (A,B) is equipped with a distance
function turning it into a non-empty, complete, 1-bounded ultrametric space, and where each composition
function ◦ : C (B,C)×C (A,B) → C (A,C) is non-expansive with respect to these metrics. (Here the
domain of such a composition function is given the product metric.)

Notice that the hom-sets of an M-category are required to be non-empty metric spaces. This restric-
tion allows us to avoid tedious special cases in the results below since the proofs depend on Banach’s
fixed-point theorem.

The simplest example of an M-category is the category CBUltne of non-empty, 1-bounded, complete
ultrametric spaces and non-expansive maps. Here the distance function on each hom-set CBUltne(A,B)
is given by d(f ,g) = sup{dB(f (x),g(x)) | x ∈ A}. The category CBUltne is cartesian closed since CBUlt
is: it suffices to verify that CBUlt-products of non-empty metric spaces are non-empty, and similarly for
exponentials.

Let C be an M-category. A functor F : C op×C → C is locally contractive if there exists some c < 1
such that d(F(f ,g),F(f ′,g′)) ≤ c ·max(d(f , f ′),d(g,g′)) for all f , f ′, g, and g′. Notice that the same c
must work for all hom-sets of C .

3 Solving Recursive Equations

Let C be an M-category. We consider mixed-variance functors F : C op ×C → C on C and recursive
equations of the form X ∼= F(X ,X). In other words, given such an F we seek a fixed point of F up to
isomorphism.

Covariant endofunctors on C are a special case of mixed-variance functors. It would in some sense
suffice to study covariant functors: if C is an M-category, then so are C op (with the same metric on
each hom-set as in C) and C op ×C (with the product metric on each hom-set), and it is well-known
how to construct a ‘symmetric’ endofunctor on C op×C from a functor such as F above. We explicitly
study mixed-variance functors since the proof of the existence theorem below would in any case involve
an M-category of the form C op ×C . As a benefit we directly obtain theorems of the form useful in
applications. For example, for the existence theorem we are interested in completeness conditions on C ,
not on C op×C .

3.1 Uniqueness of Solutions

Our results below depend on the assumption that the given functor F on C is locally contractive. One
easy consequence of this assumption is that, unlike in the domain-theoretic setting [17], there is at most
one fixed point of F up to isomorphism.

Theorem 3.1. Let F : C op×C → C be a locally contractive functor on an M-category C , and assume
that i : F(A,A) → A is an isomorphism. Then the pair (i, i−1) is a bifree algebra for F in the following
sense: for all objects B of C and all morphisms f : F(B,B) → B and g : B → F(B,B), there exists a

20

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

unique pair of morphisms (k : B → A, h : A → B) such that h◦ i = f ◦F(k,h) and i−1 ◦ k = F(h,k)◦g:

F(A,A)
F(k,h) //

i

��

F(B,B)

f

��

F(h,k)
oo

A
h //_______

i−1

OO

B
k

oo_ _ _ _ _ _ _

g

OO

In particular, A is the unique fixed point of F up to isomorphism.

3.2 Existence of Solutions

In the existence theorem for fixed points of contractive functors, the M-category C will be assumed
to satisfy a certain completeness condition involving limits of ωop-chains. Since there are different
M-categories satisfying more or less general variants of this condition, it is convenient to present the
existence theorem in a form that lists a number of successively weaker conditions.

An increasing Cauchy tower is a diagram

A0

f0 // A1
g0

oo
f1 // . . .
g1

oo
fn−1 // An
gn−1

oo
fn // . . .
gn

oo

where gn ◦ fn = idAn for all n, and where limn→∞ d(fn ◦ gn, idAn+1) = 0. Notice that this definition only
makes sense for M-categories. The M-category C has inverse limits of increasing Cauchy towers if for
every such diagram, the sub-diagram containing only the arrows gn has a limit. (This subdiagram is,
incidentally, an ωop-chain of morphisms that are split epi, i.e., have a left inverse.)

Theorem 3.2. Assume that the M-category C satisfies any of the following (successively weaker) condi-
tions:

1. C is complete.

2. C has a terminal object and limits of ωop-chains.

3. C has a terminal object and limits of ωop-chains of split epis.

4. C has a terminal object and inverse limits of increasing Cauchy towers.

Then every locally contractive functor F : C op×C →C on C has a unique fixed point up to isomorphism.

4 Locally Compact Subcategories of M-Categories

The condition in Theorem 3.2 that involves Cauchy towers is included in order to accommodate cate-
gories where the hom-sets are compact ultrametric spaces [2, 9]: one example is the full subcategory
KBUltne of compact, non-empty, 1-bounded ultrametric spaces. This subcategory is merely the simplest
example of a full, ‘locally compact’ subcategory of an M-category. Such a subcategory always inherits
fixed points of functors from the full category:

Theorem 4.1. Assume that C is an M-category with a terminal object and limits of ωop-chains of split
epis. Let I be an arbitrary object of C , and let D be the full subcategory of C consisting of those
objects A such that the metric space C (I,A) is compact. D is an M-category with limits of increasing
Cauchy towers, and hence every locally contractive functor F : Dop×D → D has a unique fixed point
up to isomorphism.

21

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

For a monoidal closed C , the tensor unit is an appropriate choice of I. In particular, taking C to be
CBUltne and I to be one-point metric space, one obtains:

Corollary 4.2 ([9]). Every locally contractive functor F : KBUltne
op×KBUltne →KBUltne has a unique

fixed point up to isomorphism.

5 Domain Equations: from O-Categories to M-Categories

As another illustration of M-categories, we present a general construction that gives for every O-category
C (see below) a derived M-category D . In addition, the construction gives for every locally continuous
mixed-variance functor F on C a locally contractive mixed-variance functor G on D such that a fixed
point of G (necessarily unique, by Theorem 3.1) is the same as a fixed point of F that furthermore
satisfies a ‘minimal invariance’ condition [12]. Thus, generalized domain equations can be solved in
M-categories.

The construction generalizes an earlier one [6] which is for the particular category of pointed cpos
and strict, continuous functions (or full subcategories thereof) and only works for a restricted class of
functors that does not include general function spaces.

Rank-ordered cpos [6], independently discovered under the name ‘uniform cpos’ [7], arise from a
particular instance of an M-category obtained from this construction. The extra metric information in
that category (as compared with the underlying O-category) is useful in realizability models [4, 1].

An O-category [17] is a category C where each hom-set C (A,B) is equipped with an ω-complete
partial order, usually written v, and where each composition function is continuous with respect to these
orders. A functor F : C op×C → C is locally continuous if each function on hom-sets that it induces is
continuous.

Assume now that C is an O-category such that each hom-set C (A,B) contains a least element ⊥A,B

and such that the composition functions of C are strict: f ◦⊥A,B = ⊥A,C = ⊥B,C ◦g for all f and g. We
construct an M-category D of ‘rank-ordered C -objects’ as follows. An object (A,(πn)n∈ω) of D is a
pair consisting of an object A of C and a family of endomorphisms πn : A → A in C that satisfies the
following requirements:

(1) π0 =⊥A,A.

(2) πm v πn for all m ≤ n.

(3) πm ◦πn = πn ◦πm = πmin(m,n) for all m and n.

(4)
⊔

n∈ω πn = idA.

Then, a morphism from (A,(πn)n∈ω) to (A′,(π ′
n)n∈ω) in D is a morphism f from A to A′ in C sat-

isfying that π ′
n ◦ f = f ◦ πn for all n. Composition and identities in D are the same as in C . Fi-

nally, the distance function on a hom-set D((A,(πn)n∈ω), (A′,(π ′
n)n∈ω)) is defined as follows: d(f ,g) =

2−max{n∈ω|π ′n◦ f =π ′n◦g} if f 6= g, and d(f ,g) = 0 otherwise. (One can show using conditions (1)-(4) above
that this function is in fact well-defined.)

Proposition 5.1. D is an M-category.

Now let F : C op×C → C be a locally continuous functor. We construct a locally contractive functor
G : Dop×D →D from F . On objects, G is given by

G((A,(πA
n)n∈ω), (B,(πB

n)n∈ω)) = (F(A,B),(πA,B
n)n∈ω)

where π
A,B
0 = ⊥ and π

A,B
n+1 = F(πA

n ,πB
n) for all n. On morphisms, G is the same as F , i.e., G(f ,g) =

F(f ,g). One can verify that G is well-defined and furthermore locally contractive with factor 1/2.

22

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

Proposition 5.2. Let A be an object of C . The following two conditions are equivalent. (1) There exists
an isomorphism i : F(A,A)→ A such that idA = fix(λeC (A,A). i◦F(e,e)◦ i−1). (Here fix is the least-fixed-
point operator.) (2) There exists a family of morphisms (πn)n∈ω such that A = (A,(πn)n∈ω) is the unique
fixed-point of G up to isomorphism.

It remains to discuss how completeness properties of C transfer to D . One can show that the forgetful
functor from D to C creates terminal objects and limits of ωop-chains of split epis. Alternatively, by
imposing an additional requirement on C one can show that the forgetful functor creates all limits: for a
given limit in C , the induced bijection between cones and mediating morphisms must be an isomorphism
in the category of cpos (where cones are ordered pointwise, using the order on each hom-set). That
requirement is in particular satisfied by the usual concrete categories of cpos.

References

[1] M. Abadi and G. D. Plotkin. A per model of polymorphism and recursive types. In Proc. of 5th Annual IEEE
Symp. on Logic in Computer Science, LICS ’90 (Philadelphia, PA, June 1990), pp. 355–365. IEEE CS Press,
1990.

[2] F. Alessi, P. Baldan, and G. Bellè. A fixed-point theorem in a category of compact metric spaces. Theor.
Comput. Sci., 146(1–2):311–320, 1995.

[3] F. Alessi, P. Baldan, G. Bellè, and J. J. M. M. Rutten. Solutions of functorial and non-functorial metric
domain equations. Electron. Notes in Theor. Comput. Sci., 1:1–12, 1995.

[4] R. M. Amadio. Recursion over realizability structures. Inform. and Comput., 91(1):55–85, 1991.
[5] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a category of complete metric

spaces. J. of Comput. and Syst. Sci., 39(3):343–375, 1989.
[6] C. Baier and M. E. Majster-Cederbaum. The connection between initial and unique solutions of domain

equations in the partial order and metric approach. Formal Aspects of Computing, 9(4):425–445, 1997.
[7] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of parametric polymorphism, general

references, and recursive types. In L. de Alfaro, ed., Proc. of 12th Int. Conf. on Foundations of Software
Science and Computation Structures, FoSSaCS 2009 (York, March 2009), v. 5504 of Lect. Notes in Comput.
Sci., pp. 456–470. Springer, 2009.

[8] L. Birkedal, K. Støvring, and J. Thamsborg. The category-theoretic solution of recursive metric-space
equations, 2009. Manuscript, submitted to journal. Available at http://itu.dk/people/kss/papers/
metric-equations.pdf.

[9] F. van Breugel and J. Warmerdam. Solving domain equations in a category of compact metric spaces. Report
CS-R9424, CWI, Amsterdam, 1994.

[10] J. W. de Bakker and J. Zucker. Processes and the denotational semantics of concurrency. Inform. and Control,
54:70–120, 1982.

[11] M. Kostanek and P. Waszkiewicz. On the influence of domain theory on Q-categories, 2009. Manuscript,
submitted. Available at http://tcs.uj.edu.pl/Waszkiewicz/.

[12] A. M. Pitts. Relational properties of domains. Inform. and Comput., 127(2):66–90, 1996.
[13] J. J. M. M. Rutten. Elements of generalized ultrametric domain theory. Theor. Comput. Sci., 170(1–2):349–

381, 1996.
[14] J. J. M. M. Rutten and D. Turi. On the foundations of final semantics: non-standard sets, metric spaces,

partial orders. Report CS-R9241, CWI, Amsterdam, 1992.
[15] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and frame rules for higher-order

store. In Proc. of 23rd Int. Wksh. on Computer Science Logic (Coimbra, Sept. 2009), Lect. Notes in Comput.
Sci., Springer, to appear.

[16] M. B. Smyth. Topology. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum, eds., Handbook of Logic in
Computer Science, Vol. 1: Background: Mathematical Structures, pp. 641–761. Oxford Univ. Press, 1992.

23

http://itu.dk/people/kss/papers/metric-equations.pdf
http://itu.dk/people/kss/papers/metric-equations.pdf
http://tcs.uj.edu.pl/Waszkiewicz/

Solutions of Generalized Recursive Metric-Space Equations Birkedal, Støvring, and Thamsborg

[17] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations. SIAM J. on
Comput., 11(4):761–783, 1982.

[18] K. R. Wagner. Solving Recursive Domain Equations with Enriched Categories. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1994.

24

Scattered Algebraic Linear Orderings
S. L. Bloom

Department of Computer Science, Stevens Institute of Technology,
Hoboken, NJ 07030, USA

bloom@cs.stevens.edu
Zoltán Ésik∗

Department of Informatics, University of Szeged,
P. O. Box 652, H-6701 Szeged, Hungary

ze@inf.u-szeged.hu

Abstract

An algebraic linear ordering is a component of the initial solution of a first-order recursion
scheme over the continuous categorical algebra of countable linear orderings equipped with the sum
operation and the constant 1. Due to a general Mezei-Wright type result, algebraic linear orderings
are exactly those isomorphic to the linear ordering of the leaves of an algebraic tree. Moreover, using
a result of Courcelle together with a Mezei-Wright type result, we can show that the algebraic words
are exactly those that are isomorphic to the lexicographic ordering of a deterministic context-free
language. Algebraic well-orderings have been shown to be those well-orderings whose order type is
less than ωωω

. We prove that the Hausdorff rank of any scattered algebraic linear ordering is less
than ωω .

1 Introduction

Fixed points and finite systems of fixed point equations occur in just about all areas of computer science.
Regular and context-free languages, rational and algebraic formal power series, finite state process be-
haviors can all be characterized as (components of) canonical solutions (e.g., unique, least or greatest, or
initial or final solutions) of systems of fixed point equations, or recursion schemes.

In this paper we consider systems fixed point equations over countable linear orderings. Consider for
example the system

X = X +Y +X

Y = 1+Y

where + denotes the usual sum operation on linear orderings, and 1 is a singleton linear ordering. It has
no solution among finite linear orderings, but it has many solutions among countable linear orderings.
The second component of the simplest “canonical” solution is the ordering N of the nonnegative integers,
whereas the first component is the ordering obtained from the ordering Q of the rationals by replacing
each point with a copy of N.

In the above “regular” system of equations, the unknowns X ,Y range over linear orderings. More
generally, in an “algebraic” or “first-order” scheme we allow unknowns ranging over functions, or rather,
functors defined on linear orderings:

X = Y (1)
Y (x) = Z(x)+Y (1+ x)
Z(x) = Z(x)+ x+Z(x)

∗Supported in part by grant no. K 75249 from the National Foundation of Hungary for Scientific Research.

25

mailto:bloom@cs.stevens.edu
mailto:ze@inf.u-szeged.hu

Scattered Algebraic Linear Orderings Bloom and Ésik

Here, X ranges over linear orderings, while Y,Z range over functions (or more precisely, over functors)
on linear orderings. The first component of the canonical solution of this system is the linear ordering
L1 + L2 + . . ., where for each n > 0, Ln is the linear ordering obtained from Q by replacing each point
with the linear ordering n, the n-fold sum of 1 with itself.

Regular linear orderings are a special case of the regular words (or arrangements) of Courcelle [9].
Regular words and linear orders were studied in [18, 16, 3, 4]. The study of algebraic words and linear
orderings was initiated in [5]. As an application of a general Mezei-Wright type result [6], one obtains
that a linear ordering is algebraic (regular) iff it is isomorphic to the linear ordering of the leaves of an
algebraic (regular) tree. (See [10, 15] for the definition of algebraic and regular trees.)

In this paper, we first review the characterization of algebraic linear orderings by deterministic
context-free languages. Then we show that the Hausdorff rank of every scattered algebraic linear or-
dering is less than ωω . This extends one direction of a result of [7] where it is shown that an ordinal is
algebraic iff it is less than ωωω

. As a consequence of our results, we also obtain that if a scattered linear
ordering is isomorphic to the ordering of a deterministic context-free language, then its Hausdorff rank
is less than ωω .

2 Basic Notions and Notation

2.1 Continuous Categorical Σ-Algebras

Suppose that Σ =
⋃

n≥0 Σn is a ranked alphabet. A categorical Σ-algebra ([4, 5, 6]) A consists of a
(small) category, also denoted A together with a functor σA : A n →A , for each letter σ ∈ Σn, called
the operation induced by σ . A morphism of categorical Σ-algebras is a functor which preserves the
operations up to natural isomorphism.

We say that a categorical Σ-algebra A is continuous if it has initial object and colimits of ω-
diagrams, moreover, the operations σA are continuous, i.e., they preserve colimits of ω-diagrams in
each argument. Morphisms of continuous categorical Σ-algebras are continuous and preserve initial
objects.

The notion of continuous categorical Σ-algebra generalizes the notion of continuous ordered Σ-
algebra [14, 15], where the underlying category is a poset. Some examples of continuous categorical
Σ-algebras are given below.

2.2 Linear Orderings

In this paper, a linear ordering (W,<) is a countable set W equipped with a strict linear order relation <.
(To force the collection of all words to be a small set, we may require that the underlying set of a linear
ordering is a subset of a fixed set.) A morphism between linear orderings (W,<)→ (V,<) is a function
W → V which preserves the order relation (and is thus injective). The category Lin of linear orderings
has as initial object the empty linear ordering denoted 0. Moreover, Lin has colimits of all ω-diagrams.

Let ∆ be a ranked alphabet with ∆2 = {+}, ∆0 = {1} and ∆n = /0 for all n 6∈ {0,2}. We turn Lin into
a categorical ∆-algebra by interpreting the binary symbol + as the usual sum functor Lin2 → Lin and
1 as a singleton linear ordering. The sum functor maps a pair of linear orderings (Wi,<i), i = 1,2 to the
linear ordering (W1 +W2,<) whose underlying set is the disjoint union of W1 and W2 and such that the
restriction of < to Wi is <i, for i = 1,2. The sum h1 + h2 of morphisms hi : Wi → Vi, i = 1,2 is defined
so that it agrees with hi on Wi, for i = 1,2. Equipped with these functors, Lin is a continuous categorical
∆-algebra.

26

Scattered Algebraic Linear Orderings Bloom and Ésik

2.3 Trees

Let Σ be any ranked set. An example of a continuous categorical Σ-algebra is the algebra T ∞
Σ

of all finite
and infinite Σ-trees defined in the usual manner. This continuous categorical Σ-algebra is ordered, so that
there is at most one morphism between any two trees. It is known that T ∞

Σ
is the essentially unique initial

continuous categorical Σ-algebra. See [14, 15, 6] for more details.

3 Recursion Schemes

Definition 3.1. A recursion scheme over Σ is a sequence E of equations

F1(v1, . . . ,vk1) = t1
... (1)

Fn(v1, . . . ,vkn) = tn

where ti is a term over the ranked alphabet Σ∪F in the variables v1, . . . ,vki , for i ∈ [n], where F =
{F1, . . . ,Fn}. A recursion scheme is regular if ki = 0, for each i ∈ [n].

In the above definition, Σ∪F is the ranked alphabet whose letters are the letters in Σ together with
the letters in {F1, . . . ,Fn} where each Fi is of rank ki.

In any continuous categorical Σ-algebra A , any scheme E induces a continuous endofunctor EA

over the category

[A k1 →A]× . . . [A kn →A]

where [A k →A] denotes the category of all continuous functors A k →A . Since this category also has
initial object and colimits of ω-diagrams, it has an initial fixed point |EA | (cf. [1, 19]) which is unique
up to isomorphism.

Definition 3.2. Suppose that A is a continuous categorical Σ-algebra. We call a functor f : A m →A ,
algebraic if there is a recursion scheme E such that f is isomorphic to |E|A1 , the first component of the
above initial solution. When m = 0, f may be identified with an object of A, called an algebraic object.
An object a in A is regular if there is a regular recursion scheme E such that a is isomorphic to |E|A1 .

By applying the above notion to Lin and T ∞
Σ

, we obtain the notions of algebraic and regular linear
orderings, and algebraic and regular trees, respectively. Several characterizations of algebraic and regular
trees can be found in [14, 10, 15]. For characterizations of regular linear orderings we refer to [9, 3].
Here we only mention the following fact.

Let ∆ be the ranked alphabet defined above in Section 2.2. Then there is a unique morphism of
categorical ∆-algebras T ∞

∆
→ Lin, namely the frontier map mapping each tree to the linear ordering of

its leaves. Due to a Mezei-Wright type result [6] we have:

Proposition 3.3. A countable linear ordering is algebraic or regular iff it is isomorphic to the frontier of
an algebraic or regular tree in T ∞

∆
.

Actually the above fact holds for all ranked sets Σ such that Σ0 is not empty and there is at least one
n > 1 such that Σn is also not empty.

27

Scattered Algebraic Linear Orderings Bloom and Ésik

4 Representing Linear Orderings by Languages of Finite Words

Let A be an alphabet equipped with a fixed linear order relation that we extend to the lexicographic order
<` of A∗, the set of (isomorphism types) of finite words. If L ⊆ A∗ is any language, then (L,<`) is a
linear ordering. When A has two or more letters, then every countable linear ordering is isomorphic to
a linear ordering (L,<`). We can also show that every recursive linear ordering is isomorphic to an
ordering (L,<`), for some recursive language L ⊆ A∗.

Definition 4.1. Call a linear ordering context-free (deterministic context-free, respectively) if it is iso-
morphic to a linear ordering (L,<`) for some context-free (deterministic context-free, respectively) lan-
guage L over some alphabet A (or equivalently, over the 2-letter alphabet {0,1}).

Using Courcelle’s characterization of algebraic trees by deterministic context-free languages from
[10] together with Proposition 3.3, we have:

Proposition 4.2. A linear ordering is algebraic iff it is deterministic context-free.

There is a similar characterization of regular linear orderings using ordinary regular languages.

5 Scattered Algebraic Linear Orderings

A good treatment of linear orderings is [17]. Recall from [17] that a linear ordering is scattered if it has
no subordering isomorphic to the ordering of the rationals.

Scattered (countable) linear orderings can be classified into a transfinite hierarchy. Let V0 denote
the empty linear ordering and the singleton linear orderings. When α is a nonzero ordinal, let Vα be
the collection of all linear orderings that can be obtained from a subordering P of Z, the ordering of the
integers by replacing each point x ∈ P with a linear ordering in Vβx for some βx < α . By Hausdorff’s
theorem, a linear ordering is scattered iff it belongs to Vα for some (countable) ordinal α , and the least
such ordinal is called the Hausdorff rank or VD-rank of the scattered linear ordering.

It is known (see [16, 2, 5]) that a well-ordering is regular iff its order type is less than ωω , or
equivalently, when its Hausdorff rank is finite. Moreover, the Hausdorff rank of every scattered regular
linear ordering is finite. In [7], it is shown that a well-ordering is algebraic iff its order type is less than
that of the ordinal ωωω

, or equivalently, when its Hausdorff rank is less than ωω .
The main result of this paper is:

Theorem 5.1. The Hausdorff rank of any scattered algebraic linear ordering is less than ωω .

Corollary 5.2. The Hausdorff rank of any scattered deterministic context-free ordering is less than ωω .

6 Conclusion and Open Problems

A hierarchy of recursion schemes was introduced in [11], see also [12, 13]. Here, we dealt with level
0 (regular schemes) and level 1 (algebraic or first-order schemes) of the hierarchy. In Theorem 5.1, we
have shown that every scattered linear ordering definable by a level 1 scheme is of Hausdorff rank less
than ωω , whereas it has been known that the Hausdorff rank of any scattered linear ordering definable
by a recursion scheme of level 0 is less than ω . We conjecture that for each n, the Hausdorff rank of any
scattered linear ordering definable by a level n scheme is less than ⇑ (ω,n+1), a tower of n+1 ω’s. If
that conjecture is true, then it follows that an ordinal is definable by a level n scheme iff it is less than
⇑ (ω,n+2), and thus an ordinal is definable in the hierarchy iff it is less than ε0. (See also [8].)

28

Scattered Algebraic Linear Orderings Bloom and Ésik

In ordinal analysis of logical theories, the strength of a theory is measured by ordinals. For example,
the proof theoretic ordinal of Peano arithmetic is ε0. Here we have a similar phenomenon: we measure
the strength of recursive definitions by ordinals, and we conjecture that the ordinals definable are exactly
those less than ε0.

Finally, we mention two open problems.
Problem 1. Is there a context-free linear order which is not a deterministic context-free linear order?
Problem 2. Characterize the context-free well orderings and scattered linear orderings.

References
[1] J. Adámek. Free algebras and automata realizations in the language of categories. Comment. Math. Univ.

Carolinae, 15:589–602, 1974.
[2] S. L. Bloom and C. Choffrut. Long words: the theory of concatenation and ω-power. Theor. Comput. Sci.,

259(1–2):533–548, 2001.
[3] S. L. Bloom and Z. Ésik. Deciding whether the frontier of a regular tree is scattered. Fund. Inform., 11:1–22,

2004.
[4] S. L. Bloom and Z. Ésik. The equational theory of regular words. Inform. and Comput., 197(1–2):55–89,

2005.
[5] S. L. Bloom and Z. Ésik. Regular and algebraic words and ordinals. In T. Mossakowski et al., ed., Proc. of

2nd Int. Conf. on Algebra and Coalgebra in Computer Science, CALCO 2007 (Bergen, Aug. 2007), v. 4624
of Lect. Notes in Comput. Sci., pp. 1–15. Springer, 2007.

[6] S. L. Bloom and Z. Ésik. A Mezei-Wright theorem for categorical algebras. Theor. Comput. Sci., to appear.
[7] S. L. Bloom and Z. Ésik. Algebraic ordinals. Submitted for publication.
[8] L. Braud. Unpublished paper.
[9] B. Courcelle. Frontiers of infinite trees. Theor. Inform. and Appl., 12:319–337, 1978.

[10] B. Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci., 25:95–169, 1983.
[11] W. Damm. Higher type program schemes and their tree languages. In H. Tzschach et al., eds., Proc. of 3rd

GI Conf. on Theoretical Computer Science (Darmstadt, March 1977), v. 48 of Lect. Notes in Comput. Sci.,
pp. 51–72. Springer, 1977.

[12] W. Damm. The IO and OI hierarchies. Theor. Comput. Sci., 20:95–206, 1982.
[13] J. Gallier. n-rational algebras I: basic properties and free algebras. SIAM J. on Comput., 13:750–775, 1984.
[14] J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright. Initial algebraic semantics and continuous

algebras. J. of ACM, 24:68–95, 1977.
[15] I. Guessarian. Algebraic Semantics, v. 99 of Lect. Notes in Comput. Sci. Springer, 1981.
[16] S. Heilbrunner. An algorithm for the solution of fixed-point equations for infinite words. Theor. Inform. and

Appl., 14:131–141, 1980.
[17] J. B. Rosenstein. Linear Orderings. Academic Press, 1982.
[18] W. Thomas. On frontiers of regular trees. Theor. Inform. and Appl., 20:371–381, 1986.
[19] M. Wand. Fixed point constructions in order-enriched categories. Theor. Comput. Sci., 8:13–30, 1979.

29

An Easy Completeness Proof
for the Modal µ-Calculus on Finite Trees

Balder ten Cate∗

INRIA Saclay - Île-de-France and ENS Cachan
61 avenue du President Wilson, F-94235 Cachan Cedex, France

balder.tencate@gmail.com
Gaëlle Fontaine†

Institute for Logic, Language and Computation, University of Amsterdam
P.O. Box 94242, NL-1090 GE Amsterdam, The Netherlands

gaelle.fontaine@uva.nl

The µ-calculus is an extension of modal logic with a fixpoint operator. In 1983, Dexter Kozen
suggested an axiomatization (see, e.g., [4]). It took more than ten years to prove completeness. This proof
is due to Igor Wałukiewicz [7] and is quite involved. We propose here a simpler proof in a particular
case. More precisely, we prove the completeness of the Kozen axiomatization Kµ extended with the
axiom µx.2x with respect to the class of finite tree models.

Our argument basically consists of three steps. The first step consist of defining a notion of rank
which plays the same role as the modal depth for modal formulas. One of the main properties of the rank
is the following. In order to know whether a formula ϕ of rank n is true at a node w, it is enough to know
which proposition letters are true at w and which formulas of rank at most n are true at the successor
nodes of w. Another key property of the rank is that there are only finitely many formulas of a given rank
(up to logical equivalence).

The second step is to prove completeness of the µ-calculus with respect to generalized models, which
are basically Kripke models augmented with a set of admissible subsets, in the style of Henkin semantics
for second order logic. We do this by a standard canonical model construction.

The last step is inspired by a work of Kees Doets (see, e.g., [1]). Let us call a node in a generalized
model n-good if there is a node in a finite tree model which satisfies exactly the same formulas of rank at
most n. Using an induction principle, we show that every node in a generalized model satisfying µx.2x
is n-good. It is here that we use the main property of the rank. Finally, putting this together with the
completeness for generalized models, we obtain completeness for the class of finite tree models.

This argument can also be applied to some extensions of the logic Kµ + µx.2x. More precisely,
we show that when we add finitely many shallow axioms (as defined in [6]), we obtain a complete
axiomatization for the corresponding class of finite trees. We also mention that we can adapt our proof
to show completeness for the graded µ-calculus extended with the axiom µx.2x.

The paper is organized as follows. In section 1, we recall what is the Kozen axiomatization for the
µ-calculus Kµ and what is the intended semantics. In section 2, we define the notion of rank for a
formula. In section 3, we give a definition for the generalized models and we show completeness of Kµ

with respect to the class of generalized models. In section 4, we use Kees Doets’ argument to obtain
completeness of Kµ + µx.2x with respect to the class of finite tree models. In the last two sections, we
give some examples of extensions of Kµ + µx.2x to which we can apply our method in order to prove
completeness.

∗supported by the Netherlands Organization for Scientific Research (NWO), under grant 639.021.508 and by ERC Advanced
Grant Webdam on Foundation of Web data management

†supported by VICI grant 639.073.501 of the NWO

30

mailto:balder.tencate@gmail.com
mailto:gaelle.fontaine@uva.nl

An Easy Completeness Proof ten Cate and Fontaine

1 Syntax, Semantics and Axiomatization

We introduce the language and the Kripke semantics for the µ-calculus. We also recall the axiomatization
given by Dexter Kozen.

Definition 1.1. The µ-formulas over a set Prop of proposition letters are given by

ϕ ::= > | p | x | ϕ ∨ϕ | ¬ϕ |3ϕ | µx.ϕ,

where p ranges over the set Prop and x ranges over the set Var of variables. In µx.ϕ , we require that the
variable x appears only under an even number of negations in ϕ . We will assume that Var is infinite.

As usual, we let φ ∧ψ , 2ϕ and νx.ϕ be abbreviations for ¬(¬ϕ ∨¬ψ), ¬3¬ϕ and ¬µx.¬[¬x/x].
The notions of subformula, bound variable, free variable and substitution are defined in the usual

way. If ϕ and ψ are µ-formulas and if p is a proposition letter, we denote by ϕ[ψ/p] the formula
obtained by replacing in ϕ each occurrence of p by ψ . Similarly, if x is a variable, we define ϕ[ψ/x].

A µ-sentence is a formula in which all the variables are bound.

Definition 1.2. A Kripke frame is a pair (W,R), where W is a set and R a binary relation on W . A Kripke
model is a triple (W,R,V) where (W,R) is a Kripke frame and V : Prop →P(W) a valuation. If (w,v)
belongs to R, we say that w is a predecessor of v and v is a successor of w.

Given a formula ϕ , a Kripke model M = (W,R,V) and an assignment τ : Var →P(W), we define a
subset [[ϕ]]M ,τ that is interpreted as the set of points at which ϕ is true. The subset is defined by induction
in the usual way. We only recall that

[[µx.ϕ]]M ,τ =
⋂
{U ⊆W : [[ϕ]]M ,τ[x:=U] ⊆U},

where τ[x := U] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y), for all y 6= x. Observe that the
set [[µx.ϕ]]M ,τ is the least fixpoint of the map ϕx : P(W)→P(W) defined by ϕx(U) := [[ϕ]]M ,τ[x:=U],
for all U ⊆W .

If w ∈ [[ϕ]]M ,τ , we write M ,w
τ ϕ and we say that ϕ is true at w under the assignment τ . If ϕ is a
sentence, we simply write M ,w
 ϕ .

A formula ϕ is true in M under an assignment τ if for all w ∈W , we have M ,w
τ ϕ . In this case,
we write M
τ ϕ . A set Φ of formulas is true in a model M under an assignment τ , notation: M
τ Φ,
if for all ϕ in Φ, ϕ is true in M under τ .

Finally, if (W,R) is a Kripke frame and for all valuations V and all assignments τ , ϕ is true in
(W,R,V) under the assignment τ , we say that ϕ is valid in (W,R) and we write (W,R)
 ϕ .

Definition 1.3. The axiomatization of the Kozen system Kµ consists of the following axioms and rules

propositional tautologies,
If ` ϕ → ψ and ` ϕ , then ` ψ (Modus ponens),
If ` ϕ , then ` ϕ[p/ψ] (Substitution),
`2(p → q)→ (2p →2q) (K-axiom),
If ` ϕ , then `2ϕ (Necessitation),
` ϕ[x/µx.ϕ]→ µx.ϕ (Fixpoint axiom),
If ` ϕ[x/ψ]→ ψ , then ` µx.ϕ → ψ (Fixpoint rule),

where x is not a bound variable of ϕ and no free variable of ψ is bound in ϕ .

Definition 1.4. If Φ is a set of µ-formulas, we write Kµ + Φ for the smallest set of formulas which
contains both Kµ and Φ and is closed for the Modus Ponens, Substitution, Necessitation and Fixpoint
rules.

31

An Easy Completeness Proof ten Cate and Fontaine

Definition 1.5. Let (W,R) be a Kripke frame. A point r in W is a root if for all w in W , there is a
sequence w0, . . . ,wn such that w0 = r, wn = w and (wi,wi+1) belongs to R, for all i ∈ {0, . . . ,n−1}.

The frame (W,R) is a tree if it has a root, every point distinct from the root has a unique predecessor
and there is no sequence w0, . . . ,wn+1 in W such that wn+1 = w0 and (wi,wi+1) belongs to R, for all
i ∈ {0, . . . ,n}. The frame (W,R) is a finite tree if it is a tree and W is finite.

Finally, a finite tree Kripke model is a Kripke model (W,R,V) such that (W,R) is a finite tree.

Fact 1.6. Let M = (W,R,V) be a Kripke model. The formula µx.2x is true at a point w in M iff there
is no infinite sequence w0,w1 . . . in W such that w0 = w and (wi,wi+1) belongs to R, for all i ∈ N.

In particular, the formula µx.2x is true in M iff there is no infinite sequence w0,w1, . . . such that
(wi,wi+1) belongs to R, for all i ∈ N. That is, iff M is conversely well-founded.

We prove the completeness of the logic Kµ +µx.2x with respect to the class of finite tree Kripke models.
That is, a formula ϕ is provable in Kµ + µx.2x iff it is valid in any finite tree Kripke model. Note that
this result can be easily derived from the completeness result proved by Igor Wałukiewicz in [7].

2 Rank of a Formula

The goal of this section is to come up with a definition of rank that would be the analogue of the depth
of a modal formula. For modal logic, it is not hard to see that the truth of an arbitrary formula ϕ at some
world w only depends of the truth of the proposition letters at w and of the truth of formulas ψ at the
successors of w, where the depth of ψ is at most the depth of ϕ . In our proof, we will need something
similar for the µ-calculus.

The most natural idea would be to look at the nesting depth of modal and fixpoint operators. However,
this definition does not have the required properties. The notion of rank that we develop in this section
is in fact related to the closure of a formula, which has been introduced by Dexter Kozen in [4].

Definition 2.1. The closure Cl(ϕ) of a formula ϕ is the smallest set of formulas such that

ϕ ∈Cl(ϕ),
if 3ψ ∈Cl(ϕ), then ψ ∈Cl(ϕ),
if ¬ψ ∈Cl(ϕ), then ψ ∈Cl(ϕ),
if µx.ψ ∈Cl(ϕ), then ψ[x/µx.ψ] ∈Cl(ϕ).
if ψ ∨χ ∈Cl(ϕ), then both ψ,χ ∈Cl(ϕ),

It is also proved in [4] that the closure Cl(ϕ) of a formula ϕ is finite. In order to define the rank, we also
need to recall the notion of the depth of a formula.

Definition 2.2. The depth d(ϕ) of a formula ϕ is defined by induction as follows

d(>) = d(p) = d(x) = 0,
d(ϕ ∨ψ) = max{d(ϕ),d(ψ)},
d(¬ϕ) = d(ϕ),
d(3ϕ) = d(µx.ϕ) = d(ϕ)+1.

Definition 2.3. The rank of a formula ϕ is defined as follows

rank(ϕ) = max{d(ψ) |ψ ∈Cl(ϕ)}.

Remark that since Cl(ϕ) is finite, rank(ϕ) is always a natural number. All we will use later are the
following properties of the rank.

32

An Easy Completeness Proof ten Cate and Fontaine

Proposition 2.4. If the set Prop of proposition letters is finite, then for all natural numbers k, there are
only finitely many sentences of rank k (up to logical equivalence).

Proof. Fix a natural number k. Note first that if rank(ϕ) = k, then in particular, d(ϕ) ≤ k. Hence, it is
enough to show that there only finitely many sentences of depth below k (up to logical equivalence). If
d(ϕ)≤ k, we may assume that the only variables occurring in ϕ are some x1, . . . ,xk. It is routine to prove
by induction on l that there are finitely many formulas of depth l with variables x1, . . . ,xk.

Proposition 2.5. The rank is closed under boolean combination. That is, for any n, a boolean combina-
tion of formulas of rank at most n is a formula of rank at most n.

Proposition 2.6. Every formula ϕ is provably equivalent to a boolean combination of proposition letters
and formulas of the form 3ψ , with rank(ψ)≤ rank(ϕ).

Proof. Recall that a formula is guarded if every bound variable is in the scope of a modal operator. It can
be shown that every formula is provably equivalent to a guarded formula. Therefore, let ϕ be a guarded
formula. We define a map G by induction as follows:

G(>) = >,

G(p) = p, if p is a free variable of ϕ,

G(¬ψ) = ¬G(ψ),
G(ψ ∨ψ

′) = G(ψ)∨G(ψ ′),
G(3ψ) = 3ψ,

G(µx.ψ) = G(ψ[x/µx.ψ]).

Note that G is not defined for a bound variable x of ϕ . Using the fact that ϕ is guarded, one can show that
the computation of G(ϕ) is well-defined and does terminate. It is not hard to see that G(ϕ) is equivalent
to ϕ . Remark now that if ψ belongs to Cl(ϕ), then Cl(ψ) is a subset of Cl(ϕ). It follows that G(ϕ) is a
boolean combination of proposition letters and formulas of the form 3ψ , with rank(ψ)≤ rank(ϕ).

3 Completeness for Generalized Models

We introduce generalized models which are the analogue for the µ-calculus of the general models for
second order logic. We prove completeness of Kµ with respect to the class of generalized models.

Definition 3.1. Consider a quadruple M = (W,R,V,A) where (W,R) is a Kripke frame, A is a subset of
P(W) and V : Prop → A a valuation. A set which belongs to A is called admissible.

We define the truth of a formula ϕ under an assignment τ : Var → A by induction. Remark that all
the clauses are the same as usual, except the one defining the truth of µx.ϕ . Normally, we define the
set [[µx.ϕ]]M ,τ as the least pre-fixpoint of the map ϕx (see Definition 1.2). But here, we define it as the
intersection of all the pre-fixpoints of ϕx, that are admissible.

[[>]]M ,τ = W,
[[p]]M ,τ = V (p),
[[x]]M ,τ = τ(x),
[[¬ϕ]]M ,τ = W\[[ϕ]]M ,τ ,
[[ϕ ∨ψ]]M ,τ = [[ϕ]]M ,τ ∪ [[ψ]]M ,τ ,
[[3ϕ]]M ,τ = {w ∈W : ∃v ∈W s.t. wRv and v ∈ [[ϕ]]M ,τ},
[[µx.ϕ]]M ,τ =

⋂
{U ∈ A : [[ϕ]]M ,τ[x:=U] ⊆U},

33

An Easy Completeness Proof ten Cate and Fontaine

where τ[x := U] is the assignment τ ′ such that τ ′(x) = U and τ(y) = τ(y), for all y 6= x. If w ∈ [[ϕ]]M ,τ ,
we write M ,w
τ ϕ and we say that ϕ is true at w under the assignment τ . If ϕ is a sentence, we simply
write M ,w
 ϕ . A formula ϕ is true in M under an assignment τ if for all w ∈W , we have M ,w
τ ϕ .
In this case, we write M
τ ϕ .

The quadruple M = (W,R,V,A) is a generalized model if for all formulas ϕ and all assignments
τ : Var → A, the set [[ϕ]]M ,τ belongs to A. A triple F = (W,R,A) is a generalized frame if for every
valuation V : Prop → A, the quadruple (W,R,V,A) is a generalized model.

If F = (W,R,A) is a generalized frame, we call (W,R) the underlying Kripke frame of F . A
formula ϕ is valid in a generalized frame F = (W,R,A), notation: F
 ϕ , if for all valuations V :
Prop→A and all assignments τ : Var →A, the formula ϕ is true in (W,R,V,A) under the assignment τ .

Remark that any Kripke model M =(W,R,V) can be seen as the generalized model M′ =(W,R,V,P(W)).
It follows easily from our definition that for all formulas ϕ and all points w ∈W ,

M,w
 ϕ iff M′,w
 ϕ.

Theorem 3.2. Kµ is complete with respect to the class of generalized models. That is, for any formula
ϕ , `Kµ ϕ iff for any generalized model M , M
 ϕ .

Proof. The argument is similar to the modal case and uses a variant of the standard canonical model
construction (see, e.g.g, [5]).

4 Completeness for Finite Tree Models

In the style of Kees Doets [1], we prove completeness of Kµ + µx.2x with respect to the class of finite
tree Kripke models. The argument is as follows. First, we say that a point w in a generalized model
is n-good if there is a point v in a finite tree Kripke model such that no formula of rank at most n can
distinguish w from v. Next, we show that “being n-good” is a property that can be expressed by a formula
γn of rank at most n. Afterwards, we prove that each point (in a generalized model) satisfying µx.2x,
is n-good. Finally, using completeness for generalized models, we obtain completeness of Kµ + µx.2x
with respect to the class of finite tree Kripke models.

In this section, we will assume that the set Prop of proposition letters is finite. Often we write ”finite
tree” instead of ”finite tree Kripke model”.

Definition 4.1. Fix a natural number n. Let M and M ′ be two generalized models. A world w ∈M is
rank n-indistinguishable to a world w′ ∈M ′ if for all formulas ϕ of rank at most n, we have

M ,w
 ϕ iff M ′,w′
 ϕ.

In case this happens, we write (M ,w)∼n (M ′,w′). Finally, we say that w ∈M is n-good if there exists
a finite tree N and some v ∈N such that (M ,w)∼n (N ,v).

Definition 4.2. Let n be a natural number and let Φn be the set of formulas of rank at most n. For any
generalized model M and any w ∈ M , we define the n-type θn(w) as the set of formulas in Φn which
are true at w.

Remark that by Proposition 2.4, Φn is finite (up to logical equivalence) and in particular, there are only
finitely many distinct n-types.

Lemma 4.3. Let n be a natural number. There exists a formula γn of rank n such that for any generalized
model M and any w ∈M , we have

M ,w
 γn iff (M ,w) is n-good.

34

An Easy Completeness Proof ten Cate and Fontaine

Proof. Let n be a natural number and let γn be the formula defined by

γn =
∨
{
∧

θn(w) |w is n-good},

where w a point in a generalized model M and
∧

θn(w) is shorthand for
∧
{ϕ : ϕ ∈ θn(w)}. Note

that since there are only finitely many distinct n-types, the formula γn is well-defined. Moreover, from
Proposition 2.5, it follows that the rank of γn is n.

It remains to check that γn has the required properties. It is immediate to see that if a point w in a
generalized model is n-good, then γn is true at w. For the other direction, assume that γn is true at a point
w in a generalized model M . Therefore, there is a point w′ in a generalized model M ′ such that w′ is
n-good and θn(w′) is true at w. Since w′ is n-good, there is a point v in a model N such that w′ and v are
rank n-indistinguishable. Using the fact that w and w′ have the same n-type, we obtain that w and v are
also rank n-indistinguishable. That is, w is n-good.

Lemma 4.4. For all natural numbers n, `Kµ 2γn → γn.

Proof. Let n be a natural number. By Theorem 3.2, it is enough to show that the formula 2γn → γn

is valid in all generalized models. Let M be a generalized model and let w ∈ M . We have to show
M ,w
 2γn → γn. So suppose M ,w
 2γn. If w is a reflexive point, we immediately obtain M ,w
 γn

and this finishes the proof. Assume now that w is irreflexive. We have to prove that (M ,w) is n-good.
That is, we have to find a finite tree N and some v ∈M such that (M ,w)∼n (N ,v).

Now for any successor u of w, we have M ,u
 γn. Therefore, (M ,u) is n-good and there exists a
finite tree Mu = (Wu,Ru,Vu) and some wu ∈Wu such that (M ,u)∼n (Mu,wu). Without loss of generality,
we may assume that wu is the root of Mu.

The idea is now to look at the disjoint union of these models and to add a root v (that would be rank
n-indistinguishable from w). However, this new model might not be a finite tree (w might have infinitely
many successors). The solution is to restrict ourselves to finitely many successors of w. More precisely,
for each n-type, we pick at most one successor of w.

So let U be a set of successors of w such that for any successor u of w, there is exactly one point u′ of
U satisfying θn(u) = θn(u′). Remark that since there are only finitely many distinct n-types, U is finite.
Let N = (W,R,V) be the model defined by

W = {v}∪
⊎
{Wu : u ∈U},

R = {(v,wu) : u ∈U}∪
⋃
{Ru : u ∈U},

V (p) =

{
{v}∪

⋃
{Vu(p) : u ∈U} if M ,w
 p,⋃

{Vu(p) : u ∈U} otherwise,

for all proposition letters p. Since U is finite, N is a finite tree. Thus, it is enough to check that for any
formula ϕ of rank at most n, we have

M ,w
 ϕ iff N ,v
 ϕ.

By Proposition 2.6, ϕ is provably equivalent to a boolean combination of proposition letters and formulas
of the form 3ψ , where rank(ψ) is at most n. Thus, it is enough to show that w and v satisfy exactly the
same proposition letters and the same formulas 3ψ with rank(ψ)≤ n.

By definition of V , it is immediate that w and v satisfy the same proposition letters. Now let ψ be a
formula of rank at most n. We have to show that

M ,w
 3ψ iff N ,v
 3ψ.

35

An Easy Completeness Proof ten Cate and Fontaine

For the direction from left to right, suppose that M ,w
 3ψ . Thus, there exists a successor u of w
such that M ,u
 ψ . By definition of U , there is u′ ∈U such that (M ,u)∼n (M ,u′). Thus, (M ,u)∼n

(Mu′ ,wu′) and in particular, Mu′ ,wu′
 ψ . By definition of R, it follows that N ,v
 3ψ . The direction
from right to left is similar.

Proposition 4.5. For all natural numbers n, `Kµ µx.2x → γn.

Proof. By Lemma 4.4, we know that 2γn → γn is provable in Kµ . By the Fixpoint rule, we obtain that
µx.2x → γn is provable in Kµ .

Theorem 4.6. Kµ + µx.2x is complete with respect to the class of finite tree Kripke models.

Proof. For any finite tree M , we have M
 Kµ and M
 µx.2x. Thus, it is sufficient to show that if ϕ

is not provable in Kµ + µx.2x, there exists a finite tree N such that N 1 ϕ . Let ϕ be such a formula. In
particular, 0Kµ µx.2x→ ϕ . By Theorem 3.2, we have M ,w 1 µx.2x→ ϕ , for some generalized model
M and some w ∈M .

Let n be the rank of ϕ . By Theorem 3.2 and Proposition 4.5, we get that M ,w
 µx.2x→ γn. Since
M ,w
 µx.2x, it follows that M ,w
 γn. Therefore, there exists a finite tree N and some v ∈N such
that (M ,w)∼n (N ,v). Since M ,w 1 ϕ , we have N ,v 1 ϕ .

As mentioned before, this result also follows from the completeness of Kµ showed by Igor Wałukiewicz
in [7]. We briefly explain how to derive Theorem 4.6 from the completeness of Kµ . Recall that in [7],
Igor Walukiewicz showed that a sentence ϕ is provable in Kµ iff it is valid in all trees.

Suppose that a sentence ϕ is not provable in Kµ + µx.2x. In particular, the formula µx.2x → ϕ is
not provable in Kµ . It follows from the completeness of Kµ that there is a model M = (W,R.V) and a
point w in W such that (W,R) is a tree and µx.2x→ ϕ is not true at w. We may assume that w is the root
of (W,R).

Since µx.2x is true at w and since w is the root, it follows from Fact 1.6 that the tree (W,R) is
conversely well-founded. Let n be the rank of ϕ . Now, if a point v in W has more than one successor of
a given n-type θ , we can pick one successor of n-type θ and delete all the other successors of n-type θ .
This would not modify the fact that ϕ is not true at w. By doing this operation inductively and using the
fact that (W,R) is well-founded, we can prove that the tree (W,R) may be assumed to be finite. Therefore,
there is a finite tree (W,R) in which ϕ is not valid.

5 Adding Shallow Axioms to Kµ + µx.2x

By slightly modifying our method, it is also possible to prove that the logic obtained by adding the axiom
3p → 2p to Kµ + µx.2x is complete with respect to the class of finite strings (recall that a string is a
tree such that every point has at most one successor).

We do not provide the details of the proof but it consists in two parts. First, we show that if we
construct a canonical generalized model for this logic, then the underlying Kripke frame satisfies the
axiom 3p → 2p. Second, we modify the definition of being n-good by requiring in Definition 4.1 that
the model N is a finite string. Then we prove that the lemmas 4.3 and 4.4 still holds for this new
definition.

Theorem 5.1. The logic Kµ +µx.2x+(3p→2p) is complete with respect to the class of finite strings.

We remark that this theorem follows from a result by Roope Kaivola (see, e.g., [3]). But the proof
proposed here is simpler.

More generally, we can also show that when we extend the logic Kµ + µx.2x with axioms that are
shallow (defined below), we obtain complete axiomatizations for the corresponding class of finite trees.

36

An Easy Completeness Proof ten Cate and Fontaine

Definition 5.2 ([6]). A formula is shallow if no occurrence of a proposition letter is in the scope of a
fixpoint operator and each occurrence of a proposition letter is in the scope of at most one modality. In
other words, the shallow formulas is the language defined by

ϕ ::= ψ |3ψ | ϕ ∨ϕ | ¬ϕ,

where ψ is either a formula without any proposition letter or a propositional formula (that is a formula
of the µ-calculus that does not contain neither 3 nor µ).

Observe that the formula 3p → 2p is a shallow formula. Other examples are formulas expressing that
each point has at most two successors (3p∧3(q∨¬p)→ 2(p∨q)), or that each point has at most one
blind successor (3(p∧2⊥)∧2(2⊥→ p)).

Recall that a formula ϕ defines a class C of finite trees if C is exactly the class of trees which make
ϕ valid.

Theorem 5.3. Let ϕ be a shallow formula. Then the logic Kµ + µx.2x + ϕ is complete with respect to
the class of finite trees defined by ϕ .

The structure of the proof is similar to the one of the proof of Theorem 5.1. Here, in order to show that
the underlying frame of the canonical generalized model satisfies ϕ , we use the fact that the shallow
formulas are canonical, which was proved in [6].

6 Graded µ-Calculus

Finally, we would like to mention that we can also use the same method to show that we can obtain
a complete axiomatization for the graded µ-calculus together with the axiom µx.2x. In [2], Maurizio
Fattorosi-Barnaba and Claudio Cerrato gave an axiomatization of graded modal logic and show that
this axiomatization was complete with respect to the class of frames. If we add the Fixpoint axiom,
the Fixpoint rule and the axiom µx.2x to their axiomatization, we obtain a logic that is complete with
respect to the class of finite trees.

The only part of the proof which requires some extra work is when we want to show a result similar
to Theorem 3.2. Indeed, the canonical construction for graded modal logic is already not very easy. In
fact, in order to show completeness for graded µ-calculus with respect to the class of generalized frames,
we use directly the completeness result by Maurizio Fattorosi-Barnaba and Claudio Cerrato, instead of
going trough the canonical model construction. This is done by translating each µ-formula into a modal
formula, but over a larger set of proposition letters. We do not give the details, by lack of space.

Acknowledgements

We would like to thank Alexandru Baltag and Yde Venema for their comments on earlier drafts.

References
[1] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, v. 53 of Cambridge Tracts in Theoretical Computer

Science. Cambridge Univ. Press, 2001.
[2] B. ten Cate. Model Theory for Extended Modal Languages. PhD thesis, University of Amsterdam, 2005. ILLC

Dissertation Series DS-2005-01.
[3] K. Doets. Monadic Π1

1-theories of Π1
1 properties. Notre Dame J. of Formal Log., 30(2):224–240, 1989.

37

An Easy Completeness Proof ten Cate and Fontaine

[4] M. Fattorosi-Barnaba and C. Cerrato. Graded modalities III: the completeness and compactness of S40. Studia
Logica, 47(2):99–110, 1988.

[5] R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics. PhD thesis, University of Edin-
burgh, 1997.

[6] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
[7] I. Wałukiewicz. A note on the completeness of Kozen’s axiomatization of the propositional µ-calculus. Bull.

of Symb. Log., 2(3):349–366, 1996.

38

Least and Greatest Fixpoints in Game Semantics
Pierre Clairambault

PPS, CNRS & Université Paris 7
175 rue du Chevaleret, F-75013 Paris, France

pierre.clairambault@pps.jussieu.fr

1 Introduction

The idea to model logic by game-theoretic tools can be traced back to the work of Lorenzen [19]. The
idea is to interpret a formula by a game between two players O and P, O trying to refute the formula and P
trying to prove it. The formula A is then valid if P has a winning strategy on the interpretation of A. Later,
Joyal remarked [18] that it is possible to compose strategies in Conway games [10] in an associative way,
thus giving rise to the first category of games and strategies. This, along with parallel developments in
Linear Logic and Geometry of Interaction, led to the more recent construction of compositional game
models for a large variety of logics [1, 21, 11] and programming languages [17, 3, 20, 2].

On the other hand, games with parity conditions [4] have been used accurately in order to model
languages such as the propositional µ-calculus [22]. The idea is to build a µ-bicomplete category of
games, i.e. a category with finite products, finite coproducts and initial algebras/terminal coalgebras for
all functors definable with products, coproducts and parametrized initial/terminal algebras/coalgebras.
However, this category of games is a bit unsatisfactory from the point of view of proof theory since it is
not closed, i.e. it does not admit an interpretation of functional types or implication.

2 On Previous Work

In a previous paper [6], we presented a logic named µLJ which is an extension of both the propositional
µ-calculus and of the intuitionistic sequent LJ[15]. Variants of this language have already been consid-
ered, see for example [5]. Basically, it consists of the usual rules of LJ plus the following rules to express
fixpoints, and the action of formulas with a free type variable as covariant (denoted T) or contravariant
(denoted N) endofunctors.

Rules for Fixpoints and Functors

Γ ` T [µX .T/X]
µr

Γ ` µX .T

T [A/X] ` A
µl

µX .T ` A

T [νX .T/X] ` B
νl

νX .T ` B

A ` T [A/X]
νr

A ` νX .T

A ` B
[T]

T (A) ` T (B)

B ` A
[N]

N(A) ` N(B)

This logic is then equipped with the usual reduction rules of LJ, with the addition of the following
rules for fixpoints, and rules for the expansion of functors.

39

mailto:pierre.clairambault@pps.jussieu.fr

Least and Greatest Fixpoints in Game Semantics Clairambault

π1

Γ ` T [µX .T/X]
µr

Γ ` µX .T

π2

T [A/X] ` A
µl

µX .T ` A
Cut

Γ ` A

;
π1

Γ ` T [µX .T/X]

π2

T [A/X] ` A
µl

µX .T ` A
[T]

T [µX .T/X] ` T [A/X]
Cut

Γ ` T [A/X]

π2

Γ,T [A/X] ` A
Cut

Γ ` A

Figure 1: Cut reduction for µ

In [6], we show how to build a games model of this logic in the setting of arena games [17, 16]. We
start from McCusker’s model of recursive types in arena games [20] where recursive types are obtained
by infinite iteration of the functors, in the spirit of Knaster-Tarski’s fixed point theorem. We first revisit
his work by replacing this infinite iteration process by loops in arenas. For this purpose, we introduce
a general form of functors in game semantics, called open functors, which are semantic counterparts of
formulas with free type variables. Such functors are in one-to-one correspondence with open arenas,
i.e. arenas with special distinguished moves called holes, representing type variables. These arenas
admit a loop construction, giving rise to a minimal invariant [14, 12, 13] for the corresponding functor.
Moreover, we show that this loop construction can be enriched by parity winning conditions, providing
initial algebras and terminal coalgebras for most covariant open functors. Hence, we have built a category
of games which is cartesian closed, has (weak) coproducts and initial algebras/terminal coalgebras for all
covariant functors definable with the language constructors (including fixpoints and implication) : this is
our model for µLJ.

Whereas this version of µLJ is interesting in its own right, there remains a drawback making it
unsatisfactory for a plausible programming language with induction/coinduction, namely, the absence of
context in the rules for µ/ν : this restriction would correspond to a programming language where one
can only iterate a closed term. We are now interested in the following extended rules:

Extended Rules for Fixpoints and Functors

Γ ` T [µX .T/X]
µr

Γ ` µX .T

Γ,T [A/X] ` A
µl

Γ,µX .T ` A

Γ,T [νX .T/X] ` B
νl

Γ,νX .T ` B

Γ,A ` T [A/X]
νr

Γ,A ` νX .T

Γ,A ` B
[T]

Γ,T (A) ` T (B)

Γ,B ` A
[N]

Γ,N(A) ` N(B)

While it is true that, as claimed in [6], these general rules can be derived from the previous ones, it
is unclear and non-trivial whether these derivations are correct from the dynamical point of view. For
example, one would have to show that the reduction presented in Figure 2 holds. Unfortunately, due to the
complexity of the derivations for the extended rules, the required verifications turn out to be unfeasible,
at least by hand. Hence, we instead take these extended rules and reductions as primitive, and investigate
possible strengthenings of our games model which could validate them.

40

Least and Greatest Fixpoints in Game Semantics Clairambault

π1

Γ ` T [µX .T/X]
µr

Γ ` µX .T

π2

Γ,T [A/X] ` A
µl

Γ,µX .T ` A
Cut

Γ ` A

;
π1

Γ ` T [µX .T/X]

π2

Γ,T [A/X] ` A
µl

Γ,µX .T ` A
[T]

Γ,T [µX .T/X] ` T [A/X]
Cut

Γ ` T [A/X]

π2

Γ,T [A/X] ` A
Cut

Γ ` A

Figure 2: Extended cut reduction for µ

3 A Categorical Setting of Strong Functors

We first investigate what categorical structure is needed in order to interpret the extended rules. Let
us suppose given a cartesian closed category C , with (weak) coproducts. In this section, we will be
interested in the notion of strong endofunctors. These are defined as functors T : C → C equipped with
a strength, i.e. a transformation

θ
T
Γ,A : Γ×T (A)→ T (Γ×A)

natural in Γ and A, and satisfying unarity and associativity constraints. Such strong functors have already
been considered in the past, see for example [8, 7, 9]. The difference here is the presence of functional
types, which forces us to consider a notion dual to strengths, that we call contravariant strengths. A
contravariant functor N : C op → C is strong if there is a transformation:

ρ
N
Γ,A : Γ×N(Γ×A)→ N(A)

which is natural in A, dinatural in Γ and satisfies the following unarity and associativity constraints:

1×N(A)

1×N(π2)
��

π2

&&LLLLLLLLLL

1×N(1×A)
ρN

1,A

// N(A)

B× (A×N((A×B)×C))

B×(A×N(α−1
A,B,C))

TTTTT

**TTTTT

(B×A)×N((A×B)×C))

αB,A,N((A×B)×C)jjjjjj

44jjjjjj

B× (A×N(A× (B×C)))

B×ρN
A,B×C

��
(A×B)×N((A×B)×C)

sA,B×N((A×B)×C)

OO

ρN
A×B,C **TTTTTTTTTTTTTTTTTT

B×N(B×C)

ρN
B,Cttjjjjjjjjjjjjjjjjj

N(C)

Let us now take any object Γ of C , and consider the comonad Γ×−. It gives rise to a co-Kleisli
category denoted CΓ, and corresponds to the category of morphisms (terms) in the context Γ. The main
interest of strong (co/contra)-variant functors is that they can be extended to CΓ in the following way:

Proposition 1. Let T : C → C and N : C op → C be strong functors. If we define:

41

Least and Greatest Fixpoints in Game Semantics Clairambault

• On objects, TΓ(A) = T (A). On morphisms, if f : A → B (in CΓ, hence f : Γ×A → B in C):

TΓ(f) = Γ×T (A)
θ T

Γ,A // T (Γ×A)
T (f) // T (B)

• On objects, NΓ(A) = N(A). On morphisms, if f : B → A (in CΓ),

NΓ(f) = Γ×N(A)
Γ×N(f)// Γ×N(Γ×B)

ρN
Γ,B // N(B)

Then TΓ : CΓ → CΓ and NΓ : C op
Γ
→ CΓ are well-defined functors.

Moreover, it can be proved that this functor extension operation preserves the existence of initial
algebras/terminal coalgebras. More precisely, we can prove the following proposition:

Proposition 2. Let T : C → C be strong and Γ be an object of C , then we have the following proposi-
tions:

• If T has an initial algebra in C , then TΓ has an initial algebra in CΓ.

• If T has a terminal coalgebra in C , then TΓ has a terminal coalgebra in CΓ.

While this structure already allows to interpret most of the extended rules of µLJ, there are still some
gaps. In particular, what guarantees that the behaviour of T is not modified when building TΓ ? More
precisely, the (−)Γ construction has to satisfy a certain number of equations like (T ×T ′)Γ = TΓ×T ′

Γ
.

These equations reduce to properties of strengths, which lead to the following definition.

Definition 1. A category C has strong types if it is cartesian closed, has (weak, functorial) coproducts,
a (weak) initial object, and is equipped with a class F of functors T : C k × (C op)p → C satisfying the
following properties:

• F contains the identity, constant functors and base constructors−1 +−2, −1×−2 and−1 ⇒−2;

• F is stable by composition : if F,G ∈F and F, G are composable, then FG ∈F ;

• F is stable by contraction : if F(−1,−2,−3) : C ×C ×D → C is in F , then F(−1,−1,−3) :
C ×D → C . Same condition with C op instead of C at the left.

Those functors in F that are also unary (i.e. P : C → C or N : C op → C) are strong. The strengths
have to satisfy the following conditions:

• For both covariant and contravariant strengths, the families θ T
Γ,A and ρN

Γ,A are also natural in T /N;

• Compatibility with identity:

θ
−
Γ,A = idΓ×A

• Compatibility with constant functors:

θ
B
Γ,A = π2

42

Least and Greatest Fixpoints in Game Semantics Clairambault

• Compatibility with composition:

F and G covariant: θ FG
Γ,A = θ F

Γ,G(A);F(θ G
Γ,A)

F covariant and G contravariant: ρFG
Γ,A = θ F

Γ,G(Γ×A);F(ρG
Γ,A)

F contravariant and G covariant: ρFG
Γ,A = Γ×F(θ G

Γ,A);ρF
Γ,G(A)

F and G contravariant: θ FG
Γ,A = Γ×F(ρG

Γ,A);ρF
Γ,G(Γ×A)

• Compatibility with contraction, with P covariant and N contravariant:

θ
P(−,−)
Γ,A = 〈π1,θ

P(−,A)
Γ,A 〉;θ

P(Γ×A,−)
Γ,A

ρ
N(−,−)
Γ,A = 〈π1,ρ

N(−,Γ×A)〉;ρ
N(A,−)
Γ,A

• Compatibility with cartesian closed structure.

ρ
−⇒C
Γ,A = Λ(〈〈π2;π1,π1〉,π2;π2〉;ev)

θ
C⇒−
Γ,A = Λ(〈π2;π1,〈π1,π2;π2〉;ev〉)

In a category with strong types, all the equations required for the expansion of functor rules hold:

Proposition 3. For any P,P′ : C → C , N,N′ : C op → C , Γ, the following equations hold:

(P+P′)Γ = PΓ +P′Γ
(N +N′)Γ = NΓ +N′

Γ

(P×P′)Γ = PΓ×P′Γ
(N×N′)Γ = NΓ×N′

Γ

(N ⇒ P)Γ = NΓ ⇒ PΓ

(P ⇒ N)Γ = PΓ ⇒ NΓ

Moreover, if T : C ×D → C in F has a parametrized initial algebra or a parametrized terminal coal-
gebra T µ/T ν :

(T µ)Γ = (TΓ)µ

(T ν)Γ = (TΓ)ν

4 µ-Closed Categories

Now that we have all the necessary background to interpret the extended rules for functors and their
expansion, we can turn to the rules for fixpoints. We define µ-closed categories by analogy with the
definition of µ-bicomplete categories [23], as those categories with strong types where the canonical
interpretation of µLJ formulas as strong functors is total.

Definition 2. Let C be a category with strong types. We define a partial interpretation of µLJ formulas
as strong functors in the class F as follows:

• J0K = X 7→ 0 (the constant functor on the (weak) initial object);

• J1K = X 7→ 1 (the constant functor on the terminal object);

43

Least and Greatest Fixpoints in Game Semantics Clairambault

• JXK = X 7→ X (the identity functor);

• JS ⇒ T K = JSK⇒ JT K;

• JS +T K = JSK+ JT K;

• JS×T K = JSK× JT K

• JµX .T K is, if defined, the parametrized initial algebra of JT K(X ,
−→
Y);

• JνX .T K is, if defined, the parametrized terminal coalgebra of JT K(X ,
−→
Y).

In both cases, the notation
−→
Y expresses the fact that, since T can have other free type variables, JT K can

admit other arguments than X.

Definition 3. Let C a category with strong types. C is µ-closed if the interpretation function J−K is total
on F .

Theorem 1. Any µ-closed category is a sound model for µLJ with the extended rules set.

5 The Games Model

Let I denote the usual category of arenas and innocent strategies (see for example [20]), and G denote
the category of games for fixpoints introduced in [6]. The extension of I and G to take the structure
presented here into account goes rather smoothly, in several steps.

Proposition 4. I has strong types, with open functors as the needed class of functors.

Now, this strong types structure extends naturally to G by the addition of parity winning conditions.
But we already know that in G , open functors definable by the base constructors have initial algebras and
terminal coalgebras, hence we get the following theorem.

Theorem 2. G is µ-closed.

6 Conclusion

This work presents a categorical setting in which it is possible to deal with rules for fixpoints and functors
under a given context Γ. This is important, since any plausible programming language with induction
and/or coinduction will allow iteration of a functional with free variables. We also show how the games
model of [6] can be adapted to this extended setting, thus giving a model of the extended rules of µLJ,
with games and winning total strategies.

An interesting open question is whether the definition of µ-closed category is actually redundant, i.e.
whether the derivations of the extended rules in µLJ which are known to exist behave as needed, from
the dynamical point of view. More precisely, it is possible to define strength candidates for all functors
built out of the base constructors, but proving that these strength candidates satisfy the required equations
turned out to be unfeasible by hand, most notably for the case of strengths for functors already generated
by fixpoints (necessary for the modelling of interleaving inductive/coinductive types, i.e. embedded
fixpoints within the definition of fixpoints). We note however that such verifications could be at least
partially automatized, thus leading to a rather strong theorem allowing to interpret the extended rules of
µLJ in any model of the basic rules.

44

Least and Greatest Fixpoints in Game Semantics Clairambault

References
[1] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic. J. of Symb.

Log., 59(2):543–574, 1994.
[2] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for general references. In Proc. of

13th IEEE Ann. Symp. on Logic in Computer Science, LICS ’98 (Indianapolis, IN, June 1998), pp. 334–344.
IEEE CS Press, 1998.

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Inform. and Comput., 163(2):409–
470, 2000.

[4] A. Arnold and D. Niwinski. Rudiments of µ-Calculus, Int. Series in Comput. Sci.. Prentice Hall, 2001.
[5] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz and A. Voronkov,

eds., Proc. of 14th Int. Conf. on Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2007
(Yerevan, Oct. 2007), v. 4790 of Lect. Notes in Artif. Intell., pp. 92–106. Springer, 2007.

[6] P. Clairambault. Least and greatest fixpoints in game semantics. In L. de Alfaro, ed., Proc. of 12th Int. Conf.
on Foundations of Software Science and Computation Structures, FoSSaCS 2009 (York, March 2009), v. 5504
of Lect. Notes in Comput. Sci., pp. 16–31. Springer, 2009.

[7] J. R. B. Cockett and D. Spencer. Strong categorical datatypes I. In R. A. G. Seely, ed., Proc. of Int. Summer
Category Theory meeting (Montréal, June 1991), v. 13 of Canadian Math. Soc. Conf. Proc., pp. 141–169.
AMS, 1992.

[8] J. R. B. Cockett and D. Spencer. Strong categorical datatypes II: a term logic for categorical programming.
Theor. Comput. Sci., 139(1–2):69–113, 1995.

[9] J. R. B. Cockett and T. Fukushima. About Charity. Technical report, University of Calgary, 1992.
[10] J. H. Conway. On Numbers and Games. AK Peters, 2001.
[11] J. De Lataillade. Second-order type isomorphisms through game semantics. Ann. of Pure and Appl. Logic,

151(2-3):115–150, 2008.
[12] P. J. Freyd. Algebraically complete categories. In A. Carboni et al., eds., Proc. of Int. Conf. on Category

Theory, CT ’90 (Como, July 1990), v. 1488 of Lect. Notes in Math., pp. 95–104. Springer, 1991.
[13] P. J. Freyd. Remarks on algebraically compact categories. In M. P. Fourman et al., eds., Applications of

Categories in Computer Science: Proc. of LMS Symp. (Durham, July 1991), v. 177 of London Math. Soc.
Lect. Note Series, pp. 95–106. Cambridge Univ. Press, 1992.

[14] P. J. Freyd. Recursive types reduced to inductive types. In Proc. of 5th Ann. IEEE Symp. on Logic in Computer
Science, LICS ’90 (Philadelphia, PA, June 1990), pp. 498–507. IEEE CS Press, 1990.

[15] J. Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, v. 7 of Cambridge Tracts in Theoretical Computer
Science. Cambridge Univ. Press, 1989.

[16] R. Harmer. Innocent game semantics. Lecture notes, 2004.
[17] J. M. E. Hyland and C. H. L. Ong. On full abstraction for PCF: I, II, and III. Inform. Comput., 163(2):285–

408, 2000.
[18] A. Joyal. Remarques sur la théorie des jeux à deux personnes. Gaz. des Sci. Math. du Québec, 1(4):46–52,

1977.
[19] P. Lorenzen. Logik und Agon. Atti Congr. Internat. di Filosofia, v. 4, pp. 187–194. 1960.
[20] G. McCusker. Games and full abstraction for FPC. Inform. and Comput., 160(1-2):1–61, 2000.
[21] P.-A. Melliès. Asynchronous games 4: a fully complete model of propositional linear logic. In Proc. of 20th

Ann. IEEE Symp. on Logic in Computer Science, LICS 2005 (Chicago, IL, June 2005), pp. 386–395. IEEE
CS Press, 2005.

[22] L. Santocanale. A calculus of circular proofs and its categorical semantics. In M. Nielsen and U. Engberg,
eds., Proc. of 5th Int. Conf. on Foundations of Software Science and Computation Structures, FoSSaCS 2002
(Grenoble, Apr. 2002), v. 2303 of Lect. Notes in Comput. Sci., pp. 357–371. Springer, 2002.

[23] L. Santocanale. µ-bicomplete categories and parity games. Theor. Inform. and Appl., 36(2):195–227, 2002.

45

Membership Checking in Greatest Fixpoints Revisited
Martin Hofmann and Dulma Rodriguez

Institut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 München, Germany
mhofmann@ifi.lmu.de and rodrigue@ifi.lmu.de

Abstract

Pierce, in his book “Types and Programming Languages” (MIT Press, 2002), presents an efficient
algorithm for computing membership in the greatest fixpoint of invertible operators in a goal-directed
way. In this paper, we provide a new proof of correctness for it based on coinduction. Moreover,
we extend the algorithm for computing membership in the gfp of arbitrary monotone operators and
prove this extension correct in a very similar way. Finally, we instantiate the general algorithm to
gain a subtyping algorithm for RAJA programs.

1 Introduction

We are interested in computing membership in the greatest fixpoint of a monotone operator on the pow-
erset of some given set. Rather than computing the entire fixpoint by Knaster-Tarski iteration we want
to depart from a given goal. This may be advantageous if the size of the underlying set or of the great-
est fixpoint is large compared to the portion relevant for determining membership of a particular ele-
ment. For a concrete example consider the operator F(X) = {x | x + 1 mod 5 ∈ X} on the powerset of
G = {0, . . . ,2100}. Obviously, the largest fixpoint consists of G itself; determining this by Knaster-Tarski
iteration is infeasible though. If we only want to check whether a particular element, say 23 is in the gfp
we can commence with the goal 23 ∈ gfp?. This leads to the sequence of subgoals 4 ∈ gfp?, 0 ∈ gfp?,
1 ∈ gfp?, 2 ∈ gfp?, 3 ∈ gfp?, 4 ∈ gfp? at which point we are done because we have discovered a loop in
the sequence of subgoals that have arisen.

We are specially interested in deciding subtyping for RAJA types. The RAJA system is a refinement
of an extension of Featherweight Java (FJ) [6] with attribute update (FJEU), with the goal of statically
analysing the heap space consumption of object-oriented programs. The system has been first described
by Hofmann and Jost in [4]. Recently, the current authors analysed algorithmic typing of RAJA programs
[5]. Briefly, RAJA types are FJEU classes refined with a possibly infinite set of views. Subtyping for
RAJA types is defined as the greatest fixpoint of a monotone operator, similarly to the definitions of
subtyping for other recursive types like tree types or µ-types [7, Chapter 21].

Subtyping algorithms for recursive types have been widely studied in the past. Amadio and Cardelli
gave the first subtyping algorithm for recursive types [1]. Brandt and Henglein’s [2] showed the underly-
ing coinductive nature of Amadio and Cardelli’s algorithm. In [7, Chapter 21] Pierce gives an overview
of many algorithms for membership checking for greatest fixed points and how they can be used to decide
subtyping for recursive types.

RAJA subtyping, however, is a bit more complicated than most of the other definitions of subtyping
for recursive types because in RAJA methods can have many different types. Therefore, in order to check
that a RAJA type Cr is a subtype of a RAJA type Ds we need to check that for a given method m for all
its method types in Ds there is a method type in Cr with some properties. This causes that the support of
a given goal is not a set of subgoals as usual but a boolean combination of subgoals.

In this paper we will extend the efficient algorithm for membership checking for greatest fixed points
described in [7, Chapter 21.6] to a more general version where the support of a given goal is a positive
boolean expression. Moreover, we provide a new proof of correctness for both algorithms. We found

46

mailto:mhofmann@ifi.lmu.de
mailto:rodrigue@ifi.lmu.de

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

the proof in [7, Chapter 21.6] difficult to extend and provide therefore a more abstract coinductive proof
which can be easily adapted to the new algorithm.

Contents. In Section 2 we describe and prove correct an algorithm for membership checking in great-
est fixed points of monotone operators closed under intersection. In Section 3 we extend the algorithm
to arbitrary monotone operators. In Section 4 we instantiate the second algorithm in order to decide
subtyping for the RAJA system.

2 Invertible Operators

Let G be a set. We let P(G) denote the powerset of G and PF(G) denote the set of finite subsets of
G. If F : P(G) → P(G) is a monotone operator we write gfp(F) for its greatest fixpoint. We have
gfp(F) = F(gfp(F)) and whenever X ⊆F(X) then X ⊆ gfp(F). The latter principle is called coinduction.
We may also use the notation νX .F(X) for gfp(F).

In the following we review a goal-directed algorithm for membership checking for greatest fixed
points described in [7, Chapter 21.6]. This algorithm works only for a special kind of operators, invertible
operators, which we now characterize.

A given element g ∈ G can be generated by a monotone operator F in many ways, which means that
there can be more than one set X ⊆ G such that g ∈ F(X). We call any such set a generating set for g.
We focus here on the class of invertible operators, where each g has at most one minimal generating set.

Definition 2.1. A monotone operator F is said to be invertible if, for all g ∈ G, the collection of sets

Gg = {X ⊆ G | g ∈ F(X)}
is either empty or contains a unique finite member that is a subset of all the others.

When F is invertible, the partial function supportF : G→ PF(G) is defined like this:

supportF(g) =
{

X if X ∈ Gg and ∀X ′ ∈ Gg .X ⊆ X ′

↑ if Gg = /0

That is, the support of a goal g is the least generating set X for g, or undefined if g is not supported in F.

Definition 2.2. Let G be a set, A⊆ G, f :G→ PF(G). A monotone operator F f ,A is defined by

F f ,A : P(G)→ P(G)
F f ,A(X) = {g | g ∈ A∧ f (g)⊆ X}

Then, the support of a goal is given by the function f and it is only defined for elements g ∈ A:

supportFf,A
(g) =

{
f (g) if g ∈ A
↑ otherwise

The following result seems to be folklore, well-known e.g. in the field of predicate transformers. The
operators F f ,A are equivalent to invertible operators and to monotone operators closed under intersection
where every goal has a finite support.

Theorem 2.3. Let F :P(G)→ P(G) be a monotone operator. The following are equivalent:

1. There exists f ,A such that F = F f ,A.

2. For each g ∈ F(G) there exists a finite support set S ∈ PF(G) such that g ∈ F(S) and for all
X1,X2 ∈ PF(G) one has F(X1∩X2) = F(X1)∩F(X2).

3. F is invertible.

47

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

Algorithm 1.
test : G×P(G)→ P(G)⊥

test(g,U) = if g ∈U then U

else if g /∈ A then fail

else

let {h1, . . . ,hn}= f (g) in

let V1 = test(h1,U ∪{g}) in

let V2 = test(h2,V1) in

. . .

let Vn = test(hn,Vn−1) in

Vn

Figure 1: Algorithm for membership checking of greatest fixed points.

Membership checking

Figure 1 shows an algorithm for membership checking in the greatest fixed point of F f ,A. The idea of
this membership algorithm is to run F backwards: to check membership for an element g, we need to
ask how g could have been generated by F. The advantage of an invertible F is that there is at most one
way to generate a given g. We have to be careful though, a goal g might be supported e.g. by the same
goal g. If we do not detect these kind of loops, the algorithm will not terminate. Therefore we keep
a set of assumptions U that is empty at the beginning and that will be incremented with every goal we
handle. This way we are able to detect a loop if we check whether the current goal is a member of the set
of assumptions, in which case we finish with a positive answer. The following algorithm takes a set of
assumptions U as an argument and returns another set of assumptions as a result. This allows it to record
the subtyping assumptions that have been generated during completed recursive calls and reuse them in
later calls. For failure we use the convention: if an expression B fails, then let A = B in C also fails.

This algorithm has been described and proved correct in [7, Chapter 21.6]. In [3], Costa Seco and
Caires have used it as well for defining subtyping for a class-based object oriented language where
classes are first class polymorphic values. We provide here a more abstract correctness proof based on
coinduction.

Theorem 2.4.

1. if G is a finite set the test(g,U) terminates.

2. test(g, /0) = V ⇐⇒ g ∈ νX .F f ,A(X).

Proof.

1. Termination of the algorithm follows using |G\U | as a ranking function.

2. Let N(U) := νX .{h | h ∈U ∨ (h ∈ A∧ f (h) ⊆ X)}. Note that N(U) = νX .U ∪ FF,A(X). Conse-
quently, N(/0) = νX .F f ,A(X). The goal follows then from the more general results:

(a) test(g,U) = V ⇒ g ∈N(U) and U ⊆V ⊆N(U).

(b) test(g,U) = fail⇒ g /∈N(U).

48

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

which we prove simultaneously by induction on the runtime of the computation of test(g,U).

Case g ∈U . Then test(g,U) = U by definition and g ∈N(U) since U ⊆N(U).

Case g /∈U and g /∈ A. Then test(g,U) = fail and g /∈N(U) since N(U)⊆U ∪A.

Case g /∈U and g ∈ A. We consider the representative case f (g) = {h1,h2}.

Case test(h1,U ∪{g}) = V1 and test(h2,V1) = V2.
Then by induction hypothesis we get h1 ∈N(U ∪{g}) and U ∪{g} ⊆V1 ⊆N(U ∪{g})
and h2 ∈N(V1) and V1 ⊆V2 ⊆N(V1). From monotonicity of N(.) then follows N(V1)⊆
N(N(U ∪{g})) = N(U ∪{g}) easily 1, hence, we get f (g)⊆N(U ∪{g}) (*).
Next we claim that N(U) = N(U ∪ {g}). One direction is clear by monotonicity of
N(.). For the other direction we use coinduction with X0 = N(U ∪{g}). To conclude
X0 ⊆N(U) we thus have to prove X0 ⊆U ∪{h | h ∈ A∧ f (g)⊆ X0} which we now do.
Pick h ∈ X0 = N(U ∪{g}).
From the definition of N(.) we get that h ∈U or h = g or f (g)⊆ X0. The first and third
case immediately yield the desired result. In the second case (g = h) we get f (g) ⊆ X0
from (*). So we proved N(U) = N(U ∪{g}). Then we have f (g) ⊆ N(U) and g ∈ A,
thus, we get the desired g ∈ N(U). Moreover, we get U ⊆ U ∪{g} ⊆ N(U ∪{g}) ⊆
N(U).

Case test(h1,U∪{g}) = fail. Then test(g,U) = fail and by I.H. h1 /∈N(U∪{g}), thus, f (g) *
N(U) and g /∈N(U).

Case test(h1,U ∪{g}) = V1 and test(h2,V1) = fail. Then by induction hypothesis U ∪{g} ⊆
V1 ⊆N(U ∪{g}) and h2 /∈N(V1). Moreover we have by monotonicity of N(.) that N(U)⊆
N(U ∪{g})⊆N(V1), thus h2 /∈N(U) and consequently g /∈N(U) as desired.

2

3 Arbitrary Monotone Operators

In this section we extend the previous algorithm to an algorithm for membership checking in the greatest
fixpoint of not necessarily invertible monotone operators, where the support of a given goal is the mean-
ing of some positive boolean expression. As mentioned in the introduction, this extension is motivated
by the subtyping relation of the RAJA system. In the following we describe formally positive boolean
expressions and their meaning.

Definition 3.1. Positive boolean expressions over G are defined by the grammar

e ::= tt | ff | g | e1∧ e2 | e1∨ e2

where g ranges over elements of G. Let PBool(G) be the set of positive boolean expressions over G.

Positive boolean expressions denote predicates on P(G). In particular, g denotes {X | g ∈ X}. Formally,
if X ⊆ G we define the meaning JeKX :bool as follows:

JttKX = tt
JffKX = ff
JgKX = g ∈ X
Je1∧ e2KX = Je1KX ∧ Je2KX

Je1∨ e2KX = Je1KX ∨ Je2KX

1N(N(U)) = N(U) follows by monotonicity of N(.) and coinduction.

49

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

Example 3.2. Let G = {a,b,c,d} and e = a∧ (b∨ c), then JeK{a,b} = tt and JeK{b,c} = ff.

Note that X ⊆ Y implies JeKX ⇒ JeKY .

Definition 3.3. Let f : G → PBool(G) be a boolean operator. Then we obtain a monotone operator F f

as follows:
F f : P(G)→ P(G)
X 7→ {g | J f (g)KX = tt}

Next we prove constructively that, whenever a set G is finite, we can provide a boolean operator for any
monotone operator over G. We notice though that the so constructed boolean operator might be very big,
hence, applying the algorithm we are about to describe would be very inefficient.

Theorem 3.4. If G is a finite set and F : P(G) → P(G) then there exists f : G → PBool(G) such that
F = F f .

Proof. For each (finite) subset X = {g1, . . . ,gk} ⊆ G define
∧

X := g1 ∧ . . .∧ gk. We have J
∧

XKY =
tt ⇐⇒ X ⊆ Y . Given g let X1 . . .Xk be an enumeration of the subsets X such that g ∈ F(X). We then
put f (g) =

∧
X1 ∨ . . .∨

∧
Xn. Now g ∈ F(X)⇒ X = Xi for some i ⇒ J

∧
XiKX = tt⇒ J f (g)KX = tt.

Conversely J f (g)KX = tt⇒ Xi ⊆ X for some i ⇒ g ∈ F(Xi)⇒ g ∈ F(X) by monotonicity. 2

For invertible operators we can provide a boolean operator directly. Given f : G → P(G) as in the last
section and A⊆ G, define f̃ as follows:

f̃ (g) =
{

ff if g /∈ A∧
f (g) if g ∈ A

Then J f̃ (g)KX = tt ⇐⇒ g ∈ A∧ f (g)⊆ X , hence, F f̃ (X) = F f ,A(X).

Membership checking

Figure 2 shows a new algorithm for membership in the gfp of arbitrary monotone operators whenever a
boolean operator f : G → PBool(G) is given. Algorithm 2 takes a set of assumptions U as an argument
and returns another set of assumptions and a boolean as a result. The difference to the first algorithm
is that if the meaning of the support of a goal is tt, then the new computed set of assumptions will be
returned; otherwise it will be dropped. Moreover, ff branches do not lead immediately to rejection. They
can lead to a positive answer if combined by “or” with a tt branch. In the following we prove correctness
and termination of the algorithm. If the basic set is finite the algorithm will terminate and the result will
be correct. Otherwise, even if the basic set is infinite, if the computation of the support of a goal do not
lead to an infinite chain of new goals, then the algorithm will terminate as well with a correct answer.

Theorem 3.5. Let f :G→ PBool(G) and test defined as above. Let N(U) = ν X .U ∪ F f (X).

1. If test(e,U) = (b,V) then JeKN(U) = b and U ⊆V ⊆N(U).

2. If for each g there exists a finite set S such that f (S) ⊆ PBool(S) and g ∈ S then test(g, /0) termi-
nates.

Proof. 2. follows using |S\U | as a ranking function. For 1. we induct on the runtime of test(e,U) and –
subordinately – on the structure of e. We note that for all U ⊆G we have U ⊆N(U), N(U) = N(N(U)).

50

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

Algorithm 2. Let ∗ ∈ {∧,∨}:

test : PBool(G)×P(G)→ bool×P(G)

test(e1 ∗ e2,U) = let (b1,V1) = test(e1,U) in

let (b2,V2) = test(e2,V1) in

(b1 ∗b2,V2)

test(g,U) = if g ∈U then (tt,U)

else let (b,V) = test(f (g), U ∪{g}) in

if b then (tt,V) else (ff,U)

Figure 2: Algorithm for membership checking in the gfp of arbitrary monotone operators.

Case e = e1 ∗ e2. Write (b1,V1) = test(e1,U) and (b2,V2) = test(e2,V1).

Inductively, we have b1 = Je1KN(U) and U ⊆V1 ⊆N(U). Therefore, N(U)⊆N(V1)⊆N(N(U)) =
N(U), and thus N(V1) = N(U). It follows that b2 = Je2KN(U) and U ⊆V1 ⊆V2 ⊆N(U). The claim
then follows.

Case e = g.

Case g ∈U . Then test(g,U) = (tt,U) and obviously JgKN(U) = tt and U ⊆N(U).

Case g /∈U . Write (b,V) = test(f (g),U ∪{g}). Inductively, we have U ∪{g} ⊆ V ⊆ N(U ∪
{g}) and b = J f (g)KN(U∪{g}).
We claim that N(U) = N(U ∪{g}). One direction is clear by monotonicity of N(.). For the
other direction we use coinduction with X = N(U ∪{g}). To conclude X ⊆ N(U) we have
to prove X ⊆U ∪{h | J f (h)KX = tt} which we now do.
Pick h ∈ X = N(U ∪{g}).
From the definition of N(.) we get that h ∈U or h = g or J f (h)KX = tt. The first and third
case immediately yield the desired result. In the second case (g = h) we get J f (h)KX = tt
from the induction hypothesis. So we proved N(U) = N(U ∪{g}). The result is now direct
from the definitions.

2

Corollary 3.6. test(e, /0) = (b,) iff JeKgfp(F f) = b.

4 Applications

In this section we consider a special application of the last algorithm. As we already mentioned we
are specially interested in computing subtyping for RAJA types. In the following we give a brief and
simplified introduction to the RAJA system and show how to instantiate the generic Algorithm 2 to gain
a RAJA subtyping algorithm.

RAJA programs are annotated FJEU programs, created with the goal of statically analysing their heap
space consumption. An FJEU program C is a partial finite map from class names to class definitions.
Classes contain attributes and methods. The RAJA type system is a refinement of the FJEU type system.

51

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

A refined (class) type consists of a class C and a view r and is written Cr. The meaning of views is
given by three maps ♦(), defining potentials, A, defining views of attributes, and M, defining refined
method types. More precisely, ♦() : Class×View → Q+ assigns each class its potential according to
the employed view. Next, A : Class×View×Field → View determines the refined types of the fields.
Finally, M : Class×View×Method → P(Views of Arguments → View of Result) assigns refined types
to methods. We allow polymorphism in the sense that one method may have more than one (or no)
refined typing. For more details and concrete examples we refer to [4, 5, 8].

Now we describe a simplified version of subtyping for RAJA types. The simplification disregards
subclasses and potentials but shows the need for going beyond invertible operators. Let RT be the set of
RAJA types. We define a monotone operator F : P(RT×RT)→ P(RT×RT) as follows:

F(X) = {(Cr,Ds) | ∀ attributes a . A(Cr,a) = E p, A(Ds,a) = Eq .(E p, Eq) ∈ X
∀ methods m . ∀(Eβ1

1 , . . . ,Eβ j
j → Eβ0

0) ∈M(Ds,m) .

∃(Eα1
1 , . . . ,Eα j

j → Eα0
0) ∈M(Cr,m) .

(Eβ1
1 ,Eα1

1) ∈ X , . . . ,(Eβ j
j ,Eα j

j) ∈ X ,(Eα0
0 ,Eβ0

0) ∈ X }

Then Cr <: Ds ⇐⇒ (Cr,Ds) ∈ νX .F(X). Now, in order to apply Algorithm 2, we define a function
f : RT×RT→ PBool(RT×RT) so that F(X) = F f (X):

f (Cr,Ds) =
∧

a(E p, Eq)∧∧
m

∧
Eβ1

1 ,...,E
β j
j →E

β0
0

∨
Eα1

1 ,...,E
α j
j →E

α0
0

(Eβ1
1 ,Eα1

1)∧ . . .∧ (Eβ j
j ,Eα j

j)∧ (Eα0
0 ,Eβ0

0)

5 Conclusions

In this paper we extended the algorithm for membership checking for greatest fixed points described
in [7, Chapter 21.6] to a more general version where the support of a given goal is a positive boolean
expression. For finite sets this generalization encompasses all monotone operators. Next, we provided a
new coinductive correctness proof for both algorithms. Finally, we instantiated the general membership
algorithm in order to compute subtyping for RAJA types in a goal-directed way.

We believe that our new algorithm can be useful for computing subtyping for other refinement sys-
tems that also provide multiple types to methods. As part of a prototype implementation of the RAJA
system the algorithm has been implemented in Ocaml and we work currently in a formalization of its
correctness proof in the theorem prover Coq.

Acknowledgements

We acknowledge support by the EU integrated project MOBIUS IST 15905 and by the DFG Graduierten-
kolleg 1480 Programm- und Modell-Analyse (PUMA). We also thank Andreas Abel for valuable com-
ments.

References
[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. on Program. Lang. and Syst.,

15(4):575–631, 1993.

52

Membership Checking in Greatest Fixpoints Revisited Hofmann and Rodriguez

[2] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and subtyping. Fundam.
Inform., 33(4):309–338, 1998.

[3] J. Costa Seco and L. Caires. Subtyping first-class polymorphic components. In S. Sagiv, ed., Proc. of 14th
Europ. Symp. on Programming, ESOP 2005 (Edinburgh, Apr. 2005), v. 3444 of Lect. Notes in Comput. Sci.,
pp. 342–356. Springer, 2005.

[4] M. Hofmann and S. Jost. Type-based amortised heap-space analysis (for an object-oriented language). In
P. Sestoft, ed., Proc. of 15th Europ. Symp. on Programming, ESOP 2006 (Vienna, March 2006), v. 3924 of
Lect. Notes in Comput. Sci., pp. 22–37. Springer, 2006.

[5] M. Hofmann and D. Rodriguez. Efficient type-checking for amortised heap-space analysis. In Proc. of
23rd Int. Wksh. on Computer Science Logic, CSL 2009 (Coimbra, Sept. 2009), Lect. Notes in Comput. Sci.,
Springer, to appear.

[6] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM
Trans. on Program. Lang. and Syst., 23(3):396–450, 2001.

[7] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[8] Raja. http://raja.tcs.ifi.lmu.de.

53

http://raja.tcs.ifi.lmu.de

A Note on the Relation between
Inflationary Fixpoints and Least Fixpoints of Higher-Order

Stephan Kreutzer
Oxford University Computing Laboratory

Wolfson Building, Parks Road,
Oxford OX1 3QD, United Kingdom

kreutzer@comlab.ox.ac.uk

Martin Lange
Institut für Informatik,

Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 München, Germany

martin.lange@ifi.lmu.de

Abstract

Least fixpoints of monotone functions are an important concept in computer science which can be
generalised to inflationary fixpoints of arbitrary functions. This raises questions after the expressive
power of these two concepts, in particular whether the latter can be expressed as the former in certain
circumstances. We show that the inflationary fixpoint of an arbitrary function on a lattice of finite
height can be expressed as the least fixpoint of a monotone function on an associated function lattice.

1 Introduction

Possibly the most important type of fixpoints in computer science are least fixpoints of monotone func-
tions, with countless concepts and definitions being based on this principle, e.g. abstract data types,
formal languages, semantics of programming constructs, static analysis algorithms, logical operators.

In mathematical logic, fixpoint inductions over definable functions on arbitrary structures have first
been studied in generalised recursion theory (see [10]), following earlier work in recursion theory on
inductive definitions in arithmetic. If ϕ(X ,x) is a first-order formula with a free first-order variable x and
a free second-order variable X , which we call the fixpoint variable of ϕ , then ϕ defines on any structure A

with universe A a function fϕ on the powerset lattice on A with fϕ(B) := {a∈ A : (A,a) |=[X 7→B] ϕ(X ,x)}.
Of particular interest are formulas defining a monotone function as by Knaster and Tarski’s theorem (see
Section 2) every monotone function has a unique least fixpoint which can also be obtained by an explicit
induction process. As monotonicity of a function is in general undecidable, first-order formulas that are
positive in X (and therefore monotone) are usually considered only.

A similar but seemingly more general concept of fixpoints are provided by inflationary fixpoints,
which exist for any function, even if they are non-monotone (see Section 2 for details). In the context of
logic, inflationary fixpoints of definable functions have first been studied in the 1970s (see e.g. [11, 1])
and it has been realised that not every inflationary fixpoint over an arbitrary first-order formula can also
be described as a least fixpoint over a formula positive in its fixpoint variable. This naturally leads to
the question of which inflationary fixpoints can equivalently be written as least fixpoints of monotone
functions.

Following this early work on fixpoint inductions over definable functions, logics featuring explicit
fixpoint constructs have been studied in finite model theory and in temporal logics as means to describe
classes of structures or the behavior of programs for instance. The main and decisive difference to
the studies in generalised recursion theory was the introduction of explicit operators to form least or
inflationary fixpoint of definable functions, which allows to nest fixpoint operators and use them in the
scope of negations.

Initiated by Gurevich [4], logics involving fixpoint constructs have intensively been studied in finite
model theory and descriptive complexity as an elegant way to describe computational problems in logical
languages (see [3] for an extensive study of fixpoint logics). Again, the most important fixpoint logics
considered in this context are logics extending first-order logic by operators to form the least fixpoint

54

mailto:kreutzer@comlab.ox.ac.uk
mailto:martin.lange@ifi.lmu.de

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

of formulas positive in their fixpoint variable or operators to form the inflationary fixpoints of arbitrary
formulas. It turns out that combining first-order logic with the ability to nest and complement fixpoint
operators is powerful enough so that every formula of inflationary fixpoint logic is equivalent to a formula
using least fixpoints of formulas positive in their fixpoint variable. This was first proved in the context of
finite structures by Gurevich and Shelah [5] and then generalised by Kreutzer [7] to arbitrary structures.

In the context of modal logics, fixpoints occur most prominently in the modal µ-calculus Lµ in-
troduced by Kozen [6]. The importance of the µ-calculus stems from its fine balance between ex-
pressive power and complexity, as it is expressive enough to encompass commonly used specification
logics such as LTL, CTL and CTL∗. On the other hand, it model checking problem on finite structures
is in NP∩ coNP and its satisfiability/validity problem is EXPTIME-complete. Besides its expressive
power, the µ-calculus is still a regular logic because it can be embedded into monadic second-order
logic (MSO). In fact, Lµ is the bisimulation-invariant fragment of MSO and hence is the most expressive
regular logic invariant under bisimulation.

Being a regular logic comes with a range of restrictions, in particular the inability to count. Hence,
specifications such as a particular event occurs on all execution traces at the same time or every request
is acknowledged cannot be expressed in Lµ . To overcome the restriction to regular logics, extensions of
the modal µ-calculus have been studied in the literature. Among those one can broadly distinguished
between “first-order” fixpoint logics, i.e. logics where the fixpoint is still taken over definable functions
from sets of vertices to sets of vertices but more general fixpoint constructs are allowed that least fix-
points over monotone functions, and “higher-order” fixpoint logics, where we retain monotone fixpoint
inductions but allow fixpoints of operators over a function space. An example for the first approach
is the modal iteration calculus (MIC), introduced in [2], the extension of modal logic by operators to
form inflationary fixpoints of definable functions. An example of the latter is fixpoint logic with chop
(FLC) introduced in [12], where the semantics of µ-calculus formulas is lifted from the powerset lattice
of all predicates to the lattice of predicate transformers which are first-order functions from the original
powerset lattice into itself. This concept has then been generalised to higher-order fixpoint logic (HFL),
introduced in [14], which incorporates into the µ-calculus a simply typed λ -calculus used to describe
predicate transformers, and functions of predicate transformers, and functions of functions of . . . , etc.

For all these logics examples of non-regular properties definable in the logic have been exhibited,
separating them from the modal µ-calculus. However, very little is known about the relationship between
these logics. A simple complexity-theoretic argument shows that FLC cannot be embedded into MIC [8]:
the expression complexity for FLC is EXPTIME-hard, i.e. there is a fixed formula s.t. model checking
with this formula is already EXPTIME-hard [9]. On the other hand, MIC’s data complexity is in P. Thus,
if this particular FLC-formula was translatable into MIC then we would have EXPTIME = P which
contradicts the time hierarchy theorem. It is open whether or not MIC is translatable into FLC.

This should be seen in the more general context of the question whether monotone fixpoint of higher
order can be used to express non-monotone fixpoints of first order and if this cannot be achieved in
general, then under which circumstances inflationary fixpoints can be expressed as monotone fixpoints
of higher order. (Note that MIC uses inflationary fixpoints of functions of type τ → τ while FLC uses
least fixpoints of functions of type (τ → τ)→ (τ → τ).)

The purpose of this paper is to stipulate a discussion of this problem. To initiate this we present a
general result on fixpoints in complete lattices show that any inflationary fixpoint on a complete lattice
of finite height can be expressed as a least fixpoint of a monotone operator on a function space associated
with the lattice. As a consequence, we obtain some embeddability results for modal fixpoint logics.

55

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

2 Complete Lattices and Fixpoints

2.1 Lattices

A partial order is a pair (M,≤) s.t. M is a set and ≤ is a reflexive, anti-symmetric and transitive binary
relation on M. As usual, we write < for the strict relation obtained from it, i.e. < := ≤ \=.

An upper, resp. lower bound for a N ⊆M is a y∈M s.t. x≤ y, resp. y≤ x, for all x ∈N. A maximum,
resp. minimum, of some N ⊆M is a y∈N s.t. there is no x∈N with y < x, resp. x < y. A supremum, resp.
infimum, of some N ⊆ M is a minimum of all upper bounds, resp. maximum of all lower bounds. As
usual, we write

⊔
N, resp.

d
N, for the supremum, resp. infimum, of N if it exists uniquely. If N = {x,y}

we also use infix relation xt y, resp. xu y.
A lattice is a partial order (M,≤) s.t. for every x,y ∈ M the supremum xt y and the infimum xu y

exists uniquely in M. It is complete if
⊔

N and
d

N exist uniquely in M for every N ⊆ M. We define
⊥=

d
M and >=

⊔
M as the bottom and top element of a complete lattice.

Function lattices Let M = (M,≤M) and N = (N,≤N) be lattices. The space of all functions from
M to N is M →N := ({ f | f : M → N},≤), where

f ≤ g iff ∀x ∈ M : f (x)≤N g(x)

Clearly, M need not be a lattice, not even a partial order, for the function space to be a lattice. If N is a
lattice then so is M →N with

(f tg)(x) = f (x)tN g(x) (f ug)(x) = f (x)uN g(x) .

If N is complete, then so is M →N .

2.2 Fixpoints

Let M = (M,≤M) and N = (N,≤N) be partial orders. A function f : M → N is called monotone if
for all x,y ∈ M: if x ≤M y then f (x)≤N f (y).

Let M = (M,≤) be a lattice and f : M → M. A least fixpoint of f is an element x ∈ M s.t. f (x) = x
and there is no y < x s.t. f (y) = y. Probably the most famous fixpoint theorem is Knaster-Tarski’s which
states unique existence of least fixpoints in case of monotone functions on complete lattices. We write
µ f or µx. f (x) for the least fixpoint of f if it exists uniquely.

Theorem 1 ([13]). Let M = (M,≤) be a complete lattice and f : M → M monotone. Then µ f =
d
{y |

f (y)≤ y}.

Another characterisation of least fixpoints of monotone functions is given by fixpoint iteration stating
that the least fixpoint also equals the supremum of all its approximants µα f for any ordinal α , defined
as follows.

µ
0 f :=⊥ , µ

α+1 f = f (µ
α f) , µ

κ f =
⊔

α<κ

µ
α f

where κ is a limit ordinal. Then µ f =
⊔

α µα f .
It is well-known and easy to show by induction that the sequence of approximants is monotonically

increasing, i.e. for all ordinals α,β : if α ≤ β then µα f ≤M µβ f . This, however, requires monotony
and is not true in general for non-monotonic functions. On the other hand, the monotonous increase
of the sequence is appealing for it is bound to become stable – possibly at some transfinite ordinal.
Stability of course means reaching a fixpoint. If f is not monotone then one can enforce a monotonically

56

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

increasing and eventually stable sequence by making it inflationary. The inflationary fixpoint of an
arbitrary function f : M → M is written ifp f or ifpx. f (x) and is defined as

⊔
α ifpα f where

ifp0 f :=⊥ , ifpα+1 f = ifpα f tM f (ifpα f) , ifpκ f =
⊔

α<κ

ifpα f

It is not difficult to see that inflationary fixpoints are at least as expressive as least fixpoints. If f is
monotone then ifp f = µ f . In fact, the correspondence is even stronger: ifpα f = µα f for every ordinal
α . Hence, for monotone functions inflationary and least fixpoints not only coincide, they inherently are
the same. This raises the question after the converse: can inflationary fixpoints be expressed in terms
of least fixpoints? The next section shows that this is sometimes the case. Note that, for an arbitrary
function f : M → M, the function f ′ : M → M, defined as f ′(x) = xt f (x) is in general not monotone
and may therefore not have a (unique) least fixpoint.

In order to prove a correspondence between inflationary fixpoints and least fixpoints of higher-order
in the following section we generalise the context of inflationary fixpoint iteration. Let M = (M,≤) be
a complete lattice, x ∈ M and f : M → M. Define ifpx f =

⊔
α ifpα

x f where

ifp0
x f := x , ifpα+1

x f = ifpα
x f tM f (ifpα

x f) , ifpκ
x f =

⊔
α<κ

ifpα
x f

with κ being a limit ordinal. Hence, ifpx f is simply the inflationary fixpoint of f when the iteration is
started in x and therefore ifp f = ifp⊥ f .

The closure ordinal of a function f and an element x ∈ M is the least ordinal α s.t. ifpα+1
x f = ifpα

x f .
It is denote clx(f). Note that ifpx f = ifp

clx(f)
x f . We will also write cl(f) instead of cl⊥(f) where ⊥ is the

infimum of the underlying complete lattice.

3 Expressing Inflationary Fixpoints as Least Fixpoints of Higher-Order

Before we can show expressibility of inflationary fixpoints through higher-order least ones we need to
prove two facts about generalised inflationary fixpoints.

Lemma 2. Let M = (M,≤) be a complete lattice, x ∈ M, and f : M → M. For all ordinals α < ω we
have ifpα+1

x f = ifpα

xt f (x) f .

Proof. By induction on α . The base case is ifp1
x = ifp0

x f t f (ifp0
x f) = xt f (x) = ifp0

xt f (x) f . The step
case is ifpα+2

x f = ifpα+1
x f t f (ifpα+1

x f) = ifpα

xt f (x) f t f (ifpα

xt f (x) f) = ifpα+1
xt f (x) f .

Lemma 3. Let M = (M,≤) be a complete lattice, x∈M, and f : M →M. Then we have xt ifpxt f (x) f ≤
ifpx f .

Proof. Note that x ≤ ifpx f . Thus, it suffices to show ifpxt f (x) f ≤ ifpx f . We will separate this into two
parts. First, we will show that for every ordinal α < ω we have ifpα

xt f (x) f = ifpα+1
x f . This is done by

induction on α . The base case is simple: ifp0
xt f (x) f = xt f (x) = ifp1

x f . In the step case we have

ifpα+1
xt f (x) f = ifpα

xt f (x)t f (ifpα

xt f (x) f) = ifpα+1
x f t f (ifpα+1

x f) = ifpα+2
x f

Thus, we have

ifpω

xt f (x) f =
⊔

α<ω

ifpα

xt f (x) f =
⊔

α<ω

ifpα+1
x f =

⊔
1≤α<ω

ifpα
x f =

⊔
α<ω

ifpα
x f = ifpω

x f (1)

57

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

because ifp0
x f = x ≤ ifp1

x f .
In the second part we show that for all ordinals α ≥ ω we have ifpα

xt f (x) f = ifpα
x f . Again, this is

done by induction on α , and the base case of α = ω is done in Eq. (1). The case for successor odinals is
similar to the first part of the proof.

ifpα+1
xt f (x) f = ifpα

xt f (x)t f (ifpα

xt f (x) f) = ifpα
x f t f (ifpα

x f) = ifpα+1
x f

using the hypothesis twice. Finally, the case of limit ordinals is easy, too.

ifpκ

xt f (x) f =
⊔

α<κ

ifpα

xt f (x) f =
⊔

ω≤α<κ

ifpα

xt f (x) f =
⊔

ω≤α<κ

ifpα
x f = ifpκ

x f

using the hypothesis on each approximant and the fact that ifpα
y f ≤ ifpω

y f for every α < ω and any y.
Thus, we have ifpxt f (x) f = ifpx f and therefore in particular xt ifpxt f (x) f ≤ ifpx f which was to be

shown.

Let M = (M,≤M) be a complete lattice and f : M → M be an arbitrary function, not necessarily
monotone. Let M → M = (M → M,≤) be the complete lattice of functions from M to M with the
pointwise order defined above. Define a function Ff : (M → M)→ (M → M) as follows.

Ff (g) = λx.
(

xtg
(
xt f (x)

))
Lemma 4. Let M = (M,≤) be a partial order, and f : M → M arbitrary. Then Ff is monotone w.r.t. to
the partial order of the function space M →M .

Proof. Suppose g,g′ are functions of type M →M with g≤ g′, i.e. g(x)≤M g′(x) for every x ∈M. Then
xt (g(xt f (x)))≤M xt (g′(xt f (x))) for every such x and therefore Ff (g)≤ Ff (g′).

Hence, according to the Knaster-Tarski-Theorem (Theorem 1), Ff always possesses a least fixpoint.
Next we will show that this can be used to define the inflationary fixpoint of f .

Theorem 5. Let M = (M,≤) be a complete lattice with bottom element ⊥ and f : M → M arbitrary. If
cl(f)≤ ω then ifp f = (µFf)(⊥).

Proof. (“≤”) We will prove a stronger statement: for all x∈M and all α ≤ω we have ifpα
x f ≤ (µFf)(x).

In the base case of α = 0 we have

ifp0
x f = x ≤ xt

(
µ

0Ff
(
xt f (x)

))
=

(
λy.yt

(
µ

0Ff
(
yt f (y)

)))
(x) = (µ

1Ff)(x)

≤ (µFf)(x)

In the step case we have

ifpα+1
x f = ifpα

xt f (x) f ≤ xt ifpα

xt f (x) f ≤ xt (µFf)
(
xt f (x)

)
=

(
λy.yt (µFf)

(
yt f (y)

))
(x)

= (µFf)(x)

according to Lemma 2 and the fact that µFf is a fixpoint of the function Ff . Finally,

ifpω
x f =

⊔
α<ω

ifpα
x f ≤

⊔
α<ω

(µFf)(x) = (µFf)(x)

using the hypothesis for every finite ordinal α .

58

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

(“≥”) According to Lemma 3 we have xt ifpxt f (x) f ≤ ifpx f for all x ∈ M. Hence, by αβ -expansion
we have (

λy.yt (λx.ifpx f)(yt f (y))
)

= (λx.xt ifpxt f (x) f) ≤M→M (λx.ifpx f)

which shows that λx.ifpx f is a pre-fixpoint of Ff . According to the Knaster-Tarski-Theorem (Thm. 1)
we then have

µFf ≤M→M λx.ifpx f

which immediately yields (µFf)(x)≤ ifpx f for any x ∈ M, in particular (µFf)(⊥)≤ ifp f .

4 Conclusion and Further Work

An almost immediate consequence of Theorem 5 concerns the expressive power of temporal logics ex-
tending the modal µ-calculus: the modal iteration calculus can be embedded into the first-order fragment
of higher-order fixpoint logic when interpreted over finite models only. Formulas of the former can in-
ductively be transformed into formulas of the latter. The only difficult case is that of inflationary fixpoint
quantifiers which are then handled by Theorem 5. The rest is easy because both logics extend modal
logic. It remains to be seen in detail whether Theorem 5 can also explain the equi-expressiveness of
first-order logic with inflationary fixpoints to first-order logic with least fixpoints on finite structures.

Clearly, the result presented here does not answer all questions about the relationship between least
and inflationary fixpoints. Most importantly, it remains to be seen whether Theorem 5 can be extended
to lattices of arbitrary height.

References
[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, ed., Handbook of Mathematical Logic, v. 90

of Studies in Logic and the Foundations of Mathematics, pp. 739–782. North-Holland, 1977.
[2] A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in modal logic. ACM Trans. on Comput. Log.,

5(2):282–315, 2004.
[3] H.-D. Ebbinghaus and J. Flum. Finite Model Theory, 2nd ed. Springer, 1999.
[4] Y. Gurevich. Toward logic tailored for computational complexity. In M. M. Richter et al., eds., Proc. of

Logic Coll. 1983 (Aachen, July 1983), Part 2: Computation and Proof Theory, v. 1104 of Lect. Notes in
Math., pp. 175–216. Springer, 1984.

[5] Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Ann. of Pure and Appl. Log., 32:265–
280, 1986.

[6] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
[7] S. Kreutzer. Expressive equivalence of least and inflationary fixed-point logic. Ann. of Pure and Appl. Log.,

130(1–3):61–78, 2004.
[8] M. Lange. Temporal Logics beyond Regularity. Habilitation thesis. Ludwig-Maximilians-Univ. München,

2007. (= BRICS research report RS-07-13.)
[9] M. Lange. Three notes on the complexity of model checking fixpoint logic with chop. Theor. Inform. and

Appl., 41:177–190, 2007.
[10] Y. N. Moschovakis. Elementary Induction on Abstract Structures, v. 77 of Studies in Logic and the Founda-

tions of Mathematics. North-Holland, 1974.
[11] Y. N. Moschovakis. On non-monotone inductive definability. Fundam. Math., 82:39–83, 1974.
[12] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and S. Tison, eds., Proc. 16th Symp. on

Theoretical Aspects of Computer Science, STACS ’99 (Trier, March 1999), v. 1563 of Lect. Notes in Comput.
Sci., pp. 510–520. Springer, 1999.

[13] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pac. J. of Math., 5:285–309, 1955.

59

Inflationary and Higher-Order Least Fixpoints Kreutzer and Lange

[14] M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In P. Gardner and N. Yoshida,
eds., Proc. 15th Int. Conf. on Concurrency Theory, CONCUR 2004 (London, Aug./Sept. 2004), v. 3170 of
Lect. Notes in Comput. Sci., pp. 512–528. Springer, 2004.

60

Coalgebraic Expressions
Robert S. R. Myers

Department of Computing, Imperial College London
180 Queen’s Gate, South Kensington Campus, London SW7 2AZ, United Kingdom

rm606@doc.ic.ac.uk

Abstract

We show that certain fixpoint expressions used to describe finite Kripke polynomial coalgebras
can be seen as coalgebraic modal fixpoint formulae. Both the synthesis of a coalgebra from its ex-
pression and the ability to check behavioural equivalence follow from the same tableau construction.
There is an associated complete equational logic, analogous to Kleene algebra, which may now be
seen as an equational presentation of a fragment of the coalgebraic µ-calculus. These expressions
include the regular expressions, the free Kleene algebra with tests and fragments of CCS and Linear
Temporal Logic.

1 Introduction

Bonsangue, Rutten and Silva (henceforth BRS) have recently introduced certain fixpoint expressions to
describe finite Kripke polynomial coalgebras [2]. The Kripke polynomial functors (KPF) are those end-
ofunctors K on Set which are composed out of the identity functor, constant functors, the product and
coproduct functors, the function space functor with constant domain and the finitary powerset functor.
They also specify some side conditions, provided below. The Kripke polynomial coalgebras (KPC) are
the associated K-coalgebras i.e. functions γ : X → KX . A KPC is finite if its carrier set X is finite and
also non-empty, a pointed KPC (x,γ) is a KPC γ together with a particular state x ∈ X . Examples in-
clude deterministic automata, deterministic automata on guarded strings, stream coalgebras and labelled
transition systems.

To each KPF K they associate a set of fixpoint expressions ExprK , such that every expression φ ∈
ExprK induces a unique finite pointed K-coalgebra (sφ ,Autφ) where Autφ : Sφ → KSφ and the set Sφ can
be thought of as the subexpressions of φ . They then prove that:

Every finite pointed K-coalgebra (x,γ) has an expression φ ∈ExprK with (x,γ)≈ (sφ ,Autφ)

where we write (x,γ) ≈ (x,γ ′) to mean that x and x′ are behaviourally equivalent or bisimilar in the
coalgebraic sense [7]. This can be seen as a generalisation of the correspondence between finite deter-
ministic automata and the regular expressions, known as Kleene’s theorem. They have also constructed
a complete equational reasoning system ≡K , parametric in K. That is:

For all φ ,ψ ∈ ExprK , (sφ ,Autφ)≈ (sψ ,Autψ) if and only if φ ≡K ψ is derivable.

This is analogous to the completeness of Kleene algebra: two regular expressions denote the same regular
language iff their equality can be derived. Up until now, these expressions ExprK have been seen as
process algebraic, since one naturally assigns them an operational semantics. Here we show they can
be seen as formulae of the coalgebraic µ-calculus [6], which is the modal µ-calculus generalised to any
coalgebraic notion of transition. For every K there is an associated tableau algorithm TK which may be
used to decide satisfiability or dually validity of the respective coalgebraic modal fixpoint formulae. We
shall discuss the following new results:

1. Each φ ∈ ExprK is a satisfiable formula of the coalgebraic µ-calculus. The satisfying model one
obtains from TK is precisely the automaton Autφ .

61

mailto:rm606@doc.ic.ac.uk

Coalgebraic Expressions Myers

2. The equational logic≡K may be understood as an interesting equational presentation of a fragment
of the coalgebraic µ-calculus. Then completeness of the equational system ≡K as proved in [1]
may be seen as completeness of a fragment of the coalgebraic µ-calculus.

3. To each φ ∈ExprK there is a corresponding coalgebraic µ-calculus formula φ ′, such that (sφ ,Autφ)
and (sψ ,Autψ) are bisimilar iff φ ′↔ ψ ′ is valid. This can be decided using the tableau TK .

4. The regular expressions, the free Kleene algebra with tests and parts of CCS and LTL all arise as
fragments. We therefore obtain natural algorithms for both their synthesis and for the testing of
their behavioural equivalence in a purely generic manner.

When testing behavioural equivalence, the µ-calculus formulae we consider never contain interleav-
ing µs and νs, simplifying things considerably. Although we do not discuss complexity here, we expect
our generic decision procedure to yield e.g. PSPACE-complete algorithms for testing equivalence of
regular expressions and the free Kleene algebra with tests.

2 Kripke Polynomial Functors

The Kripke polynomial functors K : Set→ Set are inductively defined:

K ::= Id | B | K +K | K×K | KA |PωK

• Id : Set→ Set is the identity functor.

• B : Set→ Set is a constant functor such that the set B is finite. We also assume that B is a join-semilattice
with a bottom element. This means that B is equipped with a binary operation ∨ : B×B → B which is
associative, commutative and idempotent and also a constant ⊥∈ B with b∨⊥= b for all b ∈ B. This is the
assumption made by BRS and we shall see that it is very natural. In fact every finite join-semilattice with a
bottom element is also a lattice because it has all joins and hence all meets.

• + : Set2 → Set is defined X +Y = {(1,x) : x ∈ X} ∪ {(2,y) : y ∈ Y} ∪ {⊥,>} and if f : X → X ′ and
g : Y →Y ′ then f +g : X +Y → X ′+Y ′ is defined in the normal way, where additionally f +g(⊥) =⊥ and
f +g(>) =>. This abnormal definition may be understood as forcing the coproduct to be a functor on the
category of join-semilattices with bottom, see below.

• × : Set2 → Set is the standard Cartesian product functor.

• (−)A is the function space functor with constant finite domain A i.e. XA is the set of functions from A to X
and if f : X → Y then f A : XA → Y A is defined f A(α) = f ◦α .

• Pω is the finitary powerset functor with Pω X = {A⊆ X : A finite} and if f : X → Y then Pω f : Pω X →
PωY is the direct image of f , restricted to finite subsets of X .

Example 1. We consider four examples:

1. Let 2 = {0,1} denote the minimal Boolean lattice. Then DA = 2× IdA is the deterministic au-
tomata functor with label set A. DA-coalgebras γ : X → DAX are precisely deterministic au-
tomata: each γ may be understood as an output function outγ : X → 2 where outγ = π1 ◦ γ and
transition function transγ : X → XA where transγ = π2 ◦ γ .

2. Let Tests = {t1, . . . , tn} be a finite set, whose elements are thought of as tests. We may think of the
set BATests = PPTests as the free Boolean lattice over Tests. Then AGS = BATests× IdAtoms×A

is the automata on guarded strings functor with tests Tests, label set A and Atoms = PTests. The
AGS-coalgebras are precisely the deterministic automata on guarded strings [5], with parameters
Tests and A. Finally let outTests

γ = π1 ◦ γ and transTests
γ = π2 ◦ γ .

62

Coalgebraic Expressions Myers

3. Let Prop = {p1, . . . , pn} be some finite set of propositional variables and PropL = PProp be
the powerset lattice. Then we call Str = PropL × Id the PropL-stream functor. Str-coalgebras
are streams over the lattice PropL and the behaviour (i.e. corresponding element of the Str-final
coalgebra [7]) of every finite Str-coalgebra is the infinite word r(s)ω where r,s ∈PPropL

∗ and s
is not the empty word. Let headγ = π1 ◦ γ and tailγ = π2 ◦ γ .

4. Fix some finite set Act of actions, then LTS = (Pω Id)A is the labelled transition systems functor
and LTS-coalgebras are labelled transition systems.

Each KPF can also be understood as a functor on the category JSL⊥ of join-semilattices with bottom
and semilattice morphisms that preserve the bottom. Recall each join-semilattice (X ,∨X) has a natural
partial ordering x ≤X y ⇐⇒ x∨ y = y, the bottom is the least element with respect to this ordering. We
only provide their action on objects:

• The identity functor maps join-semilattices with bottom to themselves.

• The constant functor B maps to the particular join-semilattice with bottom B, by assumption.

• The coproduct (X +Y,∨+,⊥+) is defined (1,x)∨+ (2,y) = >+, (1,x)∨+ (1,x′) = (1,x∨X x′), (2,y)∨+
(2,y′) = (2,y∨Y y′). The element ⊥+ ∈ X +Y is required to be the bottom.

• (X ×Y,∨X×Y ,⊥X×Y) is defined ⊥X×Y = (⊥X ,⊥Y) and (x,y)∨X×Y (x′,y′) = (x∨X x′,y∨Y y′).

• (XA,∨XA ,⊥XA) is defined ⊥XA = λa.⊥X and f ∨XA g = λa.(f (a)∨X g(a)).

• (Pω X ,∨Pω X ,⊥Pω X) is defined ⊥Pω X = /0 and A∨Pω X B = A∪B.

• Functors are closed under composition, thus every KPF can be seen as an endofunctor on JSL⊥.

3 Generic Syntax

We now introduce the syntax used by BRS. It differs slightly in that we have used different labels for the
symbols and avoided using a type system. Syntactically we can view any KPF K as its parse tree. We
think of each node of the tree as being labelled by both the respective component functor C and also a
positive integer n, this being the step at which the node is visited in a depth-first left-child first search.
We denote the resulting tree TreeK , examples of the construction for DA and LTS are provided below.

× : 1
{{vvv

vv &&LLLL

2 : 2 (−)A : 3
��

Id : 4

(−)A : 1
��

Pω : 2
��

Id : 3

Definition 1. The expressions ExprK associated with a KPF K are defined in terms of collection of
interleaved grammars, using the structure of TreeK . Let s1, s2 be arbitrary subtrees of TreeK:

LId:1 3 φ ::=> | φ1∧φ2 LB:n 3 φ ::=> | φ1∧φ2 | [b] (b ∈ B)
Ls1+:ns2 3 φ ::=> | φ1∧φ2 | [e1]ψ1 | [e2]ψ2 Ls1×:ns2 3 φ ::=> | φ1∧φ2 | [π1]ψ1 | [π2]ψ2

(a ∈ A) L(s1)A:n 3 φ ::=> | φ2∧φ2 | 〈a〉ψ1 LPω :n(s1) 3 φ ::=> | φ2∧φ2 |3ψ1

where ψi ∈Lsi for i = 1,2. The expressions ExprK are the closed and guarded members of L ν
TreeK

:

L ν
TreeK

3 φ ::= LTreeK | x | νx.φ

moreover LId:n := L ν
TreeK

i f n > 1

63

Coalgebraic Expressions Myers

The language L ν
TreeK

is the minimal grammar containing LTreeK , all variables x from some countably
infinite set Var = {x1,x2, . . .} and closed under νx-prefixing. An expression is closed and guarded if
every variable x appears in the scope of some νx and variables are separated from their binders by some
modal operator ♥, in the usual way. Note that ExprK is inductively defined in terms of all the languages
Ls where s is a subtree of TreeK .

Example 2. 1. Expressions for finite deterministic automata where a ∈ A:

ExprDA 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]χ | x | νx.φ (φ closed and guarded)

L2:2 3 ψ ::=> | ψ1∧ψ2 | [0] | [1] L(Id:4)A:3 3 χ ::=> | χ1∧χ2 | 〈a〉φ

In terms of regular expressions, 0 = [π1][0] should be thought of as the empty language, 1 = [π1][1]
as the empty word ε and a.φ = [π2]〈a〉φ as prefixing by the letter a. Later we show the regular
expressions arise as a fragment. Using these abbreviations we obtain a single-sorted closed and
guarded fragment:

Expr1
DA 3 φ ::=> | φ1∧φ2 | 0 | 1 | a.φ | x | νx.φ

2. Expressions for finite deterministic automata on guarded strings where b ∈ BATests = PPTests,
A ∈ Atoms = PTests and a ∈ A:

ExprAGS 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]χ | x | νx.φ (φ closed and guarded)

LBATests:2 3 ψ ::=> | ψ1∧ψ2 | [b] L(Id:4)Atoms×A:3 3 χ ::=> | χ1∧χ2 | 〈(A,a)〉φ

Because BATests is the free Boolean algebra generated by Tests, instead of elements b∈BATests we
may instead use Prop(Tests), the propositional formulae β with variables in Tests. More explicitly
let σ : Prop(Tests)→BATests be the unique extension of the valuation σ(ti) = {A∈Atoms : ti ∈A}
for i = 1, . . . ,n. We define 〈β 〉= [π1][β] and [β → a]φ =

∧
A∈σ(β)[π2]〈(A,a)〉φ , so that a guarded

string [5] A1a1 . . .An−1anAn ∈ Atoms(A ·Atoms)∗ arises as the formula [A1 → a1] . . . [An−1 →
an]〈An〉. This yields the single-sorted closed and guarded fragment:

Expr1
AGS 3 φ ::=> | φ1∧φ2 | 〈β 〉 | [β → a]φ | x | νx.φ

3. Expressions for finite Str-coalgebras where P ∈ PropL i.e. P is a subset of Prop:

ExprStr 3 φ ::=> | φ1∧φ2 | [π1]ψ | [π2]φ | x | νx.φ (φ closed and guarded)
LPropL:2 3 ψ :=> | ψ1∧ψ2 | [P]

We have the Next modality ©φ = [π2]φ and the Always modality 2φ = νx.(φ ∧©x) of LTL. Also
for P⊆ Prop let 〈P〉= [π1][P]. Again we have a single-sorted closed and guarded fragment:

Expr1
Str 3 φ ::=> | φ1∧φ2 | 〈P〉 | ©φ | x | νx.φ

4. Expressions for finite LTS-coalgebras where a ∈ Act:

ExprLTS 3 φ ::=> | φ1∧φ2 | 〈a〉ψ | x | νx.φ (φ closed and guarded)

LPω :2(Id:3) 3 ψ ::=> | ψ1∧ψ2 |3φ

For each a ∈ Act we let 〈a〉φ = 〈a〉3φ this being the standard relational diamond. Again we have
a single-sorted closed and guarded fragment:

Expr1
LTS 3 φ ::=> | φ1∧φ2 | 〈a〉φ | x | νx.φ

64

Coalgebraic Expressions Myers

The above languages are almost exactly the same as BRS’s syntax, to obtain their languages one may
bijectively relabel our symbols as follows:

>→θ /0 φ ∧ψ →θ φ +ψ νx.φ →θ µx.φ

[e1]φ →θ l[φ] [e2]φ →θ r[φ] [π1]φ →θ l(φ) [π2]φ →θ r(φ) 〈a〉φ →θ 〈a〉φ 3φ →θ {φ}

The top line is rather interesting:

• The join-semilattice structure + and /0 – familiar from the regular expressions – corresponds with conjunc-
tion and >. Indeed the latter also form a join-semilattice structure via propositional logical equivalence.

• Notice that to build an automaton for the regular expression r + s one must build automata for both r and s,
in this sense + is a conjunction.

• To understand why /0 corresponds with >, recall that the minimal deterministic automaton that accepts the
empty language is the single non-final state x where all transitions a ∈ A loop back into x. Then ask: what
is the minimal automaton which models the formula >? There are two models consisting of only one state:
one will accept the empty language while the other accepts its complement. In fact the former is the more
natural choice because it corresponds with the bottom element of the final DA-coalgebra, which inherits its
join-semilattice structure from the fact that DA is a functor on JSL⊥.

• Finally notice µ actually maps to ν . It is understandable that BRS decided to use µ because of the strong
analogy with the Kleene star, which is best thought of as a least fixpoint and is axiomatised as such in
Kleene algebra [4]. However, recall that finite deterministic automata require loops in order to accept
regular languages with stars, and loops – being infinite behaviours – are represented by νs not µs.

We chose the relabellings in the second line to emphasise that the various unary operators are modal
operators. In fact each of them is a well-known coalgebraic modal operator and the symbols we have
chosen for them are standard. The multisorted languages ExprK above and also the ‘glued together’
single-sorted language Expr1

K is actually a specific application of a general construction in coalgebraic
modal logic, where one builds the language and logic of composite functors out the languages and logics
of their components [8].

4 Generic Final Semantics

For each K, BRS inductively define a coalgebra λK : ExprK → K(ExprK) over the expressions, which
yields a finite pointed coalgebra or automaton (sφ ,Autφ) for each expression φ ∈ ExprK . In this sec-
tion we present an equivalent construction using tableau rules, whose meaning will be explained in the
following section. We proceed informally since we lack the space for a detailed account.

A sequent Γ for φ ∈ ExprK is a finite subset of either ExprK or Ls for some subtree s of TreeK . It
should be thought of as the conjunction of its elements. Note it must be a finite subset of a particular
component language: they may not be mixed. The following rules relate a single sequent (the premise)
to one or more sequents (the conclusions).

(∧)
{φ ∧ψ}∪Γ

{φ ,ψ}∪Γ
(ν)

{νx.φ}∪Γ

{φ [x := νx.φ]}∪Γ
(ei)

{[ei]φ1, . . . , [ei]φn}∪Γ

{φ1, . . . ,φn}
(3)

{3φ1, . . . ,3φn}∪Γ

{φ1} . . . {φn}

(π)
{[π1]φ1, . . . , [π1]φm, [π2]ψ1, . . . , [π2]ψn}∪Γ

{φ1, . . . ,φm} {ψ1, . . . ,ψn}
(〈a1 . . .am〉)

{〈a1〉φ 1
1 , . . . ,〈a1〉φ n1

1 , . . . ,〈am〉φ 1
m, . . . ,〈am〉φ nm

m }∪Γ

{φ 1
1 , . . . ,φ n1

1 } . . . {φ 1
m, . . . ,φ nm

m }

There are various conditions on how these rules are applied but we only provide them informally
here. Start with the single node or sequent {φ} and then apply a rule whose premise can be written as
{φ}, repeating this matching process on each of the rule’s conclusions. When choosing a rule to apply,

65

Coalgebraic Expressions Myers

the rules (∧) and (ν) take precedence over the others. When no rule may be applied or when we come
across a sequent we have already seen, we don’t match rules to that sequent. The repetition of a sequent
correspond with a loop in the automaton if the first occurrence of the sequent appears higher in the
derivation tree. Roughly speaking, the process terminates because there are only finitely many possible
sequents, namely the finite subsets of the subexpressions of φ .

Example 3. We provide three examples of tableau: >, a.1∧b.1 and a.νx.(1∧a.x) from Expr1
DA. Recall

that 1 := [π1][1] and a.φ := [π2][a]φ in ExprDA.

{>}
{[π2]〈a〉[π1][1]∧ [π2]〈b〉[π1][1]}

(∧)
{[π2]〈a〉[π1][1], [π2]〈b〉[π1][1]}

(π)
/0 {〈a〉[π1][1],〈b〉[π1][1]}

(〈ab〉)
{[π1][1]}

(π)
{[1]} /0

({[π1][1]})

{[π2]〈a〉(νx.([π1][1]∧ [π2]〈a〉x))} (π)
/0 {〈a〉(νx.([π1][1]∧ [π2]〈a〉x))} (〈a〉)

{νx.([π1][1]∧ [π2]〈a〉x)} (ν)
{[π1][1]∧ [π2]〈a〉νx.([π1][1]∧ [π2]〈a〉x)} (∧)
{[π1][1], [π2]〈a〉νx.([π1][1]∧ [π2]〈a〉x)} (π)
{[1]} ({〈a〉νx.([π1][1]∧ [π2]〈a〉x)})

Sequents are enclosed in brackets (·) if they already appear earlier in the construction.

Each expression φ yields a unique tableau which in turn completely determines the automaton
(sφ ,Autφ). Again we will not explicitly provide the process used to convert the tableau to an automa-
ton, although it is not complicated and is of course generic in K. Instead we provide the deterministic
automata correspondents of the tableaux above, where final states are enclosed in a double box and we
assume A = {a,b}:

{>} a,b
oo

{a.1∧b.1}a,b // {1} a,b // {>} a,b
oo

{a.νx.(1∧a.x)} a //

b **UUUUUUUUUUUU
{1,a.νx.(1∧a.x)}

a

��

b ��
{>} a,b

oo

Note that each automaton has a ‘sink-node’ {>}which corresponds with the empty-language. Notice
also that the right-most automaton has a loop on {1,a.νx.(1∧a.x)}, this corresponds with the duplication
of that same sequent in the tableau above and the fact that it occurred higher-up in the tableau. A
duplication also occurs in the middle tableau but because the original isn’t higher we don’t get a loop. In
fact these are automata for the regular expressions: /0, a+b and aa∗.

When BRS construct the automaton for an expression they first inductively define λK : ExprK →
K(ExprK) and then show how to construct an automaton from it: this requires checking for loops to
ensure termination. We have briefly outlined a method where one first constructs a tableau and then con-
verts it to an automaton. Their process can then be understood as converting the tableau to an automaton
as the tableau is being built i.e. it composes the two steps we have sketched. Thus the generalisation of
Kleene’s theorem follows:

Theorem 1. [1] For every finite pointed KPC (x,γ) with γ : X →KX there exists an expression φ ∈ExprK
with ({φ},Autφ} bisimilar to (x,γ)

Proof. Follows because the above automaton construction turns out to be equivalent to BRS’s and they
provide an algorithm which converts any finite pointed KPC into an expression φ satisfying the above
property. Alternatively it is possible to obtain the result in terms of join-semilattices with bottom and the
semantics presented in the next section.

66

Coalgebraic Expressions Myers

5 Generic Modal Semantics and Equational Logic
For each of our four example functors K ∈ {DA,AGS,Str,LTS} and any finite coalgebra γ : X → KX
we provide a semantics |=γ

K⊆ X×Expr1
K for the single-sorted language Expr1

K . In fact this is the glueing
together of a more general multisorted semantics. Also recall that for any join-semilattice (B,∨B) there
is a natural partial ordering x≤B y ⇐⇒ x∨B y = y.

x |=γ

K > always x |=γ

K φ1∧φ2 ⇐⇒ x |=γ

K φi f or i = 1,2
x |=γ

K νx.φ ⇐⇒ ∀n ∈ ω.x |=γ

K φ [x := νx.φ]n[x :=>]
x |=γ

DA a.φ ⇐⇒ transγ(x)(a) |=γ

DA φ x |=γ

DA 0 ⇐⇒ outγ(x)≥2 0 x |=γ

DA 1 ⇐⇒ outγ(x)≥2 1
x |=γ

AGS [β → a]φ ⇐⇒ ∀A ∈ σ(β).transTests
γ (A,a) |=γ

AGS φ x |=γ

AGS 〈β 〉 ⇐⇒ outTests
γ (x)≥BA σ(β)

x |=γ

Str ©φ ⇐⇒ tailγ(x) |=γ

Str φ x |=γ

Str 〈P〉 ⇐⇒ headγ(x)≥PropL P

x |=γ

LTS 〈a〉φ ⇐⇒ ∃y ∈ γ(x)(a).y |=γ

LTS φ

As usual we say a state x in a K-coalgebra γ satisfies φ ∈ Expr1
K if x |=γ

K φ and that φ is valid if every
state of every K-coalgebra satisfies φ . For example, in the three deterministic automata above each state
Γ satisfies every φ ∈ Γ. Notice that the semantics for LTS is exactly that of the modal µ-calculus with
ν and ∧ but without the duals µ and ∨. In the same way, for each K the semantics |=γ

K is precisely the
semantics of the coalgebraic µ-calculus [6], which is the natural generalisation of the modal µ-calculus.
More precisely, each unary and nullary modal operator [b], [ei], [πi],〈a〉,3 can be naturally assigned a
coalgebraic semantics which induces the above semantics.

The tableau construction of the previous section turns out to be a slight rewriting of the tableau
construction used in the coalgebraic µ-calculus.

Theorem 2. For all φ ∈ ExprK , BRS’s automata construction is a tableau construction which builds a
satisfying model of φ , seen as a formula of the respective coalgebraic µ-calculus

In [2] BRS define a complete equational logic ≡K⊆ Expr1
K ×Expr1

K
1, generic in K. By completeness

we mean ({φ},Autφ) and ({ψ},Autψ) are bisimilar iff φ ≡K ψ is derivable. For our example functors
their equational logic takes the following form:

>∧φ ≡K φ φ ∧ψ ≡K ψ ∧φ φ ∧ (ψ ∧χ)≡K (φ ∧ψ)∧χ

νx.φ ≡K φ [x := νx.φ] φ [x := ψ]∧ψ ≡K ψ =⇒ (νx.φ)∧ψ ≡K ψ

>≡DA a.> >≡DA 0 0∧1≡DA 1 a.φ ∧a.ψ ≡DA a.(φ ∧ψ)
>≡AGS [β → a]> >≡AGS [⊥→ a]φ >≡AGS 〈⊥〉 〈β 〉∧ 〈β ′〉 ≡AGS 〈β ∨β ′〉

[β → a]φ ∧ [β ′→ a]φ ≡AGS [β ∨β ′→ a]φ [β → a]φ ∧ [β → a]ψ ≡AGS [β → a](φ ∧ψ)
>≡Str ©> >≡Str 〈 /0〉 〈P〉∧ 〈P′〉 ≡Str 〈P∪P′〉 ©φ ∧©ψ ≡Str ©(φ ∧ψ)

Also ≡K is a congruence for each unary modal operator a., [β → a] and © and satisfies the usual axioms
of equational logic, plus uniform renaming of variables and their binders. Interestingly, the equations
involving νx are precisely those used by Kozen in [3], to prove the completeness of the aconjunctive
fragment of the modal µ-calculus. There he writes them in their dual form, using ∨ and µ . Aside
from the semilattice equations for ∧ and > and renaming of variables, the other equations may be be
understood as the rank-1 modal formulae [9] which only involve ∧ and >. There are no equations for
Pω involving modal operators precisely because 3 doesn’t preserve conjunctions.

6 Generic Decidability and a Translation

We mentioned in the introduction that for every expression φ ∈ ExprK there is an associated expression
φ ′ such that: φ ≡K ψ if and only if φ ′→ ψ ′ is valid i.e. every state in a coalgebra that satisfies φ ′ also

1Strictly speaking they do it for the multisorted version of the syntax but it follows for the single-sorted version

67

Coalgebraic Expressions Myers

satisfies ψ ′ and vice-versa. In fact for DA, AGS and Str we have φ ′ = φ : no change is needed. The
only problem is when K contains Pω . Intuitively, to capture relations up to bisimulation one needs
Hennessy-Milner logic i.e. conjunctions involving 2s as well as 3s. One can overcome this problem by
changing the syntax slightly and using ∇{φ1, . . . ,φn}, rather than conjunction and 3 in LPω :n. Modulo
these changes:

Theorem 3. For each φ ,ψ ∈ ExprK one has φ ≡K ψ if and only if φ ↔ ψ is valid

Proof. Just as one associates a regular language to a regular expression one can also associate a set of for-
mulae Con jK(φ)⊆LTreeK , to each expression φ . Then one shows φ ≡K ψ ⇐⇒ Con jK(φ) =Con jK(ψ)
and that for all φ a state in a K-coalgebra satisfies φ iff it satisfies every χ ∈ Con jK . Briefly, Con jDA,
Con jAGS, Con jLTS assign expressions regular languages, regular languages of guarded strings and for-
mulae of Hennessy-Milner logic, respectively. Moreover the join-semilattice with bottom structure of K
– which lifts to the final K-coalgebra – is crucial to the proof.

Corollary 1 ([6]). Decidability of behavioural equivalence follows from the decidability of validity of
the coalgebraic µ-calculus.

Example 4. The regular expressions for a ∈ A are defined:

RegExp 3 r ::= /0 | ε | a | r1 + r2 | r1r2 | r∗

We define the translation τ : RegExp→ Expr1
DA by: τ(/0) = 0, τ(ε) = 1, τ(a) = a.1, τ(r1 + r2) = τ(r1)∧

τ(r2), τ(r1r2) = τ(r1)[1 := τ(r2)] and finally τ(r∗) = νx.(1∧τ(r)[1 := x]). Then Autτ(r) is the automaton
which accepts r’s regular language. Moreover any state in a finite DA-coalgebra which satisfies τ(r) also
accepts each word from this language, although it may accept additional words too. As an exercise one
can check that a state satisfies τ(aa∗) = a.νx.(1∧a.x) iff it satisfies τ(a∗a) = νx.(a.1∧a.x).

The translated formula τ(r) ∈ Expr1
DA can be exponentially larger than r due to compositions e.g.

τ((a + b)n) is a binary tree of depth n. However one may coinductively define composition as follows.
Let comp : ExprK ×ExprK → ExprK be comp(νx.φ ,ψ) = comp(φ [x := νx.φ],ψ), comp(φ1 ∧ φ2,ψ) =
comp(φ1)∧ comp(φ2,ψ), comp(a.φ ,ψ) = a.comp(φ ,ψ), comp(>,ψ) = comp(0,ψ) = > and finally
comp(1,ψ) = ψ . Then τ((a + b)n) can be represented as comp(τ(a + b),comp(τ(a + b), . . .), which
avoids the exponential blow up.

References
[1] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. Algebras for Kripke polynomial coalgebras. In Proc.

of 24th Ann. IEEE Symp. on Logic in Comput. Sci., LICS 2009 (Los Angeles, Aug. 2009), IEEE CS Press, to
appear.

[2] M. M. Bonsangue, J. J. M. M. Rutten, and A. Silva. A Kleene theorem for polynomial coalgebras. In L.
de Alfaro, ed., Proc. of 12th Int. Conf. on Foundations of Software Science and Computation Structures,
FoSSaCS 2009 (York, March 2009), v. 5504 of Lect. Notes in Comput. Sci., pp. 122–136. Springer, 2009.

[3] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
[4] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and

Comput., 110(2):366–390, 1994.
[5] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Technical report, Dept. of Computer Sci.,

Cornell University, 2008. http://hdl.handle.net/1813/10173
[6] C. Kupke, C. Cirstea, and D. Pattinson. Complexity of the coalgebraic mu-calculus. In Proc. of 23rd Int.

Wksh. on Computer Science Logic, CSL 2009 (Coimbra, Sept. 2009), Lect. Notes in Comput. Sci., Springer, to
appear.

[7] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–80, 2000.

68

http://hdl.handle.net/1813/10173

Coalgebraic Expressions Myers

[8] L. Schröder and D. Pattinson. Modular algorithms for heterogeneous modal logics. In L. Arge et al., eds., Proc.
of 34th Int. Coll. on Automata, Languages and Programming, ICALP 2007 (Wrocław, July 2007), v. 4596 of
Lect. Notes in Comput. Sci., pp. 459–471. Springer, 2007.

[9] L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans. on Comput. Log., 10(2),
article 13, 2009.

69

On Characteristic Formulae for Event-Recording Automata
Omer Landry Nguena Timo

LaBRI, Université Bordeaux I & CNRS
351 cours de la Libération,

F-33405 Talence Cedex, France
omer-landry.nguena-timo@labri.fr

Pierre-Alain Reynier
LIF, Université de Provence & CNRS

39 rue Joliot-Curie,
F-13453 Marseille Cedex 13, France
pierre-alain.reynier@lif.univ-mrs.fr

Abstract

A standard bridge between automata theory and logic is provided by the notion of character-
istic formula. This paper investigates this problem for the class of event-recording automata. An
attempt to express in Event-recording logic (ERL) characteristic formula for timed simulation and
bisimulation can be found in Sorea’s thesis, but appears to be erroneous. We introduce an exten-
sion of the logic ERL, called WTµ . We prove it is strictly more expressive than ERL, and that its
model-checking problem against event-recording automata is EXPTIME-complete. We provide con-
structions for characterizing event-recording automata up to timed bisimilarity, and timed similarity.
Finally, combining these two results we obtain decision procedures for checking timed similarity and
timed bisimilarity for event-recording automata and we study the complexity issues.

1 Introduction

In the untimed setting, automata and logics are central tools for the formal verification of reactive sys-
tems. While the system is usually modelled as an automaton, the specification may be described both
as a formula of a logic or as an automaton. In the first case the correctness of the system reduces to a
model checking problem, whereas in the second case it requires to compare the two automata, and dif-
ferent relations can be envisaged, such as bisimulation or language inclusion. A standard bridge between
automata theory and logic is provided by the notion of characteristic formula [7, 14]. A characteristic
formula is a formula in a temporal logic that completely characterizes the behaviour of an automaton
modulo some chosen relation. For the class of timed automata [3], a solution has first been proposed
in [8], providing formulae in greatest only fixpoint logic Lν . Then, these results have been improved
in [1], yielding linear constructions.

Event-recording automata (ERA) [4] and timed automata [3] are timed extension of finite automata
through addition of a finite set of real-valued clocks. They have been put forward to model continuous-
time real-time systems. Event-recording Automata is a restricted class of timed automata. Whereas
transitions in (untimed) finite automata are labelled with actions, every transition in ERA and timed
automata is labelled with a triplet made of a constraint on clocks, an action and a set of clocks to be
reset when the transition is taken. In both timed models the time elapses continuously in states and the
values of clocks do change accordingly. A transition is firable when the clock constraint in it is satisfied
by the current values of clocks. Timed automata neither restrict clocks and actions in models, nor the
set of clocks to be reset when transitions are taken. ERA considers a bijective mapping between the
set of clocks and the set of actions; and when a transition is taken, only the unique clock associated to
the action of the transition is reset. In the opposite of timed automata, ERA are closed under boolean
operations [3]. It has thus attracted attention to characterize its expressive power in terms of some timed
logic [11, 6], using linear-time logics. This paper investigates the problem of identifying a branching-
time logic devoted to event-based specifications that allows to construct characteristic formulae for ERA.
Sorea introduced such a logic, named Event-Recording Logic (ERL), which extends the fixpoint mu-
calculus by allowing the use of event-clocks. However, the construction proposed in her PhD thesis [13]
for bisimulation is erroneous, and we will see that ERL cannot express timed bisimilarity for ERA.

70

mailto:omer-landry.nguena-timo@labri.fr
mailto:pierre-alain.reynier@lif.univ-mrs.fr

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

After recalling standard definitions in Section 2, we consider in Section 3 the fixpoint timed logic
WTµ [10], to express the characteristic formulae. The definition of this logic is closer from the defi-
nition of Lν as it separates quantification over discrete successors and time successors. We prove that
it is strictly more expressive than ERL, and that its model-checking problem over ERA is EXPTIME-
complete. Finally, we provide formulae constructions in WTµ for timed (bi)similarity together with
complexity issues in Section 4. Then we present a bug in the ERL-based construction proposed in [13].
Due to lack of space, omitted proofs can be found in [9].

2 Preliminaries

Let Σ be a finite alphabet, Σ∗ is the set of finite words over Σ. The sets N, Q, Q≥0, R and R≥0 are
respectively the sets of natural, rational, non-negative rational, real and non-negative real numbers. We
consider as time domain T the set Q≥0 or the set R≥0. We consider a finite set X of variables, called
clocks. A clock valuation over X is a mapping v : X → T that assigns to each clock a time value.
The set of all clock valuations over X is denoted TX . Let t ∈ T, the valuation v + t is defined by
(v + t)(x) = v(x) + t, ∀x ∈X . For a subset r of X , we denote by v[r ← 0] the valuation such that
for each x ∈ r, (v[r← 0])(x) = 0 and for each x ∈X \ r, (v[r← 0])(x) = v(x). Finally, 0 denotes the
valuation mapping every clock on 0.

Given a set of clocks X , we introduce the sets of clock constraints over X denoted by C (X), and
defined by the grammar “g ::= x∼ c | g∧g” where x ∈X , c ∈Q≥0, ∼ ∈ {<,≤,=,≥,>} and we define
the always true constraint tt :=

∧
x∈X x ≥ 0. The set of guards over X is defined by the grammar ”

ξ ::= g | ξ ∨ξ | ¬ξ ” where g is a clock constraint over X . We write v |= ξ (or v ∈ Jξ K) when the clock
valuation v satisfies ξ . The guard ¬ξ stands for the negation of ξ : v ∈ J¬ξ K iff v /∈ Jξ K.

2.1 Timed Transition Systems and Timed Behavioral Relations

Timed transition systems describe systems which combine discrete and continuous evolutions. They are
used to define the behavior of timed systems [3, 4]. A timed transition system (TTS) over the alphabet
Σ is a transition system S = 〈Q,q0,Σ,→〉, where Q is the set of states, q0 ∈ Q is the initial state, and

the transition relation→⊆ Q× (Σ∪T)×Q consists of continuous transitions q d−→ q′ (with d ∈ T), and
discrete transitions q a−→ q′ (with a ∈ Σ). Moreover, we require the following standard properties for
TTS: TIME-DETERMINISM (if q d−→ q′ and q d−→ q′′ with d ∈ R≥0, then q′ = q′′), 0-DELAY (q 0−→ q),

ADDITIVITY (if q d−→ q′ and q′ d′−→ q′′ with d, d′ ∈ R≥0, then q d+d′−−−→ q′′), and CONTINUITY (if q d−→ q′,

then for every d′ and d′′ in R≥0 such that d = d′+d′′, there exists q′′ such that q d′−→ q′′ d′′−→ q′). With these

properties, a run of S is defined as a finite sequence of moves ρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−→

qn+1 where discrete and continuous transitions alternate. To such a run corresponds the timed word
w = (ai,τi)0≤i≤n over Σ, where ai occurs at time τi = ∑

i
j=0 d j; and we say that w belong to the language

of S denoted by L (S).
Definitions of timed simulation and timed bisimulation are given for TTS and they will be used for

ERA. Consider two TTS S1 = 〈Q1,q1
0,Σ,→1〉 and S2 = 〈Q2,q2

0,Σ,→2〉. A timed simulation between
S1 and S2 is a relation R ⊆ Q1×Q2 such that whenever q1Rq2 and α ∈ Σ∪T, then:

• If q1
α−→ q′1 then there exists q′2 ∈ Q2 such that q2

α−→ q′2 and q′1Rq′2.

A timed bisimulation between S1 and S2 is a relation R ⊆ Q1×Q2 such that whenever q1Rq2 and
α ∈ Σ∪T, then:

• If q1
α−→ q′1 then there exists q′2 ∈ Q2 such that q2

α−→ q′2 and q′1Rq′2.

71

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

• If q2
α−→ q′2 then there exists q′1 ∈ Q1 such that q1

α−→ q′1 and q′1Rq′2.

We write q1 ≺ q2 (resp. q1 ∼ q2) iff there exists a timed simulation (resp. a timed bisimulation) R with
q1Rq2. Finally, we say that a TTS S2 simulates a TTS S1 (resp. S1 and S2 are bisimilar) whenever
there exists a timed simulation (resp. a timed bisimulation) between S1 and S2 such that the pair (q1

0,q
2
0)

of their initial states belongs to the relation R, and then we write S1 ≺S2 (resp. S1 ∼S2).

2.2 Event-Recording Automata

We consider the class of Event-Recording Automata (ERA), introduced in [4]. In this context, each clock
refers to a specific action. Then, we associate clocks with letters of an alphabet. Given an alphabet Σ, we
then denote by XΣ the set of clocks {xa | a ∈ Σ}. Intuitively, in any configuration, the value of the clock
xa represents the delay elapsed since the last occurrence of the action a (or since the beginning of the run
if no action a occurred yet).

An event-recording automaton(ERA) [4] over the alphabet Σ is a tuple A = 〈L, `0,Σ,T 〉 where, L
is a finite set of locations, `0 ∈ L is the initial location, and T ⊆ L×C (XΣ)×Σ× L is a finite set of
transitions. An ERA is deterministic if [[g′∧g′′]] = /0 whenever (`,g′,a, `′) and (`,g′′,a, `′′).

The semantics of an event-recording automaton A , is defined in the terms of a timed transition
system. Intuitively, it manipulates exactly one clock per action, which allows to measure time elapsed
since the last occurrence of this action. The formal definition is given by: given an ERA A = 〈L, `0,Σ,T 〉,
its semantics is given by the TTS SA defined by SA = 〈Q,q0,Σ,→〉 where Q = L×TXΣ , q0 = (`0,0),
and→ consists of continuous and discrete moves:

Delay steps: ∀d ∈ T, we have (`,ν) d−→ (`,ν +d),
Discrete steps: ∀a ∈ Σ, we have (`,ν) a−→ (`′,ν ′) iff there exists a transition t = (`,g,a, `′) ∈ T such

that ν |= g and ν ′ = ν [xa := 0].
The language of an ERA A , denoted L (A), is the language L (SA) of its TTS SA . A basic

problem on ERA consists in testing the emptiness of its language. As SA is infinite, a standard solution
is based on a finite time abstract bisimulation called the region construction [4]. We assume the reader
is familiar with the region construction of [3] for timed automata. Given an integer K, we denote by
RK(A) the region automaton w.r.t. constant K. Recall that the number of clock regions for ERA on
alphabet Σ and maximal constant K is in 2O(|Σ| logK|Σ|) (see [4]). A standard solution to the emptiness
testing considers region automata w.r.t maximal constant that occurs in ERAs.

Let A and B be two ERA. We say that A simulates B and we write A ≺B, (resp. A and B are
bisimilar and we write A ∼B) whenever there exists a timed simulation (resp. a timed bisimulation)
between SA and SB. It is standard that: if A ≺B, then L (A) ⊆L (B); and, if B is deterministic
and L (A)⊆L (B), then A ≺B.

Let A be an ERA. We say that a sentence ϕ is a characteristic formula for A if and only if, according
to the behavioural relation considered, the following equivalence holds:
[Simulation:] ∀B ∈ ERA,A ≺B ⇐⇒ B |= ϕ

[Bisimulation:] ∀B ∈ ERA,A ∼B ⇐⇒ B |= ϕ .

Let us introduce some notations. Given an ERA A = 〈L, `0,Σ,T 〉, a location ` ∈ L and a letter a ∈ Σ,
we denote by Out(`,a) = {t = (`,g,a, `′) ∈ T}, the set of a-labelled transitions leaving ` and we denote
by F(`,a) = {`′ | ∃(`,g,a, `′) ∈ Out(`,a)}, the set of locations reached by an a from location `. We
also define the guard En(`,a) =

∨
{g | ∃(`,g,a, `′) ∈ Out(`,a)}, the disjunction of clock constraints of

a-labelled transitions leaving `.

72

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

3 A µ-calculus for Event-Recording Automata

We present here a weak timed µ-calculus for ERA that has been introduced in [10]. Its definition distin-
guishes between delay successors and discrete successors, as it is done in the logic Lν for instance. We
show that it is strictly more expressive than the logic ERL. We will show in the next section that it allows
to express timed (bi)similarity for ERA while ERL does not.

3.1 The Logic WTµ

Let Σ be a finite alphabet and Var be a finite set of variables. A formula ϕ of WTµ is generated using
the following grammar: ϕ ::= tt | ff | X | ϕ ∧ϕ | ϕ ∨ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX .ϕ | νX .ϕ where
g ∈ C (XΣ), a ∈ Σ and X ∈Var.

As for the logic ERL, the semantics is defined for TTS associated with ERA. We use auxiliary
assignment functions, and the notions of free (bound) variable, sentence...

For a given ERA A = 〈L, `0,Σ,T 〉 with associated TTS SA = 〈Q,q0,Σ,→〉, a given formula ϕ ∈
WTµ , and an assignment function V : Var→P(Q), we define the set of states satisfying the formula,
denoted JϕKA

V , inductively as follows:

• JttKA
V := Q

• JffKA
V := /0

• JXKA
V := V (X)

• Jϕ1∧ϕ2KA
V := Jϕ1KA

V ∩ Jϕ2KA
V

• Jϕ1∨ϕ2KA
V := Jϕ1KA

V ∪ Jϕ2KA
V

• J〈a〉ϕKA
V := {(`,v) ∈ Q | ∃(`,g,a, `′) ∈ T s.t. v |= g and (`′,v′) ∈ JϕKA

V , where v′ = v[xa := 0]}

• J〈g〉ϕKA
V := {(`,v) ∈ Q | ∃ d ∈ T s.t. v+d |= g and (`,v+d) ∈ JϕKA

V }

• J[a]ϕKA
V := {(`,v) ∈ Q | ∀(`,g,a, `′) ∈ T,v |= g⇒ (`′,v′) ∈ JϕKA

V , where v′ = v[xa := 0]}

• J[g]ϕKA
V := {(`,v) ∈ Q | ∀ d ∈ T,v+d |= g⇒ (`,v+d) ∈ JϕKA

V }

• JµX .ϕKA
V := ∩{Q′ ⊆ Q | JϕKA

V [X :=Q′] ⊆ Q′}

• JνX .ϕKA
V := ∪{Q′ ⊆ Q | Q′ ⊆ JϕKA

V [X :=Q′]}

An ERA A = 〈LA , `A
0 ,Σ,TA 〉 is a model of a sentence ϕ , and we write A |= ϕ if (`0,0) ∈ JϕKA .

Note that the valuation in the subscript of JK is removed for sentences.
Let ξ ,g1,g2 be three constraints such that Jξ K = Jg1K∪ Jg2K. One [10] can show that 〈ξ 〉ϕ is equiv-

alent to 〈g1〉ϕ ∨〈g2〉ϕ and [ξ]ϕ is equivalent to [g1]ϕ ∧ [g2]ϕ . In consequence we can extend the syntax
of WTµ by allowing guards to occurs in the modalities 〈〉 and [].

Remark (On greatest fixpoints) To express characteristic formulae, we shall see later that we need
greatest fixpoints on systems of inequations. In this case, we will use a slightly different presentation.
Given a finite set Var of variables, we will associate to each variable X a formula D(X) over the variables
Var. D is then called a declaration, and the semantics associated with this definition is the largest solution
of the system of inequations X ⊆D(X) for any X ∈Var. It can be proved (see [5]) that this presentation
is equivalent. To specify the declaration used, we will add it as subscript of the satisfaction relation |=,
writing A ,q |=D X .

73

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

3.2 Expressiveness and Model-Checking results

Relation with Lν The logic Lν over the finite set of clocks X , the set of identifiers Var, and the set of
events Σ is defined as the set of formulas generated by the following grammar1:
“ϕ ::= tt |ff |ϕ ∨ϕ |ϕ ∧ϕ |x inϕ |x ./ c | 〈a〉ϕ | [a]ϕ | 〈δ 〉ϕ | [δ]ϕ |X | νX .ϕ(X)”, where a ∈ Σ, x ∈X is
a clock variable, c ∈Q≥0, X is a variable, and ./∈ {≤,≥,<,>}.

The logic Lν allows for the recursive definition of formulas by including a set Var of variables. Lν

allows only the greatest fixpoint operator. A formula is interpreted over timed automata. Here, we adapt
the interpretation on an ERA A with associated TTS SA = 〈Q,q0,Σ,→〉. Formulas are interpreted over
states of the form (`,v) ∈Q where ` is a location of A , v is a valuation of clocks in XΣ. We only present
the semantics for the non standard operators x ./ c,〈δ 〉, [δ], and x in ϕ:

• Jxa ./ cKA
V := {(`,v) ∈ Q | v(xa) ./ c}

• J[δ]ϕKA
V := {(`,v) ∈ Q | ∀d ∈ T,(`,v+d) ∈ JϕKA

V }

• J〈δ 〉ϕKA
V := {(`,v) ∈ Q | ∃d ∈ Ts.t. (`,ν +d) ∈ JϕKA

V }

• Jxa in ϕKA
V := {(`,v) ∈ Q | (`,v[xa := 0]) ∈ JϕKA

V }

For ERA, the fragment of WTµ without the least fixpoint operator is a fragment of Lν [8]. This inclusion
follows from the fact that the modal operators [g]ϕ , 〈g〉ϕ , [a]ϕ and 〈a〉ϕ of WTµ are respectively
equivalent to [δ](¬g∨ϕ)2, 〈δ 〉(g∧ϕ), [a](xa in ϕ) and 〈a〉(xa in ϕ) of Lν . As Lν is a fragment of Tµ

without the least fixpoint operator, we get that WTµ is a fragment of Tµ , what justifies its name.

Relation with ERL We compare WTµ with ERL. The syntax of ERL [12] is similar to the syntax of
WTµ , except that the modal operators for ERL are only of the form 〈g,a〉 or [g,a]. Their semantics is as
follows:

• J〈g,a〉ϕKA
V := {(`,v)∈Q | ∃ d ∈T, ∃(`,g,a, `′)∈ T s.t. v+d |= g and (`′,v+d[xa := 0])∈ JϕKA

V }

• J[g,a]ϕKA
V := {(`,v) ∈ Q | ∀ d ∈ T,∀(`,g,a, `′) ∈ T,v+d |= g⇒ (`′,v+d[xa := 0]) ∈ JϕKA

V }

Theorem 1. WTµ is strictly more expressive than ERL.

The inclusion of ERL in WTµ is trivial (replace any operator [g,a], resp. 〈g,a〉, by the two operators
[g][a], resp. 〈g〉〈a〉). To show that WTµ is strictly more expressive than the logic ERL, one may consider
the formula [0 ≤ xa ≤ 1]〈a〉; this formula requires the existence of some discrete move with the event a
in all the time instants at which the value of xa is between 0 and 1; such an alternation of quantification
cannot be expressed in ERL. An alternative proof can be found in [9].

Model-Checking Given an ERA A and a WTµ sentence ϕ , the model-checking problem of A against
ϕ consists in determining whether the relation A |= ϕ holds or not.

Theorem 2. The model-checking problem for ERA against WTµ sentences is EXPTIME-complete.

EXPTIME membership can be deduced from the EXPTIME membership of the same problem for
timed automata against Lν [2]. More precisely, for an ERA A and a WTµ formula ϕ , one can solve
the problem in time O((|RK(A)|× |ϕ|)n+1), where K is the maximal constant in A and ϕ , and n is the
number of alternations of greatest and least fixpoints quantifiers in ϕ . EXPTIME hardness follows from
the EXPTIME hardness of the model-checking of ERA against ERL [13], as WTµ extends ERL.

1This grammar is different, but equivalent to the one in [8]
2Note that the negation of a clock constraint is a disjunction of clock constraints, i.e. a guard.

74

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

4 Characteristic Formulae Constructions

In the sequel, we consider an ERA A = 〈LA , `A
0 ,Σ,TA 〉 over the alphabet Σ. Let ` ∈ LA and a ∈ Σ,

we first introduce an operation, denoted Split(`,a), related to the determinization of ERA. Split(`,a) is
a finite set of constraints {g1, . . . ,gn} ⊆ C (XΣ) such that: it partitions En(`,a) meaning that J

∨
i giK =

JEn(`,a)K and ∀i 6= j,JgiK∩ Jg jK = /0; and secondly, its elements ”match” the clock constraints of a-
labelled transitions leaving ` manning that ∀i ∈ {1, . . . ,n},∀(`,g,a, `′) ∈ TA ,JgiK ⊆ JgK or JgiK∩ JgK =
/0. We do not investigate here how such an operator can be defined as it is not the purpose of this
work. It can for instance be defined using the region construction [3], and then be optimized using some
merging operations on zones. It is worth noticing that in the worst case, the size of Split(`,a) may
be |Out(`,a)|× 2O(|Σ| logK|Σ|), with K the largest integer constant of A (due to the region construction).
However, if the ERA A is deterministic, then its size is linear in the size of Out(`,a). Indeed, the
determinism implies that the clock constraints of a-labelled transitions leaving ` are disjoint.

4.1 Characteristic Formulae for Timed Bisimulation

A characteristic formula characterising a location of an ERA up to timed bisimilarity should offer a
description of: all the actions from the alphabet that are enabled in the location; which node is entered
by taking a given transition, together with the reset associated with it; and the fact that arbitrary delays
are allowed in the location.

We define a declaration D∼A associating a formula to each location ` of A , and consider the greatest
solution of this system of fixpoint equations.

Φ
∼A (`) D∼A=



∧
a∈Σ

∧
(`,g,a,`′)∈TA

[g]〈a〉 Φ
∼A (`′) ∧ [tt]Φ∼A (`) (C1)

∧∧
a∈Σ

∧
g∈Split(`,a)

[g][a]
∨

(`,g′,a,`′)∈TA |JgK⊆Jg′K

Φ
∼A (`′) ∧

∧
a∈Σ

[¬En(`,a)][a]ff (C2)

We give some intuition on its definition. Let B be an ERA and analyze how the definition of Φ∼A (`)
constrains a location m of B that satisfies Φ∼A (`). Assume that the current state in SA is (`,v) and the
current state in SB is (m,v).
The part C1 expresses the simulation constraints (A ≺B). The left-hand side of C1 is the sub-formula∧

a∈Σ

∧
(`,g,a,`′)∈TA

[g]〈a〉 Φ∼A (`′) which requires that any discrete transition from (`,v) also exists from
(m,v); or more precisely, for any transition in A from (`,v) and for all delays after which it is firable,
there exists a corresponding transition from (m,v) leading to a related (bisimilar) state. The right hand-
side of C1, [tt]Φ∼A (`), handles the case of delay transitions. Note that it would be easy to handle
invariants in ERA. The part C2 requires any discrete transition from (m,v) to be related to some discrete
transition from (`,v); it also requires the target state of any discrete transition from (m,v) to be related
to the target state of some discrete transition from (`,v). The right-hand side of C2,

∧
a∈Σ[¬En(`,a)][a]ff

states that a-transitions can happen from (m,v) only in the time instants at which a-transitions can hap-
pen from (`,v). The left-hand side of C2,

∧
a∈Σ

∧
g∈Split(`,a)[g][a]

∨
(`,g′,a,`′)∈TA |JgK⊆Jg′K Φ∼A (`′) uses the

decomposition Split(`,a) of the guard En(`,a) to express that any a-transition firable from (m,v) corre-
sponds to some firable a-transition of (`,v). In case of non determinism, the target state of an a-transition
from (m,v) is non deterministically related to the target state of some a-transition from (`,v); this choice
is done according to the constraint satisfied by the valuation v. Note that the second property of the
operator Split ensures the completeness of this construction.

Let us comment the size of the formulas. Due to the use of the operator Split, these formulae are
in the worst case of size |A | × 2O(|Σ| logK|Σ|), with K the largest integer constant of A , whereas if A

75

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

is deterministic, then their size is linear in the size of A . We believe that this exponential blow-up is
not avoidable, and detail why formulae of [1], which have a linear size, cannot be used directly in our
context. In the second part of the formulae (C2), they indeed compare, after the discrete firing, the clock
valuation with the guards of A . As for ERA, when a discrete transition labelled by a is fired the clock xa

is reset, one can not recover the value of this clock xa before the firing. We solve this problem by splitting
the set En(`,a) to determine which transitions of A were firable. Moreover, note that this exponential
blow-up has no consequences on the theoretical time complexity of timed bisimilarity checking, as linear
formulae would lead to the same complexity.

The following result states the correctness of the previous construction.

Theorem 3. Let A and B be two ERA over Σ and consider ` and m two locations of A and B
respectively. Then for any valuation v ∈ TΣ, we have : (`,v)∼ (m,v) ⇐⇒ B,(m,v) |=D∼A

Φ∼A (`)
In particular, we have: A ∼B ⇐⇒ B |=D∼A

Φ∼A (`A
0).

We only present a sketch of proof. It proceeds by double implication. The direct implication is proved
by using the co-induction principle.in showing that, considering the assignment function V over the
variables Φ∼A (`) defined by V (Φ∼A (`)) = {(m,v) ∈ QB | (`,v) ∼ (m,v)} for any ` ∈ LA , we have:
∀` ∈ LA ,JΦ∼A (`)KB

V ⊆ JD∼A (Φ∼A (`))KB
V . This follows from an examination of the different con-

juncts of Φ∼A (`). Conversely, we consider the relation R ⊆QA ×QB defined as R = {((`,v),(m,v)) |
B,(m,v) |=D∼A

Φ∼A (`)} and show that it is a timed bisimulation. Intuitively conjunct C1 is used to
prove that R is a timed simulation between A and B, and C2 is used to prove that R−1 is a timed
simulation between B and A .

Using our constructions, one can decide timed bisimilarity of two ERA A and B over Σ in time
|A |× |B|×2O(|Σ| logK|Σ|) (K denotes the largest constant of A and B). Using the previous theorem, this
problem reduces to the model checking problem of B against formula Φ∼A (`A

0) under the declaration
D∼A . Note that Φ∼A contains only greatest fixpoints and thus is alternation-free. From the model-
checking results, the time complexity of this problem is in O(|RK(B)|× |Φ∼A |).

The result follows from the size of RK(B) and previous remarks on the size of the formulae Φ∼A .

4.2 Characteristic Formulae for Timed Simulation

We define a declaration D�A associating a formula to each location ` of A , and consider the greatest
solution of this system of fixpoint equations.

Φ
�A (`)

D�A=
∧
a∈Σ

∧
(`,g,a,`′)∈T

[g]〈a〉 Φ
�A (`′) ∧ [tt] Φ

�A (`) (C ′1)

This construction leads to formulae of size linear in the size of A . Observe that C ′1 is just C1 in the
formula for timed bisimulation. The following result states the correctness of the previous construction.

Theorem 4. Let A and B be two ERA over Σ and consider ` and m two locations of A and B
respectively. Then for any valuation v ∈ TΣ, we have : (`,v)≺ (m,v) ⇐⇒ B,(m,v) |=D�A

Φ�A (`)
In particular, we have: A ≺B ⇐⇒ B |=D�A

Φ�A (`A
0)

The proof is similar to that of Theorem 3. As for bisimilarity, one can decide timed similarity of
two ERA A and B over Σ in time |A | × |B| × 2O(|Σ| logK|Σ|) (K denotes the largest constant of A
and B). Moreover, using the determinization procedure for ERA, this procedure can also be used to
decide in EXPTIME the language inclusion between two ERA A and B (first determinize B, and then
check timed simulation). Note that the problem of language inclusion is PSPACE-complete [4], thus this
procedure is not optimal. However, the known algorithm matching the lower bound consists in guessing
a path in the region automaton. A zone-based version of this procedure may thus be an interesting
alternative.

76

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

4.3 Reporting a Bug in [13]

In [13], the author addresses the problem of constructing characteristic bisimulation formulae for ERA
using ERL formulae with greatest fixpoints. In Section 3, we established that the formula [0 ≤ xa ≤
1]〈a〉tt is not equivalent to any ERL formula. In general, WTµ formulae having a sequence of the form
[g]〈a〉ϕ 34 are not equivalent to some ERL formula. In the above subsection, characteristic formulae for
timed bisimulation and timed simulation involve such kind of sequences. This is intuitively the reason
why the construction in [13] is erroneous. More generally, using the same idea, we prove in [9]:

Theorem 5. The logic ERL can not express neither timed bisimilarity nor timed similarity for ERA.

We only give here a sketch of the proof. We consider an ERA A composed of two locations and
a single edge labelled by a, with the constraint 0 ≤ xa ≤ 1. The proof proceeds by contradiction and
assumes the existence of an ERL formula ϕ characterizing A up to timed bisimilarity. As we can
suppose that ϕ is guarded (see [12]), it is possible to unfold the fixpoints of ϕ , and restrict the unfolding
to depth 2 (because of the structure of A). Then, the formula contains no more fixpoints, and can be
rewritten in conjunctive normal form (

∧
i ϕi). We finally build an ERA B with two locations, as A , that

has strictly less behaviours than A , thus is not bisimilar to A , but which satisfies ϕ . Therefore we pick
for each ϕi whose outermost modality is of the form 〈g,a〉 a rational number r in g, and add a transition
in B with constraint xa = r. We can then verify that all formulae ϕi are satisfied by B.

5 Conclusion

We focused on the construction of characteristic formulae for ERA up to timed (bi)similarity with respect
to WTµ . We also reported a bug in an early construction with the setting of ERL.

Compared to existing results of [1] for timed automata which can also be applied to ERA using
natural translations, we obtain procedures in the same class of complexity (EXPTIME), but our time
complexities are more precise. For instance, for a fixed alphabet Σ and if constants are encoded in
unary, then timed (bi)simulation can be checked in polynomial time! Moreover, our algorithm for model
checking WTµ against ERA should also be more efficient than going through Lν and timed automata as
it involves only one copy of the event-clocks. Finally, we obtain a non-optimal procedure for inclusion
checking between ERA, which we believe could lead to good results in practice.

As future work, we plan to study how the good decidability results of the satisfiability problem for
ERL transfer to WTµ . Such decidability results could be useful for the supervisory control of real-time
systems with non controlability assumptions. Ongoing work in that direction are promising.

References
[1] L. Aceto, A. Ingólfsdóttir, M. L. Pedersen, and J. Poulsen. Characteristic formulae for timed automata. Theor.

Inform. and Appl., 34(6):565–584, 2000.
[2] L. Aceto and F. Laroussinie. Is your model-checker on time? J. of Log. and Algebr. Program., 52–53:7–51,

2002.
[3] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235, 1994.
[4] R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of timed automata.

Theor. Comput. Sci., 211(1–2):253–273, 1999.

3The action a should be firable in all the timing context at which g is satisfied.
4When modelling real-time reactive systems, a could represent an uncontrollable event from the environment.

77

On Characteristic Formulae for Event-Recording Automata Nguena Timo and Reynier

[5] H. Bekic. Definable operation in general algebras, and the theory of automata and flowcharts. In C. B. Jones,
ed., Programming Languages and Their Definition, v. 177 of Lect. Notes in Comput. Sci., pp. 30–55. Springer,
1984.

[6] D. D’Souza. A logical characterisation of event clock automata. Int. J. of Found. of Comput. Sci., 14(4):625–
640, 2003.

[7] S. Graf and J. Sifakis. A modal characterization of observational congruence on finite terms of CCS. Inform.
and Control, 68(1-3):125–145, 1986.

[8] F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic—and back. In J. Wiedermann,
P. Hájek, eds., Proc. of 20th Int. Symp. on Math. Found. of Comput. Sci., MFCS ’95 (Prague, Aug./Sept.
1995), v. 969 of Lect. Notes in Comput. Sci., pp. 529–539. Springer, 1995.

[9] O. Nguena and P.-A. Reynier. On characteristic formulae for event-recording automata. Research report
HAL-00383203, HAL, CNRS, 2009.

[10] O. L. Nguena Timo. The logic WTµ . Technical report RR-1460-09, LaBRI, 2009.
[11] J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks—decidability, complexity and expressiveness. J.

of Autom., Lang. and Combinat., 4(3):247–286, 1999.
[12] M. Sorea. A decidable fixpoint logic for time-outs. In L. Brim et al., eds., Proc. of 13th Int. Conf. on

Concurrency Theory, CONCUR 2002 (Brno, Aug. 2002), v. 2421 of Lect. Notes in Comput. Sci., pp. 255–
271. Springer, 2002.

[13] M. Sorea. Verification of Real-Time Systems through Lazy Approximations. PhD thesis, Univ. Ulm, 2004.
[14] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with divergence. Inform. and Comput.,

110(1):149–163, 1994.

78

Coinductive Predicates as Final Coalgebras
Milad Niqui∗ and Jan Rutten

Centrum Wiskunde & Informatica,
P. O. Box 94079, 1090 GB Amsterdam, The Netherlands

m.niqui@cwi.nl and jan.rutten@cwi.nl

Abstract

We show that coinductive predicates expressing behavioural properties of infinite objects can
be themselves expressed as final coalgebras in a category of relations. The well-known case of
bisimulation will simply be a special case of such final predicates. We will show how some useful
pointwise and mixed properties of streams can be modelled in this way.

1 Introduction

Bisimulation is a widely used tool for proving the equivalent behaviour of infinite objects such as in-
put/output systems and labelled transition systems. Although its original formulation was in the theory of
processes and automata, later it was shown that maximal bisimulation — or bisimilarity— is tantamount
to equality on the elements of final coalgebra. This leads to the coinduction proof principle: in order to
prove that two elements of final coalgebra are equal, find a bisimulation between them. Furthermore, it
was shown that for a certain class of functors, given any two coalgebras the set of all of bisimulation
relations between them forms a complete lattice [14, Corollary 5.6]. It follows that bisimilarity is a post
fixed point in the sense of Knaster-Tarski semantics.

Many have already observed that apart from equality there are other interesting binary relations on
infinite objects which lead to other type of coinduction principles. Such principles are usually presented
using Knaster-Tarski semantics. In this work we try to study this situation coalgebraically. Our starting
point will be the well-known observation that bisimilarity itself is a final coalgebra for a different functor
either in the same category (in the case of categorical models of dependent type theory [9, 8]) or in a
different category (in the case of endofunctors on Set [10]). We will present variants of this observation:
maximal bisimulation on different coalgebras i.e., not necessarily the final ones; and more generally
arbitrary relations on elements of coalgebras.

The motivation for this work is the use of coinductive predicates in theorem proving. Already in
the short history of coinductive theorem proving it has become clear that most interesting behavioural
properties usually need relatively complex coinductive predicates. Evidence can be found in the attempts
to verify protocols [7], modalities [5] or even basic metric predicates on streams [3, 4]. This indicates
that bisimilarity alone is not powerful enough for proving many properties of infinite objects. There
are tools for the automatic generation of bisimulation [12]. Usually in such tools all other behavioural
properties (e.g. the examples in Section 3) will be translated into equational problems so that they can
be tackled using bisimulations. Depending on the problem domain, these translations might be costly or
cumbersome; our aim is to make such tools applicable to automatic proofs for a larger class of properties
without having to reduce each such property to an equational problem. To be more precise we would
like to generalise the well-known hidden-algebraic fact ‘Behavioural equivalence is bisimilarity’ [13, 6]
to a larger class of relations.

We restrict ourselves to a class of endofunctors on Set. However this work can be read in two
different ways, in a categorical model of dependent type theory or in Set and relations on them.

∗Supported by VENI grant nr. 639.021.714 from the Netherlands Organisation for Scientific Research (NWO).

79

mailto:m.niqui@cwi.nl
mailto:jan.rutten@cwi.nl

Coinductive Predicates Niqui and Rutten

2 Relation Lifting

A very general coalgebraic method for defining bisimulation is using relation lifting [11, Ch. 3]. Let
Rel be the category of binary relations and relation-preserving maps, i.e., maps that make the leftmost
diagram below commute (here f1× f2 on top is the obvious restriction of the bottom one).

R� _

��

f1× f2 // S� _

��
X1×Y1

f1× f2 // X2×Y2

Rel(F)(R)� s

%%LLLLLLLLLL

F(R)

:: ::uuuuuuuuu 〈Fπ1,Fπ2〉 // FX ×FY

Let F : Set−→ Set be a functor. Then Rel(F) : Rel−→Rel, the relation lifting of F , is the functor taking
a binary relation 〈π1,π2〉 : R ⊆ X ×Y to the image of 〈Fπ1,Fπ2〉 : FR −→ FX ×FY (see the rightmost
diagram above). Given f1× f2 : R−→ S this Rel-functor is defined on morphisms as Rel(F)(f1× f2) :=
F(f1)×F(f2). It is a well-known fact that relation lifting preserves equality, and thus it is geared towards
proving equalities by constructing bisimulations. This make it unsuitable for working with arbitrary
coinductive predicates. We consider a generalisation of relation lifting that can be used for a larger class
of predicates.

Fix two sets X and Y . We denote by RelXY the lattice of subsets of X×Y considered as a subcategory
of Rel, i.e., the objects are binary relations between X and Y and the morphisms are inclusion maps.

Let rel(F) : RelXY −→ RelXY be a monotonic functor such that for R ⊆ X ×Y we have rel(F)(R)⊆
F(X)×F(Y). While the standard relation lifting takes R to a canonical subset Rel(F)(R)⊆F(X)×F(Y),
in our setting we deal with an arbitrary monotonic functor rel(F) taking relations on X ×Y to relations
on F(X)×F(Y). The reason is that the standard construction of bisimulations can, in a more generic
way, be carried over to rel(F).

Note further that Rel(F) is an endofunctor on Rel while rel(F) is parametrised by X ,Y and need
not be defined globally. Obviously the theory we develop works for a rel(F) that is defined uniformly
across Rel, so this is not a restriction. However, the local character of rel(F) allows the expression of
finer properties. The examples in Section 3 demonstrate a globally defined rel(F) while in Section 4 we
show examples where the local structure of rel(F) is needed.

For F-coalgebras αX : X −→ FX and αY : Y −→ FY , let F̃XY : RelXY −→ RelXY be the functor de-
fined on objects as the inverse image of rel(F) alongside αX ×αY i.e.,

F̃αX αY (R) = {〈x,y〉 | 〈αX(x),αY (y)〉 ∈ rel(F)(R)} ,

We usually drop the subscripts if they are understood from the context. As rel(F) is monotonic, so
is F̃ . In other words, F̃ is well-defined on the morphisms of RelXY .

Note that in general we need not have R ⊆ F̃(R) as this depends on the dynamics of αX and αY . But
if R⊆ F̃(R) then R with the inclusion map constitutes a F̃-coalgebra. Using Knaster-Tarski’s fixed-point
theorem, we can prove the following proposition.

Proposition 2.1. The final coalgebra of F̃ exists in RelXY .

We denote the final F̃-coalgebras by νF̃ . The final F̃-coalgebras correspond to coinductive predi-
cates. This is because finality entails the equality

F̃(νF̃) = νF̃ , (1)

which means
〈x,y〉 ∈ νF̃ ⇔ 〈αX(x),αY (y)〉 ∈ rel(F)(νF̃) .

80

Coinductive Predicates Niqui and Rutten

If one was to consider the above as the ‘definition’ of predicate νF̃ then the recursive occurrence of
νF̃ as argument of rel(F) would supply the circularity evident in the coinductive predicates. Hence, by
suitably choosing rel(F), αX and αY , one can recover coinductive predicates as final F̃-coalgebras.

2.1 Bisimulation and Coinduction

Perhaps the most common example of a coinductive predicate is bisimulation between infinite objects.
Any bisimulation between αX and αY is a Rel(F)-coalgebra (R,αX×αY) in RelαX αY . Note that if we take
rel(F) := Rel(F) then R ⊆ F̃(R) if and only if R is a bisimulation between αX and αY [11]. This means
that bisimulations are F̃-coalgebras with inclusion as transition map. Since F̃ is a monotonic functor it
has a post fixed-point by Knaster-Tarski theorem, which is the maximal bisimulation [14]. The following
proposition is then a reformulation of Proposition 2.1.

Proposition 2.2. The final coalgebra of F̃XY exists in RelαX αY ; its carrier is isomorphic with the maximal
bisimulation between αX and αY and its structure map is the identity inclusion map.

Since equality includes any bisimulation relation on the carrier of an observable coalgebra (known
also as a simple coalgebra) [14, Theorem 8.1] we have the following corollary.

Corollary 2.3 (Coinduction).

i) Let 〈Ω◦,αΩ◦〉 be an observable F-coalgebra. If 〈x,y〉 ∈ νF̃αΩ◦αΩ◦ then x = y.

ii) Let 〈Ω,αΩ〉= νF in Set. If 〈x,y〉 ∈ νF̃αΩαΩ
then x = y.

Part (ii) of the corollary above is the basis for type theoretic coinduction that is used is systems such
as Coq 1. There, instead of the usual bisimulation-building technique, one shows that 〈x,y〉 is an element
of the final coalgebra by constructing x = y as a canonical element of the final coalgebra. This is possible
because of the isomorphism in (1) which allows one to construct canonical elements using sufficiently
guarded specifications.

3 Pointwise Coinductive Predicates on Streams

In this section we present some examples on streams to demonstrate that generalising the definition of
Rel(F) to rel(F) indeed enables us to define more predicates.

In [11, § 3.1] an alternative inductive definition is given for relation lifting of polynomial functors
which coincides with the aforesaid definition for Rel(F). Based on that inductive definition constant
functors are lifted to the equality on their range, i.e., Rel(ΛX .A)(R) = ∆A. Compared with the work
in [11] this is what we modify: we replace equality by ?⊆ A×A, an arbitrary binary relation on A.

Let F(X) := 2×X and νF = (2ω ,〈hd,tl〉) be the set of binary streams as a final coalgebra. Now
assume a relation ?⊆ 2×2 and define for any sets X ,Y and R ⊆ X ×Y :

Rel?(F)(R) = {〈〈b1,x〉,〈b2,y〉〉 | 〈b1,b2〉 ∈ ?∧ xRy} .

Since Rel? is monotonic, by taking rel(F) := Rel?(F) we can define the corresponding F̃ from Section 2
and apply Proposition 2.1 to get its final coalgebra. Clearly the description of this final coalgebra depends
on the relation ?. For the case where the underlying coalgebras αX , αY are the final coalgebra of streams

1In Coq and other intensional type theories this does not entail x = y inside the system, but this issue is beyond the present
paper.

81

Coinductive Predicates Niqui and Rutten

this has a simple solution. The answer is given in the proposition below, for which we need some
definitions. Define the binary relation �? on streams as

�? := {〈σ ,τ〉 | ∀n,〈hd(tln(σ)),hd(tln(τ))〉 ∈ ?} ,

i.e., two streams σ ,τ belong to �? if and only if they are pointwise in relation ?. Note that

F̃ �? = {〈σ ,τ〉 | 〈〈hd,tl〉(σ),〈hd,tl〉(τ)〉 ∈ Rel?(F)(�?)}
= {〈σ ,τ〉 | 〈hd(σ),hd(τ)〉 ∈ ?∧〈tl(σ),tl(τ)〉 ∈�? }

Note that �?⊆ F̃ �? ; hence we can define α�? : �?−→ F̃ �? as the inclusion map. We have the following
proposition.

Proposition 3.1. νF̃ = (�? ,α�?).

The proof is a straightforward induction and resembles the proof of finality of the set of streams
in [1].

If R ⊆ F̃(R) we shall call R a ?-simulation. Clearly �? is a ?-simulation on 2ω . Note that if R is
?-simulation and 〈σ ,τ〉 in R, then 〈tln(σ),tln(τ)〉 ∈ R for all n. From this fact we can obtain the
following principle.

Proposition 3.2 (?-Coinduction). Relation �? is the maximal ?-simulation relation on 2ω . I.e., in order
to prove two streams are in �? it suffices if we find a ?-simulation between them.

Example 3.3.

i) Taking ? := ∆2 we can recover relation lifting of [11], as well as bisimilarity and the coinduction
proof principle.

ii) Taking ? to be 6= i.e., ? := {〈0,1〉,〈1,0〉} we get the pointwise inequality between streams as a
coinductive predicate. I.e., the �? :=6' where σ 6' τ if and only if hd(tln(σ)) 6= hd(tln(σ)) for all
n. Assume constant streams zeros, ones to be defined as

hd(zeros) := 0 , tl(zeros) := zeros ;

hd(ones) := 1 , tl(ones) := ones .

Then since R6= := {〈0: : zeros,1: : ones〉} is a 6=-simulation by Proposition 3.2 we have zeros 6'
ones.

iii) Similar to above, by taking ? := {〈0,1〉} (resp. ? := {〈0,0〉,〈0,1〉,〈1,1〉}) we get ≺ the pointwise
less than (resp. 4 less or equal) relation between streams as a coinductive predicate. Again one can
show by Proposition 3.2

zeros≺ ones , zeros 4 ones , zeros 4 zeros .

Note that the relations in the example above are not the same as simulations in the sense of [10].
Simulation (and lax relation lifting), albeit itself a greatest fixed point [10, Lemma 5.1], is based on an
order on the functor while in our pointwise comparison we use an arbitrary binary relation on data which
is not necessarily an order relation.

Proposition 3.2 is useful in that it mimics the ordinary coinduction proof principle. However, one can
also directly use the finality of �? to construct its elements in their canonical form. This leads to another
instance of type theoretic coinduction.

82

Coinductive Predicates Niqui and Rutten

We conclude this section by pointing out that the above lifting of pointwise relations to the stream
level can be done for relations with different arity. In fact it is straightforward to obtain the coun-
terpart of Proposition 3.2 for n-ary relations. For example one can consider a ternary relation ?3 :=
{〈0,0,0〉,〈0,1,1〉,〈1,0,1〉,〈1,1,1〉} that leads to the relation g corresponding to the pointwise disjunc-
tion of streams. This is specially useful in proving properties in stream calculus [15], because there we
deal with causal functions and examining the components pointwise will usually suffice.

4 Mixed Coinductive Predicates on Streams

The pointwise coinductive predicates, though useful in many cases, have a rather restricted shape that
limits their expressiveness. While our Proposition 2.1 is quite general, it is not always easy to find
a simple description of the elements of the final coalgebra as in Proposition 3.1. In this section, still
working with binary streams, we show some more intricate coinductive predicates that are useful in
practise. In particular we show two examples from [2] which are used in a coinductive timed stream
semantics of channel-based coordination2.

Fix nonempty relations ?1,?2 ⊆ 2×2. Assume (X ,αX) and (Y,αY) are F-coalgebras. Let

Rel?1?2(F)(R) ={〈〈b1,x〉,〈b2,y〉〉 | 〈b1,b2〉 ∈ ?1∧∃t ∈ α
−1
Y 〈b2,y〉, 〈x, t〉 ∈ R} ∪

{〈〈b1,x〉,〈b2,y〉〉 | 〈b1,b2〉 ∈ ?2∧∃t ∈ α
−1
X 〈b1,x〉, 〈t,y〉 ∈ R} .

Then Rel?1?2(F) is a monotonic endofunctor on RelXY . Again the corresponding F̃ and its final coalgebra
can be formed according to Section 2, but this general form is too complex to be useful. The special case
where αX = αY = 〈hd,tl〉 leads to some simplification. In that case,

F̃(R) ={〈σ ,τ〉 | 〈hd(σ),hd(τ)〉 ∈ ?1∧〈tl(σ),τ〉 ∈ R} ∪
{〈σ ,τ〉 | 〈hd(σ),hd(τ)〉 ∈ ?2∧〈σ ,tl(τ)〉 ∈ R} .

Instantiating with ?1 = {〈0,1〉}, ?2 = {〈1,0〉} one can observe that the final coalgebra νF̃ consists of
the set of binary streams that satisfy the ./ relation as defined in [2]. In short, if σ ./ τ and if both σ

and τ are interpreted as time streams corresponding to events on the two ports of a channel, then σ and
τ are completely asynchronous. Again we call relation R a ./-simulation if R⊆ F̃(R) and we will have a
counterpart of Proposition 3.2. I.e., in order to prove that two time streams are asynchronous it suffices
to find a ./-simulation between them.

Next example concerns the merge connective in [2], which captures the behaviour of a merger chan-
nel with two inputs and one output, and merges its two input streams to form the output. Here we work
with ternary relations.

Relmerge(F)(R) ={〈〈b1,x〉,〈b2,y〉,〈b3,z〉〉 | 〈b1,b2〉 ∈ ?1∧〈b1,b3〉 ∈ ?2∧∃t∈α
−1
Y 〈b2,y〉, 〈x, t,z〉 ∈ R} ∪

{〈〈b1,x〉,〈b2,y〉,〈b3,z〉〉 | 〈b1,b2〉 ∈ ?3∧〈b2,b3〉 ∈ ?4∧∃t∈α
−1
X 〈b1,x〉, 〈t,y,z〉 ∈ R} .

Assuming α ’s are all the structure map of the final coalgebra of streams we have

F̃(R) ={〈σ1,σ2,τ〉 | 〈hd(σ1),hd(σ2)〉 ∈ ?1∧〈hd(σ1),hd(τ)〉 ∈ ?2∧〈tl(σ1),σ2,tl(τ)〉 ∈ R} ∪
{〈σ1,σ2,τ〉 | 〈hd(σ1),hd(σ2)〉 ∈ ?3∧〈hd(σ2),hd(τ)〉 ∈ ?4∧〈σ1,tl(σ2),tl(τ)〉 ∈ R} .

2Timed data streams in [2] have a data component as well. For brevity, here we do not tackle the data and only deal with
the time. Another simplification is that we use binary time but one could repeat this for F(X) = R+×X .

83

Coinductive Predicates Niqui and Rutten

Instantiating with ?1 = {〈0,1〉}, ?3 = {〈1,0〉}, ?2 = ?4 = ∆2 we obtain a coinductive predicate describing
the behaviour of the merger channel. Furthermore we obtain a notion of merge-simulation and a corre-
sponding coinduction principle. This enables us to prove, by finding a merge-simulation, that three time
streams correspond to events on the ports of a merger.

Our last example illustrates a predicate � on binary streams such that (denoting hd(tln(σ)) by σn):

σ � τ := ∀n,σ2n ≤ τ2n+1 ≤ σ2n+2 ∧ τ2n ≤ σ2n+1 ≤ τ2n+2 .

Hence σ � τ means that σ0 : : τ1 : : σ2 : : τ3 · · · and τ0 : : σ1 : : τ2 : : σ3 · · · are both non-decreasing streams.
Compared to the previous examples the predicate � examines larger initial segments of the streams and
hence our candidate for rel(F) should observe deeper iterations of coalgebra. Let

Rel�(F)(R) = {〈〈b1,x〉,〈b2,y〉〉 | αX(x) = 〈b′1,x′〉 ∧αX(x′) = 〈b′′1,x′′〉 ∧
αY (y) = 〈b′2,y′〉 ∧αY (y′) = 〈b′′2,y′′〉 =⇒
b1 ≤ b′2 ≤ b′′1 ∧ b2 ≤ b′1 ≤ b′′2 ∧ 〈x′′,y′′〉 ∈ R} .

Then Rel�(F) is monotonic and we can form F̃ and its final coalgebra. Assuming αX = αY = 〈hd,tl〉
we obtain

F̃(R) = {〈σ ,τ〉 | σ0 ≤ τ1 ≤ σ2 ∧ τ0 ≤ σ1 ≤ τ2 ∧ 〈tl3(σ),tl3(τ)〉 ∈ R} .

Then 〈σ ,τ〉 ∈ νF̃ ⇔ σ � τ and in order to prove that σ � τ we should find a relation R such that
R ⊆ F̃(R) and that 〈σ ,τ〉 ∈ R. As an example let the streams zos, ozs be defined as

hd(zos) := 0 , hd(tl(zos)) := 1 , tl2(zos) := zos ;

hd(ozs) := 1 , hd(tl(ozs)) := 0 , tl2(ozs) := ozs .

Then taking R� := {〈zos,ozs〉,〈ozs,zos〉}, and considering that by ordinary coinduction

zos = 0: : ozs , ozs = 1: : zos ,

we obtain F̃(R�) = R�. Hence zos� ozs.

5 Conclusion & Further Work

The fact that we can describe such predicates as final coalgebras in Rel has more usage. By having
a final model in hand coinductive proofs will essentially turn into finding functions between various
final coalgebras. Hence we can use several type of coinductive definition schemes (e.g. coiteration,
corecursion and their generalisations) for more complicated proofs. For example using the examples
developed in Sections 3–4 one can prove

∀στ, σ ≺ τ =⇒ σ 6' τ

∀σ1σ2τ, merge(σ1,σ2,τ) =⇒ σ1 ./ σ2 .

The first implication is in fact a function between final coalgebras �? < →�? 6= that can be defined using
the ordinary coiteration scheme.

In the future, we plan to work on automating the generation of various types of ?-simulation rela-
tions in the tools that are used for automatic generation of bisimulations [12]. This requires a thorough
reformulation of hidden-algebraic machinery of behavioural equivalence in a more general way. Recall
that two streams are behaviourally equivalent if and only if hd(tln(σ)) = hd(tln(σ)) for all n; and
that this implies bisimilarity. Looking back at the definition of �? we observe that it captures a notion
of ‘behaviourally being in relation ?’ which then will imply ?-similarity. Our aim is to make this more
precise by working in the categorical models of hidden-algebra [6].

84

Coinductive Predicates Niqui and Rutten

References
[1] P. Aczel. Algebras and coalgebras. In R. C. Backhouse, R. L. Crole, and J. Gibbons, eds., Revised Lectures

from Int. Summer School and Wksh. on Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction (Oxford, Apr. 2000), v. 2297 of Lect. Notes in Comput. Sci., pp. 79–88. Springer, 2002.

[2] F. Arbab and J. J. M. M. Rutten. A coinductive calculus of component connectors. In M. Wirsing, D. Pat-
tinson, and R. Hennicker, eds., Revised Selected Papers from 16th Int. Wksh. on Algebraic Development
Techniques, WADT 2002 (Frauenchiemsee, Sept. 2002), v. 2755 of Lect. Notes in Comput. Sci., pp. 34–55.
Springer, 2003.

[3] Y. Bertot. Filters on coinductive streams, an application to Eratosthenes’ sieve. In P. Urzyczyn, ed., Proc.
of 7th Int. Conf. on Typed Lambda Calculi and Applications, TLCA 2005 (Nara, Apr. 2005), v. 3461 of Lect.
Notes in Comput. Sci., pp. 102–115. Springer, 2005.

[4] Y. Bertot. Affine functions and series with co-inductive real numbers. Math. Struct. in Comput. Sci., 17(1):37–
63, 2007.

[5] V. Capretta. Common knowledge as a coinductive modality. In E. Barendsen, V. Capretta, H. Geuvers, and
M. Niqui, eds., Reflections on Type Theory, λ -Calculus, and the Mind: Essays Dedicated to Henk Barendregt
on the Occasion of his 60th Birthday, pp. 51–61. Radboud University Nijmegen, 2007.

[6] C. Cı̂rstea. Coalgebra semantics for hidden algebra: Parameterised objects an inheritance. In F. Parisi-
Presicce, ed., Selected Papers from 12th Int. Wksh. on Algebraic Development Techniques, WADT ’97 (Tar-
quinia, June 1997), v. 1376 of Lect. Notes in Comput. Sci., pp. 174–189. Springer, 1997.

[7] E. Giménez. Un Calcul de Constructions Infinies et son Application a la Verification des Systemes Commu-
nicants. PhD thesis, Ecole Normale Supérieure de Lyon, 1996.

[8] P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras in dependent type theory. In
L. Crosilla and P. Schuster, eds., From Sets and Types to Topology and Analysis: Towards Practicable Foun-
dations for Constructive Mathematics, v. 48 of Oxford Logic Guides, pp. 115–134. Oxford Univ. Press, 2005.

[9] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inform. and Comput.,
145(2):107–152, 1998.

[10] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comput. Sci., 327(1–2):71–108, 2004.
[11] B. Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observations. Book draft, 2005.

Available at http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf,
[12] D. Lucanu and G. Roşu. CIRC: a circular coinductive prover. In T. Mossakowski, U. Montanari, and

M. Haveraaen, eds., Proc. of 2nd Int. Conf. on Algebra and Coalgebra in Computer Science, CALCO 2007
(Bergen, Aug. 2007), v. 4624 of Lect. Notes in Comput. Sci., pp. 372–378. Springer, 2007.

[13] G. Malcolm. Behavioural equivalence, bisimulation, and minimal realisation. In M. Haveraaen, O. Owe,
and O.-J. Dahl, eds., Selected Papers from 11th Wksh. on Specification Abstract Data Types, Joint with 8th
Compass Wksh., ADT/COMPASS 1995 (Oslo, Sept. 1995), v. 1130 of Lect. Notes in Comput. Sci., pp. 359–
378. Springer, 1996.

[14] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci., 249(1):3–80, 2000.
[15] J. J. M. M. Rutten. A coinductive calculus of streams. Math. Struct. in Comput. Sci., 15(1):93–147, 2005.

85

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

Lower Bound for Evaluation of µν Fixpoint
Paweł Parys∗

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw
Banacha 2, PL-02-097 Warszawa, Poland

parys@mimuw.edu.pl

Abstract

We consider a fixpoint expressions µy.νx. f (x,y) over the lattice {0,1}n, where f : {0,1}2n →
{0,1}n is any monotone function. We study only algorithms for calculating these expressions using
f only as a black-box: they may only ask for the value of f for given arguments. We show that any
such algorithm has to do at least about n2 queries to the function f , namely Ω

(
n2

logn

)
queries.

1 Introduction

Fast evaluation of fixpoint expressions is a key problem in the fixpoint theory. We consider a special
form of expressions:

µxd .νxd−1 . . .µx2.νx1. f (x1, . . . ,xd)

(when d is even, and starting from νxd when d is odd). We call such expression µν(d, f). Moreover we
consider these expressions only over the lattice L = {0,1}n with the order defined by a1 . . .an ≤ b1 . . .bn

when ai ≤ bi for all i. The function f is an arbitrary monotone function f : Ld → L. Calculating the
value of µν(d, f) is already a very general problem. The problem of finding winning positions in a
parity game may be reduced to it in polynomial time (where n corresponds to the game graph size and d
to the number of priorities). The problem of solving parity games is polynomial time equivalent to the
non-emptiness problem of automata on infinite trees with the parity acceptance conditions [4], and to the
model checking problem of the modal µ-calculus (modal fixpoint logic) [3, 6].

Although these are very important problems and many people were working on them, no one could
show any polynomial time algorithm. Our goal is the opposite—to prove some lower bound. It may
be very difficult to show any algorithmic lower bound, especially because it is known that the problems
are in NP∩co-NP. In such situation the only possibility is to reformulate the problem slightly, so that it
becomes combinatorial. To achieve that we use a black-box model (or an oracle model) introduced in
[1]. Instead of arbitrary algorithms, which could analyze for example a formula defining f , we consider
only algorithms, that can only ask for values of f for given arguments. Moreover we are not interested
in their exact complexity, only in the number of queries to the function f . In other words we consider
decision trees: each internal node of the tree is labeled by an argument, for which the function f should
be checked, and each its child corresponds to a possible value of f for that argument. The tree has to
determine the value of the fixpoint expression µν(d, f): for each path from the root to a leaf there is at
most one possible value of µν(d, f) for all functions which are consistent with the answers on that path.
We are interested in the height of such trees, which justifies the following definition.

Definition 1. For any natural number d and finite lattice L we define num(d,L) as the minimal number
of queries, which has to be asked by any algorithm correctly calculating expression µν(d, f) basing only
on queries to the function f : Ld → L.

∗Partly supported by Polish government grant N206 008 32/0810.

86

mailto:parys@mimuw.edu.pl

Lower Bound for Evaluation of µν Fixpoint Parys

The most basic method of evaluating fixpoint expression is to use the observation that µx.g(x) =
gn(⊥); so it is enough to evaluate n times g on the previous result, starting from the minimal element
⊥. To get ν instead of µ , one should start from > instead of ⊥. This generalizes to d nested fixpoints
µν(d, f) and requires O(nd) queries to f ; see [5]. For some time no better algorithm was known. Then
an algorithm using only O(nbd/2c+1) queries to f was shown in [8] and [1], which was rather a surprise.
Recently some better algorithms for the modal µ-calculus and parity games were discovered, like [9]
working in time O(nd/3) or [7] working in time nO(

√
n). However these two algorithms use parity games

framework and do not translate to the black-box model. Here we see one of the limitations of our
model: there may exist fast algorithm, which uses a definition of f in some tricky manner, but is unable
to work when it can only evaluate f . The other limitation is that the number of monotone functions
definable by a short formula is only single exponential, while the number of all monotone functions
f : {0,1}nd → {0,1}n is double exponential. When we restrict only to functions definable by a short
formula it is possible that less queries would be needed.1 Beside of that, the following are very important
questions (following [1]): how good may we do using f only as a black-box? Is the complexity of about
nd/2 queries optimal? What is the optimal number of queries? If the answer will be rather high, we will
know that any fast algorithm for parity games and modal µ-calculus has to use different techniques. If
the answer will be rather low, it may also give some fast algorithm. We write ,,may” because there is no
implication in a formal sense: the decision tree with small number of queries may be very irregular and
it may take a lot of time to compute what the next query should be.

In this paper we consider only the case d = 2. We show that Ω

(
n2

logn

)
queries are necessary in that

case (which is almost n2). Our result is the following.

Theorem 2. For any natural n it holds num(2,{0,1}n) = Ω

(
n2

logn

)
.

This result is a first step towards solving the general question, for any d. It shows that in the black-box
model something may be proved. Earlier it was unknown even if for any d there are needed more than
nd queries. Note that num(1,{0,1}n) is n and that in the case when all d fixpoint operators are µ (instead
of alternating µ and ν) it is enough to do n queries. So the result gives an example of a situation where
the alternation of fixpoint quantifiers µ and ν is provably more difficult than just one type of quantifiers
µ or ν . Although it is widely believed that the alternation should be a source of algorithmic complexity,
the author is not aware of any other result showing this phenomenon, except the result in [2].

The paper is organized as follows. In Section 2 we reduce the problem from the lattice {0,1}n to
some more convenient lattice. In Section 3 we define a family of difficult functions f . In Section 4 we
finish the proof of Theorem 2.

Acknowledgment. The author would like to thank Igor Walukiewicz for suggesting this topic and
many useful comments.

2 Changing the Lattice

Instead of the lattice {0,1}n it is convenient to use a better one. Take the alphabet Γn consisting of letters
ai for 1 ≤ i ≤ n(n+1)

2 +1 and the alphabet Σn = {0,1}∪Γn. We introduce the following partial order on
it: the letters ai are incomparable; the letter 0 is smaller than all other letters; the letter 1 is bigger than
all other letters. We will be considering sequences of n such letters, i.e. the lattice is Σn

n. The order on
the sequences is defined as previously: a1 . . .an ≤ b1 . . .bn when ai ≤ bi for all i.

1This is not the case for d = 2; functions used in our lower bound proof are all definable by a boolean formula of size
polynomial in n.

87

Lower Bound for Evaluation of µν Fixpoint Parys

We formulate a general lemma, which allows to change a lattice in our problem. For any two lattices
L1,L2 we say that h : L1 → L2 is a homomorphism, when it preserves the order, i.e. x ≤ y implies
h(x)≤ h(y).

Lemma 3. Let L1,L2 be two finite lattices and enc : L1 → L2 and dec : L2 → L1 two homomorphisms
such that dec◦ enc = idL1 . Then num(d,L1)≤ num(d,L2).

Proof
In other words we should be able to use any algorithm calculating µν(d, f) in L2 to calculate µν(d, f)
in L1. Let f1 : Ld

1 → L1 be the unknown function in L1. We define f2 : Ld
2 → L2 as f2(x1, . . . ,xd) =

enc(f1(dec(x1), . . . ,dec(xd))). Note that f2 is a monotone function if f1 was monotone, since enc and
dec preserve the order.

Let ⊥1,⊥2,>1,>2 be the minimal and maximal elements in L1 and L2. For any x ∈ L1 we have
⊥2 ≤ enc(x), so dec(⊥2)≤ dec(enc(x)) = x, which means that dec(⊥2) =⊥1. Similarly dec(>2) =>1.

See that dec(µν(d, f2)) = µν(d, f1). This is true, because these fixpoint expressions may be replaced
by a term containing applications of f and minimal and maximal elements. This is done in a classic
way, we replace the fixpoint operators by a iterated nesting. The minimal required number of iterations
depends on the structure. Here we have only two structures, L1 and L2, so we may take the bigger of
the two minimal numbers. Hence we may use the same term in L1 and L2, the difference is if we use
f1 or f2, ⊥1 or ⊥2, >1 or >2. Then easy induction on the term structure shows that dec(µν(d, f2)) =
µν(d, f1), because dec(⊥2) =⊥1, dec(>2) =>1, dec(f2(x1, . . . ,xd)) = f1(dec(x1), . . . ,dec(xd)). So to
find µν(d, f1) it is enough to find µν(d, f2), which may be found for any f2 in num(d,L2) queries to
f2. To evaluate f2 in our case it is enough to do one query to f1. Hence µν(d, f1) may be found in
num(d,L2) queries (or maybe less queries in some other way). �

For the lattice Σn
n we have the following result, from which Theorem 2 follows:

Lemma 4. For any natural n it holds num(2,Σn
n)≥

n(n+1)
2 .

Proof (Theorem 2)
We will show how Theorem 2 follows from this lemma. Take k such that

(
2k
k

)
≥ n(n+1)

2 + 1. From

the Stirling formula follows that
(

2k
k

)
grows exponentially in k, so we may have k = O(logn). Take

m =
⌊ n

2k

⌋
. From Lemma 4 for m we see that num(2,Σm

m)≥ m(m+1)
2 = Ω

(
n2

logn

)
.

Now it is enough to use Lemma 3 to see that num(2,{0,1}n) ≥ num(2,Σm
m). We need to define

functions enc : Σm
m →{0,1}n and dec : {0,1}n → Σm

m. Each letter from Σm will be encoded in a sequence
of 2k letters from {0,1} in the following way: 0 is translated to the sequence of 2k zeroes, 1 to the
sequence of 2k ones, any of the letters ai is translated to some sequence of 2k bits, in which exactly k bits
are equal to 1. Because n≥m we have

(
2k
k

)
≥ m(m+1)

2 +1, so there are enough different such sequences
to encode all letters. We use this encoding to define enc(x): an i-th letter of x is encoded in the i-th
fragment of 2k bits and the final n−2km bits are set to zeroes. On the other hand to read an i-th letter of
the value of dec(y), we look at the i-th fragment of 2k bits: when it corresponds to one of the letters ai,
this ai is the result; otherwise the result is 0 or 1 depending on whether there are less than k ones in the
sequence or not. Note that dec is defined on all sequences, not only on results of enc. It is easy to see that
dec(enc(x)) = x for any x ∈ Σm

m and that both functions are homomorphisms (mainly because encodings
of different letters ai are incomparable). �

88

Lower Bound for Evaluation of µν Fixpoint Parys

3 Difficult Functions

In this section we define a family of functions used in a proof of Lemma 4. A function fz,σ : Σ2n
n → Σn

n
is parametrized by a sequence z ∈ Γn

n (which will be the result of µy.νx. fz,σ (x,y)) and by a permutation
σ : {1, . . . ,n}→ {1, . . . ,n} (which is an order in which the letters of z are uncovered). Note that z is from
Γn

n, not from Σn
n, so it can not contain 0 or 1, just the letters ai. Whenever z and σ are clear from the

context, we simply write f . In the following the i-th element of a sequence x ∈ Σn
n is denoted by x[i]. A

pair z,σ defines a sequence of values y0, . . . ,yn:

yk[i] =
{

z[i] for σ−1(i)≤ k
0 otherwise.

In other words yk is equal to z, but with some letters covered: they are 0 instead of the actual letter of z. In
yk there are k uncovered letters; the permutation σ defines the order, in which the letters are uncovered.
Using this sequence of values we define the function. In some sense the values of the function are
meaningful only for y = yk, we define them first (assuming yn+1 = yn):

f (x,yk)[i] =


0 if ∀ j>ix[j]≤ yk+1[j] and x[i] 6≥ yk+1[i] (case 1)
yk+1[i] if ∀ j>ix[j]≤ yk+1[j] and x[i]≥ yk+1[i] (case 2)
x[i] if ∃ j>ix[j] 6≤ yk+1[j] (case 3).

For any other node y we look for the lowest possible k such that y ≤ yk and we put f (x,y) = f (x,yk).
When such k does not exists (y 6≤ z), we put f (x,y)[i] = 1.

Lemma 5. The function f is monotone and µy.νx. f (x,y) = z.

Proof
First see what happens when we increase x: take x′ ≥ x. We want to have f (x′,y)[i] ≥ f (x,y)[i] for
each i. Whenever for x and x′ we are in the same case of the function definition, it is OK. Also when
for x we have an earlier case than for x′ it is OK (in particular when for x we have case 2, it holds
x′[i]≥ x[i]≥ yk+1[i]). On the other hand it is impossible, that for x′ we get an earlier case than for x (it is
easy to see looking at the conditions for choosing a case). Also when y 6≤ z, for both x and x′ we get the
same result 1.

Now see what happens, when we increase y: take y′ ≥ y. When for y′ there is y′ 6≤ z, we get a result
1, which is bigger than anything else. Otherwise the values yk and yk′ chosen for y and y′ satisfy yk′ ≥ yk,
so also yk′+1 ≥ yk+1. The argumentation that in such case f (x,yk′)[i] ≥ f (x,yk)[i] is identical as for the
change of x.

To calculate the fixpoint expression, first see that νx. f (x,yk) = yk+1. It follows immediately from the
definition: f (yk+1,yk) = yk+1 and for any x > yk+1 we get f (x,yk) 6= x, because f (x,yk) differs from x
on the last position i where x[i] > yk+1[i], we get there yk+1[i] instead of x[i]. The main fixpoint satisfies
µy.νx. f (x,y) = yn = z, because yk+1 > yk for all k < n and yn+1 = yn. �

4 The Proof

Now we will show that at least n(n+1)
2 queries are needed to calculate µy.νx. f (x,y), even if we allow as

f only functions from our family. The problem can be considered as a game between two players, we
call them an algorithm and an oracle. In each round the algorithm player asks a query to the function,
after what the oracle player chooses an answer (which is consistent with the previous answers). The
algorithm player wins if after n(n+1)

2 − 1 steps each function consistent with the answers has the same

89

Lower Bound for Evaluation of µν Fixpoint Parys

value of µy.νx. f (x,y). Otherwise the oracle player wins. We have to show a winning strategy for the
oracle player.

First see informally what may happen. Consider first a standard algorithm evaluating fixpoint expres-
sions. It starts from y = y0 = 0 . . .0 and x = 1 . . .1. Then it repeats x := f (x,y) until x stops changing,
in which case x = νx. f (x,y). For our functions it means that in each step the last 1 in x is replaced
by the corresponding letter of y1. The loop ends after n steps with x = y1. Then the algorithm does
y := x, x := 1 . . .1, and repeats the above until y stops changing. For any y = yk the situation is very
similar: in each step the last 1 in x is replaced by the corresponding letter of yk+1 (we may say that this
letter is uncovered).

In fact, by choosing appropriate x the algorithm may decide which letter of yk+1 he wants to uncover,
but always at most one. For the algorithm only the letter on which yk+1 differs from yk is important, as
he already knows all letters of yk. However the difference may be on any position on which yk has 0 (it
depends on σ). The oracle player may choose this position in the most malicious way: whenever the
algorithm player uncovers some letter, the oracle decides that this is not the letter on which yk and yk+1

differs. So the algorithm has to try all possibilities (all positions on which yk has 0), which takes n(n+1)
2

steps. He may also ask for some other y. It can give him any profit only if he accidentally guesses some
letters of z. However the oracle may always decide that the guess of the algorithm is incorrect (that the
value of z is different).

Now come to a more formal proof. We show a strategy for the oracle player. During the game we
(the oracle player) keep a variable cur (0≤ cur < n), which is equal to 0 at the beginning and is increased
during the game. Intuitively it means how many letters of z are already known to the algorithm player.
By s we denote the number of queries already asked (it increases by 1 after each query) and by slok the
number of queries asked for this value of cur (it increases by 1 after each query and is reset to 0 when
cur changes).

At every moment we keep a set F of functions consistent with all the answers till now (there may be
more consistent functions, but each function in our set has to be consistent). The set will be described by
a set of permutations Π and by sets of allowed values Ai ⊆ Γn, one for each coordinate 1 ≤ i ≤ n. The
sets should satisfy the following conditions:

1. for each i≤ cur there is only one value of σ(i) for σ ∈Π;

2. in Π there are permutations σ with at least n− cur− slok different values of σ(cur +1);

3. for each permutation σ ∈ Π when we take any other permutation σ ′ which agrees with σ on the
first cur +1 arguments (σ(i) = σ ′(i) for each 1≤ i≤ cur +1), we have σ ′ ∈Π as well;

4. for each σ ∈ Π and i ≤ cur there is only one value in Aσ(i) (note that thanks to condition 1, the
value σ(i) does not depend on the choice of σ);

5. for each σ ∈Π and i > cur there are at least n(n+1)
2 +1− s values in the set Aσ(i) (note that the set

{σ(i) : i > cur} does not depend on the choice of σ , as σ(i) for i≤ cur are fixed).

In the set F there are all functions fz,σ for which σ ∈Π and z[i] ∈ Ai for each i. We see that in particular
at the beginning all functions are in the set F . Note, that at each moment the value of ycur is fixed, i.e. is
the same for all functions in F (because σ(i) and z[σ(i)] are fixed for i≤ cur).

Now we specify how the answers are done for a query x,y. Whenever y ≤ yi for some i < cur, we
answer according to all the functions in our set F . The answer of each function is the same, as it depends
only on the value of yi+1 (for the smallest i such that y≤ yi), which is already the same for all functions.
Such question does not give any new knowledge to the algorithm player.

90

Lower Bound for Evaluation of µν Fixpoint Parys

Whenever y 6≤ ycur, we remove the value y[i] from the set Ai (only if it was there, in particular only if
y[i] ∈ Γn) for each i such that σ−1(i) > cur for any σ ∈Π (note that once again this condition is satisfied
for exactly the same i for every permutation in Π). All the conditions of F are still satisfied, as we
removed only one value from the sets Ai after one additional query was done. In other words we remove
all functions fz,σ , in which z[σ(i)] = y[σ(i)] for some i > cur. Then for each function from F we have
y 6≤ z (if y ≤ z then y[i] = 0 for each i with σ−1(i) > cur, which means that y ≤ ycur). So we reply to the
query by a sequence of ones, which is the case for all the functions in F . Intuitively this case talks about
a situation when someone tries to guess z (or its part) instead of gently asking for y = ycur. We prefer to
answer that his guess was incorrect and to eliminate all functions with z similar to the y about which he
asked.

Consider now the case when y ≤ ycur but y 6≤ ycur−1. Let ask be the greatest number such that
x[ask] 6≤ ycur[ask] (if there is no such number we take ask = 0). Intuitively the algorithm player asks
whether σ(cur+1) = ask; we prefer to answer NO, so he will have to try all the possibilities until he will
discover the value of σ(cur + 1). The first case is when in Π there are permutations with σ(cur + 1) 6=
ask. Note that this is true at least n− cur− 1 times for this cur due to condition 2. In such case we
remove from Π all the permutations with σ(cur +1) = ask and we answer according to all the functions
left in F . We have to argue that for each of them the answer is the same. On positions i < ask there is
always case 3, because x[ask] 6≤ ycur[ask] = ycur+1[ask] (the equality is true, because σ(cur +1) 6= ask).
On the positions i ≥ ask there is x[j] ≤ ycur[j] ≤ ycur+1[j] for j > i, so we fall into the first two cases.
For i = ask the result depends only on ycur+1[ask] which for all functions is equal to ycur[ask]. Consider
positions i > ask. When x[i] = 0 the answer is 0 in both cases 1 and 2 (we may get case 2 only when
ycur+1[i] = 0). When x[i] > 0 it has to be ycur+1[i] = x[i], as x[i] ≤ ycur[i] ≤ ycur+1[i] 6= 1, we get case 2
and we answer ycur+1[i] = x[i].

The last case is when all the permutations σ ∈ Π have σ(cur +1) = ask. Then we choose any letter
from Aask and we remove all other letters from Aask. In other words ycur+1 becomes fixed, so answers for
all the functions left in F are the same. We increase cur (when cur becomes equal to n, we fail). It is
easy to see, that all the conditions on the set F are still satisfied.

As already mentioned, before the last case holds there has to be n− cur− 1 earlier queries for this
cur (we increase cur after at least n− cur queries), so before n(n+1)

2 queries there is no danger that cur
becomes equal to n. Moreover we are sure that in F there are functions with two different value of z
(which is the result of the fixpoint expression): it is enough to take any σ from Π and then in Aσ(n) there
are at least two values (z[σ(n)] may be equal to both of them).

References

[1] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. R. Marrero. An improved algorithm for the evaluation
of fixpoint expressions. Theor. Comput. Sci., 178(1–2):237–255, 1997.

[2] A. Dawar and S. Kreutzer. Generalising automaticity to modal properties of finite structures. Theor. Comput.
Sci., 379(1–2):266–285, 2007.

[3] E. A. Emerson. Model checking and the mu-calculus. In N. Immerman and P. G. Kolaitis, eds., Proc. of
DIMACS Wksh. on Descriptive Complexity and Finite Models (Princeton Univ., Jan. 1996), v. 31 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pp. 185–214. AMS, 1997.

[4] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of µ-calculus. In C. Courcou-
betis, ed., Proc. of 5th Int. Conf. on Computer-Aided Verification, CAV ’93 (Elounda, June/July 1993), v. 697
of Lect. Notes in Comput. Sci., pp. 385–396. Springer, 1993.

[5] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-calculus (ex-
tended abstract). In Proc. of 1st Ann. IEEE Symp. on Logic in Computer Science, LICS ’86 (Cambridge, MA,
June 1986), pp. 267–278. IEEE CS Press, 1986.

91

Lower Bound for Evaluation of µν Fixpoint Parys

[6] E. Grädel, W. Thomas, and T. Wilke, eds. Automata, Logics, and Infinite Games: A Guide to Current Research,
v. 2500 of Lect. Notes in Comput. Sci. Springer, 2002.

[7] M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity games.
SIAM J. on Comput., 38(4):1519–1532, 2008.

[8] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An improved algorithm for the evaluation
of fixpoint expressions. In D. L. Dill, ed., Proc. of 6th Int. Conf. on Computer-Aided Verification, CAV ’94
(Stanford, CA, June 1994), v. 818 of Lect. Notes in Comput. Sci., pp. 338–350. Springer, 1994.

[9] S. Schewe. Solving parity games in big steps. In V. Arvind and S. Prasad, eds., Proc. of 27th Int. Conf.
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2007 (New Delhi, Dec.
2007), v. 4855 of Lect. Notes in Comput. Sci., pp. 449–460. Springer, 2007.

92

A Bilattice Based Fixed Point Semantics
for Integrating Imperfect Information

Daniel Stamate
Department of Computing, Goldsmiths, University of London

Lewisham Way, New Cross, London SE14 6NW, United Kingdom
d.stamate@doc.gold.ac.uk

Abstract

We present an approach to reasoning non-uniformly by default with uncertain, incomplete and
inconsistent information using sets of rules/extended logic programs in the context of logics with
a bilattice structure. A fixed point semantics for extended logic programs used in the process of
inference is described, along with its computational approach. We show how this theoretic approach
is applicable to the problem of integration of imperfect information coming from multiple sources.

1 Introduction

Information integration has received much attention for a number of year now in Database, Artificial
Intelligence, Logic Programming, Multimedia Information Systems, World Wide Web and other research
communities. Various approaches to information fusion have been proposed, adapted to the particular
research areas, as the integration of data in a distributed database or from different databases, or the
integration of information collected by an agent from other sources, or merging belief bases represented
using logic programs, or integrating information coming from different medium sources as text, sound
or image (as it is the case, for instance, in the query ”find the full description of albums containing music
played by piano and having elements of classical and jazz as genre”) or Web sources, etc.

In order to propose an approach to information integration, two main questions may arise: (1) How
is information coming from multiple sources combined?, and (2) Given the problems of possible con-
flicting information coming from mutually contradictory sources, of missing information coming from
incomplete sources, or of uncertain information coming from sources of limited reliability, what meaning
can one assign to the fused information (that is, what is the result of the integration)? The information
that is incomplete or totally or partially inconsistent or uncertain will be called imperfect information in
what follows.

With respect to the first question, the approach to the information integration that we propose in this
paper is based on the logic programming paradigm, as it uses inference rules to integrate information
in a logic based context. The logic rules we use, however, form extended logic programs as there is a
need to employ, apart operations as the conjunction ∧, the disjunction ∨ and the negation ¬, two more
operations, that can be easily given a particular meaning in information merging, called the consensus ⊗
and the collecting together operation ⊕, to be formally and most generally defined in the next section.

With respect to the second question, we first choose an appropriate formalism based on multiple
valued logics expressed by the concept of bilattice, that is very powerful in expressing the three aspects
of imperfect information, namely the uncertainty, the incompleteness and the inconsistency.

In order to illustrate the concept of bilattice, assume first that we want to express the truthness of an
information A. In the ideal case we can employ the logical values true or false, but in many situations
this approach is simplistic and not acceptable. If we use a degree between 0 and 1 instead of a classical
logical value, the approach is more appropriate in expressing uncertainty but less helpful in expressing
lack of information, or the presence of contradiction in information. Indeed, no value from [0,1] can
express, alone, incompleteness or inconsistency. A natural idea would then be to assign an information

93

mailto:d.stamate@doc.gold.ac.uk

A Bilattice Based Fixed Point Semantics Stamate

a pair 〈c,d〉 instead of one value, that would consist in a degree of confidence c and a degree of doubt d
in [0,1], which do not necessarily add up to 1 (otherwise the single value c would suffice and we would
be again in the previous case). In this setting 〈0,1〉 and 〈1,0〉, represent no confidence, full doubt, and
full confidence, no doubt, so they would correspond to the classical values f alse and true, respectively.
On the other hand 〈0,0〉 and 〈1,1〉, represent no confidence, no doubt, and full confidence, full doubt,
and they express a total lack of information or a total inconsistency, respectively. Two orders, namely
the truth and the information (or knowledge) orders denoted ≤t and ≤i, can naturally be defined on
the set of confidence-doubt pairs, denoted L C D and called the confidence-doubt logic [9], as follows:
〈x,y〉 ≤t 〈z,w〉 iff x ≤ z and w ≤ y, and 〈x,y〉 ≤i 〈z,w〉 iff x ≤ z and y ≤ w, where ≤ is the usual order
between reals. Intuitively speaking, an increase in the truth order corresponds to an increase in the
degree of confidence and a decrease in the degree of doubt, while an increase in the information order
corresponds to an increase in both degrees of confidence and doubt. The meet and join operations w.r.t.
≤t and≤i are denoted∧, ∨,⊗ and⊕, respectively. ∧ and∨ are the extensions of the classical conjunction
and disjunction, while⊗ and⊕ are two new operations with potential of use in information integration as
they naturally express the idea of consensus and of collecting together of two pairs of confidence-doubt
degrees. A natural extension of the classical negation is defined by ¬〈x,y〉 = 〈y,x〉. We conclude the
section by noting that the double structure of lattice induced by the two orders on L C D is the basis of
the general concept of bilattice introduced in [5].

2 Extended Logic Programs on Bilattices

Bilattices offer one of most capable frameworks to express, in the same time, the characteristics of the
information to be incomplete, totally or partially inconsistent or uncertain. In addition, bilattices have an
algebraic structure that allows to express approaches built on this concept in an elegant manner, and to
facilitate elegant and often shorter proofs of results.

Definition 1. A bilattice is a triple 〈B,≤t ,≤i〉, where B is a nonempty set, and ≤t and ≤i are partial
orders each giving B the structure of a complete lattice.

Given the bilattice B, join and meet operations under ≤t are denoted ∨ and ∧, called extended disjunc-
tion and conjunction, and join and meet operations under ≤i are denoted ⊕ and ⊗, called collecting
together and consensus, respectively. The greatest and least elements under ≤t are denoted true and
f alse, and the greatest and least elements under ≤i are denoted > and ⊥. A bilattice has a negation,
denoted ¬, if ¬ is a unary operation which is antimonotone w.r.t. the truth order and monotone w.r.t. the
information order. In addition ¬true = f alse, ¬ f alse = true, ¬⊥=⊥ and ¬>=>.

Note that L C D that we described in the previous section is a bilattice whose binary operations can
be expressed as follows:

〈x,y〉 ∧ 〈z,w〉= 〈min(x,z),max(y,w)〉, 〈x,y〉 ∨ 〈z,w〉= 〈max(x,z),min(y,w)〉,
〈x,y〉 ⊗ 〈z,w〉= 〈min(x,z),min(y,w)〉, 〈x,y〉 ⊕ 〈z,w〉= 〈max(x,z),max(y,w)〉.

In what follows we consider only bilattices for which all the distributive laws hold, an example of whom
is L C D . These bilattices are called distributive, and it was proven that their non-unary operations of
finite or infinite arity, are monotone w.r.t. both the truth and the information orders [2].

Fitting [2] extended the notion of logic program, that we will call extended program, to bilattices as
follows. Let B be a bilattice, whose elements will be referred to as logical values.

Definition 2. (1) A formula is an expression built up from literals and elements of B, using∧,∨,⊗,⊕,¬,∃,∀.
(2) A rule r is of the form H(v1, ...,vn)← F(v′1, ...,v

′
m) where the atomic formula H(v1, ...,vn) is the head,

94

A Bilattice Based Fixed Point Semantics Stamate

and the formula F(v′1, ...,v
′
m) is the body. It is assumed that the free variables of the body are among

v1, ...,vn. (3) A program is a finite set of rules assuming that no predicate letter appearing in the head of
more than one rule.

Note that the restrictions/assumptions from (2) and (3) in the above definition cause no loss of gen-
erality, since any program as above, but without these restrictions, can be rewritten into another program
respecting the restrictions [2]. On the other hand, any classical logic program can be written in the form
described in definition 2, if one employs ∧, ∨ and true only, from the operations and elements of the
bilattice B, which obviously embeds the classical bivalued logic.For technical reasons, from now on, we
consider any extended program to be instantiated (that is, all the free variables are replaced by ground
terms). Note that, due to the way extended programs have been defined, their instantiated versions have
no more than one rule with the same head.

Example 1. Consider the following set of rules / extended program in the context of the bilattice L C D .
A← B⊕F ; B←¬E;
D← B∨C; E← 〈0.7,0.3〉;
C←C⊗E.

Intuitively speaking, the information represented by E is assigned a confidence of 0.7 and a doubt of 0.3,
as this fact is specified. B is the contrary of this information so it is assigned a confidence of 0.3 and a
doubt of 0.7. F is an information whose confidence and support cannot be derived from the program as
there is no rule defining F, so we assign F a confidence and doubt given by the reliability of the source
providing it. That is, a default confidence and support will be assigned to F, specific to that source, as for
instance a confidence of 0 and a doubt of 1 in a pessimistic, ”not believing that source at all”, approach,
or a confidence of 1 and a doubt of 0 in an optimistic, ”believing that source”, approach. Let us assume
the pessimistic approach for this source. C is information that should agree with E, as their consensus
should be C. In particular C can be assigned a degree 0 of confidence and a degree 0 of doubt, if we are
completely skeptical about the reliability of its source (that is, that source is not considered reliable, nor
unreliable, so any default degrees of confidence and doubt from an information coming from that source
will be 0 and 0 respectively). D is the information that is assigned the largest confidence and the least
doubt from the confidence and doubt degrees of B and C, so 0.3 and 0, respectively. Note that C and D
are incomplete as their degrees of confidence and doubt add up to less than 1. Finally A collects together
the information B and F, so it will be assigned a confidence of 0.3 and a doubt of 1, so A is a partially
inconsistent information as its confidence and doubt degrees add up to more than 1.

Roughly speaking, the example above illustrates the computation of the meaning/semantics of an ex-
tended program. In particular, the atoms (representing information to be integrated by rules) are assigned
logical values from the underlying bilattice, process that needs the concept of interpretation and default
interpretation.

Formally speaking, an interpretation is a mapping that assigns a logical value to each atom from
the Herbrand base. In particular, if an atom cannot be derived from the rules then a default value, not
necessarily the same for all atoms, is assigned to it. This default value is related to the degrees of
reliability of the sources the information represented by the atom comes from. For instance if a source
has a reliability of 90 percent, then the atom A, representing information coming from the source, and
not being derived by any rule, is assigned by default a confidence of 0.9 and a doubt of 0.1. Formally
speaking, a default interpretation is an interpretation. It is to be used to compensate the incompleteness
of information derived using the program rules.

The derivation of information intuitively illustrated in the example above, will be formalised in the
following section. In particular, as it is the case in most logic programming based approaches, the
information deduction process will be expressed in terms of application of operators specific to the

95

A Bilattice Based Fixed Point Semantics Stamate

program, until no new information is obtained, that is, until a fixed point is reached. However, in our
framework one should take into account also the particularities of the underlying logic provided by a set
of values ordered w.r.t. a truth order and an information order, and the process of deduction by default
regarding an atom when there is no rule to apply for that atom.

3 Program Operators and Fixed Point Semantics

The following defines the order ≤p and naturally extends the truth and information orders to the set of
interpretations denoted by IntP.

Definition 3. If I and J are interpretations then
(1) I ≤t J if I(A)≤t J(A)
(2) I ≤i J if I(A)≤i J(A)
(3) I ≤p J if I(A) 6=⊥ implies I(A) = J(A)
for any ground atom A.

The interpretations can be extended to closed formulas (i.e. formulas not containing free variables)
as follows: I(X ∧Y) = I(X)∧ I(Y), and similarly for the other operations of L C D , I((∃x)F(x)) =∨

s∈GT I(F(s)), and I((∀x)F(x)) =
∧

s∈GT I(F(s)), where GT stands for the set of all ground terms. If
I(B) = β we say that the formula B evaluates to the logical value β with respect to I. However, in some
cases we can find out the value a closed formula evaluates to, no matter if some atoms are assigned the
value ⊥ - let us call them underdefined, thus the following concept:

Definition 4. The closed formula B ultimately evaluates to the logical value β w.r.t. interpretation I,
denoted by B≡I β , if J(B) = β for any interpretation J s.t. I ≤p J.

Let I> be the interpretation obtained from I by assigning the value > to any underdefined atom. We
have B≡I β iff I(B) = I>(B) = β .

The first inference operator assigned to an extended program P, called the production operator de-
noted ΦP and defined below, intuitively corresponds to the activation of the program rules:

ΦP(I)(A) = β if (∃A← B ∈ P and B≡I β), or
⊥, otherwise.

The second type of inference assumes the use of a fixed interpretation D called the default interpretation.
Roughly speaking, the value of each atom A in the default interpretation is seen as being derived from
the reliability degrees of the sources the information represented by A is coming from. For instance
if two sources consisting in two medical studies found evidence, based on statistical tests with a 0.05
significance level, that medication m is effective in treating ailment a, while the other that the evolution of
the ailment a is independent of whether or not the medication m was administered to the tested patients,
then the atom E f f ective(m,a) would be assigned the partially inconsistent value 〈0.95,0.95〉 in the
interpretation D . This value will be used whenever no other value can be inferred for this atom from the
program.

We introduce now an intermediary operator called the refining operator, denoted by ΨP, whose role
is to refine an arbitrary default information X (part of the interpretation D), in the sense that X either has
to safely complete the information I obtained by activating the rules, in which case X is not modified by
ΨP, or has to be modified into a new interpretation ΨP(X , I) that safely completes I. Formally,

ΨP(X , I) = Rev(X ,ΦP(Rev(X , I)⊕ I))

96

A Bilattice Based Fixed Point Semantics Stamate

where Rev(X ,J) is an interpretation X ′ s.t. X ′(A) = X(A) for any ground atom A for which either J(A) =
⊥ or X(A) = J(A), and X ′(A) =⊥ for any other ground atom A. We say that X ′ is the revision of X w.r.t.
J.

Note that, by employing the refining operator, we wish to obtain the “best” default information X
used to complete the interpretation I. Formally, we have the following requirements: (1) X ≤p D ; (2)
X = ΨP(X , I); and (3) under the previous two conditions X is maximal w.r.t. ≤p. Roughly speaking X is
to be a part of the default interpretation D (condition 1), that, when it is revised by the sure information
encoded in I and then is further revised by the information that is deducted using the rules applied to I
completed with X , it is stable, that is, it does not change to refinement (condition 2). In addition X is
supposed to complete as much as possible the information encoded in I (condition 3). That is, we are
interested in the maximal fixed points of the operator λXΨP(X , I) that are parts of D , which we call
actual default interpretations with respect to I and D . We show below, via algebraic methods, that there
exists a unique actual default interpretation w.r.t. I and D .

Let (S,≤) be a complete semilattice. We define a diagonal contraction on S as being a binary operator
T ′ : S2→ S that satisfies T ′(X ,X)≤ X for any X ∈ S. We provide the following useful lemmas.

Lemma 1. If T is a monotone operator defined on the complete semilattice (S,≤) the following hold:
(1) T has a least fixed point w.r.t. ≤.
(2) if Y is an element of S s.t. T (Y) ≤ Y then T has a greatest fixed point X below Y . Moreover X can
be obtained as the limit of the following sequence: X0 = Y , Xn = T (Xn−1) if n is a successor ordinal and
T (Xn) = in f≤,m<nT (Xm) if n is a limit ordinal.

Lemma 2. Let T ′ be a binary operator defined on the complete semilattice (S,≤) which is monotone
in its first argument and antimonotone in its second argument and is a diagonal contraction. If Y is an
arbitrary element of S then T ′ has a greatest fixed point X = T ′(X ,X) below Y . Moreover X can be
obtained as the limit of the following sequence: X0 = Y , Xn = T ′(Xn−1,Xn−1) if n is a successor ordinal
and T (Xn) = in f≤,m<nT ′(Xm,Xm) if n is a limit ordinal.

We have the following properties of the production and the refining operators.

Proposition 1. ΦP is monotone w.r.t. ≤i and ≤p orders.

Let Θ(X ,Y, I) = Rev(X ,ΦP(Rev(Y, I)⊕ I)). Obviously ΨP(X , I) = Θ(X ,X , I). We have the follow-
ing:

Lemma 3. (λX ,λY)Θ(X ,Y, I) is monotone in its first argument and antimonotone in its second argu-
ment and is a diagonal contraction w.r.t. ≤p.

As a consequence of Lemmas 2 and 3 we get:

Proposition 2. (λX)ΨP(X , I) has a greatest fixed point below D w.r.t. ≤p, denoted by De f D
P (I).

Note that Proposition 2 involves that De f D
P (I) is the unique actual default interpretation, while

Lemma 2 provides a means of computation for De f D
P (I) consisting in starting with the default inter-

pretation D and iterating the operator (λX)ΨP(X , I) until a fixed point is reached. We call De f D
P the

default operator, as it is obvious that it reflects the application of the inference by default.
The two types of inference described above are now combined via a new operator, denoted ΓP and

called the integrating operator. Formally ΓP(I) = ΦP(I)⊕De f D
P (I). Roughly speaking, given an inter-

pretation I encoding the information inferred from the program so far, ΓP(I) encodes the new information
currently inferred from the program.

Roughly speaking, in order to generate the information that can be derived from the extended pro-
gram P we start with the least degree of information characterized by an interpretation I0 in which all

97

A Bilattice Based Fixed Point Semantics Stamate

ground atoms are underdefined, denoted by Const⊥ (i.e. nothing is known). We apply the two types
of inference to the current information, which corresponds to an application of ΓP operator, and we get
a new interpretation I1. This process is continued until nothing changes, that is, until a fixed point is
reached. Formally we define the sequence S as follows:

I0 = Const⊥,
In = ΓP(In−1) for a successor ordinal n≥ 1,
In = in f≤p,m<nIm for n a limit ordinal.

We have:

Theorem 1. The following hold:
(1) S is increasing w.r.t. ≤p order (and thus w.r.t. ≤i) and reaches a limit denoted by s.
(2) ΓP(s) = s
(3) for any x s.t. ΓP(x) = x we have s≤i x.

Thus s is the least fixed point of ΓP, and represents the minimal information that can be inferred
from the extended program P completed with the default information D . We chose s to designate the
semantics of P. Note that any fixed point of ΓP is deductively closed w.r.t. the program P and the default
interpretation D , and the two types of inference. Computationally speaking, we have:

Proposition 3. If the program P does not contain any functional symbol, the semantics of P can be
generated by iterative application of the integration operator in a finite number of steps , even if the
underlying bilattice is infinite.

Lemma 4. If Values(P) is the set of logical values appearing in the program P, and Closure(S) is the
closure of the set of logical values from a subset S of the bilattice B, to which one adds the elements
true, f alse, >, and ⊥, w.r.t. the negation and the finite and infinite join and meet operations of B, then
Closure(Values(P)) is a finite bilattice.

The proof of Proposition 3 is based on Theorem 1 and Lemma 4. Indeed, note that the logical values
of any atom in the process of the computation of the semantics of P are elements of Closure(Values(P)),
and are obtained as an increasing sequence w.r.t. ≤p, and thus the evaluation of the semantics of P
finishes in a finite number of steps since the Herbrand base is also finite.

4 Related Work

Our approach can be related in the first instance to other works regarding reasoning under uncertainty
based on multivalued logics, in particular on bilattices, as those authored by Fitting. [3] defined the (mul-
tivalued) stable models for extended programs in bilattices that generalize the concept of stable models
in the conventional bivalued logic [4]. We show below that if we consider the default interpretation D
assigning the value f alse to any ground atom, the semantics of P defined by our approach coincides with
Fitting’s multivalued stable model that has the least degree of information:

Proposition 4. Let P be an extended program considered on the bilattice B, and mstable(P) be its
multivalued stable model, as defined in [3], which is the lowest w.r.t. the information order. Then the
semantics of P w.r.t. the default interpretation D coincides with mstable(P).

We show also that our semantics captures the α-fixed models of extended programs on bilattices,
introduced by the author in [7]. For different logical values α , in particular false, true and ⊥, the α-
models provide various meanings to the same program, depending on how one chooses to complete

98

A Bilattice Based Fixed Point Semantics Stamate

the missing information by adopting a pessimistic, optimistic, or skeptical approach respectively. It
was proven in [7] that α-fixed models capture successful conventional semantics as the well-founded
semantics [10], the three-valued stable semantics [8], the bi-valued stable semantics [4] and the Kripke-
Kleene semantics [1]. Thus the semantics for information integration presented in this work is a natural
extension of the above successful conventional bi-valued or three-valued semantics of conventional logic
programs.

Proposition 5. Given an extended program P considered on the bilattice B, for any logical value α

from B, the α-fixed model of P, as defined in [7], coincides with the semantics of P w.r.t. the default
interpretation that uniformly assigns the value α to any ground atom, as defined in the current approach.

We are currently studying how the semantics defined for information integration in this approach,
strongly related to the multivalued stable models (that in turn generalize the conventional stable models),
can be related to recent work, as for instance [6], which provides a logic programming based approach
making use of a program semantics based on stable models, for merging belief bases. We currently
investigate how the two approaches integrating information/beliefs and their corresponding program se-
mantics can be compared, given the link with the stable model concept, although the present framework
seems more general as based on multivalued logics.

References
[1] M. C. Fitting. A Kripke-Kleene semantics for logic programs. J. of Logic Program., 2(4):295–312, 1985.
[2] M. C. Fitting. Bilattices and the semantics of logic programming. J. of Logic Program., 11(1–2):91–116,

1991.
[3] M. C. Fitting. Fixpoint semantics for logic programming—a survey. Theor. Comput. Sci., 278(1–2):25–51,

2002.
[4] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A. Kowalski and

K. A. Bowen, eds., Proc. of 5th Int. Conf. and Symp. on Logic Programming (Washington, DC, Aug. 1988),
pp. 1070–1080. MIT Press, 1988.

[5] M. L. Ginsberg. Multivalued logics: a uniform approach to reasonning in artificial intelligence. Computa-
tional Intelligence, 4:265–316, 1988.

[6] J. Hue, O. Papini, and E. Würbel. Merging belief bases represented by logic programs. In C. Sossai and
G. Chemello, eds., Proc. of 10th European Conference on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, ECSQARU 2009 (Verona, July 2009), v. 5590 of Lect. Notes in Artif. Intell., pp. 371–
382. Springer, 2009.

[7] Y. Loyer, N. Spyratos, and D. Stamate. Parameterised semantics for logic programs—a unifying framework.
Theor. Comput. Sci., 308(1–3):429–447, 2003.

[8] T. C. Przymusinski. The well-founded semantics coincides with the three-valued stable semantics. Fundam.
Inform., 13(4):445–463, 1990.

[9] D. Stamate. Information representation through extended logic programs in bilattices. In B. Bouchon-
Meunier et al., eds., Uncertainty and Intelligent Information Systems, pp. 419–432. World Scientific, 2008.

[10] A. van Gelder, K. S. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs. J. of
ACM, 38(3):620–650, 1991.

99

Fixed Points on Partial Randomness
Kohtaro Tadaki∗

Research and Development Initiative, Chuo University
JST CREST

1–13–27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
tadaki@kc.chuo-u.ac.jp

Abstract

Algorithmic information theory (AIT, for short) is a theory of program-size and algorithmic ran-
domness. One of the primary concepts of AIT is the Kolmogorov complexity K(s) of a finite binary
string s, which is defined as the length of the shortest binary program for a universal decoding algo-
rithm to output s. In this paper, we report on a quite new type of fixed point in computer science,
called a fixed point on partial randomness. In the research of AIT, it is important to consider the
notion of the compression rate of a real T , which is defined as the real limn→∞ K(T�n)/n, where T�n
is the first n bits of the base-two expansion of T . The notion of the partial randomness of a real is a
stronger representation of the compression rate. Our fixed point theorems on partial randomness give
sufficient conditions for a real T ∈ (0,1) to satisfy that the partial randomness of T equals to T and
therefore the compression rate of T equals to T . The fixed point theorems are obtained in the frame-
work of the statistical mechanical interpretation of AIT developed by our works [K. Tadaki, Local
Proceedings of CiE 2008, pp. 425–434, 2008] and [K. Tadaki, Proceedings of LFCS’09, Springer’s
LNCS, vol. 5407, pp. 422–440, 2009]. As an original contribution of this paper, we present a simple
and self-contained proof of the fixed point theorem on partial randomness.

1 Introduction and Summary

Algorithmic information theory (AIT, for short) is a framework to apply information-theoretic and prob-
abilistic ideas to recursive function theory. One of the primary concepts of AIT is the Kolmogorov
complexity (or program-size complexity) K(s) of a finite binary string s, which is defined as the length of
the shortest binary input for a universal decoding algorithm U , called an optimal prefix-free machine, to
output s. By the definition, K(s) is thought to represent the amount of randomness contained in s, which
cannot be captured in a computational manner. In particular, the notion of Kolmogorov complexity plays
a crucial role in characterizing the randomness of an infinite binary string, or equivalently, a real.

In this paper, we report on a quite new type of fixed point in computer science, called a fixed point
on partial randomness [15, 16]. In the research of AIT, it is important to consider the notion of the
compression rate of a real α , which is defined as the real limn→∞ K(α�n)/n, where α�n is the first n bits
of the base-two expansion of α . The notion of the partial randomness of a real is a stronger representation
of the compression rate. The fixed point theorems on partial randomness give a sufficient condition for
a real T ∈ (0,1) to be a fixed point on partial randomness, i.e., to satisfy that the partial randomness of
T equals to T .1 One form of the fixed point theorems on partial randomness is presented as follows: For
every T ∈ (0,1), if Z(T) is a computable real, then the partial randomness of T equals to T , and therefore
the compression rate of T equals to T , i.e.,

lim
n→∞

K(T�n)
n

= T, (1)

∗The work of the author was supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (20540134), by SCOPE of
the Ministry of Internal Affairs and Communications of Japan, and by CREST of the Japan Science and Technology Agency.

1The fixed point theorems on partial randomness were called fixed point theorems on compression rate in [15].

100

mailto:tadaki@kc.chuo-u.ac.jp

Fixed Points on Partial Randomness Tadaki

where Z(T) is defined by

Z(T) := ∑
U(p) is defined

2−
|p|
T . (2)

Intuitively, we might interpret the meaning of (1) as follows: Consider imaginarily a file of infinite
size whose content is

“The compression rate of this file is 0.100111001”

When this file is compressed, the compression rate of this file actually equals to 0.100111001 , as
the content of this file says. This situation is self-referential and forms a fixed point.

The fixed point theorems on partial randomness are obtained in the framework of the statistical me-
chanical interpretation of AIT developed by the works [15, 16]. In the development of the interpretation,
we introduced the notion of thermodynamic quantities at temperature T , such as partition function Z(T),
free energy F(T), energy E(T), and statistical mechanical entropy S(T), into AIT. These quantities are
real functions of a real argument T > 0, and are defined based on the halting set of the optimal prefix-free
machine U , like in (2). We proved that if T is a computable real with 0 < T < 1 then, for each of the ther-
modynamic quantities at temperature T , the partial randomness of its value equals to T , and therefore the
compression rate of its value equals to T . Thus, the temperature T plays a role as the partial randomness
of all the thermodynamic quantities in the statistical mechanical interpretation of AIT. Furthermore, we
showed that this situation holds for the temperature T itself, which is a thermodynamic quantity of itself
in thermodynamics and statistical mechanics. Namely, we proved the fixed point theorems on partial
randomness presented above, where the computability of Z(T) gives a sufficient condition for T ∈ (0,1)
to be a fixed point on partial randomness. In addition, we showed that the computability of each of the re-
maining thermodynamic quantities F(T), E(T), and S(T) also gives the sufficient condition. Moreover,
based on the “statistical mechanical” relation F(T) = −T log2 Z(T), we showed that the computability
of F(T) gives completely different fixed points from the computability of Z(T).

The paper is organized as follows. We begin in Section 2 with some preliminaries to AIT and partial
randomness. In Section 3, we give the definitions of the thermodynamic quantities in AIT and investigate
their properties on partial randomness. The fixed point theorems on partial randomness are presented in
Section 4. As an original contribution of this paper, in Section 5 we present a simple and self-contained
proof of the fixed point theorem on partial randomness by Z(T) stated above. We refer the reader to our
original papers [15, 16] for the detail of this work and its related topics.

2 Preliminaries

We first review some basic notation and definitions which will be used in this paper. N = {0,1,2,3, . . .}
is the set of natural numbers, and N+ is the set of positive integers. Q is the set of rationals, and R
is the set of reals. {0,1}∗ = {λ ,0,1,00,01,10,11,000, . . .} is the set of finite binary strings, where λ

denotes the empty string. For any s ∈ {0,1}∗, |s| is the length of s. A subset V of {0,1}∗ is called
prefix-free if no string in V is a prefix of another string in V . It is easy to show that every prefix-free set
V ⊂ {0,1}∗ satisfies the so-called Kraft inequality ∑s∈V 2−|s| ≤ 1. For any partial function f , the domain
of definition of f is denoted by dom f . We write “r.e.” instead of “recursively enumerable.” A real α is
called computable if there exists a total recursive function f : N+ →Q such that |α − f (n)|< 1/n for all
n ∈N+. For any α ∈R and n ∈N+, we denote by α�n∈ {0,1}∗ the first n bits of the base-two expansion
of α −bαc with infinitely many zeros, where bαc is the greatest integer less than or equal to α . For
example, in the case of α = 5/8, α�6= 101000.

In what follows we concisely review some definitions and results of AIT. For the detail, see [3, 4,
8, 5]. A prefix-free machine is a partial recursive function M : {0,1}∗ → {0,1}∗ such that domM is a

101

Fixed Points on Partial Randomness Tadaki

prefix-free set. For any prefix-free machine M and any s∈{0,1}∗, KM(s) is defined by KM(s) = min{|p| |
p ∈ {0,1}∗ & M(p) = s} (may be ∞). A prefix-free machine U is said to be optimal if for each prefix-
free machine M there exists c ∈ N with the following property; if p ∈ domM, then there is q ∈ domU
for which U(q) = M(p) and |q| ≤ |p|+ c. There exists an optimal prefix-free machine. We choose a
particular optimal prefix-free machine U as the standard one for use, and define K(s) as KU(s), which
is referred to as the Kolmogorov complexity of s or the program-size complexity of s. It follows that for
every prefix-free machine M there exists c ∈ N such that, for every s ∈ {0,1}∗,

K(s)≤ KM(s)+ c. (3)

Based on this we can show that there exists c ∈ N such that, for every s 6= λ ,

K(s)≤ |s|+2log2 |s|+ c. (4)

Using (3), it is also easy to show that, for every partial recursive function Ψ : {0,1}∗ → {0,1}∗, there
exists c ∈ N such that, for every s ∈ domΨ,

K(Ψ(s))≤ K(s)+ c. (5)

An element of domU is called a program for U .
Let T be an arbitrary real with 0 < T ≤ 1. In the work [14], we introduced several notions of the

partial randomness of a real by parameterizing the notions of randomness of a real by a real T , as follows.
Let α ∈ R. We say that α is weakly Chaitin T -random if there exists c ∈ N such that T n− c ≤ K(α�n)
for all n ∈ N+. On the other hand, we say that α is T -compressible if K(α�n) ≤ T n + o(n), which is
equivalent to limsupn→∞ K(α�n)/n ≤ T . Thus, if α is weakly Chaitin T -random and T -compressible,
then

lim
n→∞

K(α�n)
n

= T. (6)

The left-hand side of (6) is referred to as the compression rate of a real α in general. Note, however,
that (6) does not necessarily imply that α is weakly Chaitin T -random. Thus, the notion of partial
randomness is a stronger representation of the compression rate. We say that α is Chaitin T -random if
limn→∞ K(α�n)−T n = ∞. Obviously, if α is Chaitin T -random, then α is weakly Chaitin T -random.
However, in 2005 Reimann and Stephan [9] showed that, in the case of T < 1, the converse does not
necessarily hold.

3 Thermodynamic Quantities in AIT

We introduce the notion of thermodynamic quantities into AIT in the following manner.
In statistical mechanics, the partition function Zsm(T), free energy Fsm(T), energy Esm(T), and en-

tropy Ssm(T) at temperature T are given as follows:

Zsm(T) = ∑
x∈X

e−
Ex

kBT , Fsm(T) =−kBT lnZsm(T),

Esm(T) =
1

Zsm(T) ∑
x∈X

Exe−
Ex

kBT , Ssm(T) =
Esm(T)−Fsm(T)

T
,

(7)

where X is a complete set of energy eigenstates of a quantum system and Ex is the energy of an energy
eigenstate x. The constant kB is called the Boltzmann Constant, and the ln denotes the natural logarithm.2

2For the thermodynamic quantities in statistical mechanics, see e.g. Chapter 16 of [1]. To be precise, the partition function
is not a thermodynamic quantity but a statistical mechanical quantity.

102

Fixed Points on Partial Randomness Tadaki

We introduce the notion of thermodynamic quantities into AIT by performing Replacements 1 below for
the thermodynamic quantities (7) in statistical mechanics.

Replacements 1.

(i) Replace the complete set X of energy eigenstates x by the set domU of all programs p for U.

(ii) Replace the energy Ex of an energy eigenstate x by the length |p| of a program p.

(iii) Set the Boltzmann Constant kB to 1/ ln2.

For that purpose, we first choose a particular recursive enumeration p1, p2, p3, p4, . . . of the infinite r.e. set
domU as the standard one for use throughout the rest of this paper.3 Then, motivated by the formulae
(7) and taking into account Replacements 1, we introduce the notion of thermodynamic quantities into
AIT as follows.

Definition 3.1 (thermodynamic quantities in AIT, [15]). Let T be any real with T > 0.

(i) The partition function Z(T) at temperature T is defined as limk→∞ Zk(T) where

Zk(T) =
k

∑
i=1

2−
|pi|
T .

(ii) The free energy F(T) at temperature T is defined as limk→∞ Fk(T) where

Fk(T) =−T log2 Zk(T).

(iii) The energy E(T) at temperature T is defined as limk→∞ Ek(T) where

Ek(T) =
1

Zk(T)

k

∑
i=1

|pi|2−
|pi|
T .

(iv) The statistical mechanical entropy S(T) at temperature T is defined as limk→∞ Sk(T) where

Sk(T) =
Ek(T)−Fk(T)

T
.

Since domU is prefix-free, we first see that the Kraft inequality Z(1) ≤ 1 holds. The real Z(1)
is precisely a Chaitin Ω number introduced by Chaitin [3]. For every T ∈ (0,1], Z(T) converges and
Z(T)≤ 1 since 2−|pi|/T ≤ 2−|pi|.

Theorem 3.2 (properties of Z(T) and F(T), [14, 15]). If T is a computable real with 0 < T ≤ 1, then
each of Z(T) and F(T) converges and is weakly Chaitin T -random and T -compressible.

Theorem 3.3 (properties of E(T) and S(T), [15]). If T is a computable real with 0 < T < 1, then each
of E(T) and S(T) converges and is Chaitin T -random and T -compressible.

The above two theorems show that if T is a computable real with T ∈ (0,1) then the temperature
T equals to the partial randomness (and therefore the compression rate) of the values of all the ther-
modynamic quantities in Definition 3.1. Note that the weak Chaitin T -randomness in Theorems 3.2 is
strengthen to the Chaitin T -randomness in Theorems 3.3.

3Actually, the enumeration {pi} can be chosen quite arbitrarily, and the results of this paper are independent of the choice
of {pi}. This is because the sum ∑

k
i=1 2−|pi|/T and ∑

k
i=1 |pi|2−|pi|/T in Definition 3.1 are positive term series and converge as

k → ∞ for every T ∈ (0,1).

103

Fixed Points on Partial Randomness Tadaki

4 Fixed Point Theorems on Partial Randomness

In statistical mechanics or thermodynamics, among all thermodynamic quantities one of the most typical
thermodynamic quantities is temperature itself. Inspired by this fact in physics and by the observation
in the previous section that the temperature T equals to the partial randomness of the values of the ther-
modynamic quantities in the statistical mechanical interpretation of AIT, the following question arises
naturally: Can the partial randomness of the temperature T equal to the temperature T itself in the statis-
tical mechanical interpretation of AIT ? This question is rather self-referential. However, we can answer
it affirmatively in the following form.

Theorem 4.1 (fixed point theorem by Z(T), [15]). For every T ∈ (0,1), if Z(T) is computable, then T is
weakly Chaitin T -random and T -compressible, and therefore limn→∞ K(T�n)/n = T .

Theorem 4.1 is just a fixed point theorem on partial randomness, where the computability of the
value Z(T) gives a sufficient condition for a real T ∈ (0,1) to be a fixed point on partial randomness.
Thus, the above observation that the temperature T equals to the partial randomness of the values of
the thermodynamic quantities in the statistical mechanical interpretation of AIT is further confirmed. In
addition, we can show that fixed point theorems of the same form as Theorem 4.1 hold also for the free
energy F(T), energy E(T), and statistical mechanical entropy S(T), as follows. Thus we confirm the
above observation much further.

Theorem 4.2 (fixed point theorem by F(T), [16]). For every T ∈ (0,1), if F(T) is computable then T is
weakly Chaitin T -random and T -compressible.

Theorem 4.3 (fixed point theorem by E(T), [16]). For every T ∈ (0,1), if E(T) is computable then T is
Chaitin T -random and T -compressible.

Theorem 4.4 (fixed point theorem by S(T), [16]). For every T ∈ (0,1), if S(T) is computable then T is
Chaitin T -random and T -compressible.

Note that the weak Chaitin T -randomness of T in Theorems 4.1 is strengthen to the Chaitin T -
randomness of T in Theorems 4.3 and 4.4. Theorem 4.1 will be proved in Section 5 in a self-contained
manner. Since the function Z(T) of T is monotonically increasing and continuous on (0,1), and the set
of all computable reals is dense in R, the following theorem holds for the sufficient condition of Theorem
4.1. The exactly same theorem holds for each of F(T), E(T), and S(T) also [16].

Theorem 4.5 ([15]). The set {T ∈ (0,1) | Z(T) is computable} is dense in (0,1).

Using the “statistical mechanical” relation F(T) = −T log2 Z(T) we can show Theorem 4.6 below.
Thus, the computability of F(T) gives completely different fixed points from the computability of Z(T).
This implies that neither the computability of Z(T) nor the computability of F(T) is the necessary con-
dition for T ∈ (0,1) to be a fixed point on partial randomness at all.

Theorem 4.6 ([16]). There does not exist T ∈ (0,1) such that both Z(T) and F(T) are computable.

Using the property of T as a fixed point in Theorems 4.1, we can show the following.

Theorem 4.7 ([16]). Sa∩Sb = /0 for any distinct computable reals a,b ∈ (0,1], where Sa = {T ∈ (0,1) |
Z(aT) is computable}.

Proof. Let T ∈ (0,1), and let a be a computable real with a ∈ (0,1]. Suppose that Z(aT) is computable.
Then, by Theorem 4.1, limn→∞ K((aT)�n)/n = aT . Since K((aT)�n) = K(T�n) + O(1) it follows that
limn→∞ K(T�n)/n = aT . Thus, for every computable reals a,b ∈ (0,1], if Sa∩Sb 6= /0 then a = b.

104

Fixed Points on Partial Randomness Tadaki

As a corollary of Theorem 4.7, we have the following, for example.

Corollary 4.8 ([16]). For every T ∈ (0,1), if Z(T) is computable, then Z(T/n) is not computable for
every n ∈ N+ with n ≥ 2. In other words, for every T ∈ (0,1), if the sum ∑

∞
i=1 2−|pi|/T is computable,

then the corresponding power sum ∑
∞
i=1

(
2−|pi|/T

)n
is not computable for every n ∈ N+ with n ≥ 2.

5 The Proof of Theorem 4.1

As an original contribution of this paper, we present a simple and self-contained proof of Theorem 4.1 in
what follows. We first recall the notion of right computable enumerability and left computable enumer-
ability of a real. A real α is called right computably enumerable (right-c.e., for short) if there exists a total
recursive function f : N+ →Q such that α ≤ f (n) for all n ∈ N+ and limn→∞ f (n) = α . Right-c.e. reals
are also called right-computable. On the other hand, a real α is called left computably enumerable (left-
c.e., for short) if −α is right-c.e. Left-c.e. reals are also called left-computable. It is then easy to show
the following theorem.

Theorem 5.1. Let α ∈ R.

(i) α is computable if and only if α is both right-c.e. and left-c.e.

(ii) α is right-c.e. if and only if the set {r ∈Q | α < r} is r.e.

Theorem 4.1 follows immediately from Theorem 5.2, Theorem 5.3, and Theorem 5.4 below, as well
as from Theorem 5.1 (i).

Theorem 5.2. For every T ∈ (0,1), if Z(T) is right-c.e. then T is weakly Chaitin T -random.

Proof. First, for each k ∈N+ and each real x > 0, we define Wk(x) as ∑
k
i=1 |pi|2−|pi|/x. We show that, for

each x ∈ (0,1), Wk(x) converges as k → ∞. Let x be an arbitrary real with x ∈ (0,1). Since x < 1, there
is l0 ∈ N+ such that (log2 l)/l ≤ 1/x− 1 for all l ≥ l0. Then there is k0 ∈ N+ such that |pi| ≥ l0 for all
i > k0. Thus, we see that, for each i > k0,

|pi|2−
|pi|

x = 2
−(1

x−
log2|pi|
|pi|

)|pi| ≤ 2−|pi|.

Hence, for each k > k0, Wk(x)−Wk0(x) = ∑
k
i=k0+1 |pi|2−|pi|/x ≤ ∑

k
i=k0+1 2−|pi| < Z(1). Therefore, since

{Wk(x)}k is an increasing sequence of reals bounded to the above, it converges as k →∞, as desired. For
each x ∈ (0,1), we define a positive real number W (x) as limk→∞Wk(x).

On the other hand, since Z(T) is right-c.e. by the assumption, there exists a total recursive function
f : N+ →Q such that Z(T)≤ f (m) for all m ∈ N+, and limm→∞ f (m) = Z(T).

We choose a particular real t with T < t < 1. Then, for each i ∈ N+, using the mean value theorem
we see that

2−
|pi|

x −2−
|pi|
T <

ln2
T 2 |pi|2−

|pi|
t (x−T)

for all x ∈ (T, t). We then choose a particular c ∈ N with W (t) ln2/T 2 ≤ 2c. Here, the limit value W (t)
exists, since 0 < t < 1. It follows that

Zk(x)−Zk(T) < 2c(x−T) (8)

for all k ∈ N+ and x ∈ (T, t). We also choose a particular n0 ∈ N+ such that 0.(T�n)+ 2−n < t for all
n ≥ n0. Such n0 exists since T < t and limn→∞ 0.(T�n)+ 2−n = T . Since T�n is the first n bits of the
base-two expansion of T with infinitely many zeros, we then see that T < 0.(T�n)+2−n < t for all n≥ n0.

105

Fixed Points on Partial Randomness Tadaki

Now, given T�n with n ≥ n0, one can find k0,m0 ∈ N+ such that f (m0) < Zk0(0.(T�n)+2−n). This is
possible from Z(T) < Z(0.(T�n)+2−n), limk→∞ Zk(0.(T�n)+2−n) = Z(0.(T�n)+2−n), and the properties
of f . It follows from Z(T)≤ f (m0) and (8) that ∑

∞
i=k0+1 2−|pi|/T = Z(T)−Zk0(T) < Zk0(0.(T�n)+2−n)−

Zk0(T) < 2c−n. Hence, for every i > k0, 2−|pi|/T < 2c−n and therefore T n−T c < |pi|. Thus, by calculating
the set {U(pi)

∣∣ i ≤ k0 } and picking any one finite binary string which is not in this set, one can then
obtain an s ∈ {0,1}∗ such that T n−T c < K(s).

Hence, there exists a partial recursive function Ψ : {0,1}∗→{0,1}∗ such that T n−T c < K(Ψ(T�n))
for all n ≥ n0. Using (5), there is cΨ ∈ N such that K(Ψ(T�n))≤ K(T�n)+ cΨ for all n ≥ n0. Therefore,
T n−T c− cΨ < K(T�n) for all n ≥ n0. It follows that T is weakly Chaitin T -random.

Theorem 5.3. For every T ∈ (0,1), if Z(T) is right-c.e., then T is also right-c.e.

Proof. Since Z(T) is right-c.e., there exists a total recursive function f : N+ →Q such that Z(T)≤ f (m)
for all m ∈ N+, and limm→∞ f (m) = Z(T). Thus, since Z(x) is an increasing function of x ∈ (0,1], we
see that, for every x ∈Q with 0 < x < 1, T < x if and only if there are m,k ∈N+ such that f (m) < Zk(x).
It follows from Theorem 5.1 (ii) that T is right-c.e.

Theorem 5.4. For every T ∈ (0,1), if Z(T) is left-c.e. and T is right-c.e., then T is T -compressible.

Proof. For each i ∈ N+, using the mean value theorem we see that

2−
|p1|

t −2−
|p1|

T > (ln2) |p1|2−
|p1|

T (t−T)

for all t ∈ (T,1). We choose a particular c ∈ N+ such that (ln2) |p1|2−
|p1|

T ≥ 2−c. Then, it follows that

Zk(t)−Zk(T) > 2−c(t−T) (9)

for all k ∈ N+ and t ∈ (T,1).
Since T is a right-c.e. real with T < 1 by the assumption, there exists a total recursive function

f : N+ →Q such that T < f (l) < 1 for all l ∈N+, and liml→∞ f (l) = T . On the other hand, since Z(T) is
left-c.e. by the assumption, there exists a total recursive function g : N+ →Q such that g(m)≤ Z(T) for
all m∈N+, and limm→∞ g(m) = Z(T). Let Ω = Z(1). By Theorem 3.2, Z(1) is weakly Chaitin 1-random
and therefore Z(1) /∈Q. Thus, the base-two expansion of Ω is unique and contains infinitely many ones,
and 0 < Ω < 1 in particular.

Given n and Ω�dT ne (i.e., the first dT ne bits of the base-two expansion of Ω), one can find k0 ∈N+ such
that 0.(Ω�dT ne) < ∑

k0
i=1 2−|pi|. This is possible since 0.(Ω�dT ne) < Ω and limk→∞ ∑

k
i=1 2−|pi| = Ω. It is then

easy to see that ∑
∞
i=k0+1 2−|pi| = Ω−∑

k0
i=1 2−|pi| < 2−dT ne ≤ 2−T n. Using the inequality ad +bd ≤ (a+b)d

for any reals a,b > 0 and d ≥ 1, it follows that

Z(T)−Zk0(T) =
∞

∑
i=k0+1

2−
|pi|
T < 2−n. (10)

Note that liml→∞ Zk0(f (l)) = Zk0(T). Thus, since Zk0(T) < Z(T), one can then find l0,m0 ∈N+ such that
Zk0(f (l0)) < g(m0). It follows from (10) and (9) that 2−n > g(m0)− Zk0(T) > Zk0(f (l0))− Zk0(T) >
2−c(f (l0)− T). Thus, 0 < f (l0)− T < 2c−n. Let tn be the first n bits of the base-two expansion
of the rational number f (l0) with infinitely many zeros. Then, | f (l0)−0.tn | < 2−n. It follows from
|T −0.(T�n) |< 2−n that |0.(T�n)−0.tn |< (2c +2)2−n. Hence, T�n= tn, tn±1, tn±2, . . . , tn± (2c +1),
where T�n and tn are regarded as a dyadic integer. Thus, there are still 2c+1 + 3 possibilities of T�n, so
that one needs only c+2 bits more in order to determine T�n.

Thus, there exists a partial recursive function Φ : N+×{0,1}∗×{0,1}∗ →{0,1}∗ such that

∀n ∈ N+ ∃s ∈ {0,1}∗ |s|= c+2 & Φ(n,Ω�dT ne,s) = T�n .

106

Fixed Points on Partial Randomness Tadaki

It follows from (4) that K(T�n)≤ |Ω�dT ne |+o(n)≤ T n+o(n), which implies that T is T -compressible.

6 Concluding Remarks

By a series of works of Ryabko [10, 11], Staiger [12, 13], Lutz [6], Tadaki [14], and Mayordomo [7]
over the last two decades, the equivalence between the notion of Hausdorff dimension and the notion of
compression rate by Kolmogorov complexity seems to be established at present. In particular, Tadaki
[14] considered the equivalence between the notion of Hausdorff dimension and the notion of partial
randomness as well as the compression rate. In the context of the subject of the equivalence, we can
consider the notion of the dimension of an individual real in particular, and this notion plays a crucial
role in the subject. Our fixed point theorems on partial randomness give sufficient conditions for a real
T ∈ (0,1) to satisfy that the dimension of T equals to T . Thus, it would be interesting if we could
develop the subject of the equivalence further in a new direction based on the notion of fixed point on
partial randomness.

References
[1] H. B. Callen. Thermodynamics and an Introduction to Thermostatistics, 2nd ed. John Wiley & Sons, 1985.
[2] C. S. Calude and M. A. Stay. Natural halting probabilities, partial randomness, and zeta functions. Inform.

and Comput., 204(11):1718–1739, 2006.
[3] G. J. Chaitin. A theory of program size formally identical to information theory. J. of ACM, 22(3):329–340,

1975.
[4] G. J. Chaitin. Algorithmic Information Theory. Cambridge Univ. Press, 1987.
[5] R. G. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer, to appear.
[6] J. H. Lutz. Gales and the constructive dimension of individual sequences. In U. Montanari et al., eds., Proc.

of 27th Int. Coll. on Automata, Languages and Programming, ICALP 2000 (Geneva, July 2000), v. 1853 of
Lect. Notes in Comput. Sci., pp. 902–913. Springer, 2000.

[7] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inform.
Process. Lett., 84(1):1–3, 2002.

[8] A. Nies. Computability and Randomness. Oxford Univ. Press, 2009.
[9] J. Reimann and F. Stephan. On hierarchies of randomness tests. In S. S. Goncharov et al., eds., Proc. of 9th

Asian Logic Conference (Novosibirsk, Aug. 2005), pp. 215–232. World Scientific, 2006.
[10] B. Ya. Ryabko. Coding of combinatorial sources and Hausdorff dimension. Soviet Math. Dokl., 30:219–222,

1984.
[11] B. Ya. Ryabko. Noiseless coding of combinatorial sources, Hausdorff dimension, and Kolmogorov complex-

ity. Probl. of Inform. Transm., 22:170–179, 1986.
[12] L. Staiger. Kolmogorov complexity and Hausdorff dimension. Inform. and Comput., 103(2):159–194, 1993.
[13] L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of

Comput. Syst., 31(3):215–229, 1998.
[14] K. Tadaki. A generalization of Chaitin’s halting probability Ω and halting self-similar sets. Hokkaido Math.

J., 31(1):219–253, 2002.
[15] K. Tadaki. A statistical mechanical interpretation of algorithmic information theory. In Local Proceedings of

Computability in Europe 2008, CiE 2008 (Athens, June 2008), pp. 425–443. Univ. of Athens, 2008. Extended
version: http://arxiv.org/abs/0801.4194v1

[16] K. Tadaki. Fixed point theorems on partial randomness. In S. Artemov and A. Nerode, eds., Proc. of Symp.
on Logical Foundations of Computer Science 2009, LFCS 2009 (Deerfield Beach, FL, Jan. 2009), v. 5407
of Lect. Notes in Comput. Sci., pp. 422-440. Springer, 2009. Extended version: http://arxiv.org/abs/
0903.3433

107

http://arxiv.org/abs/0801.4194v1
http://arxiv.org/abs/0903.3433
http://arxiv.org/abs/0903.3433

Fixed-Point Computations over Functions on Integers
with Operations Min, Max and Plus

Yoshinori Tanabe and Masami Hagiya
Dept. of Computer Science, Graduate School of Inform. Science and Technology, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
tanabe@ci.i.u-tokyo.ac.jp and hagiya@is.s.u-tokyo.ac.jp

Abstract

Various kinds of graph problems, including shortest path computation, proof-number search,
dataflow analysis, etc., can be solved by fixed-point computations over functions defined on natural
numbers or integers. In this paper, we prove that fixed-point computations are possible for the algebra
Z∞ = Z∪{∞,−∞}, which has the operators min, max and plus. Since Z∞ is not well-ordered, we
formulate a kind of acceleration technique to guarantee termination of fixed-point computations.

1 Introduction

Fixed-point computations on various algebraic structures are required in many fields of computer sci-
ence. The simplest example of such an algebraic structure is the boolean algebra, 2 = {0,1}, on which
ordinary boolean operations are defined. Model-checking problems on Kripke structures [3] are reduced
to fixed-point computations over functions from the set of states to 2, where each parameter of a function
corresponds to the value of a propositional variable at a state of the target Kripke structure, which relates
the parameters belonging to one state with those belonging to adjacent states. The µ and ν operators in
the modal µ-calculus [6] correspond to the least and greatest fixed-points of a system of such boolean
functions.

Model-checking problems can be easily generalized by adopting algebraic structures other than 2.
Propositional variables are generalized to variables having value of the adopted algebraic structure, and
boolean operations are replaced with operations on the algebraic structure. The modal µ-calculus can
still be used as a language for expressing fixed-points, if the operators of the calculus are interpreted as
operations on the algebraic structure. In fact, in our previous work [4], we adopted N∞ = N∪{∞}, the
set of natural numbers augmented with infinity, as an algebraic structure, and interpreted the operators ∨
and ∧ as min and plus, respectively, over N∞. The modal operators ♦ and � were also interpreted ac-
cordingly. This kind of algebraic structure having min and plus is well known as min-plus algebra [8, 2].
As the values 0 and ∞ in N∞ naturally correspond to 1 (true) and 0 (false) in 2, respectively, we inter-
preted the µ and ν operators as the greatest and least fixed-points. We then formulated algorithms for
computing fixed-points over generalized Kripke structures.

Interestingly, various kinds of graph problems can be expressed in the above framework, including
shortest path computation, proof-number search [1], dataflow analysis, etc. For example, we can extend
the approach taken by Lacey et al., who used CTL, a sublogic of the modal µ-calculus, to express
complex conditions on a control flow graph for the purpose of program transformation [7]. A control
flow graph is regarded as a Kripke structure. We introduce propositional symbols accessx and updatex,
which hold at a node of the control flow graph if the program variable x is accessed and updated on the
node, respectively. Then we can construct a formula that expresses, for example, the minimum number
of accesses to the variable x after each update of x.

For applications as the above one, it is natural to introduce the max operator in addition to min
and plus. In the above example, it becomes possible to express the maximum number of accesses to a
program variable. As this paper shows, however, fixed-point computations become more involved if max
is introduced.

108

mailto:tanabe@ci.i.u-tokyo.ac.jp
mailto:hagiya@is.s.u-tokyo.ac.jp

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Even in our previous work, fixed-point computations were not trivial. Since N∞ is well-ordered, the
greatest fixed-point can be calculated in a natural way — starting from ∞ and repeat calculating the next
value to obtain a decreasing chain of values. However, this simple strategy cannot be applied to compute
the least fixed-point. In our previous work, we developed a kind of acceleration technique to guarantee
termination.

In this paper, by carefully extending the acceleration technique, we show that fixed-point computa-
tions are also possible for the algebra Z∞ = Z∪{∞,−∞}, which has the operators min, max and plus.
We formulate an algorithm that computes fixed-points of functions defined on Z∞. Our previous work is
subsumed by embedding N∞ into Z∞. The efficiency of fixed-point computations is also improved. In
some cases, the new algorithm is more efficient than the old one.

2 Target Functions

We define the set F of functions that our algorithm targets. Roughly speaking, an element of F is
a function on finite power of Z∞, composed of operations min, max, plus, minus, and fixed-points.
Since we allow the fixed-point operations, the functions need to be monotone with respect to parameters
over which the fixed-point is calculated. Therefore, we need to keep track of positive and negative
parameters. Another small issue is value of operations when operands are ∞ or −∞. While most of them
can be defined naturally, some decision on the value of ∞+(−∞) is needed. We introduce two different
operators +↑ and +↓, and define ∞+↑ (−∞) = (−∞)+↑ ∞ = ∞, and ∞+↓ (−∞) = (−∞)+↓ ∞ =−∞. If
{x,y} 6= {∞,−∞}, then x+↑ y = x+↓ y = x+ y.

We introduce some notations. Let n,m,k ∈ N. The set {n + 1,n + 2, . . . ,n + m} is denoted by In,m,
and I0,n is denoted by In. The constant function on Z∞

n that takes value c∈Z∞ is denoted by γn
c . The pro-

jection function on Z∞
n to T = {t1, . . . , tk} ⊆ In is denoted by πn

T , i.e., πn
T : Z∞

n → Z∞
k, πn

T (x1, . . . ,xn) =
(xt1 , . . . ,xtk). We write πn

{m} as πn
m. The superscript n of γ and π is often omitted if no confusion occurs.

For function f , function πT f is defined by (πT f)(x) = πT (f (x)). If x = (x1, . . . ,xn) and y = (y1, . . . ,yk),
then (x1, . . . ,xn,y1, . . . ,yk) is denoted by (x,y). We intentionally abuse this notation: if (T,S) is a partition
of In, y = πT x, and z = πSx, then we write (y,z) to express x, if T and S are clear from the context. For
functions f : Z∞

n →Z∞
m and g : Z∞

n →Z∞
k, (f ,g) : Z∞

n →Z∞
m+k is defined by (f ,g)(x) = (f (x),g(x)).

For c ∈ Z∞, the n-tuple of c, i.e., x ∈ Z∞
n such that πix = c for all i ∈ In, is also denoted by c.

For n,k ∈ N and c ∈ Z∞, let zn
k,c ∈ Z∞

n be defined by πkzn
k,c = c and πizn

k,c = 0 for all i ∈ In \{k}.
For x,y∈Z∞

n, we write x≤ y if πix≤ πiy for all i∈ In. If x≤ y and x 6= y, we write x < y. If πix < πiy
for all i ∈ In, we write x � y. If (T,S) is a partition of In, x ≤ y, and πSx = πSy, we write x ≤T y. A
function f : Z∞

n → Z∞
m is monotone (or monotone increasing) w.r.t. T if x ≤T y implies f (x) ≤ f (y),

and monotone decreasing w.r.t. T if x ≤T y implies f (x)≥ f (y).
For f : Z∞

n → Z∞
n, the k-th repetition of f is denoted by f (k). I.e., f (k) : Z∞

n → Z∞
n, f (0)(x) = x,

and f (k+1)(x) = f (f (k)(x)).
We define the set F as the least set that satisfies the following conditions, together with the set P(f)

and N(f) of positive and negative parameter indices of f ∈F , respectively.

• γc ∈F and P(γc) = N(γc) = ∅.

• πT ∈F , P(πT) = T , and N(πT) = ∅.

• If f ∈F , then − f ∈F , P(− f) = N(f), and N(− f) = P(f).

• If f ,g ∈ F , P = P(f)∪P(g), N = N(f)∪N(g), and P∩N = ∅, then h = (f ,g), f +↑ g, f +↓ g,
min(f ,g), max(f ,g) ∈F , P(h) = P, and N(h) = N.

109

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

• If f : Z∞
n+m → Z∞

m, f ∈F , and In,m∩N(f) = ∅, then h = LFP(f),GFP(f) ∈F , P(h) = P(f)\
In,m, and N(h) = N(f), where LFP(f) : Z∞

n → Z∞
m is defined so that for any x ∈ Z∞

n, LFP(f)(x)
is the least y ∈ Z∞

m such that f (x,y) = y. GFP(f) is defined similarly as the largest such y.

The existence of LFP and GFP in the definition can be proved by simultaneous induction with the
fact that for all f ∈ F , f is monotone increasing w.r.t. P(f) and monotone decreasing w.r.t. N(f). For
LFP, starting with z0 = −∞ ∈ Z∞

k, an increasing sequence (zα)α of Z∞
k, indexed by ordinal numbers,

is defined by zα+1 = f (x,zα) for α = 0,1, It is clear that we have zα+1 = zα for some α ≤ ωk and
LFP(f)(x) = zα . However, to complete the computation with finite repetitions, we need some accelera-
tion technique, which is the main topic of this paper.

Because LFP and GFP are dual, we mainly concentrate on LFP. Assume f ∈ F , f : Z∞
m → Z∞

m,
c ∈ Z∞

m, and f (c) ≥ c. There exists the least y such that y ≥ c and f (x,y) = y. This y is denoted by
LFPc(f). For LFP(f), it is sufficient to compute LFPc(f), because LFP(f) = LFP−∞(f). We observe
that if the operator max does not appear in the definition sequence of f , then LFPc(f) can be computed
relatively easily. To formalize the observation, we introduce a concept called “steplessness.” Let T ⊆ In.
A function f : Z∞

n → Z∞ is upward stepless w.r.t. T if f is monotone w.r.t. T , and for all k ∈ T and
x ∈ Z∞

n, f (x) = f (x + zn
k,1) implies f (x) = f (x+ zn

k,c) for all c ∈ N∞. Word “upward” and set T are
omitted if no confusion occurs. A function f : Z∞

n → Z∞
m is stepless if π j f is stepless for all j ∈ Im.

Functions γc, πT , min(x,y), and x +↓ y are stepless, but max(x,y) and x +↑ y are not. Stepless functions
are closed under compositions: more precisely, if f : Z∞

n → Z∞
k is stepless w.r.t. T , g : Z∞

m → Z∞
n, πig

is stepless w.r.t. S for all i ∈ T , and πig = πi for all i ∈ In \T , then f ◦g is stepless w.r.t. S.
The least fixed-point of a stepless function is computed using the following lemma, which can be

proved in a similar manner as in the corresponding lemma in [5],

Lemma 1. Assume f : Z∞
m → Z∞

m is stepless, c ∈ Z∞
m, and f (c) ≥ c. Let c̄ = LFPc(f), T = {i ∈ Im |

πic < πic̄}, and S = Im \T . Thus, with respect to the partition (T,S), we have c = (d,e), c̄ = (d̄,e), and
d � d̄. Then, the following hold.

(1) T = {i ∈ Im | πic < πi f (m)(c)}.

(2) There is i ∈ Im such that πiLFPc(f) = πi f (∞,e)

(3) LFPc(f) = f (|T |)(∞,e).

For GFP, we define GFPc(f)(x) to be the greatest y such that y ≤ c and f (x,y) = y, if f (x,c) ≤ c.
Function f is downward stepless w.r.t. T if for all k ∈ T , f (x) = f (x− zn

k,1) implies f (x) = f (x− zn
k,c) for

all c ∈ N∞. Then, the counterpart of Lemma 1 holds: if f is downward stepless, f (c)≤ c, c = (d,e) and
c̄ = (d̄,e) = GFPd(f) w.r.t. a partition (T,S), and d̄ � d, then we have (1) T = {i∈ Im | πid > πi f (m)(d)},
(2) there is i ∈ Im such that πid̄ = πi f (∞,e), and (3) d̄ = f |T |(∞,e).

Although not all functions in F are stepless, we can approximate them with stepless functions.
Assume f ∈F, f : Z∞

n → Z∞
m, and c ∈ Z∞

n. We define the under approximation ua(f ,c) : Z∞
n → Z∞

m

and the over approximation oa(f ,c) : Z∞
n → Z∞

m as shown in Figure 1. The intuition is as follows:
we wish to define ua(f ,c) to be an upward stepless function. Because pair, minimum, +↓ preserves
steplessness (because it is closed under compositions), these operations can be handled naturally. LFP
and GFP are also all right, because they are expressed as compositions if the operand is stepless, by
Lemma 1 (3). Operation +↑ does not preserve steplessness, but it is almost the same as operation +↓,
and the exceptional case can be covered by a constant function. Finally, for max, we simply choose one
of the operands, by referring their values at c.

The following lemma can be proved without difficulty.

110

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

ua(γe,c) = γe
ua(πT ,c) = πT
ua(− f ,c) =−oa(f ,c)
ua((f ,g),c) = (ua(f ,c),ua(g,c))
ua(min(f ,g),c) = min(ua(f ,c),ua(g,c))

ua(max(f ,g),c) =

{
ua(f ,c) if f (c)≥ g(c)
ua(g,c) otherwise

ua(f +↓ g,c) = ua(f ,c)+↓ ua(g,c)
ua(f +↑ g,c) ={

γ−∞ if { f (c),g(c)}= {∞,−∞}
ua(f ,c)+↓ ua(g,c) otherwise

ua(LFP(f),c) = LFPc(ua(f ,(c,LFP(f)(c))))
ua(GFP(f),c) = GFPc(ua(f ,(c,GFP(f)(c))))

oa(γe,c) = γe
oa(πT ,c) = πT
oa(− f ,c) =−ua(f ,c)
oa((f ,g),c) = (oa(f ,c),oa(g,c))

oa(min(f ,g),c) =

{
oa(f ,c) if f (c)≤ g(c)
oa(g,c) otherwise

oa(max(f ,g),c) = max(oa(f ,c),oa(g,c))
oa(f +↓ g,c) ={

γ∞ if { f (c),g(c)}= {∞,−∞}
oa(f ,c)+↑ oa(g,c) otherwise

oa(f +↑ g,c) = oa(f ,c)+↑ ua(g,c)
oa(LFP(f),c) = LFPc(oa(f ,(c,LFP(f)(c))))
oa(GFP(f),c) = GFPc(oa(f ,(c,GFP(f)(c))))

Figure 1: Under/Over Approximation

Lemma 2. Assume f ∈F, f : Z∞
n → Z∞

m, and c ∈ Z∞
n.

(1) ua(f ,c) is upward stepless w.r.t. P(f), and oa(f ,c) is downward stepless w.r.t. P(f).

(2) ua(f ,c)(c) = oa(f ,c)(c) = f (c).

(3) ua(f ,c)(x)≤ f (x)≤ oa(f ,c)(x) for all x ∈ Z∞
n.

(4) If f (c)≥ c, then LFPc(ua(f ,c))≤ LFPc(f). If f (c)≤ c, then GFPc(oa(f ,c))≥ GFPc(f).

(5) {ua(f ,d) | d ∈ Z∞
n} and {oa(f ,d) | d ∈ Z∞

n} are finite sets.

3 Procedure

c1 c2

y = u0(x)

x

y

y = u1(x)

y = f (x)

y = x

LFPc(f)
c = c0

Based on the preparation in the previous section, we now de-
scribe the procedure to compute LFPc(f) for f ∈F and c ∈ Z∞

m

such that f : Z∞
m → Z∞

m and f (c) ≥ c. As a starting point,
we consider the following naive procedure: starting with c0 = c,
we compute cn+1 = LFPcn(ua(f ,cn)) until cn = cn+1. Because
ua(f ,cn) is stepless, we can compute cn+1 using Lemma 1. Then,
LFPc(f) = cn.

The right figure illustrates the intuition behind the procedure.
Note that c̄ = LFPc(f) is the left-most intersection (on the right
side of c) of the graph of y = f (x) with that of y = x. Because
of Lemma 2 (4), c1 = LFPc0(u0) is smaller than or equal to c̄,
and c1 is greater than or equal to c0 by its definition. Thus, we
have c0 ≤ c1 ≤ ·· · . The number of repetitions seems to be finite,
because of Lemma 2 (5) and the fact that ua(f ,cn) becomes “constant” on the right side of cn+1.

Unfortunately, the intuition is not correct. The procedure may not terminate if f has two or more
parameters, as will be shown in Example 5. To resolve the problem, the under approximation should be
taken component-wise, and if f does not move a component of cn, we keep the previous approximation
for that component.

The modified procedure is shown in Figure 2. For f ∈F , LFPc(f) is computed in the left column.
Because un is stepless, LFPcn(un) appearing in the left column is computed in the right column.

111

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Procedure for f ∈F .
Compute cn ∈ Z∞

m and define stepless function un
until cn+1 = cn:

c0 = c, u0 = ua(f ,c0).
cn+1 = LFPcn(un).

πiun+1 =

{
πiun if πi f (cn+1) = πicn+1

ua(πi f ,cn+1) otherwise
Then, LFPc(f) = cn.

Procedure for stepless f .
Compute dn ∈ Z∞

m until Tn+1 = Tn, where
Tn = {i ∈ In | πidn > πic}:

d0 = c, dn+1 = f (dn).
Let T = Tn, S = Im \T , and s = πSc. Compute
ek ∈ Z∞

m until ek+1 = ek:
e0 = (∞,s), ek+1 = f (ek)

Then, LFPc(f) = ek.

Figure 2: Procedure to Compute LFPc(f)

Example 3. Let f : Z∞
2 →Z∞

2 be defined by f (x1,x2)= (x1,min(x1 +↓x2,10)). We compute LFP(1,0)(f).
Because f is stepless, the right column of Figure 2 is used. The computation of the first half is as fol-
lows: d0 = (1,0), T0 = ∅, d1 = (1,1), T1 = {2}, d2 = (1,2). T2 = {2}. Here, we have T1 = T2 = {2}.
With this result, we start the second half: e0 = (1,∞), e1 = (1,10), e2 = (1,10). Thus, we get the result:
LFP(1,0)(f) = (1,10).

Example 4. Assume that n ∈ N and fn : Z∞ → Z∞ is defined by fn(x) = max(n + 1 + min(x−n,0),0).
We compute LFP(fn). First, c0 = −∞ and u0 = γ0, because n + 1 + min(−∞− n,0) < 0. Therefore,
c1 = LFP−∞(γ0) = 0. Because fn(c1) = 1 6= c1, we take u1(x) = ua(fn,0)(x) = n + 1 + min(x− n,0).
Using the right column, we get c2 = LFP0(u1) = n + 1. Repeating this step, we find c3 = n + 1, and
conclude LFP(fn) = n+1.

3210

1

2

3

x1

x2Example 5. Let function f : Z∞
2 →Z∞

2 be defined by f (x1,x2) =
(min(x1 + 1,max(x1,x2)),min(max(x2,x1 + 1),x2 + 1)). A small
calculation could show that f (x1,x2) = (x1,x2 +1) if x1 ≥ x2, and
f (x1,x2) = (x1 + 1,x2) if x1 < x2, although it is not a part of the
procedure. In the right figure, f is depicted by arrows connecting
(x1,x2) and f (x1,x2). It is clear that LFP(0,0)(f) = (∞,∞).

If we apply the naive procedure shown in the beginning of
this section, the computation does not terminate. We start with
c0 = (0,0) and u0(x1,x2) = (x1,min(x1 + 1,x2 + 1)). Then, c1 =
LFPc0(u0) = (0,1), and u1(x1,x2) = (min(x1 + 1,x2),x2). In the
next steps, we have c2 = (1,1), u2 = u0, c3 = (1,2), and u3 = u1.
Thus, the computation continues for ever, calculating c2n = (n,n),
c2n+1 = (n,n+1), u2n = u0, and u2n+1 = u1.

On the other hand, the modified procedure does terminate. The computation goes in the same way
up to c1. When we decide u1, two values c1 = (0,1) and f (c1) = (1,1) are compared. Because their x2-
components are identical, we reuse the x2-component of u0 for that of u1. The x1-component is calculated
as usual. Thus, we have u1(x1,x2) = (min(x1 + 1,x2),min(x1 + 1,x2 + 1)), and because LFPc1(u1) =
(∞,∞), we reach the result in finite repetitions.

The partial correctness of the procedure is almost clear from the previous lemmas. When f is stepless,
by Lemma 1 (1), (T, Im \ T) gives the required partition, where T = Tn = Tn+1. Then, Lemma 1 (3)
guarantees that LFPc(f) = ek. For f ∈ F , Lemma 1 shows that the right column computes the fixed-
point for stepless functions. By Lemma 2 (4), (cn)n is an increasing sequence that does not exceed
LFPc(f). Therefore, if we reach n such that cn+1 = cn, then LFPc(f) = cn.

To prove the termination, i.e., there exists n such that cn+1 = cn, we use the following technical
lemma.

112

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Lemma 6. Assume (T,S) is a partition of Im, u = (v,w) : Z∞
m → Z∞

m is a stepless function, (a2,b2) =
LFP(a1,b1)u, v(a2,b3) = a2, a1 � a2, and b2 � b3. Then, there exists i ∈ T such that πia2 = πiv(∞,∞).

Proof. Let t = |T |, v̄ : Z∞
t → Z∞

t be defined by v̄(a) = v(a,∞), and ā2 = LFPa1 v̄. We have a2 ≤ ā2: this
is because while a2 is the T -part of the supremum of the sequence (xα)α defined by x0 = (a1,b1) and
xα+1 = v(xα), ā2 is the supremum of the sequence (yα)α defined by y0 = a1 and yα+1 = v(yα ,∞). We
can show that yα ≥ πT xα by induction on α . On the other hand, because v(a2,b2) = v(a2,b3), b2 � b3,
and v is stepless, we have v(a2,∞) = a2, i.e., a2 is a fixed point of v̄. Therefore, a2 = ā2. Because v̄ is
stepless and a1 � a2, by Lemma 1 (2), there exists i ∈ T such that πia2 = πiv̄(∞) = πiv(∞,∞).

We sketch a termination proof. Assume on the contrary that the sequence does not converge: c0 <
c1 < · · ·< cn < cn+1 < · · · . Let U = {i ∈ Im | πicn < πicn+1 for infinitely many n} and V = Im \U . There
exists N ∈ N such that for all n ≥ N, πV cn = πV cN . Let s = πV cN . We write cn = (en,s).

We claim that for any n′ ≥ N, there exists n ≥ n′ and i ∈U such that en′ � en and πiun(∞,s) = πien.
Let k be the least k such that en′ � ek, and m be the largest m such that em � ek. Let T = {i ∈ U |
πiem+1 = πiek} and S =U \T . By applying Lemma 6 with u := um (with V -part fixed to s), (a1,b1) := em,
(a2,b2) := em+1, and b3 := πSek, we confirm the claim by taking n = m+1.

By Lemma 2 (5), there exists i ∈ T and n,k ∈ N such that en � ek, un = uk, πiun(∞,s) = πien, and
πiuk(∞,s) = πiek, which is impossible.

4 Function Examples

In this section, we show that several functions defined on graphs are regarded as elements of F , thus
they can be computed by our algorithm. We do not claim that our procedure is more suitable to calculate
values of these particular functions than known algorithms. Instead, these examples illustrate various
quantitative properties are expressed as the fixed-point of a function in F .

4.1 Shortest Path

Assume that G = {s1,s2, . . . ,sn} is a finite set of nodes and the lengths d(i, j) ∈ N∞ of the connection
between two adjacent nodes si and s j are given. If si and s j are not directly connected, d(i, j) = ∞. We
fix s = si0 ∈ G, and define f by πi f (x) = min({d(i, i0)}∪{d(i, j)+ π jx | j 6= i0}). Then, the length of
the shortest path between si to s is πiGFPx(f) (or πiLFPx(f): they coincide in this case). The intuitive
meaning of this definition is that the shortest path from si is either the direct connection to si0 or a path
to some adjacent state s j connected with the shortest path between s j and si0 , whichever is the shortest.

If (G,E) is a graph and d(i, j) is defined by d(i, j) = 1 if (si,s j) ∈ E, d(i, j) = ∞ otherwise, then the
same function computes the shortest hop count from si to si0 .

4.2 Proof-Number Search

Let us consider a finite tree with labels on nodes. The label is either ‘true’, ‘false’, or ‘unknown’ on
a leaf node, and either ‘MAX’ or ‘MIN’ on an internal node. The proof number proof(n) of node n is
defined as follows [1]: the value of proof(n) is 0 if the label is ‘true’, ∞ if ‘false’, and 1 if ‘unknown’.
For an internal node, proof(n) = min{proof(n′) | n′ ∈ child(n)} if the label is ‘MAX’, and proof(n) =
∑{proof(n′) | n′ ∈ child(n)} if the label is ‘MIN’.

The proof number can be computed as a value of function in F : let {ni | i = 1, . . . ,N} be an enu-
meration of the nodes of a tree. For each i, we define fi : Z∞

N → Z∞ to reflect the definition of the proof
number. For example, if si is a leaf node with label ‘false,’ fi(x) = ∞ for any x, and if si is an internal

113

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

node with label ‘MIN,’ fi(x) = ∑(x j | s j ∈ child(si)). Let f : Z∞
N → Z∞

N be such that πi f = fi for all i.
Then, it is obvious that proof(ni) = πiGFP(f).

4.3 Data Flow Analysis

Lacey et al. used CTL to specify conditions on a control flow graph by regarding the graph as a Kripke
structure for the purpose of program transformation [7]. We extended the approach by introducing a non-
standard semantics of the modal µ-calculus [4]. For example, let us introduce a propositional symbol
accessx that holds at a node in a control flow graph if the program variable x is accessed at the node.
The minimum number of accesses to the variable x on an execution path starting from a node can then
be expressed by the following formula under the non-standard semantics:

νX(((accessx∧1)∨ (¬accessx))∧ (halt∨♦X)).

Here, halt is an abbreviation for �⊥, which means that no outgoing transition exists.
Now, for given Kripke structure K = (S,R,L), we enumerate S = {s1, . . . ,sn} and denote the set

{s′ | (s,s′) ∈ R} by sR. For i ∈ In, we define ai,hi ∈ Z∞ by ai = 1 if x is accessed at si, ai = 0 otherwise,
and hi = 0 if there is no outgoing node at si, hi = ∞ otherwise. Then, the above formula corresponds to
function LFP(f) in F , where f : Z∞

n → Z∞
n is defined as follows,

πi f (x) = ai +min(hi,min{π jx | s j ∈ siR}).

5 Conclusion

5.1 Remark on Efficiency

Compared to the algorithm proposed in [4], the procedure in this paper not only covers wider range of
functions, but also is more efficient in some cases. For example, The old algorithm requires O(n) time to
compute the least fixed-point of fn in Example 4 (more precisely, their corresponding functions defined
on N∞), but the algorithm in Section 3 requires constant time.

Unfortunately, we have not yet obtained the time complexity of the algorithm. Even if we restrict
ourselves to fixed-point free functions, the current termination proof shown in Section 3 does not provide
the number of required repetitions. To evaluate the complexity of the algorithm remains as future work.

Acknowledgments

The authors would like to thank the reviewers for their careful reading and helpful comments.
This research has been partially supported by Grant-in-Aid for Scientific Research by Ministry of

Education, Culture, Science and Technology, Scientific Research(C) 21500006, “Decision procedures of
modal logics and their application to software verification.”

References
[1] L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artif. Intell., 66(1):91–124,

1994.
[2] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity: An Algebra for Discrete

Event Systems. John Wiley & Sons, 1992.
[3] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

114

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

[4] D. Ikarashi, Y. Tanabe, K. Nishizawa, and M. Hagiya. Modal µ-calculus on min-plus algebra N∞. In Proc.
of 10th Wksh. on Programming and Programming Languages, PPL 2008 (March 2008), 2008. Available at
http://www.nue.riec.tohoku.ac.jp/ppl2008/program.html.

[5] D. Ikarashi, Y. Tanabe, K. Nishizawa, and M. Hagiya. Modal µ-calculus on min-plus algebra N∞. Revised ver-
sion of [4], submitted, 2009. Available at http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.
pdf.

[6] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27(3):333–354, 1983.
[7] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Compiler optimization correctness by temporal

logic. Higher-Order and Symb. Comput., 17(3):173–206, 2004.
[8] I. Simon. Limited subsets of a free monoid. In Proc. of 19th Ann. Symp. on Foundations of Computer Science,

FOCS ’78 (Ann Arbor, MI, Oct. 1978), pp. 143–150. IEEE CS Press, 1978.

115

http://www.nue.riec.tohoku.ac.jp/ppl2008/program.html
http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.pdf
http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.pdf

A Non-Uniform Finitary Relational Semantics of System T
Lionel Vaux∗

Laboratoire de Mathématiques de l’Université de Savoie
UFR SFA, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex, France

lionel.vaux@univ-savoie.fr

Abstract

We study iteration and recursion operators in the denotational semantics of typed λ -calculi de-
rived from the multiset relational model of linear logic. Although these operators are defined as
fixpoints of typed functionals, we prove them finitary in the sense of Ehrhard’s finiteness spaces.

1 Introduction

Finiteness spaces were introduced by Ehrhard [2], refining the purely relational model of linear logic. A
finiteness space is a set equipped with a finiteness structure, i.e. a particular set of subsets which are said
to be finitary; and the model is such that the relational denotation of a proof in linear logic is always a
finitary subset of its conclusion. By the usual co-Kleisli construction, this also provides a model of the
simply typed λ -calculus: the cartesian closed category Fin. The main property of finiteness spaces is that
the intersection of two finitary subsets of dual types is always finite. This feature allows to reformulate
Girard’s quantitative semantics [7] in a standard algebraic setting, where morphisms interpreting typed
λ -terms are analytic functions between the topological vector spaces generated by vectors with finitary
supports. This provided the semantical foundations of Ehrhard-Regnier’s differential λ -calculus [4] and
motivated the general study of a differential extension of linear logic (e.g., [5, 6, 3, 13, 14, 11, 10]).

It is worth noticing that finiteness spaces can accomodate typed λ -calculi only. In particular, the
relational semantics of fixpoint combinators is never finitary. The whole point of the finiteness construc-
tion is actually to reject infinite computations, ensuring the intermediate sets involved in the relational
interpretation of a cut are all finite. Despite this restrictive design, Ehrhard proved that a limited form of
recursion was available, by defining a finitary tail-recursive iteration operator.

The main result of the present paper is that finiteness spaces can actually accomodate the standard
notion of primitive recursion in λ -calculus, Gödel’s system T : we prove Fin admits a weak natural
number object in the sense of [12, 9], and we more generally exhibit a finitary recursion operator for this
interpretation of the type of natural numbers. This achievement is twofold:

• Before considering finiteness, we must define a recursion operator in the cartesian closed category
deduced from the relational model of linear logic. For that purpose, we cannot follow Ehrhard and
use the flat interpretation of the type Nat of natural numbers. Indeed, if t, u and v are terms of
types respectively Nat, Nat⇒X ⇒X and X , the recursion step R(S t)uv ; ut (R t uv) puts t in
argument position. In case u is a constant function, t is not used in the reduced form. The recursor
R must however discriminate between S t and O, hence the successor S cannot be linear: it must
produce information independently from its input. Though it might be obscure for the reader not
familiar with the relational or coherence semantics, this argument will be made formal in the paper.
This was already noted by Girard in coherence spaces [8]: we adopt the solution he proposed, and
interpret terms of type Nat by so-called lazy natural numbers. An notable outcome is that our
interpretation provides a semantic evidence of the well-known gap in expressive power between
the iterator and recursor variants of system T .

∗This work has been partially funded by the French ANR projet blanc “Curry Howard pour la Concurrence” CHOCO
ANR-07-BLAN-0324.

116

mailto:lionel.vaux@univ-savoie.fr

A Non-Uniform Finitary Relational Semantics of System T Vaux

• The second aspect of our work is to establish that this relational semantics is finitary. This is far
from immediate because the recursion operator is defined as the fixpoint of finitary approximants:
since fixpoints themselves are not finitary relations, it is necessary to obtain stronger properties of
these approximants to conclude.

Structure of the paper. In section 2, we briefly describe two cartesian closed categories: the category
Rel of sets and relations from multisets to points, and the category Fin of finiteness spaces and finitary
relations from multisets to points. In section 3, we give an explicit presentation of the relational semantics
of typed λ -calculi in Rel and Fin, which we extend to system T in section 4. In section 5, we establish a
uniformity property of iteration-definable morphisms, which does not hold for recursion in general.

2 Sets, Relations and Finiteness Spaces

If A is a set, denote by P(A) the powerset of A, by Pf (A) the set of all finite subsets of A and by A!

the set of all finite multisets of A. If (α1, . . . ,αn) ∈ An, we write α = [α1, . . . ,αn] for the corresponding
multiset, and denote multiset union additively. Let f ⊆ A× B be a relation from A to B, we write
f⊥ = {(β ,α); (α,β) ∈ f}. For all a⊆ A, we set f ·a = {β ∈ B; ∃α ∈ a, (α,β) ∈ f}. We write Rel for
the coKleisli category of the comonad (−)! in the relational model of linear logic (see e.g. [1]): objects
are sets and Rel(A,B) = P

(
A!×B

)
; the identity on A is idA = {([α] ,α); α ∈ A}; if f ∈ Rel(A,B) and

g ∈ Rel(B,C) then g◦ f =
{

(∑n
i=1 α i,γ) ; ∃β = [β1, . . . ,βn] ∈ B!, (β ,γ) ∈ g∧∀i (α i,βi) ∈ f

}
.

The category Rel is cartesian closed. The cartesian product is given by the disjoint union of sets A]
B = ({1}×A)∪({2}×B), with terminal object the empty set /0. Projections are {([(1,α)] ,α) ; α ∈ A} ∈
Rel(A]B,A) and {([(2,β)] ,β) ; β ∈ B} ∈ Rel(A]B,B). If f ∈ Rel(C,A) and g ∈ Rel(C,B), pairing
is given by: 〈 f ,g〉 = {(γ,(1,α)) ; (γ,α) ∈ f} ∪ {(γ,(2,β)) ; (γ,β) ∈ g} ∈ Rel(C,A]B). The unique
morphism from A to /0 is /0. The adjunction for closedness is Rel(A]B,C)∼= Rel(A,B!×C) which boils
down to the bijection (A]B)! ∼= A!×B!.

We recall the few notions we shall use on finiteness spaces. For a detailled presentation, the obvious
reference is [2]. Let F ⊆ P(A) be any set of subsets of A. We define the pre-dual of F in A as F⊥ =
{a′ ⊆ A; ∀a ∈ F, a∩a′ ∈Pf (A)}. By a standard argument, we have the following immediate properties:
Pf (A)⊆ F⊥; F⊆ F⊥⊥; if G⊆ F, F⊥ ⊆G⊥. By the last two, we get F⊥ = F⊥⊥⊥. A finiteness structure
on A is a set F of subsets of A such that F⊥⊥ = F. Then a finiteness space is a dependant pair A =
(|A | ,F(A)) where |A | is the underlying set, called the web of A , and F(A) is a finiteness structure
on |A |. We write A ⊥ for the dual finiteness space:

∣∣A ⊥∣∣ = |A | and F
(
A ⊥)

= F(A)⊥. The elements
of F(A) are called the finitary subsets of A .

For all set A, (A,Pf (A)) is a finiteness space and (A,Pf (A))⊥ = (A,P(A)). In particular, each
finite set A is the web of exactly one finiteness space: (A,Pf (A)) = (A,P(A)). We introduce the empty
finiteness space T = (/0,{ /0}) and the finiteness space of flat natural numbers N = (N,Pf (N)). If A
and B are finiteness spaces, we define A & B and A ⇒B as follows. Let |A &B| = |A |] |B| and
F(A &B) = {a]b; a ∈ F(A)∧b ∈ F(B)}. Let |A ⇒B|= |A |!×|B| and set f ∈ F(A ⇒B) iff:
∀a ∈ F(A), f · a! ∈ F(B), and ∀β ∈ |B|, (f⊥ · {β})∩ a! is finite. It is easily seen that A & B is a
finiteness space, but the same result for A ⇒ B is quite technical and the only known proof uses the
axiom of choice [2]. We call finitary relations the elements of F(A ⇒B).

Notice that F(A ⇒B) ⊆ Rel(|A | , |B|). We write Fin for the category of finiteness spaces with
Fin(A ,B) = F(A ⇒B) and composition defined as in Rel. It is cartesian closed with terminal object
T , product −&− and exponential −⇒−: the definitions of those functors on morphisms, the natural
transformations, and the adjunction required for cartesian closedness are exactly the same as for Rel.

117

A Non-Uniform Finitary Relational Semantics of System T Vaux

(Var)
Γ,x : A,∆ ` x : A

(Unit)
Γ ` 〈〉 : >

a ∈ CA (Const)
Γ ` a : A

Γ,x : A ` s : B
(Abs)

Γ ` λxs : A → B
Γ ` s : A → B Γ ` t : A (App)

Γ ` st : B
Γ ` s : A Γ ` t : B (Pair)

Γ ` 〈s, t〉 : A×B
Γ ` s : A×B (Left)
Γ ` πl s : A

Γ ` s : A×B (Right)
Γ ` πr s : B

Figure 1: Rules of typed λ -calculi with products

JVarK
Γ[],x[α] : A,∆[] ` xα : A

a ∈ CA α ∈ JaK
JConstK

Γ[] ` aα : A
Γ,xα : A ` sβ : B

JAbsK
Γ ` λxs(α,β) : A → B

Γ0 ` s([α1,...,αk],β) : A → B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK
∑

k
j=0 Γ j ` stβ : B

Γ ` sα
i : Ai JPairiK

Γ ` 〈s1,s2〉(i,α) : A1×A2

Γ ` s(1,α) : A×B JLeftK
Γ ` πl sα : A

Γ ` s(2,β) : A×B JRightK
Γ ` πr sβ : B

Figure 2: Computing points in the relational semantics

3 The Multiset Relational Semantics of Typed λ -Calculi

Typed λ -calculi. In this section, we give an explicit description of the interpretation in Rel and Fin of
the basic constructions of typed λ -calculi with products. Type and term expressions are given by:

A,B ::=X | A → B | A×B | > and s, t ::= x | a | λxs | st | 〈s, t〉 | πl s | πr s | 〈〉

where X ranges over a fixed set A of atomic types, x ranges over term variables and a ranges over
term constants. To each variable or constant, we associate a type, and we write CA for the collection of
constants of type A. A typing judgement is an expression Γ ` s : A derived from the rules in Figure 1
where contexts Γ and ∆ range over lists (x1 : A1, . . . ,xn : An) of typed variables. The operational semantics
of a typed λ -calculus is given by a contextual equivalence relation' on typed terms: if s' t, then s and t
have the same type, say A; we then write Γ ` s' t : A for any suitable Γ. In general, we will give ' as the
reflexive, symmetric and transitive closure of a contextual relation > on typed terms. We define >0 as
the least one such that: πl 〈s, t〉>0 s, πr 〈s, t〉>0 t and (λxs) t >0 s [x := t] (with the obvious assumptions
ensuring typability), and we write '0 for the corresponding equivalence.

Relational interpretation and finiteness property. Assume a set JXK is given for each base type X ;
then we interpret type constructions by JA → BK = JAK!×JBK, JA×BK = JAK]JBK and J>K = /0. Further
assume that with every constant a ∈ CA is associated a subset JaK ⊆ JAK. The relational semantics of
a derivable typing judgement x1 : A1, . . . ,xn : An ` s : A will be a relation JsKx1:A1,...,xn:An

⊆ JA1K!×·· ·×
JAnK!× JAK. We first introduce the deductive system of Figure 2. In this system, derivable judgements
are semantic annotations of typing judgements: xα1

1 : A1, . . . ,xαn
n : An ` sα : A stands for (α1, . . . ,αn,α)∈

JsKx1:A1,...,xn:An
where each α i ∈ JAiK! and α ∈ JAK. In rules JVarK and JConstK, Γ[] denotes an annotated

context of the form x[]
1 : A1, . . . ,x

[]
n : An. In rule JAppK, the sum of annotated contexts is defined point-

wise:
(

xα1
1 : A1, . . . ,xαn

n : An

)
+

(
xα

′
1

1 : A1, . . . ,x
α
′
n

n : An

)
=

(
xα1+α

′
1

1 : A1, . . . ,x
αn+α

′
n

n : An

)
. The semantics

of a term is the set of its annotations: JsKx1:A1,...,xn:An
=

{
(α1, . . . ,αn,α); xα1

1 : A1, . . . ,xαn
n : An ` sα : A

}
.

Notice there is no rule for 〈〉 in Figure 2, hence J〈〉K
Γ

= /0 for all Γ.

118

A Non-Uniform Finitary Relational Semantics of System T Vaux

Theorem 3.1 (Invariance). If Γ ` s '0 t : A then JsK
Γ

= JtK
Γ
.

Proof. We followed the standard interpretation of typed λ -calculi in cartesian closed categories, in
the particular case of Rel. A direct proof is also easy, first proving a substitution lemma: if Γ0,x :
A[α1,...,αk],∆0 ` sβ : B, and, for all j ∈ {1, . . . ,k}, Γ j,∆ j ` tα j : A, then ∑

k
j=0 Γ j,∑

k
j=0 ∆ j ` s [x := t]β : B.

The relational interpretation also defines a semantics in Fin: assume a finiteness structure F(X) is
given for all atomic type X , so that X∗ = (JXK ,F(X)) is a finiteness space, and set (A → B)∗ = A∗⇒ B∗,
(A×B)∗ = A∗ & B∗ and >∗ = T . Then, further assuming that, for all a ∈ CA, JaK ∈ F(A∗), we obtain:

Theorem 3.2 (Finiteness). If x1 : A1, . . . ,xn : An ` s : A then JsKx1:A1,...,xn:An
∈ F(A∗1⇒···⇒A∗n⇒A∗).

Proof. This is a straightforward consequence of the fact that the cartesian closed structure of Fin is given
by the same morphisms as in Rel. A direct proof is also possible, by induction on typing derivations.

Examples. Pure typed λ -calculi are those with no additional constant or conversion rule: fix a set A of
atomic types, and write ΛA

0 for the calculus where CA = /0 for all A, and s ' t iff s '0 t. This is the most
basic case and we have just shown that Rel and Fin model '0. Be aware that if we introduce no atomic
type, then the semantics is actually trivial: in Λ /0

0, all types and terms are interpreted by /0.
By contrast, we can consider the internal language ΛRel of Rel in which all relations can be described:

fix A as the collection of all sets (or a fixed set of sets) and CA = P(JAK). Then set s'Rel t iff JsK
Γ

= JtK
Γ
,

for any suitable Γ. The point in defining such a monstrous language is to enable very natural notations
for relations: in general, we will identify closed terms in ΛRel with the relations they denote in the empty
context. For instance, we write idA = λxx with x of type A; and if f ∈ Rel(A,B) and g ∈ Rel(B,C), we
have g ◦ f = λx(g(f x)). Similarly, the internal language ΛFin of Fin, where A is the collection of all
finiteness spaces and CA = F(A∗), allows to denote conveniently all finitary relations.

The main contribution of the present paper is to establish that Fin models Gödel’s system T , which
can be presented in various ways. The iterator version of system T is the typed λ -calculus with an
atomic type Nat of natural numbers, and constants O of type Nat, S of type Nat→ Nat and for all type
A, IA of type Nat → (A → A) → A → A and subject to the following additional conversions: IOuv > v
and I(S t)uv > u(I t uv) (we will in general omit the type subscript of such parametered constants). The
recursor variant is similar, but the iterator is replaced with RA of type Nat→ (Nat→ A → A)→ A → A
subject to conversions ROuv > v and R(S t)uv > ut (R t uv). Those systems allow to represent exactly
the same functions on the set of natural numbers, where the number n is denoted by Sn O: this is the
consequence of a normalization theorem (see [8]). In fact, we can define a recursor using iteration
and products with the standard encoding rec = λxλyλ zπl (Ix(λw〈y(πr w)(πl w),S(πr w)〉)〈z,O〉), and
we get rec(Sn O)uv ' R(Sn O)uv: the idea is to reconstruct the integer argument on the fly. But this
encoding is valid only for ground terms of type Nat: rec(S t)uv' ut (rec t uv) holds only if we suppose
t is of the form Sn O, or reduces to such a term. By contrast, the encoding of the iterator by iter =
λxλyλ z(Rx(λx′ y)z) is extensionally valid: iterOuv ' v and iter(S t) uv ' u(iter t uv) for all t,u,v.

The fact that one direction of the encoding holds only on ground terms indicate that the algorithmic
properties of both systems may differ. And these differences will appear in the semantics (see the final
section). Also, recall the discussion in our introduction: the tail recursive variant of iterator, J subject to
J(S t)uv > J t u(uv), uses its integer argument linearly. This enabled Ehrhard to define a semantics of
iteration, with Nat∗ = N = (N,Pf (N)), JOK = O = {0} and JSK = S = {([n] ,n+1); n ∈ N}. Such an
interpretation of natural numbers, however, fails to provide a semantics of I or R, in Rel or Fin.

Lemma 3.1. Assume JNatK = |N |, JOK = O and JSK = S , and let A be any type such that JAK 6= /0. Then
there is no IA ⊆ JNat→ (A → A)→ A → AK such that, setting JIAK = IA, we obtain JIOuvK

Γ
= JvK

Γ

and JI(S t) uvK
Γ

= Ju(I t uv)K
Γ

as soon as Γ ` t : Nat, Γ ` u : A → A and Γ ` v : A.

119

A Non-Uniform Finitary Relational Semantics of System T Vaux

Proof. By contradiction, assume the above equations hold. By the second equation and Theorem 3.1,
JI(Sx) (λ z′ y) zK = JyK, and thus x[] : Nat,y[α] : A,z[] : A` I(Sx) (λ z′ y) zα : A. Inversing the rules of Figure
2, we obtain that ([] , [([] ,α)] , [] ,α)∈ JIK and then ([([] ,α)] , [] ,α)∈ JIOK. Since JAK 6= /0, this contradicts
the fact that, by the first equation: JIOK = Jλyλ z(IOyz)K = Jλyλ zzK = {([] , [α] ,α); α ∈ JAK}.

4 A Finitary Relational Interpretation of Primitive Recursion

Lazy natural numbers. That x[] : Nat,y[α] : A,z[] : A ` I(Sx) (λ z′ y) zα : A implies ([] , [([] ,α)] , [] ,α)∈
JIK holds because JSK = S is linear, hence strict: this reflects the general fact that, if s ∈ Rel(A,B)
contains no ([] ,β) then, for all t ∈ Rel(B,C), ([] ,γ) in t ◦ s iff ([] ,γ) ∈ t. Such a phenomenon was also
noted by Girard in his interpretation of system T in coherence spaces [8]. His evidence that there was
no interpretation of the iteration operator using the linear successor relied on a coherence argument. The
previous lemma is stronger: it holds in any web based model as soon as the interpretation of successor is
strict.

In short, strict morphisms cannot produce anything ex nihilo; but the successor of any natural number
should be marked as non-zero, for the iterator to distiguish between both cases. Hence the successor
should be affine: similarly to Girard’s solution, we will interpret Nat by so-called lazy natural numbers.
Let Nl = (|Nl| ,Pf (|Nl|)) be such that |Nl| = N∪N>, where N> is just a disjoint copy of N. The
elements of N> are denoted by k>, for k ∈ N: k> represents a partial number, not fully determined but
strictly greater than k. If ν ∈ |Nl|, we define ν+ as k + 1 if ν = k and (k + 1)> if ν = k>. Then we set
Sl = {([] ,0>)}∪{([ν] ,ν+)}, which is affine. Notice that O ∈ F(Nl) and Sl ∈ F(Nl ⇒Nl).

Fixpoints. For all finiteness space A , write Rec [A] = Nl ⇒ (Nl ⇒A ⇒A)⇒A ⇒A . We want to
introduce a recursion operator RA ∈ F(Rec [A]) intuitively subject to the following definition: R t uv =

match t with
{

O 7→ v
S t ′ 7→ ut ′ (R t ′ uv)

. This definition is recursive, and a natural means to obtain such

an operator is as the fixpoint of S tep = λX λxλyλ z
(

match x with
{

O 7→ z
Sx′ 7→ yx′ (X x′ yz)

)
.

The cartesian closed category Rel is cpo-enriched, the order on morphisms being inclusion. Hence it
has fixpoints at all types: for all set A and f ∈ Rel(A,A), the least fixpoint of f is

⋃
k≥0 f k /0, which is

an increasing union. The least fixpoint operator is itself definable as the supremum of its approximants,
F ixA =

⋃
k≥0 F ix(k)

A , where F ix(0)
A = /0 and F ix(k+1)

A = λ f
(

f
(
F ix(k)

A f
))

, more explicitly F ix(k+1)
A ={

([([α1, . . . ,αn] ,α)]+∑
n
i=1 ϕ i,α) ; ∀i, (ϕ i,αi) ∈F ix(k)

A

}
. Notice that these approximants are finitary:

if A is a finiteness space then, for all k, F ix(k)
A = F ix(k)

|A | ∈ F((A ⇒A)⇒A). The fixpoint, however,
is not finitary in general: for instance F ixSl = N> 6∈ F(Nl) hence F ixNl 6∈ F((Nl ⇒Nl)⇒Nl). So
we proceed in two steps: we first introduce the finitary approximants R

(k)
A ∈ F(Rec [A]) by R

(k)
A =

S tepk
A /0, then we prove RA =

⋃
k≥0 R

(k)
A ∈ F(Rec [A]).

Pattern matching on lazy natural numbers. We introduce a finitary operator C ase, intuitively de-

fined as: C aset uv = match t with
{

O 7→ v
S t ′ 7→ ut ′

. More formally:

Definition 4.1. If ν = [ν1, . . . ,νk] ∈ |Nl|!, we write ν
+ =

[
ν

+
1 , . . . ,ν+

n
]
. Then for all set A, let C aseA =

{([0] , [] , [α] ,α); α ∈ A}∪
{

([0>]+ν
+, [(ν ,α)] , [] ,α); ν ∈ |Nl|!∧α ∈ A

}
.

120

A Non-Uniform Finitary Relational Semantics of System T Vaux

Lemma 4.1. Pattern matching is finitary: C aseA = C ase|A | ∈ F(Nl ⇒ (Nl ⇒A)⇒A ⇒A). More-
over, y : Nl ⇒A ,z : A ` C aseO yz ' z : A and x : Nl,y : Nl ⇒A ,z : A ` C ase(Sl x)yz ' yx : A .

Proof. That the equations hold is a routine exercise. To prove C ase is finitary, we check the defi-
nition of F(−⇒−). For the first direction: for all n ∈ F(Nl), C asen ⊆ {([] , [α] ,α); α ∈ |A |} ∪{
([(ν ,α)] , [] ,α); ν

+ ∈ n!∧α ∈ |A |
}

; hence, setting n′ = {ν ; ν+ ∈ n} ∈ F(Nl), we obtain C asen ⊆
(λyλ zz)∪ (λyλ z(yn′)), and we conclude since the union of two finitary subsets is finitary. In the re-
verse direction, we prove that, for all γ ∈ |(Nl ⇒A)⇒A ⇒A |, setting N′ = C ase⊥ · {γ}, n! ∩N′ is
finite; this is immediate because N′ has at most one element.

A recursor in Rel. We introduce the relation R as the fixpoint of S tep.

Definition 4.2. Fix a set A. Let S tepA = λX λxλyλ z(C aseA x(λx′ (yx′ (X x′ yz)))z). and, for all
k ∈ N, let R

(k)
A = S tepk

A /0. Then we define RA =
⋃

k≥0 R
(k)
A , and fix JRK = R.

Lemma 4.2. For all finiteness space A , S tepA = S tep|A | ∈ F(Rec [A]⇒Rec [A]) and, for all k,

R
(k)
A = R

(k)
|A | ∈ F(Rec [A]). Moreover, we have: R

(0)
A = /0 and R

(k+1)
A = {([0] , [] , [α] ,α); α ∈ |A |}∪{(

[0>]+∑
n
i=0 ν

+
i , [(ν0, [α1, . . . ,αn] ,α)]+∑

n
i=1 ϕ i,∑

n
i=1 α i,α

)
; ∀i, (ν i,ϕ i,α i,αi) ∈R

(k)
A

}
.

Proof. The finiteness of the approximants follows from Theorem 3.2. The explicit description of R
(k)
A is

a direct application of the definition of the relational semantics.

Theorem 4.3 (Correctness). For all suitable Γ and ∆, JROyzK
Γ
= JzK

Γ
and JR(Sx)yzK

∆
= Jyx(Rxyz)K

∆
.

Proof. This follows directly from Lemma 4.1 and the fact that R = S tepR.

Finiteness. It only remains to prove R is finitary. Following the definition of (−⇒−), we proceed
in two steps: the image of a finitary subset of Nl is finitary; conversely, the preimage of a singleton is
“anti-finitary”.

Definition 4.4. If α = [α1, . . . ,αk] ∈ a!, we denote the support of α by Supp(α) = {α1, . . . ,αk} ⊆ a, and
the size of α by #(α) = k. If n ∈ F(Nl), we set max(n) = max{k; k ∈ n∨ k> ∈ n}, with the convention
max(/0) = 0. Then if ν ∈ |Nl|! we set max(ν) = max(Supp(ν)), and if n ⊆ n! for some n ∈ F(Nl),
max(n) = max(

⋃
ν∈n Supp(ν)).

Lemma 4.3. For all γ = (ν ,ϕ,α,α) ∈RA , γ ∈R
(max(ν)+1)
A .

Proof. By induction on max(ν), using Lemma 4.2.

Lemma 4.4. If n ∈ F(Nl), then RA n ∈ F((Nl ⇒A ⇒A)⇒A ⇒A).

Proof. The previous Lemma entails RA n = R
(max(n)+1)
A n. We conclude recalling that R

(max(n)+1)
A n ∈

F((Nl ⇒A ⇒A)⇒A ⇒A), because R
(max(n)+1)
A ∈ Rec [A].

Definition 4.5. For all ϕ = [(ν1,α1,α1), . . . ,(νk,αk,αk)] ∈ |Nl ⇒A ⇒A |!, let ##(ϕ) = ∑
k
j=1 #(ν j).

Lemma 4.5. If (ν ,ϕ,α,α) ∈RA , then #(ν) = #(α)+#(ϕ)+##(ϕ).

Proof. Using Lemma 4.2, the result is proved for all (ν ,ϕ,α,α) ∈R
(k)
A , by induction on k.

Theorem 4.6 (The recursion operator is finitary). RA ∈ F(Rec [A]).

121

A Non-Uniform Finitary Relational Semantics of System T Vaux

Proof. By Lemma 4.4, we are left to prove that, for all n ∈ F(Nl) and γ ∈ |(Nl ⇒A ⇒A)⇒A ⇒A |,
N = n!∩

(
R⊥ · {γ}

)
is finite. But by Lemma 4.5,

N ⊆
{

ν ∈ |Nl|!; #(ν) = #(α)+#(ϕ)+##(ϕ)∧max(ν)≤ max(n)
}

which is finite.

Remark 4.7. We keep calling R “the” recursion operator, but notice such an operator is not unique in
Rel or Fin: let C ase′A = {([0,0] , [] , [α] ,α); α ∈ A}∪

{(
[0>]+ν

+, [(ν ,α)] , [] ,α
)

; ν ∈ |Nl|!∧α ∈ A
}

,
for instance; this variant of matching operator behaves exactly like C ase, and one can reproduce our
construction of the recursor based on that.

5 About Iteration

We have just provided a semantics of system T with recursor. Now let IA = λxλyλ z(RA x(λx′ y)z)
for all set A. By Theorem 4.6, IA = I|A | ∈ F(Iter [A]). Moreover, by Theorem 4.3 this defines an
iteration operator and we obtain that the triple (|Nl| ,O,Sl), resp. (Nl,O,Sl), is a weak natural number
object [12, 9] in the cartesian closed category Rel, resp. Fin.

We now develop a semantic argument demonstrating how recursion is stricly stronger than iteration.
One distinctive feature of both models is non-uniformity: if a,a′ ∈ F(A) then a∪a′ ∈ F(A); and in the
construction of a!, there is no restriction on the elements of the multisets we consider. It is very different
from the setting of coherence spaces for instance. But we can show the iterator only considers uniform
sets of lazy numbers, in the following sense: if k ∈N, we define k = S k

l O = {l>; l < k}∪{k} ∈ F(Nl);
we say n ⊆ |Nl| is uniform if n ⊆ k for some k. Notice that, in the coherence space of lazy natural
numbers used by Girard in [8] to interpret system T , the sets k are the finite maximal cliques: coherence
is given by k Ξ l iff k = l, k Ξ l> iff k > l and k> Ξ l> for all k, l. The only infinite maximal clique is N>

(recall this is the fixpoint of Sl). We prove I considers only uniform sets of lazy numbers.

For all k, let I
(k)
A = λxλyλ z

(
R

(k)
A x(λx′ y)z

)
. Then let S tage(0)

A = {([0] , [] , [α] ,α); α ∈ |A |};

S tage(1)
A = {([0>] , [([] ,α)] , [] ,α) ; α ∈ |A |}; and, for all k > 0, S tage(k+1)

A = I
(k+1)
A \I

(k)
A . One can

check that IA =
⋃

k≥0 S tage(k)
A .

Lemma 5.1. If A 6= T then, for all k ∈ N,
⋃{

Supp(ν); ∃(ϕ,α,α), (ν ,ϕ,α,α) ∈S tage(k)
A

}
= k.

Proof. The inclusion ⊆ is easy by induction on k. For ⊇, consider λxλ z
(
I (k) x(λ z′ z′)z

)
.

As a consequence, for all (ν ,ϕ,α,α)∈I , Supp(ν) is uniform. Of course, no such property holds for
R, because R

(1)
A ⊇

{(
[0>]+ν

+, [(ν , [] ,α)] , [] ,α
)

; α ∈ |A |∧ν ∈ |Nl|!
}

. An immediate generalization
is that no recursor can be derived from I : the interpretation of any recursor on the natural number object
(Nl,O,Sl) necessarily contains elements of the above form.

Acknowledgements

The present work stems from a discussion with Thomas Ehrhard. It also greatly benefited from many
working sessions in the company of Christine Tasson, to whom I am most grateful.

122

A Non-Uniform Finitary Relational Semantics of System T Vaux

References
[1] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Not enough points is enough. In J. Duparc and T. Henzinger,

eds., Proc. of 21st Int. Wksh. on Computer Science Logic, CSL 2007 (Lausanne, Sept. 2007), v. 4646 of Lect.
Notes in Comput. Sci., pp. 298–312. Springer, 2007.

[2] T. Ehrhard. Finiteness spaces. Math. Struct. in Comput. Sci., 15(4):615–646, 2005.
[3] T. Ehrhard and O. Laurent. Interpreting a finitary pi-calculus in differential interaction nets. In L. Caires

and V. T. Vasconcelos, eds., Proc. of 18th Int. Conf. on Concurrency Theory, CONCUR 2007 (Lisbon, Sept.
2007), v. 4703 of Lect. Notes in Comput. Sci., pp. 333–348. Springer, 2007.

[4] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1–3):1–41, 2003.
[5] T. Ehrhard and L. Regnier. Differential interaction nets. Electron. Notes in Theor. Comput. Sci., 123:35–74,

2005.
[6] T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of λ -terms. In A. Beck-

mann et al., eds., Proc. of 2nd Conf. on Computability in Europe, CiE 2006 (Swansea, June/July 2006),
v. 3988 of Lect. Notes in Comput. Science, pp. 186–197. Springer, 2006.

[7] J.-Y. Girard. Normal functors, power series and lambda-calculus. Ann. of Pure and Appl. Log., 37(2):129–
177, 1988.

[8] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, v. 7 of Cambridge Tracts in Theoretical Computer
Science. Cambridge Univ. Press, 1989.

[9] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic, v. 7 of Cambridge Studies in
Advanced Mathematics. Cambridge Univ. Press, 1988.

[10] M. Pagani and C. Tasson. The inverse Taylor expansion problem in linear logic. In Proc. of 24th Ann. IEEE
Symp. on Logic in Computer Science (Los Angeles, CA, Aug. 2009), IEEE CS Press, to appear.

[11] C. Tasson. Algebraic totality, towards completeness. In P.-L. Curien, ed., Proc of 9th Int. Conf. on Typed
Lambda Calculi and Applications, TLCA 2009 (Brasilia, July 2009), v. 5608 of Lect. Notes in Comput. Sci.,
pp. 325–340. Springer, 2009.

[12] M.-F. Thibault. Pre-recursive categories. J. of Pure and Appl. Alg., 24:79–93, 1982.
[13] P. Tranquilli. Intuitionistic differential nets and lambda-calculus. Theor. Comput. Sci, to appear.
[14] L. Vaux. Differential linear logic and polarization. In P.-L. Curien, ed., Proc of 9th Int. Conf. on Typed

Lambda Calculi and Applications, TLCA 2009 (Brasilia, July 2009), v. 5608 of Lect. Notes in Comput. Sci.,
pp. 371–385. Springer, 2009.

123

Author index

Afanasiev, L. 11
Birkedal, L. 18
Bloom, S. L. 25
Burrell, M. J. 7
ten Cate, B. 11, 30
Clairambault, P. 39
Cockett, R. 7
Ésik, Z. 25
Esparza, J. 9
Fontaine, G. 30
Hagiya, M. 108
Hofmann, M. 46
Kiefer, S. 9
Kreutzer, S. 54
Lange, M. 54
Luttenberger, M. 9

Myers, R. 61
Nguena Timo, O. L. 70
Niqui, M. 79
Parys, P. 86
Redmond, B. F. 7
Reynier, P.-A. 70
Rodriguez, D. 46
Rutten, J. 79
Stamate, D. 93
Støvring, K. 18
Tadaki, K. 100
Tanabe, Y. 108
Thamsborg, J. 18
Vaux, L. 116
Venema, Y. 10

124

