
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Igor Volkov 143772IAPM

EXTENDING POSTGRESQL DATABASE
MANAGEMENT SYSTEM TO ADD

SUPPORT OF DATA MASKING

Master's thesis

Supervisor: Erki Eessaar

PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Igor Volkov 143772IAPM

POSTGRESQL ANDMEBAASISÜSTEEMI
LAIENDAMINE ANDMETE MASKIMISE

VÕIMALUSTEGA

Magistritöö

Juhendaja: Erki Eessaar

Doktor

Tallinn 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Igor Volkov

15.05.2017

3

Abstract

Data masking is a difficultly reversible process that replaces sensitive and valuable data

with data that looks realistic. However, in fact data is generated or otherwise computed

and thus cannot be used for unauthorized purposes.

PostgreSQL is an advanced SQL database management system (DBMS) that as of May

2017 ranks as the second most popular open source DBMS and fourth most popular

DMBS in general [1] . Yet there is an apparent lack of data masking solutions that are

free, open source, and native to the DBMS.

This work explores the types and techniques for data masking described in the existing

literature, implements some of the techniques in PostgreSQL as a proof-of-concept open

source extension, and presents a performance test of the implemented solution in case of

masking a simple database.

As the implemented extension is far from being perfect, its limitations, possibilities for

the future development, and necessary refactorings are also presented.

The software is licensed with the MIT license. The source code is published at

https://gitlab.com/thodt-md/themask/tree/devel .

This thesis is written in English and is 90 pages long, including 8 chapters, 9 figures

figures and 11 tables.

4

https://gitlab.com/thodt-md/themask/tree/devel

Annotatsioon

PostgreSQL andmebaasisüsteemi laiendamine andmete

maskimise võimalustega

Andmete maskimine on raskesti tagasipööratav protsess, mis asendab tundlikud ja

väärtuslikud andmed realistlikuna näivate andmetena. Tegelikkuses on need andmed

genereeritud või olemasolevate andmete põhjal arvutatud. Seega ei saa neid andmeid

otstarbe (näiteks süsteemi testimine) väliselt kasutada. Leidub hulgaliselt erinevaid

andmete maskimise algoritme. Neid realiseerivad mitmed andmebaasisüsteemid ja ka

andmebaasisüsteemidest eraldiseisvad programmid.

PostgreSQL on võimekas SQL-andmebaasisüsteem (DBMS), mis 2017. aasta mai

seisuga on populaarsuselt teine avatud lähtekoodiga andmebaasisüsteem ja

populaarsuselt neljas üldises andmebaasisüsteemide populaarsuse pingereas [1] . Samas

ei leidu selle jaoks andmete maskeerimislahendusi, mis on tasuta, avatud lähtekoodiga

ja integreeritud andmebaasisüsteemi.

Antud töö annab kirjandusel põhineva ülevaate andmete maskeerimisvõimalustest,

realiseerib osa võimalustest kontseptuaalse prototüübina (proof-of-concept) PostgreSQL

avatud lähtekoodiga laiendusena ning mõõdab loodud laienduse abil tehtavate

operatsioonide jõudlust lihtsa andmebaasi maskimise põhjal.

Kuna loodud laiendus on ideaalist kaugel, siis töös kirjeldatakse ka selle puuduseid,

edasisi arendusvõimalusi ning refaktoreerimise vajadusi.

Jõudlustestide kohaselt ei muutnud maskeerimisoperatsioonid andmete kopeerimist

märgatavalt aeglasemaks. Kõige aeglasemaks operatsiooniks osutus juhuslike

isikunimede genereerimine. Selle kood vajab refaktoreerimist. Kuigi jõudlustestid

näitavad, et prototüüp on töövõimeline, siis täiuslikuks andmete maskeerimise

lahenduseks saamine nõuab lisatööd.

5

Tarkvara on litsenseeritud MIT litsentsiga. Tarkvara lähtekood on publitseeritud

https://gitlab.com/thodt-md/themask/tree/devel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 90 leheküljel, 8 peatükki, 9

joonist, 11 tabelit.

6

https://gitlab.com/thodt-md/themask/tree/devel

List of abbreviations and terms

AES Advanced Encryption Standard – “a specification for the
encryption of electronic data established by the U.S. National
Institute of Standards and Technology (NIST) in 2001” [2] .

CSV Comma-Separated Values – standardized textual format, which
is commonly used for storing tabular data [3] .

CRUD Create, Read, Update, Delete – basic data manipulation
operations.

DBA Database Administrator – a person responsible for database
maintenance and operation [4] .

DBMS Database Management System – “a set of programs that enables
users to store, modify and extract data from a database” [5] .

DDL Data Definition Language – a subset of a database domain-
specific language, meant for altering the structure of the
database. SQL operators that are used in its DDL statements
include CREATE, ALTER and DROP.

DML Data Manipulation Language – a subset of a database domain-
specific language, meant for querying, persisting and modifying
data in the database without altering its structure. SQL operators
that are used in its DML statements include SELECT, INSERT,
UPDATE, DELETE and MERGE.

FPE Format-Preserving Encryption – an encryption technique that
allows the encrypted text to be in the same domain as plaintext.
For example, encrypting a valid credit card number will yield
another valid credit card number [6] .

JSON JavaScript Object Notation – lightweight textual data
interchange format, based on a subset of the JavaScript
programming language [7] .

JSONB Binary data type that can be used in PostgreSQL for a more
efficient JSON data storage [8] .

LOB Large Object – a term for types of unstructured (in the sense
that the DBMS cannot operate on its structure) binary (BLOB)
and character (CLOB) data in some SQL DBMSs. The values
that belong to the types have typically very high size limits and
are stored in a location separate from other data in the database
(outside of regular data blocks where data is stored row or
column wise).

7

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
https://en.wikipedia.org/wiki/Encryption

LUT Lookup table – an array-like structure that is used to replace an
expensive computation with a simpler array-lookup [9] .

PIC Personal Identification Code (Estonian: isikukood) – a numeric
code issued by an Estonian governmental agency. The code is
formed on the basis of the gender and the date of birth of a
natural person and allows the specific identification of the
person [10] .

PL/pgSQL Procedural Language/PostgreSQL - built-in loadable procedural
language for the PostgreSQL DBMS that can be used to
perform server-side database management and data processing
[11] .

RDBMS Relational Database Management System – a DBMS where the
data is presented to the database users as values in the relational
tables [12] . Internal storage of the data is not prescribed by the
relational model.

SQL Structured Query Language – a standardized concrete (as
opposite to the abstract language like a data model) language
for managing databases [13] that has been created according to
the underlying data model of SQL. The model is similar to but
not equivalent with the relational data model. SQL is a database
domain-specific language.

SQL DBMS SQL Database Management System – database management
system that allows organization of data according to the
underlying data model of SQL and offers SQL database
language to work with the data.

SQL proxy SQL proxy is a type of a computer system or a software
application that forwards SQL requests from a SQL DBMS
client to the SQL DBMS server and the related responses back
to the client. The proxy can cache, alter, or drop the incoming
requests.

TUT Tallinn University of Technology

UML Unified Modeling Language – standardized general-purpose
graphical modeling language that can be used to analyze,
specify, and document the artifacts in an information-intensive
system [14] .

XML Extensible Markup Language – textual data interchange format
recommended by W3C [15] .

8

Table of Contents

1 Introduction...14

2 Data Masking...17

2.1 The Need for Data Masking..17

2.2 Data Masking Architectures..19

2.2.1 Static Data Masking...19

2.2.2 Dynamic Data Masking...20

2.2.3 On-the-Fly Data Masking..22

2.3 Data Masking Techniques...22

2.3.1 Variable Suppression...23

2.3.2 Truncation or Cropping...23

2.3.3 Substitution..23

2.3.4 Shuffling..23

2.3.5 Masking Out..24

2.3.6 Random Noise...24

2.3.7 Encryption...24

2.3.8 Format-preserving Encryption...24

2.3.9 Methods Based on Linear Models...25

2.4 Risks and Challenges in Data Masking...25

2.4.1 Risk of Accidental Disclosure...26

2.4.2 Masking Synchronization..26

2.4.3 Risk of Data Being Unusable..26

2.4.4 Masking Values that Belong to Structured and Large Object (LOB) Data

Types...27

2.4.5 Data Integrity...27

2.4.6 Misconfiguration...27

3 Existing Data Masking Implementations..28

3.1 SQL DBMS Implementations...28

3.2 Implementations Done by Independent Software Vendors..............................30

9

4 Implementation Alternatives in PostgreSQL...33

4.1 PostgreSQL Extension Mechanism..33

5 Designing and Implementing the PostgreSQL Extension...36

5.1 On Using UML for Modeling PostgreSQL Extensions....................................36

5.2 Functional Requirements..37

5.2.1 Add Masking Context..38

5.2.2 Modify Masking Context...38

5.2.3 Remove Masking Context...39

5.2.4 Add Table Policy...39

5.2.5 Modify Table Policy..39

5.2.6 Remove Table Policy...39

5.2.7 Add Column Rule..40

5.2.8 Modify Column Rule...40

5.2.9 Remove Column Rule...40

5.2.10 View Column Rules...40

5.2.11 Compile Rules...41

5.2.12 Execute Masking Process..41

5.3 Non-functional Requirements...41

5.4 Domain Model..43

5.5 Extension Configuration Tables..48

5.6 The Main Processes..51

5.6.1 Rule Compilation...51

5.6.2 Masking Execution..55

5.7 On Similarity To Commercial Data Masking Solutions...................................56

5.8 Highlights on the Implementation Details..57

5.8.1 Coding Best Practices..57

5.8.2 Code Structure...59

5.8.3 Packaging and Distribution...61

5.9 Installation...63

5.10 Issues and Limitations...64

5.10.1 Not Directly Usable by Client Applications..64

5.10.2 Incomplete Transfer of Table Details..64

5.10.3 No Object Types Besides Base Tables..65

10

5.10.4 Incomplete Support for Composite Primary Keys......................................66

5.10.5 Inefficient Shuffling..66

5.10.6 No Option to Link the Techniques..66

5.10.7 Security and Roles...67

5.10.8 Identifier Name Length...67

5.10.9 UNIQUE Referencing...67

5.10.10 Schema Changes Not Detected..67

6 Performance Evaluation..68

6.1 Test Data Schema..68

6.2 System Setup and Methodology...69

6.2.1 Test System Hardware and Software Setup..69

6.2.2 Test Methodology..69

6.3 Performance Results...71

7 Looking Back and Forward...74

7.1 Miscalculations of My Work Process...74

7.2 Refactoring..74

7.3 Development Ideas for the Future...75

8 Summary..77

 References..79

 Appendix 1 – Configuration of Column Rules...84

 Appendix 2 – Performance Test Script Template..89

11

List of Figures

Figure 1: Static data masking architecture..19

Figure 2: Dynamic data masking architecture...20

 Figure 3: Extension use case diagram..38

 Figure 4: Extension domain model - part 1..43

 Figure 5: Extension domain model - part 2..44

 Figure 6: Extension configuration tables..49

 Figure 7: Rule compilation process..52

 Figure 8: Masking execution process...55

 Figure 9: Test data schema...68

12

List of Tables

Table 1: Built-in masking facilities of some SQL DBMS...28

Table 2: Masking solutions by independent software vendors..30

Table 3. PostgreSQL extension control file parameters..34

Table 4: Description of the classes of domain model..44

Table 5: Domain model attribute definitions...47

Table 6: Configuration table definitions..49

Table 7: Configuration table column definitions...50

Table 8: Directory tree for extension SQL script files..60

Table 9: Masking configuration for performance test...70

Table 10: Performance test results...71

Table 11: Implemented masking extension column rule configuration parameters........84

13

1 Introduction

Large complex projects, especially in the public sector tend to fail [16] [17] . Typically

such projects are commissioned as large systems of undifferentiated high and low-risk

components. These components often rely on proprietary technologies that are left from

legacy systems. Such components may be deeply integrated with the supporting logic of

the underlying platforms. Thus, one has to deal with these only as whole [18] . This

leads to the limited possibilities to change the system. It raises budget costs, delays

deployment, and possibly ends with total project failure. As a consequence, software

development tends to move towards doing faster release cycles, designing loosely

coupled components, using leaner processes and open source solutions.

As an example, while working for a consultancy firm during the last five years, I have

noticed a clear trend of moving away from proprietary DBMSs like Oracle towards free

and open source solutions, PostgreSQL being the primary choice for all new projects

requiring a SQL DBMS.

However, developing integrated applications of any scale requires correctly functioning

services that the application can use. During the development the services should be

implemented either as mocks, which are hard to maintain and really feasible only for the

simplest components, or real services with non-production data.

Most of the clients I have worked with more application environments, than just

“development”, “test”, and “production”. Other environments may include, for example,

“training”, where a production artifact is paired with production-like test data and is

used to train employees.

Since the development cycle is shorter, the software is more likely to suffer from bugs

and unexpected behavior due to data in production being dissimilar to the data used in

development and during testing. The usual production issue resolving process done for a

client involves the developer, to whom the issue is assigned, systems or database

administrator (DBA), who has access to the production environment. In addition, 2-6

14

people besides these are involved. For solving an obvious issue, obfuscated production

log excerpts may suffice. However, now and then a hardly-reproducible bug emerges

and the developer has to either debug on-site or blindly ask questions in an issue tracker.

After all other configuration and environment-related factors are excluded, the issue

may turn out to be input-related and thus could have been more easily resolved, say,

with an obfuscated production copy.

There are likely many ways to solve these issues, but one of them, requiring perhaps

least change, is data masking. Data masking is a difficultly reversible process that

replaces sensitive and valuable data with data that looks realistic. However, in fact the

data is generated or otherwise computed and thus cannot be used for unauthorized

purposes.

The need and the apparent lack of a data masking solution for PostgreSQL that is:

• free, so that the client bears no additional expenses to provide production-like

test data,

• open source, opening the possibility for code review and modification,

• independent, i.e. requires no third-party software dependencies besides

PostgreSQL

has driven me to implement such a solution.

To achieve this goal the thesis firstly intends to provide a theoretical basis for data

masking – explore the types and techniques for data masking described in existing

literature, as well as mentioning some of the existing implementations.

As there are commercial proprietary solutions for data masking from DBMS and

independent software vendors, the thesis will give a short overview of their capabilities.

The solution is to be implemented using the extension mechanism of PostgreSQL. The

mechanism of action of the solution, implemented masking techniques, and the

peculiarities of packaging the related objects into an extension will be discussed.

Known limitations and refactoring possibilities of the implementation will be

mentioned.

15

To demonstrate the usage and to test the performance of the extension a simple database

will be masked by using the extension.

Finally the scope of the future work and the summary will be presented.

As such the work is an example of Design Science research that should end up with an

artifact (in this case a proof-of-concept data masking solution for PostgreSQL) [19] .

Development of the artifact uses business requirements and existing knowledge from

the field as an input. It produces an artifact and evaluates it. The results of the

evaluation are inputs to the further development of the artifact.

16

2 Data Masking

There are many definitions of data masking, but all of them seem to converge on the

notion that data masking is a process that replaces sensitive and valuable data with data

that looks realistic, but is in fact generated or otherwise computed and thus cannot be

used for unauthorized purposes [20] [21] [22] (p. 2)[23] (p. 2). Masked data is typically

needed for untrusted non-production environments. Proper data masking should not be

easily reversible [24] . Data masking is relevant regardless of the underlying data model

(relational, SQL, object-oriented, graph-based, document-based, etc.) of the database.

However, because the thesis develops a data masking solution for a SQL DBMS the

following sections refer specifically to the elements of the SQL data model (tables and

columns).

2.1 The Need for Data Masking

While some may argue that obtaining masked data can be achieved by using simpler

means, such as using a hand-crafted data manipulation language (DML) script, industry

leaders and independent security experts warn against using such techniques [23] (p. 5)

[24] because this approach is:

• not reusable: DML script (a set of DML statements) taken from one database

will only be reusable if the other database has a very similar structure;

Moreover, different SQL DBMSs have different SQL dialects and thus such

statements may need rewriting if moved between different DBMSs.

• not maintainable: every now and then applications are upgraded, adding new

columns with sensitive data to the schema, renaming tables or columns, or

removing tables or columns, which may not have necessarily contained

sensitive data. However, in each case each script must be carefully revised to

accommodate new changes. It lengthens the upgrade development cycle.

17

In addition to that, it should be also pointed out that a single script solution is not

flexible and will hardly be reusable, if the data is to be masked with different rules for

different scenarios even for the same database (such as described in [23] , p. 4).

Another common misconception is that production data masking can be replaced with

random test data generators. One can implement it as case-based set of scripts,

implement the more general software themselves, or use some existing software (like

[25] for that). While this may be true for a limited number of cases, say for development

data, configuring the random data generator will require the same, if not greater effort as

configuring a data masking solution.

1. Production database needs to be analyzed and reviewed in respect to what data is

contained in each column, both sensitive and not sensitive.

2. Relations between columns need to be considered and maintained in the

generated data, both explicit (uniqueness/foreign key constraints) and implicit

(denormalized data in tables, meaning that the same facts are repeated in

multiple places in the same table or across tables),

3. An appropriate data generation method must be chosen for each column.

4. Generated data must be reviewed and the methods appropriately adjusted, if

necessary.

Similar steps are described in F.A.S.T. data masking approach by Oracle [23] (p. 5).

The acronym refers to the Find, Assess, Secure and Test steps of data masking.

In addition to that, random test data does not help in any way during the resolution of

production issue. If a statistical or medical research is to be done on the production data

it requires some of the data that is essential to the research to be real facts. On the other

hand, data that allows scientists to identify persons and their concrete problems, must

most probably be obfuscated.

If it is in fact decided to use data masking for a particular problem, then there are

different techniques and architectures to choose from.

18

2.2 Data Masking Architectures

There are mainly three distinct types of masking architectures described – static,

dynamic, and on-the-fly. The classification is made in respect to where the sensitive

data is stored, when the data is masked, and how it is accessed [20] [21] [22] . Brief

description of each, including its advantages and disadvantages is given below.

2.2.1 Static Data Masking

Static data masking architecture is illustrated in Figure 1.

With static data masking sensitive data is masked while it is being copied to a non-

production database. It is a one-time process that produces a static copy with masked

data. Client applications that access the masked database get the same view regardless

where they reside and what they are otherwise authorized to do with the database.

Notable advantages of using this architecture include the following.

• Security: since sensitive data does not leave the production database, an attacker

will be able to access sensitive data only if he/she has direct access to the

production database. Traditional security means, such as networking firewalls,

physical separation, and security functionality of DBMSs can be deployed.

• Performance: queries on a static database with masked data will arguably be

faster, since no additional computation is done with the data to mask it while

executing the query. For example, if a column is dynamically masked by using a

function in a view, then the function will be executed each time the column is

19

Figure 1: Static data masking architecture

Sensitive
data

Production
database or
backup copy

Copy process +
masking

masking
rules

Masked
data

Development or
test database

Service 1

Service 2

Service 3

accessed. It will be done so many times as there are rows in the query result. To

speed up the query, one has to create a function-based index to the column.

However there are also disadvantages.

• Errors occurring during the masking process may effectively halt it. Restarting

the work means doing the process from scratch.

• Inability to change the masking rules after the process has finished, since they

would not have any effect on the data already masked. Thus, to apply new

masking rules the entire copy has to be produced again.

• Since the data is being masked while copying by an external or built-in tool, this

may interfere with using alternative replication solutions.

2.2.2 Dynamic Data Masking

Dynamic data masking architecture can be graphically described by using Figure 2.

With dynamic data masking sensitive data resides in the production database or is

copied (without masking) to another database. Different masking rules are then applied

based on the requesting source, user identity, etc. In effect the masking operations are

done on-the-fly as the database clients make requests and the data is not duplicated for

each set of rules.

Dynamic data masking has the following advantages.

• Storage: less storage is needed to host the data, because there is no separate

copy of the masked data.

20

Figure 2: Dynamic data masking architecture

Production database or backup copy

Sensitive
data

Development
Service 1

Masking
rules 1

Masked
view 1

Test Service 2Masked
view 2

Masking
rules 2

• Flexibility: rules may be added and removed at any time, the clients will see

changes immediately.

Disadvantages include the following:

• Depending on the implementation, queries that access the data have to be

rewritten in order to use masking functions in the SELECT clause and possibly

in the WHERE and HAVING clauses as well. Alternatively, base tables should

be renamed and views that have the same name as the original base tables should

be created. The views invoke masking functions. If different parties should have

data masked based on different rules, then the latter approach is problematic,

because there cannot be multiple views with the same name in the same schema.

Moreover, data modification through views has big limitations in SQL

databases, leaving some data modification functionality unusable. Thus,

realistically, one has to modify applications/services that access the data to make

them function with dynamically masked data as if it is normal data.

• High risk of data being compromised. If an adversary gains privileges either by

stealing production credentials, IP address spoofing or via some sort of privilege

escalation attack, then sensitive data can be fully recovered.

• Depending on the implementation, not all DBMS features may be usable. For

example, if the solution is implemented using a form of SQL proxy that rewrites

all incoming requests, features such as stored routines may uncover the masked

data [26] . The proxy also needs to be up to date in respect to the target DBMS

version to support new language features. Otherwise it may render masking

ineffective.

• In case of materialized views (snapshots) the dynamic masking that is applied in

case of accessing base tables should be duplicated or the view creation process

should produce data that is already masked. In either case the duplication of

masking rules makes it more difficult to manage these. The latter is an example

of static data masking and shows that a data masking solution may combine

different strategies.

21

• Not all data masking techniques may effectively be used. For example, if the

column is to be randomly shuffled, then the data will have to be reshuffled after

adding any records. Otherwise data in new records will maintain its insertion

order (the purpose of shuffling is to sever the link between the shuffled value

and its original record).

• A condition in a query based on data that needs masking might be something

like that:

◦ WHERE f_masking_function(column_name) = something

◦ If the data that needs masking is in an indexed column, then one may want to

create a function-based index to the column that the DBMS can use in case

of searching from masked data. If for different parties the masking function

for the column is different, then for each party there should be a separate

index. Indexes increase data size and reduce the performance of update

operations.

2.2.3 On-the-Fly Data Masking

There is also a third architecture advertised by some vendors [27] that involves a form

of data replication. It is similar to the static architecture in the sense that data does not

leave the production database unmasked. However, data modifications are regularly

propagated into a masked copy instead of just creating copy once and then using it.

Masking rules can be changed, but the changes will not propagate to the data that is

already masked. This may be an area of concern if the rules for a column have changed

in such a way that it is obvious by comparing older an newer records. However, when

applied correctly, this allows us to have a more up-to-date masked copy of production

data.

2.3 Data Masking Techniques

There are many techniques available [22] [28] [29] that can be used to protect sensitive

data, with new ones appearing in response to new demands and technological

advancements [30] . Below is a short description of frequently used techniques:

22

2.3.1 Variable Suppression

It is also known as “Nulling Out”. This method involves replacing a value with NULL or

a constant (such as “REDACTED” or “***”) that is not related with the data being

masked.

It is the simplest data masking method.

2.3.2 Truncation or Cropping

This method involves removing part of a string value or decreasing precision of a

numeric or a time-stamp value. For example, if it is necessary to know the year a car has

been purchased, then the month and day of that year are irrelevant. Thus, for instance, a

date 05.04.2017 can be truncated with the precision of month or year to 01.04.2017 or

01.01.2017, respectively.

2.3.3 Substitution

This method replaces a value with another similarly looking precomputed random

value. The replacement may or may not be related to the value being replaced. For

example, real full names in a column are replaced with random full names. The new

names are not just random string but are randomly selected from a set of precomputed

human names.

The main disadvantage with using substitution is the necessity to have an adequately

sized pool of random values. If the names of a pair of persons are different in the

original data, then these should be different in the masked data as well. Moreover, the

process has to be consistent (i.e. name John Smith is replaced with Bob White in all

contexts) [28] . The more data duplication within or across tables there is, the more

work it takes to ensure the consistency.

2.3.4 Shuffling

Shuffling is similar to Substitution. The precomputed value pool consists of the real

values in the masked column, and the values are randomly swapped between rows. The

main advantage is that the data is kept real, but any link to the original row is severed.

23

This allows the shuffled values to retain summary statistics, such as mean and standard

deviation.

However, shuffling may be ineffective for a small number of observations and in case

an adversary wants to know only if a value is present in the column [20] (p. 537).

2.3.5 Masking Out

It involves replacing characters of an unmasked value with a static masking character,

such as “*” or “X”. Commonly used for textual data, such as addresses, emails, account

numbers, credit card numbers, and phone numbers.

2.3.6 Random Noise

It is also referred to as “Numeric and date variance”, “Blurring”, and “Skewing”. This

technique is used mainly on numeric and temporal data, when knowing the precise

value is not necessary for it to be useful. Examples of application may include date of

birth, invoice totals, etc.

Random noise technique computes a random fraction (within predefined limits, say

10% of a numeric value or 100 days for a date value) of the value and then adds it to or

subtracts it from the original value.

2.3.7 Encryption

It is an encryption technique as the name suggests. It encrypts the data using a strong

cypher like Advanced Encryption Standard (AES). As a result, the value, say ASCII

character data, may fall out of its original domain and become binary data, with a side-

effect of increased data size.

2.3.8 Format-preserving Encryption

Format-preserving Encryption (FPE) is a special case of the Encryption technique. It

does not leave the data scrambled and thus unusable. Cyphertext is in the same domain

as plaintext [6] [29] . Encrypting a credit card number in a format-preserving manner

24

will deterministically produce another credit card number, a social security number

yields another social security number, etc.

The advantage of this method is obvious – it can be as secure as Substitution technique

with an unlimited precomputed data set and as fast as Encryption.

However, FPE must be implemented for each domain separately, depending on its

message space. Data such as credit card numbers, social security numbers as well as

other national identification codes often include a form of checksum, which is a derived

part of the plaintext value and must be recomputed after the encryption.

2.3.9 Methods Based on Linear Models

Besides the already mentioned techniques, complex Perturbation-based methods exist

for masking multi-column numeric data. The methods involve building a linear model

of the data being masked and using it to add noise to each observation, so that the

overall resulting masked data has the same mean vector and covariance matrix as the

original data [31] [32] . While it is an interesting approach, more detailed overview is

beyond the scope of this thesis.

2.4 Risks and Challenges in Data Masking

There are risks and challenges when using any data masking solution. Some worth

mentioning are presented in the next sections.

While this work acknowledges the aforementioned risks and challenges, attempting to

solve them is not in the focus of this thesis. The thesis only provides an artifact for data

masking and it is up to the user to decide what masking rules to apply for a particular

purpose. Any organization may have its own measure of what is valuable data, which

may be more strict than the law and operating regulations require.

25

2.4.1 Risk of Accidental Disclosure

If the data to be masked is not carefully analyzed in respect to correlation between

unmasked values, then a re-identification attack can be mounted using common data

mining techniques [33] .

Some security researchers advise using only such masking methods that can guarantee a

low risk of re-identification. For example, previously mentioned Variable Suppression,

Substitution and Shuffling would be good choices in this regard. It is argued that simply

having masked some data may not be enough, if re-identification risk is not measured

[34] .

It should also be noted that sensitive data disclosure not only leads to a reputation loss,

but may have legal consequences in most countries as well, including Estonia [35] .

2.4.2 Masking Synchronization

When masking a row that for example contains full name and gender columns, chosen

masking methods must be in sync with each other: a random name must be of the same

gender, if they are both randomized.

Another good example is the Estonian Personal Identification Code (PIC): it encodes

gender and date of birth [36] . If it is to be randomized, special care must be taken to

appropriately mask the date of birth column and person name columns, if present.

2.4.3 Risk of Data Being Unusable

Many research papers have been published on the topics of k-anonymity and disclosure

risk vs. data utility [37] [38] [39] [40] . One of the messages they convey is that there is

a trade-off between data utility and disclosure risk. Data utility is a “measure of the

business value attributed to data within specific usage contexts” [41] . By increasing the

number of unmasked variables, which may be so called quasi-identifiers, we also

increase the risk of disclosure. However, if we suppress all variables, data will not be

useful and data utility decreases. A careful balance between acceptable disclosure risk

and data utility should be obtained.

26

2.4.4 Masking Values that Belong to Structured and Large Object (LOB) Data

Types

Many SQL DBMSs support storing data that belongs to the structured textual data

types, such as XML and JSON and unstructured large object types, such as CLOB and

BLOB (PostgreSQL analogues of the latter are TEXT and BYTEA [42] , respectively).

XML, CLOB, and BLOB data types are prescribed by the SQL standard [13] .

Implementing an automated masking solution for structured document types implies

that their values should have the same schema. It may not always be true, for example,

in a database that stores raw requests and responses for a web service audit log.

Unstructured large objects may be user comments, where they may disclose sensitive

personal information, or binary objects such as photos and videos. Generating fake data

that could closely resemble such data, is infeasible and masking technique options are

typically limited to the simplest ones, such as nulling out.

2.4.5 Data Integrity

The masking methods may break data integrity, when the column is part of a foreign

key or a unique constraint, or has a CHECK constraint or is a part of a foreign key.

Variable suppression can violate NOT NULL constraints. The masking methods can

also break integrity checks that are implemented procedurally in triggers.

2.4.6 Misconfiguration

Any software product can be misconfigured either by accident or intentionally. While

software vendors (and I myself) do their best to safeguard the end-user against wrong

configuration options, this is not always possible. A test run with smaller data set must

therefore be done to make sure everything is working as intended.

27

3 Existing Data Masking Implementations

Data masking in SQL databases has a well established market with many vendors

offering solutions of different complexity. In this part an overview of built-in data

masking solutions from SQL DBMS vendors, as well as external tools targeted for SQL

DBMSs from independent software vendors will be given. The overview is based on

white papers and manuals released by the vendors.

Search was done by using Google Search with the terms “postgres data masking”, “data

masking sql”, “postgres data masking extension”, “built-in data masking database”,

“open source data masking sql”, “data masking database github”, “data masking

oracle”, “data masking gartner”, “data masking sqlserver”, and possibly a few others I

have currently no recollection of.

Search was also done on the popular site PostgreSQL Extension Network where the

authors of PostgreSQL extensions publish their work [43] .

3.1 SQL DBMS Implementations

First of all, there are SQL DBMSs that have built-in data masking facilities. Their

comparison is in Table 1.

Table 1: Built-in masking facilities of some SQL DBMS

Vendor DBMS or
package

License Type Implementation details

Microsoft SQL Server 2016
[44]

Proprietary Dynamic An SQL extension. Data masking is
applied column-wise using MASKED
WITH (FUNCTION = '…') syntax.
Four built-in techniques are available:
Default, Email, Random, and Custom
String.

IBM DB2 11 [45] Proprietary Dynamic An SQL extension. Data masking is

28

Vendor DBMS or
package

License Type Implementation details

applied column-wise using CREATE
MASK statement. Masking itself is done
using a form of CASE statement. No
mentioning of any built-in masking
techniques.

Oracle Oracle Database
12c – Data
Masking and
Subsetting Pack
[46]

Proprietary Static A graphical web-based utility that lets
the user define masking rules using a
variety of built-in masking techniques.
A masking script is then generated. The
script can then be scheduled to be
executed periodically.
It has seven implemented techniques
(Shuffle Masking, Blurring or
perturbation, Encryption, Format
Preserving Randomization, Conditional
Masking, Compound Masking, and
Deterministic Masking). The option for
a user-implemented masking method is
available.

Oracle Oracle Database
12c – Data
Redaction Pack
[47]

Proprietary Dynamic Rewrites query results. Masking
policies are configured using the
routines in the DBMS_REDACT package.
Four masking methods are available:
Full redaction, Partial reduction,
Regular expressions and Random
redaction.

Fujitsu
Software

Enterprise
Postgres [48]

Proprietary Dynamic A closed-source proprietary
PostgreSQL version with the data
masking support. No mentioning how
exactly it can be configured, but a
variety of masking techniques are
available: “character shuffling, nulling
or deletion, encryption, masking, and
word substitution.” Masking is
implemented by rewriting query
results.

29

The most feature-rich solution among DBMSs seems to be Data Masking and

Subsetting Pack for Oracle Database 12c. However, it must also be noted that a custom

PostgreSQL flavor by Fujitsu Software has data masking implemented as well.

3.2 Implementations Done by Independent Software Vendors

Secondly, there is a number of data masking solutions, external to DBMSs, done by

independent software vendors. An overview of them can be seen in Table 2.

Table 2: Masking solutions by independent software vendors

Vendor and
product

License Type Postgre-
SQL
support

Implementation details

DataSunrise
Database Security
Suite 3.7.1 [49]

Proprietary Static,
Dynamic

Yes Dynamic masking implemented as a
SQL proxy. Supports 26 different
masking operations.

Delphix Data
Masking Engine
5.1.6 [50]

Proprietary Dynamic Yes An in-memory dynamic solution that
offers eight data masking algorithms:
Secure Lookup Algorithm,
Segmented Mapping Algorithm,
Mapping Algorithm, Binary Lookup
Algorithm, Tokenization Algorithm,
Min Max Algorithm, Data Cleansing
Algorithm, Free Text Algorithm.

Camouflage CX-
Mask [51]

Proprietary Static Yes Supports over 20 data masking
techniques.

Net2000Ltd
DataMasker [52]

Proprietary Static No A program with a graphical user
interface that connects to target
databases and executes masking
operations. The solution implements
the majority of masking methods
written in whitepaper [22] , since the
latter was written by the developers of
DataMasker.

IBM InfoSphere
Optim Data
Privacy [53]

Proprietary Static,
Dynamic

Yes Supports a variety of masking
techniques, including FPE. Has an
Eclipse Workbench-based user
interface.

30

Vendor and
product

License Type Postgre-
SQL
support

Implementation details

IBM InfoSphere
DataStage Pack for
Data Masking

Proprietary Static /
On-the-
fly (?)1

Yes Built on top of IBM DataStage, a fast
ETL (Extract Transform Load – a
term by IBM) tool. Feature wise
seems to be similar to InfoSphere
Optim Data Privacy [54] , but is
designed to perform faster.

Informatica
Persistent Data
Masking [55]

Proprietary Static /
On-the-
fly (?)1

N/A Supports a variety of techniques:
“substitution, blurring, sequential,
randomization, nullification, plus
special techniques for credit card
numbers, SSNs, account numbers, and
financial data.” Yet, there is no
explicit mentioning of PostgreSQL
support.

Informatica
Dynamic Data
Masking [56]

Proprietary Dynamic N/A SQL proxy with optional bypass. It is
not explicitly stated that the solution
supports PostgreSQL.

IRI FieldShield
[57]

Proprietary Static,
Dynamic

Yes An Eclipse Workbench-based
graphical user interface, where the
user can define masking rules and
execute them. 12 built-in techniques
for static data masking, including
FPE. Dynamic data masking is
available for C, .NET, and Java
applications.

pgdump-
obfuscator [58]

Open
source

Static Yes A command-line utility written in Go
programming language. Operates
directly on pg_dump database
backups. Supports some sort of email,
password, and phone obfuscation.

The list of available solutions is in fact overwhelming, yet only a single open source

utility was found that works with PostgreSQL. Many vendors provide no technical

documentation, only marketing whitepapers. After doing this search I concluded that

there are no available open source masking solutions for PostgreSQL.

1 The exact implementation was not readily apparent after reading the manual.

31

Overall the overview of the products given here correlates with findings from other

sources [59] .

Some research on data masking has been done in Tallinn University of Technology

(TUT) before [60] . The author of that research compared various built-in data masking

options as well, but part of his findings may be obsolete: the latest Microsoft SQL

Server DBMS offers a more robust data masking solution.

32

4 Implementation Alternatives in PostgreSQL

As seen in the previous section, there are various options to implement data masking for

a SQL DBMS.

• An external tool that works as a proxy and masks data dynamically.

• An external tool that masks data as part of database cloning process (on-the-fly

or static masking).

• Built-in facility that masks data dynamically.

• Built-in facility that masks data as a part of database cloning/copying process

(on-the-fly or static masking).

Using any external tool means extra resource in maintaining the tool, in addition to the

DBMS itself, so one can imagine why DBAs would probably want to use a built-in

facility.

4.1 PostgreSQL Extension Mechanism

PostgreSQL has a built-in facility to extend its functionality, possibility to create

extensions, without rewriting its engine. An extension is a set of related database

objects, such as tables, views, functions, types, etc. that are collected together as a single

package [61] .

While it is possible to distribute related objects as a script, packaging them as an

extension gives the benefit that PostgreSQL will recognize them as a single unit, which

may easily be installed in a database using CREATE EXTENSION extension_name

statement and just as easily removed by using DROP EXTENSION extension_name

statement. Both statements are a PostgreSQL extension to the SQL standard.

33

Extension objects with the exception of configuration tables (if they are explicitly

marked as such by the extension author) will not be a part of the backup.

Each extension package must consist of at least two files.

1. So called extension control file that must be placed in the installation’s

SHAREDIR1/extension directory. The file name must follow the pattern

extension_name.control.

Parameters inside control files must follow the same convention as

postgresql.conf file (i.e. parameter_name = parameter_value). Notable

configuration parameters are listed in Table 3.

2. Extension SQL script with all the required DDL and DML operations. The script

file name must follow the naming pattern extension_name--version.sql.

Extension scripts may have any SQL commands, except transaction control

statements (for instance, BEGIN, COMMIT, ROLLBACK, SAVEPOINT) and

commands that cannot be executed in a transaction block (for instance, VACUUM).

An extension can be iteratively developed and upgraded on existing databases by using

so called update paths for SQL files. Update path file names must follow the naming

pattern extension_name--old_version--target_version.sql.

Control files for the newer versions can override parameter values of the old versions.

Their naming pattern must be extension_name--version.control.

Table 3. PostgreSQL extension control file parameters

Name and Type Description Sample Value

comment
(string)

A comment about the extension, e.g. a
short description.

'An extension for
new user type that
allows X, Y and Z'

default_version
(string)

The extension version to install when
not explicitly defined in a CREATE
EXTENSION statement.

'1.0'

requires Comma-separated names of the 'plpgsql, pgcrypto'

1 An environment variable that depends on the distribution and operating system, in case of Debian
Jessie this equals to /usr/share/postgresql/9.6/extension for PostgreSQL version 9.6.

34

Name and Type Description Sample Value

(string) extensions that must be installed before
this one.

relocatable
(boolean)

Can the extension be moved to another
schema after installation?

true, false

schema
(string)

Schema name for non-relocatable
extensions. Required if an extension
internally assumes that its related objects
reside in some specific schema.

'myextension'

35

5 Designing and Implementing the PostgreSQL Extension

This chapter highlights the design of the implemented solution including functional

requirements in terms of the main use cases and domain model. A brief overview of

what are the main processes in case of using the extension are given. An overview of

used patterns and best practices is made. Finally, it is explained how to install the

extension and what are its known limitations.

5.1 On Using UML for Modeling PostgreSQL Extensions

While it is a fact that PostgreSQL supports so called composite types, which may have

fields of various data types, and which can in turn be declared as a table column type,

their usage beyond data transfer and storage is rather limited [62] . A declaration of

composite type cannot have constraints, such as NOT NULL. Instead of bundling data

(attributes) and functionality (methods) together into one whole like it is done in case of

object-oriented programming, one has to separately define operators for performing

operations with the data that belongs to the type.

In terms of object-oriented features PostgreSQL also supports table inheritance [63]

and subtyping in case of range types [64] . I have no use for these features and decided

not to use them to create the extension.

To date the only loadable stored procedure languages bundled with every PostgreSQL

installation are SQL and PL/pgSQL [11] , which is a procedural language . Functions

written in the latter are a set of SQL DML statements that are put together under a

function name and can be thus invoked with one command. There are extensions for

other languages, including object-oriented languages. However, they require separate

installation together with the corresponding runtime. I believe that this is not portable

and should be avoided.

36

Thus, expressing mechanism of action of an extension by using UML constructs meant

for object-oriented scenarios, such as sequence diagrams, without diving into lower-

level abstraction details of the DBMS (like the ones listed in [65]), can be challenging.

That said, one can still use other UML diagram types like use case diagram, activity

diagram, and class diagram for describing an extension. The latter can be used for

domain modeling as well as for describing the tables and views that are created in a

database as the result of installing the extension.

5.2 Functional Requirements

The implemented extension is using static masking architecture. I believe that

disadvantages of dynamic masking outweigh the advantages. In my experience, no

organization would grant access to production DBMS servers anyway, regardless of the

purpose.

Functional requirements of the extension are expressed by using use case diagram in

Figure 3 and the short high-level descriptions of the use cases that follow the diagram.

Characterization of use cases as secondary or primary are based on my subjective

evaluation. All the use cases have been actually implemented in the extension.

Not all masking techniques described in part 2.3 were chosen. Some of them like FPE

and methods based on linear models deal with heavy computation. Implementing them

in SQL or PL/pgSQL would be problematic, possibly even detrimental to their

performance [66] .

37

A short description for each use case is given below.

5.2.1 Add Masking Context

Type: secondary

Actor: Database Administrator

Description: An actor defines a new masking context. A masking context has a name

and contains global settings for a group of masked tables. Different masking operations

on the same table can be configured in different masking contexts.

5.2.2 Modify Masking Context

Type: secondary

Actor: Database Administrator

Description: An actor modifies settings for an existing masking context.

38

Figure 3: Extension use case diagram

5.2.3 Remove Masking Context

Type: secondary

Actor: Database Administrator

Description: An actor removes an existing masking context. This in turn removes all

related table policies, column rules, and compiled operations.

5.2.4 Add Table Policy

Type: secondary

Actor: Database Administrator

Description: An actor adds a table policy to a masking context that defines default

settings for a table to be masked. If the referred table does not exist it should produce an

error.

5.2.5 Modify Table Policy

Type: secondary

Actor: Database Administrator

Description: An actor modifies an existing table policy for a masking context. If the

referred table does not exist it should produce an error.

5.2.6 Remove Table Policy

Type: secondary

Actor: Database Administrator

Description: An actor removes an existing table policy for a masking context. This in

turn removes all related column rules.

39

5.2.7 Add Column Rule

Type: secondary

Actor: Database Administrator

Description: An actor adds a masking rule for a table column. If a policy does not exist

for the table, a default one is added. Column rule defines the masking operation to be

performed on the column and its arguments, if necessary. The following masking

techniques must be supported: Variable Suppression, Truncation or Cropping,

Substitution, Shuffling, Masking Out, and Random Noise. If the referred column does

not exist it should produce an error.

5.2.8 Modify Column Rule

Type: secondary

Actor: Database Administrator

Description: An actor modifies a masking rule for a table column. If the rule is derived

from the table policy and does not exist by itself, a new rule is added explicitly. If the

referred column does not exist it should produce an error.

5.2.9 Remove Column Rule

Type: secondary

Actor: Database Administrator

Description: An actor removes a masking rule for a table column. After the rule is

removed the rule defined by the table policy must be used.

5.2.10 View Column Rules

Type: secondary

Actor: Database Administrator

40

Description: An actor views a list of all effective column rules, implicit (from the table

policy) and explicit (added manually).

5.2.11 Compile Rules

Type: primary

Actor: Database Administrator

Description: An actor invokes rule compilation for a given masking context. As a result

of the compilation, the added rules are checked for errors and a list of compiled

operations is persisted. If there rules are not valid, an error is shown and the process

aborts.

5.2.12 Execute Masking Process

Type: primary

Actor: Database Administrator

Description: An actor executes the masking process for a given context. As a result

masked table copies are created in cloned schemas and filled with masked data. If the

list of the compiled rules for the given context is empty, then the compilation process is

executed beforehand (see 5.2.11). If there are no rules defined, then the process aborts.

If there is no cloned schema, then a schema is created. If the cloned schema already

contains tables, then the user has to explicitly allow table truncation, or else an error is

reported.

5.3 Non-functional Requirements

There are some constraints to how the extension is to be implemented.

• Open source. Does the open source nature of the masking solution make it less

secure? I believe that simply knowing the masking algorithm makes no

difference on the probability of unmasking the data. The implemented

algorithms should rely on using functions that are a part of the standard library

41

provided by PostgreSQL such as random(). As long as the used functions are

secure, the implementation is secure. I also believe that any software dealing

with data masking and encryption should be open source, so that others may find

possible flaws in its implementation. I encourage any interested party to review

the code of the extension to prove or disprove the safety of the implemented

extension.

• No external dependencies. The implemented extension must not use other

extensions that require separate installation.

• Platform independence. The extension must be implemented using languages

that do not require recompilation on every target platform.

• No direct DML on the configuration tables. The user must be able to

configure the extension without using INSERT, UPDATE, or DELETE statements on

the configuration tables. As an exception, DML is allowed on the table

containing popular names as a part of the extension installation process.

Generally, the configuration must take place by invoking functions.

• Works on PostgreSQL 9.6+. The extension should work on PostgreSQL

version 9.6 or later. Working on lower versions is possible but not mandatory.

• Published with MIT License. Why the MIT license? There are other open

source licenses available [67] . Some of them are more permissive (meaning

they place less restrictions on the code reuse), some of them are so called copy-

left licenses. Copy-left licenses are more restrictive in the sense that they may

require to publish any changes of the code being used, as well as interfere with

the license of the product the code is being used in. This may be undesirable for

closed-source systems. MIT License text is rather short, easy to understand, and

requires the user only to include the copy of the notice with the derived

software. I only wish to know if any other solution is derived from this

extension, nothing else. MIT License is very popular on GitHub [68] . To my

knowledge, using this license is in no conflict with any other license, including

the license of PostgreSQL DMBS itself. There is no obligation for the user to

42

add a notice anywhere if the extension is used in unmodified form as standalone

software.

• Specific schema. All the schema objects that are a part of the extension should

be created within one schema, which name is predefined by the extension. It

ensures that the user cannot bundle the extension schema objects with the

schema objects in some already existing schema (like public that is always

automatically created). Everyone will know where to look for the schema

objects.

5.4 Domain Model

The domain model diagram is presented in two parts as Figure 4 and Figure 5 for more

the better visual clarity.

43

Figure 4: Extension domain model - part 1

Table 4: Description of the classes of domain model

Object Name Description

Base Table A base table is a named table of a SQL-database that is not defined in
terms of other tables. There is the CREATE TABLE statement for
creating such tables in SQL.

Named Table In this context a base table that can be accessed by its name. Other
types of named tables (views) are also defined in the SQL standard
[13] . In the implemented extension all the masking rules must be
applied to base tables, not to views or materialized views.

Named Table
Column

A named component of a table with a data type, a nullability
characteristic, and a possible default value.

Schema A named collection of database schema object descriptors. It is the
namespace for the schema objects. There are database objects that are
schema objects (for instance, base tables) and database objects that are
not (for instance, roles).

44

Figure 5: Extension domain model - part 2

Object Name Description

SQL-Database SQL-Database is an organized collection of data, structures for holding
the data, and ecosystem of supporting database objects that can be
accessed, modified, and managed using SQL.

Mask Context Context, in which masking settings for tables and columns are valid. A
database can have multiple mask contexts.

Table policy Table policy defines what masking operations are done by default and
sets default values for various operations. Table masking policy is
specific to a schema and a named table.

‘As is’ policy A type of table masking policy that sets an implicit column rule for all
columns not defined by the user to ‘copy’.

‘Don’t’ Policy A type of table masking policy that sets an implicit column rule for all
columns not defined by the user to ‘nullify’.

‘Error’ policy A special type of table masking policy that terminates the masking
process if any implicit column rules are found.

Explicit Rule A column rule that is defined by the user.

Implicit Rule A column rule that is defined by the table policy.

Column Rule Column masking rule is a rule that defines the masking technique used
for the specified column of the table using a DML fragment.

DML Fragment A component of a compiled DML operation that defines the data to be
inserted to the cloned table during masking.

Literal Fragment A literal that represents NULL (missing data) or a constant value.

Column Fragment A reference to the column of the table being masked.

Function Fragment A function call that returns a value for the masked column.

Subquery Fragment A subquery call that returns a value for the masked column.

Compiled Operation An operation ready to be executed during mask process. Each
compiled operation is represented by a set of SQL statements. Thus
“compilation” means here putting together SQL statements not
producing machine code. Compiled operations are executed in specific
order.

Compiled DDL
Operation

A set of DDL statements such as CREATE TABLE.

Compiled DML
operation

A set of DML statements such as INSERT INTO.

45

Object Name Description

LUT A lookup table that maps the unmasked (original) value to the masked
value.

Shuffle Shuffle data masking technique defined in 2.3.4.

Random LUT A lookup table that consistently maps an unmasked value to a random
value. It is a type of Substitution data masking technique defined in
2.3.3.

Random A type of Substitution technique that generates random values for
every new row, i.e. does not preserve them.

Random Name A Random subtype that generates random person names.

Random PIC A Random subtype that generates random Estonian personal
identification codes (PIC).

Random Date A Random subtype that generates a random date.

Random Timestamp A Random subtype that generates a random timestamp.

Random Number A Random subtype that generates a random numeric value.

Nullify A type of Variable Suppression technique defined in 2.3.1 that replaces
a column value with NULL.

Literal A type of Variable Suppression technique that replaces a column value
with a constant.

Truncate Truncation masking technique defined in 2.3.2.

Noise Random Noise masking technique defined in 2.3.6.

Cloned Schema A schema that is created during masking process to contain Cloned
Tables.

Cloned Table A table that is created during masking process to contain masked data.

Person Name Any name of a natural person. This extension is using western culture
notions such as “first name” and “last name”. Thus, it may be not
applicable for all contexts.

Female First Name A first name of a female person.

Male First Name A first name of a male person.

Last Name A last name of a person regardless of gender.

Popular Name
Configuration

An aggregated list of all person names that is used for Random Name
masking technique.

46

Attribute definitions for the domain model are in Table 5.

Table 5: Domain model attribute definitions

Class Name Attribute Name Description

Mask Context name Masking context name. Must be unique.

Mask Context schema prefix Prefix for cloned schema names. Defines the name of the
masked schema during cloning. Thus, for instance, if the
schema of original tables is public and prefix is cl_, then
the name of the schema with cloned tables will be
cl_public. Default value is ‘fake_’.

Mask Context temporary luts Whether lookup tables are removed after the masking is
done (TRUE) or not (FALSE). Can be used for debugging
purposes. Default value is TRUE.

Mask Context unlogged luts Whether lookup tables are persisted as unlogged (TRUE)
or not (FALSE). Can be set only for non-temporary
lookup tables. Can be used for debugging purposes.
Unlogged means in this case the UNLOGGED attribute
when the lookup table is created using CREATE TABLE
statement. Default value is FALSE.

Mask Context unlogged tables Whether masked tables are unlogged (TRUE) or not
(FALSE). Can be used for debugging purposes. Meaning
of "unlogged" is described in the definition of the
attribute unlogged luts. Default value is FALSE.

Mask Context lut suffix Lookup table (LUT) suffix. Helps to define the name of
a lookup table when it is created. For example, for a
column col1 in a table named table1 in schema schema1,
the lookup table will be named
schema1_table1_col1_lut, if the suffix is _lut. Default
value is ‘_lut’.

Mask Context strict Whether to enforce equality of rules at the primary key
and foreign key columns (TRUE) or not (FALSE). If the
masking operation differs for any such pair of columns
and the user has selected strict mode, then the process
must fail. Default value is TRUE.

Mask Context truncate existing Whether to truncate data in case a table with the same
name as the unmasked table exists in a cloned schema
(TRUE) or not (FALSE). The process should fail if such
table exists and truncation is not enabled.

Table Policy numeric noise The default fraction value for random noise operations

47

Class Name Attribute Name Description

on all numeric types. Default value is 0.1.

Table Policy date noise The default number of days for random noise operations
on date types. Default value is 5.

Table Policy timestamp noise The default number of seconds for random noise
operations on timestamp types. Default value is 3 600.

Table Policy type The type of the Table Policy.

Column Rule args Arguments for the Column Rule.

LUT original The original unmasked value. For example, real person
names, such as John Smith, Jane Doe, etc.

LUT masked A value that is used to replace the original value in all
cases. If the original column contains real names, then
this must contain the generated names.

Person Name name A part of a full name of a natural person.

Person Name rank Numeric value that shows the popularity rank of a name.
In the context of this extension a true rank is not strictly
necessary, but the ranks must start from one (1), be
unique for a type, and have no blanks between values.

Person Name type The type of the name. Examples are ‘f’ for female first
name, ‘m’ for male first name, ‘l’ for last name of any
gender.

Schema name The name of the Schema.

Named Table name The name of the Named Table. Currently the extension
supports only base tables. However, masking the content
of materialized views (a kind of named derived table)
would also be an option.

Named Table
Column

name The name of the Named Table Column.

SQL-Database name The name of the SQL-Database.

5.5 Extension Configuration Tables

The diagram that describes the configuration base tables that the extension creates

automatically in the target database can be seen in Figure 6.

48

Mapping between configuration tables and classes of the domain model are described in

Table 6.

Table 6: Configuration table definitions

Table Name Domain Model
Class Name

mask_context Mask Context

table_policy Table Policy

compiled_operation Compiled Operation

column_rule Column Rule

popular_name Person Name

49

Figure 6: Extension configuration tables

Mapping between column definitions of configuration tables and attributes in the

domain model is described in Table 7.

Table 7: Configuration table column definitions

Table Name Column Name Domain
Model Class
Name

Domain Model
Attribute Name

mask_context name Mask Context name

mask_context masked_schema_prefix Mask Context schema prefix

mask_context make_temporary_luts Mask Context temporary luts

mask_context make_unlogged_luts Mask Context unlogged luts

mask_context make_unlogged_tables Mask Context unlogged tables

mask_context lut_suffix Mask Context lut suffix

mask_context fail_on_pkey_fkey_checks Mask Context strict

mask_context truncate_existing_masked_tables Mask Context truncate existing

table_policy context_name Mask Context name

table_policy schema_name Schema name

table_policy table_name Named Table name

table_policy default_column_copy_mode Table Policy type

table_policy default_numeric_noise_fraction Table Policy numeric noise

table_policy default_date_noise_days Table Policy date noise

table_policy default_timestamp_noise_seconds Table Policy timestamp noise

column_rule context_name Mask Context name

column_rule schema_name Schema name

column_rule table_name Named Table name

column_rule column_name Named Table
Column

name

column_rule operation Column Rule type

column_rule args Column Rule args

compiled_operation context_name Mask context name

50

Table Name Column Name Domain
Model Class
Name

Domain Model
Attribute Name

compiled_operation operation_order Compiled
operation

order

compiled_operation operation_sql Compiled
operation

sql

popular_name name_type Person Name type

popular_name rank Person Name rank

popular_name name Person Name name

5.6 The Main Processes

Most use cases listed in 5.2 deal with the extension configuration and are of little

importance to the overall masking process. There are however two use cases that are

part of the core masking process – Rule Compilation and Masking Execution, defined

in 5.2.11 and 5.2.12, respectively. A more detailed description for each one will follow.

5.6.1 Rule Compilation

Rule compilation is essential to the process of data masking implemented in this

extension. Rule compilation means automatic creation of a SQL script (a set of SQL

DDL and DML statements), the execution of which creates tables with masked data.

The script generation process takes into account data that is registered in the

configuration tables. Understanding how it works will help understanding the overall

method of operation of the extension. Figure 7 visualizes the process.

51

Rule compilation process starts with the user of the extension invoking function

themask.compile_rules('masking_context_name') and ends with either an error or

with all operations compiled and added to the list of compiled operations. Errors and

warnings are printed using RAISE EXCEPTION and RAISE WARNING statements,

respectively. The descriptions of the process steps follow.

1. It is checked if the given context exists. If not, then the process terminates.

2. It is checked if any table exists with an Error table policy and a column count

that differs from the number of explicitly configured column rules. If they do

exist, then an error is given and the process terminates.

3. It is checked if some table has a primary key column that has Nullify operation

defined on it. Primary key values cannot be missing according to the rules of

SQL. Thus, if at least one table exists and the user has chosen strict primary key

52

Figure 7: Rule compilation process

validation policy, then the operation terminates with an error. Otherwise a

warning is displayed.

4. It is checked if any table contains a shuffled column and its primary key is

composed of multiple columns. This is not currently supported. An error is

printed and the process terminates.

5. It is checked if any table contains a column that is part of a foreign key and the

masking method differs from the method of the corresponding primary key

column. If at least one such table is found and the user has chosen strict primary

key validation policy, then an error is presented and the process terminates.

Otherwise a warning is displayed. It is expected that foreign keys only reference

primary keys. Rules of SQL allow also referencing UNIQUE constraints.

6. All previous compiled operations are deleted.

7. Compiled DDL operations for schema and table cloning are added to the

compiled operations table.

8. Compiled operations for shuffled LUT generation and population are added to

the compiled operations table.

9. Compiled operations for random LUT generation and population are added to

the compiled operations table.

10. For each table an INSERT statement is generated, in which the values to be

inserted are, depending on the column masking technique, either:

◦ reference to the corresponding column of the unmasked table (copy masking

operation),

◦ NULL (nullify operation),

◦ a literal (literal operation),

◦ a function call (noise, random, mask, and truncate),

◦ a subquery (random_lut, lut and shuffle).

53

If the user has not specified enough parameters (see Appendix 1 – Configuration

of Column Rules for more details), then the process aborts and the user is

presented with an error message.

11. Finally, a compiled DDL operation is added to restore the constraints of all

tables (currently a stub that does nothing, see 5.10).

For more clarity I have added a few code samples to demonstrate what compiled DDL

statements appear for a test table.

Consider a table, defined by DDL statement in Figure 1.

A test masking context and column rules are added using the statements listed in Figure

2. The rules for the columns are copy (id), random_lut of type name that generates

random full names (customer_name), and noise (purchase_date).

54

CREATE TABLE public.test_table (

 id BIGSERIAL PRIMARY KEY,

 customer_name VARCHAR(50) NOT NULL,

 purchase_date DATE NOT NULL

);

Figure 1: Test table DDL

SELECT themask.add_context(context_name := 'test_context');

SELECT themask.add_column_rule(_context_name := 'test_context',
 _schema_name := 'public',

 _table_name := 'test_table',

 _column_name := 'id',

 _operation := 'copy');

SELECT themask.add_column_rule(_context_name := 'test_context',
 _schema_name := 'public',

 _table_name := 'test_table',

 _column_name := 'customer_name',
 _operation := 'random_lut',

 _args := '{"type": "name"}');

SELECT themask.add_column_rule(_context_name := 'test_context',
 _schema_name := 'public',

 _table_name := 'test_table',

 _column_name := 'purchase_date',
 _operation := 'noise');

Figure 2: Test table masking rules

Invoking the compilation by calling the function

themask.compile_rules(_context_name := 'test_context') produces compiled

operation records listed in Figure 3.

5.6.2 Masking Execution

Masking Execution process is a relatively straightforward and is described in Figure 8.

Rule masking execution process starts with the user of the extension invoking function

themask.run('masking_context_name') and ends with either an error or with all

masking operation successfully executed. Errors specific to this process (meaning not

system errors) are printed using RAISE EXCEPTION. The descriptions of the process

steps follow.

1. It is checked if the given context exists. If not, the process terminates.

55

Figure 8: Masking execution process

SELECT themask._create_masked_schemas('test_context')

SELECT themask._create_masked_tables('test_context')

SELECT themask._create_lut('test_context', 'public', 'test_table',
'customer_name')

SELECT themask._populate_lut('test_context', 'public', 'test_table',
'customer_name', 'themask.random_full_name()')

INSERT INTO fake_public.test_table (id, customer_name, purchase_date)
SELECT a.id AS id,
 (SELECT lut.masked FROM public_test_table_customer_name_lut lut
WHERE lut.original = a.customer_name) AS customer_name,
themask.random_noise(a.purchase_date, 5::INT) AS purchase_date
FROM public.test_table a

SELECT themask._restore_constraints('test_context')

Figure 3: Test table compiled operations

2. It is checked if there are compiled operations present for the given masking

context. If not, then the compilation process is executed (see section 5.6.2).

3. SQL statement for each compiled operation is loaded and executed. If the

statement execution fails, then a system error is shown and the process

terminates. Errors in executing SQL statements are not logged by this process.

5.7 On Similarity To Commercial Data Masking Solutions

Of all the solutions mentioned in the third chapter, the created extension can be

compared to Data Masking and Subsetting Pack by Oracle [46] in terms of the overall

method of operation:

• It is a part of the DBMS (i.e. built-in).

• It is a static data masking solution.

• The user clones the production database or restores one from a backup.

• After configuring the masking definition a script is produced.

• The script is run on the unmasked data.

• Masked data is transferred manually to non-production environments as a

database dump file.

Naturally, the solution offered by Oracle has the following advantages compared to this

extension:

• A graphical user interface.

• An extensive masking format library.

• Data transfer automation via so called pump process [46] .

But the overall principle is similar.

56

5.8 Highlights on the Implementation Details

Due to non-functional requirements, the implementation is limited to using SQL and

PL/pgSQL. PL/pgSQL does not require a separate binary for each platform and is

installed on every distribution by default. There are a few things to consider when

implementing logic in these languages.

The reader is encouraged to inspect the source code of the extension on its project page

on Gitlab: https://gitlab.com/thodt-md/themask (working branch is devel as of May

2017).

5.8.1 Coding Best Practices

While PostgreSQL is not an object-oriented DBMS, it does support a form of method

overloading [69] . Different methods may have the same name as long as the input

parameters have different types or there is different number of parameters. This is a

useful tool to avoid unnecessary code fragmentation.

PostgreSQL does not allow us to create packages to put together related functions like

Oracle Database [70] does. One can use schemas to organize schema objects, but

internal objects such as functions cannot be hidden from the user, except using security

constraints. Internal means here internal to the implementation, i.e. functions that other

functions use internally and users should not invoke these directly. Since data masking

is a task for DBAs, who have superuser privileges, this form of implementation detail

hiding cannot be used and one must consider using a form of convention.

I chose Python-like naming convention [71] and decided to prepend underscores

(character “_”) to the names of schema objects that are not to be used directly by the

user of the extension. Underscores are also prepended to the names of function

parameters and declared variables to avoid naming clashes with object identifiers like

table and column names.

All database objects of the extension are in schema named themask. The schema name

is hard-coded and cannot be changed by the user without code modification.

57

I have used the following metadata attributes for the written functions (more details on

each of them are in the official manual [69]).

• IMMUTABLE – if a function does no database lookups, uses only information

already present in its arguments, and returns the same results for given

arguments. In case of repeated calls of such function with the same arguments

the DBMS can answer to the request more quickly because it can use the

memorized function value. In total 15 functions were marked IMMUTABLE.

• STABLE – if a function does not modify the database and within a single scan

returns the same result, but its result may change across SQL statements.

Functions that have read-only logic based on SELECT statements can be in most

cases marked STABLE. 21 functions functions were marked STABLE.

• VOLATILE – if the function value can change even within a single table scan or if

the function logic relies only on its side-effects. All functions dealing with

random value generation, DML, and DDL statements were marked VOLATILE,

totaling 53.

• STRICT or RETURNS NULL ON NULL INPUT – the function returns NULL if any of

its arguments is NULL. With this modifier any such invocation will be replaced

with NULL directly. By default a function is always called and calculated

regardless of arguments. 55 functions were marked STRICT.

There are also the following function attributes worth mentioning from the manual for

the CREATE FUNCTION statement [69] , which were not used by me, i.e. the DBMS uses

default values in case of these.

• ROWS N – the number of rows returned from a set function. Although there is one

function that returns a set (an internal function

themask._get_mandatory_column_counts()), the default value of 1000 was

deemed suitable.

• LEAKPROOF – indicates that a function has no side-effects and reveals no

information about its arguments other than by returning a value. The intended

purpose of this attribute seems to be safeguarding against data leaks. Functions

58

marked as LEAKPROOF can be executed on rows before applying security

constraints. Careful evaluation must be made before a function can be marked

LEAKPROOF. By default the function is not LEAKPROOF.

Choosing the correct attributes allow the query planner to memoize the result when

possible [69] .

Another performance related remark is that invoking PL/pgSQL from SQL context

incurs a context switch penalty [72] . Thus, it is best to avoid calling PL/pgSQL

functions in complex queries. The extension relies on using SQL-only functions and

subqueries for data masking. These are used in the INSERT statements that add data to

the tables that must contain masked data..

The extension will be installed and used by database administrators who have superuser

privileges. Thus, it is suitable to use the default SECURITY INVOKER setting of functions.

In this case the user of the function must have privileges to execute the functions as well

as to perform all the activities that the function conducts.

5.8.2 Code Structure

Like it was mentioned in the section 4.1, PostgreSQL expects the code of the extension

(extension script) to be in a single file. The implemented extension contains:

• 87 functions,

◦ 42 functions in SQL language,

◦ 45 functions in PL/pgSQL language,

• 7 views,

• 5 (base) tables,

• 2 enumeration types.

This amounts to over 2100 lines of code (counted from the resulting SQL script that is

produced by GNU make, more is explained in section 5.8.3). Storing this in one file

would be a major maintenance problem. For example, if many developers modify a

59

single file, then they shall have to merge their changes in the source control system

regardless whether the changes were in related parts of the file or not.

The code was written in IntelliJ IDEA 2017.2 EAP development environment. Two

spaces were used as the indentation character. Each line had a limit of 120 characters

maximum. Automatic code formatting was used.

It was decided to store views, tables and enumeration types in separate files and to

combine functions into files by name (regardless to whether they are “public” or

“private” by convention). Compared to 1:1 approach, when a single file would hold the

CREATE statement of a single database object, this yielded overall reduction of SQL

script files to 75 (vs. 87 + 7 + 5 + 2 = 101) with the largest file having less than 200

lines of code.

Extension source code files were placed a directory structure described in Table 8.

Table 8: Directory tree for extension SQL script files

Directory Description

├── routines Root for all functions. No functions here per se.

│ ├── internal Root for internal extension functions.

│ │ ├── checks Functions that perform runtime checks.

│ │ ├── compilation Functions that generate compiled operation records.

│ │ ├── process Functions that organize masking (do table DDLs, etc).

│ │ └── util Utility functions.

│ ├── management Management functions (define rules, compile, run).

│ └── public Utility functions that can be used separately from masking.

├── tables Extension configuration tables.

├── types Extension types (enums).

└── views Extension views.

60

5.8.3 Packaging and Distribution

While it is necessary to divide the code of the extension into smaller parts for

maintainability, the requirement of a single file is still present. Thus, it must be possible

to somehow concatenate files in the right order to produce a single artifact.

PostgreSQL vendors suggest using a subsystem called PGXS, which offers portable

build infrastructure based on GNU Makefiles [73] . Makefiles are language-agnostic

and in fact may be used for other purposes than building artifacts. For example, these

can be used for documentation generation, automated testing, software installation, and

software removal [74] .

Makefiles can have variables, rules and targets. A variable is a name defined in the

script that represents a string value. A rule tells make what commands to execute in

order to build a target. It also specifies the dependencies of the target – other targets or

source files that the rule uses for input.

Any line that starts with the character “#” is a comment.

A few excerpts of the makefile used for the extension are given in Figure 4.

61

EXTENSION = themask

EXTVERSION = $(shell grep default_version $(EXTENSION).control | \

 sed -e "s/default_version[[:space:]]*=[[:space:]]*'\
([^']*\)'/\1/")

...

typesdir = sql/types/

...

typesdep = ${typesdir}mask_operation.sql \

${typesdir}mask_default_column_mode.sql

...

all: sql/$(EXTENSION)--$(EXTVERSION).sql

sql/$(EXTENSION)--$(EXTVERSION).sql: ... ${typesdep} ...

cat > $@ $^

DATA = sql/$(EXTENSION)--$(EXTVERSION).sql

EXTRA_CLEAN = sql/$(EXTENSION)--$(EXTVERSION).sql

...

PGXS := $(shell $(PG_CONFIG) --pgxs)

include $(PGXS)

Figure 4. Makefile example

Here we can see variables EXTENSION and EXTVERSION. The former is required by

PGXS. The latter is added so that the current version of the extension and the correct

extension script file name is derived from the default_version variable of the control

file. The DATA variable contains the names of the targets that are copied together with

the control file to SHAREDIR/extension directory. In case of this extension, this is only

themask--0.0.1.sql. EXTRA_CLEAN is to mark the latter file as a subject for removal

when make clean is invoked and the build process is to be restarted.

There are 75 SQL files for creating database objects that are part of the extension and

two more files of extension infrastructure-specific code (like marking configuration

tables as a part of the database backup for pg_dump). These files must be concatenated

in a specific order to produce one valid script. Writing them together with relative paths

as the sql/$(EXTENSION)--$(EXTVERSION).sql target dependencies would be too

verbose. That is why they were split into variables grouped by subdirectories listed in

Table 8 to avoid code duplication and possible errors if a file is to be renamed or

moved. For example, enumeration types directory is referred to as typesdir. All files

62

in it are then listed in the correct order and assigned to the variable typesdep. It is then

added to the main SQL target as a dependency. Slashes (“\”) mark that a variable spans

multiple lines.

The command cat > $@ $^ concatenates all dependencies to a single script.

include $(PGXS) statement extends the makefile with PGXS-specific build targets and

other infrastructure needed to install the extension.

Unfortunately, using PGXS directly means that the database server must have both

PGXS and GNU make installed for the installation to succeed. I will likely switch to

other means of packaging and distribution in the future, like publishing to the

PostgreSQL Extension Network [43] . The reason why this extension is not published to

PostgreSQL Extension Network yet is because the extension is in proof-of-concept

stage with some issues (see part 5.10 for more details) to be resolved before it can be

used as a standalone solution.

5.9 Installation

Installing the extension involves the following steps.

1. Checkout the extension code to a directory from devel branch.

2. Invoke GNU make in the directory with the source code to build and install the

extension: make && make install.

3. In the target database the user must invoke the statement CREATE EXTENSION

themask.

4. Random name generator needs a sufficiently large list of male and female first

names, as well as last names. For this purpose the list of popular names was

taken from open data released by the United States Census Bureau and bundled

with the extension source code as CSV files [75] .

To install them a loading script must be executed using the psql command-line

tool: psql -vworkdir="/path/to/data/names" -U postgres -d

database_name -a -f /path/to/data/names/load_census_names.sql

63

This step is optional if other source of random names is used, or if random

names are not to be generated.

5.10 Issues and Limitations

The first publicly available version of the extension has limitations, which the users

must know.

The user may report any other issues and defects not listed here at the extension Gitlab

page: https://gitlab.com/thodt-md/themask/issues.

5.10.1 Not Directly Usable by Client Applications

The extension works by cloning schemas for the masked tables in the same database as

the unmasked table schemas. Cloned schemas have different names than the schemas of

the unmasked tables. This means that any queries referencing the unmasked schemas

will not work on masked data directly.

I have not figured out an elegant way to overcome this problem, other than to rename

the schemas after the masked data dump is transferred from the production database to

other environments. This is a relatively simple task that can be done by the users of the

masked data by issuing statements like ALTER SCHEMA fake_schema1 RENAME TO

schema1.

In the future I plan to do research on integrating the solution with other extensions like

pglogical [76] , dblink [77] or postgres_fdw [78] that provide a way to transfer data to

external databases. This may possibly solve other issues mentioned in this part.

5.10.2 Incomplete Transfer of Table Details

Only column types and comments are transferred to the cloned tables. This means that

any constraints (PRIMARY KEY, UNIQUE, FOREIGN KEY, NOT NULL, and CHECK), default

values, triggers, rules, indices, and grants are not transferred.

64

Idea for the current implementation was to apply constraints after all the data is masked.

The primary reason for this is that some masking operations, say Variable Suppression

and Truncation, may render constraints unenforceable. However, this may not be an

obstacle for the use of the extension and masked data.

Foreign key constraints make rows of a table depend on the rows or from the rows of

the same table in case of recursive relationships. This leads to the problem of ordering:

• if the masked tables keep foreign key constraints, then the data must be inserted

in the correct order. This will fail if a primary key was suppressed or rendered

otherwise non-unique;

• if the constraints are applied after the data has been masked, yet again it is to be

done in the correct order. The benefit of this option is that the data is still copied

as masked and thus can be used;

One possible solution for applying foreign key constraints would be to construct a

directed graph of tables and start applying primary key constraints from nodes that have

no dependencies, then the corresponding foreign keys, etc.

Another possible solution is to let the user decide the order, in which the constraints are

applied.

Cases when references are circular are yet another area of concern.

Future versions will most likely transfer the simplest metadata that does not reference

anything beyond table columns (PRIMARY KEY, UNIQUE, NOT NULL, CHECK

constraints, secondary indexes, default values and security constraints).

5.10.3 No Object Types Besides Base Tables

Base tables are named tables that are not defined in terms of other tables. Base tables

are in the literature often simply called tables. By design only table and table columns

are transferred to masked schemas. Transferring other database objects may require

introspecting their definition to replace references to the unmasked tables.

65

The current implementation also does not allow us transfer materialized views that are a

kind of derived tables.

5.10.4 Incomplete Support for Composite Primary Keys

Shuffling operation does not currently support tables with composite primary keys. An

erroneous decision was made to reuse LUT DDL code generation (from

themask._create_lut() function), which implies a single column for a primary key.

5.10.5 Inefficient Shuffling

Shuffling LUT population is done in three stages:

1. Primary key values of the table are inserted to a temporary table using a

surrogate BIGSERIAL key.

2. Shuffled column value is inserted to another temporary table using ORDER BY

random(), which is considered inefficient by itself [79] .

3. Contents of both tables are inserted to the shuffled LUT joined by the surrogate

key values.

This implementation may be naive, yet is working. Further research is needed to

implement the shuffling more efficiently. One area of research would be windowing

functions and common table expressions.

5.10.6 No Option to Link the Techniques

The current implementation does not give an obvious way to link or nest masking

methods of different columns. One cannot, for example, add a random date and use it to

compute a random personal identification code. Each column can have only a single

rule.

66

5.10.7 Security and Roles

This extension is designed to be used by DBAs with superuser privileges. This means

that any user without a superuser role cannot invoke the masking process, view or alter

its configuration. This is unlikely to change in the future.

However, as a side effect of issue 5.10.2, the cloned schemas and tables cannot be

accessed by an ordinary user (like the user a web application typically uses to access the

database). This issue may be solved in the future together with the issue 5.10.2, or a

script-like solution can be implemented like the one done in [60] .

The user may report any other issues and defects not listed here at the extension Gitlab

page: https://gitlab.com/thodt-md/themask/issues.

5.10.8 Identifier Name Length

The current implementation expects the maximum identifier length to be 63 characters

(default value for most PostgreSQL distributions). This is determined by the value of

NAMEDATALEN parameter, as described in the official manual, and can be modified before

the PostgreSQL server binary is built [80] .

5.10.9 UNIQUE Referencing

The current implementation does not support foreign keys referencing UNIQUE

constraints, only PRIMARY KEY constraints.

5.10.10 Schema Changes Not Detected

If the masked schema changes (a masked table/column is added, renamed, or removed),

then the user must recompile the rules. I am not aware of any means to track all schema

changes (especially database table/column removal). The user is responsible for the

rules to be up to date with the schema. ‘Error’ table masking policy forces the user to

explicitly define all columns for a masked table, which may help isolating cases when a

schema change has occurred.

67

https://gitlab.com/thodt-md/themask/issues

6 Performance Evaluation

This part describes the tests done on a a small data set to gauge the performance of the

implemented extension. The data was taken from Stack Exchange Data Dump [81]

(more specifically, the dump from askubuntu.com) and loaded to the test database using

stackexchange-dump-to-postgres tool [82] . The latter had an issue I had to resolve

before the loading succeeded [83] .

6.1 Test Data Schema

In order to test the performance of the created extension, three tables were chosen from

the test data set: users, posts and comments. Their structure is described using Figure 9.

68

Figure 9: Test data schema

The description of the columns is not strictly relevant to this test and was omitted from

the thesis for brevity. It can be found on various resources about the data dump [84] .

Although the schema does not have any foreign key constraints, I decided to add four

foreign key constraints to keep testing more realistic. I have seen systems where foreign

key constraints were dropped to accommodate for high loads, but most systems do still

use these.

The tables, however, do have in total 22 secondary indexes. There are 11 columns with

NOT NULL constraints. There are 865 066 rows in comments table, 598 530 rows in posts

table, and 420 227 rows in users table.

6.2 System Setup and Methodology

Next, I explain the experiment to make it possible for interested parties to repeat it.

6.2.1 Test System Hardware and Software Setup

The test was performed on a Dell Latitude E6420 laptop with Intel Core i5-2520M

CPU (2 cores, 4 threads, 3 MiB cache), 8 GiB of DDR3 SDRAM memory, and a

Samsung 850 EVO 500GB solid-state drive.

PostgreSQL 9.6 DBMS was used in a Docker container running on Xubuntu 16.04 LTS

operating system. /var/lib/postgresql/data directory of the container was mounted

on a location of the root file system.

6.2.2 Test Methodology

Table 9 describes the masking techniques chosen by me to test the performance of the

extension. Only masking techniques which implementations differ significantly from

each other are chosen for the test. For example, Substitution (implemented as operations

random and random_lut) and Noise Addition (noise) for different numeric types differ

only by the range of the type (for temporal types it differs essentially only by the type to

69

which the function result is cast in the INSERT statement). The tables and columns were

chosen arbitrarily to accommodate the masking technique to be tested.

Table 9: Masking configuration for performance test

Table Column Operation Arguments as JSON

1 users displayname random_lut {"type": "name"}

2 users displayname random {"type": "name"}

3 users displayname random {"type":
"estonian_pic"}

4 users age random {"range_start": 10,
 "range_end": 80}

5 users location shuffle {}

6 users aboutme mask {"left_offset": 10,
 "right_offset": 0}

7 users accountid literal {"value": "0"}

8 users reputation noise {}

9 users creationdate random {}

10 comments creationdate random {}

11 comments text truncate {"length": 5,
 "direction": "right"}

12 comments text shuffle {}

13 comments creationdate truncate {"precision": "year"}

14 posts title nullify {}

15 posts viewcount noise {}

16 posts score random {"range_start": 10,
 "range_end": 80}

17 posts creationdate random {}

The tests were run one operation at a time. Table policies were set to “as is”, meaning

that all other columns were copied unmasked. One test without any applied rules was

done to set a baseline (further referred to as Baseline test). It is the amount of time it

takes to simply copy the unmasked data to the cloned schema. Since the current

70

implementation does not transfer any table details, except column types and comments,

additional code was added that restores them manually.

Time was measured starting from themask.run() and until all constraints were re-

applied by the script. After each run the masked schema was dropped and VACUUM FULL

statement was executed. All tests could in theory be run on a single table, but I decided

to copy all three every test execution to make the test more realistic and to add more

load.

Each test (including the baseline test) was repeated five times, and a mean was

calculated as the result. These values are present in Table 10.

The test script template can be seen in Appendix 2 – Performance Test Script Template.

Secondary index DDL statements were taken from the source code of the loading utility

(Comments_post.sql, Posts_post.sql, and Users_post.sql files in particular) [82] .

6.3 Performance Results

The results of the tests are given in Table 10. Row #0 presents the results in case of the

baseline test, which copies all the data without masking.

Table 10: Performance test results

Masking
Time

Constraint/Index
Restore Time

Total Time Baseline Adjusted Total
Time1

unit ms ms ms min ms min

02 4 553 12 921 17 474 0.29 0 0.00

1 201 080 13 045 214 125 3.57 196 651 3.28

2 183 835 12 954 196 789 3.28 179 315 2.99

3 90 620 12 869 103 489 1.72 86 015 1.43

4 4 585 12 967 17 552 0.29 78 0.00

5 8 877 12 928 21 805 0.36 4 331 0.07

1 Difference between Total Time of the test and the Total Time of the Baseline Test.
2 Baseline Test – test that copies all the data without masking.

71

Masking
Time

Constraint/Index
Restore Time

Total Time Baseline Adjusted Total
Time

6 5 867 12 971 18 838 0.31 1 364 0.02

7 4 201 73 137 77 338 1.29 59 864 1.00

8 8 669 12 960 21 629 0.36 4 155 0.07

9 5 200 12 990 18 190 0.30 716 0.01

10 5 682 13 058 18 740 0.31 1 266 0.02

11 3 269 12 542 15 811 0.26 -1 663 -0.03

12 15 820 12 747 28 567 0.48 11 093 0.18

13 4 775 13 192 17 967 0.30 493 0.01

14 4 308 12 853 17 161 0.29 -313 -0.01

15 7 457 12 955 20 412 0.34 2 938 0.05

16 4 678 13 180 17 858 0.30 384 0.01

17 5 319 13 359 18 678 0.31 1 204 0.02

After getting the results the following conclusions were made:

• Random full name generation (and possibly random PIC generation) code must

be revised. It takes slightly less than 0,5 ms to generate a random name. This is

too much compared to other masking operations.

• Replacing a value with a constant (value 0) in test case #7 lead to indexing

becoming noticeably slower. Since the underlying index is a hash-based index,

this may be due to hash collisions. Consequently such masking operations

should not be used on columns with HASH indexes (or the index type must be

changed).

• Most masking operations gave little to no impact compared to all tables being

copied unmasked. In some cases copying and at the same time masking data

was actually faster than copying unmasked data (every result where the baseline

adjusted total time is negative).

72

• Masking operations based on lookup tables (such as random_lut and shuffle) are

noticeably slower than function-based operations, but the overhead is still

manageable.

A separate test was made to confirm that masking multiple columns concurrently leads

to no significant increase in overall processing time. After combining tests #2, #4, #5,

#10, #12, #15, and #16 masking process was in fact almost 20 000 milliseconds faster

than when each test was executed separately.

The time difference of SELECT queries between masked and unmasked data was

negligible and query plans were identical for all queries I have tried. Thus, I deemed it

unnecessary to publish them as a part of this thesis.

I acknowledge that the tests could in theory run faster on server-grade hardware and

slower on a system with magnetic storage media for the root file system. I encourage the

reader to perform the same tests on his/her system if the reported results raise any doubt

(or seem otherwise somehow flawed).

73

7 Looking Back and Forward

In this chapter I describe miscalculations in my work process. I describe the ways to

refactor the implemented solution. I also present the scope of future development .

7.1 Miscalculations of My Work Process

I acknowledge that after collecting theoretical information about data masking and

information about the existing products on the market I started development with

prototyping. I was trying to create the viable working product first. Setting the exact

scope of the product and creating analysis models was afterthought. At one hand,

prototyping gave valuable input to the analysis. On the other hand, I realize now that

these processes should have been parallel and it would have saved time to me.

I acknowledge that some questionable decisions were made while implementing the

extension. For example, NOT NULL constraints are dropped regardless of whether the

user has chosen to use nulling out strategy or not. Code must be added to check as to

whether this action is actually needed. Some constraints can be kept, for example, if all

the columns they reference are copied unmasked.

Another flaw was trying to reuse my code written for consistent random substitution

(operation type random_lut) for shuffling. Shuffling must be implemented

independently and use system information functions (like pg_get_constraintdef, see

[85]) to find PRIMARY KEY constraint definition.

7.2 Refactoring

I do give names to function parameters in order to make code better readable. However,

if the extension function invokes another extension function, then I do not use parameter

74

names in the invocation. In PostgreSQL it can be done, for instance, like that:

function_name(parameter_name := value).

Instead, I rely to the order of parameters and specify arguments in the invocation in the

corresponding order. Therefore, if the order of parameters in the invoked functions will

change, then all the functions that invoke it have to be modified as well. Thus, it is

better to use parameter names in the invocation.

I also do not use LEAKPROOF function attribute. It would be beneficial to determine how

many functions can be marked as such. This would increase security and, possibly,

performance.

As was shown in 6.3, one has to find out the cause and possibly fix slow random name

generation.

7.3 Development Ideas for the Future

Although the implemented extension does work, considerable amount of additional

development has to be done before it can be seen as a viable standalone data masking

solution. I briefly describe the scope of the future work.

1. Resolve issues mentioned in part 5.10, some of the more critical being 5.10.2

(Incomplete Transfer of Table Details), 5.10.4 (Incomplete Support for

Composite Primary Keys), and 5.10.7 (Security and Roles).

2. Implement Format-preserving Encryption for domains like credit card numbers,

phone numbers, and the Estonian Personal Identification Code.

3. Implement simpler forms of data masking and random data generators for

domains such as emails and addresses.

4. Research other packaging options than PGXS.

It should also be noted that the extension does not have any automated tests. Further

research is needed to compare the available test frameworks in terms of using these to

test PostgreSQL extensions. A test framework must be simple to use, yet it must allow

75

testing all the aspects of the written code, including exception handling. It must also

allow easy integration with the build framework. One good candidate is pgTAP [86] .

Various commercial solutions, for example Oracle’s Data Masking and Subsetting pack,

allow the user to choose the specific subset of the production data to be copied during

masking [46] . Implementing such a feature for this extension would be beneficial.

Currently all data from the chosen table(s) is masked, even if not needed afterwards. A

possibility to achieve this is to allow data masking operations to use views as the source

of unmasked data.

Finally, there is some work to be done on the usability of the extension. For example, it

might be possible to add a hinting mechanism that provides the user of the extension a

list of all the available masking methods for a particular column, based on the data type.

It could be implemented either as a view or as a function, returning a table. Internally

the view or the function should read the system catalogue of the database to find the

types of columns.

I plan to continue working on the extension, and to gradually implement all of the

aforementioned tasks. My preliminary estimate for the extra development and testing

time is 750 – 1000 hours.

I also plan to use this extension at my main workplace, possibly to improve the code

quality as part of my main work.

76

8 Summary

The purpose of this work was to design and implement an open-source data masking

solution for PostgreSQL DBMS in the form of a proof-of-concept extension. This goal

was achieved and the source code for the extension is available at:

https://gitlab.com/thodt-md/themask/tree/devel

The source code is licensed with the MIT license.

The thesis started with a theoretical background about data masking in the second

chapter. An overview of commercial proprietary solutions was given in the third

chapter.

The main part of the work started from the fourth chapter. In this implementation

alternatives in PostgreSQL were described.

Chapter five focused on the design and implementation of the extension. First, the

requirements were presented. After that a domain model was created based on the the

requirements to describe the concepts of the solution and their relationships. Chapter

five also described the base tables that the extension creates upon installation and the

main processes that are essential to the operation of the extension. The extension was

compared to the most similar commercial solution – Data Masking and Subsetting Pack

by Oracle.

Next, extension packaging and installation was discussed. The chapter was concluded

with known issues and limitations of the extension. Ways of working around the issues

currently and possibly fixing them in the future were shown.

An evaluation of the extension in the form of a performance test was given in the sixth

chapter.

77

https://gitlab.com/thodt-md/themask/tree/devel

In chapter seven the possible future work, as well as the needs to refactor the current

solution were presented.

This work is useful to database administrators tasked with integrating data masking in

systems they are responsible for, as well as to developers of other PostgreSQL

extensions.

78

References

[1] DB-Engines Ranking [WWW] https://db-engines.com/en/ranking (01.05.2017)

[2] Advanced Encryption Standard [WWW]
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard (07.05.2017)

[3] RFC4180 - Common Format and MIME Type for Comma-Separated Values (CSV) Files
[WWW] https://tools.ietf.org/html/rfc4180 (01.05.2017)

[4] Database Administrator (DBA) [WWW]
http://www.businessdictionary.com/definition/Database-Administrator-DBA.html
(05.05.2017)

[5] DBMS - database management system [WWW]
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
(01.05.2017)

[6] Bellare M., Ristenpart T., Rogaway P., Stegers T. Format-Preserving Encryption. –
International Workshop on Selected Areas in Cryptography, SAC 2009. – Lecture Notes
in Computer Science, 5867, pp. 295-312 [Online] SpringerLink. LNCS (02.05.2017)

[7] JSON [WWW] http://www.json.org/ (01.05.2017)

[8] JSON Types [WWW] https://www.postgresql.org/docs/current/static/datatype-json.html
(01.05.2017)

[9] Lookup table – Wikipedia [WWW] https://en.wikipedia.org/wiki/Lookup_table
(01.05.2017)

[10] Rahvastikuregistri seadus – Riigi Teataja I, 2000, 50, 317 (in Estonian)

[11] PL/pgSQL – Wikipedia [WWW] https://en.wikipedia.org/wiki/PL/pgSQL (01.05.2017)

[12] RDBMS – relational database management system [WWW]
http://www.webopedia.com/TERM/R/RDBMS.html (03.05.2017)

[13] Information technology – Database languages – SQL – Part 1: Framework
(SQL/Framework): ISO/IEC 9075-1:200x

[14] Information technology – Open Distributed Processing – Unified Modeling Language
(UML): ISO/IEC 9075-1:2008

[15] Introduction to XML [WWW] https://www.w3schools.com/xml/xml_whatis.asp
(03.05.2017)

[16] Syal, R. Abandoned NHS IT system has cost £10bn so far. [WWW]
https://www.theguardian.com/society/2013/sep/18/nhs-records-system-10bn (02.05.2017)

[17] Eesti Päevaleht – Juhtkiri: ainult poliitilise tahtega suurt IT-projekti ei teosta [WWW]
http://epl.delfi.ee/archive/print.php?id=77760682 (02.05.2017) (in Estonian)

79

http://epl.delfi.ee/archive/print.php?id=77760682
https://www.theguardian.com/society/2013/sep/18/nhs-records-system-10bn
https://www.w3schools.com/xml/xml_whatis.asp
http://www.webopedia.com/TERM/R/RDBMS.html
https://en.wikipedia.org/wiki/PL/pgSQL
https://en.wikipedia.org/wiki/Lookup_table
https://www.postgresql.org/docs/current/static/datatype-json.html
http://www.json.org/
http://www.webopedia.com/TERM/D/database_management_system_DBMS.html
http://www.businessdictionary.com/definition/Database-Administrator-DBA.html
https://tools.ietf.org/html/rfc4180
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://db-engines.com/en/ranking

[18] Holgeid K., Thompson M. A reflection on why large public projects fail. – The
Governance of Large-Scale Projects, Nomos Verlagsgesellschaft mbH & Co. KG, June
2013, pp. 219-244.

[19] Von Alan, R., Hevner, et al. Design Science in Information Systems Research. – MIS
quarterly, 2004, 28 (1), pp. 75-105.

[20] Ravikumar, G. K., Manjunath, T. N., Ravindra, S., Umesh, I. M. A Survey on Recent
Trends, Process and Development in Data Masking for Testing. – International Journal of
Computer Science Issues, 2011, 8(2), pp. 535-544.

[21] Ravikumar, G. K., Rabi, B. J., Manjunath, T.N. A Study on Dynamic Data Masking with
its Trends and Implications. – International Journal of Computer Applications, 2012, 38
(6), pp. 19-24.

[22] Data Masking: What You Need to Know – A Net 2000 Ltd. White Paper [WWW]
http://www.datamasker.com/DataMasking_WhatYouNeedToKnow.pdf (03.05.2017)

[23] Data Masking Best Practice – An Oracle White Paper [WWW]
http://www.oracle.com/us/products/database/data-masking-best-practices-161213.pdf
(02.05.2017)

[24] Mogull, R. – The Five Laws Of Data Masking [WWW] https://securosis.com/blog/the-
five-laws-of-data-masking (02.05.2017)

[25] generatedata.com [WWW] http://generatedata.com/ (15.05.2017)

[26] Data Masking Made Simple with DataSunrise Data Masking Tool [WWW]
https://www.datasunrise.com/data-masking-made-simple/ (03.05.2017)

[27] Mushkablat, V. – ELIMINATING COMPLINCE RISKS - DATA MASKING WITH
AZURE [WWW] http://mask-me.net/Downloads/Data%20Masking%20Addressing
%20Risks%20in%20the%20Cloud-new.pptx (07.05.2017)

[28] Ravikumar, G. K., Rabi, B. J., Hegadi, R. S., Manjunath, T. N., Archana, R. A.
Experimental Study of Various Data Masking Techniques with Random Replacement
using data volume. – International Journal of Computer Science Issues, 2011, 9(8), pp.
154-158.

[29] Коломыцев, М. В., Южаков, А. М. Защита персональных данных методом
маскирования. – Захист інформації, 2013, 15 (4), pp. 382-387 (in Russian)

[30] Sarada G., Abitha N., Manikandan G., Sairam N. A few new approaches for data
masking. – 2015 International Conference on Circuit, Power and Computing
Technologies (ICCPCT), Nagercoil, India, March 19, 2015: Proceedings – IEEE (pp. 1-4)
[Online] IEEE Xplore (17.04.2017)

[31] Muralidhar, K., Sarathy, R. Recent Advances in Protecting Sensitive Numerical Data
through Data Masking. – 6th Annual Security Conference, Las Vegas NV, April 11-12,
2007: In Proceedings, pp. 41-2-41-11

[32] Muralidhar, K., Sarathy, R. ‘Easy to Implement’ is Putting the Cart before the Horse:
Effective Techniques for Masking Numerical Data – 2007 Federal Committee On
Statistical Methodology Research Conference, Arlington VA, November 2007 :
Proceedings (pp. 5-7).

80

http://mask-me.net/Downloads/Data%20Masking%20Addressing%20Risks%20in%20the%20Cloud-new.pptx
http://mask-me.net/Downloads/Data%20Masking%20Addressing%20Risks%20in%20the%20Cloud-new.pptx
https://www.datasunrise.com/data-masking-made-simple/
http://generatedata.com/
https://securosis.com/blog/the-five-laws-of-data-masking
https://securosis.com/blog/the-five-laws-of-data-masking
http://www.oracle.com/us/products/database/data-masking-best-practices-161213.pdf
http://www.datamasker.com/DataMasking_WhatYouNeedToKnow.pdf

[33] Li, XB., Sarkar, S. Against classification attacks: A decision tree pruning approach to
privacy protection in data mining. – Operations Research, December 2009, 57 (6), 1496-
509.

[34] Emam, K. – Perspectives on Health Data De-identification [WWW]
https://iapp.org/media/pdf/knowledge_center/Perspectives_on_Health_Data_De-
Identification_final.pdf (03.05.2017)

[35] Isikuandmete kaitse seadus – Riigi Teataja, 2003, 26, 158 (in Estonian)

[36] Isikukood. Struktuur : EVS 585:2007. Tallinn : Eesti Standardikeskus, 2007. (in
Estonian)

[37] Duncan, G. T., Keller-McNulty S. A., Stokes, S. L. Disclosure risk vs. data utility : The
R-U confidentiality map. – Chance, 2001.

[38] Sweeney, L. k-anonymity: a model for protecting privacy. – International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10 (5), pp. 557-570.

[39] Meyerson, A., Williams, R. On the Complexity of Optimal K-anonymity. – Proceedings
of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, Paris, France, 2004 : PODS '04, pp. 223-228.

[40] Emam et al., Globally Optimal k-Anonymity for De-Identification of Health Data. –
Journal of the American Medical Informatics Associacion, September/October 2009, 16
(5), pp. 670-682

[41] What is Data Utility [WWW] http://www.igi-global.com/dictionary/data-utility/6838
(15.05.2017)

[42] Data Types [WWW] https://www.postgresql.org/docs/current/static/datatype.html
(03.05.2017)

[43] PostgreSQL Extension Network [WWW] https://pgxn.org/ (10.05.2017)

[44] Dynamic Data Masking [WWW] https://docs.microsoft.com/en-us/sql/relational-
databases/security/dynamic-data-masking (07.05.2017)

[45] IBM Knowledge Center - DB2 11 - DB2 SQL - CREATE MASK [WWW]
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_s
ql_createmask.html (07.05.2017)

[46] Data Masking and Subsetting Guide [WWW]
https://docs.oracle.com/database/121/DMKSB/data_masking.htm (07.05.2017)

[47] Introduction to Oracle Data Redaction [WWW]
https://docs.oracle.com/database/121/ASOAG/redaction.htm (07.05.2017)

[48] FUJITSU Software Enterprise Postgres – White paper [WWW]
https://www.fujitsu.com/global/documents/products/software/middleware/opensource/pos
tgres/resources/wp-fep-V9-5-ww-en.pdf (07.05.2017)

[49] DataSunrise Database Security Suite 3.7.1 – User Guide [WWW]
https://www.datasunrise.com/documents/DataSunrise_Database_Security_Suite_User_G
uide.pdf (07.05.2017)

81

https://www.datasunrise.com/documents/DataSunrise_Database_Security_Suite_User_Guide.pdf
https://www.datasunrise.com/documents/DataSunrise_Database_Security_Suite_User_Guide.pdf
https://docs.oracle.com/database/121/ASOAG/redaction.htm
https://docs.oracle.com/database/121/DMKSB/data_masking.htm
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createmask.html
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_11.0.0/sqlref/src/tpc/db2z_sql_createmask.html
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://docs.microsoft.com/en-us/sql/relational-databases/security/dynamic-data-masking
https://pgxn.org/
http://www.igi-global.com/dictionary/data-utility/6838
https://iapp.org/media/pdf/knowledge_center/Perspectives_on_Health_Data_De-Identification_final.pdf
https://iapp.org/media/pdf/knowledge_center/Perspectives_on_Health_Data_De-Identification_final.pdf

[50] Managing Algorithm Settings [WWW] https://docs.delphix.com/docs/delphix-
masking/masking-engine-admin-guide/managing-algorithm-settings (07.05.2017)

[51] DATA MASKING TRANSFORMERS – Technical Brief [WWW]
https://datamasking.com/wp-content/uploads/2015/03/CAMOUFLAGE-PRODUCT-
SHEET-TRANSFORMERS1.pdf (07.05.2017)

[52] DataMasker by NetLtd2000 [WWW] http://www.datamasker.com/datamasker_kf.pdf
(07.05.2017)

[53] IBM InfoSphere Optim Data Privacy [WWW] https://www.ibm.com/ms-
en/marketplace/infosphere-optim-data-privacy/details#product-header-top (07.05.2017)

[54] Compare IBM data masking solutions: InfoSphere Optim and DataStage [WWW]
https://www.ibm.com/developerworks/data/library/techarticle/dm-
1211maskingsolution/dm-1211maskingsolution-pdf.pdf (07.05.2017)

[55] Protect Data Privacy by Persistently Masking Sensitive Information [WWW]
https://www.informatica.com/content/dam/informatica-
com/global/amer/us/collateral/data-sheet/persistent-data-masking_data-sheet_6990.pdf
(07.05.2017)

[56] Protect Data Privacy by Dynamically Masking Sensitive Information
https://www.informatica.com/content/dam/informatica-
com/global/amer/us/collateral/data-sheet/dynamic-data-masking_data-sheet_1779.pdf
(07.05.2017)

[57] IRI FieldShield Data Masking [WWW] http://www.iri.com/products/fieldshield
(07.05.2017)

[58] PostgreSQL dump obfuscation (sensitive data masking) tool. [WWW]
https://github.com/ostrovok-team/pgdump-obfuscator (07.05.2017)

[59] Магический Квадрант Гартнера. Технологии маскировки данных [WWW]
https://www.dataarmor.ru/quadrant/ (07.05.2017) (in Russian)

[60] Jalakas, O. Data Masking and User Rights in Data Warehouse to Protect Data : Master’s
thesis. Tallinn University of Technology, Tallinn, 2016

[61] Packaging Related Objects into an Extension [WWW]
https://www.postgresql.org/docs/current/static/extend-extensions.html (04.05.2017)

[62] Composite Types [WWW] https://www.postgresql.org/docs/current/static/rowtypes.html
(04.05.2017)

[63] Inheritance [WWW] https://www.postgresql.org/docs/current/static/ddl-inherit.html
(04.05.2017)

[64] CREATE TYPE [WWW] https://www.postgresql.org/docs/current/static/sql-
createtype.html (15.05.2017)

[65] The Path of a Query [WWW] https://www.postgresql.org/docs/current/static/query-
path.html (04.05.2017)

[66] Re: Performance PLV8 vs PLPGSQL [WWW] https://www.postgresql.org/message-
id/CAHyXU0yj7KEW2f%2BNQSnNgRyo%3DH6GF5mRDjs%2BVWQ9jK1qqtNRHw
%40mail.gmail.com (10.05.2017)

82

https://www.postgresql.org/message-id/CAHyXU0yj7KEW2f%2BNQSnNgRyo%3DH6GF5mRDjs%2BVWQ9jK1qqtNRHw@mail.gmail.com
https://www.postgresql.org/message-id/CAHyXU0yj7KEW2f%2BNQSnNgRyo%3DH6GF5mRDjs%2BVWQ9jK1qqtNRHw@mail.gmail.com
https://www.postgresql.org/message-id/CAHyXU0yj7KEW2f%2BNQSnNgRyo%3DH6GF5mRDjs%2BVWQ9jK1qqtNRHw@mail.gmail.com
https://www.postgresql.org/docs/current/static/query-path.html
https://www.postgresql.org/docs/current/static/query-path.html
https://www.postgresql.org/docs/current/static/sql-createtype.html
https://www.postgresql.org/docs/current/static/sql-createtype.html
https://www.postgresql.org/docs/current/static/ddl-inherit.html
https://www.postgresql.org/docs/current/static/rowtypes.html
https://www.postgresql.org/docs/current/static/extend-extensions.html
https://www.dataarmor.ru/quadrant/
https://github.com/ostrovok-team/pgdump-obfuscator
http://www.iri.com/products/fieldshield
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/dynamic-data-masking_data-sheet_1779.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/dynamic-data-masking_data-sheet_1779.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/persistent-data-masking_data-sheet_6990.pdf
https://www.informatica.com/content/dam/informatica-com/global/amer/us/collateral/data-sheet/persistent-data-masking_data-sheet_6990.pdf
https://www.ibm.com/developerworks/data/library/techarticle/dm-1211maskingsolution/dm-1211maskingsolution-pdf.pdf
https://www.ibm.com/developerworks/data/library/techarticle/dm-1211maskingsolution/dm-1211maskingsolution-pdf.pdf
https://www.ibm.com/ms-en/marketplace/infosphere-optim-data-privacy/details#product-header-top
https://www.ibm.com/ms-en/marketplace/infosphere-optim-data-privacy/details#product-header-top
http://www.datamasker.com/datamasker_kf.pdf
https://datamasking.com/wp-content/uploads/2015/03/CAMOUFLAGE-PRODUCT-SHEET-TRANSFORMERS1.pdf
https://datamasking.com/wp-content/uploads/2015/03/CAMOUFLAGE-PRODUCT-SHEET-TRANSFORMERS1.pdf
https://docs.delphix.com/docs/delphix-masking/masking-engine-admin-guide/managing-algorithm-settings
https://docs.delphix.com/docs/delphix-masking/masking-engine-admin-guide/managing-algorithm-settings

[67] Licenses by Name [WWW] https://opensource.org/licenses/alphabetical (15.05.2017)

[68] Open source license usage on GitHub.com [WWW] https://github.com/blog/1964-open-
source-license-usage-on-github-com (08.05.2017)

[69] CREATE FUNCTION [WWW] https://www.postgresql.org/docs/current/static/sql-
createfunction.html (05.05.2017)

[70] Porting from Oracle PL/SQL [WWW]
https://www.postgresql.org/docs/current/static/plpgsql-porting.html (05.05.2017)

[71] PEP 8 -- Style Guide for Python Code [WWW] https://www.python.org/dev/peps/pep-
0008/#id48 (05.05.2017)

[72] Conway, N. – Inside the PostgreSQL Query Optimizer [WWW]
http://www.neilconway.org/talks/optimizer/optimizer.pdf (05.05.2017)

[73] Extension Building Infrastructure [WWW]
https://www.postgresql.org/docs/current/static/extend-pgxs.html (06.05.2017)

[74] GNU make [WWW] https://www.gnu.org/software/make/ (06.06.2017)

[75] Frequently Occurring Surnames from Census 1990 – Names Files [WWW]
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_na
mefiles.html (05.05.2017)

[76] pglogical [WWW] https://www.2ndquadrant.com/en/resources/pglogical/ (10.05.2017)

[77] dblink [WWW] https://www.postgresql.org/docs/current/static/dblink.html (10.05.2017)

[78] postgres_fdw [WWW] https://www.postgresql.org/docs/current/static/postgres-fdw.html
(10.05.2017)

[79] Re: Performance of ORDER BY RANDOM to select random rows? [WWW]
https://www.postgresql.org/message-id/20130808085517.GA26014%40depesz.com
(05.05.2017)

[80] Preset Options [WWW] https://www.postgresql.org/docs/current/static/runtime-config-
preset.html (14.05.2017)

[81] Stack Exchange Data Dump [WWW] https://archive.org/details/stackexchange
(06.06.2017)

[82] Python scripts to import StackExchange data dump into Postgres DB. [WWW]
https://github.com/Networks-Learning/stackexchange-dump-to-postgres (09.05.2017)

[83] Creating index on a non-existing column fails #7 [WWW] https://github.com/Networks-
Learning/stackexchange-dump-to-postgres/pull/7 (09.05.2017)

[84] Database schema documentation for the public data dump and SEDE [WWW]
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-
public-data-dump-and-sede (10.05.2017)

[85] System Information Functions [WWW]
https://www.postgresql.org/docs/current/static/functions-info.html (12.05.2017)

[86] pgTAP [WWW] http://pgtap.org/ (10.05.2017)

83

http://pgtap.org/
https://www.postgresql.org/docs/current/static/functions-info.html
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://github.com/Networks-Learning/stackexchange-dump-to-postgres/pull/7
https://github.com/Networks-Learning/stackexchange-dump-to-postgres/pull/7
https://github.com/Networks-Learning/stackexchange-dump-to-postgres
https://archive.org/details/stackexchange
https://www.postgresql.org/docs/current/static/runtime-config-preset.html
https://www.postgresql.org/docs/current/static/runtime-config-preset.html
https://www.postgresql.org/message-id/20130808085517.GA26014@depesz.com
https://www.postgresql.org/docs/current/static/dblink.html
https://www.2ndquadrant.com/en/resources/pglogical/
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.gnu.org/software/make/
https://www.postgresql.org/docs/current/static/extend-pgxs.html
http://www.neilconway.org/talks/optimizer/optimizer.pdf
https://www.python.org/dev/peps/pep-0008/#id48
https://www.python.org/dev/peps/pep-0008/#id48
https://www.postgresql.org/docs/current/static/plpgsql-porting.html
https://www.postgresql.org/docs/current/static/sql-createfunction.html
https://www.postgresql.org/docs/current/static/sql-createfunction.html
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://github.com/blog/1964-open-source-license-usage-on-github-com
https://opensource.org/licenses/alphabetical

Appendix 1 – Configuration of Column Rules

In order to successfully use the implemented extension the user has to know how to

configure and manage it.

Configuring column masking rules is done by invoking functions
themask.add_column_rule('context_name', 'schema', 'table', 'column',

'operation name', 'parameter json') for column rule adding and

themask.modify_column_rule('context_name', 'schema', 'table',

'column', 'operation name', 'parameter json') for column rule modification.

A column rule may be deleted and thus reverted to its implicit state defined by the table

policy by invoking themask.modify_column_rule('context_name', 'schema',

'table', 'column').

In Table 11 all implemented masking techniques, their parameters, and samples values

are given.

Table 11: Implemented masking extension column rule configuration parameters

Technique
(Section
2.3)

Operation
Name

Supported
Column
Types

Parameters as a JSON Sample
Fragment

Description

N/A (no
masking)

copy any N/A Copies the column
value as-is.

Variable
Suppression

nullify any N/A Replaces the
column value with
NULL.

literal any {

 "name": "value"
}

Casts value to
the corresponding
column data type.
Note: the value is
passed unescaped
to allow more
complex use
cases.

84

Random
Noise

noise NUMERIC,
SMALLINT,
INT,
BIGINT,
REAL,
DOUBLE
PRECISION

{

 "fraction": float1

}

Adds ±fraction
× column

value of random
noise to the
column value.
Note: For fixed
precision numeric
types
(SMALLINT,
INT, BIGINT)

the value is
clamped to their
respective
boundaries, if
overflows.

DATE {

 "days": int1

}

Adds ±days of
random noise to
the column value.

TIMESTAMP {

 "seconds": float1

}

Adds ±seconds
of random noise to
the column value.

Substitution
(generate
random
value for
each row)

random NUMERIC,
REAL,
DOUBLE
PRECISION

{

 "range_start": float1,
 "range_end": float1
}

Chooses a random
number between
range_start
and range_end.

If no parameters
are given, the
range is assumed
to be the natural
range of the
corresponding
type.

SMALLINT,
INT,
BIGINT

{

 "range_start": int1,
 "range_end": int1
}

DATE,
TIMESTAMP

{

 "range_start": "date",
 "range_end": "date"
}

Chooses a random
date or timestamp
between
range_start
and range_end.
Date and
timestamp values
are cast from

1 JSON specification has no separate notation for floating and integer numeric types; float here means
a floating point value is accepted, int means an integer is accepted.

85

string values to the
corresponding
types, so care
must be taken that
they are in the
correct format.
If no parameters
are given, the date
is between epoch
1and current time.

TEXT,
VARCHAR

{

 "type": "type"
}

Type can be
"name" or
"estonian_pic

". The first option
generates a
random name, the
second option
generates a
random Personal
Identification
Code.

Truncation
or Cropping

truncate NUMERIC,
SMALLINT,
INT,
BIGINT,
REAL,
DOUBLE
PRECISION

{

 "digits": int1

}

Invokes built-in
trunc(column,

digits). This
truncates numeric
value precision to
the passed number
of digits. More
information can be
found in the
official manual for
trunc.

TEXT,
VARCHAR

{

 "length": int1,
 "direction":"direction"
}

Removes length
first characters
from direction
("left",
"right") side of
the column value.

DATE,
TIMESTAMP

{

 "precision":"precision"
}

Invokes built-in
date_trunc(co
lumn,

precision).

1 The 1-st of January, 1970 at 00:00:00 Coordinated Universal Time (UTC).

86

Precision can be,
for example,
"year",
"month", or
"day".

More information
on different
precision values
can be found in
the official manual
for date_trunc.

Masking
Out

mask TEXT,
VARCHAR

{

 "left_offset": int1,
 "right_offset": int1,
 "mask_character": "X"
}

Replaces all
characters starting
from
left_offset
and ending with
length –

right_offset
with
mask_characte

r.
If no
mask_character
value is given,
then character “X”
is assumed.

Substitution
(reuse
values from
another
column)

lut Any {

 "schema": "schema",
 "table": "table",
 "column": "column"
}

or
{

 "name": "lut_name"
}

Uses a pre-created
LUT (either
manually or using
random_lut
method) for
mapping values
from the non-
masked column.

Note: a UNIQUE
index is expected
for non-masked
values in the LUT,
if created
manually.

Substitution
(generate
random
values for

random_lut All
supported
by random
method.

Same as in random metod
description.

Creates a LUT,
where each value
from the non-
masked column is

87

each unique
value)

mapped uniquely
to a random value.

Shuffling shuffle Any1 {}
or
{

"other_schema":"schema",
"other_table":"table",
"other_column":"column",
"fkey_column":"column"
}

Shuffles the
values inside the
column if no
arguments are
given.
Otherwise uses
values from a
shuffled column
of another table
that this table
references by
fkey_column.

1 Tables with composite primary keys are currently not supported, see 5.10.4.

88

Appendix 2 – Performance Test Script Template

89

SELECT themask.add_context('test');

SELECT themask.add_table_policy('test', 'public', 'comments',
'as_is');

SELECT themask.add_table_policy('test', 'public', 'posts', 'as_is');

SELECT themask.add_table_policy('test', 'public', 'users', 'as_is');

-- operation being tested goes here

SELECT themask.compile_rules('test');

DO $$

DECLARE

 run_start TIMESTAMP := clock_timestamp();

 constraint_start TIMESTAMP;

 run_end TIMESTAMP;

BEGIN

 PERFORM themask.run('test');

 constraint_start := clock_timestamp();

 SET SEARCH_PATH = "fake_public";

 ALTER TABLE comments add CONSTRAINT comments_pkey PRIMARY KEY (id);

 ALTER TABLE comments ALTER COLUMN postid SET NOT NULL ;

 ALTER TABLE comments ALTER COLUMN score SET NOT NULL ;

 ALTER TABLE comments ALTER COLUMN creationdate SET NOT NULL ;

 ALTER TABLE posts ADD CONSTRAINT posts_pkey PRIMARY KEY (id);

 ALTER TABLE posts ALTER column posttypeid SET NOT NULL ;

 ALTER TABLE posts ALTER column creationdate SET NOT NULL ;

 ALTER TABLE users ADD CONSTRAINT users_pkey PRIMARY KEY (id);

 ALTER TABLE users ALTER COLUMN reputation SET NOT NULL ;

 ALTER TABLE users ALTER COLUMN creationdate SET NOT NULL ;

 ALTER TABLE users ALTER COLUMN displayname SET NOT NULL ;

 ALTER TABLE users ALTER COLUMN views SET NOT NULL ;

 ALTER TABLE users ALTER COLUMN upvotes SET NOT NULL ;

 ALTER TABLE users ALTER COLUMN downvotes SET NOT NULL ;

 ALTER TABLE comments ADD CONSTRAINT comments_userid_fkey FOREIGN KEY
(userid) REFERENCES users(id);

 ALTER TABLE comments ADD CONSTRAINT comments_postid_fkey FOREIGN KEY
(postid) REFERENCES posts(id);

 ALTER TABLE posts ADD CONSTRAINT posts_owneruserid_fkey FOREIGN KEY
(owneruserid) REFERENCES users(id);

Figure 5: Performance test script template - part1

90

 ALTER TABLE posts ADD CONSTRAINT posts_lasteditoruserid_fkey FOREIGN
KEY (lasteditoruserid) REFERENCES users(id);

 CREATE INDEX cmnts_score_idx ON Comments USING BTREE (Score) WITH
(FILLFACTOR = 100);

 CREATE INDEX cmnts_postid_idx ON Comments USING HASH (PostId) WITH
(FILLFACTOR = 100);

 CREATE INDEX cmnts_creation_date_idx ON Comments USING BTREE
(CreationDate) WITH (FILLFACTOR = 100);

 CREATE INDEX cmnts_userid_idx ON Comments USING BTREE (UserId) WITH
(FILLFACTOR = 100);

 CREATE INDEX posts_post_type_id_idx ON Posts USING BTREE
(PostTypeId) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_score_idx ON Posts USING BTREE (Score) WITH
(FILLFACTOR = 100);

 CREATE INDEX posts_creation_date_idx ON Posts USING BTREE
(CreationDate) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_owner_user_id_idx ON Posts USING HASH
(OwnerUserId) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_answer_count_idx ON Posts USING BTREE
(AnswerCount) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_comment_count_idx ON Posts USING BTREE
(CommentCount) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_favorite_count_idx ON Posts USING BTREE
(FavoriteCount) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_viewcount_idx ON Posts USING BTREE (ViewCount)
WITH (FILLFACTOR = 100);

 CREATE INDEX posts_accepted_answer_id_idx ON Posts USING BTREE
(AcceptedAnswerId) WITH (FILLFACTOR = 100);

 CREATE INDEX posts_parent_id_idx ON Posts USING BTREE (ParentId)
WITH (FILLFACTOR = 100);

 CREATE INDEX user_acc_id_idx ON Users USING HASH (AccountId) WITH
(FILLFACTOR = 100);

 CREATE INDEX user_display_idx ON Users USING HASH (DisplayName) WITH
(FILLFACTOR = 100);

 CREATE INDEX user_up_votes_idx ON Users USING BTREE (UpVotes) WITH
(FILLFACTOR = 100);

 CREATE INDEX user_down_votes_idx ON Users USING BTREE (DownVotes)
WITH (FILLFACTOR = 100);

 CREATE INDEX user_created_at_idx ON Users USING BTREE (CreationDate)
WITH (FILLFACTOR = 100);

 run_end := clock_timestamp();

 RAISE INFO 'mask: %, reindex: %', extract(EPOCH FROM
constraint_start - run_start),

 extract(EPOCH FROM run_end - constraint_start);

END;

$$;

Figure 6: Performance test script template - part2

	1 Introduction 14
	2 Data Masking 17
	2.1 The Need for Data Masking 17
	2.2 Data Masking Architectures 19
	2.3 Data Masking Techniques 22
	2.4 Risks and Challenges in Data Masking 25

	3 Existing Data Masking Implementations 28
	3.1 SQL DBMS Implementations 28
	3.2 Implementations Done by Independent Software Vendors 30

	4 Implementation Alternatives in PostgreSQL 33
	4.1 PostgreSQL Extension Mechanism 33

	5 Designing and Implementing the PostgreSQL Extension 36
	5.1 On Using UML for Modeling PostgreSQL Extensions 36
	5.2 Functional Requirements 37
	5.3 Non-functional Requirements 41
	5.4 Domain Model 43
	5.5 Extension Configuration Tables 48
	5.6 The Main Processes 51
	5.7 On Similarity To Commercial Data Masking Solutions 56
	5.8 Highlights on the Implementation Details 57
	5.9 Installation 63
	5.10 Issues and Limitations 64

	6 Performance Evaluation 68
	6.1 Test Data Schema 68
	6.2 System Setup and Methodology 69
	6.3 Performance Results 71

	7 Looking Back and Forward 74
	7.1 Miscalculations of My Work Process 74
	7.2 Refactoring 74
	7.3 Development Ideas for the Future 75

	8 Summary 77
	References 79
	Appendix 1 – Configuration of Column Rules 84
	Appendix 2 – Performance Test Script Template 89
	1 Introduction
	2 Data Masking
	2.1 The Need for Data Masking
	2.2 Data Masking Architectures
	2.2.1 Static Data Masking
	2.2.2 Dynamic Data Masking
	2.2.3 On-the-Fly Data Masking

	2.3 Data Masking Techniques
	2.3.1 Variable Suppression
	2.3.2 Truncation or Cropping
	2.3.3 Substitution
	2.3.4 Shuffling
	2.3.5 Masking Out
	2.3.6 Random Noise
	2.3.7 Encryption
	2.3.8 Format-preserving Encryption
	2.3.9 Methods Based on Linear Models

	2.4 Risks and Challenges in Data Masking
	2.4.1 Risk of Accidental Disclosure
	2.4.2 Masking Synchronization
	2.4.3 Risk of Data Being Unusable
	2.4.4 Masking Values that Belong to Structured and Large Object (LOB) Data Types
	2.4.5 Data Integrity
	2.4.6 Misconfiguration

	3 Existing Data Masking Implementations
	3.1 SQL DBMS Implementations
	3.2 Implementations Done by Independent Software Vendors

	4 Implementation Alternatives in PostgreSQL
	4.1 PostgreSQL Extension Mechanism

	5 Designing and Implementing the PostgreSQL Extension
	5.1 On Using UML for Modeling PostgreSQL Extensions
	5.2 Functional Requirements
	5.2.1 Add Masking Context
	5.2.2 Modify Masking Context
	5.2.3 Remove Masking Context
	5.2.4 Add Table Policy
	5.2.5 Modify Table Policy
	5.2.6 Remove Table Policy
	5.2.7 Add Column Rule
	5.2.8 Modify Column Rule
	5.2.9 Remove Column Rule
	5.2.10 View Column Rules
	5.2.11 Compile Rules
	5.2.12 Execute Masking Process

	5.3 Non-functional Requirements
	5.4 Domain Model
	5.5 Extension Configuration Tables
	5.6 The Main Processes
	5.6.1 Rule Compilation
	5.6.2 Masking Execution

	5.7 On Similarity To Commercial Data Masking Solutions
	5.8 Highlights on the Implementation Details
	5.8.1 Coding Best Practices
	5.8.2 Code Structure
	5.8.3 Packaging and Distribution

	5.9 Installation
	5.10 Issues and Limitations
	5.10.1 Not Directly Usable by Client Applications
	5.10.2 Incomplete Transfer of Table Details
	5.10.3 No Object Types Besides Base Tables
	5.10.4 Incomplete Support for Composite Primary Keys
	5.10.5 Inefficient Shuffling
	5.10.6 No Option to Link the Techniques
	5.10.7 Security and Roles
	5.10.8 Identifier Name Length
	5.10.9 UNIQUE Referencing
	5.10.10 Schema Changes Not Detected

	6 Performance Evaluation
	6.1 Test Data Schema
	6.2 System Setup and Methodology
	6.2.1 Test System Hardware and Software Setup
	6.2.2 Test Methodology

	6.3 Performance Results

	7 Looking Back and Forward
	7.1 Miscalculations of My Work Process
	7.2 Refactoring
	7.3 Development Ideas for the Future

	8 Summary
	References
	Appendix 1 – Configuration of Column Rules
	Appendix 2 – Performance Test Script Template

