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1 Introduction
The importance of cybersecurity has grown and it is now considered an independent dis-cipline [17] ormeta-disciplinewithin the computing industry [96]. Cybersecurity is definedas “a computing based discipline involving technology, people, information, and processesto enable assured operations in the context of adversaries” [17]. It involves the creation,operation, analysis, and testing of secure computer systems; and also includes aspectsof law, policy, human factors, ethics, and risk management [17]. Cybersecurity is not justabout technology and systems but also includes the people who use those systems as acritical component for effective cyber defence. However, the human element (incl. mostefficient ways for learning and training) in cybersecurity has traditionally been overlookedand the role of technology overemphasised.The effective learning, teaching, and skills improvement of cybersecurity students andprofessionals is a critical research area. This is particularly so, as there is a high demand forskilled professionals and a shortage of suitably-skilled individuals [15]. As the cybersecuritydiscipline involves multiple aspects, the training programs typically teach a mixture oftechnical and soft skills.To teach cybersecurity, a wide range of training programs has been developed, rang-ing from the traditionally-taught cybersecurity Master programs [17] to other online al-ternatives. As part of these cybersecurity training programmes, hands-on exercises (bothonline and classroom) are gaining popularity in both university curricula and professionaltraining paths.We define a cybersecurity exercise (CSX) as a learning or training event in which indi-viduals or teams implement, manage and defend a network of computers at a tactical,operational or strategic level (Publication VII). CSXs vary significantly in scale and content(from short online or classroom exercises; Capture the flags (CTFs) to large-scale/multi-stakeholder exercises). Following a taxonomy developed by the European Union AgencyforNetwork and Information Security (ENISA) (basedon international standard ISO-22398),we categorise an exercise as a CTF, Discussion-based game, Drill, Red team / blue team,Seminar, Simulation, Table-top or Workshop [91].Such CSXs are generally viewed as an effective and engaging way of teaching a mixtureof technical and soft skills in educational and professional settings ( [91], Publication VII).In addition to CSXs for learning purposes (e.g., as part of university courses, competitionsacross universities, etc.), most national and international CSXs also focus on training andproviding participants an opportunity to gain knowledge, understanding and skills [91].Cybersecurity exercises feature a number of common learning design and measure-ment challenges, despite their different scale or learning content. One such challenge,particularly in exercises, is that when training is offered, there is a lack of evidence thatparticipants have actually learned anything. The literature points out many shortcomingson evidencing that learning objectives have been achieved—e.g., “after-action reports...fantasy documents... few, if any, controls ... to verify that ... anything has actually beenlearned” [91], “...evaluation methodologies simply focus on the improvement of one cy-ber exercise to the next” [5], and “...evidence is often anecdotal and little work to validatelearning outcomes has been done” [100].However, CSXs often leave digital footprints (especially technical training conductedon computers and cyber ranges) of the learning process that allow an application of an-alytics to advance learning experience and provide evidence that learners have achievedthe designed learning objectives. Learning analytics (LA) is defined as “the measurement,collection, analysis and reporting of data about learners and their contexts, for purposesof understanding and optimizing learning and the environments in which it occurs” [107].
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As a field of research, LA aims to predict and advise on learning by supporting educa-tion providers in identification of students’ learning needs and improvement of pedagog-ical strategies, e.g., [106], [114]. It is an emphasis on analytics in order to make sense ofthe connective structures that underpins this field of knowledge [107]. However, estab-lishing plausible relationships between models derived from quantifiable digital data andthe complex socio-cognitive world of “learning” is challenging [63]. Learning analyticsis closely intertwined with educational data mining (EDM), which develops, researches,and applies computerised methods to detect patterns in large collections of educationaldata [93]. EDM is incorporated in learning analytics to provide methods for data analysisprocesses.This thesis focuses on the application of LA in cybersecurity training (specifically inCSXs) as a way to provide a more evidence-based and systematic approach for the eval-uation of learning impact to enable the design of more effective learning. The researchexplores how to implement LA to enhance the learning experience or to be used for theskills assessment for cybersecurity students and professionals.
1.1 Problem Statement
Currently, the application of learning analytics approaches andmethods using digital data-sets in the cybersecurity education is limited. Cybersecurity education as a discipline lacksboth consensus and practical implementations of how learning analytics can be applied toenhance the learning experience or be used as skills assessment for cybersecurity studentsand professionals as part of their learning journey (incl. CSXs).The implementation of LA is not limited to enhancing the learning experience, but canalso assist in the selection/admission process for a job or an academic program (predictiveanalytics). Verbert et al. [114] identify six objectives in existing LA research: 1) predictinglearner performance and modelling learners, 2) suggesting relevant learning resources,3) increasing reflection and awareness, 4) enhancing social learning environments, 5) de-tecting undesirable learner behaviours, and 6) detecting affects of learners. All of theseobjectives are relevant for cybersecurity education (and CSXs), but currently the full po-tential of LA research is not yet utilised, neither in enhancing the learning experience norin skills assessment.Several academic papers (e.g., [97], [77]) and non-academic guides (e.g., [61], [1]) de-scribe CSXs design and evaluation but do not cover the use of learning analytics. Despitedigital learning traces being available, many papers on learning in cybersecurity field arebased on the experience and interpretation of the authors or based on learner evaluation(e.g., feedback surveys). The evaluation is often anecdotal, e.g., “everyone feels they hadlearned important lessons [26]” or “exercises are a very effective way of learning the prac-tical aspects of information security” [97]. Typical evaluation methods are score-boards,verbal feedback and after-action reports highlighting conclusions from a manual analysisof data [116], non of which apply an analytical approach using digital datasets. Currently,measuring and improving learning with the help of analytics is an early-stage researcharea in cybersecurity education, specifically in CSXs.As many CSXs leave a digital footprint of learning processes, analysis of such evidence-based learning traces can be used to improve the learning experience for cybersecuritystudents and specialists. However, as the LA research in cybersecurity education is in earlystages, there is a lack of both research on the complete cycle of LA processes (such as [107])and overall guidance how to incorporate LA into CSXs. Also, the analysis of learning datain individual programs including such CSXs can also provide information for an generalcybersecurity curriculum or training program design.
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This thesis aims to explore the application of LA and support the practical LA imple-mentations of CSXs to assist in achieving planned learning or educational outcomes at thelevel of individual learners, teams, educators, exercise organisers and organisations.
1.2 Research Questions
This research focuses on how to improve cybersecurity training and potential use of learn-ing analytics from digital traces to enhance the learning experience and skills assessmentprocess. It has a special focus on the CSXs for learning purposes for students or profes-sionals.This thesis addresses the following research questions (RQs):

1. How to deploy a learning analytics approach into the CSXs in order to improve learn-ing processes and to evidence learning outcomes?
1.1. How and what data to collect when implementing a learning analytics ap-proach in CSXs (a practical reference model)?
1.2. What instructional design approaches would enable the connection of rawdata from digital learning traces to high-level competencies?

2. How to evaluate effectiveness and efficiency of both individual and team learningwith less obtrusive methods in CSXs?
3. Could CSX’s LAmeasures be standardised as performance indicators and be suitableas the performance predictors for cybersecurity technical skills?
The mapping of research questions to the corresponding publication and thesis chap-ter, where the question is explored and answered, is presented in Table 1.

Table 1 – Mapping of Research Questions and Publications

Research Publication Chapter MainQuestion Number contentRQ1.1. Publication VII 3 LA frameworkRQ1.2. Publications VI, III, II 4 CSXs designRQ2. Publication I 5 CSXs LA measurementsRQ3. Publications V, VIII 6 predictive performance indicators

1.3 Research Methodology and Methods
LA research, especially when applied in cybersecurity education and exercises, is a novelresearch area, and research methodologies and methods are also evolving. The method-ological issues in LA need a further focus on addressing inherent trade-offs in learningenvironments, the clarification of methodological issues, and the scalability of systemdevelopment [98]. Balancing the diversity and interaction of methodologies is seen asa great challenge in LA [9]. Specifically in cybersecurity educational research, methodsvary depending on research focus and there are some studies emerging that start to lookinto “how” the learner completes tasks (i.e., use of tools, attempts, submission of wronganswers) from the digital datasets, such as [2], [3], [67]. However, validation of appliedmethods and learning indicators are often limited (e.g., 4 participants [67]), see publica-tion VII.This work is following the principle that simplymeasuring what can bemeasured is notenough, and we should measure what we value [118] and want to know. The metrics used
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in the CSXs often focus on easily measurable data (e.g., time spent, number of attacksmitigated, etc.) and individual actions. However, students are “too easily satisfied that asystem is secure after identifying only one possible source of security vulnerability for asystem rather than seeking to explore the adversarial spacemore thoroughly” [104]. Thusit is important to understand not only whether the students have found a correct answerbut how they found it [117]. Therefore research needs to focus on the development of anapproach combining technical and cognitive metrics, while also requiring validation usinglearning analytics methods.The novelty of research field, philosophical framework, and fundamental assumptionsdescribed above has influenced the choice of methods for this work. As an overall ap-proach, that of "mixedmethods" is applied, combining qualitative and quantitative meth-ods [31]. The research follows the rationale [30] that the use of mixed methods is appro-priate for most research problems. By giving significant weight to both the quantitativeand qualitative evidence, researchers can more easily construct a holistic understandingof the phenomenon by synthesizing the inductive and deductive data [30]. By using thisapproach, the results of both data sets act as buffer and a check against overstating theconclusions derived from either approach alone [30].The goal of this research is intended to both explain (quantitative) and explore (qualita-tive) aspects. This requires hypothesizing and then generalizing or applying an hypothesisto other populations. Simultaneously it aims to gain a more precise understanding of thedynamic interaction and perceptions of the stakeholders (i.e., the learners, the educators,the organisers, etc.) involved. Thus, in the research circle, the quantitative and qualitativemethods are combined (see Figure 1). The inquiry can thus move from theory to data andback again, or from data to theory and back again, with inductive and deductive reasoninginvolving overlapping steps [41].

Figure 1 – Research Circle under Mixed Methods adopted from Bachmann & Schutt, 2007 [41].

Building upon interdisciplinary research between different aspects of cybersecurity(incl. technological opportunities and limitations, threat vectors), pedagogy and psychol-ogy, the following quantitative and qualitative methods are mixed:
• Conducting exercises on different training platforms;
• Data collection using various social science methods (i.e., surveys, case, interpre-tive) [10];
• Exploratory data analysis with focus on computationally intensive elements [42];
• Theory construction under a mixed methods research framework [41].
Various cybersecurity exercises and platforms (see Chapter 2) are used as data sourcesand also as the test-beds for developed theories andmodels. A qualitative contribution to
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theory is particularly important when exploring topics that are difficult to quantify, such aslearning, when trying to make sense of complex situations, when answering the broaderquestion (e.g., how are the students learning?) or when attempting to explain how stake-holders (e.g., learners, teams) make sense of their situation [41]. Therefore the traditionalsocial science data collectionmethods, such as surveys, etc., are used to obtain qualitativeinsights and also to validate data trends from exploratory data analysis.
This research also focuses on an exploratory element of large digital datasets fromthe cybersecurity exercises and learning analytics objectives “computationally intensive"elements. LA is data-driven (e.g., data mining, visualization) and grounded on a specificresearch context [94]. Due to this, a mixture of data mining and visualisation mixed witha range of regression methods [42] is instrumented. For example, this method is appliedin Publications V and VIII to search for the best fitting lines and equations to representrelationships in the data and to build models of the phenomena under study.
Theory-building is relevant because it provides a framework for analysis, facilitates theefficient development of the field, and is needed for the applicability to practical real-world problems [41]. Considering that the application of learning analytics in cybersecu-rity education is currently in its early stages, such research is valuable. In social sciences,the inductive-synthesis model (also referred to as “grounded theory") has developed intoa robust and sophisticated system for generating theory across disciplines [40]. However,the mixed methods approach allows switching between inductive and deductive reason-ing (see Figure 1) and is thus more relevant in exploratory research of novel aspects. Thetheory construction under the mixed methods research framework is followed when de-veloping the frameworks or models proposed in publications, I, IV, VI, VII and VIII. Theresearch contributes to the theory bi-dimensionally: (1) originality [incremental or reve-latory] and (2) utility [scientific or practical] [29]).
The mapping of research methods to the corresponding research question and publi-cation, where the question is explored and answered, is summarised in Table 2.

Table 2 – Research Methods Mixed in this Research

RQ Pub Topic Methods used / mixedRQ1.1. VII LA framework literature review, theory constructionRQ1.2. VI design case study (data collection from CSX platform),qualitative survey, data analysis, theory constructionIII design case study (data collection from CSX platform),descriptive analysis, quantitative surveyII design case study (experimenting with new tool and datacollection from CSX), quantitative survey, data analysisRQ2. I LA measurements case study (data collection from CSX platform),quantitative and qualitative surveys, data analysis,theory constructionRQ3. V predictive analytics descriptive analysis, quantitative surveyVIII predictive analytics data collection, exploratory data analysis,theory construction

Overall, this research uses methodology and methods that contribute to providingpractical knowledge and solutions that can support implementing LA approaches in cy-bersecurity education.
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1.4 Contribution
An opportunity to improve learning would be missed by not considering how users expe-rience learning in different styles and pace, depending on the learning environment. Thisthesis builds on the view that an application of LA and using digital datasets can allow fur-ther analysis and evidence-based improvement. However, with LA and evidence-basedmeasurement, we also need to keep in mind and validate that what we measure (i.e.,metrics used) actually helps learners to learn or assesses their knowledge and skills reli-ably. Note that conducting such measurements does not automatically help learners tolearn, but using those measurements is an evidence-based basis for improving learningexperience and environment in CSXs.As learning activities are conducted on the computers and networks, the visual obser-vations of behaviour (e.g., sitting quietly behind computer screen but at the same timemitigating a significant risk or attack) might not provide sufficient information. The ob-servation method should be seen from a different perspective of learning to observe onthe network and system-level, i.e., looking into digital footprints. This work promotesand supports the use of several tools and techniques that implement an unobtrusive ap-proach by using the technical dataset. Overall, this thesis is based on eight publicationsthat contribute to the specific research aspects, as described in Chapter 10.2.The overall contribution of this research is the development of the knowledge andpractical approaches of how and what (digital) data should be collected in cybersecu-rity trainings, and how to connect such learning data to relevant learning theories. Theresearch contributes to this goal by obtaining pedagogical and technological underlyingknowledge on how to design andmeasure the learning process in CSXs. Such understand-ing can then serve as an input to the exercise design cycle and enable creating interven-tions during the learning process in CSXs to help learners to learn more effectively.
1.5 Thesis Structure
This thesis is divided into ten chapters. The introductory chapter provides a brief overviewof the learning and challenges in cybersecurity trainings and exercises, as well as the re-search questions and contribution of the thesis. Chapter 2 gives an overview of relatedwork and background in cybersecurity exercises and learning analytics.Chapter 3 describes the high-level model for implementing a LA approach in cyberse-curity exercises, while Chapter 4 focuses on the critical phase of designing the CSXs in away that data for learning analytics can be collected. In addition, this chapter providesuse cases of practical experiences in designing a learning experience and environment fortwo distinct learning objectives (digital forensics and stealthy red team operations) withlearner feedback on the learning experience. Chapter 5 moves on to measuring the learn-ing impact by demonstrating a novel 5-timestampsmethodology to capture individual andteam learning data for effective feedback in a live Blue/Red exercise.Chapter 6 moves on to “predictive analytics" and presents a novel idea of using theremote technical cybersecurity exercises as part of the university admission process andusing these labs to measure the technical skills of the applicants.Chapter 7 describes LA and CSXs in the wider context of cybersecurity competencyframeworks and education. As the research involves human subjects, Chapter 8 empha-sises the privacy and ethics aspects of cybersecurity and LA and also confirms the ethicalguidelines followed during this research. Chapter 9 acknowledges the limitations of thisresearch. Chapter 10 summarises the work done, brings out the main findings of this re-search, and outlines further work.
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2 Background and Related Work
This Chapter describes the CSXs used in this research in more detail. We also providethe background, relevant learning theories, current measurement efforts of learning, anddiscuss the connection to LA and CSXs.
2.1 Cybersecurity Exercises and Learning Aims
Cybersecurity training teaches both technical and soft skills, as the field involves technol-ogy, people, information, and processes. A wide range of trainings has been developedby universities [17] and other organisations providing cybersecurity education. As part ofsuch cybersecurity trainings, hands-on exercises (both online and classroom) are gainingpopularity in university curriculum and professional training paths.

The author views CSX as “a learning or training event in which individuals or teamsimplement, manage and defend/attack a network of computers at the tactical or strategiclevel” (Publication VII). Following the ENISA taxonomy [91], the exercises are categorisedas Capture the flag, Discussion based game, Drill, Red team / blue team, Seminar, Simu-lation, Table-top and Workshop [91]. Exercises with gamified elements are referred to as“serious games” and those with competitive elements as “competition”.
2.1.1 Exercise Locked Shields
The Locked Shields (LS) exercise series is the basis for research on the learning measure-ment framework of 5-timestamps in Publication I.

LS is one of the largest real-time international cyber defence exercises (red team / blueteam). It is organised annually by the NATO Cooperative Cyber Defence Centre of Excel-lence (NATO CCD COE) in Estonia. In 2019, more than 2500 possible attacks were carriedout, using over 4000 virtualised systems and involving nearly 1200 participants from 30nations [82]. The training audience was comprised of national Blue Teams (BT), consist-ing of computer emergency response specialists. The exercise ran on separate virtualisedgame-net, which was accessed remotely over VPN [83].
It is a team-based exercise, where individual learning is vital, but an important partis how teams overcome individual shortcomings in skills and knowledge and achieve thebest result as a team.
The overall goal of LS is to “train teams of cyber professionals to detect and mitigatelarge-scale cyber attacks and handle security incidents” [83]. Specific training objectivesare defined for IT specialists, including learning the network; system administration andprevention of attacks; monitoring networks, detecting and responding to attacks; han-dling cyber incidents; teamwork: delegation, dividing and assigning roles, leadership;cooperation and information sharing; reporting/ability to convey the big picture, timemanagement and prioritization [83]. The exercise also includes specialised parts, such asconducting forensic investigation, crisis communication (media play), cyber legal aspects(legal play) [83] and a strategic game.
In the learning design, a game-based approach has been taken, meaning that the par-ticipants do not play in their real-life role, and the activities take place in a lab environ-ment. In the exercise, the BTs are playing the role of Rapid Reaction Teams of a fictionalcountry. The primary focus is defence and the BTs are tasked to protect and maintainidentical pre-built virtualised networks of fictional, yet realistic organisations against theRed Team’s (RT) attacks. The BTs also need to share findings with the White Team (WT)and other BTs; respond to legal, media and scenario injects; and solve forensic challengesdesigned in accordance to training objectives.
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2.1.2 Exercise Crossed Swords
The exercise Crossed Swords (XS) series is used as a case study for designing and imple-menting visual feedback to assist learning in the exercise and measuring learning impactof such design elements (Publication II).

XS is an intense, hands-on, technical CSX oriented towards penetration testers workingas a single united team, accomplishing mission objectives and technical challenges in avirtualised environment. While a technical CSX is commonly aimed at exercising defensivecapabilities (i.e., Blue Team), XS addresses unique cyber defence aspects and focuses ontraining the Red Team members [65].
The main focus is to develop tactical and stealthy execution skills in a responsive cyberdefence scenario. Training objectives include practising evidence gathering and informa-tion analysis for technical attribution; executing a responsive cyber defence scenario fortarget information system infiltration; applying stealthy execution and attack approaches;exercising working as a united team in achieving the mission objectives; and developingred teaming skills and effective tool usage, information exchange and situational aware-ness provision [84].
The exercise is constructed as one mission and each participating team is divided intosub-teams (e.g., network, client-side, web/database, and exploit development) based onthe participants specific area of expertise [84].
XS is organised annually by the NATO CCD COE. Note that XS has evolved over theyears, and subsequently some design elements have been updated since the study (XS17)in Publication II.

2.1.3 Rangeforce Labs
While the LS and XS focus on team-based activity, the Rangeforce labs used in this researchare aimed at individual learning. Rangeforce also facilitates the team-based exercises,however these are out of scope for this thesis. Rangeforce labs are the basis for learningdesign model in publication VI, for designing learning and assessment in digital forensics(reverse engineering) training in publication III, and for predictive performance indicatorsfor cybersecurity technical skills in publication V and VIII.

The labs have been designed for a wide range of cybersecurity technical topics, in-cluding Command Injection, Cookie Security: Secure, Cookie Security: HttpOnly,Cross-Site Request Forgery (CSRF), Defence against CSRF, Insecure Direct Object Reference, IntroLab, Path Traversal, SQL Injection, Unrestricted File Upload, Reflected Cross-Site Scripting(XSS), Stored XSS and Phishing based on Stored XSS (Publication VI).
A fully automated Cyber Defense Competition platform Intelligent Training ExerciseEnvironment (i-tee) (used also as a basis for Rangeforce1 platform), is publicly availableunder MIT license [39]. This architecture allows the creation of new labs and challengesby reusing existing modules such as attacking and assessment scripts and vulnerable tar-gets. The system is designed to start a lab without extra management effort and all gameservices, routers, networks and scoring bots are allocated on demand (Publication V).
To access the hands-on exercise platform at Rangeforce, a participant needs an HTML5capable web browser (without any additional plug-ins or VPN). The system uses VirtualMachine (VM) Host platform based on open source tool i-tee [39]. When a lab starts, allVMs, networks, and grading systems are provisioned and personalised for the participant.Also, the automated skill evaluation process is initialised. Each lab may include differentVMs (Linux, Windows, BSD, etc.) and different software defined networks. Some VMs are
1https://rangeforce.com

18



accessible for participants (blue systems). Other VMs are dedicated for attack traffic gen-eration (red systems) or for end-user simulation and for network traffic generation. Thesystem architecture ensures network isolation between participants and lab networks.The lab personalisation process creates flags, vulnerabilities, grading for each lab attemptand random IP addresses for attacks and grading. Those IP-s are based on real logs fromthe servers (fail2ban, sshguard, blacklists). The system provides interactive assistance andguidance for participants using hints, leaked hacker’s chat live stream, and media injectsusing Virtual Teaching Assistant for the learner. Gamification elements such as leader-boards, scoreboards and hackers chat-rooms, are also provided (Publication VI).By 2019, more than 2 000 learners have used Rangeforce system in more than 15 000lab sessions and for on-site cybersecurity competitions in 10 countries, in companies andacademic training programs (Publication VI).
2.2 Learning and Measuring Learning in CSXs
Learning normally implies a fairly permanent change in a person’s behavioural perfor-mance [56]. It is a hypothetical construct, i.e., it cannot be directly observed but only in-ferred from observable behaviour [56]. Learning (behavioural potential) and performance(actual behaviour) are different constructs—thus ultimately the only proof of learning ismeasuring some kind of performance [56].Learning can be measured in different ways (e.g., assessment tests/exams, practiceand skill checks, self-assessments, etc.), and it takes effort, a structured approach andresources to measure the impact of any training. In the following sections we provide anoverview of different schools of thought on learning and learning measurements (bothindividual and team) and how it links to learning analytics and CSXs.
2.2.1 Individual Learning
While acknowledging different schools of thought on adult learning, it is widely acceptedthat learning takes place as a result of critical reflection on experiences rather than as aresult of formal training in remembering dull theories. In this thesis (and typically alsoin the design of hands-on exercises), the underlying philosophy relied on is expressed byKolb, who defines learning as “... the process whereby knowledge is created through thetransformation of experience [32].” The experiential learning model presents learningas a two dimensional process: one dimension describes methods of grasping or perceiv-ing information, while the other defines methods of transforming or processing informa-tion. The grasping dimension represents two different methods for perceiving (i.e., takingin materials): feeling or thinking, and the processing represents two different methodsfor transforming materials: doing or watching. While everyone can utilise each learningmode in their learning process, most people favour a particular mode or combination ofmodes [32]. Hands-on exercises emphasise the "doing" method in the processing dimen-sion.In many technical fields, hands-on learning ("doing") is very important. This also in-cludes the cybersecurity discipline. Cybersecurity students and personnel are expected tohave not only a theoretical understanding of information security concepts but also prac-tical and critical thinking skills to identify security threats, to implement security mecha-nisms to defend against these and to restore compromised information systems.The CSXs provide hands-on experimentation that is an effective pedagogy to teachpractical skills bas well as higher order thinking skills (HOTS, i.e., skills involving analy-sis, evaluation and synthesis) as defined within Bloom’s Taxonomy [6]. A well-designed,hands-on activity can integrate skills from multiple levels of the taxonomy, thereby en-
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hancing both technical and critical thinking skills [102]. Designing learning experiences toteach HOTS is more difficult, but also more valuable and likely to be usable in novel situ-ations (i.e., in situations other than those in which the skill was learned). However, CSXsexecution often only focuses on hands-on training (practice) and may omit that combi-nation of theory and practical elements needed to reach higher order thinking. Withoutclear understanding of a problem and having the essential knowledge of how to addressthe issue, it is not possible to solve the technical tasks effectively and learning impact is notrealised. There are several teaching methods to overcome such shortcoming. For exam-ple by providing classroom teaching before the exercise execution (e.g., [53]) or having avirtual teaching assistant incorporated into learning platform (e.g., Publication VI). There-fore, the design of the exercise is crucial to get right, and using digital datasets revealinglearning process and experiences can provide evidence-based input to the exercise designprocess.
In the CSXs context, the participants form their own “rules”, that are a result of action,observation and reflection of past learning experiences forming the basis for future learn-ing. Feedback and reflection are thus critical, as from a discovery moment new learning iscreated that can be applied to different or new situations. As CSXs are often complex andprovide large although granular level datasets, it is challenging to provide relevant and suf-ficient feedback in order to help learners in preparing for unknown future developments.This is where learning analytics has a critical role to play.

2.2.2 Team Learning
Teams are cognitive (dynamical) systems in which cognition (processes or activities suchas learning, planning, reasoning, decision making, problem solving, remembering, de-signing, and assessing situations) that occurs at a team level emerges through interac-tions [28]. Teams may or may not exhibit intelligent behavior as many instances of teamcognition can be readily observed [28].

Definitions of team learning vary considerably across studies. Team learning can bedefined as a process in which a team takes action, obtains and reflects upon feedback andmakes changes to adapt or improve. According to Senge [105], learning involves collectivethinking skills so that groups can reliably develop an ability greater than the sum of indi-vidual member talents. Team learning can also be viewed as a dynamic process in whichlearning steps, environment, individuals in the group, and group behaviors change as thegroup learns. Some interpretations of group learning, however, confuse levels of analy-sis by not distinguishing “individual learning in the context of groups” from “group-levellearning”. If an individual leaves the group and the group cannot access his or her learning,the group has failed to learn—so the other processes like sharing must have happened ina learning context. [119], [88]
In CSXs, teams are usually formed a few weeks before the exercise and dissolve afterthe exercise execution. For example, in LS the teams can be described asmultidisciplinary,as they consist of team and subteam-leaders, IT specialists, legal advisers, forensic ana-lysts, etc. Each team can select their necessary capabilities andmembers, and wide selec-tion of teammembers is encouraged (as it has been seen that the teamswhowere able toassign owners to every system were better at detecting and restoring their systems) [85].From a cyber operations perspective, the effective collaboration, experience, and func-tional role-specialization within the teams are important factors that determine a team’ssuccess and are important observational predictors of the timely detection and effectivemitigation of ongoing cyber attacks [16]. Thus, incident response management requiresteam-mates to get the right information to the right person at the right time [28].
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The objective of team learning is thus “creating a connection between the members",i.e., available knowledge and opinions are shared using clear communications, leadingto shared visions and intentions [113]. Van Haar et al. [113] divides team learning needsas both a task-related connection (shared SA, shared mental model of task, shared men-tal model of team) and a team-related connection (social structure and communicationpattern of the team, error management, cooperation (adaptability, flexibility and how tomake use of planning), collective orientation. Task mastery and group process are bothneeded for team learning and “teams learn when they change what they do or how theydo it as a group” [113]. Much of this subtle interaction competency is probably not storedin a knowledge repository but is an adaptive response to the interactions of fellow team-mates (e.g., who is overloaded and individual work-flow differences) [28]. However, teamlearning behaviour is expected to be positively related to team performance [48].To analyse team learning further, it can be broken into sub-processes. Wilson et al.define sharing, storage, and retrieval processes that are intertwined and need to takeplace for group learning to occur (represented as an equation: GL = Sharing + Storage +Retrieval) [119]. According to Edmonson, team learning behaviours are defined as activi-ties through which teammembers seek to acquire, share, refine or combine task-relevantknowledge through interaction with one another. Team learning behaviour is viewed asone aspect of a group’s "interaction process" or as an example of a "group action pro-cess" [36]. The team learning model by Dechant describes four linked learning processesthat explain team learning: framing and re-framing, experimenting, crossing boundariesand integrating perspectives [34].In the context of CSXs, the incidence response groups can function together for severalhours or a few days, but then never meet again. Can we talk about group-level learningfor a group that lasts for three hours, disbands, and never meets again? There is notmuch research on how (often in flux) groups embedded in organisations interact withtheir external environments, etc. [119]. LS and other cybersecurity exercises’ teams oftenrepresent a "flux" and short-term teams that are put together for the purpose of the ex-ercise. However, even if team members are usually in flux, we should not assume thatgroup learning will (practically) never get transferred from the previous team constructsto the current or future teams. Using the memory of a team member who participatedin the previous year’s exercise or the internal document (e.g., in-game cyber crisis re-sponse/communication manual/plans), the collective knowledge can still be transferred.
2.3 Measuring Learning Outcomes in CSXs
Measuring learning is a complex task, especially without intrusive methods. There aremany factors to consider, such as learning impact not being identified; changes being en-vironmental and learning dysfunctional [119]. So far researchers havemostly focusing on alimited set of learning outcomes,mainly learning of simple concrete knowledge. However,cognitive, behavioural, and emotional learning outcomes should also be considered. De-velopments in education sciences support several alternatives to traditional assessmentsby leveraging creativity, student involvement, and strategic curriculum development andpromoting alternative assessments [54].An alternative assessment is any assessment practice that focuses on continuous in-dividual student progress and in which the focus is more directly on "performance" [43].Thus, hands-on CSXs can be thought of as learning and performance tests. In such CSXsthe participants are required to perform a complex skill or procedure to demonstrate thatthey can apply the knowledge and skills they have learned, while there will be evidenceleft as a digital footprint to evaluate the process and achievement of learning outcomes.
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Specifically for CSXs, some general guidance, such as [61, 97], describe how organ-isers should look at design and performance (training success) measurements in aca-demic literature. Recent research has also attempted to address various evaluation as-pects of CSXs. For example, Mäses [80] focuses on evaluating cybersecurity-related com-petence through simulation exercises proposing a high-level SecTecWindow, a conceptualmap of cybersecurity-related competencies (categorised as non-technical / technical, notcybersecurity-specific / cybersecurity-specific). In contrast, Ahmad [4] focuses on impactsat an organisational level and investigates how a cyber crisis exercise benefits participants’individual learning and how their experience in the exercises is transferred to their organ-isation using the four-level Kirkpatrick training post-assessment model.
In recent academic literature, research is emerging on the evaluation of performancein CSXs using the digital data from the learning platforms. For example a novel scoringframework and comparing the participants’ scores to a reference (i.e., intended) path [8].However, the authors acknowledge that the current cyber range infrastructures often lackthe ability to monitor the performance of a participant (or team), and only report on ex-ercise completion (or lack thereof) [8]. Therefore, such evaluations for CSXs are in thetesting or experimentation phase at the time of writing this thesis. The existing researchefforts mainly focus on individual learning aspects, and team learning is often left outof scope for the learning measurements in CSXs. However, some studies also measureteam performance and effectiveness, e.g., [47], [53], [68], [58], but mainly use traditionalobtrusive methods.
In awider context, methods to evaluate learning outcomes includemeta-analyses, ran-domised controlled trials, quasi-experimental designs, single case experimental designs(pre- and post test) and non-experimental designs (surveys, correlations and qualitativeanalysis) [51]. The effect on learning (acquisition of skills or knowledge) can be measuredby calculating the difference between pre-test and post-test scores on the questionnairesor cognitive tests and compared to the control group [44].
CSXs are often designed using game-based learning principles. Overall such exercisesprovide an excellent environment for mixed-method data gathering (i.e., triangulation),including crowd sourcing, panel discussions, surveys and observations, in-game loggingand the tracking of hundreds of events and results, including distances, paths, play timeand avoidable mistakes, etc. [78]. Questionnaires and complementing these with inter-views including probing questions [109] are also used to measure game-based simula-tions. [27] proposes a model for the evaluation of games for learning that includes moti-vational variables such as interest and effort, as well as learners’ preferences, perceptionsand attitudes to games and looking at learner performance. Outcomes not only relate tolearning and skill acquisition but also to affective and motivational aspects applicable formeasurements in CSXs.
However in learning outcome measurements, not yet explored areas are seamless or“stealth” data-gathering and assessment as well as performance based evaluation [51].Stealth assessment (i.e,. non-invasive and non-intrusive) could potentially increase thelearning efficacy, given that much of the learning remains relatively “implicit” and “sub-jective” [78]. It should be noted, as in cybersecurity, attack and defence activities are con-ducted on computers/network—observations of behaviour (sitting quietly behind com-puter screenwhilemitigating a significant threat) might not provide sufficient informationabout learning. Observation should be rather viewed as looking into “digital footprint” byapplying non-intrusive measurements (such review of situational reports).
In summary, there are currently no widely accepted and unified methodological eval-uation methodologies published and scientifically proven that measure learning impact
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or assess cybersecurity skills and/or competencies obtained through CSXs. Such an eval-uation model should also incorporate both individual and team learning aspects, as manyCSXs are team-based with soft-skills being essential for working in the field of cybersecu-rity. Considering existing various measurement efforts, using digital datasets can providethe motivation for evidence-based evaluation of learning processes that LA is offering.However, there is an underlying need to ensure that a learning platform design will en-able such analytics.
2.4 Learning Analytics
2.4.1 State of Art of Learning Analytics Research
LA has gained an increasing relevance since 2012 [99] and rapidly expanding as a multi-disciplinary domain [89]. The research field integrates learning, data sciences and educa-tional technology into a rich socio-technical ecosystem [90]. LA builds upon well estab-lished disciplines but contributes further by capturing digital data from students’ learningactivity and using computational analysis techniques from data science and AI [110].In past decade, the LA research community has significantly focused in areas likeMOOCsand visualisations, performance, assessment [94]. Many new topics (such as natural lan-guage processing, multimodal learning analytics, orchestration) are emerging and thefield is expanding and following recent technological advancements [94]. However, thefield has been criticised for lacking theoretical frameworks which can provide solid com-mon grounds for further development [33]. The LA field has yet to reach its full adoptionand utilisation that is related readiness of various stakeholders and institutional readi-ness [94].This work adds a dimension of cybersecurity, as LA research needs to be adapted andapplied for this domain. The research complements and contributes to LA research matu-rity and wider adoption by providing theoretical frameworks and practical LA applicationsin the cybersecurity education.
2.4.2 Learning Analytics Application in CSXs
Note: A comprehensive literature review is presented in publication VII. This section in-
cludes a short summary of the key work that frames this thesis.Anoverall LA process has beenwell-established in the existing LA research, such as [107]depicting detailed process steps or as a high-level LA cycle [24], as shown in Figure 2. Re-garding CSXs, research is in its early stages and there is a lack of published studies on thecomplete cycle of LA process and guidance on how to incorporate LA into CSXs.In cybersecurity education, few examples of LA using an empirical learning data analy-sis have been completed. Weiss et al. [117] expresses that simply recording the number ofcorrect answers is inferior to in-depth assessment and explore the use of command linehistory and visualisation. The authors follow the “path” taken by a student in command-line when completing different tasks and levels (for skills level measurement some com-mands were identified as significant) [117]. Similarly, [67] demonstrates that the assess-ments of technical skill levels based on indexed similarity (i.e., participants were rankedbased on commands usage to achieve objectives) and the classification of actions can beautomatically deducted using the clustering of commands. [2], [3] describe techniquesfor mining the resulting data logs for relevant human performance variables in the ex-ercises. In regards to teamwork and communication, there is some research emerging,such as [7], [68] that have started to explore the use of analytics as evidence for achievinglearning in teams. As learning is a complex cognitive process not only technical indicatorsare relevant but also cognitive indicators, such as [64], [62]. However, the development
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Figure 2 – The Learning Analytics Cycle by [24]

of a combined approach for CSXs with technical and cognitive metrics requires validationand LA methods.As a distinct research area, LA includes identifying students at risk and predictive ana-lytics, and several othermethods for studentmodelling have been developed (e.g., Knowl-edge Tracing, Performance Factors Analysis) [45]. Such methods have not been widelyresearched in cybersecurity (e.g., [18] using log data to predict course grade, [53] predict-ing team proficiency). Prediction modelling in university admissions is not a new topic,and there are several examples of predictive models [19]). In STEM disciplines, there areseveral attempts to predict the students’ performance, such as [59], [21]. Most of thosemodels assume previous knowledge of past performance or are mainly based on demo-graphic data. However, there is limited work that describes how to assess the applicant’scybersecurity skills using practical tasks in an adequate and scalable manner (i.e., onlineassessments).
2.5 In Summary: Learning Analytics and Cybersecurity Exercises
This Chapter has provided an overview of relevant learning theories and current mea-surement efforts for individual and team learning efforts relevant for CSXs and LA. Also anoverview of the exercises used as the research subjects in this thesis have been describedto provide context and background.Overall, despite CSXs being seen as a valuable learning and teachingmethod, there is alack of research on the complete cycle of LA process and guidance on how to incorporateLA into CSXs using the digital data from the training environments. A few examples of LAusage and empirical learning data analysis are emerging and have been described in thisChapter and in publication VIII. The limited status of implementing LA processes in CSXshas motivated this research, which focuses on overall design and evaluation frameworksand specifically ondata collection aspects that are essential for any typeof further learninganalysis.
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3 Implementing LA Approach as an Integral Part of CSX Life-
Cycle

Implementation of learning analytics cannot be an after-thought. From the start of an ex-ercise identification and planning stages we need to understand (1) whatmetrics evidencelearning and (2) are they helping the learners to learn or teachers to teach?This Chapter focuses on RQ1.1., i.e., how to deploy a learning analytics approach intoCSXs in order to improve learning processes and to evidence learning outcomes. We pro-pose a high-level Learning Analytics Reference model described in publication VII and dis-cusses how andwhat data to collect enabling such learningmeasurements throughout anexercise life-cycle.
3.1 Learning Analytics Reference Model for Cybersecurity Exercises
Applying the learning analytics approach and analysing metrics from digital datasets canprovide more detailed and evidence-based input to more comprehensive learning eval-uations, such as Kickpatrick or other chosen evaluation model [49]. As those exercisesleave an extensive digital footprint of learning processes, it makes them an ideal base todevelop themethodswithin the fields of LA. As a result, using these evidence-based learn-ing traces in learning design can improve the experience for students and specialists. Italso helps to investigate the validity of common, yet unsubstantiated claims, such as “ev-eryone feels they had learned important lessons [26]” or “exercises are a very effectiveway of learning the practical aspects of information security” [97].Learning analytics should be incorporated into the CSXs’ identifying, planning, con-ducting and evaluating phases (as described by [61]) and seen as an integral part of theexercise design in line with the overall pedagogical approach selected [60]. When start-ing to implement LA approach into an exercise it is useful to think about the LA processfrom aspects such as What (Data, Environments, Context), Why (Objectives), Who (Stake-holders) and How (Methods) [20]. The CSX LA reference model shown in Figure 3, buildsupon [20] and [61]. The model combines and outlines the key learning analytics consider-ations to incorporate into the CSXs life-cycle and supporting the model with an extensiveoverview of existing use cases for a practical implementation. The developers would es-pecially need to consider LA aspects in their design of the cyber ranges, as they lay thetechnological foundation of instrumenting the exercises enabling LA in the first place.Asking these learning analytics related questions and finding the answers during an ex-ercise life-cycle will ensure that learning measurements are not simply an after-thoughtbut rather are incorporated from the “identifying phase” (Figure 3). Considering ques-tions, such as “What data can we collect that will help learners to learn?" and collectingonly relevant dataset would help with the challenges of storing huge datasets from anexercise and later trying to see what data could be used in providing feedback. When alearning objective of an exercise is improving the incident response process, timestampsthat would indicate team communication would be critical data to collect (PublicationI). However, when the proficiency of using various forensics tools and command-linesis trained, then capturing bash history or keystrokes is relevant (e.g., [117], [108]). Also,considering how to support learners and instructors by giving feedback is important. De-signing automated feedback that takes into account the users’ behaviour and predictstheir actions and questions now becomes available and canmake the learning experiencemore individualised and effective (e.g., [111], Publication VI).This reference model for LA in CSXs can be used as a practical guide to the exerciseorganisers enhancing conceptualisation and the integration of learning analytics into the
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Figure 3 – CSX Learning Analytics Reference Model (Publication VII)

exercise life-cycle as an integral dimension. The considerations presented in the modelare supported with an extensive overview of existing uses of learning analytics providingempirical evidence from digital datasets (log files, pcaps) and metrics used in CSXs.
3.2 Combining Metrics from Digital Datasets and Cognitive Indicators
Publication VII summarises learning indicators from digital datasets that have been usedin academic research and could be used as a starting point to brainstorm when select-ing the metrics to measure how far the training objectives have been achieved. It shouldbe noted that many papers on learning in the CSXs are based on the experience and in-terpretation of the authors or based on the traditional learner evaluation (e.g., feedbacksurveys, evaluation forms).

We should focus on measuring what we value or aim to teach as defined in trainingand learning objectives. The metrics used in CSXs often focus on easily measurable data(e.g., time spent, number of attacks mitigated, etc.) and individual actions. However,the students are “too easily satisfied that a system is secure after identifying only onepossible source of security for a system rather than seeking to explore the adversarialspace more thoroughly” [104]. Thus, it is important to understand not only whether thestudents found the correct answer but how they found it [117]. There are some studiesthat start to look into “how” the learner completes tasks (i.e., use of tools, attempts,submission of wrong answers), such as [2], [3], [67]. However, validation is limited (e.g., 4participants [67]).
Regarding teamwork and communication, there are some studies emerging, such as [7],[68] that have started to explore the use of analytics as evidence for achieving learning inteams.
As learning is a complex cognitive process, further research should focus on cognitivemetrics, such as Knox et al. [64]. From the wider LA field, a similar measure to “cogni-tive presence” can be applied in the cybersecurity training (e.g., “Active Learning Squared(AL2)” paradigm, which emphasisesmeta-cognition and uses both active student learning

26



and machine learning [66], [62]).Metrics are valuable; however, “being able to report upon a metric does not meanthat you should use it, either in the tool, or in reporting its worth [63]”. The metrics willdepend on the exercise goals, which in turn are guided by different pedagogical princi-ples (e.g., behaviourist, cognitivist or constructivist) [60] and the wider evaluation modelchosen [49]. Therefore we need to be mindful of the learner and the learning process.Measurement shouldmove towards themapping digital traces describing student activityonto interpretable constructs of interest (e.g., Knowledge Components, Q-matrix), whichfacilitates actionable analytics [70].
3.3 Challenges and Benefits in Implementing LA Approaches in CSXs
The implementation of such approaches is not without challenges. The scientifically validevidence that learning outcomes have been achieved is difficult to obtain, especially asthe exercise design, objectives, technology and learner characteristics vary. These fac-tors make inter-institutional and between exercises comparisons difficult; however shar-ing the measurement results would enhance comparability and provide further evidencethat learning has been achieved and skills obtained across various CSXs. Cybersecurityis a quickly developing discipline and is often chasing moving targets. This also impactsLA, as it needs to keep up with evolving algorithms and learning patterns. In addition,the challenge relates to a large data volume, necessitating efficient and automated dataand LA techniques. However, identifying learning patterns is still challenging (i.e., shorttime of detection, gaps in time-line, etc.) and data is very diverse (e.g., different operat-ing systems, applications, etc.). When combining multiple datasets and different formats,e.g., technical and timing data with self-reported learner data, no detailed descriptions ormethods are provided on how data is processed and time-synced. Also, the CSXs are typi-cally events over a short period, but short-term interventions are not particularly effectiveat affecting behavioural change [52]. Thus, longitudinal studies are needed to evidencelearning and behaviour change as result of the exercises and also to separate them fromother learning.In summary, the application of LA and analysis of digital datasets can provide a deeperunderstanding of learning behaviour and lead to evidence-based improvement. The con-sideration of LA aspects is also vital for the cyber range developers, as they lay the techno-logical foundation for instrumenting the exercises that enable applying effective LAmeth-ods. The LA reference model can assist in implementing LA into the CSXs life-cycle toachieve a more adaptive design and measurement using evidence-based data from thelearning environment. In publication VII, we shared an extensive related work overviewfor the current deployment of LA and analysis of empirical evidence, specifically a sum-mary of metrics (learning indicators) from the digital datasets to assist in implementingthe model across all exercise types.Further work should identify and validate which learning metrics evidence learningprocess and learning improvement in CSXs. As a first step towards the evidence basedmeasurement, we provided in Chapter 5 a case study using Locked Shields and exploratoryresearch focusing on combining individual and team learning.
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4 Identifying and Planning CSXs: Effective Learning Design en-
abling Data Collection for Learning Analytics

In this Chapter, we discuss the work done and findings related to research question RQ1.2.This investigateswhich instructional design approacheswould enable connecting rawdatato high-level competencies and learning experience of the learners in the process. Theset-up of an exercise and which data will be collected lays the foundation for the imple-mentation of LA techniques and methods.The competencies required in the discipline of cybersecurity are varied and extensiveas seen in The National Initiative for Cybersecurity Education Cybersecurity WorkforceFramework (NICE Framework) [86] or the Cyber Security Body of Knowledge [101]. Thusdesigning and executing a CSX is a complex task, because it can have many forms, ap-proaches, techniques, objectives, etc. The author has focused on the critical aspects andelements when designing the exercises, in order to be able to later measure their effec-tiveness. This Chapter explores effective learning design and methods to teach variouselements of cybersecurity to a varied and diverse training audience.Despite the related work addressing many differing issues in CSXs, including skills as-sessment and evaluation attempts, a practical and scalable model that would provideevidence that high-level competencies can be achieved through analysing the granulardata-level of the exercises’ raw data is missing. Solving this critical question also helpsimplement LA approach in CSXs.Matching such data to competencies models has been proposed in publication VI,while publications III and II provide the different use cases and analysis of effects of suchdesign that allows detailed data collects. Publication III focuses on digital forensics (re-verse engineering) and publication II on visualisations and feedback on stealthiness ofred team operations. In these use cases we also obtain the qualitative insights from thelearners, to evaluate any impact on the learning process.
4.1 Design Approach for Connecting Competencies to Raw Data
In order to automatically select the appropriate learning environment and adapt to theneeds of the learner, it is important to have a measurement methodology that is able toaccurately capture the capabilities of the user (Publication VI).However, defining educational outcomes and objectivelymeasuring such outcomes fora CSX is a complex task. The common evaluation approach in the exercises is scoring forcompletion of various tasks or events. However, tweaking such elaborate scoring systemsand story-lines is usually very time consuming and challenging enough to divert attentionfrom the in-depth analysis of the final score.Our aim is to apply the existing instructional design methods for connecting raw datapoints to high-level competencies by using an evidence-correlation model. Applying thesuggested model for the design and implementation of a cybersecurity exercise wouldgive a structured and automatic feedback of the participants’ skills.In a CSX, different events happen rapidly in a semi-controlled environment. However,the learning experience is neither linear nor predictable, and this makes measuring spe-cific competencies challenging. For example, if the participants have a task to defenda vulnerable web application, they have different correct ways to deal with the attacks:block attacks by implementing intrusion prevention systems, block attacks by using webapplication firewalls or by fixing the vulnerabilities of the web application (Publication VI).However, there are also different incorrect or insufficient ways to react: removing attackerinjected code/content from the system, taking the vulnerable application off-line, break-
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ing web application’s functionality, etc. (Publication VI).We describe a model in Figure 4 in which the design of a cybersecurity exercise fol-lows a top-down pattern but with collecting and parsing the relevant raw data laying thefoundation.

Figure 4 – Suggested Structure for Exercises (Publication VI)

The main idea is to start with the conceptual design. First, targeted competencies thatthe exercise should teach or assess are defined. Then, those competencies are drilleddown to different skills with measurable learning objectives. Based on those learningobjectives, specific tasks can be determined that could be measured by evidence—i.e.,events happening in the system.To improve the flexibility and efficiency of the system, Game Event Logs (GEL) are de-signed to capture all important events. When GEL is designed appropriately, the amountof exercise data needed to analyse decreases significantly. Massive amounts of raw datacan be deleted after the exercise while keeping the ability to dynamically change the rulesfor interpreting the events.During the CSX, the raw data is used to generate GEL, which is interpreted to evaluatewhether a specific task is completed. Commonly, the completion of tasks is used as aninput for score calculation, but we suggest to do more than that. The completion of tasksindicates the proficiency level of different skills. Skills, in turn, are gathered into meaning-ful sets to form competencies.The model consists of 5 layers. The bottom layer represents the raw data and thehighest layer specific competencies that are targeted by the exercise. It is important tonote that while the technical data flow happens from the first to fifth layer, the logicaldesign flow should start from the top layer. The layers themselves are connected to eachother but at the same time are independent, allowing the use of different formats orprocessing systems.The cognitive learning layers based on the revised Bloom’s taxonomy [6] are the fol-lowing: (1) Remembering; (2) Understanding; (3) Applying; (4) Analysing; (5) Evaluatingand (6) Creating. The adjustment is made in order to incorporate the attack and defence
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aspects of effective cyber defence. In order to defend, learners need to understand andapply the attack technique themselves before being able to creatively avoid such vulner-abilities in the system. The difference between applying and mastering the defence istransferability, i.e., we can assess mastering if the learner is able to defend against thistype of attacks in different operating systems, using different tools, etc. Mastering thedefence (level 5) in our model usually means that the same skill is measured and mappedover different labs to ensure that the learner is able to transfer and apply the skill usingdifferent technologies.In order to validate the learning impact, the assessment should be performed us-ing various alternative methods and data sources. For Rangeforce labs design evalua-tion, a thorough hands-on assessment was conducted with 27 participants. This con-sisted of extensive pre-assessment labs (a set of 13 different labs including XSS, com-mand injection, cookie security, etc.) and post-assessment test (same hands-on test asfor pre-assessment). The results show the average completion rate of the pre- and post-assessment labs. We can see that for the “study” group (i.e., those who actively partici-pated in the exercise), the improvement in skills was significant (from 4% to 68%). How-ever, the skills improvement was measured using both pre- and post-exercise assessmentby a relatively small group and should be extended as part of future work. After the exer-cise, additional free-form feedback was collected from the participants and their super-visors, to analyse whether the participants had acquired relevant competencies for theirjob. Although the feedback gave anecdotal evidence of useful skill improvement, quanti-tative surveys and structured pre and post assessments could be used for systematic andempirical evaluation.Further work should continue on defining the rules (i.e., defining GEL, etc.) that canbe universally applied in the different exercises and developing the system enabling theexercise’ organisers to dive into the learning data more easily. In the future, such datacould be used for modelling predictive behaviours, e.g., considering use of learning hintsin skills’ evaluation [22] and calculating confidence correlation to the skills.In summary, our structured approach helps to obtain more meaningful learning datafrom the logged event and to measure relevant competencies. Our approach supports aparadigm shift towards the cybersecurity exercises that by design allows systematic andevidence-based competencies and skills measurement.
4.2 Case study for Teaching and Assessing Malware Reverse Engineering

Skills (in Digital Forensics)
Following the overall exercise design concept as described in the previous section anddepicted in Figure 3, we discuss a case study of a malware lab design, while putting thisapproach into practice. Using a fully automated cyber defence competition platform Intel-ligent Training Exercise Environment (i-tee) [39], our research aim was to design and testa scalable hands-on automated malware reverse engineering lab for university studentsusing open source tools (or free-ware tools) (Publication III).Mastering reversing engineering could be compared to art. “Reversing equals art”thinking is not new and has stated before in computing education, e.g., Bader has used thesame expression with respect to parallel programming [46]. Modernmalware can includemultiple obstacles [13] for evading detection, which complicates the malware analysis. Inthe phase when students get graded, they should be familiar with some of them beyondjust obfuscation [112].Studies have found that the humanbrain constructsmodels of theworld on the basis ofpast experience, which are subsequently confirmed or denied by experiential input [55].
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Figure 5 – Malware Lab Instructions. A virtual teaching assistant is guiding the student through the
tasks in a step-by-step fashion (Publication III)

When we apply this predictive mechanism of the brain to the cognitive task of problemsolving, we see that our brain produces possible solutions for a given problem by pre-dicting solution models based on past experiences [55]. Therefore, it can be argued thata solution to a specific task might be similar, due to students’ participation in the samemalware course, i.e., similar learning generates inherently predictive solutions to a par-ticular set of problems. However, we can use such predictive patterns, in case we needto understand students ability to use particular tool-set. These types of tool-sets enablethe use of different measurement techniques to understand whether the student tackledthe multifaceted problem or if the student used an allowed (or not allowed) short cut toa solution.
Our approach was to leave the playing field open and to let the student choose thetools and methods to tackle the problems, using their own tools and programs, which areonly limited by the operating system. However, that implies that the problem of assess-ing skills automatically becomes more complicated, as measuring will depend on reverseengineering the steps that students chose to perform. For example, we do not simplymeasure the fact of installation of a specific tool by the student, rather whether they un-derstand the reverse engineering process. The concept was tested out on the maliciousJavaScript included in the PDFs as part of the course assessment.
The course assessment was designed as a fictional situation where the students actedas malware analysts and their task is to analyse and reverse engineer the malware in-cluded in the PDF document, as shown in Figure 5. The malware for each student wasdifferent in order to ensure the students were not just copying solutions but actually run-ning the commands and using the tools therefore leaving the evidence on the learningplatform.
Specific to the malware lab assessment, some interesting analytics were obtained andevaluated against learning objectives as well. For example, the time taken for resolvingfirst iteration took about 1 hour 54minutes on average. This was in line with course home-work with similar content and complexity, where students reported time spent, vary-
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ing from 30 minutes to 8 hours. For assessing the command line usage Snoopy2 wasused. However, due to a deployment error, logs from the student machines were notavailable and command line usage analysis could only be done manually (using foren-sic tools). We randomly chose some machines for further analysis and noted that thestudents used command line tools native to REMUX and discussed in class, for example:pdfid.py6, Peedf.py7. For JavaScript analysis, the students mostly opted for using onlinede-obfuscators. Thiswas in linewith the expectations and tools covered during the course.To achieve and assess learning outcomes, the educators use frameworks such as Bloom’sor SOLO taxonomy. Whatever learning framework is used, it means that higher level ofcognitive levels or complexity levels (HOTS) are reached by a student to ensure that theyhavemastered the art ofmalware reverse engineering. As teachingmalware reverse engi-neering can be regarded as an art andmalware is commonly well-protected to resist anal-ysis, higher cognitive skills are required, which should be evaluated as part of a course as-sessment. However, with CTFs the common criticism is that they only reach the lower lev-els of cognition (e.g., [79]). In malware reverse engineering a learner needs to make tool-choices and recreate from different elements of information. This demonstrates compre-hension of applying knowledge, analysis and evaluation in the process of dissembling thecode, creative thinking and higher-level concepts. Considering Bloom’s taxonomy HOTSneed to be achieved, and therefore the lab design provides also the reflection questions,to ensure that a student has understood and not only completed learned (memorised)technical tasks without understanding.Further assessment of the learning impact of using such labs as part of the learningwas performed for ten university students and unstructured, qualitative feedback was re-ceived. The main takeaway was that using the similar labs in the learning process wouldincrease learning impact when used as part of the course, as when only used in assess-ment the unfamiliarity with tools causes a negative effect on being able to demonstratetheir skills. Overall, the feedbackwas encouraging, as the students provided positive com-ments. However, there is some further work required regarding the inclusion of auto-mated labs in course design (i.e., using it already for homework) and technical improve-ments (e.g., widen the malware types to be analysed—not only malware in PDFs).Future work should extend the scenario and the lab, to address the elements of down-load server, compiled executable analysis, etc. The similar lab structure can be easily con-verted to address a different scenario’s learning objective in the malware reverse engi-neering and thus cover the wide array of malware elements and types. Another futureenhancement is incorporating a task of writing up the yara rules3. These are descriptions(i.e., rules) of malware families based on textual or binary patterns consisting of a set ofstrings and a boolean expression which determine its logic. This would help to measureand ensure that Bloom’s higher cognitive skills have been achieved—i.e., the student isable to create something new from different elements of information (to create).This case study illustrates a design for learning and a learning environment based onopen source tools to effectively deliver hands-on automated virtual labs to teach mal-ware reverse engineering with partly automated assessment. It shows the importance ofconnecting raw data to competencies and even further to learning theories in order to en-sure the learning objectives aremet and the appropriate learning experiences are created.With the right mindset and tool-set the teachers can significantly increase the teachingquality and help students achieve higher levels of cognition and potentially reduce theamount of students who fail to reach the required skill set.
2https://github.com/a2o/snoopy3http://virustotal.github.io/yara/
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4.3 Case Study for Giving Feedback on Stealthiness in Red Team Opera-
tions

Another case study on the concept of connecting low-level raw data to competence whileusing this data to help participants to learn used a Crossed Swords exercise for practicalimplementation (Publication II).
XS is an exercise directed at training Red Teammembers for responsive cyber defence.In the past, feedback was too slow and participants did not understand the visibility oftheir actions. Therefore, the data analysis needed to be automated as much as possi-ble, in order to improve the feedback (e.g., timely, accurate, detailed) to the learners. Toachieve this objective, a Frankenstack tool was developed for XS17 using the open-sourcetools but added event correlation, a novel query automation tool and a newly developedvisualisation solution described in publication II.
Figure 6 depicts the role of Frankenstack in the XS exercise.

Figure 6 – Frankenstack in XS (Publication II)

An Event Visualization Environment (EVE) was developed for visualizing correlated at-tacks in relation to the gamenet infrastructure. Probes sent information to EVE listener inJSON format and real-time visualization was achieved using WebSocket technology (Pub-lication II).
There were four large screens in the training room directed towards the RT, displayingAlerta, Grafana, Scirius and Suricata. Alerta served as the primary dashboard to displayalerts to the RT and the participants could write their own filtering rules to view informa-tion relevant to their current campaign. A fifth screen displaying EVE was only visible toYT and WT members. EVE was shown in replay mode to RT participants after the exerciseconcluded. This compressed replay was very effective in presenting the most prevalentproblems, such as periodic beaconing during otherwise silent night periods and verbosityof particular network sub-team attacks.
From a learning perspective, using the gamenet map makes EVE a very intuitive toolfor enabling participants and observers alike to comprehend CSX events on a high level.In order to learn, RT has to receive timely and efficient feedback regarding the detectedattacks on the target systems. This feedback is critical to raise the level of stealthiness,identify the gaps of RT coordination and analyse the tools and tactics used for computer
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network operations. The effectiveness of our framework was assessed during the mainexecution of XS17.
Tools and infrastructure are essential for learning; however, human factors, such ashow participants perceive and use the tools, have significant impact. One essential partof the assessment was to observe the behaviour of the RT members and their interactionwith Frankenstack during the exercise in order to gain further insights into their progressand learning experience.
To estimate their reaction to Frankenstack and their overall learning progress, we car-ried out qualitative interviews with RT participants. Furthermore, we conducted a quan-titative survey consisting of multiple-choice or ranking-style questions with the ability toprovide additional comments for each question.
We received 14 survey responses out of 27 participants (52%). As described abovethere were four large screens in the training room directed towards the RT. The survey re-vealed that learners did access the monitoring framework on their local computers whenattempting new attack vectors. Thus, tools served their intended usage, as 38% partici-pants reported that they checked the screens every 60 minutes or less and another 38%checked the screens every 30 to 50 minutes. Regarding learning impact, 79% agreed thatthe situational awareness given during exercise was useful for their learning process, and77% of the respondents considering the speed of feedback to be at the correct level with57% agreeing that alerts were accurate and sufficient for their learning process. However,several respondents revealed being too focused on achieving their primary objectives,and thus unable to properly switch between their tools and feedback screens.
In relation to visibility, 45% of the participants agreed that they had learned a lot abouthow their actions can be detected (i.e., it is useful to see simultaneously what attackmethod could be detected and how), and 30% were more careful with their attacks andthus tried to be stealthier than they normally would have been. However, there weresome unintended side-effects: revealing too little or too much to the training audience.
Furthermore, some comments revealed a loss of emphasis on stealth due to exercisetime constraints, i.e., RT members knowingly used more verbose techniques closer to theobjective deadline.
One of the key training aspects is working as a team to achieve goals. However, feed-back concerning the impact of situational awareness tools on team communication andcooperation was mixed: 50% perceived positive impact, whereas 21% were negative andthe remainderwere neutral. Several respondents acknowledged less need for verbal com-munication, as they could see relevant information on the screens. Unfortunately, not allRT members were able to interpret and perceive this information correctly. This, com-bined with the reduced need for communication, meant that not all participants pro-gressed as a team.
Receiving guidance is a critical success factor for learning, especially in a team setting,i.e., when they did not know how to proceed, their team members or sub-team leadersprovided guidance. 64% agreeing with the statement on sufficient guidance is a ratherdisappointing result and could clearly be increased with improved learning design. Somerespondents admitted that they did not know how other teams were progressing andwasted time on targets that were not vulnerable. This caused significant frustration andstress, especially when combined with the compressed time-frame of an exercise.
Given the amount of work that goes into preparing such exercises, the level of learningpotential needs to bemaximised. Our analysis suggests that small learning design changesmay have significant impact, e.g., assessment of familiarity of monitoring tools before us-ing those in the exercise, assigning monitoring task to specific teammember (for a certain
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time period) or other division of tasks betweenmore experienced and novice teammem-bers, regular team time-outs for reflection, allowing flexibility in the paths that the RT cantake to solve the objectives (i.e., participants should avoid spending too much time onwrong targets), etc.In summary, as a response to the core challenges such as providing timely and accuratefeedback and ensuring participant education without compromising the game scenario,Frankenstack feedback regarding learning impact wasmainly positive. However, there arecritical questions to answer when designing the RT exercises, such as what is the right bal-ance of information to provide to the RT; does the behaviour change due tomonitoring orvisual information available (i.e., learners unconsciously limit themselves by not trying outmore risky strategies, etc.)? Also, some further learning design changes, and not neces-sarily only limited to SA, can maximise the return on significant investment into preparingsuch RT exercises. This emphasises the requirement that methods and metrics for assess-ing technical RT campaigns have to be incorporated into the game scenario in the initialstages of exercise planning.
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5 Evaluating Cybersecurity Exercises for Effectiveness and Effi-
ciency with Less Obtrusive Methods

Learning is such a complex and intractable process that its study and measurement is dif-ficult and contentious. However, methodological measurement is required to determinewhether an exercise design was appropriate and effective and whether planned learningoutcomes were achieved. This chapter presents how to evaluate effectiveness and effi-ciency of both individual and team learning aspects with less obtrusive methods in CSXs(RQ2).
CSXs in the current form are often not sufficiently instrumented for learning measure-ment and existing measurements focusing on scoring do not use learning related metrics.An overall CSX learningmeasurement approach should bring together pre-exercise, execu-tion and post-exercise phases and individual/team/organisational aspects. The measure-ment should include a mixture of quantitative and qualitative methods. In this Chapterwe discuss a novel method: the 5-timestamp methodology, which focuses on unobtru-sive data collection and comparable data analysis linked to learning objectives presentedin publication I.

5.1 5-timestamps Model for CSXs Learning Measurement
Learning in CSXs is affected by many variables; however, the basic measurements such astiming and accuracy metrics are still key elements that provide comparable trends in thelearning process and benchmarking for the teams. For example, the measurements haveshown that when teams took 20 or more minutes to identify an inject’s NIST categorisa-tion, they were more accurate [53]. That means an overly time-constrained game-rulemay prove to be an unrealistic expectation, which will not contribute to learning. Insteadit forces teams to learn, share and store wrong behaviours and later retrieve learned butwrong behavioural models in real-life situations [119]. Such metrics support the develop-ment of appropriate exercise learning design.

Furthermore, measuring learning effectiveness and collecting data in order to providefeedback can be combined. The learning potential is not fully realised if the BTs do notknow what their weaknesses are and how they progressed in the exercise. Scoring mightgive some indication of how teams compare; however, without knowing a baseline orstandard in more detail, the overall score is worthless from a learning viewpoint. Forexample, scoring may not take into account howmuch resistance the BTs put up and howefficient they were in responding.
A novel and simple methodology, called the “5-timestamp methodology”, aims to ac-commodate both effective feedback (including benchmarking) and learningmeasurement,see Figure 7 for defending (blue) teams. It should be emphasised that this methodologyis only a part of the overall learning measurement (including traditional methods, suchas surveys, interviews, etc.) and is specifically designed for a team-based cSX, where themain objectives are to train incident management response and team communications.Themethodology focuses on the collection of timestamps at specific points during a cyberincident and time interval analysis to assess team performance and argues that changesin performance over time can be used to evidence learning. The timestamps can either becollected non-intrusively from rawnetwork traces (such as pcaps, logs) or using traditionalmethods, such as interviews, observations and surveys from both the RT and BT. The anal-ysis of time intervals between the proposed five timestamps enables the measurementof technical skills but also soft skills (including leadership, team communications, decisionmaking). Themethodology analyses data at a cyber incident/attack vector/targetmachine
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Figure 7 – 5-timestamp Non-intrusive Methodology (Publication I)

level but provides metrics for different learning objectives (Figure 7). For example, the as-sessment of whether the BTs are effective and achieve incident handling related learningobjectives needs basic timing and accuracy metrics. These include how long it takes to re-spond to an attack, how long teams take to respond to a significant threat vs. minor issues,and the correlation between the teams’ detection time and quality of reporting. Furtheranalysis can be carried out to investigate if the most effective strategy from a qualitativeaspect was applied by the BTs, but having timing and accuracy metrics will provide inputand focus to aid such qualitative analysis and feedback.
The analysis breaks an incident into phases to demonstrate strengths and bottlenecksin individual and team skills in each phase and provides the basis for effective feedback.The model follows the incident time-line and information that can be collected non -intrusively (Table 3) from the game-net or management network4. Even when t1 and t2are intrusive for the RTs, data collection is non-intrusive for the BTs. For cross-checking, asample using intrusive methods should be selected.

Timestamp Description Non-intrusive Data Intrusive (optional)
t1 RT starts attacking RT activity reporting N/A
t2 RT compromises RT activity reporting andscoring data N/A
t3 BT detects Possibly by access pattern BT observation or self-reporting via inject
t4 BT mitigates management network(showing traffic activity) BT observation or self-reporting via inject
t5 BT restores scoring, management net-work (end of session) N/A

Table 3 – Data Sources for 5-timestamps (Publication I)

In order to fully understand this methodology, it should be noted that there are typ-ically several target machines in a game-network that can be attacked repeatedly usingthe same attack methods. However, one of the advantages of a live-fire RT/BT exerciseis defending against a “thinking” adversary, which implies that the same target can beattacked using different methods.
4The exercise runs on separate virtualised machines which are accessed remotely over theVPN [83]. The BTs can reside in their home location and connect via a dedicated management net-work to the game-environment. The game-net resides typically on a different interface and is wherethe attacks are happening.
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Our experience shows that traditional methods, such as self-reporting, fail in high-speed and complex exercises. The suggested method enhances the feedback loop, al-lows the identification of learning design flaws and provides evidence of learning valuefor CSXs and should be incorporated as an integral part of the overall learning measure-ment framework. Future work should continue with performing the data analysis of anexercise to compile and validate learning metrics and benchmarks for learning patterns.Identification and analysis of the data trends will provide a solid baseline and demon-strate learning improvement achieved in CSXs, both at the individual and team level. Thiswill complement often anecdotal and positive feedback obtained via traditional methods(surveys, interviews) that participants have actually learned. As we demonstrated, incor-porating non-intrusive, social and behavioural research methods into the cybersecurityfield can give new insights and possibilities in effective training for cyber defence teamsin the future.
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6 Using Cybersecurity Exercises asMethod for Predictive Tech-
nical Skills Assessment

This Chapter examines whether CSX’s LA measures can be standardised as performanceindicators and are suitable as performance predictors for cybersecurity technical skills(RQ3).The predictive analytics focus on the identification and extraction of specific predic-tive metrics and correlations that can be included in wider prediction models (togetherwith other validated metrics). Our hypothesis is that completion (and how completed)of hands-on technical exercises can be used as a predictive component in the admissionprocess to identify students who are motivated and likely to succeed in a cybersecuritycurriculum. Such exercises leave a digital footprint, which enables the application of LAmethods (including predictive modelling) to support learning success in the cybersecuritydiscipline. Thee dataset used was TalTech admissions using online, hands-on technicalexercises as part of the admission process to the university’s MSc cybersecurity programover the three years. The full overview of the admission process is provided in PublicationV, and evaluation and analysis is presented in Publication VIII.We specifically addressed the following research questions in the context of our uni-versity admission process to the cybersecurity program:
• Can admission procedures that include technical online labs on selected cyberse-curity topics predict the students’ performance in the technical subjects at the uni-versity curriculum? Is it a more accurate predictor than the admission interviewcomponent?
• Do more comprehensive and complex cybersecurity technical assessment used atthe beginning of the course predict student performance? Is this assessment ap-propriate as the basis to assign students to courses with different difficulty levels?
• Is more comprehensive assessment necessary at the beginning of the course, orcan the results of selected technical labs used during the admission procedure alsopredict the students’ performance?

6.1 Overview of University Admission Process and Exercises Component
In response to the existing and predicted skills gap in the cybersecurity labour market,educational institutions are establishing courses dedicated to producing the cybersecu-rity specialists of the future. Admissions boards need to select frommany applicants withdifferent backgrounds, with the aim of identifying those with the greatest probability ofsuccessfully completing the program and identifying those with the appropriate skills tofill the skills gap. Thus, a scalable and predictive admission process that can also be con-ducted remotely is needed.In the admission process5 to the international Cybersecurity Masters program (MSc)at our university, we have used remote technical labs in addition to traditional admissionprocedures (Publication V). The admission process and how the technical labs fit in aredescribed in Figure 8.An applicant should exhibit potential for critical thinking and problem solving skills,which we believe can bemeasured when the candidate is placed into the simulated (gam-ified) learning environment and actually performing some technical tasks that requireputting those skills into practice.

5https://www.taltech.ee/en/cyber-msc#p1675
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Figure 8 – Elements of Admission Process (Publication V)

The virtual hands-on exercises are based on the i-tee platform [39] that enables on-demand access to a cloud-based virtual environment using a modern (HTML5 capable)web browser. This technical set-up lowers the processing requirements of the applicants’computers. To access the hands-on lab, an applicant needs anHTML5 capablewebbrowser(without any additional plug-ins or VPN). The main requirement is an Internet connectionof at least 3Mbps. The system provides interactive assistance and guidance using VirtualTeaching Assistant for the learner.As measuring all possible skills is not feasible, the exercises represent a mix of selectedtechnical topics. The set of virtual labs is the following:
• Introduction lab—essential command line skills (Git, apt-get, Apache server). Esti-mated completion time 25 minutes;
• HTTPS Security—basic level skills connected to command line, public key infrastruc-ture, and server administration basics; estimated completion time 45 minutes;
• SQL injection—intermediate level skills connected to attacking SQL databases (SQL,SQL injection); estimated completion time 90 minutes; and
• Botnet—advanced level skills connected to network scanning skills, text parsing(programming skills are beneficial) and SQL injection skills; estimated completiontime 45 minutes.
The choice of these different exercises is based on typical attack vectors that the appli-cants are likely to encounter in their future cybersecurity jobs and require different skilllevels (fromessential to advanced). This combination of exercises is not only used to deter-mine skill levels but also to cover a variety of different skills. Each lab has a pre-determinedskill level, from a basic to advanced.

6.2 Evaluation and Analysis of Using Labs to Assess and Predict Student
Performance

The aim of the analysis was to demonstrate that admissions’ technical assessment com-ponent (hands-on remote labs) (1) is a scalable method, (2) predicts technological skills incybersecurity as a key component of this international master course and (3) is empiricallytested as predictive validity of admission procedure.We also describe the data and method in detail, to replicate the research and the Cy-ber Security Technologies (CST) course design that may contribute to the contents of acybersecurity curriculum and spark interesting in incorporating this type of assessment inother STEM programs.
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Data was collected during the admission procedure and the mandatory CST course for60first-yearMSc students. Specifically, weused “WASEAssessment”, a complex virtual labwhere an individual has to investigate a website and try to take it back from the hackers.This mandatory assessment is given in the first lecture and used for assigning students toCST1 (introductory) or CST2 (advanced).
We conducted correlation and regression analysis applying the admissions technicallabs as a variable to predict the students’ performance at the later technical course. Themodel only uses information from the admission process and assessments at the start ofstudies, as limited demographic or historic study behavioural data was available about thestudents. We described the strength and direction of the linear relationship between thevariables.

6.2.1 Admission Technical Labs and Later Success in Study Course
Weused Pearson’s one-sided correlation testmethod. The variables analysedwere courseperformance, admission interview rank, admission rank and novel admission technicalassessment rank. We identified a positive correlation between the input and all vari-ables, while the strongest positive correlation (0.492) is between Course performanceand Admission Rank (combining interview and technical lab results). We used admissioninterviews and technical assessment results as independent variables with course perfor-mance as the dependent variable in a regression model (using stepwise regression). InModel 0, the components used are course performance as the dependent variable andadmission interview rank as covariate. Model 1 includes admission interview rank and ad-mission technical rank as covariates and course performance as the dependent variable.The interview was a statistically significant predictor (p<.01) with an explained variance ofR2=12.6% being a “moderate to large” strength of this effect prediction in social sciencecontexts [25]. Thus, an interview on in its own is already a valid predictor for studentperformance score, but when adding the virtual lab the R2 almost doubles from 12.6 to21.5 (considered a “very large” predictor in research standards [25]). Thus, interview andlabs are complementary methods that both predict in different aspects the student per-formance results and are relatively highly correlated (i.e., have common factors). E.g.,attitude, eagerness and interest are checked in interview, but are also relevant for tech-nical performance.
6.2.2 Using Complex Technical Assessment (WASE) at Course Start and Later Success
We used Kendall’s Tau B testing method and can see an R=0.502 positive correlation be-tween WASE assessment and course performance. This indicates that WASE assessmentis a valid predictor of the students’ performance and the students have been assigned tothe correct CST course (introductory vs. advanced).
6.2.3 Using SelectedAdmission Labs or Complex Comprehensive Lab for Predicting Later

Success
We used Pearson’s one-sided correlation testing method and a 0.329 positive correlationbetween the input and admission interview rank was evident. However, the correlationbetween course performance and WASE assessment rank was stronger with the correla-tion coefficient 0.548. When using stepwise regression to further explore the relation-ships, we defined “Admission technical rank” and “WASE assessment rank” as predictorsand “Course performance without WASE assessment” as a criterion. In the linear regres-sion model, the admission technical results significantly predict the student performanceand explain 8.6% of the student performance variance (p=.019). This means that the in-
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terview in its own is already a valid predictor for assigning students into the correct CSTcourse. However, when adding theWASE assessment the explained variance R2 is 3 timeshigher with 27.6%, indicating that the two variables are complementary predictors thatboth contribute different aspects to the prediction of student performance. Overall, com-paring the predictory power of both assessment tools, WASE assessment has a strongercorrelation with student performance and thus is a more accurate method to use for skillsassessment.In summary, our main contribution is evaluating the use of remote, technical hands-onlabs as a novel part of the university graduate level admissions for cybersecurity programsin predicting students’ later success in technical studies. Such an approach would be scal-able to evaluate the applicants’ technical skills but still incorporates human evaluation toenable a balanced approach for the ethical and evidence-based decision making and as-sessment. While we acknowledge that this analysis is an initial attempt with a relativelysmall sample size, it shows some promise, based on regression analysis. As further work,a longitudinal study with a larger sample size should be conducted to evaluate such tech-nical labs’ completion data with general intelligence, other cognitive skills, and domain-specific knowledge and the comparison with other prediction modelling methods wouldbe beneficial. While the remote labs used in this research are specific to the technicalskills for a cybersecurity program, incorporating this type of assessment may also sparkinterest in other STEM programs or in the corporate sector.
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7 LA and CSXs in Wider Context of Cybersecurity Competency
Frameworks

In order to secure cyberspace, we need to educate both users and IT specialists about thedangers, to ensure they have sufficient “cyber hygiene" levels (Publication IV). Cyberse-curity training focuses on different levels of skills needed, based on the target audience.While “cyber hygiene” trainings form the basis of understanding, the complexity of theCSXs gradually increases to team-based, highly skilled cyber specialist training events. Ex-ercises vary by scale of complexity, audience types (general users, cybersecurity special-ists, individual and team-based exercises) and also complexity and research efforts in LAincrease accordingly, see Figure 9.

Figure 9 – Research Contribution Mapped to LA and CSX Types

CSXs are a part of wider cybersecurity education and the high-level competency frame-works or curricula act as guidance in developing the exercises and training. One of thewell-known frameworks in corporate settings is NIST NICE [87], a workforce-based frame-work of seven job categories, 33 speciality areas and 52 work roles. But there are manyothers, including more academic guidelines, such as CSEC2017, developed by a joint taskforce of ACM and IEEE specialists [12] and CYBOK [101]. A reference with a military fo-cus [81], created by NATO that could be used for defining skill sets of IT specialists in 4themes—Theme 1: Cyberspace and the Fundamentals of Cybersecurity; Theme 2: RiskVectors; Theme 3: International Cybersecurity Organizations, Policies and Standards; andTheme 4: Cybersecurity Management in the National Context.These competency frameworks are inputs to layers 5 (Competencies) and 4 (Skills) inthe proposed exercise design model, detailed in Chapter 4. Consequently, the skills andcompetencies defined in these competency frameworks assume that there is a link to thetasks, game event logs and raw data. Applying learning analytics methods and techniquesin the CSXs provides evidence and conclusions to be drawn on skill evaluation in accor-dance with the competency models used in the industry.
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8 Privacy and Ethics
As CSXs are a significant part of curricula and professional training paths, the design andimplementation of these exercises andunderlying technology (i.e., cyber ranges)will shapethe attitudes and ethical limits of those trained. Are the learners allowed to play in the“black box" without any limits for the greater public good? Or is their every move mon-itored to avoid any wrong-doing? What is the right ethical and privacy balance whendesigning CSXs and ranges? How does it reflect on implementation of learning analyticsin the cyber ranges?

These privacy and ethics-related questions are frequently considered and are essen-tial, as the application of learning analytics aims to improve the learners’ behaviours byanalysis, developing (automated) algorithms and recommendations. The privacy and eth-ical issues in the context of LA are tightly intertwined with other aspects, such as trust,accountability and transparency [95]. Incorporating LA, i.e., using the collected informa-tion to understand and improve the quality of a learning experience throughout the CSXlife-cycle, provides great opportunities to help students learn better. However, this addsanother layer of significant considerations of ethical and privacy aspects in relation to thelearning processes in the CSXs.
Although understanding ethical dilemmas is imperative, cybersecurity is still an un-derdeveloped topic in technology ethics [71]. However, all cybersecurity problems haveethical consequences, such as economic damage due to loss of data or physical harm dueto critical infrastructure systems breach [23]. Thus many ethical issues are apparent interms, such as “ethical hacking", the dilemma of holding back “zero day" exploits, weight-ing data access and data privacy in sensitive health data or value conflicts in law enforce-ment raised by encryption algorithms [71]. Many of these dilemmas relate to a dual-useissues, when items, knowledge and technology can have both beneficial and harmful ap-plications [103].
Most of the academic work on CSXs covers approaches and recommendations on howto teach ethical behaviour to students, e.g., [11], [50], [14]. When analysing learning an-alytics in CSXs, the current academic literature often lacks discussion on the privacy andethical aspects (Publication VII).
The values of exercise designers and range developers are therefore instrumental andwill shape both ethical design and learning processes in these exercises. The ethical dilem-mas are faced throughout the CSXs life-cycle, in the identifying, planning, conducting andevaluating phases [61]. Thus further research is needed on this topic, specifically on:
• What are the principal ethical and privacy values considered and supported by thecybersecurity exercise organisers and cyber range developers?
• How might these values impact the design and implementation of cybersecurityexercises and cyber ranges?
• Howmight these values impact the assessment of learning outcomes (incl. learninganalytics) of cybersecurity exercises and cyber ranges?
Anexercise and cyber rangedevelopment andexecution should followa value-sensitivedesign process. The process should allow consideration of ethical and privacy values onthe same level as technical and functional requirements [35]. Further studies are neededto obtain deeper insights into the critical aspects of privacy and ethics.
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8.1 Ethics, Privacy Data and Data Security as part of this work
Within this work, ethical considerations such as fostering trust, transparency, learner’scontrol over data, right of access and accountability [95] have been followed. The par-ticipation was voluntary and consented, as online or digital interactions produce a datatrail of a person’s activity, and privacy and data security aspects are important. The datais pseudonymised with unique identifiers to ensure the privacy of individuals and teams.The data was stored on the university’s server, with access to the research material re-stricted to only some of the authors and selected university personnel directly associatedwith this research.
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9 Limitations and Future Directions
This thesis addresses learning analytics in the context of the cybersecurity discipline, morespecifically the practical application in CSXs. As we focus on the contemporary and evolv-ing research problem, there was little, if any, prior research on the LA topic in CSXs. Thelack of research and an empirical or theoretical base to build upon required a rather broadapproach, with an initial mapping of the research field. As part of this research, the authorconducted an extensive literature review to map the current status, see Publication VII,and discussed both benefits and challenges of implementing LA approaches in CSX, seeChapter 3.3. Findings from the literature review were used as the foundation to achievethe research objectives and propose the LA reference model for CSXs. This, howevermeans that specific questions of potential interest requiring a further deeper investiga-tion can end up beyond the scope of this thesis.This study informs future research focusing on specific types of CSXs and learning ob-jectives and aims to show how the LA approach can be applied in various learning environ-ments. However, as the research was exploratory inmany respects and looked at a varietyof exercise types (both individual and team-based learning) and learning objectives, thisraises potential methodological challenges.The empirical studies require replication and sufficient sample sizes to draw general-isations. However, the research time-line and CSXs for data collection was limited. Alsothe types of exercises (in corporate, military and academic sectors) that this research hadaccess to was a representative mix; however military and corporate could have had morecoverage. This limitation mainly relates to Publications I, II, III, VI and VIII. Thus, continu-ing the research basing the study on larger and more varied sample sizes and performinglongitudinal studies could have generated more accurate results. Also, different researchmethods can be used to investigate certain questions to make the answers more robust.The mixed methods approach, covering both qualitative and quantitative elements, ad-dresses this limitation.In summary, this research has contributed to the initial mapping of the field and wasexploratory in nature covering a variety of exercises. The research can be further improvedby replicating and performing longitudinal studies of the published findings.

46



10 Conclusion
10.1 Summary of Work
The ultimate learning goal is to obtain knowledge and achieve long-term behaviouralchange. This, however, is a complex task: a wide array of personal or environmentalfactors such as fear, mood, threat, economic conditions, among others can predisposebehaviour in a positive or negative way.The learners experience learning in different styles and paces depending on the learn-ing environment and their differing needs for learning support. The application of learninganalytics and using the un-obtrusively collected digital datasets from the learning plat-forms can allow further analysis and relevant knowledge to support the learning processand also assess the performance of the learners. However, with LA and evidence-basedmeasurement, we also need keep to in mind and validate that what we measure (i.e.,metrics used) actually helps learners to learn.The following research questions have been addressed:

1. How to deploy a learning analytics approach into the CSXs in order to improve learn-ing processes and to evidence learning outcomes?
The LA approach should be incorporated in the exercise from the start at the iden-tify and planning stage, and it should not be an after-thought. The LA referencemodel, see Figure 3, is supported by an extensive literature review, including learn-ing indicators (metrics) collected and analysed in the existing research.
In order to design a CSX that enables the LA methods implemented, a critical is-sue is how to connect raw data to competencies. A practical and scalable designmodel to enable the digital traces to be linked to learning theories (such as Bloom’sTaxonomy) has been developed as shown in Figure 4. Such a design approach issupported by the case studies and evaluation in the Rangeforce platform and in theXS exercise (Frankenstack).

2. How to evaluate effectiveness and efficiency of both individual and team learningwith less obtrusive methods in CSXs?
CSXs are believed to be an effective and efficient training method for up-skilling in-dividuals and teams, but often the evaluation is anecdotal and not supported byevidence from the learning environments (i.e., cyber ranges). Traditional evalua-tion methods (such as observation, surveys) can be supported by collecting andanalysing the digital footprint of the learners, as that especially allows less obtru-sive andmore objective analysis. One of the less researched areas is team learning;however, many exercises are team-based as teaming is integral in cyber operations.A novel and scalable methodology for an incident response learning objective wasdesigned. The method combines elements of individual skills (e.g., network hard-ening, etc.) but also team skills (e.g., situational awareness sharing and communi-cation, etc.), as shown in Figure 7. This method was tested in the LS exercise.

3. Could CSX’s LAmeasures be standardised as performance indicators and be suitableas the performance predictors for cybersecurity technical skills?
The predictive analytics is forward-looking by identifying and extracting specific pre-dictive metrics and correlations that can be a scalable and remote method for theevaluation of technical cybersecurity skills. This work specifically looks at the ad-mission process for the cybersecurity program when remote, technical, hands-on
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labs were incorporated to the admission procedures and later correlated using re-gression analysis of the success rate and student performance in the technical cy-bersecurity course. We see that such remote labs were predictive; however we alsoidentified that both interview and lab elements are complementary methods thatboth predict different aspects of the student performance results and have com-mon factors, e.g., attitude, interest and eagerness, that are checked in interviewsbut also relevant for technical performance. While the remote labs are specific fora cybersecurity program, incorporating this type of assessment may also spark in-terest in other STEM programs or in the corporate sector.
10.2 Contributions
The key contributions from this research and related publications are:

• 5-timestamps model—a relatively simple method using a time-line of the attackand defence to capture performance improvement (learning) in a CSX including in-dividual and team-related learning objectives for a cybersecurity incident handling(Publication I);
• Frankenstack—a tool for sharing instant feedback to RTs in a CSX from the networkmonitoring tools. While it may appear desirable to share a lot of data from mon-itoring tools with the learners, in the learning design one needs to consider thecognitive load and how much learners can use that data (Publication II);
• Malware lab—the exercises can be designed and individualised for assessment pur-poses (Publication III);
• Cyber hygiene—an extensive literature review and analysis was performed to seehow the community defines cyber hygiene. This understanding contributes to theanalysis of a full spectrumof CSXs (fromgeneral end-user audience tomore complexexercises). These aim to train a range of cyber hygiene skills to highly specialisedtechnical competencies (Publication IV);
• From scoring to learning—the individual data points do not produce an evaluationof learning impact that can be worked with. There is a need to connect and ab-stract these events to get meaningful and coherent events for measuring learningobjectives (also skills and competencies) (Publication VI);
• LA model—a reference model for how to incorporate LA to the CSXs life-cycle wasdeveloped. This model addresses the existing research gap where CSXs researchershave mainly looked at technical set-ups and developed technical and complex ex-ercise and learning platforms (cyber ranges) architectures. However, in terms oflearning design and measurement in CSXs, these are not sufficiently evaluated us-ing evidence-based methods and digital datasets and there is lack of guidance onhow to incorporate LA in this process (Publication VII);
• Admissions—a novel approach of using the cybersecurity exercises in the univer-sity admission process and further evidence of their predictive power were demon-strated. Based on statistical analysis, an applicants’ completion of the exercises(remote, technical hands-on labs) used in our university admissions process has acorrelation to the student’s actual performance in the first semester study course(Publication V and VIII).
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The overall contribution is a practical learning analytics approach as well as methodsfor the cybersecurity exercises and/or awareness/hygiene training that have tested andvalidated at several training platforms, i.e., LS/XS, Rangeforce, TalTech students. By im-plementing and incorporating evidence-based learning analytics methods and measure-ments into the cybersecurity exercises, the cybersecurity community can establish amoreevidence-based and systematic approach for the evaluation of learning impact enablingthe design of more effective learning experiences.
10.3 Further Work
The author acknowledges that LA in the cybersecurity educational field is evolving andshaping at a fast pace. This thesis only covered some of the aspects, and lays the ground-work for further research and a few potential study topics are described as follows:

• Metrics Mining—research focusing on the metrics mining process (datafying) andmachine learning methods of how to extract themetrics from pcap data. The aim isto develop methods for collection and acquisition, storage considerations, cleaningand integration of data, in order to find useful patterns for learning. Although CSXsleave digital footprints, the data extraction faces several challenges. Security chal-lenges, such as intrusion detection, insider threats, malware detection and phishingdetection, lack exact algorithmic solutions and the boundary between normal andanomalous behaviour isn’t clear-cut, as attackers are continuously improving theirtechniques and strategies [115]. In addition, as one large exercise can create ter-abytes of data, the large amount of data generated by automatic logs and sensorsnecessitates efficient and automated data and LA techniques. There may not beenough traces to identify learning patterns (i.e., short time of detection, gaps intime-line, etc.) and data is very diverse (e.g., different OS, applications, etc.); there-fore, identification of the relevant learning traces requires techniques that can dealwith such imbalance and diversity.
• Validation of Learning Metrics and Outcomes—research analysing the digital foot-print of student activities for selected learning objectives. The aim is to formulatea learning construct as an attribute which often cannot be measured directly (i.e.,learning) but can be assessed using a number of indicators (variables), e.g., aca-demic achievement or performance. Currently, there is no large pool of paperson the validation of LA models, methods and metrics. The metrics used in theCSXs literature focus on technical data and simple metrics (such as time). Evenfor such technical metrics, the articles are limited to the evaluation of a learningtool or method used and rely on feedback surveys. The metrics used are typicallytested on small samples without further validation (e.g., experimental set-ups withcontrol groups). However, computer-science education (including cybersecurity)involves “creativity, analysis, and problem solving—not the brute-force regurgita-tion of examples copied from the Web” [117]. This is challenging to measure withonly technical measures, and cognitive metrics to evidence meta-cognition, deci-sion speed and quality, etc. are needed. The existing research focuses on mappingdigital traces describing student activity onto interpretable constructs of interest(e.g., Knowledge Components, Q-matrix) which facilitate actionable analytics [70].The learner-facing approaches aimed at “learning how to learn” require more holis-tic (including artefacts, surveys, digital traces and physiological factors) validationstrategies [63]. Only computational validation methods can lead to valid tools and
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approaches being criticised or tools with little educational merit being labelled aswell-performing [63].
• Scoring vs. LearningMeasurement—research focusing onmeaningful learningmea-surement constructs in CSXs. Currently a point system is often used to evaluateefforts and direct motivation. The scoring provides feedback and options for com-parison of participants/teams. When used for learning purposes, the scoring needsto reflect the learning objectives and provide learning insights, not mainly focus on“game” rules aspects. With unclear scoring, a team’s effort is unclear and makesidentifying their weaknesses challenging. From a learning aspect, scoring and per-formance results cannot simply be equated. Learning does not necessarily lead toimprovement in performance, because the results of learning processes are not theonly determinants of behaviour. It is impacted by individual abilities (e.g., skills),personal motivation, tasks, team dynamics, etc. For example, in Cyber Shield exer-cise the teams that took longer time to identify an inject categorization, were moreaccurate [53]. Thus, scoring rules need to support appropriate exercise learning de-sign. For example, in a very complex high-risk cyber conflict scenario an expectation(game rule) for teams to respond in 15 minutes to a simulated end-user’s complaintabout an unavailable website may prove to be unrealistic and will not contribute tolearning but instead contradict learning objectives relating to prioritise incidents. Itrather “forces” teams to learn, share and store wrong behaviours and later retrievelearned but wrong behavioural models in real life situations.
• Representation andVisualisation—research focusing onwhat learningmetrics (dash-boards) are useful for the learners and organisers in CSXs. This exposes the challeng-ing relationship between visualisations and learning. The feedback about low leveluser actions, such as number of log ins, videos watched, or documents submitted,does not illuminate progress in learning for students or educators [57]. Few papers,such as [92] start analysing the use of visualisations in the CSXs; however visuali-sations’ and dashboards’ usefulness and effectiveness is not widely covered in theexercises.
• Team learning—as operational work in cybersecurity often takes place in teams andrequires effective knowledge sharing and collaboration between individuals, teamsand organisations, a focus on team-based cybersecurity exercises (CSXs) is critical.We have started to analyse and evidence team learning in CSXs, see Publications IXand X. As a novel aspect, we explore which characteristics of situation reports showthat a team has shared, stored and can retrieve its collective knowledge. Situationreporting is commonly used in CSXs, and teams report on their collective knowledgeof existing situation. Such reports are valuable for post-exercise reconstruction andsense-making of the exercise, as they should capture key incidents and events [47]and thus also showhow teams have learned during the exercise. In furtherwork, weplan to apply identifiedmetrics to reflection logs and formalise reporting structuresto enhance reflection on perceived individual and team performance. Such metricsform evidence-based foundation for semi-automated SITREPs scoring to ensure un-biased and comparable learning evaluation, and provide feedback to teams.
• Privacy and Ethics—potential for a research idea based on interviews with leadingfield experts for considerations of privacy concerns in LA application in CSXs, andhow this is currently managed in the cyber ranges when collecting the exercise datafor monitoring, feedback, etc. See Chapter 8 for details.
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Researching how learning experience and performance can be improved among learn-ers participating in CSXs from the digital datasets left in the learning environments high-lights the importance of an inter-disciplinary approach. Implementing LA approaches inCSXs in educating professionals in the cybersecurity domain requires multiple perspec-tives. As future work should continue with varied and longitudinal studies, which willhelp to obtain an understanding of how to utilise the full potential of the digital footprintsleft in the learning environments of CSXs.
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Abstract
Advancing Cybersecurity Education through Learning Analytics
Effective training and learning for cybersecurity professionals is considered a significantand unresolved issue, especially due to the existing skilled workforce gap. The cybersecu-rity exercises (CSXs) are believed to be an effective training for all training audiences fromtop (military) professional teams to individual students. However, evidence of learningoutcomes for those exercises are often anecdotal and not supported by evidence fromthe learning environments (i.e., cyber ranges). Adopting a learning analytics (LA) mindsetin cybersecurity trainings can help educators to achieve a more adaptive design and mea-surement using evidence-based data from the digital learning environment. The studyfocus on novel aspects of incorporating LA as an evidence-based approach within CSXsand trainings. As CSXs come in a variety of formats, this thesis focuses on technical ex-ercises with both individual and team-based designs. Collecting data from the technicalexercises (which forms the basis for LA) is a computer science problem and requires goodunderstanding of the technical aspects of the exercises. However, interdisciplinary ap-proach combining knowledge from cybersecurity, pedagogy and psychology is needed toachieve effective application of LA in cybersecurity education.This research intends to both explain (quantitative) and explore (qualitative) aspects,and thus mixed methods were applied. This approach requires hypothesising and thengeneralising or applying an hypothesis to other populations. But it equally aims to gainmore precise understanding of the dynamic interaction and perceptions of the stakehold-ers (i.e., the learners, the educators, the organisers, etc.) involved.To provide practical methodology to enhance implementing LA approach in CSXs, theLA reference model that should be incorporated to the CSX life-cycle has been developed.The model combines and outlines the key LA considerations, while model itself is sup-ported with an extensive overview of existing use cases for a practical implementation.Especially the developers would need to consider LA aspects in their design of the cyberranges, as they lay technological foundation of instrumenting the exercises enabling LAin the first place. In order to design the exercises that enable the LA methods, the crit-ical issue is how to connect raw data to competencies. A practical and scalable designmodel for enabling the digital traces to be linked to learning theories (such as Bloom’sTaxonomy) has been described. Such design approach is supported by the case studiesand evaluation in Rangeforce platform and also how this raw data can support learningexperience. For example, Frankenstack tool in Crossed Swords exercise focused on provid-ing the training audience (Red team) with instant feedback about their actions to ensureeffective learning.When measuring the achievement of learning outcomes and providing effective feed-back, traditional evaluation methods (such as observation, surveys), can be supportedby collecting and analysing the digital footprint of the learners. Especially as such ap-proach allows less obtrusive and more objective analysis. Many exercises are team-basedas this teaming is integral in cyber operations, however this is also less researched area.Top-end and large scale technical exercises are often complex, which makes it hard fororganisers and participants to handle. Therefore, both learning design and measurementneed careful consideration. The novel and scalable “5-timestamp methodology” for in-cident response learning objective combines elements of individual skills (e.g., networkhardening, etc.) but also team skills (e.g., situational awareness sharing and communica-tion, etc.). This method aims at accommodating for both—effective feedback (includingbenchmarking opportunity) and learning measurement. Themethod is capable of assess-ing team performance, and argues that changes in performance over time equal learning.
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The timestamps can either be collected using traditional methods, such as interviews,observations and surveys, but also potentially be obtained non-obtrusively from raw net-work traces (such as pcap data). The method enhances the feedback loop, allows iden-tifying learning design flaws, and provides solid evidence of learning value for CSXs. Thismethod was tried out at the Locked Shields exercise.The predictive analytics is forward-looking by identifying and extracting specific predic-tive metrics and correlations that can be a scalable and remote method for evaluation oftechnical cybersecurity skills. This work specifically looks at the admission process for thecybersecurity program when remote technical hands-on labs was incorporated to the ad-mission procedures and later correlated using regression analysis to the success rate andstudent performance at the technical course. We see that such remote labs were pre-dictive, however we identified that both interview and lab elements are complementarymethods that both predict in different aspects of the performance and have common fac-tors, e.g., attitude, interest and eagerness that are checked in interview but also relevantfor technical performance. While the remote labs analysed are specific for a cybersecu-rity program, incorporating this type of assessment may also spark interest in other STEMprograms or in the corporate sector.The overall contribution of this research is a practical LA approach and theoreticalmethods for the CSXs and/or awareness/hygiene training that have been implementedat several training platforms and audiences, i.e., LS/XS, Rangeforce, TalTech students. Byimplementing and incorporating evidence based learning analytics methods and mea-surements into the cybersecurity exercises, the cybersecurity community can establishmore evidence-based and systematic approach for evaluation of learning impact that willenable designing more effective learning experiences. This work is ongoing, and severalresearch gaps and further work is proposed to advance research in LA and CSXs. Imple-menting LA approaches in CSXs for improved proficiency for educating professionals inthe cyberspace domain requires multiple perspectives, varied and longitudinal studies toobtain the understanding how to utilise the full potential of the digital footprints left inthe learning environments of CSXs.
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Kokkuvõte
Küberkaitsealase hariduse parendamine õpianalüütika abil
Tulenavalt koolitatud tööjõu puudusest küberkaitses on efektiivne koolitus ja õppimineküberkaitse ametialal oluline kuid seni lahendamata probleem. Küberkaitseharjutusi (ehkküberõppusi) peetakse üheks efektiivseimaks meetodiks erinevate sihtgruppide koolita-misel — see sobib nii professionaalsetele meeskondadele (sh sõjaväelistele) kui indivi-duaalsetele õppijatele. Samas põhinevad teadmised õppustel saavutatud õpitulemustesttihti suulisel infol ja ei toetu digitaalsetest õppeplatvormidelt (nt küber harjutusväljakud)saadud infol. Võttes kasutusele õpianalüütikat rakendava lähenemisviisi küberkaitsehar-jutuste läbiviimisel, on võimalik luua adaptiivseid koolitusi ja mõõta nende efektiivsusttõenduspõhiste digitaalsetest õpikeskkondadest kogutud andmete baasil.Käesoleva uurimustöö eesmärgiks on analüüda ja luua lahendusi, kuidas rakendadaõpianalüütikat kui tõenduspõhist lähenemisviisi individuaalsetel jameeskonnapõhistel kü-berkaitseharjutustel ja -koolitustel. Õpianalüütika aluseks olevate andmete kogumine onarvutiteaduse probleem ning nõuab põhjalikku arusaamist harjutuste tehnilistest aspek-tidest. Samas selleks, et õpianalüütikat saaks edukalt küberkaitsealases hariduses raken-dada, on vajalik interdistsiplinaarne lähenemine, mis ühendab teadmised küberkaitsest,pedagoogikast ja psühholoogiast. Töö eesmärgi saavutamiseks tõstatati järgmised uuri-misküsimused:

1. Kuidas rakendada õpianalüütikat küberharjutustel eesmärgiga parandada õppimiseprotsessi ja õpitulemuste tõendamisel?
1.1. Kuidas ja milliseid andmeid koguda, kui rakendadakse õpianalüütikat kü-berharjutustel?
1.2. Milliseid õppedisaini mudelid võimaldavad ühendada alusandmed (“rawdata") digitaalsetest õpikeskkondadest kõrgemal tasemel defineeritud pädevuste-ga?

2. Kuidas hinnata individuaalse ja meeskonnapõhise õppimise tõhusust ja mõjusustmitte-instrusiivsete meetoditega?
3. Kas küberharjutuste õpianalüütika andmeid saab kasutada küberkaitse tehnilisteoskuste ennustamisel?
Uurimustöös on rakendatud kombineeritud uuringudisaini (“mixed methods"). Selliseuurimismeetodi kasutamine nõuab hüpoteesi tõstatamist ning seejärel üldistuste tege-mist või hüpoteesi rakendamist erinevale populatsioonile. Samuti on eesmärk omandadatäpsem arusaamine erinevate huvigruppide (so õppijad, õpetajad, korraldajad, jne.) dü-naamilisest koostoimimisest ja arusaamadest.Praktikas õpianalüütika rakendamisl tuleks lähtuda küberharjutuste õpianalüütika re-ferentsmudelist,mida peaks rakendamaküberkaitseharjutuse elutsükli jooksul. Referents-mudelis on esitatud peamised kaalutlused õpianalüütika rakendamisel ningmudel on toe-tatud ulatusliku ülevaatega näidetest olemasolevas teaduskirjanduses. Eriti küberharju-tusväljaku arendajad peaksid arvesse võtma õpianalüütika aspektid, kuna tehniline disainloob põhialused õpianalüütika instrumenteerimisel küberharjutustes.Selleks, et disainida harjutusi, mis võimaldavad õpianalüütikat koguda ja analüüsida,on oluline ühendada alusandmed (“raw data") kompetentsidega. Uurimistöö tulemuselon kirjeldatud praktiline ja laiendatav mudel, mis võimaldab ühildada digitaalsed andmedõpiteooriatega (nt Bloomi taksonoomia). Seda disainimeetodi kasutati ja hinnati Range-force platvormil. Samuti analüüsiti, kuidas kasutada alusandmeid õppimise toetamisel.
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Näiteks, Frankenstack lahendus oli kasutusel Cross Swords küberharjutusel, andes puna-sele meeskonnale (“red team") kohest tagasisidet nende tegevuse kohta toetades efek-tiivset õppimist.Õpitulemuste mõõtmisel ja efektiivse tagasiside andmisel on võimalik toetada nö tra-ditsioonilisi hindamismeetodeid (nt vaatlused, küsitlused) digitaalse õpijälje kogumuse jaanalüüsimisega. Selline andmete kogumise viis võimaldab mitte-instrusiivset aga samasobjektiivsemat analüüsi.Paljud küberõppused on meeskondlikud, kuna meeskonnatöö on küberoperatsiooni-des igapäevane. Samas on meeskondlik õppimine ("team learning") vähem uuritud. Suu-remahulised tehnilised õppused on tihti keerulised, mistõttu nii korraldajatele kui osaleja-tele on need harjutused rasked hallata. Seetõttu vajab õpidisain ja tulemuste hindaminehoolikat tähelepanu. Uudne ja skaleeritav õpitulemuste mõõtmise metoodika küberintsi-dendile reageerimisel on “5-ajatempli metoodika”—võimaldades hinnata nii individuaal-sete oskuste (nt võrgukaitse seadistamine) kui meeskondlike oskuste (nt olukorrateadlik-kus, infovahetus ja kommunikatsioon) elemente. Metoodika hõlmab nii efektiivset tagasi-sidet (sh võrdlusvõimalus) kui õpitulemuste mõõtmist. See võimaldab hinnata meeskon-dade tegevustulemust ja tulemuste muutusena ajas näitab ka õpitulemusi. Ajatempleidsaab koguda nii traditsiooniliste meetoditega (nt intervjuud, vaatlused ja küsimustikud),aga ka potentsiaalselt mitte-intrusiivselt võrgulogidest (nt pcap’id). Metoodika aitab pa-rendada tagasisidet, tuvastada õppuse disaininõrkusi ja näidata kübekaitseõppuste õpi-väärtust. Seda mudelit katsetati praktikas Locked Shield’ küberõppusel.Ennustatav analüütika (“predictive analytics") on tulevikku vaatav identifitseerides jaanalüüsib ennustavaid mõõdikuid jning seoseid. Sellist analüütikat on võimalik kasutadakui skaleeruvat ja kaugkontakti võimaldavat meetodit tehniliste küberkaitse oskuste hin-damisel. Käesoleva töö raames ennustatava analüütika rakendamist uuritud ülikooli vas-tuvõtuprotseduuridele küberkaitse magistriprogrammi raames. Vastuvõtu protseduuridhõlmavad ka tehnilisi laboreid, mille tulemusi on regressioonimudelit kasutades analüü-situd hilisema edukusega tehnilisel kursusel. Tulemused näitavad, et valitud laborid olidennustavad, kuid ka seda et nii intervjuu kui labori elemendid on üksteist täiendavad—need ennustavad erinevaid edukuse aspekte ja neil on ühiseid faktoreid (nt suhtumist,huvi ja motivatsiooni hinnatakse intervjuu käigus, samas on need relevantsed faktorid katehniliste tulemuste saavutamisel). Uurimistöös kasutatud laborid on spetsiifilised küber-kaitse programmile, aga sarnaste laborite kasutamine on rakendatav ka teistes loodus- jatäppisteaduste ainetes (STEM) ja erasektoris.Käesolev doktoritöö annab üldise panuse praktilise õpianalüütika referentsmudeli jateoeeritilistemeetodite loomise kujul.Mudelid jameetodid on spetsiifiliselt rakendatavadküberkaitseõppustel, aga ka küberteadlikkuse ja -hügieeni alastel koolitustel. Uurimistööraames välja töötud metoodikaid on rakendatud mitmetel õppeplatvormidel ja sihtrüh-madel, sh LS/XS, Rangeforce, TalTech üliõpilased. Õpianalüütika meetodite inkorporee-rimine ja rakendamine küberharjutustes võimaldab tõenduspõhist ja süstemaatilist õpi-tulemuste hindamist, mis omakorda võimaldab efektiivsemat õpikogemuse disaini. Uuri-mistöö on jätkuv ning on rõhutab mitmed edasise uurimistöö suundasid õpianalüütikaja küberharjutuste valdkonnas. Õpianalüütika edukas rakendamine küberkaitseharjutus-tel eeldab interdistsiplinaarset lähemisviisi, samuti mitmeid ja pikaajalisemaid uuringuid,kuidas õppeplatvormidel olemasolevat õppimise “digijälge"õppimise protsessis pareminikasutada.
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Abstract. Cyber security exercises are believed to be the most effective
training for the training audiences from top professional teams to individ-
ual students. However, evidence of learning outcomes is often anecdotal
and not validated. This paper focuses on measuring learning outcomes
of technical cyber defense exercises (CDXs) with Red and Blue teaming
elements. We studied learning at Locked Shields, which is the largest
unclassified defensive live-fire CDX in the world. This paper proposes a
novel and simple methodology, called the “5-timestamp methodology”,
aiming at accommodating both effective feedback (including benchmark-
ing) and learning measurement. The methodology focuses on collection of
timestamps at specific points during a cyber incident and time interval
analysis to assess team performance, and argues that changes in per-
formance over time can be used to evidence learning. The timestamps
can either be collected non-intrusively from raw network traces (such as
pcaps, logs) or using traditional methods, such as interviews, observa-
tions and surveys. Our experience showed that traditional methods, such
as self-reporting, fail at high-speed and complex exercises. The suggested
method enhances feedback loop, allows identifying learning design flaws,
and provides evidence of learning value for CDXs.

Keywords: Cyber defence exercise · Training and education · Learning
outcomes · Measuring learning

1 Introduction

Cyber security exercises are quickly gaining popularity as a teaching method
for cyber-readiness. Globally there are over 200 cyber security exercises and
more than 50% have a performance objective focusing on learning [17]. The
European Union Agency for Network and Information Security survey describes
the state of art: “... after-action reports and ‘lessons learned’ documents have
become increasingly at risk of becoming fantasy documents. There is an increased
demand that lessons must have been successfully learned, and that noting such
instances of lesson-drawing is all there is to it. Few, if any, controls are actually
made to verify that they can even be called lessons by any sensible definition, or
that anything has actually been learned” [17]. The evidence of learning outcomes
c© Springer International Publishing AG 2017
H. Lipmaa et al. (Eds.): NordSec 2017, LNCS 10674, pp. 123–138, 2017.
https://doi.org/10.1007/978-3-319-70290-2_8
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is limited and evaluation methodologies focus on the improvement of one exercise
to the next [2]. On one side the literature describes enthusiasm of participants
for the knowledge gained and lessons learned [11]. At other end of spectrum,
Pusey et al. [19] claim that evidence is often anecdotal and little work has been
done to validate learning outcomes.

This paper focuses on cyber defense exercises (CDXs) with the Red (RT)
and Blue Team (BT) elements and looks at measuring learning effectiveness
from an organizer’s perspective. We use the NATO Cooperative Cyber Defense
Centre of Excellence’s (CCD COE) Locked Shields (LS) as testing platform. LS,
that took place 26–28 April 2017 (LS17), is one of the largest and advanced
team based live-fire RT/BT technical exercise with nearly 900 participants [14].
The exercise is a hybrid of competition, assessment and complex scenario-based
learning event. The training audience comprises of the national BTs that in
the exercise context take the role of the computer emergency response teams
tasked to defend the pre-built virtualized networks of fictional organizations
against the RT attacks. The other teams involved in the exercise are: Green Team
(GT) responsible for game network and infrastructure development, White Team
(WT) for game scenario development and execution control, and Yellow Team
(YT) for monitoring and situational awareness [15]. One additional advantage
of such CDXs is that permission to study individual and team performances and
learning can be easily obtained by the organizers before the exercise starts.

2 Learning Measurement Dimensions in CDX’s

CDXs in the current form are often not sufficiently instrumented for learning
measurement and existing measurements focusing on scoring are not using learn-
ing related metrics. We recommend an overall CDX’s learning measurement app-
roach that brings together pre-exercise, execution and post-exercise phases and
individual/team/organizational aspects. The measurement should include mix-
ture of quantitative and qualitative methods. As a novel method we discuss the
idea of the 5-timestamp methodology that focuses on unobtrusive data collection
and comparable data analysis linked to learning objectives. This methodology
is only a part of overall learning measurement (including traditional methods,
such as surveys, interviews, etc.).

2.1 5-Timestamp Methodology

Learning in CDXs is affected by many variables, however the basic measure-
ments, such as timing and accuracy metrics are still key elements that provide
comparable trends in learning process and benchmarking for the teams. For
example, Henshel et al. measurements in Cyber Shield 2015 showed that when
teams took 20 or more minutes to identify an inject’s NIST categorization, they
were more accurate [9]. That means an overly time-constraint game-rule may
prove to be an unrealistic expectation, which will not contribute to learning.
Instead it forces teams to learn, share and store wrong behaviors and later
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Fig. 1. 5-timestamp non-intrusive methodology

retrieve learned, but wrong behavioral models in real life situations [26]. Such
metrics support development of appropriate exercise learning design.

Furthermore, measuring learning effectiveness and collecting data in order to
provide feedback can be combined. The learning potential is not fully realized,
if the BTs do not know what their weaknesses are, and how they progressed in
the exercise. Scoring might give some indication of how teams compare, how-
ever, without knowing a baseline or standard in more detail, the overall score
is worthless from learning viewpoint. For example, scoring may not take into
account how much resistance the BTs put up and how efficient they were in
responding.

As a part of solution we propose a non-intrusive methodology to collect and
analyze timestamps from both the RT and BT actions from their digital foot-
print. The analysis of time intervals between the proposed timestamps enables
to measure technical skills, but also soft skills (including leadership, team com-
munications, decision making). The methodology is analysing data at a cyber
incident/attack vector/target machine level, but provides metrics for different
learning objectives (Fig. 1). For example, the assessment whether the BTs are
effective and achieve incident handling related learning objectives, needs basic
timing and accuracy metrics—how long does it take to respond to an attack, how
long did teams take to respond to a significant threat vs. minor issues, what is
correlation between the teams’ detection time and quality of reporting. Further
analysis can be carried out whether the most effective strategy from qualitative
aspects was applied by the BTs, but having timing and accuracy metrics will
provide input and focus to such qualitative analysis and feedback.

The analysis breaks an incident into phases to demonstrate strengths and
bottlenecks in individual and team skills in each phase, and provides the basis
for effective feedback. The model follows the incident timeline, and information
can be collected non-intrusively (Fig. 2) from game-net/management network1.
Even when t1 and t2 are intrusive for the RTs, data collection is non-intrusive

1 The exercise runs on separate virtualised machines which are accessed remotely over
the VPN [15]. The BTs can reside in their home location and connect via a dedicated
management network to the game-environment. The game-net resides typically on
a different interface and is where the attacks are happening.
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Timestamp Description Non-intrusive Data Intrusive (optional)

t1 RT starts attacking RT activity reporting N/A

t2 RT compromises RT activity reporting
and scoring data

N/A

t3 BT detects Possibly by access pat-
tern

BT observation or self-
reporting via inject

t4 BT mitigates management network
(showing traffic activity)

BT observation or self-
reporting via inject

t5 BT restores scoring, management
network (end of session)

N/A

Fig. 2. Data sources for 5-timestamps, non-intrusive for the BTs (as the training audi-
ence). Intrusive methods can be used for cross-checking and validation.

for the BTs. For cross-checking, a sample using intrusive methods should be
selected.

In order to fully understand this methodology, it should be noted that there
are typically several target machines in a game-network that can be attacked
repeatedly using the same attack methods. However, one of the advantages of
a live-fire RT/BT exercise is defending against a “thinking” adversary, which
implies that the same target can be attacked using different methods.

Collecting Timestamps Non-intrusively From PCAPs. The idea relies on the fact
that the organizers are able to collect all raw network traffic (e.g., pcaps) not
only from within the game-net, but also from the management network. From
those traces it is possible to automatically detect the times of a BT activity
for each target machine (e.g., when a BT member is working on a machine or
not). This can be done by observing a ssh or remote desktop connection from
the BT-network through management network. Even if the traffic is encrypted,
and the BT member remains logged-in in the background, simply observing
the traffic volume and packet inter-arrival times allows automatically detecting
times at which someone is working on a specific game-net target. With traditional
methods, this can also be achieved by asking the team member to keep a detailed
log about timestamps.

The time intervals between timestamps provide basic learning metrics as
shown in Fig. 3. In addition to measuring technical skills, these metrics also give
insight to:

Team vs. individual—how long an individual and/or sub-team takes to
resolve an issue, e.g., several members connecting to the same machine to work
together.

Soft skills (leadership and decision making)—as the teams must make quick
decisions (likely to have immediate and significant consequences), teams also
learn decision-making. The OODA (Observation, Orientation, Decision, and
Action) loop is a decision-making theory where time is the dominant parame-
ter [23], and thus supports this framework using time intervals. The teams need
to perform reliably and adapt their responses to mitigate adverse scenarios, and
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Timestamps Description Learning Objectives Team vs.
Interval Individual

t5–t2 incident response time Overall performance (orga-
nizer’s objectives=scoring)

team

t5–t4 time to mitigate Responding to attacks individual,
(technical skills) sub-team

t4–t3 time between mitigation
and detection

Time management and pri-
oritization; Teamwork: dele-
gation, dividing and assign-
ing roles, leadership; Han-
dling cyber incident

team

t3–t2 time between compromise Monitoring networks, individual,
and detection detecting of attacks sub-team

t2–t1 time to compromise Learning the network; individual,
System administration and
prevention of attacks

sub-team

Fig. 3. Learning metrics from 5-timestamps intervals

that can be measured by t4–t3, i.e., time needed for intra-team communication,
prioritization, task allocation.

Benefits and Application in Learning Process. The 5-timestamp methodology
provides several advantages. Firstly, during a post-exercise debrief, it helps to
create a general mental map of the events. For example, letting participants
search for events in the BTs of pcaps or logfiles to figure out what happened is
not useful for learning. In a similar analogy, where security cameras have become
more effective when combined with a motion sensor—logfiles become more easily
“searchable” when combined with accurate timestamp annotations. Debriefing
an attack from the high-level objectives together with accurate timestamps, facil-
itates finding the relevant information. As the participants have already been in
the situation during exercise, they understand the RT objectives, and are able
to “relive” the events. Useful feedback can only be given, if the exercise can be
debriefed in a meaningful way, and accurate timestamps are a first critical step
towards achieving this.

Secondly, the timestamps can be used in building a baseline for perfor-
mance or effectiveness. When grouped by the attack methods (not the target
systems), those values become comparable. These can be further analyzed in
several ways: (1) as an average overall performance against defending against a
certain type of attack, (2) viewed over time for the same target machine (e.g.,
looking at repeated attacks using the same attack method) whether anything
has been learned during the exercise—or potentially, even between exercises (if
similar team composition returns to an event in which the same attack vector
is repeated), and (3) for understanding whether the BTs are able to transfer
learned knowledge (e.g., is a BT able to detect and defend the same type of
attack against a different target system provided they have learned it earlier).
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Thirdly, analyzing the timestamps provides insight into the BTs’ strategies.
Do the BTs only focus on certain class or difficulty-level of attacks, and maybe
miss some more important/unknown challenges? Do they invest time during the
exercise to understand the systems? The metrics enable a way of getting some
basic baseline and benchmarking for the organizers and participants.

It is important to note that the timestamps themselves only measure effec-
tiveness. However, there is an implicit assumption that measuring changes in
effectiveness over time (e.g., repeated comparable events, such as repeated
attacks), shows changes in performance. This is an indicator for learning, a
dynamic process, together with other qualitative data. The complete exercise
data analysis and projections are left for future work, and the scope of this
paper discussing the suitability of proposed methodology with the community.

Challenges and Limitations. It is also important to acknowledge the challenges
and limitations. The learning measurement process needs to be pre-planned,
agreed with the stakeholders, and form an integral part of a CDX organization
and evaluation process. Selection of what to measure is a challenging task and
depends on training objectives. What learning metrics are “must have”, “nice
to have” and “wasteful” metrics from learning perspective? Having comparative
metrics from several CDXs, would enable developing comparable standardized
set of learning metrics.

Data monitoring and collection may fail to capture timing metrics and team
actions with perfect reliability. Also a challenge is to develop clearly defined mea-
sures that integrate both qualitative and quantitative inputs. Metrics for future
evaluation should include appropriateness and quality of responses and actions.
Some training goals (such as incident handling procedures) may prove difficult to
measure due to teams following different operating procedures, standards, and
practices. Separating learning impact from other behavior effects (i.e., learning
might not be visible straight away or recognized by participants by themselves,
or overestimated and not result in behavior change) will remain a challenging
area to assess.

2.2 Data Collection and Sources

The data collected as part of CDXs may vary based on training objectives and
software environment, but it should not be an additional burden to the orga-
nizers. As shown by the 5-timestamp methodology, often such data is already
collected. The learning related data is obtained from several sources:

1. RT reporting—failed attacks, resistance time to the attacks, number of
repeated attacks;

2. YT reporting—reporting about situational awareness;
3. Scores—scoring for availability, usability and injects (trends over time);
4. Traffic from game-net and management-net;
5. Surveys—pre-exercise and post-exercise survey with pre- and post knowledge

assessment if possible;
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6. Injects—can be used to qualitatively verify a data sample from overall
dataset (see below) and collecting learning feedback during the exercise;

7. Information from the RT—ratings for resistance level, classification of attack
type (this might also be semi-automated by using Cobalt Strike [13] or
similar);

8. Observations of the BTs;
9. Communication channels—chat logs, GT management network traffic (vol-

umes and trends);
10. Interviews with participants (and management)—assessing the immediate

reaction to exercise and long term impact on the job.

Sample Selection for Qualitative Validation. Due the large volume of virtual
machines, attacks, and activities, it is not be possible to confirm all incidents
during an exercise qualitatively as it may distract the BTs from learning. How-
ever, for a sample of attacks qualitative feedback can obtained from the BTs
in order to cross-check the metrics. Such sample should be designed into the
exercise as inquiries to the BTs via injects and/or observations.

The sample selection depends on the exercise training objectives, however
should cover differing aspects, such as complexity, method of attacking, ease of
detecting and mitigating the attack. There is no widely accepted taxonomy that
can be applied from learning perspective in CDXs context. In order to measure
learning impact, a comparison between easy tasks (potentially nothing learned
and knowledge is already existing) and complex tasks (more challenging, more
potential to learn) is valuable. As the teams have differing skillset any such crite-
ria classification is somewhat forced and arbitrary, however it provides a compar-
ison and feedback on the appropriate difficulty levels and learning opportunities
created by the organizer. We propose the following classification matrix in Fig. 4,
when a selection of specific events for learning impact measurement is based on:
(1) detection and analysis—some attacks and incidents have visible signs that
can be easily detected, whereas others are almost impossible to detect. (2) mit-
igation and recovery—responding to an incident involves different skillset and
actions to be taken containing the damage, eradicating the incident components,
and restoring systems to normal operation, and remediating vulnerabilities to
prevent similar future attacks.

Easy to Detect and Easy to Mitigate Easy to Detect and Difficult to Mitigate

Difficult to Detect and Easy to Mitigate Difficult to Detect and Difficult to Mitigate

Fig. 4. Sample selection matrix

In addition to those two criteria and as an incident is part of whole exer-
cise (scenario, mission), the prioritization of attacks (strategy) needs to be
considered.
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3 LS17—Learning Measurement

LS provides full experience of managing a major cyber incident to the BTs. The
exercise consists of different attacks and tasks based on a scenario over two days
and the data set is over 2500 attacks [14]. The measurement plan needs to ensure
that the intrusive data collection is not distracting the participants’ focus from
learning efforts.

LS17 learning measurement included a mixture of quantitative and quali-
tative methods with focus on gaining some experience using the 5-timestamp
methodology, combined analysis of participants’ feedback and metrics collected,
and identification of plausible learning correlations for further work.

3.1 5-Timestamp Methodology Experience

We illustrate how the 5-timestamp methodology works using the example of
LS17. We picked one high-profile RT objective—a Siemens system part of Indus-
trial Control System (ICS) segment for all timestamps to be recorded. The
timestamps were obtained from the BTs self-reporting (through Injects), RT
attack reports, and scoring data for all teams. Furthermore, those RT members
conducting the attack on those systems were asked to keep a detailed log of all
events, as accurately as possible. Regarding the pcaps from management inter-
faces, there was a technical issue and very unfortunately, the GT was unable
to record the traffic from management interfaces; leaving analysis of the inter-
arrival times for future work in next exercises.

The purpose of this objective was to gain control of the airport fueling station
and cause a fuel leak. The BTs had time to mitigate before “all fuel was spilled”.
Before the exercise the RT had prepared some attack vectors, but which vector
would work or not depends on the BT defenses. Starting the fuel spill is a very
“noisy” attack, which means even if the initial compromise remained undetected,
the BT had some time respond.

Four teams were successfully attacked by the RT (i.e., all fuel was spilled).
For two more the RT managed to compromise the systems and start spilling,
however, those two BTs managed to mitigate the attack before all fuel was
spilled. The remaining 13 teams defended their systems well (e.g. no spilling
started).

While all teams were analyzed, for anonymity and clarity reasons only one
timeline is presented here. Figure 5 shows detailed timeline of events recorded
according to the 5-timestamp methodology for BT Z (Z anonymized).

Before the RT is allowed to attack in the exercise, the respective objective
must be opened. For this specific team and objective, this was done at 06:59
UTC, which corresponds roughly to the time first phase of attacks was allowed
to start. The objectives are not opened individually in the RT reporting system,
but rather for all teams at the same time—and because a RT member might have
to “entertain” several teams at a time, the opening of an objective and actual
start of an attack might differ. In this example case, BT Z was only attacked
at 07:35 UTC (about 1/2 h later), i.e., the timestamp reported from the detailed



Improving and Measuring Learning Effectiveness at Cyber Defense Exercises 131

Incident Timeline Time Description Data source

t1 RT starts an attack 06:59 Campaign officially opened RT reporting system

t1.1 RT starts 1st attack 07:35 Attack started RT members

t2 RT compromises 07:40 Spilling started Scoring

t2 RT compromises 07:43 Spilling started RT members

t2.1 BT mitigates 07:44 Spilling stopped Scoring

t2.1 BT mitigates 07:45 Spilling stopped RT members

t1.1 RT starts 2nd attack 07:58 Attack repeated RT members

t3 BT detects 09:00 Suspicious activity noted BT Inject

t2.1.3 RT reporting 09:18 Partial RT objectives scored RT reporting system

t4 BT starts mitigating 09:20 Timestamp or interval reported BT Inject

t2 RT compromises 09:23 Spilling started Scoring

t2.1 BT mitigates 09:30 Spilling stopped Scoring

t5 BT fights back 09:30 Timestamp or interval reported BT Inject

t5 BT resolves 09:40 Suspicious user removed BT Inject

Fig. 5. Example of 5-timestamps reconstructed timeline for an incident

RT member logs. LS has a comprehensive and automated scoring system, which
recorded at 07:40 UTC that the attack has been successful and spilling started.
However, the RT members reported that spilling started at 07:43 UTC. This
small time difference is an artifact of the self-reporting, and understandable, as
all teams are very busy during the exercise. It also highlights that self-reporting
timestamps should be avoided, if possible. This is not only for accuracy reasons,
but also to reduce the work-load for various teams during the exercise. Simi-
larly, the scoring system reported that the BT mitigated the attack at 07:44
UTC, while the RT member recorded a timestamp of 07:45 UTC. Such minor
discrepancies were observed throughout. As this attack has only partially been
successful, the RT does not give up and manages to gain foothold in the systems
again at 07:58 UTC (reported by RT member log), but this time the RT does
not manage to cause any fuel spilling. This is not recorded in the scoring (and
should not be scored as the BT successfully defended), but it is an important
factor that hints at resistance and team performance. Having such timestamps
facilitate a reflective team debrief after the event.

However, when analyzing the BT self-reporting then the BT only reports
detecting any suspicious activities for the very first time at 09:00 UTC. Clearly,
some BT members must have mitigated the attack already before 07:44 UTC, so
this points to an intra-team communication/reporting problem. Therefore ask-
ing the BTs to self-report accurate timestamps, while defending systems during
a “crisis situation”, is not going to work (neither observations). The team’s inter-
nal reporting systems do not capture such information, or at least not accurately
enough. It is therefore of vital importance to obtain such timestamps from the
management network (e.g., by observing in the pcaps when a BT member logs
into the target system, or in case they are already logged in when the activ-
ity of system changes by a changed inter-arrival frequency of packets on the
management network).
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Overall during the exercise, spilling attempts start 7 more times using at
least two different attack vectors. The first time spilling was for 3′39′′ (3 min
and 39 s), the second spilling continued for 6′44′′. The next day spilling durations
were significantly reduced, in the end only taking 0′07′′ (7 s) to mitigate—despite
the fact that different attack vectors were used.

The main challenges encountered in the process and assumptions for data
quality are:

1. RT scoring timestamps from the system need to be sufficiently accurate—
when attacking multiple teams the objectives are started for all teams simul-
taneously and final scoring is often delayed, so scoring data is not accurate;

2. BTs self-reporting is not reliable and more accurate data collection method
is required—this supports the argument that non-intrusive methods for col-
lecting and analysing data from logs (network traffic, log, etc.) is helpful;

3. Traditional observations methods are not possible as in a technical exercise
there is nothing to see.

Of course, this is a first attempt to understand the feasibility of proposed
methodology. Before drawing any conclusions on learning more data and mea-
surements needs to be obtained in future work, however, such initial tests appear
to be promising.

3.2 Discussion and Findings from LS17 Learning Measurement

In addition to the 5-timestamps methodology experience, we also discuss
selected findings relevant from other learning measurements, as the 5-timestamps
methodology is one integral part of the overall measurement framework. Only
aggregated statistics are presented due to the confidential nature and privacy of
participants. We used pre-survey, injects, post-survey and interviews to collect
the feedback from individuals and teams. Our overall response rate was 21% for
individual pre-survey, and team based injects had 89% response rate. Due to the
timing constraints, post-survey results have not been included.

Learning in Pre-exercise Phase. We collected information about the partici-
pants, their experiences and learning process in the pre-execution phase, team
environment, learning expectations about the execution and evidence of long-
term learning from previous exercise participation. Our findings confirm that
pre-exercise phase is vital part of the overall exercise with 53% of respondents
spending 10–50 h preparing. Majority of participants (73%) however report that
they prepared individually (over half of the preparation time); whereas sub-
teams preparations were taking place either half of the time (35%) or seldom
(31%). Despite that the exercise is team-based, whole team preparations were
mostly seldom 37% and 22% of participants claim they never attended whole
team preparation sessions.

No clear distinction between learning knowledge/skill on technical vs. soft
skills learned in pre-exercise phase is visible—on average in each learning
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area 40% minor and 13% significant improvement was reported. This links to the
fact that training audience consist mainly of the professionals, who assess their
knowledge and skills in majority at medium (43%) to high level (37%), related
to the similar working experience level (both medium and high 39%). When
comparing what the participants have learned in preparation phase and what
they expect to learn during the exercise, there is no clear distinction that some
training objectives (e.g., teamwork) are more relevant for execution than pre-
execution phase or that technical skills are mainly obtained in the pre-exercise
phase.

Feedback on the Exercise Design. Feedback was focused on the Industrial Control
System (ICS) segment design that has been designed and seen as one of the most
complex and technically challenging areas in the exercise. By comparison we can
draw conclusions also on other parts of the exercise. The attempt was also made
to assess, how teams perceive individual team members/sub teams and whole
team learning outcome.

Based on pre-survey 52% of respondents felt they do not have ICS capabilities
in their teams, despite of nearly all teams reporting dedicated ICS team mem-
ber(s). Average self-believed resistance level in the ICS segment was surprisingly
low compared to the RT members’ assessment—44% believed that their resis-
tance was at medium level, 33% at high level 22% strong. This links positively
to an assumption that learning can happen when team acknowledges they lack
some knowledge or skills and “sensing more than see” (OODA loop). It is also
interesting to see how the teams perceive level of difficulty to defend against
those attacks—41% find it easy to detect and easy to mitigate, 39% easy to
detect, but difficult to mitigate, 12% difficult to detect, easy to mitigate and
8% find it difficult to detect and difficult to mitigate. In comparison to other
attacks in the exercise 44% of teams assessed level of difficulty at same level. Pri-
ority for ICS attacks was consistently (78% of teams) at high or critical priority
level, as expected in the scenario. 52% of the BT reported that they managed to
track the root cause of malicious activity and 42% not (showing missed learning
opportunity without proper feedback).

An attempt to evaluate how individual and team learning outcomes are per-
ceived, shows that team learning has quite even distribution (25%) from slight to
significant improvement, then individual learning was in majority (59%) assessed
as significant. This is somewhat expected, due to the technical specialization but
therefore needs further focus of learning transferability within a team.

Furthermore, a question collecting narratives about the teams’ learning expe-
rience to uncover and understand the big picture was asked. Top 5 expressions
that emerged were “successes in learning” (“learning curve”), “challenges in
learning”, “complexity/variety of system”, “preparations” and “team learning”.
All these themes confirmed the focus of measurement objectives.

Long-Term Learning Impact. We looked at LS16 for long-term impact indicators,
based on responses of returning participants, and enquiries with previous LS
participants. When asked individually about skills learned and maintained 69%
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responded that they recall a skill from participating earlier LS—average for
technical training objective is 67% and soft skill related training objective 69%.
Sadly survey results were limited in the participants’ comments what exactly
they learned.

58% agreed that their team has become more coherent, confident and col-
laborative. Similarly, 64% agreed that their team’s knowledge has increased (as
a result of individuals sharing). However, as majority (59%) of the teams have
changed significantly (less than 50% old team members)—long-term impact need
to be interpreted carefully.

Feedback from few participants who participated over five years back tends
to indicate long term impact of CDXs on mindset (e.g., “to have an emergency
procedure in place, as when you’re in the middle of the event there is no time to
think, just to act.”, “... key is thinking and mindset and learning why something
was done, not what.”).

Despite of limited evidence, the survey and interview results support the
learning value of the LS. Further work needs to be conducted to evaluate long-
term impact for specific training objectives.

4 Related Work in Learning Measurement Context

Unfortunately, there are no widely accepted methodological evaluation methods
published and scientifically proven measuring learning impact or assessing cyber
security skills/competencies obtained through CDXs. Some general guidance,
such as [10,18], describe how organizers should look at design and performance
(training success) measurements. The related work includes articles published on
learning (and other) measurements at cyber exercises, and also interdisciplinary
papers, game based learning and team learning, as relevant.

Cyber Exercises. Dr. Ahmad [1] investigated how a cyber crisis exercise benefits
participants’ individual learning and how their experience in the exercises is
transferred to their organization using the four-level Kirkpatrick training post-
assessment model (reaction about the exercise, learning skills experienced during
the exercise, behavior developed during the exercise, and result, i.e., how the
benefits are transferred to their organization). This approach lacks team aspects
of learning. U.S. Army Research Institute for the Behavioral and Social Sciences
Research [22] measured game-based simulations by different questionnaires and
complemented those interviews with probing questions.

Game Based Learning and Serious Games. Connolly et al. [3] proposes a model
for the evaluation of games for learning that includes motivational variables such
as interest and effort, as well as learners’ preferences, perceptions and attitudes
to games in addition to looking at learner performance. Outcomes relate to learn-
ing and skill acquisition but also affective and motivational aspects. Methods to
evaluate learning outcomes include meta-analyses, randomized controlled tri-
als, quasi-experimental designs, single case experimental designs—pre- and post
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test, and non experimental designs—surveys, correlation, qualitative [7]. The
effect on learning (acquisition of skills or knowledge) was measured by calculat-
ing the difference between pre-test and post-test scores on the questionnaires or
cognitive tests, and comparison to control group [5]. Game-based learning and
serious games provide excellent environments for mixed-method data gathering
(i.e., triangulation), including crowd sourcing, panel discussions, surveys and
observations, in-game logging and tracking on hundreds of events and results,
including distances, paths, play time and avoidable mistakes, etc. [12]. Not yet
explored issues are seamless, or “stealth” data-gathering and assessment as well
as performance based evaluation [7]. Stealth assessment (i.e., non-invasive, non-
intrusive assessment) could potentially increase the learning efficacy given that
much of the learning remains relatively “implicit” and “subjective” [12]. These
issues are very relevant in the CDXs context, and the cornerstones for the pro-
posed 5-timestamp methodology in this paper.

Team Learning. Measuring team learning is a complex task with many factors,
such as learning impact has not been identified (i.e., simply there is no similar
event in reality), change can be environmental (i.e., not due to learning) and
learning could be dysfunctional (i.e., false connections made between actions
and outcome) [26]. Most common methods used are combination of interviews,
surveys, questionnaires, observations, and learning maps. Edmondson [4] used
observation and interviews (based on “informant sampling approach”) to study
role of teams in learning and based on her study half of the teams engaged in
reflective discussion about process that led to subsequent changes, and would
constitute a team learning. Newman et al. [16] measured critical thinking during
group learning using a questionnaire and the content analysis method, whereas
Hay [8] used concept mapping on the topic before and after. Learning maps or
curves at team and organization level were used by Uzumeri et al. and Chiva
et al. [24,25]. Two valuable points to note are: (1) the learning is not necessarily
consciously accessible, thus asking the team members (survey or interview) what
they have learned may not uncover any changes, however there might be learned
patterns that members were not consciously aware of [4,26]; (2) measuring long-
term learning effect requires detailed and multiple real-time observations of the
same group over time [26].

Other Measurements Conducted at CDXs. Some team performance and effec-
tiveness metrics also relate to learning measurement. Study about Baltic Cyber
Shields 2010 team effectiveness [6] used different interdisciplinary methods
and concluded that a combination of technical performance measurements and
behavioral assessment techniques are needed to assess team effectiveness, and
cyber situation awareness is required for the defending teams, but equally for
the observers and the game control. In Cyber Shield 2015, Henshel et al. [9]
attempted predicting proficiency in the teams and to identify the best train-
ing and assessment methods by pre- and post-event survey and data collection
during the event, and developed proficiency metrics, such as Time-to-Detect,
Time-to-apProval, Time-to-End and Category Correct. Reed et al. [20] evaluated
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cyber defender situation awareness, and showed that the most pervasive form
of competition-based exercise is comprised of jeopardy-style challenges, which
compliment a fictional cyber-security event. Silva et al. [21] study considered
factors of successful performance in Tracer FIRE exercise with emphasis on the
use of software tools and bring out a relevant consideration that speed is often
not the main consideration—participants who devoted more time to challenges
tended to make more correct submissions (similar finding to [9]).

Findings for CDXs. From CDXs viewpoint, all these methods are applica-
ble. However, similar challenges are faced as by researches so far—i.e., sepa-
rating learning from other factors and that learning might not be necessarily
visible. Also, for the incident response teams activities are conducted on the
computers/network—thus observations of behavior (sitting quietly behind com-
puter screen but at the same time mitigating a significant risk or attack) might
not provide sufficient information. Observation method should be seen with a
different kind of eyes—on the network and system-level and to learn observing
at such technical levels.

The key takeaways for CDXs are that learning measurement needs to use
mixed-method approach with qualitative and quantitative data, have wide
scope, provide comparison (“benchmarking”), consider both individual and team
aspects, and ideally be non-intrusive (not distracting participants from main goal
of learning).

5 Conclusion

Learning is such a complex and intractable process that its study is difficult
and contentious. However, methodological measurement is required to conclude
whether an exercise design was appropriate and effective, and planned learning
outcomes were achieved.

We presented an idea for non-intrusive data collection and measurement, i.e.,
the 5-timestamp methodology as an integral part of overall learning measurement
framework. Future work should continue with performing the data analysis of
an exercise to compile learning metrics and trends benchmark. Identification
and analysis of the data trends, will provide solid baseline and demonstrate
learning improvement achieved in CDXs. This will complement often anecdotal
and positive feedback obtained via traditional methods (surveys, interviews)
that participants have actually learned. As we demonstrated, incorporating non-
intrusive, social and behavioral research methods into the cyber security field can
give new insights and possibilities in effective training for cyber defense teams
in the future.

We explored CDXs’ learning measurement state of play and presented inter-
disciplinary literature review, incorporating relevant findings from team (group)
and game based learning studies. The findings support the proposed novel non-
intrusive 5-timestamp methodology for mainly timing and accuracy metrics for
measuring technical skills improvements, but equally incorporating team aspects
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and soft skills. As part of the methodology proposal, we also considered some
practicalities of data collection and proposed practical validation approaches
with the qualitative measurements.

With work performed in this paper, we have attempted to provide practical
steps how the organizers can evidence the learning value and lessons learned
at CDXs, and at the same time improve the participants’ and teams’ learning
experience by providing valuable feedback based on such measurement data.

Acknowledgments. This work would not have taken place without the NATO CCD
COE open-minded and friendly organizing team of LS17, who allowed the authors to
experiment on this large cyber exercise.
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Abstract—Cyber Defense Exercises have received much at-
tention in recent years, and are increasingly becoming the
cornerstone for ensuring readiness in this new domain. Crossed
Swords is an exercise directed at training Red Team members for
responsive cyber defense. However, prior iterations have revealed
the need for automated and transparent real-time feedback
systems to help participants improve their techniques and under-
stand technical challenges. Feedback was too slow and players
did not understand the visibility of their actions. We developed
a novel and modular open-source framework to address this
problem, dubbed Frankenstack. We used this framework during
Crossed Swords 2017 execution and evaluated its effectiveness
by interviewing participants and conducting an online survey.
Due to the novelty of Red Team-centric exercises, very little
academic research exists on providing real-time feedback during
such exercises. Thus, this paper serves as a first foray into a
novel research field.

Keywords—automation, cyber defense exercises, education,
infrastructure monitoring, real-time feedback, red teaming

I. INTRODUCTION

Cyber defense exercises (CDX) are crucial for training
readiness and awareness within the cyber domain. This new
domain is acknowledged by NATO alongside with land, sea,
air, and space [1]. Alliance nations are endorsing the devel-
opment of both defensive and responsive cyber capabilities.
In this context, the paper focuses on further evolving the
quality and learning experience of CDX, aimed at developing
cyber red teaming [2] and responsive skillset. Crossed Swords
(XS) [3], a techical exercise developed by NATO Cooperative
Cyber Defense Centre of Excellence (NATO CCD COE) since
2014, is used as a platform to create the proposed framework.
The solution is applicable to any other CDX where standard
network and system monitoring capability is available.

A. Background

XS is an intense hands-on technical CDX oriented at pene-
tration testers working as a single united team, accomplishing
mission objectives and technical challenges in a virtualized
environment. While common technical CDX is aimed at
exercising defensive capabilities (i.e., Blue Team – BT), XS
changes this notion, identifies unique cyber defense aspects
and focuses on training the Red Team (RT).

To develop and execute the exercise, multiple teams are
involved: rapid response team (i.e., RT); game network and
infrastructure development (Green Team – GT); game scenario
development and execution control (White Team – WT);

defending team user simulation (i.e., BT); and monitoring
(Yellow Team – YT).

The RT consists of multiple sub-teams based on the engage-
ment specifics, those being: network attack team, targeting
network services, protocols and routing; client side attack
team, aiming at exploiting human operator and maintaining
access to the hosts; web application attack team, targeting web
services, web applications and relational databases; and digital
forensics team, performing data extraction and digital artefact
collection. These sub-teams must coordinate their actions,
share information and cooperate when executing attacks to
reach the exercise objectives.

The main goal is to exercise RT in a stealthy fast-paced
computer network infiltration operation in a responsive cyber
defense scenario [4]. To achieve this, the RT must uncover the
unknown game network, complete a set of technical challenges
and collect attribution evidence, while staying as stealthy as
possible. Note that XS is not a capture-the-flag competition,
as the RT has to pivot from one sub-objective to another in
order to achieve the final mission according to the scenario.
Furthermore, Red sub-teams are not competing with each
other, and rather serve as specialized branches of a single unit.

B. Problem Statement

Prior XS iterations revealed several problems with RT learn-
ing experience. Primarily, the YT feedback regarding detected
attacks from the event logs and network traffic was presented
at the end of every day, which was not well suited to the
short, fast and technical nature of the exercise. The feedback
session addressed only some noteworthy observations from the
day, but RT participants need direct and immediate feedback
about their activity to identify mistakes as they happen. This
feedback needs to be adequately detailed, so that the RT
can understand why a specific attack was detected and then
improve their approach. Finally, to make the feedback faster,
the slowest element in the loop—the human operator—needs
to be eliminated.

Therefore, manual data analysis by the YT needs to be
automated as much as possible. To achieve this, we used the
same open-source tools as in the previous XS iterations, but
added in event correlation, a novel query automation tool,
and a newly developed visualization solution. We decided to
call the framework Frankenstack. Fig. 1 illustrates the role of
Frankenstack in the XS exercise.
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Fig. 1. High-level overview of Frankenstack

The RT has to receive timely and efficient feedback from
the YT regarding detected attacks on the target systems. This
feedback is critical to raise the level of stealthiness, identify
the gaps of RT coordination, and analyze the tools and tactics
used for computer network operations. The effectiveness of
our framework was assessed during the main execution of XS
2017 (XS17), where the stack provided real-time monitoring
feedback to the RT.

The remainder of the paper is organized as follows: section
II provides an overview of related work, section III describes
our monitoring stack, section IV presents RT feedback results,
while section V discusses future work, and section VI con-
cludes the paper.

II. RELATED WORK

For teaching purposes, the benefit of exercises and compe-
titions is generally well accepted and documented [5], [6], [7],
[8]. Unfortunately, not much research has focused on the per-
ception of feedback which is provided to the training audience,
especially in the context of monitoring technical indicators
of compromise in realistic environments. Thus, this section
presents research related to both measuring and improving the
learning experience as well as situation awareness (SA) during
cyber exercises.

Dodge et al. discussed CDX network traffic analysis in [9],
a practice that is common in modern exercises not only for
situational awareness (SA) but also as educational tool, for
elaborating attacker campaigns, for training network analysts,
etc. However, this early paper focuses on traffic capture and
initial profiling, and does not consider distractions such as
traffic generation, increasing infrastructure complexity, host
instrumentation, data source correlation, or the need for imme-
diate feedback. In [10], Holm et al. correlated network traffic
and RT attack logs from Baltic Cyber Shield, a precursor
for Locked Shields and Crossed Swords exercises. However,
their goal was to improve existing metrics for vulnerability
scoring, as opposed to participant education. Likewise, in [11],

Brynielsson et al. conducted a similar empirical analysis on
CDXs to profile attacks and create attacker personas.

In [12], Arendt et al. presented CyberPetri, a circle-packing
visualization component of Ocelot, which was previously
presented in [13] as a user-centered decision support visu-
alization. They presented several use cases of the tool, but
their main goal was high-level feedback to network analysts
based on target system service availability reports. Although
the tool was useful for high-level decision making, technical
RT members are more interested in immediate effects of
their attacks on target systems. Note that any single system
is often a supporting pillar for more complex services, and
is not noticeable to end-users. Nevertheless, modern security
monitoring is built upon instrumentation of these systems, to
find RT footprints and to trigger notification upon breaching
these digital tripwires.

A paper [14] by Henshel et al. describes the assessment
model for CDXs based on the Cyber Shield 2015 example,
as well as integrated evaluation of metrics for assessing team
proficiency. In addition to data collected during the exercise,
they also conducted a pre-event expertise survey to determine
possible relationships between prior expertise and exercise
performance. For future assessments they suggest that near
real-time analysis of the collected data is required—they stress
that raw data collection is not a problem, but the capability to
meaningfully analyze is the limiting factor. Manual methods
do not scale with the huge amounts of incoming data. This
closely coincides with our observations in section I-B and this
is what we aim to improve.

Furthermore, existing academic research commonly relies
on monolithic tools, which are often not accessible to the
general public, thus, making experiments difficult, if not
impossible, to reproduce. We seek to provide an inexpensive
open-source alternative to these products. The next section
describes our modular monitoring architecture.

III. FRANKENSTACK

Commercial tools are too expensive for smaller cyber exer-
cises, in terms of licensing fees, hardware cost and specialized
manpower requirements. Detection logic in commercial tools
is also not available to the general public, which hinders YT’s
ability to provide detailed explanations of detected attacks.
Frankenstack is easy to customize as individual elements of the
stack are industry standard tools which can be interchanged.
Note that we opted to use a commercial tool SpectX as an
element within Frankenstack for log filtering, due to on-site
competency and developer support. However, this function
could have been achieved with the open-source Elastic stack
[15]. Our stack provides a clear point of reference to other
researchers and system defenders who wish to compile the
monitoring framework in their particular environments, as the
overall architecture is novel.

The data available to us during XS included full ERSPAN
(Encapsulated Remote Switched Port ANalyzer) traffic mirror
from gamenet switches and NetFlow from gamenet routers.
This was provided by the GT. Furthermore, we instrumented



gamenet systems to collect numerical metrics (e.g., CPU and
memory usage, and network interface statistics) and logs (e.g.,
syslog from Linux, Event Logs from Microsoft Windows,
Apache web server access logs, and audit logs from Linux
command line executions). Such host instrumentations are
very difficult to implement in a standard CDX with BT training
focus: if the intent is to give BTs full control of a simulated
infrastructure, then they also have full volition to disable
these tools. However, as the XS training audience is the RT,
then we could maintain control of all target systems and
ensure a constant stream of monitoring data. Moreover, we
complemented the list of BT data sources with various YT
honeypots and decoy servers.

Detailed overview of the resulting stack, in relation to data
processing pipelines, is presented in Fig. 2. The blue area
represents available data sources, the gray area stands for
data storage, and the yellow area denotes the YT presentation
layer (i.e., visualization tools on five monitors). Blue and
green elements represent target systems and all other elements
outside colored boundaries are processing tools. Custom tools
that we developed are highlighted with a dark yellow circle.
Note that some tools, such as Moloch, are designed for both
data storage and visualization, but are not presented in these
respective areas because only their API components were used
for processing automated queries.

We opted against using NetFlow data, as modern packet
capture analyzers (e.g., Suricata, Bro, and Moloch) can fill this
role, albeit by needing more processing power and memory.
Additionally, these tools commonly present their output in
textual log format, which we fed back into the central logging
and correlation engine. Thus, the problem of identifying and
displaying high-priority IDS alerts can be simplified into a log
analysis problem.

Frankenstack uses event correlation for integrating various
information sources as this field has been well researched in
the context of log management [16], [17], [18]. We open-
sourced the correlation ruleset in [19]. See Listing 1 for an
example raw log entry from Snoopy Logger [20] that was
converted into a more universal human-readable security event
that could be presented to the general audience on various
dashboards while preserving the raw message for anyone wish-
ing to drill down. Note that specific IP addresses have been
removed from this example. This generalization is necessary
for handling and grouping subsequent log entries that continue
describing the same event, e.g., additional commands executed
on the same host via SSH.

Listing 1. Event generalization by frankenSEC
#INPUT
login:administrator ssh:(SRC_IP 58261 DST_IP 22)
username:administrator uid:1001 group:administrator
gid:1001 sid:6119 tty:(none) cwd:/home/administrator
filename:/usr/bin/passwd: passwd administrator

#OUTPUT
SRC_IP->[DST_IP]: Command execution by administrator
over SSH

Post-mortem analysis of available data sources has proven
effective during prior CDXs for packet capture (PCAP) anal-
ysis, but requires a significant amount of time and manual
work. Again, this clashes with the short time-frame of a CDX.
Furthermore, search queries are often written ad hoc during
investigations and subsequently forgotten, making analysis
results difficult to reproduce. Thus, we created Otta [21], a
novel query documentation and automation tool for period-
ically executing user-defined queries on large datasets and
converting aggregated results into time-series metrics. Otta
enables trend graphing, alerting, and anomaly detection for
stored user-defined queries. This reduces time spent on anal-
ysis and ensures reproducibility by documenting the queries
that produced the results.

We used various open-source tools for timelining metrics
and log data, for displaying alerts, and presenting correlated
information. There are slight differences in handling various
incoming alerts. While many types of alerts (e.g., CPU and
disk usage) trigger and recover automatically based on a set
of thresholds, there are some types (e.g., IDS alerts) that
lack the concept of a recovery threshold. Thus, the alert
will never recover once raised, leading to an overabundance
of information on the central dashboard. Furthermore, batch
bucketing methods and timelines are lossy, as only the most
frequent items are considered. The volatile nature of CDXs
and an abundance of generated network traffic can therefore
cause these dashboards to be too verbose to follow efficiently.

Attack maps are not usable because they rely on geo-
graphical data which is completely fictional in many CDX
environments. Therefore, we developed Event Visualization
Environment, or EVE, a novel web-based tool for visualizing
correlated attacks in relation to gamenet infrastructure. The
Alpha version of this tool has been made publicly available
in [22]. EVE is a web application that shows attacks carried
out by the RT in real time with a custom gamenet network
map as background. Probes can send information to EVE
listener in JSON format. Real-time visualization is using
WebSocket technology—eliminating the need to reload the
page for updated results.

EVE supports combining multiple events in a short time
window, and that share the same source and destination
addresses, into a unified attack. Resulting attacks are sub-
sequently displayed as arrows connecting the circles around
source and target hosts on the network map, while detailed
attack information is displayed next to the network map. Using
the gamenet map makes EVE a very intuitive tool for enabling
participants and observers alike to comprehend CDX events on
a high-level.

During the exercise EVE was available only to YT and
WT members, as it revealed the entire exercise network map
that RT had to discover on their own. However, EVE has a
dedicated replay mode to display all the attacks condensed
into a given time period, allowing participants to obtain an
overview of the attacks as well as understand the pace and
focus of the previous attack campaign. For instance, attacks
from the previous day can be replayed in 15 minutes. EVE
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Fig. 2. Data flow between Frankenstack elements during XS17

TABLE I
DEDUPLICATION BY EVENT SOURCE

Event source Total events Unique events
displayed

Percentage
displayed

Apache 1908 35 1.83%
IDS 23790 616 2.59%
Snoopy logger 2962 40 1.35%
Total 28660 691 2.41%

was shown in replay mode to RT participants after the ex-
ercise concluded. This compressed replay was very effective
in presenting the most prevalent problems, such as periodic
beaconing during otherwise silent night periods and verbosity
of particular network sub-team attacks.

Alerta [23] served as the primary dashboard to display alerts
to the RT. We used the HTTP API for submitting Frankenstack
events to Alerta. The RT had direct access to the Alerta web
interface and could write their own filtering rules to view
information relevant to their current campaign. Finally, we
present Tab. I to illustrate how Frankenstack performed in
deduplicating the events that were displayed to the RT on the
Alerta dashboard. Note that deduplication was primarily based
on the generalized event descriptions (see Listing 1).

IV. ASSESSMENT

The tools and infrastructure are essential for learning, but
they do not make the exercise successful by default. Often
human factors, such as how YT and RT members perceive
and use the tools, have significant impact.

One essential part of the assessment was to observe the be-
havior of the RT members and their interaction with Franken-
stack during the exercise in order to gain further insights
into their progress and learning experience. We carried out
qualitative interviews with RT participants, to estimate their

reaction to Frankenstack and their overall learning progress.
The interviews took place in casual settings during breaks in
execution. Furthermore, we conducted a quantitative survey
in the form of an online questionnaire. The survey consists
of multiple choice or ranking style questions with the ability
to provide additional comments for each question. The survey
concluded by asking some general questions about meeting the
training objectives and overall satisfaction with the exercise.

A. Feedback combined from interviews, survey and observa-
tions

This subsection includes the analysis of participants feed-
back. Improvement suggestions to learning design are pre-
sented in the following subsection IV-B.

We received 14 survey responses out of 27 participants
(52%). 46% of participants had attended other exercises, but
none of those exercises had attempted to provide SA via
a similar toolset. The remaining 54% had not previously
attended any exercise.

There were four large screens in the training room directed
to the RT, displaying Alerta, Grafana, Scirius, and Suricata.
A fifth screen displaying EVE was only visible to YT and
WT members. Most RT members preferred to view the main
screens displayed in training room, and 38% responded that
they checked the screens every 60 minutes or less. Another
38% checked the screens every 30 to 50 minutes. RT members
were not restricted from accessing any of the Frankenstack
web interfaces. The survey revealed that learners did access
the monitoring framework on their local computers when at-
tempting new attack vectors. Thus, tools served their intended
usage.

Alerta was considered most useful (46%), followed by
Moloch (31%). There was no clear result for the least useful
tool. The respondents expressed mixed feelings on the ease of



use of the SA tools: 38% equally agreeing and disagreeing,
and the remainder (24%) being neutral.

Regarding learning impact, 79% agreed (of those 57%
strongly agreed) that the SA given during exercise is useful
for their learning process, while 21% were neutral. In terms
of the feedback rate, 77% of the respondents considered the
speed of feedback to be at the correct level, 15% considered
it too slow and 8% considered it too fast. Furthermore, 57%
agreed that alerts were accurate and sufficient for their learning
process, while 43% were neutral about this question. However,
several respondents revealed being too focused on achieving
their primary objectives, and thus unable to properly switch
between their tools and feedback screens.

In relation to visibility, 45% of the participants agreed that
they had learned a lot about how their actions can be detected
(i.e., it is useful to see simultaneously what attack method
could be detected, and how), and 30% were more careful with
their attacks and thus tried to be stealthier than they normally
would have been. However, there were some unintended side-
effects. The feedback sometimes provided insight into the
network map that the RT was tasked to discover independently.
For example, if the RT probes a yet unknown node on a
network, the logs generated on the host might reveal the target
hostname (e.g., sharepoint or ftp), which consequently implies
the purpose of the system—something that would not be
apparent from an IP address. Thus, there is a fine line between
revealing too little or too much to the training audience.

Furthermore, some comments revealed a loss of emphasis
on stealth due to exercise time constraints, i.e., RT members
knowingly used more verbose techniques closer to the ob-
jective deadline. To clarify, 64% of respondents confirmed
that the SA tools were not distracting them nor had negative
impact, while 30% agreed that they were distracted. The
remaining 6% were neutral. This confirms the challenges of
providing instant feedback, as the learning potential is not fully
used. The question is how this learning experience is impacting
long-term behavior of the participant.

One of the key training aspects is working as a team in
achieving goals. Thus, team communication and cooperation
are vital. Overall, 83% of respondents indicated some im-
provement of the skills for these specific training objectives.
However, feedback concerning the impact of SA tools on team
communication and cooperation is mixed—50% perceived
positive impact, whereas 21% were negative and remainder
were neutral. Several respondents acknowledged less need for
verbal communication, as they could see relevant information
on the screens. Unfortunately, not all RT members were
able to interpret and perceive this information correctly. This
combined with the reduced need for communication meant
that not all participants progressed as a team.

Compared to other CDXs, 50% responded that they needed
less information from YT members, as they obtained relevant
SA on their own. Guidance, however, is a critical success
factor for learning, especially in a team setting. 64% of partic-
ipants said they had sufficient help for their learning process,
i.e., when they did not know how to proceed, their team mem-

bers or sub-team leaders provided guidance. However, 64% is
a rather disappointing result and could clearly be increased
with improved learning design. Some respondents admitted
that they did not know how other teams were progressing and
wasted time on targets that were not vulnerable. This caused
significant frustration and stress, especially when combined
with the compressed timeframe of a CDX.

B. Learning improvement suggestions

Given the amount of work that goes into preparing such ex-
ercises, the level of learning potential needs to be maximized.
Our analysis suggests that small learning design changes
may have significant impact. This section presents the main
recommendations derived from these results.

From the learning perspective, we cannot assume that par-
ticipants know how to use or interpret the results. Lack of
in-depth knowledge of monitoring tools (e.g., where is raw
data collected, what is combined and how, what needs to
be interpreted in which way, etc.) has a negative impact on
learning. A dedicated training session or workshop needs to
take place prior to execution. Furthermore, in the light of the
survey results, inclusion of various tools into Frankenstack
needs to be carefully evaluated to avoid visual distractions for
RT participants. There is also a need to reduce prior system
and network monitoring knowledge by making the output more
self-explanatory.

Given the difficulties in switching between multiple screens
whilst also trying to achieve an objective in unfamiliar net-
work, one can easily suggest compressing the amount of
presentable information to reduce the number of monitoring
screens. However, this cannot be attained without reducing the
amount of technical information. The purpose of Frankenstack
is not to provide SA to high-level decision makers, but to
present feedback to technical specialists. Thus, a better ap-
proach would be restructuring each sub-team with a dedicated
monitoring station with a person manning it, allowing team
members to focus on their objectives and get feedback relevant
only for their actions. As such, RT members must be given a
hands-on opportunity to use monitoring systems.

In RT exercises such as XS, there are several main ob-
jectives to be achieved by the whole RT. It is challenging
to evaluate reaching objectives, since there are many steps
involved in reaching a specific objective. Often the tasks
or sub-objectives are divided between sub-teams (network,
web and client-side) and between individuals in those sub-
teams. The difficulty of a specific exploitation depends on the
individual’s skillset, which varies widely. Hence, there is a
trade-off between assigning a task to an experienced member
to increase the chance of success, versus teaching a new
member. For example, an experienced network administrator
is more effective in exploiting network protocols and is likely
less visible while doing so, but may not learn anything new.

Discussions and feedback revealed that several respondents
felt they were stuck and working alone. Division of the tasks
between sub-teams and individuals also diminishes the learn-
ing potential. One training design option to alleviate this issue



would be regular team timeouts for reflection. Reflective team
sharing is crucial for the learning success of each individual,
and would overcome the project management approach where
each team member focuses only on personal objectives. Higher
emphasis should be on offering tips and helping those stuck on
an objective to move forward whilst also keeping track of the
feedback provided by Frankenstack. The coaching could also
be handled in the form of a buddy system where RT members
are not assigned a sub-task individually, but in groups of two
or three. They would then have to share their knowledge and
can benefit from different individual backgrounds.

Finally, it is important to have better time-planning during
the execution. While it is certainly appropriate to allow for
flexibility in the paths that the RT can take to solve the
objectives, participants should avoid spending too much time
on wrong targets. Nevertheless, the learning impact of the
exercise in this format (i.e., with real-time feedback) is very
positive. Only 13% of all participants’ responses reported no
significant change in their skills, while an overwhelming 87%
perceived an improvement in their skill level, and 93% agreed
that they were satisfied with exercise.

V. FUTURE WORK

We encountered several unforeseen problems, as methods
for assessing technical RT campaigns have to be incorporated
into the game scenario itself. However, most XS17 targets
had already been developed before the initial stages of this
research. We plan to increase information sharing between Red
and Yellow teams to improve RT progress measurement. Thus,
we can develop better assessment methodologies for RT skill
levels and YT feedback framework.

Development of a new dynamic version of EVE is already
underway for the next XS iteration. In addition to the network
map view, it can draw the network map dynamically as RT
compromises new targets. Currently, EVE can only be used
after the end of the exercise. However, in addition to providing
more actionable alerting, the new version can also reduce RT
work for mapping new systems and allow them to focus on
the technical exercise.

VI. CONCLUSION

In this paper, we have presented the core challenges in
organizing a CDX with Red Team emphasis, such as timeliness
and accuracy of feedback, and ensuring participant education
without compromising the game scenario. We compiled a
novel stack of open-source tools to provide real-time feedback
and situational awareness, and conducted surveys among the
RT members to assess the effectiveness of this method.

Frankenstack feedback regarding learning impact was
mainly positive. However, there are critical questions to answer
when designing the RT exercises, such as what is the right
balance of information to provide to the RT, does the behavior
change due to monitoring or information visible (i.e., learners
unconsciously limit themselves by not trying out more risky
strategies, etc.). Also, some further learning design changes,
and not necessarily only limited to SA, can maximize the

return on the significant investment into preparing such RT
exercises. We hope to spark a discussion on improving these
problems.
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Abstract. The threat environment is rapidly changing and the cyber
security skill shortage is a widely acknowledged problem. However, teach-
ing such skills and keeping professionals up-to-date is not trivial. New
malware types appear daily, and it requires significant time and effort
by a teacher to prepare a unique, current and challenging courses in
the malware reverse engineering. Novel teaching methods and tools are
required. This paper describes an experience with an automated hands-
on learning environment in a malware reverse engineering class taught at
Tallinn University of Technology in Estonia. Our hands-on practical lab
is using a fully automated Cyber Defense Competition platform Intel-
ligent Training Exercise Environment (i-tee) [1] combined with typical
Capture-The-Flag competition structure and open-source tools where
possible. We describe the process of generating a unique and compara-
ble reverse-engineering challenge and measuring the students’ progress
through the process of analysis, reporting flags and debugging data,
recording and taking into account their unique approach to the task.
We aim to measure the students’ using the Bloom’s taxonomy, i.e., mas-
tering the art of malware reverse engineering at the higher cognitive
levels. The presented teaching and assessment method builds foundation
for enhancing the future malware reverse engineering training quality
and impact.

Keywords: Higher education teaching · Cyber defence exercises
Malware reverse engineering

1 Introduction

The subject of reverse engineering is multi-faceted and difficult to teach. Modern
malware has become powerful and complex—it has evolved from simple replicat-
ing viruses to highly evasive and adaptable applications. To understand how the
malware is working, a cyber security specialist needs essential knowledge how
to dissemble and reconstruct the code. Reverse engineering is “a cyber defense
task used to investigate malware, construct functionality of compiled software,
and identify vulnerabilities from closed-source software code already being used
in operational contexts” [2].

c© Springer International Publishing AG, part of Springer Nature 2018
P. Zaphiris and A. Ioannou (Eds.): LCT 2018, LNCS 10925, pp. 1–12, 2018.
https://doi.org/10.1007/978-3-319-91152-6_35
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With the predicted cyber security skill shortage, we are facing a problem
that there are not enough qualified teachers to deliver high-quality courses (e.g.,
as qualified experts earn more in industry than in academia). Malware reverse
engineering is even more challenging due to complex and ever changing natures
of threat and changes in malware landscape. Developing a malware reverse engi-
neering course requires a significant amount of effort, as coming up with the
unique code that would mimic malware for disassembly task is time consum-
ing [3]. As the industry requires more cyber security specialists with up to date
skillset (and consequently universities have a growing number of students), the
teaching must respond with relevant and engaging learning methods. This is
where automated learning environment becomes a necessity and we are facing
a problem that we need to design novel teaching techniques where motivated
students can self-learn. Our aim is to automate the process in order to allow a
larger number of students to benefit from the course, but ensure in the automa-
tion process a unique learning experience is created, which enables the students
to master the art of malware reverse engineering.

A practical problem-based, hands-on learning is considered an efficient way to
study Information and Communications Technology (ICT) subjects, as it pro-
vides an exciting learning experience [4]. Mahoney et al. express that reverse
engineering is much more of an art and much less of a skill—the students either
get it or they do not [3]. On the other side, the human brain constructs the
models based on past experiences and based on those experiences produces pos-
sible solution for a given problem by predicting solution models based on past
experience [5]. Teaching methods in the reverse engineering should provide such
“foundational” experiences to solve such complicated problems.

2 Problem Statement and Research Design

In response to the high-demand of the qualified cyber security experts with
malware reverse engineering skills, we propose a solution as combination of the
automated learning environment and the novel teaching techniques. As the tradi-
tional learning methods (e.g., lectures, videos, quizzes) do not allow the scalable
hands-on experience that is needed for mastering the art of reverse engineering.
Our objective is to create a teaching and assessment platform that allows the
teachers to help the students learn the art of malware reverse engineering. The
motivation for automation is very desired by the teachers of such courses and
would increase the quality of the learning experience.

Our research design was to build and test a scalable hands-on automated mal-
ware reverse engineering lab for the university students using the open source
tools (or free-ware tools). This paper reports our experience with initial steps
towards such a platform, in order to receive feedback from the community on
our efforts. We describe the auto generation of malware-like samples with differ-
ent layers of difficulty and corresponding flags, usage and scaling of Intelligent
Training Exercise Environment (i-tee) system [1], and measuring the student
behavior during the multi hour final challenge. In this initial stage, we have
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tested the system using the malware embedded into PDFs. However, the archi-
tectural concepts are not limited to PDFs. and we will add more to our github1.
In the github, the configuration for the lab described in this paper is available.
Note that the i-tee platform is publicly available under MIT license [1].

3 Related Work

Our proposed methodology and system focuses on the teaching and assessing
advanced reverse engineering skills. As an educational tool, this work builds upon
the other developments in teaching, testing the latest tools and competition-
based systems in the cyber defence education.

The Intelligent Training Exercise Environment i-tee [1] is an open source
virtual cyber simulator that enables hands-on, practical learning. It allows to
simulate realistic cyberattack situation in virtual and sandboxed environment
and can be integrated into existing curricula or used to create a new subject or
a competition event. A student needs only a web browser and a remote desktop
protocol client to start exploring the system [6].

There are magnitude of different Capture-The-Flag (CTF) style competi-
tions that include reverse engineering, the most up to date CTF listing at CTF-
Time.org web site [7].

Burns et al. [8] analyzed the solutions of about 3, 600 Capture The Flag
(CTF) challenges from 160 security competitions and describes the security
issues that are most concerning to industry and academia. The paper further-
more enumerates the security tools and techniques that are used by the players.
In “reverse” engineering challenges, flags are usually obfuscated and embedded
in executable programs. Static analysis and dynamic analysis are mostly used
to solve the “reverse” challenges.

The paper describes the use of Virtual Box (VBox) image, the students can
download and run it in their own computers. However, some challenges are met
with such design. For example, the tablet computers do not support VBox and as
many reverse engineering tools and libraries are Linux oriented, or the students
who use Windows and Mac OS X do not have enough skills to install and setup
the needed tools and libraries in their own computers. As result about 13% of
students gave up on the exercises due to such issues [8]. In the proposed solution
described in this paper, many such challenges can be avoided.

One of such the CTF exercises that includes reverse engineering challenge
(understanding the behavior of compiled, obfuscated, or cryptic program code)
is picoCTF [9], however targeted at high school students, not university students.
The picoCTF challenges are hosted on a Linux server, which students can access
either with SSH or through a web client. The system is supported with an
IRC-based chat room for students to discuss challenges with the organizers. No
detailed overview is provided about the system architecture.

Taylor et al. [10] created automated obfuscated challenge for students with
randomly generated program in C language used similar obfuscation and auto

1 https://github.com/toomasl/RE-PDF-DO.
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generated virtual machines and made students after completion to upload
the virtual machines with answers. This tool be also used in teaching code
reverse engineering techniques as described in the paper, and is relevant as it
describes the possibilities how to understand that the students have completed
de-obfuscation task. Our proposed system address several issues raised in this
paper, such as automatic assessment of whether a student used known tools
that they were used in the class, randomised malware sample allocation to a
student, etc.

Mahoney et al. [3] describes a course design however the course design did
not describe automated tools. Our paper focuses on advancing such courses with
automated teaching assistant methods and tools.

There are limited publications on teaching the reverse engineering using the
automated open-source system architectures via hands-on CTF style learning
methods. This is the gap we are aiming to fill with the work described in this
paper.

4 Teaching the Art of Malware Reverse Engineering

4.1 Mastering the Reverse Engineering

Mahoney et al. writes that the “hand holding” did not help, some students
never picked up the skill set. [3]. “Reversing equals art” thinking is not new
and stated before in computing education, e.g., Bader has used same expression
with respect to parallel programming [11]. Modern malware can include multiple
obstacles [12] for evading detection, which complicates the malware analysis. In
phase when students get graded they should be familiar with some of them beside
obfuscation [10].

The studies have found that the human brain constructs the models of the
world on the basis of past experience, which are subsequently confirmed or
denied by experiential input [5]. When we apply this predictive mechanism of the
brain to the cognitive task of problem solving we see that our brain produces
possible solution for a given problem by predicting solution models based on
past experience [5]. Therefore, it can be argued that a solution to a specific task
might be similar due students’ participation at the same malware course, i.e.,
similar learning provided generates inherently predictive solutions to particular
set of problems. However, we can use such predictive patterns in case we need
to understand students ability to use particular tool-set. This type of tool-set
enables the use of different measurement techniques to understand whether the
student tackled the multifaceted problem or if the student used an allowed (or
not allowed) shortcut to a solution.

Our approach is to leave the playing field open and let the student choose
the tools and methods to tackle the problems—they can use they own tools and
programs that are only limited by an operating system. However, that implies
that the problem of assessing skills automatically becomes more complicated, as
the measuring will depend on reverse engineering steps that the students should
perform. For example, the we do not simply measure the fact of installation
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of a specific tool by the student, rather whether they understand the reverse
engineering process.

4.2 Assessing the Learning Outcomes

To achieve and assess learning outcomes the educators use frameworks such as
Bloom’s or SOLO (Structure of the Observed Learning Outcome) taxonomy.
Whatever learning framework is used, it means that higher level of cognitive
levels or complexity levels are reached by a student to ensure that he/she mas-
ters the art of malware reverse engineering. For example, in SOLO the learning
outcomes are classified in terms of their complexity, enabling us to assess stu-
dents’ work in terms of its quality not of how many bits of this and of that they
have got right [13]. Under Bloom’s taxonomy, the learning objectives describe
six progressive levels of learning: knowledge, comprehension, application, analy-
sis, synthesis, and evaluation [14]. In this paper we refer to the updated version
of Blooms’s taxonomy by Anderson et al. [15], who explain the the levels as
follows: 1. Remembering: Learner’s ability to recall information 2. Understand-
ing: Learner’s ability to understand information 3. Applying: Learner’s ability
to use information in a new way 4. Analysing: Learner’s ability to break down
information into its essential parts 5. Evaluating: Learner’s ability to judge or
criticize information 6. Creating: Learner’s ability to create something new from
different elements of information.

As teaching malware reverse engineering is rather an art and malware is
commonly well protected to resist analysis—thus higher, i.e., elevated cogni-
tive skills are required and should be evaluated as part of a course assessment.
However with many Capture the Flags (CTFs) the common criticism is that
they only reach the lower levels of cognition. For example, Moses et al. analyzed
CTF competition of Cyber Security Awareness Week (CSAW) Conference of the
New York University Polytechnic School of Engineering and concluded that
the vast majority of challenges met objectives corresponding to levels 1–3, the
challenges with the lowest completion rates typically involved multiple learning
objectives at levels 3–4, and there is a complete absence of challenges mapping
to level 5–6 [15]. The learning design for the malware reverse engineering course,
needs to overcome such challenges and therefore our system allows teachers to
consider what cognitive levels they are aiming to teach and assist in achieving
learning outcomes for higher levels.

In malware reverse engineering a learner needs to make tool-choices and recre-
ate from different elements of information. Thus, demonstrate comprehension of
applying the knowledge, analyze and evaluate in the process of dissembling the
code, creative thinking and higher-level concepts. Considering Bloom’s taxon-
omy higher cognitive levels need to be achieved, the lab design provides also the
reflection questions to ensure that a student understood and not only completed
learned (memorized) technical tasks without understanding.
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5 System Architecture

In this section, we describe the architecture of the automated system built on
i-tee platform going over how it is integrated, i.e., how malware is integrated
to the lab environment, how malware analysis is enabled/supported by the sys-
tem (i.e., what tools the student has available) and how the automated scor-
ing/assessment is built in.

5.1 Integration to i-tee System

Figure 1 shows when a student connects over the internet to the i-tee platform
and is prompted with the choices to connect the lab. The lab connection is sup-
ported over the multiple environments, i.e., it does not matter what equipment
(e.g., Windows, Linux, Mac OS tablet) the students are using. Note that i-tee is
a completely isolated environment, where only the remote desktop viewing part
is connected to the Internet. None of the malware run within this framework can
“escape”, and thus making the system suitable experimentation platform even
for the inexperienced students.

Fig. 1. Automated setup of an completely isolated reverse engineering lab using
i-tee [1]. This is the view the student is first confronted with, and allows them to
setup the labs and start the exercise. Systems are provisioned on demand and thus
save resources.

Once connected to the lab, the student will receive instructions on the chal-
lenge (shown in Fig. 2).

The students are prompted with a situation when they act as malware ana-
lysts and a user in their organization has received an email with a suspicious
attachment. This attachment has been now forwarded for their analysis.

The student’s task is to reverse engineer the malware included in the PDF
document. The malware for each student is different in order to ensure students
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Fig. 2. Lab Instructions. A virtual teaching assistant (VTA) is guiding the student
through the tasks in a step-by-step fashion. The VTA component is not an open source
tool, however it can be replaced by other learning management systems (e.g., Moodle,
etc.).

are not just copying solutions, but actually running the commands and using
the tools—even if they get some help from their friends.

The ultimate objective is a discovery of an adversary infrastructure, including
download and command and control servers (C&C servers) and channel, i.e.,
computers/servers that are used to remotely send the malicious commands to a
botnet, or a compromised network of computers.

5.2 Malware Analysis Steps

Once the student has been provided a PDF document, the analysis will need to
take place. The basic steps that the student needs to perform are:

1. collect the evidence—calculate file hash,
2. identify that PDF contains possible malicious elements including JavaScript

extract JavaScript/scripts,
3. de-obfuscate JavaScript layers.
4. understand PDF content and propose hypothesis who might be the target
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This is achieved by finding the following planted evidence:

1. connection test—usually the malware is trying to connect to well-known site,
such as youtube.com, google.com, etc. (that is a first layer—simple obfusca-
tion base64)

2. Downloads at different levels of obfuscation, such as:
– website (i.e., second layer)
– uri (i.e., third layer)
– browser header (i.e., forth layer)

3. Other more complex obfuscations.

The de-obfuscation works as peeling the onion, breaking apart the from
outside to the inside. Firstly after an extraction in one of the JavaScripts
extracted from the PDF, a student might find something like this: YXBwLmx-
hdW5jaFVSTCgiaHR0cDovL3d3dy5nb29nbGUuY29tLyIsIHRydWUpOwo=.

This string needs to be evaluated, de-obfuscated or decrypted by a student.
The learning curve can be monitored and identified in what stage (i.e., layer)
the student gets stuck.

5.3 Malware Generation

We use the open source tools in order to auto-generate the PDF with malicious
script(s). For the first iteration we used real malware samples from the github
users, such as from Jodesva2. Scripts are in different maliciousness categories
and in the real world, when the victims would open PDF documents with such
scripts, their machines might be get abused. In the isolated i-tee environment,
compromised machines can simply restored from the latest clean snapshot. For
achieving the learning impact, using latest and real malware gives additional
feeling of realism and allows to keep the learning and assessment up-to-date and
unique.

As the specific objective for this assessment was malware incorporated into
PDF documents, we used make-pdf-javascript.py3 that allows to create a simple
PDF document with embedded JavaScript that will execute upon opening of
the PDF document. It is essentially a glue-code for the mPDF.py module, which
contains a class with methods to create headers, indirect objects, stream objects,
trailers and XREFs. The created PDFs were further modified and combined with
existing random pdf with PDFftk4.

When a student starts a lab, a set of machines will be provisioned: a lab router
(a Linux system that also forwards packets, where students do not have access
to), Server and REMNUX desktop. A unique PDF document is generated for
each student in time when they first start a lab environment. The PDF creation
takes place on the lab router that student does not have assess to and from there
are distributed to the student’s desktop by a simple script.

2 https://github.com/jodevsa/malicious-pdf-javascript.
3 https://blog.didierstevens.com/programs/pdf-tools/.
4 https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/.
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Before PDF creation, the learning environment is synced with a git pull
command from the teacher’s closed git environment. Through that the teacher
can push additional changes to the lab as needed.

5.4 Assessment Scenarios

The scenario presented to the student is more realistic compared to simple obfus-
cated code analysis, because it involves plausible storyline typical for a good
CTF-s. During the test for the first iteration of the lab, the students had 3 h
time to engage with the tool. The actual amount of time taken for resolving
first iteration was varying between 42 min (fastest) and 2 h 48 min (slowest) stu-
dent. Average time is about 1 h 54 min. During the reverse engineering course,
the students are given homework with similar content and complexity. We also
asked from the students how much time they spent for their homework, and the
answers were varying from 30 min to 8 h.

For assessing the command line usage the Snoopy5 was used. However, due
to a deployment error, logs from the student machines were not available and
command line usage analysis was only be done manually (using forensic tools).
We randomly chose some machines for further analysis. We noted the students
used command line tools native to REMUX and discussed in class, for example:
pdfid.py6, Peedf.py7. For JavaScript analysis, the students mostly opted for using
online de-obfuscators. This was in line with the expectations and tools covered
during the course.

5.5 Student Assessment

The labs are not only used as supporting hands-on teaching material accompa-
nying the lectures, but we also used them in the final exam to assess the learning
objectives of the course. The students were expected to demonstrate the use of
PDF analysis and JavaScript de-obfuscation skills using tools that are native or
easy install on REMNUX8 Linux distribution.

For successful completion of the task, the students need to find specific Indi-
cators of Compromise (IoC), that would describe particular PDF and embedded
code such as network evidence domain names to be resolved, exploits that could
be used, and so on. The students also had to answer a questionnaire regarding
the discovered IoCs, the exam questions were also auto-generated and aligned
with the hands-on malware reverse engineering tasks to be completed.

For an automated student’s progress checking, the system uses strings gen-
erated at the PDF creation time and the checks are done regularly from the lab
router that is not accessible for the student. The lab router remotely checks the
directory that the students are instructed to use as working directory and where

5 https://github.com/a2o/snoopy.
6 https://blog.didierstevens.com/programs/pdf-tools/.
7 http://eternal-todo.com/tools/peepdf-pdf-analysis-tool#releases.
8 https://remnux.org/.
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the PDF is located, and provides automated assessment of the completion stage
of the task.

6 Learning Impact and Evaluation

The assessment was performed for 10 university students and unstructured qual-
itative feedback was asked.

Some examples of the student experiences: One student said that first (s)he
did not know how to begin, then started analyzing the basics from the file, the
hashes, learning that it had JS in it, then the next step was to extract the code,
once extracted the next step was to de-obfuscate it and try to learn what it
does. The assessment allowed to apply several tools and methods learned along
the course within the tools provided in the lab environment necessary to do the
tasks. On other hand, some see that virtual environment is not necessary and
rather be given an injected PDF by link and analyze it locally. This however
does not scale, as more complex topology may be required.

In regards of learning impact the students pointed out that “is interesting as
it points out more similar to a real world scenario”, “we can apply every tool and
method we have learned”, “however the instructions could include some tips”.
During the assessment the student noted that there was no time to “experience
all the REMNUX utilities hidden inside but during exam however I have ana-
lyzed everything before time was not enough to analyze PDF and encrypted and
obfuscated Java script and shell script code.” So it should be considered that
using the similar labs in the learning process would increase learning impact
when used as part of the course, as when only used in assessment the unfamil-
iarity with the tools is having negative effect on demonstrating their skills.

Overall, the feedback was encouraging as the students provided positive feed-
back, however there are some further work required in regards inclusion of the
automated labs in course design (i.e., use it already for homeworks) and technical
improvements (e.g., widen the malware types to be analyzed—not only PDFs).

6.1 Limitation and Future Work

The concept described in the paper was only tested out on the malicious
JavaScript included in the PDFs, therefore future work includes extending the
scenario and the lab to address the elements of download server, compiled exe-
cutable analysis, command and control communication and command control
structure discovery. The similar lab structure can be easily converted to address
different scenarios learning objective in the malware reverse engineering, and
thus cover the wide array of malware elements and types.

Another future enhancement we are planning to incorporate is a task of writ-
ing up the yara rules9, the descriptions (i.e., rules) of malware families based on
textual or binary patterns consisting of a set of strings and a boolean expres-
sion which determine its logic. This would help to measure and ensure that the

9 http://virustotal.github.io/yara/.
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Bloom’s higher cognitive skills have been achieved—i.e., the student is able to
create something new from different elements of information (to create).

7 Conclusion

This paper presented the initial work and case study for design and architecture
of the learning environment based on open source tools to effectively deliver
hands-on automated virtual labs to teach malware reverse engineering.

The contribution of this paper is an improved hands-on lab architecture with
partly automated assessment. The proof of concept was presented for using open
source tools in teaching malware reverse engineering, and combining that with
learning theories to ensure the learning objectives are met and the appropriate
learning experiences are created. Teaching the malware reverse engineering is
an art, but with the right mindset and tool-set the teachers can significantly
increase the teaching quality and potentially reduce the amount of students who
never pick up the required skill set.

Acknowledgements. This work is partially supported by the European Regional
Development Fund (Tallinn University of Technology project VOSA - 2014–
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Abstract. Cybercrime is on the rise and it’s widely believed that an
appropriate cyber hygiene is essential to secure our digital lives. The
expression “cyber hygiene” appears in conversations, conferences, sci-
entific articles, legal texts, governmental publications and commercial
websites. However, what cyber hygiene is, what is appropriate or opti-
mal cyber hygiene, or what is really meant by this expression and related
practices—that is often varying and even somewhat contradicting. We
review and analyze selected academic papers, government and corporate
publications with the focus on implicit and explicit definitions of what
cyber hygiene means to the authors. We also draw parallels and con-
trast the expression in cyber security context and terminology (cyber
awareness, behavior and culture). We present a conceptual analysis and
propose a definition to assist in achieving a universal understanding and
approach to cyber hygiene. This work is intended to stimulate a clarify-
ing discussion of what appropriate “cyber hygiene” is, how it should be
defined and positioned in the wider cyber security context in order to
help changing the human behavior for achieving a more secure connected
world.

1 Introduction

Human factor is increasingly targeted by cyber criminals. A lot of work is being
done to improve “cyber hygiene”—a term that can be broadly perceived as
creating and maintaining online safety. Unfortunately, the definition of “cyber
hygiene” and its related practices are often varying, and sometimes even some-
what contradicting, therefore hindering the efforts to protect the information
assets. The lax use of the term can lead to situations where efforts to improve
cyber hygiene are not considering the context and have either too mild or too
strong effects. For example, some phishing awareness trainings can create so
much fear in employees that they do not open any e-mail attachments anymore,
including legit ones from paying customers, which has a negative impact on a
company’s productivity [1].

The expression “cyber hygiene” appears in the academic publications, adver-
tisements of commercial cyber security products, and everyday news. However, it
is not used consistently. For example, Wikipedia [5] indicates that cyber hygiene
relates to an individual, whereas the European Union Agency for Network and
Information Security (ENISA) refers to the organizational health (i.e., their

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 291–305, 2018.
https://doi.org/10.1007/978-3-030-03638-6_18
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study [15] focuses on cyber hygiene programs targeted at businesses). In popular
media, the importance of cyber hygiene is often stressed, e.g., “For citizens the
most important thing they have to understand is cyber hygiene.” [9], or used
ambiguously, e.g., “[the organization] could have protected itself with proper
patching and better cyber hygiene” [20].

In this paper, we aim to provide a definition for “cyber hygiene” based on
literature review. We analyze selected academic papers, government and cor-
porate publications with the focus on implicit and explicit definitions of cyber
hygiene. We aim to gather existing knowledge on cyber hygiene and learn its
current use and positioning in information security. The objective is to stimu-
late a discussion within the community. The paper intends to be an initial step
towards a commonly accepted understanding of cyber hygiene. To the best of
our knowledge, this is the first work on a deeper dive on cyber hygiene meaning.

2 Results of Literature Review

The underlying research design consists of two phases. Firstly, conducting liter-
ature search. We put our focus on research papers in 2001–2018 in major sci-
entific databases. In addition, we also consider papers and brochures published
by governmental and corporate organizations. Secondly, the identified literature
is manually reviewed and analyzed for the purpose of definition cleaning and
applying this knowledge in cyber security context.

2.1 Cyber Hygiene in Academic Literature

In our research design we focus on the term “hygiene”, to see how this word
has embedded itself into academic literature in the cyber security context. The
search is limited to academic journals and book chapters, as peer reviewed and
credible academic content. The list of pre-defined search terms and databases
is shown in Table 1. The table presents total search results per database as of
February 2018. The manual review is limited to first 200 results in each database,
as relevance of the papers diminishes and likelihood of finding another topical
article is found to be low. The numbers in brackets indicate those papers, where
the term is used in cyber security context.

There are several attempts to define “cyber hygiene”, but in many instances
the term is used in different contexts without clearly defining it. We firstly look at
the full definitions provided, followed by implications from the context analysis.
As often no clear definition is provided, it has resulted in the various forms of
interpretations and uses of the expression.

Kickpatrick [44] quotes an industry expert who defines cyber hygiene as
“implementing and enforcing data security and privacy policies, procedures, and
controls to help minimize potential damages and reduce the chances of a data
security breach.” The definition is broad, in essence aiming to incorporate proce-
dures and controls of cyber defense in the organizational setting. The main focus
of the article is to give an overview of the market for cyber insurance. Practicing
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Table 1. Scope of literature review search on cyber hygiene and similar terms

Database
hygiene

Cyber
hygiene

Cyber(-)
hygiene

Cyber(-)
security
hygiene

Digital
hygiene

IS
hygiene

Internet
hygiene

Online
hygiene

GoogleScholar 493 (9) 24 (3) 41 (0) 104 (0) 11 (0) 41 (0) 26 (0)

Scopus 16 (6) 7 (6) 2 (2) 431 (0) 102 (0) 0 (0) 539 (0)

ACM Digital 7 (0) 0 (0) 0 (0) 14 (0) 49 (1) 11 (0) 1 (0)

EBSCOHost 4 (4) 4 (4) 4 (4) 6 (1) 1 (0) 15 (0) 24 (0)

IEEEXplore 69 (2) 2 (2) 90 (4) 610 (0) 208 (1) 267 (0) 436 (0)

ScienceDirect 195 (13) 1 (1) 171 (0) 41 (0) 8 (0) 39 (0) 76 (0)

SpringerLink 25 (1) 25 (1) 3 (0) 1 (0) 0 (0) 1 (0) 2 (0)

Taylor &
Francis

16 (3) 1 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

cyber hygiene is brought out also in other cyber insurance related articles, e.g.,
that “cyber-hygiene is important, but this needs to be proven” [25].

Pfleeger et al. [57] define security hygiene as “ways to encourage users of
computer technology to use safe and secure behavior online” and discuss how to
persuade individuals to follow simple, fundamental processes protecting them-
selves and others. The term is used more widely, not only in the cyber context.
The main focus of the article is user awareness and training. Similarly with
training focus, Kiely et al. [13] say that in information security management
people “must not only practice fundamental security “hygiene”—that is, imple-
ment security processes and procedures such as strong and frequently changed
passwords, separation of duties, and so on—but also receive added training for
securing enterprise data, communications, and so on (especially in more com-
plex enterprise systems).” Also, others use the term in training context, e.g.,
“cyber hygiene that trains an educated workforce to guard against errors or
transgressions that can lead to cyber intrusion” [35].

O’Connell [52] describes that a good cyber hygiene is “an essential step in
maintaining a good cyber defence is applying best practices and educating every-
one legitimately using the Internet on good network hygiene.” The author says
that due to increased cyber risk, the “standards for cyber hygiene have elevated,
especially for those who have access to vital information” [52]. This paper does
not define the cyber hygiene, but attributes it to the individuals by indicat-
ing that a good hygiene can be taught and through this cyber hygiene base
line increased. The main focus is “identification and application of rules with a
far better chance of keeping the Internet open and safer for all” [52]. Almeida
et al. [23] say that “cyber hygiene initiatives aim at using cybersecurity best
practices to appropriately protect and maintain systems and devices connected
to the Internet”.

Dodge et al. [31] describe “cyber hygiene” as a cybersecurity role of each
employee with computer, equal with employee responsibility to safeguard his or
her door keys or access codes (comparison to physical world). Singer [63] uses
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the expression “to observe basic cyber hygiene” and brings an example of an
organization getting compromised via a memory stick left in the parking lot (only
defined by example). In other cases, the authors only provide an analogy, e.g.,
“best practices starting at an early age, potentially equating good cybersecurity
citizenship with good hygiene such as the importance of washing hands” [61].

Sheppard et al. [62] see it more as a perception, i.e., employee’s “cyber-
hygiene mentality” to prevent the spread of a cyber-attack caused by people
opening infected email links or organizations having lax password security pro-
cesses. They say that cyber hygiene extends to an organization’s supply chain
and that the lack of cyber hygiene hampers the organization’s ability to respond.
Thus, cyber hygiene and adequate protective measures are seen as an approach to
mitigate the consequences of cyber-attacks. The authors bring out inter-company
scope that is not usually mentioned in other articles.

Maybury [49] classifies fostering cyber hygiene (e.g., encrypting data at
rest/in motion, effective identity management, passwords) as part of asymmetry
principle under operations and maintenance. The author also points out that
much of today’s cyber hygiene efforts are toward human element and predicts
that soon they need to focus more on design and architecture [49].

Kerfoort [43] says “companies fail to practice basic cyber hygiene” and cyber
hygiene is mentioned in the context of adopting best practices and standards.
Mouradian says security awareness and training “should also have the goal of
cleaning up cyber hygiene across the board” [51]. Sanders discusses the creation
of cyber security practices in the organization’s culture, including the impact of
a good cyber hygiene to an organization, the role of senior executives (C-suite) in
responding to cyber attacks, and the employees understanding of cyber security
standards [58]. The organizational view is also taken by Beris et al. [24], who
say that when the organization has ensured security hygiene, this can contribute
to the behavior towards compliance. The security hygiene is defined “as process
of identifying and re-designing high-friction security” [24]. The hygiene in these
examples rather implies organizational policies and culture.

Dobbins [30] claims that attackers mostly exploit poor “online hygiene”. The
good online hygiene practices include, among others, avoiding malicious email
attachments, compromised websites, or infected media; employing antivirus and
antispyware scanners; updating applications, software, and operating systems
within 48 h of patches becoming available, etc. [30] This use of expression com-
bines behavioral and technical measures.

However, many authors simply focus on technical measures. [48] refers to
an industry expert: “...how you’ve configured your firewall or do you have a
firewall and how is it configured? Do you have AV? Do you have a patching
regime in place? It’s all good stuff: it’s all good cyber-hygiene!”. Some other
uses in technical context include [59], who says that“...security controls describe
basic cyber hygiene, such as maintaining accurate asset inventories and limiting
network ports and protocols, and will have limited effect against advanced cyber
tactics or even insider threat where there are many more unknowns”, and [32],
who writes that the best way to mitigate the threat is “just ordinary hygiene:
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downloading the patch to keep your software up to date, and making sure your
firewalls are operating”.

Furthermore, it is commonly claimed that cyber hygiene is a protective mea-
sure, e.g., “proper cyber hygiene would prevent most hacking attempts; how-
ever, cyber hygiene is not properly implemented in most organizations” [66],
“such attacks are made possible because organizations are not doing things like
basic cyber-hygiene around patching and understanding where their weaknesses
lie” [47], “poor hygiene is a risk factor” [28], and “adapt to better cyber hygiene
that will make phishing harder to achieve” [27]. The failures are blamed on the
bad hygiene—“the WannaCry attack were criticized for failing to observe basic
cyber hygiene” [19],“users avoid patching regularly or practice weak operational
security (i.e., cyber hygiene)” [39].

Several authors aim to classify user behaviors and incorporate “hygiene” into
their models. Kelley et al. [42] classify user security behaviors in two categories—
cyber hygiene and threat response behavior. Stanton et al. [64] developed a
six-element taxonomy of security behavior that varies along two dimensions:
intentionality and technical expertise. The lowest level of their categorization
is “basic hygiene (novice and benevolent user)”—whose “behavior requires no
technical expertise but includes clear intention to preserve and protect the orga-
nization’s IT and resources.” Another example is by Wang et al., who propose
e-hygiene model in which human factor is the major vulnerability of the informa-
tion security; and “Awareness, Capitals and Abilities form the three dimensions
that information users must act to minimize the risks of information malice” [65].

Some authors use the term in combination with activity, e.g., “cyber hygiene
scans of Internet-facing systems” [16]. This indicates that hygiene can be sepa-
rated from the person and considered as service, i.e., “the underlying infrastruc-
ture is maintained for you, including all patches and required cyber-hygiene” [50].

In Internet of Things (IoT) context, Oravec et al. [53] suggest that “Cyber
hygiene” strategies may soon expand from current computing technologies and
there is need for designing instructional materials in establishing cyber hygiene
routines. In [54], Oravec describes that “individuals engage in some minimal
cyberhygiene routines”. Fabiano [33,34] similarly refers to the need of establish-
ing expert consensus concerning “key risky user behaviors that may undermine
cyberhygiene in IoT environments”.

Overall, we note that the expression is finding its way into academic literature
in the cyber context. However, the “cyber hygiene” has various meanings and
used in many differing contexts in the academic literature. There is no common
approach whether hygiene has behavioral or technical implications, or whether
it is seen at individual or organizational level.

2.2 Cyber Hygiene in Non-Academic Use

For the non-academic publications, we use Google search engine and apply the
same keywords as for academic literature. However, as the Internet content is
extremely varied and rapidly changing, our research design focuses on finding
the main use cases in the United States of America (USA) and European Union
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(EU), by international organizations and in the industry guidelines. We use
judgment to assess the reliability and relevance of the source and content for
our research purpose. We present our findings, starting from the governmental
and legal publications as they are in the capacity to set the standards followed
by corporate publications. In the cyber security standards and legislation the
term “cyber hygiene” is rather implicit by establishing set of baseline practices
of safeguarding (controls) to protect against cyber intrusions.

Examples of the USA and EU: In the USA, the “cyber-hygiene” term was
brought into public attention in the five-step National Hygiene Campaign in
April 2014, that was organized by the Center for Internet Security (CIS) and
the Council on CyberSecurity to help preventing hack attacks on computer sys-
tems [45] and promote cyber security as a public “health” issue [12]. The five
steps [12] were simply expressed as: (1) Count, (2) Configure, (3) Control, (4)
Patch, (5) Repeat [45]. An explicit use of the terminology can be found in The
Good Cyber Hygiene Bill [18] that was introduced in June 2017—it is still to
become a law but the draft suggests the National Institute of Standards and
Technology (NIST) to establish a set of baseline voluntary best practices for
safeguarding against cyber intrusions that would be updated annually. NIST
Special Publication [11], provides a catalog of security and privacy controls to
protect organizational operations, organizational assets, individuals, other orga-
nizations, and the state from a diverse set of threats including hostile cyber-
attacks, natural disasters, structural failures, and human errors. Awareness and
training is one of the security controls. There is also a small companies special
publication [10] that provides basic recommendations without forcing the busi-
ness to implement a specific technology. NIST itself offers no definition of cyber
hygiene in the glossary [7].

For the EU, ENISA has issued an overview document about cyber
hygiene [15]. The Interactive Terminology for Europe promotes the definition
of CIS [12]: protecting and maintaining computer systems and devices appro-
priately and using cyber security best practices [9]. ENISA uses analogy that
cyber hygiene should be viewed similarly to personal hygiene and, once prop-
erly integrated, it would consist of simple daily routines, good behaviors and
occasional checks to make sure the organizations’ online health is in optimum
condition [15].

Despite all the Member States having developed their national cyber security
strategies, such strategies have rarely (only in the United Kingdom (UK), France
and Belgium) translated into direct cyber hygiene programs that would provide
guidance around what constitutes good practice, according to [15]:

– The UK has Cyber Essentials guidance to identify the basic technical controls
required to defeat the vast majority of cyber attacks. There are only 5 control
areas and the emphasis is very much on physical infrastructure controls [4];

– France has set 40 Essential Measures for a Healthy Network, produced by
ANSSI10. The foundation guide covers 13 control areas and suggests in-depth
approach. Those controls are focused around standard office systems (separate
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guidance is available for SCADA/ICS systems) [2]. Because of the size and
perceived complexity of the 40 rules, there is a cut down version of 12 rules
to assist small to medium size enterprises [8];

– Belgium has a high level Cyber Security Guide that is split into two parts:
(1) 10 Key Security Principles which should be adopted by every business,
and (2) 10 “must do” security actions which look to turn the principles into
more accessible guidance. It also includes a self-assessment questionnaire [3].

All these initiatives focus largely on the organizational cyber hygiene from
a perspective of technical controls of the organization’s IT system. The human
aspects are considered in various degrees (mainly with focus on awareness) and
various levels of emphasis, e.g., Belgium’s guidance first principle is “implement
user education and awareness” compared to UK 5 cyber essentials that include
none. France recommendation list includes “RULE 39 - Make users aware of
the basic IT rules.” ENISA emphasizes need for a standard approach to cyber
hygiene across all the EU [15]. The new voluntary certification process suggested
in September 2017 by the European Commission will shape the standardization
of cyber hygiene in the EU over coming years.

International Organizations: CIS [12] defines cyber hygiene as a means to
appropriately protect and maintain IT systems and devices and implement cyber
security best practices. Developed by leading experts in the field of security, the
CIS Critical Security Controls (CSCs) are a prioritized, consensus based set of
twenty security controls designed to reduce the risk of cyber attack [12]. Controls
CSC 1 through CSC 5 are considered essential to success. These are referred to
as “Foundational Cyber Hygiene”—the basic things that one must do to cre-
ate a strong foundation for your defense: inventory authorized and unauthorized
devices; inventory authorized and unauthorized software; develop and manage
secure configurations for all devices; conduct continuous (automated) vulnera-
bility assessment and remediation; and actively manage and control the use of
administrative privileges. In addition, the CSC control 17 “Security Skills Assess-
ment and Appropriate Training to Fill the Gaps” [12] addresses the awareness
training by analyzing employees’ skills and behaviors. Periodic testing can be
used to monitor the awareness level among employees as well to measure the
training impact in time. Tripwire report [21] examines implementing security
controls that CIS refers to as “cyber hygiene” and reports that many issues
stem from a lack of basic cyber hygiene and the organizations need to improve
their fundamentals such as addressing known vulnerabilities, ensuring secure
configuration, and monitoring systems for changes. The CIS Controls align with
top compliance frameworks such as NIST, PCI, ISO, HIPAA, COBIT and oth-
ers [12].

Industry Initiatives: Payment Card Industry guidelines involve different lev-
els of content for different types of organization roles, e.g., IT administrators,
developers, and management. The approach is mainly technical and focuses on
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educating the users about security standards and best practices [14]. In cloud
and mobile environment, VMware [17] uses cyber hygiene definition when refer-
ring to the basic things that an organization should have in place for cyber
defense. They propose five core principles of cyber hygiene (1. Least Privilege; 2.
Micro-segmentation; 3. Encryption; 4. Multi-factor Authentication; 5. Patching)
as a universal baseline. They also note that mandatory education process should
be in place for everyone.

3 Analysis and Discussion of Findings

Our literature review demonstrates that there is no commonly accepted cyber
hygiene framework and definition. Two themes emerged from the literature:
cyber hygiene as standard (set of practices), and cyber hygiene as behavior.
Both themes were represented both in individual and organizational context.
The literature brought out the interdisciplinary side of the cyber hygiene—it is
about both human behavior and technology. Based on the standards, the cyber
hygiene aspects are often seen as technological, and human side focuses more
on cyber security awareness. What makes finding a common approach more
challenging, is that the concept of cyber hygiene is highly subjective. It is a
human and business problem, not only an IT problem, and no two individuals or
organizations will implement it the same way—that makes it very challenging to
implement or measure it consistently. Nevertheless, having a solid foundation and
at least somewhat similar understanding will help to create a common baseline.

3.1 Origins, Existing Definitions and Use in Other Disciplines

To start with, it is interesting to define the components of the term “cyber
hygiene”: (1) Cyber—relating to or characteristic of the culture of computers,
information technology, and virtual reality, (2) Hygiene—conditions or prac-
tices conducive to maintaining health and preventing disease, especially through
cleanliness [6]. As combined and adapted, a simple definition could be as “con-
ditions or practices to stay secure and prevent attacks related to the information
technology”. When comparing this to the definitions in the dictionaries, then
Wikipedia [5] offers the following definition: “Cyber hygiene is the establishment
and maintenance of an individual’s online safety. It is online analogue of per-
sonal hygiene, and encapsulates the daily routines, occasional checks and general
behaviors required to maintain a user’s online “health” (security).” The further
explanation emphasizes that cyber hygiene relates to individual, rather than a
group or an organization. Collins Online Dictionary [6] proposes (approval is
pending as of August 2018): “Cyber hygiene refers to steps that computer users
can take to improve their cybersecurity and better protect themselves online.
Cyber hygiene habits need to be inculcated by users while using computing
tools.”

In order to find a definition for cyber hygiene that aligns with common under-
standing, it is helpful to understand origins of the word “hygiene”. It originates
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from New Latin hygina, from Greek hugieina, from hugis healthy [6]. Curtis [29]
defines hygiene as “the set of behaviors that animals, including humans, use to
avoid infection.” The humans appear to have hygiene instincts (reactions that
people find hard to explain). Curtis hypothesizes that the disgust is the urge
to avoid disease (stimuli) and “the perception of a disgusting cue should almost
automatically produce a hygienic reaction” independently from conscious deci-
sion making [29]. How can we use this knowledge in cyber hygiene context? The
problem is that most people do not see Internet as harmful, so hygiene reaction
simply does not kick in. In relation to metaphors used in mental models for secu-
rity, Camp [26] describes health and hygiene as one of the metaphors in security
context and specifies that “different examples and metaphors currently used as
inchoate mental models all indicate different responses by the user”.

Looking at the ways how the word “hygiene” has been adopted in other
disciplines, we use “occupational hygiene” as a comparison. The occupational
hygiene definitions include the anticipation, recognition, evaluation and control
elements, and as a discipline it aims separating people from unpleasant, haz-
ardous situations or exposures [38].

3.2 A Definition for Cyber Hygiene

We propose the following definition: “Cyber hygiene is a set of practices aiming
to protect from negative impact to the assets and human life from cyber secu-
rity related risks.” Therefore, secure behavior (in cyber security context) means
implementing cyber hygiene. It should be noted that commonly it is implicitly
indicated that the set of practices named “cyber hygiene” are relatively easy to
perform. Following basic cyber hygiene should be considered as normal as wash-
ing hands before eating (example of traditional hygiene). Nevertheless, similarly
to different general hygiene standards in different contexts (e.g., hospital, restau-
rant, coal mine) cyber hygiene is highly context dependent. The basic level of
cyber hygiene depends on security requirements.

In wider context, the cyber hygiene is an outcome of creating and maintaining
online safety of individual and organization based on their risk assessments and
taking different forms considering the technology they are using. The activities
are same, but performed in the different context (or level). Imagine a university
and a bank—the organizational type and culture provide different hygiene con-
text. For example, an organization can perform or take responsibility for some
of the individual tasks (e.g., patching and software updates are automated and
pushed down to employees by an IT department).

We think of cyber hygiene as set of practices performed to protect from cyber
harm and usually, it is also implied that such practices are relatively simple to
perform. The cyber threats connected to cyber hygiene are mainly focusing on
human factor—whether directly (e.g., phishing email inviting to insert sensitive
data) or indirectly (e.g., people being not motivated to use long and complex
passwords). The “practices” part in the definition indicates behavior that has
technological and psychological aspects. There are many models used to explain
behavior, see Fig. 1.
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Fig. 1. Overview of selected behavior models to position cyber hygiene

The summary on Fig. 1 presents in comparative way the key elements of The-
ory of Planned Behavior (TPB) [22], Protection Motivation Theory (PMT) [36],
Knowledge Attitude Behavior (KAB) [60] and Fogg’s Behavioral Model [37]. The
cyber awareness campaigns are aiming to improve the attitude and motivation
for a more secure behavior. The security trainings take a step forward and are
aiming to increase the knowledge and skills related to the secure behavior.

The cyber hygiene is not the process itself, but the set of practices. There-
fore, a cyber hygiene measurement would map out the current practices of the
individuals at a timing of the hygiene level evaluation attempt. It is important to
note that the behavior depends on context and therefore the set of practices (i.e.,
cyber hygiene) can be very different in personal and in organizational settings.
Different context can limit the set of possible behaviors—e.g., an organization
can enforce its security policy by deleting all suspicious emails that are caught
by their firewall.

3.3 Related Terminology and Context

The cyber hygiene should be seen in wider context of cyber security and it is
helpful to compare and contrast it to some other close terms. We consider in rela-
tion to the cyber awareness, behavior and culture to encompass cyber security
framework from individual to organization. Figure 2 illustrates the connections
between related terms. It uses the KAB (knowledge, attitude, behavior) model
described by [56] as the basis to illustrate how cyber hygiene and related terms
are connected to each other.
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Fig. 2. Illustration of cyber hygiene and related terms

Cyber Security Awareness. Hänsch et al. [41] aimed to clarify the term
“security awareness” as it also lacked concise definition. They claim that since
there is no agreement on the term, different (and sometimes not compatible)
ways of raising and measuring security awareness exist—that is a very relevant
observation also for cyber hygiene. They analyze the existing literature and
conclude that “there is no ‘right’ or ‘wrong’ security awareness” and when talking
about it, researchers need to express what they mean by it. They conclude that
there are at least three ways of interpreting the term—perception, behavior and
protection [41]. The awareness brings focus attention on security, and allows
individuals to recognize IT security concerns and respond accordingly [7].

Often cyber hygiene and awareness are used interchangeably. Based on our
suggested definition, the cyber hygiene is a set of practices while security aware-
ness is commonly used connected to security knowledge. Having good cyber
hygiene can be an outcome of awareness, training efforts, individual’s attitudes,
peer pressure, motives, opportunities, etc. However, the awareness does not nec-
essarily translate into behavior or “good” cyber hygiene practices. The focus of
cyber campaigns (e.g., Cyber Security Month, Cyberstreetwise, Stay Safe Online,
etc.) is on awareness raising that is a cornerstone for achieving cyber hygiene.

Security Behavior. Security behavior is closely related to cyber hygiene. When
cyber hygiene is the set of protective practices, then security behavior shows
whether those practices are followed. According to Fogg, the behavior is a prod-
uct of motivation, ability, and triggers and to perform a target behavior, the
person must be sufficiently motivated, have the ability to perform the behavior,
and be triggered to perform the behavior at the same moment [37]. From infor-
mation security viewpoint, Guo [40] proposes a framework for conceptualizing
security-related behavior, as there are the divergent conceptualizations and clas-
sifies security-related behavior into four categories: security assurance behavior,
security compliant behavior, security risk-taking behavior, and security damag-
ing behavior [40]. The taxonomies such as [55] help to determine “good” and
“bad” behaviors related to cyber hygiene, i.e., represent desirable and undesir-
able behavior and are helpful in determining also cyber hygiene levels.

Cyber Security Culture. Security culture based on Mahfuth [46] is “integra-
tion process of beliefs, perceptions, attitudes, values, assumptions and knowledge
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that guide, direct and manage employees’ perceptions and attitudes to influence
employees’ security behavior or to find an acceptable behavior for employees
when they are interacting with the information assets in their organizations.”
Cyber security culture is a wide term encompassing cyber security awareness,
secure behavior and cyber hygiene. Cyber security culture is also often mentioned
(e.g., [46]) to affect individual attitude regarding security measures.

4 Conclusion

In order to secure cyberspace, we need to educate every user about the dangers.
For an average internet user, “cyber hygiene” trainings will form the basis of
understanding. However, in order to make this first line of defense most effec-
tive it is important to have a common and solid definition to start from. In this
paper, we provided a definition for the term “cyber hygiene” based on extensive
academic literature review and selection of corporate and governmental publica-
tions in 2001–2018. We analyzed the current usage of expression “cyber hygiene”
in different dimensions to provide the comprehensive understanding of how this
term is used and positioned in the wider information security context. The results
show that cyber hygiene has made its way into the academic and non-academic
use, but the meaning and context varies significantly. Our proposed definition
is aligned with the common and historical use of the word hygiene and aims to
unify the understanding and approaches to support minimizing cybersecurity-
related risks. We hope that this paper can spark some discussions within the
community to build a solid foundation for a proper and secure cyber hygiene
culture in the future.
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Abstract: Cybersecurity is a fast growing domain. The supply of workforce entering the labour
market can not match the current demands. Due to this currently existing and predicted future
skills gap in the labour market, educational institutions attempt to minimize dropouts and study
times. As a direct consequence, the relevance of valid admission and selection procedures has
grown in recent years. However, there is a mismatch between the increased demand for high-
quality admission procedures and the still existing lack of established methods and routines to
conduct these. In this paper we discuss our experience from running admissions in one of the
oldest European master level cybersecurity curricula in Europe. We argue that cybersecurity
skills assessment cannot simply be traditional knowledge-based assessments as this may exclude
suitable candidates, who have not had the opportunity to learn the subject matter or are joining
from different fields. Also selection decision cannot be done purely based on previous grades,
because decomposing school subjects into cybersecurity skills is challenging due to the domain’s
interdisciplinary nature. We present a technical skills assessment method using cloud-based
virtual labs that can be done by the candidates remotely. Those labs focus on assessing the
technical competencies of a candidate and leave the assessment of non-technical skills (which
are at least equally important) to a human interviewer. Also identifying cheaters, who do not
prepare their labs themselves, will be left for the human interviewer. Such on-line exercises show
potential as scalable option to evaluate the cybersecurity technical skills, motivational levels
and cognitive strategies applied for problem-solving in a complex, novel task when being under
performance pressure. The lessons learned are shared; feedback obtained from the applicants and
possible technical metrics for predicting their success in a cybersecurity program are explored.
As further work, we plan to conduct full data analysis and time-delayed interviews to generate
hypothesis that can be further empirically tested with appropriate designs to detect causal
relationships.
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1. INTRODUCTION

The field of cybersecurity encompasses a large variety
of job profiles demanding various degrees of technical or
non-technical skills. Cybersecurity is now considered an
independent discipline in accordance to Cabaj et al. (2018)
or meta-discipline by Parrish et al. (2018). Cybersecurity
is “a computing based discipline involving technology,
people, information, and processes to enable assured op-
erations in the context of adversaries”—it involves cre-
ation, operation, analysis, and testing of secure computer
systems; and also includes aspects of law, policy, human
factors, ethics, and risk management (Cabaj et al. (2018)).

The current best practices vary, however the best selec-
tion systems look for some combination of credentials
(incl. commercial certifications and academic credentials),
knowledge, and skills (Campbell et al. (2015)). Tradi-
tional, knowledge-based assessments may exclude suitable
applicants both in university admissions or job market,

who have not had the opportunity to learn the subject
matter but provide large potentials. Applicants with non-
technological skills may acquire cybersecurity knowledge
later, but would not be distinguishable from the pool of
applicants.

In this paper we focus on assessing the technical competen-
cies of an applicant through hands-on technical exercises
and leave assessment of non-technical skills (which are at
least equally important) to human interviewers and differ-
ent methods (e.g., aptitude tests). To determine technical
skills and knowledge, hands-on technical exercises (both
virtual and live events) can provide insight into the cur-
rently existing skill-set, but also provide insights into the
problem-solving strategies, motivation, perseveration, and
thus the learning potential of a candidate. The appliance
of hands-on tasks allows not only to assess existing tech-
nological knowledge and performance under pressure, but
also provides with a possibility to obtain performance data
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in less stressful and judgmental environment (in contrast
to a personal interview). For example, it allows to control
confounding factors, such as social or performance anxiety.
The applicant’s skills will still be detected, when using
online labs. Also, as the existing skills shortage in the job
market is widely known, many candidates apply to univer-
sities without knowing what to expect from the program.
The labs are expected to give some exposure to digital
skills to an applicant who may not have a computer sci-
ence background, but wants to study cybersecurity. Thus
completion of the labs shows motivation and attitude—
e.g., is a student “afraid” of trying or is (s)he attempting
to complete the labs. Note that the labs have a virtual
teaching assistant, that is describing the objectives for
the virtual labs, gives helping hints in easier labs, and
gives near real-time feedback about the successful task
completion.

The hands-on technical exercises are gaining popularity in
universities cybersecurity curricula for assessing skills and
in teaching process. However, there is limited research that
describe how to assess the applicant’s cybersecurity skills
using practical tasks in adequate and scalable manner (i.e.,
online assessments) and potential use of online hands-on
technical labs as a validated method for skills measurement
and predicting future learning success of a student.

This paper focuses on following aspects in the students’
admissions to cybersecurity program while using compo-
nent of hands-on practical exercises:

• Selection of hands-on technical skills to be included
in the admission process to cover a wide area of
cybersecurity as part of overall admission process;

• Technical, cultural and emotional factors that may
impact the inclusion of (remote) hands-on technical
skills assessment as part of university a admissions;

• Future research outline to validate what exercise
information/metrics can be useful when giving the
applicants hands-on technical tasks, and whether
such analytical data can be used to estimate future
learning success.

Our contribution is sharing the lessons learned from im-
plementing combined approach of skills self-assessment,
hands-on technical exercises and on-line interviews; and
attempting to translate these findings into practical im-
plications and further research questions. The results are
based on ongoing work in the admission process to the
cybersecurity curriculum at MSc (graduate) level and
feedback collected over three years. We use a conceptual
framework of combining credentials, self-assessment, inter-
views and hands-on labs. This is helpful in scaling up the
assessment practice, and also analyzing whether measuring
technical skills would indicate future learning potential or
“practical” intelligence needed to succeed in cybersecurity
career. The further work will analyze digital data collected
from the exercises and a questionnaire with quantitative
and qualitative questions to obtain further insight to the
applicants’ experience.

2. ADMISSION PROCESS

Many factors (such as an applicant’s maturity, motivation,
employment history, writing skills, work experience and

other accomplishments) influence the success of a potential
graduate student. Existing skills level and practical hands-
on experience, will also contribute to success or failure of
applicants’ future learning. Namely, in addition to under-
standing what knowledge is needed for executing tasks and
responsibilities, how to execute and implement in practice
is more challenging. Thus it is not easy to evaluate whether
an applicant to a cybersecurity curriculum is suitable
based solely on their motivation letter, transcripts, grade
point averages (GPAs), CV, etc. Even having short video
interviews is not sufficient to have a deeper understanding
of the applicant’s skills. Therefore, we decided to add some
practical hands-on technical labs to the application process
where the applicants can demonstrate their technical skills.
This approach is scalable compared to additional interview
by the admission staff. Labs are optional and a human
interviewer assesses skills comprehensively (both soft and
technical) and has final decision.

The current admission system in our university, depicted
on Figure 1, uses combination of traditional procedures
(such as academic credentials and online interview with
admissions team), but in addition also novel components
of cybersecurity skills self-assessment and completion of
hands-on online technical exercises 1 .

Fig. 1. Elements of Admission Process

So far, the applicants have been scored for motivation
letter, online interview and supporting information, how-
ever completing questionnaire and technical exercises have
not been scored as part of application process. As cy-
bersecurity is an interdisciplinary field and the applicants
come from many different study fields (e.g., IT, law, social
sciences, etc.) these two components rather provide the
opportunities for applicants to demonstrate their motiva-
tion and skills or give insights of their planned study field.
This information also provides input for curriculum design
based on the applicants’ skills profiles.

We describe cybersecurity skills self-assessment question-
naire, hands-on technical exercises and online interview, as
these components are specific to the cybersecurity program
and relevant to scalable selection challenges addressed in
this paper.

1 https://www.ttu.ee/?id=175198
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2.1 Self-Assessment Questionnaire

Questionnaire (mostly multiple choice answers) is an on-
line form. The applicants rate their knowledge and skills
in Likert scale for computer languages, public key infras-
tructure (PKI), cryptographic hashes, reverse engineering,
network monitoring, risk assessments, firewalls, pentest-
ing, security policy, system administration, finance, psy-
chology, laws and regulations, data mining, cryptography,
digital forensics, security and management.

The questionnaire has been included to encourage appli-
cants to assess their existing knowledge and skills in the
context of preferred specialization (cybersecurity, digital
forensics or cryptography). The self-assessment was se-
lected over knowledge test, as knowledge test would not
be feasible or practical for scalable and flexible format of
the application process to cover all knowledge domains. In
addition, the definition of relevant knowledge in a rapidly
developing field of cybersecurity may also be controversial
and change over time. Furthermore, knowledge questions
can always be “googled” and thus only invites cheating
during the process. Also, use of previous grades is not
necessarily relevant, as despite few subjects have more
direct relations to cybersecurity (e.g., cryptography relates
to mathematics)—de-composing school subjects into cy-
bersecurity skills is challenging as cover diverse spectrum
(organisational, psychological, mathematical-technical, so-
cial/societal, and other aspects). Also in cybersecurity the
applicants come from many different study fields (e.g., IT,
law, social sciences, etc.).

2.2 Technical Hands-On Cybersecurity Labs

An applicant should exhibit potential for critical think-
ing and problem solving skills, which we believe can be
measured when the candidate is placed into the simulated
(gamified) learning environment actually performing some
technical tasks that require putting those skills into prac-
tice.

The virtual hands-on exercises are based on i-tee plat-
form (Ernits et al. (2015)) that enables on-demand ac-
cess to cloud-based virtual environment using a modern
(HTML5 capable) web browser. Such technical setup en-
ables lowering requirements to the applicants’ computers.
For accessing the hands-on lab, an applicant needs HTML5
capable web browser (without any additional plug-ins or
VPN). The main requirement is a decent (at least 3Mbps)
Internet connection. The system provides interactive assis-
tance and guidance using Virtual Teaching Assistant for
the learner.

As measuring all possible skills is not feasible, the exercises
represent a mix of selected technical topics. The set of
virtual labs is the following:

• Introduction lab—essential command line skills (Git,
apt-get, Apache server). Estimated completion time
25 minutes;

• HTTPS Security—basic level skills connected to com-
mand line, public key infrastructure, and server ad-
ministration basics; estimated completion time 45
minutes;

• SQL injection—intermediate level skills connected
to attacking SQL databases (SQL, SQL injection);
estimated completion time 90 minutes; and

• Botnet—advanced level skills connected to network
scanning skills, text parsing (programming skills are
beneficial) and SQL injection skills; estimated com-
pletion time 45 minutes.

The choice of these different exercises is based on typical
attack vectors that the applicants are likely to encounter
in their future cybersecurity jobs and require different skill
levels (from essential to advanced). The combination of
exercises is used to determine skill levels, but also to cover
variety of different skills. Each lab has pre-determined skill
level from basic to advanced level.

2.3 Online Interview

The interview is conducted after the academic credentials
are checked, and the applicant has also completed the
skills self-assessment and technical labs. We use a point
system for each candidate covering areas published on
the admissions website. This allows the admissions team
to build upon the information about the applicant from
these components, and obtain more detailed picture of
applicants’ knowledge, skills and motivation.

Due to the fact that our applicants apply from all over the
world, 10-15 minute online video interviews are conducted
with following structure:

• Welcome and explanation of the interview scope;
• Opening question: For statistical purposes the ad-

mission office collects information about reasons for
selecting the university and program, and information
channels the applicants found this program.

• Transition to technical questions with encouragement
that if applicant does not know the answer—they
should not be concerned and interview can proceed.
Time allows for 5-6 questions in total.

Example question 1: “If you had to both encrypt
and compress data during transmission, which would
you do first, and why?” This is a very popular
interview question 2 , because it sounds almost like a
security question, however is actually an algorithmic
computer science question. The aim of the question
is to see if an applicant has knowledge about how
compression algorithms work. Depending on answer,
the follow-up question explicitly asking fundamental
principles of compression algorithms.

Example question 2: “In public-key cryptography
you have a public and a private key, and you of-
ten perform both encryption and signing functions.
Which key is used for which function?” The aim to
see logical thinking—high temptation is to encrypt
with a private key, which is incorrect.

• Thesis topic discussion: As part of the motivation
letter the applicants are asked to identify two topics
they consider for their thesis. The interview allows
the student to elaborate further on their study and
research interest.

• Closing: Explanation of further steps in the admission
process.

2 https://danielmiessler.com/study/infosec interview questions/

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

171



172 Kaie Maennel  et al. / IFAC PapersOnLine 52-19 (2019) 169–174

3. LESSONS LEARNED

3.1 Evaluation of Process and Data Sources

Firstly, we have obtained analytical data from the hands-
on exercises from the online platform. Data includes met-
rics such as labs completed, completion time, percentage
of lab tasks completed, etc. Secondly, we have conducted
a quantitative survey to obtain input and the applicants’
experience and motivation levels. The surveys were sent
to all cybersecurity program’s applicants and completion
of survey was on voluntary basis. The survey informed
respondents that “the individual survey responses are
treated with strictest confidentiality, and only aggregated
and anonymized results are considered as part of research
publications”. The survey also included explicit consent
for future structured interviews.

The selected analytical data from the exercise platform
and survey responses are presented in this section, however
planned full-scope analysis is described in Section 5. The
selected data from hands-on online system were correlated
to the survey responses in order to identify possible cor-
relations and relevant metrics to predict future success in
the studies. As this is work in progress, we will continue
with interviews to obtain further insight on the identified
correlations. We intend to collect data after their studies
are complete, to identify any other learning correlations.

We assume that our selection procedure as explained
in Section 2 is reflective of the skills and levels needed
for succeeding in the university studies of cybersecurity
field. We also assume the applicants will be responding
truthfully (despite of being rejected).

This study has been conducted on sample of 177 in-
ternational students, with 38% completing the voluntary
questionnaire. The applicants who did not respond, may
have responded differently, thus imposing possible limita-
tion. Also, the study covers short term period, i.e., up to
two years from admission test, another longitudinal study
should be conducted to obtain information and correlation
over longer time period.

3.2 Self-Assessment Questionnaire

The meta-cognitive skills self-assessment can be useful, as
the better one knows himself, the more likely the person
will apply the right strategies as a student, as more likely
she/he will mitigate her/his weaknesses (e.g., one who
knows that he/she postpones difficult tasks will try to find
a group to work with or ask for deadlines and seek early
supervision).

However, the skills self-assessment is not representative, as
such self-evaluation has several limitations. For example,
expert level bias or cultural differences.

The plan is to use time-economic questionnaires to detect
social desirability tendencies to remove the statistic influ-
ence on self-assessments. By checking for correlations with
other self-assessment scores, we can further flag those for
further investigation.

3.3 Online Interview

The questions were selected to mainly see applicants’ reac-
tion and logical thinking process. As in the cybersecurity,
the person will face many unknown factor and it is impor-
tant how they approach it. Does this have impact on their
future study success?

We have many applicants who believe “WinRAR” is
a compression algorithm, and cannot even admit they
do not know how the computer algorithm works that
makes the file-size smaller; some even do not know what
“algorithm” means. Also, many applicants would share
their private key in public key cryptography question with
the interviewer by sending it by e-mail.

Furthermore, questions need to be adjusted to take into
account the quality of the network connection. It is im-
portant that the candidate can understand the question
despite a potential poor network connection. Technical
problems happen and a candidate must not be punished
for an issue that is caused by the video conferencing
software. However, we are also aware of attempts to misuse
this for cheating. We even have cases where the interviews
were conducted by someone else. For this reason a “not
working” webcam is problematic and raises suspicion.

3.4 Technical Hands-on Cybersecurity Labs

The following general patterns are emerging:

• The successful applicants complete all labs 100%.
Any student who does not complete all labs, will
get questions in the respective subject areas in the
interview. The objective is to figure out why the
student did not attempt all labs, because a lack of
motivation in the labs could indicate a systematic
lack of motivation in the study program later. There
are some exceptions where the current workload of
a prospective student does not allow the candidate
to find the time to complete all the labs. Yet again,
this maybe indicative of how they deal with future
studies (it should be noted that most of our students
are working at least part-time while studying).

• The applicants who need several tries and take many
hours for the labs demonstrate high motivation. As
they might not have been exposed to the technical
subjects (e.g., not much prior Linux or program-
ming/scripting experience, etc.), taking long time is
not considered a problem.

• However, those applicants who quit labs after 5 min-
utes are likely going to be rejected. The rationale here
is that, if they give up that easily in the admissions
test, their motivation to study can be questioned and
a similar behaviour might be expected during their
studies.

• As a result, applicants who achieve 100% do not
necessarily get accepted (e.g., labs are done at home
and cheating might be suspected by the interviewer).
However, also the applicants with legal, economic
background have a good chance of getting in (assessed
as good cybersecurity students), but this does not
reflect in the technical assessment.

This section presents an overview of the initial analysis, in
order to derive potential predictive metrics from the col-
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lected data from in the admission process to be subjected
for further research.

Time and Other Completion Activity Patterns Time is
one of the common metrics that covers the same grounds
in learning, gaming and other analytical evaluation. We
hypothesize that applicants who spend longer time than
estimated for admission lab completion may not have nec-
essarily pre-required technical skills level, however demon-
strate higher potential for learning success as they ex-
hibit motivation. On other hand, the skilled applicants
who spend nominal time have pre-required technical skills
and therefore demonstrate learning success potential. Our
dataset includes information about time spent on individ-
ual four labs and total time, also timestamps (start and
end times) and number of attempts. In addition, we have
asked for self-assessment for motivation level and learning
success information through the surveys.

Other metrics (such as number of tutorials hints given,
system access patterns, timing, length of sessions, etc.)
are collected as part of the online platform, and could also
be relevant, however they are not yet analysed in detail,
and not used for selection decision so far.

Lab Completion Percentage The lab completion percent-
age (i.e., the level of tasks completed) is another readily
available metric. We expect this metric to correlate with
skill level of the applicants, and also potentially correlate
to success in their later studies. Our exercise dataset in-
cludes information about lab completion percentage spent
on individual four labs and number of attempts. In addi-
tion, we have asked for self-assessment of skills level and
length of experience for programming languages through
the surveys. The applicants with longer programming
experience or higher skills assessments, are expected to
perform better in the labs (especially in Botnet lab).

Emotional, Cultural and Social Factors Are there any
common concerns raised by the applicants? For example,
one of the top reasons why new students enter and stay
is the quality of human interaction between faculty and
existing students (Biggers et al. (2008)). However, when
using remote labs reduces such interactions and rather
replaces them with human-computer interaction, is this
approach potentially negatively impacting the acceptance
and entry decisions by the applicants?

One underlying question that has not been answered is
whether use of such hand-on labs can create unfair ex-
clusion and bias in the admission process. The collected
data includes the qualitative feedback from the candidates
to obtain insight whether use of such hands-on technical
exercises is appropriate and does not create bias, exclusion
or emotional stress. For example, creating an impression
to the applicants that technical skills are more valued
compared other relevant knowledge areas. Also, as cy-
bersecurity is interdisciplinary domain and the applicants
come from different study fields, can inclusion of such labs
potentially scare off potential successful students.

When analyzing the qualitative feedback obtained as part
of the surveys, the overall positive impressions weight out
negative impressions among the applicants, see details
in Table 1. The words used indicated mainly positive

reaction (words link interesting, excited, fun, attractive,
etc.), it also indicated motivation (words like challenging,
difficult/easy, etc.). The word “scared” was mentioned
few times but mainly in context of being scared in the
beginning, and few mentioning they were “scared off” by
labs.

Table 1. Feedback summary on students’ ex-
perience on use of hands-on labs in admission
process (i.e., scare off, time constraints, etc).

Feedback comments Admitted Not started Rejected

Positive 78% 29% 57%

Neutral 17% 71% 38%

Negative 6% 0% 5%

Some examples of feedback include comments such as: “I
wasn’t sure that I will be able to pass any of them, at start.
But then I saw that they contain documentation, and it was
quite easy to read documentation and complete the lab.”,
“Really exciting to stimulate”, “I strongly support the
university having this as part of the admission process and
using it to admit those from non-traditional educational
backgrounds.”, “At first, I was scared and unsure of what
to expect but on getting to see the introductory texts, I
noticed it wasn’t just a blank screen with getting to see
whats not on the screen...In all, it was a good experience
and I loved it.”, etc.

From negative aspects, cheating is major concern, i.e., the
labs are completed by someone else than the applicant.
We currently do not assess cheating. We are aware of a
few cases where someone else did the labs, and/or took
the interview, only in order that a friend could obtain
a Shengen-visa. Luckily such cases are very rare and the
state authorities are making a careful check on incoming
students to reject those who likely only apply in order to
obtain a visa.

Overall use of the labs across the applicants supports that
the applicants rather appreciate it as a positive experience
than view it has negative experience.

Technical Limitations While implementing the virtual
labs we learned that the labs are blocked in certain
countries (e.g., Iran). The applicants typically know their
way around by using VPNs, but they might face issues
with latency during their labs. Therefore ensuring fair
chance to complete needs to be considered.

4. RELATED WORK

Prediction modeling in the university admissions (includ-
ing in Science, Technology, Engineering and Mathematics
(STEM) disciplines) is not a new topic, however not been
done in cybersecurity specifically. Most of the models
assume previous knowledge of past performance or are
mainly based on demographic data (e.g., Campbell et al.
(2007), Kabra and Bichkar (2011), Chen et al. (2018)). The
analytical metrics include the learners’ individual charac-
teristics, such as socio-demographic information, personal
preferences and interests, responses to standardized in-
ventories, skills and competencies, prior knowledge and
academic performance, as well as institutional transcript
data (Loh et al. (2015)). However, many of such metrics
may not necessarily be available and admission decisions
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need to be made with limited data. Also, the existing work
does not address the question whether gamified hands-
on exercises can be used as relevant predictor for future
learning success.

In cybersecurity field, Augustine et al. (2010) describes a
Computer Science freshman recruiting tool that provides
an eight hour cyber training and competition framework
designed to be attended by Computer Science candidates.
However, this approach is not scalable in case of inter-
national admissions as assumes attendance and signifi-
cant time commitment from existing faculty and students.
Campbell et al. (2015) propose a model for predicting
cybersecurity aptitude beyond a general-intelligence ap-
proach. They suggest that tasks, work roles, and people
can be represented along the same set of axes to match
job requirements to person attributes. These constructs
can then be used to create assessments of potential for
cybersecurity applicants, including the Cyber Aptitude
and Talent Assessment as proposed by Campbell et al.
(2015). However, the challenge is that the applicants are
still exploring different career paths and the admissions
process should allow such flexibility, and also accept differ-
ent student profiles. Also such aptitude tests do not reveal
technical base-level skills.

5. FUTURE WORK

This paper focused on sharing our experience and lessons
learned from implementing skills self-assessment question-
naire and technical hands-on labs, as novel part of the
university graduate level admissions for cybersecurity pro-
gram. Based on the full data analysis and further evidence
to be collected from the interviews with the students, we
plan to evaluate the admission process by:

• Assessing academic performance throughout the stud-
ies and correlate it with the lab performance, the
interview and self-assessment questionnaire scores to
identify which part of the current admission process—
or which interaction of parts—has most predictive
power for academic performance.

• Validation of the hands-on technical exercise tasks by
correlating it with general intelligence, other cognitive
skills, and domain-specific knowledge to improve our
understanding for what is tested in this task (con-
struct validation).

6. CONCLUSION

In this paper we described our university cybersecurity
MSc (graduate level) program admissions experience, com-
bining cybersecurity skills self-assessment, hands-on tech-
nical online labs and online interviews. Online technical
labs are scalable and easy-to-implement, however selection
of technical skills is critical and conclusions from analyt-
ical data need further validation. The feedback from the
applicants has shown that such labs are seen very positive,
as they enable the applicants to demonstrate their skills
or gain insights what to expect during their studies. As
part of lessons learned, we discussed selected analytical
data from the technical hands-on exercises in the context
of scalable technical skills assessment. We hypothesize that
the analytical data can be used as a predictive component

in the admission process to identify the applicants who
are motivated and likely to succeed in the cybersecurity
curriculum. However, the further analysis via interviews
and other methods will be conducted to confirm these
correlations as causative, as part future work.

The further plan is to combine cognitive aptitude and team
skills measurements with technical element, to improve the
selection process. As part of selection process we want to
predict their ability to learn new knowledge and acquire
new skills, and meta-cognitive abilities are known as such
predictor.
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Abstract: To overcome the current skills shortfall in cybersecurity, a broad range of IT professionals and users 
should be educated in the fundamentals of protecting computer systems and the data they contain. This requires 
novel and scalable teaching methods. The main contribution of this paper is to introduce an approach of how to 
create cybersecurity exercises that can measure relevant competencies. We demonstrate how technical event 
logging can be linked to learning outcomes and skills measurement by defining intermediate abstraction layers. 
These take raw forensic data from the game-system and network, and gradually group them into events and 
abstract measurements until they can be mapped to learning theories. The suggested approach enables deeper 
insights into learning. This approach has been applied for developing labs using our cloud-based open-source 
tool. The labs have been used by more than 2 000 learners in over 15 000 sessions. A thorough hands-on skills 
assessment was conducted before and after a set of exercises for 27 participants. Results show that the 
suggested method can be used for creating and improving cybersecurity exercises. 

Keywords: cybersecurity education, exercises, skill assessment, learning 

1. Introduction 

Cybersecurity exercises are becoming increasingly popular for educating and evaluating security specialists 
(Ogee et al, 2015). This comes as no surprise when our society is fundamentally dependent on IT systems and 
vulnerabilities are subject to exploitation by threat actors. To overcome today’s cybersecurity problems, a very 
broad range of IT professionals should be educated and everyone should understand the fundamentals of 
cybersecurity.  

Therefore, novel and scalable teaching methods need to be developed. Realistic attacks and complex simulated 
systems in virtualized environments can provide engaging and practical hands-on learning experiences using 
fully automated training that utilizes adaptive learning methods. The goal is to have a training environment that 
would detect the skill-level of the learner and automatically select the most appropriate learning tasks for the 
user. Thus, it is important to have a measurement methodology that is able to accurately capture the capabilities 
of the user. However, current research suggests (e.g., Fulton et al, 2012) a lack of defined educational outcomes. 
This might be due to the overall difficulty of designing and implementing a complex defence oriented gamified 
cybersecurity exercise. Specifically, constant adjustments to the scoring system and storyline are usually very 
time consuming and may divert the attention from in-depth analysis of the final score. 

Our aim is to apply the existing instructional design methods for connecting raw data points to high level 
competencies using an evidence-correlation model. Specifically, we suggest a method for the design and 
implementation of an exercise that would give a structured and automatic feedback of the participants’ skills 
and competencies. This is implemented on i-tee, an open-source software platform (Ernits and Kikas, 2016) 
developed from experience gained in several large-scale exercises including Locked Shields and Cyber Security 
Challenge UK. Nevertheless, the suggested model is itself platform independent and can be implemented using 
other environments such as OpenStack.  

Over 2 000 learners have used the system in more than 15 000 various lab sessions on a wide range of topics. 
Of those, the skills of a pilot group of 27 IT developers were measured before and after a set of training exercises. 



 
 

The set consisted of 13 different labs: Command Injection, Cookie Security: Secure, Cookie Security: HttpOnly, 
Cross-Site Request Forgery (CSRF), Defence against CSRF, Insecure Direct Object Reference, Intro Lab, Path 
Traversal, SQL Injection, Unrestricted File Upload, Reflected Cross-Site Scripting (XSS), Stored XSS and Phishing 
based on Stored XSS. 

2. Related work 

Performance measurement is crucial for mastering a skill as argued in Understanding by Design by Wiggins 
(2005). There is also a growing body of work on this topic in the field of cybersecurity exercises. This section 
focuses on existing conceptual approaches and evaluation models in cybersecurity training, with a focus on 
training through exercises. 

2.1 Design approaches to gamified cybersecurity training 

Katsatonis et al (2017) provide a concept map of cybersecurity game-based approaches’ key elements that 
include also learning objectives and assessment. Learning objectives should be based on performance, 
proficiency and be connected to game-play. Vykopal et al (2016) suggest decomposing the training activity into 
individual levels that learners have to accomplish for satisfying specific learning objectives. The data collected 
include metrics such as the start and end of each game and level within it.  More detailed data include submission 
of incorrect flags and their content, hints used, skipping a level, displaying a level’s solution and game ID (Vykopal 
et al, 2016). Vykopal et al (2017) state that setting learning objectives based on learners’ skills before the actual 
exercise is a challenging undertaking.  

Clark (2015) proposes a 4-level model, where in order to create a broader understanding of the security 
elements the impact on the target-host, server, firewall and intrusion detection systems is highlighted at each 
level. Nicholson et al (2016) suggest that learning should be individualised to fit the higher skill or competency 
level the subject is aiming for. These should consider the learners’ profiles, content brokering, experience 
tracking and competency network. With these high-level conceptual approaches our proposed model—
experience and competency tracking allows the learner profiles to be updated based on the progress in 
competencies and also need to be easily adjusted. 

2.2 Evaluation models used in cybersecurity exercises 

There are multiple frameworks looking at classification of cybersecurity-related competencies. The National 
Initiative for Cybersecurity Education Cybersecurity Workforce Framework (NICE Framework), published by the 
National Institute of Standards and Technology (Newhouse et al, 2017) lists knowledge, skills and abilities 
required to perform tasks in specific work roles. Rashid et al (2018) introduce the Cyber Security Body of 
Knowledge project aiming to codify the foundational and generally recognized knowledge on cybersecurity. 
Nevertheless, those high level frameworks provide only generic ideas instead of specific tasks for measuring 
skills. For example, task T0349 in NICE framework is described as “collect metrics and trending data” (Newhouse 
et al, 2017) leaving space for various interpretations about the task specifics.  

Abbott et al (2015a) provide a quantitative evaluation of techniques for student performance assessment. This 
uses an automated mechanism for parsing log entries into blocks of time during which participants are focused 
on specific high-level objectives. Abbott et al (2015b) also describe an exercise instrumentation that enables 
automated performance assessment by capturing students’ computer-based transactions in a log. This is time-
synced with the game-server to deliver challenges and registers student responses. Labushange and Grobler 
(2017) describe assessing technical skill level based on indexed similarity of the commands used to achieve the 
specified objectives from which the level of participant’s practical knowledge could be inferred. The paper 
classifies learner’s actions that can automatically deducted using the clustering of commands but does not go 
into details. The similar underlying idea is implemented in our model at raw data to Game Event Logs (GEL) 
transition level. 

Many articles address different issues in cybersecurity exercises including skills assessment and evaluation 
attempts. Scoring is often seen as a tool to provide evaluation and feedback to exercise participants. However, 



 
 

scoring systems are not necessarily connected to learning objectives. What is missing is a practical and scalable 
model that would provide evidence that high level competencies can be achieved through analysing the granular 
data level of the exercises’ raw data. 

3. Connecting competences to raw data  

In cybersecurity exercises, different events happen rapidly in a semi-controlled environment. However, learning 
experiences are not linear or predictable. For example, in case the participants have a task to defend a vulnerable 
web application, they may have different correct ways to deal with the attacks. These include block attacks by 
implementing intrusion prevention systems by using web application firewalls or by fixing the vulnerabilities of 
web application. There are also different incorrect or insufficient ways to react such as removing the attacker’s 
injected code/content from the system, taking vulnerable applications offline or by breaking web application’s 
functionality. These make measuring specific competencies challenging. 

The primary focus when designing an exercise is to start with the conceptual design. First, targeted competencies 
that the exercise should teach or assess are defined. These competencies are decompiled to different skills with 
measurable learning objectives. Based on those learning objectives, specific tasks can be determined that could 
be measured by evidence—i.e., events happening in the system. 

To improve the flexibility and efficiency of the system, Game Event Logs (GEL) are designed to capture all the 
important events. When GEL are designed appropriately, the amount of the exercise data needed to analyse 
decreases significantly. Massive amounts of raw data can be deleted after the exercise while maintaining the 
ability to dynamically change the rules for interpreting the events. The raw data is used to generate GEL that are 
interpreted to evaluate whether a specific task is completed. Commonly, the completion of tasks is used as an 
input for score calculation, but we suggest doing more than that. The completion of tasks indicates the 
proficiency level of different skills. Skills in turn are gathered into meaningful sets to form competencies. 

Fig. 1 illustrates the suggested design model for exercises enabling the evaluation of participant competencies. 
The model consists of 5 layers with the bottom layer representing the raw data and the highest layer being 
specific competencies that are targeted by the exercise. It is important to note that while the technical data 
flows from the 1st to the 5th layer, the logical design flow should start from the top layer. The layers themselves 
are connected to each other but at the same time independent, allowing the use of different formats or 
processing systems. In the following sections, we explain each layer in detail and use Cross-Site Scripting (XSS) 
related competency for illustration. 

 

Figure 1: Suggested structure for exercises 



 
 

3.1 Layer 5 - Competencies 

The creation of every exercise should start with question "Why?". In a cybersecurity context, it is usually the 
need to protect the systems or build more secure systems and to achieve this goal, organisations need people 
with specific competencies. The term competency is somewhat ambiguous as shown by Le Deist and Winterton 
(2005). In the context of this paper, we define competency as a set of knowledge, skills and abilities. These focus 
mainly on practical skills that are relevant in the field of cybersecurity and that can be measured by performance 
in virtual hands-on exercises. 

The competency can be taken as a general theme for a set of skills that it encompasses. For example, defending 
against Cross-Site Scripting (XSS) was one of the competencies used in our labs. 

3.2 Layer 4 - Skills 

Using competency as the general theme, we can look at skills as sub-topics of an area. As different jobs require 
groups of skills, it is possible to define the set of skills for a particular position and then evaluate an individual 
accordingly. However, it should be noted that dividing job qualifications (professionalism) into different skills 
(and sub-skills) is a subject of debate (Rigby and Sanchis 2006). In cybersecurity, the relevant skills and sub-skills 
can be further analysed based on types of attack vectors. In the XSS lab for example, the types of XSS attacks 
can be defined as reflected XSS, stored XSS, and DOM based XSS (Gupta and Gupta (2017). In our example, the 
exercise focuses on developing skills to defend against the reflected XSS. 

The layer of skills defines both high- and low-level skills. High level skills are more meaningful and are used in 
daily conversations. Installing WordPress to a web server from scratch is an example of a higher-level skill. Lower 
level skills are usually not meaningful or useful by themselves. Being able to remotely log in to a server using 
SSH is an example of a sub-skill. It is not that useful by itself, but it is a needed step in a larger process. Note that 
skills and sub-skills can be used to specify different proficiency levels. Some sub-skills can be considered 
necessary for some higher-level skill and different learning objectives can indicate different skill proficiency 
levels. 

Specifying a skill in a measurable way is not an easy task. For example, a learning objective can be ‘Learner can 
fix a web application with a XSS type vulnerability’. An undesired fix, which would fulfil the task could be to take 
the site offline. This means that appropriate learning objective should be: ‘Learner can fix a web application with 
a XSS type vulnerability without disturbing service or breaking functionality’.  

Skills are closely related to learning outcomes. Learning objectives define the expected goal of exercise in terms 
of demonstrable skills or knowledge acquired by a participant as a result of exercise (Malan, 2000). The skills 
and knowledge can be analysed using different models such as Bloom’s, SOLO, etc. Figure 2 illustrates how in 
our cybersecurity exercise training model we follow and map the task with a range of cognitive learning and 
skills layers. These are Not graded (0), Remembers (1), Understands risks/attacks (2), Applies attacks (3), Applies 
defences (4) and Masters defences (5). 

 

 Figure 2: Skills report 



 
 

The cognitive learning layers based on the revised Bloom’s taxonomy (Krathwohl and Andersen 2001) are 
remembering, understanding, applying, analysing, evaluating, and creating. The adjustment is made in order to 
incorporate the attack and defence aspects. In order to defend, the learner needs to understand and apply the 
attack technique themselves before being able to creatively avoid such vulnerabilities in the system. Difference 
in applying and mastering the defence is transferability such as assessing if the learner is able to defend against 
this type of attacks in different operating systems or tools. Mastering the defence (level 5) in our model usually 
means that the same skill is measured and mapped over different labs. This ensures that the learner is able to 
transfer and apply the skill using different technologies. 

In our lab example, the learning objectives are as follows: 

▪ Learner understands impact of the reflected XSS. 
▪ Learner mitigates the attack (e.g., applies HttpOnly flag). 
▪ Learner fixes XSS vulnerabilities (using PHP in this lab).  
▪ Learner performs reflected XSS. 
▪ Learner recognises reflected XSS. 

3.3 Layer 3 - Tasks 

Tasks represent assignments that can be clearly defined and measured. Different tasks should represent 
different proficiency levels for the connected skills. For example, performing a blind SQL injection can be 
considered more advanced than a simple SQL injection.  

In the reflected XSS lab, the tasks mapped to the cognitive learning layers are the following: 

▪ Learner finds reflected XSS from unfamiliar target (Linux, php, web application). 
▪ Learner uses reflected XSS found to retrieve session cookie of emulated computer user. 
▪ Learner uses session cookie to login. 

Tasks can be arranged in groups or in hierarchies. Fig. 4 shows an example from our XSS lab displaying a task of 
finding a vulnerable field in a web form. This task has two sub-tasks that are evaluated based on user input. 

 

Figure 4: Example of tasks in the XSS lab 

Tasks can be measured differently—by using direct input from the learner or with the help of some automation 
(Mäses et al, 2017). In case of automated task evaluation, it is useful to have a dedicated abstraction level for 
GEL. 

  



 
 

3.4 Layer 2 - Game Event Log (GEL) 

As seen in Fig. 1, the conceptual design of an exercise finishes with defining tasks. The exercise organisers do 
not need to go deeper into technical design. Therefore, starting from Layer 2, the focus moves from design to 
measurement. The question is how to quantify a particular task. This could be done by observing system logs or 
using specific scoring scripts such as a script that pings a web server and registers responses.  

GEL enables flexible and meaningful rules for task evaluation. GEL include may references to the system log. For 
the XSS lab, the following events have been defined: 

▪ The lab is personalised correctly (learner has successfully initialised the lab). 
▪ Target website in the lab works correctly (based on user emulation checks). 
▪ Learner has found the vulnerable form field (submitted correct field name without submitting all/lots of 

them). 

In the following example there are two events described in GEL. The first one is stating that the simulated user 
(searching for the link with XSS injection) was active. The second example comes from a lab dealing with drones, 
where drone number 10 is functional, has operational backdoor (backdoor vulnerability not fixed), has XSS 
vulnerability (status false, because vulnerability is not fixed). 

Apr 30 09:24:58 GEL index.js[926]: debug: Stored XSS: Simulating manager user 

Apr 30 09:55:59 GEL index.js[1763]: info: [Drone 10] Status: functional=true, 

backdoor=false, xss=false 

GEL allows new rules to be added to higher levels of the model. These define new competencies, skills and tasks 
based on already existing game events, enabling rules to be redefined and fine-tuned more dynamically. 

We use event correlation to evaluate objectives based on event logs. The attack evidence, such as successful or 
unsuccessful attacks, is collected and correlated with evidence that emulated computer users are able to use a 
full functionality of the simulated system. 

3.5 Layer 1 - System state, raw data 

The system state can be found from system logs or by a specific script checking such as whether the ping packet 
to the server gets a reply. Based on the system states, the event logs are created. 

4. System architecture  

The system architecture gives a more holistic view for understanding the suggested approach. However, the 
proposed method that links log events and raw data to learning outcomes does not depend on the underlying 
software stack. The main goal is to measure the cyber skills in a scalable way. Such measurement is a 
prerequisite for individually adaptive learning and enables to measure training effectiveness. 

In our architecture, to access the hands-on exercise platform, a participant needs HTML5 capable web browser 
without any additional plug-ins or Virtual Private network(VPN). The system uses a Virtual Machine (VM) Host 
platform based on the open source tool i-tee (Ernits and Kikas, 2016). When a lab starts, all VMs, networks, and 
grading systems are provisioned and personalised for the participant. Also, the automated skill evaluation 
process is initialised. Each lab may include different VMs (Linux, Windows, BSD, etc.) and different software 
defined networks. Some VMs are accessible for participants (blue systems), whereas other VMs are dedicated 
for attack traffic generation (red systems) or for end-user simulation and for network traffic generation.  

Fig. 4 illustrates the general architecture. The system provides network isolation between participants and lab 
networks. Lab personalisation process creates flags, vulnerabilities, grading for each lab attempt and random IP 
addresses for attacks and grading. Those IPs are based on real logs from our servers (fail2ban, sshguard, 



 
 

blacklists). The system provides interactive assistance and guidance for participants using hints, leaked hacker’s 
chat live stream, and media injects using Virtual Teaching Assistant for the learner. Gamification elements such 
as leader-boards, scoreboards and hackers chatrooms are provided. 

 

Figure 4: System Architecture 

This architecture allows the creation of new labs and challenges by reusing existing modules such as attacking 
and assessment scripts and vulnerable targets. The system is designed to enable a lab to start without extra 
management effort. All game services, routers, networks, scoring bots are allocated on demand. 

Our system scales as follows: 

▪ First, we can easily teach small groups of students (1-30 lab sessions per server). When using cloud 
resources, we can run defence-oriented exercises with 300 participants without building a new expensive 
cyber range. 

▪ Second, automatic assessment system demands no human red team (attacking team) or assessors. 
▪ Third, the system is remotely accessible using web browser and can be used from home or in a classroom 

at any time. 

5. Initial results  

More than 2 000 learners have used the system in more than 15 000 lab sessions. We have used our platform 
for on-site cybersecurity competitions in 10 countries, in companies and academic training programs. A more 
thorough hands-on assessment was conducted with 27 participants as follows: 

▪ Participants completed hands-on pre-assessment labs of approximately a 4 hours long assessment covering 
wide range of cybersecurity skills. 

▪ Participants were assigned 13 different labs including XSS, command injection, cookie security. 
▪ Participants completed hands-on post-assessment labs. 

The results in Fig. 5 show average completion rate of pre- and post-assessment labs. The results are presented 
in three sub-groups. “Skilled” (high pre-assessment score, successful lab completions and post-assessment), 
“study” (low pre-assessment score, successful lab completions and post-assessment) and “passive” (low pre-
assessment score and unsuccessful in lab completion or post-assessment). These are subjective sub-categories 
to analyse participants based on pre-assessment results and completion of the labs. It can be seen, for example, 
that for the “study” group, the improvement in skills was significant (from 4% to 68%). 



 
 

 

Figure 5: Skills improvement 

After the exercise, additional free-form feedback was asked from the participants and from their supervisors to 
analyse whether participants had acquired relevant competencies. As anecdotal evidence, the organisation 
identified a participant who lacked cybersecurity-related experience and skills before training program but was 
able to identify 5 security vulnerabilities from their internal system after training. Such unstructured feedback 
has given subjective evidence of skill improvement, quantitative surveys could be used to gather feedback 
systematically. 

6. Discussion  

There are multiple initiatives towards more competency-driven computer science education that aim to focus 
more on competencies instead of primarily covering topics (Sabin et al, 2018). There are also discussions on 
topics such as integrating hands-on cybersecurity exercises into the curriculum (Weiss et al, 2019), and what 
core cybersecurity skills students should learn (Jones et al, 2018). The big question is: how to measure those 
skills?  

Presenting learning outcomes without a clear mapping to relevant measurement points makes it difficult to 
evaluate individual skills. For example, a student who completes a course with a passing rate of 82% might be 
equally above average in all the relevant skills or have mastery of most skills and complete lack of others. Having 
a clear line of thought between different abstraction levels helps to provide evidence for the achieved 
competency.  

From the learner’s perspective, the main added value of our competency-driven approach is automated 
(therefore timely) individual feedback regarding the learner’s skills. The individual skills report (such as 
illustrated by Fig. 2) enables the learners to find their current strengths and weaknesses and modify their future 
learning activities accordingly. For the evaluator, the skills report enables to track learners’ progress focusing on 
their actual skills. At the same time, automated and scalable approach helps to reduce the evaluator’s workload. 

Following the competency-driven design can seem like a challenging task at first. However, the effort pays off 
because it helps to keep a clear overview when modifying or scaling up the system. Also, such competency-
driven structure helps to remove the tendency to design too simple and easy-to-create tasks and potentially not 
covering intended core skills. Exercise design is an iterative process (Mäses et al, 2018) and technical design can 
influence task selection (e.g., technical implementation might be too complex or just unfeasible). Additionally, 
there are ethical considerations, which might force to abandon measurement of some initially planned skills. 
Exercises are often aimed to be as realistic as possible (Fox et al, 2018), but in the design phase a balance should 
be struck between what is realistic and what is measurable. In measuring a skill, the realism of a task is not the 
ultimate goal and it can be tailored to make the task quantifiable. 

A more universal competency evaluation forces the educators to focus on how to measure higher level skills in 
a scalable way.  

7. Future Work  

Our current work focuses on defining the rules that can be universally applied in different exercises irrespective 
of the platform. This enables the organisers to dive into the learning data more easily. This data could be used 
for modelling predictive behaviours, such as considering the use of learning hints in skills’ evaluation (Chow et 
al, 2017) and calculating confidence correlation to the skills. Our method can be used for connecting raw data 



 
 

to widely used competency frameworks such as NICE Framework. Potentially, it could be also used for comparing 
the learners’ profiles to current job market requirements. 

6. Conclusion 

The opportunity to benchmark the competencies in a comparable way provides more insights that simply 
offering scores from cybersecurity exercises. Our structured approach helps to obtain more meaningful learning 
data from the logged events instead of counting points. Our main contribution is demonstrating how to create 
cybersecurity exercises that measure relevant competencies. We have applied this method for developing labs 
and assessing the skills of 2000 learners (including 27 having a more thorough assessment). Initial validation 
results show that connecting cybersecurity exercise raw data to the skills and competencies is a promising way 
forward. 

Our approach supports a paradigm shift towards the cybersecurity exercises that by design allow the systematic 
and evidence-based competencies and skills measurement. The open-source platform, described design and 
evaluation process with ultimate aim to measure competencies, form together a step to achieve this change. 
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Abstract—Cybersecurity exercises are gaining in popularity
in university curricula and professional training paths and
are seen as an effective teaching method. Such exercises
provide digital datasets to facilitate a learning analytics
approach such as by using the traces that learners leave
behind to improve the learning process and environment.
While there are various learning measurement efforts from
digital datasets in the existing literature, a holistic learning
analytics approach incorporated into cybersecurity exercises
is still lacking. We propose a practical reference model
for incorporating a learning analytics approach into the
cybersecurity exercise life-cycle. To facilitate this applica-
tion, we have performed an extensive review of existing
academic research on applying learning analytics in the
context of cybersecurity exercises. We specifically focus on
the learning indicators used to measure empirical impact
and training effectiveness that could indicate achievement
of defined learning outcomes. This reference model and
overview of existing learning analytics use cases and learning
metrics in various types of exercises can help educators,
organisers and cyber range developers. This results in more
adaptive exercise design and measurement using evidence-
based data and connects digital learning traces to skills and
competencies.

Index Terms—cybersecurity, learning analytics, learning
metrics, training, exercises

1. Introduction

Effective learning, teaching, and skills improvement
of cybersecurity students and professionals is a critical
research area. As there is a high demand for skilled
professionals and a shortage of such individuals [1], the
development of scalable and effective teaching methods is
critical. We focus on the application of learning analytics
in the cybersecurity training, specifically in cybersecurity
exercises, as a way to provide a more evidence-based and
systematic approach for the evaluation of learning impact
and to enable the design of more effective learning. This
is a critical aspect to consider for educators, organisers
and cyber range developers.

Learning analytics (LA) is defined as “the measure-
ment, collection, analysis and reporting of data about
learners and their contexts, for purposes of understanding
and optimizing learning and the environments in which
it occurs” [2]. As a field of research, LA aims to predict

and advise on identifying students’ learning needs and
improve pedagogical strategies based on analytical ap-
proaches [2]. However, establishing plausible relationships
between models derived from quantifiable digital data,
and the complex socio-cognitive world of “learning” is
challenging [3]. LA is closely intertwined with educa-
tional data mining (EDM) that develops, researches, and
applies computerized methods to detect patterns in large
educational data sets [4].

Cybersecurity training teaches both technical and soft
skills, as the field involves technology, people, informa-
tion, and processes. A wide range of training methods
have been developed by universities [5] and organisa-
tions to provide cybersecurity education. As part of such
cybersecurity trainings, hands-on exercises (both online
and classroom) are gaining in popularity in university
curricula and professional training paths. Cybersecurity
exercises (CSXs) are viewed as an effective and engag-
ing way of teaching both technical and soft skills in
addition to CSXs for learning purposes (e.g., as part of
university courses, competitions across universities, etc.).
Most national and international CSXs (47%) also focus on
training and providing participants an opportunity to gain
knowledge, understanding and skills [6]. The CSXs can
vary significantly in scale and content, ranging from short
online or classroom exercises, Capture the Flags (CTFs)
to large-scale/multi-stakeholder exercises, etc. However,
most share common aims and challenges with respect to
learning. We view CSX as a learning or training event
in which individuals or teams implement, manage and
defend/attack a network of computers at a tactical or
strategic level.

As those exercises always leave an extensive dig-
ital footprint of learning processes, it makes them an
ideal base to develop the methods within the learning
analytics field itself. As a result, using these evidence-
based learning traces in learning design can improve the
experience for both students and specialists. It also helps
to investigate the validity of common, yet unsubstantiated
claims, such as “everyone feels they had learned important
lessons [7]” or “exercises are a very effective way of
learning the practical aspects of information security” [8].

We propose a reference model for LA in CSXs in
Section 2 offering a practical guide to the exercise organ-
isers to enhance the conceptualisation and integration of
learning analytics into the exercise life-cycle. We support
the proposals presented in the model with an extensive
overview of existing uses of learning analytics by pro-
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Figure 1. CSX Learning Analytics Reference Model

viding empirical evidence from digital datasets (log files,
pcaps) and metrics used in CSXs.

When implementing LA measurements into exercises
we need to understand (1) what metrics evidence learning
and (2) are they helping the learners to learn or teachers
to teach? The metrics (i.e., indicators of learning success)
collected and analysed provide technical data (e.g., time,
command-line, tools used, etc.), and there appears to be
an overemphasis upon what we can measure, instead of
measuring what we value—a longstanding concern in
educational assessment [9]. However, applying a learning
analytics approach and analysing metrics from digital
datasets, can provide a more detailed and evidence-based
input to more comprehensive learning evaluations, such
Kickpatrick or other chosen evaluation models [10].

2. Reference Model for LA in CSXs

Learning analytics should be incorporated to the
CSXs’ identifying, planning, conducting and evaluating
phases (as described by [11]) and be seen as an integral
part of the exercise design in line with the overall peda-
gogical approach selected [12]. When starting to imple-
ment a LA approach into an exercise it is useful to think
about LA process from aspects of What (Data, Environ-
ments, Context), Why (Objectives), Who (Stakeholders)
and How (Methods) [13].

We propose a practical tool: the CSX LA reference
model, Fig. 1, that builds upon [13] and [11]. Our contri-
bution is to combine and outline the key learning analytics
considerations to incorporate into the CSXs life-cycle and
support the model with an extensive overview of exist-
ing use cases for a practical implementation. Developers
would need to consider LA aspects in their initial design of

the cyber ranges when they incorporate the technological
foundation of instrumenting the exercises.

Asking these learning analytics related questions and
finding the answers during an exercise life-cycle, will
ensure that learning measurements are not simply an after-
though but rather are incorporated in the “identifying
phase” (Fig. 1). Considering questions, such as “What
data can we collect that will help learners to learn?”
and collecting only that relevant dataset, would help with
the challenges of storing huge datasets from an exer-
cise and later trying to determine what data could be
used to provide feedback. For example, if the learning
objective of an exercise is to improve the incident re-
sponse process, then timestamps that would indicate team
communication would be critical data to collect [14].
However, when the proficiency of using various forensics
tools and commandlines is exercised, then capturing bash
history or keystrokes is relevant (e.g., [15], [16]). Also
consideration should be given how to support instructors
in giving feedback. Designing automated feedback that
takes into account the users behaviour and predicts their
actions and questions becomes available and can make
the learning experience more individualised and effective
(e.g., [17], [18]). Depending on the purpose, scale and
type of a CSX, it may be recommended to include a
learning specialist in the organising team to coordinate
the LA implementation throughout the CSX life-cycle.

2.1. Comparison to Other Frameworks in CSXs

There are various frameworks that have been devel-
oped for CSXs and cybersecurity education. Several aca-
demic papers (e.g., [8], [56]) and non-academic guides
(e.g., [11], [57], [58]) describe the overall CSXs de-
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TABLE 1. MAPPING LA PROCESSES BY TYPES OF CSXS. NOTE: ONE PAPER MAY COVER VARIOUS TOPICS, WE MAP HERE MAIN LA THEME.

Exercise Type/LA Process Collection Storage Cleaning Integration Analysis Visualisation Action

Capture the flag [19], [20], [21],
[22], [23], [24], [25] [23] [22] [19], [20], [21],

[22], [26] [27], [28]

Discussion based game
Drill

Red team / blue team [29], [14], [30],
[31] [32] [14] [33], [33], [34]

Seminar

Simulation
[35], [36], [37],
[38], [39], [40],
[41], [42]

[35] [35], [36], [43],
[44] [38], [39]

Table-top [45], [46] [45]
Workshop [47], [48]

Exercise/lab
[15], [49] [50],
[16], [51], [52],
[53], [8], [54]

[50] [52], [53] [50], [55] [15], [49], [32] [17]

sign and evaluation process. Also, more general ap-
proaches to exercises are proposed: [59] that describe
an extended competence development and assessment
framework and [56] suggests specific metrics in complex
simulated CSXs. For designing competition based exer-
cises [60] describes a mindmap, while for CTFs [61], [62]
describe 5 steps when designing an evaluation (purpose,
frame, questions, information needed and systematic col-
lection method). At a higher level conceptual level, models
for a multidisciplinary cybersecurity training methodol-
ogy [63], a pedagogical framework [12], a framework
incorporating cognitive aspects [64], and a holistic model
of professional competence in the cyber domain [65] have
also been developed.

Despite some of these models providing elements of
analytical approaches, no framework has been developed
that would explicitly include the use of LA methods in
the CSXs when looking at the LA in each phase of exer-
cise life-cycle or what would be the appropriate metrics
or learning indicators to measure when considering the
pedagogical approach taken.

3. Supporting Reference Model with Existing
Research Results and Practical Considera-
tions in Implementing LA Approach in CSXs

To gain an insight about what empirical evidence and
metrics have been collected and analysed in the scientific
literature, we conducted extensive related work review. We
searched Google Scholar, a widely used and available sci-
entific database and limited the search to empirical studies
published in a peer-reviewed journals and conferences in
English. We used the keyword “learning” in combination
with “cyber(-)security” for different exercise types. For
the exercise type classification we followed the European
Union Agency for Network and Information Security
(ENISA) taxonomy: Capture the flag, Discussion based
game, Drill, Red team / Blue team, Seminar, Simulation,
Table-top and Workshop [6]. In some cases, exercises with
gamified elements are referred as “serious games”, or with
competitive elements as “competition”, and thus included
these in our search strings for completeness.

We reviewed the abstracts of 200 articles for each
exercise type, as this was considered sufficient to encom-

pass all relevant material. The academic papers identified
as covering CSXs for learning purposes were manually
reviewed to identify LA topics and all empirical/analytical
learning data collected or analysed. It should be noted that
even though there is a large number of articles describing
the CSXs, these do not necessarily include empirical data
from the digital datasets to evidence learning. We used
feature mapping [66] in which the content is analysed and
recorded in a standardized format documenting the key
features of a predetermined aspects (i.e., LA model [2])
to produce a summary of the topic. Related work was
mapped to an overview matrix in Table 1 by the ENISA
exercise types [6] and LA model [2] consisting of col-
lection, storage, data cleaning, integration, analysis, rep-
resentation and visualization and action.

3.1. Uses of Digital Datasets to Evidence of
Learning Effectiveness in CSXs

An overview matrix that shows the application of
learning analytics by exercise types and LA process steps
is presented in Table 1.

3.1.1. Capture the Flag. A CTF is typically a challenge
designed to help sharpen cybersecurity skills and provide
hands-on learning taking various styles, such as jeopardy,
attack-defence and a mix of the two. However, participat-
ing in CTFs does not necessarily ensure future success,
and participants rarely receive a detailed critique of their
performance, which is essential in learning [67].

There are few studies that provide empirical evidence
from digital game-play traces for learning and skill ac-
quisition in CTFs. Clothia and Novakovic [19] show that
Jeopardy-style challenges with automatic marking of flag
submissions complemented by manual marking of detailed
written answers provided students with instant feedback
during an exercise with an improved student satisfaction
with the academic course. The ability of students to ac-
quire the flag is highly correlated with their overall marks
(written assignment), and flag-based marking effectively
assesses a student’s basic skills and understanding of
cybersecurity topics [19]. However, acquiring flags and
a student’s deeper understanding of the underlying issues
is much less-correlated [19]. Cheung et al. [20] describe
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combining logging results from log servers along with
a key-logger to track participant sessions. The authors
gathered statistics about login times (e.g., the environment
was most often used on Saturdays between 3:30pm and
8pm) and command usage to see what commands students
were still having trouble with after the lectures, which
helped determining what to spend more time on [20].
Chapman et al. [21] evaluate PicoCTF based on sur-
vey responses and user interaction logs to explore the
effectiveness of design choices (e.g., younger students
prefer a game interface compared to older students, and
a general dislike for challenges requiring learning new
tools). The system kept track of answers submitted by
every team, both correct and incorrect—recording the
time, content and relevant problem identifier, as well as
the IP address of the submission [21]. In order to evaluate
student engagement, the authors determined periods of
time during which teams were most active (i.e., time in-
terval at submissions) [21]. Tseng et al. [22] also focused
on data collection from heterogeneous environments and
proposed an ontology to represent concepts (consisting
of teams profile, skills (tools), test items and environ-
ment) within exercises and their relationships (including
linking heterogeneous logs to participants’ intentions).
The authors focused on problem-solving behaviours and
applied a modified a priori algorithm, analysed frequent
item-sets and identified learning behaviours such as that
novices keep guessing keys and better performing students
focused on particular items [22]. The above papers de-
scribe metrics applied and the authors research selection of
patterns and relations in the digital learning dataset. [23]
describe possible metrics, such as teamwork, challenge
difficulty, challenge strategies, tools, and general problem
solving techniques. Whereas [27] and [26] propose, apply,
and experimentally evaluate data analysis and machine
learning techniques to obtain interactions from the in-
game data and provide learners who progress differently
with individualized feedback. Vykopal et al. [25] suggest
decomposing the exercise training activity into individual
levels to achieve specific learning objectives, and col-
lecting timestamps (or events) such as start and end of
the game, start and end of each level, submission of
incorrect flags and their content, hints used, skipping a
level, displaying a level’s solution, game ID [24].

Dark and Mirkovic [61] bring out an aspect that to
measure learning we may need to rely on proxy indicators
(e.g., identifying reasonable and observable indicators of
adversarial thinking). Overall, we can see that analytical
approaches are emerging to evaluate learning from digital
dataset(s) that are good starting points when incorporating
the learning analytics process into the exercises.

3.1.2. Red Team and Blue Team. Red-Blue exercises
are often team-based and therefore add another com-
plexity level in LA application—measuring team learning
vs. individual learning. Several authors discuss learning
impact; however, not evidence-based analysis from digi-
tal footprints (e.g., [68] describes organizing team-based
exercise, where teams were directly monitored and eval-
uation of skills improvement is observational). Typical
evaluation methods are score-boards, verbal feedback and
after-action reports highlighting conclusions from man-
ual analysis of exercise data [34] that do not apply an

analytical approach using digital datasets. Some papers
do describe data collection and perform initial LA on
digital dataset, e.g., [14] breaking time into intervals that
can be meaningful for different learning objectives (e.g.,
incident responding, team communication) with walk-
through. Ošlejšek et al. [33] show that visual analytics
tools could provide automated statistical analysis and
an in-depth insight into the learner’s behaviour using
observation software (Fowler’s analysis) [32]. Vykopal
et al. [34] describe an interactive timeline visualisation
allowing learners to explore a scoring timeline and details
about individual events.

3.1.3. Simulation. Simulations are a very common type
of exercise and take various forms, e.g., online vs. live,
gamified, etc. There are some emerging examples of LA
performed already. Thompson and Irvine [35] present
basic LA data, such as time played and discuss abstraction
layers for data analysis. No formal effectiveness assess-
ment was performed and conclusions are based on ad-
hoc student interaction and logs review [35]. Legato and
Mazza [36] assume a set of regeneration points that corre-
spond to skill achievement through learning. However, the
model was not validated and numerical results are reported
for illustrative purposes only.

Nicholson et al. [37] system uses a dynamic tailoring
system, which maintains a model of student proficiency
and adapts training difficulty, while providing detailed
feedback. Santos et al. [38] use a post-simulation analysis
using a variety of graphics and reports to verify the
network traffic, which teams were attacked, which ser-
vices are still vulnerable, teams activity rate and strategy
used, etc. This data enables statistical evaluation of what
happened during the simulation, including how teams
perform compared to previous exercises [38]. Furfaro
et al. [39] used cloud based learning system including
a dashboard (for managing scenarios, agents and VMs,
displaying system usage and statistics, etc.); a report tool
(provides statistical data from logging engine, and queries
for business intelligence analysis displayed on charts), and
a set of development tools.

Many simulations have a gamification element. Tioh
et al. [69] performed a literature review (18 papers in-
cluding some kind of empirical effect measurement) and
concluded “the question as to the effectiveness of serious
games dealing with the training of cyber security is a
difficult one to answer conclusively at this point”. We
identified additional papers with games for security spe-
cialists or students (e.g., [69], [40], [41]). However, none
used empirical learning analysis from digital datasets.

Several authors focus on cognitive levels of learning
process in articles covering simulation-type exercises, as
simulations allow experimentation. Some examples in-
clude a simulation-based approach to understanding cy-
bersecurity threats when attempting multiple actions, the
user is provided with an “awareness” measure [70]; a
socio-technical systems approach to support the emerging
role of systems thinking and using an agent-based simu-
lation tool to change the students’ thinking [71] [72]; a
computational model based on Instance-Based Learning
Theory that proposes a way to analyse the cyber ana-
lyst’s awareness at both threat level and attack scenario
level [43]. Such human dynamic decision making analysis
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can help to determine various player models at individual
and aggregated levels [73].

3.1.4. Table-top. A table-top exercise is typically a
meeting to discuss a fictional cyber emergency situa-
tion increasing participants’ engagement and strengthen-
ing their awareness and competences in strategic decision-
making [74]. Although typically digital traces are typi-
cally limited in table-tops, some research on the system
architecture for tracking learning process is emerging.
Brilingaite et al. [45] presents a model of a web-based
environment that enables playing table-top exercises in
person and remotely. The environment includes the visual
representation of decision-making during the game and
provides the comparison to the correct solution.

However, in many cases the data analysis is not pre-
sented, offering an experience without learning process or
empirical impact data. Cozine et al. [75] examine the ped-
agogical approach to incorporate game play, specifically
probability-based tabletop exercises, into course curricula
and collected survey data from students enrolled in the
courses. Ottis [46] presents a light weight tabletop exercise
format that has been successfully used in cybersecurity
education to demonstrate these and many other concepts
to master level students.

3.1.5. Drill, Seminar, Discussion Based Game and
Workshop. The research builds upon experience but lacks
evidence-based measures or uses mainly surveys/self-
assessments as a tool to analyse learning. Some research
results start to emerge, such as [47] describing a workshop
using clickers for running a series of questions that allow
easy data collection and analysis.

3.1.6. Exercises with no clear classification. In several
papers CSXs are described in generic manner as “ex-
ercise” (often in classroom environment and part of a
course) or include multiple exercise types (e.g., platform
allowing both Red-Blue team and individual simulation
game). However, several empirical learning data analyses
have been completed. Weiss et al. [15] express that simply
recording the number of correct answers is inferior to
in-depth assessments and explores the use of command
line history and visualization. Authors follow the “path”
taken by a student in command-line when completing
different tasks and levels (for skills level measurement
some commands were identified as significant) [15]. The
“path” is visualized in graph that can be decomposed
into chains and cycles [15]. Similarly, Labushange et
al. [49] assesses technical skill level based on indexed
similarity (i.e., participants were ranked based on com-
mands usage to achieve objectives) and classifies actions
that can be automatically deducted using the clustering
of commands (e.g., combination of “ifconfig”, “sudo apt-
get install nmap” and “sudo nmap -sT targetIP” together
was classified as reconnaissance). However, the paper
does not go into details of how such clustering can be
achieved [49]. Caliskan et al. [50] use educational data
mining, machine learning and identifies metrics for learn-
ing effectiveness (predicting final grade) in the university
classroom course with efforts to validate their predictive
model. Caliskan et al. also compare participant evaluation
metrics and scoring systems in [76]. Moore et al. [55]

focuses on the development of specific individual skill
levels and state that competence in progressively harder
levels of capabilities was observed over time in rela-
tion to the training components. [52] apply automated
mechanism for parsing log entries into blocks of time
during which participants are focused on specific high-
level objectives, with instrumentation capturing students’
computer-based transactions [53]. Several authors propose
evaluation metrics or data that should be collected. How-
ever, the actual learning data analysis is lacking so far. For
example, [54] suggest metrics such as time, participant
numbers who succeed and feedback, and [8] suggests
number of detected attacks from total attacks for learning
task of monitoring systems’ security, etc.

3.2. Analysis of LA Process Described in CSXs

The explicit use of learning analytics and relevant
vocabulary in the cybersecurity education (incl. CSXs) is
in its early stages. However, recently there is more focus
in the academic community on applying LA methods to
improve the cybersecurity education [77]. The discussion
below is organized by LA process to analyse main steps
in a CSX’s life-cycle. The process steps span across the
life-cycle and are re-iterative, however the whole process
needs to be designed in planning phase and instrumented
to the cyber ranges.

3.2.1. Collection and Acquisition. Existing research fo-
cuses on data collection—i.e., how to build an exercise
platform, cyber range, etc. However, the literature lacks
considerations for what purpose and what data is actually
collected, and also contains discussion on learner consent
and ethical aspects. As the tendency is for collecting
simple technical measures, rather than more complex cog-
nitive learning measures (Section 4), often there is no
clear connection whether it was collected for evidencing
learning, and what data is relevant for evidencing learning.

3.2.2. Storage. How and what data is stored (and how
long period) is mostly not covered (only few examples
such as [32]). The security of information stored and
privacy concerns (anonymization processes) appear not to
be a high priority. Only one paper [23] was identified that
describes security measures for captured data.

3.2.3. Cleaning. The data cleaning process is not typi-
cally described, however network traffic (pcap) and other
datasets are expected to include non-relevant data. Few
papers start discussing what processes were used to clean
the data, e.g., [50]. Also the principles of privacy and
anonymization needs to considered here.

3.2.4. Integration. As the exercises generate multiple
datasets, combining multiple datasets and different for-
mats, e.g., technical and timing data with self-reported
learner data, is an important process step. Some examples
were found about aligning timestamps of datasets, such
as [52], [53] [14], [22]—however, no detailed methods
are provided on how data is processed and time-synced.
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3.2.5. Analysis. Due to LA being a novel research area,
the data analysis performed has been limited, with a
predominance of studies undertaking low-level analysis
relating to the readily accessible data such as the reporting
of number/frequency login times, number of messages
posted, time online, etc to academic performance as mea-
sured by grades [78]. Similarly in CSXs, we did not
identify commonly used tools or methods for data analysis
(statistical, machine learning model, etc.). Similarly to
overall LA field, the analysis has genreally been conducted
using easily obtainable metrics (such as time), see Table 2
and in typically linked to high-level learning objective(s).

3.2.6. Representation and Visualization. The challenge
is determining the relationship between visualizations and
learning. The feedback about low level user actions—
such as number of log ins, videos watched, or documents
submitted—does not illustrate progress in learning for
students or educators [79]. Visualizations and dashboards
usefulness and effectiveness is not widely covered in the
exercises. Several papers, such as [32] analyse the use
of visualizations in CSXs in addition to describing the
system architecture.

3.2.7. Action. Actions, such as intervention, optimization,
systematic improvements (including design) are not nec-
essarily evidence-based. Rather learning design choices
are based on the authors’ experience or the learners’ self-
reporting/survey evaluations. Some relevant research is
emerging how to improve feedback loop from using digital
traces, e.g. [17].

4. Inferring Learning from Digital
Datasets—What to Measure?

The various frameworks in Section 2.1 have been
developed for learning in CSXs and cover different aspects
but none directly incorporate or utilize learning analytics
processes. When inferring learning from the granular digi-
tal dataset, the challenge is linking learning objectives and
competencies to the granular raw data to, as the design of
a CSX should follow a top-down pattern [18]. The cyber
range should be designed to allow such learning design
and measurement process.

4.1. What Metrics are Collected and Analysed to
Evidence Learning?

Table 2 summarises the learning indicators from dig-
ital datasets that have been used in academic research,
which could be used as a starting point to brainstorm
when selecting the metrics to measure that the training
objectives have been achieved. It should be noted, that
any papers on learning in the CSXs are based on the
experience and interpretation of the authors or based on
the traditional learner evaluation (e.g., feedback surveys,
evaluation forms).

4.2. What to Consider in Choosing Metrics?

We should focus on measuring what we value. The
metrics used in CSXs often focus on easily measurable

data (e.g., time spent, number of attacks mitigated, etc.)
and individual actions. However, the students are “too
easily satisfied that a system is secure after identifying
only one possible source of security for a system rather
than seeking to explore the adversarial space more thor-
oughly” [83]. Thus it is important to understand not only
whether the students found the correct answer but how
they found it [15]. There is some research that starts to
look into “how” the learner completes tasks (i.e., use
of tools, attempts, submission of wrong answers), such
as [52], [53], [49]. However, validation is limited (e.g.,
4 participants [49]). In regards to teamwork and commu-
nication, there is some research, such as [81], [36] that
have started to explore the use of analytics as evidence
for achieving learning in teams.

Also as learning is complex cognitive process, the
further research should focus on cognitive metrics, such as
Knox et al. [82]. From the LA research, a similar measure
to “cognitive presence” can be applied in cybersecurity
training (e.g., “Active Learning Squared (AL2)” paradigm,
which emphasises metacognition and uses both active
student learning and machine learning [84], [85]).

Metrics are valuable, however, “being able to report
upon a metric does not mean that you should use it,
either in the tool, or in reporting its worth [3]”. The
metrics will depend on the exercise goals that in turn
are guided by different pedagogical principles (e.g., be-
haviorist, cognitivist or constructivist) [12] and the wider
evaluation model chosen [10]. Therefore, we need to be
mindful of learner and learning process, and measurement
should move towards mapping of digital traces describing
student activity onto interpretable constructs of interest
(e.g., Knowledge Components, Q-matrix), which facilitate
actionable analytics [86].

5. Challenges in Implementing LA ap-
proaches in CSXs

Scientifically-valid evidence that learning outcomes
were achieved in CSXs is difficult to obtain, especially
as the exercise design, objectives, technology and learner
characteristics vary. These factors make inter-institutional
and between exercises comparisons difficult. However,
sharing the measurement results would enhance measuring
that the learning was achieved and new skills obtained.

The data analysis until now has been limited, with
a predominance of studies undertaking low-level analysis
using easily obtainable metrics, such as login times, time
to complete tasks, number of attack mitigated, see Table 2.
The related work did not reveal commonly used data
analysis tools or methods (statistical, machine learning,
etc.) in CSXs, but developing and sharing methods used
would enhance validity of the results.

Security challenges, such as intrusion detection, in-
sider threats, malware detection, and phishing detection
lack exact algorithmic solutions and the boundary be-
tween normal and anomalous behaviour isn’t clear-cut
as attackers are continuously improving their techniques
and strategies [87]. This also impacts LA, as it needs to
keep up with moving algorithms and learning patterns. In
addition, the challenge relates to data volume—one large
exercise can create terabytes of data including multiple
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TABLE 2. METRICS FROM DIGITAL DATASETS TO CONSIDER WHEN MEASURING LEARNING IN CSXS

Metrics Reference Learning Objective/Competency Validated Validation Method/Results

Technical Metrics

Time and Time Periods
Total completion time [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Time taken to win the exercise [54] Effectiveness of the overall exercise No Recommendation
Time before nmap [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Time spent on scenario (incl replays) [35] Network filters No Interpretation, CyberSiege, 1 lab, 149 students
Time taken to recover from a successful attack [8] Incident handling / response No Recommendation
Downtime of attacked service compared to attack duration [8] Perform DDoS No Recommendation
Time period during the attack response (5 timestamps) [14] Incident response / handling No Log analysis vs. self-reporting, Locked Shields, 19 teams
Time played [35] Various cybersecurity skills No CyberCiege, online platform
Mean time per action [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs
Commands, including count of commands

Time-to-Detect [80] Defending network against attack No
Bivariate regression analysis, multivariate regression analysis,
and principal component analysis

Time-to-apProval (by team controller) [80] Defending network against attack No
Bivariate regression analysis, multivariate regression analysis,
and principal component analysis

Time-to-End [80] Defending network against attack No
Bivariate regression analysis, multivariate regression analysis,
and principal component analysis

Category Correct (NIST category of inject correctly identified) [80] Defending network against attack No
Bivariate regression analysis, multivariate regression analysis,
and principal component analysis

Total Commands Entered [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Reconnaissance Similarity (index of most accurate command) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Number of File Commands [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
File Server Identification Similarity (index of most accurate command) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Number of Incident Commands [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Incident Commands Similarity (index of most accurate command) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Number of Threat Commands [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Threat Commands Similarity (index of most accurate command) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Number of System Administration Commands [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
System Administration Similarity (index of most accurate command) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range

Command usage [20] Various cybersecurity knowledge Partial
Interpretation, feedback survey, CTF with lectures,
no details of flags or commands

Count of Events, Objects or Individuals
Number of scenario replays [35] Network filters No Interpretation, CyberSiege, 1 lab, 149 students
Number of successful attacks [8] Implement security configurations No Recommendation
Number of detected attacks from total number of attacks [8] Monitor systems’ security No Recommendation
Number of attacks correctly identified [8] Analyse logs and do forensics No Recommendation
Number of open ports/services detected compared
to total number of open ports [8] Perform scanning and enumeration No Recommendations

Number of successful backdoors accesses to target systems
kept until the exercise end [8] Cover tracks and place backdoors No Recommendations

Number Actions Per Block [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs
Number Actions Per Block [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs
Number of finalist participants [54] Effectiveness of exercise No Recommendation
Number of participants succeeding brute-force attack [54] Effectiveness of exercise No Recommendation
Number of participants successfully exploited Windows vulnerability [54] Effectiveness of exercise No Recommendations
Compromised services as reported by attacking and defending teams [81] Various cybersecurity skills No Statistical analysis (team performance)
Number of attack and vulnerability reports per defending team [81] Various cybersecurity skills No Statistical analysis (team performance)
Attempted and successful attacks on teams DMZ,
calculated by NIDS analysis [81] Various cybersecurity skills No Statistical analysis (team performance)

Number Different Software Tools [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs
Number Transitions Between Software Tools [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs
Number Returns to a Previous Software Tool [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 CSXs

Number of valid flags submitted [19]
Basic encryption, access control,
protocol analysis, web security, RE Yes

Correlations over 3 datasets to final grade
CTF, 3 iterations, no details of flags provided

Total number of logins over two months per weekday [20] Various cybersecurity knowledge Partial
Interpretation, feedback survey
CTF with lectures, no details of flags provided

Total number of logins over two months per hour [20] Various cybersecurity knowledge Partial
Interpretation, feedback survey
CTF with lectures, no details of flags provided

Tools, Commands and Methods Used by Learner
Commandline (nmap, Linux bash history) [15] Network reconnaissance No Interpretation, 24 teams of students, 2 classes 2 schools
Reconnaissance Commands [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Use of Internet browsers [16] Forensics No Interpretation, TracerFire, 11 participants
Frequency of software tools use [16] Forensics No Interpretation, TracerFire, 11 participants
Number of software tools used [16] Forensics No Interpretation, TracerFire, 11 participants
Type of software (general vs specialised) tools used [16] Forensics No Interpretation, TracerFire, 11 participants
Choice of tools used [56] Efficiency of student actions No Idea proposed, no measurements
Programming languages used [56] Efficiency of student actions No Idea proposed, no measurements
Input logs
Direct input (logs) [56] Not specified No Idea proposed, no measurements
String similarity metrics (using e.g., Levenshtein distance) [56] Efficiency of student actions No Idea proposed, no measurements
Blocks of activity [52], [53] Forensics No Interpretation, TracerFire, 26 participants, 2 exercises

Log data: frequent itemsets to learning behaviors [22] Various cybersecurity knowledge Yes
Data analysis: 7-hours competition collecting 8,257 logs
from CTF Server and 407,623 logs from GRR Server

Log data: start/end, incorrect flags, hints used, skipping level,
displaying solution, game ID [24] Various cybersecurity skills No No detailed metrics analysis

Network data: dst ip, dst port, ip proto, ip len,
signature, signature gen, priority, class, status [50]

IDS alerts, network sessions,
or top destination IP addresses No

Nave Bayes and decision tree algorithms. For results validation,
k-fold cross validation, 10 iterations, 17 students, 1 lab

Service status (active/non-active, vulnerable/not-vulnerable) [38] Various cybersecurity skills No Idea proposed, no measurements

Network traffic, teams attacked, vulnerable services, teams activity rate and
strategy used, network traffic peaks, protocols usage, etc. [38] Various cybersecurity skills No

Recommendation to look at logs to statistically evaluate
what attacks were most efficient, possible damage caused,
threats easily defended and a team’s performance to prior CSX

Tags: OS, programming language, vulnerability,
language, associated CVE, tools [23] Various cybersecurity knowledge No Discussion and experience

Logs: automatic scoring, pcap, chats/emails
screen capture, video and audio [81] Various cybersecurity skills Yes Statistical analysis (team performance)

Joint Information Exchange Environment and Chat logs (hashtags) [80] Defending network against attack No
Bivariate regression analysis, multivariate regression analysis,
and principal component analysis

Other—rankings, indexes, indicators, manual
Success rate (correct answer) from total challenges [16] Forensics No Interpretation, TracerFire, 11 participants
Abandonment rate of challenges [16] Forensics No Interpretation, TracerFire, 11 participants
Challenge submission accuracy [16] Forensics No Interpretation, TracerFire, 11 participants

Submission data and completion rate of challenges [21]
Forensics, cryptography, RE, web and
scripting exploitation, binary exploitation No

Discussion and experience, PicoCTFs,
1588 participating teams, survey data

Total Similarity (based on several similarity indexes) [49] Defending network against attack No Interpretation, 4 participants, self-developed cyber range
Proxy indicators (e.g., observable indicators of adversarial thinking) [20] Various cybersecurity knowledge No Recommendation, overall CTF evaluation model
Scalar unit for each mitigation completed
under cooperation, algorithm [36] Attack mitigation No Algorithm to measure skill improvement, SO tool

Soft Skills / Cognitive Metrics

Teamwork: task ownership changes, dashboard,
timecounter, option to mark challenge as difficult or solved [23] Various cybersecurity knowledge, teamwork No Discussion and experience

Awareness measure/critical thinking/decision making
[70], [43],
[72], [73] Understanding threats and systems, making desicions No Discussion and experience

Cognitive Agility Index [82] Individual cognitive performance Yes
Regression analyses,
science based, validation of 31 participants
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and big datasets. The large amount of data generated by
automatic logs and sensors necessitates efficient and auto-
mated data and LA techniques. There may not be enough
traces to identify learning patterns (e.g., short time of
detection, gaps in time-line) and data may be very diverse
(e.g., different OS, applications). Therefore, identification
of the relevant learning traces requires techniques that
can deal with such imbalance and diversity. To combine
multiple datasets and formats, e.g., technical and timing
data with self-reported learner data no detailed descrip-
tions or methods are provided how data is processed and
time-synced. However, some examples were found about
aligning timestamps of datasets, such as [53], [14], [22].

Also, the CSXs and related studies mostly work over
a short period but it is known that short-term interven-
tions are not particularly effective at affecting behavioral
change [88]. Thus longitudinal studies are needed to
evidence learning and behavior change as result of the
exercises, and also to separate from other learning.

6. Conclusion

The opportunity to improve the learning in CSXs as
part of educational effort is missed without considering the
learners experience, different learning styles and pace, and
the impact of the learning environment. The application
of learning analytics and analysing digital datasets can
provide a deeper understanding of learning behaviour and
lead to evidence-based improvement. The consideration of
LA aspects is also vital for the cyber range developers, as
they design the technological foundation of instrumenting
exercises that enable the application effective LA methods.

We proposed a LA reference model to assist in im-
plementing LA into the CSXs life-cycle to achieve a
more adaptive design and measurement using evidence-
based data from the learning environment. As a practical
starting point, we shared extensive related work overview
of existing research describing some aspects of learning
analytics process and the analysis of empirical evidence
from the digital datasets to assist in implementing the
model across all exercise types. We described the learning
indicators (metrics) used for evidencing learning in CSXs,
with focus on analytical evidence from digital dataset.
Such metrics are mainly simple technical measures (time,
number of attacks mitigated, availability of service, etc.)
that are not necessarily validated and may not evidence
effective learning (i.e., metacognition achieved). With LA
and evidence-based measurement, we also need keep in
mind and validate that what we measure (i.e., metrics
used) actually help learners to learn. In turn, the validated
metrics have the potential to provide more detailed and
evidence-based input that form an integral part of the
comprehensive training evaluations.

Further work should seek to identify and validate
what learning metrics are evidencing the learning process
and learning improvement in CSXs. Understanding the
current use of learning analytics in CSXs is expected to
help setting the baseline for further research and practical
implementation by combining two evolving disciplines.
By doing this, the cybersecurity community can establish
more evidence-based and systematic approach for the
evaluation of learning impact that will enable the design
of more effective learning experiences.
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[27] Valdemar Švábenskỳ, Jan Vykopal, and Pavel Celeda, “Towards
learning analytics in cybersecurity capture the flag games,” in
Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. ACM, 2019, pp. 1255–1255.
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framework for competence development and assessment in hybrid
cybersecurity exercises,” Computers & Security, p. 101607, 2019.

[60] Menelaos Katsantonis, Panayotis Fouliras, and Ioannis Mavridis,
“Conceptual analysis of cyber security education based on live
competitions,” in Global Engineering Education Conference.
IEEE, 2017, pp. 771–779.

[61] Melissa Dark and Jelena Mirkovic, “Evaluation theory and practice
applied to cybersecurity education,” IEEE Security & Privacy, vol.
13, no. 2, 2015.

[62] Jelena Mirkovic, Melissa Dark, Wenliang Du, Giovanni Vigna, and
Tamara Denning, “Evaluating cybersecurity education interven-
tions: Three case studies,” IEEE Security & Privacy, vol. 13, no.
3, pp. 63–69, 2015.

[63] Julia Nevmerzhitskaya, Elisa Norvanto, and Csaba Virag, “High
impact cybersecurity capacity building,” in The International Sci-
entific Conference eLearning and Software for Education. ”Carol
I” National Defence University, 2019, vol. 2, pp. 306–312.

[64] Erik L Moore, Steven P Fulton, Roberta A Mancuso, Tristen K
Amador, and Daniel M Likarish, “A short-cycle framework ap-
proach to integrating psychometric feedback and data analytics to
rapid cyber defense,” in IFIP World Conference on Information
Security Education. Springer, 2019, pp. 45–58.

[65] Petteri Taitto, Julia Nevmerzhitskaya, and Csaba Virag, “Using
holistic approach to developing cybersecurity simulation environ-
ments,” eLearning & Software for Education, vol. 4, 2018.

[66] Chris Hart, Doing a Literature Review: Releasing the Research
Imagination, Sage, 2018.

[67] Chris Eagle, “Computer security competitions: Expanding educa-
tional outcomes,” IEEE Security & Privacy, vol. 11, no. 4, pp.
69–71, 2013.

[68] Brandon Mauer, William Stackpole, and Daryl Johnson, “Devel-
oping small team-based cyber security exercises,” in The Interna-
tional Conference on Security and Management, Las Vegas, 2012.

[69] Jin-Ning Tioh, Mani Mina, and Douglas W Jacobson, “Cyber
security training a survey of serious games in cyber security,” in
Frontiers in Education Conference. IEEE, 2017, pp. 1–5.

[70] John Burris, Wesley Deneke, and Brandon Maulding, “Activity
simulation for experiential learning in cybersecurity workforce
development,” in International Conference on HCI in Business,
Government, and Organizations. Springer, 2018, pp. 17–25.

[71] Erjon Zoto, Stewart Kowalski, Christopher Frantz, Edgar Lopez-
Rojas, and Basel Katt, “A pilot study in cyber security education
using cyberaims: A simulation-based experiment,” in IFIP World
Conference on Information Security Education. Springer, 2018, pp.
40–54.

[72] Edgar A. Lopez-Rojas Mazaher Kianpour Erjon Zoto, Stew-
art Kowalski, “Using a socio-technical systems approach to design
and support systems thinking in cyber security education,” in
CEUR Workshop Proceedings, 2018, vol. 2107, pp. 123–128.

[73] Johan de Heer and Paul Porskamp, “Human behavior analytics
from microworlds: the cyber security game,” in International
Conference on Applied Human Factors and Ergonomics. Springer,
2017, pp. 173–184.

[74] Carlos Arturo Martinez Forero, “Tabletop exercise for cybersecu-
rity educational training; theoretical grounding and development,”
M.S. thesis, University of Tartu, 2016.

[75] Keith Cozine, “Thinking interestingly: the use of game play to
enhance learning and facilitate critical thinking within a homeland
security curriculum,” British Journal of Educational Studies, vol.
63, no. 3, 2015.

[76] Emin Caliskan, M Oguzhan Topgul, and Rain Ottis, “Cyber
security exercises: A comparison of participant evaluation metrics
and scoring systems,” Strategic Cyber Defense: A Multidisciplinary
Perspective, vol. 48, 2017.
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Abstract. In response to the existing and predicted skills gap in cy-
bersecurity, educational institutions establish an increased number of
studies. Admission boards need to screen large numbers of applicants to
identify those with the highest probability of successful completion. To
address the current lack of scalable and validated admission procedures
with predictive value, we present a validation of an innovative univer-
sity admission process for a master level program including technical
skills assessment via cloud-based virtual labs. A regression model based
on data collected during admission assessment procedures is applied to
predict later study performance in technical courses. The virtual labs
assessing technical skills but also interview component had comparably
high predictive values for study performance, indicating a complemen-
tary relationship of two distinct skill-sets. The primary conclusion of this
research is that cybersecurity technical labs can be used to significantly
improve the predictive value of traditional interview-based admission
processes for the candidates’ later success in technical courses.

Keywords: cybersecurity, exercises, predictive analytics, technical skills

1 Introduction

Cybersecurity professionals need to be trained on a variety of skills including
identifying cyber threats and vulnerabilities, protecting information and re-
sources, detecting, responding and recovering from cybersecurity events, etc [5],[25].
To meet the labour market’s demands, academic institutions have established
dedicated programs to train more specialists [5]. A variety of admission processes
are in place aiming to select candidates of high quality and low dropout proba-
bility. To ensure effectiveness, transparency, and the possibility of further devel-
opment, any such selection process should be scalable and validated. To date,
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systematic validations of admission processes are scarce. Traditional knowledge-
based assessments for technical skills may fail to detect high potential candidates,
who fail to provide declarative knowledge at the time of assessment due to their
interdisciplinary background [21]. We argue that an accurate assessment of study
potential needs to assess technical skills and knowledge using knowledge ques-
tions and hands-on tasks in addition to interviews to assess learning capacity in
an ecologically valid assessment procedure.

In the admission process to the international Cybersecurity masters program
(MSc), we have used online interviews and technical assessments in addition
to traditional admission procedures [21]. Currently, the technical assessments—
Intro, HTTPS Security, SQL Injection and Botnet labs—are optional. We aim to
demonstrate that the admission’s technical assessment component is an accurate
predictor to rank the candidates for cybersecurity studies and that this can
predict their success in the technical cybersecurity subjects. As a result, the
practical technical assessment tapping into learning potentials rather than pure
pre-existing knowledge, may then replace less reliable technical questions during
the interview. We use Cybersecurity Technologies (CST), a mandatory course for
first year MSc students, to evaluate the technical skills in admission and in later
studies. As the lab exercises focus on assessing the technical competencies, we
leave the assessment of non-technical skills, which are at least equally important,
to other validation methods.

We address following research questions (RQs):

– RQ1: Can admission procedure including the technical online labs on selected
cybersecurity topics predict the students’ performance in the technical sub-
jects in the university curriculum? Is it a more accurate predictor than the
admission interview component?

– RQ2: Do more comprehensive and complex cybersecurity technical assess-
ments used at the beginning of the course predict student performance? Is
this assessment appropriate as the basis to assign the students to the courses
with different difficulty levels?

– RQ3: Is more comprehensive assessment necessary at the beginning of the
course, or can the results of selected technical labs used during admission
procedure also predict the students performance?

We analyse admission process and CST course completion data to model
the prediction of the students’ success applying a linear regression model. The
model’s main purpose is to statistically validate whether the novel use of vir-
tual technical labs on varied cybersecurity topics is a significant predictor to
measure candidates’ technical skill level during their later studies in this core
subject of cybersecurity technology. The results indicate that such methods to
predict student performance with limited set of input data from the labs in the
cybersecurity domain can be indicative. We also describe the data and evalua-
tion method in sufficient detail to replicate the research and CST course design
to assist in developing cybersecurity curricula.
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2 Research Design

The first-year course are used for performance prediction in order to minimize
impact of other variables in a student’s academic life. We also evaluate whether
the complex and comprehensive skill assessment conducted during the first CST
lecture predicts students’ later study performance more or less accurately than
the admission labs. This in turn validates that the admission labs are relevant
and predict the students’ success in the cybersecurity technical subjects at an
early time point critical for admission selection. Pearson’s bivariate correlations
are used for correlational analysis of parametric variables [4]. Kendall’s Tau is
used to analyse non-parametric measures of relationships between columns of
ranked variables (value of 0–no relationship or 1–relationship) [11].

2.1 Ethics, Privacy Data and Data Security

Aiming to scale the university admission process by incorporating the techni-
cal online labs raises a variety of ethical implications. An aim of this research
is to reduce sole dependence on the decisions of human interviewer and course
instructor by adding an additional component of evaluating the skills using the
technical labs. Ethical considerations such as fostering trust, transparency, stu-
dent control over data, right of access and accountability [24] are followed. The
labs completion in the admission is voluntary, the applicant/student receives
the results automatically. The role of the labs is described as being a part of the
admission process and the course grading. Also, as online or digital interactions
produce a data trail of a person’s activity, privacy and data security aspects are
important. We have pseudonymised the data with unique identifiers to ensure
the privacy of individuals. The data was stored on the university’ server, with
access to the research material is restricted to only the some of the authors and
selected university personnel directly associated with this study and admission
process.

3 Related Work

One purpose of assessments during admission processes is to early distinguish
between students who are likely to perform well or drop out [23]. Prediction
modeling in the university admissions (including in Science, Technology, Engi-
neering and Mathematics (STEM) disciplines) frequently used. A meta-analysis
of academic literature on the prediction of student performance in computing
courses is described in [14] summarising 357 articles. This review shows the rele-
vance of predictors such as GPA, demographics, learning behavior data, etc [14].
However, there is a gap of knowledge regarding the use of technical online labs
as part of admission assessment and performance prediction in cybersecurity
programs. Most prediction models require knowledge of previous performance
or are mainly based on demographic data (e.g., [7], [18], [10], [20], [19]). How-
ever, in global assessment proceudres such information may not necessarily be
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available, reliable, or comparable and admission decisions thus include limited
or incomplete data. Prediction models not relying on legacy data do usually not
address gamified technical exercises as a relevant predictor for future learning
success([16]). [22] categorizes methods used for predicting performance into four
high level categories: Decision trees, Regression, Clustering, Dimensionality re-
duction / other. [17] suggests choosing multiple linear regression models when
predicting the average academic performance. [18] uses past performance data
and applies a decision tree algorithm to identify students who are likely to fail
in advance. Other methods include Logistic Regression, Decision Tree, Random
Forest, Naive Bayes and Adaboost models [10], [13], [1], [19]), [9]. We apply
a multiple linear regression model and leave comparison with other modeling
methods as further work.

In cybersecurity, [3] describes a recruiting tool that provides an 8-hour train-
ing and competition framework. This approach requires significant time commit-
ment from faculty and students as it is designed as live learning event. [8] pro-
poses a model for predicting cybersecurity aptitude beyond a general-intelligence
approach, where the constructs of tasks, work roles, and people can be used to
create assessments of applicants. However, a general intelligence assessment is
very time-consuming, may not tap into the relevant skills related to the techni-
cal tasks in focus and do not require additional efforts over time (motivational
aspects) that virtual technical labs offer. In cybersecurity, there are few exam-
ples of student modeling, such as [6] using log data to predict course grade, [15]
predicting team proficiency, [2] assigning specific exercise in accordance to pre-
paredness, [26] analysing learning activities (reading lab materials and working
on lab tasks) association with students’ learning performance in a course. How-
ever, these papers do not build prediction models in context of admissions with
limited data.

This paper builds upon the previous work described in [21].

4 Admission Process and Study Program/Technical
Courses

We provide an overview over the study program, the technical labs used in the
admission process, the CST course and an overview of the data collected and
used in the prediction model.

4.1 Cybersecurity Masters Program

The cybersecurity curriculum consists of general studies, core studies, special
studies, free choice courses and graduation thesis. During the studies the students
have to choose a specialty—Cybersecurity, Digital Forensics or Cryptography.
All specialities require completion of general studies, core studies (Cybersecurity
Defence Technology), a selection of free choice courses, specialty courses and a
master’s thesis.
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4.2 Admission’s Technical Labs and Interview

The detailed overview of the admission process and all its components is pre-
sented in [21]. To apply a feasible selection of the many possible cybersecurity
skills in the admissions, the technical exercises represent topics from basic to
advanced skill levels as follows:

– Introduction lab (25 minutes)—essential command line skills (Git, apt-get,
Apache server);

– HTTPS Security (45 minutes)—basic level skills connected to command line,
public key infrastructure, and server administration basics;

– SQL injection (90 minutes)—intermediate level skills connected to attacking
SQL databases (SQL, SQL injection); and

– Botnet (45 minutes)—advanced level skills connected to network scanning
skills, text parsing (programming skills are beneficial) and SQL injection
skills.

The choice of these labs is based on typical attack vectors that the applicants
are likely to encounter in their future cybersecurity jobs and require different
skill levels (from essential to advanced). Each lab represents a pre-determined
skill level from basic to advanced [21].

Interviews last usually for 10-15 minutes. The interviews includes few tech-
nical questions, which aim to measure the candidate’s knowledge and logical
thinking [21].

4.3 Cyber Security Technologies

The CST’s learning objective is to provide a coherent understanding of technol-
ogy (theory) and provide a hands-on learning (experiential learning). The main
focus is on the tools and methods for securing networks, operating systems and
web applications.

CST1 and CST2 CST is split into two sub-courses, Cyber Security Technologies
1 (CST1) and Cyber Security Technologies 2 (CST2). While both courses follow
the same study plan, CST1 is aimed towards beginners and CST2 for advanced
students who are already familiar with cybersecurity technologies. All students
must attend either course version in their first study year.

Students in CST I are introduced the topics related to the fundamentals of
networking, information security and cybersecurity. Students learn about the dif-
ferent types of technologies with the learning objective to understand when and
where these tools should be utilised, and how to configure and deploy specific
tools to their own environment. CST2 requires a programming, system adminis-
tration or information security background and basic knowledge in networking,
operating systems and web applications. If students from CST2 feel they do not
have enough knowledge on a certain topic, then they are free to attend CST1.
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Initial Assessment to Assign Students to CST1 or CST2 To determine whether
a student is assigned to CST1 or CST2, a mandatory skill assessment exam is
given in the first lecture. Students complete a “WASE Assessment”, which is
180 minutes long complex virtual lab where an individual has to investigate a
website and try to regain control. Students have to know various types of web
application vulnerabilities and how to exploit them (web-servers side, incl. SQL
authentication bypass, reconnaissance, privilege escalaton, command injection,
path traversal, blind SQL injection, etc. and web-clide side, incl. reflected, stored
and DOM based XSS, session hijacking, CSRF, etc.). The requirements of this
test are high to avoid ceiling effects. The relevant outcome variable is the progress
made within three hours.

Course Assignments The course is designed as a combination of theory and
hands-on exercises aiming to challenge the students along the way with different
assignments as milestones rather with one final exam. The assignments consist
of group work, home labs, individual tasks, discussions and online hands-on
technical assessments, see Table 1. Groups (consisting of 4-6 students) are self-
formed and all group works are completed with the same group.

Table 1. Course assignments in CST1 and CST2

Assignment CST 1 CST 2

Individual Assignment Malware Lab Malware Lab

Individual Assignment Quiz Vulnerability Testing

Group Work 1 Security Principles Company X-Part 1

Group Work 2 Information Gathering and Vulnerability Testing Company X-Part 2

Group Work 3 Authentication and Access Control Company X-Part 3

Group Work 4 Logging and Log Analysis Company X-Part 4

Online Technical Test SOC-Security Compromised SOC-Security Compromised

Group Work 5 Certificates and Public Key Cryptography Company X-Part 5

Group Work 6 Risk Management Company X-Part 6

5 Data Collection, Cleaning and Integration

The data originate from multiple sources, see Table 2. The unstructured data
was converted into structured data by removing irrelevant information (i.e., du-
plicated data if student attends both courses, not enrolled at MSc program, reg-
istered but not taking CST, is not 1st year student), verified and pseudonymized.
For correlation analysis, the data was integrated into one data-set, also newly
aggregated/calculated fields were added named “Ranks”. Descriptive statistics
are presented in Table 3. The admission and course results of 60 students are
included in this analysis.
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Table 2. Data collected and used in prediction model as variable

Field Name Value
Unique
data
values

Description

Student Name
Firstname.
Lastname

60
An identifier to integrate data together from different sources.
Once each student receives an ID number, this field is removed

Student ID Student 0X 60 Each student is identified with an ID number from 001

Course

(1) Beginner
(2) Advanced
(3) Advanced/
Beginner

3

3 unique values: students eligible for CST2 are classified as
advanced, students eligible for CST1 are classified as beginners,
students eligible for CST2 but take both courses are classified
as advanced/beginners

Admission Interview
Score

50-100 60
Admission interview results, minimum threshold to accept
candidates into the program is 50 points

Admission Online
Technical Assessment
Score

0-400 59
Admission Technical assignment results
—4 different labs, each worth up to 100 points

Assignment 1
Lab Results

0-100 60

First assignment is identical for both courses; students are
expected to accomplish this individually at home. Task is to
analyse 3 malware samples, answer questions and write report.
This is same task for both courses and can be used to measure
student performance, regardless of course enrollment

CST1 Individual
Assignments

0-400 52 Aggregated results of all individual assignments for CST1

CST1 Group Works 0-600 52 Aggregated results of all group assignments for CST1

CST1 Course Total 0-1000 52 Aggregated results of all assignments for CST1

CST2 Individual
Assignments

0-200 11 Aggregated results of all individual assignments for CST2

CST2 Group Works 0-300 11 Aggregated results of all group assignments for CST2

CST2 Course Total 0-500 11 Aggregated results of all assignments for CST2

WASE Assessment
Score

0-150 000 60
All students have to complete WASE Assessment in order to
be assigned to CST1 or CST2. As all students complete this–
data can be used to measure and compare student performance

SOC-System
compromised Progress

0-100 60
Online assessment, that all students have to complete in class,
regardless of course enrollment

SOC-System
compromised Duration

0-5h 60

All students are encouraged to finish the lab, therefore
measuring progress is redundant as most get 100% score. Time
to complete assessment is more relevant metric—this can be used
to compare students’ understanding the problem and how fast
they can solve it

Table 3. Descriptive statistics of data

Data Mean Median Min Max Standard Deviation Range

Admission Labs Results 280.2 293.0 0 400 117.8 400

Admission Interview Results 73.90 77.25 50 97.5 12.09 47.5

WASE Assessment 32 000 20 000 0 150 000 40 497 150 000

Lab 1 89.5 100 0 100 26.32 100

System Compromised Points 85.05 100 0 100 32.7 100

System Compromised Time 1.9 2.07 0 4,42 0.98 4,42

CST 1 Individual Assignments 249.1 268.3 0 310 63.15 310

CST 1 Group Assignments 354.13 380 0 400 91.76 400

CST 1 Course Total 687.9 739.05 81.25 845 160.74 763.75

CST 2 Individual Assignments 175 200 0 200 60.2 200

CST 2 Group Assignments 189.1 190 170 200 10.44 30

CST 2 Course Total 473.2 490 300 590 68.3 290

6 Results and Discussion

6.1 RQ1: Admission labs and later success

We used Pearson’s one sided correlation test method to account for the directed
hypotheses that admission and CST-performance are positively related. The
variables of course performance, admission interview rank, admission technical
assessment rank and admission rank were added to the correlation matrix, see
Table 4.

There is a positive correlation between the admission assessments and the
later course performance, while the strongest positive correlation is between
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Table 4. RQ1: Pearson’s one sided correlation test

Course Performance Admission Interview Rank Admission Lab Rank Admission Rank

Pearson’s r 0.378** 0.432** 0.492***

p - value 0.005 0.001 < .001

“Course performance” and the resulting“Admission Rank” combining both in-
terview and virtual lab results.

Admission interview and technical results are added to a stepwise regression
model with predictor variables interview and remote labs and course performance
as the dependent variable, see Table 5. In Model 1, course performance is used
as dependent variable and admission interview rank as only predictor. Model 2
adds the remote lab result as additional predictors.

Table 5. RQ1: Admissions and course success linear regression model

Model R R2 Adjusted R2 RMSE R2 Change F Change df1 df2 p

1 0.378 0.143 0.126 14.448 0.143 8.507 1 51 0.005

2 0.495 0.245 0.214 13.700 0.102 6.727 1 50 0.012

The assessment technique interview is in itself a statistically significant pre-
dictor for later student performance and explains .126=12.6% of Student per-
formance variance. Adding the additional predictive effect of the virtual lab, the
explained variance in study performance almost doubles from 12.6 to 21.5%.
This significant increase (p=.012) means that interviews and labs are comple-
mentary methods that both predict different, but relevant, aspects of the later
student performance results as measured in CST courses.

Table 6. RQ1: ANOVA test

Model Model type Sum of Squares df Mean Square F p

1 Regression 1775.822 1 1775.822 8.507 0.005

Residual 10646.291 51 208.751

Total 12422.113 52

2 Regression 3038.279 2 1519.139 8.094 < .001

Residual 9383.834 50 187.677

Total 12422.113 52

Relationships between the predictor variable and response is shown in Ta-
ble 7. The standardized betas show the relative weight of the predictors. The
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Table 7. RQ1: Relationships between predictor variable and response

Model Unstandardized Standard Error Standardized t p

1 Admission Interview Rank 0.340 0.117 0.378 2.917 0.0005

2 Admission Interview Rank 0.231 0.118 0.257 1.955 0.056

Admission Technical Assessment Rank 0.246 0.095 0.341 2.594 0.012

single standardized betas are low to moderate, but provide a highly significant
predictive value when combined. The predictors’ scores are medium correlated
with each other, which means that the interview scores and technical skills assess-
ment via virtual labs share both common factors and relevant unique variance.
For example, attitude, eagerness and technical interest are checked in the inter-
view process but are also relevant for the technical performance. An explained
variance of 21.4% is considered to be large in behavioral science convention [12].

6.2 RQ2: Complex assessment at course start and later success

To evaluate whether WASE assessment predicts student performance and in
turn assign students to appropriate CST course, we used Kendall’s Tau B test-
ing method. From the model output we see that Kendall’s Tau B coefficient is
0.502 and p-value ≤ .001. There is a strong positive correlation between WASE
assessment and course performance. This indicates that WASE assessment is a
valid predictor of the students’ performance. This also indicates that the students
have been assigned to the correct CST course.

6.3 RQ3: Admission labs vs. complex assessment and later success

To evaluate whether a WASE assessment is necessary or admission lab results
could be used to assign students on CST1 and CST2, we used Pearson’s one-
sided correlation testing method because there is directed hypothesis that WASE
assessment and CST-performance are positively related.

Table 8. RQ3: Pearson’s one-sided coefficent

Course Performance Without WASE Admission Interview Rank WASE Assessment Rank

Pearson’s r 0.329* 0.548***

p - value 0.016 .001

A significant positive correlation between the input and admission interview
rank is evident, see Table 8. However, the correlation between course perfor-
mance and WASE assessment rank is stronger with the correlation coefficient
0.548. When using stepwise regression to further explore the relationship be-
tween course performance, admission result and WASE assessment, we can see
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that course performance without WASE assessment is dependent variable and
“Admission technical rank” and “WASE assessment rank” are predictor vari-
ables.

Table 9. RQ3: WASE and technical assessment linear regression model

Model R R2 Adjusted R2 RMSE R2 Change F Change df1 df2 p

1 00.322 0.104 0.086 14.727 0.104 5.890 1 51 0.019

2 0.551 0.304 0.276 13.106 0.200 14.401 1 50 < .001

Looking at the linear regression model in Table 9, the admission techni-
cal lab results significantly (.019) predict the student performance and explain
.086=8.6% of performance variance. This means that interview in its own is a
valid predictor for assigning students into correct CST course. However, when
adding WASE assessment then R square is 3 times higher from 8.6 to 27.6. This
increase is significant (p=.001), which means that the two variables are comple-
mentary methods that both predict different aspects of the student performance.

Table 10. RQ3: Relationships between predictor variable and response/coefficients

Model Unstandardized Standard Error Standardized t p

1 Admission Technical Rank 0.231 0.095 0.322 2.427 0.019

2 Admission Technical Rank 0.047 0.098 0.066 0.484 0.630

WASE Assessment Rank 0.543 0.143 0.516 3.795 < .001

Relationships between the predictor variable and response is shown in Ta-
ble 10. The combined weight of the predictor scores are relatively highly corre-
lated, which means that the admission technical assessment and WASE assess-
ment have common factors. The correlation is relatively high, which means that
both methods contribute also individually and unique parts that predict the stu-
dent performance score. Overall, WASE assessment has a stronger correlation
with student performance.

7 Future Work

As future work, validation of the hands-on technical exercise tasks by correlating
it with general intelligence, other cognitive skills, and domain-specific knowledge
is suggested. This will improve our understanding for what is tested in this task
(construct validation). A longitudinal study with new students and larger sample
size will be continued to validate and refine the algorithm. In addition, as we
applied multiple regression model, the comparison with larger datasets and other
prediction modelling methods would be beneficial.
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8 Conclusion

We evaluated using technical labs as a novel part of graduate level admissions
for cybersecurity program, to predict students’ later success in studies. Such an
approach can be a scalable evaluation of technical skills, but still incorporate
human evaluation to enable balanced approach for the ethical and evidence-
based decision making and assessment. While the labs used in this paper are
specific for the technical skills for a cybersecurity program, incorporating this
type of assessment may also spark interest in other STEM programs.

While we acknowledge that this analysis is an initial attempt with relatively
small sample size to assess whether such technical skill labs can be used as a
significant predictor to assess potential candidates’ skill level and future study
success in technical topics, is shows some promise based on the regression anal-
ysis. This analysis however also shows that the interview score is not redundant
either—both admission methods are complementary to each other addressing
different, but equally relevant aspects of the student performance.

In addition to the prediction model, we shared our experience and description
of the admission process and Cyber Security Technologies course design.
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