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SUMMARY

ANOVEL, general framework for performing whole-cost optimization of water
production and distribution in real-time was developed in this dissertation.
Optimization enables significant savings in energy and chemical costs.

Optimization resulted in near optimal settings for all pump, valve and source
stations, and optimal frequencies for all pumps in the water supply system as a
function of time for the next 24 hours in near real-time.

This dissertation developed a novel way to formulate the design variables of
the optimization problem in order to minimize the size of the search space, a novel
way to preoptimize operation of pump batteries, a novel way to model pressure
or flow controlled variable-speed driven pumping and a novel method to model
complex control strategies in the hydraulic simulator.

The optimization algorithm used is a modified version of greedy, meta-heuristic,
single-solution Hybrid Discrete Dynamically Dimensioned Search (HD-DDS), that
has not been applied in operational optimization of water supply systems before.

According to the author’s review of previous studies, this research is the first
where real-time operative optimization of a large-scale water supply system (WSS)
is performed using a non-simplified and non-surrogate model covering all pipes
in the system, and where the raw water production, conveyance and treatment
are also included in the model and optimization.

In the case study (Tampere Water) the proposed optimization framework re-
sulted in 20 % savings in the production and distribution costs, while ensuring
better quality of service than before. Real-time aspect is ensured by the optimiza-
tion run taking about two hours of computation time.
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KOKKUVOTE

KAESOLEV DOKTORITOO ESITLEB uuenduslikku, iildistatud raamistikku, tervikli-
ku veevdrgu maksumuse reaalajas optimeerimist, mis kaasab nii vee tootmis-
tstiklit kui ka selle juhtimist tarbijani.

Optimeerimine vdimaldab markimisvaarset kokkuhoidu nii energiakulu kui ke-
mikaalide maksumuse seisukohalt.

Optimeerimise kiigus leitakse optimumile ldhedased koikide pumpade, klap-
pide, ldhteallikate seaded ning kdikide veevorgu siisteemi pumpade optimaalsed
pOorete arvud jargnevaks 24 tunni perioodiks reaalajale 1ahedase aja jooksul.

Kéesolev doktoritdo esitleb unikaalset, optimeerimiseks vajalike disaini para-
meetrite defineerimise voimalust, et minimeerida lahendite ruumi; uudset pump-
late eeloptimeerimist; uuenduslikku podrete-arvu reguleerimisega pumba elemen-
tide modelleerimist lahtuvalt fikseeritud surve voi vooluhulga tagamisest ning
uudset lahenemisviisi kontrollimaks hiidraulilise simulaatori keerukamaid juhti-
mise strateegiaid.

Optimeerimisalgoritm on tuletatud hybrid discrete dynamically dimensioned
search (HD-DDS) baasil, mida pole varasemalt veevorgu siisteemi opereerimise
optimeerimise juures kasutatud.

Lahtuvalt autori poolt teostatud kirjanduse iilevaatest holmab kiesolev uuri-
must66 esmakordselt suuremahulise veevdrgu reaalajas juhtimise optimeerimist,
kus mudel kaasab koiki siisteemi torusid ning toorvee tootmine, transport ning
tootlus on samaaegselt kaasatud mudelisse ning ka selle optimeerimisse.

Doktoritd6 raames rakendati Tampere linna veevorgule valjatootatud lahen-
dust, kus optimeerimine andis 20 % kokkuhoiu vee tootmise- ja vee transpordi
kuludelt, tagades samal ajal varasemast parema teenusekvaliteedi. Reaalaja termi-
nit kaasatakse optimeerimises 1dhtuvalt asjaolust, et optimeeritud lahendi otsing
votab ligikaudu kaks tundi aega.

xii



YHTEENVETO

TASSA vaitoskirjassa kehitettiin uusi, yleinen ratkaisu vedentuotannon ja -jakelun
kokonaiskustannusten optimoimiseksi reaaliaikaisesti. Optimoinnin avulla
on mahdollista saada aikaan merkittavia saast6ji energia- ja kemikaalikuluissa.

Optimoinnilla haetaan asetusarvot kaikille asemille ja optimitaajuudet kaikille
vedenjakelujirjestelman pumpuille ajan funktiona aina 24 tuntia optimointihet-
kestd eteenpain lihes reaaliajassa.

Viitostutkimuksessa on kehitetty uusi tapa muotoilla optimoinnin suunnit-
telumuuttujat hakuavaruuden minimoimiseksi, uusi tapa esioptimoida pumppu-
pattereiden toiminta, uusi tapa paine- tai virtaussdddetyn, taajuusmuuttajaohja-
tun pumppauksen mallintamiseksi sekd menetelmd monimutkaisten saatotapo-
jen mallintamiseksi verkostosimulaattorissa.

Tyosséd kaytetadn optimointialgoritmina muokattua versiota ahneesta, meta-
heuristisesta, yhta ratkaisua késittelevésta hybrid discrete dynamically dimensio-
ned search (HD-DDS) -optimointialgoritmista, jota ei ole aiemmin sovellettu ve-
denjakelujirjestelmén operatiivisissa optimoinnissa.

Tekijan kirjallisuusselvityksen perusteella tima tutkimus on ensimmaéinen, jos-
sa reaaliaikaista operatiivista optimointia tehd44n yksinkertaistamattomalla ko-
ko verkoston kattavalla mallilla, jossa on mukana myds raakavedentuotanto ja
vedenpuhdistusprosessit.

Tapausesimerkissa (Tampereen Vesi) optimoinnilla saatiin aikaan 20 %:n séésto
tuotanto- ja jakelukustannuksissa samalla, kun palvelutaso parani. Vuorokauden
aikajakson optimointi vaati tapausesimerkissd noin kaksi tuntia laskenta-aikaa.
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RELEASED SOFTWARE

THIS research resulted in the following software tools that are also used in other
similar projects:

Water Supply & Distribution Optimizer — a general real-time operational opti-
mization solution for water supply systems

Parallel Pumping Optimizer — a multi-platform tool for optimizing parallel
pumping. The software was used for optimizing pumping in the case studies of
Publication I and Publication II, and was integrated into EPANET[255]. The opti-
mizer is also used as a part of the optimization process presented in this disserta-
tion.

Enhanced EPANET - a multi-platform hydraulic modeling software package
and library based on EPANET hydraulic simulator. Enhancements include pump
battery component[256], control system modeling[252, 256], parallel pump opti-
mizer, support for multi-threading and computation speed optimizations.
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PREFACE

BEFORE you lies the culmination of several years’ worth of labor and research
into pumping, electrical motors, and water supply systems (WSS), their per-
formance characteristics and optimization.

This PhD thesis is part of my doctoral studies at Tallinn University of Technol-
ogy, Estonia. The research was conducted at the request from the Tampere Water
Utility.

Main motivation for the research was that no such a study had earlier been
applied in Finland, and that the earlier work done elsewhere neglected some of
the complexeties of the optimization problem of the water supply system (WSS).

This work is expected to show that it is possible to optimize large-scale WSSs
using full-scale hydraulic models and to include all components affecting energy
usage and efficiency, while still achieving near real-time performance.

Solving the complex multi-part problem resulted in multiple new tools and
products, new business, and proved to be very rewarding.

I hope this work is of interest and will be improved upon by other researchers.
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1 INTRODUCTION
1.1 General

DURING the last years growing consideration is attached to the so-called water-
energy nexus. Producing potable water and supplying it to the users requires
a considerable amount of energy. No matter how energy is produced, the produc-
tion always requires water at some stage. Typically, this water is not available for
further consumption.

Energy is one of the largest expenses for water utilities, usually the second
right after wages. Water supply uses 2 % to 3 % of the total energy consumption
globally. Pumping water is the main energy consumer, using up to 80 % of the
energy used in water supply systems. [46]

A more complete picture of the energy use of a water supply system can be
painted by calculating energy balance for the system. [58, 57] The somewhat ex-
tended version of energy balance methodology is presented by the author in [255].
Hydraulic model is used for calculating energy use components as shown in Fig-
ure 1. The balance can be calculated for the whole supply system or any part of
it. The energy balance, however, does not include any other energy consuming
operations in water treatment processes besides transferring the water.

Consumers require a certain amount of energy, E,euirs- That energy is the ac-
tual useful part of the total hydraulic energy input E;,,,; into the system. Losses
occur in the network both due to the friction Ef,;ctio, and leakage Ej.q. The energy
input comes into the system in the form of potential energy or it is produced by
the pumps E,p. Pumps convert electricity into hydraulic energy only partially
because of hydraulic losses occurring in the pump itself, Ejq.0sses» and losses in
the motor and the variable-speed drive (VSD) E,os0r10sses + Evspiossess and thus elec-
tricity consumption is larger than the hydraulic energy input of the pump into
the system.

Some energy use parameters gleaned from Saviranta [237] are presented in
Table 1. The data represents five different Finnish water supply systems, each
serving 20000 to 250000 inhabitants. On average, the electrical efficiency, 1 =
%, is about 36 %; so there is clearly room for improvement.

In the systems examined, the raw water extraction and treatment used 14 % to
22 % of the total hydraulic energy use in the system, which is a clear indication
that the water production energy use cannot be neglected, even if the focus is

23



INTRODUCTION

Eelectn’cal Einput Econsumed
Eshortage
Erequired
E .
potential,in Epatential,out
Eoxcess
E E Estarage
pump um
pump Eleak
Efn'ction

E hyd.losses
motor losses

E VSD losses

Figure 1. Energy balance components[255]

on the water distribution network. Likewise, hydraulic losses in pumps account
for 29 % of the electrical energy input, and motor and VSD losses account for
additional 12 %. In practice, the motor and VSD efficiencies must be accounted
for when optimizing network operations to obtain correct results.

Table 1. Selected energy use parameters in Finnish water supply systems[237]

Parameter Unit Median 60 % Confidence Interval
Specific hydraulic energy use kWh/m*  0.37 0.31-0.36
Specific electrical energy use kWh/m* 0.45 0.45-0.50
Hydraulic efficiency % 49 47-52
Electrical efficiency % 36 32-38
Pumping total efficiency % 59 52-61
Hydraulic losses in pumps % 29 22-40
Pump motor and VSD losses % 12 10-13
Excess energy delivered to users % 18 18-22
Friction energy losses % 19 17-22
Energy loss due to leakage % 10 9-13
Hydraulic energy used for raw water % 19 14-22

extraction and treatment

The classification of the energy efficiency of an electrical motor is covered in
IEC 60034-30 [123] standard. The standard introduces three efficiency classes of
the international standard: IE3 premium efficiency, IE2 high efficiency and IE1
standard efficiency. IEC 60034-31 [124] introduces preliminary limits for the IE4

24



1.1 GENERAL

super-premium efficiency class. The minimum nominal efficiencies required by
the classes are shown in Figure 2.

Motor efficiency (%)
@
(=2

IR RTTI L MR AT 1
1 10 100

Motor-rated power (kW)

o

Figure 2. Lower nominal efficiency limits for different four-pole motor sizes as per IEC
energy efficiency classes IE1-1E4. [73]

European Union Commission regulation EC/640/2009 [85], implementing Di-
rective 2005/32/EC [86], requires that all motors (0.75 kW to 375 kW) have at least
IE3 efficiency class or IE2 with variable speed drive, starting from 1st January
2017. From 1st January 2015, pumps with nominal power 7.5kW to 375 kW had
to meet the same limits. Comparative requirements have been applied in USA
in 2010 [66]. These regulatory actions promise significant energy savings in the
longer term. However, a large body of installed equipment remains, and optimiza-
tion can reduce the energy usage for the older pumps and motors.

Besides considerable and immediate economic benefits, reducing energy con-
sumption lowers the water utility’s environmental impact, as energy production
causes negative environmental effects and only a small percentage of the primary
energy input is converted into kinetic energy of water, as shown in Figure 3.

Good design can save up to 30 % of the energy demand, but when the system
is already functional, many aspects are fixed for long periods of time and cannot
be easily or economically changed. The optimal design should also account for
the specifics of the system, such as variable flow and head. The greatest energy
savings can be achieved when energy usage optimization is incorporated into
urban planning and the water supply system design from early on. [139]

Considerable amount of research has been done in the field of optimal network
design. Also, redesign and replacement of pumps, building new storage capacity
or new mains, optimizing the water treatment process or parallel pumping - all
of these measures have significant savings potential.

Operational optimization changes the control settings and parameters, or the
control algorithms the water supply control system uses for operating the vari-

25
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Figure 3. Typical energy flow from primary energy to kinetic energy of water [279]

ous pumps, valves and tanks installed in the system. Optimizing the operational
aspects of the system is attractive, because significant benefits can be achieved in
multiple fronts with simple changes to the control system or its parameters, and
no investments in the network or equipment are needed.

The operational optimization, often named pump scheduling, finds parameters
that result in optimal behavior in terms of total operational cost, energy consump-
tion, water quality, system reliability or environmental impact, namely green-
house gas emissions. These goals can be contradictory in part, and the conflicting
goals are either formulated into constraints or penalties, or as a multi-objective
optimization problem.

Often the water utilities have multiple sources of water with varying produc-
tion costs. This adds an additional aspect to the optimization problem. It can be
cheaper to produce water in a far away source, even though the energy costs may
be higher than producing the water closer to the demand.

Usually the price of electricity is not fixed and can vary based on the time of
the day, weekday, season, location and peak consumption. The price of electric-
ity does not necessarily reflect the environmental effect of the energy production.
Both wind and solar energy have better availability during daytime, but typically
electricity is the cheapest off-peak, especially during night. Thus, lowering the
energy consumption is always beneficial in terms of both economics and envi-
ronmental impact, but minimizing energy costs and environmental impact may
be conflicting goals.

26



1.2 OBJECTIVE OF THE THESIS

One example of the complexity and size of the water network optimization
problems is presented in [50] where a small case-study included four pumping
stations having a total of 10 pumps and one valve, and five chlorine dosing loca-
tions. The search-space for the optimal settings for each pump, valve and chlorine
dose was 8.9 - 10?® in the study. Enumerating such a large number of solutions
is impractical, and the search-space grows exponentially, as more stations are
included in the optimization. Numerous numerical optimization methods have
been developed by different authors to cope with such large search-spaces and
non-linearity of the water supply systems.

1.2 Objective of the thesis

Focus in this thesis research is on the following questions:

1. Which components affecting energy use are typically missing from the op-
erational optimization problem solutions, and how can they be included?

2. Can near real-time optimization be performed using a full-scale, all-pipe
network model, including raw water extraction, conveyance and treatment,
and an accurate pump energy model?

The main objective of this thesis research is to develop a method for near real-
time whole-cost optimization of the operation of the water supply system (WSS)
containing elevated storage and variable-speed driven pumps. Optimization has
to take into account every pumping that happens in the system and all factors
affecting the pumping efficiency and system energy consumption, including raw
water extraction and conveyance, which are not included in the earlier research.
The cost optimization must not violate the quality of service (QoS) constraints.
The cost does not only include the cost of energy, but also water treatment costs
at individual sources.

The optimization will be done on multiple interconnected layers all at once:

1. water distribution system (WDS) level: from where, where to and how
much water is pumped or conveyed through valves in order to meet the
water demand and hydraulic and operational constraints

2. water treatment level: what the production costs at different sources are

3. raw water extraction and conveyance level: what the energy costs of ex-
traction and conveyance are

4. pump battery level: how the individual pumps working in parallel will be
driven to achieve best efficiency
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The design variables, or output from the optimizer, are the time-varying flow
and pressure settings for all stations in the water supply system, and optimal
frequencies for every pump in the system over the optimization horizon of 24
hours.

The hydraulic state including energy consumption and constraints is evaluated
using a modified and extended version of the EPANET [226] simulator, originally
developed by the Environmental Protections Agency of U.S.A. The constraint vi-
olations are handled using the penalty function.

The optimization framework has to be generic and fast enough for real-time
use. It includes an easy way to integrate it with various supervisory control and
data access (SCADA) systems in use at different water utilities.

The specific research objectives of the thesis are:

1. Chapter 3.2: Development of an accurate model for pump, motor and vari-
able speed drive combination accounting for all loss components as a func-
tion of rotational speed

2. Chapter 3.3: Development of a method for finding globally optimal frequen-
cies for pumps running in parallel for the whole operational range of the
pump battery that can be used for pre-optimizing batteries of pumps work-
ing in parallel at different stations in the system

3. Chapter 3.4.1: Development of an EPANET simulator component that al-
lows accurate and efficient modelling of flow and pressure control of variable-
speed driven pumps working in parallel

4. Chapter 3.4.2: Development of a methodology for modeling complex water
supply control strategies in EPANET, for example controlling raw water
extraction, conveyance and treatment, and network pumping

5. Chapter 3.7: Development of an efficienct formulation for optimizing the
whole water supply system, including the production side

6. Chapters 3.8 and 3.11: Finding out or developing a custom meta-heuristic
algorithm that can be used for optimizing the whole system, including the
listed developments in a near real-time setting

7. Chapters 3.4.3,3.4.4 and 3.11.1: Ensuring satisfactory computational time of
the optimization by improving hydraulic simulation and objective function
evaluation performance.

8. Chapter 3.12: Implementation of a generally useable framework combining
the listed developments

28



1.3 LAYOUT OF THE THESIS

1.3 Layout of the thesis

This thesis is divided into five chapters.

Chapter 1 provides a general overview of the domain and sets the objective of
the thesis.

Chapter 2 reviews the relevant literature. The objective is to focus on the stud-
ies of optimization methods applied in the water supply system design and op-
eration, efficiency measures of a water distribution system, and finally, pumping
efficiency and optimization. Hydraulic modeling and water demand forecasting
are briefly described, because they are important for the operative optimization
process.

Chapter 3 presents the real-time optimization framework and related develop-
ments in this thesis research. For example, extensions developed for EPANET, par-
allel pump optimization methodology, and SCADA access method are described
along with the optimization problem formulation and the optimization algorithm.

The optimization framework is applied in a full-scale case study in Chapter 4.
The chapter presents the case and relevant results.

Finally, conclusions and discussion, along with some future research paths are
presented in Chapter 5.
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2 WATER SUPPLY SYSTEMS

2.1 Introduction

OPTIMIZING the operational aspects of a water supply system can yield con-
siderable energy and cost savings. The optimization frameworks, however,
tend to be complex systems of multiple components. Schematic presentation of
a generic framework for the operation optimization of a water supply system is
shown in Figure 4. First, a hydraulic simulator is needed for simulating the behav-
ior of the system under various conditions. A demand forecast method is used for
approximating the future water demand in various parts of the system to be op-
timized for the optimization network. Finally, an optimization algorithm drives
the optimization process in order to find a nearly optimal solution.

\
Real Water Automated N \
Real-time N |
Control Mo 1

'

Supply System

Data Base ]

Figure 4. Framework for optimal operation of a water supply system using a supervisory
control and data acquisition (SCADA) system. [65]

This chapter first provides a general overview of water supply systems, and
then proceeds with a literature review related to the optimization and its con-
stituents parts: hydraulic simulation, demand forecasting, design optimization,
pump and pumping optimization, and finally operational optimization.

2.2 Water supply system structure
Water supply system produces and delivers potable water to the consumers using

a complex network of pipes, pumps, valves, tanks, and treatment plants. Accord-
ing to Walski et al. [287], water supply system (WSS) can be divided roughly into
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three parts: water sources, water distribution network (WDN) and water con-
sumers. All the parts are briefly discussed below and shown in Figure 5.
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Figure 5. Schematic drawing of a water supply system with multiple sources, water towers
and pressure zones

Potable water is produced from raw water at water treatment plants. Raw water
is pumped to the water treatment plant, where its chemical and microbiological
properties are changed so that the treated water meets all the requirements and
recommendations set for potable water [6]. The exact treatment required depends
on the source used and the properties of the raw water. Water typically flows
gravitationally through the treatment process, where unit operations cause some
potential energy losses.

Raw water can be surface water extracted from a lake or river, groundwater
or artificial groundwater. Even sea water can be used as a raw water source if
desalination is used.

Groundwater may be usable without any treatment, but groundwater treat-
ment plants should have at least the disinfection readiness. Surface water typi-
cally requires more extensive treatment.

Treated water is stored in a clear well at the treatment plant. A clear well func-
tions as a water source for the water distribution network, to which the water is
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2.2 WATER SUPPLY SYSTEM STRUCTURE

delivered using pumps. A clear well also levels the changes in the water demand,
chemical dosing, and improves reliability. Surface water treatment plants require
some clean water, typically about 10 % of the production, for the treatment pro-
cess, mainly for filter flushing. This water is normally taken from the clear well
using pumps. [220]

The water distribution network (WDN) is formed by pipes of various sizes
and materials dug in the ground connecting the water consumers with the water
sources. WDNSs are typically looped: there are several routes for water between
any two points in the network.

WDNs typically include tanks that are used for leveling the differences in the
water demand and ensuring that water supply functions in the case of electricity
loss and pipe bursts. Because of ground elevation differences, WDN is divided into
pressure zones that are connected using pumping stations (to raise the pressure)
and control valve stations (to lower the pressure).

Moving fluid contains both potential and kinetic energy. The energy content
is normally expressed as pressure in meters of water column relative to sea level
or some other base elevation using Bernoulli’s equation: [284]

Hezy P17 (2.1)
pg 28
where H is the total or energy head, z the elevation, p the pressure, p the density of
the fluid, v the fluid velocity and finally, g acceleration due to gravity. The kinetic
energy term % is usually very small compared to the potential energy z + % and
it is thus often left out from the calculations.

Flow through a hydraulic element, for example, a pipe, depends on the energy
difference between the ends of the element. Fluid flows always from the higher
energy towards the lower. Besides the energy difference, certain physical proper-
ties of the element affect the flow. For example, pipe diameter, or more generally
the cross-sectional area, has a major impact on the flow. [239]

Reynolds number

Re="— = , (2.2)

where d is the pipe diameter [m] for round pipes, p is the dynamic viscosity of the
fluid and v = % is the kinematic viscosity, can be used for determining the flow
regime. When Re < 2000 flow is laminar, 2000 < Re < 4000 flow is transitional,
and Re > 4000 flow is turbulent. [287]

When a flow is laminar, the friction factor depends completely on the Reynolds
number, and when a flow is fully turbulent, the friction factor depends mostly on
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the relative roughness. Thus, roughness does not affect the friction factor much,
when flow is laminar, and the significance of viscosity becomes smaller when the
flow is turbulent. [287]

Pressure loss i, describes the loss of the head due to the friction in the pipe.
According to the Darcy—Weisbach equation

L2 8. LQ?
hy = f- i =f. ot (2.3)
where L is the length of the pipe [m]. Friction factor f can be calculated using
different methods, most common of which for turbulent flows are the Colebrook-

White equation:

1 € 2.51

77 Rev7

and the Swamee—-Jain equation:

o 1325 ’ 25)

in (55 + 28)]

In both equations, € is the roughness of the pipe [m. There are many other explicit
approximations of Colebrook-White equation besides the Swamee—-Jain equation.
A through statistical review of different methods is presented in [98].

For a laminar flow, the Hagen—Poiseuille equation can be used for estimating
the friction factor [226]:

64

f= Re (2.6)

Consumers are of utmost importance for the WSS — the whole system is built
for serving the water demand of the consumers. Consumers include, for exam-
ple, the inhabitants, industry and other companies, and public buildings, such as
hospitals and schools, in the area served by the WSS. The consumers require that
they always dispose the needed amount of safe and high quality water with high
enough pressure. [287]

The amount of water consumed, demand, and both the spatial and temporal
water demand distribution are central to the design, functioning and operating
of a WSS. Water demand varies constantly for various reasons, such as consumer
type, hour of day, weekday and season. The water supply system has to be able
to meet the demand under all conditions. [287]
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In practice, using hydraulic simulation is the only way to analyze how changes
in different parameters affect the system as a whole. It is virtually impossible to
measure all hydraulic parameters everywhere in the network, or make distribu-
tive tests on a live system without endangering the water supply, and often con-
ducting such tests could be prohibitively expensive.

2.3 Pump energy use

Figure 6 shows a typical pumping system schematically. A pump is connected
to an inlet reservoir via piping. The pump is driven by an electric motor, which
may, in turn, be driven by a variable-speed drive (VSD). When the pump has a
VSD, its rotational speed, and thus the flow and head generated, can be controlled
programmatically. This kind of a pump is called a variable-speed pump (VSP). If
no VSD is present or its setting is not to be changed, the pump is single or fixed
speed pump (SSP or FSP).

The incoming electrical energy is transformed into mechanical rotation energy
in the motor, and mechanical energy into hydraulic energy (pressure and velocity)
in the pump. Piping leaves the pump and connects it to an outlet reservoir. [281]

Outlet
reservoir

Inlet reservoir [

Pump Electric  VSD Elegtric
motor grid

Pump drive train or
pump unit

Pumping system

Figure 6. Pump drive train in a pumping system. Variable-speed drive may be included in
the unit for rotational speed control. [279]

Energy losses occur in the pump itself, in the motor and in the VSD. The effi-
ciencies of the components are typically in the range of 60 % for pumps, 85 % for
motors and 95 % for VSDs, but the efficiencies vary based on the flow and speed.
(33, 279]

35



WATER SUPPLY SYSTEMS

Motors used in pumps consume 22 % of the electrical energy in the industry
and 16 % in the service sector in EU. It is widely shown that using variable-speed
pumps saves a considerable amount of energy: installing VSD would be beneficial
for 33 % of the pumps in the industry and for 40 % in the services. [14, 164, 227,
228]

A pump’s performance at its nominal rotational speed is described by two
curves, one expressing the produced head H as a function of the flow Q (per-
formance curve), and the other expressing the pump’s hydraulic efficiency 7y or
power P as a function of the flow Q (efficiency or power curve). The pump char-
acteristic curves are provided by the pump manufacturer and they can also be
independently measured. [281] An example of a typical set of curves is shown in

Figure 7.
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Figure 7. Example of pump characteristic curves for SLV.80.80.220 pump model as given by
the manufacturer, Grundfos. The curves shown here include the performance curve QH,
pump’s hydraulic efficiency #, and pump’s and motor’s combined efficiency 7. [7]

When either the head or the flow is known, the other can be looked up from
the pump characteristic Q—H curve, and then the pump’s hydraulic power Py can
be calculated:

Py =pgQH . (2.7)
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By looking up the pump’s hydraulic efficiency #y from the pump curves, the
pump shaft power is

Ps =
NH

(2.8)
Shaft power is the amount of power that the motor must produce.

Variable-speed drive (VSD) can change the motor’s and thus the pump’s rota-
tional speed N. VSDs are introduced in order to control the produced flow and
pressure in an energy efficient manner. The introduction of variable speed drives
allows for significant energy savings and more flexibility in the control of pump-
ing. [164, 227] The need for controlling pumping arises from significant variations
in the water demand over time, and other changes in the system, like varying wa-
ter tower levels.

Flow Q,, head H, and power P, at some rotational speed N, are calculated using
affinity laws, based on the known values Q;, H; and P; at the nominal speed N;
[281]

QL _ N

0, "N (2.9a)
H No\ 2
ﬁj = (1\;) (2.9b)
P N\ 2
= () e

While Equations (2.9a) and (2.9b) have been shown to be valid in a multitude
of conditions, the last affinity law, Equation (2.9¢c), as it is, is shown not to de-
scribe the experimental data accurately. [e.g. 244] Thus, a more accurate model is
required to describe the effect of the rotational speed on the efficiency.

Decrease in pump’s hydraulic and overall efficiency at lowered pump rotational
speeds has been reported by several authors. [244, 283, 99] Part of the observed
efficiency loss compared to the affinity law is due to Equation 2.9c assuming a
zero-head system, part due to the actual change in the pump’s hydraulic efficiency
curve when the rotational speed is reduced, part due to the lowering efficiency of
the motor and the VSD on partial loads.

Various models have been developed to account for decrease in pump’s hy-
draulic efficiency at lower rotational speeds. Giilich [105] states that it is compli-
cated to solve the problem of efficiency scaling effectively because of considerable
uncertainties in the process of predicting small difference between comparatively
large figures accurately. There are, however, various methods to model the effect
with reasonable accuracy for practical applications.
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Giilich [105] proposes an accurate yet elaborate method that physically mod-
els the various efficiency affecting processes. A simpler, still a general method is
presented in [250]. The proposed method is based on the friction factor f (see
Equations (2.4) and (2.5)), and on the assumption that only part of the losses are
dependent on it:

vy L2

1_172_V+(1 V)foo,z
- =2 (2.10)

T—=m V—s—(l—V)ﬁ

where V is the fraction of losses that depend on the friction factor, and f is
the friction factor when Re = co. Another common method to model efficiency
scaling is based on the Reynolds number:

1= _gya—x (E‘:) , (2.11)
2

where K is the fraction of losses that depend on the Reynolds number. Typical
values for K range from 0.00 to 0.57 and m from 0.10 to 0.50 depending on the test
data. Measurements are necessary to accurately model any specific pump. [293]

Traditionally, the motor efficiency is assumed to stay constant, especially in the
50-100 % load range [281, 269, 164], typically to simplify calculations. However,
the motor’s efficiency depends heavily on the load, and it is reported that there
can be significant reductions in the efficiency even when the load is above 50 %,
especially for small or low-efficiency motors. [55, 33] A more comprehensive re-
view of the energy usage of an electrical motor is provided by Saidur [227].

The constant efficiency assumption can be valid when the load is close to the
motor’s nominal power, which is typically the case when the pump has no vari-
able speed drive. The pump’s hydraulic power, however, is inversely proportional
to the relative speed cubed (see Equation 2.9¢c); thus, even small changes in the
rotational speed can lower the power and the motor load considerably. This can
cause considerable errors in the energy use calculations.

The exact motor efficiency 7, at different relative loads is motor specific, and
the motor manufacturers provide load—efficiency curves. IEC 60034-31[124] stan-
dard also provides a general equation to calculate an approximation of motor
efficiency at any partial load.

When the motor efficiency is known for the particular pump working point,
the motor power

_ P Py
nm MH "M

Py (2.12)
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can be calculated.

The VSD efficiency 7yvsp depends on the relative load. IEC 60034-31[124] stan-
dard provides a lookup table for approximate efficiencies based on the nominal
VSD power and rotational speed.

The final pump train electrical power consumption is

Pm

Pr = s (2.13)
1Nvsp

and the total pump train efficiency is

P,
nror = P%j =1H-fm-fvsp - [33] (2.14)

Frequency scaling and accurate modeling of a motor and variable speed drive
efficiencies under different rotational speeds and loads are incorporated into the
pump energy use model used in this thesis, as described in Chapter 3.2. Accord-
ing to the author’s literature review, this results in the most accurate energy use
model used in the operational optimization of water supply systems reported in
the literature.

2.4 Optimizing parallel pumping

Studies focusing on optimizing variable-speed pumps working in parallel in wa-
ter supply are scarce according to the literature review performed. Usually only
single speed parallel pumping is considered as part of the pump scheduling prob-
lems, and only few sources mention variable speed pumping (see Chapter 2.8).
Neither are there many papers tackling the parallel pump optimization problem
separately from pump scheduling.

The methods used in the scheduling problems typically neglect many aspects
affecting the pump energy use as outlined in the previous section, and they rely
on the EPANET simulator for energy consumption calculations, even though EPA-
NET is shown to give wrong efficiency and energy results when VSPs and reduced
rotational speeds are used [165, 99].

Much of the VSP optimization research is related to heating, ventilation and
air conditioning systems or control system engineering. These methods, three of
which are presented next, avoid the use of mathematical optimization methods,
and instead rely on heuristics, simplified system models and measurements done

in real time, to facilitate easier implementation in programmable logic controllers
(PLC).
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Wang and Burnett [291] developed an adaptive and derivative control strategy
for controlling heat exchanger pump pressure setting based on recursive least
squares approximation of pump energy usage. The reported energy savings were
5 %.

Ma and Wang [157] developed several optimal strategies for controlling heat
exchanger pumping in a building based on polynomial approximation of wire to
water efficiency of the pumps. The method includes pump maintenance costs, but
the optimization algorithms themselves are mainly heuristic. The optimal strat-
egy using the optimal pressure differential set-points at the critical loops and
optimal pump sequence control resulted in a savings potential of 12 % to 32 %.

Viholainen et al. [280] and [279] developed a reliable control method for par-
allel pumping based on the preferable operational area method. Based on each
pump’s measured flow and power measurements at each VSD, the working point
for each pump is calculated, and a new reference speed is calculated, so that each
pump would work inside the preferable area. The reported energy savings were
20 % to 25 %.

There are also some more generic, mathematical optimization based methods
in the literature. Wu et al. [294] and Olszewski [183] used Genetic Algorithm
(GA), Costa Bortoni et al. [68] used the dynamic programming method, and Yang
and Borsting [304] and Koor et al. [143] both used the non-linear programming
(NLP) method with Lagrange multipliers. All the other cited methods, except Wu
et al. [294], can be quite easily implemented in PLC controlling the pump battery.
In their respective models Wu et al. [294], Yang and Borsting [304] and Koor et al.
[143], however, ignore the degrading effect of lower rotational speed on the pump
hydraulic efficiency, and the motor and variable-speed drive efficiencies [105].
Costa Bortoni et al. [68] use penalty function to constrain the pumps to work
close to their best efficiency points and the paper thus assumes that the motor
and the VSD work in a high-efficiency range, and the motor and VSD efficiencies
can be ignored. All except Koor et al. [143] allow the working pumps to work on
different frequencies.

Koor et al. [142] build upon the earlier work presented in [143], and extend the
methodology to work with non-identical pumps and to include frequency scaling.
The method uses the Levenberg-Marquardt optimization algorithm (LMA) for
calculating the optimal discharges for single pumps working in different working
points.

Chapter 3.3 describes the parallel pump optimization method developed as part
of this research and included in the optimization framework. Opposed to the ear-
lier research, the method models accurately all energy loss components affecting
the pumping, and uses exhaustive search to guarantee finding the globally opti-
mal solution for minimizing the parallel pumping energy use for every possible
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working point of the pump battery. The parallel pump optimization process itself,
however, is time-consuming and cannot be implemented in PLC, but the results
can be used, for example, as a basis for regression model based control.

2.5 Hydraulic simulation

The aim of a hydraulic water supply simulation model is to calculate pressures,
flows, the propagation of quality parameters, feeding of storage tanks, and the
operation of pumps and control devices of the system under predefined loading
conditions. [79]

Hydraulic simulation is an integral part of any water supply system optimiza-
tion. Simulation is also typically the most time-consuming component of any op-
timization framework. Accuracy, available features, convergence and stability fea-
tures of the simulator can pose limitations to the optimization methods available.

For optimal control of water supply pumping, hydraulic network modeling is
done using one of the four main approaches. In mass balance models the head
loss dependency on flow rates is neglected, and it is assumed that pumps work
against constant head. Mass balance models, most often used in linear program-
ming (LP) problems, are fast, but they do not guarantee hydraulic feasibility of
the solutions. Regression models are based on a set of non-linear regression equa-
tions prepared for a specific water supply system and need to be reformulated
if the system is modified. Simplified network hydraulic models are highly skele-
tonized versions of the full models [267, 191, 192]. Finally, full hydraulic simu-
lation models include a set of quasi-steady-state hydraulic equations solved in
terms of adjustment factors. Full hydraulic models are most accurate, but require
considerably more computational resources than the other models. [186]

The rest of this section focuses on full hydraulic simulation models, as they are
most general, accurate and widely used of the methods listed above.

Ormsbee [184] provides a good overview of the evolution of the hydraulic mod-
eling. The article lists the most important methods to solve the flows and pres-
sures in a water distribution system, starting with the Hardy Cross method [69],
simultaneous node method, simultaneous loop method, linear method (simultane-
ous pipe method) and gradient method (simultaneous network method). Figure 8
shows various solutions developed for solving the hydraulic equations.

Hardy Cross method published in 1936 is an iterative method that can be man-
ually calculated. The problem with the method is that initial guess for either the
heads or flows has to be quite close to the final solution for the method to con-
verge. The method was first computerized in 1957[156].
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Figure 8. Different versions to the solution of the pipe network problem. Linearization
variable is shown in parentheses. [262]
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Currently, the most widely used hydraulic simulator [80] is EPANET [226] that
uses the Global Gradient Algorithm (GGA) presented in [260]. The algorithm
solves flows and heads simultaneously.

There has been renewed interest in rebooting EPANET development as a real
open source project instead of being developed only in the U.S. Envinronmental
Protection Agency (EPA). Some ideas for future development are presented in van
Zyl and Chang [270], Rossman and van Zyl [223], and Rossman [222].

The latest official version of EPANET was released in 2008. Since then multiple
corrections and enhancements have been published, but not incorporated into a
common code base. Finally the converences of Water Distribution System Analy-
sis (WDSA), 2014 and Computing and Control for Water Industry (CCWI), 2015
resulted in the creation of EPANET Open Source Initiative [38] and related code
repository at https://github.com/OpenWaterAnalytics/EPANET.

Several ports of EPANET in different programming languages exist, like Python
[249], C# [21], C++ [271, 108, 116], Java [1] and even Java Script that can be run
in a web browser. Even without port to a language, EPANET toolkit can still be
called from various other languages like Visual Basic [63] or Matlab [207].

Todini [259] and [262] provide a thorough analysis of the various algorithm
formulations and their convergence properties. When choosing the solver, other
factors besides the convergence speed should be evaluated: the size of the in-
vertable matrix, symmetricity of the solution matrix, the matrix density, whether
a fundamental set of loops must be identified, and whether a balanced set of ini-
tial flows is required. Based on these criteria, GGA and a new linear theory global
algorithm (LT-GA) presented in [262] emerged as the most suitable and robust al-
gorithms.

This thesis research uses an enhanced version of the latest publicly available
version of the EPANET simulator. The enhancements are described in more detail
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below. In this work, the water supply system is modeled completely, including all
pipes, raw water extraction, conveyance and treatment, and control system model,
and the complete model is directly used in the optimization process, which is un-
common in previous studies. Extra steps are taken to ensure the hydraulic stability
of the model under insufficient or excessive water supply by adding extra reser-
voirs to the system along with penalty costs. The model structure is described in
Chapters 3.5 and 3.4.2.

2.5.1 Reducing simulation time

Because of the non-linear nature of water supply systems, iterative methods are
used in hydraulic models. This increases the computational time required by the
simulation. Various methods have been developed in order to reduce the compu-
tational time.

One popular method is the use of surrogate models reviewed in [215]. Surro-
gate modeling or meta-modeling replaces the computationally intensive model
with simpler approximation. The performance of the surrogate model must be
carefully assessed, especially for the critical points in the network, because ap-
proximation lowers the accuracy of the model.

Typically used surrogate modeling methods include the use of mass-balance
models: e.g., [88], [160] and [29], the use of artificial neural networks (ANN): e.g.,
[168], [212] and [50], and model simplification or skeletonization: e.g., [267], [240],
[191] and [19]. Behandish [30] uses the Graphics Processing Unit (GPU) based
ANN surrogate model. The reported speed-ups compared to full-scale EPANET
based hydraulic simulation can be up to 25 [234]. More creative use of a meta-
model is reported in Chang and van Zyl [60] where compression heuristic method
is introduced: only critical periods are simulated using a full-scale model and the
meta-model is used otherwise, resulting in 8.8 times speed-up.

Van Zyl et al.[273] use two-point linearization instead of the tangent method.
The proposed method results in better approximations for flows than the Newton-
Raphson method used in EPANET, and thus reduces the number of iterations re-
quired. The method, however, is a trade-off between speed-up and accuracy.

More recent developments in speeding up the hydraulic simulation use vari-
ous partitioning and decomposition algorithms, which deliver promising perfor-
mance. However, no generally available mature implementations exist.

Alonso et al. [15] introduced the parallel EPANET solver based on graph de-
composing. The methodology also runs quality simulation in parallel and syn-
chronously to hydraulic simulation (in the normal EPANET, quality simulation
can only be run after hydraulic simulation).
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Deuerlein [79] has developed a general decomposition model for WDN. One of
the presented applications was the high-performance hydraulic simulation. The
Schur complement domain decomposition was used in [80]. The articles show 4
to 8 time speedups compared to EPANET.

Deuerlein et al. [76] developed the Graph Matrix Partitioning Algorithm (GMPA).
The method reduced the problem size for different networks by 80 % on average.
Abraham and Stoianov [11] have used partitioning and sparse null space algo-
rithm to only update the changed matrix elements. The article reports computa-
tional time savings of up to 68 % over the Schur decomposition method.

Giustolisi et al. [104] introduced the Enhanced Global Gradient Algorithm (EGGA),
which reduces the problem size by transforming the network topology while pre-
serving the energy and mass balances. The computational time was reduced up
to 90 % compared with GGA, as implemented in EPANET.

Luvizotto et al. [155] have introduced an interesting new method that avoids
matrices altogether, but currently the method is two orders of magnitude slower
than EPANET, even though it lends itself easily to parallel processing.

Paluszczyszyn et al. [193] developed a proof-of-concept hydraulic simulator
based on quantized state system methods. The benchmarks show that event-based
simulation is much faster on small networks than EPANET. Work is still needed
to develop an actual hydraulic simulation tool based on the methodology.

Other attempts to improve the simulation speed include offloading the matrix
calculations to the GPU. GPUs are highly parallel and very efficient in solving ma-
trix equations. [208] The downside with the approach is that it is time-consuming
to move the matrices between the computer’s main memory and GPU, so that any
benefits are lost if the network is not very large.

Guidolin et al. [109], [110] and [301] have explored the possible performance
gains using single instruction multiple data (SIMD) instructions or GPU for hy-
draulic simulators in CWSnet and EPANET, respectively. None of these were able
to achieve much improvement. Only little of the total simulation time is spent
in the linear solver, as shown in Table 2; thus, even significant performance im-
provements in the code yield only small performance gains.

Various decomposition methods and other more efficient algorithms such as
GMPA and EGGA would yield considerable performance improvements. Unfor-
tunately, no publicly available robust and free implementations of those exist. As
parallelizing the matrix solvers in EPANET either using GPU or multiple CPU
cores does not seem to yield considerable performance, this work uses the nor-
mal EPANET with custom enhancements.

Consistent with the goals of the thesis research, this work uses no surrogate
models, but instead makes use of a full-scale model, extended with raw water
extraction, conveyance and treatment, aiming at maximal accuracy. While sur-
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Table 2. CPU time allocation solving a 150 000 pipe hydraulic model with EPANET[301]

Computing Task Time [s] | Time [%]
Total 67.45 100.0
Open Model 7.77 11.5
Solve Model 58.59 86.9
Solve Hydraulics 54.56 80.9
Demands & Controls 0.04 0.1

Network Solver 20.05 29.7

Linear Solver 8.94 13.3

Hydraulic Status 0.33 0.5

Save Results 4.04 6.0
Report 0.00 0.0
Close Model 1.08 1.6

rogate models offer great performance benefits, their preparation and validation
are laborious and system specific processes, and their use cause inaccuracies, es-
pecially in the energy distribution [191].

In this work, sufficient computational performance for near real-time optimiza-
tion is ensured by utilizing the most aggressive and modern compiler optimiza-
tion techniques, applying some manual optimizations to the EPANET code, reusing
the same, preloaded EPANET simulator instance and model for all optimizer eval-
uations and disabling all file input and output operations in EPANET.

A multi-threadable version of EPANET was developed to utilize the multiple
cores available in current computers by running multiple simulations in parallel.
The multi-threading approach taken here utilizes thread-local storage (TLS) vari-
ables available in modern C compilers instead of redesigning the EPANET API to
be re-entrant, as was done in [149]. This work also uses simulation preemption
[214], which saves computational time considerably.

Chapters 3.4.4, 3.4.3 and 3.11 describe the developed methods in more detail.

2.5.2 Modeling variable-speed pumping

Incorporating variable-speed pumping stations controlled for fixed head or flow
has proven to be quite complicated. EPANET does not provide an easy way to
use variable speed pumps, which causes problems in online modeling (e.g. [115]).
EPANET simulator is also known to calculate wrong efficiencies for pumps at
reduced speeds[244, 165, 99].

Wu et al. [296] used high elevation reservoir and flow control valve (FCV) to
model the VSD pump and the author’s [256] mention the use of a pump, FCV
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and pressure reducing valve (PRV) triplet. These methods failed to account for
pumps’ efficiencies directly at different rotational speeds. To solve the pump effi-
ciency, the author’s [252] used a pump and FCV so that the required pump speed
reduction was calculated from the head loss over the FCV; however, the method
had some numerical stability issues. The numerical stability issues caused by EPA-
NET control devices are widely reported in literature (e.g. [243] and [78]).

Another methodology proposed in [125] and the author’s [256] uses software
Proportional Integral Derivative (PID) controller [32] integrated into EPANET
for controlling the pumps. This, however, requires careful tuning of the controller
parameters [180] and the use of very short simulation time steps, which increases
the computational time considerably.

Todini et al. [261] modified the EPANET solver so that it can calculate pumps’
relative speed when the pumps are controlled for a fixed head and [297] for a
fixed flow. The methods presented in the papers, however, are patented under
[263] and only available in WaterCAD and WaterGEMS simulation software by
Bentley.

The other problem related to modeling the pumps is that EPANET does not en-
able calculation of the right efficiency values for variable speed driven pumps. For
example, both in [165] and [99] modeled pump efficiency in EPANET is compared
with experimental data. The papers show that EPANET is incapable of modeling
the pump efficiency at lowered speeds. While [165] proposes the usage of affinity
laws and assuming that best efficiency point (BEP) stays constant, [99] and [244]
propose using the frequency scaling function proposed in [235] to provide more
accurate estimates for the pump efficiency at lower rotational speeds.

An alternative way for accurate and efficient modeling of the flow or pressure
controlled variable speed pumps and VSPs working in parallel was developed in
this thesis research, as described in detail in Chapter 3.4.1. The developed method
allows for both pressure and flow controlled pumping, also within one model, and
allows changing the control mode dynamically. Pump battery is basically modeled
either as FCV or PRV, but negative head losses are allowed. The pump perfor-
mance and energy usage characteristics are modeled separately, as described in
Chapter 3.3, solving the problems in modeling pump efficiencies correctly by uti-
lizing the full pump drive energy calculation and optimization method developed
in this thesis.

2.5.3 Online and operative modeling

One of the problems in EPANET regarding operational optimization is the inabil-
ity to change the utilization pattern used for pump or control rules depending
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on multiple variables, such as time and tank level, programmatically [167, 150].
For example, Marchi et al. [167] developed an extension to EPANET toolkit to
allow the control rules to be changed dynamically and Lopez-Ibafiez [150] added
a new variable, EN_UPATTERN, for ENsetlinkvalue function that allows
the pattern to be changed.

Besides problems related to modeling variable-speed pumps, EPANET has con-
vergence problems when modeling other control devices, such as flow control
and pressure control valves. [243, 78]

Typically, hydraulic modeling is used offline as a tool for design problems, or
as a part of a network design optimization process. The model can be, however,
linked to the SCADA system for a real-time or online analysis of the system, and
form one data source for an expert system.

Several publications have reported online modeling, for example, [125], [158],
[77], [116], [61] and [255]. It has been used in various kinds of decision-making:
most commonly in risk studies [187] and/or for fault detection [221], but also as a
soft sensor and quality modeling, as in [77] and [255]. Risk studies have played an
important role in water quality analysis, where any kind of intrusion or human
error causes changes in water quality parameters that may cause a serious risk
for human life [188]. Offline calculations are preferable due to the large amount
of data analysis and calculations needed for any updates in the model. Online
models need different problem descriptions to minimize the calculation time, or
allocation of more processing resources either locally [296] or using cloud ser-
vices [21, 199].

Online modeling is not important only because of water quality aspects, but
using optimal control settings in the system at all times can save a lot of oper-
ational costs. [95, 195] Obviously, not all calculations can be done in real time.
Therefore, in reality, offline calculations are combined with online calculations.
Optimal pump scheduling in real time with or without near-optimal tank water
levels has been studied in [177] and [31]. Offline calculations are common for
some particular network components that do not change in time, for example,
optimal pump working combinations that can be selected during an online cal-
culation step so that the energy use will be optimal [254]. Any kind of real-time
optimization needs also real-time measurements. Those measurements are usu-
ally received through SCADA and used in terms of the real-time control model
(90, 277].

Real-time data usage poses some data quality and quantity problems, which
have to be tackled.[35] For example, there can be missing or incorrect data, and
time synchronizing problems, that the online model has to cope with.[287] Hatch-
ett et al. [116] define real-time modeling as the integration of network hydraulic
and quality model with operations data collected and stored via SCADA. They
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use open source hydraulic modeling packages EPANET[226] in conjunction with
Real-Time Extension (RTX) module [115].

To further facilitate model online use Paluszczyszyn et al. [191] developed a
methodology to skeletonize the hydraulic model real-time and Okeya et al. [181]
used data assimilation to keep the model always up to date.

Online model provides a way to have better overall view of the current water
supply system state, and to analyze the historical performance when the simu-
lation results are stored in an appropriate format to facilitate analysis at a later
time. An automatic anomaly detection can be performed by comparing the sim-
ulated and measured parameters. In particular, the online quality modeling can
be a useful tool for improving the system performance and preventing quality
problems. For example, water source tracing and water age that are both hard to
measure can be readily simulated online and shown in SCADA to facilitate the
decision-making process and the system analysis. [255]

While online modeling is understood well and the online simulation process
in itself is simple, the problem with incorrect or missing data still remains. In
the context of operational optimization, problems with measured data are most
apparent in water forecasting calculations; they are discussed in the next section.

A new general library for accessing measurements in SCADA, laboratory in-
formation systems (LIMS) and other systems was developed in this research (see
Chapter 3.6). The library is used for data access (fetching water tower levels, con-
trol system settings, flow measurements), calculating water balances and partly
fixing the missing or incorrect data.

2.6 Demand forecasting

The most important aspect in operating a water supply system is to satisfy the
consumer water demand. Accurate demand forecasts are required for strategic,
operational and tactical decisions for water utilities. Short-term demand forecast-
ing is a prerequisite for any optimal control system. [20, 140, 117]

There is no single established terminology for the forecast horizon used. [82]
Here the focus is on the short-term, or tactical, water demand forecast defined as
an hourly resolution for at least 24-hour forecast horizon.

Herrera et al. [117] list several benefits for accurate short-term demand fore-
casts available:

1. From an operative point of view, it enables water managers to determine
optimal regulation and pumping schemes to supply the predicted demand.
The aim is to improve the energetic efficiency through lower pumping en-
ergy consumption.
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2. From the quality point of view, the more suitable combination of water
sources to obtain a given standard in the supplied water may be selected.

3. From the vulnerability point of view, the comparison between the predicted
and the real flow measurements can help pinpoint possible network failures
(water leaks and pipe bursts). This provides the first step of a procedure for
establishing an early warning management.

There has been considerable and continuing interest in developing methods to
forecast the demand. Donkor et al. [82], Coelho and Andrade-Campos [65] and
House-Peters and Chang [120] review the forecasting methodology and concepts
in depth.

Commonly used methods include linear regression models and auto-regressive
integrated moving average (ARIMA) models. More recently, various machine learn-
ing algorithms and Fourier analysis methods have been used.

Bakker et al. [28] argue, that the results are inconclusive in practical applica-
tions of ANN based methods compared to more traditional time series forecasting
methods in short-term forecasting. According to Herrera et al. [117] the ANN and
pattern models have not performed well, but Alvisi et al. [18] argue that pattern
based methods work well, whereas ANN based do not, especially when the week-
day changes. Earlier in Jain and Ormsbee [127], it was concluded that artificial
intelligence (AI) methods perform better than the statistical methods.

The model accuracy and requirements, and thus the best forecast method, seem
to depend on the externalities affecting the demand and explanatory variables
chosen for the model. This might partly explain the partly contradictory and in-
conclusive results.

Water demand has strong daily and weekly patterns, and often exhibits clear
yearly seasonality. The most commonly used explanatory variables in the liter-
ature are previous demand, especially at the same hour and same weekday, day
of the year, and outdoor temperature and rainfall. The hotter the climate, the
stronger the effect of temperature and rainfall on the demand. [317, 18]

Homwongs et al. [118] developed a method based on recursive least squares
and Winters exponential smoothing algorithm. In [20], enhanced rough-set ap-
proach was used for automatic heuristic rule discovery based on observed data.
The authors note that resulting if-then rules are easily understood by the users.
Zhou et al. [317] developed a time-series based method including climatic corre-
lation and auto-correlation for forecasting daily demands. In [107] pattern recog-
nition is used.

Herrera et al. [117] present a comprehensive study on the accuracy of multiple
different machine learning algorithms for short-term demand forecasting. The
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analyzed algorithms were artificial neural network (ANN), projection pursuit re-
gression (PPR), multivariate adaptive regression splines (MARS), support vector
regression (SVR), random forests, and finally, weighted pattern-based model as
baseline. Weighted pattern based method and ANN performed the worst of all
tested algorithms: root-mean-square error (RMSE) about 8 and 6, respectively,
and SVR models performed the best, closely followed by MARS: RMSE about 4.5
in both cases.

Bai et al. [27] propose the variable-structure support vector regression (VS-
SVR) method for demand forecasting, and Brentan et al. [47] use the hybrid SVR
and adaptive Fourier series model for real-time demand forecasting.

Artificial neural network (ANN) based forecasting models have been widely
used in demand forecasting. [128, 310] More recent developments in the field in-
clude the usage of dynamic neural network (DAN2) based approaches. The DAN2
algorithm was first introduced by Ghiassi et al. [102], and it has been successfully
applied to water demand forecasting by several authors.

Traditional multi-layer perceptron with back-propagation ANN, DAN2 and
two different hybrid models based on the ANNs and Fourier series method were
compared in Odan et al. [178]. Hybrid model based on DAN2-H was found to be
the most accurate.

Velasquez-Henao et al. [276] have improved the original DAN2 by using the
ordinary least squares method (OLS), thus reducing the number of parameters
and automatically estimating all the linear parameters.

An example of the neural-heuristic hybrid algorithm can be found in Yurdusev
and Firat [308]. The adaptive neuro-fuzzy inference system was used for monthly
demand forecasts. Alvisi et al. [18] used a two-level pattern based method.

Felfelani and Kerachian [93] examined modeling of water demand at significant
changes in the population size over year. Their approach uses ANNs. Altunkay-
nak et al. [17] used time series and fuzzy logic for forecasting monthly demands
for Istanbul. The method was compared with an auto-regressive model, and the
proposed method performed favorably.

Recent research in [190] compares multiple short-term demand forecast models
for the same two-year long datasets from seven different networks and districts.
The compared models were the ANN model, the pattern based model, two moving
time window methods, the probabilistic Markov Chain based model, and a naive
model using long-term hourly averages. The results show that different non-naive
models perform well and offer similar forecasting accuracy. However, the moving
time window models perform best outside the calibration data set.

Much of the research focuses on longer time horizon forecasts and the effects
of weather on the demand. Al models have gained more popularity lately, and
they show promising performance. The problem with Al models is, however, that
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they require careful teaching, long input data time-series, and over-learning has
to be avoided. Neither do they provide much insight into the reasons for varying
demand.

The method used in this thesis research is described in Chapter 3.9. This work
opts for a classic moving average model for the water forecasts. For each pressure
zone or district metering area (DMA), three-month data is grouped by weekday
and hour (noting national holidays), and a median, 10 and 90 % percentiles are
calculated for each hour of each weekday. Previous 24-hour demand is calculated,
divided by the typical demand at the same period. The typical usage, median,
for the forecast horizon is then multiplied by the resulting factor. Missing and
incorrect data is handled by limiting the hourly demand in each zone to 10 % to
90 % percentiles.

2.7 Water network optimization

The water network optimization problems can be roughly categorized into three
different classes: calibration, design optimization and operational optimization.
In terms of published literature, design optimization dominates the research.

All problems can be solved either offline or in near real-time. The different
classes share much of the challenges, and the same optimization methods can
mostly be applied in the different classes of optimization problems.

Calibration problems try to modify model parameters such that the error be-
tween some simulated and measured hydraulic parameters, such as pressures and
flows, is minimized. Calibration is most commonly used to ensure that the model’s
hydraulic capacity matches the real system ([209], [275], [129]). Other uses in-
clude finding leakages ([302], [207]), locating closed valves ([285]) and calibrating
quality parameters ([132], [233]).

Design problems relate to finding optimal pipe diameters, network structure,
valve, pumping station and tank locations and sizes. The optimality is often de-
fined as a minimum cost required to meet the constraints, but more recently,
multi-objective optimization has become more and more common. Typical mul-
tiple objectives include, for example, cost and resilience [274] or cost and green-
house gas emissions [138]. Design problems often include operational aspects,
like optimizing pump scheduling problems [137, 138, 144].

As most of the network performance characteristics are decided during the
design process and cannot be easily or economically changed later, the design
optimization is very important. For example, significant cost reductions in water
supply systems can be obtained by optimizing the storage tank volumes and levels
in conjunction with the optimal control of pumping stations (see Table 3). [176]
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Table 3. The estimated energy savings potential in water supply systems (adapted from [176])

Energy efficiency actions Savings potential
The use of tanks for flow control and storage 10-20 %
Correct pump sizing 15-25 %
Real-time energy monitoring 5-20 %
The use of high efficiency motors 5-10 %
The use of variable-speed motor-pump sets 10-50 %
The operational optimization of pumping systems 15-30 %
Pump flow variation through VSDs instead of valve throttling vary, >50 %

Operational optimization problems try to reduce costs of operating a WSS by
changing some operational parameters, like pump and valve settings. In multi-
objective cases, other parameters, such as greenhouse gas emissions or water
quality, can be included, but multi-objective optimization is not commonly used
— only 15 % of the operational optimization papers presented in the next section,
Chapter 2.8, use multi-objective optimization.

One advantage of operational optimization over other measures is that it may
be deployed without the large investments or changes to the network. In addition,
the cost reductions from operational optimization are realized in a short term.
[176]

Operational optimization literature is reviewed in more detail in Chapter 2.8.
Some space is dedicated to network optimization too, as many of the problems
and methods are shared between the different classes of network optimization
problems. The network design problems often solve a pump scheduling problem
besides the design, as the network design and operation are tightly interlinked.
Multiple different optimization algorithms have been applied in design problems
that would be readily applicable in other water network optimization problem
classes too.

Yates et al. [305] prove that water system optimization problems are computa-
tionally NP-hard even for the simplest branched networks and even more so for
complex looped systems. NP-hardness implies that only approximate methods
exist for obtaining the optimum, and thus classical optimization methods do not
work well.

Lansey [145] provides an analysis on the development of WSS optimization
problems. The article recognizes three distinct phases in the development of WSS
system optimization: linear and dynamic programming era from about 1968-1984,
non-linear programming era from about 1986—-1994 and stochastic era from 1994.
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Alperovits and Shamir [16] developed a linear programming gradient method
for design optimization; Lansey and Mays [146] have optimized network design
for Anytown like WDN using dynamic programming; Gupta et al. [111] also use
non-linear programming for design optimization, and Simpson et al. [245] intro-
duced genetic algorithms (GA) to the WDN design optimization.

Some recent examples of linear and non-linear methods include [232] using
optimal power use surface (OPUS) methodology and [230] using Mock Tree II al-
gorithm in Hanoi, Balerma, R28 and Taichung networks, in which the algorithms
quickly provided results similar to previously reported best designs. Price and
Ostfeld [203] have used iterative linear programming for solving pump schedul-
ing problems, and in [45] the classic network design problems are formulated
as mixed integer non-linear integer programming (MINLP) problems and solved
using a solver implemented in the basic open-source non-linear mixed integer
programming (BONMIN) version 1.0 package.

Stochastic or meta-heuristic methods are efficient, both in terms of precision
and computational effort, in solving many real-life optimization problems. Their
definite benefit is that it is not required to formulate the problem in analytical
form and the formulation can be non-differentiable.

Meta-heuristics fall in two categories: trajectory-based meta-heuristics and pop-
ulation-based meta-heuristics. The main difference is the number of proposed so-
lutions used in each step of the (iterative) algorithm. [13]

A trajectory-based technique starts with a single initial solution and at each
step of the search, the current solution is replaced by another solution found in
its neighborhood. Trajectory-based meta-heuristic methods allow a locally opti-
mal solution to be found quickly, therefore they are called exploitation-oriented
methods. [13]

Population-based algorithms make use of a population of solutions. In this case,
the initial population is randomly generated (or created with a greedy algorithm),
and then enhanced through an iterative process. At each generation of the pro-
cess, the population is replaced by newly generated individuals. These techniques
are called exploration-oriented methods because their main ability depends on
the diversification in the search space. [13]

Constraints are typically formulated as penalty costs, when meta-heuristic meth-
ods are used because they often do not support direct constraints. Disadvantage
of penalty methods is that choosing penalty parameters is time-consuming and
requires great care. In addition, penalty parameters are case-sensitive and do not
necessarily steer the search toward the best solutions in every situation. [242]
Afshar and Marifio [12] introduce a GA variant with self-adaptive penalty costs
similar to [299]. Other self-adaptive fitness formulations can be found in [91] and
[92]. Siew and Tanyimboh [242] present a penalty free approach for optimizing
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WDNs by utilizing multi-objective optimization and pressure dependent simula-
tion.

Examples of using stochastic methods in the WDN design include the follow-
ing: genetic algorithm (GA) [245], harmony search (HS) [97], simulated anneal-
ing (SA) [70], ant colony optimization (ACO) [161], shuffled leaping frog algo-
rithm (SLFA) [87], tabu search (TS) [71], particle swarm optimization (PSO) [173],
memetic algorithm (MA) [23], hybrid discrete dynamically dimensioned search
(HD-DDS) [265], genetic heritage evolution by stochastic transmission (GHEST)
[40], honey bee mating optimization algorithm (HBMOA) [172], genetic expres-
sion programming (GEP) [288], differential evolution (DE) [312], and state transi-
tion algorithm (STA) [318].

The most commonly used meta-heuristic method in the water sector is defi-
nitely GA with its multiple variants. Some examples are presented in [112], [272],
[42], [240], [189], [296], and [31]. The genetic algorithm simulates natural evo-
lution: the algorithm begins with a randomly generated population of solutions,
and after each iteration, the best solutions are most likely to survive into the next
iteration (generation). The surviving solutions exchange design variable values
(genes) with each other, and there is a chance for mutations (random changes in
design variable values).

Each article typically compares the resulting costs and required computational
time or number of iterations with some previous algorithms on the benchmark
networks. [288] In [72], GA, PSO and DE in New York tunnels and Hanoi problems
are compared. Artina et al. [22] compare BONMIN algorithm with NSGA-II and
GHEST for optimal design in the Modena water distribution system.

The literature, especially in the design optimization, deals merely with single
speed, on-off controlled pumps. One reason is that the typical benchmark net-
works are gravity-fed, and the difficulties in modeling VSD pumps in EPANET
certainly play a part (see Chapter 2.5). [294] One of the few papers using variable-
speed pumping, [296], approximates the pump energy usage employing a com-
bination of a high elevation reservoir and a flow control valve in the EPANET
model.

There seems to be a trend to introduce more methods that combine aspects
of both stochastic methods and classical optimization. Some examples include
[219] combining LP and GA for longer term operational optimization of a multi-
reservoir system, [206] combines LP with hybrid discrete dynamically dimen-
sioned search (HD-DDS), Geem [96] combines particle-swarm concept with har-
mony search, and Giacomello et al. [103] apply LP together with a greedy algo-
rithm for pump scheduling problems in Anytown and Richmond networks.

Linear programming was combined with differential evolution in Zheng et al.
[314]. Network is first partitioned into trees. Binary linear programming is used
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for optimizing the trees and finally, DE is used for optimizing the core of the
network containing loops.

Multiple stochastic methods or the stochastic method and machine learning
can also be combined together in order to utilize each algorithm’s strengths. For
example, PSO and GA were combined in [25] for design optimization, Raad et al.
[210] have utilized a multi-algorithm, genetically adaptive multi-objective (AMAL-
GAM) algorithm that uses multiple meta-heuristic algorithms simultaneously,
and Dipierro et al. [81] analyse the performance of the extended version of hybrid
evolutionary algorithms of efficient global optimization (ParEGO) [141] and the
multi-objective evolution model (LEMMO) [133], combining a level of machine
learning with evolutionary algorithms.

The use of surrogate models is a very popular way to speed up the optimiza-
tions (see 2.5). The most typical surrogate models are ANNs [49]. One example of
advanced surrogate model usage is online retraining of ANN during the design
optimization process in [34].

Graph decomposing can be applied in optimization algorithms in order to re-
duce the problem search space size and to divide the simulations into multiple
much smaller units. One example of the graph decomposition approach to the
network design problem using DE can be found in [315].

Many of the stochastic algorithms can be parallelized in order to reduce the
computational time by utilizing multiple CPU cores or cloud computing services
now commonly available. Trajectory-based meta-heuristics can be parallelized in
three ways: the parallel exploration and evaluation of the neighborhood (parallel
moves model), the parallel multi-start model, and the parallel evaluation of a sin-
gle solution (move acceleration model). Two parallelizing strategies are common
for population-based algorithms: parallelization of computations, i.e. each indi-
vidual is evaluated in parallel, and parallelization of population, i.e. is population
is split into different parts that can be exchanged or evolved separately, and then
joined later. [13]

There is an ongoing research to develop completely new meta-heuristic algo-
rithms that can better utilize multiple CPU cores and GPUs. [13] Even though
the optimization algorithm itself is not parallelized, the objective function evalu-
ations can benefit from parallel processing (e.g. [300] and [30]).

Other new hydraulic simulation developments, such as graph decomposition
and quantised state-models, hold a lot of promise to speed up the simulations and
optimization processes (see Chapter 2.5).

The most common benchmark networks used for evaluating the optimization
method performance are Two loop, New York tunnels, Hanoi, Richmond and Any-
town networks shown in Figure 9. Balerma irrigation network[217] has also been
used as benchmark in several studies.
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Figure 9. The traditional test networks for optimization algorithms[148], [272] apud [103],
[286] apud [198]

Use of the current benchmark models (see e.g. [89], [137], [72]) has been criti-
cized, especially for operational optimization because for the most part, they are
gravity-fed and the networks do not represent actual large-scale network models
too well. Many of the methods in literature, however, have been tested on these
test networks in order to make it easier to compare the results.

Different algorithms and problem formulations have been shown to be effi-
cient in reducing network investment and operational costs. New developments
reduce computational time, use more accurate methods and often give better so-
lutions than earlier methods. Currently, various meta-heuristic methods are the
state-of-the-art solution for network optimization problems. New meta-heuristic
and hybrid algorithms are constantly developed and succesfully applied in water
network optimization.
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2.8 Operational optimization

Operational optimization is directed to the optimal operation of the water supply
system usually in terms of energy cost by finding out optimal time-varying set-
tings for the various controllable devices, such as pumps and valves, in the water
supply system, while ensuring sufficient quality of service.

The optimal operation of distribution systems with multiple water storage
reservoirs and multiple sources is a large-scale nonlinear optimization problem
with continuous and discrete variables, which makes the problem difficult to solve
mathematically. [176]

Cherchi et al. [62] review the operational aspects of the water supply system
management, focusing on the energy and quality aspects. The article reports op-
erational costs savings of 8 % to 15 % and energy savings of 6 % to 9 %. An earlier
review by Coelho and Andrade-Campos [65] focuses more comprehensively on
all aspects of water supply systems and their energy optimization, starting from
the system design. The review reports operational optimization cost savings of
6 % to 26 %.

Historical research is reviewed in Ormsbee and Lansey [185], and Lansey [145]
reviews the evolution of WSS optimization in quite broad perspective. According
to the paper, however, energy optimization was intensively studied 1988-1997,
and the field was already complete by 2006, except that potential in reducing
computation times existed. Research published afterwards suggests that many
more questions had to be solved than it was concluded in [145].

Operational optimization can be performed offline or online. Offline opera-
tional optimization can generate optimal operational rules for different scenarios
[272, 43, 278, 203, 167], from which the system operators can choose the solution
to apply for the actual situation at hand.

Online optimization, on the other hand, predicts the future water demands and
uses the current system state as initial conditions to find out the optimal way to
operate a system in the short-term future, typically for the next 24 hours [169,
213, 238, 122, 179].

The online optimization requires a good automatic control system, in which
tank levels, flow measurements, pump operations, and a decision-system tool are
all linked together [167]. Some additional issues related to hydraulic simulation
and data quality have to be tackled as well, as stated earlier in Chapter 2.5.

The operational optimization of WSSs can be performed through four steps,
including (1) establishing the definition of the optimization problem, (2) carrying
out the computational modeling of the system, (3) calibrating and validating the
hydraulic model, and (4) performing the simulation and optimization procedures.
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[176] The following subsections review the various constituent parts of the oper-
ative optimization.

Table 5 lists most of the published research related to the operational optimiza-
tion of water supply systems starting from the 1990s. The parameters listed in
the table are the algorithm used, whether it is reported that the method supports
variable speed pumps (VSP), objectives, constraints and design variables (please
refer to Table 4 for explanations of the values), number of and type of the objects
for which optimal settings are sought, size of the hydraulic model used in the opti-
mization, the possible surrogate model used instead of a full hydraulic simulation,
time of optimization run and the best result reported in the article.

Next sections discuss the various aspects of the operational optimization in
more detail: objective function, decision variables, optimization algorithms, real-
time considerations, and finally, real-time operation optimization frameworks.

Table 4. Short-hands used for objectives, constraints and design variables in Table 5

Letter  Objective Constraint Design variable
A Energy cost Min pressure Pump status

B Production cost Max pressure Tank trigger levels
C Chlorine cost/conc.  Tank level same in the end Pump/valve setting
D Leaks Min tank level/volume Valve status

E Pump switches Max tank level/volume Chlorine content
F Maintenance cost Source and/or pump limits Time triggers

G Peak power Number of warnings or errors  Station flow

H Tank level variation  Tank capacity

I Min pump stop time  Pump switches

J Hydraulic reliability ~ Pipe flow/velocity limit

K Quality
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2.8.1 Objective function

Most commpnly, the objective function includes only the cost of network pump-
ing electricity while raw water extraction and water treatment pumping costs
are left out, even though a major part of the electricity is consumed in these parts
of the supply system [237]. Only 15 % of the literature cited in Table 5 uses ex-
plicit multi-objective optimization, though 45% of the articles include multiple
variables in the single objective function, and could be regarded as scalarized
multi-objective problems.

Motor and variable speed drive efficiencies are not typically accounted for, ex-
cept when motor efficiency is included in the pump’s efficiency curve. The method
is valid when the pump runs at its nominal speed, but otherwise it gives wrong
results. 254, 165]

Water treatment costs are only rarely included in the objective function. Few
articles, such as Farmani et al. [90], [44], [169], [247], [50] and [205], include any
production costs. Some others, like [134] mention that including water produc-
tion costs is straightforward.

Multiple studies have addressed multi-objective optimization. Savic et al. [236]
have minimized energy and maintenance costs, [153] has optimized pumping
costs and average minimum pump stop time, [29] has used electricity cost, num-
ber of pump switches, reservoir level variation and maximum peak power, [289]
and [296] have optimized cost and environmental effects, [203] has optimized
leakage and costs, and [24] has optimized electricity and chlorine costs, and hy-
draulic and quality reliability.

Production costs are not often included in the objective, but if the system has
multiple sources with varying production costs, excluding them can result in so-
lutions that are not optimal in terms of the total costs, as the production cost can
be higher than the energy cost.

Pump maintenance costs are difficult to quantify, and often the number of
pump startups is used as a surrogate (e.g. [236], [282] and [151]), but the cost
of pump maintenance or replacements varies by the pump, and even the need
for maintenance does not necessarily correlate directly with the number of pump
startups. This thesis research limits the number of pump setting switches implic-
itly by the design variable formulation, as shown in the next chapter.

In this thesis the objective function is defined to include variable water pro-
duction costs: energy and chemicals needed, and energy costs: every pump in the
system be it part of the water treatment process or pressure booster station in the
network. The average production costs are aggregated into source specific unit
costs €/m?. Water supply reliability is taken into account by using constraints
formulated as penalty functions. More detailed description of the development

62



2.8 OPERATIONAL OPTIMIZATION

of the objective function can be found in Chapter 3.7. The way water treatment
processes and their energy consumption are modeled applying control system
modeling [252, 256] is described in Chapter 3.5.

2.8.2 Decision variables

Decision variables of the pump scheduling problem can be formulated either ex-
plicitly as pump settings or implicitly using surrogate variables like tank trigger
levels or pump station discharges. [185] Combination of both can also be used
[167].

By far the most common approach is to explicit formulation use binary string
for each single speed pump. Each bit in the string represents the pump status, on
or off, at that time interval. This approach has been demonstrated, for example,
in [160], [236], [170], [272], [151], and [218].

Tank triggers have been used, for example, in [272], [100] and [50]. When the
operational rules are optimized offline, implicit formulation in terms of tank trig-
ger level is regarded as more robust and it works better under uncertain water
demands than explicit formulation, but generally explicit pump schedules tend to
result in greater savings and utilize off-peak price tariffs better [10, 167].

Other decision variable formulations exist too. Different formulations can re-
strict the search space or allow for more flexible description of the problem. Lopez-
Ibafiez et al. [152] propose variable encoding based on the pumping period length
with a fixed number of pump switches; similar formulations have been used else-
where too, for example, in [26] and [179].

VSPs require some more work, and they are considered only in a subset of pub-
lications on pump scheduling problems. However, variable speed driven pumps
are already quite common in water utilities, and they offer major energy savings
and better controllability than single speed pumps (SSP) [164]. Using variable
speed control tends to lower the pump maintenance costs [121].

Some examples of methods where VSPs were considered, include [88], [10],
[296], [166], [114], [144], [39], and [24].

The problem with most VSP approaches present in the literature is that motor
and VSD efficiencies at lower speeds are typically not considered, even though
they have a major effect on the total efficiency [254, 255, 237], and frequency
scaling is not taken into consideration [244]. Neglecting the effects, the accuracy
of the published results considerably if no extra measures are taken to ensure that
the pumps work close to the nominal speed (e.g. [68]).

While few articles, like [166] and [39], explicitly state how the energy usage of
the pumps is calculated, it can be reasonable to assume that energy consumption

63



WATER SUPPLY SYSTEMS

values calculated by EPANET are used. EPANET, however, has major flaws in
calculating VSP efficiency at reduced rotational speeds [166, 165]. Some of the
published VSP optimization results can thus be inaccurate.

Variable speed pumps can be modeled and formulated in different ways, and
this has a major impact on the problem complexity and computational time. Solv-
ing explicitly speed settings for every pump increases the search-space consider-
ably; thus, methods that solve for the whole pump station’s flow setting and then
calculate single pump speeds based on the result can be much more efficient in
terms of computational time. [309, 186]

Wu et al. [296] include flow controlled VSD pumps into a genetic algorithm
driven system design and operational optimization problem by replacing pump-
ing stations with high-elevation reservoirs and EPANET’s flow control valves
(FCV), and calculating the pump energy usage by the real inlet reservoir head
and down-stream head of FCV.

Hashemi et al. [114] introduced a proper VSD controlled pumping station op-
timization with ant-colony optimization (ACO). The pumping station is replaced
with a reservoir, the head of which is found through the optimization process.
Resulting head and flow is divided between the pumps using ordinary, naive vari-
able speed control, and energy usage is calculated separately, based on the head
and flow solved by the hydraulic simulator. A similar two-level method was also
used in [24]. Analogical methods to reduce the number of decision variables have
been introduced earlier for single-speed pumps in the 1990s (e.g. [309], [186] and
[175]).

Several papers, e.g. [10], [166] and [144], use the optimization algorithm to
directly solve the VSP speed and model the VSPs using ordinary EPANET pumps
with relative speed settings.

This thesis research uses the purposely developed pump battery component
in the EPANET model [256] presented in more detail in Chapter 3.4.1 to model
pump stations. The parallel pump pre-optimization ([254], Chapter 3.3) is then
used for solving each pump’s speed and the total energy usage. In this way, the
VSD controlled pumps in a pumping station can be efficiently modeled, as only the
setting for the whole station has to be found, and the optimal way of producing
the working point inside the station is ensured.

The decision variables for each station are the 24-hout pattern index and four
flow or pressure settings that are used during different time periods, as described
in more detail in Chapter 3.7.1. The method develops on ideas from [186], [114]
and [152], and manages to reduce the number of decision variables from 24 per
pump to five per station, while retaining much of the properties of the explicit
pump schedule formulation. Proposed formulation reduces search-space to a frac-
tion of the typical.
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2.8.3 Optimization algorithms in operational optimization

Pump scheduling problems can be solved using a variety of optimization algo-
rithms. Many of the algorithms used for network design optimization or cali-
bration can also be used for operational optimization, as the problems are quite
similar (see Chapter 2.7). Currently, meta-heuristic methods are typically used,
because they are well suited for the problem type. The eras of various techniques
are the same as in the network design optimization, and since about 1994 stochas-
tic methods have dominated the field. [145]

Early literature on pump scheduling includes Fallside et al. [88] who used dy-
namic programming, and Jowitt and Germanopoulos [134] who used linear pro-
gramming. Sun et al. [251] have developed the EMNET algorithm that solves LP
with network structures very efficiently. The method was applied for operational
optimization of a Southern Californian water utility. Ormsbee and Reddy [186]
used non-linear heuristic combined with a KYPIPE hydraulic simulator and per
pumping station settings for optimizing pumping schedules for Washington D.C.
Nitivattananon et al. [175] used dynamic programming for Pittsburgh’s water sup-
ply system operational optimization, and Zessler and Shamir [309] used the pro-
gressive optimality method, which is an iterative dynamic programming method.
The method was tested on an unnamed regional water supply system. Mackle
et al. [160] was the first to use GA for pump scheduling optimization. The system
examined consisted of a reservoir and a tank connected by four pumps.

Dynamic programming solutions are usually case-specific and cannot be read-
ily applied to other systems. [186] Dynamic programming solutions also suffer
more from the curse of dimensionality and are limited to smaller problems than
other methods. [48]

Linear programming solutions are often case specific too. Discretizing contin-
uous results and inaccuracies due to linearization cause difficulties. [194]

An example of more recent LP solution for pump scheduling is that of Pasha
and Lansey [194]. They applied LP for optimizing pumping costs in Anytown-
like network. Their proposed method, however, only works for a single source
and single tank system. A series of papers [202], [203] and [201] present further
developments and use linearization to solve pump scheduling problems.

A more recent example of dynamic programming can be found in [101], and
non-linear programming in [44], which uses the generalized reduced gradient
algorithm (GRG) and simple branch and bound (SBB) to optimize pump station
flows, and Sakarya and Mays [229], which uses GRG2 and three different objective
functions: pumping time, total cost and chemical concentrations.

Skworcow et al. [246] optimizes pump and valve schedules using CONOPT [84]
NLP algorithm found in the general algebraic modeling system (GAMS) and skele-
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tonized EPANET model [192]. The methodology allows for variable-speed driven
pumps. The optimization method is fast, it took about five minutes to optimize for
24 hours in one hour intervals, but no energy savings data were reported. A sim-
ilar method has been implemented in [36], but instead of using EPANET model
for objective function evaluation, a simple linear mass balance model of WDS is
used.

Bagirov et al. [26] encode pump start and run times as continuous variables
and pump status at the start of the first period as a binary variable. In addition,
the number of pump switching periods is limited to five. These reduce the search
space remarkably. The problem is then transformed into a MINLP problem, and
it is solved with grid-search and Hooke-Jeeves [119] search.

Savic et al. [236] applied multi-objective GA (MOGA) for optimizing cost and
number of pump switches. McCormick and Powell [171] investigated the use of
two-level simulated annealing. The total costs included energy cost, pump switch-
ing and maximum demand charges. An initial solution was produced by a descent
method, then two-stage simulated annealing optimized the final schedule.

Kurek and Ostfeld [144] use the strength pareto evolutionary algorithm (SPEA2)
to perform multi-objective optimization on both water quality and energy use.
The design variables were relative pumps speeds for VSPs and chlorine concen-
trations at water sources, and tank diameters. The methodology was tested on
one of EPANET’s example networks.

Baran et al. [29] optimized pump schedules for four different parameters elec-
tric energy cost, maintenance cost, maximum power peak, and level variation in a
reservoir using size different multi-objective evolutionary algorithms. The same
case and algorithms were examined earlier in von Liicken et al. [282], which also
used both parallel and sequential versions of the algorithms.

Lopez-Ibafiez et al. [153] used the SPEA2 algorithm in the pump scheduling
problem for minimizing energy and maintenance costs. Constraints were handled
using a methodology based on the dominance relation rather than using penalty
functions.

Gogos et al. [106] applied GA for optimizing pump schedules in 30 min intervals.
Their method included an algorithm to repair infeasible solution chromosomes
by adding or removing pumps so that reservoirs will not overflow or empty too
much. The reported savings were 28 %, but few details of the system are provided.
The paper does not explain how the pump power use is calculated exactly, but it
seems that no hydraulic simulations are performed, instead a tabulated pump
energy consumption values and a mass balance model are used.

AbdelMeguid and Ulanicki [10] solve the optimal pump scheduling problem
in implicit form for a large real network consisting of both SSPs and VSPs using
GA. Optimal tank trigger levels and relative rotational speeds for VSPs were gen-
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erated for each pumping station for each tariff level. The optimization was done
offline and the resulting tank trigger levels were then incorporated into PLCs con-
trolling the pumping stations. A sensitivity analysis showed the methodology to
be robust.

Marchi et al. [166] solve the optimal pump scheduling problem for both SSP
and VSP using GA. Only two very small systems were studied. However, the
study shows that VSPs improve the energy usage considerably over SSPs and
that EPANET has major flaws in the way energy use is calculated for VSPs.

Bohorquez et al. [39] use GA for optimizing tank trigger levels for single speed
pumps and speeds at different tank levels for VSPs. Only EPANET rule-based
controls were used and the rotational speed was controlled directly. The method
used included not only pumping costs, but also leakage costs in the objective
function.

Some other algorithms used include neutral evolutionary search [238], honey
bee mating optimization algorithm (HBMOA) [100], which optimized a set of tank
trigger levels for pumps in the system, and ant colony optimization (ACO) was
applied for explicit pump scheduling in [151] in van Zyl and Richmond networks.

Hybrid optimization algorithms combining multiple different optimization al-
gorithms have been applied to operational optimization problems too. Some ex-
amples include those in [103].

Dynamically dimensioned search (DDS) algorithm was first presented in [264].
The algorithm is greedy, constant-time general purpose optimization algorithm,
that first performs global search and as the number of objective function eval-
uations gets closer to the allowed number, the algorithm changes dynamically
into more and more local search. The algorithm thus exhibits hybrid properties.
The algorithm was later extended to support discrete variables and named hybrid
discrete DDS (HD-DDS) [265].

Tolson et al. [265] compare DDS performance for optimizing WDN using class-
ing New York tunnels problem, its double pipe version and Hanoi network, with
different other algorithms such as GA, CE and PSO. The algorithm required less
computational time and gave as good or better results than the other algorithms
tested.

DDS performed well in relation to GA and various surrogate modeling ap-
proaches in [216] when several test functions were used, but [313] and [312] ar-
gue that DDS’s performance in terms of speed and result quality is not in the best
class in the configuration of the water supply network system. Puleo et al. [206]
argue, on the other hand, that the principal advantage of DDS class of algorithms,
compared with genetic and ant colony algorithms, is their good ability to find
near globally optimal solutions while being significantly more computationally
efficient.
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Giacomello et al. [103] apply LP together with a greedy algorithm for pump
scheduling problems in Anytown and Richmond networks. Puleo et al. [206]
have used multi-stage LP for pump scheduling in Anytown. The results from LP
were further optimized by HD-DDS[265]. Both studies show promising results
by doing a rough approximate optimization with LP and then refining the results
further with stochastic methods resulting in smaller computational time require-
ments.

Van Zyl et al. [272] use the hybrid algorithms the other way: first, optimiz-
ing more globally using GA and then refining the results using Hooke—Jeeves
or Fibonacci hill climbing algorithms. The methods were tested using Richmond
network.

Skworcow et al. [247] optimize pumping and water treatment costs for York-
shire Water Services. The system includes both fixed and variable speed pumps
and pressure reducing valves. The problem was solved using skeletonized [267]
EPANET model including leaks modelled as emitters. CONOPT non-linear pro-
gramming solver found in GAMS package was used as a solver. The continuous
schedules solved by CONOPT were transformed into discrete schedules using
an algorithm developed in Matlab. The reported savings were almost 34 %. The
article explicitly includes the price of water treatment as fixed per-station unit
cost. The use of fixed price, however, fails to capture the effect of varying energy
losses in the treatment process due to friction, and pump and pump drive train
efficiencies.

Nitivattananon et al. [175] decomposed the problem temporarily into short and
long term sub-problems and spatially into several subsystems. Dynamic program-
ming was then applied to optimize the pump schedules real time. Heuristics were
used to rearrange the pump schedules in order to minimize the number of pump
switches. The optimal discharges were calculated for each station, and the short-
term optimization derived the single pump schedules. The only constraints are
tank levels, and only rough approximation of the flow dependent pressure losses
between tanks and pumping stations were considered. The method was applied
in Pittsburgh and it showed 20 % reduction in pump energy costs.

Broad et al. [50] have optimized pumping and chlorine costs using the GA and
ANN surrogate model. Optimization time of 1.4 h yielded operational cost savings
of 21 % for the network of Wallan, Victoria, Australia.

Marchi et al. [167] extend EPANET rules engine in order to allow more complex
rules, taking into account simultaneously several conditions (e.g., the time of the
day and the tank level), to be generated and changed online. The extended EPA-
NET is used with GA to optimize the operational rules based on both tank trigger
levels and time of the day. The resulting solutions were cheaper than previously
found simple rule based solutions.
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Ostojin et al. [189] used GA optimized fuzzy logic control for real-time pump
schedule optimization in a sewer pumping station resulting in 5% energy cost
savings. Zhuan and Xia [319] used reduced dynamic programming for operational
pump schedule optimization. Farmani et al. [90] used GA for offline whole-cost
optimization based on optimal pump-scheduling.

Babaei et al. [24] used multi-objective ACO to optimize pumping and chlo-
rine costs, having explicit pump schedules and chlorine doses as design variables.
The other objective was one of different reliability measures: hydraulic reliabil-
ity, quality reliability or integrated reliability. For VSPs, an alternative reservoir
method presented in [114] was used. The method was applied in the Anytown
network.

Zheng and Huang [316] developed and applied a novel improved dynamic pro-
gramming algorithm (IDPA) in the operational optimization of two-stage deep
well pumping (single-speed). The method was compared with the traditional branch
and bound (B&B) method. IDPA was almost two orders of magnitudes faster than
B&B method, and the resulted costs were smaller.

Price and Ostfeld [200] and Price and Ostfeld [204] developed a novel way to
solve pump scheduling problems by presenting the problem as a graph and using
the shortest path algorithm to find the optimal pump schedule.

Based on the review, it seems apparent that more traditional optimization meth-
ods, such as LP and DP, have superior computational performance compared to
meta-heuristics. However, meta-heuristics are much simpler to apply, and the
literature shows that performance of different meta-heuristic methods, both in
terms of the solution quality and computational resources required, can be rea-
sonable.

While GA is most commonly used, many other methods can perform better,
especially in terms of the number of solution evaluations. It was decided to ex-
plore the possibilities offered by the dynamically dimensioned search (DDS) in
operational optimization, where it has not been applied before. DDS is very easy
to implement, seems to converge on acceptable solutions quickly and it exhibits
both global and local search properties like many hybrid methods, which have
proven to be effective in this class of problems.

Based on the initial performance assessment, the DDS algorithm was slightly
modified in this work. The performance was much better if a certain degree of
non-greediness was allowed. The optimization algorithm is presented in Chap-
ter 3.8.
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2.8.4 Real-time considerations

The use of meta-heuristic optimization approach requires a great number of hy-
draulic simulations. Even though a single simulation can be reasonably fast, the
simulations still are the bottleneck of the optimization process. Much of the re-
search focuses on finding the best optimization methods in terms of the number
of hydralic simulations performed (e.g. [229]). Some research dealing exclusively
with more efficient hydraulic simulation was already presented in Chapter 2.5.

As multi-core processors and powerful graphical processing units (GPU) with
general purpose programming facilities, such as Nvidia’s CUDA and open com-
puting language (OpenCL), have become more commonplace, there has been a
growing interest in parallelizing hydraulic simulators and re-implementing the
matrix operations on GPU, and thus reducing the computational time needed.

There have been several attempts to utilize better the multiple CPU and GPU
cores available in the modern workstations. Two kinds of approaches are in-
volved: improving the performance of the EPANET simulator by parallelizing the
simulator or improving the performance of the optimization algorithm by run-
ning several distinct simulator processes in parallel [162].

Guidolin et al. [109] implemented the EPANET solver, the conjugate gradient
method on GPU using sparse matrices. According to the paper, there is potential
to reduce the computational time for repetitive runs.

Wu and Lee [301] replaced the linear equation solver in EPANET with a parallel
version and compared how the parallelized version performed solving hydraulic
models with 1000 to 150 000 pipes. While the matrix solver performance increase
was significant, overall efficiency was significantly reduced by introducing the
new solver. The slowdown was more pronounced with smaller models. Even with
a very large model, only 29.7 % of the processor time is spent solving the network
equations. Actually 19.1% of the time is spent opening and closing the model
and saving the results, which serves as a hint of major simulation time savings
potential there. [301]

Wu and Zhu [298] and [149] use distributed and parallel simulations, respec-
tively, to reduce the computational time required by the optimization. Von Liicken
et al. [282] used asynchronous parallel multi-objective optimization. The parallel
optimization framework used in [298] was later generalized for any parallel GA
based optimization in [303].

Ibarra and Arnal [122] formulate an implicit pump scheduling problem as a
mixed integer programming problem and use computational infrastructure for
operations research (COIN-OR) toolkit to solve it using parallel processing. The
solution is obtained using the branch and bound method. The method was applied
to a small part of WDN of Granada, Spain, and the reported savings were 20 %.
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Using multiprocessing via open multi-processing (OpenMP) and message passing
interface (MPI) reduced the computational time almost linearly as the number of
cores increased.

Broad et al. [50] used ANN for optimal control of water supply systems. The
ANN method was several orders of magnitude faster than using EPANET for the
Wallan, Victoria, Australia network. Behandish [30] used multiple ANNS, trained
using GPU, for extended period simulation.

Razavi et al. [215] compared the computational performance of various sur-
rogate models using Griewank, Ackley, Rastrigin and Schwefel functions as test
functions. The paper concludes that using surrogate models is not always a proper
solution for coping with limited computational budget. Choosing a suitable sur-
rogate model is not simple, and a bad choice can be counter-productive. For ex-
ample, in [30] accumulated tank level error from ANN usage was about 0.5m to
1.0 m in the presented case study over a 168 h period. Still, surrogate models are
widely used in operational optimization, as they can be up to 700 times faster
than full-scale hydraulic simulation [49].

Paluszczyszyn et al. [191] and [192] present a model simplification methodol-
ogy that can be applied online, thus enabling the real-time modeling. Compared
with [267], [191] adds support for multi-threaded simplification, which allows
simplification of a 3500 node network in 1 min to 37 min depending on the num-
ber of threads. The method compares both the hydraulic equivalence and energy
distribution characteristics of the simplified and original models.

Hakimi-Asiabar et al. [113] uses self-learning (using self-organizing maps, SOM)
multi-objective GA for optimizing reservoir operations. The method shows clear
improvement of results quality over NSGA-II in the studied case: NGSA-II had
to be run for 1000 generations and the run took 23 min while the self-learning
genetic algorithm variant (SLGA) took only 100 generations and 6 min to satisfy
the stopping criteria.

Zheng et al. [313] used the graph decomposition method to solve the design
optimization problem more efficiently. The network is partitioned and each sub-
network is optimized separately using differential evolution. The method per-
formed very well in terms of the optimized costs and computational time, and
could be applied in the operational optimization setting to speed up the optimiza-
tion.

Computational budget can also be saved by introducing preemption. When
the objective function value is monotonic, and the optimization algorithm does
not require the final objective function value, the hydraulic simulation can be
preempted as soon as it becomes apparent that the result would be worse than
the current best value. According to [214], preemption can save up to 60 % of the
computation time. The methodology, however, cannot be used with many meta-
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heuristic algorithms, because the algorithms, for example GA and ACO, require
that the final objective function value is known.

Pasha and Lansey [196] state that developing good initial solutions that already
approximate the optimum, the computation time required by the stochastic opti-
mization algorithm can be reduced significantly. The speed-up can be especially
noticeable, when the optimization is combined with a surrogate model.

Pasha and Lansey [195] used LP to generate warm solutions for SFLA based
stochastic optimization to speed up the optimization process. The optimization
time is further reduced by using support vector machine as a surrogate model to
avoid full EPANET simulations. The method was tested on the Anytown network.
Unfortunately, no computation time information was published. The paper also
recommends the use of previous day’s optimal solution as a warm initial solution.

Jung et al. [136] uses GA with a skeletonized model and explicit SSP pump
formulation. They use previous hour’s results as a warm initial solution to speed
up the optimization process.

Developing a surrogate model for full hydraulic simulation requires much ef-
fort and typically sacrifices some accuracy. The performance gains, however, can
be significant. Parallelized versions of the GGA hydraulic solver or using a GPU
does not yield significant speed-ups. New developments in hydraulic simulation,
as discussed in Chapter 2.5, such as graph decomposing, hold a lot of promise, but
it will take some time before practical implementations are readily available.

Avoiding unnecessary calls to the hydraulic simulator, avoiding IO-operations
and caching as much of the simulator state as possible between different calls
to the simulator, preempting simulation when the solution is proven to be bad,
and generating good initial solutions for optimization algorithms are more easily
implemented and provide more generally applicable solutions.

This work implements some code level optimizations and heavy compiler op-
timization for the simulator, avoids much of the IO of the simulations, uses pre-
emption [214], results from previous optimization run as an initial solution for
the next (as in e.g. [213] and [136]), and avoids the use of surrogate models. One
goal of this thesis research is to show that it is feasible to use full-scale hydraulic
models in conjunction with real-time optimization. The applied methodology is
described in Chapter 3.11.

2.8.5 Real-time operational optimization frameworks
The aim of the real-time operational optimization is to minimize costs, energy

usage or chemical consumption while ensuring sufficient quality of service for
the consumers by varying the control parameters that can be changed remotely
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Figure 10. Control scheme for online energy and leakage management using skeletonized
hydraulic model [192]

by the SCADA system in use. Typical control parameters include pump and valve
settings. One example of a general model predictive control (MPC) system for
energy and leakage management is shown in Figure 10.

The complete real-time optimization framework includes all the elements needed
for the optimization: SCADA connection, demand forecasting, optimization algo-
rithm, and solution evaluation module. The literature review performed, unfor-
tunately, yielded only a few articles describing complete real-time operational
optimization frameworks.

Bunn [51], Bunn [52] and Thorstensen [258] examine the benefits of using De-
creto’s online pump scheduling and operational management system in various
US cities. The publications show that significant energy savings of 10 % to 15 %
are possible in real systems, but the implementation details are not documented.

Zhao et al. [311] present a general framework for the online analysis and oper-
ational optimization of WSS. The framework has been in use for two years, and
energy savings of 3.4 % have been reported, along with much fewer pipe burst,
smaller leakage and better service pressure.

Odan et al. [179] describe a real-time optimization framework. Demand fore-
cast is calculated using the DAN2-H algorithm and the operational optimization
is done using the AMALGAM algorithm. Pump schedules are formulated as time-
triggers. The optimization was multi-objective, including pumping costs and var-
ious reliability measures. Their case-study showed cost savings of 13 %.

Jamieson et al. [130] describe the POWADIMA project that developed a generic
real-time operational optimization framework. The various aspects of the frame-
work were presented in more detail in various papers. Rao et al. [211] and Rao
and Salomons [213] focus on the optimization using the GA and the ANN surro-
gate model. The design variables are pump on-off statuses and valve settings for
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a 24-hour period. The optimization was applied to a hypothetical modified Any-
town network [212, 213] and real networks Haifa-A [234] and Valencia [169]. For
Haifa-A case, each solution had 408 bits, population size was 50 and the number of
generations was 1000. The network model used for Haifa-A had 112 nodes. Using
the GA-ANN, method the 24-hour optimization took about four minutes, which
was 25 times faster than using the full hydraulic model with GA. The reported
energy savings were about 20 % for both Haifa-A and Valencia cases.

The Haifa system was further optimized in [240] using the GA with a skele-
tonized version of more accurate, 867 node, hydraulic model. The skeletonized
model had only 77 nodes, while retaining much of the accuracy of the original
model. The framework laid in [130] remained otherwise the same. The reported
energy cost savings were 10 % and the reduced model was reported to be 15 times
faster than the full model - one optimization run took about 15 min.

This work develops a real-time operational optimization framework with the
structure similar to those published earlier, as there is not much room for im-
provement in the framework structure in itself. The framework is described in
more detail in Chapter 3.1.

2.9 Conclusions

This chapter provided a general overview of the water supply system and the rele-
vant hydromechanics. The chapter reviewed literature related to various subjects
needed for constructing a real-time operational optimization framework. The cov-
ered subjects included pump energy use and pump energy optimization, hydraulic
simulation, demand forecasting, and WSS optimization.

Compared to the optimization of water distribution network design, the oper-
ational optimization is a subject relatively little studied, especially in a real-time
setting. Much of the challenges and solutions apply equally to both classes of
problems. The requirements for computational performance are typically, how-
ever, more pronounced in operational optimization problems when near real-time
performance is needed.

In the literature, major short-comings in many reported operational optimiza-
tion methods are shown to lie in focusing mostly on fixed-speed pumps and the
lack of accuracy: surrogate models are used, VSP energy consumption is only
roughly approximated or sometimes calculated incorrectly, and raw water pump-
ing and treatment or chemical costs are rarely included in the objective function.

Multiple meta-heuristic optimization algorithms have been successfully applied
to both design and operational optimization, and their performance has been
good. Classical optimization methods have shown good overall performance, but
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implementing them is more problem-specific. Various hybrid algorithms combin-
ing classical and meta-heuristic or different meta-heuristic algorithms have also
been successfully applied and they have shown good performance.

One major reason for the use of rough approximations is certainly the rela-
tively long time it takes to simulate a full-scale network using the current ver-
sion of EPANET. The new developments in hydraulic simulation, especially the
promising decomposition methods, can change this in the near future. Another
main reason for simplifications and the use of small benchmark models is that
authors focus on the optimization algorithm itself, and try to produce results that
are easily comparable to earlier research. Thus, authors tend to report results us-
ing small but widely available models such as Anytown.

The next two chapters describe the real-time operational optimization frame-
work developed in this thesis that builds upon and addresses some short-comings
in the earlier research.

The approach chosen in this thesis research is to use a model as accurate as
possible. According to the literature review, novel developments of this thesis
in the field of real-time operational optimization in the hydraulic modeling are:
a full-scale hydraulic model that includes raw water extraction, conveyance and
treatment (see Chapter 3.5), controlled by the real control system model (see Chap-
ter 3.4.2) used in conjunction with an accurate model for pump energy usage (see
Chapter 3.3).

The accurate pump energy use model, integration of flow and pressure con-
trolled variable-speed driven pump batteries in EPANET (see Chapter 3.4.1), and
the use of globally pre-optimized pump battery pump and frequency configura-
tions (see Chapter 3.3) ensure, together with the accurate hydraulic model, that
results obtained by the optimization accurately present the system performance
and that the solutions are feasible.

The performance of hydraulic simulations is ensured by optimizing the sim-
ulator both manually and using the best optimizations modern C compilers (in
this case the GNU C Compiler, GCC) have to offer (see Chapter 3.4.4). Parallel pro-
cessing is utilized in the optimization process via a novel way of making EPANET
thread-safe by utilizing thread local storage (TLS) features of modern compilers
(see Chapter 3.4.3) without making any API changes.

More gains in computational efficiency are achieved by the preemption of the
objective function evaluation, and loading, and initializing EPANET only once,
and reusing the same simulator for all evaluations while avoiding as much of file
input and output operations as possible (see Chapter 3.11.1), which, according to
the literature review, can make the simulation about seven times faster compared
to the straightforward use of a simulator.
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While the optimization framework structure (see Chapter 3.1) itself is quite
conventional if not for its generality (see Chapter 3.12.1), and likewise, the de-
mand forecasting algorithm (see Chapter 3.9) is not very special, the problem
formulation and optimization algorithms offer considerable novelty.

Thanks to the control system modeling and the pump battery EPANET compo-
nent and pre-optimization, the optimization framework does not have to optimize
each single pump’s frequency, but it can find out the station specific optional set-
tings, which are then transformed into pump-specific frequencies by the control
system model and pump battery pre-optimization. This enables the system to in-
clude every single pump in the system, while managing to keep the size of the
search space reasonable.

This makes it possible to accurately model and include water production en-
ergy costs in the objective function. Objective function (see Chapter 3.7) includes
not only the energy costs, but also other water production costs, like chemicals,
which are not typically included in the objective function in the literature.

Further reduction of search space is gained by the novel way to formulate the
decision variables (see Chapter 3.7.1) as a hybrid of explicit and implicit formula-
tion on the station level. The formulation developed in this thesis research fixes
the number of setting changes to four and imposes minimum run length for each
setting to ensure better usability and feasibility of the settings. The formulation,
however, also allows high level of freedom for the algorithm to choose the times
when the different settings are used.

The optimization algorithm used is based on both DDS and HD-DDS that ex-
hibit both global and local search properties, and according to the literature seems
to provide good performance. The algorithm has not been applied in operational
optimization problems before. This work modifies the algorithm somewhat to al-
low for solving MINLP problems and allowing for temporal non-greediness of the
algorithm, as described in Chapter 3.8.

Warm initial solutions are used, thus providing the algorithm with a known
good starting point from the result of the last optimization run (see Chapter 3.10).
The simulation preemption is also used to avoid simulation of further timesteps
after it is apparent that the solution candidate is worse than the currently known
best solution. This reduces the computational time remarkably.

The work always runs several independent optimization runs in parallel and
selects the best solution to ensure high level of certainty of the optimality of the
solution. A certain level of population-based properties is thus brought to the
otherwise single solution DDS algorithm.
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3.1 Introduction

! l ‘u1s chapter describes the generic optimization framework for real-time whole-
cost optimization of water production and distribution developed in this the-
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Figure 11. Structure of the developed optimization framework in its general form

Figure 11 shows the components of the optimization framework and their re-
lations to each other. The optimization of a given historical or future time period
can be initiated from the web user interface manually, programmatically using
the provided Representational State Transfer (REST) Application Programming
Interface (API), or using a scheduled task — as performed in the operational real-
time setting.

The literature review in Chapter 2 shows, that while there is a considerable
body of research addressing the operational optimization of a water supply sys-
tem (WSS), only few papers focus on optimizing systems with variable-speed
drive (VSD) controlled pumps.

The existing research typically ignores energy consumed by raw water extrac-
tion, conveyance and pumping at water treatment plants along with non-energy
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costs related to water production. Pump motor and variable-speed drive efficien-
cies are also typically neglected. Most of the published research uses simplified
or surrogate models for the optimization instead of full-scale network models.

In order to accurately model and optimize the energy usage of the whole water
supply system, the method presented here assumes the use of a full-scale hy-
draulic model, including all pipes, all pumps along with motor and VSD efficien-
cies (see Chapter 3.3), raw water extraction and water treatment processes (see
Chapter 3.5) and the control system model controlling the pumps and valves in
the WSS (see Chapters 3.4.2 and 3.4.1).

The method presented will achieve near real-time operational optimization us-
ing a full-scale hydraulic model by following:

1. reducing the number of design variables by using a novel problem formu-
lation: only time patterns and four different flow settings are optimized on
a station level (see Chapter 3.7.1 — treatment processes are driven by con-
trol system model (see Chapters 3.4.2 and 3.4.1), and internal pump battery
optimization is done beforehand offline (see Chapter 3.3)

2. using highly optimized, parallel version of EPANET simulator (see Chap-
ters 3.4.4 and 3.4.3)

3. using preloading, preemption and parallel processing to reduce computa-
tional time, when performing hydraulic simulations as part of the objective
function and constraint evaluation (see Chapter 3.11.1)

4. using previous optimization results as warm initial solutions (see Chap-
ter 3.10)

5. using a novel Modified Hybrid Discrete Dynamically Dimensioned Search
(MHD-DDS) meta-heuristic optimization algorithm, which is efficient and
supports a fixed number of evaluations (see Chapter 3.8).

The following sections describe the main components of the proposed frame-
work in more detail, starting with the model preparation: pump train energy
use model, parallel pumping optimization, EPANET enhancements and hydraulic
model construction, optimization preparation: the tool for SCADA data access,
and proceeds to the optimization problem itself: problem formulation, optimiza-
tion algorithm, demand forecasting, generating initial solutions and solution eval-
uator. Finally, some implementation details and the concluding remarks are pre-
sented.
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3.2 Pump energy use model

The pump energy model is also presented in the author’s articles [253] and [254].
The related literature is reviewed in Chapter 2.3.

Variable-speed drive (VSD) can change the motor’s and thus the pump’s rota-
tional speed N. VSDs are introduced in order to control the produced flow and
pressure in an energy efficient manner. The introduction of variable speed drives
allows for significant energy savings and more flexibility in the control of pump-
ing. [164] The flows and pressures need to be controlled because the system pa-
rameters, for example water demand vary significantly over time.

Flow Qy, head H, and power P, at some rotational speed N; are calculated using
affinity laws.

Pump’s hydraulic efficiency in relation to the rotational speed can be modeled
using frequency scaling. More complex models are based on the Reynolds number
[105], but if it is assumed that no losses are dependent on the Reynolds number,
the frequency scaling function can be written as in [235]:

=1—(1—m) (z)o . (3.1)

While Equation (3.1) is approximate, according to [244], it provides reasonably
good estimates if the rotational speed is not reduced more than 70 % from the
nominal or the pump is small. The formulation is becoming accepted in the field
[99].

Motor’s efficiency depends on the load. The motor load

Ps

~ Pnom
11M,100

(3.2)

where Pyop is the motor’s nominal power and 7,190 is the motor efficiency at
the rated load. [5]

According to Equations (2.8) and (2.9¢), shaft power Ps is approximately propor-
tional to the cube of the relative rotational speed w?. Thus, lowering the pump’s
rotational speed to 50 %, lowers the shaft power — and the motor load - to about
12.5%. The load L diminishes quickly as the rotational speed is reduced.

The exact motor efficiency 7, at different loads is motor specific, and typically
the motor manufacturers provide load—-efficiency curves. Generally, larger motors
have higher efficiency, and higher efficiency motors can keep better efficiency at
lower loads.
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IEC 60034-31 [124] standard provides a general equation to calculate an approx-
imation of motor efficiency at any partial load based on motor’s rated (#p1,100) and
3/4 load efficiencies (17p1,75):

1 1) _ . 1 _
o = ('7M,100 1) 0.75 (’7M,75 1) (3.3a)
0.4375
oo — < - 1> . (3.3b)
1 M,100
_ 1 (3.3¢)
™= Dty L ‘

Equation (3.3) can be used to approximate the motor efficiency when the exact
efficiency curve is not available.

When the motor efficiency is known for the particular pump working point,
the motor power
_ s _ Pu

_ _ 34
nm NH - IM ( )

Py

can be calculated.

Based on experiments presented in [56] and [55], this work assumes that mod-
ern VSDs can mostly compensate the VSD generated losses in motors, and only
VSD efficiency itself is considered as per IEC 60034-31 [124].

VSD load is calculated similar to the motor load in Equation (3.2). The VSD
efficiency #nvgp is linearly interpolated from a lookup table constructed based on
IEC 60034-31 [124]. The efficiency at various loads for VSDs of different nominal
power is shown in Figure 12.

The pump train electrical power

Pm

Pr = s 3.5
F Nvsp ( )

and the total pump train efficiency
Py
fror = p = MH M Avsp [33] (3.6)

The total electrical power for a pump expressed as the function of the working
point (Q, H) becomes

- - (3.7)
NH "M HvsD NH M vsD
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VFD Efficiency in Partial Load

100%

98%

96%

94%

92%

90%

88%

VFD Efficiency (%)

86%

84%

82%

80%

Panl
A
” ‘ 1
At
= | Speed 100% Torque 100% (Load -
100%)
—Speed 75% Torque 56% (Load 42%) [T]
Speed 50% Torque 25% (Load 13%) I
Speed 25% Torque 6% (Load 2%)
| [T [ T TTT]
0,1 1,0 10,0 100,0 1000,0

VFD Nominal Output (kW)

Figure 12. Typical VSD efficiency at different loads [124]

Table 6 shows how the load and different efficiency components change using
the selected method, when pump’s rotational speed is reduced in a zero static
head system. The motor presented in the table is a 75 kW IE2 class motor, with
a full load efficiency of 95.4 % and 75 % load efficiency of 94.6 %. The VSD is also
75kW in power. Pump’s best efficiency point (BEP) is 75 % at the nominal rota-
tional speed at 50 Hz. It is assumed that pump’s shaft power is 75 kW at BEP at
the nominal rotational speed. While pump’s BEP decreases from 75.0 % to 73.2 %

when the rotational speed is reduced from 50 Hz to 25 Hz, motor’s efficiency re-
duces from 95.4 % to 77.6 % and VSD’s efficiency from 98.0 % to 95.3 %. This results
in the total efficiency of 70.1 % at 50 Hz and only 54.5 % at 25 Hz.

Table 6. Different efficiency components at various loads and rotational speeds

Hy Load Efficiency

Motor VSD Pump  Total
50.0 100.0% 954% 98.0% 750% 70.1%
454 750% 94.6% 979% 748% 69.2%
39.7 500% 928% 973% 744% 672%
31.5 250% 872% 965% 738% 622%
25.0 125% 77.6% 958% 732% 545%
18.4 50% 582% 953% 724% 40.1%
14.6 25% 411% 949% 71.7% 28.0%
10.8 1.0% 218% 946% 709% 14.6%
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3.3 Parallel pumping optimization

The pump optimization method is also presented in the author’s articles [253]
and [254]. The related literature is reviewed in Chapter 2.4.

The pump battery is described as a set of pumps. Each pump is given a char-
acteristic curve, an efficiency curve, minimum and maximum allowed frequency,
nominal motor power Pyop, and either IE efficiency class and number of poles,
for standard motor efficiency values based on IEC 60034-30[123], motor efficiency
values at both 100 % and 75 % load, #7100 and #a175 respectively, or motor effi-
ciency curve in tabular format. Minimum and maximum frequencies can be set
equal, when no VDS is present or in use.

The power used by the whole battery of n pumps is

n
Pror =Y Pri (3.8)
i

where Pr; is pump i’s electrical power use (see Equation (3.7)).
Mathematically, the problem of finding an optimal combination of pumps and
their respective frequencies for a working point (Q, H) can be stated as

I}SQPTOT(Q/ H/]E) P (39)

where f is a vector of combinations of frequencies for different pumps and the
search space X includes all allowed combinations of frequencies and pumps that
produce flow Q and head H.

A parallel exhaustive direct search [119] is performed on the full pump battery
working regime (Q, H) € {Quin - - - Qmax, Hmin - - - Hmax }- For each working point
(Q, H), all allowed combinations of different pumps and their frequencies that can
produce the flow Q and head H are considered, and for each working point, the
optimal combination of pumps and their frequencies f in terms of total efficiency
is chosen and stored in the results array.

First, each pump’s working regime is determined. Minimum and maximum al-
lowed head, and maximum allowed flow are calculated based on the pump char-
acteristic curve and the allowed frequency range.

The calculation loops over the pump’s allowed flow range for the frequency,
and calculates matching the head and the total pump train efficiency #ror. If mul-
tiple frequencies result in overlapping working points in the Qs X Hrep resolu-
tion, the frequency that produces the highest total efficiency is chosen for that
particular working point.
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The results of the working regime calculation are stored in two pump specific
lookup arrays shown in Equation (3.10). The first, F, contains the optimal fre-
quency for all working points and the other, H, contains the total pump train
efficiencies at those points. Arrays elements that present invalid working points
are set to 0.

fQ1/H1 szlH1 e me'Hl

Fe foHy, foum, 0 fomHy (3.10a)
LforHn fop Hn  *tc fQm, Hu
NQ1.Hy  MQo,Hy YQm Hy

H= |70 TQd oty (3.10b)
_UerHn MQy,Hy " 1Qm, Hn

Next, all the possible non-identical pump combinations are considered. For
each combination the algorithm iterates over the allowed head range [Hin, Hax|
using the user-defined head step size Hy.p. Each head step H; is added to a FIFO
queue, where one of the processor threads picks it up for calculation.

A processor thread calculates all possible combinations of flows for the running

pumps in the given pump combination for the head H;. The flow step used in this

Qstep

step is —,

, where 7 is the number of pumps running in the combination. Fach
pump’s total efficiency is looked up from that pump’s working regime array H.
Every time there are multiple possible combinations that produce the same total
flow, the one with best over all efficiency is chosen and stored in the results arrays.

The end result is two arrays that cover the full working regime of the whole
pump battery. Each element represents an area defined by Q. and Hyy,p. Results
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array C contains the numerical presentation of the optimal combination binary
string and R contains the optimal total efficiency of the pump battery:

€01, Hy  CQpH; " CQm H

o R (3.11a)
€O, Hn  €Qyp,Hn " CQm,Hn
MQ1.Hy  1MQy,Hy  * 1Qm,Hy

R = |7t Mty om | (3.11b)
_77Q1,Hn MQy,Hn  **° MQm, Hn

Two naive algorithms were implemented too, to facilitate easier comparison
of various control strategies. Naive 1 algorithm drives all running pumps with
equal frequency, and naive 2 algorithm adjusts only the last pump’s frequency
while the other pumps run at their respective maximum frequencies. Naive 1 is
the most common way to control parallel pumping in the field.

EPANET was modified to use the total efficiency calculated by the above method
in all energy calculations instead of the default incorrect and inaccurate method.

The method is used for pre-computing the globally best combinations of run-
ning pumps and their frequencies for all sets of parallel pumps in the system to be
modeled. The actual online-optimization then only needs to find the best settings
on the station level, as the stations know what the most efficient way is to drive
the pump battery at the station in order to produce the required flow or pressure.

3.4 EPANET enhancements

This section describes the enhancements developed for EPANET as part of this
research. As shown in the literature review (see Chapters 2.3 and 2.4), EPANET
lacks a proper component for modeling variable-speed controlled pumps and at
reduced rotational speeds the pump energy consumption is calculated incorrectly.
Together, the pump battery component and control system modeling framework
allow accurate modeling of raw water extraction, conveyance and treatment, while
reducing the number of decision variables.

Hydraulic simulation is also typically the bottleneck in the meta-heuristic opti-
mization (see Chapters 2.5 and 2.8 in the literature view); thus EPANET was made
thread-safe and various other computational speed enhancing optimizations were
applied to enable the use of full-scale model in the optimization.
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3.4.1 Pump battery component

EPANET has a pump component that can be used for modeling pumps - both
single pumps and pumps working in parallel or series. EPANET provides means to
control individual pump’s status and the relative rotational speed w but there are
no means to directly regulate the flow or pressure. The related literature review
is presented in Chapter 2.5.

In order to control the pumps based on flow or pressure, it is required to imple-
ment PID controllers externally using the EPANET toolkit. PID-control, however,
requires that the hydraulic time step is a fraction of second rather than the typi-
cal time step of several minutes or an hour. Tuning the controller parameters can
also be a time-consuming task.

Use of a short time step increases the computational time and makes the simu-
lation more mathematically unstable because more numerical inaccuracies accu-
mulate over the simulation as the number of steps increases.

Author’s paper [256] introduces a new pump battery component into the EPA-
NET hydraulic solver. The component enables one to model a pump battery con-
sisting of one or more possible non-identical pumps working in parallel. The bat-
tery can be either flow, pressure or head difference controlled, and the control
mode, setting and limit can be dynamically controlled using both application pro-
gramming interface (API) and EPANET control rules.

To allow efficient and advanced pump battery analysis and optimization, the
pump battery component in EPANET is mathematically very simple. The com-
ponent only calculates the head and flow required to meet the given setting and
limit in the active controlling mode.

The component also accepts a limit to the non-controlled parameter, for exam-
ple if the pump battery is flow controlled, maximum allowed downstream pres-
sure can be limited to a user-supplied value, typically 80 or 100 meters of pres-
sure head. Alternatively, in constant pressure mode of operation the maximum
allowed flow can be limited. In practice, especially when operating in constant
flow controlled manner, the maximum allowed pressure is limited in order to
avoid pipe breakage when the flow falls below the setting.

The component uses an externally defined callback function to check that the
pump is working in an allowed regime, and the program running EPANET sim-
ulation or utilizing the hydraulic results calculates the internal pump configura-
tion, each pump’s frequency and energy consumption, based on the simulated
head and flow. Thus, the more complex and time-consuming tasks are delegated
to external code. The optimizing implementation of the back-end is presented in
Chapter 3.3 and in the author’s papers [253] and [254].
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The callback is registered within EPANET using new API ENsetbattery-
callback(int (*battery)(int, int, double, double)).
The callback function is called every iteration from 1inkstatus () function
in hydraul. c module for each pump battery in the model. The arguments
are pump battery link index, current status, current flow, and current head, re-
spectively. The callback must return the new status for the battery in question.
Typical return values include OPEN, XFLOW and XPRESSURE for a normally
functioning pump, invalid flow and invalid head, respectively.

The pump battery component is described in EPANET * . inp file by identi-
fier, and start and end nodes. Optionally, the initial control mode (constant pres-
sure/flow), initial setting (flow or pressure), and pressure/flow limit can be speci-
fied. An example is shown in Listing 1.

Listing 1. Example of defining pump batteries in EPANET inp file. First battery has the initial
control mode set to constant flow at 10 % with the pressure limit of 80 m and the second has
no initial values and is initially closed.

[BATTERIES]
Batteryl Reservoirl Junctionl TYPE FLOW SETTING 10 LIMIT 80
Battery2 Reservoirl Junction2

The changes required in the EPANET source are minimal and localized. Be-
sides introducing a new component type, the new link values and the code to

*

read battery specifications from the * . inp file, a few new functions are added

into the hydraul . c module: batterycoeffs (), which is called by new-
coeffs(),andbatterystatus(int index, char status, dou-
ble hl, double h2), which is called by 1inkstatus (). The matrix

coefficients in the global gradient algorithm[260] are calculated by battery-
coeffs() and batterystatus(...) only changes the battery status

based on the hydraulic results, and calls the possible external callback function

to check that the battery is working within allowed regime.

When the pump battery is in the flow control mode or the flow limit is exceeded
in constant pressure or pressure difference mode, the pump battery works similar
to the flow control valve in EPANET, but the head loss over the link is allowed to
be negative. The EPANET system matrix A coefficients [260, 226, 261] are

1
A,'/' = Ai]' — pij (312b)
Ajj = Aji + pij (3.12¢)
Aii = Aii+pij (3.12d)
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where i is the index of the start node, j is the index of the end node, p is the inverse
of derivative of the head loss over link, and Qs is the flow setting.
Correction terms in the EPANET solution system are set to

Pi = Fi — Qset (313&)
F=F+ Qu (3.13b)
Yij = Qij — Qset - (3.13¢)

When the pump battery is in the pressure or pressure difference control mode
or the pressure limit is exceeded in the constant flow mode, the pump battery
works simlar to the pressure reducing valve in EPANET, but the head loss over
the link is allowed to be negative. The EPANET system matrix coefficients are

pij =0 (3143)
F;=F+10° Hy (3.14b)
Ajj = Ajj+10° (3.14c)

where Hg, is the head setting.

The EPANET API was extended to allow changing the mode and limit value,
and to allow setting the callback function, which can check that the pump is
working in the allowed regime and can limit the generated head and/or flow if
necessary.

The added link values are named EN_MODE, accepting settings CONST_ -
FLOW, CONST_PRESSURE and CONST_DIFF, and EN_LIMIT, accepting
flow limit in model units when the battery is operated at constant pressure or
constant pressure difference mode, and the pressure limit in model units when
operated in constant flow mode. The values can be queried and set using the
standard ENgetlinkvalue and ENsetlinkvalue functions.

The new EN_MODE setting was also implemented for valves, so that the con-
trol valve type can be dynamically changed between flow control valve (FCV) and
pressure reducing valve (PRV).

The output from EPANET for a given pump battery is the time dependent work-
ing points (Q;, H;), setting and mode of operation. Thus, the higher level simula-
tion package must implement some means to show and analyze each pump’s prop-
erties, such as frequency, efficiency and power consumption at different working
points.

In this research, the battery’s internal state is checked from a lookup table
generated by the parallel pump optimizer (see Chapter 3.3). The chosen method
allows modeling the pump battery consisting of non-identical pumps with differ-
ent allowed frequency ranges and different parallel pump control strategies: equal
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frequencies for all running pumps (naive 1), only the last pump’s frequency is con-
trolled (naive 2) or a globally optimal control strategy. In addition, the methodol-
ogy handles the frequency scaling problem [244] and can model the pump’s motor
and variable-speed drive efficiencies, and thus give very accurate approximation
of the real energy usage.

An example of a simple model and its results is shown in Figure 13. The pump
battery’s constant pressure setting changes to a higher setting for 8 am to 9 pm
time period using EPANET control rules. The left-hand side of the figure shows
the model and the water demand at the far end node, and the right-hand side
shows the simulated head at the pump battery discharge node and the pump’s
relative speed.
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Figure 13. A small sample model of a pump battery working with different pressure
settings and varying flow. The changes in the pump outlet head and relative pump speed are
shown in the figure.

Every pump battery and flow or pressure controlled pump in the water supply
system to be optimized is modeled using the pump battery component with the
actual pump characteristic and efficiency curves, and with the correct motor size
and efficiencies, and the battery is to be driven by the solutions proposed by the
system optimization algorithm. Therefore, the globally optimal control for the
battery’s inner operations can be utilized.

The energy calculations used for EPANET’s ordinary pumps were also changed
to use the same back-end as the pump battery so that correct efficiency calcula-
tion, frequency scaling, and motor and VSD efficiencies can be taken into account.

3.4.2 Modeling of the water supply control system

EPANET provides only rudimentary tools for modeling the control system behav-
ior. The tools offered are “controls” and “rules” that can change valve and pump
setting, and open and close pipes based on time or some hydraulic variables. [226]
Both control mechanisms are limited to changing the settings to a predefined con-
stant values only. Thus, for example, using a PID controller requires implement-
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ing the control externally and interfacing EPANET from outside the simulation.
Often, these control system models are built and executed from Matlab (e.g. [290]
and [266]).

Author’s paper [256] presents a control system modeling framework, origi-
nally developed in the Master’s thesis [252]. The framework embeds a Python
interpreter into EPANET. In order to allow for modeling complex control system
algorithms, a Python 2.7.x programming language based framework was built.

Python is widely used [3, 2] modern multi-paradigm general purpose program-
ming language. It supports both object oriented and functional programming, and
it has very extensive built-in library and extensive set of third-party libraries.
Python has arguably a low learning curve, and the programs and scripts written
in it tend to be terse compared to languages like C or C++. [154]

Python is an interpreted language, which means that no tools other than text
editor are needed for developing Python programs and libraries. The interpreter
is easily embeddable in C programs [174], making it suitable for use as a script-
ing language for other programs. Implementations of Python exist for other lan-
guages too: Jython for Java [135] and IronPython for Microsoft’s NET-platform
[94], which make it easy to embed and extend Python using those languages too
and use either Java Virtual Machine (JVM) based or Common Language Runtime
(CLR) based libraries from Python code.

The interpreted nature, feature set, easy embeddability, ease-of-use, strong set
of programming libraries and popularity make Python a good choice for the con-
trol system model programming language. The method presented here makes the
control system model code an integral part of the EPANET simulation process.

In ENopen function, the Python framework is initialized, and a Python mod-
ule is searched, identified by the same filename as the EPANET model but with
* . py extension. If the module is found, it is loaded using the Python interpreter
and function pointersto epanet_init,epanet_callbackand epanet_-
close functions are retrieved. During the Python module load, the module can
import and use other Python modules and libraries, such as xlrd [159] for reading
the control system parameters from MS Excel spreadsheet files.

After the hydraulic simulation is initialized in ENopenH function, the loaded
Python module’s epanet_init function is called. The function can then in-
state the EPANET link and node objects that are required for its functioning. Typ-
ically, this phase finds the indices of the controlled pump batteries and valves,
and components representing the measurements needed in the operation in the
EPANET simulator. The init function also sets initial settings for all controlled
components.

After each simulation time step, in ENstep function, the Python module’s
epanet_callback function is called. The function can query the system
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state and alter settings for different components. This callback is where the con-
trol system model done in Python language is given full control over the simulated
system and all the control algorithm calculations take place.

The framework provides mapping of the standard C language programming
interface available in EPANET in a higher level object oriented Python API. The
EPANET errors are mapped into Python exceptions and the node and link prop-
erties are accessed through an object oriented wrapper, part of which is shown
in Figure 14. Properties are either read-only or read-write, depending on whether
the parameter can be changed or not. A lower level 1:1 Python mapping to the C
APl is also available, but its usage is not recommended.

epanet |

Node Link

volume : Float flow : Float

elevation : Float velocity : Float

head : Float unitheadloss : Float

pressure : Float status : Integer

demand : Float setting : Integer

type : Integer mode : Integer

index : Integer type : Integer

name : String index : Integer

<<create>> Node(index : Integer) name : String

<<create>> Node(name : String) <<create>> Link(index : Integer)
<<create>> Link(name : String)

Figure 14. Part of the Python language object oriented wrappers around the low level
EPANET API

Using the AP, network state can be queried, controlled and altered during the
simulation. It is possible, for example, to query the flow, head and pressure, and
tank level and volume. The API allows open and close pipes, change valve and
pump settings, and control pump batteries. Demands and emitter coefficients can
be changed too. But in order to remain strictly a control system model, only those
components that can be controlled in real world should be controlled.

Finally, when the hydraulic simulation is completed, the ENc1oseH function
calls the epanet_close function, which can, for example, store internal con-
trol system state results to a file for later analysis. After the call, the Python in-
terpreter is closed.

The simulation and calling the control system model is wholly controlled by the
EPANET simulator, and thus the use of the control system model is transparent
to any program using the simulator. While the control system model can query

90



3.4 EPANET ENHANCEMENTS

and set hydraulic model parameters during the simulation, it cannot control the
simulation in any other manner.

The control system model code can be divided into multiple modules which
can call each other and EPANET at will, and all tools, libraries and programming
techniques available in Python can be used freely. Typically, it is reasonable, for
example, to create classes to present various system components or to read con-
trol system parameters. Porting code from any programmable logic controller
(PLC) or supervisory control and data acquisition (SCADA) system is straightfor-
ward, and designing common libraries for often used components is easy.

A very simple example of a control system model is shown in Listing 2 and
Figure 15. Pumping into the network is flow controlled, and the flow is linearly
interpolated between minimum and maximum flow values based on the water
tower level, such that when the water tower is at the upper level, the flow is
minimal and vice versa. While the example is simple, similar control is commonly
used, and cannot be implemented with the EPANET control rules. The example
demonstrates some potential of using a general purpose programming language
as a control system modeling tool.

Listing 2. An example of a control system model that interpolates pump battery flow setting
based on a water tower level

import epanet

MIN_LEVEL = 2.
MAX_LEVEL = 4.
MIN_FLOW = 3.0 # 1/s
MAX_FLOW = 13.0

0 # meters
5

def epanet_init(filename):
global watertower, battery
watertower = epanet.Node( WATERTOWER’)
battery = epanet.Link( BATTERY1’)
battery.mode = epanet.Link.CONST_FLOW
epanet_callback(0)

def epanet_callback(time):

global watertower, battery

level = watertower.pressure

if level >= MAX LEVEL:
battery.setting = MIN_FLOW

elif level <= MIN_LEVEL:
battery.setting = MAX_FLOW

else:
dL MAX_ LEVEL - MIN_LEVEL
dQ = MAX_FLOW - MIN_FLOW
battery.setting = MAX_FLOW - dQ * (level - MIN_LEVEL) / dL
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Figure 15. An example of control system model, that interpolates pump battery flow setting
based on a water tower level.

In this work the control system model is mainly used for controlling the mod-
eled raw water extraction and pumping inside the water treatment processes. Ev-
ery water source typically has a clear well, from which the water is pumped using
pump batteries to different parts of the network.

Typically the water treatment processes utilize constant level control: the clear
well level is kept constantly close to the maximum level. The raw water extrac-
tion and any pumpings in the treatment process are flow controlled. The flow
pumped into and through the treatment process is directly proportional to the
flow pumped into the network from the clear well, and often greater than the
network pumping. For typical surface water sources, the extracted and processed
volume is about 10 % greater than the volume pumped into the network. This
extra volume must be accounted for, in order to calculate the correct energy use.

For this purpose, a simple Python module was developed. It accepts a descrip-
tion of the system as a list of water sources. Names of the network pump batteries,
internal pump batteries, valves, representing the hydraulic losses in the process,
and raw water batteries are specified along with the raw water flow coefficient
used for calculating the flow setting for each pump based on the network pump-
ing. The code automatically sets the flow settings for all the components based
on the amount pumped into the network and the water water flow coefficient.

The method enables calculating the energy use of the raw water extraction and
treatment without introducing new design variables.
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3.4.3 Parallel EPANET

EPANET uses global variables extensively, and as such only one thread can use
the simulator at once. This is especially problematic in the Java EE environment,
where multiple requests can be made in parallel. The limitation also means, that
EPANET cannot be readily used to evaluate multiple solutions in parallel.

To alleviate this, several rewrites of EPANET have been proposed, such as those
in Lopez-Ibanez et al. [149], Guidolin et al. [108] and Baseform’s Java implementa-
tion of EPANET [1] to properly encapsulate the state in a variable that is passed
along the calls to the simulator engine, thus making EPANET thread-safe. Be-
sides CWSNet, the thread-safe variants use General Public License (GPL), mak-
ing them unsuitable for proprietary development. It was determined that making
only small modifications to the stock EPANET and avoiding any changes to the
EPANET API would be an optimal solution.

The EPANET simulator was made thread-safe by marking all the 192 global
variables with thread local storage (TLS) [59, 83] storage-class modifier __thread.
An example of required modifications around the matrix variables is shown in
Listing 3. The storage-class modifier instructs the C compiler to produce automat-
ically code that makes the variable thread-local meaning that every thread has an
own copy of the variable. While the official thread_local TLS storage-class
modifier was standardized only in 2011 in C11 defined by the ISO/IEC9899:2011
standard [126], most of the C compilers have supported the modifier, _thread,
as compiler specific extension for years.

The changes make the EPANET library completely thread-safe, though not re-
entrant. Only the EPANET API functions were exported and link time optimiza-
tions were utilized, which together allow the compiler to the emit most efficient
code for thread-local variable access, such as initial executable or local excutable
access model [182, 4].

Listing 3. Some examples of the use of thread-local storage-class modifier __thread

[...]

EXTERN __thread double *Aii, /* Diagonal coeffs. of A */
*Aij, /* Non-zero, non-diagonal coefs. */
*F; /* Right hand side coeffs. */

EXTERN _ thread double *P, /* Inverse headloss derivatives */
*Y; /* Flow correction factors */

EXTERN _ thread int *Order, /* Node-to-row of A */
*Row, /* Row-to-node of A */
*Ndx ; /* Index of link’s coeff. in Aij */

[...]
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3.4.4 Optimized EPANET

The EPANET simulator was compiled with highest level of optimizations avail-
able in the new GCC 6.2 C-compiler. The compilation was done especially for
the target machine, latest generation of Intel Xeon processor, by specifying —
march=core-avx-1i machine architecture and enabling all SMID and other
extended floating point operations: MMX, 3DNOW, SSE1-4.2, SSSE and AVX.
Some examples of additional optimizations include the use of —-fast-math and
-fno-math-errno flags which reduce the time required for floating point
operations. Linking time optimization —f 1t o also provides measurable increase
in the execution speed. According to [150], using GCC’s -03 optimization level
provides about 30 % speed-up.

Most of the internal EPANET functions were marked as static inline
to enable the compiler to further localize and optimize their usage.

A memory leak that was small but significant over time, was fixed in the save -
output functionin output . c thatallocates an array of size max(Nnodes, Nlinks)
but fails to free it upon return.

Some time-consuming and redundant operations were reduced. For example,
the linsolve functionin smatrix. c allocates three arrays of size Njuncs
each time it is called (on each iteration). The size of the arrays is the same each
time. Instead of allocating and freeing the buffers multiple times, the code was
modified to allocate the arrays only once in allocsparse and free them on
the simulator close in freesparse. The arrays are then only zeroed out on
each call to 1insolve using memset function calls.

Other code optimizations and changes for EPANET that are described in Ap-
pendix D in Lopez-Ibanez [150] were included to further reduce the simulation
time and correct some aspects of the EPANET simulator. Problems in energy cal-
culations were also corrected and frequency scaling applied as per Marchi and
Simpson [165] and Simpson and Marchi [244].

As shown in Wu and Lee [301] and Table 2, 19.1 % of total running time of
an EPANET simulation is spent opening and closing the model and saving the
results. All these steps are completely unnecessary in the optimization process,
if all the model parameters can be changed dynamically, which is the case in the
methodology presented in this thesis research. Thus, calling the simulator appro-
priately, i.e. opening the model once and making multiple hydraulic simulations
on the same model by calling only ENinitH, ENrunH and ENnextH functions
repetitively, can save a considerable amount of simulation time.
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3.5 Constructing hydraulic model for optimization

The objective function and constraints are evaluated using a hydraulic model. The
accuracy of the model limits the accuracy of the results. One of the key elements
of this thesis is to use most accurate methods available to model the system behav-
ior and energy use. This section details some specific elements of the hydraulic
modeling that have to be taken into account.

The hydraulic model used in the optimization framework ought to be a cali-
brated, full-scale model of the network that includes all pipes in the system, except
the consumer connections. Every pressure zone of interest must have one demand
pattern that is used by bulk of the demands in the zone. Separate patterns can be
used for water users with well-known usage patterns that are different from the
general pattern.

Every pump transferring bulk water in the network, including pumps used
in raw water extraction and inside water treatment processes, is modeled along
with the pump’s efficiency curve, motor and VSD type and efficiencies in order to
correctly model and optimize the total energy usage of the pumping (see Chap-
ter 3.3).

Whenever a set of pumps can be variable-speed controlled based on flow or
pressure, the pumps are modeled using the pump battery component presented in
Chapter 3.4.1. In this way, the pumping can be easily controlled by the simulator,
and the internal workings of the battery can be pre-optimized separately offline.

In Tower

Clearwell

o / /../ < \z
/ Hyd. losses “Hyd. losses

in processes in processes

Treatment Plant ~8 km

Process

A
Y

Raw water
pumping

In Tower

Clearwell

Network pumps

Figure 16. An example of how a water treatment plant is fully modeled: profile of the raw
water extraction and treatment process, and the resulting hydraulic model
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Figure 16 shows an example of how a water treatment plant, raw water extrac-
tion and the hydraulic head losses inside the treatment process are modeled. The
head levels in the reservoirs match the actual or typical target head values. Flow
control valves are used to model the power lost due to the head loss in the treat-
ment operations between the constant head reservoirs. All pipe sizes and lengths
and pump parameters match those of the actual plant. Suction sieve is modeled
using a pipe with correct minor loss coefficient.

There must be a control system model (see Chapter 3.4.2) present, that controls
pumping inside the water treatment processes and raw extraction similar to the
actual system to be modeled. It is especially important that the raw water extrac-
tion and treatment processes pumping include any excess water required by the
process but not pumped into the water distribution system. In particular, surface
water treatment typically requires around 10 % of the raw water for the process.

All stations must be modeled to the same detail in order to obtain accurate and
equivalent results for energy consumption.

EPANET is known to exhibit problems with control devices, such as valves and
the pump batteries [78, 243]. The problems become especially apparent, when
the devices are flow controlled, and too much or little water is supplied into the
system.

In order to keep the model mathematically stable even when extremely infeasi-
ble solutions are simulated, every pressure zone in the model must include a low-
head feeder reservoir and a high-head discharge reservoir connected to the net-
work via check-valves. Producing too much water causes extra costs and violates
water tower maximum level limit, and producing too little water violates water
tower minimum level and capacity, and node minimum pressure limits, making
such solutions highly unfavorable.

e -

e

Figure 17. An example of how extra reservoirs can be connected to the modeled network to
ensure mathematical stability of the simulation

Figure 17 shows an example of the reservoirs connected to a pressure zone close
to the water tower. The low-head reservoir supplies the pressure zone with water
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if the solution does not ensure sufficient supply. Because the reservoir has very
low head, the minimum pressure and minimum water tower capacity penalties
ensure that these solutions will be very expensive and will thus be avoided. Like-
wise, the high-head reservoir accepts any extra water, when the demand is less
than the volume pumped into the system, and there is no water tower in the zone
or the tower is full. High head ensures that pumping energy costs and maximum
pressure and water tower maximum level penalties will be high, and the solution
will be avoided.

3.6 SCADA data access

Chapter 2.5 reviews some literature related to online modeling and the WSS
SCADA data access. SCADA connection is needed in the optimization process for
two reasons. First, the initial state for the system before optimization has to be
fetched. The required information consists of the water levels in each water tower.
Second, the connection is used for calculating the water usage in all demand mea-
surement areas (DMA) and pressure zones. The historical demand information
is used for producing a demand forecast for each area in the network. Both the
initial levels and the forecast are set in the hydraulic model used for simulations
and evaluating the objective function.

A tool [255] was developed for accessing and analyzing the SCADA data. It
was developed in Java programming language version 8 [8], and it provides both
a graphical user interface (GUI) for end users and an API for developers.

The software can connect to a variety of different data sources that can present
any numerical data in a time series, via different APIs, including but not lim-
ited to SCADA system connections via direct SCADA API usage or Open Process
Control (OPC), to relational databases and SCADA systems using Java Database
Connectivity (JDBC) or Open Database Connectivity (ODBC), to tab and comma
separated files and Excel-worksheets, and to various laboratory and customer in-
formation systems. The data sources can have different time zones, and different
and time-varying time resolution.

An Extensible Markup Language (XML) configuration file describes the data
sources and describes which values are available and how those values are calcu-
lated based on the data read from the sources. The calculations can include, for
example, calculating a water balance for a pressure zone based on the flows in
and out of the zone and changes in the possible water tower volume.

Each position can freely perform calculations on data from all declared data
sources. The raw data can be either lagged or interpolated at this stage to cope
with varying time intervals in different sources. The expression language sup-
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ports all typical arithmetic operations and mathematical functions, suchas f1oor,
ceil and sqrt. In addition, the expression system supports both boolean alge-
bra and time algebra.

An example of a configuration file fragment defining positions is shown in
Listing 4. In the example, the demand for Pressure Zone 1 is calculated as the
difference between incoming and outgoing flows to the area defined by the in
and out attributes at station definitions. The water tower flow is calculated as
the volume difference divided by the time between two measurements in hours.
Station 100 pumps water out of Pressure Zone 1 into another zone identified by
the code “AREA02”. The station’s flow is defined differently before and after 2014-
01-01.

The tool enables return data for multiple parameters at once for a user-re-
quested time-span using a user-defined time step. All the required raw data are
fetched at once from the different data sources, and all requested parameters val-
ues, like water use for a certain area, are calculated in the user defined time steps.
Raw data are averaged, interpolated and extrapolated as needed in a deterministic
and user-defined manner. Typically, for example, hourly averages for data stored
in a minute long interval are retrieved.

The tool used in this work to retrieve initial water tower levels for optimization,
and historical water consumption data for pressure zones in order to facilitate
demand forecasting.

3.7 Optimization problem formulation

The aim of the optimization process is to minimize the costs of the water pro-
duction and supply by choosing appropriate time-dependent flow and pressure
settings for all the stations, and ultimately the frequency settings for all pumps in
the network, while ensuring a sufficient quality of service (QoS), so that pressures
are satisfactory, water source yields are not exceeded and water tower levels and
capacities stay within the constraints.
Mathematically, the optimization can be described as the minimization of the
objective function f(%) subject to constraints g;(x):
X f) , (3.15)
subject to g;(%) <0, i=1,...,m

where 7 is vector containing design variable values chosen from the set of possible
values X. Objective function includes the costs associated with the operations:
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Listing 4. An example of defining a few stations and an area with water balance calculation

<data-sources>
<data-source name="hdata" native-interval="3600000" ... />

[---]

</data-source>
[...]

<area name="Pressure Zone 1" number="AREA01">
<parameter name="Demand" expression="IN — OUT">
<value name="IN" position="Flow" all="in"/>
<value name="OUT" position="Flow" all="out"/>
</parameters>
</area>

<watertower name="Water Tower 1" number="TOWER01" out="AREA01">
<parameter name="Level" expression="hdata:wt01_li"/>
<parameter name="Volume" expression="hdata:wt01_V"/>
<parameter name="Flow" expression="(hdata:wt01_V—
hdata:PREV_wt01_V) /(step/3600)"/>
</watertower>

<source name="Source 102" number="STATION102" in="AREA01">
<parameter name="Flow" expression="hdata:sourcel102_fi"/>
</source>

<pumpingstation name="Station 100" number="STATION100" in="AREA02"
out="AREA01">
<parameter name="Flow" expression="if (now < date(2014,1,1),
hdata:stat100_fi—hdata:stat100_fi2 ,
hdata:stat100_fi2 —hdata:stat100_fi)" />
</pumpingstation>
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water production and pump energy costs. Constraints define, for example, the
acceptable pressure range.

Water distribution system optimization problems are NP-hard [13] because var-
ious aspects of the water supply system exhibit a non-linear behavior. Pressure
loss ki, in a pipe is a non-linear function of the flow Q

hL(Q)=f-2L_;_2d v=%A=%d2
. m , (3.16)
and the pumping power
p—rP8RH (3.17)

Ui

where the pump head H depends on the pressure in the network, and thus on
the head losses and workings of the other pumps in the network, and the total
pumping efficiency # is a non-simple function of the pump working point (Q, H).

While energy costs and constraints cannot be readily expressed analytically,
they can be evaluated iteratively using a hydraulic simulator, such as EPANET.
The use of the hydraulic model for objective function and constraint evaluation
makes it difficult to calculate or estimate partial differentials of the design vari-
ables. The lack of derivative functions, and the non-linear nature of the energy
and constraint functions make the use of classical optimization methods, such as
linear or dynamic programming, complicated, without heavy linearization and
approximation.

In order to make the optimization problem simpler and to make it behave better
when using meta-heuristic optimization methods, the constraints are included in
the objective function as penalty costs. Thus, the objective function becomes

f(x) =W(x)+E(x)+P(x) , (3.18)

where W(x) is the sum of water production costs, E(%) is the sum of pumping
energy costs and P(%) is the sum of penalty costs, or constraint violation costs.

The proposed formulation extends the existing research, for example [211], by
including raw water extraction, conveyance and treatment pumping and chemi-
cal costs in the objective function, and by accurately modeling the pump energy
usage. Some chemical costs have been included in earlier research, for example,
Broad et al. [50] included chlorination costs.

The following sub-sections describe the system, design variables and their in-
terpretation, and objective function evaluation in more detail. Objective function
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evaluation is done by the evaluator module using a modified EPANET hydraulic
simulator. The evaluator is presented in Chapter 3.11.

3.7.1 Design variables and encoding

Traditional pump scheduling problems use one binary design variable per hour
for each pump, that is 24 binary variables per pump for the whole 24 h optimiza-
tion period [153]. The approach works well if pumps are on-off controlled and
minimum allowed pumping time is one hour. This work, however, uses a differ-
ent approach, inspired by the in-station scheduling presented in Hashemi et al.
[114], in order to optimize flow or pressure controlled pumping stations with
logic control and variable-speed driven parallel pumping.

The number of design variables is reduced from 24 per pump or valve to five per
station. Every optimizable station has the following design variables: an integer
identifying the time pattern and four real valued settings for different times of
the day: morning, day, evening and night settings. The optimization problem thus
becomes a mixed integer non-linear programming (MINLP) problem in terms of
the design variables.

Time pattern is identified by an integer 0. ..529. The time pattern is a string of
24 characters from the set M, D, E and N, representing the morning, day, evening
and night settings, respectively. The active setting is chosen based on the pattern
character at the position of the active hour of the day (0...23).

All feasible time patterns were enumerated and stored in a database before-
hand. Morning values can be used from 05:00 to 12:00, day values from 07:00 to
21:00, evening values from 14:00 to 04:00 and night values from 20:00 to 10:00.
Each setting must be present in every pattern, and the minimum length for the
different settings is 2 hours for morning, 5 hours for day, 2 hours for evening,
and 4 hours for night. The minimum lengths ensure the setting is not changed
too frequently. “NNNNNMMMDDDDDDDDEEEEENNN”, “NNNNNNNNMMD-
DDDDDDDDDDDEE” and “EEENNNNNMMDDDDDDDDDDEEEE” are a few
examples of the generated patterns.

If a station is flow controlled, the settings are encoded as S = Qsetting — Qmin + 1,
where Qseuing is the flow setting and Qu;n is the station’s minimum allowed flow.
The upper bound for the encoded setting thus becomes Qumax — Qmin + 1. If the
encoded setting, 0 < S < 1, the station is closed. Pressure controlled stations
work analogous to the flow controlled stations, excepts that instead of flow limits
Qmin and Quay, pressure limits Py, and P,y are used.

The station level settings are interpreted into the sub-process and sub-oper-
ation specific settings using fully modeled stations (see Chapter 3.5) and con-
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Pattern Night Morning Day Evening
1. Design variables: 110 25.5 35.1 30.7 38.3

2. Pattern from table: NNNNNNMMMDDDDDDDDDEEEENN
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Figure 18. An example of how design variables are decoded and energy usage calculated
based on the simulation results and pump station pre-optimization

trol system model (see Chapter 3.4.2), and finally, to optimal pump specific VSD
frequency settings using the parallel pump optimization framework (see Chap-
ter 3.3), which converts the simulated working points (Q, H) for each of the sta-
tion’s pump batteries into optimal pump specific frequencies. The parallel pump
pre-optimizer also returns the energy use for the evaluator to calculate the energy
consumption, as shown in Figure 18.

3.7.2 Penalties

The solutions are constrained by including a penalty function P(x) in the objec-
tive function (Equation (3.18)). [213]
The method presented here uses the following constraints:

1. there must always be a minimum volume of water in the water towers
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2. there should be enough water in each tower to supply the zone for a defined
number of hours

3. the water towers should not be over-filled

4. pressure at all points must be at least at the specific minimum level of a
pressure zone

5. pressure must not exceed the specific maximum level of a pressure zone at
any point.

These constraints ensure a level of resilience and reliability in the distribution
system on the one hand and sufficient quality of service on the other hand.

Minimum and maximum pressure limits are very commonly used in the liter-
ature (e.g. [39]). Tank end levels are often (e.g. [309, 236, 149, 246]) constrained
to be equal to the initial levels. The constraint, however, does not guarantee any
reliability, and it assumes that the initial levels in tanks are optimal, and thus re-
stricts the possible solutions. Often, the initial level can be too high or low for
what is needed for reliable operations and in terms of optimality, especially in
a real-time setting, where the levels are affected by demand variability and pipe
bursts, and thus this constraint is not included in the method presented here.

Water tower capacity at the instant #; is defined as the number of hours that
the total volume in the zone’s water towers Vi suffices for the zone’s forecasted
water demand F;. The capacity is C = t, — t;, where ¢, is solved from

t
wﬁ:/zadt, (3.19)
51

when for the first time
VE> V. (3.20)

Together, the minimum volume and capacity provide an intuitive way to define
the desired minimum level of reliability.

Additionally, the system must ensure that the daily yield of a water source is
not exceeded. While the optimization algorithm ensures that hourly settings are
within predefined minimum and maximum, some water sources can have yields
that are smaller than 24 - Q. and thus, the yield can be exceeded, and a constraint
must be defined.

The penalty parameters, violation inequations, limit and penalty coefficient
units, penalty coefficient notations, and which element defines the limit and penalty
coefficient are shown in Table 7. The model specific parameters for penalty calcu-
lations are defined along with the other model parameters in the system model.
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Table 7. Penalty parameter definitions

Parameter Violation Limit Unit  Pen. Notation Penalty Unit Defined in
Min. tower capacity Y C < Cin h oc % Pressure Zone
Min. tower volume YV < Viin m3 oy ﬁ Pressure Zone
Max. tower level h > hpax m oy % Water Tower
Min. pressure P < Pmin m T prnin % Pressure Zone
Max. pressure P > Pmax m O pmax % Pressure Zone
. 3 €
Max. yield YQ> Quield g TQyiaa =3 Source

Penalty cost is calculated by multiplying the magnitude of the violation with
the penalty coefficient ¢. In the following equations max (0, violation) notation is
used to make penalty zero, when the constraint is not violated. Thus, the penalty
function for the time step ¢ becomes

Nzones Ntowers Ngource
P()i= Y, P(®)ir+ Y, T+ Y, SHEir (3.21)
i

i i
where pressure zone specific penalty for zone i

Munctions,i

P(%)it = Oppyini = 2, maX(0, Pruin i — p(t);)
]

Munctions,i

+ Opmax,i * Z maX(O/ p(t)] - Pmax,i)
]

Mtowers,i
+ oc,i - max <0, Cuin, i — < 2 C(t)]))
j
Mtowers,i
+oy;-max (0, ( Vmni— Y, V() , (3.22)

tower level penalty for water tower i
T(x)i,t =0y - max(ol hmin,i - h(t)l) 5 (323)

and finally, the source yield penalty for source i

u=t—24

2
S(X)ip = 0Qyq - MAX (0/ ( Y Q(u)i> - Qyield,i> . (3.24)
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The penalty function and the objective functions as a whole are evaluated using
the hydraulic simulator by the evaluator module.

3.8 Optimization algorithm

Dynamically dimensioned search (DSS) is a global optimization method first in-
troduced in Tolson and Shoemaker [264]. DSS is a single-solution heuristic algo-
rithm that works with a specified maximum objective function evaluation limit.
Besides the maximum number of evaluations, the original algorithm has no other
stopping criteria.

As mentioned in the literature review, the performance and computational ef-
ficiency of the algorithm are attractive. Being a constant time algorithm, DDS is
a good candidate for near real-time optimization. DDS can also be used together
with preemption, which further drives down the computational time. The only
tunable parameter of the algorithm is 7, the relative perturbation size. The default
and recommended value r = 0.2. [264]

First, the algorithm starts with global search and by iteration, the search be-
comes more local, by dynamically and probabilistically reducing the number of
dimensions searched in the neighborhood. [264]

Candidate solutions are created by perturbing the current solution values in
randomly selected dimensions. Perturbation magnitudes are random, and they
follow normal distribution with a mean of zero. DDS is a greedy algorithm: the
current solution is always the best found so far, and it is never updated with an
inferior solution. [264]

Pseudo-code for the algorithm is shown in Algorithm 3.1. The DDS inputs are:
r, maximum number of function evaluations m, vectors of lower ,,;, and upper
bounds %, for all n decision variables ¥, and initial solution x,. First, the objective
function is evaluated at the initial solution and the result is stored as current best.
Then, the perturbed dimensions are chosen randomly, and they are perturbed
according to normal distribution. Finally, the objective function value is evaluated
for the new solution. If the new solution is better than the previous best, the new
solution replaces the previous.

While the original DDS uses continuous values for the variables, Tolson et al.
[265] have introduced a hybrid discrete version of the algorithm (HD-DDS). The
algorithm works almost identical to the continuous version, except the decision
variable, x; boundaries are defined to be (x}’”" — 0.5, x{"™* 4 0.5) and rounding to
the nearest integer occurs in the perturbing phase. The modified part of the algo-
rithm is shown in Algorithm 3.2. As can be seen from Algorithm 3.2, the algorithm
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Algorithm 3.1 Dynamically dimensioned search algorithm [264]
fbest — f(XO)

Xpest = Xo
fori«+— 1, mdo
Randomly select the decision variables that will be perturbed.
R
N+ O
ford <~ 1,ndo
X~ U([0,1])
if X <pthen N «+ NU{d}
end for
if N = @ then > Ensure variable change
X~ U([1,n])
N = {X}
end if

Construct new solution by perturbing the current best

X < Xpest
for Vj € N do
Xj x}’es" +r (x}””" - x}”i”) -N([0,1])
if x; < x}’”” then
Xj x]'-'”” + (x;’“'” - X))
if x; > e then xj < x]*"i’i
else if Xj > x}””x then
Xj = X — (xp — X"

] X ]
if xj < x]’-'”” then Xj 4 x}””x

end if
end for
Evaluate the objective function value for the new solution
fef®)
if f < frest then
Joest = f
Xpest = X
end if
end for
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could be easily adapted to work with both discrete and continuous variables at
the same time.

Algorithm 3.2 Hybrid discrete dynamically dimensioned search algorithm[265]
[..]

Construct new solution by perturbing the current best

X < Xpest
for Vj € N do
xj = xpest +re (a — x7) - N([0,1])
if x; < X" —0.5 then
ijZx;”I”ijfl .
if x; > X" +0.5 then x; < X
else if x; > x]’-"“" + 0.5 then
Xj Zx;””x —x+1
if x; < x;?”'” — 0.5 then x; < x/"™*

end if

xj < |xj+0.5] > Round to nearest integer

if x; = x}’es’*‘ then x; ~ U([x;'li”,xyi”x]) > Ensure variable change
end for

[.]

The algorithm implemented in this thesis combines the HD-DDS and DDS
variants to allow solving mixed integer non-linear programming problems. Af-
ter initial testing, the algorithm was changed to temporarily accept results that
are worse than the current best in order to broaden the search neighborhood. The
resulting algorithm is called Modified Hybrid Discrete Dynamically Dimensioned
Search (MHD-DDS).

MHD-DDS first chooses the perturbation algorithm between DDS and HD-
DDS based on the design variable type. Every fifth dimension starting with in-
dex 0 is the integer coding time pattern index, and all other dimensions are real
valued.

MHD-DDS allows for the solution to worsen temporarily. The implementation
keeps track of the current result %t the last result that was better than the pre-
vious result Xjust improvement and the best result so far %;,;. The algorithm also counts
the number of iterations when no improvement to the current result is made 71,44
and the number of iterations when the result was worsenig since first accepting
a worse result 71;,0.5.. If the current result has not improved during 50 iterations,
then solutions the cost of which, f < 1.15: fyesr and f < 1.05 - flastimprovement, are
accepted as current.

If the current result does not improve for 50 more iterations, the best known so-
lution is restored as the current solution, and the counters are zeroed. Whenever
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the cost is lowered, the counters are zeroed, and thus the search can continue in
the direction as long as the solution cost is less than f < 1.15 - fi. and there is
still any progress.

The modified part of the algorithm is shown in Algorithm 3.3.

3.9 Demand forecast

The typically used water demand forecasting methods in the literature include
time series analysis based methods, various variations of auto-regressive (AR) and
moving-average (MA) models and their generalization, auto-regressive integrated
moving average (ARIMA) models. More recently, artificial neural networks (ANN)
and other machine learning algorithms, such as support vector machines (SVM),
have gained popularity.

As some research has shown (e.g. [28] and [190]), moving-window and pattern-
based can perform similarly and even surpass more sophisticated machine learn-
ing based algorithms, while being simpler to implement and more general.

The short-term 48 h demand forecasting algorithm used in this work is a simple
moving time-window based method. For each zone in the network, hourly median
and 10 % and 90 % percentiles for different weekdays for the past 13 -7 = 91 days
are calculated. The measured zonal demands are fetched using the data access
library described in Chapter 3.6.

Because national holidays and their eves affect water demand considerably, an
automatic, national holiday calendar was implemented. The current implementa-
tion only includes the Finnish holidays, but it is easy to add other nations’ calen-
dars.

Holiday calendar calculates the dates for Easter, Christmas, New Year, Inde-
pendence Day and so on, and the dates of the holidays’ eves. Apparent weekday
and a demand multiplier can be given for each holiday and its eve. The calen-
dar then returns the multiplier and apparent weekday for any given date. The
apparent weekday is the actual weekday for any non-holiday date. In this way,
the demand on holidays is not categorized incorrectly as working day usage, and
appropriate scaling can be used for forecast evaluation.

The forecast Fy_47 is then constructed by utilizing the week day specific hourly
median values med D; and the measured hourly usage data D;:

24
> D,
i=t—24
24
Z med D;
i=t—24

Ft = -med Dt . (325)
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Algorithm 3.3 Modified part of (HD-)DDS algorithm as used in MHD-DDS,
when temporarily worse results are allowed

Evaluate the objective function value for the new solution
[ f(x)
if f < fourrent then

Nworse < 0

Nequal < 0

Seurrent < f

Xcurrent < X

flastimprovement — f
JElusi.‘inwrovemeni‘ — X

if f < fpes: then

fbest = f
Xpest = X
end if

else if 711,,r5c > 50 then
Restore the best solution as current solution
Nyworse <— 0
Nequal <— 0
fcurrent — fbest
Xcurrent < Xpest
flastimpmvement — fbest
JZlast1'mprove‘ment & Xbest
else if 1,5, > 50 and f < 1.05 - fiast improvement and f < 1.15- f,;; then
Accept the solution as current solution, tough it is worse
Nworse < Nworse + 1
fcurrent — f
Xcurrent <— X
else if ny4pse > 0 then
Nworse < Nworse 1+ 1
else
Nequal < Mequal + 1
end if
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The resulting hourly forecasted demand is restricted to be between the 10th and
90th percentiles, D; 199, and D ogo, s0 that D; 109, < Fr < Dy g99, in order to avoid
producing overly large or small forecasts because of, for example, measurement
errors, missing data or short-term pipe bursts.

3.10 Initial solution generation

Optimizations methods require some initial solution. Random solutions are typ-
ically used for population based optimization algorithms, such as genetic algo-
rithm and particle swarm optimizations.

Pasha and Lansey [196] propose the use of warm solutions to speed up the
pump scheduling optimization process. The strategies presented in the paper are
using linear programming, support vector machine and historical solutions as a
warm initial solution in order speed up the optimization and to provide more
optimal solutions.

The method presented here uses a historical solution as an initial solution. The
latest solution covering the start time of the optimization is chosen. If multiple
such solutions exists, the one with the lowest total cost is chosen as initial. If no
previous solution is available, then a deterministic initial solution is generated.

The setting pattern is determined on a pressure zone level. The setting pattern
is formed by analyzing zone’s demand forecast. Analysis starts from ¢ = 00:00.
While the demand D is above the 24 hour average demand D,,; and ¢t < 04:00
the evening setting is used. When for the first time D < D,,, night setting usage
begins. Night setting is used while D < D, or t > 09:00. Morning setting is used
until D < 1.1 - D4y or for a maximum of three hours. Day setting is used after
morning setting, while D < 1.1 D,y or until + > 22:00, whichever occurs first.
The rest of the 24 character pattern string is filled either evening setting or night
setting, depending on whether D > D,,, or D < D,,. The pattern string created
in this way is then fuzzily matched to the pregenerated patterns, and the closest
match is chosen. The same pattern is used for all the stations pumping into the
zone.

All settings, morning, day, evening and night, of every station are set to the
midpoint between minimum and maximum flow or pressure allowed for the sta-
tion. Two-way station settings are set to zero.

3.11 Evaluator

Evaluator is responsible for calculating the value of the objective function for a
solution and ensuring that the constraints are met. Evaluator uses a simulator to
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perform the hydraulic simulations, results of which are used by the evaluator to
calculate the objective function value.

The framework allows using any hydraulic simulator with a required set of fea-
tures with a reasonable effort. In this research the evaluator was built on the mod-
ified and extended version of EPANET simulator [226], as described in the previ-
ous sections. EPANET is a public-domain hydraulic extended period simulator
for pressurized systems. EPANET is based on Todini’s formulation of hydraulic
equations known as the gradient method [260]. EPANET is the most widely used
and researched simulator for water distributions systems, extensively used in the
optimization problems for objective function and constraint evaluation.

The EPANET simulator is loaded and prepared only once per optimization run,
because loading the model into EPANET and closing the model is slow, and can
take up to 13 % [301] of the total simulation time.

A control system model interprets the design variables as settings for valves
and pumps batteries and drives the EPANET model dynamically, using ENset -
linkvalue calls to set pump battery (see Chapter 3.4.1) and valve settings.
This enables to bypass EPANET’s built-in controls and rules, and their limitations
[150, 167, 256].

Writing simulation results and a report into files is disabled in order to reduce
the simulation time by about 6 % [301]. Instead, the evaluator accesses the node
results programmatically using ENgetnodevalue and link results using EN-
getlinkvalue as the simulation progresses.

Certain extensions to the vanilla EPANET were made in the course of this re-
search. The C programming language and the programming techniques used in
EPANET are somewhat outdated. The code is, however, well-structured and docu-
mented. Some issues related to EPANET programming are described in [270] and
[224]. Several projects have developed more modern versions of EPANET, such
as van Zyl et al. [271], Steffelbauer and Fuchs-Hanusch [249]; however, this thesis
used the latest published official EPANET version 2.00.12 from 2008 as a basis for
the extensions.

3.11.1 Real-time concerns

In order to speed up the optimization process, the hydraulic simulator was paral-
lelized (see Chapter 3.4.3), so that multiple simulations can be run in parallel us-
ing multiple computer threads. The parallelization was done similar to the recent
parallelization of EPASWMM [53] - using OpenMP library and more specifically
its thread local storage (TLS) functionality, which allows declaring certain global
variables as being thread specific and thus enabling calling EPANET from multi-
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ple threads. While the DDS algorithm has to proceed sequentially, parallelization
still provides benefits, as multiple optimization runs can be performed in parallel.

The simulator was also heavily optimized manually and using the latest op-
tions, such as link time optimization and single instruction multiple data (SIMD)
extensions provided by the compiler (see Chapter 3.4.4).

Wu and Lee [301] report that in EANET 19.1 % of the total simulation time is
spent opening and closing the model and saving the results (see Table 2 on page
45). The evaluator developed in this thesis only opens the model once per thread
when the optimization process starts. Afterwards, the same prehypinitialized sim-
ulator is used as only the pump settings vary between different solutions.

Neither are the results nor the simulation report generated or saved into a file
to save time both on EPANET’s and the evaluator’s side. Instead, the results are
dynamically read using EPANET API. This also avoids the quality simulation run
required by the traditional EPANET toolkit usage to generate the final results file.

Preemption is used for avoiding unnecessary objective function evaluations.
Preempting means that full objective function evaluations are unwarranted if the
candidate is predictably poor or infeasible. Razavi et al. [214] propose a formal
method to preemptively stop the ongoing model evaluation, when it becomes
apparent that the current individual presents a low-quality solution and it is not
going to affect the optimization algorithm.

The method proposed in [214] can be used when the fitness function value is
monotonic during the model evaluation. The objective function used in this thesis
is monotonic, and thus suitable for preemption.

The other constraint is that preempting the simulation cannot affect the opti-
mization algorithm behavior. Thus, GA and ACO, for example, cannot be used
as the final value for objective function because every individual must be known
for the algorithm to work, but PSO and DSS can be preempted as the final objec-
tive function values are not needed. The modified DDS version developed in this
thesis, MHD-DDS, is suitable for preemption.

The evaluator module preempts the simulation when the cumulative cost f >
1.1 feurrent- The preemption is implemented by throwing a Java exception of type
PreemptionException, which is caught in the simulator loop. The simu-
lation is then interrupted, and the cumulative cost so far is returned to the opti-
mization algorithm.

The testing done in the case study shows that preemption avoids simulating
and evaluating more than 50 % of the time steps, on average, and therefore halving
the time required for objective function evaluations.

The MHD-DDS optimization algorithm used in the framework only uses a fixed
number of objective function evaluations. This makes the algorithm well suitable
for real-time setting, because the approximate run-time for each optimization is
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known in advance and can be easily tuned according to the available processor
speed, model size and time available for the optimization.

3.12 Implementation details

The framework was developed in Java programming language [8], version 8, and
using Java EE 7 technologies [131, 9] for web and back-end development. The
framework provides both REST API and a graphical web user interface. The opti-
mization framework can also be readily interfaced from SCADA systems.

Java was chosen because it has a strong feature set, a wide array of program-
ming libraries and standards for web development and scientific purposes, and it
is widely accepted in the industry and is regarded as the most popular program-
ming language [3, 2].

The following section presents the implementation details of the key parts of
the framework.

3.12.1 System model

In order to remain general, the optimization framework allows configuring and
storing one or more systems in a database. The system model describes the com-
ponents forming the system to be optimized and their relations, along with costs
and penalties. This section describes the high-level system model used by the
framework. The model is shown in Figure 19.

The system model has name and database identifier used for managing the
system model. Locations of the base hydraulic model file and configuration file
for SCADA access are also stored in the model object.

The basic object for optimization is the station. There are several classes of
stations: source, transfer and two-way station. The source produces water into
the system, the transfer station conveys water from one pressure zone to another,
and the two-way station convesy water between two pressure zones either way.
The complete list of stations available for optimization is stored in the model.

All station classes share common properties with each other, such as name,
EPANET model link name, minimum and maximum allowed flow and pressure
settings, default control type (flow or pressure controlled), and electricity price

function. The source stations has additional properties, for example, for produc-

£
m3’

tion costs, %, and daily yield, ™. The two-way station has additional properties
for minimum and maximum flow and pressure to the other direction, and for

name of the EPANET link that controls the flow to the other direction.
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minPressPenalty : Double
maxPressPenalty : Double
minCapacity : Double
minCapPenalty : Double
minVolume : Double
minVolPenalty : Double

in : PressureZone
energyCost : Double
minimumFlow : Double
maximumFlow : Double
minimumPressure : Double
maximumPressure : Double

controls

Model Component WaterTower
- components X[ name : String zone : PressureZone
name : String . . .
sahtiUUID : String % minLevel : Double
zones 1% PressureZone epanetlD : String minLevelPenalty : Double
- maxLevel : Double
name : String maxLevelPenalty : Double
sahtiUUID : String waterTowers % 0.2
epanetlD : String l
minimumPressure : Douvle
maximumPressure : Double in 1.x Station

Control

startingFrom : Date
controlType : ControlType

defaultControlType : ControlType

o F——7

Source Transfer

setting : Double

yield : Double out : PressureZone

infeasibleYield : Double

yieldPenalty : Double

productionCost : Double Lﬁ
TwoWay

epanetlD2 : String
maximumFlow2 : Double
minimumFlow2 : Double
minimumPressure2 : Double
maximumPressure2 : Double

Figure 19. Unified modeling language (UML) class diagram of the optimization framework
system model

The transfer and two-way stations link pressure zones together via in and out
relationships. The source stations only specify the pressure zone receiving the
produced water.

Pressure zones have name, EPANET pattern name, and universally unique iden-
tification (UUID), which identifies the position in the SCADA access configura-
tion that contains the zone’s water demand. The other properties of the zone
include allowed minimum and maximum pressures along with the penalty costs
[€/mh], minimum water tower capacity expressed in hours and the related penalty
cost [€/hh], and minimum and maximum water tower volume [%], and the re-
lated penalty costs [€/mh].

Stations that are related to a zone are available via inStations and out-
Stations relations. A zone also has zero or more water towers. Water tower
components have UUID for SCADA access (initial water tower level) and EPANET
component name.

Besides the system components, the model also includes a possibility to con-
trol any station manually or change station’s control method (flow or pressure) at
any point of time. Likewise, water towers can be marked to be disabled. This func-
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tionality enables the optimizer to optimize correctly, even when some stations or

water towers are unavailable or working at partial or fixed capacity.

The model, its components and all parameters can be changed in the web in-

terface or directly in the database.

3.12.2 Optimization process implementation

optimizator : Optimizator

loadModels()

1]

validateModels()

1

updateManualControls()

1

updateModel()
<<create>>
| ___ _ _ new(tartend model) _ _ _ _ : DemandForecaster
updateForecast() -

<<create>>

I
L ___ _newstatendmode) __ _ _ _ T———->{ : InitialStateUpdater
! I
\ ) >

i X X

exportEpanetModel()

generatelnitialSolution()

<<create>>

,,,,,,,, new(model) _ _ _ _ _ _ S| :initialSolutionGenerator
».

generateSolution(previousBest)
La|

loop [i < nZones] processZone(zone)

initialSolution

optimize(initialSolution) . °

Figure 20. Sequence diagram of the optimization preparation process

When the optimization process is first initiated, either by a user, an external

program or a scheduled task, an Optimizator class instance is created and

its optimize method is called. First, the Optimizator performs the optimiza-
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tion preparation as depicted in the unified modeling language (UML) sequence
diagram in Figure 20.

First, the EPANET model is loaded, connection is made to the SCADA for data
access, and both EPANET model and SCADA data are validated against the sys-
tem model. The hydraulic model is also validated for simulation.

After loading and validating the models, the manual control overrides are fetched
from the database and updated into the model. UpdateModel method creates
the demand forecasts for all the pressure zones and updates the demands in the
hydraulic model. The method also sets the initial levels of the water towers to
match the measured levels read from SCADA.

When the updated model is ready, it is exported into EPANET inp file, which is
loaded into the modified EPANET simulator for objective function and constraints
evaluation.

Finally, an initial solution is generated. The system model, the exported EPA-
NET file, and initial solution are passed on and used in the optimization process
itself.

optimizator : Optimizator
<<create>>

a optimize(initialSolution)
e | _ _ new(epanetModelFile, optimizatorModel) _ _ w simulator : Simulator
<<create>> I
F————— evaluator : Evaluator
|
| ]
I
|
|
|
|

|
|
|
|
|

new(simulator, optimizatorModel)

I

optimize(initialSolution) L

loop [n< nSteps]) evall ion)

%
I
|

[oop <aurmion) ]| |__evautelimel |

evaluateStations()

j evaluateZones()

optimalSolution, cost
K—— optimalSolution, cost __ _ .

Figure 21. Sequence diagram of the optimization process
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The optimization process is shown in the sequence diagram in Figure 21. Simu-
lator instance is created and an evaluator is created and attached to the simulator,
and finally, the MHD-DDS implementation DynamicallyDimensioned-
Search instance is created, and its opt imize method is called with the initial
solution as an argument.

The search algorithm evolves the solution passing solution candidates to the
simulator for evaluation. The simulator returns the objective function value, the
total cost, to the optimizer, which continues the process, until the number of itera-
tions is exhausted, or the process is interrupted by the user. The final best solution
and its cost information is returned to the caller and stored in the database.

3.12.3 Java interface for EPANET

The optimization framework presented here is written in the Java programming
language. It was thus necessary to be able to use EPANET from Java. Because
hydraulic simulation is the performance bottleneck in the meta-heuristic opti-
mization, it was decided against porting EPANET to Java or using existing Java
versions of EPANET. Instead, the optimized version (see Chapter 3.4.4) of the C
language version EPANET was used by adding a Java interface for it.

A Java Native Interface [147] (JNI) module was written, that provides almost 1:1
mapping of the EPANET Toolkit [225] application programming interface (API).
Instead of returning error codes, the JNI function calls throw an exception of
type gov.epa.EpanetException, and instead of using pass by reference
variables to return values, the function calls directly return the result to the caller.
Thus, the API is simpler to use and more modern: there is no need for reference
variables and error code checking.

The JNI module forms a basis for the simulator module used by the objective
function value evaluator presented in the next section.

3.12.4 Evaluation of the objective function value

The evaluation of the objective function is split into two classes in the implemen-
tation of the framework. Simulator class is responsible for driving the EPANET
simulation process, calling the model specific control system model, controlling
the optimizable stations according to the design variables in the solution to be
evaluated, and finally calling the Evaluator class to calculate the objective
function values.

The simulator is instantiated once per optimization process for each parallel
thread. During the initialization, the modified EPANET simulator is prepared call-
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ing ENopen function with the previously exported EPANET inp file, containing
the base model, possible manual control overrides, the latest demand forecast and
the initial tank levels as read from SCADA (see Chapters 3.9 and 3.12.2), and the
Python interpreter is initialized and control system model is loaded. Saving any
report or hydraulic results are explicitly disabled.

When a new solution is required to be evaluated, the search algorithm calls
simulator’s simulate method, with the current solution, ¥, as argument. The
simulator first calls back the evaluator’s init method, which zeroes the accumu-
lated costs and penalties. The simulator then starts actual hydraulic simulation
by calling the ENopenH and ENinitH functions in EPANET.

Then, hydraulic simulation is processed time step by time step. First, the cur-
rent manual controls, if any, or the controls specified by the design variables in
the current solution, %, are applied using EPANET’s ENsetlinkvalue(set -
ting, EN_SETTING) function. Then the simulation is progressed by calling
ENrunH and ENnextH functions in EPANET.

When the hydraulic results and the next time step, t,, are known after the
ENnextH call, the evaluator’s evaluate method is called with the time step
length, t = t, — t; as argument.

Evaluator then calculates the production costs at sources W(x) by looping over
the sources, and inspecting the flows going out of the source using EN-get -
linkvalue(index, EN_FLOW) function call, converting the flow into
cubic metres and multiplying the result by the source’s production cost fyroq, i:

Nsources

W(f) = Z Qi-t 'fprodA,i . (3.26)

Energy costs E(%) are calculated by looping over all the pumps in the sys-
tem and calling parallel pump optimizer’s back-end power function P;(Q;, H;)
to calculate the power. The value of Q is determined by calling ENget1link-
value (index, EN_FLOW) and H by calling ENgetlinkvalue (index,
EN_UNITHEADLOSS). Station specific energy price f. ; is used for calculating
the price:

Npumps

E(x) = Z Pi(Qi, Hi) -t fei - (3.27)

Finally, the penalties P(x) are calculated. The water tower penalties and pres-
sure penalties are calculated by inspecting the water tower levels and junction
pressures using ENgetnodevalue(index, EN_PRESSURE) function
calls and then applying the calculation logic described earlier in Chapter 3.7.2.
The yield penalties are calculated in a similar manner.
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The various costs are summed together and accumulated over time
t
f(x)r =) Wu(x) + Eu(%) + Pu(%) . (3.28)
u=0

If the resulting accumulated total cost f; > 1.1+ feurrent, then the simulation process
is preempted by throwing an exception of type PreemptionException.
Otherwise, the simulation goes on until the end.

Finally, ENcloseH is called to clean things up for the current hydraulic simu-
lation run, and the objective function value f is returned to the caller - the search
algorithm. The EPANET simulator remains initialized and ready for the next sim-
ulation run.

3.12.5 User and application programming interfaces

Both the user and the application programming interfaces were constructed us-
ing the same Java EE version 7 technologies [75] as the rest of the optimization
framework.

The user interface was developed using Java Server Faces [54] (JSF) library
PrimeFaces version 5.3 [64]. The user interface is web based and it works using
any modern Internet browser on PCs and tablets.

The user interface allows creating, browsing and modifying system models and
their parameters. Optimization process can be initiated using the interface, and
previous optimization runs along their results can be examined. The web inter-
face allows users set up the online-optimization process parameters, such as the
demand forecast and optimization horizon, and whether and how often the opti-
mization is run automatically by a scheduled task.

The intended operational use-case is that a scheduled task runs the optimiza-
tion process every few hours for the next 24 hours. The results are stored in the
optimization frameworks own database, and the optimal controls — both flow
and pressure settings on the station level and frequencies for every pump — are
sent to the SCADA system so that an optimal solution is readily available for the
operators’ use in their preferred system.

A REST API was developed using Java API for RESTful Web Services (JAX-RS)
version 2.0 [197]. The REST API provides the same functionality as the user inter-
face to enable external programs to call the framework. The API was extensively
used in this thesis to automatically analyze the optimizer performance.
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3.13 Conclusions

A general whole cost optimization framework for water supply system opera-
tions was developed. The optimization framework finds optimal time dependent
settings for all the stations and ultimately optimal frequencies for every single
pump in the system. The framework is suitable for near real-time optimization.

The presented framework implements an efficent problem formulation and
choice of design variables minimizing the search-space size. Pump efficiency fre-
quency scaling and motor and VSD efficiencies are all modeled as the function
of pump rotational speed and used in the pre-optimization of the pump batteries
at all stations. A full-scale hydraulic model, including raw water extraction and
treatment and driven by a control system model, is used for objective function
evaluations in the optimization process. The optimization algorithm used by the
framework is MHD-DDS with simulation preemption.

The optimization framework provides a web based interface along with a REST
API for calling the framework programmatically. The framework was designed to
enable the results to be readily integrated into a SCADA system.

The research and development work has resulted in multiple EPANET exten-
sions that can be used outside the optimization framework regime. The thread-
safe version of EPANET makes it possible to efficiently and easily utilize multiple
cores for hydraulic analysis, and pump battery component and parallel pump
optimization along with the control system model framework open for novel pos-
sibilities for water supply system modeling.
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4 CASE STUDY - TAMPERE WATER SUPPLY SYSTEM

4.1 Background

<

Fal roe’l‘g'amis

Figure 22. Location of the city of Tampere

TAMPERE Water utility serves the city of Tampere, some 150 km North from
Helsinki, and the municipality of Pirkkala, with a total population of 244 182
(as of 2015-12-31). Some water is sold also to other neighboring municipalities:
Lempaald, Kangasala and Nokia.

The network is divided into two parts by a ridge located in the middle of the
city. It is possible to pump water over the ridge both ways, but both sides of
the network are self-subsisting and thus the pumping is usually avoided. About
78 % of the population lives in the eastern part of the water distribution system
(WDS), where both of the surface water treatment plants are located. Average
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water demand in the eastern part is about 35500 %3 and in the western part about
12000 ™ - totaling 47500 2.

The network is divided into eight pressure zones — six of which have own
elevated water storage. Within larger zones, a few small pressure boosted zones
exist, but they are of limited interest with regard to the cost optimization. They
are controlled using the default settings, but they are included in the hydraulic
simulation and their energy consumption is included in the total.

The network is supplied by eight water sources, three of which are located in
the eastern part and the remaining five in the western part. The water sources in
the eastern part have a capacity of 105000 %3 and the sources in the western part
a capacity of 21500 %3.

In 2014, energy amounted to 9.8 % of the total expenses.

4.2 Water supply system and hydraulic model

Pinsi6

Julkujarvi

Aitolahti
Holvasti

Kauppi

AN Messukyla @

=
@ Keskuojanpolku Rusko

Kauhakorpi-Hervanta

Koivistonkyla
Kauhakorpi-Vuores

Legend

@ Water source

@ Pressure boosting station
[><] Control valve station

Flow measurement stations

F |:| Water tower

Figure 23. Schematic presentation of the Tampere water supply system

The water supply system is shown schematically in Figure 23. There are 14
pressure zones and three measurement stations delivering water to neighboring
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towns in the network. The pressure zones are listed in Table 8, along with their
respective network lengths, average daily demands, non-revenue water (NRW),
inhabitants and water tower volumes. Six zones have their own water tower.

Water usage data are available through the SCADA system for ten of the pres-
sure zones. The four zones, Kurikka, Ollikantie, Linnakallio and Mustimaki, that
have no data available for the optimization of their own water usage, are all lo-
cated within the municipality of Pirkkala, and two of them are using negligible
amount of water. The whole Pirkkala is regarded as one pressure zone when the
water balance is calculated and updated in the model.

Table 8. Pressure zones in the Tampere water supply system

Zone Network Demand NRW NRW-% Inhabitants Water Tower
[km] [m?*/d] [m?®d] % [m?]

Kauppi 332.3 26 760 3328 12.4 114 356 12 000

Tesoma 150.2 7 357 1067 14.5 36 798 5500

Pyynikki 60.2 4 837 517 10.7 28 318 3200

Hervanta 32.9 4803 256 5.3 23100 1 000

Atala 56.8 2629 421 16.0 17 673

Pirkkala 79.2 3404 551 16.2 15779 1200

Peltolammi 42.9 2785 243 8.7 8 436 2300

Kurikka 6.4 290 63 21.8 3009

Hallila 6.8 429 33 7.6 2922

Pispala 3.2 157 34 21.7 2 489

Yl4-Rusko 7.8 204 61 29.8 2478

Ollikantie 6.0 298 45 15.0 2471

Mustimaki 0.9 29 11 36.7 468

Linnakallio 5.8 39 39 100.0 260

Lempaila 1420

Kangasala 0

Nokia 0

Raw Water 17.8

Sum 809 55 440 6 667 12.0 258 557 25 200

The network has eight water sources, with a current maximum daily capacity
of 126 500 m®. When the renovation of the Kaupinoja plant was completed in 2017,
the daily capacity was raised to 178 500 m®. Table 9 lists the water sources, their
capacities allowed by the environmental permits, raw water sources, raw water
multpliers (i.e. the ratio between the extracted raw water and the amount pumped
into the network), minimum and maximum hourly flows, and production costs.
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Two of the sources, Rusko and Kaupinoja, use lake water as raw water. To-
gether, the surface water sources provide about 70 % of the water used in the
system. One of the sources, Saurio, serves nearby city of Yl6jarvi, and it is used
in Tampere only when extra capacity is required.

Six of the sources are ground water sources. Their combined capacity is 28 500 m?.
All the ground water sources, except Messukyld, are located on the western side
of the network.

Table 9. Water sources in the Tampere water supply system

Station Capacity Raw Water Raw Water Min. Flow Max. Flow Prod.cost

[m3/d] Multiplier [m3/h] [m3/h] [€/m?]
Rusko 78 000 Lake 1.1035 500 3000 0.0753
Kauppi 20 000 Lake 1.1035 100 800 0.0700
Messukyla 7000 Ground water  1.0628 20 300 0.0645
Hyhky 3000 Ground water 1.0603 10 130 0.0534
Mustalampi 5000 Ground water ~ 1.0311 10 210 0.0513
Pinsio 8000 Ground water  1.4165 10 330 0.0185
Julkujarvi 3500 Ground water  1.7500 10 145 0.0133
Saurio 2000 Ground water ~ 1.0000 10 80

Figure 24 shows the different components of the production costs. The costs are
calculated by dividing yearly costs by the volume pumped into the network, and
thus, the values are yearly averages. Chemical costs include expenses of major
chemicals used in the treatment. Active carbon costs include approximate yearly
regeneration and replacement costs. Electricity component includes total elec-
tricity used at the source, except for the energy used for pumping the bulk water.
Where available, the pumping energy was calculated using power data in SCADA.
Otherwise, the simulated energy consumption was used [255].

In total, there are 79 pumps transferring water through the system, excluding
the pumps at currently (as of 2016) renovated Kaupinoja surface water plant. All
pumps are variable-speed drive controlled. The pumps are located in 25 different
remote controllable stations. Table 10 lists all the stations (including sources) and
their pumps. The table indicates source and destination pressure zones for the
stations, and the pump types.

Most of the stations can only supply water one way. Two of the stations, Po-
hjanmaantie and Satakunnankatu, can deliver water both ways. Pohjanmaantie
can supply Pyynikki with water through a control valve and Tesoma through
pumps. Satakunnankatu uses pumps for serving Pyynikki and a control valve is
used when water is supplied to Kauppi. Together, the stations enable transfer of
water over the ridge through Pyynikki both ways.
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Figure 24. Production cost structure at the water sources in Tampere WSS

Table 10. List of all pumps transferring water in the Tampere water supply system and in-

cluded in the hydraulic model

Station From To Pump Type Pump Model
Aitolahti Kauppi Atala Pressure Booster Z-H12N-1
Pressure Booster NK50-160/162
Hallila Ita Kauppi Hallila Pressure Booster APP-32-65
Pressure Booster APP-32-65
Hallila Lansi Kauppi Hallila Pressure Booster PF-27/315
Pressure Booster PF-24/200
Holvasti Kauppi Atala Pressure Booster MEN-80-65-160
Pressure Booster MEN-80-65-160
Hyhky Pyynikki Network KSB UPA250-41/3C
Network KSB UPA250-41/3C
Raw Water KSB UPA150S-65/3
Raw Water KSB UPA150S-65/3
Raw Water TVS8 2-1_VV_L6W552D
Julkujarvi Tesoma Well to Network PN83-3
Well to Network PN83-3
Well to Network PN83-3
Karhumaéentie Kauppi Pyynikki Pressure Booster LP100-125/137
Pressure Booster LP100-125/137
Kauhakorpi-Hervanta ~ Kauppi Hervanta Pressure Booster MEN-100-80-200L

Pressure Booster

125

MEN-100-80-200L

Continued on next page
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Table 10 — continued from previous page

Station From To Pump Type Pump Model
Pressure Booster MEN-125-100-200L
Kauhakorpi-Vuores Kauppi Peltolammi  Pressure Booster MEN-100-80-160
Pressure Booster MEN-125-100-200L
Keskuojanpolku Kauppi Pirkkala Pressure Booster LP100-125/137
Pressure Booster LP100-125/137
Killo Pirkkala Linnavuori  Pressure Booster CR32-4
Pressure Booster CR32-4
Koivistonkyla Kauppi Peltolammi  Pressure Booster NK65-160/173
Pressure Booster NK65-160/173
Kurikka Pirkkala Kurikka Pressure Booster CR16-40
Pressure Booster CR20-4
Lukonméki Kauppi Hervanta Pressure Booster NK80-200/222
Pressure Booster PPL12
Messukyla Kauppi Network QNB83-7
Network QNB83-7a
Raw Water PN104-3
Raw Water SP160-2A
Raw Water SP160-2A
Metsakyla Tesoma Tesoma From Tank to Network ~ APP-32-125
From Tank to Network ~ APP-32-125
From Tank to Network ~ APP-44-150
Mustalampi Tesoma Network (Epild) ELL10-2
Network (Epild) ELL10-2
Network (Epild) ELL10-2
Network (Tesoma) ELL10-3
Network (Tesoma) ELL10-3
Network (Tesoma) ELL10-3
Raw Water PN82-2
Raw Water QN65-4
Raw Water PN84-2A
Raw Water PN84-2A
Mustimaki Pirkkala Mustiméaki Pressure Booster CR4-80
Pressure Booster CR4-80
Ollikantie Pirkkala Ollikantie Pressure Booster CR30-30
Pressure Booster CR30-30
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4.2 WATER SUPPLY SYSTEM AND HYDRAULIC MODEL

Table 10 — continued from previous page

Station From To Pump Type Pump Model
Pinsio Tesoma Well to Network Q-82-3
Well to Network Q-82-4
Well to Network Q-82-3
Pohjanmaantie Tesoma Pyynikki Pressure Booster Z-K15R-380
Pressure Booster Z-K15R-380
Rusko Kauppi Network (Kauppi) Z-V35T-450
Network (Kauppi) Z-V35T-450

Network (Yla-Rusko) APP-33-100
Network (Yla-Rusko) APP-33-100
Lift inside the Process AFP-2006
Lift inside the Process AFP-2006
Lift inside the Process AFP-2006
Lift inside the Process XP201G CB2
Lift inside the Process XP201G CB3
Lift inside the Process XP201G CB4

Raw Water 2PLP-30
Raw Water 2PLP-30
Raw Water 2PLP-30
Raw Water 2PLP-30
Satakunnankatu Kauppi Pyynikki Pressure Booster Z-K15R-380
Pressure Booster Z-K15R-350
Yla-Pispala Pyynikki  Pispala Pressure Booster KCF-5-140
Pressure Booster KFF-8-145

Currently, the operators operate the water supply system manually by chang-
ing the flow and pressure settings at different stations. There are only a few es-
tablished rules on how the system should be operated, and thus the behavior and
costs depend on the operator making the changes. The basic principle, however,
is to try to avoid transferring water over the ridge, and keeping the flow settings
as constant as possible, and thus utilizing the water tower volume to level the
changes in the water demand.

The full-scale network model was built using the modified EPANET hydraulic
modeling software, and the model contains 5443 nodes and 6457 links. The length
of the modeled network is 809 km with an average inner pipe diameter of 185 mm.
There are 21 368 water users in the model. The ground elevations vary from 78 m
to 170 m above the sea level. The network model is shown in Figure 25.
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Figure 25. Network model used in the optimization process

The model includes all the pipes in the network, raw water extraction and trans-
fer, along the hydraulic behavior of the water treatment processes at all sources,
and every pump in the system. All pumps are modeled using the pump battery
component (see Chapter 3.4.1), and the internal operation of the pump batteries
is pre-optimized using the parallel pumping optimization tool (see Chapter 3.3).

The water treatment processes and raw water extraction is controlled by a
control system model (see Chapter 3.4.2). The flow pumped into the network Q
is multiplied by the source specific raw water coefficient (see Table 9), resulting
in the raw water flow Qv > Q. The control system model controls how Q.
is pumped through the process and raw water extraction. In this way, the full
energy costs can be calculated.

The original model used a pressure-dependent leakage model utilizing EPA-
NET’s nodal emitters[257]. The global emitter coefficient was 1.0. Each zone’s
calculated non-revenue water is assigned to nodes proportionally to the con-
nected pipe length, pipe diameter and average pressure by iteratively calibrating
the emitter coefficients.

However, analyzing the leakage flow from the zonal demands and calibration
of emitter coefficients in a real-time setting was deemed a problem that could be
deferred for a later project. For the online operational optimization, it was decided
to replace the pressure-dependent emitters by fixed nodal demands calculated
based on the total zonal leakage and proportionally the connected pipe length,
pipe diameter and node’s average pressure. The leakage is scaled with the rest of
the zonal water usage when the demand forecast is applied to the model.
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4.3 Optimization problem formulation

The goal is to optimize the total production and energy costs associated with
the Tampere Water utility water supply system online. Chapter 3.7 describes the
general problem formulation in detail. The case specific details are presented in
this chapter.

The small pressure booster stations, for which no SCADA data are available,
were excluded from the set of stations to be optimized. The exclusion set includes
Mustiméki, Ollikantie, Kurikka, Killo, and Pispala. The final list pressure booster
stations included in the optimization, along with their minimum and maximum
flows and pressure parameters used in the optimization are listed in Table 11.

It is worth noting that even though five pressure booster stations were excluded
from the optimization set, their energy consumption is still included when calcu-
lating the objective function.

Table 11. Pressure booster station parameters

Flow Pressure Flow - direction 2
Station Min. Max. Min.. Max. Min. Max.
(B 3] m] ] (3] R
Kauhakorpi-Hervanta 30 500 70 85
Lukonmaki 30 500 75 90
Hallila-Tta 5 126 44 80
Hallila-Lénsi 1 72 42 80
Aitolahti 10 210 50 80
Holvasti 10 210 48 80
Koivistonkyla 20 280 65 90
Kauhakorpi-Vuores 50 350 45 75
Keskuojanpolku 10 150 58 70
Karhuméentie 10 200 52 65
Satakunnankatu 50 540 10 420
Pohjanmaantie 10 420 50 540

The optimization also includes all sources listed earlier in Table 9, except Saurio,
which is reserved strictly for emergencies. Mustalampi source includes two pump-
ing stations that pump into the same pressure zone but via different valve sepa-
rated routes. The pumping stations, Mustalampi-Tesoma Mustalampi-Epil4, have
separate pumps and can be controlled separately. The stations’ respective mini-
mum and maximum flows are 10 2 to 280 2 and 10 % to 210 2.
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In total, there are eight sources and twelve pressure booster stations, two of
which can pump both ways. The final list of design variables includes the setting
pattern and morning, day, evening and night settings for the 20 stations. Hallila-
Ita, Hallila-Lénsi, Aitolahti and Holvasti are pressure controlled by default, and
all other stations are flow controlled. The control type can be changed, and the
settings can be manually overridden using the web interface.

Using the traditional formulation for pump scheduling, there would be 79 - 24 =
1896 design variables. The formulation used in this thesis, together with the con-
trol system model, reduces the number of design variables to 20 - 5 = 100, which
is 5.3 % of the classical amount, while still providing optimal frequency for every
single pump in the system. Even the pumping stations excluded from the system
level optimization are still optimized locally using the parallel pumping optimiza-
tion.

Pressure zone penalty parameters are listed in Table 12. The penalty costs
are the same for all zones: 10 5; for capacity penalty, 10 —$- for volume penalty,
0.1 £ for minimum pressure penalty and 0.01 -5 for maximum pressure penalty.

Table 12. Pressure zone penalty parameters

Pressure Zone Cuin  Vmin ~ Pmin  Pmax

(h]  [m’] [m] [m]

Kauppi 4 2400 25 70
Tesoma 4 1100 25 80
Pyynikki 4 640 25 65
Hervanta 1 200 25 65
Atala 25 75
Pirkkala 7 240 25 70
Peltolammi 7 460 25 70
Hallila 25 65
Yla-Rusko 25 65
Lempaala 25 65
Kangasala 25 65
Nokia 25 90

The maximum allowed water level for all water towers was fixed to 95 % of the
overflow level, and the penalty of exceeding that level was set to 200 5=, to make
it costly to overfill the towers.

Rusko and Messukyla have a reasonable yield, that is below the maximum al-
lowed. The yield limits are 50 000 and 5000, respectively, which is about 70 % of

130



4.4 BASELINE COSTS

the full capacity in both cases. These limits were stored in the database, with the
penalty cost 0.2 %;.

The price for electricity was assumed to be 0.085 1. There are no different
tariffs in use.

4.4 Baseline costs

In order to analyze the optimization framework performance, the historical costs
of the system were first analyzed. For this purpose, the two-week period between
2nd November and 15th November 2015 was chosen. During the period, water
demand was close to the typical and there were no major incidents in the network.

The cost calculation was done day-by-day, by first preparing the model to
match the measured situation, and then simulating and evaluating the costs using
the same exact cost and penalty parameters, and the code as the optimizer uses.
The optimizer programming API provides a function to calculate historical costs
automatically.
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Figure 26. Historical costs and cost components for 2nd—-15th November 2015

The resulting costs and cost components are shown graphically in Figure 26
and in tabular format in Table 13. The figure groups tower capacity and volume
penalties into one, and volume penalty is not shown in the table, because the av-
erage value was below 1§ and the maximum was 2 §. During the period, total
costs are 5086-5519 € and real costs, i.e. the sum of production and energy costs
is 4113-4589 €. Average values are respectively 5519 € and 4428 €. The penalties
account for about one fifth of the total cost. Pressure penalty, including both min-
imum and maximum pressure penalties, is consistently close to the average 566 €.
Tower capacity penalty varies more, average being 356 €. Yield capacity penalty
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Table 13. Historical costs and cost components for 2nd-15th November 2015

Cost [€] Penalties [€]
Date Total Real Prod. Energy Pressure Capacity Yield
2015-11-02 5086 4113 3044 1069 507 356 110
2015-11-03 5614 4388 3261 1126 567 460 199
2015-11-04 5736 4546 3388 1158 581 409 200
2015-11-05 5533 4486 3344 1141 566 370 110
2015-11-06 5745 4553 3360 1192 580 413 200
2015-11-07 5280 4274 3157 1116 549 258 199
2015-11-08 5340 4285 3184 1101 559 296 199
2015-11-09 5493 4481 3321 1161 544 357 110
2015-11-10 5727 4564 3410 1154 556 407 200
2015-11-11 5566 4507 3353 1154 561 299 199
2015-11-12 5542 4523 3371 1152 566 343 110
2015-11-13 5852 4589 3427 1162 607 454 200
2015-11-14 5372 4290 3187 1103 594 287 199
2015-11-15 5386 4394 3277 1116 587 277 129
Min 5086 4113 3044 1069 507 258 110
Max 5852 4589 3427 1192 607 460 200
Average 5519 4428 3292 1136 566 356 169

averages at 169 €. Sum total cost for the two-week period is 77272 € and sum real
cost is 61991

4.5 Optimization results

The savings potential offered by the optimizer and its computational performance
was analyzed by comparing both cold start performance on 2nd November 2015
to the historical values, and long-term sustained performance by performing ten
different optimization runs for the whole 2nd to 15th November 2015 period in
twelve hour intervals.

The calculations were performed on Dell Precision T7610 workstation with two
six-core Intel Xeon E5-2620 v2 @ 2.10 GHz processors with hyper threading, 32 GB
memory, and 500 GB solid state drive hard-disk. The operating system was 64-bit
Windows 7 Enterprise, the Java runtime was 64-bit and version number 1.8.0u66.
The optimizer software was run inside GlassFish 4.1.1 application server. The final
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hardware will be similar, except the processors will be Intel Xeon E5-2620 v3 @
2.40 GHz, and thus more performant.

Penalty parameters were initially estimated by analyzing the hydraulic model.
Later they were tuned based on the historical performance and early optimization
results. Currently, the penalties are on average one fifth of the total cost.

4.5.1 Cold start performance

Initial optimizator parameter tuning was performed on 2nd November 2015. The
relative perturbation size r, penalty parameters, the number of iterations, aggres-
siveness of preemption, initial solution algorithm and upward trending were all
considered. Monday, 2nd November 2015 was optimized 100 times using each
different setting combination, and the results were analyzed.
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Figure 27. Box plot of the total cost results for 100 optimization runs with different
parameters for 2nd November 2015

The total cost results of key parameter combinations are shown graphically
as box plots in Figure 27 and real cost results in Figure 28. The same results are
shown in tabular format in Table 14. Combination names in the figures are as
follows: the number after @ sign signifies the number of iterations, 1800, 3600
or 4500, word UP before the @ sign signifies that the runs were allowed to accet
temporarily worse results, and finally the number before @ sign, 0.35 or 0.50,
signifies the relative perturbation value, . If the value is missing, the default » =
0.20 is used. The analyzed combinations respectively are: 1800 iterations, 1800,
3600 and 4500 iterations with worse results allowed, and 3600 iterations with
worse results allowed with » = 0.35 and r = 0.50.

The savings on the 1st quartile compared to the baseline performance on 2nd
November 2015 are shown in Table 15. The baseline total cost is 5086 € and the
baseline real cost is 4113 €. Comparison is done on the 1st quartile, because the
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Figure 28. Box plot of the real cost results for 100 optimization runs with different
parameters for 2nd November 2015

Table 14. Total and real cost results of the optimization runs with different parameters. The
results are shown as 1st quartile, median and 3rd quartile for the population of 100 optimiza-
tions for 2nd November 2015.

Total Cost Real Cost
Parameters 1st Quart. Median 3rd Quart. 1st Quart. Median 3rd Quart.

@1800 5328 5517 5734 4455 4707 4876
UP@1800 4232 4478 4882 3685 3859 4239
UP@3600 3 947 4061 4203 3447 3571 3704
UP@4500 3 866 3929 4043 3374 3463 3556
0.35;UP@3600 3903 3970 4120 3442 3527 3 645
0.50;UP@3600 3917 3994 4133 3 464 3557 3652

online optimization does ten parallel optimization runs, and the best of the ten
results is chosen as the optimum. Following binary distribution, there is a 94.4 %
chance, that at least one of the ten runs is within the first quartile.

The calculation performance numbers are shown in Table 16. CPU time re-
quired by the optimization is approximately linearly proportional to the number
of iterations when other parameters are kept the same. Preempting saves typi-
cally about 55 % of time step simulations, and the savings increase slightly as the
number of iterations rises. Rising of the r parameter makes preemption slightly
less efficient and likewise increases the CPU time required. This is likely because
the solutions vary more, and the greater proportion of the solution candidates are
close to the current best solution.
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Table 15. Total cost and real cost savings using different parameters. The 1st quartile results
are compared with the baseline efficiency.

Savings [€] Savings [%]
Parameters Total Real Total Real

@1800 -242 -342 47% -83%
UP@1800 854 428 16.8% 10.4 %
UP@3600 1139 666 224% 16.2%
UP@4500 1220 739 240% 18.0 %

0.35;UP@3600 1183 671 233% 163 %
0.50;UP@3600 1169 649 23.0% 158 %

While it is not possible to optimize the system hourly, it is more than feasible to
perform the optimization once every three to six hours, which would still provide
sufficiently rapid response to the changes happening in the system.

Table 16. Average computational time required for an optimization run and the percentage
of time steps saved by preemption using different parameters

Parameters Mean CPU Time [h] Preemptions
@1800 0.8 46 %
UP@1800 1.3 55 %
UP@3600 2.5 58 %
UP@4500 3.0 59 %
0.35;UP@3600 2.7 56 %
0.50;UP@3600 2.7 53 %

It was found out that the optimizer gives significantly better results, when the
search is allowed to temporarily accept results worse than the current best. Ag-
gressive preemption using the cost estimation had a negative impact on the cost
savings. Using 3600 iterations yielded much better results than 1800 iterations,
while the computation time was still below 2.5 h. By increasing the number of it-
erations to 4500 further improves the results. Preemption saves about 50 % to 60 %
of hydraulic simulator time steps compared with the full 24 h evaluation, and thus
reduces the optimization time to half.

The best results and overall performance was given by enabling the upward
trend and disabling aggressive estimation. Using simple initial solution genera-
tion and 3600 iterations, gives 1st quartile result 3947 € for total and 3447 € for
real costs, and median result 4061 € for total and 3447 € for real costs. Compared
with the historical values, 5086 € and 4113 €, the 1st quartile savings are 1139 €
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or 22 % and 666 € or 16 %. The yearly savings potential in the real costs would be
more than 200000 €. Using 4500 iterations makes the costs still 80 € lower and
bumps the savings percentages to 24 % and 18 %. Besides the lower real costs, the
quality of service is better than the manual solution. In particular the minimum
water tower capacities are higher in the optimized solutions.

Increasing the value of the relative perturbation parameter r from the default
and recommended value of 0.20 to 0.35, or further to 0.50, gives only slightly better
results.

It is worth noting that the optimizer returned always better results than the
baseline when temporary worsening of the results was allowed and the number
of iterations was at least 3600.

4.5.2 Sustained performance

Sustained performance of the optimization framework was analyzed by perform-
ing ten different optimizations for 2nd to 15th November 2015 period using twelve-
hour intervals for the optimization runs. Based on the results of optimizing a sin-
gle day, the relative perturbation parameter r value was set to 0.35, the number
of iterations to 4500, and the results were allowed to temporarily worsen.

The results are shown in Table 17 and graphically in Figure 29. Total baseline
cost for the two-week period was 77272 € (total cost) and 61991 € (real cost).
Optimized costs are 57410€ and 49 780 €, which are 25.70 % and 19.70 % lower
than the baseline. The CPU time required for the optimization was on average
2.0h.

The optimizer gave consistently better results compared with the historical
baseline performance.

4.6 Online operative application

As of October 2017, the optimization framework is being installed to a server
in the Tampere Water utility’s office network. Optimization process is started
automatically once every six hours by a scheduled task.

Ten optimization runs are performed parallel to each other at once. The Best
solution of the ten is chosen. Doing multiple optimizations and choosing the best
ensures high probability of obtaining the best possible result.

Because the chance for an optimization result being in the 1st quartile (among
the best 25 %) is 25 %, X ~ B(10,0.25), the probability for at least one of ten op-
timization runs being in 1st quartile is 94.4 % and being in 2nd quartile is 99.9 %.

136



4.6 ONLINE OPERATIVE APPLICATION

Table 17. Results of the sustained performance runs

Total Cost [€]

Real Cost [€]

Start CPU [h] 1stQuart. Median 3rd Quart. 1stQuart. Median 3rd Quart.
2015-11-02 00:00 1.9 3908 3921 3956 3398 3454 3538
2015-11-02 12:00 2.1 3931 4043 4183 3302 3444 3600
2015-11-03 00:00 2.1 4 441 4 545 4673 3923 4028 4093
2015-11-03 12:00 2.1 4088 4153 4201 3551 3576 3 655
2015-11-04 00:00 2.1 4283 4398 4882 3765 3892 4314
2015-11-04 12:00 2.2 4056 4191 4372 3530 3651 3807
2015-11-05 00:00 2.2 4441 4544 5274 3895 4009 4526
2015-11-0512:00 2.1 3903 4091 4140 3364 3502 3577
2015-11-06 00:00 2.2 4 430 4513 4690 3947 4069 4218
2015-11-06 12:00 1.9 3740 3825 3 947 3253 3324 3376
2015-11-07 00:00 2.0 4061 4178 4298 3583 3699 3907
2015-11-07 12:00 2.1 3 426 3657 3881 2922 3112 3249
2015-11-08 00:00 2.3 4073 4180 4353 3561 3682 3810
2015-11-08 12:00 2.3 3974 4151 4280 3298 3545 3694
2015-11-09 00:00 1.7 4396 4474 4571 3746 3861 4094
2015-11-09 12:00 2.2 3872 4091 4210 3292 3467 3521
2015-11-10 00:00 1.9 4677 4829 5120 4138 4307 4484
2015-11-10 12:00 1.8 3993 4052 4376 3392 3558 3730
2015-11-11 00:00 2.0 4 646 4834 4935 4072 4293 4393
2015-11-11 12:00 2.0 4162 4215 4344 3 5% 3674 3767
2015-11-12 00:00 2.0 4 454 4570 5326 3923 4 060 4629
2015-11-12 12:00 2.0 3925 4053 4167 3363 3454 3569
2015-11-13 00:00 2.0 4599 4838 5543 4079 4419 4721
2015-11-13 12:00 1.0 3650 4011 4263 3093 3361 3697
2015-11-14 00:00 2.0 4070 4276 4474 3622 3780 3957
2015-11-14 12:00 1.9 3510 3660 3932 2969 3090 3399
2015-11-15 00:00 2.0 4222 4 285 4334 3 669 3788 3910
2015-11-1512:00 1.8 3 888 3939 4027 3317 3406 3456
Average 2.0 4100.7 4232.8 4455.4 3555.7 3696.7 3881.9
Sum 56.4 57 410 59 259 62 376 49 780 51754 54 346
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Figure 29. Sustained performance of the optimizer 2nd-15th November 2015 compared
with baseline costs

Doing ten optimizations practically ensures that the obtained solution is always
better than the median.

The actual historical costs are stored in the utility’s open database. Likewise,
the optimal costs calculated by the optimizer will be saved in the same database,
so that it is possible to analyze, how well the optimizer performs and to better
assess the savings potential.

4.7 Conclusions

The Tampere Water utility’s network including the city of Tampere and the mu-
nicipality of Pirkkala was modeled fully. The model includes every pump, pump
motor and variable-speed drive in the system. Raw water extraction and treat-
ment processes were also modeled, along the logic controlling them.

The obtained optimization results show that the optimization framework pre-
sented in the thesis works as intended. The savings potential varies from 7645 €
to 12211 € for the analyzed two-week period, which results in yearly real cost
savings potential of 214 000 € to 342000€ (12.3 % to 19.7 %). Even cold start per-
formance can result in 18 % or 739 § real cost savings.

The optimization time, 2.0h on average, is reasonable for near real-time use.
The implementation proved to be robust, and integration into the SCADA system
lowers the usage barrier and provides the operators with a familiar user interface.
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5.1 Summary of work

THE aim of this thesis research was to develop a general framework for near

real-time whole-cost optimization for operation of a water supply system
(WSS) containing elevated storage, variable-speed driven pumps and multiple wa-
ter sources.

The major goal for the framework was to use a hydraulic model as accurate
as possible, and take into account every pumping that happens in the system
and each aspect that affects the pumping efficiency and energy consumption, in-
cluding raw water extraction and conveyance, which were usually left out in the
earlier research. The focus was not only on the cost of energy, but also on water
production costs.

The goal was achieved, as such a system was developed and successfully tested
on areal, large-scale network in a case-study. The case-study shows that it is pos-
sible to use a non-simplified full-scale hydraulic model and include raw water
extraction, conveyance and treatment in the near real-time operational optimiza-
tion.

The developed optimization framework makes a 24-hour demand estimate for
each demand measurement area and pressure zone, finds optimal flow and pres-
sure settings for every station, and finally, optimal pump frequencies for all pumps
in the system over the 24-hour optimization horizon, so that energy and water
production costs are minimized while ensuring good quality of service. The opti-
mization happens near real-time.

The optimization time is kept reasonable by a novel optimization problem for-
mulation, considerably reducing the search-space, and by using two-step opti-
mization, i.e. first calculating the global optimum for all possible working points
on pump battery level offline, and then focusing the real-time optimization on the
optimal flows from the stations using the pre-computed optimal pump combina-
tions and frequencies for each battery.

The global optimization is performed using the novel meta-heuristic optimiza-
tion algorithm MHD-DDS and utilizing the enhanced EPANET simulator for the
objective function and constraint evaluation.

The case studies presented in Publication I and Publication II show that opti-
mizing just the internal functioning of pumping stations can result in savings of
5% to 8 %. Further, the full-scale high-level optimization results in 20 % savings
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in energy and 29 % savings in total costs, including the penalties in the case study
presented in this dissertation (see Chapter 4) and in Publication V and Publication
VI. The total yearly savings potential in the production and distribution costs in
the case-study was 342000 €. The computational time required by the optimiza-
tion was on average 2.0 h.

5.2 Conclusions

The questions this thesis research set to answer were:

1. What components affecting energy use are typically missing from the op-
erational optimization problem solutions, and how can they be included?

2. Can near real-time optimization be performed using a full-scale, all-pipe
network model, including raw water extraction, conveyance and treatment,
and an accurate pump energy model?

Both questions were properly addressed, and the case-study shows that the
proposed methodology works and yields better results than the operators are
currently able to achieve. However, it is still required to compare the methodology
to other optimization methods and use benchmark networks.

Full-scale, non-simplified models can be used even in a near real-time setting,
when the proposed problem formulation and enhancements are applied to the
EPANET simulator.

The proposed optimization framework is the most complete presented in the
literature, including all energy usage components of pump train, and the water
production and distribution. Thus, the work can provide a baseline against which
to compare other more computationally efficient methodologies.

The completion of this study raises new research questions: how significant it is
to use a method as accurate as proposed here, and how different the optimization
results would be using a simpler model.

5.3 Thesis contributions

The dissertation provides contributions in three main areas: optimal operation
of variable-speed driven pumps, water supply system modeling, and global opti-
mization of a water supply system as a whole.

Contributions to optimal operation of variable speed driven pumps are:

1. General and accurate model for pump drive train energy usage and effi-
ciency
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2. Method to globally pre-optimize operation of the pumps working in paral-
lel in a pump battery using exhaustive search. The method supports both
variable speed and fixed-speed pumps, and pumps with non-unique and
non-analytic pump characteristic curves,

Contributions to water supply system modeling and the EPANET simulator
are:

1. Novel EPANET component for modeling of flow or pressure controlled bat-
teries of variable-speed driven pumps

2. General and accurate model for pump drive train energy usage and effi-
ciency

3. Novel method to model arbitrary complex WSS control strategies in EPA-
NET

4. Novel method for enabling parallel processing using EPANET without break-
ing the existing API

5. Various optimizations in EPANET to reduce time required for simulations.
Contributions to operational optimization of water supply system are:

1. Novel operational optimization problem formulation resulting in substan-
tially reduced search space size

2. Inclusion of raw water extraction, conveyance and treatment in the system-
wide optimization problem, and utilizing a non-simplified full-pipe system
model in the optimization

3. Novel heuristic MINLP optimization algorithm, MHD-DDS, developed by
fusing and modifying slightly continuous DDS and discrete HD-DDS

4. A complete, generally usable framework for optimizing water supply and
distribution systems with variable-speed pumping either online or offline.

5.4 Future work recommendations

The performance of the MHD-DDS algorithm and problem formulation presented
here should be compared with other problem formulations and commonly used al-
gorithms, such as particle swarm optimization, genetic algorithm, and ant colony
optimization. The case studies should include Tampere and other water supply
systems, including the commonly used benchmark networks.
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This would show how much of the performance is due to the problem formu-
lation, especially due to the reduced search space size, and how much is due to
the MHD-DDS algorithm being efficient.

The results obtained from the optimization still require more careful analy-
sis, as to how the optimization utilizes different sources and stations and where
exactly the savings come from. The actual implementation phase is also still an
ongoing project and separate from this research work. Part of the implementation
phase budget will be dedicated on more through results analysis and on solution
implementability analysis.

More careful tuning of the penalty and optimization algorithm parameters
could result in greater savings and better performance. Optimizing the penalty
parameters would be an interesting line of research. Some studies focus on the
automatic optimization of the penalty parameters (meta-optimization), such as
[299], [12], [74], and [210]. These methods could be included in the framework
quite easily.

Optimization against the spot energy pricing or a daily price pattern instead
of a fixed energy price would be another interesting line of research. The use of
dynamic electricity pricing and price forecasts [292] could result in a new level
of energy cost savings. The inclusion of spot energy prices or some energy price
forecast module in the framework would be quite straightforward, and could re-
sult in further savings in energy costs.

New developments in hydraulic simulation (see Chapter 2.5) can reduce the
simulation time remarkably, and thus allow for more extensive optimization and
better approximation of the global optimum in the same time-frame. The opti-
mization framework allows using other hydraulic simulators than EPANET. Uti-
lizing another simulator could yield better performance with regard to the com-
putational time required, and could allow one to remediate some remaining limi-
tations of EPANET.

There is only little research done on the actual effect of inaccuracies in the
demand forecasts on the results in the operational optimization. Doing a compar-
ison of select demand forecasting methods and the resulting optimization perfor-
mance would be useful. It is also likely that the demand forecast model currently
in use could be further improved.

One major improvement that could be investigated is the pressure-dependant
leakage modeling. The presented case study includes fixed leakage component cal-
culated for each measurement area and distributed to nodes proportional to pipe
lengths, pipe diameters and average pressures. Online analysis of background
leakage from demand measurements is not, however, a simple task, and especially
calibrating the nodal emitter coefficients online without human intervention can
be challenging, but could possibly yield greater savings.
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Another interesting track for future research would be to analyze the realized
long-term savings and how well in general the operators use controls suggested
by the optimization frameworks. The optimization framework could also be eas-
ily altered to directly control the water supply system, after being used for long
enough to prove its reliability. Direct model predictive optimal control would be
especially beneficial if the operators do not follow the suggested optimal controls.

The future research could also explore how including a posteriori multi-objective
optimization, for example, presenting costs versus some resilience index, affects
the choices done by the operators. This would enable the operators make con-
scious choices between the costs and resilience and would not need them to
blindly trust the optimization results.

Water supply resilience and reliability [231, 306, 248] often conflict with en-
ergy optimization goals [295]. The methodology presented here include reliability
aspects such as pressure and water tower capacity and volume penalties, and be-
cause besides lowering real costs, the optimization also lowers the penalties it can
be assumed, that the resilience is on a better level after optimization. Nonetheless,
it would be interesting to compare various resilience and hydraulic performance
metrics [22] along with energy balance [255, 237] of the optimized solutions with
the historical performance of the system. Some reliability metrics could be in-
cluded as a multi-objective goal besides the costs and penalties, and the choice of
the exact solution to be implemented would be left to the operator.

Many of the developments, especially those done in the EPANET simulator
and pump energy modeling, have much wider applicability besides the optimiza-
tion discussed in this dissertation. Hopefully, much of the developments could
be contributed to Open Water Analytics open source project to benefit and to be
improved by other researchers and EPANET users.

This thesis research forms a good basis for future research and commercializa-
tion. The whole development forms an integrated system that can be easily tested
and extended upon. The large-scale case-study shows that the chosen methodol-
ogy holds potential. Several lines of research available can be pursued to further
improve the methodology.
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