
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Md Raisul Islam 194212IVEM

Classifying Medical Images on an Edge Device:

A Deep Learning Approach Applied to Blood

Cells

 Master's thesis

Supervisor: Yannick Le Moullec

 PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Md Raisul Islam 194212IVEM

Meditsiiniliste kujutiste klassifikatsioon

servaseadmel: vererakkudele rakendatood

süvõappe lähenemisviis

Magistritöö

Juhendaja: Yannick Le Moullec

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Md Raisul Islam

03.01.2022

4

Abstract

In modern times, medical imaging is one of the most important components of clinical

research and diagnosis. Compared to conventional radio image processing, Deep

Learning (DL) becomes one of the most popular and well-known alternatives for medical

image processing due to its robust automated processing capability and less human

intervention. In this pape, the suitability of DL method for classifying microscopic

medical images is investigated, especially four types of white blood cell images, namely:

eosinophils, monocytes, lymphocytes and neutrophils, where the inference phase is

performed on a single board computer (SBC).

Two different DL models are proposed to solve this classification problem. The first

model was developed from scratch by careful selection of hyperparameters, while the

second model uses a transfer learning approach where an already trained model

(MobileNetV2) is used for training and validation. A Kaggle dataset of 12500 images is

used to develop these models.

For the first model, the training and validation accuracies are 99% and 97% respectively,

with an overall classification accuracy of 97.77%. The performance of the second model

is slightly lower than the first, with training and validation accuracies of 92% and 87%,

respectively. The overall classification accuracy of this model is 92%, but the individual

accuracies are 86.15%, 97.71%, 92.5% and 92. 5% for eosinophils, monocytes,

lymphocytes and neutrophils, respectively.

Finally, the two models were minimized and deployed on an RPI4 SBC and used for

classification inference. On this SBC, the overall accuracy is 98.54% for the first model

and 91.3% for the second model. The classification times are measured to be 48.2 ms and

142 ms, respectively. Thus, the first model outperforms the second model as expected.

This thesis is written in English language and is 90 pages long and includes 6 chapters,

42 figures and 11 tables.

5

Annotatsioon

Meditsiiniliste kujutiste klassifitseerimine servaseadmel: vererakkudele

rakendatud sügavõpe lähenemisviis

Kaasaegsel ajastul kliiniliste uuringute ja diagnoosimise üheks olulisemaks osaks on

meditsiiniline kujutise töötlemine.Võrreldes tavapärase raadiopilditehnoloogiaga on

sügavõpe (DL) muutumas üheks silmapaistvamaks ja populaarsemaks alternatiiviks

meditsiinilise pilditöötluse vahendiks tänu oma tugevale automatiseeritud töötlusvõimele

ja väiksemale inimese sekkumise vajadusele.See lõputöö uurib sügavõpe metoodika

sobivust mikroskoopiliste meditsiiniliste kujutiste klassifitseerimiseks nelja tüüpi valgete

vereliblede kujutiste näitel, nimelt: eosinofiilid, monotsüüdid, lümfotsüüdid ja

neutrofiilid, millest järeldusfaas teostatakse monoplaatarvutil (SBC).

Selle klassifitseerimisprobleemi lahendamiseks pakutakse välja kaks erinevat sügavõpe

mudelit (or DL-mudelit). Esimene mudel töötatakse välja nullist, valides hoolikalt

hüperparameetreid, aga teine mudel kasutab ülekande õppimise lähenemisviisi, mis

kasutab õppimiseks ja kinnitamiseks eelõpetatud mudelit (MobileNetV2). Nende

mudelite väljatöötamiseks kasutatakse 12500 kujutisega Kaggle'i andmekogumit.

Esimese mudeli puhul on õpe ja valideerimise täpsus vastavalt 99% ja 97%, üldise

klassifitseerimise täpsusega 97,77%.Võrreldes esimesega on teise mudeli jõudlus veidi

madalam, selle õpe ja valideerimistäpsus on vastavalt 92% ja 87% ning mudeli üldine

klassifitseerimise täpsus on 92%. Kusjuures individuaalsed täpsused on eosinofiilide,

monotsüütide, lümfotsüütide ja neutrofiilide puhul vastavalt 86,15%, 97,71%, 92,5% ja

92,5%.

Lõpuks on need kaks mudelit teisendatud ja kasutusele võetud RPI4 monoplaatarvutil (

or SBC) klassifitseerimise järelduste tegemiseks. Tulemusena on esimese mudeli üldine

täpsus 98,54% ja teise mudeli puhul 91,3%. Klassifitseerimisajad on mõõdetud vastavalt

48,2 ms ja 142 ms. Seega ületab esimene mudel ootuspäraselt teist mudelit.

See lõputöö on kirjutatud inglise keeles ja on 90 lehekülge pikk, sisaldab 6 peatükki, 42

joonist ja 11 tabelit.

6

List of abbreviations and terms

ANN Artificial Neural Network

CNN Convolutional Neural Network

CT Computed Tomography

DL Deep Learning

DSC Depth-wise Separable Convolution

ELU Exponential Linear Unit

GPU Graphical Processing Unit

KLD Kullback-Leibler Divergence

MRI Magnetic Resonance Imaging

PSC Point-wise Separable Convolution

ReLU Rectified Linear Unit

RGB Red Green Blue

RPI Raspberry Pi

SBC Single Board Computer

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TL Transfer Learning

TPU Tensor Processing Unit

US Ultra Sound

WBC White Blood Cell

7

Table of contents

1 Introduction ... 12

1.1 Research Statement ... 14

1.2 Main Steps Followed in this MSc Thesis ... 15

1.3 Thesis Organization .. 16

2 State of the Art Review ... 17

2.1 Deep Learning in Microscopy Image Classification .. 18

2.2 Classification of Medical Image using Edge Device.. 20

3 Deep Learning: An overview .. 22

3.1 Types of DL Approach ... 23

3.1.1 Deep Supervised Learning .. 23

3.1.2 Deep Unsupervised Learning .. 23

3.1.3 Deep Reinforcement Learning .. 24

3.2 Deep Neural Network (DNN) ... 24

3.2.1 DNN Training: Approaches & Parameters .. 25

3.2.2 Gradient Descent (GD) .. 25

3.2.3 Stochastic Gradient Descent (SGD) .. 25

3.2.4 Learning Rate (η) .. 26

3.2.5 Non-linear Neural Units (Activation Functions) ... 26

3.2.6 Loss Function .. 28

3.2.7 Adaptive Learning Rate ... 28

3.2.8 Overfitting and Underfitting in DNN .. 29

3.3 Convolutional Neural Network (CNN) .. 30

3.3.1 Building blocks of CNN .. 30

3.4 Transfer Learning ... 33

3.4.1 Transfer Learning Approaches .. 35

3.4.2 Transfer Learning using Pre-trained Models ... 36

3.5 MobileNetV2 .. 37

3.5.1 Depth-wise Separable Convolution ... 37

8

3.5.2 Linear Bottleneck .. 39

3.5.3 Inverted Residual Block .. 39

3.5.4 MobileNetV2 Model Architecture .. 40

4 Implementation Workflow .. 42

4.1 Dataset Selection .. 43

4.2 Hardware Selection ... 44

4.3 Framework Selection .. 46

4.4 Model Preparation .. 48

4.4.1 Image Pre-possessing .. 49

4.4.2 Dataset Split for Training and Testing .. 51

4.4.3 CNN Layer Design .. 52

4.5 Evaluation of Trained Model .. 53

4.5.1 Optimizer Selection ... 54

4.5.2 Learning Rate Selection .. 55

4.6 Model Preparation using pertained model .. 56

4.6.1 Data Pre-processing & Model Preparation .. 57

4.7 Model Minimization ... 59

5 Result and Analysis ... 60

5.1.1 Evaluation of Model 1 ... 60

5.1.2 Evaluation of Model 2 ... 63

5.2 Evaluation on Edge device ... 65

5.2.1 Performance evaluation of RPI in Methodology 1 .. 65

5.2.2 Performance evaluation of RPI in Methodology 2 .. 68

6 Conclusion ... 72

6.1 Summary ... 72

6.2 Future work... 73

References .. 74

Appendix 1 – Python source code for Libraries and Framework Selection 83

Appendix 2 – Python Source Code for Image Pre-Processing 84

Appendix 3 – Python Source Code for Convolutional Block Design 86

Appendix 4 – Python Source Code for Transfer Learning Model Design 87

Appendix 5 – Python SourceCode for Inference on SBC .. 88

Non-exclusive licence for reproduction and publication of a graduation thesis 90

9

List of figures

Figure 1: Different sectors of medical image for diagnostic purpose 12

Figure 2: Number of reported articles in the scientific literature for various medical

image analysis techniques using ML/DL techniques [11].. 14

Figure 3: Application of DL methodology for medical image processing [12] 17

Figure 4: The taxonomy of AI. AI: Artificial Intelligence, ML: Machine Learning, NN:

Neural Network, DL: Deep Learning, SNN: Spiking Neural Network [55] 22

Figure 5: Types of DL Approach [55] .. 23

Figure 6: Reinforcement learning strategy [59] ... 24

Figure 7: Illustration of a DNN architecture [60] ... 25

Figure 8: Building blocks of a typical CNN. A slight modification of a figure in [60],

courtesy of the author. .. 31

Figure 9: Process of Max pooling and Average pooling. ... 33

Figure 10: Comparison between traditional ML and Transfer learning methodology.

This image has been regenerated using [67] .. 34

Figure 11: Probable advantages of transfer learning [68] .. 35

Figure 12: Transfer learning approaches. This figure has been generated by author

inspired from [69],[70],[71].. 36

Figure 13: Different type of convolutional operations (a) normal; (b) depth-wise; (c)

depth-wise spatial convolution. Image is recreated by the author, inspired from [72]. . 38

Figure 14: Linear bottleneck operation. ... 39

Figure 15: Operation method for Inverse residual block. ... 40

Figure 16: Convolution algorithm of MobileNetV2 [72] ... 41

Figure 17: Implementation process followed for this MSc thesis project. 42

Figure 18: four sample images from each class of the “Blood Cell Images” dataset used

Sample Dataset for Training purpose: (a) Eosinophil blood cell type (b) Lymphocyte

blood cell type (c) Monocyte blood cell type and (d) Neutrophil blood cell type 43

Figure 19: Photograph of the Raspberry Pi 4 (Model B) used in this MSc thesis. 46

Figure 20: State of DL frameworks [74]. ... 47

Figure 21: Framework and library information for this MSc thesis work...................... 48

10

Figure 22: Flow diagram for CNN model development used in this MSc thesis 48

Figure 23: Image pre-processing process followed in this MSc thesis work. 49

Figure 24: Evolution of an EOSINOPHIL image in pre-processing stage (corresponding

to Figure 23). .. 49

Figure 25: Example of image dataset samples after pre-processing. 50

Figure 26: Percentage-wise population for each observed category in the selected

dataset ... 51

Figure 27: Dataset split for training, testing and validation ... 51

Figure 28: Principle of confusion matrix .. 54

Figure 29: Impact of Adam and RMSprop on model training in terms of training

accuracy and training loss, as well as validation accuracy and validation loss. 55

Figure 30: Effect of different learning rate (ƞ) in model. ... 56

Figure 31: Performance comparison between different CNN pre-trained model. 56

Figure 32: MobileNetV2 model summary.. 58

Figure 33: Learning curve of Model 1 for 30 epochs. The X axes represent the epochs

(“training iterations”) and the Y axes represent the accuracy and loss. 61

Figure 34: Learning curve of Model 1 for 60 epochs. The X axes represent the epochs

(“training iterations”) and the Y axes represent the accuracy and loss. 61

Figure 35: Confusion Matrix for Model 1 .. 62

Figure 36: Learning curve of Model 2. The X axes represent the epochs (“training

iterations”) and the Y axes represent the accuracy (max value is 10and loss. 63

Figure 37: Confusion matrix of Model 2 .. 64

Figure 38: Average classification times for Model 1 and Model 2. 67

Figure 39: Accuracy comparison for Model 1 and Model 2 for same class. 68

Figure 40: Number of detections of each class for the Dataset = 400 images. 69

Figure 41: Number of detections for each class for the Dataset = 1600 images. 70

Figure 42: Comparison of average classification time of a single image between model

1 and model 2 ... 70

11

List of tables

Table 1: State of the art of DL based microscopic image classification 19

Table 2: DL based medical image analysis by edge device ... 21

Table 3: List of Non-linear Functions (activation functions) ... 26

Table 4: Convolutional operation in MobileNetV2 [72] .. 40

Table 5 Comparison of different SBCs (partly based on onoing PhD works at Thomas

Johann Seebeck Department of Electronics) .. 44

Table 6: RPI 4 configuration used for this MSc project. .. 46

Table 7 CNN model layers’ configuration ... 52

Table 8: Evaluation parameter of DL model .. 54

Table 9: Model size comparison after conversion .. 59

Table 10: Performance of Model 1 and Model 2 for the same class of images in the

folder (Methodology 1) .. 65

Table 11: Performance of Model 1 and Model 2 for different class image in folder

(Methodology 2) ... 69

12

1 Introduction

In the modern history of clinical research and diagnosis, medical image analysis plays a

very important role in detecting abnormalities in the human body [1]. Based on the

different parts of the body, medical images can be divided into different segments. Figure

1 shows some of the areas where medical images are used as an important tool for

diagnostic purposes.

Figure 1: Different sectors of medical image for diagnostic purpose

Traditionally, medical imaging mostly uses various kinds of radio imaging technologies

such as X-ray, ultrasound (US), computed tomography (CT), and magnetic resonance

imaging (MRI), in which the scanned image of the abnormal area has been gathered and

abnormality has been detected by a trained physician [2]. This usually requires pattern

recognition and detection by human intervention. Thus, disease diagnosis using medical

image analysis comes with a price of trained human resources to operate medical imaging

equipment and doctor’s experience, which are very limited compared to the world

13

population. Specifically, the less-developed countries suffer from a limited number of

both trained physicians who can operate medical imaging equipment and experienced

doctors. This, among other reasons such as the need for improved efficiency in general,

demands scientific exploration to introduce automation in medical image analysis for

disease detection and diagnosis.

Developments in Deep Learning (DL), especially in the field of neural network (NN),

have made them a popular choice for image processing for classification and object

detection [3]. The history of using NN for image classification dates back to 1998 when

Lecun et al. proposed a model called 'LeNet-5' [4] for "document recognition". However,

the major breakthrough for using NN as an image classifier came after the development

of VggNet [5] in 2014. In this architecture, the large kernel size was replaced by

convolutional series and was eventually called convolutional neural network (CNN). This

successfully reduced the number of parameters, resulting in shorter classification times.

Later, AlexNet [6] adopted rectified linear unit (ReLU) as an activation function. The

introduction of ReLU and dropout into the architecture successfully solved the overfitting

problem, which ultimately improved the classification accuracy. In recent days, there are

a number of CNN architectures such as ResNet [7], GoogleNet [8] and MobileNet [9]

which solve various DL-based classification problems and improve the accuracy,

decrease processing time, and enhance compatibility with resource-constrained devices,

etc. This makes CNN the heart of image classification and object recognition techniques.

This inspired scientists to apply the DL method for medical image analysis due to its

tremendous effectiveness in image classification and object detection [10]. Over the last

decade, there is an exceptional surge of scientific reporting of medical image analysis

using ML/DL method. Figure 2 shows the number of reported articles in the scientific

literature that applied Machine Learning (ML) / DL techniques to investigate medical

image.

However, the review of the literature has shown that DL-based techniques for image

classification are usually resource hungry, which require high computational power

devices. So, again this state-of-the-art technology is stuck with the same old reachability

problem for less-developed parts of the world. A possible solution to this problem is to

use single board computer (SBC). SBCs have emerged as potent computational platforms

for executing algorithms that insofar were restricted to desktop or large embedded

platforms. These SBCs are thus attractive for the implementation of ML inference to

14

develop portable and cost-effective image classifiers. While some works have recently

used SBCs for DL-based analysis of medical images, there is room for further exploration

of, and experimentation with, such relatively new technologies. Considering the fact, this

thesis will evaluate the suitability of SBC boards to run DL for medical image

classification at the microscopic scale; the specific use-case is the classification of white

blood cells into four types (Eosinophil, Lymphocyte, Monocyte, and Neutrophil).

Figure 2: Number of reported articles in the scientific literature for various medical image analysis

techniques using ML/DL techniques [11]

1.1 Research Statement

Since medical images are specific to the body parts and disease types, it is necessary that

particular DL models are developed for each case. Therefore, one of the goal of this thesis

is to develop a DL model from scratch that can successfully classify (white) blood cell

images and evaluate its performance.

However, the fundamental challenge of applying DL techniques for classification of

medical images is data scarcity. The DL is a layered architecture where each layer consists

15

of a number of parameters to learn the pattern of the images. Thus, the higher the number

of data that can be supplied, the more accurate the detection will be. Nevertheless,

publicly available medical images are rare, which is one of a major obstacles to develop

a DL model for image classification. But the development of transfer learning (see

Section 3.4) allows to use one pre-trained DL model to solve a similar new problem. This

eventually save time and effort to develop a new model from scratch. Thus, the second

goal of this thesis work is to investigate the use of transfer learning for blood cell

classification. A pre-trained model (MobileNetV2) is used for training the classification

model and its performance will be characterized. Subsequently, it is implemented onto an

SBC for portable image classification inference.

Finally, the performance of SBC is evaluated in terms of accuracy and classification time

for both models (i.e. one developed from scratch and the other based on transfer learning).

This comparison will help us to understand the effectiveness of transfer learning process

over the conventional DL design flow for image classification.

Given the above, the research statement of this MSc thesis is expressed as:

❖ Build a DL model from scratch to classify blood cell images and evaluate

its performance

❖ Apply transfer learning approach for model training with a pre-trained

model and evaluate its performance

❖ Deploy both models onto a selected SBC to classify blood cell images and

compare their performance in terms of accuracy and classification time

1.2 Main Steps Followed in this MSc Thesis

Below is the process followed to conduct this thesis to address the above problem

statement:

➢ Study the fundamentals of DL strategies for image processing

16

➢ Explore a selected subset of suitable DL strategies and algorithms for image

processing

➢ Explore and select a suitable SBC platform for implementation

➢ Train the models based on a predefined dataset

➢ Test the models, identify and tune parameters, and evaluate the performance of

image classification

➢ Map the inference models onto the selected SBC and evaluate their performances

1.3 Thesis Organization

This thesis contains introductory knowledge and background on DL and particularly

CNN. Among other things, a transfer leaning learning approach is adopted for model

training by using a pre-trained model named MobileNetV2, the implementation and

deployment details on an embedded device (i.e. SBC) are explored afterwards. This

chapter (Chapter 1) provided an introduction to the application of DL for medical image

analysis, research statement and the intended aim of the thesis.

Chapter 2 delves further into the state-of-the-art related to DL based image classification

for microscopy images and explore the usage of SBC in medical image classification.

Chapter 3 explores a general background of the concept of DL, particularly CNN, also a

comparatively new design approach named transfer learning is briefly discussed.

Chapter 4 contains the methodology and implementation process adopted in this thesis

with a detailed description of the preparation of a simple CNN model from scratch and

by using pre-trained model, hyper parameter selection process for model design, and

selection of hardware, framework and software libraries. The results of these processes

and their analyses are detailed in Chapter 5.

Finally, the last chapter gives a conclusive discussion about the work and suggest ideas

for future work that could be carried out based on the author’s recommendations.

17

2 State of the Art Review

In the last decade, the DL method has become very popular in the scientific community

to process medical images as it has a robust image processing capability to identify the

underlying patterns of the images [12]. Numerous works reported in the scientific

literature have been published using DL methodology to extract clinical information from

medical images for disease identification. In a broader sense, the application of the DL

methodology in medical image processing can be divided into five distinct sections,

namely: registration, localization, classification, recognition and segmentation (see

Figure 2).

Figure 3: Application of DL methodology for medical image processing [12]

Different scientific groups apply the DL methodology in each of the medical image

processing areas mentioned in Figure 1. For example, in the cardiovascular field, DL is

mainly used to segment the heart chambers [13]. The goal is to obtain a clear view of the

heart chambers. One of the earliest attempts was made by Shelhamer et al. where a fully

connected convolutional network was used for segmentation of the left ventricle (LV)

[14]. Later, 3D ultrasound images were used for segmentation of LV by Dong et al. to

obtain 3D spatial information [15]. Tran et al. used CNN architecture to segmentation of

the right ventricle (RV) using short-axis MRI images [16]. Cardiac motion tracking is

another area where DL methods have been used to track cardiac muscle activity. Ferdian

18

et al. applied a combination of RNN and CNN to identify the strain associated with

myocardial motion [17]. In neuroimaging, DL based tissue classification and tumour

detection is becoming popular. Several groups have reported various DL techniques for

brain tumour segmentation, brain injury detection, and neural disease prediction. A recent

work by Liu et al. proposed a novel DL approach for early detection of Alzheimer's

disease. The accuracy of the model is 75.44%, 81.53% and 82.93% for MRI, positron

emission tomography (PET) and MRI+PET image dataset respectively [18]. On the other

hand, for brain tumour classification, Havaei et al. developed a deep neural model using

the BraTS dataset, which effectively reduces the classification time with improved

accuracy (85-88%) [19]. Intensive research is also being conducted in lung and

mammography to develop DL methods for image processing in the respective fields.

While the main focus in pulmonary field is to detect cancer cells [20] [21] [22], scientists

in mammography apply DL technique to detect abnormal breast tissue for breast cancer

diagnosis [23].

However, in this thesis, we are concerned with blood cell classification, which falls under

the category of microscopic imaging. A brief overview of the application of DL for

classification of microscopy images is given in the following section. Deep Learning in

Microscopy Image Classification

2.1 Deep Learning in Microscopy Image Classification

Following the trend, DL is becoming a popular method for classifying microscopic

images. The application mainly includes two areas: cellular & sub-cellular classification

and disease diagnosis [24]. In disease diagnosis, the DL method is mostly used to classify

different types of histology images to obtain information about various diseases such as

leukemia, dengue, and malaria as well as cancer cell detection [24]. Several scientific

groups have reported their findings. One of the earlier reports by Chen et al. presents

various learning methods such as DNN, Support Vector Machine, Native Bias etc. and

how they were successfully used for white blood cell (WBC) detection [25]. The model

accuracy was over 85% for all learning methods, which was 17% higher than the

conventional size-based method. Qin et al. proposed a deep residual network-based

classifier that can recognise leukocytes with 98.15% accuracy [26]. Shahin, et al.

developed their own WBCsNet architecture for WBC detection, which achieves 96.1%

19

accuracy [27]. In the context of anemia diagnosis, Alzubaidi, et al. used a transfer learning

technique for red blood cell (RBC) prediction [28]. DL is also used to detect various

parasites in histopathology images. Hung et al. applied faster region-based CNN (R-

CNN) to identify erythrocytes infected with Plasmodium parasites causing malaria using

the ImageNet dataset [29]. The prediction accuracy of this model is 72% for non-difficult

infected cells. Recently, Deelder et al. used the DL technique for DNA sequencing of

malaria parasites with 90% accuracy [30]. Moreover, there exist many scientific reports

on mitosis detection using CNN-based architecture [31] [32] [33] [34] [35] for various

cancers (lung, breast, prostate, etc.) in pathology. In the near past, DL based microscopy

image processing is becoming popular in the field of imaging flow cytometry (IFC), also

known as deep cytometry. The main focus in this field is to apply the DL technique to

understand cellular changes [36], detect single cells [37] [38] and count T, B and NK

types of white blood cells [39]. Table 1 lists some important works on classification of

microscopy images with DL.

Table 1: State of the art of DL based microscopic image classification

Group Task DL technique Accuracy Year

Chien at al [40]
Immature WBC

detection

CNN + faster

R-CNN
90.1% 2021

Alzubaidi, et al. [28] RBC classification CNN 99.5% 2020

Lippeveld, et al. [41] WBC classification

CNN +

Traditional

Machine

learning

77.8% 2020

Khan, et al. [42] Breast cancer detection CNN 97.5% 2019

Jha et al. [43]
Acute Lymphocytic

Leukaemia detection
CNN 98.7% 2019

Li et al. [44]

Mitosis detection in

breast histopathology

image

CNN 67.3% 2019

20

Wang et al. [45]
Lung cancer detection

from whole slide image
FCN 97.3% 2019

Qin, et al. [26] Leukocyte classification Res-Net 76.8% 2018

Tellez et al. [46]
Mitosis detection in

breast region
CNN 90.0% 2018

Niikoa et al. [47]
C2C12 cell

classification
CNN 98.0% 2018

Durant et al. [48]
Erythrocyte

Classification
CNN 92.7% 2017

Hung et al [29] Malaria detection Faster R-CNN 72.5% 2017

Zhang et al. [49]
Cervical cell

classification
CNN 98.3% 2017

2.2 Classification of Medical Image using Edge Device

Image classification and recognition using DL usually requires devices with high

computational power due to the complexity of mathematical computation and memory-

hungry learning model with millions of parameters. However, with the development of

various relatively lightweight CNN architectures like GoogleNet, CapsNet, AlexNet,

MobileNet, YOLO along with different post-training quantization technique and

frameworks like 'TensorFlow Lite', the number of parameters in / size of the model is

effectively reduced without necessarily compromising the accuracy. Moreover, the

introduction of GPUs (Graphical Processing Unit) and TPUs (Tensor Processing Unit)

has improved the computational performance of SBCs. While the training phase is still

computationally demanding, the above opens up the possibility of using various SBCs

such as Raspberry Pi, Coral Dev, Jetson Nano and even smartphones in DL-based

application for the inference phase of image classification and object recognition

applications. This inspires researchers in the medical field to use SBC for medical image

classification for early detection and diagnosis of diseases, taking the advantage of low-

cost and portable solution. In recent years, much has been reported in the scientific

literature on the use of edge devices for medical image classification for disease

diagnosis. Table 2 enlist some of the recent work.

21

Table 2: DL based medical image analysis by edge device

Group Task Edge Device

Negh et al. [50]

Detection of skin cancer.

MobileNetV2 is used for detection

and U-Net is used for segmentation

Raspberry Pi 3B+

Lavanya et al. [51]

Classification and detection of

Diabetic Retinopathy. CNN model

has been developed. Kaggle data set

is used

Raspberry Pi 3

Abid et al. [52]

Developed ML model to classify of

chest X-Ray image for various lung

disease.

NVIDA Jetson Nano,

Raspberry Pi 3B+,

Google Pixel, and

Samsung Galaxy S10+

Krömer et al. [53]
Covid-19 detection using chest X-ray

images.
NVIDA Jetson Nano

Javier et al. [54]
Eye fundus image segmentation for

glaucoma detection

Raspberry Pi 4B,

Coral Dev board

22

3 Deep Learning: An overview

ML, essentially described as a subfield of artificial intelligence (AI), is one of the most

revolutionary areas of computer science in recent decades. As shown in Figure 4, DL

belongs to a subclass of NN (itself a subclass of ML), the most important class of machine

learning in AI taxonomy [55].

Figure 4: The taxonomy of AI. AI: Artificial Intelligence, ML: Machine Learning, NN: Neural Network,

DL: Deep Learning, SNN: Spiking Neural Network [55]

Traditionally, ML provides a computational facility to solve a problem through learning.

In general, various mathematical models have been developed to train a system to produce

useful results based on input data. The result obtained during training is known as

knowledge or experience. Based on the training data, the system predicts the output using

various optimization algorithms.

Unlike the traditional ML, DL is not a specific method but a set of different techniques

that usually involve multiple layers of nonlinear information processing units. These

multilayer nonlinear information processing units are called artificial neurons. Different

network architectures of these neurons are collectively called Deep Neural Network

(DNN) which form the backbone of the DL method for learning and prediction.

23

3.1 Types of DL Approach

Based on the state of input data, the DL approaches are categorised into three basic

categories which are shown in Figure 5 and discussed in what follows.

Figure 5: Types of DL Approach [55]

3.1.1 Deep Supervised Learning

In deep supervised learning, the input data is labelled in advance. In the training phase, a

direct relationship between the input and the output is explicitly specified so that the

model can learn over time. Later, when a new input is fed into the model, it predicts the

accuracy of the output based on the loss function and adjusts it by minimising the error

as long as it does not reach the minimum value. CNN is one of popular architecture of

this class; CNN has been adopted to develop the model in this work.

3.1.2 Deep Unsupervised Learning

In deep unsupervised learning, the training datasets are not labelled. So, there is no direct

relationship between input and output, but the system analyses the input, decomposes it

and recognises the common function for all input data [56]. Some of the widely used

techniques are Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and the

recently developed GAN [57].

24

3.1.3 Deep Reinforcement Learning

Trial-and-error is the main idea behind Reinforcement Learning (RL). The training phase

is designed based on a reward policy. The rewards are divided into positive and negative

observations. When the model interacts with the target system, it receives these positive

or negative feedbacks (rewards). While the positive reward 'reinforces' into the model and

is considered as 'knowledge', the negative feedback is usually blocked [58]. This process

is carried out until enough information about the target environment has been gathered to

operate on it. Fig. 3 shows the principles of the RL strategy.

Figure 6: Reinforcement learning strategy [59]

Deep RL (DRL) combines RL and deep learning (for example NNs). DRL can work with

unstructured input data and agents can perform decision-making about such data without

manually specify the state space. As a result, DRL can work with very large inputs,

making suitable e.g. for images.

3.2 Deep Neural Network (DNN)

A DNN is a subset of an ANN that consists of a series of interconnected computational

units. These units are often referred to as nodes or neurons. As these neurons are

organized into layers, a DNN is also known as multi-layered perceptron (MLP). In DNN,

the input data passes through of a series of hidden layers where it transforms through

various mathematical algorithms to recognize the underlying pattern of the input data.

This process of pattern recognition is called training. After pattern recognition, the

25

outputs are compared by an objective function. Throughout the training process, the

parameters of the network are tweaked consistently to discover the underlying pattern.

This network can be used to make predictions for new unseen data, once the pattern is

identified. Figure 7 shows the general DNN architecture.

Figure 7: Illustration of a DNN architecture [60]

3.2.1 DNN Training: Approaches & Parameters

Some of the important procedures and parameters related to DNN-based training are

briefly described in following subsections.

3.2.2 Gradient Descent (GD)

The gradient descent is the first-order optimization approach [61]. This process detects

the local minima of the objective function for which reason it is widely used in DNN

training. The detail of this algorithm is mentioned in reference [62].

3.2.3 Stochastic Gradient Descent (SGD)

Unlike GD, SGD determines the gradient of an objective function or cost function for a

single batch for each iteration. This significantly reduces the training time. However, the

gradient result is only an estimate for updating the weights, which are later fitted to the

model by multiplying by a constant called the learning rate. In SGD, the weights are

updated after each mini-batch is submitted to the algorithm [63].

26

3.2.4 Learning Rate (η)

The learning rate is an essential element for DNN training. It determines the step size

during training. Therefore, the choice of the value for the learning rate is crucial as the

training time is closely related to it. This is because a larger value for η may cause the

network to diverge instead of converging, while a smaller value may cause the network

to take longer to converge. Moreover, the network may be stuck in its local minima.

Generally, learning rate reduction policies are: constant, factored, and exponential decay.

First, the learning rate is minimized with a defined step function. Then, the learning rate

can be tuned with the following Equation (1) [55]:

 ƞ𝑡 = ƞ0𝛽(
𝑡

𝜀
)
 (1)

where ηt is the tth round learning rate,

η0 is the initial learning rate,

β is the decay factor with a value between the range of (0, 1)

3.2.5 Non-linear Neural Units (Activation Functions)

To overcome computational rigidity, there is an urge to introduce nonlinearity into the

network. This is because linear transformation is not always suitable to deal with complex

data patterns. Therefore, the linear weighted sum of inputs is paired by a nonlinear

function to introduce nonlinearity into the neural unit. This nonlinear function is called

the activation function. There are several types of activation function used in DNN

training which is mentioned in Table 3.

Table 3: List of Non-linear Functions (activation functions)

Name Equation Graphical Characteristics

Binary

threshold
𝑓(𝑥) = {

1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

27

Sigmoid 𝑓(𝑥) =
1

1 + 𝑒−𝑥

Tanh 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Rectified

Linear Unit

(ReLu)

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 max {0, 𝑥}

Leaky

ReLU
𝑓(𝑥) = max (𝑎𝑥, 𝑥)

Exponential

Linear Unit

(ELU)

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝑎(𝑒𝑥 − 1), 𝑥 < 0}

Softmax Activation Function: In classification problem of a DNN with k classes (k >

2), the conditional probability distribution 𝑃(𝑥|𝑦) is needed to determine where in the

output layer k neurons should be located whose sum of all weight values should be 1. To

equip the network with the knowledge that the output of all k units should sum to 1, the

activation function Softmax is used. This is a generalization of sigmoidal activation. The

Softmax function compresses the output of each unit so that it is between 0 and 1, just as

a sigmoidal function would. The Softmax function is defined by Equation (2) [21]:

28

𝜎(𝑧𝑗) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
 (2)

where, z is a vector of the input to the output layer

j indexes the output units, j = 1, 2, ..., K

3.2.6 Loss Function

The loss function provides a comparison between the output of a neural network and the

target values in the training. It produces a loss value/score to measure the accuracy of the

network's predictions with the expected output. Below are a few popular loss functions

[61] [62]:

➢ Binary cross-entropy: “supply the log loss or cross-entropy loss for the two-class

classification problem”.

➢ Categorical cross-entropy: use the generalized cross-entropy for class-size>2

➢ Mean Squared Error: calculate the mean squared sum error. This is often used

for various regression problems.

➢ Mean Absolute Error (MAE): Errors are calculated by squaring their values.

➢ Mean Absolute Percentage Error: Measures the magnitude of the error as a

percentage.

➢ Kullback-Leibler (KL) Divergence: It is a probabilistic approach. The method

calculates the deviation of probability distribution between each step.

3.2.7 Adaptive Learning Rate

Depending on the requirement, it is sometimes necessary to update the parameters at

different rates instead of using a constant learning rate. Therefore, several types of

adaptive gradient descent algorithms provide a resort to the classical SGD, by maintaining

per-parameter learning rates. This often comes under the optimization process. Below are

some of the popular optimization algorithms used in a DNN framework:

➢ AdaGrad: To adjust the learning rate, the algorithm first squares all the gradient

values. Then it adds those square values and square roots to the sum. Finally, it

29

inverts the value obtained from the square root operation. In this way, larger

moves are made in the gently sloping direction of the error surface. However,

using this trick at the very beginning of training can cause some of the learning

rates to drop dramatically [61].

➢ RMSprop: It is a modified AdaGrad algorithm. It adopts the Exponentially

Weighted Moving Average (EWMA) technique. It has a moving average

parameter ρ that controls the length and scale of the moving average [62].

➢ Adaptive Moments (Adam): This algorithm is a combination of two different

algorithms to detect the gradient. First, it extracts the best value results from

momentum algorithm. Then it combines with the adaptive learning rate algorithm

output [61].

3.2.8 Overfitting and Underfitting in DNN

Generally, in any DL model, the training dataset is divided into three subclasses: training,

testing, and validation. Typically, the validation error is slightly higher than the training

error. However, overfitting occurs if the difference between test and validation rises with

iterations. In contrast, if the training error no longer decreases to a sufficiently low value,

the issue is described as underfitting.

There are several techniques to overcome this over- and under-fitting problem which is

known as regularization of the model. Below are the brief descriptions of such techniques:

➢ Weight Sharing: In this strategy, different layers in the network using the same

set of weights results in fewer parameters to regulate. Using shared weights in a

few layers helps the model generalize better by controlling model capacity [61].

➢ Weight Decay: L2 regularization approach used in this case. It is a good tool to

generalize the network and it also helps to deal with the overfitting problem [61].

➢ Dropout: Dropout is an averaging technique that randomly masks the output of a

fraction of nodes from a layer by setting their output to zero during the forward

pass. It removes a fraction of nodes from a layer and creates a new neural network

with fewer nodes. Typically, 20% nodes are dropped out at the input layers where

in hidden layers, and up to 50% fractions of nodes can be dropped [55].

30

➢ Batch Normalization: In this strategy, the activation layers are normalized by

subtracting the mean and dividing it by the standard deviation for each training

batch. This process periodically changes the value of activation layer. For every

batch it reduces the mean to zero mean and standard deviation to one which results

in an increase in the training speed and reduces the dependency on parameter

initialization [55].

3.3 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is the most popular DNN architecture for

pattern recognition with a high degree of invariance to translation, scaling, and rotation

in two-dimensional image data. It is a multilayer hierarchical neural network first

proposed by Fukushima in 1988 [64]. Compared to other ANN architectures, the CNN

has a clear advantage due to its more human-like visual processing, optimized structure,

and effective learning and extraction of 2D features. In addition, absorbing gradient-based

learning algorithm results in minimal error introduction into the network and allows the

CNN to produce highly optimized weights during the training phase. The input to a CNN

is arranged in a lattice-like structure. This preserves the spatial relationships [65] between

the layers. Moreover, it operates on a small region of the previous layer. In a CNN

process, the input passes through a series of convolutional layers and activation layers

where the weights of the data are determined. Later, pooling layers determine the weights

required for feature extraction. Then backpropagation and gradient descent algorithm are

used to train the system based on the weights extracted from the previous layer. Finally,

a fully concatenated layer is used to determine the output.

3.3.1 Building blocks of CNN

Figure 8 shows the overall architecture of a CNN which consists of three major parts:

convolutional layers, pooling/sub-sampling layer, and fully connected/classification

layer.

31

Figure 8: Building blocks of a typical CNN. A slight modification of a figure in [60], courtesy of the

author.

(i) Convolutional layers: This is the first layer of a CNN architecture. In this layer,

convolution between previous layers is performed with different learnable kernels

[55]. The output thereof then passes through various activation functions

mentioned in Section 5.2.1.4. That generates the output features. Later, each of

these output features is compared with input features to discover the cohesion

between the input and the output, which is known as weight-sharing [55].

Equation 3 describes the operation of the convolution layer:

 𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1 ∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖𝜖𝑀𝑗

) (3)

where 𝑥𝑗
𝑙 is the output of the current layer,

 𝑥𝑗
𝑙−1 is the previous layer output,

 𝑘𝑖𝑗
𝑙 is the kernel for the present layer,

 𝑏𝑗
𝑙 is the biases for the current layer,

32

 𝑀𝑗 is the selection of input maps.

A bias b has been introduced in this layer to direct the operation. Finally, the

output go through a linear or non-linear activation function.

(ii) Sub-sampling Layer: The subsampling plane performs the downsampling

operation on the input maps. This layer is commonly known as the pooling layer.

In this layer, the number of input and output feature maps remains unchanged.

The downsampling operation effectively reduces the dimension of the output

maps based on the size of the mask [54] [55]. This process can be formulated as

per Equation (4):

 𝑥𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑖

𝑙−1) (4)

where down(.) stands for subsampling function. Mostly, two types of pooling

strategies are used for dimension reduction. The first one is max-pooling, where

the highest value of the segmented grid is used. The second one is average

pooling, where the average value from the segmented part is considered. Figure 9

shows the pooling operation in detail.

33

Figure 9: Process of Max pooling and Average pooling.

(iii) Classification Layer: The classification layer is the last layer of the CNN

architecture. It receives the inputs from the last convolutional layer where all the

features of the inputs are extracted and the feature is determined. The

classification layer then assigns all these features to the individual neurons and

evaluate the score of each class based on this extraction. Afterwards, the

classification is done using the Softmax algorithm based on the probability points

obtained from the operation [60]. Therefore, the output of a CNN is often given

in terms of probabilities. For example, if a model is developed to recognise a car

in an image, the probability of a successful prediction could be e.g. 95% or more.

If the model contains multiple classes, the output will also contain a small

probability value (e.g. 1-5%) for the remaining classes.

3.4 Transfer Learning

In recent years, tremendous research and development in the ML field has resulted in the

ML model being more robust, lightweight, and efficient in pattern analysis. This has led

34

to almost every industry using the ML method, from the medical industry to social media

to finance, to identify the underlying pattern of the user class. This leads to a problem

with the classic ML method, as the training is strictly task-specific and a separate model

must be created for each problem. Also, there is a possibility that there is not enough data

to train a new model. Transfer learning (TL) provides a solution to this problem, as the

main idea behind it is to use the experience (trained parameters) of a previously trained

model and apply this experience to solve a similar new task [66]. Figure 10 shows the

concept of transfer learning in contrast to the conventional ML method

Figure 10: Comparison between traditional ML and Transfer learning methodology. This image has been

regenerated using [67]

Normally, the transfer learning technique facilitates the learning mechanism by

enhancing the baseline performance, effectively reducing the model creation time and

achieving better final output. Figure 11 summarizes the key advantages of transfer

learning.

35

Figure 11: Probable advantages of transfer learning [68]

3.4.1 Transfer Learning Approaches

Transfer learning is often considered a design approach rather than a DL technique. These

approaches can be broadly divided into two classes: domain-based and feature specs

based. Pan and Yang (2010) [69] describe in detail the domain-based approach, dividing

the TL method into four classes: Instance Transfer, Feature Representation Transfer,

Parameter Transfer, and Relational Knowledge Transfer. In addition, Weiss et al. in their

study provided a detailed description of the feature-spaces based methodology, dividing

the methodology broadly divided into two main categories, homogeneous and

heterogeneous [70]. In a more recent study, Nam et al. studied the feature-based approach

extensively and classify the heterogeneous approach into two parts: symmetric and

asymmetric; based on the dependencies between source and target domains [71]. Figure

12 shows the overall categorization of such classes.

36

Figure 12: Transfer learning approaches. This figure has been generated by author inspired from

[69],[70],[71]

3.4.2 Transfer Learning using Pre-trained Models

Over the last decade, there has been a tremendous development in creating DL models

with a high degree of accuracy. These models have been trained on millions of pieces of

data using high performance computers. This opens up the possibility to use these models

to solve similar tasks using the transfer learning approach. The idea behind this is to use

the knowledge learned from the readily available model and apply it to solve an analogous

task that suffers from data scarcity. Some of these popular CCN models are AlexNet,

GoogleNet, VGG, MobileNet, and Tensorflow-model-maker which have been used

extensively in object recognition and image classification problems.

In general, using a pre-trained model means using the weights (also known as features)

that have been berthed in different activation layers. This process is called deep feature

37

extraction. The other method is fine-tuning, where the input and convolution layers are

left unchanged, and the final layer is optimized to represent the features of the new

dataset. Then the old model is re-trained for the target task to produce updated weights.

Fine-tuning is commonly used to solve problems in the same domain.

Using a pre-trained model often shortens the training time since all parameters do not

need to be estimated from scratch. Compared to higher layers, the lower layer contains

more generalized features that can be easily used for a newer task. Therefore, reusing an

existing model is often very convenient to solve an analogous problem.

3.5 MobileNetV2

MobileNetV2 is one of the most popular CNN architectures designed specifically for

resource-constrained devices for real-time detection. This architecture was first proposed

by Google [72] in 2019. It is an updated version of MobileNetV1. This architecture is an

improved version of RestNet, where a new layer called Inverted Residual Block has been

introduced instead of Residual Block. It also uses depth-wise separable convolution

which effectively minimizes the model parameter to 3.4 million, which is much lower

than its competitors such as SuffleNet, NasNet, etc. [72]. This reduces the model size and

makes MobileNetV2 a better candidate for lightweight device applications [72]. The

backbone of this model is the inverted residual block along with the depth-wise separable

convolution and linear bottleneck block. Below is a brief description of each of these

elements.

3.5.1 Depth-wise Separable Convolution

Depth-wise separable convolution is the backbone of any EfficientNet architecture. The

process consists of a 3×3 depth-wise convolution followed by a 1×1 pointwise

convolution [72]. In this pointwise convolution, the previous steps are summed, and a

new result is generated without changing the dimension. The comparison between the

normal, depth-wise and depth-wise separable convolution is described in Figure 13.

38

Figure 13: Different type of convolutional operations (a) normal; (b) depth-wise; (c) depth-wise spatial

convolution. Image is recreated by the author, inspired from [72].

39

3.5.2 Linear Bottleneck

Bottleneck block was first proposed by He et al., which effectively reduces the training

time by reducing the dimension of the input image and performing a 1×1 convolution at

the beginning [72]. Then, the actual 3×3 convolution is performed, which then undergoes

by a 1×1 convolution to obtain the same feature dimension in the output (see Figure 14).

However, this non-linear ReLU operation just before the output layer affects the output

performance as it suppresses all weights smaller than zero and causes a loss of

information. In MobileNetV2, this nonlinear convolutional block has been eliminated,

resulting in improved performance [72]. Since the non-linear block is no longer present,

it is referred to as a linear bottleneck.

Figure 14: Linear bottleneck operation.

3.5.3 Inverted Residual Block

The inverted residual block performs the reverse operation of the bottleneck block.

Instead of shrinking the input, it expands the input data by multiplying it by an expansion

factor. The idea behind designing this block is to improve gradient propagation across the

connected layer, which ultimately leads to higher memory efficiency. Figure 15 describes

the inverted residual operation.

40

Figure 15: Operation method for Inverse residual block.

3.5.4 MobileNetV2 Model Architecture

As mentioned earlier, the inverted residual block, linear bottleneck, and depth-wise

separable convolution are the main elements of MobileNetV2. Based on this, the

architecture shown in Table 4 and Figure 16 shows the description of the convolutional

layer. From this, it can be deduced that the input undergoes the 1×1 convolution with an

expansion factor t. In the literature, the value of t = 6 has been chosen for ImageNet

classification, which gives good inference [72]. Then, the dimension is reduced by depth-

wise separable convolution operation, followed by a 1×1 linear convolution that results

in a new channel k'.

Table 4: Convolutional operation in MobileNetV2 [72]

Input Operator Output

𝒉 × 𝒘 × 𝒌 1 × 1 conv2d, ReLU6 𝒉 × 𝒘 × (𝒕𝒌)

𝒉 × 𝒘 × 𝒕𝒌 3 × 3 dwise s=s, ReLU6 𝒉
𝒔⁄ × 𝒘

𝒔⁄ × (𝒕𝒌)

𝒉
𝒔⁄ × 𝒘

𝒔⁄ × 𝒕𝒌 linear 1 × 1 conv2d 𝒉
𝒔⁄ × 𝒘

𝒔⁄ × 𝒌′

41

Figure 16: Convolution algorithm of MobileNetV2 [72]

In this MSc thesis, the MobileNetV2 architecture is used for investigating transfer

learning technique.

42

4 Implementation Workflow

This chapter is focused on the design, implementation and experimentation process

performed throughout this thesis work. Figure 17 exhibits the full process that has been

followed in this project. For successful implementation, the whole work is divided into

four major parts: data and platform preparation, CNN architecture development, DL

model creation (including model training) and finally detection with SBC and

benchmarking (including model size reduction to use it in SBC to determine classification

performance). The detailed explanation for each of these steps are described in following

subsections.

Figure 17: Implementation process followed for this MSc thesis project.

43

4.1 Dataset Selection

For training the system model, sample data has been chosen which will meet the criteria

of interest for this MSc thesis in line with an ongoing research project (PRG620) at

Thomas Johann Seebeck Department of Electronics at TalTech. In particular, the size of

the objects to be detected and classify should be in the order of a few micrometres. After

consulting with researchers involved in this research project, it has been decided to use a

dataset of blood cells, specifically the “Blood Cell Images” dataset [73] available on the

Kaggle repository.

The “Blood Cell Images” dataset contains 12 500 so-called augmented images of blood

cells in the JPEG format. They are provided with corresponding cell type labels in a CSV

format. The images are approximately equally divided as 3000 images corresponding to

four different types of cells, namely Eosinophil, Lymphocyte, Monocyte, and Neutrophil.

More details about the contents and organization of this dataset can be found in [73].

Figure 18 shows four sample images from the dataset.

(a) (b)

(c) (d)

Figure 18: four sample images from each class of the “Blood Cell Images” dataset used Sample Dataset

for Training purpose: (a) Eosinophil blood cell type (b) Lymphocyte blood cell type (c) Monocyte blood

cell type and (d) Neutrophil blood cell type

44

4.2 Hardware Selection

Hardware selection is divided into two parts. The first one is for training which requires

access to hardware with high computational power. Thus, the online Google-

Colaboratory platform is used for this scenario. It is a free platform which provides access

to GPUs such as Nvidia K80, T4, P4, P100, 12 GB of RAM and 107 GB of memory for

each session. These sessions’ allocation are time-limited, usually for 12 hours; there is no

guaranty to access Colab resources; the usage limits can change over time. Thus, regular

monitoring is required during training phase.

The second one is the selection of SBC for image classification. In recent year, the

introduction of TPU in SBCs enhanced its computational ability into next level for DL

application. Thus, Coral Dev Board manufactured by Google is often considered for

object detection for its GPU and tensor TPU processor. NVIDIA Jetson Nano gives a

neck-to-neck challenge to the Coral Dev board with its “Cuda Core” AI accelerator for

portable object detection and computer vision industry. Apart from that, Raspberry Pi 4,

ODROID-C4, Orange Pi 4 etc. are some good candidates for image classification backed

up by good amount of scientific literature. For some on-going PhD work at Thomas

Johann Seebeck Department of Electronics at TalTech, a detailed list of SBCs has been

prepared. From there, the characteristics of some SBCs are mentioned in Table 5.

Table 5 Comparison of different SBCs (partly based on onoing PhD works at Thomas Johann Seebeck

Department of Electronics)

Board Name SoC

Processor (Number of

Cores, chip architecture,

clock speed...)

Memory

ODROID-N2+

Amlogic

S922X

Processor

Quad-core Cortex-A73(up to

2.4 GHz) and Dual-core

Cortex-A53 (up to 2 GHz),

Mali-G52 GPU

DDR4 4 GiB or 2 GiB with

32-bit bus width, 1 x eMMC

connector (8G, 16G, 32G,

64G and 128G are

available)

1 x microSD slot (DS/HS

modes up to UHS-I

SDR104)

ODROID-N2

Amlogic

S922X

Processor

Quad-core Cortex-A73 (1.8

GHz) and Dual-core Cortex-

A53 (1.9 GHz)

ARMv8-A architecture with

Neon and Crypto extensions,

Mali-G52 GPU

DDR4 4 GiB or 2 GiB with

32-bit bus width, 1 x eMMC

connector (8G, 16G, 32G,

64G and 128G are

available)

1 x microSD slot (DS/HS

modes up to UHS-I

SDR104)

45

ODROID-C4
Amlogic

S905X3

Quad-Core Cortex-A55 (2.016

GHz), Mali-G31 GPU

DDR4 4 GiB with 32-bit

bus width, 1x eMMC

connector (8/16/32/64 GiB

are available)

1x Micro SD slot (DS/HS

mode up to UHS-I SDR104)

Raspberry Pi

4

Broadcom

BCM2711

Quad core Cortex-A72 (ARM

v8), 64-bit SoC @ 1.5GHz

RAM, 2 GiB, 4 GiB, or 8

GiB

Orange Pi 4

Rockchip

RK3399 (28nm

HKMG

process)

6-core ARM® 64-bit

processor ,main frequency

speeds up to 2.0 GHz

Based on the large and small

size core architecture of

big.LITTLE :

Dual-core Cortex-A72 (large

core) + Quad-core Cortex-A53

(small core), Mali-T864 GPU

Supports OpenGL

ES1.1/2.0/3.0/3.1,

OpenVG1.1,OpenCL, DX11,

support for AFBC

Dual 4 GiB LPDDR4 + 16

GiB EMMC Flash

Dual 4 GiB LPDDR4

+EMMC Flash(Default

Empty)

ASUS Tinker

Board

Rockchip

RK3288

QuadCore ARM SOC 1.8

GHz, Mali™-T764 GPU

2 GiB of LPDDR3 dual-

channel

NVIDIA

Jetson Nano
Nvidia

Quad-core ARM A57 @ 1.43

GHz

4 GiB 64-bit LPDDR4 25.6

GB/s

Google Coral

dev. board

NXP i.MX 8M

SoC

Quad-core Cortex-A53, plus

Cortex-M4F, Google Edge

TPU ML , 0 - 66 MHz

accelerator coprocessor,

Cryptographic coprocessor

1 GiB LPDDR4 , flash: 8

GiB eMMC, MicroSD slot

While there are several promising platforms to choose from, the selection also needs to

be done based on the availably of SBCs in the department and in coherence with the

related ongoing PhD research works, as well as sufficient references and scientific

reports. After careful consideration, the Raspberry Pi 4 has been chosen for this MSc

project. Table 6 shows its configuration and Figure 19 shows a photograph of the board.

46

Table 6: RPI 4 configuration used for this MSc project.

Board

Name

SoC Processor

(Number of Cores,

chip architecture,

clock speed...)

Memory Pric

e ($)

Input

Power

Network

Connectivity

Raspberr

y Pi 4

Broadcom

BCM2711

Quad core Cortex-

A72 (ARM v8), 64-

bit SoC @ 1.5GHz

RAM: 4

GB

$104 5V DC

via USB-

C

connector

(minimu

m 3A*)

2.4 GHz and 5.0

GHz IEEE

802.11b/g/n/ac

wireless

LAN, Bluetooth

5.0, BLE

Figure 19: Photograph of the Raspberry Pi 4 (Model B) used in this MSc thesis.

4.3 Framework Selection

Python deep learning ecosystem is the key reason for widespread adoption of DL [55].

Starting with ‘Theano’ in 2007, the first deep learning framework [55] this industry

undergoes with tremendous research and development and different frameworks have

been introduces since then. Among them, Tensorflow developed by ‘Google brain’ is a

very popular DL framework. Apart from this, Facebook-developed Pytorch and Keras

are also some of the widely used frameworks for DL application creation. Figure 20

shows available DL framework.

47

Figure 20: State of DL frameworks [74].

For this MSc thesis work we adopted the Tensorflow framework for flexibility of using

high-level APIs. It also facilitates porting to SBCs with a relatively easy model size

reduction technique in ‘Tensorflow lite’, often written as ‘tflite’ which is a light version

of Tensorflow for resource limited devices. Additionally, some Keras libraries are used

for CNN architecture development. For image pre-processing, Open-CV and scikit-learn

libraries are used. An overview of the selected framework and libraries is shown in Figure

21.

48

Figure 21: Framework and library information for this MSc thesis work

4.4 Model Preparation

Two different CNN models have been developed for blood cell classification. The first

one is a conventional CNN architecture where each layer has been developed from

scratch. On the other hand, the second model have been trained using a transfer learning

approach. For the second approach (Section 6.5) MobileNetV2 has been used as a pre-

trained model. For all models, a conventional ML flow for CNN model development is

used, which is shown in Figure 22.

Figure 22: Flow diagram for CNN model development used in this MSc thesis

49

4.4.1 Image Pre-possessing

The idea behind image pre-processing is to clean the input image data. Often, different

types of objects may be situated in an image. For example, in our case there exists

different types of blood-cells, such as red blood cell, eosinophil, neutrophil, etc., in a

single image. Our dataset contains two types of blood cells in a single image. For

example, for monocyte images, apart from a monocyte cell there also exits some red blood

cells. The goal is to extract only the image of monocyte and suppress the rest of the red

blood cells. This processing has been done through various mathematical procedures to

extract the desired blood cell for which we want train the model and detect later during

classification.

Figure 23: Image pre-processing process followed in this MSc thesis work.

Figure 24: Evolution of an EOSINOPHIL image in pre-processing stage (corresponding to Figure 23).

50

As shown in Figure 23, to extract a desired blood cell, first we convert the image from

Blue Green Red (BGR) to Red Green Blue (RGB) which provides the colour combination

of each pixel. Then padding is introduced around the border of the image to overcome

information loss. Next, we determine colour differences in different objects in the image.

Then the edge of different object is detected, and we draw the contour around the desired

portion. Then, the rest of the pixels are suppressed, and the desired portion is extracted

out. Finally, the extracted image is resized to a common dimension. The evolution of the

image throughout these operations is shown in Figure 24.

Some of the sample data are given after pre-processing stage in Figure 25.

Figure 25: Example of image dataset samples after pre-processing.

51

4.4.2 Dataset Split for Training and Testing

For CNN model development, the dataset used for training, testing, and validation need

to be clearly mentioned. The conventional rule is to use 20% of the total image for

validation and testing. Our dataset contains 12000 images with 2500 for each class. Thus,

we use around 250 images for testing and 250 images for validation. Figure 26 shows the

population of each observed category and Figure 27 shows the train, testing, and

validation split used to train this model.

Figure 26: Percentage-wise population for each observed category in the selected dataset

Figure 27: Dataset split for training, testing and validation

52

4.4.3 CNN Layer Design

For the CNN layer, we consider five convolutional blocks followed by a fully connected

(FC) layer and output layer. The first convolution block (input layer) uses 2D convolution

whereas the remaining convolutional blocks use separable 2D convolution. For the input

layer, the number of neurons (output shape) is kept at 16 and is doubled in each of the

hidden layers. Moreover, each of the convolution blocks use a ReLU activation function,

maxpooling technique, and 3 × 3 kernel for the RGB image. We also use padding to

reduce information loss.

The FC layer uses deeply connected neural network as per convention. Here the ‘tanh’

activation function is used with different dropout rate at it moves towards the output.

Finally, in the output layer we use a ‘softmax’ activation function as per practice in the

industry [55]. Table 7 describes each of the layers’ configuration. This whole architecture

is inspired by [74].

Table 7 CNN model layers’ configuration

Layer type Output Shape
Number of

parameters

conv2d_4 (Conv2D) (None, 120, 120, 16) 448

conv2d_5 (Conv2D) (None, 120, 120, 16) 2320

max_pooling2d_10 (MaxPooling2D) (None, 60, 60, 16) 0

separable_conv2d_16 (SeparableConv2D) (None, 60, 60, 32) 688

separable_conv2d_17 (SeparableConv2D) (None, 60, 60, 32) 1344

batch_normalization_8

(BatchNormalization)
(None, 60, 60, 32) 128

max_pooling2d_11 (MaxPooling2D) (None, 30, 30, 32) 0

separable_conv2d_18 (SeparableConv2D) (None, 30, 30, 64) 2400

separable_conv2d_19 (SeparableConv2D) (None, 30, 30, 64) 4736

batch_normalization_9

(BatchNormalization)
(None, 30, 30, 64) 256

max_pooling2d_12 (MaxPooling2D) (None, 15, 15, 64) 0

separable_conv2d_20 (SeparableConv2D) (None, 15, 15, 128) 8896

separable_conv2d_21 (SeparableConv2D) (None, 15, 15, 128) 17664

batch_normalization_10

(BatchNormalization)
(None, 15, 15, 128) 512

max_pooling2d_13 (MaxPooling2D) (None, 7, 7, 128) 0

dropout_10 (Dropout) (None, 7, 7, 128) 0

separable_conv2d_22 (SeparableConv2D) (None, 7, 7, 256) 34176

separable_conv2d_23 (SeparableConv2D) (None, 7, 7, 256) 68096

batch_normalization_11

(BatchNormalization)
(None, 7, 7, 256) 1024

max_pooling2d_14 (MaxPooling2D) (None, 3, 3, 256) 0

53

dropout_11 (Dropout) (None, 3, 3, 256) 0

flatten_2 (Flatten) (None, 2304) 0

dense_8 (Dense) (None, 512) 1180160

dropout_12 (Dropout) (None, 512) 0

dense_9 (Dense) (None, 128) 65664

dropout_13 (Dropout) (None, 128) 0

dense_10 (Dense) (None, 64) 8256

dropout_14 (Dropout) (None, 64) 0

dense_11 (Dense) (None, 4) 260

Total parameters: 1397028

Trainable parameters: 1396068

Non-trainable parameters: 960

4.5 Evaluation of Trained Model

For model evaluation, the conventional process is to check the training and validation

accuracy and loss. Additionally, a confusion matrix has been generated to get a visual

understanding of the models’ performance. This confusion matrix identifies the following

elements:

➢ True Positive: prediction that the object belongs to a class and the object actually

belongs to that class;

➢ True Negative: prediction that the object does not belong to a class but the object

actually does not belong to that specific class;

➢ False Positive: prediction that the object belongs to a class, and the object actually

does not belong to that class;

➢ False Negative: prediction that the object does not belongs to a class but the object

actually belongs to that class.

54

Figure 28 shows the principle of the confusion matrix.

True

Negative

False

positive

False

negative
True positive

Figure 28: Principle of confusion matrix

 To evaluate our model we also follow the same procedure. The following sub-section

describes the performance of our model in detail. Table 8 introduces the parameters used

to evaluate these models.

Table 8: Evaluation parameter of DL model

Evaluation

Parameter
Description of the parameter Value range

Training

Accuracy

Measurement of accurate classification

between training data and testing data.

0 to 100%, i.e.

0.0 to 1.0

Validation

Accuracy

Measurement of accurate prediction from the

validation dataset

0 to 100%, i.e.

0.0 to 1.0

Training loss

Measurement of inaccurate prediction between

training and testing data. It is measured after

each batch

0 to ∞

Validation

loss

Measurement of inaccurate prediction between

training and testing data. Generally measured

after each epoch

0 to ∞

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

0 to 100%, i.e.

0.0 to 1.0

4.5.1 Optimizer Selection

As discussed in Subsection 3.2.7, the optimizer selection is one of the important tasks for

DL model training. There are several optimizers available, but among them Adam and

T
ru

e
la

b
el

Prediction

55

RMSprop are the most common and widely used in DL architecture. Usually, optimizers

are model oriented and thus always selected by trial-and-error method. In this work, we

compare these two optimizers to check their impact on the training and figure out the

suitable one from the model.

Figure 29: Impact of Adam and RMSprop on model training in terms of training accuracy and training

loss, as well as validation accuracy and validation loss.

Figure 29 shows the performance of Adam and RMSprop for model training. Here a pre-

model has been developed for only 15 epochs (i.e. “training iterations”) to determine the

performance. It is clear that the Adam optimizer performs slightly better (higher accuracy

and lower loss, on average) than the other one for our model. Additionally, the training

time for Adam was less than the RMSprop. Thus, we opted for Adam.

4.5.2 Learning Rate Selection

Another important parameter which is also figured out by trial-and-error is the learning

rate (η). The impact of the learning rate on the CNN model is described in Subsection

5.2.1.3. Learning rate values like .000001, 0.00001, 0.00005, 0.0001 are common practice

Number of epoch (iteration) Number of epoch (iteration)

Number of epoch (iteration) Number of epoch (iteration)

56

in DL. In this MSc work, we compared the impact for 15 epochs (i.e. “training iterations”)

and found η = 0.00001 performs slightly better than the others. The comparison is shown

in Figure 28.

Figure 30: Effect of different learning rate (ƞ) in model.

4.6 Model Preparation using pertained model

As discussed in Section 3.4, there are different CNN models readily available which can

serve our purpose of blood cell classification. Among them, ResNet, DenseNet,

MobileNet and EfficientNet are some of the popular architectures used for object

detection [72]. However, the performance of a model is highly dependent on the data and

its preprocessing procedure. Therefore, we characterize the performance of each of the

CNN architectures mentioned above that suits our data. For characterization, we use the

same preprocessing method mentioned in Subsection 4.4.1 for 15 epochs. The result is

shown in Figure 31.

Figure 31: Performance comparison between different CNN pre-trained model.

Number of epoch (iteration) Number of epoch (iteration)

Training Accuracy Training Loss

 a
c
c
u
ra

c
y

Number of epoch (iteration) Number of epoch (iteration)

Training Accuracy Training Loss

57

From Figure 31 it can be seen that DenseNet201 and MobileNetV2 outperform the other

two CNN architecture for our dataset. However, MobileNetV2 is more memory efficient

[72] with a lower number of parameters compared to DenseNet. Thus, we choose

MobileNetV2.

4.6.1 Data Pre-processing & Model Preparation

To train the model using MobileNetV2, the dataset needs to be pre-processed. For pre-

processing, the same methodology mentioned in Subsection 4.4.1 is followed. Then, we

load the model from the source and modify the input output parameters based on our

dataset. Similarly to the previous model, the softmax activation function is used for the

output while ReLU is used for input. The same feature map weight developed for the

original MobileNet model are used for training. The summary of the model is shown in

Figure 32.

58

Figure 32: MobileNetV2 model summary

59

4.7 Model Minimization

After developing the model, its size needs to be reduced to make it fit and run on the edge

device. One of the processes is to convert the model into Tensorflow-Lite (tflite) which

is a light version of Tensorflow that compresses the model to make it suitable to run on

edge devices. In this MSc thesis, we converted the model into .tflite using the high-level

API supplied by Tensorflow. Table 7 shows a screenshot that provides a comparison

between the sizes of the original Keras models (.h5) and the .tflite models after

conversion. For both Model 1 the size is reduced from 16.5 MB to 5.4 MB (divided by

approximately 3). For Model 2 the size reduction is more modest, from 11.2 MB to 9.1

MB (divided by approximately 1.23).

Table 9: Model size comparison after conversion

Model Name Keras model size (MB)
Converted tflite model size

(MB)

Model 1 (simple CNN

developed from scratch) 16.5 5.4

Model 2 (pre-trained model

with learning transfer) 11.2 9.1

60

5 Result and Analysis

As explained previously, there are two different models developed for this MSc thesis

work. The first one is a simple CNN model built from scratch that has been described in

Section 4.4 (Model 1). The other one is a pre-trained model which is used to train our

dataset for image classification using transfer learning method (Model 2). Both models

were converted into .tflite to reduce their sizes and make them suitable for edge devices

(Raspberry Pi 4 in our case). This chapter is focused on the evaluation of the trained

models.

5.1.1 Evaluation of Model 1

Figure 33 shows the learning curve of our Model 1 for 30 epochs. This figure is a classic

example of a DL learning curve. From the figure, it is clear that initially the training

accuracy increases exponentially up to fifth epoch and then gradually reaches to an

accuracy of 99% by the 15th epoch and maintains this accuracy throughout the remaining

iterations. After an initial fluctuation, the validation accuracy also follows a similar trend,

although not as smooth. Here the training accuracy for the first epoch is 60%, which

clearly indicates that the image pre-processing was very well suited for this model. The

loss curve for training was < 1 in the entire training time which is also an indication of a

successful model preparation. Moreover, the validation accuracy is slightly lower than

the training accuracy while the validation loss is slightly higher than the training loss; this

infers that this model is free from overfitting or underfitting problems (see Subsection

3.2.8). This means that the dropout selection for this model is quite ideal.

61

Figure 33: Learning curve of Model 1 for 30 epochs. The X axes represent the epochs (“training

iterations”) and the Y axes represent the accuracy and loss.

In order to investigate the possibility of overfitting or underfitting issues, we train the

model again up to 60 epochs (see Figure 34) and observe similar trends between training

and validation accuracies, as well as between training & validation losses. Thus, we can

conclude that this model will not suffer from the fitting problem.

Figure 34: Learning curve of Model 1 for 60 epochs. The X axes represent the epochs (“training

iterations”) and the Y axes represent the accuracy and loss.

62

Figure 35 shows the confusion matrix for Model 1, which is also an evidence of the model

precision. The percentage of false positive and false negatives (indicated by the light blue

color) are almost negligible. Below are the precision calculations for each class and for

the overall model:

Precision for Eosinophil =
272

272+7
× 100 = 97.49%

Precision for Lymphocyte =
297

297+2
× 100 = 99.33%

Precision for Monocyte =
318

318+7
× 100 = 97.84%

Precision for Neutrophil =
300

300+11
× 100 = 96.46%

Overall, model precision =
1187

1187+27
× 100 = 97.77%

Figure 35: Confusion Matrix for Model 1

63

5.1.2 Evaluation of Model 2

The performance of Model 2 is not as good as that of Model 1. The learning curve of Model 2 is shown in

Figure 36. From the figure, it is clear that the model suffers from the under-fitting problem

as the validation loss is lower than the training loss. Moreover, both validation accuracy

and loss fluctuate across the corresponding training accuracy and training loss. A probable

reason for this problem is the architecture of the MobileNetV2. Originally, the

MobileNotV2 was developed for an image resolution of 240 × 240 pixels. But our model

is trained with 120 × 120 pixel images due to insufficient RAM of Google Colaboratory.

240 × 240 pixels resolution of input data occupies 75% of the RAM, for which training

cannot be conducted. Some other platforms were also investigated but nothing suitable

was found. However, the accuracy (89%) and the loss (0.3) of the model is quite attractive

which encourages to keep the model.

Figure 36: Learning curve of Model 2. The X axes represent the epochs (“training iterations”) and the Y

axes represent the accuracy (max value is 10and loss.

The confusion matrix of Model 2 is shown in Figure 37 which is quite acceptable. Below

are the precision calculations.

gfgdf

()

Number of epoch (iteration) Number of epoch (iteration)

A
c
c
u
ra

c
y

L
o
s
s

64

Figure 37: Confusion matrix of Model 2

Precision for Eosinophil =
224

224+36
× 100 = 86.15%

Precision for Lymphocyte =
319

319+15
× 100 = 95.50%

Precision for Monocyte =
300

300+7
× 100 = 97.71%

Precision for Neutrophil =
264

264+49
× 100 = 84.34%

Overall, model precision =
1107

1107+107
× 100 = 92.86%

65

The precision results confirm that Model 2 can be considered as acceptable, and thus we

keep both Model 1 and Model 2 for implementation on the edge device (RPI4) and

compared their performances.

5.2 Evaluation on Edge device

The edge device (RPI4) only performs the classification from the two trained models

compared in Sections 5.1.1 and 5.1.2. For the RPI4 implementation, the model

minimization presented in Section 4.6 was applied. Our actual goal for this MSc thesis

work is to investigate the classification accuracy, classification time, the highest number

of images detected by the RPI 4. For investigation, two different methodologies have been

considered. In the first case, the image folder contains images of the same class. Three

different datasets have been created with 50, 200, and 400 images. Then the average

classification time and accuracy has been measured using Table 8. For the second case

two types of dataset has been created with 400 (100 of each class) and 1600 (400 of each

class) images with all four class and the classification accuracy of RPI is measured using

Table 8. The result analysis for both of the methodology is discussed in the following

subsections.

5.2.1 Performance evaluation of RPI in Methodology 1

Table 10 shows the performance matrix of RPI for Methodology 1.

Table 10: Performance of Model 1 and Model 2 for the same class of images in the folder (Methodology

1)

Class name
Numbe

r of
Image

Model 1 Model 2

Average
Classificatio
n Time (ms)

Detected cell
types

Accurac
y (%)

Average
Classificatio
n Time (ms)

Detected cell
types

Accura
cy (%)

Eosinophil

50 51.4

Eosinophil: 48
Lymphocyte: 0
Monocyte: 1
Neutrophil: 1

96 137.1

Eosinophil: 44
Lymphocyte: 0
Monocyte: 2
Neutrophil: 4

88

200 47.7

Eosinophil: 195
Lymphocyte: 0
Monocyte: 2
Neutrophil: 3

97.5 137.5

Eosinophil: 172
Lymphocyte: 0
Monocyte: 3
Neutrophil: 25

86

400 48.8

Eosinophil: 393
Lymphocyte: 0
Monocyte: 2
Neutrophil: 5

98.25 137.3

Eosinophil: 333
Lymphocyte: 0
Monocyte: 10
Neutrophil: 57

83.25

66

Monocyte

50 46.5

Eosinophil: 0
Lymphocyte: 0
Monocyte: 50
Neutrophil: 0

100 126.0

Eosinophil: 1
Lymphocyte: 0
Monocyte: 48
Neutrophil: 1

96

200 47.8

Eosinophil: 0
Lymphocyte: 0
Monocyte: 200
Neutrophil: 0

100 133.0

Eosinophil: 1
Lymphocyte: 0
Monocyte: 198
Neutrophil: 1

99

400 48.1

Eosinophil: 0
Lymphocyte: 0
Monocyte: 400
Neutrophil: 0

100 187.8

Eosinophil: 2
Lymphocyte: 0
Monocyte: 395
Neutrophil: 3

98.75

Lymphocyt
e

50 48.2

Eosinophil: 1
Lymphocyte:49
Monocyte: 0
Neutrophil: 0

98 133.1

Eosinophil: 1
Lymphocyte: 49
Monocyte: 0
Neutrophil: 0

98

200 48.3

Eosinophil: 1
Lymphocyte:
199
Monocyte: 0
Neutrophil: 0

99.5 141.5

Eosinophil: 2
Lymphocyte:19
8
Monocyte: 0
Neutrophil: 0

99

400 47.6

Eosinophil: 4
Lymphocyte:39
6
Monocyte: 0
Neutrophil: 0

99 163.3

Eosinophil: 3
Lymphocyte:
393
Monocyte: 1
Neutrophil: 3

98.25

Neutrophil

50 46.9

Eosinophil: 1
Lymphocyte: 0
Monocyte: 0
Neutrophil: 49

98 130.4

Eosinophil: 9
Lymphocyte: 0
Monocyte: 2
Neutrophil: 39

78

200 48.6

Eosinophil: 4
Lymphocyte: 0
Monocyte: 0
Neutrophil:
196

98 144.1

Eosinophil: 26
Lymphocyte: 0
Monocyte: 4
Neutrophil: 170

85

400 48.2

Eosinophil: 7
Lymphocyte: 0
Monocyte: 0
Neutrophil:
393

98.25 133.4

Eosinophil: 40
Lymphocyte:1
Monocyte: 9
Neutrophil: 350

87.5

Average 48.2 98.54 142.04 91.3

From the measured data it is clear, like in Section 5.1, that Model 1 outperforms Model 2

in terms of accuracy and classification times. Model 2 struggles to differentiate between

Eosinophil and Neutrophil for which the accuracy rate is below 90%. On average, Model

2 is 7.8% less accurate than Model 1.

Model 1 is almost three times faster than Model 2. A graphical comparison between

Model 2 and Model 1 performances is shown in Figure 38 and Figure 39. The average

classification time for monocyte is comparatively higher for the 3rd dataset.

67

Figure 38: Average classification times for Model 1 and Model 2.

68

Figure 39: Accuracy comparison for Model 1 and Model 2 for same class.

All in all, for the first evaluation approach on the edge device, it can be concluded that

Model 1, which was developed from scratch, performs better than Model 2 which was

pre-trained and used transfer learning.

5.2.2 Performance evaluation of RPI in Methodology 2

In the second approach (“Methodology 2”), the image folder contains images of all four

classes. The first dataset (Dataset 1) is prepared with 400 hundred images with 100 images

for each class. The second dataset (Dataset 2) contains a total of 1600 images with 400 of

each of the four classes. Table 11 shows the average classification time for two types of

dataset. Similar to the previous case, classification with Model 1 is almost three times

faster than with Model 2. However, compared to Methodology 1, the average

classification time for Model 1 is slightly higher than for Methodology 2 which is due to

higher number of images. In contrast, classification time for Model 2 is almost 4% lower

69

for the second approach as compared to the first one. That is because classification time

for lymphocyte is much higher for Model 2. In the first approach, as the model only has

to classify one type of image, that increases the average classification time.

Table 11: Performance of Model 1 and Model 2 for different class image in folder (Methodology 2)

Total
Numbe

r of
Image

Number of
image of

each class

Model 1 Model 2

Total
Classifica
tion time

Average
Classificat
ion Time

(ms)

Detection
Total

Classificatio
n time

Average
Classificat
ion Time

(ms)

Detection

400 100 20.22 50.55

Eosinophil : 98
Lymphocyte:99
Monocyte: 100
Neutrophil: 103

55.227 138.068

Eosinophil : 103
Lymphocyte:100
Monocyte: 101
Neutrophil: 96

1600 400 76.9 48.0625

Eosinophil : 403
Lymphocyte:394
Monocyte: 402
Neutrophil: 398

214400 134

Eosinophil : 376
Lymphocyte:393
Monocyte: 420
Neutrophil: 408

Average 49.30625

136.034

Figure 40: Number of detections of each class for the Dataset = 400 images.

Figure 40 and Figure 41 showing the number of detections for each class for 400 and

1600 dataset with mixed class image. The detection of Model 1 is satisfactory while

Model 2 suffers to differentiate between eosinophil and monocyte for dataset 2. Out of

400 images of both monocyte and eosinophil, Model 2 detects 376 eosinophil and 420

monocyte which is approximately 6% error. One of the major reasons is both of these

blood cells are similar in shape. Moreover, they have been marked with same blue colour

70

(see Figure 25) which makes them difficult to distinguish. However, the error rate is in

the acceptable range.

Figure 41: Number of detections for each class for the Dataset = 1600 images.

Average classification time for a single image is presented in Figure 42. Here the Model

1 classification time is almost three time faster than Model 2.

Figure 42: Comparison of average classification time of a single image between model 1 and model 2

Overall, the accuracy of Model 1 for both of the methodology is highly attractive with

almost 99% of accuracy and 48 ms of classification time while Model 2 accuracy rate

(91%) is not as good as Model 1 but still in acceptable range. Also Model 1 is three times

71

faster than Model 1. Model 1 outperforms Model 2, as it is built from the scratch with

careful parameters selection by trial-and-error which requires time and effort. On the

other hand, transfer learning methodology is implemented in Model 2 in which a pre-

trained model is used for training with minimum effort. Thus, there is a trade-off between

model development time/effort and classification performance.

The next chapter concludes this MSc thesis by summarizing the work and presenting a

few suggestions for future work.

72

6 Conclusion

6.1 Summary

The focus of this thesis work was to explore the application of DL methodology for

microscopic medical images, in particular, four types of white blood cell classification

using an SBC. The initial goal was to train a DL model and deploy it into SBC to evaluate

its suitability for image classification. Moreover, the thesis work also investigated

alternative training techniques to model training to deal with data scarcity of medical

images. The obtained results throughout this work are promising.

The performance of the model (Model 1) developed from scratch exhibits competitive

performance both in the cloud (Google Colaboratory, training and inference) and on the

edge (RPI4, inference only) platforms. In the cloud, the overall classification precision is

almost 98%. The lowest precision is 96.46% for neutrophils and the highest is 99.33%

for Lymphocytes, which is very encouraging considering the current state-of-the-art. The

developed model performs well in the SBC too. The average classification accuracy on

the RPI4is 98.5%. The lowest accuracy is 96% for 50 images of a a single class

(Eosinophil) which is due to the smaller dataset size. The average classification time is

48.2 ms which is also good because a simple ARM quad-core processor is used without

the usage of a dedicated accelerator (GPU or TPU).

The performance of Model 2 is not as impressive as that of Model 1. In the cloud, the

overall precision of the model is 92.86%. However, the precision for Eosinophil and

Neutrophil is 86% and 84%, respectively. This indicates that this model struggles to

differentiate between these two blood cell types. One of the reasons can be the similar-

look of these two blood cells types. Moreover, their marker is also of the same color. For

the different colors of the annotation marker, the performance could have been better. but

it is a matter of investigation. On the RPI4, Model 2’s performance is also worse as

compared to Model 1. Although the average accuracy is 91%, it decreases to 78% for

Neutrophil classification. The classification time is also three times higher than for Model

73

1 with an average of 142 ms to classify a single image. However, considering the state-

of-the-art and SBC configuration the result is still considered as up to the mark.

Comparing the performance of these two models, we can conclude that Model 1 (which

was developed from scratch) is superior to Model 2 (based on transfer learning). This

indicates that the DL model must be specifically designed for the medical image type.

However, transfer learning is also a suitable approach in case of data scarcity or time-

constrained situations. In the case of RPI4 performance, the result clearly show that

competitive accuracy can be achieved although the models are converted to be smaller so

that they can fit in the limited memory space. At the same time, real-time image

classification cannot be achieved. However, a plain RPI4 can be a good alternative when

instantaneous classification is not required.

6.2 Future work

A plain RPI4 was selected due to its simplicity and good number of application examples.

If (near) real-time performance is required, then an SBC featuring a SoC with a dedicated

hardware accelerator (e.g. GPU, TPU) should be considered. Using such a device is

expected to result in better performance for classification time. Thus, one of the primary

investigations in future work would be to evaluate the two models developed in this thesis

onto GPU/TPU based SBCs to evaluate their suitability for real-time detection and

classification.

Another issue to consider for the transfer learning approach is that different pre-trained

models can used to check the performance. Finally, these models could be optimized to

develop a portable blood cell classification system and integrate it into a medical device.

74

 References

[1] J. Wang, H. Zhu, H. Wang, Y. D. Zhang "A Review of Deep Learning on Medical

Image Analysis" Mobile Netw Appl, vol. 26, pp. 351–380, Nov 2020.

[2] M. Biswas, V. Kuppili, L. Saba, D. R. Edla, et al., "State-of-the-art review on deep

learning in medical imaging", Frontiers in Bioscience-Landmark, vol. 24(3), pp.

392-426, Jan. 2019.

[3] Z. Liu, L. Jin, J. Chen, Q. Fang, S. Ablameyko, et al., "A survey on applications

of deep learning in microscopy image analysis", Computers in Biology and

Medicine, vol. 134, pp. 104523, Jul 2021.

[4] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied

to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-

2324, Nov. 1998, doi: 10.1109/5.726791.

[5] K. Simonyan, and A. Zisserman. "Very deep convolutional networks for large-

scale image recognition." arXiv preprint arXiv: 1409.1556, 2014.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May

2017, doi: 10.1145/3065386.

[7] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

[8] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9, doi:

10.1109/CVPR.2015.7298594.

75

[9] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications,” arXiv:1704.04861 [cs], Apr. 2017, Accessed: Dec.

27, 2020. [Online], doi: http://arxiv.org/abs/1704.04861.

[10] L. Cai, et al. “A review of the application of deep learning in medical image

classification and segmentation.” Annals of translational medicine, vol. 8(11),

pp.713, Jun 2020, doi:10.21037/atm.2020.02.44

[11] F. Pesapane, M. Codari, and F. Sardanelli, “Artificial intelligence in medical

imaging: threat or opportunity? Radiologists again at the forefront of innovation

in medicine” Eur Radiol Exp 2, 35, Oct. 2018. https://doi.org/10.1186/s41747-

018-0061-6

[12] S. Suganyadevi, V. Seethalakshmi & K. Balasamy, "A review on deep learning

in medical image analysis," Int J Multimed Info Retr, September 2021.

[13] S. K. Zhou, H. Greenspan, C. Davatzikos, J. S. Duncan, et al. "A Review of Deep

Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies

With Progress Highlights, and Future Promises," in Proceedings of the IEEE,

vol. 109, no. 5, pp. 820-838, May 2021.

[14] E. Shelhamer, J. Long and T. Darrell, "Fully convolutional networks for semantic

segmentation", IEEE Trans. Pattern Anal Mach. Intell., vol. 39, no. 4, pp. 640-

651, Apr. 2017/

[15] S. Dong et al., "3D left ventricle segmentation on echocardiography with atlas

guided generation and voxel-to-voxel discrimination", Proc. Int. Conf. Med.

Image Comput. Comput. Assist. Intervent. (MICCAI), 2018, pp. 622-629.

[16] P. Vu Tran, "A fully convolutional neural network for cardiac segmentation in

short-axis MRI", arXiv:1604.00494, 2016, [online] Available:

http://arxiv.org/abs/1604.00494.

[17] E. Ferdian et al., "Fully automated myocardial strain estimation from

cardiovascular MRI–tagged images using a deep learning framework in the UK

biobank", Radiol. Cardiothoracic Imag., vol. 2, no. 1, Feb. 2020.

http://arxiv.org/abs/1704.04861
https://doi.org/10.1186/s41747-018-0061-6
https://doi.org/10.1186/s41747-018-0061-6
http://arxiv.org/abs/1604.00494

76

[18] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis and D. Feng, "Early diagnosis of

Alzheimer’s disease with deep learning", Proc. Int. Symp. Biomed. Imag. (ISBI),

pp. 1015-1018, 2014.

[19] M. Havaei et al., "Brain tumor segmentation with deep neural networks", Med.

Image Anal, vol. 35, pp. 18-31, Jan. 2017.

[20] F. Ciompi et al., "Towards automatic pulmonary nodule management in lung

cancer screening with deep learning", Sci. Rep., vol. 7, no. 1, pp. 46479, Apr.

2017.

[21] D. Ardila et al., "End-to-end lung cancer screening with three-dimensional deep

learning on low-dose chest computed tomography", Nature Med., vol. 25, no. 6,

pp. 954-961, Jun. 2019.

[22] K. Murphy et al., "Computer aided detection of tuberculosis on chest

radiographs: An evaluation of the CAD4TB v6 system", Sci. Rep., vol. 10, no. 1,

pp. 1-11, 2020, [online] Available: https://arxiv.org/abs/1903.03349.

[23] B. Q. Huynh; H. Li; M. L. Giger, "Digital mammographic tumor classification

using transfer learning from deep convolutional neural networks", Journal of

medical imaging (Bellingham, Wash.), vol. 3, pp. 34501, Aug. 2016.

[24] M. Salvi, U. R. Acharya, F. Molinari, et al., "The impact of pre- and post-image

processing techniques on deep learning frameworks: A comprehensive review

for digital pathology image analysis", Computers in Biology and Medicine, vol.

128, Jan. 2021. Available: https://doi.org/10.1016/j.compbiomed.2020.104129

[25] C. Chen, A. Mahjoubfar, LC. Tai, et al. "Deep Learning in Label-free Cell

Classification", Sci Rep, vol. 6, pp. 21471 Jan. 2016. Available:

https://doi.org/10.1038/srep21471

[26] F. Qin, N. Gao, Y. Peng, Z. Wu, S. Shen, A. Grudtsin, "Fine-grained leukocyte

classification with deep residual learning for microscopic images", Computer

Methods and Programs in Biomedicine, vol. 162, pp. 243-252, Aug. 2018.

https://arxiv.org/abs/1903.03349
https://doi.org/10.1016/j.compbiomed.2020.104129
https://doi.org/10.1038/srep21471

77

[27] A.I. Shahin, Y. Guo, K.M. Amin, A. A. Sharawi, "White blood cells

identification system based on convolutional deep neural learning networks",

Computer Methods and Programs in Biomedicine, vol. 168, pp. 68-80, Jan. 2019.

Available: https://doi.org/10.1016/j.cmpb.2017.11.015

[28] L. Alzubaidi, M. A. Fadhel, O. Al-Shamma, J. Zhang, and Y. Duan, "Deep

Learning Models for Classification of Red Blood Cells in Microscopy Images to

Aid in Sickle Cell Anemia Diagnosis" Electronics 9, vol. 3, pp. 427, March 2020.

Available: https://doi.org/10.3390/electronics9030427

[29] J. Hung and A. Carpenter, "Applying Faster R-CNN for Object Detection on

Malaria Images," 2017 IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2017, pp. 808-813, doi:

10.1109/CVPRW.2017.112

[30] W. Deelder, E.D. Benavente, J. Phelan, E. Manko, S. Campino, L. Palla, T.G.

Clark, "Using deep learning to identify recent positive selection in malaria

parasite sequence data", Malaria Journal, vol. 20, pp. 270, Jun. 2021. doi:

10.1186/s12936-021-03788-x.

[31] H. S. Ryu, M.-S. Jin, J. H. Park, S. Lee, J. Cho, S. Oh, T.-Y. Kwak, J. I. Woo, Y.

Mun, S. W. Kim, S. Hwang, S.-J. Shin, and H. Chang, “Automated Gleason

Scoring and Tumor Quantification in Prostate Core Needle Biopsy Images Using

Deep Neural Networks and Its Comparison with Pathologist-Based Assessment,”

Cancers, vol. 11, no. 12, p. 1860, Nov. 2019.

[32] H. Le, R. Gupta, L. Hou, S. Abousamra, D. Fassler, et al., "Utilizing Automated

Breast Cancer Detection to Identify Spatial Distributions of Tumor-Infiltrating

Lymphocytes in Invasive Breast Cancer", The American Journal of Pathology,

vol. 190, pp. 1491-1504, Jul. 2020. DOI:

https://doi.org/10.1016/j.ajpath.2020.03.012.

[33] J. W. Wei, L. J. Tafe, Y. A. Linnik, et al. "Pathologist-level classification of

histologic patterns on resected lung adenocarcinoma slides with deep neural

networks", Scintific Report, vol. 9, article no. 3358, 2019.

https://doi.org/10.1016/j.cmpb.2017.11.015
https://doi.org/10.3390/electronics9030427
https://doi.org/10.1016/j.ajpath.2020.03.012

78

[34] B. Korbar, et al. “Deep Learning for Classification of Colorectal Polyps on

Whole-slide Images.” Journal of pathology informatics, vol. 8 30. 25 Jul. 2017,

doi:10.4103/jpi.jpi_34_17

[35] T. Mahmood, M. Arsalan, M. Owais, M. B. Lee, and K. R. Park, “Artificial

Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images

Using Faster R-CNN and Deep CNNs,” Journal of Clinical Medicine, vol. 9, no.

3, p. 749, Mar. 2020.

[36] H. Li, F. Pang, Y. Shi and Z. Liu, "Cell dynamic morphology classification using

deep convolutional neural networks", Cytometry, vol. 93, pp. 628-638, May,

2018 https://doi.org/10.1002/cyto.a.23490

[37] A. Gupta, P. J. Harrison, H. Wieslander, N. Pielawski, K. Kartasalo, G. Partel,

L. Solorzano, A. Suveer, A.H. Klemm, O. Spjuth, I. M. Sintorn, and C. Wählby,

"Deep Learning in Image Cytometry: A Review", Cytometry, vol. 95, pp. 366-

380. Jan. 2019. DOI: https://doi.org/10.1002/cyto.a.23701

[38] Y. Gu, A. Chen, X. Zhang, C. Fan, K. Li, and J. Shen, “Deep Learning based

Cell Classification in Imaging Flow Cytometer”, ASP Trans. Pattern Recognit.

Intell. Syst., vol. 1, no. 2, pp. 18–27, Jun. 2021.

[39] M. Kräter, S/ Abuhattum, D. Soteriou, A. Jacobi, T. Krüger, J. Guck, M. Herbig,

“AIDeveloper: Deep Learning Image Classification in Life Science and

Beyond”, Adv. Sci., vol. 8, pp. 2003743, Mar. 2021

https://doi.org/10.1002/advs.202003743

[40] J. -H. Chien, S. Chan, S. Cheng and Y. -C. Ouyang, "Identification and Detection

of Immature White Blood Cells through Deep Learning," IEEE 3rd Global

Conference on Life Sciences and Technologies (LifeTech), 2021, pp. 1-3, doi:

10.1109/LifeTech52111.2021.9391955.

[41] M. Lippeveld, C. Knill, E. Ladlow, et al. "Classification of Human White Blood

Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry",

Cytometry A., vol. 97, pp. 308-319, MAR. 2020.

https://doi.org/10.1002/cyto.a.23490

79

[42] S. Khan, N. Islam, Z. Jan, I. U. Din, J. J. P. C Rodrigues, "A novel deep learning

based framework for the detection and classification of breast cancer using

transfer learning", Pattern Recognition Letters, vol. 125, pp. 1-6, Jul. 2019.

[43] K. K. Jha, H. S. Dutta, "Mutual Information based hybrid model and deep

learning for Acute Lymphocytic Leukemia detection in single cell blood smear

images", Computer Methods and Programs in Biomedicine, vol. 179, pp.

104987, Oct. 2019.

[44] H. Lei, S. Liu, A. Elazab, X. Gong and B. Lei, "Attention-Guided Multi-Branch

Convolutional Neural Network for Mitosis Detection From Histopathological

Images," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 2,

pp. 358-370, Feb. 2021, doi: 10.1109/JBHI.2020.3027566.

[45] X. Wang, H. Chen, C. Gan, et al., "Weakly Supervised Deep Learning for Whole

Slide Lung Cancer Image Analysis," in IEEE Transactions on Cybernetics, vol.

50, no. 9, pp. 3950-3962, Sept. 2020, doi: 10.1109/TCYB.2019.2935141.

[46] D. Tellez, M. Balkenhol, I. Otte-Holler, et al., "Whole-Slide Mitosis Detection

in H&E Breast Histology Using PHH3 as a Reference to Train Distilled Stain-

Invariant Convolutional Networks," in IEEE Transactions on Medical Imaging,

vol. 37, no. 9, pp. 2126-2136, Sept. 2018, doi: 10.1109/TMI.2018.2820199.

[47] H. Niioka, S. Asatani, A. Yoshimura, et al. "Classification of C2C12 cells at

differentiation by convolutional neural network of deep learning using phase

contrast images," Human Cell, vol. 31, pp. 87–93, Oct 2018.

https://doi.org/10.1007/s13577-017-0191-9

[48] T. J. S. Durant, E. M. Olson, W. L. Schulz, R. Torres, "Very Deep Convolutional

Neural Networks for Morphologic Classification of Erythrocytes," Clinical

Chemistry, vol. 63, pp. 1847–1855, Dec. 2017.

https://doi.org/10.1373/clinchem.2017.276345

[49] L. Zhang, Le Lu, I. Nogues, R. M. Summers, S. Liu and J. Yao, "DeepPap: Deep

Convolutional Networks for Cervical Cell Classification," in IEEE Journal of

Biomedical and Health Informatics, vol. 21, no. 6, pp. 1633-1643, Nov. 2017,

doi: 10.1109/JBHI.2017.2705583.

https://doi.org/10.1007/s13577-017-0191-9
https://doi.org/10.1373/clinchem.2017.276345

80

[50] C. Jen Ngeh, C. Ma, T. Kuan-Wei Ho, Y. Wang and J. Raiti, "Deep Learning on

Edge Device for Early Prescreening of Skin Cancers in Rural Communities,"

IEEE Global Humanitarian Technology Conference (GHTC), 2020, pp. 1-4, doi:

10.1109/GHTC46280.2020.9342911.

[51] R. Vidhya Lavanya, S. EP, C. Jayakumari and R. Isaac, "Detection and

Classification of Diabetic Retinopathy using Raspberry PI," 4th International

Conference on Electronics, Communication and Aerospace Technology

(ICECA), 2020, pp. 1688-1691, doi: 10.1109/ICECA49313.2020.9297408.

[52] A. Abid, P. Sinha, A. Harpale, J. Gichoya and S. Purkayastha, "Optimizing

Medical Image Classification Models for Edge Devices" in Distributed

Computing and Artificial Intelligence, Volume 1: 18th International Conference,

Lecture Notes in Networks and Systems, vol 327, K. Matsui, S. Omatu, T.

Yigitcanlar, S.R. González, Eds. Springer, 2021, pp. 77-87.

[53] P. Krömer, J. Nowaková, "Medical Image Analysis with NVIDIA Jetson GPU

Modules", in: Advances in Intelligent Networking and Collaborative Systems.

INCoS 2021. Lecture Notes in Networks and Systems, vol. 312, L. Barolli, H.C.

Chen, H. Miwa, Eds. Springer, 2022, pp. 233-242

[54] J. Civit-Masot, F. Luna-Perejón, J. M. Rodríguez Corral, M. Domínguez-

Morales, A. Morgado-Estévez, A. Civit, "A study on the use of Edge TPUs for

eye fundus image segmentation", Engineering Applications of Artificial

Intelligence, vol. 104, pp. 104384, Sep. 2021.

[55] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M.

Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A State-of-the-Art

Survey on Deep Learning Theory and Architectures,” Electronics, vol. 8, no. 3,

p. 292, Mar. 2019.

[56] S. Ota, I. Sato and R. Horisaki, “Implementing machine learning methods for

imaging flow cytometry”, Microscopy, Volume 69, Issue 2, Pages 61–68, Apr.

2020.

[57] Y. LeCun, Y. Bengio, & G. Hinton, “Deep learning” Nature, vol. 521, pp. 436–

444, May 2015. https://doi.org/10.1038/nature14539

https://doi.org/10.1038/nature14539

81

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, et al. “Human-level control

through deep reinforcement learning”, Nature, vol. 518, pp. 529–533, Feb. 2015.

[59] M. Lapan, “What Is Reinforcement Learning?” Deep Reinforcement Learning

Hands-On. Birmingham, UK: Packt Publishing, 2018, pp. 6.

[60] A. S. Lundervold, A. Lundervold, "An overview of deep learning in medical

imaging focusing on MRI", Zeitschrift für Medizinische Physik, vol. 29, Issue 2,

pp. 102-127, May 2019.

[61] D. Sarkar, R. Bali, & T. Ghosh, “Neural network basics”, Hands-On Transfer

Learning with Python: Implement Advanced Deep Learning and Neural Network

Models Using TensorFlow and Keras. Birmingham: Packt Publishing Ltd., 2018,

pp. 138 – 201.

[62] E. Alpaydin,” Linear Discrimination”, Introduction to Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2004, pp. 187-

188.

[63] Bottou L. (2012) Stochastic Gradient Descent Tricks. In: Montavon G., Orr G.B.,

Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in

Computer Science, vol 7700. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-35289-8_25

[64] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual

pattern recognition”. Neural Netw. Vol 1. pp. 119–130, Mar. 1988.

[65] T. Watanabe and H. Iima, “Nonlinear Optimization Method Based on Stochastic

Gradient Descent for Fast Convergence,” in 2018 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), Oct. 2018, pp. 4198–4203,

doi:10.1109/SMC.2018.00711

[66] L. Alzubaidi, et al. "Novel Transfer Learning Approach for Medical Imaging

with Limited Labeled Data." Cancers, vol. 13(7), pp. 1590, Mar. 2021.

[67] AISmartz, Nov 25, 2019, “https://www.aismartz.com/blog/an-introduction-to-

transfer-learning/”

https://doi.org/10.1007/978-3-642-35289-8_25

82

[68] L. Torrey, & J. Shavlik, “Transfer Learning”, in Handbook of Research on

Machine Learning Applications and Trends: Algorithms, Methods, and

Techniques, Eds. IGI Global, 2010, pp 242-264. http://doi:10.4018/978-1-

60566-766-9.ch011

[69] S.J. Pan, and Y. Qiang, "A survey on transfer learning." IEEE Transactions on

knowledge and data engineering, vol. 22(10), pp. 1345-1359, Oct. 2009.

[70] K. R. Weiss, and T. M. Khoshgoftaar. "An investigation of transfer learning and

traditional machine learning algorithms." IEEE 28th International Conference

on Tools with Artificial Intelligence (ICTAI). IEEE, 2016.

[71] J. Nam, S.J. Pan, S. Kim, “Transfer defect learning”, Proceedings of the 2013

International Conference on Software Engineering, IEEE Press (2013), pp. 382-

391

[72] M. Sandler, et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks.”

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.

4510-4520.

[73] P. Mooney,” Blood Cell Images: 12,500 images: 4 different cell types”,Kaggle,

2017. Available: https://www.kaggle.com/paultimothymooney/blood-cells

[74] M. Kamal, “CNN Train(0.99)- Val(0.98) - Test(0.986)”, Kaggle, 2020.

Available: https://www.kaggle.com/mohamedkamal77/cnn-train-0-99-val-0-98-

test-0-986

http://doi:10.4018/978-1-60566-766-9.ch011
http://doi:10.4018/978-1-60566-766-9.ch011
https://www.kaggle.com/paultimothymooney/blood-cells

83

Appendix 1 – Python source code for Libraries and

Framework Selection

This appendix and the following one provide the essential Python source code that has

been used in this MSc thesis work.

import numpy as np

import pandas as pd

from scipy.spatial import distance as dist

import matplotlib.pyplot as plt

import os

import cv2

import seaborn as sns

from tqdm import tqdm

from sklearn.utils import shuffle

from sklearn import decomposition

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, confusion_matrix

import tensorflow as tf

import keras

from keras.applications.vgg16 import VGG16

from keras.preprocessing import image

from keras.applications.vgg16 import preprocess_input

from keras.models import Sequential, Model

from keras.initializers import he_normal

from keras.layers import Lambda, SeparableConv2D,

BatchNormalization, Dropout, MaxPooling2D, Input, Dense,

Conv2D, Activation, Flatten

from keras.callbacks import EarlyStopping, ReduceLROnPlateau,

ModelCheckpoint

import imutils

84

Appendix 2 – Python Source Code for Image Pre-Processing

1. Function for locating desired object

def findEdges(image):
 # find edges in image
 gray = cv2.GaussianBlur(image, (1, 1), 0)

 edged = cv2.Canny(gray, 100, 400)

 edged = cv2.dilate(edged, None, iterations=1)
 edged = cv2.erode(edged, None, iterations=1)
 return edged

def getImgContours(edged):
 # find contours in the edge map
 contours = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

 contours = imutils.grab_contours(contours)

 contours = sorted(contours, key=lambda x: cv2.contourArea(x))
 return contours

def getBoxes(contours, orig):
 # get the boxes
 boxes = []

 centers = []

 for contour in contours:
 box = cv2.minAreaRect(contour)

 box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
 box = np.array(box, dtype="int")
 (tl, tr, br, bl) = box

 if (dist.euclidean(tl, bl)) > 0 and (dist.euclidean(tl, tr)) > 0:
 boxes.append(box)

 return boxes

85

2. Image Pre-processing to get Image data

Open

image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

add padding to the image to better detect cell at the edge
image =

cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_CONSTANT,value=[198, 203,

208])

#thresholding the image to get the target cell

image1 = cv2.inRange(image,(80, 80, 180),(180, 170, 245))

openning errosion then dilation

kernel = np.ones((3, 3), np.uint8)
kernel1 = np.ones((5, 5), np.uint8)
img_erosion = cv2.erode(image1, kernel, iterations=2)

image1 = cv2.dilate(img_erosion, kernel1, iterations=5)

#detecting the blood cell
edgedImage = findEdges(image1)
edgedContours = getImgContours(edgedImage)
edgedBoxes = getBoxes(edgedContours, image.copy())

if len(edgedBoxes)==0:
 count +=1

 continue

draw the contour and fill it

mask = np.zeros_like(image)
cv2.drawContours(mask, edgedContours, len(edgedContours)-1, (255,255,255),

-1)

all pixel outside inside the contour is zero

image[mask==0] = 0

extract blood cell

image = image[min_y:max_y, min_x:max_x]

if (np.size(image)==0):
 count +=1

 continue
resize image

image = cv2.resize(image, image_size)

86

Appendix 3 – Python Source Code for Convolutional Block

Design

First Conv block

model1.add(Conv2D(16 , (3,3) , padding = 'same' , activation = 'relu' ,

input_shape = (120,120,3)))
model1.add(Conv2D(16 , (3,3), padding = 'same' , activation = 'relu'))
model1.add(MaxPooling2D(pool_size = (2,2)))

Second Conv block

model1.add(SeparableConv2D(32, (3,3), activation = 'relu', padding = 'same'))
model1.add(SeparableConv2D(32, (3,3), activation = 'relu', padding = 'same'))
model1.add(BatchNormalization())

model1.add(MaxPooling2D(pool_size = (2,2)))

Third Conv block

model1.add(SeparableConv2D(64, (3,3), activation = 'relu', padding = 'same'))
model1.add(SeparableConv2D(64, (3,3), activation = 'relu', padding = 'same'))
model1.add(BatchNormalization())

model1.add(MaxPooling2D(pool_size = (2,2)))

Forth Conv block

model1.add(SeparableConv2D(128, (3,3), activation = 'relu', padding = 'same'))
model1.add(SeparableConv2D(128, (3,3), activation = 'relu', padding = 'same'))
model1.add(BatchNormalization())

model1.add(MaxPooling2D(pool_size = (2,2)))

model1.add(Dropout(0.2))

Fifth Conv block

model1.add(SeparableConv2D(256, (3,3), activation = 'relu', padding = 'same'))
model1.add(SeparableConv2D(256, (3,3), activation = 'relu', padding = 'same'))
model1.add(BatchNormalization())

model1.add(MaxPooling2D(pool_size = (2,2)))

model1.add(Dropout(0.2))

FC layer

model1.add(Flatten())

model1.add(Dense(units = 512 , activation = 'tanh'))
model1.add(Dropout(0.7))

model1.add(Dense(units = 128 , activation = 'tanh'))
model1.add(Dropout(0.5))

model1.add(Dense(units = 64 , activation = 'tanh'))
model1.add(Dropout(0.3))

Output layer

model1.add(Dense(units = 4 , activation = 'softmax'))

Compile

model1.compile(optimizer = "adam" , loss = 'sparse_categorical_crossentropy' ,

metrics = ['accuracy'])

87

Appendix 4 – Python Source Code for Transfer Learning

Model Design

#Download pre-trained model

datagen =

ImageDataGenerator(horizontal_flip=True,vertical_flip=True,rotation_

range=20,zoom_range=0.2,

width_shift_range=0.2,height_shift_range=0.2,shear_range=0.1,fill_mo

de="nearest")

pretrained_model =

tf.keras.applications.MobileNetV2(input_shape=(120,120,3),include_to

p=False,weights='imagenet',pooling='avg')

pretrained_model.trainable = False

#defining input and output of the model

inputs = pretrained_model.input

x = tf.keras.layers.Dense(128,

activation='relu')(pretrained_model.output)

outputs = tf.keras.layers.Dense(4, activation='softmax')(x)

model = tf.keras.Model(inputs=inputs, outputs=outputs)

#Model compile

model.compile(

 optimizer = 'adam' ,

 loss = 'sparse_categorical_crossentropy' ,

 metrics = ['accuracy']
)

print(model.summary())

#Train the model

history =

model.fit(datagen.flow(train_images,train_labels,batch_size=32),

 validation_data=(val_images,val_labels), epochs=50)

get_acc = history.history['accuracy']

value_acc = history.history['val_accuracy']

get_loss = history.history['loss']
validation_loss = history.history['val_loss']

88

Appendix 5 – Python SourceCode for Inference on SBC

for img in imageList:
 class_labels = ['EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL']
 nb_classes = len(class_labels)
 image_size = (120,120)

 #Preprocessing of input image

 image = img

 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 image = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_CONSTANT,value=[198, 203,

208])

 image1 = cv2.inRange(image,(80, 80, 180),(180, 170, 245))

 kernel = np.ones((3, 3), np.uint8)
 kernel1 = np.ones((5, 5), np.uint8)
 img_erosion = cv2.erode(image1, kernel, iterations=2)

 image1 = cv2.dilate(img_erosion, kernel1, iterations=5)

 #detecting the blood cell
 edgedImage = findEdges(image1)
 edgedContours = getImgContours(edgedImage)
 edgedBoxes = getBoxes(edgedContours, image.copy())

 # get the large box and get its cordinate
 last = edgedBoxes[-1]

 max_x = int(max(last[:,0]))
 min_x = int(min(last[:,0]))
 max_y = int(max(last[:,1]))
 min_y = int(min(last[:,1]))

 # draw the contour and fill it
 mask = np.zeros_like(image)
 cv2.drawContours(mask, edgedContours, len(edgedContours)-1, (255,255,255), -1)

 # any pixel but the pixels inside the contour is zero
 image[mask==0] = 0

 # extract th blood cell
 image = image[min_y:max_y, min_x:max_x]

 # print(image)
 if len(image) == 0:
 break
 image = cv2.resize(image, image_size)

 image = np.array(image, dtype = 'float32')

 img = image / 255.0

 img = np.expand_dims(img, axis=0)

load the trained model

 tflite_model_path = "/content/MyDrive/model.tflite"

 Bloodcell_interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
 Bloodcell_interpreter.allocate_tensors()

89

#check the input and output formate

 input_details = Bloodcell_interpreter.get_input_details()

 output_details = Bloodcell_interpreter.get_output_details()

 print(input_details)

 input_shape = input_details[0]['shape']
 print(input_shape)

 Bloodcell_shape = input_details[0]['shape']

 input_data = img

#Alocate tensor

Bloodcell_interpreter.set_tensor(input_details[0]['index'], input_data)

 time1=time()
 Bloodcell_interpreter.invoke()

 time2=time()
 classification_time = np.round(time2-time1, 3)
 totalTime = totalTime + classification_time

 print("Classificaiton Time =", classification_time, "seconds.")

#predeiction

 Bloodcell_preds = Bloodcell_interpreter.get_tensor(output_details[0]['index'])

 print("%%% " , str(np.round(Bloodcell_preds[0][Bloodcell_preds.argmax()] * 100,

3)) + "%")

 Bloodcell_label = class_labels[Bloodcell_preds.argmax()] #Find the label
 dic[Bloodcell_label] = dic[Bloodcell_label] + 1

90

Non-exclusive licence for reproduction and publication of a

graduation thesis1

I Md Raisul Islam

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Classifying Medical Images on an Edge Device: A Deep Learning Approach

Applied to Blood Cells”, supervised by Prof. Yannick Le Moullec

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. To be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

[03.01.2022]

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

