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Abstract 

In modern times, medical imaging is one of the most important components of clinical 

research and diagnosis. Compared to conventional radio image processing, Deep 

Learning (DL) becomes one of the most popular and well-known alternatives for medical 

image processing due to its robust automated processing capability and less human 

intervention. In this pape, the suitability of DL method for classifying microscopic 

medical images is investigated, especially four types of white blood cell images, namely: 

eosinophils, monocytes, lymphocytes and neutrophils, where the inference phase is 

performed on a single board computer (SBC).  

 

Two different DL models are proposed to solve this classification problem. The first 

model was developed from scratch by careful selection of hyperparameters, while the 

second model uses a transfer learning approach where an already trained model 

(MobileNetV2) is used for training and validation. A Kaggle dataset of 12500 images is 

used to develop these models.  

 

For the first model, the training and validation accuracies are 99% and 97% respectively, 

with an overall classification accuracy of 97.77%. The performance of the second model 

is slightly lower than the first, with training and validation accuracies of 92% and 87%, 

respectively. The overall classification accuracy of this model is 92%, but the individual 

accuracies are 86.15%, 97.71%, 92.5% and 92. 5% for eosinophils, monocytes, 

lymphocytes and neutrophils, respectively. 

 

Finally, the two models were minimized and deployed on an RPI4 SBC and used for 

classification inference. On this SBC, the overall accuracy is 98.54% for the first model 

and 91.3% for the second model. The classification times are measured to be 48.2 ms and 

142 ms, respectively. Thus, the first model outperforms the second model as expected.  

 

This thesis is written in English language and is 90 pages long and includes 6 chapters, 

42 figures and 11 tables.
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Annotatsioon 

Meditsiiniliste kujutiste klassifitseerimine servaseadmel: vererakkudele 

rakendatud sügavõpe lähenemisviis 

Kaasaegsel ajastul kliiniliste uuringute ja diagnoosimise üheks olulisemaks osaks on 

meditsiiniline kujutise töötlemine.Võrreldes tavapärase raadiopilditehnoloogiaga on 

sügavõpe (DL) muutumas üheks silmapaistvamaks ja populaarsemaks alternatiiviks 

meditsiinilise pilditöötluse vahendiks tänu oma tugevale automatiseeritud töötlusvõimele 

ja väiksemale inimese sekkumise vajadusele.See lõputöö uurib sügavõpe metoodika 

sobivust mikroskoopiliste meditsiiniliste kujutiste klassifitseerimiseks nelja tüüpi valgete 

vereliblede kujutiste näitel, nimelt: eosinofiilid, monotsüüdid, lümfotsüüdid ja 

neutrofiilid, millest järeldusfaas teostatakse monoplaatarvutil (SBC). 

Selle klassifitseerimisprobleemi lahendamiseks pakutakse välja kaks erinevat sügavõpe 

mudelit (or  DL-mudelit). Esimene mudel töötatakse välja nullist, valides hoolikalt 

hüperparameetreid, aga teine mudel kasutab ülekande õppimise lähenemisviisi, mis 

kasutab õppimiseks ja kinnitamiseks eelõpetatud mudelit (MobileNetV2). Nende 

mudelite väljatöötamiseks kasutatakse 12500 kujutisega Kaggle'i andmekogumit. 

Esimese mudeli puhul on õpe ja valideerimise täpsus vastavalt 99% ja 97%, üldise 

klassifitseerimise täpsusega 97,77%.Võrreldes esimesega on teise mudeli jõudlus veidi 

madalam, selle õpe ja valideerimistäpsus on vastavalt 92% ja 87% ning mudeli üldine 

klassifitseerimise täpsus on 92%. Kusjuures individuaalsed täpsused on eosinofiilide, 

monotsüütide, lümfotsüütide ja neutrofiilide puhul vastavalt 86,15%, 97,71%, 92,5% ja 

92,5%. 

Lõpuks on need kaks mudelit teisendatud ja kasutusele võetud RPI4 monoplaatarvutil ( 

or SBC) klassifitseerimise järelduste tegemiseks. Tulemusena on esimese mudeli üldine 

täpsus 98,54% ja teise mudeli puhul 91,3%. Klassifitseerimisajad on mõõdetud vastavalt 

48,2 ms ja 142 ms. Seega ületab esimene mudel ootuspäraselt teist mudelit. 

See lõputöö on kirjutatud inglise keeles ja on 90 lehekülge pikk, sisaldab 6 peatükki, 42 

joonist ja 11 tabelit.
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List of abbreviations and terms 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 
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DL Deep Learning 

DSC Depth-wise Separable Convolution 
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MRI Magnetic Resonance Imaging 

PSC Point-wise Separable Convolution 

ReLU Rectified Linear Unit 

RGB Red Green Blue 

RPI Raspberry Pi 

SBC Single Board Computer 

SGD Stochastic Gradient Descent 

SVM  Support Vector Machine 

TL Transfer Learning 

TPU Tensor Processing Unit 

US Ultra Sound 

WBC White Blood Cell 
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1 Introduction 

In the modern history of clinical research and diagnosis, medical image analysis plays a 

very important role in detecting abnormalities in the human body [1]. Based on the 

different parts of the body, medical images can be divided into different segments. Figure 

1 shows some of the areas where medical images are used as an important tool for 

diagnostic purposes. 

 

Figure 1: Different sectors of medical image for diagnostic purpose 

 

Traditionally, medical imaging mostly uses various kinds of radio imaging technologies 

such as X-ray, ultrasound (US), computed tomography (CT), and magnetic resonance 

imaging (MRI), in which the scanned image of the abnormal area has been gathered and 

abnormality has been detected by a trained physician [2]. This usually requires pattern 

recognition and detection by human intervention. Thus, disease diagnosis using medical 

image analysis comes with a price of trained human resources to operate medical imaging 

equipment and doctor’s experience, which are very limited compared to the world 
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population. Specifically, the less-developed countries suffer from a limited number of 

both trained physicians who can operate medical imaging equipment and experienced 

doctors. This, among other reasons such as the need for improved efficiency in general, 

demands scientific exploration to introduce automation in medical image analysis for 

disease detection and diagnosis.  

Developments in Deep Learning (DL), especially in the field of neural network (NN), 

have made them a popular choice for image processing for classification and object 

detection [3]. The history of using NN for image classification dates back to 1998 when 

Lecun et al. proposed a model called 'LeNet-5' [4] for "document recognition". However, 

the major breakthrough for using NN as an image classifier came after the development 

of VggNet [5] in 2014. In this architecture, the large kernel size was replaced by 

convolutional series and was eventually called convolutional neural network (CNN). This 

successfully reduced the number of parameters, resulting in shorter classification times. 

Later, AlexNet [6] adopted rectified linear unit (ReLU) as an activation function. The 

introduction of ReLU and dropout into the architecture successfully solved the overfitting 

problem, which ultimately improved the classification accuracy. In recent days, there are 

a number of CNN architectures such as ResNet [7], GoogleNet [8] and MobileNet [9] 

which solve various DL-based classification problems and improve the accuracy, 

decrease processing time, and enhance compatibility with resource-constrained devices, 

etc. This makes CNN the heart of image classification and object recognition techniques. 

This inspired scientists to apply the DL method for medical image analysis due to its 

tremendous effectiveness in image classification and object detection [10]. Over the last 

decade, there is an exceptional surge of scientific reporting of medical image analysis 

using ML/DL method. Figure 2 shows the number of reported articles in the scientific 

literature that applied Machine Learning (ML) / DL techniques to investigate medical 

image. 

However, the review of the literature has shown that DL-based techniques for image 

classification are usually resource hungry, which require high computational power 

devices. So, again this state-of-the-art technology is stuck with the same old reachability 

problem for less-developed parts of the world. A possible solution to this problem is to 

use single board computer (SBC). SBCs have emerged as potent computational platforms 

for executing algorithms that insofar were restricted to desktop or large embedded 

platforms. These SBCs are thus attractive for the implementation of ML inference to 
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develop portable and cost-effective image classifiers. While some works have recently 

used SBCs for DL-based analysis of medical images, there is room for further exploration 

of, and experimentation with, such relatively new technologies. Considering the fact, this 

thesis will evaluate the suitability of SBC boards to run DL for medical image 

classification at the microscopic scale; the specific use-case is the classification of white 

blood cells into four types (Eosinophil, Lymphocyte, Monocyte, and Neutrophil). 

 

 

Figure 2: Number of reported articles in the scientific literature for various medical image analysis 

techniques using ML/DL techniques [11] 

 

1.1 Research Statement  

Since medical images are specific to the body parts and disease types, it is necessary that 

particular DL models are developed for each case. Therefore, one of the goal of this thesis 

is to develop a DL model from scratch that can successfully classify (white) blood cell 

images and evaluate its performance. 

However, the fundamental challenge of applying DL techniques for classification of 

medical images is data scarcity. The DL is a layered architecture where each layer consists 
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of a number of parameters to learn the pattern of the images. Thus, the higher the number 

of data that can be supplied, the more accurate the detection will be. Nevertheless, 

publicly available medical images are rare, which is one of a major obstacles to develop 

a DL model for image classification. But the development of transfer learning (see 

Section 3.4) allows to use one pre-trained DL model to solve a similar new problem. This 

eventually save time and effort to develop a new model from scratch. Thus, the second 

goal of this thesis work is to investigate the use of transfer learning for blood cell 

classification. A pre-trained model (MobileNetV2) is used for training the classification 

model and its performance will be characterized. Subsequently, it is implemented onto an 

SBC for portable image classification inference. 

Finally, the performance of SBC is evaluated in terms of accuracy and classification time 

for both models (i.e. one developed from scratch and the other based on transfer learning).  

This comparison will help us to understand the effectiveness of transfer learning process 

over the conventional DL design flow for image classification. 

Given the above, the research statement of this MSc thesis is expressed as: 

❖ Build a DL model from scratch to classify blood cell images and evaluate 

its performance 

❖ Apply transfer learning approach for model training with a pre-trained 

model and evaluate its performance 

❖ Deploy both models onto a selected SBC to classify blood cell images and 

compare their performance in terms of accuracy and classification time 

 

 

1.2 Main Steps Followed in this MSc Thesis 

Below is the process followed to conduct this thesis to address the above problem 

statement: 

➢ Study the fundamentals of DL strategies for image processing 
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➢ Explore a selected subset of suitable DL strategies and algorithms for image 

processing 

➢ Explore and select a suitable SBC platform for implementation 

➢ Train the models based on a predefined dataset 

➢ Test the models, identify and tune parameters, and evaluate the performance of 

image classification 

➢ Map the inference models onto the selected SBC and evaluate their performances 

1.3 Thesis Organization 

This thesis contains introductory knowledge and background on DL and particularly 

CNN. Among other things, a transfer leaning learning approach is adopted for model 

training by using a pre-trained model named MobileNetV2, the implementation and 

deployment details on an embedded device (i.e. SBC) are explored afterwards. This 

chapter (Chapter 1) provided an introduction to the application of DL for medical image 

analysis, research statement and the intended aim of the thesis. 

Chapter 2 delves further into the state-of-the-art related to DL based image classification 

for microscopy images and explore the usage of SBC in medical image classification.  

Chapter 3 explores a general background of the concept of DL, particularly CNN, also a 

comparatively new design approach named transfer learning is briefly discussed. 

Chapter 4 contains the methodology and implementation process adopted in this thesis 

with a detailed description of the preparation of a simple CNN model from scratch and 

by using pre-trained model, hyper parameter selection process for model design, and 

selection of hardware, framework and software libraries. The results of these processes 

and their analyses are detailed in Chapter 5. 

Finally, the last chapter gives a conclusive discussion about the work and suggest ideas 

for future work that could be carried out based on the author’s recommendations.
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2 State of the Art Review 

In the last decade, the DL method has become very popular in the scientific community 

to process medical images as it has a robust image processing capability to identify the 

underlying patterns of the images [12]. Numerous works reported in the scientific 

literature have been published using DL methodology to extract clinical information from 

medical images for disease identification. In a broader sense, the application of the DL 

methodology in medical image processing can be divided into five distinct sections, 

namely: registration, localization, classification, recognition and segmentation (see 

Figure 2). 

 

 

Figure 3: Application of DL methodology for medical image processing [12] 

 

Different scientific groups apply the DL methodology in each of the medical image 

processing areas mentioned in Figure 1. For example, in the cardiovascular field, DL is 

mainly used to segment the heart chambers [13]. The goal is to obtain a clear view of the 

heart chambers. One of the earliest attempts was made by Shelhamer et al. where a fully 

connected convolutional network was used for segmentation of the left ventricle (LV) 

[14]. Later, 3D ultrasound images were used for segmentation of LV by Dong et al. to 

obtain 3D spatial information [15]. Tran et al. used CNN architecture to segmentation of 

the right ventricle (RV) using short-axis MRI images [16]. Cardiac motion tracking is 

another area where DL methods have been used to track cardiac muscle activity. Ferdian 
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et al. applied a combination of RNN and CNN to identify the strain associated with 

myocardial motion [17]. In neuroimaging, DL based tissue classification and tumour 

detection is becoming popular. Several groups have reported various DL techniques for 

brain tumour segmentation, brain injury detection, and neural disease prediction. A recent 

work by Liu et al. proposed a novel DL approach for early detection of Alzheimer's 

disease. The accuracy of the model is 75.44%, 81.53% and 82.93% for MRI, positron 

emission tomography (PET) and MRI+PET image dataset respectively [18]. On the other 

hand, for brain tumour classification, Havaei et al. developed a deep neural model using 

the BraTS dataset, which effectively reduces the classification time with improved 

accuracy (85-88%) [19]. Intensive research is also being conducted in lung and 

mammography to develop DL methods for image processing in the respective fields. 

While the main focus in pulmonary field is to detect cancer cells [20] [21] [22], scientists 

in mammography apply DL technique to detect abnormal breast tissue for breast cancer 

diagnosis [23].  

However, in this thesis, we are concerned with blood cell classification, which falls under 

the category of microscopic imaging. A brief overview of the application of DL for 

classification of microscopy images is given in the following section. Deep Learning in 

Microscopy Image Classification 

2.1 Deep Learning in Microscopy Image Classification 

Following the trend, DL is becoming a popular method for classifying microscopic 

images. The application mainly includes two areas: cellular & sub-cellular classification 

and disease diagnosis [24]. In disease diagnosis, the DL method is mostly used to classify 

different types of histology images to obtain information about various diseases such as 

leukemia, dengue, and malaria as well as cancer cell detection [24]. Several scientific 

groups have reported their findings. One of the earlier reports by Chen et al. presents 

various learning methods such as DNN, Support Vector Machine, Native Bias etc. and 

how they were successfully used for white blood cell (WBC) detection [25]. The model 

accuracy was over 85% for all learning methods, which was 17% higher than the 

conventional size-based method. Qin et al. proposed a deep residual network-based 

classifier that can recognise leukocytes with 98.15% accuracy [26]. Shahin, et al. 

developed their own WBCsNet architecture for WBC detection, which achieves 96.1% 
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accuracy [27]. In the context of anemia diagnosis, Alzubaidi, et al. used a transfer learning 

technique for red blood cell (RBC) prediction [28]. DL is also used to detect various 

parasites in histopathology images. Hung et al. applied faster region-based CNN (R-

CNN) to identify erythrocytes infected with Plasmodium parasites causing malaria using 

the ImageNet dataset [29]. The prediction accuracy of this model is 72% for non-difficult 

infected cells. Recently, Deelder et al. used the DL technique for DNA sequencing of 

malaria parasites with 90% accuracy [30]. Moreover, there exist many scientific reports 

on mitosis detection using CNN-based architecture [31] [32] [33] [34] [35] for various 

cancers (lung, breast, prostate, etc.) in pathology. In the near past, DL based microscopy 

image processing is becoming popular in the field of imaging flow cytometry (IFC), also 

known as deep cytometry. The main focus in this field is to apply the DL technique to 

understand cellular changes [36], detect single cells [37] [38] and count T, B and NK 

types of white blood cells [39]. Table 1 lists some important works on classification of 

microscopy images with DL. 

 

Table 1: State of the art of DL based microscopic image classification 

Group Task DL technique Accuracy Year 

Chien at al [40] 
Immature WBC 

detection 

CNN + faster 

R-CNN 
90.1% 2021 

Alzubaidi, et al. [28] RBC classification CNN 99.5% 2020 

Lippeveld, et al. [41] WBC classification 

CNN + 

Traditional 

Machine 

learning 

77.8% 2020 

Khan, et al. [42] Breast cancer detection CNN 97.5% 2019 

Jha et al. [43] 
Acute Lymphocytic 

Leukaemia detection 
CNN 98.7% 2019 

Li et al. [44] 

Mitosis detection in 

breast histopathology 

image 

CNN 67.3% 2019 
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Wang et al. [45] 
Lung cancer detection 

from whole slide image 
FCN 97.3% 2019 

Qin, et al. [26] Leukocyte classification Res-Net 76.8% 2018 

Tellez et al. [46] 
Mitosis detection in 

breast region 
CNN 90.0% 2018 

Niikoa et al. [47] 
C2C12 cell 

classification 
CNN 98.0% 2018 

Durant et al. [48] 
Erythrocyte 

Classification 
CNN 92.7% 2017 

Hung et al [29] Malaria detection Faster R-CNN 72.5% 2017 

Zhang et al. [49] 
Cervical cell 

classification 
CNN 98.3% 2017 

 

2.2 Classification of Medical Image using Edge Device 

 

Image classification and recognition using DL usually requires devices with high 

computational power due to the complexity of mathematical computation and memory-

hungry learning model with millions of parameters. However, with the development of 

various relatively lightweight CNN architectures like GoogleNet, CapsNet, AlexNet, 

MobileNet, YOLO along with different post-training quantization technique and 

frameworks like 'TensorFlow Lite', the number of parameters in / size of the model is 

effectively reduced without necessarily compromising the accuracy. Moreover, the 

introduction of GPUs (Graphical Processing Unit) and TPUs (Tensor Processing Unit) 

has improved the computational performance of SBCs. While the training phase is still 

computationally demanding, the above opens up the possibility of using various SBCs 

such as Raspberry Pi, Coral Dev, Jetson Nano and even smartphones in DL-based 

application for the inference phase of image classification and object recognition 

applications. This inspires researchers in the medical field to use SBC for medical image 

classification for early detection and diagnosis of diseases, taking the advantage of low-

cost and portable solution. In recent years, much has been reported in the scientific 

literature on the use of edge devices for medical image classification for disease 

diagnosis. Table 2 enlist some of the recent work. 
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Table 2: DL based medical image analysis by edge device 

Group Task Edge Device 

Negh et al. [50] 

Detection of skin cancer. 

MobileNetV2 is used for detection 

and U-Net is used for segmentation 

Raspberry Pi 3B+ 

Lavanya et al. [51] 

Classification and detection of 

Diabetic Retinopathy. CNN model 

has been developed. Kaggle data set 

is used 

Raspberry Pi 3 

Abid et al. [52] 

Developed ML model to classify of 

chest X-Ray image for various lung 

disease. 

NVIDA Jetson Nano, 

Raspberry Pi 3B+, 

Google Pixel, and 

Samsung Galaxy S10+ 

Krömer et al. [53] 
Covid-19 detection using chest X-ray 

images. 
NVIDA Jetson Nano 

Javier et al. [54] 
Eye fundus image segmentation for 

glaucoma detection 

Raspberry Pi 4B, 

Coral Dev board 
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3 Deep Learning: An overview 

ML, essentially described as a subfield of artificial intelligence (AI), is one of the most 

revolutionary areas of computer science in recent decades. As shown in Figure 4, DL 

belongs to a subclass of NN (itself a subclass of ML), the most important class of machine 

learning in AI taxonomy [55]. 

 

Figure 4: The taxonomy of AI. AI: Artificial Intelligence, ML: Machine Learning, NN: Neural Network, 

DL: Deep Learning, SNN: Spiking Neural Network [55] 

 

Traditionally, ML provides a computational facility to solve a problem through learning. 

In general, various mathematical models have been developed to train a system to produce 

useful results based on input data. The result obtained during training is known as 

knowledge or experience. Based on the training data, the system predicts the output using 

various optimization algorithms. 

Unlike the traditional ML, DL is not a specific method but a set of different techniques 

that usually involve multiple layers of nonlinear information processing units. These 

multilayer nonlinear information processing units are called artificial neurons. Different 

network architectures of these neurons are collectively called Deep Neural Network 

(DNN) which form the backbone of the DL method for learning and prediction. 
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3.1 Types of DL Approach 

Based on the state of input data, the DL approaches are categorised into three basic 

categories which are shown in Figure 5 and discussed in what follows. 

 

Figure 5: Types of DL Approach [55] 

 

3.1.1 Deep Supervised Learning 

In deep supervised learning, the input data is labelled in advance. In the training phase, a 

direct relationship between the input and the output is explicitly specified so that the 

model can learn over time. Later, when a new input is fed into the model, it predicts the 

accuracy of the output based on the loss function and adjusts it by minimising the error 

as long as it does not reach the minimum value. CNN is one of popular architecture of 

this class; CNN has been adopted to develop the model in this work. 

3.1.2 Deep Unsupervised Learning 

In deep unsupervised learning, the training datasets are not labelled. So, there is no direct 

relationship between input and output, but the system analyses the input, decomposes it 

and recognises the common function for all input data [56]. Some of the widely used 

techniques are Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and the 

recently developed GAN [57]. 
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3.1.3 Deep Reinforcement Learning 

Trial-and-error is the main idea behind Reinforcement Learning (RL). The training phase 

is designed based on a reward policy. The rewards are divided into positive and negative 

observations. When the model interacts with the target system, it receives these positive 

or negative feedbacks (rewards). While the positive reward 'reinforces' into the model and 

is considered as 'knowledge', the negative feedback is usually blocked [58]. This process 

is carried out until enough information about the target environment has been gathered to 

operate on it. Fig. 3 shows the principles of the RL strategy. 

 

Figure 6: Reinforcement learning strategy [59] 

 

Deep RL (DRL) combines RL and deep learning (for example NNs). DRL can work with 

unstructured input data and agents can perform decision-making about such data without 

manually specify the state space. As a result, DRL can work with very large inputs, 

making suitable e.g. for images. 

3.2 Deep Neural Network (DNN) 

A DNN is a subset of an ANN that consists of a series of interconnected computational 

units. These units are often referred to as nodes or neurons. As these neurons are 

organized into layers, a DNN is also known as multi-layered perceptron (MLP). In DNN, 

the input data passes through of a series of hidden layers where it transforms through 

various mathematical algorithms to recognize the underlying pattern of the input data. 

This process of pattern recognition is called training. After pattern recognition, the 
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outputs are compared by an objective function. Throughout the training process, the 

parameters of the network are tweaked consistently to discover the underlying pattern. 

This network can be used to make predictions for new unseen data, once the pattern is 

identified. Figure 7 shows the general DNN architecture. 

 

 

Figure 7: Illustration of a DNN architecture [60] 

 

3.2.1 DNN Training: Approaches & Parameters  

Some of the important procedures and parameters related to DNN-based training are 

briefly described in following subsections. 

3.2.2 Gradient Descent (GD) 

The gradient descent is the first-order optimization approach [61]. This process detects 

the local minima of the objective function for which reason it is widely used in DNN 

training. The detail of this algorithm is mentioned in reference [62]. 

3.2.3 Stochastic Gradient Descent (SGD) 

Unlike GD, SGD determines the gradient of an objective function or cost function for a 

single batch for each iteration. This significantly reduces the training time. However, the 

gradient result is only an estimate for updating the weights, which are later fitted to the 

model by multiplying by a constant called the learning rate. In SGD, the weights are 

updated after each mini-batch is submitted to the algorithm [63]. 
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3.2.4 Learning Rate (η) 

The learning rate is an essential element for DNN training. It determines the step size 

during training. Therefore, the choice of the value for the learning rate is crucial as the 

training time is closely related to it. This is because a larger value for η may cause the 

network to diverge instead of converging, while a smaller value may cause the network 

to take longer to converge. Moreover, the network may be stuck in its local minima. 

Generally, learning rate reduction policies are: constant, factored, and exponential decay. 

First, the learning rate is minimized with a defined step function. Then, the learning rate 

can be tuned with the following Equation (1) [55]: 

                                                        ƞ𝑡 = ƞ0𝛽(
𝑡

𝜀
)
                                                      (1) 

where ηt is the tth round learning rate,  

η0 is the initial learning rate, 

β is the decay factor with a value between the range of (0, 1) 

3.2.5 Non-linear Neural Units (Activation Functions) 

To overcome computational rigidity, there is an urge to introduce nonlinearity into the 

network. This is because linear transformation is not always suitable to deal with complex 

data patterns. Therefore, the linear weighted sum of inputs is paired by a nonlinear 

function to introduce nonlinearity into the neural unit. This nonlinear function is called 

the activation function. There are several types of activation function used in DNN 

training which is mentioned in Table 3. 

Table 3: List of Non-linear Functions (activation functions) 

Name Equation Graphical Characteristics 

Binary 

threshold 
𝑓(𝑥) = {

1, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Sigmoid 𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

 

Tanh 𝑓(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

Rectified 

Linear Unit 

(ReLu) 

𝑓(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 max {0, 𝑥}

 

 

 

Leaky 

ReLU 
𝑓(𝑥) = max (𝑎𝑥, 𝑥) 

 

 

Exponential 

Linear Unit 

(ELU) 

𝑓(𝑥) = {
𝑥, 𝑥 ≥ 0

𝑎(𝑒𝑥 − 1), 𝑥 < 0}
 

 

 

Softmax Activation Function: In classification problem of a DNN with k classes (k > 

2), the conditional probability distribution 𝑃(𝑥|𝑦) is needed to determine where in the 

output layer k neurons should be located whose sum of all weight values should be 1. To 

equip the network with the knowledge that the output of all k units should sum to 1, the 

activation function Softmax is used. This is a generalization of sigmoidal activation. The 

Softmax function compresses the output of each unit so that it is between 0 and 1, just as 

a sigmoidal function would. The Softmax function is defined by Equation (2) [21]: 
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𝜎(𝑧𝑗) =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
                                                         (2) 

where, z is a vector of the input to the output layer  

j indexes the output units,  j = 1, 2, ..., K 

3.2.6 Loss Function 

The loss function provides a comparison between the output of a neural network and the 

target values in the training. It produces a loss value/score to measure the accuracy of the 

network's predictions with the expected output. Below are a few popular loss functions 

[61] [62]: 

➢ Binary cross-entropy: “supply the log loss or cross-entropy loss for the two-class 

classification problem”. 

➢ Categorical cross-entropy: use the generalized cross-entropy for class-size>2 

➢ Mean Squared Error: calculate the mean squared sum error. This is often used 

for various regression problems.  

➢ Mean Absolute Error (MAE): Errors are calculated by squaring their values.  

➢ Mean Absolute Percentage Error: Measures the magnitude of the error as a 

percentage. 

➢ Kullback-Leibler (KL) Divergence: It is a probabilistic approach. The method 

calculates the deviation of probability distribution between each step. 

3.2.7 Adaptive Learning Rate 

Depending on the requirement, it is sometimes necessary to update the parameters at 

different rates instead of using a constant learning rate. Therefore, several types of 

adaptive gradient descent algorithms provide a resort to the classical SGD, by maintaining 

per-parameter learning rates. This often comes under the optimization process. Below are 

some of the popular optimization algorithms used in a DNN framework: 

➢ AdaGrad: To adjust the learning rate, the algorithm first squares all the gradient 

values. Then it adds those square values and square roots to the sum. Finally, it 
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inverts the value obtained from the square root operation. In this way, larger 

moves are made in the gently sloping direction of the error surface. However, 

using this trick at the very beginning of training can cause some of the learning 

rates to drop dramatically [61].  

➢ RMSprop: It is a modified AdaGrad algorithm. It adopts the Exponentially 

Weighted Moving Average (EWMA) technique. It has a moving average 

parameter ρ that controls the length and scale of the moving average [62]. 

➢ Adaptive Moments (Adam): This algorithm is a combination of two different 

algorithms to detect the gradient. First, it extracts the best value results from 

momentum algorithm. Then it combines with the adaptive learning rate algorithm 

output [61]. 

3.2.8 Overfitting and Underfitting in DNN  

Generally, in any DL model, the training dataset is divided into three subclasses: training, 

testing, and validation. Typically, the validation error is slightly higher than the training 

error. However, overfitting occurs if the difference between test and validation rises with 

iterations. In contrast, if the training error no longer decreases to a sufficiently low value, 

the issue is described as underfitting. 

There are several techniques to overcome this over- and under-fitting problem which is 

known as regularization of the model. Below are the brief descriptions of such techniques: 

➢ Weight Sharing: In this strategy, different layers in the network using the same 

set of weights results in fewer parameters to regulate. Using shared weights in a 

few layers helps the model generalize better by controlling model capacity [61]. 

➢ Weight Decay: L2 regularization approach used in this case. It is a good tool to 

generalize the network and it also helps to deal with the overfitting problem [61]. 

➢ Dropout: Dropout is an averaging technique that randomly masks the output of a 

fraction of nodes from a layer by setting their output to zero during the forward 

pass. It removes a fraction of nodes from a layer and creates a new neural network 

with fewer nodes. Typically, 20% nodes are dropped out at the input layers where 

in hidden layers, and up to 50% fractions of nodes can be dropped [55]. 
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➢ Batch Normalization: In this strategy, the activation layers are normalized by 

subtracting the mean and dividing it by the standard deviation for each training 

batch. This process periodically changes the value of activation layer. For every 

batch it reduces the mean to zero mean and standard deviation to one which results 

in an increase in the training speed and reduces the dependency on parameter 

initialization [55]. 

3.3 Convolutional Neural Network (CNN) 

The Convolutional Neural Network (CNN) is the most popular DNN architecture for 

pattern recognition with a high degree of invariance to translation, scaling, and rotation 

in two-dimensional image data. It is a multilayer hierarchical neural network first 

proposed by Fukushima in 1988 [64]. Compared to other ANN architectures, the CNN 

has a clear advantage due to its more human-like visual processing, optimized structure, 

and effective learning and extraction of 2D features. In addition, absorbing gradient-based 

learning algorithm results in minimal error introduction into the network and allows the 

CNN to produce highly optimized weights during the training phase. The input to a CNN 

is arranged in a lattice-like structure. This preserves the spatial relationships [65] between 

the layers. Moreover, it operates on a small region of the previous layer. In a CNN 

process, the input passes through a series of convolutional layers and activation layers 

where the weights of the data are determined. Later, pooling layers determine the weights 

required for feature extraction. Then backpropagation and gradient descent algorithm are 

used to train the system based on the weights extracted from the previous layer. Finally, 

a fully concatenated layer is used to determine the output. 

3.3.1 Building blocks of CNN 

Figure 8 shows the overall architecture of a CNN which consists of three major parts: 

convolutional layers, pooling/sub-sampling layer, and fully connected/classification 

layer. 
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Figure 8: Building blocks of a typical CNN. A slight modification of a figure in [60], courtesy of the 

author. 

 

(i) Convolutional layers:  This is the first layer of a CNN architecture. In this layer, 

convolution between previous layers is performed with different learnable kernels 

[55]. The output thereof then passes through various activation functions 

mentioned in Section 5.2.1.4. That generates the output features. Later, each of 

these output features is compared with input features to discover the cohesion 

between the input and the output, which is known as weight-sharing [55]. 

Equation 3 describes the operation of the convolution layer:                                                       

                                                  𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1 ∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖𝜖𝑀𝑗

)                               (3) 

 

where 𝑥𝑗
𝑙 is the output of the current layer, 

 𝑥𝑗
𝑙−1 is the previous layer output, 

 𝑘𝑖𝑗
𝑙  is the kernel for the present layer, 

 𝑏𝑗
𝑙  is the biases for the current layer, 
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 𝑀𝑗  is the selection of input maps. 

 

A bias b has been introduced in this layer to direct the operation. Finally, the 

output go through a linear or non-linear activation function. 

(ii) Sub-sampling Layer: The subsampling plane performs the downsampling 

operation on the input maps. This layer is commonly known as the pooling layer. 

In this layer, the number of input and output feature maps remains unchanged. 

The downsampling operation effectively reduces the dimension of the output 

maps based on the size of the mask [54] [55]. This process can be formulated as 

per Equation (4): 

                                                           𝑥𝑗
𝑙 = 𝑑𝑜𝑤𝑛(𝑥𝑖

𝑙−1)                                          (4) 

 

where down(.) stands for subsampling function. Mostly, two types of pooling 

strategies are used for dimension reduction. The first one is max-pooling, where 

the highest value of the segmented grid is used. The second one is average 

pooling, where the average value from the segmented part is considered. Figure 9 

shows the pooling operation in detail. 
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Figure 9: Process of Max pooling and Average pooling. 

 

(iii) Classification Layer: The classification layer is the last layer of the CNN 

architecture. It receives the inputs from the last convolutional layer where all the 

features of the inputs are extracted and the feature is determined. The 

classification layer then assigns all these features to the individual neurons and 

evaluate the score of each class based on this extraction. Afterwards, the 

classification is done using the Softmax algorithm based on the probability points 

obtained from the operation [60]. Therefore, the output of a CNN is often given 

in terms of probabilities. For example, if a model is developed to recognise a car 

in an image, the probability of a successful prediction could be e.g. 95% or more. 

If the model contains multiple classes, the output will also contain a small 

probability value (e.g. 1-5%) for the remaining classes. 

3.4 Transfer Learning 

In recent years, tremendous research and development in the ML field has resulted in the 

ML model being more robust, lightweight, and efficient in pattern analysis. This has led 
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to almost every industry using the ML method, from the medical industry to social media 

to finance, to identify the underlying pattern of the user class. This leads to a problem 

with the classic ML method, as the training is strictly task-specific and a separate model 

must be created for each problem. Also, there is a possibility that there is not enough data 

to train a new model. Transfer learning (TL) provides a solution to this problem, as the 

main idea behind it is to use the experience (trained parameters) of a previously trained 

model and apply this experience to solve a similar new task [66]. Figure 10 shows the 

concept of transfer learning in contrast to the conventional ML method 

 

 

Figure 10: Comparison between traditional ML and Transfer learning methodology. This image has been 

regenerated using [67] 

 

Normally, the transfer learning technique facilitates the learning mechanism by 

enhancing the baseline performance, effectively reducing the model creation time and 

achieving better final output. Figure 11 summarizes the key advantages of transfer 

learning. 
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Figure 11: Probable advantages of transfer learning [68] 

 

3.4.1 Transfer Learning Approaches 

Transfer learning is often considered a design approach rather than a DL technique. These 

approaches can be broadly divided into two classes: domain-based and feature specs 

based. Pan and Yang (2010) [69] describe in detail the domain-based approach, dividing 

the TL method into four classes: Instance Transfer, Feature Representation Transfer, 

Parameter Transfer, and Relational Knowledge Transfer. In addition, Weiss et al. in their 

study provided a detailed description of the feature-spaces based methodology, dividing 

the methodology broadly divided into two main categories, homogeneous and 

heterogeneous [70]. In a more recent study, Nam et al. studied the feature-based approach 

extensively and classify the heterogeneous approach into two parts: symmetric and 

asymmetric; based on the dependencies between source and target domains [71]. Figure 

12 shows the overall categorization of such classes.  
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Figure 12: Transfer learning approaches. This figure has been generated by author inspired from 

[69],[70],[71] 

 

3.4.2 Transfer Learning using Pre-trained Models 

Over the last decade, there has been a tremendous development in creating DL models 

with a high degree of accuracy. These models have been trained on millions of pieces of 

data using high performance computers. This opens up the possibility to use these models 

to solve similar tasks using the transfer learning approach. The idea behind this is to use 

the knowledge learned from the readily available model and apply it to solve an analogous 

task that suffers from data scarcity. Some of these popular CCN models are AlexNet, 

GoogleNet, VGG, MobileNet, and Tensorflow-model-maker which have been used 

extensively in object recognition and image classification problems. 

In general, using a pre-trained model means using the weights (also known as features) 

that have been berthed in different activation layers. This process is called deep feature 
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extraction. The other method is fine-tuning, where the input and convolution layers are 

left unchanged, and the final layer is optimized to represent the features of the new 

dataset. Then the old model is re-trained for the target task to produce updated weights. 

Fine-tuning is commonly used to solve problems in the same domain. 

Using a pre-trained model often shortens the training time since all parameters do not 

need to be estimated from scratch. Compared to higher layers, the lower layer contains 

more generalized features that can be easily used for a newer task. Therefore, reusing an 

existing model is often very convenient to solve an analogous problem. 

3.5 MobileNetV2 

MobileNetV2 is one of the most popular CNN architectures designed specifically for 

resource-constrained devices for real-time detection. This architecture was first proposed 

by Google [72] in 2019. It is an updated version of MobileNetV1. This architecture is an 

improved version of RestNet, where a new layer called Inverted Residual Block has been 

introduced instead of Residual Block. It also uses depth-wise separable convolution 

which effectively minimizes the model parameter to 3.4 million, which is much lower 

than its competitors such as SuffleNet, NasNet, etc. [72]. This reduces the model size and 

makes MobileNetV2 a better candidate for lightweight device applications [72]. The 

backbone of this model is the inverted residual block along with the depth-wise separable 

convolution and linear bottleneck block. Below is a brief description of each of these 

elements. 

3.5.1 Depth-wise Separable Convolution 

Depth-wise separable convolution is the backbone of any EfficientNet architecture. The 

process consists of a 3×3 depth-wise convolution followed by a 1×1 pointwise 

convolution [72]. In this pointwise convolution, the previous steps are summed, and a 

new result is generated without changing the dimension. The comparison between the 

normal, depth-wise and depth-wise separable convolution is described in Figure 13. 
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Figure 13: Different type of convolutional operations (a) normal; (b) depth-wise; (c) depth-wise spatial 

convolution. Image is recreated by the author, inspired from [72]. 
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3.5.2 Linear Bottleneck 

Bottleneck block was first proposed by He et al., which effectively reduces the training 

time by reducing the dimension of the input image and performing a 1×1 convolution at 

the beginning [72]. Then, the actual 3×3 convolution is performed, which then undergoes 

by a 1×1 convolution to obtain the same feature dimension in the output (see Figure 14). 

However, this non-linear ReLU operation just before the output layer affects the output 

performance as it suppresses all weights smaller than zero and causes a loss of 

information. In MobileNetV2, this nonlinear convolutional block has been eliminated, 

resulting in improved performance [72]. Since the non-linear block is no longer present, 

it is referred to as a linear bottleneck. 

 

 

Figure 14: Linear bottleneck operation. 

 

3.5.3 Inverted Residual Block 

The inverted residual block performs the reverse operation of the bottleneck block. 

Instead of shrinking the input, it expands the input data by multiplying it by an expansion 

factor. The idea behind designing this block is to improve gradient propagation across the 

connected layer, which ultimately leads to higher memory efficiency. Figure 15 describes 

the inverted residual operation. 
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Figure 15: Operation method for Inverse residual block. 

3.5.4 MobileNetV2 Model Architecture 

As mentioned earlier, the inverted residual block, linear bottleneck, and depth-wise 

separable convolution are the main elements of MobileNetV2. Based on this, the 

architecture shown in Table 4 and Figure 16 shows the description of the convolutional 

layer. From this, it can be deduced that the input undergoes the 1×1 convolution with an 

expansion factor t. In the literature, the value of t = 6 has been chosen for ImageNet 

classification, which gives good inference [72]. Then, the dimension is reduced by depth-

wise separable convolution operation, followed by a 1×1 linear convolution that results 

in a new channel k'. 

Table 4: Convolutional operation in MobileNetV2 [72] 

Input Operator Output 

𝒉 × 𝒘 × 𝒌 1 × 1  conv2d, ReLU6 𝒉 × 𝒘 × (𝒕𝒌) 

𝒉 × 𝒘 × 𝒕𝒌 3 × 3 dwise s=s, ReLU6 𝒉
𝒔⁄  × 𝒘

𝒔⁄  × (𝒕𝒌) 

𝒉
𝒔⁄  × 𝒘

𝒔⁄  × 𝒕𝒌 linear 1 × 1  conv2d 𝒉
𝒔⁄  × 𝒘

𝒔⁄  × 𝒌′ 
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Figure 16: Convolution algorithm of MobileNetV2 [72] 

 

In this MSc thesis, the MobileNetV2 architecture is used for investigating transfer 

learning technique. 
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4 Implementation Workflow 

This chapter is focused on the design, implementation and experimentation process 

performed throughout this thesis work. Figure 17 exhibits the full process that has been 

followed in this project. For successful implementation, the whole work is divided into 

four major parts: data and platform preparation, CNN architecture development, DL 

model creation (including model training) and finally detection with SBC and 

benchmarking (including model size reduction to use it in SBC to determine classification 

performance). The detailed explanation for each of these steps are described in following 

subsections. 
  

 

 

 

Figure 17: Implementation process followed for this MSc thesis project. 
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4.1 Dataset Selection 

For training the system model, sample data has been chosen which will meet the criteria 

of interest for this MSc thesis in line with an ongoing research project (PRG620) at 

Thomas Johann Seebeck Department of Electronics at TalTech. In particular, the size of 

the objects to be detected and classify should be in the order of a few micrometres. After 

consulting with researchers involved in this research project, it has been decided to use a 

dataset of blood cells, specifically the “Blood Cell Images” dataset [73] available on the 

Kaggle repository. 

The “Blood Cell Images” dataset contains 12 500 so-called augmented images of blood 

cells in the JPEG format. They are provided with corresponding cell type labels in a CSV 

format. The images are approximately equally divided as 3000 images corresponding to 

four different types of cells, namely Eosinophil, Lymphocyte, Monocyte, and Neutrophil. 

More details about the contents and organization of this dataset can be found in [73]. 

Figure 18 shows four sample images from the dataset. 

  

(a) (b) 

  

(c) (d) 

Figure 18: four sample images from each class of the “Blood Cell Images” dataset used Sample Dataset 

for Training purpose: (a) Eosinophil blood cell type (b) Lymphocyte blood cell type (c) Monocyte blood 

cell type and (d) Neutrophil blood cell type 
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4.2 Hardware Selection 

Hardware selection is divided into two parts. The first one is for training which requires 

access to hardware with high computational power. Thus, the online Google-

Colaboratory platform is used for this scenario. It is a free platform which provides access 

to GPUs such as Nvidia K80, T4, P4, P100, 12 GB of RAM and 107 GB of memory for 

each session. These sessions’ allocation are time-limited, usually for 12 hours; there is no 

guaranty to access Colab resources; the usage limits can change over time. Thus, regular 

monitoring is required during training phase. 

The second one is the selection of SBC for image classification. In recent year, the 

introduction of TPU in SBCs enhanced its computational ability into next level for DL 

application. Thus, Coral Dev Board manufactured by Google is often considered for 

object detection for its GPU and tensor TPU processor. NVIDIA Jetson Nano gives a 

neck-to-neck challenge to the Coral Dev board with its “Cuda Core” AI accelerator for 

portable object detection and computer vision industry. Apart from that, Raspberry Pi 4, 

ODROID-C4, Orange Pi 4 etc. are some good candidates for image classification backed 

up by good amount of scientific literature. For some on-going PhD work at Thomas 

Johann Seebeck Department of Electronics at TalTech, a detailed list of SBCs has been 

prepared. From there, the characteristics of some SBCs are mentioned in Table 5. 

Table 5 Comparison of different SBCs (partly based on onoing PhD works at Thomas Johann Seebeck 

Department of Electronics) 

Board Name SoC 

Processor (Number of 

Cores, chip architecture, 

clock speed...) 

Memory 

ODROID-N2+ 

Amlogic 

S922X 

Processor 

Quad-core Cortex-A73(up to 

2.4 GHz) and Dual-core 

Cortex-A53 (up to 2 GHz), 

Mali-G52 GPU 

DDR4 4 GiB or 2 GiB with 

32-bit bus width, 1 x eMMC 

connector (8G, 16G, 32G, 

64G and 128G are 

available) 

 

1 x microSD slot (DS/HS 

modes up to UHS-I 

SDR104) 

ODROID-N2 

Amlogic 

S922X 

Processor 

Quad-core Cortex-A73 (1.8 

GHz) and Dual-core Cortex-

A53 (1.9 GHz) 

ARMv8-A architecture with 

Neon and Crypto extensions, 

Mali-G52 GPU 

DDR4 4 GiB or 2 GiB with 

32-bit bus width, 1 x eMMC 

connector (8G, 16G, 32G, 

64G and 128G are 

available) 

1 x microSD slot (DS/HS 

modes up to UHS-I 

SDR104) 
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ODROID-C4 
Amlogic 

S905X3 

Quad-Core Cortex-A55 (2.016 

GHz), Mali-G31 GPU 

DDR4 4 GiB with 32-bit 

bus width, 1x eMMC 

connector (8/16/32/64 GiB 

are available) 

 

1x Micro SD slot (DS/HS 

mode up to UHS-I SDR104) 

Raspberry Pi 

4 

Broadcom 

BCM2711 

Quad core Cortex-A72 (ARM 

v8), 64-bit SoC @ 1.5GHz 

RAM, 2 GiB, 4 GiB, or 8 

GiB 

Orange Pi 4 

Rockchip 

RK3399 (28nm 

HKMG 

process) 

6-core ARM® 64-bit 

processor ,main frequency 

speeds up to 2.0 GHz 

Based on the large and small 

size core architecture of 

big.LITTLE : 

Dual-core Cortex-A72 (large 

core) + Quad-core Cortex-A53 

(small core), Mali-T864 GPU 

 

Supports OpenGL 

ES1.1/2.0/3.0/3.1, 

 

OpenVG1.1,OpenCL, DX11, 

support for AFBC 

Dual 4 GiB LPDDR4 + 16 

GiB EMMC Flash 

 

Dual 4 GiB LPDDR4 

+EMMC Flash(Default 

Empty) 

ASUS Tinker 

Board 

Rockchip 

RK3288 

QuadCore ARM SOC 1.8 

GHz, Mali™-T764 GPU 

2 GiB of LPDDR3 dual-

channel 

NVIDIA 

Jetson Nano 
Nvidia 

Quad-core ARM A57 @ 1.43 

GHz 

4 GiB 64-bit LPDDR4 25.6 

GB/s 

Google Coral 

dev. board 

NXP i.MX 8M 

SoC 

Quad-core Cortex-A53, plus 

Cortex-M4F, Google Edge 

TPU ML , 0 - 66 MHz 

accelerator coprocessor, 

Cryptographic coprocessor 

1 GiB LPDDR4 , flash: 8 

GiB eMMC, MicroSD slot 

 

While there are several promising platforms to choose from, the selection also needs to 

be done based on the availably of SBCs in the department and in coherence with the 

related ongoing PhD research works, as well as sufficient references and scientific 

reports. After careful consideration, the Raspberry Pi 4 has been chosen for this MSc 

project. Table 6 shows its configuration and Figure 19 shows a photograph of the board. 
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Table 6: RPI 4 configuration used for this MSc project. 

 

Board 

Name 

SoC Processor 

(Number of Cores, 

chip architecture, 

clock speed...) 

Memory Pric

e ($) 

Input 

Power 

Network 

Connectivity 

Raspberr

y Pi 4 

Broadcom 

BCM2711 

Quad core Cortex-

A72 (ARM v8), 64-

bit SoC @ 1.5GHz 

RAM: 4 

GB 

$104 5V DC 

via USB-

C 

connector 

(minimu

m 3A*) 

2.4 GHz and 5.0 

GHz IEEE 

802.11b/g/n/ac 

wireless 

 

LAN, Bluetooth 

5.0, BLE 

 

 

 

Figure 19: Photograph of the Raspberry Pi 4 (Model B) used in this MSc thesis. 

 

4.3 Framework Selection 

Python deep learning ecosystem is the key reason for widespread adoption of DL [55]. 

Starting with ‘Theano’ in 2007, the first deep learning framework [55] this industry 

undergoes with tremendous research and development and different frameworks have 

been introduces since then. Among them, Tensorflow developed by ‘Google brain’ is a 

very popular DL framework. Apart from this, Facebook-developed Pytorch and Keras 

are also some of the widely used frameworks for DL application creation. Figure 20 

shows available DL framework. 
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Figure 20: State of DL frameworks [74]. 

 

For this MSc thesis work we adopted the Tensorflow framework for flexibility of using 

high-level APIs. It also facilitates porting to SBCs with a relatively easy model size 

reduction technique in ‘Tensorflow lite’, often written as ‘tflite’ which is a light version 

of Tensorflow for resource limited devices. Additionally, some Keras libraries are used 

for CNN architecture development. For image pre-processing, Open-CV and scikit-learn 

libraries are used. An overview of the selected framework and libraries is shown in Figure 

21. 
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Figure 21: Framework and library information for this MSc thesis work 

4.4 Model Preparation 

Two different CNN models have been developed for blood cell classification. The first 

one is a conventional CNN architecture where each layer has been developed from 

scratch. On the other hand, the second model have been trained using a transfer learning 

approach. For the second approach (Section 6.5) MobileNetV2 has been used as a pre-

trained model. For all models, a conventional ML flow for CNN model development is 

used, which is shown in Figure 22. 

 

Figure 22: Flow diagram for CNN model development used in this MSc thesis 
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4.4.1 Image Pre-possessing 

The idea behind image pre-processing is to clean the input image data. Often, different 

types of objects may be situated in an image. For example, in our case there exists 

different types of blood-cells, such as red blood cell, eosinophil, neutrophil, etc., in a 

single image. Our dataset contains two types of blood cells in a single image. For 

example, for monocyte images, apart from a monocyte cell there also exits some red blood 

cells. The goal is to extract only the image of monocyte and suppress the rest of the red 

blood cells. This processing has been done through various mathematical procedures to 

extract the desired blood cell for which we want train the model and detect later during 

classification.  

 

Figure 23: Image pre-processing process followed in this MSc thesis work. 

  

 

 

Figure 24: Evolution of an EOSINOPHIL image in pre-processing stage (corresponding to Figure 23). 
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As shown in Figure 23, to extract a desired blood cell, first we convert the image from 

Blue Green Red (BGR) to Red Green Blue (RGB) which provides the colour combination 

of each pixel. Then padding is introduced around the border of the image to overcome 

information loss. Next, we determine colour differences in different objects in the image. 

Then the edge of different object is detected, and we draw the contour around the desired 

portion. Then, the rest of the pixels are suppressed, and the desired portion is extracted 

out. Finally, the extracted image is resized to a common dimension. The evolution of the 

image throughout these operations is shown in Figure 24. 

Some of the sample data are given after pre-processing stage in Figure 25. 

 

 

Figure 25: Example of image dataset samples after pre-processing. 
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4.4.2 Dataset Split for Training and Testing 

For CNN model development, the dataset used for training, testing, and validation need 

to be clearly mentioned. The conventional rule is to use 20% of the total image for 

validation and testing. Our dataset contains 12000 images with 2500 for each class. Thus, 

we use around 250 images for testing and 250 images for validation. Figure 26 shows the 

population of each observed category and Figure 27 shows the train, testing, and 

validation split used to train this model. 

 

Figure 26: Percentage-wise population for each observed category in the selected dataset 

 

Figure 27: Dataset split for training, testing and validation 
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4.4.3 CNN Layer Design 

For the CNN layer, we consider five convolutional blocks followed by a fully connected 

(FC) layer and output layer. The first convolution block (input layer) uses 2D convolution 

whereas the remaining convolutional blocks use separable 2D convolution. For the input 

layer, the number of neurons (output shape) is kept at 16 and is doubled in each of the 

hidden layers. Moreover, each of the convolution blocks use a ReLU activation function, 

maxpooling technique, and 3 × 3 kernel for the RGB image. We also use padding to 

reduce information loss. 

The FC layer uses deeply connected neural network as per convention. Here the ‘tanh’ 

activation function is used with different dropout rate at it moves towards the output. 

Finally, in the output layer we use a ‘softmax’ activation function as per practice in the 

industry [55]. Table 7 describes each of the layers’ configuration. This whole architecture 

is inspired by [74]. 

Table 7 CNN model layers’ configuration 

Layer type Output Shape 
Number of 

parameters 

conv2d_4 (Conv2D) (None, 120, 120, 16) 448 

conv2d_5 (Conv2D) (None, 120, 120, 16) 2320 

max_pooling2d_10 (MaxPooling2D) (None, 60, 60, 16) 0 

separable_conv2d_16 (SeparableConv2D) (None, 60, 60, 32) 688 

separable_conv2d_17 (SeparableConv2D) (None, 60, 60, 32) 1344 

batch_normalization_8 

(BatchNormalization) 
(None, 60, 60, 32) 128 

max_pooling2d_11 (MaxPooling2D) (None, 30, 30, 32) 0 

separable_conv2d_18 (SeparableConv2D) (None, 30, 30, 64) 2400 

separable_conv2d_19 (SeparableConv2D) (None, 30, 30, 64) 4736 

batch_normalization_9 

(BatchNormalization) 
(None, 30, 30, 64) 256 

max_pooling2d_12 (MaxPooling2D) (None, 15, 15, 64) 0 

separable_conv2d_20 (SeparableConv2D) (None, 15, 15, 128) 8896 

separable_conv2d_21 (SeparableConv2D) (None, 15, 15, 128) 17664 

batch_normalization_10 

(BatchNormalization) 
(None, 15, 15, 128) 512 

max_pooling2d_13 (MaxPooling2D) (None, 7, 7, 128) 0 

dropout_10 (Dropout) (None, 7, 7, 128) 0 

separable_conv2d_22 (SeparableConv2D) (None, 7, 7, 256) 34176 

separable_conv2d_23 (SeparableConv2D) (None, 7, 7, 256) 68096 

batch_normalization_11 

(BatchNormalization) 
(None, 7, 7, 256) 1024 

max_pooling2d_14 (MaxPooling2D) (None, 3, 3, 256) 0 
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dropout_11 (Dropout) (None, 3, 3, 256) 0 

flatten_2 (Flatten) (None, 2304) 0 

dense_8 (Dense) (None, 512) 1180160 

dropout_12 (Dropout) (None, 512) 0 

dense_9 (Dense) (None, 128) 65664 

dropout_13 (Dropout) (None, 128) 0 

dense_10 (Dense) (None, 64) 8256 

dropout_14 (Dropout) (None, 64) 0 

dense_11 (Dense) (None, 4) 260 

Total parameters:  1397028 

Trainable parameters:  1396068 

Non-trainable parameters:  960 

 

4.5 Evaluation of Trained Model 

For model evaluation, the conventional process is to check the training and validation 

accuracy and loss. Additionally, a confusion matrix has been generated to get a visual 

understanding of the models’ performance. This confusion matrix identifies the following 

elements: 

➢ True Positive: prediction that the object belongs to a class and the object actually 

belongs to that class;  

➢ True Negative: prediction that  the object does not belong to a class but the object 

actually does not belong to that specific class; 

➢ False Positive: prediction that the object belongs to a class, and the object actually 

does not belong to that class; 

➢ False Negative: prediction that the object does not belongs to a class but the object 

actually belongs to that class. 
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Figure 28 shows the principle of the confusion matrix. 

 

True 

Negative 

False 

positive 

False 

negative 
True positive 

Figure 28: Principle of confusion matrix 

 

 To evaluate our model we also follow the same procedure. The following sub-section 

describes the performance of our model in detail. Table 8 introduces the parameters used 

to evaluate these models. 

Table 8: Evaluation parameter of DL model 

Evaluation 

Parameter 
Description of the parameter Value range 

Training 

Accuracy 

Measurement of accurate classification 

between training data and testing data. 

0 to 100%, i.e. 

0.0 to 1.0 

Validation 

Accuracy 

Measurement of accurate prediction from the 

validation dataset 

0 to 100%, i.e. 

0.0 to 1.0 

Training loss 

Measurement of inaccurate prediction between 

training and testing data. It is measured after 

each batch 

0 to ∞ 

Validation 

loss 

Measurement of inaccurate prediction between 

training and testing data. Generally measured 

after each epoch 

0 to ∞ 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

0 to 100%, i.e. 

0.0 to 1.0 

 

4.5.1 Optimizer Selection 

As discussed in Subsection 3.2.7, the optimizer selection is one of the important tasks for 

DL model training. There are several optimizers available, but among them Adam and 

T
ru

e 
la

b
el

 

Prediction 
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RMSprop are the most common and widely used in DL architecture. Usually, optimizers 

are model oriented and thus always selected by trial-and-error method. In this work, we 

compare these two optimizers to check their impact on the training and figure out the 

suitable one from the model.  

 

 

Figure 29: Impact of Adam and RMSprop on model training in terms of training accuracy and training 

loss, as well as validation accuracy and validation loss.  

 

 

Figure 29 shows the performance of Adam and RMSprop for model training. Here a pre-

model has been developed for only 15 epochs (i.e. “training iterations”) to determine the 

performance. It is clear that the Adam optimizer performs slightly better (higher accuracy 

and lower loss, on average) than the other one for our model. Additionally, the training 

time for Adam was less than the RMSprop. Thus, we opted for Adam.   

 

4.5.2 Learning Rate Selection 

Another important parameter which is also figured out by trial-and-error is the learning 

rate (η). The impact of the learning rate on the CNN model is described in Subsection 

5.2.1.3. Learning rate values like .000001, 0.00001, 0.00005, 0.0001 are common practice 

Number of epoch (iteration) Number of epoch (iteration) 

Number of epoch (iteration) Number of epoch (iteration) 
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in DL. In this MSc work, we compared the impact for 15 epochs (i.e. “training iterations”) 

and found η = 0.00001 performs slightly better than the others. The comparison is shown 

in Figure 28. 

 

 

Figure 30: Effect of different learning rate (ƞ) in model. 

4.6 Model Preparation using pertained model 

As discussed in Section 3.4, there are different CNN models readily available which can 

serve our purpose of blood cell classification. Among them, ResNet, DenseNet, 

MobileNet and EfficientNet are some of the popular architectures used for object 

detection [72]. However, the performance of a model is highly dependent on the data and 

its preprocessing procedure. Therefore, we characterize the performance of each of the 

CNN architectures mentioned above that suits our data. For characterization, we use the 

same preprocessing method mentioned in Subsection 4.4.1 for 15 epochs. The result is 

shown in Figure 31.  

 

Figure 31: Performance comparison between different CNN pre-trained model.  

Number of epoch (iteration) Number of epoch (iteration) 

Training Accuracy Training Loss 
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c
c
u
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y
 

Number of epoch (iteration) Number of epoch (iteration) 

Training Accuracy Training Loss 
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From Figure 31 it can be seen that DenseNet201 and MobileNetV2 outperform the other 

two CNN architecture for our dataset. However, MobileNetV2 is more memory efficient 

[72] with a lower number of parameters compared to DenseNet. Thus, we choose 

MobileNetV2. 

 

 

4.6.1 Data Pre-processing & Model Preparation 

To train the model using MobileNetV2, the dataset needs to be pre-processed. For pre-

processing, the same methodology mentioned in Subsection 4.4.1 is followed. Then, we 

load the model from the source and modify the input output parameters based on our 

dataset. Similarly to the previous model, the softmax activation function is used for the 

output while ReLU is used for input. The same feature map weight developed for the 

original MobileNet model are used for training. The summary of the model is shown in 

Figure 32. 
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Figure 32: MobileNetV2 model summary 
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4.7 Model Minimization 

After developing the model, its size needs to be reduced to make it fit and run on the edge 

device. One of the processes is to convert the model into Tensorflow-Lite (tflite) which 

is a light version of Tensorflow that compresses the model to make it suitable to run on 

edge devices. In this MSc thesis, we converted the model into .tflite using the high-level 

API supplied by Tensorflow.  Table 7 shows a screenshot that provides a comparison 

between the sizes of the original Keras models (.h5) and the .tflite models after 

conversion. For both Model 1 the size is reduced from 16.5 MB to 5.4 MB (divided by 

approximately 3). For Model 2 the size reduction is more modest, from 11.2 MB to 9.1 

MB (divided by approximately 1.23). 

Table 9: Model size comparison after conversion 

Model Name Keras model size (MB) 
Converted tflite model size 

(MB) 

Model 1 (simple CNN 

developed from scratch) 16.5 5.4 

Model 2 (pre-trained model 

with learning transfer) 11.2 9.1 
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5 Result and Analysis 

 

As explained previously, there are two different models developed for this MSc thesis 

work. The first one is a simple CNN model built from scratch that has been described in 

Section 4.4 (Model 1).  The other one is a pre-trained model which is used to train our 

dataset for image classification using transfer learning method (Model 2). Both models 

were converted into .tflite to reduce their sizes and make them suitable for edge devices 

(Raspberry Pi 4 in our case). This chapter is focused on the evaluation of the trained 

models. 

5.1.1 Evaluation of Model 1 

Figure 33 shows the learning curve of our Model 1 for 30 epochs. This figure is a classic 

example of a DL learning curve. From the figure, it is clear that initially the training 

accuracy increases exponentially up to fifth epoch and then gradually reaches to an 

accuracy of 99% by the 15th epoch and maintains this accuracy throughout the remaining 

iterations. After an initial fluctuation, the validation accuracy also follows a similar trend, 

although not as smooth. Here the training accuracy for the first epoch is 60%, which 

clearly indicates that the image pre-processing was very well suited for this model. The 

loss curve for training was < 1 in the entire training time which is also an indication of a 

successful model preparation. Moreover, the validation accuracy is slightly lower than 

the training accuracy while the validation loss is slightly higher than the training loss; this 

infers that this model is free from overfitting or underfitting problems (see Subsection 

3.2.8). This means that the dropout selection for this model is quite ideal.  
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Figure 33: Learning curve of Model 1 for 30 epochs. The X axes represent the epochs (“training 

iterations”) and the Y axes represent the accuracy and loss. 

 

In order to investigate the possibility of overfitting or underfitting issues, we train the 

model again up to 60 epochs (see Figure 34) and observe similar trends between training 

and validation accuracies, as well as between training & validation losses. Thus, we can 

conclude that this model will not suffer from the fitting problem. 

 

Figure 34: Learning curve of Model 1 for 60 epochs. The X axes represent the epochs (“training 

iterations”) and the Y axes represent the accuracy and loss. 
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Figure 35 shows the confusion matrix for Model 1, which is also an evidence of the model 

precision. The percentage of false positive and false negatives (indicated by the light blue 

color) are almost negligible. Below are the precision calculations for each class and for 

the overall model: 

Precision for Eosinophil =  
272

272+7
× 100 = 97.49% 

Precision for Lymphocyte =  
297

297+2
× 100 = 99.33% 

Precision for Monocyte =  
318

318+7
× 100 = 97.84% 

Precision for Neutrophil =  
300

300+11
× 100 = 96.46% 

Overall, model precision =  
1187

1187+27
× 100 = 97.77% 

 

Figure 35: Confusion Matrix for Model 1 
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5.1.2 Evaluation of Model 2 

The performance of Model 2 is not as good as that of Model 1. The learning curve of Model 2 is shown in  

Figure 36. From the figure, it is clear that the model suffers from the under-fitting problem 

as the validation loss is lower than the training loss. Moreover, both validation accuracy 

and loss fluctuate across the corresponding training accuracy and training loss. A probable 

reason for this problem is the architecture of the MobileNetV2. Originally, the 

MobileNotV2 was developed for an image resolution of 240 × 240 pixels. But our model 

is trained with 120 × 120 pixel images due to insufficient RAM of Google Colaboratory.  

240 × 240 pixels resolution of input data occupies 75% of the RAM, for which training 

cannot be conducted. Some other platforms were also investigated but nothing suitable 

was found. However, the accuracy (89%) and the loss (0.3) of the model is quite attractive 

which encourages to keep the model.  

 

 

 

Figure 36: Learning curve of Model 2. The X axes represent the epochs (“training iterations”) and the Y 

axes represent the accuracy (max value is 10and loss. 

 

The confusion matrix of Model 2 is shown in Figure 37 which is quite acceptable. Below 

are the precision calculations. 
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Figure 37: Confusion matrix of Model 2 

 

Precision for Eosinophil =  
224

224+36
× 100 = 86.15% 

Precision for Lymphocyte =  
319

319+15
× 100 = 95.50% 

Precision for Monocyte =  
300

300+7
× 100 = 97.71% 

Precision for Neutrophil =  
264

264+49
× 100 = 84.34% 

Overall, model precision =  
1107

1107+107
× 100 = 92.86% 
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The precision results confirm that Model 2 can be considered as acceptable, and thus we 

keep both Model 1 and Model 2 for implementation on the edge device (RPI4) and 

compared their performances. 

5.2 Evaluation on Edge device 

The edge device (RPI4) only performs the classification from the two trained models 

compared in Sections 5.1.1 and 5.1.2. For the RPI4 implementation, the model 

minimization presented in Section 4.6 was applied. Our actual goal for this MSc thesis 

work is to investigate the classification accuracy, classification time, the highest number 

of images detected by the RPI 4. For investigation, two different methodologies have been 

considered. In the first case, the image folder contains images of the same class. Three 

different datasets have been created with 50, 200, and 400 images. Then the average 

classification time and accuracy has been measured using Table 8. For the second case 

two types of dataset has been created with 400 (100 of each class) and 1600 (400 of each 

class) images with all four class and the classification accuracy of RPI is measured using 

Table 8. The result analysis for both of the methodology is discussed in the following 

subsections. 

5.2.1 Performance evaluation of RPI in Methodology 1 

Table 10 shows the performance matrix of RPI for Methodology 1. 

Table 10: Performance of Model 1 and Model 2 for the same class of images in the folder (Methodology 

1) 

Class name 
Numbe

r of 
Image 

Model 1 Model 2 

Average 
Classificatio
n Time (ms) 

Detected cell 
types 

Accurac
y (%) 

Average 
Classificatio
n Time (ms) 

Detected cell 
types 

Accura
cy (%) 

Eosinophil 

50 51.4 

Eosinophil: 48 
Lymphocyte: 0 
Monocyte: 1 
Neutrophil: 1 

96 137.1 

Eosinophil: 44 
Lymphocyte: 0 
Monocyte: 2 
Neutrophil: 4 

88 

200 47.7 

Eosinophil: 195 
Lymphocyte: 0 
Monocyte: 2 
Neutrophil: 3 

97.5 137.5 

Eosinophil: 172 
Lymphocyte: 0 
Monocyte: 3 
Neutrophil: 25 

86 

400 48.8 

Eosinophil: 393 
Lymphocyte: 0 
Monocyte: 2 
Neutrophil: 5 

98.25 137.3 

Eosinophil: 333 
Lymphocyte: 0 
Monocyte: 10 
Neutrophil: 57 

83.25 
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Monocyte 

50 46.5 

Eosinophil: 0 
Lymphocyte: 0 
Monocyte: 50 
Neutrophil: 0 

100 126.0 

Eosinophil: 1 
Lymphocyte: 0 
Monocyte: 48 
Neutrophil: 1 

96 

200 47.8 

Eosinophil: 0 
Lymphocyte: 0 
Monocyte: 200 
Neutrophil: 0 

100 133.0 

Eosinophil: 1 
Lymphocyte: 0 
Monocyte: 198 
Neutrophil: 1 

99 

400 48.1 

Eosinophil: 0 
Lymphocyte: 0 
Monocyte: 400 
Neutrophil: 0 

100 187.8 

Eosinophil: 2 
Lymphocyte: 0 
Monocyte: 395 
Neutrophil: 3 

98.75 

Lymphocyt
e 

50 48.2 

Eosinophil: 1 
Lymphocyte:49 
Monocyte: 0 
Neutrophil: 0 

98 133.1 

Eosinophil: 1 
Lymphocyte: 49 
Monocyte: 0 
Neutrophil: 0 

98 

200 48.3 

Eosinophil: 1 
Lymphocyte: 
199 
Monocyte: 0 
Neutrophil: 0 

99.5 141.5 

Eosinophil: 2 
Lymphocyte:19
8 
Monocyte: 0 
Neutrophil: 0 

99 

400 47.6 

Eosinophil: 4 
Lymphocyte:39
6 
Monocyte: 0 
Neutrophil: 0 

99 163.3 

Eosinophil: 3 
Lymphocyte: 
393 
Monocyte: 1 
Neutrophil: 3 

98.25 

Neutrophil 

50 46.9 

Eosinophil: 1 
Lymphocyte: 0 
Monocyte: 0 
Neutrophil: 49 

98 130.4 

Eosinophil: 9 
Lymphocyte: 0 
Monocyte: 2 
Neutrophil: 39 

78 

200 48.6 

Eosinophil: 4 
Lymphocyte: 0 
Monocyte: 0 
Neutrophil: 
196 

98 144.1 

Eosinophil: 26 
Lymphocyte: 0 
Monocyte: 4 
Neutrophil: 170 

85 

400 48.2 

Eosinophil: 7 
Lymphocyte: 0 
Monocyte: 0 
Neutrophil: 
393 

98.25 133.4 

Eosinophil: 40 
Lymphocyte:1 
Monocyte: 9 
Neutrophil: 350 

87.5 

Average 48.2  98.54 142.04  91.3 

 

From the measured data it is clear, like in Section 5.1, that Model 1 outperforms Model 2 

in terms of accuracy and classification times. Model 2 struggles to differentiate between 

Eosinophil and Neutrophil for which the accuracy rate is below 90%. On average, Model 

2 is 7.8% less accurate than Model 1. 

Model 1 is almost three times faster than Model 2. A graphical comparison between 

Model 2 and Model 1 performances is shown in Figure 38 and Figure 39. The average 

classification time for monocyte is comparatively higher for the 3rd dataset.  
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Figure 38: Average classification times for Model 1 and Model 2. 
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Figure 39: Accuracy comparison for Model 1 and Model 2 for same class. 

 

All in all, for the first evaluation approach on the edge device, it can be concluded that 

Model 1, which was developed from scratch, performs better than Model 2 which was 

pre-trained and used transfer learning. 

5.2.2 Performance evaluation of RPI in Methodology 2 

In the second approach (“Methodology 2”), the image folder contains images of all four 

classes. The first dataset (Dataset 1) is prepared with 400 hundred images with 100 images 

for each class. The second dataset (Dataset 2) contains a total of 1600 images with 400 of 

each of the four classes. Table 11 shows the average classification time for two types of 

dataset. Similar to the previous case, classification with Model 1 is almost three times 

faster than with Model 2. However, compared to Methodology 1, the average 

classification time for Model 1 is slightly higher than for Methodology 2 which is due to 

higher number of images. In contrast, classification time for Model 2 is almost 4% lower 
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for the second approach as compared to the first one. That is because classification time 

for lymphocyte is much higher for Model 2. In the first approach, as the model only has 

to classify one type of image, that increases the average classification time. 

Table 11: Performance of Model 1 and Model 2 for different class image in folder (Methodology 2) 

Total 
Numbe

r of 
Image 

Number of 
image of 

each class 

Model 1 Model 2 

Total 
Classifica
tion time 

Average 
Classificat
ion Time 

(ms) 

Detection 
Total 

Classificatio
n time 

Average 
Classificat
ion Time 

(ms) 

Detection 

400 100 20.22 50.55 

Eosinophil : 98 
Lymphocyte:99 
Monocyte: 100 
Neutrophil: 103 

55.227 138.068 

Eosinophil : 103  
Lymphocyte:100 
Monocyte: 101 
Neutrophil: 96 

1600 400 76.9 48.0625 

Eosinophil : 403 
Lymphocyte:394 
Monocyte: 402 
Neutrophil: 398 

214400 134 

Eosinophil : 376 
Lymphocyte:393 
Monocyte: 420 
Neutrophil: 408 

Average 49.30625 
  
  

136.034   

 

 

Figure 40: Number of detections of each class for the Dataset = 400 images. 

 

Figure 40 and Figure 41 showing the number of detections for each class for 400 and 

1600 dataset with mixed class image. The detection of Model 1 is satisfactory while 

Model 2 suffers to differentiate between eosinophil and monocyte for dataset 2. Out of 

400 images of both monocyte and eosinophil, Model 2 detects 376 eosinophil and 420 

monocyte which is approximately 6% error. One of the major reasons is both of these 

blood cells are similar in shape. Moreover, they have been marked with same blue colour 
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(see Figure 25) which makes them difficult to distinguish. However, the error rate is in 

the acceptable range.  

 

Figure 41: Number of detections for each class for the Dataset = 1600 images. 

 

Average classification time for a single image is presented in Figure 42. Here the Model 

1 classification time is almost three time faster than Model 2. 

 

Figure 42: Comparison of average classification time of a single image between model 1 and model 2 

 

Overall, the accuracy of Model 1 for both of the methodology is highly attractive with 

almost 99% of accuracy and 48 ms of classification time while Model 2 accuracy rate 

(91%) is not as good as Model 1 but still in acceptable range. Also Model 1 is three times 
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faster than Model 1. Model 1 outperforms Model 2, as it is built from the scratch with 

careful parameters selection by trial-and-error which requires time and effort. On the 

other hand, transfer learning methodology is implemented in Model 2 in which a pre-

trained model is used for training with minimum effort. Thus, there is a trade-off between 

model development time/effort and classification performance.  

The next chapter concludes this MSc thesis by summarizing the work and presenting a 

few suggestions for future work. 
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6 Conclusion 

6.1 Summary 

The focus of this thesis work was to explore the application of DL methodology for 

microscopic medical images, in particular, four types of white blood cell classification 

using an SBC. The initial goal was to train a DL model and deploy it into SBC to evaluate 

its suitability for image classification. Moreover, the thesis work also investigated 

alternative training techniques to model training to deal with data scarcity of medical 

images. The obtained results throughout this work are promising. 

The performance of the model (Model 1) developed from scratch exhibits competitive 

performance both in the cloud (Google Colaboratory, training and inference) and on the 

edge (RPI4, inference only) platforms. In the cloud, the overall classification precision is 

almost 98%. The lowest precision is 96.46% for neutrophils and the highest is 99.33% 

for Lymphocytes, which is very encouraging considering the current state-of-the-art. The 

developed model performs well in the SBC too. The average classification accuracy on 

the RPI4is 98.5%. The lowest accuracy is 96% for 50 images of a a single class 

(Eosinophil) which is due to the smaller dataset size. The average classification time is 

48.2 ms which is also good because a simple ARM quad-core processor is used without 

the usage of a dedicated accelerator (GPU or TPU). 

The performance of Model 2 is not as impressive as that of Model 1. In the cloud, the 

overall precision of the model is 92.86%. However, the precision for Eosinophil and 

Neutrophil is 86% and 84%, respectively. This indicates that this model struggles to 

differentiate between these two blood cell types. One of the reasons can be the similar-

look of these two blood cells types. Moreover, their marker is also of the same color. For 

the different colors of the annotation marker, the performance could have been better. but 

it is a matter of investigation. On the RPI4, Model 2’s performance is also worse as 

compared to Model 1. Although the average accuracy is 91%, it decreases to 78% for 

Neutrophil classification. The classification time is also three times higher than for Model 
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1 with an average of 142 ms to classify a single image. However, considering the state-

of-the-art and SBC configuration the result is still considered as up to the mark. 

Comparing the performance of these two models, we can conclude that Model 1 (which 

was developed from scratch) is superior to Model 2 (based on transfer learning). This 

indicates that the DL model must be specifically designed for the medical image type. 

However, transfer learning is also a suitable approach in case of data scarcity or time-

constrained situations. In the case of RPI4 performance, the result clearly show that 

competitive accuracy can be achieved although the models are converted to be smaller so 

that they can fit in the limited memory space. At the same time, real-time image 

classification cannot be achieved. However, a plain RPI4 can be a good alternative when 

instantaneous classification is not required.  

6.2 Future work 

A plain RPI4 was selected due to its simplicity and good number of application examples. 

If (near) real-time performance is required, then an SBC featuring a SoC with a dedicated 

hardware accelerator (e.g. GPU, TPU) should be considered. Using such a device is 

expected to result in better performance for classification time. Thus, one of the primary 

investigations in future work would be to evaluate the two models developed in this thesis 

onto GPU/TPU based SBCs to evaluate their suitability for real-time detection and 

classification.  

Another issue to consider for the transfer learning approach is that different pre-trained 

models can used to check the performance. Finally, these models could be optimized to 

develop a portable blood cell classification system and integrate it into a medical device. 
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Appendix 1 – Python source code for Libraries and 

Framework Selection  

This appendix and the following one provide the essential Python source code that has 

been used in this MSc thesis work.  

import numpy as np 

import pandas as pd 

from scipy.spatial import distance as dist 

import matplotlib.pyplot as plt 

import os 

import cv2 

import seaborn as sns 

from tqdm import tqdm  

from sklearn.utils import shuffle 

from sklearn import decomposition 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import accuracy_score, confusion_matrix 

import tensorflow as tf 

import keras 

from keras.applications.vgg16 import VGG16  

from keras.preprocessing import image 

from keras.applications.vgg16 import preprocess_input 

from keras.models import Sequential, Model  

from keras.initializers import he_normal 

from keras.layers import Lambda, SeparableConv2D, 

BatchNormalization, Dropout, MaxPooling2D, Input, Dense, 

Conv2D, Activation, Flatten  

from keras.callbacks import EarlyStopping, ReduceLROnPlateau, 

ModelCheckpoint 

import imutils 
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Appendix 2 – Python Source Code for Image Pre-Processing 

1. Function for locating desired object 

def findEdges(image): 
    # find edges in image 
    gray = cv2.GaussianBlur(image, (1, 1), 0) 

    edged = cv2.Canny(gray, 100, 400) 

    edged = cv2.dilate(edged, None, iterations=1) 
    edged = cv2.erode(edged, None, iterations=1) 
    return edged 
 

def getImgContours(edged): 
    # find contours in the edge map 
    contours = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_SIMPLE) 

    contours = imutils.grab_contours(contours) 

    contours = sorted(contours, key=lambda x: cv2.contourArea(x)) 
    return contours 
 

def getBoxes(contours, orig): 
    # get the boxes 
    boxes = [] 

    centers = [] 

    for contour in contours: 
        box = cv2.minAreaRect(contour) 

        box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) 
        box = np.array(box, dtype="int") 
        (tl, tr, br, bl) = box 

        if (dist.euclidean(tl, bl)) > 0 and (dist.euclidean(tl, tr)) > 0: 
            boxes.append(box) 

    return boxes 
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2. Image Pre-processing to get Image data 

# Open  

image = cv2.imread(img_path) 
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

              

# add padding to the image to better detect cell at the edge 
image = 

cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_CONSTANT,value=[198, 203, 

208]) 

                 

#thresholding the image to get the target cell 

image1 = cv2.inRange(image,(80, 80, 180),(180, 170, 245)) 

                 

# openning errosion then dilation 

kernel = np.ones((3, 3), np.uint8) 
kernel1 = np.ones((5, 5), np.uint8) 
img_erosion = cv2.erode(image1, kernel, iterations=2) 

image1 = cv2.dilate(img_erosion, kernel1, iterations=5) 

                 

                 

#detecting the blood cell 
edgedImage = findEdges(image1) 
edgedContours = getImgContours(edgedImage) 
edgedBoxes =  getBoxes(edgedContours, image.copy()) 
      

if len(edgedBoxes)==0: 
        count +=1 

        continue 
                 

# draw the contour and fill it  

mask = np.zeros_like(image) 
cv2.drawContours(mask, edgedContours, len(edgedContours)-1, (255,255,255), 

-1)  
                 

                 

# all pixel outside inside the contour is zero 

image[mask==0] = 0 

                 

# extract blood cell 

image = image[min_y:max_y, min_x:max_x] 

 

if (np.size(image)==0): 
   count +=1 

   continue 
# resize image 

image = cv2.resize(image, image_size) 
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Appendix 3 – Python Source Code for Convolutional Block 

Design 

# First Conv block 

model1.add(Conv2D(16 , (3,3) , padding = 'same' , activation = 'relu' , 

input_shape = (120,120,3))) 
model1.add(Conv2D(16 , (3,3), padding = 'same' , activation = 'relu')) 
model1.add(MaxPooling2D(pool_size = (2,2))) 

 

# Second Conv block 

model1.add(SeparableConv2D(32, (3,3), activation = 'relu', padding = 'same')) 
model1.add(SeparableConv2D(32, (3,3), activation = 'relu', padding = 'same')) 
model1.add(BatchNormalization()) 

model1.add(MaxPooling2D(pool_size = (2,2))) 

 

# Third Conv block 

model1.add(SeparableConv2D(64, (3,3), activation = 'relu', padding = 'same')) 
model1.add(SeparableConv2D(64, (3,3), activation = 'relu', padding = 'same')) 
model1.add(BatchNormalization()) 

model1.add(MaxPooling2D(pool_size = (2,2))) 

 

# Forth Conv block 

model1.add(SeparableConv2D(128, (3,3), activation = 'relu', padding = 'same')) 
model1.add(SeparableConv2D(128, (3,3), activation = 'relu', padding = 'same')) 
model1.add(BatchNormalization()) 

model1.add(MaxPooling2D(pool_size = (2,2))) 

model1.add(Dropout(0.2)) 

 

# Fifth Conv block  

model1.add(SeparableConv2D(256, (3,3), activation = 'relu', padding = 'same')) 
model1.add(SeparableConv2D(256, (3,3), activation = 'relu', padding = 'same')) 
model1.add(BatchNormalization()) 

model1.add(MaxPooling2D(pool_size = (2,2))) 

model1.add(Dropout(0.2)) 

 

 

# FC layer  

model1.add(Flatten()) 

model1.add(Dense(units = 512 , activation = 'tanh')) 
model1.add(Dropout(0.7)) 

model1.add(Dense(units = 128 , activation = 'tanh')) 
model1.add(Dropout(0.5)) 

model1.add(Dense(units = 64 , activation = 'tanh')) 
model1.add(Dropout(0.3)) 

 

# Output layer 

model1.add(Dense(units = 4 , activation = 'softmax')) 
 

# Compile 

model1.compile(optimizer = "adam" , loss = 'sparse_categorical_crossentropy' , 

metrics = ['accuracy']) 
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Appendix 4 – Python Source Code for Transfer Learning 

Model Design 

#Download pre-trained model 

 

datagen = 

ImageDataGenerator(horizontal_flip=True,vertical_flip=True,rotation_

range=20,zoom_range=0.2, 

                        

width_shift_range=0.2,height_shift_range=0.2,shear_range=0.1,fill_mo

de="nearest") 

 

pretrained_model = 

tf.keras.applications.MobileNetV2(input_shape=(120,120,3),include_to

p=False,weights='imagenet',pooling='avg') 

pretrained_model.trainable = False 

 

#defining input and output of the model 

 

inputs = pretrained_model.input 

x = tf.keras.layers.Dense(128, 

activation='relu')(pretrained_model.output) 

outputs = tf.keras.layers.Dense(4, activation='softmax')(x) 

model = tf.keras.Model(inputs=inputs, outputs=outputs) 

 

 

#Model compile 

 

model.compile( 

    optimizer = 'adam' ,  

    loss = 'sparse_categorical_crossentropy' ,  

    metrics = ['accuracy'] 
) 

print(model.summary()) 

 

 

#Train the model 

history = 

model.fit(datagen.flow(train_images,train_labels,batch_size=32), 

              validation_data=(val_images,val_labels), epochs=50) 

 

get_acc = history.history['accuracy'] 

value_acc = history.history['val_accuracy'] 

get_loss = history.history['loss'] 
validation_loss = history.history['val_loss'] 
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Appendix 5 – Python SourceCode for Inference on SBC  

for img in imageList: 
  class_labels = ['EOSINOPHIL', 'LYMPHOCYTE', 'MONOCYTE', 'NEUTROPHIL'] 
  nb_classes = len(class_labels) 
  image_size = (120,120) 

 

  #Preprocessing of input image 
 

  image = img  

  image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

  image = cv2.copyMakeBorder(image,10,10,10,10,cv2.BORDER_CONSTANT,value=[198, 203, 

208]) 

  image1 = cv2.inRange(image,(80, 80, 180),(180, 170, 245)) 

 

  kernel = np.ones((3, 3), np.uint8) 
  kernel1 = np.ones((5, 5), np.uint8) 
  img_erosion = cv2.erode(image1, kernel, iterations=2) 

  image1 = cv2.dilate(img_erosion, kernel1, iterations=5) 

 

  #detecting the blood cell 
  edgedImage = findEdges(image1) 
  edgedContours = getImgContours(edgedImage) 
  edgedBoxes =  getBoxes(edgedContours, image.copy()) 
 

  # get the large box and get its cordinate 
  last = edgedBoxes[-1] 

  max_x = int(max(last[:,0])) 
  min_x = int( min(last[:,0])) 
  max_y = int(max(last[:,1])) 
  min_y = int(min(last[:,1])) 
                   

  # draw the contour and fill it  
  mask = np.zeros_like(image) 
  cv2.drawContours(mask, edgedContours, len(edgedContours)-1, (255,255,255), -1)  
                   

  # any pixel but the pixels inside the contour is zero 
  image[mask==0] = 0 

                   

  # extract th blood cell 
  image = image[min_y:max_y, min_x:max_x] 

  # print(image) 
  if len(image) == 0: 
    break 
  image = cv2.resize(image, image_size) 

   

  image = np.array(image, dtype = 'float32') 
 

  img = image / 255.0 

  img = np.expand_dims(img, axis=0) 
 

# load the trained model 

  tflite_model_path = "/content/MyDrive/model.tflite" 
 

  Bloodcell_interpreter = tf.lite.Interpreter(model_path=tflite_model_path) 
  Bloodcell_interpreter.allocate_tensors() 
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#check the input and output formate 

  input_details = Bloodcell_interpreter.get_input_details() 

  output_details = Bloodcell_interpreter.get_output_details() 

  print(input_details) 
 

  input_shape = input_details[0]['shape'] 
  print(input_shape) 
 

  Bloodcell_shape = input_details[0]['shape'] 
 

  input_data = img 

 

#Alocate tensor 

 

 

Bloodcell_interpreter.set_tensor(input_details[0]['index'], input_data) 
 

  time1=time()   
  Bloodcell_interpreter.invoke() 

  time2=time() 
  classification_time = np.round(time2-time1, 3) 
  totalTime = totalTime + classification_time 

  print("Classificaiton Time =", classification_time, "seconds.") 
 

#predeiction 

  Bloodcell_preds = Bloodcell_interpreter.get_tensor(output_details[0]['index']) 
 

  print("%%% " , str( np.round(Bloodcell_preds[0][Bloodcell_preds.argmax()] * 100, 

3) ) + "%") 
   

   

  Bloodcell_label = class_labels[Bloodcell_preds.argmax()]  #Find the label 
  dic[Bloodcell_label] = dic[Bloodcell_label] + 1  
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