
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Masaki Ihara 176154IDCR

SERVICE MESH SECURITY IN

MICROSERVICES ARCHITECTURE

Diploma Thesis

Supervisor: Mohammad Tariq

Meeran

Doctor of Philosophy

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Masaki Ihara 176154IDCR

TEENUSEVÕRGU TURVALISUS

MIKROTEENUSTE ARHITEKTUURIS

Diplomitöö

Juhendaja: Mohammad Tariq

Meeran

Doctor of Philosophy

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Masaki Ihara

17.05.2021

4

Abstract

Keywords: Microservices Architecture Security, Service Mesh

The microservices architecture has become increasingly popular in the IT industry;

however, securing interservice traffic in a microservices-based application is a

challenging task. There is a common knowledge of security measures with the

microservices architecture, such as tokenization of the user context, and encryption of the

traffic. This thesis aims to determine how such security measures can be practically

applied to a microservices-based application. Specifically, it investigates how the service

mesh pattern—an abstract infrastructure layer for a distributed application network—can

be utilised to secure the application.

This research was conducted using a qualitative approach with a case study. An open-

source project was analysed to identify security risks reside in a real-world project.

Afterwards, the service mesh pattern was adapted to the project as a mitigation to

identified issues, followed by discussions of its practicality.

The results suggest that the service mesh is a suitable solution to mitigate common

security risks in the microservices architecture; however, it is not preferable for smaller

scale projects with limited budgets because it is a resource-expensive solution.

This thesis is written in English and is 40 pages long, containing 6 chapters and 22 figures.

5

List of abbreviations and terms

ACL

API

AWS

CI/CD

HTTP

HTTPS

IDC

IEEE

Iaas

JWT

mTLS

NIST

REST

SOA

Saas

TCP

TLS

Access Control List

Application Programming Interface

Amazon Web Service

Continuous Integration and Continuous Delivery

Hypertext Transfer Protocol

Hypertext Transfer Protocol Secure

International Data Corporation

Infrastructure as a service

Institute of Electrical and Electronics Engineers

Json Web Token

Mutual Transport Layer Security

National Institute of Standards and Technology

Representational State Transfer

Service-oriented architecture

Software as a service

Transmission Control Protocol

Transport Layer Security

6

Table of contents

1 Introduction ... 9

1.1 Background of The Study ... 9

1.2 Problem Statement and Research Questions .. 10

1.2.1 Problem Statement ... 10

1.2.2 Research Questions ... 10

1.3 Outline of The Thesis ... 11

2 Literature Review .. 12

2.1 Microservice Architecture .. 12

2.1.1 Overview ... 12

2.1.2 Comparison with Monolithic Architecture .. 13

2.1.3 Polyglot Design ... 13

2.1.4 Traffic Types in Microservices ... 13

2.2 Challenges with Interservice Communication Security 14

2.2.1 Distributed Security Screening May Degrade Performance 14

2.2.2 Bootstrapping Trust Among Microservices is Difficult 14

2.2.3 Sharing User Context is Harder in Distributed System 15

2.2.4 Polyglot Architecture Demands More Security Expertise 15

2.3 Service Mesh Pattern .. 15

2.3.1 Why Service Mesh .. 15

2.3.2 What is Service Mesh .. 15

2.3.3 Istio .. 16

2.3.4 Architecture ... 16

2.3.5 Core Features ... 17

2.3.6 Mutual TLS ... 17

2.4 Detecting a Gap .. 17

3 Methodology .. 19

3.1 Selected Application ... 19

3.2 Assessment Criteria .. 19

3.3 Environment Setup ... 20

7

3.3.1 Docker Engine Setup ... 20

3.3.2 Kubernetes Server and Client Setup .. 21

3.3.3 Application Setup .. 22

3.3.4 Packet Analyzer Setup ... 23

3.3.5 Summary .. 24

4 Risk Assessment Results ... 25

4.1 Application Topology ... 25

4.2 Unencrypted Interservice Traffic .. 26

4.3 No Presence of Access Control Policy ... 27

4.4 Different Zipkin Clients are Managed .. 28

5 Discussion .. 29

5.1 Internal Traffic with Mutual TLS ... 29

5.1.1 Utilize Service Mesh for mTLS .. 29

5.2 Assessment with Service Mesh .. 30

5.2.1 Application Topology with Istio Service Mesh ... 30

5.2.2 Service-to-service Traffic with mTLS ... 30

5.2.3 Service-level Authorization Policy .. 31

5.2.4 Distributed Tracing .. 33

5.2.5 Downsides of the Service Mesh .. 33

6 Conclusion and Future Work ... 34

6.1 Conclusion .. 34

6.2 Answering the Research Questions .. 34

6.2.1 RQ-1: What are potential security risks of interservice communications? ... 35

6.2.2 RQ-2: How service-to-service traffic can be efficiently secured in distributed

polyglot system? ... 35

6.3 Limitations .. 35

6.4 Future Work .. 35

References .. 37

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 40

8

List of figures

Figure 1. Istio Service Mesh Design Diagram [18] .. 16

Figure 2. Confirmation of Docker Engine Installation ... 21

Figure 3. Confirmation of Docker Compose Installation ... 21

Figure 4. Confirmation of Kubernetes Installation ... 22

Figure 5. Kubernetes Server and Client Versions .. 22

Figure 6. List of Docker Images Built .. 22

Figure 7. Deployed Pods .. 23

Figure 8. Ksniff Pod ... 23

Figure 9. Wireshark Capturing Packet via Ksniff .. 24

Figure 10. Application Web Page... 24

Figure 11. Application Topology (Inspired by [27]) .. 25

Figure 12. Captured Packet Between Auth API and Users API 26

Figure 13. Example of Multi-Cluster Setup Diagram .. 27

Figure 14. Additional Pod Performing Unauthorised Access .. 27

Figure 15.Bash Scripts to Exercise Unauthorised HTTP Request 28

Figure 16. Result of the Bash Script ... 28

Figure 17. Application Topology with Istio Service Mesh .. 30

Figure 18. Istio Strict mTLS Configuration ... 30

Figure 19. Captured Packet Between Auth API and Users API with Service Mesh 31

Figure 20 Authorisation Policy for Auth API .. 32

Figure 21 Authorisation Policy for Users API ... 32

Figure 22. Result of the Bash Script with Authorisation Policy 32

9

1 Introduction

Software designed to be self-contained, in other words, one large chunk of system design,

is known as monolithic architecture [1]. Many software applications originate from the

monolithic approach because it is the simplest way to initiate a project. However, soon

after the project’s size grows, numerous problems can arise. Examples include scalability

issues, the complexity of the codebase, and time-consuming continuous integration and

continuous delivery (CI/CD), to name a few [2]. To overcome such difficulties, service-

oriented architecture (SOA) was actively invested in by enterprises over the past decade.

The SOA essentially decomposes a monolithic system into smaller sub-systems. It has

been proven that SOA provides superior scalability and flexibility than monolithic design.

Yet, it did not achieve the expected agility due to its complexity and the monolithic nature

of the services built on the SOA platforms [3]. As an alternative approach and a successor,

microservice architecture began to attract the IT industry [3].

1.1 Background of the Study

Microservice architecture has been rapidly increasing in popularity since the beginning

of 2014, when the availability of technologies aligned with the requirements of its

resource-expensive system design. The advent of technological solutions, such as Docker,

Infrastructure as a Service (Iaas), and Software as a Service (Saas), significantly

contributed to the adaption of the architecture in the industry [3].

Enterprises such as Netflix and Amazon have been playing important roles in this trend.

As pioneers and evangelists, the so-called tech giants have taken advantage of the new

architectural pattern and demonstrated the successful adaption of microservices practices.

Moreover, they shared their expertise and made their tools publicly available. The

practical insights they provided have increased the confidence of adaption among tech

communities. Additionally, technology vendors have been influencing the community by

encouraging the adaption at conferences, blogs, and any other forms of media [3].

10

Due to its potential and demands, microservice architecture is becoming indispensable in

software development. Moreover, the amount of architecture adaption is predicted to

continue growing. According to “Worldwide IT Industry 2019 Predictions” published by

the International Data Corporation (IDC), the microservices architectures will be featured

with 90% of all new applications by 2022. The adaption of microservices approach

provides better aflexibility to design and develop the application [4].

1.2 Problem Statement and Research Questions

1.2.1 Problem Statement

The microservices architecture is generally a widely distributed system with more traffic

to monitor and a larger attack surface [5]. A common enterprise application might involve

dozens of microservices that are frequently communicating with one another. The loosely

coupled nature of the system design makes it difficult to secure and manage internal

communication channels.

Acknowledging the security risks of the microservices architecture is as important as

understanding all its benefits. Network security is one of the most critical aspects of the

microservices architecture. Due to the short history of the microservices architecture, we

relatively lack the expertise to secure traffic within our own distributed systems.

In particular, the importance of securing communication between microservices is often

overlooked and underestimated [6]. One reasoning might be that most microservices

reside within private networks, and it is less intuitive to consider security risks in-house.

As the number of microservices increases, so too does the complexity of traffic

management, followed by the likelihood of introducing security risks.

1.2.2 Research Questions

Based on the problem statement, the main research question (RQ) is phrased as follows:

How can interservice communications be efficiently secured in microservices

architecture?

To answer this question in a more structured manner, the main research question is

divided into two sub-questions:

11

• RQ-1: What are the potential security risks of interservice communications?

• RQ-2: How can service-to-service traffic be efficiently secured in a

distributed polyglot system?

As an outcome, this work will provide an overview of the security risks of service-to-

service communication. Additionally, it introduces the service mesh approach as an

option to mitigate the security risks.

1.3 Outline of the Thesis

This thesis is organised into chapters. Chapter 1 provides an introduction to the topic,

presents the problem statement, and defines the goal of the thesis. Following this, Chapter

2 provides a literature review, describing the backbone of the microservices architecture

and its security challenges, in addition to the concept of the service mesh pattern. Then,

Chapter 3 describes the methodology used during the research process and identifies the

assessment criteria and an open-source project to be analysed. In Chapter 4, the

assessment results from a case study are presented. Afterwards, Chapter 5 discusses

possible countermeasures with the service mesh. Chapter 6 concludes the thesis, while

Chapter 7 discusses possible further improvements.

12

2 Literature Review

A thorough analysis of the service mesh security was conducted during the research. To

acquire insights into the research topic, various sources were analysed. For gathering

information regarding the fundamentals and security challenges of the microservices

architecture, technical writings such as “Microservice Security in Action” from Manning

Publications and “Microservices: The Journey So Far and Challenges Ahead” issued by

the IEEE were studied. Additionally, publications focussing on the service mesh

technology, such as “Building Secure Microservices-based Applications Using Service-

Mesh Architecture” provided by NIST (National Institute of Standards and Technology)

and “Istio in Action” from Manning Publications, were reviewed.

The following sections introduce and explain the fundamental concepts and approaches

of this thesis. First, Section 2.1 offers a high-level introduction to microservices

architecture and provides the reader with a basic understanding of the system design.

Following this, the challenges associated with securing service-to-service traffic are

described in Section 2.2. Then, Section 2.3 introduces the concept of the service mesh,

which is followed by a description of the detected gap in Section 2.4.

2.1 Microservice Architecture

The following sections provide a high-level overview of microservices architecture to

give the reader a basic understanding of the architecture and its purpose.

2.1.1 Overview

Microservices are the latest trend in software service design, development, and delivery

[7]. Microservices design is a composed approach to software and systems architecture

which based on the concept of modularisation but emphasises technical boundaries. Each

module, also referred to as a microservice, is implemented and operated as a small yet

independent system, providing access to its internal logic and data through well-defined

network interfaces, such as REST API [8]. Improved software agility could be achieved

13

using this approach because each microservice becomes an independent unit of

development, deployment, operation, versioning, and scaling [9].

2.1.2 Comparison with Monolithic Architecture

Monolith is an ancient word referring to a large block of stone [10]. The concept of

monolithic software involves different components of an application being combined into

a single program on a single platform [11]. Normally, a monolithic application consists

of a database, client-side user interface, and server-side application [12]. All the

software’s components are unified, and all its functions are managed in a single location.

This approach supports simple development and deployment. Hence, this is the most

affordable option for starting projects, particularly when the project is run by a small team

[9].

2.1.3 Polyglot Design

In microservice deployment, services interact with one another over the network, relying

on each service’s interface. One benefit of introducing microservices architecture is the

flexibility for the choice of programming languages and technology stacks for

implementation. In a multi-team environment, in which a set of microservices are

developed by each team, the teams have the freedom to select the most suitable

technology stack for their respective requirements [6]. This architecture, which promotes

different components in a system to select the technology stack that is best for itself, is

known as the polyglot architecture [6].

2.1.4 Traffic Types in Microservices

Microservice architecture generally involves two types of communication traffic, namely

North/South traffic and West/East traffic [6].

North/South Traffic

This is a type of traffic that moves in and out of a private network [13]. Traffic from the

client to the server, such as a web browser attempting to fetch data from an application

programming interface (API) server, is an example of North/South traffic.

West/East Traffic

14

As opposed to North/South traffic, West/East traffic is a type of traffic between one

server and another within a private network; therefore, service-to-service

communication is an example of West/East traffic [13].

2.2 Challenges with Interservice Communication Security

The following sections describe some of the security challenges with service-to-service

communication.

2.2.1 Distributed Security Screening May Degrade Performance

More microservices results in more interconnections among microservices and more

traffic to be protected [14]. Unlike in a monolithic application, independent security

screening must be executed for each microservice. Having multiple security screenings

at the entry point of each microservice might appear to be redundant from the perspective

of a monolithic application, which performs security screening once, after which the

request is dispatched to the corresponding component. The distributed security checks

that occur repeatedly on each service interaction might result in latency and considerably

degrade the performance of the system [6].

A workaround to avoid repetitive security checks might be to simply trust the network.

However, trust-the-network has been acknowledged as an antipattern in recent years, and

the industry is shifting towards zero-trust networking principles [6]. Any microservices

security design must consider overall performance and take precautions to address any

drawbacks [6].

2.2.2 Bootstrapping Trust Among Microservices is Difficult

Today, large-scale microservice deployments with hundreds of services are no longer a

surprise. For example, Monzo, an online bank based in the United Kingdom, runs more

than 1,600 microservices on AWS [15]. Managing microservices deployment with even

dozens of services would be challenging without automation. Each microservice should

be provisioned with a certificate. This certificate is used for authentication during service-

to-service interactions [16]. However, microservices can come and go dynamically,

which makes managing the certificate difficult.

15

2.2.3 Sharing User Context is More Difficult in a Distributed System

All microservices must be treated as non-trustworthy [14]. Internal components share the

same web session in a monolithic application, and anything related to the requesting party

is retrieved from it [6]. Meanwhile, achieving the same result in microservices

architecture requires greater effort. Nothing, or a very limited set of resources, could be

shared among microservices, leading to a situation in which the user context must be

passed explicitly from one microservice to another. The challenge is to build trust

between two microservices such that the receiving microservice obtains the user context

sent from the other [6]. Thus, the integrity of the passed user context must be verified to

prevent deliberate modification [6].

2.2.4 Polyglot Architecture Demands More Security Expertise

Security is more challenging with the polyglot architecture. Since different teams use

different technology stacks for development, each team must have its own security

expertise. As such, each team is responsible for security practices, guidelines, and

integration with existing tools and systems [6].

2.3 Service Mesh Pattern

The following sections describe a service mesh, which is a method to control how

different parts of an application share data with one another. It is a dedicated infrastructure

layer built directly into an application [17].

2.3.1 Why Service Mesh

Due to the security challenges of microservices-based applications stated in the previous

section, the infrastructure that supports the application and the infrastructure’s associated

service should be tightly coordinated [14]. A service mesh is such a dedicated

infrastructure layer.

2.3.2 What is Service Mesh

The term service mesh is used to describe the network of distributed microservices

systems and the interactions between them. Its requirements can include discovery, load

balancing, failure recovery, metrics, and monitoring. In addition, a service mesh

16

commonly has more complex operational requirements, such as A/B testing, canary

rollouts, rate limiting, access control, and end-to-end authentication. [18]

2.3.3 Istio

An open-source project, Istio, might be the most popular service mesh implementation.

Istio service mesh support is added to services by deploying a special sidecar proxy

throughout the application environment that intercepts all network traffic between

microservices. Then, the traffic can be configured and managed by Istio, utilising its

control plane functionality as illustrated in Figure 1 [18].

Figure 1. Istio Service Mesh Design Diagram [18]

2.3.4 Architecture

An Istio service mesh is logically split into two planes, as follows.

Data plane

The data plane is composed of a set of intelligent proxies deployed as sidecars. The

sidecar proxies mediate and control all network traffic between microservices [19].

Control plane

The control plane manages and configures the proxies to route traffic [19].

17

2.3.5 Core Features

Istio can provide the following capabilities uniformly across a network of services:

• Traffic management

• Security

• Observability

Traffic Management

The flow of traffic and API calls between services can be controlled by rules

configuration and traffic routing. For example, circuit breakers, timeout and retry, and

A/B testing can be configured via traffic management [20].

Security

Important aspects of any microservices application, such as the management of

authentication and authorisation or encryption of pod-to-pod communication, can be

configured with the security capability [21].

Observability

The service mesh provides robust tracing, monitoring, and logging features, which offer

deep insights into deployed service mesh [22].

2.3.6 Mutual TLS

A mutual TLS, also known as mutual authentication or mTLS, is a security process in

which entities authenticate one another before actual communication occurs [23]. In the

context of Istio service mesh, keys and certificates for mTLS are automatically installed

in all sidecar containers by the control plane [24]. Therefore, communication between

sidecars can be encrypted with mTLS, while no changes are required for application.

2.4 Detecting a Gap

This thesis aims to produce two main contributions.

18

First, it aims to provide the analysis results of an open-source project that assesses security

risks that reside in a real-world project. This verifies theoretical issues and factual risks.

Second, it aims to implement the service mesh pattern to the analysed project to evaluate

the security improvements.

While the reviewed literature focussed on the conceptional solution with examples or

limited implementations, this thesis practices the theoretical knowledge using a non-

fictional project.

19

3 Methodology

To achieve the goals of this thesis, research was conducted using a qualitative approach

with a case study.

To answer research question RQ-1—what are the potential security risks of interservice

communications?—an open-source project was analysed to obtain a better understanding

of the research problem.

Based on the result of RQ-1 and the risk analysis, a service mesh pattern was applied to

the analysed project as part of RQ-2—how can service-to-service traffic be secured in a

polyglot system?

Section 3.1 provides a brief introduction to the subject of the case study. Then, the

assessment criteria are presented in Section 3.2. Following this, Section 3.3 explains the

environment setup used during the research.

3.1 Selected Application

For the rational case study, the open-source project ‘microservice-app-example’, which

appears to be popular, with more than 1.3k stars on GitHub, was selected. The application

simulates real-world system design and demonstrates the practical use of polyglot

microservices architecture. The application is composed of a web user interface plus four

microservices in different technologies, namely Java, Python, Node.js, and Go.

3.2 Assessment Criteria

To evaluate the security risks of the open-source microservices-based application, the

following assessment criteria were identified based on the reviewed literature:

Microservices Security in Action [6].

• Distributed security screening

20

• Traffic encryption

• Secure user-context sharing

• Polyglot system design

As a result of this assessment, it was expected to identify the relevant security risks that

reside in public projects.

3.3 Environment Setup

The assessment was performed using the following components and tools:

• Windows 10 PC (Version 10.0.19041 Build 19041)

• Docker (v20.10.5)

• Docker Compose (v1.29.0)

• Kubernetes (v1.19.7)

• kubectl (v 1.20.6)

• Ksniff (v1.6.0)

• Wireshark (v3.4.4)

3.3.1 Docker Engine Setup

The application needs Docker images to be built to deploy to a kubernetes cluster.

Building a Docker image requires the Docker Engine to be installed. Since the assessment

was performed on a Windows machine, the fastest and easiest way to get started with

Docker on Windows [25] was to install Docker Desktop for Windows, as presented in

Figure 2.

21

Figure 2. Confirmation of Docker Engine Installation

Together with the Docker Engine, Docker Compose was installed (Figure 3). Docker

Compose might require a separate installation in the case of Linux environments.

Figure 3. Confirmation of Docker Compose Installation

3.3.2 Kubernetes Server and Client Setup

To perform an assessment with a context of runtime, it was required to deploy Docker

images built from the application onto a kubernetes cluster. While there are many options

for kubernetes implementation and providers [26], the Kubernetes single-node cluster

support from Docker Desktop for Windows was selected for the sake of simplicity.

Kubernetes support is disabled by default; therefore, the feature was manually enabled,

as presented in Figure 4.

22

Figure 4. Confirmation of Kubernetes Installation

When the Kubernetes feature is enabled, the Kubernetes server and client become

available (Figure 5).

Figure 5. Kubernetes Server and Client Versions

3.3.3 Application Setup

Once Docker and Kubernetes were ready, the build steps described in a README form

within the application were followed [27]. As a result, five Docker images were built for

the application, as illustrated in Figure 6.

Figure 6. List of Docker Images Built

Afterwards, the built Docker images were deployed to the Kubernetes cluster (Figure 7).

23

Figure 7. Deployed Pods

3.3.4 Packet Analyser Setup

Analysing packages between microservices was somewhat intricate, as the network

traffic never leaves the Kubernetes cluster in a single node setup. Therefore, it was

necessary to append an additional pod to intercept service-to-service traffic, as displayed

in Figure 8. Ksniff is a suitable tool to perform such an operation; it utilises tcpdump to

capture traffic on any pod within the network [28], [29].

Figure 8. Ksniff Pod

Once the Ksniff pod begins capturing a target pod, dumped traffic packets can be analysed

using Wireshark, as displayed in Figure 9.

24

Figure 9. Wireshark Capturing Packet via Ksniff

3.3.5 Summary

After completing all the steps mentioned above, the application was running in a single

node cluster (Figure 10), and interservice communication packets could be monitored

and analysed.

Figure 10. Application Web Page

25

4 Risk Assessment Results

To evaluate potential security issues, a risk assessment was conducted. This chapter

explains the issues identified during the assessment.

The following sections present the results of the performed risk assessment. First, Section

4.1 introduces to the application topology. Second, Section 4.2 describes the identified

issue with the unencrypted traffic. Third, the risks of lacking access control policy are

described at Section 4.3. Following this, the problem of the dependency management in

the polyglot system design is described in Section 4.4.

4.1 Application Topology

Figure 11 illustrates each component of the application and its interaction.

Figure 11. Application Topology (Inspired by [27])

26

4.2 Unencrypted Interservice Traffic

Having observed traffic between the Auth API and Users API, the request payload could

be captured in plain text because the request was transported over HTTP (Figure 12).

Figure 12. Captured Packet Between Auth API and Users API

Non-encrypted traffic could be acceptable if the traffic never leaves the cluster node and

is processed only internally; however, this is less likely the case in modern days.

Kubernetes would be running with a multi-cluster setup for better availability and

scalability in a typical production environment, which might result in HTTP traffic

running from one node to another over an external network from the perspective of one

cluster node.

Figure 13 illustrates an example of a multi-cluster setup. The user information captured

in an earlier step would be observable in the overlay network in the case of Pod 1 (Auth

API) performing the same request to Pod 4 (Users API).

27

Figure 13. Example of Multi-Cluster Setup Diagram

4.3 No Presence of Access Control Policy

Another issue discovered was that the lack of an access control list for the API endpoints.

Having no access control policy could result in a situation such that anybody with access

to the network can make requests to any API endpoint. The current state of the application

unnecessarily leaves room for security risks.

To demonstrate the security risk, a pod performing the role of unauthorised access was

deployed to determine how it can interact with other services within the network. Figure

14 highlights the pod with unauthorised access.

Figure 14. Additional Pod Performing Unauthorised Access

28

With the pod deployed, the following bash script (Figure 15) was executed to exercise

unauthorised HTTP requests to Auth API and Users API. The result of the script is

displayed in Figure 16.

Figure 15. Bash Scripts to Exercise Unauthorised HTTP Request

Figure 16. Result of the Bash Script

The result (Figure 16) indicates that the unauthorised pod could send HTTP requests to

the API endpoints successfully. Note that the HTTP response status code of 500 (Internal

Server Error) from the Users API reveals that the request reached the application;

however, an error occurred due to the invalid json web token (JWT).

4.4 Different Zipkin Clients are Managed

In the analysed project, Zipkin is used as a distributed tracing system. It is deployed and

managed the same as other microservices. Due to the polyglot design, each client

microservice installs the Zipkin client library to submit telemetry to the central server.

While having a distributed tracing system is an advantage to maintaining an application,

managing the client library from the different services and technologies is overhead and

might create security risks caused by the dependency of certain client libraries.

29

5 Discussion

This chapter discusses the mitigation of the identified security risks in Chapter 4. Section

5.1 introduces to the mTLS to secure the service-to-service traffic. Following this, Section

5.2 discusses the service mesh pattern in details as a countermeasure to each of the

identified risks.

5.1 Internal Traffic with Mutual TLS

Considering the same example as in the risk assessment, the service-to-service request

between Auth API and Users API was carried over HTTP. In the ideal scenario, all the

traffic flowing in the network should be encrypted even if the network is supposedly

private.

A good method to overcome the issue is to apply an mTLS pattern. Having bi-directional

traffic encryption ensures a secure East/West channel. However, the dynamic nature of

the microservices system makes it difficult to achieve the mTLS strategy.

Commonly, there are multiple instances of a service managed in a microservice system.

From the perspective of an application, it is difficult to know how many replicas of the

instance exist and which of the instances of other services it is communicating with.

Moreover, the polyglot aspect of system design introduces another level of difficulty in

managing certificates for each service.

5.1.1 Utilise Service Mesh for mTLS

The service mesh design, which controls how different parts of an application share data

with one another [17], is a practical approach for overcoming the issue with traffic

encryption. Having another layer of abstraction directly in front of the pod allowed us to

solve such a security issue without making changes to the API service, itself.

30

5.2 Assessment with Service Mesh

5.2.1 Application Topology with Istio Service Mesh

Once the service mesh is deployed, every pod is put behind a proxy service, as illustrated

in Figure 17. Now, each traffic is routed via the originating proxy service to the

destination proxy service.

Figure 17. Application Topology with Istio Service Mesh

5.2.2 Service-to-Service Traffic with mTLS

When a service is covered by proxy, mTLS can be applied to traffic without modifying

the application logic. In the case of Istio, mTLS can be strictly applied with a control

plane configuration.

The following configuration (Figure 18) enforces a control plane to perform a mesh-wide

peer authentication with mTLS.

Figure 18. Istio Strict mTLS Configuration

31

Now, each traffic is encrypted with mTLS, and it should not be observed in the middle of

traffic. More closely examining the captured packet (Figure 19), the same request is still

carried over HTTP in plain text; however, it can be observed that the source and

destination IP addresses are both 127.0.0.1, as opposed to the request analysed in the

assessment chapter, which used the actual IP address of a pod.

Figure 19. Captured Packet Between Auth API and Users API with Service Mesh

This indicates that the request was returned to the front-line proxy service running within

the same container and thus sharing the IP address of 127.0.0.1 (localhost). Additionally,

it can be observed that prior to the returned HTTP response, a TLS connection was

established between the actual IP addresses of the pods.

5.2.3 Service-Level Authorisation Policy

The data plane forwards the network topology of the system to the control plane.

Therefore, the control plane can be configured to manage authorisation policies.

The configurations below (Figure 20, Figure 21) serve as an example of access control

policies. In a short description, the Auth API’s policy (Figure 20) explicitly allows only

login requests via Istio’s Ingres Gateway, while the Users API’s policy (Figure 21)

explicitly allows the Auth API to send only GET requests to the ‘/users’ endpoint.

32

Figure 20 Authorisation Policy for Auth API

Figure 21 Authorisation Policy for Users API

The whitelisting approach ensures that only the minimum required API endpoint is

exposed to only relevant API services. Thus, running the same bash script as in the

assessment step should not succeed with authorisation policies enabled.

Figure 22. Result of the Bash Script with Authorisation Policy

33

As presented in Figure 22, the unauthorised pod now receives the HTTP response status

code of 403 (Forbidden).

5.2.4 Distributed Tracing

As a proxy deployed to each microservice essentially acts as a client to the central system,

it is easier to provide the capability of distributed tracing. Istio comes with Kiali, its de

facto distributed tracing system, which can replace Zipkin. With a service mesh deployed,

the overhead of managing different Zipkin clients caused by polyglot design could be

eliminated.

5.2.5 Downsides of the Service Mesh

In the previous sections, the benefits of the service mesh pattern were discussed. Although

having another infrastructure layer provides conveniences, there are certain drawbacks

when considering its application.

Immaturity

The service mesh is a fairly new concept, which began gaining attention in the past few

years. Version 1.0 of Istio was released in the middle of 2018 [30]. Due to the short history

of the solution, documentations are often outdated, and the amount of available resources

is still low [31].

Running Cost

Operating a service mesh alongside the containers that run application services requires

additional resources. It could strain the budget, as it adds compute overhead to run [32].

34

6 Conclusion and Future Work

This chapter concludes this thesis, summarises the research efforts, and answers the

research questions outlined in Chapter 1. Section 6.1 provides a general conclusion of the

thesis, which is followed by Section 6.2 that answers each of the defined research

questions independently. Afterwards, Section 6.3 describes the imitations of this thesis.

Finally, Section 6.4 provides an outlook on the future work.

6.1 Conclusion

The microservices architecture has become an essential system design in the software

industry over the past demi-decade. However, the concept of widely distributed systems

is still relatively new, which is a concerning fact from the perspective of security. In this

study, some of the potential security risks residing in real-world microservices-based

applications were identified.

A case study focussing on internal traffic security was conducted with a popular open-

source project to demonstrate the use of polyglot microservices design. Then, a few

security concerns were discovered with the risk assessment, namely non-encrypted traffic

and the lack of ALC policy. Following the risk assessment, mitigation with the service

mesh as an additional security layer was discussed. Enabling mTLS and explicit access

control with the service mesh provides a better security policy for service-to-service

communication.

6.2 Answering the Research Questions

The main research question of this thesis is as follows: How can interservice

communications be efficiently secured in microservices architecture? This research

question is divided into two sub-questions to answer the main question in a more

35

structured manner. The following sections conclude the answers to each of the sub-

questions.

6.2.1 RQ-1: What are the potential security risks of interservice communications?

There are several major security risks that reside in interservice communications. In this

thesis, a few were discovered from the analysed open-source project. First, it was

identified that service-to-service traffic is carried over a plane HTTP request, which

exposed the requested payload in an observable form. Another discovery was that the

application lacks an access control policy that allows anybody in the network to interact

with any services.

6.2.2 RQ-2: How can service-to-service traffic be efficiently secured in distributed

polyglot system?

In microservice architecture, it is difficult to bootstrap trust among microservices and

manage access control policies from the viewpoint of deployed services. Therefore, there

should be a central method of controlling such security aspects for better manageability.

Having a service mesh is a practical solution for providing a central point to take control

over the security aspects of running services regardless of the underlying technologies or

deployment complexities.

6.3 Limitations

Certain limitations should be evaluated beforehand. The service mesh pattern is still a

very new concept. Therefore, the number of information sources is few, yet the

documentations are often outdated due to the faster cycle of updates. In addition,

operating a service mesh is not for everyone, particularly for smaller teams with limited

budgets. Running a service mesh involves greater resource usage, and thus, the

operational cost might be expensive.

6.4 Future Work

This thesis focusses on security measures in interservice communications with the service

mesh pattern. A concept of the service mesh provides a distributed application with a

wide range of supplemental features, many of which could not be covered with this thesis.

36

For further development, uncovered topics, such as gPRC and Requests Authentication,

could be studied and practiced with a non-fictional project. In addition, the service-to-

service security can be addressed in different layers of the system. While this study

focussed on the service mesh layer, further investigations could be made into Kubernetes

configuration, application design, and team and security policy management, to list a few

examples.

37

References

[1] “Monolithic application.” Wikipedia. 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Monolithic_application (accessed Jan. 26, 2020).

[2] “Microservices vs Monolith: which architecture is the best choice?” N-ix. 2018.

[Online]. Available: https://www.n-ix.com/microservices-vs-monolith-which-

architecture-best-choice-your-business/ (accessed Jan. 26, 2020).

[3] “5 Reasons why Microservices have become so popular in the last 2 years.”

LinkedIn. 2016. [Online]. Available: https://www.linkedin.com/pulse/5-reasons-

why-microservices-have-become-so-popular-last-sakhuja/ (accessed Jan. 19,

2020).

[4] “IDC Unveils the Top Ten Predictions of Digital Transformation and

Technologies for 2019 and Beyond in Indonesia.” IDC. No date. [Online].

Available: https://www.idc.com/getdoc.jsp?containerId=prAP44833919

(accessed Jan. 19, 2020).

[5] “13 Best Practices to Secure Microservices.” Greek Flare. 2020. [Online].

Available: https://geekflare.com/securing-microservices/ (accessed Apr. 19,

2021).

[6] Prabath Siriwardena and Nuwan Dias, Microservices Security in Action. Shelter

Island: Manning Publications, 2020.

[7] O. Zimmermann, “Microservices tenets: Agile approach to service development

and deployment,” Computer Science - Research and Development, vol. 32, no. 3–

4, pp. 301–310, Jul. 2017, doi: 10.1007/s00450-016-0337-0.

[8] “Microservices,” Martin Fowler. 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html (accessed May 08, 2021).

[9] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, “Microservices:

The journey so far and challenges ahead,” IEEE Software, vol. 35, no. 3. IEEE

Computer Society, pp. 24–35, May 01, 2018, doi: 10.1109/MS.2018.2141039.

38

[10] “MONOLITH.” Cambridge Dictionary. No date. [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/monolith (accessed Jan. 26,

2020).

[11] Jalel T, “Monolith, SOA, Microservices, or Serverless?” LinkedIn. 2019.

[Online]. Available: https://www.linkedin.com/pulse/monolith-soa-

microservices-serverless-jalel-tounsi/ (accessed May 08, 2021).

[12] Chris Richardson, “Monolithic Architecture pattern.” Micro Services. 2019.

[Online]. Available: https://microservices.io/patterns/monolithic.html (accessed

May 08, 2021).

[13] “East/West Is the New North/South.” Dzone. 2018. [Online]. Available:

https://dzone.com/articles/eastwest-is-the-new-northsouth (accessed Jan. 28,

2020).

[14] R. Chandramouli and Z. Butcher, “NIST Special Publication 800-204A Building

Secure Microservices-based Applications Using Service-Mesh Architecture,”

NIST Pubs, 2020, doi: 10.6028/NIST.SP.800-204A.

[15] “Monzo Case Study.” Amazon Web Services. 2018. [Online]. Available:

https://aws.amazon.com/solutions/case-studies/monzo/ (accessed May 08, 2021).

[16] Christian E. Posta and Rinor Maloku, Istio in Action. Shelter Island: Manning

Publications, 2021.

[17] “What’s a service mesh?” Red Hat. No date. [Online]. Available:

https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh

(accessed Apr. 24, 2021).

[18] “What is Istio?” Istio. No date. [Online]. Available:

https://istio.io/docs/concepts/what-is-istio/ (accessed Jan. 30, 2020).

[19] “Architecture.” Istio. No date. [Online]. Available:

https://istio.io/latest/docs/ops/deployment/architecture/ (accessed Apr. 25, 2021).

[20] “Traffic Management.” Istio. No date. [Online]. Available:

https://istio.io/latest/docs/concepts/traffic-management/ (accessed Apr. 24, 2021).

[21] “Security.” Istio. No date. [Online]. Available:

https://istio.io/latest/docs/concepts/security/ (accessed Apr. 24, 2021).

[22] “Observability.” Istio. No date. [Online]. Available:

https://istio.io/latest/docs/concepts/observability/ (accessed Apr. 24, 2021).

[23] “Mutual Authentication.” Learn Akami. No date. [Online]. Available:

https://learn.akamai.com/en-us/webhelp/iot/internet-of-things-over-the-air-user-

39

guide/GUID-21EC6B74-28C8-4CE1-980E-D5EE57AD9653.html (accessed

Apr. 25, 2021).

[24] “Istioldie 1.0 / Mutual TLS Deep-Dive.” Istio. No date. [Online]. Available:

https://istio.io/v1.0/docs/tasks/security/mutual-tls/ (accessed Apr. 25, 2021).

[25] “Docker Desktop for Windows.” Hub Docker. No date. [Online]. Available:

https://hub.docker.com/editions/community/docker-ce-desktop-windows

(accessed Apr. 22, 2021).

[26] “Partners.” Kubernetes. No date. [Online]. Available:

https://kubernetes.io/partners/ (accessed Apr. 22, 2021).

[27] “elgris/microservice-app-example: Example of polyglot microservice app.”

Github. No date. [Online]. Available: https://github.com/elgris/microservice-app-

example (accessed Apr. 22, 2021).

[28] “TCPDUMP/LIBPCAP public repository.” TCPDUMP. No date. [Online].

Available: https://www.tcpdump.org/ (accessed Apr. 22, 2021).

[29] “eldadru/ksniff: Kubectl plugin to ease sniffing on kubernetes pods using

tcpdump and wireshark.” Github. No date. [Online]. Available:

https://github.com/eldadru/ksniff (accessed Apr. 22, 2021).

[30] “1.0.x Releases.” Istio. 2018. [Online]. Available:

https://istio.io/latest/news/releases/1.0.x/ (accessed Apr. 29, 2021).

[31] “What is Istio service mesh and when to use it?” Objectivity Blog. 2019.

[Online]. Available: https://www.objectivity.co.uk/blog/what-is-istio-service-

mesh-and-when-to-use-it/ (accessed Apr. 29, 2021).

[32] “Evaluate key service mesh benefits and architecture limitations.” Search it

Operations. 2019. [Online]. Available:

https://searchitoperations.techtarget.com/tip/Evaluate-the-benefits-drawbacks-of-

service-mesh-technologies (accessed Apr. 29, 2021).

40

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Masaki Ihara

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Service Mesh Security in Microservices Architecture", supervised by

Mohammad Tariq Meeran

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

