
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Siim Sarv 182517IVCM

USING EVENT CORRELATION TO

DETECT SECURITY INCIDENTS FROM

WINDOWS WORKSTATIONS

Master’s thesis

Supervisor: Risto Vaarandi

 Ph.D

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Siim Sarv 182517IVCM

TURVAINTSIDENTIDE TUVASTAMINE

WINDOWSI TÖÖJAAMADEST KASUTADES

SÜNDMUSTE KORRELATSIOONI

Magistritöö

Juhendaja: Risto Vaarandi

 Ph.D

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Siim Sarv

21.12.2020

4

Abstract

The goal of this thesis is to provide a solution that is able to forward Windows events to

a centralised log collection system and analyse the incoming events for any potential

security incidents. This solution needs to be done using free, light weight and easy to use

tools. It also needs to be integratable to already existing centralised log collection systems.

To achieve the goal, we look at different log collection tools and determine the best tool

that matches all our conditions. We also identify what events should be collected from a

Windows system. In order to automatically detect potential security incidents from

events, we use event correlation tool Simple Event Correlator. In order to create rules for

event correlation, we analyse malware that has been popular this year and identify, what

kind of events they trigger in a Windows 10 environment. We also create event correlation

rules based on the techniques attackers use to compromise systems. The solution will be

tested on a production environment.

As a result of the thesis we provide guidelines on how to configure a Windows

workstation to provide the most auditing information, configuration for our selected event

forwarding tool and rules for event correlation to automatically detect incidents. All this

information is available in the appendix and our Github repository.

This thesis is written in English and is 78 pages long, including 4 chapters, 4 figures and

4 tables.

5

Annotatsioon

Turvaintsidentide tuvastamine Windowsi tööjaamadest

kasutades sündmuste korrelatsiooni

Lõputöö eesmärgiks on luua lahendus, mis võimaldaks saata Windowsi sündmuseid

tsentraalsesse logide kogumissüsteemi. Lahendus peab olema loodud kasutades tasuta,

vähe resurse kasutavaid ja lihsasti implemeteeritavaid vahendeid. Pakutud lahendust peab

olema võimalik lihtsalt integreerida olemasolevatesse logide kogumissüsteemidesse.

Tulemuse saavutamiseks me uurime erinevaid logide kogumise lahendusi ja selgitame

välja parima tööriista, mis vastab meie nõuetele. Me uurime välja, milliseid sündmuseid

peab koguma Windowsi keskkonnast. Turvaintsidentide automaatseks tuvastamiseks me

kasutame sündmuste korrelatisooniks tööriista Simple Event Correlator. Korrelatsiooni

reeglite loomiseks me analüüsime pahavara, mis on olnud populaarne selle aasta jooksul

ja vaatame, milliseid sündmuseid nad vallandavad Windows 10 keskkonnas. Lisaks me

loome reeglid, põhinedes meetoditele, mida kasutavad ründajad süsteemide

nõrgendamisel. Loodud lahendus testitakse produktsiooni keskonnas.

Lõputöö tulemusena me loome suunised, kuidas seadistada Windowsi tööjaamu, et

nendest saada võimalikult palju vajalikku informatsiooni; loome seadistused meie poolt

valitud tööriistadele ja reeglid sündmuste korrelatsiooniks. Kogu see info on kättesaadav

lisadest ja Githubist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 4 peatükki, 4

joonist, 4 tabelit.

6

List of abbreviations and terms

DPAPI

EQL

GPO

GUI

MPSSVC

MS

MSRPC

NAT

NIST

OS

OWASP

RAT

SEC

Data Protection Application Programming Interface

Event Query Language

Group Policy Object

Graphical User Interface

Microsoft Protection Service

Microsoft

Microsoft Remote Procedure Call

Network Address Translation

National Institute of Standards and Technology

Operating System

Open Web Application Security Project

Remote Access Trojan

Simple Event Correlator

SECwin

SIEM

UEM

VM

WEC

WEF

XML

Simple Event Correlator Windows Integration

Security Information and Event Management

Unified endpoint management

Virtual Machine

Windows Event Collector

Windows Event Forwarding

Extensible Markup Language

7

Acknowledgements

I would like to thank my supervisor Risto Vaarandi for providing advice and helpful

ideas when researching and making this thesis. I would also like to thank my family and

colleagues, who supported me and gave me the time I needed to complete this work.

8

Table of contents

1 Introduction ... 11

2 Related work .. 14

2.1 Overview of event log collection tools ... 16

2.2 Malware analysis .. 19

2.3 Automated detection and notification ... 20

3 Collecting Windows events, analysing malware and automating incident detection.. 22

3.1 Collecting event logs .. 24

3.1.1 Suitable tools ... 25

3.1.2 Performance ... 27

3.1.3 Tool selection .. 30

3.1.4 What logs should be collected? ... 30

3.2 Malware and event logs. ... 33

3.2.1 Setting up malware test bench. .. 35

3.2.2 Analysing malware .. 35

3.3 Configuring centralized collection ... 49

3.4 Automatic detection of security incidents .. 50

3.5 Testing on production environment and results ... 56

4 Summary .. 58

References .. 60

Appendix 1 – NXLog configuration ... 65

Appendix 2 – SEC rules 1 .. 70

Appendix 3 – SEC rules 2 .. 75

9

List of figures

Figure 1. PowerShell script to generate events. ... 28

Figure 2. Command to enable Scheduled tasks logging ... 44

Figure 3. Command to enable Command Line logging ... 44

Figure 4. Commands to enable PowerShell logging. ... 45

10

List of tables

Table 1. Events from Windows workstations. .. 22

Table 2. Comparison of tools ... 25

Table 3. Processor time and RAM usage ... 29

Table 4. Message times .. 29

11

1 Introduction

Windows is the most popular OS (Operating System) and has been so for years. Although

its popularity is slowly descending, it still makes up 76.32% of worldwide market share

[1]. The next closest rival is OS X at 17.65%. In some regions the popularity of Windows

is noticeably lower, e.g. United States of America, where Windows makes up only

61,67% of the market, while OS X share is 28,39%. But still there are countries, where

Windows is still highly demanded: for example, Estonia, where market share of Windows

is 82,68%, while OS X is only 14,08%. In sum, globally Windows still stays at the first

place.

Since January of 2018, Windows 10 has been the most popular type of Windows OS [2].

77.31% of all used Windows desktops worldwide are Windows 10, next closest Windows

rival is Windows 7 at 16.8%.

Collecting logging information is critically necessary in order to detect different kind of

unlikely events in systems: whether it is hardware or application failure, systems running

out of disk space, login failure, connection failure or other events. All of this information

must be logged. Logging is not only essential for regular maintenance or up keeping of

the systems, but also for detecting security incidents. OWASP (Open Web Application

Security Project) ranks insufficient logging and monitoring as 10th on their top 10

vulnerabilities list for 2020 [3].

It is not only important to collect logs, it is also important to collect them centrally. This

helps to efficiently manage the collected information and also provides security and

integrity of the logs. Even if they are compromised in the original location, they are

protected in a centralized logging environment. It may also be important to keep logs for

a longer period of time. Centralized solution will provide more control over the duration

of time you would wish to keep logs.

12

Just collecting logs centrally however is not enough. You also need to know what to do

with them. Manually analysing log information is a possibility, although centralized log

collection systems get a colossal amount of events from different systems.

While a lot of companies collect logs from critical sources, fewer collect centrally from

Windows workstations and even fewer regularly monitor these logs [4]. This may be

caused by the fact, that Windows generates a lot of logs and collecting all of them in a

central location will use a lot of resources. It is more effective to use so called output-

based collection. It means that it is impractical to collect logs that have no use, and you

should only focus on logs that are useful. Unfortunately, although several research papers

and vendor whitepapers provide recommendations on what log data to collect from

Windows workstations, these recommendations are often outdated and no longer valid

for Windows 10. Also, the information provided by more recent sources provide

incomplete advice about what log events are important from a security perspective. One

of the major purposes of this work is to analyse all previous recommendations in the

context of Windows 10, and provide new recommendations for detecting traces of recent

malware samples.

If you only collect logs that you have determined to be useful, you may still miss security

incidents that are taking place in your system. It is not that difficult to collect events, but

it’s more difficult to follow the stream of incoming events and make meaningful decisions

based on it. To detect incidents we can use event correlation. When using event

correlation, we attach new meaning to certain events that happen in a specific order and

in a specific time frame.

There are several tools that allow users to collect event logs from Windows systems. A

lot of those tools have free versions and paid extensions and it is often unclear, if free

version contains enough features for event collection in Windows. Unfortunately,

although there are a number studies on open-source event log collection and correlation

tools, these studies have either been conducted for operating systems other than Windows

(for example, Linux) or older Windows workstation platforms (for example, Windows

XP and Windows 7). Another major purpose of this study is to evaluate open-source event

log collection and correlation tools for Windows 10 platform.

13

First goal of this thesis is to find a free, simple to use and light-weight solution to collect

Windows 10 events and send them to a centralised Rsyslog-based log collection system.

This will be done by analysing the documentation provided by the developers do

determine suitable tools. Suitable tools will be tested while under high load to determine

the tool that uses least amount of resources.

Second goal is to identify, what kind of events should be collected from Windows 10

environment. To achieve this we will look at different recommendations from Microsoft

and other sources. We will also analyse currently popular malware to see, what kind of

events will be triggered. It is also important to determine how a workstation should be

configured, in order to give out the most useful information without producing

overwhelming amounts of noise.

Third goal is to find a free, simple to use and light-weight tool that allows us to use event

correlation to find security incidents from Windows 10 event logs. We will be analysing

documents provided by the developers to determine the best tool.

Fourth goal is to create rules for event correlation tool that we have selected, so that the

tool it is able to detect security incidents and notify security personnel about the incidents.

We will create rules to detect the sequence of events a malware might generate. We will

also create rules to detect different kind of attack techniques that can be used by hackers

to compromise systems.

One of the overall goals is to keep the solution as simple as possible in order to implement

it for already existing centralised systems. For that reason we will be avoiding tools that

would need multiple other tools to give us the required functionality.

14

2 Related work

Antony proposes an output driven collection and analysis strategy. He also describes the

usage of whitelist and blacklist to collect Windows event logs. A whitelist is used to

specify, what events should be collected. If an event is not on the whitelist, it is discarded.

A blacklist is a collection of events that are not useful. If an event is on the blacklist it is

discarded [4]. However, he only mentions one tool, eventlog-to-syslog, for sending

Windows events to syslog based centralised log collection system. Eventlog-to-syslog

tool is outdated and does not officially support Windows 10 since there have been no

updates for years. The paper by Antony covers only 13 events that should be collected

from Windows 7 and XP.

Microsoft’s own recommendations should also be taken into consideration while making

a whitelist and blacklist for the collection system. Microsoft has combined their own list

of security related Event ID’s [5] [6]. These two lists contain a total of 765 events.

Combining those lists and removing the 352 event duplicates leaves us with 391 unique

events. We should also take into account the paper published by National Security

Agency to help the United States Government and Department of Defence to collect

Windows event logs related to different malicious activities [7]. In it they describe how

to setup Windows based log collection system and describe what events are useful to

discover different malicious activities. Malware Archaeology has created a “cheat sheet”

based on the information gathered by MITRE ATT&CK on different methods that

malicious actors use to compromise a system [8]. The “cheat sheet” includes sequences

of Windows events that happen during different kind of attacks on a system.

Tixteco, Tixteco, Pérez and Medina write about how to analyse incidents that have

happened and detect what type of event logs were involved in that [9]. This paper gives

procedural advice on how incidents could be analysed to improve your incident detection

systems. This paper, however, gives only procedural advice on how to analyse the events

and they only use windows event IDs, while in reality it is more beneficial to use event

description [4].

15

Events, related to malware, should also be taken into consideration. It can be difficult to

define which events are related to malware. Sainju and Atkins look at 11 different

malware in Windows XP and Windows 7 virtual machines. From experiments in the

Windows 7 machine, they discover 10 unique event IDs related to tested malware [10].

From those 10 only 1 is on the two Microsoft recommended lists mentioned before.

Mullinix analyses Windows event logs that have been generated after infecting the system

with malware. From her research and experiments she point out over 30 events that are

related to malware in Windows 7 systems [11]. From those 30 events only 4 are events

that Microsoft recommends to collect.

Baráth writes about Windows 10 event log analysis and optimisation to reduce the amount

of logs generated and get rid of unnecessary logs [12]. Author uses Windows 2012 R2 as

log collection server and Event log explorer to analyse and to reduce the list of suggested

events to collect.

Events by themselves can have little meaning and just reflect the natural work of the

system. The meaning of events can change, when certain events happen together in a

specific amount of time. For example, one single failed login attempt can just mean that

someone typed their password wrongly. However, if you can see several failed logins in

a short amount of time- this can be the indication, that someone is brute forcing the

password. To give meaning to sequence of events we can use event correlation.

Vaarandi, Blumbergs and Kont cover the use of SEC (Simple Event Correlator) and

LogCluster in a big organization with 543 Linux systems. In this paper, they use

LogCluster to generate rules for SEC, but this is done only for syslog messages generated

by Linux system. Windows event logs are not covered and it would be valuable to know,

if the suggested approach would also work for Windows events. [13].

Petai covers some tools that can be used to monitor, analyse and visualise logs from

different systems. In the thesis the author develops a custom tool to detect anomalies from

target systems [14]. This thesis however does not cover security incidents and does not

cover Windows based system, but rather focuses on UNIX based systems or custom

programs and systems.

Gerges takes a look at log monitoring and event correlation [15]. This thesis covers the

usage of SECwin (Simple Event Correlator Windows Integration), which is a Windows

16

application that runs SEC process as a Windows service. This tool is for Windows

systems. It means, that if you use a centralised collection system it has to be in Windows

based environment.

2.1 Overview of event log collection tools

In this section we will look at several different tools that are commonly used for building

log collection systems. Most of these tools have a free and a paid versions. We will be

looking at the free versions and if it is possible to use them for Windows event log

collection. Tools that we will look at are following:

 NXLog,

 Winlogbeat,

 Rsyslog,

 Snare

 Syslog-ng,

 Solarwinds Eventlog Forwarder,

 Graylog,

 Eventlog-to-syslog,

 Windows Event Forwarding.

NXLog is a multiplatform log collection tool that brings together log processing,

filtration, classification, correlation, forwarding and storage in to one tool. It allows

several different input and output formats including syslog and Windows Event log.

NXLog itself claims, that it can process events from thousands of sources and over

100 000 events per second [16]. It has three modules related to Windows event logs:

 im_msvistalog – available for Windows systems only. It can be used to collect

information from the local system. Collecting from remote systems requires

MSRPC (Microsoft Remote Procedure Call), which is supported in Enterprise

Edition of NXLog only. Community version of NXLog, that is free, can collect

only locally.

 im_wseventing – available for both- Linux and Windows. It can use WEF

(windows event forwarding) to collect events, this means it supports agentless

17

system. It is the recommended module by NXLog but this module is only available

in the Enterprise Edition and not in the free version of NXLog.

 im_mseventlog – it is for Windows only and is meant to be used to collect logs

from older Windows system like Windows XP, Windows 2000, and Windows

2003.

In conclusion, it is possible to use NXLog free version to collect Windows event logs

from target systems. For this NXLog needs to be installed in the system you want to

collect from. NXLog will run as a service and it can be configured to send event logs to

remote central log collection system in syslog format. Configuration of the system is

located in a nxlog.conf file that can be edited with a text editor with system administrator

privileges. For the configuration changes to take effect, the service needs to be restarted.

If connection is lost for some reason, NXLog also sends a backlog of events whenever it

reconnects.

Winlogbeat is used to send Windows events logs to Elasticsearch or Logstash. It is part

of Elasticsearches Beats products [17]. Beats is a collection of tools that allow the user to

send data to Elasticsearch [18].

Winlogbeats supports output to Elasticsearch, Logstash, Kafka and Redis. It does not

support output directly to syslog. To send winlogbeats output to syslog you need a

Logstash as intermediary. Winlogbeats would forward its output to Logstash and

Logstash would be able to convert it into syslog and forward it. Winlogbeats is a fine

option if you already have a Elasticsearch based system setup. However, if you have

central collection system, that is based on some other technology, but is not supported by

winlogbeats, you would have to setup Logstash as a middle point.

RSyslog is a syslog-based logging tool able to accept input from many different types of

sources, transform them and output them where needed. Its features also include secure

transport, output format control, precision timestamps and the ability to filter by any part

of the message. It also has a Windows Agent able to filter and forward logs in syslog

format to a remote central collection system. While RSyslog itself is free to use, the

Windows Agent requires a paid license [19].

18

Snare agent allows collecting from several different sources including Windows. It has

enterprise and open source or lite version. However, the open source version is no longer

supported by the developer and does not support Windows 8 and newer [20].

Syslog-ng is a centralised log collection tool that is released in two versions:

 Premium edition – paid version,

 Open source – free version.

Both of the versions support event filtering, event forwarding, secure transfer, encrypted

storage, support for several message formats including syslog. There are two ways to use

Syslog-ng to collect event logs from Windows [21] [22].

First option is to use Syslog-ng Windows agent to send events to collection server. This

will send the events in XML (Extensible Markup Language) format. You can then use

Python parser to process the log [22]. Syslog-ng Windows agent is part of the Premium

Edition of Syslog-ng. Last version of the agent that was released with Syslog-ng Premium

Edition is version 6.0.20. There are no newer versions available.

Second option is using WEC (Windows Event Collector). While using WEC, there is no

need to install anything on the Windows machines, whose logs you intent to collect. It

uses the Windows event log subscriptions feature in order to collect events and pushes

them to Syslog-ng [23]. However, WEC is a Syslog-ng Premium edition feature and

therefore requires premium edition licensing.

Event Log Forwarder is a Windows Event forwarder, developed by Solarwinds. This

software is an agent. It means, that it is required to be install on every machine, where

logs are going to be collected. It allows forwarding of event logs to a syslog server. It is

also able to filter by event type (error, warning, information), event ID, user- and

computer names. It is possible to use it as a service or with a user interface. The user

interface is used to configure the service.

Graylog is an open source log collection tool, that also supports real-time analysis.

However, it cannot handle Windows Events on its own and recommends 3rd party

collectors, such as NXLog or winlogbeat [24].

19

Eventlog-to-syslog is an improved version of Curtis Smiths’s utility1(designed to work

with Windows NT). It runs as a Windows service. It is light-weight and designed to run

on busy servers. It is used to send Windows event logs to UNIX-based syslog servers [25]

[26]. While the original utility was designed to work with Windows NT class operating

systems and event logs, the new one that is community developed is designed to work

with Windows Vista based event logs. Originally, this utility was designed in order to

work with Windows NT class Operating systems. Later, community developed version

of the utility is able to work with event logs, based on Windows Vista. The last update

was 3.10.2013 and there is no official support specifically for Windows 10.

Windows Event Forwarding is a built-in Windows feature to send event logs to a

Windows Event Collector. It supports push and pull method for collecting events. To use

push method, you initiate event forwarding from the client. You can configure this by

using GPO (Group Policy Objects). For pull method, you would need to initiate it from

the collector side [27]. In order to use this option you need a Windows Event Collector

server, where you have to use other tools that forward logs in Syslog format.

2.2 Malware analysis

In their book, Sikorski and Honig demonstrate the method of analysing malware in order

to clarify, what does the malware do, how it manifests and how to deal with it. [28] They

cover the usage of virtual testing machines and several tools that can be used to analyse

the selected malware, but it is not covered, how to discover malware using Windows

event logs.

Robinson in his book [29] describes, how to build a portable and secure virtual lab

environment to practice IT and security skills. He covers the usage of both- bare-metal

and hosted hypervisors. He covers such tools as: Microsoft Client Hyper-V, Oracle

VirtualBox, VMware Fusion Pro, VMware Workstation Pro and VMware vSphere

Hypervisor.

1 https://engineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys

20

In order to examine the malware activity we need a way to look at events as they are

generated in real time.

Event Viewer is Windows native tool to examine events. By using Event Viewer, you can

sort event into following groups: application, security, system etc. You can also see

events, that are generated by applications and services. It is possible to create custom

views to examine logs from several different sources together, but this feature is limited.

After selecting more than 10 different type of logs, it already gives you a warning, that

the tool might perform poorly and use large amount of processor time. After selecting all

possible sources, Event viewer shows an error, that it cannot display this view. This leads

us to a problem, that there is no way to observe real-time events from all sources at once.

Basically, if you have created a custom view with some categories, than you will miss the

rest of events since the tool is not able to display all of the categories at once.

Although, it is possible, if you use a tool called FullEventLogView. It is a freeware, that

is developed by NirSoft. It is a Windows event log viewer that shows events from all

sources in one single view. It also allows you to export events in XML format for later

examination [30]. FullEventLogView allows you to see logs as they are generated,

regardless of the event source.

2.3 Automated detection and notification

Automatic security incident detection from Windows event logs can be done by using

event correlation. Jakobson and Weissman define event correlation as a procedure when

a new meaning is assigned to a collection of events that happen in a specific time [31].

Although these events could all happen separately without any malicious intent. They

become notable, if the events form a pattern and happen during a certain amount of time.

There are several tools that allow us to use event correlation to detect security incidents.

We will be looking at the following tools:

 SEC,

 NXLog,

 ESPER,

 ElasticStack,

 Splunk.

21

The goal of examination of those tools is to find one that is easy to use and implement in

an already existing Rsyslog-based log collection system. Secondly, some of these tools

have paid versions in addition to free ones, we find it important, that event correlation

functionality is available in the free version.

SEC is a free, open-source, rule-based event correlation tool. It is lightweight and it is

developed in Perl, making it platform independent. SEC supports processing events from

regular files, named pipes and standard inputs. It also supports shell commands as output

and regular expressions for pattern matching [32] [33].

NXLog can be used to do event correlation with a module called pm_evcorr. It is inspired

by SEC. This module, pm_evcorr, is a part of the Enterprise Edition feature set and

therefore cannot be used for free [16].

Esper is an open-source Complex Event Processing framework. Esper is Java based and

there is also a .Net based version called Nesper. It is light-weight, low latency and high

throughput solution. Esper allows you to use Event Processing Language to compile

executable jar packages [34]. Despite the power of this tool, it is not a simple option: it

requires the user to create a solution using its Event Processing Language.

ElasticSearch supports event correlation with the use of EQL (Event Query Language).

It allows the user to match sequences of events from different categories and in a certain

time span. This is a beta feature in the latest 7.10 version of ElasticSearsh. EQL is not

able to compare one field with another field, multi-value fields can return inconsistent

results and it cannot search from nested fields [35].

Splunk is a solution that can be used to search, monitor and analyse logs [36]. Splunk

allows you to make relations between events, based on time and geolocation. You can

group together similar events and use search results in other searches. You can also join

together events and correlate data with external sources [37]. It is available as a free

version with up to 500MB of data per day [38].

22

3 Collecting Windows events, analysing malware and

automating incident detection

In chapter 3 we will be assembling a collection of Windows event ID, that have been

recommended to be collected by Microsoft and other sources. We will also analyse

malware that has been common this year. The goal of malware analysis is to detect what

events are triggered in the Event log. We will also select a tool and create configuration

to collect events from Windows 10 hosts. Lastly we will select an event correlation tool

and create rules that will detect security incidents related to malware and attack

techniques used by hackers.

By default, Windows has a maximum log size of 20MB for each of the three main

categories: application, security and system. Once the limit is reached, the oldest logs will

be overwritten. Storing logs by size is good solution, if you would like to regulate the

used space. Yet it is not the best option if it is required to keep logs for certain amount of

time.

Table 1. Events from Windows workstations.

 Workstation 1 Workstation 2

Event log

category

Number

of

Events

Oldest

Event date

Date of log

file

creation

Number

of Events

Oldest

Event date

Date of log

file

creation

Application 30795 21.04.2020 04.12.2019 31825 16.12.2019 26.08.2019

Security 33006 23.10.2020 28480 28.09.2020

System 57492 01.10.2020 33767 26.08.2019

In Table 1 we have captured from two different workstations:

 amount of events,

 oldest event date,

 when the event log file was first created.

23

The data was recorded from both stations at the same time on 29.10.2020. When

comparing the data it can be seen that even from two examples the oldest log dates varies

by several months. The amount of events also varies a lot. While Workstation 1 is newer

(date of log file creation is later), it has a lot more events stored than the older Workstation

2. When forwarding logs to a centralised collection system you have more control over

how long you want logs to be stored.

If events are only stored in workstations, there may be no way to analyse them in case of

a security incident, because event logs can be removed from workstations by users (if

allowed), administrators, malicious actors etc.

In the case of security incidents the targeted systems may also be compromised so that

you cannot access them or turn them on any more. In this case, you also cannot examine

event logs, unless those have been forwarded to a centralised collection system.

By collecting events centrally you also have the benefit of cross examining events in

several systems in order to determine, if similar events (or sequences of events) have also

happened in other systems.

Performing normally, Windows can generate thousands of events on daily basis and even

more, if the system has been compromised. So it is important to know, what types of

events to collect and send to centralised collection system for analysis.

NIST (National Institute of Standards and Technology) categorises logs into three main

groups:

 security,

 operation system,

 application [39].

Microsoft Windows also uses the same three main categories, but also has several others.

In real situations those categorisations can be misleading. A lot of events that are related

to a security incident could be stored all over different categories and that is why it is

essential to recognize, which of the events should be collected [40]. It is not always as

simple, as collecting events logs that Windows itself categorise as security events.

24

Collecting all logging information from workstations will lead to enormous volume of

events and finding useful information from them will become difficult. We collected all

events, that were generated in a week from two Windows 10 workstations. The first one

was used daily for the entire week and the second workstation was turned on, but not

actively used for the duration of the experiment. From the first workstation we collected

112 125 events and from the second workstation we collected 48 249 events. This means,

that in average these two workstations generated around 16 017 and 6 892 events daily.

This is why it is best to collect only a selection of useful events that will aid in analysing

incidents. Since these events can be in several different log groups, it is best to collect by

Event ID or description.

3.1 Collecting event logs

There are many tools for collecting log data from client systems. Some of them are free

or have free versions and other require paid licensing to use.

For our purposes, we are looking for tools that are:

 free to use,

 have support for syslog protocol,

 can forward events,

 can filter events,

 support collecting events from Windows 10.

Another important feature of the tools are whether they use an agent in the client systems

or not. Typically, there are two kinds of systems:

1. Agent-based that use agents to send data from client system. Event filtering is done

by the agent. This leads to less traffic in the network. However, if these systems do

not allow remote configuration, changing the filtering rules will require a lot of work.

2. Agentless systems, that use Windows native forwarding features and do filtering at

the collection system. This means the clients send more events to the central collection

system and generate more network traffic. However, since the filtering of events is

done in only one place, changing the rules would be easier.

25

We are looking for agent-based system to reduce the traffic in the network. This tool

should have the possibility to be managed remotely. We also want the tool to be able to

send logs directly to a syslog based collection system without additional help of any other

systems.

3.1.1 Suitable tools

In this section we will look at the information we gathered in sections 2.1.1 and select the

tools, that meet the requirements set in previous section. In Table 2 we have collected the

information form section 2.1.1 and cross-referenced it with the requirements we

presented.

Table 2. Comparison of tools

Tool Free to use Syslog support Forward and

filter Windows

10 events

Required

features

available in free

version

NXLog Yes Yes Yes Yes

Winlogbeat Yes Yes1 Yes Yes

Rsyslog Yes Yes Yes No

Snare Yes Yes No No

Syslog-ng Yes Yes Yes No

Solarwinds Event

Log Forwarder

Yes Yes Yes Yes

Graylog Yes Yes No No

Eventlog-to-syslog Yes Yes No No

Windows Event

Forwarding

Yes No Yes Yes

1 Does not output directly to syslog. Requires the use of Logstash.

26

From Table 2 we can see, that there are three applications that meet our requirements.

Those three are:

 NXLog,

 Winlogbeat,

 Solarwinds Event Forwarder.

NXLog stores its configuration in a file and it runs as a service. With the use of a software,

that allows to remotely manage Windows workstations, we can remotely send the targeted

machine a new configuration file and restart the service. This allows us to remotely

configure the agent.

By default, NXLog does not forward Event IDs, but it is possible to configure it. The tool

supports filtering events by event ID, severity, event source, category, time etc.

Winlogbeat is a good option if you have already existing Elasticsearch based log

collection system since it requires Logstash to forward events in syslog format. It does

not output events in syslog format by itself. If you do not intend to use Elasticsearch based

log collection, it would mean that you would need an additional intermediary system that

converts Winlogbeat output to syslog. Configuration for Winlogbeats is stored in a file

and it runs as a service. This means, it is possible to configure and restart remotely form

another system.

We are looking for a tool that can output to syslog directly and using Winlogbeats means,

that we would need to setup additional Logstash system to forward the gathered logs to

our centralised log collection system. For this reason, Winlogbeats is not the best option

for us.

Solarwinds Event Forwarder requires a GUI (Graphical User Interface) to configure. It

allows you to configure event forwarding by: event sources, event IDs, keywords, users

and computers. This tool also supports both- UDP and TCP. Solarwinds also saves its

configuration in a file, so it is also possible to configure Solarwinds remotely. It does not

forward event ID and we did not find a way to configure it to be forwarded.

27

3.1.2 Performance

In this section we will be looking at how much resources the tools (selected in chapter

3.1.1) use, while sending messages under heavy load. We will be sending 200 000 event

messages from our test machine. We ran this test 10 times for all of the three selected

tools. Test machine is an Oracle Virtualbox Windows 10 machine with 2 CPUs and 4096

MB of RAM. We will be looking at how much RAM and processor time is used to send

the 200 000 messages. We will also look at the time of first and last message generation

and arrival in the collection server. The collection server is a Solaris based Rsyslog server.

It is running on Oracle Virtualbox machine with 1 CPU and 4096 MB of RAM.

To generate Windows event logs you can use PowerShell command Write-EventLog. For

testing purposes, we have created the script on Figure 1, that generates 200 000 events in

the Application log category. The message of the event log is “This is a test event nr X

generated at HH:mm:ss.fff”. X is the number of the specific event, HH are hours, mm are

minutes, ss are second, and fff are milliseconds.

Since Microsoft by default allows you to only run signed scripts, you can use the

following command: Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass to

bypass the execution policy for the current session of PowerShell.

In our generated event we are using source with the name Test Source with event ID 1.

In order to add this new source, we used the following command New-EventLog -

LogName Application -Source "Test Source".

28

This script can also be accessed from our Github1 page, that we made for this thesis.

In addition to generating 200 000 events, the script also notifies the user about the start

of generation, end of generation, each time 10% from the total amount of messages has

been generated.

The tools have been configured to only forward Application event logs to the collection

server.

Table 3 depicts how much average processor time and RAM each tool uses to send

200 000 events. Processor time shows the percentage of time the process used the

processor (the percentage is given for all CPUs) [41]. In a multi-core environment

Windows performance monitor show the processor utilization for all cores. For one core

it displays utilization in the range of 0-100%. If the machine has for example two cores it

1 https://github.com/siimsarv/eventlogs

Figure 1. PowerShell script to generate events.

29

can show up to 200% utilization [42]. So if the Windows performance monitor shows the

CPU usage under 100%, it means that the process has utilized only one of the CPU cores.

Table 3. Processor time and RAM usage

Tool Processor

time

RAM

NXLog 22.6% 2.3MB

Winlogbeat 46.1% 29.4MB

Solarwinds 80.7% 14.1MB

From Table 3 we can see, that NXLog uses the least amount of processor time and RAM.

Solarwinds Event Log Forwarder uses the largest amount of processor time and

Winlogbeats uses the largest amount of RAM.

In Table 4 we can see, how much time it took to generate 200 000 events and how much

time did it take for the events to arrive in our collection server and if there is any delay in

the arrival. We ran the test 10 times. All the numbers in Table 4 are in seconds.

Table 4. Message times

 Event

generation

time

Event

sending

time

Difference First

message

delay

Last

message

delay

NXLog Minimum 108 108 0 0 0

Maximum 148 148 0 0 0

Average 128.8 128.8 0 0 0

Winlogbeat Minimum 166 166 0 0 0

Maximum 238 238 0 0 0

Average 192.1 192.1 0 0 0

Solarwinds Minimum 147 282 134 2 136

Maximum 208 352 153 9 158

Average 159.5 301.7 142.2 5.2 147.4

From Table 4 we can see that for NXLog and Winlogbeats it took the same amount of

time to generate the logs as it took for them to arrive in the collection server. For

Solarwinds it took in average 142.2 seconds more for the events to arrive in the collection

30

server then it did for them to generate. This was also observable when doing the test. We

could see that in case of NXLog and Winlogbeat the events arrived as fast as they were

generated, while for Solarwinds they arrived a little bit later. We can also see from Table

4 that for NXLog the event generation took less time than it did for Winlogbeat and

Solarwinds. This is caused by Windows background operation.

3.1.3 Tool selection

From NXlog, Winlogbeat and Solwinds the one that is the best for our needs is NXLog.

While the other two also match our requirements, NXlog is the best for us for the

following reasons:

 NXLog allows us to forward Windows event logs directly in syslog format,

without the need of additional systems to be setup.

 It is possible to configure it remotely. While it does not support this officially it is

possible with the aid of UEM (Unified endpoint management) tools.

 It allows a high level of filtering.

 It is lightweight and does not use a lot of resources.

3.1.4 What logs should be collected?

In this section we will be creating a list of event log ID’s that should be collected from

Windows systems. We will also determine the event log sources for those events. This

will help us once we will configure the event log collection. We will do this by combining

recommendations from several sources and joining them together into one list. Later we

will also add malware related events we identify in section 3.2.2 to the list.

While you could just take one of the tools, that were highlighted in section 3.1.1 and start

sending all logs to a centralised system, it is not the best available option. It would work,

but you would receive a lot of logs that you do not know what to do with. You could limit

those by only forwarding critical or error level events. This would certainly lower the

amount of events you would be collecting, but you could miss some important indicators

of compromise. For example, if event logs related to Windows Firewall rules are being

added, changed or deleted, the events are categorised as informational level by MS. Same

goes for events that show the clearing of Windows event logs [7].

31

Perhaps the hardest part of log collection is determining what events should and should

not be collected in order to get the most useful information from thousands of events [27].

To help with this, Microsoft has provided its own recommendations of events, that should

be monitored. There are also recommendations from NSA and other sources, that provide

their own event logs to monitor. While those different lists often have a several events in

common, they also always have unique events, that are not mentioned in other lists. Even

lists, that are provided by Microsoft itself, have differences between them. For example,

we have got two lists from Microsoft, each of them have 386 events [5] and 379 events

[6]. After joining those lists and removing the duplicates, we are left with 391 unique

events. The events listed in those sources are mainly in the application, system and

security event categories. In reality, there are many other useful categories that should be

monitored.

In the paper, published by NSA [7], there are 102 events, that are related to different

malicious activities and can be discovered while monitoring those events. From those 102

events only 19 are in the two lists provided by Microsoft. After adding them to existing

list of 391 events, that we have got from MS, we now have 474 unique events. While

some of the events listed by NSA are from the three main categories (application, system

and security), a lot of them are from other log sources.

Malware Archaeology created a “cheat sheet” with sequences of events, that happen if

system is being attacked. They use information gathered by MITRE ATT&CK on

methods used to compromise systems [8]. To be able to detect these sequences, firstly we

would have to collect them. They provide in total 28 individual events and ranges of

events related to Task scheduler (event IDs 100-200), PowerShell (event IDs 200-500)

and Whitelist failures (event IDs 8000-8027). From those 28 events, 16 was on our

already combined list, that leaves us with the total of 486 events to monitor and the three

ranges of events, provided in the “cheat sheet”.

The same events ID’s could appear in several different event log sources. For example

Event ID 8000 can be related to Microsoft-Windows-WLAN-AutoConfig/Operational logs

and Microsoft-Windows-SoftwareRestrictionPolicies. To ensure, that collected logs are

correct, you could look at logs from all sources and filter only by event ID. However, this

would also forward events that we don’t need. To prevent this we need to find out event

32

sources. The NSA list has specified its Event sources, but the other lists do not provide

this information. There are several options for identifying the source of the event log. We

used different event log knowledge bases to look for the events under question. For

example a knowledgebase provided by EventTracker1.

Event log sources from our unified list are as follows:

 Application,

 Security,

 Setup,

 System,

 Microsoft-Windows-Application-Experience/Program-Inventory,

 Microsoft-Windows-AppLocker/EXE and DLL,

 Microsoft-Windows-AppLocker/MSI and Script,

 Microsoft-Windows-CodeIntegrity/Operational,

 Microsoft-Windows-Kernel-PnP/Device Configuration,

 Microsoft-Windows-NetworkProfile/Operational,

 Microsoft-Windows-PrintService/Operational,

 Microsoft-Windows-PowerShell/Admin,

 Microsoft-Windows-PowerShell/Operational,

 Microsoft-Windows-SoftwareRestrictionPolicies,

 Microsoft-Windows-TaskScheduler/Operational,

 Microsoft-Windows-TerminalServices-LocalSessionManager/Operational,

 Microsoft-Windows-TerminalServices-RemoteConnectionManager/Operational,

 Microsoft-Windows-USBUSBHUB3-Analytic,

 Microsoft-Windows-Windows Defender/Operational,

 Microsoft-Windows-Windows Firewall With Advanced Security/Firewall,

 Microsoft-Windows-WindowsUpdateClient/Operational,

 Microsoft-Windows-WLAN-AutoConfig/Operational.

1 kb.eventtracker.com

33

3.2 Malware and event logs.

In order to analyse malware and find out, what events are related to it, we need to run the

malware and examine Windows event logs before and after running it. This presents a

problem. Running the malware will infect our own systems and may cause irreversible

damage. To prevent that, we need a way to run the examined malware safely without

putting our production environment at risk.

To analyse malware safely there are some options:

 Physical machine on an isolated network, that is not connected to any outside

machine or the Internet – Advantage of this option is that some malware can detect

that it is on a virtual network and will act differently. Disadvantage of this option

is the complexity of managing the physical environment and additional cost of

dedicated hardware [28].

 Virtual machine – Advantage is that you are running the malware on a virtual

system and it is harder for the malware to escape the environment and cause

damage to the physical machine and other machines on the network. Another

advantage is that you can create snapshots of the system, in order to turn back to

a previous state. Disadvantage is that some malware can detect that it is running

on a virtual system and may act differently. Some may even attempt to escape and

cause damage to the physical system that is running the virtual environment [28].

In process of testing malware, it is important to think about how the test machines will

connect to each other and to the internet (if needed). For a Virtualized environment there

are several options:

 Bridged network – with this option the VM is connected directly to the network

by using host machines network card. The VM will have its own IP and will

appear in the network as any other connected to the network machine [29].

 NAT (Network Address Translation) networking – with this option the VM and

host will share an IP and all the traffic will seem like it’s coming from the host.

The host will be the only one communicating directly in the network and handle

traffic on behalf of the VM. In this case, the VM is not directly connected to the

network as in case with bridged network. Instead a virtual network card on the

34

host will be created and the host will use it when there is traffic that is intended to

the VM [29].

 Host-Only networking – with this option the VMs do not get any connection to

outside network. They can only communicate with other VM’s on the same Host-

Only network and the host trough the hypervisor [29].

For our needs it is best to use a virtual environment. The lower setup cost and the ability

to use snapshots to revert back to particular points of time are the options that we will

need. There are several options for free virtualization software like: Oracle VirtualBox,

VMWare player, Microsoft Hyper-V etc. We will be using Oracle VirtualBox, since it is

easiest to install and configure.

To isolate the virtual system from rest of the network we will be setting up a Host-Only

network between the different VMs. This will allow the virtual machines to communicate

with each other, but not the with other computer on the local network. The host can

communicate with the VMs only through the virtualization software itself [29].

Since we are interested in events that the malware generates in Windows environment,

we will not be doing a deep analysis of the malware. We will look at the events that are

generated. We will do this with combination of Windows Event Viewer, Reliability

monitor and FullEventLogView.

We will be running our Windows 10 VMs on a Linux Mint host with Oracle Virtualbox

virtualization software. Test bench information:

 Linux Mint 20 Cinnamon version 4.6.7

 Linux Kernel 5.4.0-552-generic

 Intel Core i5-4670K @ 3.40GHz x 4

 16GB of RAM

 Hard Drives – 2 x 1 TB HDD and 1 x 256 GB SSD

 Intel Xeon E3-1200 v3/4th Gen Integrated Graphics Controller and Nvidia

GeForce GTX 980 Ti

 Oracle VirtualBox 6.1.10_Ubuntu r138449

 FullEventLogView version 1.57

 7-Zip version 19.00

35

Microsoft provides virtual machine versions of Windows 10 Enterprise for free with a

trial time. This is meant to be used by developers and comes with some development tools

already installed, but this is still suitable for our purposes [43].

We will simply import the virtual machine into our Oracle Virtualbox. We will be setting

it to 2 CPU and 4096 MB of RAM just to make the machine a little bit faster. We will

also set it to have both NAT and host-only network adapters. We will be using the NAT

adapter for the initial setup of the system to install software from the Internet. Once the

VM is correctly setup, we will disable the NAT adapter.

3.2.1 Setting up malware test bench.

Our test machine already has a Windows 10 system running on it and we do not want to

potentially infect it with any malware. We will install a Linux Mint system as our test

environment to host our virtual machines. For the test environment we installed Linux

Mint 20 to our workbench. In the Linux we updated the system and made sure there were

no driver mismatches and installed VirtualBox. In the VirtualBox we created Windows

10 machines with 4096 RAM and 2 CPUs. In the Windows 10 virtual machine we

uninstalled Visual Studio and installed FullEventLogviewer and 7-zip. We also created a

runnable commandline file to clear event logs. All events can be cleared with the

following command: wevtutil el | Foreach-Object {wevtutil cl "$_"} .

3.2.2 Analysing malware

We are basing our malware selection off CheckPoints Global Threath Index. CheckPoint

Software Technologies is a security products developer. They develop solutions for

network security, cloud security, mobile security etc [44]. They also release a by-monthly

report of most popular malware. We will be looking at their reports on the months of

January [45], February [46], March [47], April [48], May [49], June [50], July [51],

August [52], September [53] and October [54] of 2020. We will be using MalwareBazaar

Database to download the selected malware [55]. MalwareBazaar is a publicly available

database of malware samples. It is free to use and offers unlimited amount of uploads and

downloads of malware samples.

36

Malware we are going to look at are:

 Agent Tesla – appears in 8 monthly reports,

 Dridex – appears in 7 monthly reports,

 Trickbot – appears in 7 monthly reports,

 Valak – appears in only September report. While it appears only in 1 report it is

relatively new malware,

 Frombook – appears in 8 monthly reports

 XMRig – appears in 10 monthly reports,

 Glupteba – appears in 5 monthly reports.

Malware Selection is based on how common it has been this year or how recent it is and

if we could find a sample of the malware.

For each tested malware we will use a separate clone of the machine we created in section

3.2.1. We will download a compressed password-protected file to the VM. After that, we

will disable the NAT network adapter and take a snapshot of the machine. Snapshot is

taken of a powered off VM. After the snapshot had been taken, we will turn on the VM

and start FullEventLogView to observe Windows events generated. Then, we will infect

the VM with the selected malware. Firstly, we will try to infect the machine with

Windows Defender running- just in case the malware has the ability to turn it off. If

Windows Defender will prevent the malware from running, we will run the malware again

with Windows Defender disabled. By disabling the Defender we will simulate a scenario,

when a malware is not yet discoverable by Windows Defender or the Defender has been

turned off by the user for some reason. From our test we sometimes detected that the

malware was able to trigger some events related to its activity before Windows Defender

discovered the malware itself.

To find out what kind of events the test VM generates on its own, we had left an

uninfected machine with Windows Defender and NAT adapter disabled running for 4

hours and recorded the generated events.

For the first tests with malware we did not change any logging settings in Windows. We

did this in order to see, if it is possible to detect any triggered events with Windows with

default logging settings.

37

To test the selected malware, we let them run in the test environment for several hours

while we were monitoring the Event logs in real-time and comparing generated events to

the events, that we recorded in uninfected machine.

Agent Tesla is a RAT (Remote Access Trojan) that is designed to steal credentials and

sensitive information. It also has the capability to log keystrokes and it collects

information about the system it has infected [56].

In our first test with Agent Tesla, Windows Defender was able to successfully detect that

a Trojan was run and block it. Then, we reset our machine to previous state (before

running the malware) and disabled Windows Defender.

For the tests with default Windows auditing settings we discovered two events that were

triggered:

1. Event ID 4797 – Security – An attempt was made to query the existence of blank

password for accounts: Adminsitrator, DefaultAccount, Guest,

WDAGUtilityAccount

2. Event ID 5381 – Security – Vault credentials were read.

While the two detected events were not found in our uninfected machine, these events

can also be seen under normal windows activities. So it is not certain that they were

generated by the malware.

Dridex is a banking Trojan, designed to steal banking credentials. It uses form-grapping,

clickshot taking and site injection to steal data. It can also change the content of webpages

the user is viewing [57].

For the first tests with Dridex we did not find any Windows events that were triggered by

the malware.

Trickbot is another banking Trojan designed to steal users bank credentials. It uses

redirection to change the targeted webpage that the user is trying to connect to. It is also

able to steal users browser history and interject payment process to steal money. It also

utilises the EternalBlue exploit to spread through the network [58].

38

For the first test with default Windows logging settings we were not able to find any

events triggered by Trickbot.

Valak was originally classified as malware loader, but after its first appearance in 2019,

it has had a lot of different versions. Now it can be used on its own to steal information

[59].

While all other malware examples that we found had an executable .exe version available,

Valak had only MS Word file and a .dll. The malware uses regsvr32.exe to run the .dll

file [59], we will do the same.

While running just the .dll file, we were not able to detect any suspicious activity in the

event logs.

Formbook is an information stealing malware, that has been offered as a service. Its

information stealing ability is not the best in the market but because it is easy to use it is

still very popular malware [60].

No events related to Formbook discovered in Windows 10 workstation with default

auditing configuration.

XMRig is a crypto mining software often installed on target machine after infecting it

with other malware [61].

We did not find any events related to XMRig in a Windows 10 workstation with default

auditing configuration.

Glupteba is used to install other malware, but also has information stealing functionality

[62].

No events related to Glupteba discovered.

Microsoft has its own Audit Policy Recommendations [63]. Since we only found two

events from our tests with default Windows logging setting, we will now apply settings,

that are recommended by Microsoft, and will test the same malware again. You can access

Audit Policy setting by navigating to Administrative tools then Local Security Policy and

afterwards to Advanced Audit Policy Configuration. We will configure settings to

recommended by Microsoft as baseline and test the malware again. Before testing

39

malware, we will let the machine run without infection in order to get the normal events.

We will test the same malware again and look for new event ID’s that are generated by

malware.

You can set to log both- success and failure- of certain actions in Windows. Baseline audit

policy settings recommended by Microsoft that we applied [63]:

 Credential Validation – success,

 Computer Account Management – success,

 Other Account Management Events – success,

 Security Group Management – success,

 User Account Management – success,

 Process Creation – success,

 Logoff – success,

 Logon – success and failure,

 Special Logon – success,

 Audit Policy Change – success and failure,

 Authentication Policy Change – success,

 IPsec Driver – success and failure,

 Security State Change – success and failure,

 Security State Extension – success and failure,

 System Integrity – success and failure.

After making these changes we were able to observe a lot more of events for tested

malware samples.

Events triggered by Agent Tesla:

 Event ID 4688 – Security – A New process was created. – Agent Tesla starts

C:\Windwos\SysWOW64\schtasks.exe with new process ID 0xf38.

 Event ID 4688 – Security – A new process has been created. – schtasks.exe with

process ID 0xf38 starts C:\Windows\System32\conhost.exe with new process ID

0x1504.

 Event ID 4688 – Security – A new process has been created. – Agent Tesla starts

C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe with new

process ID 0x1cc8.

40

 Event ID 4688 – Security – A new process has been created. – Agent Tesla starts

itself with new process ID 0x159c.

Events triggered by Dridex:

 Only event found was us launching the malware.

 Even though Windwos Defender’s real-time protection was disabled it found the

malware 25 minutes after it was launched.

 Event ID 1116 – Microsoft-Windows-Defender/Operational – Microsoft

Defender Antivirus has detected malware or other potential unwanted software.

Even though we did not find any events related directly to the malware, we still saw event

ID 1116. This event was triggered because Windows Defender discovered the malware.

This event ID was not in any of the lists we looked at in section 3.1.2.

Events triggered by Trickbot:

 Event ID 4688 – Security – A new process has been created. – Trickbot starts with

new process ID 0xa30.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\SysWOW64\dllhost.exe with process id 0xf1c starts new Trickbot

process with process ID 0xf20.

 Event ID 4688 – Security – A new process has been created. – Trickbot starts

C:\Windows\System\wermgr.exe with process ID 0x78c.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System\svchost.exe with process ID 0x43c starts Trickbot from

C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\WinPwrSvs\trickbot.exe (not the original Trickbot location were

we started it) with process ID 0x1830.

 Event ID 4688 – Security – A new process has been created. – Trickbot with

process ID 0x1830 starts C:\Windows\System32\wermgr.exe with process ID

0x1624.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System\svchost.exe with process ID 0x43c starts Trickbot from

C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\WinPwrSvs\trickbot.exe with process ID 0x578.

41

 Event ID 4688 – Security – A new process has been created. – Trickbot with

process ID 0x578 starts C:\Windows\System32\wermgr.exe with process ID

0x16d4.

 Last 4 events keep repeating it self. Svchost.exe starts Trickbot and Trickbot starts

wermgr.exe.

Events triggered by Valak:

 Event ID 4688 – Security – A new process has been created. – We start

C:\Windwos\System32\regsrv32.exe with Valak.dll as target. New process ID

0x1708

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System32\regsrv32.exe with process ID 0x1708 start new process

C:\Windwos\SysWOW64\regsvr32.exe with new process ID 0x1058

 Event ID 4688 – Security – A new process has been created. –

C:\Windwos\SysWOW64\regsrv32.exe with process ID 0x1058 starts

C:\Windows\SysWOW64\wscript.exe with new process ID 0x19a0.

Events triggered by Formbook:

 Event ID 4688 – Security – A new process has been created. – Formbook with

process ID 0x3a0 starts C:\Windows\SysWOW64\schtask.exe.

 Event ID 4688 – Security – A new process has been created. – schtask.exe with

process ID 0x3a0 opens C:\Windows\System32\conhost.exe with new process ID

0x1e8c.

 Event ID 4688 – Security – A new process has been created. – Formbook with

process ID 0x16d0 opens Formbook with new process ID 0x3b4.

Events triggered by XMRig:

 Event ID 4688 – Security – A new process has been created. – XMRig with

process ID 0x15e0 starts itself with new process ID 0x1764.

 Event ID 4688 – Security – A new process has been created. – XMRig with

process ID 0x1764 starts C:\Windows\notepad.exe with new process ID 0x668.

42

 Event ID 4688 – Security – A new process has been created. – XMRig with

process ID 0x1764 starts C:\Windows\SysWOW64\cmd.exe with new Process ID

0x654.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\SysWOW65\cmd.exe with process if 0x654 starts

C:\Windows\System32\conhost.exe with new process ID 0xfe4.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\SysWOW65\cmd.exe with process if 0x654 starts

C:\Windows\System32\wscript.exe with new process ID 0xfe0.

 Event ID 4688 – Security – A new process has been created. – XMRig with

process ID 0x1764 starts C:\Windows\notepad.exe with new process ID 0x13fc.

This events repeats several times. XMRig opens several new processes of

notepad.exe.

Events triggered by Glupteba:

 Event ID 4798 – Security – A user’s local group memvbership was enumerated

by Glupteba with process id 0x16c4.

 Event ID 4688 – Security – A new process has been created. – Glupteba with

process ID 0x16c4 starts c:\Windows\System32\cmd.exe with new process ID

0x1d68

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System32\cmd.exe with process ID 0x1d68 starts

C:\Windows\System32\conhost.exe with new process ID 0x1e68.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System32\cmd.exe starts with process ID 0x1d68 starts new process

C:\Windows\Sustem32\fodhelper.exe with new process ID 0x1454. This event

occurs several times.

 Event ID 4688 – Security – A new process has been created. –

C:\Windows\System32\fodhelper.exe with process ID 0x1454 starts Glupteba

with new process ID 0x1cf4.

 Event ID 4688 – Security – A new process has been created. – Glupteba with

process ID 0x16c4 starts C:\Windows\SysWOW64\WerFault.exe with new

process ID 0x1ce0. This event occurs several times.

43

 Event ID 4688 – Security – A new process has been created. – Glupteba starts

itself with new process ID 0x1cf4.

After configuring the VMs according to Microsoft baseline recommendations, we can

already see a lot more information than we did before. We were able to detect processes,

that are created by the malware, and follow them for some time. The setting that allowed

us to achieve that was enabling logging for Process Creation successes.

We will now test the same malware with stronger audit policy setting recommended by

Microsoft [63]. We will first configure the audit settings and let an uninfected VM with

NAT and Windows defender disabled run to get the events that would be normal for our

machine. We will then again test the malware and compare with our uninfected events to

see what are triggered by malware.

Strong audit policy settings recommended by Microsoft that we applied [63]:

 Credential Validation – success and failure,

 Kerberos Authentication Service – success and failure,

 Kerberos Service Ticket Operations – success and failure,

 Other Account Logon Events – success and failure,

 Computer Account Management – success and failure,

 Other Account Management Events – success and failure,

 Security Group Management – success and failure,

 User Account Management – success and failure,

 DPAPI(Data Protection Application Programming Interface) Activity – success

and failure,

 Process Creation – success and failure,

 Account Lockout – success and failure,

 Logoff – success,

 Logon – success and failure,

 Special Logon – success and failure,

 Audit Policy Change – success and failure,

 Authentication Policy Change – success and failure,

 MPSSVC (Microsoft Protection Service) Rule-Level Policy Change – success,

 IPsec Driver – success and failure,

44

 Security State Change – success and failure,

 Security State Extension – success and failure,

 System Integrity – success and failure.

After we had configured the above setting on our VM, we ran the tests again and we were

not able to detect any additional events, that were triggered by the selected malware. We

were able to detect the same events, that were triggered in the previous test with baseline

audit policy settings.

As we can see, the most useful audit policy setting for us was Process Creation setting.

This allows us to follow the malware and see what processes it triggered. After Process

Creation setting is set to log successes, it will trigger an event with ID 4688. This event

logs creation of a process in Windows and it also shows what program started this.

From the tests that we have done so far, we can see, that some of the malware started

conhost.exe and schtasks.exe, but we could not see, what commands were used with those

commands. Conhost.exe is a Command Prompt and schtasks.exe is Scheduled Tasks

command line utility.

For our next tests we will be enabling Command Line and PowerShell logging. We will

also enable Scheduled Tasks logging. To do this we can use command line to run the

following commands [64].

Command to enable Task Scheduler logging is displayed on Figure 2:

Enabling command line logging makes Process Creation event with ID 4688 more

detailed by adding process command line to the log. To enable Command Line we can

use the command in Figure 3. Note that the command is a single line command.

Figure 2. Command to enable Scheduled tasks logging

Figure 3. Command to enable Command Line logging

45

To enable PowerShell logging we can use the commands in Figure 4. Note that all the

commands are single line commands.

After we have implemented these logging settings we will test all the malware again to

see, if we discover any new evidence. We will be recording new events or events that

have new information.

Events triggered by Agent Tesla:

 Event ID 4688 – Security – A new process has been created. – Agent Tesla starts

new process C:\Windows\System32\schtasks.exe /Create /TN Updates\YpPDUr

/XML C:\Users\User\AppData\Local\Temp\tmpF091.tmp with process ID 0xdcc.

 Event ID 4688 – Security – A new process has been created. – schtasks.exe with

process ID 0xdcc starts C:\Windows\System32\conhost.exe 0xffffffff –ForceV1

with process ID 0x804.

 Event ID 106 – Microsoft-Windows-TaskScheduler/Operational – User

“WINDEV2010WVAL\User” registered Task Scheduler task

“\Updates\YpPDUr”.

 Event ID 4688 – Security – A new process has been created. – Agent Tesla start

C:\Windwos\Microsoft.NET\Framework\v4.0.30319\RegSvcs.exe with process

if 0x1534 with argument “{path}”. The path argument value is not known.

Figure 4. Commands to enable PowerShell logging.

46

We can see, that adding command line logging to Process creation has given us more

information. We see, what commands were used to start schtasks.exe and see what task

was created.

Events triggered by Dridex:

 No new events discovered.

Events triggered by Trickbot:

 Event ID 4688 – Security – A new process has been created. –

C:\Windwos\System32\svchost.exe starts new process

C:\Windows\SysWOW64\DllHost.exe /Processid:{3E5FC7F9-9A51-4367-

9063-A120244FBEC7} with process ID 0x1730.

 Event ID 106 – Microsoft-Windows-TaskScheduler/Operational – User

“SYSTEM” registers Task Scheduler task “\Windows Power Saves”.

 Event ID 140 – Microsoft-Windows-TaskScheduler/Operational – User

“SYSTEM” updated Task Scheduler task “\Windows Power Saves”.

 Event ID 129 – Microsoft-Windows-TaskScheduler/Operational – Task

Scheduler launches task “\Windows Power Saves” , instance

“C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\WinPwrSvs\trickbot.exe” with process ID7392’.

 Event ID 100 – Microsoft-Windows-TaskScheduler/Operational – Task

Scheduler started “{3d548fef-1f94-4105-acd5-df36bb461ddd}” instance of the

“\Windows Power Saves” task for user “NT AUTHORITY\SYSTEM”.

 Event ID 200 – Microsoft-Windows-TaskScheduler/Operational – Task

Scheduler launched action “C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\WinPwrSvs.exe” in instance “{3d548fef-1f94-4105-acd5-

df36bb461ddd}” of task “\Windows Power Saves”.

 Event ID 201 – Microsoft-Windows-TaskScheduler/Operational – Task

Scheduler successfully completed task “\Windwos Power Saves”, instance

“{3d548fef-1f94-4105-acd5-df36bb461ddd}” , action

“C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\WinPwrSvs\trickbot.exe” with return code 0.

 This activity repeats itself.

47

Events triggered by Valak:

 Event ID 4688 – Security – A new Process has been created. – C:-

\Windwos\SysWOW64\regsvr32.exe starts new process with following

parameters C:\Windwos\SysWOW64\wscript.exe //E:jscript

“C:\Public\IdfxcyvPN.N_Dya” with process ID 0x1118.

Events triggered by Formbook:

 Event ID 4688 – Security – A new Process has been created. – Formbook starts

C:\Windows\SysWOW64\schtasks.exe with commands /Create /TN

“Updates\<random name> /XML <location of .tmp file>”.

 Event ID 106 – Microsoft-Windows-TaskScheduler – A task with the same name

as in previous event is created.

This malware acts similarly to Agent Tesla. It creates scheduled task with similar name

pattern. Agent tesla also starts regsvcs.exe.

Events triggered by XMRig:

 Event ID 4688 – Security – A new Process has been created. – XMRig starts

cmd.exe wist command line “/C WScript C:\ProgramData\<random

name>\<filename>.vbs”

 Event ID 4688 – Security – A new Process has been created. – cmd.exe starts

C:\Windows\SysWOW64\wscript.exe with command line “WScript

C:\ProgramData\<random name>\<filename>.vbs”

 Event ID 4688 – Security – A new Process has been created. – XMRig starts

notepad several timed with command line “-c C:\ProgramData\<random

name>\<filename>”

Events triggered by Glupteba:

 Event ID 4688 – Security – A new Process has been created. – Glupteba starts

cmd.exe with command line “C:\Windows\Sysnative\cmd.exe /C fodhelper”

 Event ID 4688 – Security – A new Process has been created. – GLupteba starts

C:\Windwos\SysWOW64\WerFault.exe this parameters “-u –p <number> -s

<number>”

48

From tests results with Command Line , PowerShell and Task Scheduler monitoring we

can see that we got a lot more information about the malware activities. We also managed

to discover some new Windows event ID that were not in any of the lists we looked at

chapter 3.1.2. Those events are 100, 104,129, 140, 200 and 201. Event source for those

events is Microsoft-Windows-TaskScheduler/Operational.

For Dridex we were also able to get a working Microsoft Word .doc version sample. This

Word document would be sent to a target in form of some important document that has

to be opened. After opening the document, user is asked to enable editing of the document

in order to view it. After opening the document, we were able to identify following events

from Windows events logs:

 Event ID 600 – Windows Powershell – Powershell is started with –w hidden –

ENCOD JAAwADYA…. This is continues as a long encoded message.

 This was done 6 times for providers: Varriable, Alias, Environment, Function and

Filesystem. Lastly Engine state was set from None to Available.

 Event ID 4104 – Microsoft-Windows-PowerShell/Operational – Creat

Scriptblock text … - Obfuscated peace of code was executed.

 This event was done 3 times with different obfuscated code.

During the testing we also recorded what kind of events are generated, if Windows

Defender is turned off, and when Windows Defender successfully discovers malware.

Following events were recorded:

 Event ID 15 – SecurityCenter – Updated Windows Defender status successfully

to SECUTIY_PRODUVT_STATE_SNOOZED.

 Event ID 1116 – Microsoft-Windows-Windows_Defender – Microsoft Defender

Antivirus has detected malware or other potential unwanted software.

Before every test we cleared event logs with a command mentioned before. This also

generates events into the event log. While these events were not identified in our

Windwos machines, we did see them in our centralised collection system. Following

events were recorded:

49

 Event ID 1512 – Microsoft-Windows-Eventlog – The name of the event log file

was cleared.

3.3 Configuring centralized collection

In this section we will give recommendation for configuring the workstation and explain

the nxlog.conf file we created to send all the events that we have gathered in section 3.1.4

and 3.2.2. The full NXLog configuration can be seen in Appendix 1 and also Github1

page that is made for this thesis.

For Windows workstation we would recommend activating the baseline setting from

Microsoft [63] and adding command line, PowerShell and task scheduler logging. From

the baseline setting Audit Process Creation events were the most useful for us and

provided us with the most information. Location of files and command run was mostly

gathered from the command line and task scheduler logs.

We also created a NXLog configuration file to collect recommended events.

First we defined variables called EventsToCollect and MalwareEvents. This events

contain all the events IDs we gathered from sections 3.1.4 and 3.2.2. EventsToCollect has

all the events we combined in section 3.1.4 and MalwareEvents has all events that were

not in EventsToCollect and we discovered testing malware in section 3.2.2.

We created three input sections called eventlog, eventlogSC and eventlogPWR. The first

one has all the events gathered from malware and section 3.1.4. It does not have the range

of events for TaskScheduler(Event IDs 100-200) and PowerShell(Event IDs 200 - 500).

Eventlog also has all the eventlog sources we discovered in section 3.1.4.

While configuring event source paths, you need to make sure, that the path exist in your

system and that the path is called the same internally as it is shown by Microsoft. The

event source for Kernel Device PnP configuration in Windows Event viewer is Microsoft-

Windows-Kernel-PnP/Device Configuration, but in reality the location path internally is

Microsoft-Windows-Kernel-PnP/Configuration.

1 https://github.com/siimsarv/eventlogs

50

At the end of eventlog input section there is if statement, that is used to check, if the event

ID that NXLog is currently processes does not exist in EventToCollect and

MalwareEvents cariable. If they do not exist, the processed event is dropped. After the if

statement we add the processed event’s event ID to the event message.

For input sections eventlogSC and eventlogPWR we are only are only looking at three

event sources. Task Scheduler event source for eventlogSC and PowerShell event source

for eventlogPWR. For Task Scheduler and PowerShell we have a range of event IDs that

interest us. 100 to 200 for Task Scheduler and 200 to 500 for PowerShell. We check for

the event ID with an if statement in the end of the input sections.

3.4 Automatic detection of security incidents

For our purposes the best option is to use SEC for automated detection of security

incidents. As for other four solutions from section 2.3:

 NXLog pm_corr is not free solution.

 ESPER is not a readily available tool but rather a library which requires the

development of an event correlation solution around it.

 ElastiSearch and Splunk are heavyweight solutions which have to be deployed on

a separate infrastructure.

SEC is lightweight option that does not use a lot of resources. It is open-source and free

to use. It is also simple to use and does not require us to learn a completely new

programming language. SEC does event matching with the use of regular expressions.

In chapter 3.2 we looked at several different malware and what kind of events they trigger,

we also noted, what kind of events are triggered by Windows Defender if it is disabled or

it discovers malware. We also looked at what kind of events are triggered if Windows

event logs are cleared. Now we will create SEC rules to detect these events automatically.

For this we will be analysing the events generated and determine, what information can

be used to create regular expressions, that would match the events. In the second half of

this chapter we will also create rules that will discover common attack techniques used

by attacker. For this we will analyse Windows ATT&CK cheat sheet [64] for common

51

tactics used. All SEC rules that we created can be found in Appendix 2 and 3 and also in

Github1.

Events, we will be looking at, are:

 Windows Defender turned off,

 Windows Defender discovered malware,

 Windows Event logs cleared,

 potentially malicious PowerShell commands,

 events triggered by malware,

 events triggered when system is under attack.

Security Centre regularly generates events that show the status of Anti-Malware software.

These events come from event source SecurityCenter with the event ID 15. The event

message contains defender status ON if it is turned on and SNOOZED if it is turned off.

For the SEC rule that checks for Windows Defender status we created a regular

expression that checks for the source SecurityCenter and that the event message contains

SECURITY_PRODUCT_STATE_SNOOZED. If an event that has these elements is

matched we send a mail using mailx to desired address and also log it in another log.

When we use SEC to send message to the user or logging an event to a separate log, we

also always include the hostname of the workstation, where the incident was discovered

on.

When Windows Defender discovers malware, it generates an event with the event source

Microsoft-Windows-Windows_Defender. The event message contains has detected

malware and the name, path and process of the malware. To discover this with SEC, we

created regular expresion that matches the source and the message. We also retrieve the

name of the malware, path and process. We then send this information to the desired

address and also log it.

Clearing an event log in windows generates an event itself. The event source of these

messages is Microsoft-Windows-Eventlog. The message itself contains the name of the

log that was cleared. If a malicious actor would also clear Windows Eventlog log, then

1 https://github.com/siimsarv/eventlogs

52

these messages would be also gone. Leaving the user with no indication that any events

were cleared, other than the fact that there are no logs. However, if you would forward

logs to a log collection system, then these logs would still be available. To match these

events with SEC, we are checking for the event source and we also retrieve the event log

name that was cleared. We created two SEC rules for event log clearing. The first one

sends a mail each time a log is cleared, the second one sends a mail every 60 seconds

after the first log is cleared. The mail contains all logs that have been cleared during the

60 seconds. It will stop sending mails if there are no more events after the last 60 seconds

is over. We achieve this by using SECs context feature.

From our experiments with malware, that used Microsoft Word to infect the target, we

discovered that it used PowerShell to run encoded commands in a hidden window. After

running the encoded PowerShell command we also noticed an event for scriptblock

creation. The event related to the hidden and encoded PowerShell is from Microsoft-

Security-Auditing event source. The –w hidden and ENCOD can be seen in the Process

Command Line section of the message. This section also contains the encoded code. The

SEC rule, that we created in order to detect this event, looks for the event source and that

the message contains “A new process has been created” and that the new process name

is either cmd.exe or powershell.exe. We also retrieve the process that started this new

process, and send it to the user.

Scriptblock creation events are from Microsoft-Windows-PowerShell event source and in

the event message have Creating Scriptblock and then the script that was used to create

the scriptblock. To detect this with SEC we are looking for events that have the correct

evnet source and message. We then send this information to the user.

To discover Agent Tesla we need to look at several different events that happen in a

specific order. These events are:

1. Some process starts schtasks.exe with a command to create a new task with a name

that follows this pattern \Updates\<name>. The <name> field contains of random

letters and numbers.

2. That same schtask.exe that was started in step 1 then starts conhost.exe.

3. A scheduled task with the name used in step 1 is created.

53

The first and second event are from the same events source of Microsoft-Security-

Auditing and the last message is from Microsoft-Windows-TaskScheduler. From the first

event we are retrieving the created process ID and the task name. In order to pass this

information to the rules to detect step 2 and 3 we are using SEC context feature. With the

first rule, we are creating a context with the hostname, the process ID and another context

with the hostname and task name. In the second rule we are comparing the creator process

ID with the one that was discovered in the first step. In the third rule we are comparing

the task names. Once the third step has successfully identified the correct event it sends a

mail to the desired location.

To discover Trickbot we have to look at 5 events that happen in a specific order. These

events are:

1. Svchost.exe starts dllhost with process command line DllHost.exe

2. Dllhost.exe starts the trickbot file.

3. Trickbot start wermgr.exe

4. A task is created with the name of “Windows Power Saves”

5. A task named “Windows Power Saves” starts trickbot from a new location.

The steps 1, 2 and 3 all have the same event source of Microsoft-Security-Auditing and

the steps 4 and 5 have event source of Microsoft-Windows-TaskScheduler. We are again

using context to pass the required information to the next rule and to ensure that these

actions happen in a specific order. For the first event we are checking if the event source

is correct and that the creator process is svchost and new process is dllhost, we are then

retrieving the new process ID. For the second rule we are checking, if the creator process

id dllhost and the process ID is the same as in previous step. We then collect the new

process name and ID. For the third step we are looking if the process from step 2 has

started wermgr.exe, if we detect this we are sending a mail to the specified email with the

original location of the malware. The malware location is the same as new process in step

2 and creator process in step 3. We then look for TaskSheheduler event that show us the

creation of a task named “Windows Power Saves”. In the final step we look for a task

with the same name that starts a process. This process is the new location for Trickbot.

We send this information also to the target email.

54

To discover Valak, we are looking for events with event source Microsoft-Windows-

Security-Auditing and if regsvr32.exe is starting wscript.exe.

To discover XMRig, we searched for processes that start itself and then start notepad.exe

and cmd.exe. When a process starts itself, we record the new process ID and look for

events where that same event ID starts notepad and cmd. We also record the command

lines of the notepad and cmd events.

To discover Glupteba we are first looking for processes that start cmd.exe with command

line parameter fodhelper and capture the process ID. Then we look for cmd.exe processes

with the same ID, that start fodhelper.exe and capture the new process ID. After that, we

look for events were fodhelper with the same ID starts something else. Fodhelper starts

the original malware file again. We capture the new process ID and look for the original

malware file starting new process WerFault.exe. We then send a notification email to the

user with the location of the original malware.

The cheat sheet made by Malware Archaeology [8] covers different techniques that

attackers use to compromise systems. This cheat sheet is based on MITRE ATT&CK [65]

research. Malware Archaeology as has combined the research into an easy to follow table

that show the sequence of events for different techniques. These techniques include:

reconnaissance, collection, lateral movement, credential access, execution etc.

The cheat sheet is divided by tactics and techniques. For each technique there are 1 to 7

data sources that show what kind of information should be examined to discover this

technique. It does also show if the coverage of a specific technique is good, not complete

or none at all. The data sources that have a Windows event related to them also show an

event ID of the related event.

We are going to look at the techniques that have good coverage and that all the data

sources have event related to them. From those techniques we select the ones that have at

least three data sources or have unique data sources. We do this to prevent possible false

positives. For example, consider technique that has only two data sources process

execution and process command line. In that case, it is not possible to ensure that we have

discovered the specific technique, since these kind of events happen often in a Windows

environment and are also often the first two data sources of other techniques.

55

Techniques that match our criteria are:

 Collection – data from local system,

 Collection – data from network shared drive,

 Collection – data from removable media,

 Collection – data Staged

 Credential access – Brute force,

 Defence evasion – deobfuscate code,

 Defence evasion – network share connection removal,

 Discovery – system network configuration discovery,

 Discovery – system ownership discovery,

 Execution – PowerShell

 Execution – service execution,

 Execution/ lateral movement – windows remote management,

 Exfiltration – automated exfiltration,

 Lateral movement – application deployment software,

 Persistence – modify existing service.

Most of the techniques, that we chose to be automated, start with data sources: process

execution and process command line. These data sources are both related to event ID

4688. In some techniques process execution is the first data source and process command

line is the second, in others it is the other way around. Event with the ID 4688 is regular

process creation event and it appears often in Windows environment. In order to make

sure that the two events are related to each other, we have to make sure that the first events

new process ID matches the second events creator process ID. We also need to make sure

that command line events include cmd.exe as creator process and that process execution

events do not have cmd.exe as creator process. Once two events matching these rules have

been discovered by SEC we create a context name exec_cmd or cmd_exec.

To discover specific techniques we check the existence of the correct context to match

the first two data sources and for the other data sources we just check, if the correct event

ID exists in a specific amount of time. For example, to discover collection of data from

local system we first check for the presence of exec_cmd context. If this is present, we

check for PowerShell events with the event IDs of 200 to 500 or 4100 to 4104. If an event

appears, that matches those PowerShell events, we wait for another event with the ID of

56

4663 and after that we look for an event with ID of 5861. If this sequence of events

appears, we send an email to the desired location to notify the user.

The rules that we created to detect the techniques described in the cheat sheet are included

in Appendix 3 and in Github1.

While we performed test to ensure, if the rules that we created for SEC worked correctly,

we modified the same testing environment we used to analyse malware. We configured

it to forward its events to a Rsyslog and Solaris based centralised collection system. We

used NXLog with configuration we made in section 3.3 to forward the events from

Windows. SEC was configured on the centralised collection system. In order to test, if

the rules to discover malware worked correctly, we activated each malware separately in

the Windows environment and observed SEC logs. We were able to confirm, that all the

rules we created for malware detection, worked correctly. To test the rules we created

based on the cheat sheet, we modified the PowerShell script that we used to generate

specific events. For each technique, we modified the script to generate events, according

to the sequence specified in the cheat sheet. We were able to successfully discover all the

techniques that we created rules for.

3.5 Testing on production environment and results

In order to test how the proposed solution performs in a production environment with real

data, we implemented our solution to an already existing rsyslog based event collection

system. For the initial test we configured 10 Windows 10 workstations to forward their

events to the collection system. We run this test for 6 days, during this time those 10

workstations sent 953044 events. The test run for a total of 521971 seconds which makes

it an average of 1.9 events per second.

We also monitored how much processor time was used by NXLog, in the workstations

and by SEC in the collection server. The workstations had a 4 core Intel processor and

NXLog used an average of 1.5% of one of the CPU cores. The server with SEC had 8

virtual CPUs and SEC used an average of 0.52% of one CPU out of 8. These result show

that collection of events and monitoring requires a modest amount of CPU resources, and

1 https://github.com/siimsarv/eventlogs

57

the solution can process event log data from a much larger number of workstations. We

plan to extend our solution to 300 workstations in the institution where the experiment

was conducted.

From the 10 workstations that we used in the test 9 of them had their auditing settings set

according to our recommendations and they produces on average 14 000 events per day.

The 1 workstation what was not set according to our recommendations was set to send

auditing information about everything that happens in the machine. This workstation sent

on average 273 000 events per day. This was on average about 300 MB of storage per

day compared to an average of 10 MB per day on the other machines. These findings

illustrate that if the collection of events relevant to security is not properly configured on

Windows workstations, the amount of event log data arriving to central log collection

server can increase significantly and easily consume 30 times more disk space. Therefore,

it is essential to have the right event collection policies implemented on workstations, so

that events that are irrelevant from the security perspective would not needlessly waste

the resources of log collection and security monitoring systems.

58

4 Summary

Collecting and analysing of Windows event logs is often neglected. It may be caused by

the huge amount of events, that Windows can generate on a daily basis or because users

do not know, what to do with the collected logs. There are several tools available that

allow the user to collect and analyse Windows events, but more often than not these tools

are not free or the required functionality is not available in the free version.

The goal of this thesis was to develop a solution to collect and automatically analyse

Windows event logs to find security incidents. The tools and the required functionality

must be available for free. These tools should also be lightweight, easy to use and

compatible with existing centralised log collection solutions. Another goal is to identify

what events should be collected from Windows system.

We discovered over 500 unique events from 22 different event sources that should be

collected in a Windows 10 environment. We did this by combining recommendations

from 4 different sources. These sources included recommendations from Microsoft, the

NSA and a list of different techniques used by attackers collected by Malware Archology

and MITRE ATT&CK. More events were discovered when analysing 7 different

malwares. Malware selection was based on their popularity in this year. When analysing

malware we looked at what kind of events they trigger in a Windows environment. We

also identified what Windows auditing setting are the most useful to discover security

incidents.

In order to identify the best tool to use for Windows event collection we looked at 9

different tools that claim to have that functionality. From those 9 look we take a closer

look at 3 that match all our requirements. We look at the functionality, ease of use and

performance of these tools. From these tools we identified NXLog to be the best for

forwarding Windows events logs. We also develop a configuration file to forward all the

events we have discovered that should be forwarded.

We used event correlation to automatically detect security incidents from the collected

events. There are several tools available that allow you to use event correlation. We chose

59

SEC, because it is free, lightweight and easy to use. We created event correlation rules,

based on the information we gathered when analysing malware and based on the

techniques used by attackers. In total, we created 36 event correlation rules for SEC.

These rules were able to successfully detect the malware we analysed and the sequences

of events that attacks generate.

We tested the solution in a production environment by configuring 10 Windows 10

machines to send their events to a centralised log collection system. The test result show

that the proposed solution uses modest amount of resources and can be scaled to process

information for much larger amount of workstations.

In conclusion, we were able to identify, what Windows events should be collected, and

developed a solution to collect and analyse Windows events to discover security incidents

using free tools.

60

References

[1] StatsCunter, “Desktop Operating System Market Share Worldwide Jan 2009 - oct

2020,” [Online]. Available: https://gs.statcounter.com/os-market-

share/desktop/worldwide/#monthly-200901-202010. [Accessed 24 11 2020].

[2] Statscounter, [Online]. Available: https://gs.statcounter.com/windows-version-

market-share/desktop/worldwide/#monthly-200901-202011. [Accessed 24 11

2020].

[3] OWASP, [Online]. Available: https://owasp.org/www-project-top-ten/#.

[Accessed 24 11 2020].

[4] R. Anthony, “Detecting Security Incidents Using Windows Workstation Event

Logs,” SANS Institute, 2013.

[5] Microsoft, “Description of security events in Windows 7 and in Windows Server

2008 R2,” Microsoft, [Online]. Available: https://support.microsoft.com/en-

us/help/977519/description-of-security-events-in-windows-7-and-in-windows-

server-2008. [Accessed 4 10 2020].

[6] Microsoft, “Events to Monitor,” Microsoft, 30 7 2018. [Online]. Available:

https://docs.microsoft.com/en-gb/windows-server/identity/ad-ds/plan/appendix-l--

events-to-monitor?redirectedfrom=MSDN. [Accessed 04 10 2020].

[7] National Security Agancy, “Spotting the Adversary with Windows Event Log

Monitoring,” National Security Agancy, 2013.

[8] MalwareArchaeology, “WINDOWS ATT&CK LOGGING CHEAT SHEET,”

MalwareArchaeology, 2018.

[9] L. P. T. G. S. P. L. K. T. M. María del Carmen Prudente Tixteco, “Intrusion

Detection Using Indicators of Compromise Based on Best Practices and Windows

Event Logs,” in The Eleventh International Conference on Internet Monitoring

and Protection, 2016.

[10] T. A. Arpan Man Sainju, “An Experimental Analysis of Windows Log Events

Triggered by Malware,” in SouthEast Conference, Kennesaw, 2017.

[11] M. D. Mullinix, An Analysis of Microsoft Event logs, Utica: Utica College, 2013.

[12] J. Baráth, “Optimizing Windows 10 logging to detect network security threats,” in

2017 Communication and Information Technologies (KIT), 2017.

[13] B. B. M. K. Risto Vaarandi, “An Unsupervised Framework for Detecting

Anomalous Messages from Syslog Log Files,” in NOMS 2018-2018 IEEE/IFIP

Network Operations and Management Symposium, 2018.

[14] S. Petai, Detecting Anomalies in System Logs, Tallinn: Tallinn University of

Technology, 2014.

[15] M. Gerges, Log monitoring and event correlation on Microsoft® Windows™

using Simple Event Correlator, Tallinn: Tallinn University of Technology, 2016.

[16] NXLog Ltd., NXLog User Guide, 2020.

61

[17] Elasticsearch , “Winlogbeat Reference,” Elasticsearch , [Online]. Available:

https://www.elastic.co/guide/en/beats/winlogbeat/current/index.html. [Accessed

20 10 2020].

[18] Elasticsearch, “What are Beats?,” Elasticsearch, [Online]. Available:

https://www.elastic.co/guide/en/beats/libbeat/7.9/beats-reference.html. [Accessed

20 10 2020].

[19] Rsyslog, “Rsyslog,” [Online]. Available: https://www.rsyslog.com/doc/v8-stable/.

[Accessed 12 10 2020].

[20] Snare Solutions, [Online]. Available: https://www.snaresolutions.com/portfolio-

item/open-source-vs-enterprise/. [Accessed 23 10 2020].

[21] One Identity, syslog-ng Premium Edition 7.0.21 Administration Guide, California,

2020.

[22] One identity, syslog-ng Open Source Edition 3.26 Administration Guide,

California, 2020.

[23] One identity, syslog-ng Premium Edition 7.0.21 Windows Event Collector

Administration Guide, California, 2020.

[24] Graylog, “Graylog,” [Online]. Available: https://docs.graylog.org/en/3.3/.

[Accessed 20 10 2020].

[25] “Eventlog-to-syslog,” [Online]. Available:

https://code.google.com/archive/p/eventlog-to-syslog/. [Accessed 12 10 2020].

[26] Purdue University, “Eventlog to syslog utility,” [Online]. Available:

https://engineering.purdue.edu/ECN/Resources/Documents/UNIX/evtsys.

[Accessed 12 10 2020].

[27] Microsoft, “Use Windows Event Forwarding to help with intrusion detection,”

[Online]. Available: https://docs.microsoft.com/en-us/windows/security/threat-

protection/use-windows-event-forwarding-to-assist-in-intrusion-detection.

[Accessed 20 10 2020].

[28] A. H. Michael Sikorski, Practical Malware Analysis, San Fransico: No starch

press, 2012.

[29] T. Robinson, Building Virtual Machine Labs.

[30] NirSoft, “FullEventLogView v1.57 - Event Log Viewer for Windows 10 / 8 / 7 /

Vista,” NirSoft, [Online]. Available:

http://www.nirsoft.net/utils/full_event_log_view.html. [Accessed 5 11 2020].

[31] M. W. Gabriel Jakobson, “Real-time telecommunication network management:

extending event correlation with temporal constraints.,” Springer, Boston, 1995.

[32] R. Vaarandi, “Simple Event Correlator for real-time security log monitoring,”

Hakin9, pp. 28-39, 2006.

[33] R. Vaarandi, “SEC – a Lightweight Event Correlation Tool,” in IEEE Workshop

on IP Operations and Management, 2002.

[34] EsperTEch, “Esper,” [Online]. Available: https://www.espertech.com/esper/.

[Accessed 23 11 2020].

[35] Elastic, [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/reference/current/eql.html.

[Accessed 23 11 2020].

62

[36] D. Harris, “How Splunk Is Riding IT Search Toward an IPO,” Gigaom, 17 12

2010. [Online]. Available: https://gigaom.com/2010/12/17/how-splunk-is-riding-

it-search-toward-an-ipo/. [Accessed 23 11 2020].

[37] Splunk, “Event Correlation”.

[38] Splunk, Splunk Enterprice Admin Manual 8.1.0, 2020.

[39] M. S. Karen Kent, Guide to Computer Security Log Managment, Gaithesburg:

National Intitute of Standards and Technology, 2006.

[40] R. A. Grimes, “Why you need centralized logging and event log management,”

CSO, 12 6 2018. [Online]. Available:

https://www.csoonline.com/article/3280123/why-you-need-centralized-logging-

and-event-log-management.html. [Accessed 28 10 2020].

[41] B. J. Hemanth Tarra, “Understanding Processor (% Processor Time) and Process

(%Processor Time),” Microsoft, 2012 08 13. [Online]. Available:

https://social.technet.microsoft.com/wiki/contents/articles/12984.understanding-

processor-processor-time-and-process-processor-time.aspx. [Accessed 20 11

2020].

[42] Adrem software, “Correct Monitoring of Windows Processes on multi-core

machines,” [Online]. Available:

https://www.adremsoft.com/blog/view/blog/6703603919139/correct-monitoring-

of-windows-processes-on-multicore-machines. [Accessed 19 12 2020].

[43] Microsoft, “Get a Windows 10 development environment,” [Online]. Available:

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/.

[Accessed 30 10 2020].

[44] CheckPoint, [Online]. Available: https://www.checkpoint.com/. [Accessed 6 11

2020].

[45] Checkboint, “January 2020’s Most Wanted Malware,” 13 02 2020. [Online].

Available: https://blog.checkpoint.com/2020/02/13/january-2020s-most-wanted-

malware-coronavirus-themed-spam-spreads-malicious-emotet-malware/.

[Accessed 20 11 2020].

[46] Checkpoint, “February 2020’s Most Wanted Malware,” 11 03 2020. [Online].

Available: https://blog.checkpoint.com/2020/03/11/february-2020s-most-wanted-

malware-increase-in-exploits-spreading-the-mirai-botnet-to-iot-devices/.

[Accessed 20 11 2020].

[47] Checkpoint, “March 2020’s Most Wanted Malware,” 9 4 2020. [Online].

Available: https://blog.checkpoint.com/2020/04/09/march-2020s-most-wanted-

malware-dridex-banking-trojan-ranks-on-top-malware-list-for-first-time/.

[Accessed 20 11 2020].

[48] Checkpoint, “April 2020’s Most Wanted Malware,” 11 5 2020. [Online].

Available: https://blog.checkpoint.com/2020/05/11/april-2020s-most-wanted-

malware-agent-tesla-remote-access-trojan-spreading-widely-in-covid-19-related-

spam-campaigns/. [Accessed 20 11 2020].

[49] Checkpoint, “May’s Most Wanted Malware,” 15 6 2020. [Online]. Available:

https://blog.checkpoint.com/2020/06/15/mays-most-wanted-malware-ursnif-

banking-trojan-ranks-on-top-10-malware-list-for-first-time-over-doubling-its-

impact-on-organizations/. [Accessed 20 11 2020].

[50] Checkpoint, “June‘s Most Wanted Malware,” 10 7 2020. [Online]. Available:

https://blog.checkpoint.com/2020/07/10/junes-most-wanted-malware-notorious-

63

phorpiex-botnet-rises-again-doubling-its-global-impact-on-organizations/.

[Accessed 20 11 2020].

[51] Checkpoint, “July‘s Most Wanted Malware,” 7 8 2020. [Online]. Available:

https://blog.checkpoint.com/2020/08/07/julys-most-wanted-malware-emotet-

strikes-again-after-five-month-absence/. [Accessed 20 11 2020].

[52] Checkpoint, “August 2020’s Most Wanted Malware,” 9 9 2020. [Online].

Available: https://blog.checkpoint.com/2020/09/09/august-2020s-most-wanted-

malware-evolved-qbot-trojan-ranks-on-top-malware-list-for-first-time/. [Accessed

20 11 2020].

[53] CheckPoint, “September 2020's Most Wanted Malware,” 7 10 2020. [Online].

Available: https://blog.checkpoint.com/2020/10/07/september-2020s-most-

wanted-malware-new-info-stealing-valak-variant-enters-top-10-malware-list-for-

first-time/. [Accessed 6 11 2020].

[54] CheckPoint, “October 2020's Most Wanted Malware,” 6 11 2020. [Online].

Available: https://blog.checkpoint.com/2020/11/06/october-2020s-most-wanted-

malware-trickbot-and-emotet-trojans-are-driving-spike-in-ransomware-attacks/.

[Accessed 6 11 2020].

[55] Abuse, “MalwareBazaar,” [Online]. Available: https://bazaar.abuse.ch. [Accessed

06 11 2020].

[56] C. Moore, “Malware Analysis: What is Agent Tesla and How Can You Protect

Your Enterprise From It?,” Reliaquest, 30 7 2020. [Online]. Available:

https://www.reliaquest.com/blog/malware-analysis-what-is-agent-tesla-and-how-

can-you-protect-your-enterprise-from-it/. [Accessed 7 11 2020].

[57] Any Run, “Dridex,” [Online]. Available: https://any.run/malware-trends/dridex.

[Accessed 7 11 2020].

[58] Any Run, “Tricbot,” [Online]. Available: https://any.run/malware-trends/trickbot.

[Accessed 7 10 2020].

[59] L. R. A. D. Eli Salem, “Valak: More than Meets the Eye,” Cybereason, 28 5 2020.

[Online]. Available: https://www.cybereason.com/blog/valak-more-than-meets-

the-eye. [Accessed 10 11 2020].

[60] Any Run, “Formbook,” [Online]. Available: https://any.run/malware-

trends/formbook. [Accessed 02 12 2020].

[61] A. Kuzmenko, “On the trail of the XMRig miner,” Kaspersky, [Online].

Available: https://securelist.com/miner-xmrig/99151/. [Accessed 2 12 2020].

[62] Any Run, “Glupteba,” [Online]. Available: https://any.run/malware-

trends/glupteba. [Accessed 2 12 2020].

[63] Microsoft, “Audit Policy Recommendations,” 31 5 2017. [Online]. Available:

https://docs.microsoft.com/en-gb/windows-server/identity/ad-ds/plan/security-

best-practices/audit-policy-recommendations. [Accessed 9 11 2020].

[64] Malware Archaeology, “Logging,” [Online]. Available:

https://www.malwarearchaeology.com/logging/. [Accessed 12 11 2020].

[65] MITRE ATT&CK, “ATT&CK Matrix for Enterprise,” [Online]. Available:

https://attack.mitre.org/. [Accessed 6 12 2020].

[66] IBM, WinCollect User Guide V7.2.3, 2016.

[67] Any Run, “Agent Tesla,” [Online]. Available: https://any.run/malware-

trends/agenttesla. [Accessed 7 11 2020].

64

[68] Any Run, “Emotet,” [Online]. Available: https://any.run/malware-trends/emotet.

[Accessed 7 11 2020].

[69] R. Antony, Detecting Security Incidents, SANS Institute, 2013.

65

Appendix 1 – NXLog configuration

Panic Soft

#NoFreeOnExit TRUE

define ROOT C:\Program Files (x86)\nxlog

define CERTDIR %ROOT%\cert

define CONFDIR %ROOT%\conf

define LOGDIR %ROOT%\data

define LOGFILE %LOGDIR%\nxlog.log

LogFile %LOGFILE%

Moduledir %ROOT%\modules

CacheDir %ROOT%\data

Pidfile %ROOT%\data\nxlog.pid

SpoolDir %ROOT%\data

#Events to collect

define EventsToCollect 1, 2, 6, 15, 19, 20, 21, 23, 24, 25, 31, 34, 35,
41, \

 43, 104, 219, 307, 400, 410, 441, 800, 865, 866, \

 867, 868, 882, 903, 904, 905, 906, 907, 908, 1000,
\

 1001, 1002, 1005, 1006, 1008, 1009, 1010, 1022, \

 1033, 1102, 1125, 1127, 1129, 2001, 2003, 2004, \

 2005, 2006, 2009, 2033, 3001, 3002, 3003, 3004, \

 3010, 3023, 4100, 4101, 4102, 4103, 4104, 4608, \

 4609, 4610, 4611, 4612, 4614, 4615, 4616, 4618, \

 4621, 4622, 4624, 4625, 4634, 4646, 4647, 4648, \

 4649, 4650, 4651, 4652, 4653, 4654, 4655, 4656, \

 4657, 4658, 4659, 4660, 4661, 4662, 4663, 4664, \

 4665, 4666, 4667, 4668, 4670, 4671, 4672, 4673, \

 4674, 4675, 4688, 4689, 4690, 4691, 4692, 4693, \

 4694, 4695, 4696, 4697, 4698, 4699, 4700, 4701, \

 4702, 4704, 4705, 4706, 4707, 4709, 4710, 4711, \

 4712, 4713, 4714, 4715, 4716, 4717, 4718, 4719, \

 4720, 4722, 4723, 4724, 4725, 4726, 4727, 4728, \

 4729, 4730, 4731, 4732, 4733, 4734, 4735, 4737, \

 4738, 4739, 4740, 4741, 4742, 4743, 4744, 4745, \

 4746, 4747, 4748, 4749, 4750, 4751, 4752, 4753, \

 4754, 4755, 4756, 4757, 4758, 4759, 4760, 4761, \

 4762, 4764, 4765, 4766, 4767, 4768, 4769, 4770, \

 4771, 4772, 4773, 4774, 4775, 4776, 4777, 4778, \

 4779, 4780, 4781, 4782, 4783, 4784, 4785, 4786, \

66

 4787, 4788, 4789, 4790, 4791, 4792, 4793, 4794, \

 4800, 4801, 4802, 4803, 4816, 4817, 4864, 4865, \

 4866, 4867, 4868, 4869, 4870, 4871, 4872, 4873, \

 4874, 4875, 4876, 4877, 4878, 4879, 4880, 4881, \

 4882, 4883, 4884, 4885, 4886, 4887, 4888, 4889, \

 4890, 4891, 4892, 4893, 4894, 4895, 4896, 4897, \

 4898, 4899, 4900, 4902, 4904, 4905, 4906, 4907, \

 4908, 4909, 4910, 4912, 4928, 4929, 4930, 4931, \

 4932, 4933, 4934, 4935, 4936, 4937, 4944, 4945, \

 4946, 4947, 4948, 4949, 4950, 4951, 4952, 4953, \

 4954, 4956, 4957, 4958, 4960, 4961, 4962, 4963, \

 4964, 4965, 4976, 4977, 4978, 4979, 4980, 4981, \

 4982, 4983, 4984, 4985, 5008, 5024, 5025, 5027, \

 5028, 5029, 5030, 5031, 5032, 5033, 5034, 5035, \

 5037, 5038, 5039, 5040, 5041, 5042, 5043, 5044, \

 5045, 5046, 5047, 5048, 5049, 5050, 5051, 5056, \

 5057, 5058, 5059, 5060, 5061, 5062, 5063, 5064, \

 5065, 5066, 5067, 5068, 5069, 5070, 5120, 5121, \

 5122, 5123, 5124, 5125, 5126, 5127, 5136, 5137, \

 5138, 5139, 5140, 5141, 5142, 5143, 5144, 5145, \

 5148, 5149, 5150, 5151, 5152, 5153, 5154, 5155, \

 5156, 5157, 5158, 5159, 5168, 5376, 5377, 5378, \

 5440, 5441, 5442, 5443, 5444, 5446, 5447, 5448, \

 5449, 5450, 5451, 5452, 5453, 5456, 5457, 5458, \

 5459, 5460, 5461, 5462, 5463, 5464, 5465, 5466, \

 5467, 5468, 5471, 5472, 5473, 5474, 5477, 5478, \

 5479, 5480, 5483, 5484, 5485, 5632, 5633, 5712, \

 5861, 5888, 5889, 5890, 6008, 6144, 6145, 6272, \

 6273, 6274, 6275, 6276, 6277, 6278, 6279, 6280, \

 6281, 6400, 6401, 6403, 6404, 6405, 6406, 6407, \

 7022, 7023, 7024, 7026, 7031, 7032, 7034, 7040, \

 7045, 8000, 8001, 8002, 8003, 8004, 8006, 8007, \

 8011, 10000, 10001, 11000, 11001, 11002, 11004, \

 11005, 11006, 11010, 12011, 12012, 12013, 24577, \

 24578, 24579, 24580, 24581, 24582, 24583, 24584, \

 24586, 24588, 24592, 24593, 24594, 24595, 24621

#Malware related events

define MalwereEvents 100, 104, 129, 140, 200, 201, 1116

<Extension syslog>

 Module xm_syslog

</Extension>

<Input eventlog>

 Module im_msvistalog

 <QueryXML>

 <QueryList>

 <Query Id='0'>

 <Select Path='Application'>*</Select>

 <Select Path='Security'>*</Select>

 <Select Path='Setup'>*</Select>

67

 <Select Path='System'>*</Select>

 <Select Path='Microsoft-Windows-Application-
Experience/Program-Inventory'>*</Select>

 <Select Path='Microsoft-Windows-AppLocker/EXE and
DLL'>*</Select>

 <Select Path='Microsoft-Windows-AppLocker/MSI and
Script'>*</Select>

 <Select Path='Microsoft-Windows-
CodeIntegrity/Operational'>*</Select>

 <Select Path='Microsoft-Windows-Kernel-
PnP/Configuration'>*</Select>

 <Select Path='Microsoft-Windows-
NetworkProfile/Operational'>*</Select>

 <Select Path='Microsoft-Windows-
PrintService/Operational'>*</Select>

 <Select Path='Microsoft-Windows-PowerShell/Admin'>*</Select>

 <Select Path='Microsoft-Windows-
PowerShell/Operational'>*</Select>

 <Select Path='Microsoft-Windows-
TaskScheduler/Operational'>*</Select>

 <Select Path='Microsoft-Windows-TerminalServices-
LocalSessionManager/Operational'>*</Select>

 <Select Path='Microsoft-Windows-TerminalServices-
RemoteConnectionManager/Operational'>*</Select>

 <Select Path='Microsoft-Windows-Windows
Defender/Operational'>*</Select>

 <Select Path='Microsoft-Windows-Windows Firewall With
Advanced Security/Firewall'>*</Select>

 <Select Path='Microsoft-Windows-
WindowsUpdateClient/Operational'>*</Select>

 <Select Path='Microsoft-Windows-WLAN-
AutoConfig/Operational'>*</Select>

 </Query>

 </QueryList>

 </QueryXML>

 exec if ($EventID NOT IN (%EventsToCollect%)) and \

 ($EventID NOT IN (%MalwereEvents%)) drop();

 exec $Message = 'EventID:[' + $EventID + '] ' + $Message ;

</Input>

#100 - 200 TaskScheduler

<Input eventlogSC>

 Module im_msvistalog

 <QueryXML>

 <QueryList>

 <Query Id='0'>

 <Select Path='Microsoft-Windows-
TaskScheduler/Operational'>*</Select>

 </Query>

 </QueryList>

 </QueryXML>

 exec if ($EventID < 100) or \

68

 ($EventID > 200) drop();

 exec $Message = 'EventID:[' + $EventID + '] ' + $Message ;

</Input>

#200 - 500 PowerShell

<Input eventlogPWR>

 Module im_msvistalog

 <QueryXML>

 <QueryList>

 <Query Id='0'>

 <Select Path='Microsoft-Windows-PowerShell/Admin'>*</Select>

 <Select Path='Microsoft-Windows-
PowerShell/Operational'>*</Select>

 </Query>

 </QueryList>

 </QueryXML>

 exec if ($EventID < 200) OR \

 ($EventID > 500) drop();

 exec $Message = 'EventID:[' + $EventID + '] ' + $Message ;

</Input>

00

<Output udp>

 Module om_udp

 Host 192.168.56.105

 Port 514

 Exec to_syslog_bsd();

</Output>

<Route eventlog_to_udp>

 Path eventlog, eventlogSC, eventlogPWR => udp

</Route>

<Extension _charconv>

 Module xm_charconv

 AutodetectCharsets iso8859-2, utf-8, utf-16, utf-32

</Extension>

<Extension _exec>

 Module xm_exec

</Extension>

<Extension _fileop>

 Module xm_fileop

 # Check the size of our log file hourly, rotate if larger than 5MB

 <Schedule>

 Every 1 hour

 Exec if (file_exists('%LOGFILE%') and \

 (file_size('%LOGFILE%') >= 5M)) \

 file_cycle('%LOGFILE%', 8);

69

 </Schedule>

 # Rotate our log file every week on Sunday at midnight

 <Schedule>

 When @weekly

 Exec if file_exists('%LOGFILE%') file_cycle('%LOGFILE%', 8);

 </Schedule>

</Extension>

70

Appendix 2 – SEC rules 1

#Defender Disabled

type=SingleWithSuppress

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) SecurityCenter\[\d+\]: EventID:\[\d+\] .+
SECURITY_PRODUCT_STATE_SNOOZED\.

desc=Windows Defender disabled at $1

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Defender disabled'
root@localhost; write /opt/sec/logs/detected.log %t %s

window=60

#Defender discovered malware

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Windows_Defender\[\d+\]:
EventID:\[\d+\] .+ has detected malware .+ #011Name: (.+) #011ID: .+
#011Path: (.+) #011Detection Origin: .+ #011Process Name: (.+) #011Security

desc=Windows Defender has discovered malware at $1. Malware name:$2 Path:$3
Process:$4

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Malware discovered'
root@localhost; write /opt/sec/logs/detected.log %t %s

#Event Log file was cleared

#type=Single

#ptype=RegExp

#pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Eventlog\[\d+\]:
EventID:\[\d+\] The ([\w-\/\s]+) log

#desc=The $2 log has been cleared from $1

#action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Event log cleared'
root@localhost; write /opt/sec/logs/detected.log %t %s

#Event Log file was cleared

#all events that are generated in 60 seconds are sent to email

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Eventlog\[\d+\]:
EventID:\[\d+\] The ([\w\-\/\s]+) log

desc=The $2 log has been cleared from $1

action=exists %iscreated EVENT_CLEARED_$1;if %iscreated (add EVENT_CLEARED_$1
%s;) else (create EVENT_CLEARED_$1 60 (report EVENT_CLEARED_$1 /bin/mailx -r
noreply@someplace.com -s 'Events Cleared' root@localhost); add
EVENT_CLEARED_$1 %s;)

#Potentially malicious command

type=Single

ptype=RegExp

71

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+New Process
ID:#011#011([\w\d]+) #011New Process
Name:#011([\w:\\\.]+(cmd|powershell)\.exe) .+#011Creator Process
ID:#011([\w\d]+) #011Creator Process Name:#011([\w:\\\.]+).+ -w hidden -
ENCOD

desc=Discovered a potentially malicious $3 process ID $2 started by $6
process ID$5 on $1

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potentially
malicious command run' root@localhost; write /opt/sec/logs/detected.log %t %s

#Scriptblock created

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-PowerShell\[\d+\]:
EventID:\[\d+\] Creating Scriptblock text

desc=Scriptblock created on $1

action=write /opt/sec/logs/detected.log %t %s

#Agent tesla

#something starts schtasks.exe and creats schtask /TN "Updates\<some name>"
(/TN - taskname)

#that same schtasks.exe starts conhost.exe

#schtask with "Updates\<some name>" created

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+New Process
ID:#011#011([\w\d]+) #011New Process Name:#011[\w:\\\.]+schtasks\.exe.+\/TN
"([\w\d\\]+)"

context=!AT1_$1_$2 && !AT1_$1_$3

desc=AT1_$1_$2 and AT1_$1_$3

action=create AT1_$1_$2 60;create AT1_$1_$3 60;write
/opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+#011New Process
Name:#011[\w:\\\.]+conhost\.exe.+Creator Process ID:#011([\w\d]+)
#011Creator Process Name:#011[\w:\\\.]+schtasks\.exe

context=AT1_$1_$2 && !AT2_$1

desc=AT2_$1

action=create AT2_$1 60;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-TaskScheduler\[\d+\]:
EventID:\[\d+\] .+registered Task Scheduler task "\\([\w\d\\]+)"

context=AT1_$1_$2 && AT2_$1

desc=Potential Agent Tesla on $1 with task name $2

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Agent
Tesla' root@localhost;write /opt/sec/logs/detected.log %t %s

72

#Trickbot

#svchost starts dllhost with process command line DllHost.exe

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+New Process
ID:#011#011([\w\d]+) #011New Process
Name:#011[\w:\\\.]+dllhost\.exe.+svchost\.exe.+DllHost\.exe

context=!TB1_$1_$2

desc=TB1_$1_$2

action=create TB1_$1_$2 60;write /opt/sec/logs/detected.log %t %s

#dllhost start trickbot

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+New Process
ID:#011#011([\w\d]+) #011New Process Name:#011([\w:\\\.]+).+Creator Process
ID:#011([\w\d]+) #011Creator Process Name:#011[\w:\\\.]+dllhost\.exe

context=TB1_$1_$4 && !TB2_$1_$2_$3

desc=TB2_$1_$2_$3

action=create TB2_$1_$2_$3 60;write /opt/sec/logs/detected.log %t %s

#Trickbot starts wermgr.exe

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+#011New Process
Name:#011[\w:\\\.]+wermgr\.exe.+Creator Process ID:#011([\w\d]+) #011Creator
Process Name:#011([\w:\\\.]+)

context=TB2_$1_$2_$3 && !TB3_$1

desc=TB3_$1

action=create TB3_$1 600;pipe 'TB2_$1_$2_$3' /bin/mailx -r
noreply@someplace.com -s 'Potential Trickbot stage 3' root@localhost;write
/opt/sec/logs/detected.log %t %s

#Windwos Power Saves named task started

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-TaskScheduler\[\d+\]:
EventID:\[\d+\].+Windows Power Saves

context=TB3_$1 && !TB4_$1

desc=TB4_$1

action=create TB4_$1 60;write /opt/sec/logs/detected.log %t %s

#Windows Power Saves starts trickbot

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-TaskScheduler\[\d+\]:
EventID:\[\d+\].+action "([\w:\\\.\]+).+Windows Power Saves

context=TB4_$1

73

desc=Potential Trickbot at $1 task $2

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Trickbot
stage 5' root@localhost;write /opt/sec/logs/detected.log %t %s

#Valak starts wscript.exe

type=Single

ptype=RegExp

pattern=^[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been created.+#011New Process
Name:#011[\w:\\\.]+wscript\.exe.+#011Creator Process
Name:#011[\w:\\\.]+regsvr32\.exe

desc=Potential Valak at $1

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Valak'
root@localhost;write /opt/sec/logs/detected.log %t %s

#XMRig

#XMRig starts itself

#the new XMRig starts notepad with command line -c <file location>

#xmrig starts cmd with ommand line wscript <script location>

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
ID:#011#011([\w\d]+) #011New Process Name:#011(.+) #011Token.+#011Creator
Process Name:#011(.+) #

context=!XMRig_$1_$2 && =("$3" eq "$4")

desc=XMRig_$1_$2 $3

action=create XMRig_$1_$2 60

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
Name:#011[\w:\\\.]+notepad\.exe.+#011Creator Process
ID:#011([\w\d]+).+Command Line:#011"(.+)"

context=XMRig_$1_$2 && !XMRig2_$1_$2

desc=XMRig2_$1 $3

action=create XMRig2_$1_$2 60;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
Name:#011[\w:\\\.]+cmd\.exe.+#011Creator Process ID:#011([\w\d]+).+Command
Line:#011(.+)"

context=XMRig2_$1_$2 && !XMRig3_$1

desc=Potential XMRig at $1 $3

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential XMRig'
root@localhost;create XMRig3_$1 60;write /opt/sec/logs/detected.log %t %s

#Glupteba

type=Single

74

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
ID:#011#011([\w\d]+).+\/C fodhelper

context=!Glupteba_$1_$2

desc=Glupteba_$1_$2

action=create Glupteba_$1_$2 60;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
ID:#011#011([\w\d]+) #011New Process
Name:#011[\w:\\\.]+fodhelper\.exe.+#011Creator Process ID:#011([\w\d]+)

context=Glupteba_$1_$3 && !Glupteba2_$1_$2

desc=Glupteba2_$1_$2

action=create Glupteba2_$1_$2 60;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
ID:#011#011([\w\d]+) #011New Process Name:#011([\w:\\\.]+).+#011Creator
Process ID:#011([\w\d]+) #011Creator Process
Name:#011[\w:\\\.]+fodhelper\.exe

context=Glupteba2_$1_$4 && !Glupteba3_$1_$2_$3

desc=Glupteba3_$1_$2_$3

action=create Glupteba3_$1_$2_$3 60;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) Microsoft-Windows-Security-Auditing\[\d+\]:
EventID:\[\d+\] A new process has been create.+#011New Process
Name:#011[\w:\\\.]+WerFault\.exe.+#011Creator Process ID:#011([\w\d]+)
#011Creator Process Name:#011([\w:\\\.]+)

context=Glupteba3_$1_$2_$3

desc=Potential malware Glupteba at $1 file $3

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Glupteba'
root@localhost;write /opt/sec/logs/detected.log %t %s

75

Appendix 3 – SEC rules 2

#4688 execution then cmd

type=pair

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) .+EventID:\[4688\].+#011New Process
ID:#011#011([\w\d]+).+#011Creator Process ID:#011([\w\d]+) #011Creator
Process Name:#011[\w:\\\.]+(?<!cmd).exe

context=!cmd_$1_$3

desc=exec_$1_$2

action=create exec_$1_$2 5

ptype2=RegExp

pattern2=[\d\:\-\+T]+ $1 .+EventID:\[4688\].+#011Creator Process ID:#011$2
#011Creator Process Name:#011[\w:\\\.]+cmd

context2=!exec_cmd_%1

desc2=exec_cmd_%1

action2=create exec_cmd_%1 10;write /opt/sec/logs/detected.log %t %s

window=60

#4688 cmd then execution

type=pair

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+) .+EventID:\[4688\].+#011New Process
ID:#011#011([\w\d]+).+#011Creator Process ID:#011([\w\d]+) #011Creator
Process Name:#011[\w:\\\.]+cmd

context=!exec_$1_$3

desc=cmd_$1_$2

action=create cmd_$1_$2 5

ptype2=RegExp

pattern2=[\d\:\-\+T]+ $1 .+EventID:\[4688\].+#011Creator Process ID:#011$2
#011Creator Process Name:#011[\w:\\\.]+(?<!cmd).exe

context2=!cmd_exec_%1

desc2=cmd_exec_%1

action2=create cmd_exec_%1 10;write /opt/sec/logs/detected.log %t %s

window=60

#this is currently commented out for testing purposes. Since we generate
events with powershell

#collection - data from local system

#exec_cmd - powershell 100-500, 4100-4104 - 4663 - 5861

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+PowerShell.+EventID:\[(\d+)\]

context=exec_cmd_$1 && !col1_ds1_$1 && (=("$2" >= 100 && "$2" <= 500) ||
=("$2" >= 4100 && "$2" <= 4104))

desc=col1_ds1_$1

action=create col1_ds1_$1 5;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4663\]

76

context=col1_ds1_$1 && !col1_ds2_$1

desc=col1_ds2_$1

action=create col1_ds2_$1 5;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[5861\]

context=col1_ds2_$1 && !col1_ds3_$1

desc=Potential Collection - data from local system or Potential Discovery -
system net conf at $1. Look for exec_cmd - powershell 100-500, 4100-4104 -
4663 - 586

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Collection
or Discovery' root@localhost;create col1_ds3_$1 5;write
/opt/sec/logs/detected.log %t %s

#collection - data from network shared drive

#cmd_exec - 5140/5145 - 4663

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[(\d+)\]

context=cmd_exec_$1 && !col2_ds1_$1 && =("$2" == 5140 || "$2" == 5145) &&
!col3_ds1_$1

desc=col2_ds1_$1

action=create col2_ds1_$1 5;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4663\]

context=col2_ds1_$1 && !col2_ds2_$1

desc=Potential Collection - data from network shared drive at $1. Look for
cmd_exec - 5140/5145 - 4663

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential
Collection' root@localhost;create col2_ds2_$1 5;write
/opt/sec/logs/detected.log %t %s

#defence evasion - net share connection removal

#cmd_exec - 5140/5145 - 4624

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4624\]

context=col2_ds1_$1 && !def1_ds2_$1

desc=Potential defence evasion - network share connection removal. Look for
cmd_exec - 5140/5145 - 4624

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Defence
evasion' root@localhost;create def1_ds2_$1 5;write /opt/sec/logs/detected.log
%t %s

#collection - data from removeble media

#cmd_exec - 4657 - 4663 - 5140/5145

77

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4657\]

context=exec_cmd_$1 && !col3_ds1_$1

desc=col3_ds1_$1

action=create col3_ds1_$1 5;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4663\]

context=col3_ds1_$1 && !col3_ds2_$1

desc=col3_ds2_$1

action=create col3_ds2_$1 5;write /opt/sec/logs/detected.log %t %s;pipe
'Potential Execution - powershell at $1. Look for cmd_exec - 4657 - 4663'
/bin/mailx -r noreply@someplace.com -s 'Potential Collection' root@localhost;

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[(\d+)\]

context=col3_ds2_$1 && !col3_ds3_$1 && =("$2" == 5140 || "$2" == 5145)

desc=Potential collection - data from removable media. Look for cmd_exec -
4657 - 4663 - 5140/5145

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential
Collection' root@localhost;create col3_ds3_$1 5;write
/opt/sec/logs/detected.log %t %s

#Credential access Brute Force

#4625 more then X ammount of times

type=SingleWithThreshold

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[4625\]

desc=Potential Bruteforce at $1. Look fr 4625

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential
Bruteforce' root@localhost;write /opt/sec/logs/detected.log %t %s

thresh=5

window=180

#Execution

#service cmd_exec - 4657 - 7054 - 7040

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[7054\]

context=col3_ds1_$1 && !exe1_ds2_$1

desc=exe1_ds2_$1

action=create exe1_ds2_$1 5;write /opt/sec/logs/detected.log %t %s

type=Single

ptype=RegExp

pattern=[\d\:\-\+T]+ (\w+).+EventID:\[7040\]

context=exe1_ds2_$1 && !exe1_ds3_$1

78

desc=Potential execution - service at $1. Look for cmd_exec - 4657 - 7054 -
7040

action=pipe '%s' /bin/mailx -r noreply@someplace.com -s 'Potential Execution'
root@localhost;create exe1_ds3_$1 5;write /opt/sec/logs/detected.log %t %s

