TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Thomas Johann Seebecki elektroonikainstituut

Priit Kukumägi 153525

TRAADITA KOHTVÕRGU LABORITÖÖ EDASIARENDUS

Magistritöö

Juhendaja: Marika Kulmar

Tehnikateaduste magister

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

Autor: Priit Kukumägi

08.05.2017

Annotatsioon

Käesoleva magistritöö eesmärgiks oli uurida laboratoorset tööd TTÜ õppeaines "Side" ning anda soovitusi selle edasiarendamiseks. Töös käsitletakse laboratoorse töö ülesandeid, katsetatakse need läbi ja antakse soovitused töö edasiarendamiseks või pakutakse välja uusi ülesandeid.

Töös antakse soovitusi kasutuses olevate tarkvarade vahetamiseks ja tuuakse välja põhjused, miks seda peaks tegema. Võrgu jälgimise tarkvara InSSIDer 3 näitab 802.11 ac võrku 802.11n võrguna. Alternatiiviks soovitatakse Acrylic Wi-Fi Home tarkvara.

Töös katsetati pääsupunkti ja spektrianalüsaatori mõõteantenni vahelise kauguse mõju erinevatele võrkudele. Katsete tulemusel leiti, et parim tulemus saadakse kui mõõteantenn on 0,1 meetri kaugusel pääsupunktist. Erandiks osutus 2,4 GHz sagedusalas 802.11n 40 MHz kanaliga võrk, kus parim tulemus saadi 0,3 meetri peal.

Töös näidatakse, et raadiokaardi antenni asend ja raadiokaardi kaugus tugijaamast mõjutavad edastuskiiruseid. Mõju edastuskiirustele on erinevates sagedusalades erinev. Raadiokaardi antenni optimaalseks asendiks osutus vertikaalne asend, välja arvatud 802.11ac võrgu puhul, kus parima tulemuse sai 45 kraadise nurga all oleva antenniga. 2,4 GHz sagedusalas saadi parim tulemus, kui raadiokaart oli 1,5 meetri kaugusel pääsupunktist ja 5 GHz sagedusalas 0,5 meetri kaugusel pääsupunktist.

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 36 leheküljel, 5 peatükki, 23 joonist, 13 tabelit.

Abstract

Development of wireless local area network laboratory assignment

The aim of this Master's thesis was to analyze a laboratory assignment on a TUT subject "Telecommunication" and give recommendations for improvements. The tasks of the laboratory assignment are being handled, tested and given recommendations for improvements or new tasks are suggested in the given work.

There are recommendations for software changes in the given work and reasons for these changes are provided. Network monitoring software InSSIDer 3 shows a 802.11ac network as a 802.11n network. As an alternative Acrylic Wi-Fi Home software is recommended.

In the given work it was tested the impact of distance, between access point and spectrum analyzer measurement antenna, to different networks. Results of the tests showed that the best results are obtained when the measuring antenna is 0,1 meters away from the access point. An exception was the 802.11n network in 2,4 GHz band with 40 MHz channel width, where the best result was obtained at 0,3 meters.

In the given work it is shown that the wireless card antenna position and distance from the base station affects the transmission rate. Impact on transmission rates are different in different frequency bands. The optimal wireless card antenna position was vertical position, with the exception of 802.11ac network, where the best result was obtained when the antenna was with 45 degree angle. In the 2,4 GHz band the best result was obtained when the wireless card was 1,5 meters from access point and in 5 GHz band it was 0,5 meters from access point.

The thesis is in Estonian and contains 36 pages of text, 5 chapters, 23 figures, 13 tables.

Lühendite ja mõistete sõnastik

AP	Access Point - Pääsupunkt
IEEE	Elektri- ja Elektroonikainseneride Instituut
IP	Internet Protocol – võrgukihi protokoll
MIMO	Multiple Input Multiple Output
MU-MIMO	Multi-User MIMO
OFDM	Orthogonal Frequency Division Multiplexing
QAM	Quadrature Amplitude Modulation
SDMA	Space Division Multiple Access
WLAN	Traadita side kohtvõrk

Sisukord

Sissejuhatus	10
1 Traadita side kohtvõrk	11
1.1 Standard 802.11g	11
1.2 Standard 802.11n	11
1.3 Standard 802.11ac	12
2 Laboratoorse töö ülevaade	13
2.1 Laboratoorse töö eesmärgid	13
2.2 Laboratoorse töö formaat	13
2.3 Kasutatavad seadmed	13
2.3.1 Asus RT-AC66U Dual Band 3x3	13
2.3.2 Raadiokaart USB-AC56	15
2.4 Kasutatavad tarkvarad	16
2.4.1 InSSIDer 3	16
2.4.2 TamoSoft Throughput Test	17
2.5 Aruande nõuded	18
2.6 Probleemid olemasoleva laboriga	19
2.6.1 Lahendused	19
3 Analüüs ja täiendused laboratoorsele tööle	21
3.1 WLAN tugijaama seadistamine	21
3.1.1 Analüüs ja katsed	22
3.1.2 Soovitused	23
3.2 Spektri mõõtmine	24
3.2.1 Analüüs ja katsed	25
3.2.2 Spektrianalüsaatori seadistused	27
3.2.3 Soovitused	29
3.3 WLAN võrgu uurimine	30
3.3.1 Netsh	30
3.3.2 Alternatiivid InSSIDer 3 -le	31
3.3.3 Soovitused	33

3.4 WLAN võrgu kiiruse uurimine	34
3.4.1 Analüüs ja katsed	34
3.4.2 Soovitused	41
3.4.3 Tugijaama kasutamine silla reziimis	41
3.5 Individuaalülesanne	43
3.5.1 Soovitused	43
Kokkuvõte	45
Kasutatud kirjandus	46
Lisa 1 – 802.11 võrdlus tabel	47
Lisa 2 – Tamosoft testid. 802.11n 2.4 GHz sagedusala ja 20 MHz kanali laius	49
Lisa 3 – Tamosoft testid. 802.11n 2.4 GHz 40 MHz	52
Lisa 4 – Tamosoft testid. 802.11 ac 5 GHz 20/40/80 MHz	55
Lisa 5 – Tamosoft testid. 802.11 n 5 GHz 20 MHz	58
Lisa 6 - Tamosoft testid. 802.11 n 5 GHz 40 MHz	61
Lisa 7 - Tamosoft testid. 802.11 g 2,4 GHz 20 MHz	64
Lisa 8 – Spektrianalüsaatori testid. 802.11 g	67
Lisa 9 - Spektrianalüsaatori testid. 802.11 n 2,4 GHz 20 MHz	70
Lisa 10 - Spektrianalüsaatori testid. 802.11 n 2,4 GHz 40 MHz	73
Lisa 11 - Spektrianalüsaatori testid. 802.11 n 5 GHz 20 MHz	76
Lisa 12 - Spektrianalüsaatori testid. 802.11 n 5 GHz 40 MHz	79
Lisa 13 - Spektrianalüsaatori testid. 802.11 ac 5 GHz 20/40/80 MHz	82

Jooniste loetelu

Joonis 1. 2,4 GHz sagedusala kanalid ja spektrimaskid. [13]	11
Joonis 2. Erinevus 802.11n ja 802.11ac. [2]	12
Joonis 3. ASUS RT-ACU Dual Band 3x3. [4]	14
Joonis 4. ASUS USB-AC56. [5]	15
Joonis 5. Raadiokaardi ühendamine arvutiga. [5],[15]	16
Joonis 6. InSSIDer 3 Networks saki vaade	17
Joonis 7. TamoSoft Throughput Test kliendi vaade	18
Joonis 8. 5 GHz sagedusala kanalite jaotus. [13]	19
Joonis 9. Tugijaama antennide soovituslik asend. [7]	23
Joonis 10. Spektrianalüsaatori testide graafik	27
Joonis 11. 802.11g võrgu spektri maksimaalne, keskmine ja minimaalne tulem	us.
	28
Joonis 12. Spektri pilt ja parameetrite leidmine	29
Joonis 13. Netsh käsu väljund	31
Joonis 14. Acrylic Wi-Fi Home vaade	32
Joonis 15. Netspot vaade	33
Joonis 16. 802.11g katsete tulemuste graafik	35
Joonis 17. 802.11 n 2,4 GHz alas 20 MHz kanaliga katsete tulemuste graafik	36
Joonis 18. 802.11 n 2,4 GHz alas 40 MHz kanaliga katsete tulemuste graafik	37
Joonis 19. 802.11 n 5 GHz alas 40 MHz kanaliga katsete tulemuste graafik	38
Joonis 20. 802.11 n 5 GHz alas 20 MHz kanaliga katsete tulemuste graafik	39
Joonis 21. 802.11 ac 5 GHz alas 20/40/80 MHz kanaliga katsete tulemuste graa	fik.
•••••••••••••••••••••••••••••••••••••••	40
Joonis 22. ASUS RT-AC66U meediumi edastus reziimis. [7]	42
Joonis 23. TamoSoft tulemus kahe tugijaama vahel	42

Tabelite loetelu

Tabel 1. 802.11 g spektrianalüsaatori katsete tulemuste tabel
Tabel 2. 802.11 n 2,4 GHz alas 20 MHz kanaliga spektrianalüsaatori katsete
tulemuste tabel
Tabel 3. 802.11 n 2,4 GHz alas 40 MHz kanaliga spektrianalüsaatori katsete
tulemuste tabel
Tabel 4. 802.11 n 5 GHz alas 20 MHz kanaliga spektrianalüsaatori katsete
tulemuste tabel
Tabel 5. 802.11 n 5 GHz alas 40 MHz kanaliga spektrianalüsaatori katsete
tulemuste tabel
Tabel 6. 802.11 n 5 GHz alas 20/40/80 MHz kanaliga spektrianalüsaatori katsete
tulemuste tabel
Tabel 7. 802.11g katsete tulemuste tabel. 35
Tabel 8. 802.11 n 2,4 GHz alas 20 MHz kanaliga katsete tulemuste tabel
Tabel 9. 802.11 n 2,4 GHz alas 40 MHz kanaliga katsete tulemuste tabel
Tabel 10. 802.11 n 5 GHz alas 40 MHz kanaliga katsete tulemuste tabel
Tabel 11. 802.11 n 5 GHz alas 20 MHz kanaliga katsete tulemuste tabel
Tabel 12. 802.11 ac 5 GHz alas 20/40/80 MHz kanaliga katsete tulemuste tabel 40
Tabel 13. Individuaalülesande variandid44

Sissejuhatus

Internet saanud inimeste igapäevaseks osaks ja vajadus kiirema andmeside vastu järk järgult kasvanud. Seda ennekõike tänu mobiilsete seadmete populaarsusele. Valdaval enamusel on oma nutiseade, mis on ühenduses Internetiga, kas mobiilside või WLAN ühendusega.

Käesoleva magistritöö eesmärk on olemasoleva laboratoorse töö edasiarendamine õppeaines "Side" ning anda soovitused WLAN võrkude seadistamiseks, et näidata 802.11 standarditel töötavaid võrke ja nende parimaid omadusi sagedusalades 2,4 GHz ja 5 GHz. Töö käigus kasutatakse InSSIDer 3 ja TamoSoft Throughput Test tarkvara võrkude uurimiseks ning edastuskiiruse mõõtmiseks ning spektrianalüsaatorit nende võrkude tekitatud spektrite uurimiseks.

Laboratoorne töö käsitleb WLAN tugijaama seadistamist ning võrgu uurimist. Samuti kirjeldab võrgu uurimis tarkvarade ja seadmete kasutamist.

1 Traadita side kohtvõrk

Traadita side kohtvõrk (WLAN) on mõeldud seadmete vaheliseks andmesideks raadiokanali kaudu. WLAN töötab IEEE (Elektri- ja Elektroonikainseneride Instituut) 802.11 standarditel. 802.11 standardid töötabad avatud 2.4Ghz ja 5Ghz sagedustel.

1.1 Standard 802.11g

802.11g töötab 2,4 GHz sagedusalas ja kasutab 20 MHz laiusega kanalit. Standardis toodud maksimaalne edastuskiirus on 54 Mbit/s. 802.11b võrgu juuresolek märgatavalt vähendab üldist edastuskiirust. Olenemata 802.11g populaarsusest on sellel võrgul sarnaselt 802.11b-ga interferents juba kasutuses olevas 2,4 GHz sagedusalas. Interferentsi vähendamiseks saab kasutada ainult nelja kanalit 1, 5, 9 ja 13 või kolme kanalit 1, 6 ja 11 nagu näidatud joonisel 1. [12][13]

Joonis 1. 2,4 GHz sagedusala kanalid ja spektrimaskid. [13]

1.2 Standard 802.11n

802.11n on suur samm edasi 802.11a –st. 802.11n võttis kasutusele mitmed muudatused MAC alamkihis ja füüsilises kihis, milleks on 4x4 MIMO, MU-MIMO, võimalus kasutada 40Mhz ribalaiusega kanalit, kanalite liitmine (*Channel Bonding*) ja andmete koondamine (*Aggregation*). 802.11n töötab 2,4 ja 5 GHz sagedusalas, aga 5 GHz sagedusala toetamine on valikuline. See standard võimaldab teoreetilist andmeedastuskiirust kuni 600 Mb/s, kasutab 64QAM modulatsiooni ja koodikiirust 5/6 (Lisa 1). MIMO kasutab mitut antenni, et saata suurem hulk infot korraga. Üks viis

kuidas see edastuskiirust tõstab on läbi SDMA, millega tekitatakse mitu paralleelset andmevoogu ühes kanalis. [1][2][13]

1.3 Standard 802.11ac

802.11ac on edasiarendus 802.11n –le, mis pakub suuremat edastuskiirust ja laiemaid kanali ribalaiusi. Standard võimaldab kanalite liitmist kuni 160Mhz-ni, tihedamat modulatsiooni 256QAM koodikiirus 5/6 ja 8x8 MIMO. Teoreetiline edastuskiirus on 6930 Mbit/s. Erinevused on ka välja toodud joonisel 2. [2]

Joonis 2. Erinevus 802.11n ja 802.11ac. [2]

Joonisel 2 on näidatud kuidas 802.11 ac standard võimaldab paremat edastuskiirust. Esiteks võimaldab 802.11 ac 4 samaaegse andmevoo asemel kaheksat samaaegset andmevoogu. Teiseks saab 802.11 ac kasutada kuni 160 MHz-st kanalit ja kolmandaks on kasutusel tihedam modulatsioon 256QAM, mis tähendab, et võrreldes 64QAM-iga saadetakse iga alamkandjaga 2 bitti rohkem. Selle kõige koosmõjul võimaldabki 802.11 ac võrk kiiremat edastuskiirust.

2 Laboratoorse töö ülevaade

Laboratoorne töö "Traadita kohtvõrk WLAN" [8] tehakse paarikaupa. Laboris on 6 ühesugust töökohta. Töö tegemiseks on ette nähtud 90 minutit.

2.1 Laboratoorse töö eesmärgid

Laboratoorse töö eesmärk on tutvuda traadita kohtvõrgu signaalide ja spektriga, tugijaamade ja klientarvutite seadistamisega ning hinnata võrgu omadusi ja parameetreid.

2.2 Laboratoorse töö formaat

Laboratoorne töö koosneb praktilisest ja teoreetilisest osast. "Side" õppeaine loengute käigus on teoreetiline osa suhteliselt hästi kaetud seega keskendutakse pigem praktilisele osale.

2.3 Kasutatavad seadmed

Laboris olemasolevad vahendid on igale töökohale tugijaam Asus RT-AC66U Dual Band 3x3 802.11ac Gigabit Router ja arvutitele raadiokaardid USB-AC56. Lisaks on laboris spektrianalüsaator Agilent CSA N1996A.

2.3.1 Asus RT-AC66U Dual Band 3x3

Asus RT AC-66U tugijaamal on 3 antenni, mis nagu ka nimes mainitud võimaldavad 3x3 MIMO ühendust. Tugijaam võimaldab edastuskiirust 1300 Mbit/s 802.11ac standardiga ja 450 Mbit/s 802.11n standardiga. Maksimaalne kanali laius on 80 MHz 802.11 ac standardiga. Tugijaam kasutab kuni 256QAM modulatsiooni. Joonis 3 esitab pildi pääsupunktist. [4]

Joonis 3. ASUS RT-ACU Dual Band 3x3. [4]

Kasutades valemit (1) saame arvutada füüsilise kihi edastuskiiruse.

Füüsilise kihi edastuskiirus = Alamkandjate arv * Samaaegsete andmevoogude arv * Andmebittide arv alamkandja kohta / OFDM sümboli ajaga (1)

Seega saame füüsilise kihi edastuskiiruseks 234 * 3 * (5/6) * $\log_2(256) / 3,6 = 1300$ Mbit/s. Kus,

234 on alamkandjate arv 80 MHz kanali korral,

3 on samaaegsete andmevoogude arv,

5/6 on koodikiirus,

256 on modulatsiooni sümbolite arv ja

3,6 on OFDM sümboli aeg mikrosekundites.

2.3.2 Raadiokaart USB-AC56

Raadiokaart USB-AC56 võimaldab 802.11ac standardiga edastuskiirust 867 Mbit/s ja 802.11n standardiga 400 Mbit/s. Raadiokaardil on USB 3.0 ühendus, mis tagab piisava edastuskiiruse raadiokaardi ja arvuti vahel. Sidekanali edastuskiiruse kasutajale määrab sidekanali kõige aeglasem lõik. Kuna USB 2.0 ühendus võimaldab 480 Mbit/s andmeedastuskiirust, siis piiraks see 802.11 ac maksimaalset kiirust 867 Mbit/s peaaegu poole võrra, mis tähendab, et maksimaalne kiirus mille saab saavutada on 480 Mbit/s. Seega on soovitatud kasutada USB 3.0 ühendust, mis võimaldab kuni 5 Gbit/s andmeedastuskiirust. Raadiokaardil on üks väline antenn ja kaks sisseehitatud antenni. Joonis 4 esitab raadiokaardi pildi. [5],[14]

Joonis 4. ASUS USB-AC56. [5] Joonis 5 esitab ASUS USB –AC56 ühenduse arvutiga USB kaabliga.

Joonis 5. Raadiokaardi ühendamine arvutiga. [5],[15]

2.4 Kasutatavad tarkvarad

2.4.1 InSSIDer 3

InSSIDer on vabavaraline WLAN võrgu jälgimise tarkvara. Networks sakis kuvatakse levialas olevad WLAN tugijaamad (Joonis 6). Tulpades on toodud SSID-d, signaali võimsus, kasutatuses olevad kanalid, turvalisus, MAC aadress, maksimaalne võimalik edastuskiirus, kasutuses olev IEEE 802.11 standard ja seadme tootja. InSSIDer 3 tuvastab IEEE 802.11 a/b/g/n standardeid, see tähendab, et 802.11 ac võrke kuvatakse 802.11 n võrguna. InSSIDer-il on ka uuem versioon, mis tuvastab 802.11 ac standardit, aga see versioon on juba tasuline. Seega tuleks leida mõni teine vabavaraline tarkvara, mis näitab ka 802.11 ac standardil töötavat võrku.

File View Help											- 6 - ×
ing ings rap	LEARN		NETWORKS	\rightarrow							metageek
FILTERS	D or Vendor Channel	Signal Se	curity V 802.11 V								
					SIGNAL ¥ CHANNEL	SECURITY	MAC ADDRESS	MAX RATE	802.11	🛨 test n 5 8C:F6:84	136+140 100
TU test n 2.4 eduroam test n 5 eduroam test n 5						Open WPA2-Personal WPA2-Enterprise WPA2-Enterprise WPA2-Personal WPA2-Personal WPA2-Personal WPA2-Personal WPA2-Personal Open Open Open Open	1C8974217703C 085256825680 085256825680 085256825684 1C8974577038 085256825680 085256804378 085256804378 085256804378 085256804378 1C8974177348 1C89741775348 1C89741775348 1C89741775348	144 450 144 450 144 450 144 144 216 144 216 144 144 144 144	n	test n 2.4 Mac OBS268265480 Security WA2 Personal 802118 300 40 100 100 100 100 100 100 100 100	Channel Uniticore 13 24 Channel Unit Stree CG-Channel 5 Signal 45 dan Signal 45 dan
eduroam eduroam TTU eduroam eduroam eduroam				-	-58 13 -58 4 -59 108 -59 112 -59 112 -60 6 -60 100	WPA2-Enterprise WPA2-Enterprise Open WPA2-Enterprise Open WPA2-Enterprise WPA2-Enterprise	1C89:C4:57:85:38 1C89:C4:57:69:18 1C89:C4:58:14:DC 1C89:C4:58:14:DC 1C89:C4:58:14:DC 1C89:C4:58:14:D8 1C89:C4:57:73:4C	144 144 144 144 144 144 144	n n n n n		
-30 -40 -50 -50 -70 -70 -80			Vest n 2.4		an 44 49 57 56	64		100	108 112 116	* Net n 5	-30 -40 -50 -60 -70 -60 -60 -60 -60

Joonis 6. InSSIDer 3 Networks saki vaade.

2.4.2 TamoSoft Throughput Test

TamoSoft Throughput Test on vabavaraline tarkvara millega saab mõõta TCP ja UDP andmeedastus kiiruseid, paketikadu ja pendellevi aega. Tarkvara kuvab reaalajas tulemused graafikus ja numbrilises formaadis.TCP ja UDP mõõtmised tehakse samaaegselt või saab mõõta ainult TCP kiiruseid. Tarkvara toetab IPv4 ja IPv6. Katsete tegemiseks on vaja kaks arvutit ühendada samasse võrku ning ühes arvutis käivitada server ja teises klient. Kliendi pool kuvab mõõdetud tulemused. Tarkvara seadistamine mõõtmiseks on suhteliselt lihtne ja vähe aeganõudev, mis teeb selle ideaalseks klassis kasutamiseks. Joonis 7 esitab TamoSoft Throughput Test kliendi vaate. [11]

Joonis 7. TamoSoft Throughput Test kliendi vaade.

Joonisel on näha graafik TCP ja UDP edastuskiirustega ja graafiku üleval on tulemused numbrilises formaadis. "Ave:" näitab mõõtetulemuste keskmist väärtust Mbit/s.

2.5 Aruande nõuded

Laboratoorse töö aruanne koosneb kolmest osast:

- Praktiline osa
- Teoreetiline osa
- Kokkuvõte

Praktilises osas tuleb esitada ülesannete juures olevad küsimused, täita tabelid ja lisada töö käigus tehtud graafikud.

Teoreetiline osa on individuaalne osa ja peab sisaldama ülesannete lahenduskäike ja vastuseid.

Kokkuvõttes anda hinnang ülesannete õnnestumisele ja selgitada kuidas saavutada paremat WLAN edastuskiirust.

2.6 Probleemid olemasoleva laboriga

Olemasoleval laboratoorsel tööl on järgnevad probleemid või puudused:

- 1. Kui on palju klassi tugijaamu kasutuses, siis TamoSoft Througput testidega on raske näidata, et 5 GHz võrgus saadakse suurem edastuskiirus.
- 2. On raske näidata, et UDP töötab kiiremini kui TCP.
- 3. Ülikool kasutab võrkudega TTU ja eduroam ära kogu 2,4 GHz sagedusala.
- 4. 5GHz sagedusalas valivad klassi tugijaamad kanali, millel on juba ülikooli võrgud peal, kuigi täiesti vabu kanaleid on olemas.
- 5. Kui on kasutusel võrk 802.11ac siis Windows 7 näitab, et on kasutusel võrk 802.11n.
- 6. Spektri parameetrite järgi arvutades tuleb Shannoni valemiga mõlemas võrgus sarnane läbilaskevõime.

2.6.1 Lahendused

Esimene lahendus on tugijaamade vähendamine kuuelt tugijaamalt neljale, kuna sellega võimaldatakse rohkem vabu kanaleid. Hetkel töös olevad kuus tugijaama kasutavad ära üle poole kanalitest 5 GHz sagedusalas, kui võrgu kanali laius on 40 MHz. Joonis 8 esitab 5 GHz sagedusala kanalite jaotuse. Jooniselt on näha, et 40 MHz kanaleid saab ilma ülekattuvuseta teha 11 ja 80 MHz kanaleid kõigest 5. 2.4 GHz sagedusalas saab ilma ülekattuvuseta kasutada ainult 4 kanalit (Joonis 1). Kasutades vähem tugijaamu annab see parema võimaluse 802.11 ac võrkude testimiseks, kuna 6 tugijaama korral peavad kaks tugijaama töötama samadel kanalitel.

Joonis 8. 5 GHz sagedusala kanalite jaotus. [13]

Teiseks peaks võrkude seadistamisel kõigepealt otsima vaba kanali kasutades võrgu jälgimise tarkvara InSSIDer 3. Sellisel juhul tuleb ka tähelepanu pöörata ka sellele, et

samaaegselt loodud võrgud ei satuks samale kanalile. 5 GHz sagedusalas on võimalik valida vabu kanaleid, aga 2,4 GHz sagedusalas tuleks valida kanal, kus on teiste võrkude signaalid nõrgemad või jätkata automaatse kanalivalikuga. Automaatse kanalivaliku korral võib juhtuda, et spektri mõõtmise ajaks või ajal võib kanal muutuda ja seeläbi peab spektrianalüsaatorit uuesti seadistama.

Ülalmainitud lahendused aitaksid kaasa probleemide 1, 2, 4 ja 6 lahendamisele. Täpsemad lahendused ja soovitused on toodud peatükis 3.

3 Analüüs ja täiendused laboratoorsele tööle

Olemasolevas laboratoorses töös on viis ülesannet. Esimeses ülesandes seadistatakse tugijaam, teises mõõdetakse omaseadistatud võrkude spektrid, kolmandas uuritakse neid võrke, neljandas mõõdetakse võrkude edastuskiirust ja viimane ülesanne on individuaalülesanne milles kasutatakse Shannoni valemit sidekanali läbilaskevõime arvutamiseks. [8]

3.1 WLAN tugijaama seadistamine

WLAN tugijaama seadistamine koosneb kahest osast:

- 1. IP aadresside osa
- 2. Tugijaama seadistamise osa

IP aadressi osas tuleb arvutada vastavalt variandile kas maski võrguosa bittide arv või Võrgus seadmetele antavate aadresside maksimaalne arv, sealjuures üks neist on ette antud. Seejärel leitakse võrgumaski kümnendkuju, tugijaama IP aadress, esimene ja viimane DHCPga jagatavad aadressid ning aadressiruumi viimane aadress ehk broadcast. Kõige selle leidmiseks on välja pakutud IP aadressi kalkulaatorid.

Kui IP aadressid on ette valmistatud, siis alustatakse WLAN tugijaama seadistamisega. Selles osas seadistatakse kaks traadita sisevõrku ning on välja toodud sätete väärtused ja kohad kuhu need sisestama peab. Töös seadistatavad sisevõrgud on:

- 1. 802.11g sagedusalal 2,4 GHz
- 2. 802.11n sagedusalal 5 GHz kanali laiusega 40 MHz

Kohe töö alguses seadistatakse kaks võrku üks 2,4 GHz ja teine 5 GHz sagedusalas. SSID ja WPA Pre-Shared Key valitakse kummalegi võrgule ise. 2,4 GHz sagedusalas valitakse:

• Wireless Mode – Legacy

• *Control Channel* – valida kanalitest 1, 6 või 11 selline, mis ei ole kasutusel naabergrupi tugijaamas.

5 GHz sagedusalas tehakse järgnevad valikud:

- Wireless Mode N Only
- *Channel bandwidth* 40 MHz
- Control Channel Auto
- Extension Channel Auto

3.1.1 Analüüs ja katsed

Kuna laboratoorse töö eesmärgiks on võrrelda 802.11 standarditel töötavaid võrke siis peab ka tugijaama seadistusi muutma vastavalt standardile.

Kõigepealt uuriti tugijaama Asus RT-AC66U seadistamis juhendit [7]. Juhendis soovitati:

- Tugijaam paigaldada tsentraliseeritud asukohta, et tagada parim leviala.
- Hoida seade eemal metallsetest esemetest ja otsesest päikesevalgusest.
- Signaali interferentsi või kadumise vältimiseks, vältida 802.11g või ainult 20 MHz WLAN seadmetest.
- Parima signaali saavutamiseks paigutada antennid vastavalt Joonis 9 toodud näitele.

Joonis 9. Tugijaama antennide soovituslik asend. [7]

Lisaks pakkus huvi tugijaama bridge ühendus, mis võimaldab tugijaama kasutada WLAN repiiterina.

3.1.2 Soovitused

Enne tugijaama seadistamise alustamist tuleks kasutada raadiokaardiga arvutis võrgu jälgimise tarkvara nagu InSSIDer 3, et kindlaks teha vaba kanal või valida kanal millel ei ole teisi tugijaamu tugeva signaaliga. Nelja töökoha korral 2,4 GHz sagedusalas kasutada kanaleid 1, 5, 9 ja 13.

Kuna 802.11ac–ga ühilduvaid seadmeid on veel suhteliselt vähe ja tugijaamal töötab 2 võrku korraga, üks 2,4 GHz sagedusalas ja teine 5 GHz sagedusalas, otsustati jätkata vanade võrkude seadistustega:

- 1. 802.11g sagedusalal 2,4 GHz kanali laiusega 20 MHz
- 2. 802.11n sagedusalal 5 GHz kanali laiusega 40 MHz

Võimaluse korral võiks teha läbi ka 802.11 ac võrguga kiiruse mõõtmise. Sellisel juhul kasutada järgmisi seadistusi:

• *Frequency* – 5 Ghz

- SSID valida oma 5 GHz võrgule nimi, mille alguses on paar esimest sümbolit samad kui 2,4 GHz võrgul ja nimi oleks eristatav teistest laboris olevatest võrkudest ja oma 2,4 GHz võrgust.
- Wireless Mode N/AC
- *Channel bandwidth* 20/40/80 MHz;
- Control Channel Valida vaba kanal kasutades InSSIDer 3 tarkvara. Vaba kanali puudumisel võib valida Auto.
- Extension Channel Auto
- Authentication Method WPA2-Personal
- WPA Encryption AES
- WPA Pre-Shared Key võrgu võtmeks valida vähemalt 8 sümbolit pikk sõna.

3.2 Spektri mõõtmine

Spektri mõõtmise ülesandeks on mõõta omaseadistatud võrgu spektrid ning salvestada nende spektripildid ning ülesande lõpus arvutada Shannoni valemi abil võimalik edastuskiirus nendes võrkudes.

Esiteks valitakse omaseadistatud võrk ja käivitatakse TamoSoft Throughput Test. Sellega tekitatakse sisevõrku andmeliiklus, mis hoiab sidekanalit töös selleks, et saaksime mõõta kanali spektrit. Seejärel suunatakse spektrianalüsaatori mõõteantenn oma tugijaama poole ning seadistatakse spektrianalüsaatori kesksagedus ja sagedusvahemik vastavalt omaseadistatud võrgule. Kui sagedusala on paigas, määratakse esitatava signaali väärtuste vahemik ning mõõtetulemused keskmistatakse.

Spektrianalüsaatorist spektripilidi salvestamiseks käivitatakse programm Keysight Connection Expert. Seejärel käivitatakse Matlab fail TransferScreenShot.m ning salvestatakse pilt jpg või png formaadis.

Katset korratakse teise omaseadistatud võrguga.

Saadud spektripiltidelt leitakse alumine ja ülemine sagedus, spektri laius ning signaali ja müra võimsus. Leitud andmeid kasutatakse Shannoni valemis sidekanali teoreetilise läbilaskevõime arvutamiseks kummaski võrgus.

3.2.1 Analüüs ja katsed

Tähelepanu tuleb pöörata asjaolule, et spektrianalüsaatori antenn on suundantenn ja peab olema suunatud tugijaama poole.

Viidi läbi katsed. Katsed viidi läbi järgnevate parameetrite muutmisega:

- Spektrianalüsaatori antenni kaugus tugijaamast
- Sagedusala
- Kanali laius
- Võrgu standard

Spektrianalüsaatori kauguseks tugijaamast valiti 0,1 m, 0,2 m, 0,3 m, 1,5 m ja 3 m. Kanali laiuse ja sagedusala järgi tehti katseid kõikides variatsioonides, välja arvatud 802.11 ac standardiga, kus tehti katse ainult 20/40/80 MHz kanali laiusega ja 5 GHz sagedusalas.

Katsete tulemused on välja toodud tabelites 1 kuni 6 ja joonisel 10. Spektrianalüsaatori ekraanipildid on toodud lisades 8 kuni 13.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-40,0	-40,0	-44,0	-48,0	-61,5
N [dBm]	-67,0	-67,0	-67,0	-67,0	-67,0
S / N [dBm]	27,0	27,0	23,0	19,0	5,5

Tabel 1. 802.11 g spektrianalüsaatori katsete tulemuste tabel.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-34,0	-39,0	-41,0	-44,0	-60,0
N [dBm]	-67,0	-67,0	-67,0	-67,0	-66,8
S / N [dBm]	33,0	28,0	26,0	23,0	6,8

Tabel 2. 802.11 n 2,4 GHz alas 20 MHz kanaliga spektrianalüsaatori katsete tulemuste tabel.

Tabel 3. 802.11 n 2,4 GHz alas 40 MHz kanaliga spektrianalüsaatori katsete tulemuste tabel.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-45,0	-44,0	-42,0	-44,0	-60,0
N [dBm]	-67,0	-67,0	-67,0	-67,0	-67,0
S / N [dBm]	22,0	23,0	25,0	23,0	7,0

Tabel 4. 802.11 n 5 GHz alas 20 MHz kanaliga spektrianalüsaatori katsete tulemuste tabel.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-52,0	-57,0	-62,0	-67,0	-70,9
N [dBm]	-72,0	-72,0	-72,0	-72,0	-72,0
S / N [dBm]	20,0	15,0	10,0	5,0	1,1

Tabel 5. 802.11 n 5 GHz alas 40 MHz kanaliga spektrianalüsaatori katsete tulemuste tabel.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-52,0	-60,0	-63,0	-70,5	-71,8
N [dBm]	-72,0	-72,0	-72,0	-72,0	-72,0
S / N [dBm]	20,0	12,0	9,0	1,5	0,2

Tabel 6. 802.11 n 5 GHz alas 20/40/80 MHz kanaliga spektrianalüsaatori katsete tulemuste tabel.

Vahemaa [m]	0,1	0,2	0,3	1,5	3,0
S [dBm]	-55,0	-59,0	-60,0	-66,5	-67,2
N [dBm]	-67,0	-67,0	-67,0	-68,0	-68,1
S / N [dBm]	12,0	8,0	7,0	1,5	0,9

Tabelitest 1 kuni 6 on näha, et kauguse muutudes müra N ei muutu väga palju või jäi katsete käigus samaks. Küll aga muutub signaali võimsus S. Üldjuhul signaali võimsus

kauguse kasvades vähenes, aga 2,4 GHz sagedusalas 40 MHz kanaliga 802.11n võrgu signaali võimsus oli 0,1 ja 0,2 meetri kaugusel kehvem kui 0,3 meetri kaugusel.

Andmetest paremini arusaamiseks koostati tabelite 1 kuni 6 S/N veeru põhjal joonis 7.

Joonis 10 esitab tabelite 1 kuni 6 tulemused. Vertikaalsel teljel on S/N [dB] ja horisontaalsel teljel on spektrianalüsaatori antenni kaugus tugijaamast meetrites. Jooniselt võib näha, et 5 GHz sagedusalas signaal hajub kiiremini kui 2,4 GHz sagedusalas ning mida lähemal on antenn tugijaamale seda parema tulemuse saab. Kusjuures jooniselt on näha, et 2,4 GHz sagedusalas on 40MHz kanaliga 802.11n võrgul parem tulemus kui antenn on 0,3 meetri kaugusel pääsupunktist.

3.2.2 Spektrianalüsaatori seadistused

Spektrianalüsaatoril saab jälgida mitut spektri omadust samaaegselt. Olemasolevas töös on kasutatud keskmist spektri mõõtmis meetodit, aga on võimalik mõõta ka minimaalset ja maksimaalset tulemust. Kasutades minimaalse spektri mõõtmise meetodit saame tulemuseks minimaalse mürataseme ja maksimaalse mõõtmis meetodiga saame tulemuseks maksimaalse signaali spektri ja mürataseme. Kasutades kõiki kolme varianti koos saame kõige parema ülevaate spektrist.

Selleks, et spektrianalüsaator näitaks kolme tulemust korraga tuleb spektrianalüsaatoris teha järgnevad sammud:

1. ANALYZER SETUP nuppude kogumist vajutada nuppu Trace/Detector

Joonis 10. Spektrianalüsaatori testide graafik.

- 2. Ekraani kõrvalt vajutada nupule Trace Average
- 3. Ekraani kõrvalt vajutada Select Trace
- 4. Ekraani kõrvalt valida Max Hold
- 5. Ekraani kõrvalt vajutada Select Trace
- 6. Ekraani kõrvalt valida Min Hold

Seejärel peab tekkima ekraanile kolm joont. Mõõtmise tulemus on näha joonisel 11.

Joonis 11. 802.11g võrgu spektri maksimaalne, keskmine ja minimaalne tulemus.

Joonis 11 on kollasega märgitud *Max Hold* tulemus, ehk maksimaalne tulemus. Sinisega on märgitud *Trace Average*, ehk keskmine tulemus ja lillaga on märgitud *Min Hold*, ehk minimaalne tulemus. Maksimaalse tulemuse saamiseks võib spektrianalüsaatori antenni liigutada pääsupunkti antennidele lähemale ja kaugemale, et saada maksimaalne tulemus kätte.

3.2.3 Soovitused

Analüüsi ja katsete tulemusel selgus, et töö tegemise käigus peaks spektrianalüsaatori antenni suunama tugijaama poole ning viima antenni tugijaamale lähedale. 5 GHz sagedusalas tuleks antenn viia 0,1 meetri kaugusele ja 2,4 GHz sagedusalas tuleks antenni ja tugijaama vahet suurendada 0,2 meetrini välja arvatud 40 MHz kanaliga 802.11n võrgu korral.

Võttes kasutusele maksimaalse ja minimaalse tulemuse mõõtmise, siis tuleks spektrianalüsaatori antenni liigutada pääsupunkti antennidele lähemale ja seejärel eemale. Sellega saavutatakse maksimaalne mõõtetulemus. Seejärel asetada spektrianalüsaatori antenn soovitatud kaugusele ja oodata kuni keskmine tulemus enam ei muutu suures ulatuses.

Maksimaalse spektri tulemusega saab läbi teha samad arvutused nagu on tehtud keskmise tulemusega. Ehk leida signaali ja müra võimsus ja arvutada sidekanali läbilaskevõime Shannoni valemiga. Lisaks saab arvutada maksimaalse sidekanali läbilaskevõime, võttes signaali võimsuseks maksimaalse tulemuse ja müra võimsuseks minimaalse tulemuse. Joonis 12 esitab mõõtetulemuste leidmise meetodi.

Joonis 12. Spektri pilt ja parameetrite leidmine.

3.3 WLAN võrgu uurimine

WLAN võrgu uurimiseks kasutatakse Windowsi käsurida ja InSSIDer 3 tarkvara. Ülesanne koosneb kahest osast, *netsh* (*Network Shell*) ja Inssider.

Netsh osas kasutatakse Windowsi käsurida ning salvestatakse raadiokaardiga arvutist "*netsh wlan show interface*" käsu väljund faili. Tegevust korratakse ka teise omaseadistatud võrguga. Saadud tulemuste järgi vastatakse küsimustele:

- 1. Millise standardi WLAN võrguga on arvuti ühendatud?
- 2. Milline on lubatud laadimiskiirus üles ja alla?

Inssider osas käivitatakse raadiokaardiga arvutis InSSIDer 3 tarkvara ja leitakse tabelist omaseadistatud võrgud, tehakse need aktiivseks ja salvestatakse ekraanipilt aruande jaoks. Seejärel vastatakse küsimustele:

- 1. Millised kanalid on hõivatud Teie võrkude spektrite poolt?
- 2. Kui suurt andmeedastuskiirust teoreetiliselt on võimalik kasutada Teie WLAN võrkudes?
- 3. Selgitada InSSIDER'i tabelis näidatavate MAC aadresside tähendust.
- 4. Millised raadiokanalid on kasutuses ja kus on veel vaba ruumi uute võrkude jaoks?

Küsimuse 1 vastuse leiab InSSIDer 3 programmi alumistelt graafikutelt, millised kanalid on kaetud omaseadistatud võrkude spektriga. Küsimuse 2 vastuse leiab *MAX RATE* veerust. Küsimuse 3 eeldatakse vastuseks, et need MAC aadressid kuuluvad pääsupunktidele. Küsimuse 4 vastus leitakse graafikutelt, kus on vabad kanalid ja kuhu saab uusi sama laia spektriga võrke panna.

3.3.1 Netsh

Netsh on Windowsi käsurea utiliit. Joonis 13 esitab käsu "netsh wlan show interface" tulemuse. Netsh osa esimesele küsimusele leiab vastuse Radio type realt ja teisele küsimusele Receive rate (Mbps) ja Transmit rate (Mbps) realt. Tulemustes on ka kirjas võrgu kanal, mille leiab Channel realt. Seega saab käsku kasutada automaatse

kanalivaliku korral võrgu kanali leidmiseks. On olemas ka "*netsh wlan show all*" käsk, mis näitab infot kõikide läheduses olevate võrkude kohta, aga selle tulemus on liiga suur ja arusaamatu. Selle asemel kasutatakse võrgu jälgimise tarkvara InSSIDer 3, mis kuvab samad tulemused loetavamal kujul.

```
There is 1 interface on the system:
```

Name	: Wireless Network Connection
Description	: ASUS USB-AC56 802.11ac Wireless USB Adapter
GUID	: dd71900b-76bb-4f91-bcf0-8d907558bfca
Physical address	: f0:79:59:e8:ba:ee
State	: connected
SSID	: test123
BSSID	: 08:62:66:8c:f6:80
Network type	: Infrastructure
Radio type	: 802.11g
Authentication	: WPA2-Personal
Cipher	: CCMP
Connection mode	: Profile
Channel	: 5
Receive rate (Mbps)	: 54
Transmit rate (Mbps)	: 54
Signal	: 100%
Profile	: test123
Hosted network status	: Not available
	Joonis 13. Netsh käsu väljund.

3.3.2 Alternatiivid InSSIDer 3 -le

InSSIDer 3 tuvastab IEEE 802.11 a/b/g/n standardeid, see tähendab, et 802.11 ac võrke kuvatakse 802.11 n võrguna. InSSIDer-il on ka uuem versioon, mis tuvastab 802.11 ac standardit, aga see versioon on tasuline. Seega tuleks leida mõni teine vabavaraline tarkvara, mis näitab ka 802.11 ac standardil töötavat võrku.

Alternatiividena InSSIDer 3 –le otsustab autor kaaluda kahte varianti. Acrylic Wi-Fi Home ja Netspot, mõlemad on vabavaralised tarkvarad millega saab teha sarnaseid toiminguid mida saab teha InSSIDer 3-ga.

3.3.2.1 Acrylic Wi-Fi Home

Acrylic Wi-Fi Home kuvab sarnaseid näitajaid, mida kuvab ka InSSIDer 3 ainult natuke teistsuguse kujundusega. 2.4GHz ja 5GHz tugijaamade signaalivõimsused kuvatakse eraldi sakkides. Kuvatakse IEEE 802.11 a/b/g/n/ac standardeid ja on ära märgitud ka

vanemad standardid, mida tugijaam kasutab. Acrylic Wi-Fi Home on suhteliselt lihtne ja mugav kasutada. Joonis 14 esitab Acrylic Wi-Fi Home vaate. [9]

ACTYLIC V	Vi-Fi Home	GO Pro	f 8	• ¥ i	n																		
ID	MAC Addres	s RSSI	Chan 8	02.11	Max Spee	H WEP	w	PA	WPA	2 W	PS Vend	or	Firs	t La	st T	vpe							
100.000	10-89-04-58-14-1	a .50 <	6	haa	144.4 M	104			MGT-(TVIR	COMP	Pueleur	Wiroless	11-01	10 0.000	le.	frastructure							
roam	10-89-04-58-14-1	c .63	12+106	0.9.11	780.3 M	100			MGT-(TKIP	CCMP)	Rudeur	Wireless	11-31	-13 now	In In	fractructure							
	10:89:04:17:85:6	c .73	60+56	0.00	780.3 M	nos Onen			inor-(nar)		Ruckus	Wireless	11-31	13 now	In	frastructure							
, Iroam	10:89:04:57:73:4	60	9	han	144.4 M	nos			MGT-(TKIP)	(CCMP)	Ruckus	Wireless		13 now	In	frastructure							
roam	10:89:04:57:73:4	c .66 <	100+96	n.ac	780.3 M	ns			MGT-(TKIP	CCMP)	Ruckus	Wireless		:13 now	In	frastructure							
	10:89:04:17:70:6	e -45 a	1	b. a. n	144.4 M	nos Onen					Ruckus	Wireless		:13 now	In	frastructure							
n 2.4	08:62:66:8C:F6:8	9 -51 -	8+12	b. g. n	450 M	ins			PSK-CCMP		ASUST	& COMPU	ER IN 11:31	:13 now	In	frastructure							
	10:89:04:17:70:6	c -71	.08+104	n, ac	780.3 M	ops Open					Ruckus	Wireless		:13 now	In	frastructure							
n 5	08:62:66:8C:F6:8	4 -45	40+44-	n, ac	1300.05 M	005			PSK-CCMP		ASUST	K COMPU	ER IN 11:31	:13 now	In	frastructure							
activity5G	60:A4:4C:D2:3F:6	c -73 🖌	40	a, n	216,7 M	pps			PSK-CCMP		ASUST	k COMPU	ER IN 11:31	:13 now	In	frastructure							
activity	60:A4:4C:D2:SF:6	a -51 🖌	6	b, q, n	216.7 M	aps			PSK-CCMP	1	.0 ASUST	k COMPU	ER IN 11:31	:13 now	In	frastructure							
, -	1C:B9:C4:17:66:D	c -73	100+96	n, ac	780,3 MI	ops Open					Ruckus	Wireless		:13 now	In	frastructure							
iroam	10:89:04:57:85:6	a -63 🖌	6	b. g. n	144.4 M	ops			MGT-(TKIP	CCMP)	Ruckus	Wireless		:10 00:00:0	14 ago In	frastructure							
1	10:89:04:17:69:1	a -57 🖌	4	b, g, n	144.4 M	ps Open					Ruckus	Wireless		:13 now	In	frastructure							
roam	10:89:04:57:85:0	c -73 🖌	60+56	n, ac	780.3 M	ps			MGT-(TKIP	CCMP)	Ruckus	Wireless		:13 now	In	frastructure							
sys	00:12:17:DD:2C:1	-49 _	11	b. g	54 MI	ps	PSK-TKIF				Cisco-L	inksys. LLC		:13 now	In	frastructure							
	10:89:04:17:69:1	c -65 🚄	.16+112	n, ac	780.3 MI	ops Open					Ruckus	Wireless		:13 00:00:0	04 ago In	frastructure							
	10:89:04:17:85:3	 -59 <u>~</u> 	13	b, g, n	144.4 M	ops Open					Ruckus	Wireless		:13 now	In	frastructure							
	10:89:04:17:85:3	c -72 🖌	.12+108	n, ac	780.3 MI	ops Open					Ruckus	Wireless		:13 now	In	frastructure							
roam	10:89:04:57:70:8	 -45 🚄 	1	b, g, n	144.4 M	ops			MGT-(TKIP)	CCMP)	Ruckus	Wireless	11:31	:13 now	In	frastructure							
5g	08:62:66:8D:43:8	° -51 🚄	13	b, g	54 M	ops			PSK-CCMP		ASUST	k COMPU	ER IN 11:31	:13 now	In	frastructure							
iroam	1C:89:C4:57:7D:8	c -72 🖌	.08+104	n, ac	780.3 MI	ops			MGT-(TKIP)	CCMP)	Ruckus	Wireless	11:31	:13 now	In	frastructure							
5n	08:62:66:8D:43:1	c -45 🚄	·56+60·	n, ac	1300.05 MI	ops			PSK-CCMP		ASUST	sk COMPU	ER IN 11:31	:13 now	In	frastructure							
J	1C:B9:C4:18:14:I	e -58 🚄	6	b, g, n	144.4 M	ops Open					Ruckus	Wireless	11:31	:13 now	In	frastructure							
1	10:89:04:18:14:0	c -61 ∡	12+108	n. ac	780.3 M	oos Open					Ruckus	Wireless		:13 now		frastructure							
al Strength	Network Qual	ty 2.4	GHz APs Ch	hannels	SGHz APs (hannels																	
5180		52	40 5260			5320	5500											5720	5745			5805	5825
36	40 44	48	52	56	60	64	100	104	108	112	116	120	124	128	132	136	140	144	149	153	157	161	165
			Y						-														
			V					\square															
							7		Υ														
									1														

Joonis 14. Acrylic Wi-Fi Home vaade.

3.3.2.2 Netspot

Netspot kuvab samuti sarnaseid tugijaama näitajaid nagu InSSIDer 3 ja lisaks ka kanali ribalaiust. Võrreldes Acrylic Wi-Fi Home tarkvaraga näitab Netspot ainult kõige uuemat tugijaama poolt kasutuses olevat IEEE 802.11 standardit. Ülesehituse poolest on Netspot pigem sarnane Acrylic Wi-Fi Home tarkvarale, see tähendab, et 2.4GHz ja 5GHz tugijaamad on eraldi sakkidel. Positiivse poole pealt tuuakse välja signaalivõimsuse ja kanali salvestamine tabelisse ning katkendliku leviga tugijaamade säilitamine loendisse. Negatiivseks küljeks on see, et juurde tekkinud tugijaamad peab iseseisvalt juurde märkima, kui tahetakse neid jälgida. Joonis 15 esitab Netspot vaate. [10]

NetSpot -	Discover																					and the state
🚱 Disco	OVER	SURVEY -																	A DXPORT	2 USER GUIDE	ASK A QUESTION	🗿 ABOUT 🔸
	SSID	BSSID	Graph	Signal	5	Min.	Max.	Average	Leve		Band C	Inner	Width	Vendor	Security	Mode	Last seen					
Proac	tivity5G	60:A4:4C:D2:3F:6C				-96	-73	-73			5	40	20	ASUSTek.	WPA2 Personal		6 s ago					
T S Prost	tivity	60:A4:4C:D2:3F:68				-96	-51	-52			2,4	6	20	ASUSTek	WPA2 Personal	•	19 s ago					
🗇 🍕 ProLa	ib5G	38:2C:4A:CF:5A:04				-96	-71	-71			5 4	18 - 1	40	ASUSTek	WPA2 Personal		6 s ago					
🗌 🕏 Prola	ıb	38:2C4A:CF:5A:00	_			-96	-45	-45			2,4	6	20	ASUSTek	WPA2 Personal		10 s ago					
🗇 🐐 edure	nam.	1C:89:C4:58:14:DC				-96	-61	-63			5	112	20		WPA2 Enterprise	•	6 s #go					
🗌 💐 edure	parm.	1089:04:58:14:08	-			-96	-58	-59			2,4	6	20		WPA2 Enterprise		10 s ago					
🔲 🐧 edure	sam	1C;89:C4:58:10:6C	-			-96	-74	-80			5.	104	20		WPA2 Enterprise		6 s ago					
🗌 🐐 edure	ann -	1CB9:C4:57:85:6C	-			-96	.73	-73			5	60	20		WPA2 Enterprise		6 s ago					
🗌 🐧 edure	sam	1C:89:C4:57:85:68	-			-96	-63	-64			2,4	6	20		WPA2 Enterprise		15 s ago					
🗌 😤 edure	iem .	1C89:C4:57:85:3C	-			-96	-72	-72			5	112	20		WPA2 Enterprise		10 s ago					
🗌 🦻 edure	am	1C:B9:C4:57:85:38				-96	-59	-59			2,4	13	20		WPA2 Enterprise		6 s øgo					
edure	1000	1C89:C4:57:7D:8C	6.64			-96	-45	-58			5	108	20		WPA2 Enterprise		6 s ago					
🗌 🐔 eduro	sam	1C:89:C4:57:7D:88				-96	-45	-45			2,4	1	20		WPA2 Enterprise		6 s ago					
🗌 🧃 edure	am	1C:B9:C4:57:73:4C	-			-96	-65	-67			5	100	20		WPA2 Enterprise		15 s ago					
🗋 🐐 edurc	am	10:89:04:57:73:48	-			-96	-58	-60			2,4	9	20		WPA2 Enterprise		6 s ago					
🗌 🐧 edure	10000	1C:89:C4:57:69:1C	-			-96	-65	-65			5	116	20		WPA2 Enterprise		15 s ago					
🗌 🕫 edure	AMP1	10:89:04:57:69:18	-			-96	+53	-57			2,4	4	20		WPA2 Enterprise		6 s ago					
🗌 🐐 edure	men	1C:89:C4:57:66:DC				-96	-73	-73			5	100	20		WPA2 Enterprise		6 5 #90					
🗌 🍕 edurc	sam	1CB9:C4:57:66:D8				-96	-66	-66			2,4	3	20		WPA2 Enterprise		36 s ago					
अग 🍨 🗌		1C89:C4:18:14:DC	-			-96	-61	-62			5	112	20		Open		6 s ago					
. עדד 🕈 🖸		1089:04:18:14:08				-96	-58	-59			2,4	6	20		Open		15 s ago					
0 🕈 TTU		1C89:C4:18:10:5C				-96	-74	-78			5	104	20		Open		6.s.ago					
🔲 🕈 ΤΤυ		1C:89:C4:17:85:6C	-			-95	-73	-73			5	60	20		Open		6 s ago					
		1089:04:17:85:68				-96	-63	-64			2,4	6	20		Open		15 s ago					
υπτ 🕈 🔟		1C89:C4:17:85:3C	-			-96	.72	-72			5	112	20		Open		10 s ago					
9 TTB		1089:04:17:85:38				-96	-59	-59			2,4	13	20		Open	•	6 s ago					
🖂 🕈 Πυ		1C:89:C4:17:7D:8C	0.00			-96	-45	-56			5	108	20		Open		6 s ago					
TTU		1CB9:C4:17:7D:88				-96	-45	-45			2,4	1	20		Open		6 s ego					
Ο 🕈 ΤΤυ		1CB9:C4:17:73:4C	-			-96	+65	-67			5	100	20		Open		15 s ago					
שדד יי		10.89:04:17:73:48	-			-96	-58	-59			2,4	9	20		Open		6 s ago					
🔲 🕈 ΤΤυ		1C:B9:C4:17:69:1C	-			-96	-65	-65			5	116	20		Open		15 s ago					
U 🕈 TTU		1089:04:17:69:18				-96	-54	-56			2,4	4	20		Open		6 s ago					
U 🕈 TTU		1CB9:C4:17:66:DC	Red and			-96	-73	-73			5	100	-20		Open		6 s ago					
Ha5r	67	08:62:66:8D:43:FC	1.1.1			-96	-45	-45			5 5	2 = 1	-40	ASUSTek	WPA2 Personal		6 s ago					
14a5g	6	08:62:66:8D:43:F8	-			-96	-45	-53			2,4	13	20	ASUSTek	WPA2 Personal		6 s #go					
🖸 🐐 test n	5	08:62:66:8C/F6:84		1.00	-	-96	-45	-45	_	-	5 4	10 - 1	40	ASUSTek	WPA2 Personal		6 s ago					
🖌 😤 test n	2.4	08:62:66:8CF6:80		100		-96	-45	-52			2.4	8 - 1	40	ASUSTek	WPA2 Personal		6 siego					
linksy		00:12:17:0D:2GF9	-			-96	-45	-46			2,4	11	20	Cisco-Linksys	WPA Personal	9	6 s ago					
O PAUSE	d	DETAILS					50	an interval:	5 sec											Filter networks:	38 0	38 shown

Joonis 15. Netspot vaade.

Laboris katsetamise käigus selgus, et Netspot tarkvara siiski ei kuva 802.11ac standardit. Põhjus on sama, mis InSSIDer 3 puhul, ehk vaja on uuemat versiooni, aga see on tasuline. Seega otsustati kasutada Acrylic Wi-Fi Home tarkvara.

3.3.3 Soovitused

Punkti 3.3 põhjal võiks kasutusele võtta Acrylic Wi-Fi Home tarkvara InSSIDer 3 asemele. Acrylic Wi-Fi Home tarkvaral on küll vähem võimalusi, näiteks ei soovita see tarkvara paremat või vaba kanalit. Küll aga näitab see tarkvara 802.11 ac võrke, mida InSSIDer 3 tuvastas kui 802.11 n võrguna.

Võttes kasutusele Acrylic Wi-Fi Home tarkvara tuleb muuta kolmandat küsimust vastavalt. Võrreldes InSSIDer 3 –ga tuleb selle tarkvara korral salvestada kaks ekraanipilti, üks 2,4GHz APs Channels ja teine 5GHz Aps Channels sakist. Lisaks võiks veel esitada küsimusi:

- 1. Kas Teie võrgud töötavad vabal kanalil?
- 2. Kas leidub paremaid kanaleid võrreldes praeguse kanaliga? Miks?
- 3. Milliseid standardeid Teie võrgud toetavad?
- 4. Mis on Teie võrkude signaali võimsused?

Küsimuste 1 ja 2 vastused leiab visuaalselt Acrylic Wi-Fi Home programmi alumistelt graafikutelt. Küsimusele 3 saab vastuse 802.11 veerust ja küsimusele 4 leiab vastuse RSSI veerust.

3.4 WLAN võrgu kiiruse uurimine

WLAN võrgu kiiruse uurimiseks kasutatakse TamoSoft Throughput Test tarkvara. Ühes seadmes käivitatakse TamoSoft Server ja teises TamoSoft Client. Programmil lastakse töötada kuni klientarvutis on graafik tervel ekraanil ja seejärel salvestatakse klientarvuti ekraanipilt. Sama tegevust korratakse, kui raadiokaardiga arvuti on teises omatehtud WLAN võrgus.

Ekraanipiltide järgi tuleb anda oma hinnang katsetulemustele kummaski võrgus.

3.4.1 Analüüs ja katsed

Selleks, et näidata võrkude parimaid tulemusi tehti katsed. Katsete läbiviimisel pöörati tähelepanu järgnevatele parameetritele:

- Raadiokaardi kaugus tugijaamast
- Raadiokaardi antenni asend
- Sagedusala
- Ribalaius

Raadiokaardi kaugusteks tugijaamast valiti kaks kaugust, 0,5 m ja 1,5. Seda ennekõike raadiokaardi kaabli piirangu tõttu. Antenni asendeid valiti kolm vertikaalne ehk püstine asend, 45 kraadise nurga all ja horisontaalne ehk maaga paralleelne. Ribalaiuse järgi tehti läbi kõik variatsioonid välja arvatud 802.11 ac, kus kasutati automaatset ribalaiuse valikut. Kõik võimalikud variandid tehti läbi ka mõlemas sagedusalas. Katsed tehti otsenähtavusega ja üks katse tehti, kui raadiokaart oli arvuti kasti taga, mis on katsetulemustes märgitud karbi taga.

Katsete keskmised edastamiskiiruse tulemused on välja toodud tabelites 7 kuni 12. Täpsemad graafikud ja katsete tulemused on toodud lisades 2 kuni 7. Alla- ja üleslaadimis tulemused on Mbit/s. Tabelites on märgitud parim tulemus paksu tekstiga.

Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	11,97	19,38	13,52	24,46
Vertikaalne	1,5m	22,19	20,13	31,63	22,83
45 kraadi	0,5m	12,90	25,26	19,56	27,30
45 kraadi	1,5m	16,27	14,16	17,61	15,58
Horisontaalne	0,5m	11,31	18,59	14,29	22,49
Horisontaalne	1,5m	12,95	15,81	20,43	18,49
Karbi taga	1,5m	16,46	22,74	21,23	28,69
	Parim	22,19	25,26	31,63	28,69
	Kehvim	11,31	14,16	13,52	15,58

Tabel 7. 802.11g katsete tulemuste tabel.

Tabelis 7 on välja toodud 802.11 g võrgu TamoSoft katsete tulemused. Tabelist võib järeldada, et parima tulemuse saab, kui antenn on vertikaalses asendis ja 1,5 meetri kaugusel tugijaamast. Tulemused on toodud graafilisel kujul joonisel 16.

Joonis 16. 802.11g katsete tulemuste graafik.

Graafikul on näha, et UDP ja TCP allalaadimiskiirused on kõige paremad, kui antenn on vertikaalses asendis ja raadiokaart tugijaamast 1,5 meetri kaugusel.

Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	28,49	14,61	63,54	12,72
Vertikaalne	1,5m	114,54	67,69	266,42	92,73
45 kraadi	0,5m	21,99	16,27	36,07	17,47
45 kraadi	1,5m	102,56	62,54	181,86	85,60
Horisontaalne	0,5m	29,29	30,86	33,69	35,24
Horisontaalne	1,5m	59,50	69,46	80,69	91,08
Karbi taga	1,5m	96,93	84,49	129,28	101,94
	Parim	114,54	84,49	266,42	101,94
	Kehvim	21,99	14,61	33,69	12,72

Tabel 8. 802.11 n 2,4 GHz alas 20 MHz kanaliga katsete tulemuste tabel.

Tabelis 8 on välja toodud 802.11 n võrgu TamoSoft katsete tulemused 2,4 GHz alas ja kanali laiusega 20 MHz. Ka selles tabelis on hea tulemuse andnud vertikaalne antenni asend ja kaugus tugijaamast 1,5 meetrit, aga arvuti karbi taga olev seade on samuti suhteliselt hea tulemusega. Kehvimad tulemused on tulnud siis, kui raadiokaart on tugijaamale väga lähedal, olenemata antenni asendist. Tulemused on toodud välja ka joonisel 17.

Joonis 17. 802.11 n 2,4 GHz alas 20 MHz kanaliga katsete tulemuste graafik.

Joonis 17 esitab selgelt, et allalaadimiskiirused olid kõige paremad, kui antenn oli vertikaalne ja raadiokaart tugijaamast 1,5 meetri kaugusel. Üleslaadimiskiirused olid natuke paremad, kui raadiokaart oli arvuti kasti taga.
Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	15,02	65,20	15,38	87,84
Vertikaalne	1,5m	40,93	63,69	40,08	74,36
45 kraadi	0,5m	10,82	38,10	11,08	61,75
45 kraadi	1,5m	174,46	117,11	405,82	110,87
Horisontaalne	0,5m	6,31	42,99	7,23	86,93
Horisontaalne	1,5m	99,69	146,61	178,89	166,45
Karbi taga	1,5m	161,61	131,53	144,17	163,49
	Parim	174,46	146,61	405,82	166,45
	Kehvim	6,31	38,10	7,23	61,75

Tabel 9. 802.11 n 2,4 GHz alas 40 MHz kanaliga katsete tulemuste tabel.

Tabelis 9 on välja toodud 802.11 n võrgu TamoSoft katsete tulemused 2,4 GHz alas ja kanali laiusega 40 MHz. Tabelist võib järeldada, et parima tulemuse saab siis, kui antenn on 45 kraadise nurga all ja raadiokaart tugijaamast 1,5 meetri kaugusel. Ka selle katse käigus saadi kehvemad tulemused kui raadiokaart oli tugijaamale liiga lähedal.

Joonis 18. 802.11 n 2,4 GHz alas 40 MHz kanaliga katsete tulemuste graafik.

Joonisel 18 on näha, et allalaadimiskiirused olid parimad, kui antenni asend oli 45 kraadise nurga all ja raadiokaart tugijaamast 1,5 meetri kaugusel.

Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	203,93	185,80	245,75	234,59
Vertikaalne	1,5m	94,10	174,07	127,59	231,55
45 kraadi	0,5m	202,18	180,98	237,36	234,18
45 kraadi	1,5m	201,62	178,57	241,02	232,38
Horisontaalne	0,5m	91,02	181,46	131,38	235,23
Horisontaalne	1,5m	193,42	177,71	237,77	231,44
Karbi taga	1,5m	194,99	178,89	228,76	232,99
	Parim	203,93	185,80	245,75	235,23
	Kehvim	91,02	174,07	127,59	231,44

Tabel 10. 802.11 n 5 GHz alas 40 MHz kanaliga katsete tulemuste tabel.

Tabelis 10 on välja toodud 802.11 n võrgu TamoSoft katsete tulemused 5 GHz alas ja kanali laiusega 40 MHz. Tulemustest on näha, et parima tulemuse sai vertikaalse antenniga ja raadiokaart oli 0,5 meetri kaugusel.

Joonis 19. 802.11 n 5 GHz alas 40 MHz kanaliga katsete tulemuste graafik.

Joonisel 19 on näha, et kehvimad tulemused olid 0,5 meetril horisontaalse antenniga ja 1,5 meetril vertikaalse antenniga. Parim tulemus saadi, kui antenn oli vertikaalses asendis ja raadiokaart tugijaamast 0,5 meetri kaugusel.

Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	107,46	94,84	126,30	113,65
Vertikaalne	1,5m	45,75	93,52	44,77	113,30
45 kraadi	0,5m	107,41	93,40	124,45	113,38
45 kraadi	1,5m	74,06	92,58	80,15	113,17
Horisontaalne	0,5m	48,28	90,74	65,08	113,40
Horisontaalne	1,5m	81,54	92,62	92,46	113,02
Karbi taga	1,5m	108,89	89,96	125,33	109,33
	Parim	108,89	94,84	126,30	113,65
	Kehvim	45,75	89,96	44,77	109,33

Tabel 11. 802.11 n 5 GHz alas 20 MHz kanaliga katsete tulemuste tabel.

Tabelis 11 on välja toodud 802.11 n võrgu TamoSoft katsete tulemused 5 GHz alas ja kanali laiusega 20 MHz. Tabelis toodud tulemustest saab järeldada, et parima tulemuse saab, kui antenn on vertikaalses asendis ja raadiokaart on 0,5 meetri kaugusel tugijaamast.

Joonis 20. 802.11 n 5 GHz alas 20 MHz kanaliga katsete tulemuste graafik.

Joonisel 20 on näha, et paremad tulemused on saadud 0,5 meetri peal, kui antenn on vertikaalne või 45 kraadise nurga all ja 1,5 meetri peal, kui antenn on horisontaalses asendis.

Antenni asend	Kaugus	TCP alla [Mbit/s]	TCP üles [Mbit/s]	UDP alla [Mbit/s]	UDP üles [Mbit/s]
Vertikaalne	0,5m	307,40	119,20	347,57	491,63
Vertikaalne	1,5m	302,09	132,22	337,62	488,64
45 kraadi	0,5m	375,64	114,08	451,93	481,65
45 kraadi	1,5m	278,00	131,42	340,52	483,43
Horisontaalne	0,5m	300,10	128,84	376,70	479,80
Horisontaalne	1,5m	340,30	127,83	411,24	483,75
Karbi taga	1,5m	331,73	131,32	391,50	496,51
	Parim	375,64	132,22	451,93	496,51
	Kehvim	278,00	114,08	337,62	479,80

Tabel 12. 802.11 ac 5 GHz alas 20/40/80 MHz kanaliga katsete tulemuste tabel.

Tabelis 12 on välja toodud 802.11 ac võrgu TamoSoft katsete tulemused 5 GHz alas ja kanali laiusega 20/40/80 MHz. Sarnaselt 802.11 n tulemustele 5 GHz alas olid ka 802.11 ac võrgul parimad tulemused kui raadiokaart oli 0,5 meetri kaugusel tugijaamast, aga 45 kraadise nurga all olev antenn andis parema tulemuse, kui vertikaalne antenni asend.

Joonis 21. 802.11 ac 5 GHz alas 20/40/80 MHz kanaliga katsete tulemuste graafik.

Joonisel 21 on näha, et allalaadimiskiirused olid kõige paremad, kui antenn oli 45 kraadise nurga all ja raadiokaart tugijaamast 0,5 meetri kaugusel.

Saadud tulemustest saab järeldada, et parima tulemuse 2,4 GHz alas saab, kui raadiokaart on tugijaamast 1,5 meetri kaugusel ja antenni asend vertikaalne ning 5 GHz alas, kui raadiokaart on tugijaamale 0,5 meetri kaugusel ja antenn vertikaalne või 45 kraadise nurga all. Tähelepanu tuleb pöörata ka sellele, et raadiokaart ja tugijaam ei oleks üksteisele liiga lähedal, sellisel juhul tulemused lähevad kehvemaks.

3.4.2 Soovitused

TamoSoft tarkvaral on kaks graafilise esituse varianti. Üks variant on peenikese joonega ja teine variant on "3D" joonega. Kuna 3D joonega variandilt on raskem tulemusi jälgida siis on soovitatud kasutada peenikese joone varianti. Selleks teha paremklõps graafiku peal ja eemaldada linnuke 3D variandi eest.

Kuna TamoSoft näitab tulemusi reaalajas saab ülesandepüstitusele lisada antenni asendi ja raadiokaardi kaugust hõlmava ülesande. Näiteks:

• Kasutades TamoSoft mõõtetulemusi leia raadiokaardile parim antenni asend ja kaugus tugijaamast.

Seda ülesannet tuleks kasutada enne kiiruse mõõtmise alustamist.

Ülesandepüstituses tuleks ära märkida, et TamoSoft klient tuleb enne uue võrgu mõõtmise alustamist lahti ühendada vajutades nupule "Disconnect". Vastasel korral ei saa kasutada keskmisi tulemusi, kuna TamoSoft tarkvara jätab eelmised tulemused alles.

Kui tekib probleeme võrguga ühendamisel, tuleks seisma jätta võrgu jälgimise programmid nagu InSSIDer 3 ja Acrylic Wi-Fi Home. Ning seejärel uuesti proovida võrguga ühendada.

Tööle saab lisada küsimused:

- 1. Millisel kaugusel olid tulemused kõige paremad kummaski võrgus?
- 2. Millise antenniasendiga saite kõige paremad tulemused kummaski võrgus?

3.4.3 Tugijaama kasutamine silla reziimis

ASUS RT-AC66U tugijaama on võimalik kasuta silla reziimis. See tähendab, et tugijaama saab kasutada raadiokaardi asemel. Meediumi edastamis reziimi

aktiveerimiseks peab tugijaama sisse logima ja valima vasakpoolsest menüüst "Administration" menüüpunkt. "Operation Mode" sakilt valida "Media Bridge" ja vajutada nupule "Save". Seejärel ühendatakse tugijaam enda poolt valitud võrku.

Joonis 22. ASUS RT-AC66U meediumi edastus reziimis. [7]

Joonisel 22 on näide, kuidas meediumi edastus reziim toimib. Nüüd, kui TamoSoft server arvuti on ühendatud arvutivõrgu kaabliga vasakpoolse pääsupunktiga ja klient arvuti on ühendatud kaabliga parempoolse pääsupunktiga saame testida ühenduse edastuskiirust. Arvutivõrgu kaabelühendus on kordades kiirem, kui pääsupunkti 802.11ac ühenduse kiirus, seega peaks ühenduse kiiruseks saama 1300 Mbit/s. Sellise ühendusega tehti katse ja tulemus on näha joonisel 23.

Server IP or IPv6 add 172.19.11.154	ress:	Connect		TAMO
Server port:	OoS traffic type:			(Auto)
27101	Excellent Effort 🛛 🔫	Disconnect		
TCP only				
P Up: 482,90 P P Down: 283,71	lbps (Ave: 429,73) lbps (Ave: 268,86)	UDP Up: 487,14 Mbps (UDP Down: 316,83 Mbps (ve: 426,85), Loss: 38,9%	
und-trip time: rt: @ Throughpu	∟,7 ms		ve: 354,71), Loss: 0,0%	
und-trip time: nt: Throughput 1 200	,7 ms ◎ Loss ◎ RT	r	ve: 354,71), Loss: 0,0%	
und-trip time: rt: O Throughput 1 200 1 100 1 200	,7 ms ◎ Loss ◎ RT	г Л	ve: 354,71), Loss: 0,0%	TCP Upstream
und-trip time: rt: Throughput 1 200 1 100 1 000 00	© Loss ⊙ RT	r 	ve: 354,71), Loss: 0,0%	TCP Upstream TCP Downstream
und-trip time: t: Throughput 1 200 1 100 1 000 900 800	© Loss © RT		ve: 354,71), Loss: 0,0%	TCP Upstream TCP Downstream UDP Upstream UDP Upstream
und-trip time: t: Throughput 1 200 1 100 1 000 900 800 700	© Loss © RT		ve: 354,71), Loss: 0,0%	TCP Upstream TCP Downstream UDP Upstream UDP Downstream
und-trip time: t: Throughpu 1 200 1 100 1 000 900 800 700 600 ()	© Loss © RT		ve: 354,71), Loss: 0,0%	CP Upstream TCP Downstream UDP Upstream UDP Downstream
und-trip time: t: Throughpu 1 200 1 000 900 800 700 600 500	© Loss © RT		ve: 354,71), Loss: 0,0%	TCP Upstream TCP Downstream UDP Upstream UDP Downstream
und-trip time: It: Throughpu 1200 1000 900 800 700 600 500 400 200	© Loss © RT		ve: 354,71), Loss: 0,0%	TCP Upstream TCP Downstream UDP Upstream UDP Downstream

Joonis 23. TamoSoft tulemus kahe tugijaama vahel.

Joonisel 23 on TamoSoft tulemus kahe tugijaama vahel. Graafikult võib näha, et kohati on UDP allalaadimis kiirus olnud väga hea, aga lõppkokkuvõttes jäi keskmine kiirus siiski 354,71 Mbit/s. Ülejäänud edastuskiirused on sarnased raadiokaardiga katsetele.

Ülesande dokumenteerimiseks saab kasutada Windowsi käsurea käsku "ipconfig". Tulemuste salvestamiseks valida arvutis enda loodud kaust ja kaustas vajutada, vasakpoolset "*Shift*" nuppu all hoides, parempoolset hiire klahvi ning valida "*Open command window here*". Avanenud käsureale sisestada käsk "*ipconfig > failinimi.txt*", kus failinimi.txt on fail kuhu käsu väljund salvestatakse. Käsu väljund salvestada mõlemast arvutist.

Küsimused, mida saab ülesandes kasutada:

- 1. Kas mõlemad arvutid on sama võrgu IP aadressidega?
- 2. Kirjeldage sidekanali ülesehitust.

Tugijaama silla reziimist välja toomiseks peab leidma tugijaama uue IP aadressi, kuna silla reziimis olev pääsupunkt on marsruuteri reziimis töötava võrgu IP aadressiga. Selleks peab logima teise tugijaama ja leidma "Network Map" menüüpunktist nupu "Clients". Seal kuvatakse tugijaamaga ühendatud seadmed ja nende andmed. Leida seade nimega ASUS RT-AC66U ja selle IP aadress. Sisestada saadud IP aadress brauserisse ja ilmub tugijaama sisselogimise aken. Sisestada kasutajanimi ja parool ning leida menüüpunkt "Administration". "Operation Mode" sakilt valida "Wireless router mode (Default)" ning vajutada "Save".

3.5 Individuaalülesanne

Individuaalülesandes kasutatakse Shannoni sidekanali läbilaske arvutamise valemit. On antud lähteandmed ning peab täitma tabeli tühjad lahtrid.

3.5.1 Soovitused

Kuna sarnast ülesannet kasutati ka spektri mõõtmise ülesandes, siis võiks kasutada mõnda teist valemit, mis näitab sidekanali läbilaskevõimet. Üheks selliseks valemiks on valem (1).

Kasutades valemit (1) koostati 10 iseseisva ülesande varianti. Matrikli viimase numbri järgi valitakse variant ja arvutatakse füüsilise kihi edastuskiirus. Seejärel leitakse millise standardi alla sellised parameetrid kuuluvad. Variandid on vastustega välja toodud tabelis 13.

Matrikli viimane number	0	1	2	3	4	5	9	Ĺ	8	6
Standardid	802.11ac	802.11n/ac	802.11n/ac	802.11a/g	802.11ac	802.11n/ac	802.11n/ac	802.11ac	802.11n	802.11a/g
OFDM sümboli kestvus	3,6	3,6	3,6	4	3,6	3,6	3,6	3,6	3,6	4
Samaaegsete andmevoogude arv	8	4	3	1	1]	1	1	1	1
Alamkandjate arv	468	108	108	48	234	52	468	108	108	48
Kanali laius	160	40	40	20	80	20	160	40	40	20
Koodikiirus	5/6	5/6	3/4	3/4	5/6	5/6	3/4	5/6	5/6	3/4
Modulatsioon	256 QAM	64 QAM	64 QAM	APSK	256 QAM	64 QAM	УРЗК	256 QAM	64 QAM	64 QAM
Füüsilise kihi edastuskiirus	6933,3	600,0	405,0	18,0	433,3	72,2	195,0	200,0	150,0	54,0

Tabel 13. Individuaalülesande variandid.

Kokkuvõte

Antud magistritöö eesmärgiks oli laboratoorse töö "Traadita kohtvõrk WLAN" edasiarendus TTÜ õppeaines Side. Töös käsitleti igat laboratoorse töö ülesannet eraldi. Iga ülesande kohta tehti analüüs ja paremate tulemuste saamiseks katsed. Katsete tulemustest soovitati ülesannete läbiviimise korda ja pakuti välja uued küsimused, mida võib veel ülesande juures küsida.

Töö käigus uuriti kasutuses olevaid tarkvarasid ja riistvarasid. Analüüsi käigus leiti, et InSSIDer 3 vajab välja vahetamist ja pakuti asenduseks Acrylic Wi-Fi Home tarkvara. Spektri mõõtmisel kasutati ainult keskmistatud spektri pilti, aga spektrianalüsaator võimaldas samaaegselt mõõta ka maksimaalset spektripilti ja minimaalset spektripilti. Sellega toodi välja juhend kolme spektri mõõtmiseks ja pakuti välja ülesande muudatus.

Kasutatud kirjandus

- IEEE 802.11n Standars [WWW] http://www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11n.php
- [2] 802.11ac: The Fift Generation of Wi-Fi Technical White Paper [WWW] http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-3600series/white_paper_c11-713103.html
- [3] Wi-Fi / WLAN Channels, Frequencies, Bands & Bandwidths [WWW] http://www.radioelectronics.com/info/wireless/wi-fi/80211-channels-number-frequencies-bandwidth.php
- [4] ASUS RT-AC66U [WWW] https://www.asus.com/us/Networking/RTAC66U/
- [5] ASUS USB-AC56 [WWW] https://www.asus.com/us/Networking/USBAC56/
- [6] PHY Basics: How OFDM Subcarriers Work [WWW] http://www.revolutionwifi.net/revolutionwifi/2015/3/how-ofdm-subcarriers-work
- [7] ASUS RT-AC66U User Guide [WWW] http://dlcdnet.asus.com/pub/ASUS/wireless/RT-AC66U/E7891_RT_AC66U_Manual.pdf
- [8] Side labor 4 [WWW] https://lr.ttu.ee/side/labor/side_labor_WLAN.html
- [9] Acrylic Wi-Fi Home [WWW] https://www.acrylicwifi.com/en/wlan-software/wlan-scanneracrylic-wifi-free/
- [10] Netspot [WWW] https://www.netspotapp.com/
- [11] TamoSoft Throughput Test [WWW] http://www.tamos.com/products/throughput-test/
- [12] IEEE 802.11g Wi-Fi Tutorial [WWW] http://www.radioelectronics.com/info/wireless/wi-fi/ieee-802-11g.php
- [13] Overview of the 802.11 Physical Layer and Transmitter Measurements, Tektronix. [WWW] http://info.tek.com/www-wi-fi-overview-of-the-physical-layer-and-transmittermeasurements-primer.html
- [14] USB 3.0 / 3.1 Speed & Drive Benchmark [WWW] https://www.everythingusb.com/speed.html
- [15] Arvuti pilt [WWW] https://pixabay.com/en/computer-desktop-workstation-office-158675/

Lisa 1 – 802.11 võrdlus tabel

Nominal Configuration	Bandwidth (MHz)	Number of Spatial Streams	Constellation Size and Rate	Guard Interval	PHY Data Rate (Mbps)	Throughput (Mbps) [*]
802.11a					<u>, </u>	
All	20	1	64QAMr3/4	Long	54	24
802.11n			<u> </u>		<u> </u>	
Amendment min	20	1	64QAMr5/6	Long	65	46
Low-end product (2.4 GHz only+)	20	1	64QAMr5/6	Short	72	51
Mid-tier product	40	2	64QAMr5/6	Short	300	210
Max product	40	3	64QAMr5/6	Short	450	320
Amendment max	40	4	64QAMr5/6	Short	600	420
802.11ac 80 MH	[z				<u> </u>	
Amendment min	80	1	64QAMr5/6	Long	293	210
Low-end product	80	1	256QAMr5/6	Short	433	300
Mid-tier product	80	2	256QAMr5/6	Short	867	610
High-end	80	3	256QAMr5/6	Short	1300	910

Nominal Configuration	Bandwidth (MHz)	Number of Spatial Streams	Constellation Size and Rate	Guard Interval	PHY Data Rate (Mbps)	Throughput (Mbps) [*]
product						
Amendment max	80	8	256QAMr5/6	Short	3470	2400
802.11ac 160 M	Hz			-		
Low-end product	160	1	256QAMr5/6	Short	867	610
Mid-tier product	160	2	256QAMr5/6	Short	1730	1200
High-end product	160	3	256QAMr5/6	Short	2600	1800
Ultra-high- end product	160	4	256QAMr5/6	Short	3470	2400
Amendment max	160	8	256QAMr5/6	Short	6930	4900
*Assuming a 70 j +Assuming that 4	percent efficie 40 MHz is not	nt MAC, exc available du	cept for 802.11a, te to the presence	which lack of other A	s aggregati Ps.	on.

Tabel 1 802.11 Andmeedastuskiirused. [2]

Lisa 2 – Tamosoft testid. 802.11n 2.4 GHz sagedusala ja 20 MHz kanali laius

Joonis 1. Katse 802.11n 2,4 GHz 20 MHz karbi taga

Joonis 2. Katse 802.11n 2,4 GHz 0,5 m horisontaalne antenn.

Joonis 3. Katse 802.11n 2,4 GHz 1,5 m horisontaalne antenn.

Joonis 4. Katse 802.11n 2,4 GHz 0,5 m vertikaalne antenn.

Joonis 5. Katse 802.11n 2,4 GHz 1,5 m vertikaalne antenn.

Joonis 6. Katse 802.11n 2,4 GHz 0,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11n 2,4 GHz 1,5 m antenn 45 kraadi.

Lisa 3 – Tamosoft testid. 802.11n 2.4 GHz 40 MHz

Joonis 1. Katse 802.11n 2.4 GHz 40 MHz arvuti karbi taga

Joonis 2. Katse 802.11n 2.4 GHz 40 MHz otsevaade 0,5 m vertikaalne antenn.

Joonis 3. Katse 802.11n 2.4 GHz 40 MHz otsevaade 0,5 m horisontaalne antenn.

Joonis 5. Katse 802.11n 2.4 GHz 40 MHz otsevaade 1,5 m vertikaalne antenn.

Joonis 6. Katse 802.11n 2.4 GHz 40 MHz otsevaade 0,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11n 2.4 GHz 40 MHz otsevaade 1,5 m antenn 45 kraadi.

Lisa 4 – Tamosoft testid. 802.11 ac 5 GHz 20/40/80 MHz

Joonis 1. Katse 802.11ac 5 GHz 20/40/80 MHz arvuti karbi taga vertikaalne antenn.

Joonis 2. Katse 802.11ac 5 GHz 20/40/80 MHz 0,5 m antenn 45 kraadi.

Joonis 3. Katse 802.11ac 5 GHz 20/40/80 MHz 0,5 m horisontaalne antenn.

Joonis 4. Katse 802.11ac 5 GHz 20/40/80 MHz 0,5 m vertikaalne antenn.

Joonis 5. Katse 802.11ac 5 GHz 20/40/80 MHz 1,5 m vertikaalne antenn.

Joonis 6. Katse 802.11ac 5 GHz 20/40/80 MHz 1,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11ac 5 GHz 20/40/80 MHz 1,5 m horisontaalne antenn.

Lisa 5 – Tamosoft testid. 802.11 n 5 GHz 20 MHz

Joonis 1. Katse 802.11n 5 GHz 20 MHz arvuti karbi taga vertikaalne antenn.

Joonis 2. Katse 802.11n 5 GHz 20 MHz 0,5 m horisontaalne antenn.

Joonis 3. Katse 802.11n 5 GHz 20 MHz 1,5 m horisontaalne antenn.

Joonis 4. Katse 802.11n 5 GHz 20 MHz 1,5 m vertikaalne antenn.

Joonis 5. Katse 802.11n 5 GHz 20 MHz 0,5 m vertikaalne antenn.

Joonis 6. Katse 802.11n 5 GHz 20 MHz 0,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11n 5 GHz 20 MHz 1,5 m antenn 45 kraadi.

Lisa 6 - Tamosoft testid. 802.11 n 5 GHz 40 MHz

Joonis 1. Katse 802.11n 5 GHz 40 MHz arvuti karbi taga vertikaalne antenn.

Joonis 2. Katse 802.11n 5 GHz 40 MHz 0,5 m vertikaalne antenn.

Joonis 3. Katse 802.11n 5 GHz 40 MHz 0,5 m antenn 45 kraadi.

Joonis 5. Katse 802.11n 5 GHz 40 MHz 1,5 m vertikaalne antenn.

Joonis 6. Katse 802.11n 5 GHz 40 MHz 1,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11n 5 GHz 40 MHz 1,5 m horisontaalne antenn.

Lisa 7 - Tamosoft testid. 802.11 g 2,4 GHz 20 MHz

Joonis 1. Katse 802.11g 2,4 GHz 20 MHz arvuti karbi taga vertikaalne antenn.

Joonis 2. Katse 802.11g 2,4 GHz 20 MHz 0,5 m vertikaalne antenn.

Joonis 3. Katse 802.11g 2,4 GHz 20 MHz 1,5 m vertikaalne antenn.

Joonis 4. Katse 802.11g 2,4 GHz 20 MHz 0,5 m horisontaalne antenn.

Joonis 5. Katse 802.11g 2,4 GHz 20 MHz 1,5 m horisontaalne antenn.

Joonis 6. Katse 802.11g 2,4 GHz 20 MHz 0,5 m antenn 45 kraadi.

Joonis 7. Katse 802.11g 2,4 GHz 20 MHz 1,5 m antenn 45 kraadi.

Lisa 8 – Spektrianalüsaatori testid. 802.11 g

Joonis 1. Katse 802.11g antenni kaugus tugijaamast 10 cm.

Joonis 2. Katse 802.11g antenni kaugus tugijaamast 20 cm.

Joonis 3. Katse 802.11g antenni kaugus tugijaamast 30 cm.

🔆 Agilent Tech	nologies Spectrur	n Analyzer			11:54:14	02 May 2017	Rev 2.0	
Ref Level -4	0.0 dBm	Atten: 0 dB	Avg: Exponenti	al (100/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude	
	Preamp On	Atten: 0 dB	Ext Gain 0.0 dt	D		DET A P P P	Autoscale	
3 dB/div	Ref -40.0 dBm							
Log								
-43.0			0				Ref Level	
-46.0			<u> </u>					
-49.0			h				Elec Atten o dB	
-52.0								
-55.0							Scale/Div 3 dB	
-58.0							Scale Type	
-61.0								Lin
-64.0							Auto Range	
-67.0	India		<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h		On	Off
							More	
Center 2.4520 (Res BW 1 MHz	GHz	VBW 10	00 kHz	Sweep Tir	S ne: 187.18	pan 100 MHz ms (401 pts)	1 of 2	
Screen Image ca	apture in progress **	*****	****			ት 🕻 🕻	Int Ref 🖕	1

Joonis 4. Katse 802.11g antenni kaugus tugijaamast 1,5 m.

Joonis 5. Katse 802.11g antenni kaugus tugijaamast 3 m.

Lisa 9 - Spektrianalüsaatori testid. 802.11 n 2,4 GHz 20 MHz

Joonis 1. Katse 802.11n 2,4 GHz 20 MHz antenni kaugus tugijaamast 10 cm.

🔆 Agilent Techno	logies Spectrum	Analyzer		12:07	:16 02 May 2017	Rev 2.0
Ref Level -30.	0 dBm	Atton: 0 dB	Avg: Exponenti	al (56/100)	TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Preamp Off	Atten: 0 dB	Ext Gain 0.0 dt	5	DET A P P P	Autoscale
5 dB/div R	ef -30.0 dBm					
Log						
-35.0						-30.0 dBm
-40.0			- my-			
-45.0						O dB
-50.0						Scale/Div
-55.0						5 dB
-60.0						Scale Type
-65.0						Log Lin
-70.0						Auto Range
-75.0						On Off
Center 2.4520 GH	Iz				Span 100 MHz	More 1 of 2
Screen Image capt	ture in progress ***	VBW 100	******	Sweep Time: 187	.16 ms (401 pts) ት 🔔 🔒	Int Ref 👩

Joonis 2. Katse 802.11n 2,4 GHz 20 MHz antenni kaugus tugijaamast 20 cm.

Ref Level -33.0 dBm Avg: Exponential (81/100) TRACE 1 2 3 4 Amplitude Preamp Off Atten: 0 dB Ext Gain 0.0 dB TYPE A ***** Autoscale 4 dB/div Ref -33.0 dBm Autoscale Autoscale Autoscale	
4 dB/div Ref -33.0 dBm	
4 dB/div Ref -33.0 dBm	
Ref Level	-
-37.0	
-41.0	
-45.0 Elec Atten 0 dB	
-49.0 Scale/Div	
-53.0 4 dB	
-57.0	
Scale Type	
-61.0 Log	Lin
-65.0 Auto Range	
-69.0 On On	Off
Center 2.4520 GHz Span 100 MHz 1 of 2	
Res BW 1 MHz VBW 100 kHz Sweep Time: 187.18 ms (401 pts)	

Joonis 3. Katse 802.11n 2,4 GHz 20 MHz antenni kaugus tugijaamast 30 cm.

🔆 Agilent Techn	ologies Spectru	ım Analyzer		12:09:22	2 02 May 2017	Rev 2.0
Ref Level -36	.0 dBm		Avg: Exponential	(74/100)	TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Preamp On	Atten: 0 dB	Ext Gain 0.0 dB		DET A P P P	Autoscale
4 dB/div	Ref -36.0 dBm				~ .	
Log						
-40.0						Ref Level -36.0 dBm
-44.0			$\uparrow \sim \downarrow$			
-48.0						Elec Atten ^{0 dB}
-52.0						Scalo/Div
-56.0						4 dB
-60.0						Scale Type
-64.0					_	Log Lin
-68.0	man	~~~~	him			Auto Range
-72.0						On Off
						More
Center 2.4520 G Res BW 1 MHz	Hz	VBW 10	0 kHz	Sweep Time: 187.1	Span 100 MHz 8 ms (401 pts)	1 of 2
Screen Image cap	oture in progress *	****	*****		Å 🖁	Int Ref 👩

Joonis 4. Katse 802.11n 2,4 GHz 20 MHz antenni kaugus tugijaamast 1,5 m.

Joonis 5. Katse 802.11n 2,4 GHz 20 MHz antenni kaugus tugijaamast 3 m.

Lisa 10 - Spektrianalüsaatori testid. 802.11 n 2,4 GHz 40 MHz

Joonis 1. Katse 802.11n 2,4 GHz 40 MHz antenni kaugus tugijaamast 10 cm.

🔆 A(gilent Technologies	Spectrum	Analyzer					12:15:20	02 May 2017	Rev 2.0	
Ref Lo	evel -36.0 dB	n ome Off	Atton: 0 d	D	Avg: Expo	onential (10	00/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude	6
	PIB		Allen. 0 d	D	EXL Gain	0.0 db			DET A P/P P	Autoscale	
4 dB/d	iv Ref - 36	.0 dBm									
Log											
-40.0				\vdash	5					Ref Level	
-44.0				\square		\sim				Elec Atten	-
-48.0						<u> </u>	$\overline{\gamma}$			0 dB	
-52.0											
-56.0										Scale/Div 4 dB	
-60.0											
										Scale Type	
-64.0			~	1				t		Log	Lin
-68.0	m	~~~~~								Auto Range	
-72.0					-			-		On	Off
										Moro	
Center Res BV	2.4520 GHz V 1 MHz			VBW 100	kHz		Sweep Tim	S e: 187.18	pan 100 MHz ms (401 pts)	1 of 2	
Screen	Image capture in	progress ****	*****	******	******	***			Å 🖁 🖁	Int Ref 👴	

Joonis 2. Katse 802.11n 2,4 GHz 40 MHz antenni kaugus tugijaamast 20 cm.

🔆 🛛 Agilent Techn	ologies	Spectrum	Analyzer				İ	12:16:26	02 May 2017	Rev 2.0	
Ref Level -34	.0 dBm		Atten : 0 a	ID	Avg: Expo	onential (76	5/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude	•
	Pream	np Oπ	Atten: 0 c	IB	Ext Gain	U.U dB			DET A P P P	Autoscale	
4 dB/dlv I	Ker -34.0	dBm	Ĩ		í —			1			_
-38.0				$- \uparrow$	$h_{}$					Ref Level -34.0 dBm	
-42.0				\sim	$\vdash \frown$	\sim	h~		_	_	
-46.0						V				Elec Atten ^{0 dB}	
-50.0			1								
-54.0										Scale/Div 4 dB	
-58.0										Scale Type	
-62.0										Log	Lin
-66.0	\sim	h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					\sim		Auto Range	
-70.0										On	Off
Center 2.4520 G	Hz							S	pan 100 MHz	More 1 of 2	
Res BW 1 MHz				VBW 100	kHz	S	Sweep Tim	e: 187.18	ms (401 pts)		
Screen Image cap	oture in p	rogress ****	******	******	*****	**			70	Int Ref	

Joonis 3. Katse 802.11n 2,4 GHz 40 MHz antenni kaugus tugijaamast 30 cm.

🔅 Agilent Te	chnologies	Spectrun	n Analyzer				1	.2:17:25	02 May 2017	Rev 2.0	
Ref Level -	35.0 dBm				Avg: Expo	nential (63	8/100)		TRACE 1 2 3 4 TYPE A ₩ ₩ ₩	Amplitude	a
	Prear	np Off	Atten: 0 d	В	Ext Gain	0.0 dB			DET A P P P	Autoscale	
4 dB/div	Ref -35.0	dBm									
Log											
-39.0										Ref Level -35.0 dBm	
-43.0	_				h_{γ}						_
-47.0				\sim		\square	$\vdash \!$			0 dB	
-51.0										Scale/Div	_
-55.0										4 dB	
-59.0										Scale Type	
-63.0										Log	Lin
-67.0	$\sim \sim \sim$	~~~~~	+	/				h	·	Auto Range	
-71.0										On	Off
Center 2.4520) GHz							s	pan 100 MHz	More	
Res BW 1 MHz	2			VBW 100	kHz	S	Sweep Time	e: 187.18	ms (401 pts)	1012	
Screen Image	capture in p	progress ***	*****	******	******	***			7.	Int Ref 👩	

Joonis 4. Katse 802.11n 2,4 GHz 40 MHz antenni kaugus tugijaamast 1,5 m.

*	Agilent Techno	ologies	Spectrum	Analyzer					12:19:03	02 May 2017	Rev 2.0	
Ref	Level -54.	0 dBm			_	Avg: Expo	onential (10	00/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude	a
		Pream	ıp Off	Atten: 0 d	В	Ext Gain	0.0 dB			DET A PAPAPA	Autoscale	
2 dE	8/div R	ef -54.0	dBm									
Log												
-56	.0										-54.0 dBm	
-58	.0		_							_		
					\wedge	~~	N				Elec Atten	
-60	.0										O GB	
-62	0							$\left \right $			Seale/Div	
-64	.0				1			-			2 dB	
					{						_	_
-66	.0	h.M	-	mm	<u> </u>				h		Scale Type	
-68			v · • · · ·								Log	Lin
-70									ļ		Auto Dongo	
											Auto Range	
-72	0										On	Off
											More	
Cent Res	ter 2.4520 GH BW 1 MHz	łz			VBW 100	kHz	9	Sweep Tim	S e: 187.18	pan 100 MHz ms (401 pts)	1 of 2	
Scree	en Image cap	ture in p	rogress ***	******	******	******	*.	فتنادي بعندي		311	Int Ref	

Joonis 5. Katse 802.11n 2,4 GHz 40 MHz antenni kaugus tugijaamast 3 m.

Lisa 11 - Spektrianalüsaatori testid. 802.11 n 5 GHz 20 MHz

🔆 Agilent Tech	nologies Spectrum	n Analyzer		12:23:22	02 May 2017	Rev 2.0
Ref Level -48	8.0 dBm	Atten: 0 dB	Avg: Exponential (100/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Pleanip On	Attent. 0 ub	Ext Gain 0.0 dB		DET A P P P	Autoscale
3 dB/div	Ref -48.0 dBm	ř ř	î î î			
LOG						Reflevel
-51.0						-48.0 dBm
-54.0						
-57.0						Elec Atten ^{0 dB}
-60.0						
-63.0						Scale/Div 3 dB
-66.0						Scale Type
-69.0						Log Lin
-72.0	\rightarrow		honte	m		Auto Range
-75.0						On Off
						More
Center 5.1800 C Res BW 1 MHz	GHz	VBW 100	kHz Sweep Ti	S me: 187.18	pan 100 MHz ms (401 pts)	1 of 2
Screen Image ca	apture in progress ***	*****	*****		ት 🔒 🔒	Int Ref 👩

Joonis 1. Katse 802.11n 5 GHz 20 MHz antenni kaugus tugijaamast 10 cm

🔆 Agilent Tech	nologies Spectrun	n Analyzer		12:24:30) 02 May 2017	Rev 2.0
Ref Level -49	9.0 dBm	Atton: 0 dB	Avg: Exponential (100/100)	TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Preamp On	Atten: 0 dB	Ext Gain 0.0 dB		DET A P P P	Autoscale
3 dB/div	Ref -49.0 dBm		10			
Log						
-52.0						-49.0 dBm
-55.0		1 m	. A.a. aa			
-58.0						0 dB
-61.0						Scale/Div
-64.0						3 dB
-67.0						Scale Type
-70.0						Log Lin
-73.0					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Auto Range
-76.0						On Off
						More
Center 5.1800 G Res BW 1 MHz	GHz	VBW 100) kHz	Sweep Time: 187.1	Span 100 MHz 8 ms (401 pts)	1 of 2
Screen Image ca	pture in progress ***	*****	****		`````````````````````````````````````	Int Ref 👩

Joonis 2. Katse 802.11n 5 GHz 20 MHz antenni kaugus tugijaamast 20 cm

🔆 🛛 Agilent Techr	nologies Spe	ctrum Analyzer					12:25:25	02 May 2017	Rev 2.0	
Ref Level -54	.0 dBm		1	Avg: Exp	onential (69	9/100)		TRACE 1 2 3 4 TYPE A ₩ ₩ ₩	Amplitude	9
	Preamp Off	Atten: 0	dB	Ext Gain	0.0 dB			DET A P P P	Autoscale	
2 dB/div	Ref -54.0 dBm									
Log										
-56.0		8							-54.0 dBm	
-58.0										
									Elec Atten	
-60.0			Λ	A					0 dB	
-62.0			- ANH	fl/M					_	
				/					Scale/Div 2 dB	
-64.0										
-66.0									Scale Type	
-68.0										
			ľ						Log	Lin
-70.0									Auto Range	
-72.0	hand	www	<u> </u>		hun	~~~~	00000	0.0	On	Off
1									More	
Center 5.1800 G	iHz						S	pan 100 MHz	1 of 2	
Res BW 1 MHz			VBW 100	kHz	S	Sweep Tim	e: 187.18	ms (401 pts)		
Screen Image ca	pture in progres	is ************	*******	******	***			2	Int Ref	

Joonis 3. Katse 802.11n 5 GHz 20 MHz antenni kaugus tugijaamast 30 cm

🔆 Agilent Techno	ologies Spectrum	Analyzer		12:26:51	02 May 2017	Rev 2.0
Ref Level -61.	0 dBm	Attens 0 dB	Avg: Exponential (10	00/100)	TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Preamp Off	Atten: 0 dB	ext Gain 0.0 db		DET A P P P	Autoscale
2 dB/div R	lef -61.0 dBm		(j			
Log						
-63.0						-61.0 dBm
-65.0						
-67.0			γ			Elec Atten ^{0 dB}
-69.0						Scale/Div
-71.0						2 dB
-73.0					han	
						Scale Type
-75.0						Log Lin
-77.0						Auto Range
-79.0						On Off
Center 5,1800 GF	17			<u> </u>	ipan 100 MHz	More
Res BW 1 MHz		VBW 100	kHz S	Sweep Time: 187.18	ms (401 pts)	1012
Screen Image cap	ture in progress ***	*****	*****		Å 🕻 🕻	Int Ref 🖕

Joonis 4. Katse 802.11n 5 GHz 20 MHz antenni kaugus tugijaamast 1,5 m

Joonis 5. Katse 802.11n 5 GHz 20 MHz antenni kaugus tugijaamast 3 m

🔆 Agilent Techi	nologies Spectru	ım Analyzer		12:31:58	02 May 2017	Rev 2.0
Ref Level -48	3.0 dBm		Avg: Exponential (46/100)		TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
3 dB/div	Ref -48.0 dBm	Atten: 0 dB	Ext Gain 0.0 dB		DET A P P P	Autoscale
Log						
-51.0			mm mm	<u></u>		Ref Level -48.0 dBm
-54.0				+		
-57.0						Elec Atten ^{0 dB}
-60.0						_
-63.0						Scale/Div 3 dB
-66.0						
						Scale Type
-69.0						Log Lir
-72.0		m			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Auto Range
-75.0						On Off
						More
Center 5.1800 G Res BW 1 MHz	θHz	VBW 10	0 kHz Sweep T	S ime: 187.18	pan 100 MHz ms (401 pts)	1 of 2
Screen Image ca	pture in progress *	*****	*****		200	Tnt Ref

Lisa 12 - Spektrianalüsaatori testid. 802.11 n 5 GHz 40 MHz

Joonis 1. Katse 802.11n 5 GHz 40 MHz antenni kaugus tugijaamast 10 cm

🔆 Agilent Tech	nologies Spectr	um Analyzer		12:33:08	02 May 2017	Rev 2.0
Ref Level -5	0.0 dBm		Avg: Exponential (100/	/100)	TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude
	Pleamp On	Allen. U db	EXL Gain 0.0 db		DET A P/P/P	Autoscale
3 dB/div	Ref -50.0 dBm		10	<i>2</i> ,		
Log						
-53.0						-50.0 dBm
-56.0						
-59.0						Elec Atten o dB
10000		~		\sim		
-62.0			V			Scale/Div
-65.0				Y		3 08
-68.0						Scale Type
						Scale Type
-71.0		~~~~		for		Log Lin
-74.0						Auto Range
-77.0						On Off
						More
Center 5.1800 (Res BW 1 MHz	GHz	VBW 100) kHz Sw	S eep Time: 187.18	pan 100 MHz ms (401 pts)	1 of 2
Screen Image ca	apture in progress	*****	*****		ት 🕻 🕻	Int Ref 👩

Joonis 2. Katse 802.11n 5 GHz 40 MHz antenni kaugus tugijaamast 20 cm

🔆 🛛 Agilent Tech	nologies	Spectrum	Analyzer					12:35:03	02 May 2017	Rev 2.0	
Ref Level -58	8.0 dBm			-	Avg: Expo	onential (86	6/100)		TRACE 1 2 3 4 TYPE A ₩₩₩	Amplitude	
	Prea	mp Off	Atten: 0 d	В	Ext Gain	0.0 dB			DET A P P P	Autoscale	
2 dB/div	Ref -58.0) dBm									
Log											
-60.0										-58.0 dBm	
-62 0				Λ	Δ.						_
02.0				NV		M.	ΑΛ			Elec Atten	
-64.0				1	\mathbb{V}	M M	111			0 dB	
-66.0						/				_	
						V				Scale/Div	
-68.0										2 08	
-70.0				ļ							
										Scale Type	
-72.0	m-	m	\uparrow	y				m	m	Log	Lin
-74.0					-					Auto Range	
										-	
-76.0										On	Off
										More	
Center 5.1800 C Res BW 1 MHz	ΒΗΖ			VBW 100	kHz	S	Sweep Tim	e: 187.18	oan 100 MHz ns (401 p <u>ts)</u>	1 of 2	
Screen Image ca	apture in r	progress ***	******	******	******	**			200	Int Ref	

Joonis 3. Katse 802.11n 5 GHz 40 MHz antenni kaugus tugijaamast 30 cm

Joonis 4. Katse 802.11n 5 GHz 40 MHz antenni kaugus tugijaamast 1,5 m

Joonis 5. Katse 802.11n 5 GHz 40 MHz antenni kaugus tugijaamast 3 m

Lisa 13 - Spektrianalüsaatori testid. 802.11 ac 5 GHz 20/40/80 MHz

🔆 Agilent Tech	nologies	Spectrum	Analyzer					12:44:27	02 May 2017	Rev 2.0	į.
Ref Level -53	3.0 dBm	mp Off	Atten: 0 di	3	Avg: Expo	onential (10	00/100)		TRACE 1 2 3 4 TYPE A ₩₩₩	Amplitude	e
2 dB/div	Ref -53.0) dBm	Atten. o di	5	Ext Odin	0.0 00			DELAPPP	Autoscale	
Log					ΛΛ	Δ.					
-55.0				ſ	\sim		how			Ref Level -53.0 dBm	
-57.0								+ {	_		
-59.0										Elec Atten ^{0 dB}	
-61.0		_									
-63.0								$\left \right $		Scale/Div 2 dB	
-65.0		0									_
										Scale Type	
-67.0	$\int_{-\infty}$	-	1	~						Log	Lin
-69.0										Auto Range	
-71.0		_								On	Off
										More	
Center 5.1800 G Res BW 3 MHz	GHz			VBW 300	kHz	5	Sweep Tim	e: 152.44	5pan 200 MHz ms (401 pts)	1 of 2	
Screen Image ca	pture in p	progress ***	******	******	******	*****			711	Int Ref	

Joonis 1. Katse 802.11ac 5 GHz 20/40/80 MHz antenni kaugus tugijaamast 10 cm

🔅 🛛 Agilent Techn	ologies Spectrum	1	12:43:25	02 May 2017	Rev 2.0				
Ref Level -55	.0 dBm		Avg: Exponential (100/100)				TRACE 1 2 3 4 TYPE A ₩ ₩	Amplitude	
Preamp Off		Atten: 0 dB	Ext Gain 0	Ext Gain 0.0 dB			DET A P P P	Autoscale	
2 dB/div	Ref -55.0 dBm								
Log									
-57.0	0 D		2					Ref Level	
				$\wedge \Lambda$)			55.0 4511	
-59.0				$\overline{\langle}$	W/	5		Elec Atten	
-61.0		+				+	_	0 dB	
62.0									_
-03.0								Scale/Div	
-65.0						+		2 dB	
-67.0		h						_	
~~~~	1						$\rightarrow$	Scale Type	
-69.0								Log	Lin
-71.0								Auto Range	
								Auto Runge	
-73.0								On	Off
								More	
Center 5.1800 GHz Span 200 MHz   Res BW 3 MHz VBW 300 kHz Sweep Time: 152.44 ms (401 pts)									
Screen Image cap	pture in progress ***	*****	*****	****			ት 🔒 🔒	Int Ref 👩	

Joonis 2. Katse 802.11ac 5 GHz 20/40/80 MHz antenni kaugus tugijaamast 20 cm

*	Agilent Techno	ologies	Spectrum	Analyzer				1	2:42:0	2 02 M	ay 2017	Rev 2.0	
Ref Level -56.0 dBm				Avg: Exponential (95/100)					TRACI	1 2 3 4 A ₩₩₩	Amplitude	в	
	Preamp Off		Atten: 0 d	Atten: 0 dB Ext Gain			).0 dB				Autoscale		
2 dB/	′div R	lef -56.0	dBm	<u></u>	_								
Log													
-58.0	0						A a					-56.0 dBm	
-60	0				Ĺ^	$M \cap$	$^{\wedge}$	5					
00.						ľV		h~	M			Elec Atten	
-62.0	0											0 dB	
-64.0	0											_	
												Scale/Div	
-66.0	0	~		h-~								2 00	
-68.0	o								<u> </u>	~		Cala	
												Scale Type	
-70.0	0											Log	Lin
-72.0	0											Auto Range	
2-121												-	-
-74.0	0											On	Off
Crath	- F 1000 CI											More	
Res B	W 3 MHz	IZ			VBW 300	kHz	S	Sweep Time	e: 152.4	Span⊿ I4 ms (•	401 pts)	1 of 2	
Scree	n Image cap	ture in p	oaress ***	******	******	******	****~			1	300	Int Ref	

Joonis 3. Katse 802.11ac 5 GHz 20/40/80 MHz antenni kaugus tugijaamast 30 cm



Joonis 4. Katse 802.11ac 5 GHz 20/40/80 MHz antenni kaugus tugijaamast 1,5 m



Joonis 5. Katse 802.11ac 5 GHz 20/40/80 MHz antenni kaugus tugijaamast 3 m