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As more people are today living with depression, a detection of depression using 

technological solutions is of increasing importance. The aim of current thesis is to build 

a machine learning model that would distinguish depression between subjects with 

depression and healthy control group using visually evoked potentials extracted from 

EEG. 

Previously recorder EEG sessions together with evoked potentials of 40 subjects are used 

as an input. Evoked potentials are the response to the 3 seconds of external image stimuli 

presented to the subjects. 

Subcomponents of extracted visually evoked potentials extracted from the EEG will be 

used as features. Significance of feature will be analysed, selection is carried out and top-

performing features will be used for training the model. 

The main outcome of the current thesis is a classifier model that can differentiate the 

subjects with depression from the healthy controls providing a prediction performance 

approximately 86% using multiple features selected by genetic algorithm and validated 

with multiple cross-validation methods. 

This thesis is written in English and is 33 pages long, including 8 chapters, 10 figures and 

3 tables. 

 

Abstract 
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Erinevate tehnoloogiliste lahenduste väljatöötamine depressiooni tuvastamiseks on 

muutunud väga oluliseks kuna depressioonis inimeste arv on pidevas tõusutrendis. Antud 

töö eesmärk on treenida selline masinõppe mudel, mis suudaks eristada deppressioonis 

patsiente kontrollrühmast kasutades selleks visuaalselt esilekutsutud potentsiaale. 

Eelnevalt salvestatud EEG sessioonide andmed 40 uuritavalt koos nendega seotud 

visuaalselt esilekutsutud potentsiaalidega on antud töö sisendiks. Andmetes on 

potentsiaalid esile kutsutud näidates uuritavatele pilte stiimulitena 3 sekundilise 

intervalliga.  

EEG andmetest leitakse esilekutsutud potentsiaalide alamkomponendid, mida 

kasutatakse tunnustena. Nende tunnuste statistilist olulisust hinnatakse, seejärel viiakse 

läbi tunnuste selektsioon. Parimaid tunnuseid kasutatakse masinõppe mudeli 

treenimiseks. 

Antud töö tulemuseks on masinõppe mudel, mis suudab eristada depressioonis patsiente 

kontrollrühmast täpsusega 86% kasutades selleks mitud tunnust, mis on varasemalt leitud 

geneetilise algoritmi abil. Tulemusi valideeritakse mitme erineva ristvalideerimise 

meetodi abil. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 33 leheküljel, 8 peatükki, 10 

joonist, 3 tabelit. 

 

Annotatsioon 

Depressiooni tuvastamine elektroentsefalograafiast visuaalselt 

esilekutsutud potentsiaalide alusel 
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ISCEV International Society for Clinical Electrophysiology of Vision 

ICA Independent component analysis 

VEP Visually evoked potential 

LR Logistic regression 

SVM Support vector machine 

EEG Electroencephalogram 

WHO World Health Organization 

DFA Detrended fluctuation analysis 

MDD Major depressive disorder 

LZC Lempel-Ziv complexity 

MLZC Multiscale Lempel-Ziv complexity 

SASI Spectral asymmetry index 
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ANOVA Analysis of variance 
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GA Genetic algorithm 
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LOOCV Leave-one-out cross-validation 
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Higuchi’s fractal dimension 

PNN Probabilistic neural network 
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Depression is characterized by sadness, loss of interest or pleasure, feeling of guilt or low 

self-worth, disturbed sleep or appetite, poor concentration and many other symptoms. 

According to WHO (World Health Organization), the total number of people living with 

depression in the world is approximately 322 million. South-East Asia Region and 

Western Pacific Region are the regions where around half of these people live. The 

number of people who are estimated to live in a depression increased by 18.4% between 

2005 and 2015, which on the one hand is caused by the overall growth of the population.  

On the other hand, there has been an increase of the age groups in which the depression 

is prevalent. Depression is ranked by WHO as the single largest contributor to global 

disability (7.5%) which can in extreme cases lead to suicide. [1] 

Depression as a mental disorder is always accompanied by abnormal brain activity and 

obvious emotional alternation. Therefore, as a method tracking the brain function, EEG 

may be suitable for detecting these abnormal activities. 

With further advancements in electroencephalography (EEG), scientists have used it as a 

tool to investigate the brain. Today the clinical methods used to detect depression are very 

subjective. As there is a lack of characteristics that could be used to objectively measure 

and evaluate normal biological processes using questionnaires and similar subjective 

methods, different biomarkers are of interest with the objective to predict, help with the 

diagnosis and treat specific disorders in the future. [2] 

Primary goal of present thesis is to build a machine learning model that would be capable 

of distinguishing depression between healthy control group and group of patients who 

have been diagnosed with depression. To achieve that goal, an analysis of visually evoked 

potentials and its’ subcomponents will be conducted. Components will be measured 

during the EEG session, features will be extracted. Feature selection is performed and 

eventually machine learning model will be trained using top-performing features.   

 

1 Introduction 
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Depression is one of the diseases belonging to the global burden of diseases. Worldwide, 

approximately 322 million persons are living with depression [1]. Currently, depression 

is diagnosed with methods like interviews, physical examination, lab tests and structured 

symptom severity scales. These methods are highly subjective as they assume that the 

patient makes an accurate assessment about oneself [3]. Additionally, the doctors’ 

assessments and decisions are subjective.  For that reason, there is an increasing need for 

technology that would automatically detect and could be used to early detect depression 

and anxiety disorders. One common application of EEG in medicine is the diagnosis of 

pathologies like epilepsy. There is an evidence that EEG could be used to predict 

depression with machine learning approach [3]. Using such digital technology would 

simplify alerting the patients on time. For example, different brain-computer interface 

(BCI) devices are already available for commercial use. The EEG being easily accessible 

in the future enables possibilities of self-care and early detection of depression before 

further discussion with doctor. To accomplish that, smart machine learning models should 

be trained. 

There are several methods used in research to build machine learning models for 

classification of depression. Classification of depression directly using frequency band 

power or measures of complexity are often used in research. Regarding visually evoked 

potentials, there are for example studies focusing on the detection of Attention deficit 

hyperactivity disorder (ADHD) or Bipolar mood disorder (BMD) [4]. Present study is 

focused specifically on classification of depression using visually evoked potential. 

The objective of current study is to build a machine learning model that would distinguish 

depression between subjects with depression and healthy control group. Here, the 

subcomponents of extracted visually evoked potentials extracted from the EEG will be 

used as features. Significance of feature will be analysed, selection is carried out and top-

performing features will be used for training the model. 

 

 

  

1.1 Problem statement 
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In studies classifying between subjects with depression and healthy control subjects, there 

are mainly 5 different types of biomarkers and methods used for depression 

discrimination from EEG data. Most widely used are band power (spectral analysis), 

alpha asymmetry, functional connectivity, evoked potentials, and other time-domain 

features. These biomarkers are contributing up to 96% of all biomarkers found in 

research. [2] 

As the principal EEG frequency bands are well known, it is possible to analyse the power 

amplitudes for each band, namely delta, theta, alpha, beta and gamma band. Each band is 

found to be related to some mechanisms in the brain. Using measurements from left 

hemisphere, the power of alpha band (8-12 Hz) and theta band (4-8 Hz) have been found 

to be good features to discriminate depressed patients from control group as these are 

responsible for emotional processing [2]. Čukić et al. [3] found that alpha frequency has 

indicated that those with high suicidal ideation experienced increased whole night 

absolute alpha activity compared to participants with low suicidal ideation. In beta 

frequency band (13-30 Hz) they it was found that suicide group was related to absolute 

beta power. No effect was observed between suicidal ideation and delta power. However, 

findings in another study are supportive of previous studies showing activity of alpha as 

well as delta (0.5-4 Hz) to distinguish depressed and healthy samples. In this study, the 

most accurate results were obtained by decision tree model for both alpha and delta band, 

that was widely distributed across regions in both hemispheres [5]. Gamma band (30-100 

Hz) is less well characterized with respect to depression. In 2018, study reported that 

gamma band may be related to mood swings [6]. 

A biomarker called alpha asymmetry measures relative alpha band activity between the 

brain hemispheres. Usually, the alpha asymmetry measure is used at frontal electrodes. A 

study suggests that depressed patients and normal subjects differ in alpha band more 

significantly than other bands like delta, theta, and beta [7]. Moreover, it is concluded that 

the mean alpha power has significant difference in T3, F7, O1, P3, C3 in left hemisphere 

and O2 in right hemisphere [7]. Left alpha activity is found to be a good predictor for 

depression diagnosis. Mean alpha power were found to be higher in depressed patients 

compared to normal subjects [7]. However, it is not quite clear under which conditions it 

1.2 Related work 
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holds true. A study demonstrated greater frontal alpha EEG asymmetry for non-depressed 

women but had no significant difference in alpha asymmetry between depressed and non-

depressed men [8]. 

It has been demonstrated that the analysis of a single channel signal can also provide high 

accuracy for differentiating depression from EEG. The accuracy of linear, spectral 

asymmetry index (SASI) and nonlinear, detrended fluctuation analysis (DFA) were 

studied in combination. SASI, which reflects the relative difference between the higher 

and lower EEG frequency band power was found to have superior discrimination ability 

with classification accuracy of 76.5% over the DFA, which had classification accuracy of 

70.6%. SASI is calculated by first finding the boundary frequencies of interest, 

calculating the powers of the lower and higher frequency bands, and finally finding the 

relative difference between the powers. DFA is calculated in time-domain giving the 

average fluctuations as a function of window length. The DFA values in channel were 

found to be significantly lower for depressive group compared to control group. 

Classification accuracy of 91.2% was obtained by the linear combination of SASI and 

DFA with the maximum difference in both measures occurring in the same channel, Pz. 

[9] 

Instead of frequency-domain features, there have been studies concentrating on time-

domain features which are the features extracted from pre-processed EEG time-series. 

Lempel-Ziv Complexity (LZC) and its’ variation MLZC have been previously shown 

promising results in classification of neuronal or mental disorders on 

electroencephalographic signals. Lempel-Ziv complexity, which is well-known for the 

usage in zip-compression algorithm, has been used for detection of Parkinson disease, 

schizophrenia, Alzheimer disease, Major depressive disorder (MDD) etc. During the 

calculation of LZC, each signal segment is converted into binary sequence depending on 

some threshold value. Resulting sequence is scanned from left to right to investigate the 

patterns occurring. LZ is the total number of distinct structures or patterns found. During 

calculation of MLZC, multiple threshold values are used  to obtain multiple binary 

sequences. Differences between depressive patients’ and healthy control subjects’ 

traditional LZC and MLZC values were tested using statistical analysis and highest 

classification accuracy (86.36%) was reached in the channel F3 by MLCZ. [10] 
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Best results  regarding time-domain features have been achieved using fractality analysis  

[11].  That study concluded that using methods based on nonlinear features might give 

better results compared using only linear methods. For pre-processing, wavelet analysis 

was done. Wavelet analysis was more effective compared to common spectral 

decomposition method like Fourier transform. Next, fractal dimension (FD) was found 

from the EEG. Fractal dimension is a nonlinear measure of irregularity of the time series. 

The irregularity in the time series is considered to be an average variation of distances of 

successive points. Katz’s (KFD) and Higuchi’s (HFD) fractal dimensions are two 

different measures of complexity used in research. According to analysis of variance, the 

most discriminative FDs were found and used for classification with probabilistic neural 

network (PNN). Accuracy of 91.3% was achieved for classification based on HFDs of 

frontal brain beta sub-band. [11] 

Another biomarker that is often investigated are network-based features. MDD is 

hypothesized to arise from dysfunction in the brain networks [12]. In one study, the power 

spectral density of the artifact-free EEG data in four frequency bands were calculated for 

each nearest neighbour. Each pair of nearest neighbour electrodes represented an edge of 

a brain network. Coherence was calculated between pair of nodes that represented a 

normalized measure between the signal at the nodes at given frequency. Coherence was 

calculated as a function of the power spectral outputs for signal form separate nodes for 

each frequency. MDD subjects showed statistically significantly greater median 

coherence (overall median coherence across all edges) than control group in each 

frequency band. Nearest centroid classification analysis identified six edges in the alpha 

band that best characterized the depressed state. On average, classifier accurately 

distinguished 81% of MDD from healthy control subjects [12]. One recent research 

indicated that adding graph theoretical measures (level of segregation or integration of 

nodes) to functional connectivity does not significantly increase classification accuracy 

between depressive and healthy subjects [13].  

An evoked potential is an electrical potential in a specific pattern recorded from the brain 

following presentation of a stimulus such as a light flash or a pure tone. When individual 

is presented some external stimuli, the brain waves fluctuate in some specific manner. 

These fluctuations are usually named after their direction and latency [2]. Visual evoked 

potential (VEP) is signal response to external visual stimuli. According to the 

International Society for Clinical Electrophysiology of Vision (ISCEV) standard for 
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VEPs, the visual evoked potential in response to flash stimulation consists of a series of 

negative and positive components. These components will be further discussed as the 

present thesis will mostly be focused on the classification using visually evoked 

potentials. 

The P100 or P1 is the first positive component with the positive voltage deflection that 

peaks approximately 90-160 ms following stimulus onset. A reduction in P1 mean 

amplitude has been reported primarily in schizophrenia, but also in some subtypes of 

depression. It is suggested that abnormalities in P1 component may be initiated by the 

withdrawal from the environment or misinterpretation of the visual stimuli. One study 

found that higher severity delusional thinking is associated with reduced P1 amplitude, 

regardless of the diagnosis [14]. Specifically, recent research investigated P100 

component. Amplitude and latency were extracted as features and applied to 1-knn 

classifier. According to leave-one-out method, 92.85% classification accuracy was 

obtained to distinguish the BMD, ADHD, and healthy subjects from each other [4].  

In slightly different study, it was tested whether event-related brain potentials (ERPs) 

change when change in sound intensity is introduced and could it differentiate depressed 

subjects and healthy control group. Auditory response is supposed to be increasing when 

the intensity of an auditory stimulus increases. This reactivity was seen when measuring 

the auditory evoked responses (AEPs) such as N1. The N1 component in this case was an 

automatic response elicited in the auditory cortex at approximately 100 ms after the 

stimulus onset. Visual observation of the averaged waveforms indicated that N1 

responses were elicited. Mean response amplitude values for N1 were calculated for 

latency 90-140 ms after the stimulus which showed that depression disorder subjects had 

significantly larger amplitudes in the N1 response compared to control group. Generally, 

it is found that the visual stimuli situated in visual fields with focused attention elicited 

components P1, N1 with larger amplitude than ignored or unnoticed stimuli. This 

amplitude enhancement is sensitive to the specific localization of the stimuli in the visual 

field. [15] 

The N200 component or N2 is usually evoked around 180 to 325 ms following the 

specific visual stimulus. N2 may be evoked by exposing continuously two types of stimuli 

1.2.1 VEP components 
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to the subject, one presented regularly and other displayed rarely, randomly. When rare, 

random stimuli is presented, the N200 is observed. Goal of one study was to observe 

whether changes related to N2 exist in depression. Depressed and non-depressed 

participants completed a SSRT task. Analysis of variance (ANOVA) was conducted for 

the N200. No significant relationship was found between amplitude differences. That 

suggested there might not be associations between N200 and depressive symptoms. [16] 

The Late Positive Potential (LPP) is an event-related potential (ERP) that indexes 

selective attention toward emotional stimuli. In adults, LPP arises around 200 ms after 

stimulus and continues if the stimulus is present. It suggests that LPP represents ongoing 

emotional processing which makes it well-suited for investigating psychiatric disorders. 

Previous research has conducted that emotional faces are good visual stimuli for evoking 

change in EEG signal. Moreover, it is well known that individuals with depression 

disorder have different reaction to some emotional stimuli compared to healthy subjects. 

Latest LPP research used stimuli from the International Affective Pictures System (IAPS) 

that compromises photos of emotional scenes. LPP mean activity was measured within a 

time frame of 400 to 1500 ms. According to scalp distribution of positive activity in this 

interval, a set of electrodes (Pz, P4, CP1, CP2, Cz, C4) were chosen for analysis. ANOVA 

on the mean LPP activity showed a significant effect for emotion. Activation was highest 

for fearful faces and lowest for happy faces. Depressed group presented lower LPP mean 

activity than the healthy control group. [17] 

The P300 or P3 is a positive EEG signal voltage peak at 300 ms after the onset of a 

stimulus. As usual the P300 is computed after performing averaging of various stimuli. 

P300 component is often used for classification of mental activities. Moreover, the P300 

amplitudes are considered as an indicator of symptom improvements in depressed 

condition after treatment with antidepressants. During one research, the ERP data were 

recorder during performance of visual oddball task. The features of P300 such as 

amplitudes and latencies were computed at central channels Fz, Cz, Pz. Features were 

ranked by t-test, wilcoxon and roc. Top features were selected. Logistic regression (LR) 

classifier was utilized. P300 amplitudes were observed significantly higher in the healthy 

control group as compared to MDD patients. In addition, larger P300 latencies were found 

in the MDD patients. The highest classification accuracy of 90.5% was achieved. [18] 
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The implementation of machine learning model consists of classical machine learning 

pipeline as well as some EEG data related operations. The overview of the steps carried 

out in the thesis are specified in the following list: 

1. EEG data pre-processing 

a. Data description 

b. Pre-processing configuration 

c. Filtering 

d. Artifact removal 

e. Re-referencing 

2. VEP extraction and analysis 

a. Baseline correction 

b. Finding epochs 

c. Averaging 

d. Identification of initial components 

3. Feature extraction 

a. Characteristics of different visual evoked potential’s components 

b. Method for extracting components from subjects’ VEPs  

4. Feature selection 

a. T-test, wilcoxon-test statistical analysis / ordering features 

b. Selection with genetic algorithm (GA) 

5. Classification 

a. Logistic regression, SVM, Adaboost classification model training. 

 

2 Implementation 
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First, EEG data will be pre-processed according to the defined configuration. The data 

will be filtered into suitable frequency range. Then artifact removal will be done. Both 

manual as well as automatic artifact removal will be considered. As the last step of pre-

processing, the re-referencing will be carried out. The processed EEG will be further used 

for VEP extraction and analysis starting with baseline correction and find ing epochs form 

the EEG using the known timestamps of presented image stimuli. Time-locked epochs 

will be used to carry out averaging. Grand average VEP over all the subjects will be found 

and used to visually identify initial components of visually evoked potential. A specific 

configuration will be created based on the identified components. Each component will 

have a set of characteristics describing the component. Next, characteristics of the 

identified VEPs will be defined and these features will be extracted from each subjects’ 

VEPs accordingly. Statistical analysis will be used to obtain significant features. A subset 

of best features will be selected and classification will be done for these individual 

features. Next, genetic algorithm will be used to select subset of features and build 

multivariate machine learning model using either logistic regression, SVM and Adaboost 

algorithm. 
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The first phase of EEG data ERP analysis is pre-processing. As a first step of pre-

processing the raw EEG signal is filtered to specific frequency range. Next, artifacts are 

removed. That is done both manually and by using methods like ICA. Finally, re-

referencing is performed. Parameters for these operations will be easily configurable. 

Regarding pre-processing, different studies have conducted that there is a trade-off in 

every processing step. Artifact removal process itself introduces new artifacts into the 

signal. As ICA or similar methods are used, the dynamics of the signal can be changed. 

In general, to retain maximum amount of physiological signal information, it is advisable 

to do minimal pre-processing [19]. For that reason, present study applied different pre-

processing methods, creates set of post-processed versions of the signals and eventually 

measures the quality of the data. Namely, during one version, artifacts were removed 

manually while the other version had artifacts removed by ICA. Next, in one version re-

referencing was excluded while other version had re-referencing done with common-

average method. 

The data acquisition was not in the scope of current thesis. Data was previously collected  

in Tallinn University of Technology from 44 subjects, 22 subjects previously diagnosed 

with major depressive disorder (MDD) and control group of size 22 consisting healthy 

subjects. One EEG session lasted approximately 30 minutes. During that time subject was 

presented with set of colourful images with the objective to evoke response in EEG signal. 

Each image was on the screen for 3 seconds and with changing duration of pause between 

the images. For every subject, approximately 219 different images were presented during 

the session. Each image was indexed with specific number and was taken from the 

International Affective Pictures System (IAPS). For assessing the images over 3 

dimensions (valence, arousal, dominance), a study was carried out to obtain standard 

3 Data pre-processing 

3.1 Data description 
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ratings for each of the images [20]. Ratings are scored such that 9 represents a high rating 

on each dimension and 1 represents a low rating on each dimension. In addition to 

standard ratings, the dataset also provides personal ratings of subjects that were collected 

after the session based on the same rating system used for standard ratings. In present 

thesis different ratings of the images were not considered. It can be assumed that images 

lower in valence and higher in arousal would have different response for healthy subject 

compared the one with depression. However, performing the analysis on a smaller subset 

of images have trade-offs like inability to average out enough noise. 

Some of the parameters used during the pre-processing phase (like filtering frequency 

bands) of raw EEG signals are global to all of the subjects while some of the parameters 

(like bad artifact annotations) are specific to the subject. For that reason, a common 

configuration file was created that would capture all configurable parameters into one 

central file. An example of the configuration file is depicted on Figure 3.1. 

 

3.2 Pre-processing configuration 
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{ 

  "verbose": false, 

  "exclude_channels": [], 

  "filtering": { 

    "min_frequency": 0.01, 

    "max_frequency": 30.0 

  }, 

  "ica": { 

    "random_state": 2021, 

    "num_components": 12, 

    "exclude_components": [0, 1, 2] 

  }, 

  "epoch": { 

    "time_before_event": -0.2, 

    "time_after_event": 1.0 

}, 

  "data": [ 

    { 

      "id": "MH004", 

      "exclude": false, 

      "label": "H", 

      "annotations": [ 

        { "start": 270, "duration": 50, "description": "bad_eyeBlink" }, 

        { "start": 840, "duration": 50, "description": "bad_eyeBlink" } 

      ] 

    }, 

    ... 

} 

Figure 3.1. Example of pre-processing configuration file. 
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To reduce the noise of raw EEG signal, the filtering was performed. Most relevant portion 

of the ERP waveform in a typical experiment consists of frequencies between 0.01 Hz 

and 30 Hz. Voltage changes in this frequency band is believed to be of neural origin. All 

non-neural voltage changes like contraction of the muscles (above 100 Hz) and slow 

voltage shifts (< 0.01 Hz) must be filtered out [21]. A finite impulse response (FIR) band-

bass filter with cut-off frequencies of 0.01 Hz and 30 Hz were used to attenuate other 

frequencies out of that range. No notch filter was needed, because dataset already had line 

noise filtered out (~50 Hz, ~60 Hz). The power spectral density plot of all EEG channels 

after filtering is depicted on Figure 3.2. 

The power spectral density (PSD) shows how the power is distributed over the frequency 

components present in the signal. As can be seen on Figure 3.2, the filtering process was 

effective, as the frequencies that are on the right side (greater) of the cut-off frequency 

have significantly less power compared to the ones on the left side of the cut-off while 

the left side has frequencies untouched.  

 

Figure 3.2. Power spectral density after filtering. 

 

 
 

 
 
 

3.3 Filtering 
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The artifact removal was done both manually and automatically. For manual removal, 

each subject was annotated with “bad” artifacts in the configuration file. An annotation 

named “bad_eyeBlink” was assigned to regions where eye blink could be visually 

detected from the EEG signal. Eye blinks can be visually detected by looking for rapid 

voltage changes in most of the channels. In addition, a general annotation named 

“bad_artifact” was assigned to other very noisy segments found visually from the signal. 

Eventually ICA (automatic removal) was used instead of manually removing annotated 

regions. EEG data of 4 subjects were excluded completely due to extensive noise in the 

data. In the worst case ~ 75% of the data of a subject was corrupted. Further removal of 

segments based on peak-to-peak amplitude values will be done in next phase when 

analysing VEPs.  

The ICA solves the blind source separation problem to recover independent source signals 

after they hare linearly mixed by an unknown matrix. Nothing is known about the sources 

except that there are N different sources. ICA creates statistically independent 

components, meaning that the joint probability of the components equals to the product 

of their probability. It is usually done by either finding independent sources that maximize 

the joint entropy of the rotated components (infomax) on non-gaussianity of the rotated 

components (fastICA). [22] 

Each resulting component of ICA is a linear combination of channel signals and are thus 

often thought as a source signal from the brain capturing one specific aspect. Usually, 

ICA outputs the same number of components as number of sources. However, some 

implementations perform principal component analysis (PCA) as preliminary step, 

extract n components explaining most of the variance and then use these components 

form further ICA. Thus, 12 components were created in present thesis. The ocular 

component was found to be the first one by visual inspection. The ICA000 on Figure 3.3 

represents eye movements because of its frontal location. Moreover, the corresponding 

time-graph shows 4 distinct changes in the voltage which is matching with the 4 changes 

3.4 Artifact removal 

3.4.1 ICA – Independent Component Analysis 
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occurring in EEG data. On Figure 3.3 are the selected ocular component and first 10 

seconds of that component. EEG data before and after component exclusion is also 

depicted. 

 

 

  

 

 

 

Figure 3.3. Elimination of ocular artifact using ICA. 
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In EEG, voltage in each electrode is measured relative to the reference electrode. The 

reference needs to be carefully selected because any activity in the reference channel will 

evoke activity at other channels. Dedicated electrode is usually used as an online 

reference. Changing the reference offline after recording is called re-referencing. The re-

referencing is done to express EEG signals with respect to new reference. That eliminates 

the online reference as well as noise that was caused by the usage of it. In present study, 

common-average re-referencing method was used. During that method, a common value 

of all channels will be subtracted from each channel. Thus, the total sum of channels’ 

values will sum up to 0. 

 

  

3.5 Re-referencing 
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The objective of VEP extraction and analysis phase is to extract visual evoked potentials 

form the pre-processed continuous EEG signal and analyse the outcome. The shape of the 

VEP might differ depending on the stimulus. However, there are always fluctuations and 

negative and positive peaks present in the signal. Typical VEP for standard flash 

stimulation (according to ISCEV standard for clinical visual evoked potentials) is 

depicted on Figure 4.1. 

 

 

Figure 4.1. Typical VEP for standard flash stimulation (ISCEV). 

 
 

 

The exact steps needed to extract VEPs from data are listed below. 

• Baseline correction + generating epochs + epoch rejection. 

• Averaging 

• Component identification 

During one EEG session approximately 200 events are presented to the subjects. By 

knowing the exact timing of these events, it is possible to extract the signal response 

caused by these events from the continuous EEG signal. For that, epochs are found based 

4 VEP extraction and analysis 
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on the timing of events presented to the subjects. Epochs are set of time-windows that are 

extracted from the continuous EEG signal. Some of these responses can however be 

outliers in terms of too large absolute amplitude values. For that reason, a rejection-

criteria is used to exclude all epochs that doesn’t fulfil the criteria. As common in 

literature, maximum peak-to-peak amplitude value thresholding is used as a rejection 

method. In present thesis, peak-to-peak amplitude value thresholding was used (with 

rejection threshold of 100e-6). 

After the external event occurs, the response in EEG signal appears after some time 

interval. It is important that the produced response of EEG signal would be as invariant 

across the trials as possible. Extracted epochs might differ significantly due to drifts in 

EEG signal caused be external factors. To make the epochs more comparable, a baseline 

correction is done. Namely, a time slice of EEG activity before the stimulus is used to 

correct the post-stimulus time interval. The mean of the baseline segment will be 

subtracted from the baseline itself as well as from the post-stimulus segment. That way, 

all the epochs can further be compared on the same basis. For baseline segment usually 

0.2 s is used as pre-stimulus time-window. For post-stimulus response time-window, 0.6-

1.0 s is used. That period is enough to cover all necessary VEP components (e.g. P1, N1, 

P2, N2, P3). Same parameters were used for baseline correction in present thesis. 

All the epochs capture the evoked potential (EP) caused by stimuli and some noise from 

other brain activity. As the EP is assumed to be stationary (latency and morphology are 

invariant) over multiple trials and subjects while the noise is assumed to be with zero 

mean, the repetition and averaging will eliminate the noise while retaining the signal of 

interest. There are ~200 epochs corresponding to one session. As there are 40 subjects (4 

were excluded previously), the total number of epochs over trials and subjects is 

approximately 8000. Considering all epochs, the VEP is a result of finding an average 

signal of those epochs. Such VEP is also called grand average visual evoked potential. 

Resulting evoked potentials in each of the channels are depicted on Figure 4.2. 

4.1 Epoch generation 

4.2 Averaging 
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The absolute amplitude values of the channels have been significantly reduced after the 

grand averaging. This is caused by different values of latencies and amplitudes of the 

peaks and thus the fluctuation will get wider and lose their power. The stimuli presented 

at time 0.0 has caused fluctuations in the signal already after 50 ms. Both, the pre-stimulus 

baseline segment as well as ending of the evoked potential are converging to zero voltage. 

This is expected as before the stimulus there was just other brain activity and after the 

stimulus the signal should converge back to the point where there is no impact of the 

stimuli and just other brain activity.  

 

 

Figure 4.2. Grand average visual evoked potential in all channels. 
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There are groups of channels behaving similarly with respect to the stimuli. Looking at 

the heatmap on Figure 4.3, 10 channels (O2, O1, OZ, PZ, P4, CP4, P8, TP8, P7, P3) have 

stronger positive fluctuation around 200 ms. This group contains mainly channels from 

the back of the head and are thus reflecting some common response from that area of the 

brain.  

 

 

Figure 4.3. Evoked potentials in each channel. 

 

 

On Figure 4.4, a group of back channels is depicted. The first negative peak around 65 

ms after the stimuli is estimated to be component C1. C1 is highly sensitive to any 

stimulus parameter, such as contrast. As around 100 ms the channels have first positive 

fluctuation, the component resolving there is estimated to be P1. Similarly to C1, the P1 

is also sensitive to the visual stimulus like the contrast of an image. As the peaks of P1 

are not as aligned to each other as C1, a segment around 100 ms will be defined to capture 

all these peaks. Most of the following negative peaks were around 160 ms and were 

estimated to be component N1. The most powerful positive fluctuation is considered to 

be component P2. No further components could be identified visually. However, the mean 

4.3 Component identification 
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amplitude of additional components will used. For example, the segment at 275-400 ms 

and the Late Positive Potential (LPP) is of interest. 

Another group of channels does not have such strong fluctuations. However, they are 

behaving similarly. Looking at the heatmap on Figure 4.5, 8 channels (FT8, FCZ, FZ, F4, 

F8, T7, FT7, FC3) have similar shapes. This group contains channels mainly from the 

frontal part of the head. The peaks of these channels are aligned with the previous group 

of channels but are reversed. 

The grand average VEP was mainly created for analysis purpose to identify the VEP 

components. The grand average VEP was created using filtering, performing ICA, 

without manual artifact removal, performing averaging and epoch rejection. However, it 

is not clear to what extent each of these steps lose important information about the signal. 

Thus, multiple versions of VEPs using different configurations will be created for each 

subject and eventually the best configuration is selected.  

 

 

 

Figure 4.4. VEPs of back channels. 
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Figure 4.5 VEPs of frontal channels. 
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The objective of feature extraction and analysis is to consider the visual evoked potentials 

of each subject and extract characteristics that would describe that VEP. During the VEP 

analysis phase a set of VEP components (C1, P1, N1, P2, N2, LPP) was identified. For 

each of these components, an amplitude of the peak, latency of the peak and the mean 

amplitude will be founded. The outcome of feature extraction and analysis is a dataset 

that contains values of the features for each subject as well as labelling for each subject.  

A specified configuration was used to extract features from VEP-s. The configuration is 

depicted on Figure 5.1. Each channel of grand average VEP was analysed. Two groups 

of channels were created. First group of channels share the property that the first 

fluctuation has positive peak around 100 ms (P1). The second group of channels have in 

contrary, negative peak around 100 ms (N1). Such division of channels was done, because 

in order to find the latency, the type of the peak must be known. For each group, a set of 

components are defined. The id refers to the name of the VEP component. The centre 

refers to the estimated time the component is present. The left and right parameters define 

an area around the centre that is still considered to be a part of the component . For 

example, for the component C1 on Figure 5.1, the length of the segment under 

consideration is 60 ms in total. Next, the colour parameter is used to visually differentiate 

between components. Finally, features parameter contains the set of calculations that will 

be performed with that segment. Min refers to finding minimum peak amplitude and 

latency, max refers to finding maximum peak amplitude and latency within specified 

segment. Avg refers to finding average amplitude value of the segment. 

 

Example of the configuration applied to the VEP belonging to the first group is depicted 

on Figure 5.2. Example of configuration applied to the VEP from the second group is 

depicted on Figure 5.3. The lines of different colour represent segments corresponding to 

5 Features 

5.1 Feature extraction 



   

 

34 

each component in configuration. For example, the N1 component is centred around 100 

with left radius of 20 ms and right radius of 30 ms. 

 

 

 

 

Figure 5.2. Example EEG VEP from channel (OZ), group 1. 

{ 

  "group-1": { 

    "channels": ["O2", "O1", "OZ", "PZ", "P4", …], 

    "components": [ 

      { 

        "id": "C1", 

        "centre": "65", 

        "left": "30", 

        "right": "30", 

        "colour": "C1", 

        "features": ["min", "max", "avg"] 

      }, … 

    ] 

  }, 

  "group-2": { 

    "channels": ["C4", "T8", "CZ", "FC4", "FT8", …], 

    "components": [ 

      { 

        "id": "N1", 

        "centre": "100", 

        "left": "20", 

        "right": "30", 

        "colour": "C2", 

        "features": ["min", "avg"] 

      }, … 

    ] 

  } 

} 

Figure 5.1. Configuration used for extracting VEPs. 
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Figure 5.3. Example EEG VEP from channel (C3), group 2. 

 

By applying the configuration to each subject, in total 429 features are found. All features 

are labelled with channel, component, and feature type codes (e.g. O1-N2-min-l). Each 

subject is marked as D (depression) or H (healthy). Based on the labelling each feature 

can be divided into two sub-groups and the mean of the groups can be compared by 

carrying out significance test. If the data is normally distributed, the difference between 

two groups of data can be found as a difference between the mean value as most of the 

occurrences are around the mean. For that t-test is usually used. On the other hand, if the 

data does not follow normal distribution, the mean value can not be used as a measure of 

discrimination. In this case nonparametric test like Wilcoxon rank-sum test can be used.  

The features are then sorted by the p-value of the features. However, as 429 tests are 

performed, the obtained p-values must be corrected to reflect the real significance of the 

features. Namely, the probability of type I error increases by the number of tests 

performed. When the p-value is selected as 0.05, the probability of type I error after 429 

tests is significantly high. For that reason, a correction of a used p-value must be done. 

The Bonferroni correction will be used for that purpose. 

  

5.2 Statistical analysis 
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The Bonferroni correction decreases the significance level by dividing the p-value by the 

number of tests performed. That way the p-value is small enough such that even after 

performing 429 tests, the probability of a false positive is less than 0.05. Thus, the new 

p-value used for analysis is approximately 0.0002. 

Top 15 features are ordered in Table 5.1 by the p-value obtained by using the Wilcoxon 

rank-sum test. The best feature was evaluated to be latency of the minimum peak of N2 

component in PZ channel. It can be conducted that none of the features are actually 

significant as the p-values of features are greater than the modified benchmark after 

Bonferroni correction (0.0002).  Still, these top features are selected and further used in 

classification phase. Individual accuracy for each feature will be found as well as the 

combination of different features will be tested. 

 

 

Table 5.1. P-values of features ordered by wilcoxon-test. 

Feature p-value (wilcoxon-test) p-value (t-test) 

PZ-N2-min-l 0.0014 0.0092 

FT7-N250-min-l 0.0035 0.0016 

CPZ-C1-mean-a 0.0045 0.0044 

O1-P2-max-a 0.0064 0.0206 

C4-N250-min-l 0.0074 0.0030 

FC4-LPP-mean-a 0.0080 0.0065 

FT8-N250-min-a 0.0080 0.0056 

FC4-N250-min-a 0.0090 0.0246 

O2-P2-max-a 0.0100 0.0389 

FT8-P150-mean-a 0.0124 0.0256 

O2-P2-mean-a 0.0124 0.0283 

O1-N2-min-l 0.0130 0.0135 

P3-N2-mean-a 0.0137 0.0402 

F4-N250-min-a 0.0152 0.1475 

F7-C1-max-l 0.0165 0.0963 

 

5.2.1 Bonferroni correction 

5.2.2 Feature selection 
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A subset of best features was determined from the feature extraction and selection phase. 

The objective of a research was to construct a model for differentiating between subjects 

with depression and the control group. Subjects have been labelled correspondingly (D 

and H). As the number of labels in the dataset is 2, the classifier under consideration will 

be binary classification. A set of different classifiers will be trained for both – individual 

features as well as combination of features. Used binary classification machine learning  

algorithms are logistic regression, support vector machine (SVM) and AdaBoost.  

The dataset contains multiple features that are significantly different in scale. For 

example, the latency values compared to the amplitude and mean amplitude values differ 

in more than 10e6 times. Thus, standardization of all features was done. The mean value 

of each feature was subtracted from the feature value and finally divided by the standard 

deviation of the feature values. That way all the values are close to 0 and with unit 

variance. Additionally, labels (D, H) were binarized (1, 0). 

In current research genetic algorithm (GA) is used for feature selection and model 

construction. Genetic algorithm is a stochastic optimization method based on the 

processes present in biology. The genetic algorithm has a concept called population. 

Population is made of set of individuals. In the context of features, individual represent 

one possible selection of features. Individual is represented as binary vector of size N, 

where N is the total number of different features. Inclusion of a feature is represented 

with 1, while excluded features are represented with 0. During each iteration of genetic 

algorithm, the fitness of each individual is assessed by using fitness function. In the 

context of classification problem, the fitness function is the negative accuracy of the 

model trained with selected features. Minimization of fitness function is used. Next, a 

subset of individuals is selected as a parent for new populations. The better the fitness, 

6 Classification 

6.1 Genetic Algorithm 
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the greater is the likelihood of being selected as a parent. The parents are used to create 

new population. New individuals are created using the concepts of crossover and 

mutation. During crossover new individual is created by using parts from parent vectors. 

The crossover is probabilistic, meaning that the parents might not produce child at all. 

Moreover, mutations can occur, which mean random probabilistic changes in child 

vectors. The invariant of the genetic algorithm is that the average fitness of the population 

should be increasing each step. After iterations, the fittest individual is selected as the 

solution for the optimization problem.  

Leave-one-out cross-validation (LOOCV) is a cross-validation algorithm often used in 

EEG research for model validation.  LOOCV is a special case of the leave-p-out cross-

validation with p=1. During each step of leave-one-out cross-validation, one observation 

is left out from the dataset for testing. Namely, for dataset of size N, the size of training 

set is N-1, while the size of testing set is always 1. A total of N models will be trained 

and tested to ensure that each sample is used as the test sample once. Finally, the average 

accuracy of the models will be computed. 

K-fold cross validation is a cross validation algorithm method during which the dataset is 

partitioned into k subsets. During each step of the algorithm, one partition is used for 

testing while other dataset is used for training. The size of training set is (k-1)/k * N and 

the size of the testing set is 1/k * N. K models will be trained such that all the data will 

be used both for training and testing. Finally, the average accuracy of the models will be 

computed. 

 

 

6.2 LOOCV 

6.3 K-fold cross-validation 
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Boosting refers to a machine learning ensemble algorithm where models are added 

sequentially and every added model in the sequence corrects the predictions made by 

earlier models. Adaptive Boosting or Adaboost is one implementation of boosting 

algorithms. The main idea of Adaboost is to combine set of “weak” classifiers (accuracy 

close to 0.5) and output a boosted classifier. Boosted classifier is weighted sum of the 

weak classifiers. Usually, decision tree classifiers are used as base “weak” classifiers. 

Logistic regression model was trained on each individual feature. The accuracy and f -

score were calculated for each feature. The top 20 features sorted based on the avg. 

accuracy are listed in Table 6.1. Features that had good average accuracy (marked with 

*) were added to the existing ones obtained in the statistical analysis phase.  

There might be a trade-off of between using only one cross-validation method and using 

multiple methods. As the size of the dataset is relatively small (n=40), methods like 

LOOCV are often recommended compared to other methods as the testing set is always 

of size 1 and the size of the training set is thus maximized and allows to train the model 

with almost all the data. However, because of the exact same reason the LOOCV is 

overfitting due to the smallness of the testing set. K-fold has larger testing set compared 

to the LOOCV. The trade-off however is that the training set is consequently smaller.  

Thus, the obtained accuracy is usually smaller compared to the model validated with 

LOOCV. To get the best from both methods, another metric is introduced that is the 

average accuracy of both methods. The performance of classification models will be 

assessed based on that metric. 

 

 

6.4 Adaboost 

6.5 Individual models 
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20 base features listed in Table 6.1 were further used for building different kind of models, 

possibly multivariate models. First, the feature selection was done using genetic 

algorithm with fixed set of parameters (n_iterations=20, n_population=16, 

crossover_probability=0.9, mutation_probability=0.05). Average value of LOOCV and 

k-fold (k=8) was used as a fitness function. The genetic algorithm was run multiple times 

and the best feature sets were remembered. Three models were trained: logistic regression 

(LR), support vector machine (SVM) and boosting method (Adaboost). In table 6.2, best 

feature sets with accuracy are listed for different classification algorithms.  

The best accuracy received for all the algorithms was 86.3%. However, Adaboost tends 

to use more features to receive same accuracy. Also, compared to the logistic regression, 

SVM best model used fewer features (7). Thus, SVM is considered superior over other 

trained methods. 

 

Table 6.1. Performance of logistic regression models trained on individual features. 

Feature LOOCV k-fold (k=8) avg. accuracy 

FT7-N250-min-l 0.725 0.700 0.713 

FP2-N250-min-l* 0.700 0.700 0.700 

O1-N2-min-l 0.700 0.625 0.663 

C4-N250-min-l 0.700 0.625 0.663 

FT8-N250-min-a 0.650 0.600 0.625 

CPZ-C1-mean-a 0.700 0.525 0.613 

FT8-N250-min-l* 0.650 0.575 0.613 

F3-N1-min-l* 0.650 0.550 0.600 

TP7-P1-max-a* 0.650 0.525 0.588 

CPZ-P1-mean-a* 0.650 0.525 0.588 

CPZ-N1-mean-a* 0.650 0.525 0.588 

CPZ-C1-min-l* 0.625 0.525 0.575 

F8-N250-min-l* 0.625 0.525 0.575 

PZ-N2-min-l 0.600 0.550 0.575 

FT8-P150-max-a* 0.675 0.450 0.563 

FC4-LPP-mean-a 0.675 0.500 0.588 

O1-P2-max-a 0.600 0.525 0.563 

O2-P2-mean-a 0.650 0.450 0.550 

FC4-N250-min-a 0.625 0.475 0.550 

P8-C1-mean-a* 0.625 0.475 0.550 

6.6 Multivariate models 
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Table 6.2. Performance of multivariate models. 

Method Selected features avg. accuracy 

LR [1, 4, 6, 9, 10, 11, 16, 18, 19] 0.863 

LR [1, 4, 5, 6, 9, 10, 11, 16, 18, 19] 0.850 

LR [10, 12, 14, 15, 16, 17, 18, 19, 20] 0.850 

LR [2, 3, 6, 9, 11, 14, 15, 16, 19] 0.850 

LR [2, 3, 5, 9, 11, 14, 16, 19] 0.838 

SVM [1, 2, 4, 7, 11, 12, 16] 0.863 

SVM [1, 4, 6, 10, 11, 14, 16] 0.862 

SVM [1, 4, 7, 9, 10, 11, 14, 16] 0.838 

SVM [1, 2, 4, 10, 11, 14, 15, 16] 0.838 

SVM [1, 2, 4, 7, 10, 11, 12, 13, 15, 16] 0.825 

Adaboost [2, 5, 6, 8, 10, 11, 14, 16, 17, 18, 19, 20] 0.863 

Adaboost [2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19] 0.850 

Adaboost [2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19] 0.838 

Adaboost [1, 6, 11, 12, 13, 14, 15, 16, 17, 18] 0.837 

Adaboost [2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 18, 19, 20] 0.825 
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Pre-processing of subjects’ EEG signals was done considering additionally individual 

pre-processing. Pre-processing included filtering and artifact removal by either manual 

or automatic manner using ICA. Visual evoked potentials were extracted based on which 

sub-components were extracted and eventually set of features were generated. Features 

were analysed from the statistical analysis point of view as well as from the classification 

accuracy perspective based on which top-performing features were selected using genetic 

algorithm. Finally, individual models as well as multivariate models were trained for top-

performing features using logistic regression, SVM and Adaboost classification 

algorithms. Performance of models were evaluated. As a best result, a multivariate SVM 

model with 7 features and with accuracy of 86.3% was obtained. 

  

7 Results 
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The aim of the thesis was to investigate a possibility to use visually evoked potentials for 

depression discrimination. Namely, the aim was to develop machine learning model that 

would correctly distinguish subjects diagnosed with depression from healthy control 

group. A dataset of 20 healthy and 20 subjects with depression was used. 

Based on the obtained results it can be concluded that the primary goal of the thesis was 

achieved. As the dataset is relatively small, the main concern when training a classifier 

was overfitting. Cross-validation was used as a preventative measure against overfitting. 

To minimize the risk of overfitting several validation methods were used  to change the 

training and testing set ratio accordingly and maximize the amount of new data when 

testing. However, the best way to ensure generalization of a model would be to introduce 

novel data for testing. 

The results of the classification model could be further improved by introducing new data, 

performing more specific filtering as one of challenges regarding EEG classification task 

is noise, artifact removal. Moreover, in present thesis all images presented to the subjects 

were used to extract visual evoked potentials. Using only subset of images that are ranked 

as high in arousal or valence (attractiveness) might produce better results. This however 

assumes more data for the averaged evoked potentials to be noise-free. In general, finding 

good features appeared to be the main problem regarding successful classification. The 

statistical significance of the features tended to be small. To obtain features that would be 

more significant would be a good aim for next studies. In addition to the VEP features 

used in present thesis, some extra features could be introduced. For example, the 

disappearance of the images after 3 seconds might also have interesting evoked potentials 

in addition to just the appearance of the image. Thus, the significance of that aspect could 

also be further investigated in the future.  

8 Conclusion 
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