
TALLINN UNIVERSITY OF TECHNOLOGY
Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

ITC70LT
Christian Ponti 144704

USE OF ICMPV6 IN A SCENARIO-BASED

EXPERIMENT FOR COMPUTER NETWORK

EXFILTRATION AND INFILTRATION OPERATIONS

Master Thesis

Supervisor: Bernhards Blumbergs
MsC

Tallinn 2016

Autorideklaratsioon

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite tööd,
olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud. Käsolevat
tööd ei ole varem esitatud kaitsmisele kusagil mujal.

Autor: [Christian Ponti]

[January 3, 2017]

2

Annotatsioon

ICMPv6 protokollil on võrreldes ICMP protokolliga oluline roll mängida IPv6 korrektse
toimimise tagamisel. Kuigi nii ICMP kui ICMPv6 jagavad protokolli nime ja osaliselt on
nad ka sama funktsionaalsusega, on nad oma olemuselt siiski erinevad. Turvalisuse seisuko-
halt on ülimalt oluline tulemüüri, kui seadme millel lasub peamine roll perimeetri kaitsel,
seadistamine seega on ICMPv6 protokolli seadistamisel oluline järgida uusi parimaid prak-
tikaid tulemüüride seadistamisel sest senised parimad praktikad enam ei päde. See on olu-
line sest IPv4 ja IPv6 kooseksisteerimisel üleminekuperioodil on oht, et rakendatakse ainult
seniseid parimaid praktikaid, või siis üldse mitte mingeid, ühtlasi ka ICMPv6 seadistamisel
süsteemides milledes IPv6 on juba vaikimisi aktiivne.

ICMPv6 spetsifikatsioon RFCdes on hea lähtekoht protokolli funktsionaalsuse uurimiseks.
Kuna RFC on oma olemuselt erinevate osapoolte kokkulepe siis on oluline üle kontroll-
ida ka protokolli implementatsioon lõppsüsteemides. Ülekontrollimine peaks hõlmama ka
perimeetril paiknevate võrguseadmete keskkondi; see võimaldab ühelt poolt hinnata imple-
mentatsiooni vastavust RFCdele ning teisalt sõnastada uusi parimaid praktikaid tulemüüride
seadistamiseks.

Juhtumipõhine katsetamine, milles iga juhtum on erinev tulemüüri seadistus, on sobilik metood-
ika implementatsiooni ülekontrollimiseks. Katsetel tuleb arvestada kahe võrguliikluse vooga:
esimene on suunaga välisest perimeetrist sissepoole eesmärgiga tungida sisemisse perimeetrisse,
ning teine on suunaga sisemisest perimeetrist väljapoole eesmärgiga toimetada andmeid välja.
Teine liiklusvoog vajab erilist tähelepanu, sest tänasel päeval on üsnagi suur tõenäosus, et
infosüsteemi sisemises perimeetris on juba aktiivne pahavara mille tegevus andmete välja-
toimetamisel ei ole veel tuvastatud. Käesolev teadustöö annab aluse mõistmaks ICMPv6 pro-
tokolli ja selle operatsioone. Kaks hüpoteesi loovad aluse teaduslikel alustel läbiviidavatele
katsetele. Katsetes kasutatakse erinevaid tulemüüri seadistusi ehitamaks üles juhtumeid tes-
timiseks erinevate testikomplektidega, mis omakorda on tuletatud RFCdest. Testid on imple-
menteeritud lahenduse kontrollis ja nende abil on võimalik saada hüpoteesidele kinnitus või
need ümber lükata.

Märksõnad: IPv6, ICMPv6, tulemüür, protokolli spetsifikatsioon, RFC, teokstegemine, katse,
sisenev, infoleke

3

Abstract

The ICMPv6 protocol assumes new relevance for the correct operations of IPv6, with respect

to the ICMP protocol. In fact, even if they share the same naming convention and some

functionalities, they are two different protocols. In terms of security, the configuration of the

firewalls, the border network devices to which part of the security is delegated, is critical.

The ICMPv6 protocol requires to follow new best practices in the configuration of the fire-

walls, because old practices are no more applicable. This point is crucial, because taking

into account the cohexistence of IPv4 and IPv6 during the transition period, the risk is to

apply old practices, or none at all, also for ICMPv6, in environments where IPv6 is active by

default in most OSs.

The ICMPv6 specifications, described by RFCs, are the starting point to understand the

functionalities of the protocol. Since RFCs represent an agreement between different stake-

holders, it is necessary and urgent to verify its implementation inside end-systems. This

verification should also include an environment with a border network device. This allows

to both assess the implementation of the protocol, and to define new best practices for the

firewall.

A scenario-based experiment, where each scenario represents a firewall configuration, is the

ideal candidate. In addition, experimentation must consider the two network flow directions,

one originating from an external network for infiltration operations, and one originating from

the internal local segment for exfiltration operations. The latter needs particular attention,

because new trends in the sophistication of malware and the amount of budget to implement

them, also known as advanced persistent threats, reveals that an adversary may already have

a foothold in the internal private network, with the goal to exfiltrate sensible data.

This research provide the basis to understand the ICMPv6 protocol and its operations. Two

research hypothesis define the basis to proceed with an experimentation based on the scien-

tific method. The experiment uses different firewall configurations to build scenarios to be

tested using different test set, which in turn are derived from the RFCs. A proof of concept

implements such tests, and allows to validate, or negate the hypothesis.

Keywords: IPv6, ICMPv6, firewall, protocol specification, RFC, implementation, experiment,

infiltration, exfiltration

4

Glossary of Terms and Abbreviations

Node: a device that implements IPv6[1].

Link:
a communication facility or medium over which nodes can
communicate at the link layer, i.e., the layer immediately below
IPv6[1].

Interface: a node’s attachment to a link[1].

Neighbors: nodes attached to the same link[1].

Prefix: a bit string that consists of some number of initial bits of an address[1].

On-link: an address that is assigned to an interface on a specified link[1].

Off-link: an address that is not assigned to any interfaces on the specified link[1].

Longest prefix

match:

the process of determining which prefix in a set of prefixes covers a
target address. A target address is covered by a prefix if all of the bits
in the prefix match the left-most bits of the target address. When
multiple prefixes cover an address, the longest prefix is the one that
matches[1].

Reachability:

whether or not the one-way "forward" path to a neighbor is functioning
properly. In particular, whether packets sent to a neighbor are reaching
the IP layer on the neighboring machine and are being processed
properly by the receiving IP layer[1].

Packet: an IPv6 header plus payload[1].

Link MTU:
the maximum transmission unit, i.e., maximum packet size in octets,
that can be conveyed over a link[1].

Path MTU:
the minimum link MTU of all the links in a path between a source
node and a destination node[1].

Multicast capable:
a link that supports a native mechanism at the link layer for sending
packets to all (i.e., broadcast) or a subset of all neighbors[1].

Point-to-point: a link that connects exactly two interfaces[1].

5

Link-local address:
a unicast address having link-only scope that can be used to reach
neighbors[1].

All-nodes multicast

address:
the link-local scope address to reach all nodes, FF02::1[1].

All-routers

multicast address:
the link-local scope address to reach all routers, FF02::2[1].

Solicited-node

multicast address:

a link-local scope multicast address that is computed as a function of
the solicited target’s address. The function is chosen so that IP
addresses that differ only in the most significant bits will map to the
same solicited-node address thereby reducing the number of multicast
addresses a node must join at the link layer[1].

Unspecified

address:

a reserved address value that indicates the lack of an address. It is
never used as a destination address, but may be used as a source
address if the sender does not know its own address. The unspecified
address has a value of 0:0:0:0:0:0:0:0[1].

Covert Channel:

is a communication paths that allow information transfer in violation
of a system’s security policies. In the context of network protocols,
covert channel communication is generally achieved by manipulating
an overt communication[2] 1.

Cover traffic:
is the traffic that is being manipulated by covert channel
participants[2].

Storage Covert

Channel:

manipulates a storage location in such a way that it conveys
information to an observer. This definition was initially applied only to
covert channels within a single machine or at least with a shared
storage location. It was then extended to network covert channels and
in this context, a storage channel is understood to be a channel that
relies on modification of network traffic content[2].

Active Warden:

is positioned so that it can observe and modify network traffic in its
area of responsibility. The task of active wardens is to prevent and
disrupt covert channel communication by modifying the content of
network traffic[2]

1open to view or knowledge; not concealed or secret, http://www.dictionary.com/browse/
overt, accessed 1.4.2016

6

http://www.dictionary.com/browse/overt
http://www.dictionary.com/browse/overt

Policy:
a formal, brief, and high-level statement or plan that embraces an
organization’s general beliefs, goals, objectives, and acceptable
procedures for a specified subject area 2.

Standard:
a mandatory action or rule designed to support and conform to a policy
2.

Procedure:
procedures describe the process: who does what, when they do it, and
under what criteria 2.

System

Preservation:

guarantees that the stegomessage is well formed within the rules of the
protocol; the actual meaning of the stegomessage may be different than
the original cover[3].

Semantic

Preservation:

means that, as observed at a point along the message’s path through the
network, the stegomessage has the same meaning as the original
cover[3].

IDS: Intrusion Detection System.

IPS: Intrusion Prevention System.

2http://www.slu.edu/its/policies-and-processes, accessed 1.4.2016

7

http://www.slu.edu/its/policies-and-processes

Contents

1 Introduction 12

2 Background and Related Work 18
2.1 Background . 18
2.2 Covert Channel . 24
2.3 Existing Tools . 29
2.4 Summary . 31

3 Methodology 33
3.1 Scientific Method . 34
3.2 Research Questions and Hypothesis . 35
3.3 Experiment Foundation . 37
3.4 Summary . 43

4 Implementation 44
4.1 Technical Details - Devices . 44
4.2 Network Configurations . 47
4.3 Firewall Configuration . 50
4.4 Proof of Concept (PoC) and Test Set . 55

5 Experiment 61
5.1 First Hypothesis . 61
5.2 Second Hypothesis . 63

6 Results 68
6.1 First Hypothesis . 68
6.2 Second Hypothesis . 74

7 Conclusions 83
7.1 First Hypothesis . 86
7.2 Second Hypothesis . 89
7.3 Firewall and Protocol Design Evaluation . 92
7.4 Future Work . 93

References 94

A Appendix - Cisco ASA Version 98

8

B Appendix - Test Set - First Hypothesis 99

C Appendix - Commands - Second Hypothesis 100

D Appendix - Results 102
D.1 First Hypothesis . 102
D.2 Second Hypothesis . 104

E Appendix - Firewall Configurations 111
E.1 Netfilter Open Configuration . 111
E.2 ASA Default Configuration . 111
E.3 ASA Default with ICMP Module Configuration 114
E.4 Netfilter with Best Practices Configuration 116

F Appendix - Monitor Windows Firewall - PoC 119

9

List of Figures

1 Communication Scenarios[2] . 26
2 Network Configuration to test first hypothesis 48
3 Network Configuration to test second hypothesis 49
4 PoC initial screen . 56
5 The screen of the receiver . 62
6 The screen of the sender . 62

10

List of Tables

1 ICMPv6 Error Messages . 20
2 ICMPv6 Informational Messages . 20
3 RFC 4861 Messages . 21
4 Raspberry Pi implementation . 44
5 Linux Debian . 45
6 Linux Debian Firewall . 46
7 Windows 7 . 46
8 Linux Debian External . 47
9 Data Exfiltration Test Set . 99
10 PoC Commands - Second Hypothesis . 100
11 PoC Commands - Second Hypothesis . 101
12 PoC Commands - Internal Tests . 101
13 Data Exfiltration Results . 102
14 Data Exfiltration Results . 103
15 Attacking internal network, Destination Unreachable (Type 1) 104
16 Attacking internal network, Packet Too Big (Type 2) 105
17 Attacking internal network, Time Exceeded (Type 3) 105
18 Attacking internal network, Parameter Problem (Type 4) 106
19 Attacking internal network, Echo Request (Type 128) 107
20 Attacking internal network, Echo Reply (Type 129) 107
21 Attacking internal network, Router Solicitation (Type 133) 107
22 Attacking internal network, Router Advertisement (Type 134) 108
23 Attacking internal network, Router Advertisement (Type 134) 109
24 Attacking internal network, Neighbor Solicitation (Type 135) 109
25 Attacking internal network, Neighbor Advertisement (Type 136) 110
26 Attacking internal network, Redirect (Type 137) 110

11

1. Introduction

IPv6 is the designated successor of IPv4, a protocol specified and implemented in a context
with a limited number of users and hosts, most of them circumscribed to the scientific world.
The need of a new protocol arose because of a changed context: the evolution of new powerful
devices and their spread in many field of the society, which in turn modified the behavior and
the requests of new entities, being them individuals or big organizations. The new IP protocol
has been specified and redesigned in many aspects, taking into consideration the evolution of
the requirements and the future needs of the involved actors.

IPv6, with respect to his predecessor, changed in many aspects. The headers have been
modified to accommodate new functionality and improved capabilities, mainly it provides
“expanded addressing capabilities”, “header format simplification”, “improved support for
extensions and options”, “flow labeling capability”, and “authentication and privacy capa-
bilities”. One of the most relevant aspect is the increased address space from 32 to 128
bits, which deals with the demand of new communicating devices to fulfill organization’s
requirements.[4]

Despite IPv6 specifications have been formalized in 1998, its spread and adoption by the
world community is far from being accomplished. Among the many possible reasons that
could explain this behavior, two of them deserve particular attention. The first one is the
depletion of address space, which has been mitigated by the introduction of Network Address
Translation (NAT)[5]: the use of NAT allows to use a private, not routeable, address space
for the internal network of an organization, and the use of one, or limited number, public
IPv4 address at the network boundary. This technique mitigated the need to request an IPv6
128 bits address by organizations, because their requirements to allocate new IPv4 address
from IANA3 have been reduced. The second reason is related to the applications and services
offered by organizations. These applications have been written for, and tested against, IPv4.
Many of them represents IT assets which are critical for the business assets of enterprises: the
introduction of new applications written for IPv6 represents a great effort in terms of financial
investment, time for implementation and testing, and use of enterprises’ resources.

The IPv6 world is composed by a number of protocols, which are used by nodes to fulfill
their requirements: for some of them it is possible to find similar functionality in IPv4, while
others are completely new protocols. In this set of protocols, one of them deserves particular

3http://www.iana.org/, accessed 20.03.2016

12

http://www.iana.org/

attention: ICMPv6.

ICMPv6, despite it shares almost the same naming convention with respect with the pre-
decessor, it is a new protocol, which make it a critical subject of research by the scientific
community. The reasons behind its criticality arise because it holds some functions which
are similar in ICMP (e.g. Echo Request), but at the same time it introduces a number of new
functionalities, and responsibilities, for the correct behavior of an IPv6 node.

ICMP has been used by IPv4 to manage Error and Informational messages to allow for a
better management and troubleshooting of the network. This protocol has been tested for
many years, with the identification of vulnerabilities which can potentially be exploited by
malicious actors. Many best practices 4 5 suggested to filter ICMP messages at network
boundaries to mitigate the risk of the exploitation of some vulnerabilities without compro-
mising the network functionalities. Nowadays the network evolved in more sophisticated
designs, and new concepts, like Bring Your Own Device (BYOD) and wireless networks,
partially obsolete the very same concept of boundaries, bringing new threats to the internal
network. The security controls could no more be applied only at the boundaries, but must
be introduced in other segments of the network. This new security controls applies to the
ICMP protocol as well, and filtering must be introduced where such messages are not strictly
required by network administrators.

“ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to
perform other internet-layer functions, such as diagnostics (ICMPv6 Echo). ICMPv6 is an
integral part of IPv6, and the base protocol (all the messages and behavior required by this
specification) MUST be fully implemented by every IPv6 node”[6].

This paragraph from RFC 4443 describes broadly the purpose of ICMPv6, but an impor-
tant part is underlined by the last sentence, which states that the base protocol must be
fully implemented by every IPv6 node. In the RFC terminology, the word “MUST, or the
terms REQUIRED or SHALL, mean that the definition is an absolute requirement of the
specification“[7]. The real distinction between ICMP and ICMPv6 in this context is formal:
RFC 792 states that “ICMP [...] must be implemented by every IP module”[8], which means
that an implementation is required. The ICMPv6 specification is more precise because it
refers to every IPv6 node, which covers the implementation inside the module, but also, with

4http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.
html#anc29, accessed 20.03.2016

5http://www.cisco.com/c/en/us/about/security-center/
firewall-best-practices.html#_Toc332805964, accessed 20.03.2016

13

http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html#anc29
http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html#anc29
http://www.cisco.com/c/en/us/about/security-center/firewall-best-practices.html#_Toc332805964
http://www.cisco.com/c/en/us/about/security-center/firewall-best-practices.html#_Toc332805964

the concept of node, implies that the node must be able to use its functions.

This is a fundamental distinction, because the best practices in use with ICMP, with ICMPv6
are no more relevant, at least with some message types. As it is written in this paper[9],
which cites RFC 4861[1], “ICMPv6 is used for basic functionalities and used by other IPv6
protocols [...] Neighbor Discovery Protocol is a protocol used with IPv6 to perform various
tasks like router discovery, stateless automatic address configuration of a node, neighbor
discovery, duplicate address detection, determining the Link Layer addresses of other nodes,
address prefix discovery, and maintaining routing information about the paths to other active
neighbor nodes”.

This is the first critical point to consider: despite version 4 and version 6 of the ICMP pro-
tocol have some similar functions, they are different protocols. ICMPv6 is not a protocol
modified to adapt itself to IPv6, a new analysis must be performed in an exhaustive way tak-
ing into account new scenarios, and new best practices must be applied to mitigate the risk of
exploitation of new vulnerabilities related to its functionalities.

Another important aspect to take into consideration when dealing with IPv6 in general, and
with ICMPv6, is the transition from version 4 to version 6. For the aforementioned reasons,
many organizations delayed as much as they could the deployment of an IPv6 native Internet
connectivity. Nevertheless the scientific community continued to improve the new version
and its related protocols, and Operating Systems (OS) started to include them in their net-
work implementations. At the same time, techniques to allow a slow transition have been
developed: examples of that are the dual stack, the presence and coexistence of both protocol
versions in the same node, or the encapsulation of IPv6 inside IPv4, in those network seg-
ments where IPv6 has not been deployed yet. Additionally, in many OS, IPv6 is active by
default and preferred over IPv4.

These aspects must not be underestimated and show again how critical and urgent is an in-
depth analysis of ICMPv6: not only this protocol is fundamental for IPv6 and the best prac-
tices can be used only against the previous version, but it is already present and activated
in OSs that users employ in their everyday life. The last statement introduces another as-
pect to take into account: network administrator and security officer must not deal only with
threats deriving from the exploitation of technical vulnerabilities, but also with behavioral
procedures shaped around years of practice. IPv6 and ICMPv6 are not protocols that will be
introduced in the future, they are already present in this transition period and we must deal
with them now. Countermeasures must be in place, at the network boundaries and inside crit-

14

ical network segments above all, that take into consideration version 6 of the protocols. Such
countermeasures must follow new best practices carefully shaped around the new version.

The underlined elements, the differences between the two ICMP versions and the transition
period with the coexistence of IPv4 and IPv6, lead to another topic: the impact of the full
deployment of IPv6, and ICMPv6, and the implications for the involved actors, being them
users, enterprises, states, or malicious actors.

The scientific community has been involved in the specification, in the improvement, and
testing of the protocols since time. But, with respect with the preceding version of the proto-
cols, version 6 of the suite must deal with a different situation. The electronic communication
is spread around the world in a pervasive way, and the near future, with the Internet of Things
(IoT) 6, will further the spread. ICMPv6, and IPv6, will be fully deployed in a world strongly
dependent on the electronic communication, where critical infrastructures (CI) must be man-
aged and protected, where enterprises relies on its IT infrastructure to support their business
assets, and where users are tight to their online experience for their everyday needs. This
change in the very basic infrastructure of the network will have an impact which has no
terms of comparison with respect to IPv4, where the initial small amount of users allowed
to discover the concept of security and to learn by experience. The transition period, which
introduced some security issues, in this case works as a mitigation technique to allow re-
searcher to test the protocols in an exhaustive way, without waiting that the fully deployed
IPv6 infrastructures reveals potential weaknesses.

This urgency can be better understood by taking into consideration the evolution of the
threats, the sophistication of malware, and the malicious actors involved in the research of
vulnerabilities to exploit, as well as their purposes and means to reach their goals.

The term Advanced Persistent Threat (APT) is used to define ”any sophisticated adversary
engaged in information warfare in support of long-term strategic goals“[10]. One of the main
characteristic of APT detected in the wild is the sophistication of the attack. One example
is the Uroburos rootkit[11], which ”modular structure allows extending it with new features
easily, which makes it not only highly sophisticated but also highly flexible and dangerous“.
The analysis of the rootkit suggests that ”the development of a framework like Uroburos
is a huge investment“ and ”that it was designed to target government institutions, research
institutions or companies dealing with sensitive information as well as similar high-profile
targets“. There are other example of APT that suggested an evolution of the threat landscape,

6IoT, http://www.theinternetofthings.eu/what-is-the-internet-of-things, ac-
cessed 21.03.2016

15

http://www.theinternetofthings.eu/what-is-the-internet-of-things

like Stuxnet[12]. Even if the aforementioned malware do not target directly IPv6, they share
a common characteristic which is important to underline: the sophistication, the investment
behind them, and the presence of an Advanced Persistent Adversary (APA), term that ”depicts
not only the threat, but the threat actors as well“[13].

The evolution of the threat landscape depicts a situation where APA, often associated with
groups sponsored by state actors, have a remarkable budget to develop very sophisticated
attacks to reach their goals. In the current situation, given the impact that the full deployment
of IPv6 will have, those actors have the resources and the motivation to research and discover
vulnerabilities in IPv6, ICMPv6, and other protocols involved. Moreover, if this research will
succeed, APA can gain a considerable advantage over their opponents, because a possible
vulnerability at network layer may allow to bypass more easily the security mechanisms in
place and give more robust mechanisms to stay undetected for longer.

While research and tests on ICMPv6 are an ongoing process, the urgency and criticality of
the subject require a more in-depth analysis which take into account the full deployment, but
also the transition period. To pursue this goal it is important to start from the specifications
of the protocol, the RFCs. Those documents represent a guideline, the result of an agreement
between many stakeholders. As a guideline, there is no guarantee that the implementation
will follow the suggestion, even in the sections specified with a must.

The first contribution of this research is to produce the necessary awareness with regard to
IPv6 and ICMPv6. This is the starting point to understand the need to analyze the protocols
in detail. Furthermore, it is important to see the big picture, which include not only ICMPv6,
but also its relationship with the devices involved in the communication. Firewalls are devices
configured by human beings, which may commit mistakes and use different best practices.
Each configuration can produce a different scenario, which is worth to analyze because in
the real world each system may differ from another, and the goal of an APA is to find these
slight differences between them to take advantage. This work’s contribution is an analysis
of different scenarios where the use of the ICMPv6 protocol could arise different security
issues, with respect to the configuration of network boundary devices. A scenario-based
experiment needs also a test set, based on RFC specifications, and the implementation of a
software to conduct the experiments, which also represent a contribution of this research that
other researchers can use to validate the experiment, or can modify to their needs to include
other scenarios and tests.

Since best practices must be applied, this research will contribute by providing a firewall

16

configuration based on them. This configuration is part of a scenario and will be used as a
starting point to discuss the state of ICMPv6, in terms of security. In addition, the comparison
with another configuration/scenario, where the firewall’s task is just to forward packets, will
show how much the protocol needs to rely in other services to provide security. This con-
tribution will also offer a point of view, based on the network flow direction, to understand
the relevance of the firewall, and its rules, in providing the necessary security to an organiza-
tion’s network. This point of view involves also the design of the protocol and its ability to
provide some level of security in a particular scenario and network direction flow, which, in
turn, modifies the relevance of the firewall.

The novelty of this research resides in the scenario-based experiment, which involves the
identification of a test set based on the RFCs specifications, to find possible vulnerabilities
that can be exploited. Furthermore, the tests must consider both directions of the network
flow, from the outside to the internal network, and from the internal and trusted network to the
outside. The traffic traveling in both directions must cross a network boundary device, which
is a necessary condition to consider a potential vulnerability as such. The reason behind
the novelty of this approach is that, as this research will underline in next chapters, other
researches consider only one traffic flow direction, or the compliance with the protocol itself
of most implementation, without considering network boundary devices, which, taking into
account the transition period, may or may not be configured to cope with IPv6 and the related
protocols. Furthermore, this research is developed from a penetration testing point of view.
Penetration testing is a process with the aim to gain access to resources with the permission
of the owner[14]. This point of view is important, because the process simulates what an
attacker may do while attempting to gain access to company resources. As the research will
point out, a vulnerability may exist, but its exploitation may depend on the configuration of a
firewall, which might reduce the probability of the exploitation by a malicious actor.

The next chapters of this work will explore the background, the specifications inside RFCs,
and the related work (see chap. 2), which includes existing tools and projects to test ICMPv6,
and a review of the literature. Then the analysis proceeds with the definition of the methodol-
ogy (see chap. 3) of this research, which is based on the scientific method of the experimen-
tation; the chapter includes the motivation behind this choice and behind the choice of the
technology to conduct the experiments. The implementation is the next chapter (see chap. 4),
which deals with the details of the technology, followed by the experiment (see chap. 5),
which describes the set of performed tests. The chapter related to the results (see chap. 6)
includes a discussion about the results of the experiment and its meaning. Finally, the con-
clusions (see chap. 7) summarizes the research, discuss about suggestions and future work.

17

2. Background and Related Work

2.1. Background

“The Internet Standards process is an activity of the Internet Society7 that is organized and
managed on behalf of the Internet community by the Internet Architecture Board (IAB)8 and
the Internet Engineering Steering Group (IESG)9. [...] an Internet Standard is a specifica-
tion that is stable and well-understood, is technically competent, has multiple, independent,
and interoperable implementations with substantial operational experience, enjoys significant
public support, and is recognizably useful in some or all parts of the Internet. [...] Each dis-
tinct version of an Internet standards-related specification is published as part of the Request
for Comments (RFC) document series. This archival series is the official publication chan-
nel for Internet standards documents and other publications of the IESG, IAB, and Internet
community.”[15]

This work starts by analyzing the RFCs related to ICMPv6, which specify the protocol and
the features to which each implementation must adhere. The main goal of an agreement on
a protocol is interoperability 10, but, since this is not a binding process, and even though
implementations follow the main specifications, it is always possible that some of them do
not adhere completely. This could lead to some interoperability issues, which may introduce
vulnerabilities in the protocol.

The background of this research is represented by two RFCs, “Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification”[6], and “Neigh-
bor Discovery for IP version 6 (IPv6)”[1]. These two RFCs specify the general header for
ICMPv6 messages, and each specific message header to which each implementation must
adhere.

The mentioned RFCs represents the core of this research. Nevertheless, there are other RFCs
that it is worth to briefly introduce inside this chapter. The reason behind this choice is the
dependency between different RFCs: some concepts or definitions that the core RFCs cite
are developed inside other RFCs, while other RFCs introduce new fields, which are not yet

7http://www.internetsociety.org/, accessed on 25.03.2016
8https://www.iab.org/, accessed on 25.03.2016
9https://www.ietf.org/iesg/, accessed on 25.03.2016

10http://www.merriam-webster.com/dictionary/interoperability, accessed on
25.03.2016

18

http://www.internetsociety.org/
https://www.iab.org/
https://www.ietf.org/iesg/
http://www.merriam-webster.com/dictionary/interoperability

accepted by the community, but are implemented in some development libraries used for this
research. These RFCs are only partially in scope with this research.

The IPv6 specification[4] is only partially in the scope of this research, but it must be men-
tioned, because of its tight relationship with ICMPv6, and because in each ICMPv6 message
type specification some of its fields are cited. Other RFCs used by the research are the “Ex-
tended ICMP to Support Multi-Part Messages”[16], and the RFCs that specifies additional
Flags for the Router Advertisement message [17][18][19]. These RFCs are not in scope with
these research, even though the flags that they specify will determine some of the choices of
this research, as it will underlined later.

RFCs use a specific set of words to express the requirements of the implementations [7].
Words like “must”, or “should” have a particular meaning, as expressed in the cited docu-
ment, that should be well understood by implementors. The reason is that a lack of com-
pliance may lead to the introduction of some vulnerabilities, where a node is expecting a
particular behavior from another peer, while the peer’s implementation follows slightly dif-
ferent specifications. This research will use these key words to generate some tests, inside
the second part of the research, to verify the enforcement of the rules associated to them.

RFC 2460

From the point of view of this research, there are four interesting fields which are strictly
involved in the ICMPv6 specification [4]:

• Next Header: identifies the type of header immediately following the IPv6 header.
The ICMPv6 value is 58. The complete list is available on IANA’s website11

• Hop Limit: decremented by 1 by each node that forwards the packet.
• Source Address
• Destination Address

While the Destination Address must be used to route the packets to the destination, the Source
Address can be manipulated by an attacker. This is often referred to as spoofing the source
address. The goal for an attacker is to hide and represent itself as a legitimate source.

The Hop Limit is another field extensively used inside the specifications of the messages
defined by the Neighbor Discovery protocol. The value of 255 is required to enforce the local
segment scope of the protocol.

11http://www.iana.org/assignments/protocol-numbers/protocol-numbers.
xhtml, accessed on 27.03.2016

19

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

RFC 4443

ICMPv6 messages are categorized by its type field, while the code field in this specification
identifies a specific message under the category.

The Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6)
Specification categorizes two broad type of messages, Error and Informational messages.
The tables (see tab. 1 and tab. 2) summarize the type of ICMPv6 messages described in this
RFC.

Type field Error Message
1 Destination Unreachable
2 Packet Too Big
3 Time Exceeded
4 Parameter Problem

Table 1. ICMPv6 Error Messages

Type field Informational Message
128 Echo Request
129 Echo Reply

Table 2. ICMPv6 Informational Messages

Besides type and code fields, another field is common to all the ICMPv6 messages: the
checksum. The checksum is “used to detect data corruption in the ICMPv6 message and
parts of the IPv6 header” and “is the 16-bit one’s complement of the one’s complement sum
of the entire ICMPv6 message, starting with the ICMPv6 message type field, and prepended
with a pseudo-header of IPv6 header fields”. The procedure implies to sum up the binary
values of 16 bit at a time, and invert the bit values of the final result.[4]

The RFC includes a Message Processing Rules section, which underlines the rules that a node
must observe while processing an ICMPv6 message. This section contains rules that must
be enforced by each implementation, and will be used to build some of the test of the second
part of this research.

As this research will show, some test may be spread across different scenarios, while other
are more suitable to be performed only in a specific scenario. An example of that is an Echo
Request message, which will be used to test the message itself, but it is also part of other
tests, as payload, or to activate some process inside the target in the context of the Neighbor
Discovery protocol (see [1]).

20

Attacks against this kind of messages include network scanning, Neighbor Cache exhaustion,
and the fragmentation of the packets. Even if some of them are more difficult to perform,
comparing to its IPv4 version, they are still present. The complete scan of an IPv6 network
using an Echo Request, for example, is not feasible, even though it is possible to achieve in
a more selective way, but a slightly modified packet, with a spoofed source address which
prefix is equal to one of the internal segment, can produce side effects like the Neighbor
Cache exhaustion of the target host[20].

RFC 4861

The Neighbor Discovery (ND) protocol has many functionalities. It is used by an IPv6 node
to discover routers, to learn about parameters for the comunication inside and outside the
network segment, to obtain or give information about the addressing scheme, to determine the
link-layer address of neighbors, hosts and routers. In addition, it is used for the reachability
process, to determine if a host is still alive, and to determine if an address is already in use by
another node on the link.

The RFC defines five additional messages, characterized by the type field (for these messages
the code is always zero), as summarized in tab. 3.

Type field Message
133 Router Solicitation
134 Router Advertisement
135 Neighbor Solicitation
136 Neighbor Advertisement
137 Redirect

Table 3. RFC 4861 Messages

This RFC defines in addition five options, with the possibility to be extended in the future,
that “provide a mechanism for encoding variable length fields, fields that may appear multiple
times in the same packet, or information that may not appear in all packets”[1]. Options
defined in the document are:

• Source Link-Layer Address
• Target Link-Layer Address
• Prefix Information
• Redirect Header
• MTU

For each message type, one or more options are allowed, or required, to include the necessary
21

information to perform the tasks for which it has been sent.

The RFC specifies the tasks for which a message has been defined, and the entities that are
allowed to send them, or the node type that should expect such a message. Another infor-
mation regards the scope of the message, which is link-local. That is, the network segments
which boundaries are defined by a layer three device that is able to forward the packets to
other network segments. This information is important, because some rules enphasize and
enforce this concept, by the definition of field values that deny the forward of a packet (e.g.
the IPv6 Hop Limit field must be 255), or by the definition of the scope of the address that
must be used in the source and destination address fields (e.g. an address with link-local
scope). The processing rules section, of each message type, defines some of these rules, by
stating the requirements that a packet must satisfy in order to be accepted by the node.

The Neighbor Discovery protocol has been discussed mostly regarding internal attacks, in
scenarios characterized by insiders, disgruntled employees, or attackers that gained a foothold
in the internal network. Such attacks include the Denial of Service (DOS), for example
by preventing new nodes to configure their IPv6 address, and Man in the middle (Mitm),
where the attacker positions itself between a target and the boundary device to manipulate or
intercept the network traffic. Other attacks include the manipulation of packets usually sent
by a router (Router Advertisement) in order to manipulate the creation of IPv6 addresses, or
the modification of information such as the Maximum Transmission Unit (MTU) of the link.
One aspect to take into consideration is the complexity of ICMPv6 and their specifications.
RFCs are developed to add new functionalities, to modify obsolete functions, or add new
message types. Inside this galaxy of documents, vulnerabilies may be introduced in the
implementation of the protocol[20].

This research, during experimentation, will try to abuse the ND protocol from the outside
network to verify the implementation of the rules that define its link local scope.

RFC 4884

This proposed standard specifies additional fields for both ICMP and ICMPv6. There are
two ICMPv6 message types that are involved in this specification, Destination Unreachable
and Time Exceeded. For both of them, a Length field has been added in the most significant
bit space that was reserved for the Unused field. Accordingly to the RFC, “the syntax and
semantics of all fields are unchanged”[16].

RFC 3775, RFC 4191, RFC 4389

22

These RFCs specifies flags added to the Router Advertisement message, and are not in scope
with this research. Despite this, as for RFC 4884, one library used to build the experiment
implements this proposed change, and should be taken into account.[17, 18, 19]

Another reason to briefly cite these RFCs is to show the complexity of the implementation of
the ICMPv6 protocol. Even though an implementation must strictly adhere to the accepted
RFCs, there are situations where the new functionalities are included, like a testing library,
or a new application under testing that will include such functions. The complexity, both
on following the requirements inside the galaxy of RFCs, and because ICMPv6 messages
are used by other protocols and functionalities, may introduce vulnerabilities that are more
difficult to discover.

In order to promote the use of IPv6 and to assess the readiness of applications and OSs, a
project called IPv6 Ready has been created, and it is dicussed next.

IPv6 Ready

The IPv6 Ready Logo 12 is “a conformance and interoperability testing program intended to
increase user confidence by demonstrating that IPv6 is available now and is ready to be used”.
Its mission “is to define the test specifications for IPv6 conformance and interoperability
testing, to provide access to self-test tools and to deliver the IPv6 Ready Logo” [21].

The procedure to obtain the certification and the possibility to exhibit the IPv6 Ready Logo
on the products is to first download the test specifications. After that it is possible to use a
self-testing tool or to submit the product to specialized and approved laboratories.

IPv6 Ready project entered the phase 2 and version 4.06 of the test since 2010. Phase 1
indicated “that the product includes IPv6 mandatory core protocols and can interoperate with
other IPv6 equipments”, while Phase 2 indicated “that a product has successfully satisfied
strong requirements stated by the Logo Committee”.

The project produced a detailed set of documents[22][23] which indicate the required net-
work topology, as well as the detailed list of tests to be performed against each protocol.
Tests are organized in sections based on RFCs, and inside each section in groups defined by
their functionalities, e.g. Address Resolution and Neighbor Unreachability Detection for the
section RFC 4861. Inside the section it is defined the scope, which describes broadly the
content of the RFC, and the default packet of the message type (ICMPv6).

12https://www.ipv6ready.org, accessed 2.3.2016

23

https://www.ipv6ready.org

In each group, e.g. “Address Resolution and Neighbor Unreachability Detection”, the tests
are described with a purpose, e.g. “Verify that a node correctly determines that a destination
is on-link”, the references inside the specifics RFCs, and the test setup with each packet defi-
nition, with the fields that differ from the mentioned default packet setup. Then the procedure
to perform the test is shown, divided into parts.

The project covers all the RFCs in scope with this research with extensive tests, with great
emphasis on RFC 4861, which is divided in three groups:

1. Address Resolution and Neighbor Unreachability Detection
2. Router and Prefix Discovery
3. Redirect Function

Tests cover the expected functionality, specified by the RFC, but also the behavior of nodes
in case of manipulation of the messages, e.g. a wrong Code field.

From the perspective of this research the test quality is very good, and it covers many possi-
bilities to attempt to gain a foothold from the outside to the inside network.

2.2. Covert Channel

In the context of an attack, malicious actors can exploit a vulnerability to gain a foothold in
the internal perimeter. This is a kind of scenario that concerns many actors, but it is not the
only one. There is another scenario to take into consideration, especially because of APTs
and the amount of resources they have. The case that the malicious actor has already gained
a foothold and want to exfiltrate data without authorization. The absence of a proper au-
thorization is an important concept, because it includes in the scenario also persons that are
authorized to access the network, like employees, but have no authorization to send informa-
tion outside the internal perimeter.

This scenario is characterized by the flow of the attack, from the internal perimeter to the
outside, and by the need, from an attacker point of view, to stay undetected and, at the same
time, to be able to pursue its goals.

The analysis of this scenario is presented next, and it is usually referred to with the presence
of a covert channel.

Before attempting to analyze the scenario characterized by a covert channel in a networked

24

communication, it is necessary to describe the context in which it came out first, that is, the
Prisoners’ Problem. This is important, because there are many similarities between the Pris-
oners’ Problem and the context of a covert channel: two communicating actors, or processes,
a warden, and a communication path that must be submitted to a policy in order to be allowed.

The Prisoners’ Problem

The Prisoners’ Problem involves two actors that “have been arrested and are about to be
locked in widely separated cells”, and a warden, who “is willing to allow the prisoners to
exchange messages in the hope that he can deceive at least one of them into accepting as a
genuine communication from the other either a fraudulent message created by the warden
himself or else a modification by him of a genuine message”[24].

In the context of a networked communication, “Alice and Bob exploit an already existing
communication path, corresponding to two arbitrary communicating processes: the sender
and the receiver. Wendy is a warden, located somewhere along the communication path,
monitoring all possible messages exchanged by Alice and Bob”[2].

In the analyzed scenario the attacker represents both the sender process located in the inside
network, and the receiver process, located outside. The warden is a firewall, or a router,
which allows specific communications from the inside to the outside, regulated by the orga-
nization’s security policy, standards, and procedures. The challenge for the attacker is to find
a communication path, which is allowed in the specific traffic direction flow, and use it as a
covert channel, in order to deceive the countermeasures in place to consider it as a legitimate
traffic.

Related Research

Covert channels are broadly divided into two categories: storage and timing. While the for-
mer implies a process that write into a shared resource, e.g. a protocol header field, the latter
is based on the timing of events. Timing covert channels needs a synchronization mechanism,
a clock in the receiving process which allows to measure the timing of events. For this rea-
son, and because of its complexity, noise, and lower bandwidth, “[f]rom the attacker’s point
of view, network storage channels are preferable to timing channels”[25].

This research, because of the complexity of timing covert channels, considers only storage
covert channels.

Lewandowski’s research defines a communication model for network storage channels, which
25

involves two parties who wish to communicate covertly. “As a cover, Alice and Bob might
either select a suitable, already ongoing communication or generate an appropriate one if they
can do so without arousing suspicion, and then they proceed to modify the cover communi-
cation’s content to transmit their information. Meanwhile a third party, Wendy, positioned
somewhere on the covert communication’s path, attempts to disrupt Alice and Bob’s efforts
while preserving the integrity of the cover traffic”[2].

The author extracted six scenarios (see fig. 1) from the model, based on the work of Lucena[26].

Figure 1. Communication Scenarios[2]

The six scenarios depict different positions of Bob and Alice in the communication model,
and the way the cover traffic (m) is manipulated by the covert channel (m′).

The first scenario is the simplest one, it involves a communication between Bob and Alice,
where Alice uses directly the covert channel and inserts the manipulated message, which
is directed to Bob, the receiver. The remaining scenarios explore different combinations,
depending on the behavior and identity of the sender, i.e. if Alice is the sender and introduces
a manipulated message in the channel, or Alice modifies an existing and legitimate one, or
on the behavior and identity of the receiver, i.e. whether Bob is the receiver or, where he is
not, if he restores or not the original message after reception[2].

“In these scenarios, Wendy always should be positioned between Alice and Bob so that she
can monitor m′ traffic. Were she positioned differently, and were unable to see m′, her pres-
ence would be irrelevant to the covert communication”[2].

For the scope of this research, it is assumed that the sender can control the covert chan-
nel and insert directly the manipulated message. This reduction in scope, with respect to
Lewandowski’s study, is justified by the limitation in time, and by the simplicity of the net-

26

work configuration used for the experiment, which will be highlighted later in next chapters.
However, it is worth saying that for an exhaustive testing of ICMPv6, related to covert chan-
nels, there are interesting implications to analyze inside the other scenarios, like the ability
to preserve the covert channel in situations where Alice must modify the original message of
the sender, or Bob must restore the original message before forwarding it to the legitimate
receiver.

This assumption, however, has some implications:

“Alice can modify the traffic to a greater degree, since Bob does not necessarily expect the
traffic to be meaningful and perhaps not even valid. On the other hand, if Alice and Bob
use their own traffic to provide cover, they run a greater risk of exposure as they are openly
communicating”[2]. Furthermore, in this research, it is assumed that the sender and the
receiver are different processes, but controlled by the same subject, the attacker.

Another topic to take into consideration, which relates to the behavior of the active warden,
is the system and semantics preservation. The concepts have been applied first to preserve
steganography 13[3], but “the definitions can be applied to covert channels as well”[2].

In the context of covert channels, “the property of syntax preservation determines whether
the modified traffic m′ adheres to the protocol syntax. On the other hand, the property of
semantics preservation guarantees that the meaning of modified traffic m′ is the same as the
original traffic m, or in other words that covert channel communication performed by Alice
and Bob does not alter the meaning of cover traffic”[2].

The above concepts acquire more relevance in a complex topology scheme, where an IPv6
packet must eventually traverse multiple wardens. Lewandowski’s work defines the concept
of “location-based syntax and semantics preservation”, which is useful to differentiate be-
tween nodes, along the path, “performing distinct functions” and with “multiple levels of
protocol knowledge and understanding”. Each node, with a particular function in the net-
work, may behave differently with respect to the packet in travel, and “as a result, a modified
traffic’s syntax or semantics might be deemed correct by an IPv6 node with limited protocol
knowledge while at the same time be rejected by a more knowledgeable node”[2].

This concepts will assume a particular relevance for this research when building the experi-
ment. As it has been said before, it is important not only to understand the ICMPv6 protocol

13“The art or practice of concealing a message, image, or file within another message, image, or file”, http:
//www.merriam-webster.com/dictionary/steganography, accessed 24.3.2016

27

http://www.merriam-webster.com/dictionary/steganography
http://www.merriam-webster.com/dictionary/steganography

by itself, but also its relationship with devices like firewalls (the active warden) and the dif-
ferent configurations which produce different scenarios. Each configuration may lead to a
different knowledge and understanding of the protocol by the node, which may affect the
ability to preserve the covert channel, and must be taken into consideration.

For example, it is worth to mention the reserved and unused fields, which are present in
some message’s headers. The receiver must ignore them, they have no meaning and any
modification does not change the semantics. If the syntax is not altered, these fields may
be ideal candidates for covert messages[2]. Therefor, choosing a different configuration for
the device, a firewall or router, may affect the level of knowledge of the protocol of that
device, and the ability to preserve the covert channel. Or, in the other way, each scenario
may produce different behaviors with the presence of a covert channel, and allow to assess a
particular configuration and its ability to prevent it.

Properties of Covert Channels

Lewandowski’s study proposed six properties of covert channels which are important for the
investigation. In this research, given its scope, two of them have been considered:

1. “degree of packet alteration – syntax- and semantics-preservation level of altered pack-
ets”. Since each configuration can have different syntax- and semantics-preservation
level, it is important to test each covert channel against each configuration, to assess
both the warden configuration and the covert channel in this particular scenario[2].

2. “channel bandwidth – amount of data that can be transfered in given covert channel
per packet of cover traffic”. This property does not affect the existence of the covert
channel, but its ability to be preserved for a longer period. Depending on the band-
width, a covert channel may be useful, from attacker perspective, only in situations
with a low amount of data to be exfiltrated, or when it is possible to insert a delay in
the transmission to avoid suspicion on the traffic[2].

Lewandowski observed that some of the considered protocols, Neighbor Discovery is an ex-
ample of them, “are designed for operation on a single network segment”. As a consequence,
“any covert channel using these protocols as a cover will be similarly limited in its range”, and
“the communication can be easily defeated by simple address-based filtering mechanism”[2].

This research, even though the observation may be correct, will not consider its assumption.
The reason is given, as stated before, by the fact that it is important to consider also the actual
transition period, where the two protocols, IPv4 and IPv6, coexist in many configurations.
This scenario implies that both networks are in place, but the active warden is configured

28

to inspect only IPv4-related protocols, thus with a low level of syntax and semantics preser-
vation knowledge, and any IPv6 packet will transit without deep inspection. For the same
reason, an address-based filtering mechanism for IPv6 would probably not be in place. An-
other aspect, still related to the active warden, is the direction of the communication, from the
inside to the outside: since it is considered a communication from a trusted to an untrusted
network, the default configuration may allow the traffic without restrictions.

Defense Against Covert Channels

The first line of defense is the identification of a covert channel. Identification try to analyze
the shared resource, i.e. header fields, during the design phase. Detection is the mechanism
used to reveal an active covert channel. To detect and eliminate running covert channels it is
possible to use protocol scrubbers, described in [27], traffic normalizers, and the aforemen-
tioned active wardens. Protocol scrubbers and traffic normalizers try to find and eliminate
ambiguities in the traffic flow. Active wardens and traffic normalizers analyze incoming traf-
fic and modify outgoing packets based on their knowledge of the protocol, e.g. setting to zero
reserved or unused fields. Active wardens have different level of knowledge, and abilities to
detect and eliminate attacks, depending on the type, which can be stateless, stateful, and
network-aware. Stateless wardens have no knowledge of previous traffic. Stateful wardens
can detect flows of traffic and base its decision accordingly to preceding knowledge of the
flow. Network-aware wardens have also the knowledge of the network topology. In case of
ICMPv6, it is possible to limit covert channels by disabling some message types, or limiting
the protocol size and rate[25].

2.3. Existing Tools

cctool

Lewandowski built a tool called cctool in order to perform the tests. The tool has the ability
to “verify the existence of the covert channels, as well as to test the functionality of active
wardens”. The results of his tests are strictly dependent on the quality of the wardens and
on the scenarios used for the tests, which include also the possibility to modify the traffic in
transit[2].

It is also worth mentioning some of the assumptions he made in order to better understand
the tests. The syntax and semantics preservation are important factors in scenarios where
the active wardens have the capabilities to understand, at different levels, the protocols. For

29

example, Lewandowski built a scenario, called Cover Correctness Test, where a sender pro-
duces ICMPv6 traffic which is manipulated by Alice, but there is no receiver, namely Bob, at
the end. The correctness of the covert channel, in this case, is demonstrated by the fact that
an ICMPv6 Echo Request reaches the destination and an ICMPv6 Echo Reply is generated
as usual. For such a test, “the conclusion is that the covert message embedding by Alice does
not disrupt the cover traffic enough to impede its normal functionality”[2].

One limitation of this kind of tests, as the author specified, is that many covert channel cannot
be tested, in particular where an answer is not expected back.

Another type of scenario, instead, include also Bob, who is able to receive the message and
restore it back to its initial, syntactically and semantically correct, version. In this case it
is possible to test also messages which do not include an answer in its processing rule, be-
cause the test environment expected that “both sender and receiver are located on a controlled
network”[2].

The results performed by Lewandowski using cctool showed that the manipulation of the
Source Address was defeated by the wardens. The tests on ICMPv6 implied an Echo Request,
with correctness measured with the answer, resulted in a half of them defeated in the case of
the manipulation of the Code field, while the covert channels were successful in case of the
Data field manipulation.

v00d00N3t

Another interesting tool that have been built with the purpose to test covert channel in ICMPv6
is Voodonet, or v00d00N3t. The purpose of the tool is to use ICMPv6 Echo messages as a
covert channel to tunnel traffic. Covert Channel is embedded in the Data portion of Echo
Reply message: the tool could send “Echo Reply messages with a payload of 1440 bytes
in payload with no problem”. The capabilities of the tool is to send and receive data from
keyboard (chat) or as text files. Another interesting functionality, which increases the ability
to maintain the covert channel, is a time- or bytes-based mechanism to throttle the dispatch
of the data[28].

The two mentioned tools have been built mainly with testing purposes in mind. There is a
suite of tools, instead, which has broadly functionalities and it is supposed to be used for
penetration testing purposes: thc-ipv6.

Thc-ipv6

30

The thc-ipv6 attack toolkit14 is a “complete tool set to attack the inherent protocol weaknesses
of IPV6 and ICMP6, and includes an easy to use packet factory library”. The suite includes
many features that could be used to test the IPv6 protocol in general, and the ICMPv6 protocol
in particular[29].

Alive6 is a tool used to check aliveness of IPv6 systems, both remotely using public ad-
dresses, and locally by taking advantage of an ICMPv6 Echo Request sent to the multicast
addresses[29].

Parasite6 can be used to perform a Man-in-the-middle attack to the internal LAN by exploit-
ing the Neighbor Discovery process, and sending Neighbor Advertisements to nodes with the
attacker MAC address and the IPv6 address of the requested node[29].

Another interesting tool is redir6, which use ICMPv6 redirect messages. The proposed tech-
nique takes advantage of the Redirect Header as an option for the Redirect message, which
includes the IPv6 header and the data[29].

It is interesting to highlight that the cited paper, dated 2006, took into account the transition
scenario and emphasized the possibility to attack the dual stack if proper filtering were not in
place for both IPv4 and IPv6.

2.4. Summary

Inside this section, this research started to analyze the background, that is RFCs documents.
RFCs are documents developed as an agreement to define standards upon which the Internet
is built. The two main documents which are in scope with the research are RFC 4443 and
RFC 4861, which define the ICMPv6 messages format and the processes for which they
have been developed. Besides the header formats, RFCs include directives to the protocol
implementation, using terms like MUST and SHOULD.

After that, the IPv6 Ready project has been presented. The project’s aim is to evaluate the
readiness of the different products to IPv6 with an extensive set of tests based on the RFC
specifications. The project offers, in many aspects, to analyze the opposite network flow
direction with respect to covert channels, from the outside to the inside network.

This research started to examine Covert Channels. This is a step on analyzing both directions

14https://www.thc.org/thc-ipv6/, accessed 4.4.2016

31

https://www.thc.org/thc-ipv6/

of the network traffic flow, from the inside and trusted network to the outside. Even though
a covert channel may exist in both directions, it is useful to understand, for example in case
of APT, that an attacker may already have a foothold in the network and wants to exfiltrate
sensible data to an outside address. In this context it is important to consider the presence of
wardens, firewall or routers, that may disrupt the covert channel. For such a reason, during
the experiment, will be noteworthy to consider different scenarios based on different warden
configurations.

The research continue by presenting the existing tools. Two of them, cctool and v00d00N3t,
have been built to test the covert channels. The third is a suite of tools, or toolkit, which has
been thought to perform security tests on IPv6 and ICMPv6.

In order to conclude this chapter, it is noteworthy to say that all the documents so far pre-
sented, if not otherwise specified, are, with different degrees, relevant for this research. The
RFCs establish the base of the research, while the other documents offer an insight to under-
stand the contest of some attacks and the reasons behind the choice to perform the tests.

32

3. Methodology

The second chapter of this research starts by analyzing the background. The analyzed RFCs
define the type of messages that compose the ICMPv6 protocol. For each message the RFCs
specify the header and the fields, and the behavior of the protocol to fulfill its functions. The
specifications include how to validate a message, the mandatory and optional fields, the data
that each field must, should, or may deliver. The language uses the terms must, should, may
in order to underline what is mandatory to include in the implementation of the protocol,
what it is better to include, and what may or not be implemented, leaving the developer more
freedom in how to implement a task. The RFCs represents the knowledge about the protocol.
The observation of the rules could lead to think if it is possible to break the rules in some
way, and what could happen if different implementors interpret them in a different way.

Another observation regard the environment on which the protocol operate: a network based
on a specific protocol suite. The Internet is a complex environment composed by devices
interconnecting each other, using many protocols. This complexity makes the Internet an
environment not suitable to try to find an answer to the questions derived by the observation.
This is because the amount of variables that it introduces do not allow to derive a unique
consequence from an action, and thus reliable conclusions. In order to be able to derive
reliable conclusions the environment must be simplified and be controllable. A controlled
procedure needs to have exactly one variable, and to achieve that a particular configuration
must be defined. A specific configuration of the environment represents a constant, thus
allowing to modify a specific rule. A set of tests is performed using manipulated rules against
a well defined configuration. Then the same set of tests can be performed against another
configuration, leading to a number of tests equal to the number of configurations multiplied
by the number of elements in the set.[30]

After the process of observing the background, and the environment in which the ICMPv6
protocol operate, this research found that the best methodology to follow is the scientific
method. The reason behind the choice is that many elements of the analysis in the second
chapter, and the observation of the data, lead to the formulation of questions and hypothesis,
that could be validated, or negated, by experimentation. As it will be better explained next,
the process of the scientific method is ideal to test the hypothesis derived by the research
questions, taking into account different configurations of the environment.

33

3.1. Scientific Method

The scientific method has its roots in the ancient Greek philosophy, with Plato and Aristotle.
The human reasoning has been the basis for the scientific evolution and studies, with the
expression of an hypothesis, the argumentation about the truth or untruth, and eventually the
formulation of a theory.[31]

An important distinction is between quantitative and qualitative research. Quantitative re-
search is based on the use of statistics or on data that are quantifiable and measurable, in
order to produce a result which is not biased on some context and, thus, could lead to a gen-
eralization of some theories. Qualitative research, instead, introduces the contextualization
and relies on the context in which it is possible to observe a given phenomenon, which is
more related to the human science, where observation and definition of a context in which
human beings interact may allow to validate or not an hypothesis.[32]

This research uses both a quantitative and qualitative approach to perform the experiment.
The qualitative approach is necessary to set up the experiment because of two factors: the
choice of the tests and the considerations about the context. The tests are chosen starting
from the description of the protocol inside the RFCs, which are for their nature not repre-
sentable in a mathematical way. Among all the possible tests, some of them are considered
for the experiment. The context is also very important and it involves the observation of
human behavior in the configuration of the border network devices and the choices of the
implementers of the end devices. The quantitative approach arises after the definition of the
test set. Each test is performed against a well defined configuration. The set of tests and a
specific configuration is an experiment where the only variable is the test itself. In this way,
this research is considering the quantitative approach, because inside the experiment, after its
set up, no other variable other then the specific test will change, thus allowing it to be measur-
able in a binary way: either failed or succeed. The conclusions of the experiments, however,
because of its context-dependent nature, could not lead to the formulation of a mathematical
evaluation. In other words it wont be possible to state that the ICMPv6 protocol is vulner-
able by itself, but only that, given this specific configuration, the protocol introduces some
vulnerabilities.

Following the work of Peisert and Bishop in How to Design Computer Security Experiments,
this research defines the following steps:

1. Form hypothesis
2. Perform experiment and collect data

34

3. Analyze data
4. Interpret data and draw conclusions

In addition to the aforementioned steps, Peisert and Bishop define three qualities, the most
relevant in the domain of computer security, that the procedures requires. The procedures
must be falsifiable, which means that the experiment must not be set up in order to justify
a positive answer, but to test hypothesis that may ends up to be false. The procedures must
be controlled, which involves the presence of exactly one variable. The procedures must be
reproducible, which assumes that it is possible to repeat the experiment and obtain the same
result.[30]

3.2. Research Questions and Hypothesis

The research questions are the starting point in order to define the hypothesis. Research
questions express what the research want to know about the specific topic, and leads to defi-
nition of an hypothesis, which represents what the researcher want to validate (or invalidate)
through the experiments. This research starts with a general research question, from which
two additional and more specific research questions have been derived.

Research Question

Is it possible to manipulate the ICMPv6 protocol and, by traversing border network devices,

use a network in an unauthorized way?

This question is a generalization which broadly introduces what this research want to know
and test in relationship with the ICMPv6 protocol. Since the question introduces too many
variables, it is useful and necessary to narrow down the scope, by defining two more specific
research questions.

1. Is it possible to exfiltrate data without authorization, from an internal network to the

outside, traversing a border network device, by manipulating the ICMPv6 protocol?

2. Is it possible to gain unauthorized access to an internal network, from the outside and

traversing a border network device, by manipulating the ICMPv6 protocol?

Hypothesis

The formulation of the hypothesis follows the research questions. The hypothesis is the
35

statement that the experiment aims to validate, which, following the aforementioned qualities
of the process, may be negated by the experiment itself and by the following interpretation of
data and conclusions.

The hypothesis of this research is:

It is possible to manipulate the ICMPv6 protocol to use a remote network in an unauthorized

way, after traversing a border network device

Even though this research will prove the truth of this hypothesis, some clarifications are nec-
essary, and the final discussion inside the conclusions will take them into account. The first
consideration is related to the general hypothesis itself, which, given its generality, may be
less interesting from a scientific point of view. As stated before, each test and configuration
is an experiment that may lead to prove the truth of the hypothesis for this exact experiment.
The truth is related to a single experiment in the context of a general hypothesis, and the
more experiments evaluate to true, the more relevant will be the results. It is very important
to emphasize and understand that once a single experiment evaluate to true, the general hy-
pothesis will be proved to be true. In other words, the truth of the hypothesis is the result
of the logical or of the set of tests performed against each configuration. From this point of
view the two more specific research questions, and the two sub-hypothesis, are more relevant
because by narrowing down the problem, they define more specifically the context and give
more indication about the results. The two sub-hypothesis are:

1. It is possible to manipulate the ICMPv6 protocol to exfiltrate data without authoriza-

tion from an internal network to the outside and traversing a border network device

2. It is possible to manipulate the ICMPv6 protocol in order to traverse a border network

device and gain unauthorized access to an internal network

The keywords of the first hypothesis are exfiltrate data without authorization. While the
meaning of the first hypothesis is clear, the second one may be confusing. The keywords of
the second hypothesis are gain unauthorized access. With gaining unauthorized access, this
research do not refer only to the action of controlling a device remotely, but includes also the
access to a process to stop it from working (i.e. denial of service), the access to a process
to change its behavior (i.e. man in the middle), or the access to informations related to the
organization of networks and devices (i.e. reconnaissance).

The assumption done before, that is, that the truth of the hypothesis is given by the logical or
36

of the set of tests performed against each configuration, acquires more relevance in the case
of one of the sub-hypothesis, because a more thorough specification of the problem has been
made.

As it will be discussed in the conclusions, the relevance of the results is an important topic.
This is because the aim of this research is not only to prove the truth or untruth of the hypothe-
sis, but also to evaluate the relevance of the chosen wardens, the border network devices. The
more robust is the ICMPv6 protocol and its processing rules, the less relevant is the presence
of the firewall in order to block or allow a packet.

3.3. Experiment Foundation

As shown before, the first step of the scientific method involves the definition of the research
question, which in this case led to two sub-questions, and the formulation of the hypothesis
and sub-hypothesis. The next step involves the execution of the experiment. This research
will describe the experiment implementation in detail during next chapter and its execution
afterwards. Before that, it is important to discuss the foundation of the experiment, that is,
the choices and reasons behind it.

The selection of the test set is a critical task because it is the input of the experiment.

Test set selection

“[T]he truth or falsity of every hypothesis is to some extent conditioned on the input data set
[...] an additional step in testing a hypothesis is the validation of the input data set”[30]. The
statement underlines the importance of the test set selection discussed in this section.

Inside chapter two (see chap. 2), this research analyzed two RFCs which describe the ICMPv6
protocol and its messages. The analysis had the purpose to show the background of this
research and to underline the basis to select the test set for the experiment.

In the context of the set of tests, the ICMPv6 fields acquire relevance to prove the truth of
the first hypothesis, that is, the use of ICMPv6 to exfiltrate data from an internal network.
Each field has been designed to carry data to fulfill a specification of the protocol. In the case
of the data exfiltration described in this research, where the attacker controls both processes
of sending and receiving data, only the border network device may perform some checks to
validate the compliance with the protocol. The protocol itself may be used just as a transport

37

vector for some data, by means of its fields, with the exception of the destination address
specified in the IPv6 protocol, which is necessary to forward the packet to its destination.
In addition, each field implies an important indication for the purpose of exfiltrating data,
the bandwidth. In fact, depending on the size of the field and of the data to be exfiltrated,
it is possible to predict beforehand how many packets the process will use. This research,
during the experiment, manipulates each ICMPv6 field against each border network device
configuration, in order to test the hypothesis and assess the behavior of the warden.

RFC 4443 and RFC 4861 describe the specifications of each ICMPv6 message and the pro-
cessing rules in terms of what must, should, or may be implemented. These specifications
and processing rules define the behavior of the protocol in relationship with the functions for
which it is used by other processes or protocols. While to test the first hypothesis both the
sending and receiving processes are controlled by the attacker, the second hypothesis implies
that the attacker controls only the sending process. In fact, if a packet successfully traverse
the border network device, it is the behavior of the protocol and the implementation of the
end device, i.e. the receiving process, to be under testing. In other words, it is the ending
device that determines the truth of the hypothesis in case a packet has been able to reach it.
Since the ICMPv6 protocol defines messages used in different contexts and with different
scope, the Internet or a single network segment, the tests must follow this difference. The
test set used against Error and Informational message types is chosen by selecting the rules
that must be enforced and are defined by the Processing Rules section of the RFC. Instead,
the test set used against the ND protocol, will follow an iterative methodology. Because of its
link-local scope, the tests will be selected after the exploitation of a particular attack inside
the internal network has been successful.

The next step is the experiment environment and the reasons behind the choices.

Environment

The environment has been chosen taking into account the possibility to test the hypothesis and
properties related to the methodology. To test the hypothesis, the experiment must include an
attacking machine positioned in an outside network, which border is delimited by a border
network device. The attacking machine is responsible for the receiving process in testing the
first hypothesis (see hypothesis 1), and it is used to send the manipulated ICMPv6 packets
in testing the second hypothesis (see hypothesis 2). The network configuration includes two
wardens, a dedicated Cisco Adaptive Security Appliance (ASA)15, and a Linux host with

15http://www.cisco.com/c/en/us/support/security/asa-5505-adaptive-security-appliance/
model.html, accessed 12.10.2016

38

http://www.cisco.com/c/en/us/support/security/asa-5505-adaptive-security-appliance/model.html
http://www.cisco.com/c/en/us/support/security/asa-5505-adaptive-security-appliance/model.html

firewall (i.e. Netfilter services) capabilities. Each experiment uses only a warden with a
specific configuration. The details of each configuration is discussed in the next chapter
(see chap. 4). The environment includes two end devices, one Linux host and one Windows
host. End devices’ purpose is to be responsible for the sending process in testing the first
hypothesis (the Linux host), and, when testing the second hypothesis, to receive the ICMPv6
manipulated packets.

The choice of the devices for the experiment has been made taking into account the availabil-
ity of the devices or virtualized environments. For virtualized environments, one limitation
was the available memory (8GB) on the laptop used to develop the Proof of Concept (PoC)
and to host the virtual machines. The first research about the environment aimed to have a
complete virtualized environment. The difficulties in that research arose in finding a virtual-
ized environment for one of the warden, because one of the objectives of this work is to test
a security device which may be used in production systems, like a Cisco firewall. Since there
are no freely available images, this possibility has been abandoned. After a bit of research,
it has been possible to obtain a physical device (ASA firewall) on University’s laboratory,
which also has the advantage to decrease the overall need of memory for the virtualization.
The virtualized environment is built on top of VirtualBox16, chosen because it is available
as open source software with GNU General Public License (GPL) version 217, and supports
for many guest operating systems. The second warden is a Debian Jesse18 Linux virtualized
guest, which uses iptables19 to configure firewall services. The virtualized environment has
been chosen also for the two end devices, a Debian Jesse guest OS and a Windows 7 guest
OS. In this case Debian Jesse has been chosen because it is a Linux open source OS, and
because a Linux-based machine could be used as a server in production environments. The
Windows 7 guest, instead, may represent common workstations in an internal network, and a
virtual image could be downloaded20 with a free trial license. The last device to consider is
the attacking device, which had a constraint: because of the physical firewall, also that ma-
chine must be a physical device to form a network segment with the firewall. This constraint
at the beginning posed some issues, because of a limited availability of devices. After some
research the choice has fallen on a Raspberry Pi21 with a Kali Linux OS. The reasons behind
this choice is both on Kali Linux and Raspberry Pi as an attacking/pentesting device. Kali

16https://www.virtualbox.org/, accessed 12.10.2016
17http://www.gnu.org/licenses/old-licenses/gpl-2.0.html, accessed 12.10.2016
18https://www.debian.org/releases/jessie/, accessed 12.10.2016
19https://wiki.debian.org/iptables, accessed 12.10.2016
20https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

windows/, accessed 12.10.2016
21https://www.raspberrypi.org/, accessed 12.10.2016

39

https://www.virtualbox.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.debian.org/releases/jessie/
https://wiki.debian.org/iptables
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/windows/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/windows/
https://www.raspberrypi.org/

Linux has support for Raspberry Pi, and it is possible to download a pre-built image from
Offensive Security website22, which are the creators of Kali. In addition, Raspberry Pi with
Kali Linux may be a choice for attackers as a portable hacking station. Its dimension may
allow to hide it or to use it without causing suspicion in places where the use of a laptop is
not common.

Border Network Device Configurations

The firewall device, or service, is a key point in the security of the internal network of an orga-
nization. The market offers the state-of-the-art products, which include high performances in
terms of forwarding capabilities, processing power, deep content inspection, services. Nev-
ertheless, what make a firewall a security device that protect an internal network is the con-
figuration. Most of the products include a default configuration, which must be perceived
as a base, a starting point that should be tuned to the requirements of the organization. The
default configuration may be enough to cope with the most common attacks, but from an
attacker point of view it is sufficient to discover just one entry point in order to pass through.
This is even more effective considering an APT.

The hypothesis of this research includes a firewall, as a border network device, because of the
belief that the better way to test the ICMPv6 protocol is by correlating the implementation in
end devices with the configuration of the firewall. Of course, each protocol may be vulnerable
by itself, because of both its design or implementation, and dedicated research must be done
as well. Nevertheless, there are scenarios in which, even if the exploitation of a vulnerability
is possible, the surrounding environment may be a challenge for an attacker, reducing the
likelihood to reach his goals.

Each firewall configuration represents a scenario, and an experiment, in which there is a
set of tests and an end device. The set of configurations considered for this research is not
exhaustive. The reason is that, even though there are best practices, each configuration must
be fine-tuned for a particular set of requirements. The intent of this research is to show what
may be the choice of different actors, based on different budgets.

A Linux-based machine, with firewall services, may be the choice of an organization with a
low budget. Instead, a company with more resources may choose a dedicated device. This
broad category includes organizations without security specialists, which may use the default
configuration, or companies with the needed expertise to follow best practices.

22https://www.offensive-security.com/kali-linux-arm-images/, accessed
12.10.2016

40

https://www.offensive-security.com/kali-linux-arm-images/

In order to deploy meaningful configurations for the experiment, this research examined doc-
uments, best practices and RFCs.

The first document has been written by the National Institute of Standards and Technology
(NIST)23, which has a dedicated chapter on firewall policy and a sub-chapter on IPv6. Inside
the section there is a statement that shows how much has to be done for IPv6 and ICMPv6,
which says “[b]ecause IPv6 deployment is still in its early stages, there is not yet widespread
agreement in the IPv6 operations community about what an IPv6 firewall should do that
is different from IPv4 firewalls”. The suggestions inside the document are more related to
filtering packets with an invalid source or destination addresses, for example a link local
address arriving at the boundary from the outside network. Another advice suggests to block
all IPv6 traffic in the case that the organization do not use IPv6. For what is related to
ICMPv6, the document suggested to refer to RFC 4890, which will be examined next in this
chapter.[33]

The second document have been draft by the National Aeronautics and Space Administra-
tion (NASA)24 by means of the Communications Service Office (CSO), and used for the
NASA Integrated Communication Services (NICS) contract25. The document describes best
practices related to IPv6 in detail. The relevance for this research is limited, because the doc-
ument refers mostly to internal networks. Specifically, in the chapter related to firewall rules,
the document warns about the need of Neighbor Solicitation and Advertisement messages in
order for the Neighbor Discovery protocol to work[34].

The most important suggestions for this research are described in RFC 4890. Chapter 4
divides firewall rules in two main categories, which, inside, define five broad sub-categories.
The main categories are related to ICMPv6 transit traffic, and ICMPv6 local traffic. The
following are the five sub-categories:

1. Messages that must not be dropped
2. Messages that should not be dropped
3. Messages that may be dropped in firewall/routers
4. Messages that administrators may or may not want to drop depending on local policy
5. Messages that administrators should consider dropping

Inside each category the RFC defines ICMPv6 messages that belongs to it, which in fact
allows to build firewall rules accordingly[35].

23http://www.nist.gov/, accessed 12.10.2016
24http://www.nasa.gov/, accessed 12.10.2016
25https://cso.nasa.gov/content/about-cso-and-nics, accessed 12.10.2016

41

http://www.nist.gov/
http://www.nasa.gov/
https://cso.nasa.gov/content/about-cso-and-nics

In addition, the RFC cites messages and technologies which are not in scope with this re-
search: these messages are not taken into consideration.

The last source is related to the configuration of a Linux-based host with firewall services.
The source also refers to RFC 4890, but as the author states, do not cover all the advices
from there. Nevertheless this is a very good starting point to implement the Linux-based
scenario of this research[36]. In addition, there is a basic script26 that is downloadable from
the main Computer Emergency Response Team (CERT) website, hosted by the Carnegie
Mellon University27.

Based on the above described information, this research decided to implement the following
configuration categories:

1. Linux-based firewall services using ip6tables28, forwarding without filtering
2. Cisco ASA firewall with default configuration (without ICMP module)
3. Cisco ASA firewall with ICMP module
4. Linux-based firewall services using ip6tables, with RFC 4890 ICMPv6 best practices

Testing/Attacking application

The experiment part of this research includes a Proof of Concept (PoC) which is able to
manipulate and send ICMPv6 packets to test the hypothesis. The PoC is written in Python29,
with an external library to manipulate ICMPv6 messages, called Scapy30.

Python is a programming language which is possible to use in scripts, with functions, and
with object oriented programming. It is installed by default in most Linux distributions and
allows to use many third party libraries related to computer security and network testing. Ex-
ample of that is a project supported by Open Web Application Security Project (OWASP)31,
called OWASP Python Security Project32.

Scapy is a very flexible tool that allows to build packets for many protocols. It allows to use
the default protocol implementation, but it is also possible to manipulate packets or create new
protocol from scratch. In addition, it allows to control the process of sending and receiving
packets, and to visualize the content in different formats in order to build detailed reports.

26http://www.cert.org/downloads/IPv6/ip6tables_rules.txt, accessed 22.4.2016
27http://www.cmu.edu/, accessed 22.4.2016
28http://ipset.netfilter.org/ip6tables.man.html, accessed 22.4.2016
29https://www.python.org/, accessed 22.4.2016
30http://www.secdev.org/projects/scapy/, accessed 22.4.2016
31https://www.owasp.org/index.php/Main_Page, accessed 22.4.2016
32http://www.pythonsecurity.org/, accessed 22.4.2016

42

http://www.cert.org/downloads/IPv6/ip6tables_rules.txt
http://www.cmu.edu/
http://ipset.netfilter.org/ip6tables.man.html
https://www.python.org/
http://www.secdev.org/projects/scapy/
https://www.owasp.org/index.php/Main_Page
http://www.pythonsecurity.org/

For these reasons, it is the ideal library to build a PoC for the experiment.

Scapy has also some limitations: the IPv6, and ICMPv6, implementations inside the official
release have some bugs, which have been solved inside the development version. This re-
search used therefor the development version, which implements also the new ICMPv6 fields
that are specified in RFCs which have not completed the necessary approval steps[16, 17, 18,
19].

3.4. Summary

This research started this section by presenting the methodology, which is based on the sci-
entific method. After a brief historical introduction, there is a description of the steps that
the scientific method involves, starting from the research questions, which form the basis for
the hypothesis, then going through the experiment, the analysis of the data, and finally the
interpretation and conclusions.

After the general introduction of the methodology, this chapter went through the definition of
the hypothesis that have to be tested during the experiment. The general hypothesis produced
two more specific hypothesis, which are in relationship with the traffic flow direction of the
ICMPv6 packets, from the internal network to the outside, and from the outside to the internal
network, both of them traversing a firewall.

The next step in the chapter has been to describe the foundation of the experiment. This re-
search first defined the reasons behind the choice of the test set for each hypothesis. The
environment is another important aspect, with the choice of the involved devices which,
sometimes, has been conditioned by the available resources.

The configuration of the firewall, as border network device, is another important topic, be-
cause each configuration represents a scenario. A scenario is a representation of what might
be the choice of an organization for a firewall, based on aspects like the available budget, or
the needed expertise to configure it.

Finally, this chapter introduced the components used to build the testing/attacking PoC, which
are python as programming language and scapy as packets manipulating library.

The next chapter will dig deeper into the implementation of the experiment, with the details
of each involved component.

43

4. Implementation

The chapter is divided into four main parts. The first represents the technical details of each
involved device. The second represents the network used to test both hypothesis, and the
steps to go from the first to the second network configuration. The third describes in deep
each firewall configuration. The fourth part is dedicated to the PoC and the Test Set.

4.1. Technical Details - Devices

Virtualbox

Virtualbox is the virtualized environment used to host the Linux Debian device, the Windows
7 device, and the Linux Debian Firewall.

Virtualbox version:
VirtualBox Graphical User Interface Version 5.0.24_Debian r108355

Raspberry Pi with Kali Linux

Model OS OS and Software Update
Raspberry Pi 2 Model B Kali Linux 31.08.2016

Table 4. Raspberry Pi implementation

The OS has been downloaded33, and updated on 31.08.2016 with the following commands
(common for all Linux devices, root privileges required):
apt-get update

apt-get upgrade

apt-get dist-upgrade

Kernel version (uname -a):

Linux mazinga 4.1.19-v7 #1 SMP Tue Mar 15 15:10:00 CDT 2016 armv7l GNU/Linux

/etc/network/interfaces:
auto lo

iface lo inet loopback

allow-hotplug eth0

iface eth0 inet6 static

address 2001:db8:acad:1::2

33https://www.offensive-security.com/kali-linux-arm-images/, accessed
31.08.2016

44

https://www.offensive-security.com/kali-linux-arm-images/

netmask 64

gateway fe80::1

Python version:

Python 2.7.12+

Linux Debian

Guest configuration:

Base Memory: Processor: Video Memory:
2048MB 2CPU 24MB

Table 5. Linux Debian

The OS has been downloaded from debian website34.

Kernel version (uname -a):

Linux debian 3.16.0-4.amd64 #1 SMP Debian 3.16.7-ckt25-2+deb8u3 (2016-07-02) x86_64
GNU/Linux

First Hypothesis - Network Configuration (/etc/network/interfaces)
auto lo

iface lo inet loopback

auto eth0

iface eth0 inet6 static

address 2001:abcd:acad:2::2

netmask 64

gateway fe80::1

Second Hypothesis - Network Configuration (/etc/network/interfaces)
auto lo

iface lo inet loopback

auto eth0

iface eth0 inet6 auto

Python version:

Python 2.7.9

Linux Debian Firewall

Guest configuration:
34https://www.debian.org/releases/jessie/debian-installer/, installed and updated

on 31.08.2016

45

https://www.debian.org/releases/jessie/debian-installer/

Base Memory: Processor: Video Memory:
1024MB 1CPU 12MB

Table 6. Linux Debian Firewall

The OS has been downloaded from debian website34.

Kernel version (uname -a):

Linux debian 3.16.0-4.amd64 #1 SMP Debian 3.16.7-ckt25-2+deb8u3 (2016-07-02) x86_64
GNU/Linux

Network Configuration:

/etc/network/interfaces
auto lo

iface lo inet loopback

auto eth0

iface eth0 inet6 static

address 2001:db8:acad:1::1

address fe80::1

netmask 64

auto eth1

iface eth1 inet6 static

address 2001:db8:acad:2::1

address fe80::1

netmask 64

/etc/sysctl.d/99-sysctl.conf
net.ipv6.conf.all.forwarding=1

Python version:

Python 2.7.9

Windows 7

Guest configuration:

Base Memory: Processor: Video Memory:
512MB 1CPU 27MB

Table 7. Windows 7

The OS has been downloaded from Microsoft website35.
35https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

#downloads, installed on 24.10.2016

46

https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/#downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/#downloads

OS Version:

Microsoft Windows 7 Enterprise, 32 bit, OS version 6.01.7601 Service Pack 1 build 7601

Network Configuration:

Network Auto configuration of IPv6.

Linux Debian External Device

Guest configuration:

Base Memory: Processor: Video Memory:
1024 1CPU 24MB

Table 8. Linux Debian External

The device has been cloned from Linux Debian to test the ICMPv6 Redirect (Type 137) for
the second hypothesis.

Cisco ASA Firewall

Model:
Cisco Adaptive Security Appliance (ASA) 5505 Series

Version:

The version of the device and its component is visible in appendix A.

4.2. Network Configurations

The network configurations (see fig. 2 and fig. 3) used to run the experiment are very similar
and differ for a few details: the presence of the Windows box, and of the External device
inside the second configuration. In addition the second configuration requires some changes
in the addressing schema, by using an automatic configuration.

In fig. 2 is represented the configuration to test the first hypothesis (see hypothesis 1). The
context is given by an attacker who has gained a foothold on the internal network, but also by
a disgruntled employee, whose aim is to exfiltrate data without authorization.

The network configurations are very simple and are not reflecting a production environment
of a company. The reason behind this choice is to have a controlled environment, where
it is possible to modify one variable at a time, which is a mandatory constraint to test the
hypothesis.

47

Figure 2. Network Configuration to test first hypothesis

Another choice in fig. 2 is the use of a single internal device. There are two reasons behind
that. The first is related to the PoC, which is written in python with a focus on a Linux envi-
ronment. The second reason is related to the two processes, in the context of data exfiltration,
which are both controlled by the attacker: the sending process is managed by the PoC in the
Linux Debian internal host, while the receiving process is running in the external host. Since
both processes are not controlled only by the network stack implemented in the kernel of the
devices, this research decided that a test using another device (the Windows host) would have
been less interesting, while adding more complexity in writing the PoC.

The firewall, in both figures, is a general representation of a device with firewall services.
During the execution of the experiment, the whole test set related to the hypothesis is run
against each device and configuration. The difference between each configuration is dis-
cussed in detail later in this chapter, while the figure shows the common characteristics, the
IPv6 addresses of the two interfaces, one linked to the internal network, and one to the ouside
world.

In fig. 3 is represented the configuration to test the second hypothesis (see hypothesis 2).

In this scenario, the attacker controls the external device and want to test the possibility to use
the internal network and hosts in an unauthorized way. The scenario, and hypothesis, is more
oriented to test the implementation of ICMPv6 in different OSs, therefor the introduction of
an additional device. The presence of only two OSs is another limitation in scope of this
research. A Linux device may be the choice for a server offering services for an enterprise,
and a Windows 7 device simulates an employee workstation. Further research should take
into consideration a broader set of OSs.

48

Figure 3. Network Configuration to test second hypothesis

Network Configuration, from First to Second Hypothesis

To test the second hypothesis it is necessary to accomplish some more steps. Since the Neigh-
bor Discovery protocol is involved, the IPv6 address of the end devices, internal Linux Debian
and Windows 7, is auto configured after receiving a Router Advertisement from the firewall.

While for the ASA Firewall this is the default behavior, the Debian Linux Firewall needs
an additional package in order to send Router Advertisement, which could be installed as
follows:

apt-get install radvd

After the package is installed, edit the configuration file in /etc/radvd.conf, as follows:
interface eth0 {

AdvSendAdvert on;

MinRtrAdvInterval 5;

MaxRtrAdvInterval 10;

prefix 2001:abcd:acad:2::/64 {

AdvOnLink on;

AdvAutonomous on;

AdvRouterAddr on;

};

};

The process must be activated, after the device starts to act as a router (by forwarding pack-
ets), with the following command:

systemctl start radvd

49

4.3. Firewall Configuration

The configuration of the warden is a key point of this research. The firewall is the border
network device that provide the line of defense of an enterprise network towards the external
IPv6 world, where the IPv6 internal addresses are routeable and reachable.

The firewall configuration inside this research is also used as a way to simulate different
requirements, budget, and expertise that an enterprise may have. These three characteristics
must be carefully evaluated by an organization, and a balance between them must be found.
The requirements are usually to have the maximum level of defense, and are evaluated against
the budget of the enterprise. The configuration of the appliance is crucial, and requires the
needed level of expertise, which is strongly dependent on the available budget and on the
awareness of the management.

Finally, since this research’s goal is to test the ICMPv6 protocol, the different configurations
of the firewall must be chosen in a way that takes into consideration the boundaries of the
test possibilities. This is accomplished by having four configurations, where two of them
represents the boundaries of the test space. This concept will be developed next, inside each
configuration description.

Netfilter Open

This firewall configuration represents the lower limit in the test space, where packets are
forwarded but not filtered.

As it is possible to see in appendix E.1, the netfilter configuration enables IPv6 packets for-
warding in the linux kernel, and explicitly accepts packets in the forwarding chain of the filter
table.

This open configuration offers the possibility to reach two goals. It simulates a bad practice
that may arise in the transition period, where the IPv4 protocol suite is the choice of an orga-
nization, but IPv6 is already active in the private network. The term simulation, here, is used
on purpose, because the forwarding of IPv6 packets is not active by default. Nevertheless,
it may stimulate the necessary awareness in the audience regarding the transition period and
the need to deal with IPv6.

The second goal is to test the design and implementation of ICMPv6 by itself. This config-
uration allows to test the protocol in a direction which is close to the aforementioned IPv6

50

Ready Project (see chap. 2.1), in the contest of the second hypothesis. In addition, the con-
figuration allows to evaluate the design of the ICMPv6 protocol and the fields in its messages
in the contest of data exfiltration, which is related to the first hypothesis. The latter may be of
secondary importance for the goals of this research, but, nevertheless, from the point of view
of a network protocol’s designer, could be interesting to think about how a protocol must rely
on third party devices and configurations, like routers and firewalls, to avoid that some fields
are used in a different way with respect to the semantic for which they have been created.

ASA Default Configuration

The Cisco Adaptive Security Appliance is a device that may be the choice of small to medium
organizations. When first fired on, it is possible to do some basic configurations to allow it to
be operational by configuring and activating some basic features, like the IP/IPv6 address of
the interfaces and their security level, the default being a security level of 100 for the inside
interface, and a security level of 0 for the outside interface.

This kind of configuration may not be sufficient to protect the organization, and it is not in
most cases, but it is a representation of a bad practice that leads to buy a professional, in
some cases expensive, appliance, with the feeling that it is enough to protect the enterprise’s
business assets. This configuration simulate also the lack of the necessary expertise, both
from a management and technical point of view. The management should evaluate the needs
of both the appliance and the technical expertise to configure it.

The configuration file (see appendix E.2) shows the configured parameters, with just few of
them modified from the default: the IPv6 address of the two interfaces, the activation of ssh
for management purposes, hostname, domain, and the encryption of the passwords. In order
to activate IPv6 it is sufficient to configure the IPv6 address on the vlans associated to the
network interfaces.

ASA with ICMP module

This configuration adds an important features with respect to ICMPv6: the activation of the
ICMP module on the global policy, in order to allow deep packet inspection on the ICMPv6
packets. It is worth noting that the ASA configuration uses the term ICMP for both ICMP
and ICMPv6.

In the case of this configuration, the management evaluated the needs of the appliance, but
also the needed expertise to do the necessary configuration, which for this research considers
an ICMPv6 only world. In other words, a production environment must take into considera-

51

tion the services offered by the enterprise and add the required configuration, which involves
the creation of access lists to determine the packets to allow in and out the internal perimeter.

The configuration file (see appendix E.3) shows, under the policy-map global_policy section,
the added ICMP module.

Netfilter with Best Practices

The last firewall configuration is represented by a Linux device with netfilter services. This
choice represents the necessary expertise to configure a border network device to deal with
ICMPv6, and, in the mean time, the use of an unexpensive device with an open source soft-
ware to provide the filtering services. In terms of awareness, it means that the management
may have chosen to invest in expertise rather then in the device itself, in a context where the
budget has some limitations.

The configuration file (see appendix E.4) has been developed starting from a script published
by the CERT website 36, and modified to fullfill this research requirement using RFC 4890
(which also contains an example script)[35]. In addition, the original script has been thought
for an host-based firewall, an end device, with rules applied to the input and output chains
of the filter table. This research, instead, required a device for packets in transit, in addition
to the packets with the firewall as destination. This involves the forwarding chain, where the
best practices for the communication between the internal network and the rest of the world
have been applied.

It is worth to mention this configuration as a contribution of this research. As it will be
described next, the rules applied to the different chains allows to understand better some
functionalities of ICMPv6, which may be useful from a didactical point of view to introduce
security practices in network classes.

Ip6tables Rules (Netfilter Service)

The script with best practices rules has comments that introduce each block of rules. An
analysis of each block with the rules follows.

The first block contains variables related to the two network interfaces of the firewall, and the
IPv6 addresses, which identify the internal and external network linked to them.

The second block allow to activate packet forwarding in the linux kernel. The command

36http://www.cert.org/downloads/IPv6/ip6tables_rules.txt, accessed 22.4.2016

52

http://www.cert.org/downloads/IPv6/ip6tables_rules.txt

allows a temporary activation of the service, which last until a reboot of the OS.

The following block is the reset of the rules that may be present in previous configurations:
it erases the rules and the user created chains, and clear the statistics of the packets. The
statistics represents a very useful tool to understand, and verify, how the rules behave and
which packets are blocked or enter a particular chain. The following command shows the
statistics:

ip6tables -L -n -v

Then, ad hoc chains have been created. This step may not be necessary in terms of function-
ality, but it allows to better understand the organization of the code. This research point of
view is that readability and clear code is a security best practice, which should be applied not
only in software engineering, but also in writing small script. The first two chains shows the
network flow directions, which are mainly related to the two hypothesis. The two additional
chains allows to establish an ssh connection to the firewall device, and to the attacking device,
for monitoring purposes.

As the comment suggests, the next block applies the default policy in a whitelist way, which
is dropping packets entering the chain by default, if there is not a rule matching the entry. The
white list approach has advantages, but also drawbacks to take into considerations. In terms
of security, this is the better approach, in contrast to the blacklist approach. The reason is that
the blacklisting procedure allows to block, or filter, what is well known, which could be the
signature of an attack, or an IPv6 address known to be the source of an attack. The problem
arises for new attacks, or packets that the security practitioner is not aware of being part of
an attack, which, with this approach, are forwarded. The whitelist approach, instead, denies
the access for all but the known and authorized packets. It is the task of the administrator to
provide the rules to allow the forwarding of the packets.

The whitelist approach requires a very good understanding of the network, of the behavior of
the protocols, and of the services allowed on the network. Since all is denied by default, also
authorized packets are blocked until not explicitly allowed. This may disrupt the network and
break the availability of some services.

The following blocks define rules to apply to the input and output chains, the chains of the
filter table to manage packets with the firewall network interface address as destination (input
chain), or for packets that originate from the firewall device (output chain). This rules are
needed for the correct operations of the local network segments, i.e. to allow protocol like

53

the Neighbor Discover to work correctly.

The rules, applied against the forwarding chain that appear next, regulate packets with ad-
dresses which are valid in the local network only, like link-local and multicast addresses.

The script, then, defines the rules to enter in the aforementioned ad hoc chains: the source
and destination addresses for the ICMPV6-TO-OUT chain, and the destination address for
the ICMPV6-TO-IN chain. Both of them match the ICMPv6 protocol only.

The first analyzed rules regard packets originating from the internal network and forwarded
to the outside. The ICMPv6 error message types are accepted and forwarded, since their
function are needed for the correct operation of IPv6. The two informational messages are
treated in a different way: Echo Requests are allowed but rate limited, while Echo Replies
are droped. While the former rate limitation is not strictly necessary with today network
bandwidth, the latter is a choice of this research, based on a possible organization’s policy.
Most of the examined documents, during this research, put the attention on the fact that,
due to the huge address space in IPv6, it is no more necessary to filter Echo Request from the
outside to deny network scan operations and the map of the internal network. This research is
taking another approach, which follows the whitelist approach phylosophy. The functionality
may be useful to test the reachability, from the outside, of some internal devices, e.g. a server
in the DMZ. This functionality, however, may be needed during the initial configuration,
or after some critical updates, but not during the everyday activity. It is the opinion of the
researcher that it is a better practice to deny the forwarding of messages that are not needed
for every day work, while it is possible to craft special configurations (in this case may be to
allow one specific IPv6 source address to test reachability) to deal with special cases.

The remaining rules of this ICMPV6-TO-OUT chain are related to the Neighbor Discovery
(ND) protocol. Here the choice of this work is to comply explicitly with the RFC ([1])
and allow the forwarding of ND messages only if the hop limit is equal to 255. This has
the equivalent effect of denying the messages, since, in the forwarding process, the device
decrement by one the hop limit, resulting in a value of 254, and therefor being droped by
the policy. The last two rules allow to log the droped messages, and to explicitly drop the
remaining, not matching, packets. The last rule is redundant because of the policy, and it
is there just to show the last rule to apply in case the policy is to allow packets by default
(blacklisting).

The last block of rules, the filtering of packets to be forwarded in the ICMPV6-TO-IN chain,
reflects the choices of the preceding block. The ICMPv6 error messages are allowed to be

54

forwarded. The informational messages are divided into the Echo Request, denied by the or-
ganization’s policy, and Echo Reply, allowed as answer to an Echo Request from the internal
network. The ND messages, instead, are explicitly droped, which, as said, accomplishes the
same effect previously described with the hop limit of 255, which is to deny the forwarding
of the packet.

4.4. Proof of Concept (PoC) and Test Set

PoC

The PoC for the experiment could be found at:

https://github.com/antekirtt/thesis/tree/master/python/code

It is possible to download a zip file with all the thesis material, or in alternative to use git:

git clone https://github.com/antekirtt/thesis.git

cd python/code/

Requirements:

The PoC has been written and tested for Linux Debian and Kali Linux.

The following libraries for python are required:

scapy:

Version 2.3.2_dev37.

Note: the version used in the Kali and Debian repositories is 2.3.2. This version has some
bugs related to IPv6 that have been solved in the development version.

To download and install the library:

git clone https://github.com/secdev/scapy.git

cd scapy

python setup.py install

bitstring:

Installed on 31.08.16 in all the devices that use the PoC.

To install the library:
37https://github.com/secdev/scapy, accessed 31.8.2016

55

https://github.com/antekirtt/thesis/tree/master/python/code
https://github.com/secdev/scapy

easy_install bitstring

The PoC is started at command prompt as follows (root privileges required):

./icmpv6 -i eth0

with the mandatory -i option defining the network interface to use.

The picture (see fig. 4) shows the initial screen and some basic function, the help command
with explanation of possible commands, and the command completion obtained by pressing
the tab key twice.

Figure 4. PoC initial screen

Help and command completion are available along all the sections of the PoC.

The PoC is divided into two main parts, each related to the test of each hypothesis.

PoC - First Hypothesis

The PoC related to the test of the first hypothesis is contained in the file named allCovertTest.py.
The main class inside the file, AllCovertTests, defines some variables and the main method
“startSystem”. The variable “dataToExfilt” defines the second part of the data to be exfil-
trated, which is the following: :

:this is the super secret data to exfiltrate to our attacking

machine\n

The above data is concatenated with the name of each message type and field. For example,
the complete data for Destination Unreachable type, and the use of the Code field to embed

56

the data, is the following:

Destination Unreachable code :this is the super secret data to

exfiltrate to our attacking machine\n

For each message type, a class is defined, and it is responsible to build the packets to send.
In addition to the initialization, each class contains two kind of methods. The first is a set
of methods, one for each field of the message, which follows the pattern “buildPacket” plus
the name of the field. It is responsible to build each single packet using the functionalities
of Scapy. The second is common to all the classes, it is called “execModule”, and it is
responsible to initialize the packets, and send them after the data has been divided to fit the
field bandwidth. The last functionality is achieved using an helper class, which contains a
family of methods to be used depending on the bandwidth of the field, and on the way that
Scapy manages internally some type of data (e.g. address fields).

One challenge of the functionality that allows to chunk the data to fit each field has been
to find a data structure, and a methodology, that allows to send the data from one side, and
rebuild the same data on the other side. Most of the variables representing the fields in Scapy
are integers, which is a problem because integers are not represented with a fixed length. For
example, the ascii decimal code for the character “c” is 99, while for character “d” is 100.
The concatenation of the two, in case of two byte bandwidth, is 99100. Since the length is
variable, on the other side would be more complicated to split it into two different bytes, and
characters.

The algorithm used to achieve the functionality is the following (the example shows the
methodology used with multiples of one byte bandwidth, for simplicity):

First, data has been divided into chunks accordingly to the field’s bandwidth. Then, from each
chunk, the single character is processed and transformed in its binary representation using the
bitstring package. Each binary representation is added to the preceding one, with a resulting
binary number which is a multiple of one byte. The binary representation is transformed back
in an integer, which is sent.

On the receiving side it is possible to transform back the integer in a fixed length binary
number, divide it into bytes, and obtain the ascii code wich is displayed as a character.

Another important file to test the hypothesis is named receiver.py. The Receiver class uses the
functionality of the packet sniffer inside the Scapy library, filtering the packets by their IPv6
destination address. This could be considered the weekest part of the PoC: the packet sniffer

57

itself, and the implementation to get the data, sometimes get some unwanted packages, lead-
ing to show some garbage on the screen. This is caused by the presence of network protocols
data that the receiver is not able to filter appropriately, which may lead to the corruption of
data. However, the result of the experiment is not affected by this issue, which is confirmed
by intercepting the data using Wireshark38, on the destination device, and by analyzing it.
Nevertheless, an improvement of the receiver is needed in the evolution of the software.

PoC - Second Hypothesis

The PoC to test the second hypothesis is different with respect to the first one, in terms of
organization of the code and involved processes.

Since the simulation involves the control of just one process by the attacker, the sending
process, the PoC reflects this condition. Another difference, as will be analyzed in the next
section, is that each test must be performed individually, and the behavior examined in the
end system target by other means. The configuration of the IPv6 address is no more required
for this set of tests: each command is tied to a specific target. This choice is also related to
the IPv6 auto configuration mechanism, because the generated address is more complicated
to memorize and configure each time the target should be changed.

The commands to execute the experiment are located into two different file: infoAndErrorAt-

tacks.py and neighbDisc.py.

Inside the latter there are also the commands to verify the internal attacks. They represents a
step to define the actual tests, and are not part of the verification of the hypothesis.

Each message type has a unique source file and the functionality broadly reflects the following
schema: one class per message, one execution test method per test, with a general method
to build the required packet. For some messages, when the building of a packet changes in
a significat way between executions, the execution method contains also the functionality to
build the packet.

The involved IPv6 address are hard coded in the initialization method of each class, which is
the place to modify the code to perform the experiment with different addresses.

Test Set - First Hypothesis

The complete test set for this hypothesis is visible in appendix (see tab. 9).

38https://www.wireshark.org/, accessed 11.10.2016

58

https://www.wireshark.org/

The tables shows the fields used as test set. The rows are grouped by message type to show
more clearly how many fields, for each type, are used for experimentation.

From the proposed test set there is a consideration that is important for this research: all the
field of each message type have been considered for the set. It is worth to remember that
RFCs defines the behavior of end systems while processing the fields of some message types:
for example, the unused field in Destination Unreachable and Time exceed messages, or the
reserved field in the ND messages, are often pointed out as fields to ignore, or zeroize by end
devices or firewalls. Previously in this research, it has been specified the need to evaluate
also the design of the network protocols, and not only the implementation. The unused and
reserved field must be part of this evaluation, since, even though they may be there to reserve
some space for future use, there may be other ways to accomplish future needs. The fields,
in fact, are perfect candidates to be used for data exfiltration, because they allow to preserve
the syntax and the semantics of the protocol [2].

Test Set - Second Hypothesis

The test set used to validate the second hypothesis is very different, in terms of reasoning and
goals, from the one used to validate the first hypothesis. Instead of showing the set and the
results in different tables, it is possible to see both of them in one table (see appendix D.2).

The differences in reasoning and goals reside in the nature of the hypothesis and in the way
that the results may be validated. First hypothesis is validated in a binary way, either the
message representing the exfiltrated data arrives, and shows on the receiver process, or not.
The second hypothesis, instead, implies a different kind of validation, because in the case that
the tested ICMPv6 message arrives, the resulting behavior of the end system may be the one
described by the RFC. In this case, before the validation of the hypothesis, it is necessary to
understand the behavior of the end system when the packets arrive.

The table of the test set and results is organized in a different way for the two main type of
messages: error and informational messages, and messages related to the ND protocol.

Error and Informational messages

The table is organized with four main columns. The description of the experiment shows
some indications about the content of the test: wheather there is a manipulation of the source
or destination IPv6 address, or if the value of a field has been modified to test extreme values.
The table differentiates between different targets, and then between the four firewall configu-
rations. The last column shows the behavior of the end system when the packets arrive, which

59

also represents the result in the case that the behavior is not the expected one.

Neighbor Discovery protocol messages

The tested ICMPv6 messages defined by the ND protocol have different scope, with respect
to error and informational messages: the scope is link local, the network segment which
boundaries are defined by a router (physical device or functionality). This difference in scope
led to a different kind of thinking in order to build the test set: instead to try to directly test
the hypothesis, it is worth to manipulate the messages and build tests to be performed in the
internal network and then select the successful one to be performed from the outside network
in order to validate, or negate, the hypothesis.

The tables (see appendix D.2) reflects this kind of reasoning. Each table related to the ND
protocol is divided into two parts. While the second part shows the same columns as for
the other ICMPv6 messages, the first part shows a brief description of the type of attack
performed internally, and the results for each target. Each test may then be selected for the
actual test.

60

5. Experiment

The experiment of this research has been designed to test the research question and to val-
idate, or negate, the hypothesis. The third chapter (see chap. 3) defines a main research
question and hypothesis, which could be divided into two more specific research questions
and hypothesis, one for each network flow direction. That is, from the internal network to the
external network (see hypothesis 1), and from the external network to the internal network
(see hypothesis 2).

This chapter is organized to show how to run the experiment. For the first hypothesis a single
command on the Debian Linux device starts all the tests in sequence, while another command
in the RPKL device starts the receiving process. The second hypothesis, instead, requires dif-
ferent commands for each test, as underlined in the relative section, under subtitles Error and
Informational messages and Neighbor Discovery messages. A different network config-
uration has been designed to test each hypothesis. Each configuration includes an external
host, a firewall device, and an internal Linux device. In order too test the second hypothesis,
two devices have been introduced: a Window device for the whole test set, and an External
(Debian Linux) device to test Redirect messages.

Since one of the goals of this research is to validate, or negate, the hypothesis against different
firewall services and configurations, also the device changes accordingly: a Cisco ASA with
two different configurations (see appendix E.2 and appendix E.3), and a Linux device also
with two configurations (see appendix E.1 and appendix E.4).

It is worth to underline how this research uses the term experiment in different ways. Along
this document, the term is often used in a general way, indicating the experimentation part of
this research. But, as it has been mentioned before, an experiment is also the run of a single
test against a firewall configuration and an internal host, in the context of the validation of an
hypothesis. This is because the hypothesis may be validated just for that single test, while it
is negated for another test, firewall configuration, or host.

5.1. First Hypothesis

In order to carry the experiment for the first hypothesis (see hypothesis 1), it is required to
build the appropriate network configuration (see fig. 2).

61

Experiment Setup and Run

In order to setup the experiment it is necessary to prepare the devices as described in chap. 4,
and the network topology (see fig. 2). In addition, the PoC must be downloaded 39 and
installed on the devices with the correct dependencies, also described in chap. 4.

The Linux Debian device, in the context of the experiment, is owned by the attacker with root
privileges. The Raspberry Pi Kali Linux (RPKL) device is also controlled by the attacker.

The first step to run the experiment is to start the receiver on the RPKL device, with the
command:

./icmpv6.py -i eth0

Figure 5. The screen of the receiver

As it is possible to see from the figure (see fig. 5), the only piece of configuration is the IPv6
address of the receiver, the RPKL device.

The second step involves to start the PoC on the Linux Debian device. To start the PoC the
same command is issued:

./icmpv6.py -i eth0

From the figure (see fig. 6), it is possible to see the commands and the configured IPv6
address.

Figure 6. The screen of the sender

The results of the experiment, with all the details, will be discussed in the next chapter.
39https://github.com/antekirtt/thesis

62

https://github.com/antekirtt/thesis

5.2. Second Hypothesis

The second hypothesis (see hypothesis 2) requires to build the appropriate network configu-
ration (see fig. 3).

Experiment Setup and Run

In order to setup the experiment it is necessary to prepare the devices as described in chap. 4.
In addition, for the first and fourth firewall configurations (Debian Linux with Netfilter ser-
vices), it is required to perform the modifications described in chap. 4.2. The PoC must be
downloaded 40 and installed on the devices with the correct dependencies, also described
in chap. 4.

The Raspberry Pi Kali Linux (RPKL) is controlled by the attacker and it is used to perform
the tests to validate, or negate the hypothesis. In addition, in order to perform the internal
tests related to the ND protocol, it is possible to use the Debian Linux or the Linux Firewall
with open configuration (see appendix E.1), which requires to download and install the PoC
in these devices as well.

The best procedure for the experiment is to first use the Linux Firewall with open config-
uration, since this kind of configuration grants the generated packets to reach the internal
network. In addition, for many test it is useful to monitor the generated traffic, in both direc-
tions, from the firewall using an instance of Wireshark, which is installed on the device.

In order to start the experiment, execute the following commands:

./icmpv6.py -i eth0

testing

attacking

This leads to the part of the PoC used to test the second hypothesis. The PoC is then divided
into the two groups of attacks, the first related to error and informational messages, the second
related to the ND protocol.

setInfoAndError

OR

setNeighborDiscovery

Error and Informational messages

40https://github.com/antekirtt/thesis

63

https://github.com/antekirtt/thesis

After entering the informational and error section, it is possible to see the commands to
perform this part of the experiment. The commands for this section are available in tab. 10
from appendix C.

Destination Unreachable Tests

The first two tests send, in sequence, a packet with each code and type 1. A wireshark instance
is used to monitor the network on the Linux Firewall. This general purpose kind of test may
be useful to observe the behavior of end systems when a Destination Unreachable message
arrives, in particular to assess if the end systems generate new packages as a response to the
messages.

Tests from 3 to 16 are specific for each message code. The goal is to test each code using
either the Attacker IPv6 address as source, or the spoofed firewall address. Wireshark is used
to monitor the traffic in both the Linux Firewall and the end system target. From each end
system, the test includes an HTTP request to the attacker device, an Echo Request, or both, in
order to verify if changes occur in the conversation after the reception of the ICMPv6 packets.

Tests 17 and 18 are used to assess the behavior of the end systems against unknown codes.

Tests 19 and 20, instead, are related to the new Length field. The purpose here is to evaluate
the end system against a field which is implemented in the used version of Scapy, but not
present in RFC 4443 [6, 16]. Since the Scapy version of the experiment is the development
one, it is possible to find some fields which are not yet approved by the IETF. This should
not be the case of the implementation of ICMPv6 in the end systems, nevertheless it could be
worth to evaluate to which point implementations in OSs (or applications using ICMPv6) are
following the directives.

Packet Too Big

Tests from 21 to 26 manipulates the MTU field (minimum for IPv6 is 1280), by sending
values which are greater (21-22), smaller (23-24), or in average (25-26) with respect to the
minimum required.

Tests 27 and 28 have the aim to evaluate the behavior of end systems with unknown codes.

Time Exceeded

Tests 29 to 32 use the spoofed IPv6 address of the firewall to generate code 0 and code 1
messages. Effects on end systems and network traffic are observed using Wireshark.

64

Tests 33 and 34 are performed against unknown codes, while 35 and 36 are using the RFC
draft Length field with values varying from 0 to 255[16].

Parameter Problem

Tests 37 to 42 use respectively code 0 to 2 with the spoofed IPv6 address of the firewall, with
Wireshark to monitor traffic, while tests 43 and 44 are performed against unknown codes.

Tests 45 to 48 manipulate the pointer field of the message. The first two tests use, in sequence,
low values (0-1024), while the last two use high values from the 32 bit field. The aim is
to evaluate the end systems against CPU and memory consumption using Task Manager
(Windows) and the top command (Linux).

Echo Request

The aim of the tests for this message type is to evaluate the behavior of the target with respect
to Reachability and Neighbor Cache. With tests 49 and 50, the source address is generated to
be an on-link address, while the destination is the target end system. Tests 51 and 52 perform
the same tests, but using the generated address as destination, and the target end device as
source. In order to evaluate the results is possible to use the following commands:

(Windows) netsh interface ipv6 show neigh

(Linux) ip -6 neigh

Echo Reply

Tests 53 and 54 send packets to the target systems with the source spoofed IPv6 address of
the firewall. The goal is to observe the behavior of the target when it receives an Echo Reply
with a forged Echo Request in the payload.

Test 55 sends the same packet as test 53, but in this case the host-based firewall of the target
has been disabled to observe the behavior of the end system.

Neighbor Discovery messages

The commands for this section are available in tab. 11 from appendix C. Even if are not
part of the experiment to test the hypothesis, also the command to perform internal tests are
available in the PoC, as in tab. 12. The internal tests have been used as a first step to then
define and select the actual tests, and will be briefly discussed later with the results of the
experiment.

65

Router Solicitation

No tests have been selected for this message type. The reason is that internal tests did not
suggest a way to use this type as an attacking vector.

Router Advertisement

The tests for this message type are divided into two main categories: the first tests the injec-
tion of network prefixes, while the second tests the modification of the MTU value on target
devices.

Tests 56 to 61 have Windows 7 as target, while tests from 62 to 67 have Debian Linux as
target. This series of tests are executed sequencially using one command for each end system,
because each of them tries to inject a different prefix. Tests variation includes different source
addresses (Firewall, Debian Linux, and Windows 7), and different values for L and R flags.
To evaluate the behavior it is possible to use ifconfig (linux), or ipconfig (windows).

Tests 68 and 69 inject an arbitrary MTU value on the target. In order to evaluate the results,
it is possible to use the following commands:

(Windows) netsh interface ipv6 show subinterfaces

(Linux) cat /proc/sys/net/ipv6/conf/eth0/mtu

Neighbor Solicitation

Test 70, with Debian Linux as target, has been selected after the internal test showed that the
target started to send Neighbor Advertisement to itself. Source and destination IPv6 addresses
are the same.

Neighbor Advertisement

Test 71, performed against Debian Linux, uses an Echo Request with a spoofed internal IPv6
address to induce the target to start the Reachability process, which may be completed by
sending a Neighbor Advertisement after the target sends a Neighbor Solicitation. Also this
test has been selected after a successful internal attack. The behavior of the target could be
observed using Wireshark on the target and the command ip -6 neigh.

Redirect

For this tests is necessary to add the External Device, as in fig. 3. Tests 72 and 73 aim to
verify the possibility to perform an half Mitm attack, by redirecting the target request to the

66

attacker. Use Wireshark on the attacking device to verify the tests.

67

6. Results

This chapter exhibits the results of the experiment of this research. It is organized to introduce
first how the results are presented. Then, the chapter is divided into the two sub-hypothesis
(see hypothesis 1, and hypothesis 2) to show for each of them what are the outcomes of the
experiment.

The results related to the first hypothesis are presented by introducing some general con-
siderations about the experiment, and by describing how to read the table in appendix that
shows the outcomes. After that, for each firewall configuration, this research will explain the
results and discuss the differences between them and the expectations before performing the
experiment.

6.1. First Hypothesis

In order to test the first hypothesis, this research defined a test set (see appendix B). The PoC
has being written to validate or negate the hypothesis using each test of the set against each
warden configuration, as previously described.

It is worth to remember that, for the experiment to be valid, only one variable at a time
must be modified. This variable is represented by the specific firewall configuration, while
the other components of the experiment remain constant. For this reason, also the results are
presented, along this chapter, in sections named after the firewall configuration that generated
them (see chap. 4.3).

The results of the experiment are visible in appendix D.1.

The table with the results is organized by enumerating the tests in the first column to allow a
direct reference to each test. Tests from number 1 to 10 included represents the ICMPv6 error
messages. Tests from 11 to 18 represents ICMPv6 informational messages. Tests from 19 to
44 use ICMPv6 messages defined by the Neighbor Discovery protocol. Grouping the tests is
useful because each group of messages depicts a different broad functionality of the ICMPv6
protocol, and it reflects some expectations about the results of the experiment, which, as it is
possible to see, and it will be described next, it is not always the case.

The second and third columns represents respectively the ICMPv6 message type and the field

68

of the message used to exfiltrate data in the covert channel.

The fourth column shows the bandwidth obtained by using the particular covert channel
offered by the field, in terms of bytes for each sent packet. The value of the bandwidth is static
and it has been measured taking the amount of bits that a field can carry. This value is only
theoretically correct, because there is no mechanism in the PoC to manage the retransmission
of a lost packet. Nevertheless, this data is interesting in the evaluation of the covert channel
and to analyze the possibility that a covert channel will stay undetected for longer: channels
with low bandwidth requires more packets, given the same amount of data, for a successful
exfiltration, which means a higher chance to be detected.

The fifth column depicts the firewall configuration applied for the test set. It is divided in
four sub-columns which represents each configuration. Each sub-column, numbered after the
configuration categories defined in chap. 3.3, shows if that specific test validates or negates
the hypothesis for that specific configuration.

Netfilter Open

The tests against this configuration produced the expected results and validate the first hy-
pothesis for this specific configuration (see appendix D.1).

The Netfilter Open could be seen as the trivial case. The covert channel is dependent from its
ability to preserve the syntax and the semantics of the message [2], and from the ability of the
wardens, along the path to the destination, to catch each modification of those properties. The
triviality of this part of the experiment is given by the fact that the warden has no knowledge
of the protocol, thus it is unable to detect such modifications. Nevertheless, in the context of
the experiment, the tests allow to assess the following:

• Exploit the possibility for further investigations. In the case that the tests shows the
presence of covert channels, it is possible to proceed by investigating more restrictive
configurations.

• Analyze the presence, or absence, of covert channels in the ICMPv6 protocol by itself,
and eventually broaden the discussion to network protocols in general.

The table with the results shows that this configuration allows to use a covert channel to
exfiltrate data with all the fields of each message, without exceptions.

The experiment to test the first hypothesis suggests that it is useful to proceed by investigating
more restictive configurations. Furthermore, since the configuration represents the trivial

69

case, the conclusion of this research is that the ICMPv6 protocol allows the presence of
covert channels. In other words, without an active warden which is capable to detect them,
the ICMPv6 protocol is not able to prevent covert channels that use its fields to transport
information. This conclusion will be further analyzed later inside the comparison of the
results.

ASA Default Configuration

The results of the experiment with the ASA with the default configuration have been quite
different from the expectations of this research. The table (see appendix D.1) shows that the
ASA has been able to block the covert channels embedded in the ICMPv6 error messages.
Instead, covert channels using ICMPv6 informational messages, and messages defined in the
context of the Neighbor Discovery protocol, validate the hypothesis for this kind of tests and
this configuration.

The expectation of this research was quite the opposite, and it was based on the best practices
that came out from the research, and applied to the fourth configuration. The ASA firewall
is a dedicated device, which must be configured accordingly to the needs of an organization
and its network, and services. In fact, a best practice regarding devices, or applications, is to
never leave them in the default configuration, which, in the best case scenario, is something
that every malicious actor can guess and try to bypass with public information. Nevertheless,
this research’s opinion is that the expectation after buying a device like the ASA firewall, is
to have a device with minimal operation capabilities with the default configuration, which
requires then to be conformed to the needs of the company for what is related to specific
services. In other words, in terms of a common protocol like ICMPv6, the expectation is to
have something as close as possible to the best practices.

From the table of the results:

1. tests from 1 to 10 included negate the hypothesis
2. tests from 11 to 44 validate the hypothesis

As mentioned before, tests from 1 to 10 refer to the error messages of ICMPv6. The message
types are: Destination Unreachable, Packet Too Big, Time Exceeded, and Parameter Problem.
These messages are used by the network to communicate that there are issues of different kind
in the delivering of a packet. For example, the Packet Too Big type uses the MTU field to
communicate to the source of the packet that some link, along the path to the destination,
has a Maximum Transmission Unit that is lower than the one that connects the origin to its

70

first hop. This kind of information is important for the communication to work properly, and
should not be blocked by the device.

On the other side, the ICMPv6 messages defined by the Neighbor Discovery protocol, Router
Solicitation, Router Advertisement, Neighbor Solicitation, Neighbor Advertisement, and Redi-
rect, are messages employed inside a network segment, inside the LAN, and are not supposed
to travel beyond a firewall, or a router. In fact, the best practices state to filter such packets
with a Hop Limit lower than 255. This kind of messages must not leave the internal network
and must be blocked at the boundaries of the network segment.

ASA with ICMP module

This configuration adds the deep inspection of ICMPv6 messages by activating the ICMP
module.

The table (see appendix D.1) depicts the results of this set of experiments. The hypothesis
is negated by tests from 1 to 11 included, and from 15 to 18 included. For test 12, 13, 14,
and from 19 to 44, instead, the experiment validates the hypothesis and allows the creation
of covert channels to exfiltrate data.

The expectations of this research, for this set of tests and configuration, was sightly different
compared to the previous one. Since the covert channels have been created by modifying
the semantics of the fields, with the activation of the deep packet inspection for ICMPv6
messages (the module is called icmp for both ICMP and ICMPv6) this research expected
the negation of the hypothesis for all the ICMPv6 message types. Instead, the experiment
validates the hypothesis for the Echo Request type, using Identifier, Sequence Number, and
Data fields, and for all the messages related to the Neighbor Discovery protocol.

The expectations about the experiment with this configuration were built upon a wrong in-
terpretation of what the deep packet inspection for ICMP and ICMPv6 is able to do. In fact,
the module enables the firewall to be stateful with respect to the ICMPv6 protocol, which is
by nature stateless. By adding a session to the traffic, the ASA allows the returning traffic,
generated by ICMPv6 messages, to pass through the ASA and return back to the host that
generated the initial messages. This is the case for an Echo Reply, which return traffic is
generated by an Echo Request. In fact, the module allows to open a session only for an Echo
Request and not for other type of messages, which are not supposed to expect a return traffic.

The session allows the device to block the covert channels related to the fields of the Echo
Reply message, as shown by the results. This is because there are no valid Echo Requests

71

that opened a session and allowed for the trafffic to come back. The ASA searches for an
open session, which is not found, and the packet is dropped. From the results, instead, only
the covert channel which uses the Echo Request code field has been blocked. The opinion of
this research is that this is due to the fact that the ICMP module is looking for a valid code in
order to open a session, but it could not find one, since the only semantically valid code for
an Echo Request is 0. This opinion however needs further investigations, and a new iteration
of the experiment.

The following command, issued on the ASA cli, can be used to debug and better understand
the applied rules:

packet-tracer input inside icmp 2001:abcd:acad:2::2 128 0 2001:

abcd:acad:1::2 detailed

The command shows in detail when and at which phase a rule may allow or drop a packet.
It takes into consideration packets in the input of the inside interface, related to the icmp
protocol (ICMP or ICMPv6), which arrived from the given source address. The ICMPv6
message has type 128 (Echo Request) and code 0. The command comfirms that a packet with
the given characteristics is allowed to pass the firewall. Test number 11, instead, changed the
semantics of the field, which results in a drop of the packet. Another command useful for the
investigation is the following:

show asp drop

The command shows the statistics of the dropped packets (to reset the statistics use the clear

asp drop command).

To confirm the aforementioned opinion, this research decided to slightly modify to PoC, by
commenting all the tests, but the one that uses the Echo Request code field. After clearing
the statistics, the experiment is performed.

The proposed command confirmed the assumption:

ASA-EXP(config)# show asp drop

Frame drop:

ICMP Inspect bad icmp code (inspect-icmp-bad-code) 89

The test sent 89 packets in order to exfiltrate data, which are inspected by the ICMP module
and dropped because of a bad code. In this case, the ICMP module is able to negate the first
hypothesis and prevent the covert channel.

72

Tests from 19 to 44 follows the same reasoning depicted in the previous configuration, that is,
the messages defined by Neighbor Discovery must be blocked inside the broadcast domain.

Netfilter with Best Practices

The table (see appendix D.1) shows the results of the experiment with the Netfilter configura-
tion with Best Practices. The results fulfills the expectations of this research and validate the
first hypothesis for tests from 1 to 14 included. Test from 15 to 44, on the other hand, negate
the hypothesis.

The result is fully expected because the best practices, which led to this configuration, clearly
define which are the functionalities that a network needs in order to work properly. In addi-
tion, the applied best practices divide the functionalities between those that are required by
the internal network, and those that are required for an end-to-end communication. For both
of them, as described in chap. 4.3, the rules to allow or drop an ICMPv6 message are applied.

Tests from 1 to 10 included use ICMPv6 error messages. Those messages are required to
communicate that the network traffic encountered some kind of error, which may disrupt or
slow down the communication. The results were expected because, even though the config-
uration follows the best practices, the device has not enough knowledge of the syntax and
semantics of the protocol, which are the properties to which a covert channel must adhere
in order to stay undetected. With the test, the syntax is respected, but the semantics change
completely: the values of the fields are meaningless for the message. For example, a Time
Exceeded code must always have values between 0 and 1 included, while the covert channel
that uses that field modifies the value accordingly to the data it needs to transport.

Tests from 11 to 18 included represent the ICMPv6 informational messages. Here the hy-
pothesis has been validated by the Echo Request tests, and negated by the Echo Reply tests.
In this case the difference is not caused by the application of best practices, but by an hy-
pothetical internal policy that a company may have. The policy states that the organization
want to be able to test external connectivity and allow return traffic under the form of an
Echo Reply. On the other side, the policy grants that an external entitiy would not be able to
perform aliveness tests, and for this reason the return traffic is dropped.

Finally, since NDP is required on the internal network only, ICMPv6 messages defined by
this protocol are dropped at the boundaries. This negates the hypothesis for tests from 19 to
44.

The Netfilter configuration with best practices is part of the contribution of this research, but
73

it is not enough to detect all the covert channel, as shown by the results. This configuration
is able to filter the messages accordingly to the best practices, but in order to disrupt also the
covert channels that use the required ICMPv6 messages and fields, another kind of mecha-
nism is needed. This mechanism is the deep packet inspection, which is based on a deeper
knowledge of the syntax and semantics of the protocol. The mechanism may be offered by
IDS and IPS services like Snort 41, or Suricata 42. These services are not in scope with this
research and will not be further analyzed.

6.2. Second Hypothesis

In order to test the second hypothesis, this research used different approaches. First at all, it
was not possible to apply a systematic methodology like during the test of the first hypothesis.
The reason is that during the previous tests, the fields of the protocol have been manipulated
and used in a complete different way with respect to their semantics. This has been possi-
ble because the sending and receiving processes were both controlled by the attacker. The
fields under test acquired importance with respect to the ability of the active warden to de-
tect changes in the syntax and semantics of the field. For the second hypothesis, instead, the
attacker is able only to send the message, while the manipulated packet may have an effect
on the implementation of ICMPv6 at destination, which is not under control of the attacker.
In this context, in addition to the active warden, the validation of the hypothesis depends on
the enforcement of the rules defined by the RFCs on the target OSs. These rules vary in a
sensible way, depending on the purpose and scope of the message. The purpose is different
for example between informational and error messages, which have different scope with re-
spect to messages defined by the ND protocol. Because of this difference in scope, messages
defined by the ND protocol have been tested inside the internal network first. Then, in case
of successful attack, a specific test have been selected to test the hypothesis from the external
network.

The results of the experiment are visible in appendix D.2, and will be discussed next. Since
the approach has been different, also the presentation of the results will follow this difference.
First, this research will present the table with the results. After that, the results will be
disclosed from the point of view of each message type. Inside each message’s section are also
discussed the effects of a test on the target, and briefly the behavior of the active warden. The
presentation of the effects will take into account mostly the configuration of the firewall with

41https://www.snort.org/, accessed 19.10.2016
42https://suricata-ids.org/, accessed 19.10.2016

74

https://www.snort.org/
https://suricata-ids.org/

Netfilter Open. This configuration allows the packets to reach the target, evaluate potential
changes, and assess the implementation of ICMPv6 in the target OSs, which may lead to a
validation of the hypothesis for this configuration.

The results are organized into tables, one for each message type. The tables for ICMPv6
with types 1 to 4, 128, and 129, have the same columns. The first column shows the test
number. The second includes a brief description of the test, or its specification, e.g. the
Code of the message, indications about source and destination, or the nature of the payload.
Then, one column shows the target OS, and one, for each firewall configuration, points out if
the packet successfuly traveled through the warden. Finally, the target’s behavior when the
packet arrives, and the validation method used, when it is different from an observation with
Wireshark.

The tables related to the ND protocol, instead, include the test selection in their first part.
First column shows if the test has been selected, followed by the description of the attack.
Then, after the target indication, the last columns exhibits the results of the attack and a brief
explanation. The second part of the table follows the same structure as the one described for
informational end error messages.

Destination Unreachable

The set of tests related to the Destination Unreachable message negates the second hypothesis
(see tab. 15).

The first tests sent, in sequence, a packet with each known code. The goal was to verify if the
target reacted after reception of the message in violation of the processing rules defined by
the RFC [6].

Tests from 3 to 16, instead, tested each message code with different source addresses and
payloads. An instance of Wireshark inside the target showed no new packets generated as a
reaction to the tests. The verification included an HTTP, an Echo Request, or both, to verify
potential effects on the network traffic.

The last tests flooded the target using unknown Codes, and different values for the Length
field. It is interesting to note that the latter is not even considered by the instance of Wireshark
as a valid field. In fact, this new field uses part of the official Unused field, and Wireshark
sees the modification of the value as part of this field.

The results show also a symmetry in the evaluation of the firewall: both Netfilter Open and
75

Netfilter with Best Practices allowed the packets, while the two configurations related to the
ASA firewall blocked them. While the first two are expected results, the configurations of
the ASA deserve another consideration. The default behavior of the appliance is to block
the traffic from a network with a lower security level to a network with an higher security
level. This behavior may break the communication between hosts and is against the best
practices. From a security point of view, this research thinks that this approach is reasonable
and follows a white list methodology, where the administrator must configure access lists for
the known services. Nevertheless, this is a confirmation that the default configuration is not
enough for this device. A company must be aware that the ASA, without an investment in
the necessary expertise for the configuration, will introduce new issues.

Packet Too Big

The set of tests related to the Packet Too Big message negates the second hypothesis (see tab. 16).

Since the MTU field represents the Maximum Transmission Unit of the next hop, the tests
aimed to verify the possiblity to induce the target to fragment packets, or to send packets
too big for the link. After the packets have been received, the validation of the test implied
the creation of Echo Requests with different sizes. This is possible using the following com-
mands, respectively for Windows 7 and Debian Linux:

ping 2001:abcd:acad:1::2 -l [size]

ping6 2001:abcd:acad:1::2 -s [size]

Wireshark showed no evidence of changes in the network traffic started from the targets. One
possible reason for the failure is a lack on matching the process that would cause the Packet
Too Big message, which the target should infer from the payload of the message.

The last tests flood the targets with messages with unknown Codes. Also in this case there is
no evidence of effects on the targets.

In terms of firewall configurations, the results underlined the same symmetry seen with the
previous message: configurations with Netfilter allowed the packets to enter the network,
while configurations with the ASA blocked the packets.

Time Exceeded

The second hypothesis has been negated also for the tests related to the Time Exceeded
message (see tab. 17).

Packets sent first with Code 0, and then with Code 1, produced no evidence of effects on
76

targets, which does not generate additional network traffic after reception of the packets.

The last tests, flooding the target with unknown Codes and different Lenght values, do not
produce evidence of changes on the target. The Length field, also in this case, has been
interpreted by Wireshark as part of the Unused field.

As for the other message types, firewall configuration with Netfilter Open and Netfilter with
Best Practices allowed the packets to travel across the device, while the two ASA configura-
tions blocked the packets.

Parameter Problem

The test set related to the Parameter Problem message negates the second hypothesis (see tab. 18).

Tests from 37 to 42 sent messages with valid Codes, and the firewall’s spoofed IPv6 address
as source, to the two targets, which showed no evidence of changes. Also, no new ICMPv6
messages have been generated in response to the tests. The same results occured by flooding
the target with unknown Codes.

Tests from 45 to 48 also produced no evidence. The idea behind these last tests was to
verify the behavior of the target with different values of the Pointer field, which represents a
reference, inside the payload, of the octet of the invoking packet where an error caused the
generation of the message [6]. By sending values between 0 and 1024 first, and then high
values closed to the 32 bit upper bound, this research wanted to verify possible anomalies in
the CPU and memory utilization on the target. In order to verify this behavior, on Windows
system has been used the Task Manager and Resource Monitor, while for Linux the command
Top.

The experiment depicted the same symmetry previously seen, with Netfilter configurations
allowing the packets on the internal network, and ASA configurations blocking them.

Echo Request

The test set related to the Echo Request message validates the second hypothesis for the
Netfilter Open configuration (see tab. 19).

The tests used a 16 bit value range to generate as much spoofed IPv6 addresses with the
internal network’s prefix, and flood the target. The generated addresses have been used as
destination addresses, for tests 49 and 50, and as source addresses for tests 51 and 52. The
goal of the tests was to induce the target to start the Reachability process and to exhaust the

77

Neighbor Cache.

From the targets it was possible to verify the initial steps of the Reachability process: target
inserted the spoofed addresses in the Neighbor Cache and started to send Neighbor Solicita-
tions, and waited for a Neighbor Advertisement to complete the process, which never arrived.
The entry in the Neighbor Cache is then put in a failed state.

In addition, with the exception of test 52, both the target device and the Debian Linux Firewall
are affected. For test 52, where the source address has been spoofed, the target Debian Linux
device droped the packet, while the firewall began the Reachability process.

The impact of the tests on the target devices is low: both targets’ Neighbor Cache have a
limitation on the stored entries and used a circular data structure, or a queue, to manage
them. The first entry in the data structure is also the first erased when the limit has been
reached.

From a network traffic point of view, the tests showed a low impact. Nevertheless, this
research want to underline the fact that the network used for the experiment included three
devices out of an address space, considering an internal network with 64 bits lenght prefix, of
64 bits. For the future, it is possible to imagine the use of big subnets, for example in the case
of small devices used to monitor critical environments (storms, ocean waves, tsunami): in
those cases the impact on the network traffic would be higher, and this result should be taken
into consideration, either by finding means to mitigate the risk, or by designing networks with
a smaller amount of devices.

The results for the firewall configurations do not depict the same symmetry as for the other
message types. It is worth to remember that this research included, in the Netfilter with Best
Practices, a rule to block Echo Request from an external network: this measure has been
defined as a policy choice, not a best practice. The reason is that, from a best practices
point of view, an Echo Request is often used to enumerate a network; this practice has been
obsoleted by the huge address space of IPv6, which makes infeasible a complete enumeration.
Nevertheless, there is an impact on the target network. An organization must take it into
consideration and carefully evaluate the possibility to use best practices with additional rules,
accordingly to the nature of their network and requirements.

Echo Reply

Test number 55 validates the second hypothesis for Netfilter Open and Netfilter with Best
Practices configurations (see tab. 20).

78

Tests 53 and 54 do not show effects on the target systems, which ignored the packets.

Test 55 has been selected after some experiment on a Mitm attack, on the internal network,
using Neighbor Advertisements. In order to understand the failure of some early attempts,
the Windows 7 firewall has been disabled, to verify if the host-based firewall was the issue. In
that situation, the analysis of the network traffic using Wireshark on the Debian Linux devices
showed an unusual Parameter Problem message, with Code 1 (unrecognized next header
type). The discovery led to an in-depth analysis of the reasons and additional verifications.

The first verification implied a situation where the target is expected to send back a Parameter
Problem message with Code 1. The packet has been crafted with an incorrect Next Header
IPv6 field sent to the Debian Linux target. The value could be a number between 143 and
252, which are unassigned 43. The target behaved as expected by sending back a Parameter
Problem with Code 1 message. The same test, but performed against the Windows 7 target,
with the firewall activated, failed. The deactivation of the host-based firewall, instead, led to
a successful test.

The results of this analysis shows the following:

1. The Debian Linux device is not vulnerable to this enumeration method.
2. The Debian Linux device behaves correctly after the reception of a packet with an

unrecognized next header.
3. The Windows 7 device, with the Service Pack 1 and default installation (without further

updates) is vulnerable.
4. With this methodology, it is possible to state that the target may correspond to the

aformentioned device without an active host-based firewall.

The level of experimentation on this issue does not allow to be more precise, on point 4, on
the nature of the target. The experiment should be repeated in an environment, with physical
devices, which include also other OS versions and types. Nevertheless, as a further iteration
of this experiment, this research downloaded a Windows 8.1 44 device: the experiment, with-
out host-based firewall, has been successful. This last result shows that at least two versions
of the Windows OS, and this level of updates, are vulnerable.

Router Solicitation
43http://www.iana.org/assignments/protocol-numbers/protocol-numbers.

xhtml, accessed on 15.11.2016
44https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

#downloads, downloaded on 15.11.2016

79

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/#downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/#downloads

The second hypothesis has been negated for Router Solicitation messages. No tests have been
selected (see tab. 21).

Accordingly to the testing selection for ND protocol, three internal test have been performed,
but none of them fulfilled the requirements. Two of them were not successful, while the
last used the All Router Multicast Address, which cannot be used from a different network
segment.

Router Advertisement

The test set related to the Router Advertisement message negates the second hypothesis
(see tab. 22 and tab. 23).

From the internal tests, two attacks have been selected: the injection of an arbitrary prefix,
and the change of the MTU for the link, on the targets. This generated tests from 56 to
61 with Windows 7 as target, and tests from 62 to 67 directed to Debian Linux. The tests
tried to inject a prefix on the targets, using different addresses as source and by manipulating
the flags of the Prefix Information option, without success. The effects on the target can be
measured using commands ipconfig and ifconfig, for Windows and Linux respectively. The
probable reasons of the failure are the enforcement of the rule regarding the Next Hop IPv6
field, which must be 255, and of the rule which defines that the source address must have
link-local scope [1].

Tests 68 and 69 tried to inject a new MTU value on the targets, without success. The valida-
tion is possible with the following commands, respectively for Windows and Linux:

netsh interface ipv6 show subinterfaces

cat /proc/sys/net/ipv6/conf/eth0/mtu

From a firewall configuration point of view, the packets have been forwarded only by the
Netfilter Open configuration.

Neighbor Solicitation

The test set related to the Neighbor Solicitation message negates the second hypothesis
(see tab. 24).

The selected internal test showed a particular behavior of the Debian Linux device. The
packets have been sent with a Solicited Multicast source address of the target, which started
to send Neighbor Advertisement to itself. Test 70 followed the same concept, but with source
and destination Global Unicast addresses of the target, without having the same effect on

80

the target. The reason is again the Next Hop field, which after traversing the firewall is
decremented by one.

The firewall with Netfilter Open configuration allowed the packets to be forwarded internally,
while the other configurations blocked them.

Neighbor Advertisement

The test set related to the Neighbor Advertisement message negates the second hypothesis
(see tab. 25).

From the internal test, the attack against the Neighbor Cache have been selected. This attack
had two goals: try to exhaust the Neighbor Cache, and override legal entries in the table to
produce a DOS condition against the target with respect to other devices in the subnet. Test
71, failed: the first Echo Request started the Reachability process in the target device, but the
following Neighbor Advertisement is dropped because of a Hop Limit less than 255.

The Netfilter Open has been the only configuration that forwarded the packet.

It is worth to mention the result and the reasons why the internal Mitm against Windows
7 has not been selected. The Windows device uses by default a temporary Global Unicast
address to initiate the conversations, while it uses the permanent one when provides server
functionalities or services. In order to perform the Mitm, the attacker pretend to be the
Windows 7 device from a firewall point of view, and the firewall from a Windows 7 point
of view. This is accomplished by sending Neighbor Advertisements. The issue resides on
the fact that the Windows device uses the temporary address to initiate a conversation (e.g.
an HTTP request). Without the knowledge of this address, the attacker is able to intercept
only half of the conversation, from Windows to the firewall, but not the response. In order to
complete the Mitm the attacker needs to announce also the temporary address to the firewall.
This address may be disclosed internally after a period (e.g. Reachability process). From an
outside network this may happen only if the internal device initiate a request to the attacker
machine. For this reason, the test has not been selected.

Redirect

The test set related to the Redirect message negates the second hypothesis (see tab. 26).

The goal of tests 72 and 73 was an half Mitm attack, with the Attacker as Redirect Target,
and the External device as Redirect Destination. The reasons of the failure may be the Hop

81

Limit and the source address which is not of link-local scope.

The Netfilter Open has been the only configuration that forwarded the packet.

Inside the next chapter this research presents the conclusions after the experimentation and
the discussion of the results.

82

7. Conclusions

This research began by introducing the motivations behind the choice to an in-depth analysis
of the ICMPv6 protocol (see chap. 1). ICMPv6 is a new protocol, even if it shares some
functionalities with ICMP. The similarities, both in functionality and in the naming conven-
tions, may induce security practitioners to apply best practices used with ICMP, in the new
ICMPv6 world. The transition period, where both IPv4 and IPv6 cohexist in network config-
urations, is another point of interest. This period may introduce new vulnerabilities, because
IPv6 is already present and active by default in most OSs, but best practices related to the
old protocol suite are no more applicable. New best practices must be researched, by tak-
ing into account the new requirements of the protocol and the changed context of networked
communication. The context in wich ICMPv6 must operate is identified by the presence of
more devices and a new philosophy related to the boundaries of networks, where concepts
like Bring Your Own Device (BYOD) and wireless networks require new strategies in terms
of defense of the perimeter.

In the mean time, also the threat landscape and the sophistication of malware has changed.
We use the term Advanced Persistent Threat (APT) to identify a kind of adversary, often
sponsored by state actors with remarkable amount of budget, able to produce highly sophisti-
cated malware and with a long-term strategy to pursue their goals. This context requires also
to change the mindset of researchers and security administrators, which should now consider
not only the case where an attacker attempts to find a breach, from outside, in an organi-
zation’s perimeter, but also the case that the adversary already has a foothold in the private
network, and wants to exfiltrate sensible data.

The background analysis (see chap. 2) started from the Request For Comments (RFC) be-
cause they represent the agreement of different stackholders upon the protocols. RFCs spec-
ify the protocols by describing the goals and the functionalities required, and by stating what
must, should, or may be implemented by each OS in order to allow the interoperability be-
tween different implementations. Since this is not a binding process, implementations may
differ in some points, which may introduce vulnerabilities inside the communication. This
establishes the basis of the research, and the need to verify, among different implementations,
the level of compliance of the OSs to the agreements specified by RFCs.

This research introduced then the concept of Covert Channel, which is the exploitation of an
existent communication path to hide data inside a legitimate traffic. This scenario assumes

83

that a malicious actor has already a foothold in the perimeter and want to exfiltrate data
without authorization. Covert Channels, among others, have two properties of interest for
this research. The first one is related to the syntax and semantics preservation, when a packet
must traverse an active warden. From a firewall, or router, point of view, its ability to disrupt
a Covert Channel depends on the level of knowledge of the protocol, or, in other words, on its
ability to detect changes on the syntax and semantics of the header field used for the Covert
Channel. The second property is related to the bandwidth of the field, which translates to the
ability of the Covert Channel to stay undetected for longer periods: a lower bandwidth implies
more packets to be transmitted for data exfiltration, with the possibility to arise suspicion on
the network traffic.

The IPv6 Ready project provides a certification for IPv6 implementers, with the aim to pro-
mote IPv6 to the audience. The certification is based on tests specified after the RFCs for
each involved protocol. The tests are organized in sections under the RFC number, which
includes the two main RFCs in scope with this research, RFC 4443 and RFC 4861.

The reasearch introduced the experimentation with the scientific method as the methodology
(see chap. 3) that best fit with the goals of this research, the validation, or negation, of the
two following hypothesis:

1. It is possible to manipulate the ICMPv6 protocol to exfiltrate data without authoriza-

tion from an internal network to the outside and traversing a border network device

2. It is possible to manipulate the ICMPv6 protocol in order to traverse a border network

device and gain unauthorized access to an internal network

The two hypothesis includes the traversing of a border network device, the active warden,
to which the defense of the perimeter has been demanded in the context of the end-to-end
communication of IPv6.

The border network device represents a crucial point for this research. In the context of the
first hypothesis, related to Covert Channel, its understanding of the protocol is critical in its
ability to disrupt the exfiltration of data. In the context of the second hypothesis, it represents
the first line of defense for the internal perimeter. In both cases, its configuration, which may
be based on old best practices no more applicable in the IPv6 world, represents a central point
for this research:

1. awareness for researcher and administrators related to the need of new best practices
2. awareness for manager for the choice of the technology and the needed expertise for

84

configuration
3. relevance of the device for the security of the network, in relationship with the design

of the protocol in terms of security, and network flow direction

The test set for each hypothesis is another critical point in the experimentation. While for
the test set of the first hypothesis each field of the messages specified by the RFCs has been
chosen, for the second hypothesis this research defined a test set based on the Processing
Rule of the message type, for Error and Informational messages, and based on succeessful
internal attacks to verify the behavior of messages specified by the Neighbor Discovery (ND)
protocol.

The implementation (see chap. 4) of the experiment is the consequence of the research, back-
ground and motivations. The network has been built to allow the experimentation of both
hypothesis, each following a network flow direction.

Each device has been chosen to represent a specific choice. The attacking device is a Rasp-
berry Pi with Kali Linux, a small device that could be hidden where a laptop may arise
suspicion. The internal Linux Debian may be the choice for a server, while the Windows 7
represents a workstation used by employees. The Netfilter Open represents the transition pe-
riod where IPv6 is active but no defense is configured. The ASA with Default configuration
and with ICMP module are the choices of an organization with some budget, the first without
expertise to configure it, the second with a limited amount of expertise. The Netfilter with
Best Practices, instead, is the choice of a company with a low budget, but with the necessary
awarenes to hire an expert to manage the configuration with best practices.

In order to validate, or negate, the hypothesis, this research produced a Proof of Concept
(PoC). The main library used for the PoC is Scapy, which allows to build network packets
for specific protocols, modify the fields, and also build new protocols. The library is a good
example on the work that must be done for testing IPv6 and ICMPv6: the official imple-
mentation includes some bugs related to the IPv6 world, which have been solved inside the
development version, which is the one used for the experimentation. The development ver-
sion, as a side effect, includes new fields, for some ICMPv6 messages, which are defined by
RFCs that are not yet approved by the community.

The experiment has been run (see chap. 5) for both hypothesis. The results confirmed some
expectations, while for some test, configurations, and network flow, the observations led to
unexpected behaviors.

85

It is worth to remember that the validation of the hypothesis is given by the logical OR of the
related experiments, performed against each warden configuration and target. The relevance
of the results, instead, depends also on the number of tests that validated each hypothesis.

7.1. First Hypothesis

The first hypothesis (see chap. 6.1) has been validated by the experimentation. The relevance
of the results, for this hypothesis, is very high.

The Netfilter Open configuration represents the trivial case, where a packet that reaches the
warden is forwarded to its destination without further inspection. Since the firewall has no
knowledge of the protocol, it is not able to detect possible changes on the syntax and seman-
tics of the used field.

This configuration allows to conclude that the ICMPv6 protocol allows the presence of Covert
Channels for exfiltration operations, and that it must rely on other devices or services to detect
and disrupt them.

The ASA with Default configuration showed a difference between expectations and actual
results. Even though best practices suggest to never leave a device with the default config-
uration, the expectations after buying the ASA firewall is to have a device that, by default,
follows the specifications of the RFCs and applies the best practices. This is not the case,
as depicted by the table with the results (see appendix D.1). The Error message type are
required for a correct communication between nodes, and are used by intermediate device,
in the context of an end-to-end communication, to inform the sender that some packets have
issues along the path to their destination. Those messages are blocked by this configuration,
with the effect to block the Covert Channel, but also the communication of potential issues.
Another unexpected result is related to the messages specified by the ND protocol, which are
allowed to traverse the appliance despite their local-link scope nature.

The ASA with ICMP module presents similar results with respect to ist default configuration.
The differences are represented by the Code field of the Echo Request message, and by the
fields of the Echo Reply message. The expectations of this research was quite different,
because of a wrong interpretation of the goals of the ICMP module, that is, the addition of
deep packet inspection capabilities, with a more robust knowledge of the protocol and the
consequent disruption of the Covert Channel. Instead, the ICMP module is used to add a
session to the ICMPv6 protocol to allow the returning traffic, which is the case of an Echo

86

Request that could generate an Echo Reply. The experiment shows that the module is able to
detect the Covert Channel that uses the Code field of the Echo Request. The module inspected
the traffic, and droped the packet with a inspect-icmp-bad-code error. Covert Channels that
used the other fields of the Echo Request, instead, were not detected because not inspected.
In addition, the lack of a session allowed the appliance to disrupt the Covert Channels related
to the Echo Reply fields.

The Netfilter with Best Practice configuration (see appendix E.4), which is a contribution
of this research, fulfilled the expectations and allows for some more considerations. The
hypothesis has been negated for the messages specified by the ND protocol, and validated by
the other message types.

Considerations

It is useful at this point to step back and try to evaluate the protocol itself, by keeping away
for a moment the last part of the hypothesis, the one that includes the border network device.
The trivial case, the one with the Netfilter Open configuration, may represent this case, where
the only device’s task is to forward packets.

As shown before, this special case validates the hypothesis for all the messages and fields.
This result leads to the following question:

the presence of covert channels in the ICMPv6 protocol is specific to the protocol itself, to

the way it has been designed and implemented, or this presence could be extended to other

networked protocols?

It is the opinion of this research that this presence could be extended to other protocols, as
far as the protocol has a mechanism that allows it to be transported to the destination. For
ICMPv6, this mechanism is granted by the IPv6 protocol. On the other side, a trivial example
is the destination address field of the IPv6 protocol: since the field is used to route the packet,
a hypothetical covert channel that use this field will disrupt the communication, and the covert
channel itself. Other protocols must be tested to confirm that they could be used for a covert
channel, but if they rely on other protocols to be delivered, there is a great possibility that
they are vulnerable as well, in all or some of their fields.

As the experiment shows, each field could be used for a covert channel. The nature of this
particular configuration depicts the fact that the ICMPv6 protocol is vulnerable for this kind
of misuse of a network protocol. The defense, in fact, is delegated to other device, like active
warden, or protocols.

87

From an implementation point of view, the specification in RFCs do not explicitly mention
the behavior of intermediate devices with respect to ICMPv6 packets. The specifications
regard only end systems and the behavior of the sender and receiver of the packet. In the
validation of the Neighbor Discovery protocol, the RFC specifies that a packet whose IPv6
Hop Limit field is less than 255 must be silently discarded [1]. The directive refers to end
systems, which could also be routers or firewalls, if the packet is originated from, or directed
to it. Nevertheless, this directive may be an implicit suggestion for a defense mechanism on
intermediate devices.

From a design point of view, there are some consideration that are worth to underline. First,
the presence of a covert channel is in the design of the protocol itself. The opinion of this
research is that this is common and acceptable, because a network protocol must adhere to
its requirements only, and any addition, in terms of functionality, could introduce complexity
and new vulnerabilities. Other protocols must be designed and implemented to deal with
other kind of functionalities. A simple example is the IPv6 protocol, which supplies the
transport mechanism. In the case of ICMPv6, a security mechanism to filter manipulated
packets is demanded to the active wardens with knowledge of the syntax and semantics of
the protocol.

The second consideration is related to the unused and reserved fields. Even though their
presence could be justified by the needs to maintain a consistency in the lenght of the header,
or for future use, these kind of fields may be considered overdesign. As mentioned before, a
covert channel must be consistent to the syntax and semantics of the field to stay undetected.
By introducing such fields in the design, the ICMPv6 protocol defines fields semantically
meaningless, which gives less weapons to detect the covert channel to those intermediate
devices to which the security of ICMPv6 is delegated.

Another aspect that is worth to analyze is the behavior of the active wardens in relationship
with covert channels. The Netfilter configuration with Best Practices represents a service that
must be completely configured accordingly to the needs of an organization, which involves an
analysis of the requirements, and an understanding of the security implications that a choice
may produce. In this case, the persons involved in the process needs to be aware of what a
specific configuration is able to do. The experiment shows that following the best practices
is not enough to block all the covert channel, and this research suggested the use of other
services. This is a contribution in terms of security awareness.

The configuration of the ASA firewall, instead, may introduce some issues, depending on

88

the approach taken by the management and security personnel. The experiment shows some
differences between the expectations of this research and the actual results. The configuration
applied to the device by an organization may follow their expectations as well, with the
consequence to be vulnerable to data exfiltration using a covert channel. The default policy
of the ASA firewall allows traffic to travel from an interface with high security level to an
interface with lower secuirty level, but not the opposite 45. This policy may be seen as an
asymmetric evaluation between the risk that a malicious actor try to break the company’s
defenses from the outside network, and the risk that the same malicious actor has already
gained access and try to exfiltrate data. Since one of the goal of this research is to produce
the necessary awareness, this asymmetry must be taken into consideration.

7.2. Second Hypothesis

The hypothesis (see chap. 6.2) has been validated by the experimentation but its relevance is
lower with respect to the first hypothesis. The reasons are represented by a limited number
of successful tests (see appendix D.2) with a low impact on the target, and by a more robust
ICMPv6 protocol in relationship of this network traffic flow.

The ICMPv6 Error messages negated the hypothesis, without exceptions. The messages
included inside this category require to add the data related to the packet that generated the
message as payload. The process, during a network communication, implies that a node,
after reception of a packet that have some issue to reach its destination, drops the packet
and send back the appropriate ICMPv6 message. The sending device, in the case of the
experiment, has no ongoing communication because the data payload has been forged by the
attacker. In the cases under testing, the ICMPv6 protocol is robust enough to understand that
the requirements are not fulfilled, and the packet is droped.

The experiment with the Echo Request message validated the hypothesis for the Netfilter
Open. As underlined during the presentation of the results, the target started the Reachability
process, but a limitation on the number of entries in the Neighbor Cache, and its circular data
structure, reduced the impact in a sensible way. Even if the hypothesis has been validated,
the relevance is very low, because the target OSs developed the necessary countermeasures
to deal with this kind of attacks.

45http://www.cisco.com/c/en/us/td/docs/security/asa/asa91/configuration/
general/asa_91_general_config/interface_complete_routed.html, accessed
22.10.2016

89

http://www.cisco.com/c/en/us/td/docs/security/asa/asa91/configuration/general/asa_91_general_config/interface_complete_routed.html
http://www.cisco.com/c/en/us/td/docs/security/asa/asa91/configuration/general/asa_91_general_config/interface_complete_routed.html

The tests with the Echo Reply message validate the hypothesis for the Netfilter Open and,
even if the impact is low, the relevance is high. As discussed during the presentation of the
results, the tests sent an Echo Reply message to the Windows 7 target without the active
host-based firewall. The experiment showed an unusual behavior of the target, which started
to send Parameter Problem messages with Code 1 (Unrecognized next header type). The
same test, against the Debian Linux target was not successful. Further investigations proved
that the host-based firewall of Windows 7 target was blocking the generation of Parameter
Problem messages with an erroneus IPv6 Next Header field.

The result allows to formulate the following statement, related to the Reconnaissance phase
of an attack:

It is possible to identify a Windows 7 device, with SP1, with the host-based firewall turned off

by sending an Echo Reply message and receiving back a Parameter Problem with Code 1

In addition, the same test against a Windows 8.1 device as been successful, which allow to
estend the vulnerability to another Windows device. The last statement suggests that other
Windows devices may be vulnerable as well, and this must be further investigated in future
works.

This research mentioned IPv6 Ready (see chap. 2.1), a project with the aim to test confor-
mance and interoperability. The website 46 offers the possibility to search inside the approved
list of the program for Microsoft products. The entry for the version of Windows used inside
the experiment 47 shows that the project approved the product, which passed test specifica-
tion 4.06 related to the Core Protocols. The project publishes the specifications of the tests
48, which includes the generation of a Parameter Problem message with Code 1 in case the
Next Header is not recognized.

This research thinks that the host-based firewall, from a technical point of view, should not be
considered as a component of an OS. Therefor the results of the test specified by the project
may be considered correct. Nevertheless, the host-based firewall is active by default, and, in
fact, modifies the behavior of the device. Which may be seen as a way to have the approval
first, but then use other means to break the specification of the IETF and the interoperability

46https://www.ipv6ready.org/db/index.php/public/search/?vn=Microsoft&p=
1&o=5&do=1&lim=50, accessed on 24.11.2016

47https://www.ipv6ready.org/db/index.php/public/logo/02-C-000524/, accessed
on 24.11.2016

48https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf, p. 290, accessed
on 24.11.2016

90

https://www.ipv6ready.org/db/index.php/public/search/?vn=Microsoft&p=1&o=5&do=1&lim=50
https://www.ipv6ready.org/db/index.php/public/search/?vn=Microsoft&p=1&o=5&do=1&lim=50
https://www.ipv6ready.org/db/index.php/public/logo/02-C-000524/
https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf

with other devices in terms of network traffic.

Another aspect that is worth to underline is that the same tool used by system administrators
to defend, administer, or monitor a network, may also be used by an attacker. This mindset,
for example, leads Penetration Tester to emulate attackers and the thechniques they use in
order to find the weeknesses of a system. Because of this, as a side effect of the experiment,
this research tried to invert the process, that is, by imagine the methodology just found to
enumerate the target in a defensive way. The script in appendix F shows the concept: while a
thread receives packets and wait for a Parameter Problem, the PoC sends the same packet of
the experiment, with a two second interval. The context is given by an attacker that gained a
foothold on the target device and needs to deactivate the firewall to perform some tasks. The
administrator will start to receive Parameter Problem messages, with the results to be notified
that, at least, there is a problem with the device.

This monitor solution may not be ideal because of the additional traffic generated. In spite of
that, this research consider it a good example, in terms of awareness, about the interchange-
ability of the tools between attack and defense.

The results related to the ND protocol showed that the second hypothesis has been negated
for all the messages. The ND protocol has a link-local scope and thus is used inside a local
segment. The protocol specification have been enforced in the implementation of the OSs
used as a target. The most important rule is related to the IPv6 Hop Limit field value, which
must be 255. This rule alone is able to detect messages that have been forwarded by a routing
capable device, which, for this research, have a Hop Limit value of 254. Other fields that
enforce the scope of the ND protocol are the IPv6 Source and Destination Address, which for
some messages must also have a link-local scope.

It is worth to note that the ND protocol, for what this research has been able to prove, relies
on the fields of the IPv6 protocol to apply the defense mechanisms to negate the second hy-
pothesis. In other words, this is a good example of collaboration between different protocols
to provide a minimum level of security by design.

Finally, some consideration starting from the Netfilter with Best Practice configuration, which
balances the requirements of the network communication with the needs in terms of security.
Error and Informational messages are allowed to enter, with the exception of the Echo Re-
quest message type, while messages defined by the ND protocol, which are not supposed to
be forwarded, are blocked. Nevertheless, test 55 (see tab. 20) produced packets that were
able to traverse the warden, to produce an effect on the end system, and to travel back to the

91

source.

The last statement is very important for this research. This is because, from one side, it shows
that, even following best practices, there is not the certainty to have a secure network. On
the other side it shows that pursuing security through obscurity is a dangerous practice. The
fact that an attacker is not aware that Windows 7 uses the host-based firewall to bypass the
standards, does not grant that he or she will discover this information. But the lack of this
knowledge may prevent a security administrator to perform the necessary tests and try to find
solutions to mitigate possible risks.

7.3. Firewall and Protocol Design Evaluation

The design of the ICMPv6 protocol, in relationship to the network flow for the first hypoth-
esis, is a topic of interest in this evaluation. In this case, it is useful to distinguish between
two broad categories, Information and Error messages from one side, and ND protocol mes-
sages on the other. The former have an Internet scope, which means that it is more difficult
to secure the messages by design, for example by defining rules to apply in the forwarding
chain of intermediate devices. This solution would slow down the forwarding of packets,
while the practices follow the opposite direction, which is to have intermediate device with
fast forwarding. Also the IPv6 design follows this rule, by having a fixed-length header
which requires less computational power to understand the boundaries of the IPv6 header. In
the case of the ND protocol the argument is different, because the scope of the messages is
link-local. The design of the protocol enforces some rules: the Hop Limit must be 255 and
some source and destination addressess must have link-local scope to be accepted. Neverthe-
less, these rules are enforced inside end systems, following the end-to-end communication
of IPv6. This means that a covert channel, in the case the receiver is positioned before the
end-system device in the communication path, is not disrupted by such rules. This research
has no solution for this issue, but the opinion is that more research on this topic, in the design
phase of protocols, should take place, especially considering the trend to use ICMPv6 as a
container for messages used by other protocols and processes.

The experiment related to the second hypothesis showed different results. The hypothesis
has been validated for few messages and firewall configurations. The firewall configuration
is less relevant, because even in the case where the manipulated packets arrive at destination,
most of the attacks are not successful. The rules suggested by the RFC are enforced inside
the target and, in most of the cases, are sufficient to avoid unwanted behaviors. This is true

92

for both categories, Error and Informational messages, and ND protocol messages.

The design of the ICMPv6 protocol, in this case, took into consideration the security of end
systems, by providing rules to process and validate packets. The nature of such rules is
different between the two categories. Error and Informational messages rely mostly on the
data of the payload, which is the packet that generated the ICMPv6 message: without a valid
payload, that represents an ongoing communication between the target and the device that
generated the message, there is not a match and packet is dropped. The design of the ND
protocol, instead, introduced some rules related to its link-local scope, which are enforced
inside the end-system. Rules like an unchanged Hop Limit (255) has been sufficient to negate
the second hypothesis, even in the cases where the firewall rules allowed the packets to enter
the network segment.

In general, it is worth to underline that more effort has been put into the security of end-
systems, which reflects the trend to secure internal networks from attacks originated from the
outside world. While APT is a relatively new phenomenon, security practitioners and pro-
tocol designer should take into consideration that an adversary may already have a foothold
in an organization’s network. The configuration of the active wardens that follows the best
practices, and deep packet inspection services, represent the defense layer. But security, as
in other domains, must be included inside the first steps of the development process, require-
ment and design, and take into account also the network traffic flow that originates from an
inside network.

7.4. Future Work

This research used a scenario-based experimentation because of the opinion that it is not
sufficient to test the ICMPv6 protocol implemented by end-systems, but it is necessary to
insert the protocol in an environment closer to one used in production system. Because of the
complexity of Internet, it is not feasible to perform the experiment in such an environment.
Nevertheless future research should consider more firewall configurations, and consequently
more scenarios. This is useful to analyse the protocol more in depth, and try to underline
possible weaknesses implicit inside the design of the protocol, that needs a specific firewall
configuration to defeat possible attacks. The new scenarios should also include more target
OS types and versions, in order to extend the discussion and to underline where the imple-
mentation differs from the specifications. A new version of the PoC may lead to a more
robust testing application.

93

References

[1] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for IP
version 6 (IPv6),” Internet Requests for Comments, RFC Editor, RFC 4861, September
2007. [Online]. Available: http://www.rfc-editor.org/info/rfc4861

[2] G. Lewandowski, “Network-aware Active Wardens in IPv6,” Electrical Engineering

and Computer Science - Dissertations, 2011.

[3] N. Lucena, J. Pease, P. Yadollahpour, and S. J. Chapin, “Syntax and Semantics-
Preserving Application-Layer Protocol Steganography,” Syracuse University, 2004.

[4] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” Internet
Requests for Comments, RFC Editor, RFC 2460, December 1998. [Online]. Available:
http://www.rfc-editor.org/info/rfc2460

[5] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional
NAT),” Internet Requests for Comments, RFC Editor, RFC 3022, January 2001.
[Online]. Available: http://www.rfc-editor.org/info/rfc3022

[6] A. Conta, S. Deering, and M. E. Gupta, “Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” Internet
Requests for Comments, RFC Editor, RFC 4443, March 2006. [Online]. Available:
http://www.rfc-editor.org/info/rfc4443

[7] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” Internet
Requests for Comments, RFC Editor, RFC 2119, March 1997. [Online]. Available:
http://www.rfc-editor.org/info/rfc2119

[8] J. Postel, “Internet Control Message Protocol,” Internet Requests for Comments, RFC
Editor, RFC 792, September 1981. [Online]. Available: http://www.rfc-editor.org/info/
rfc792

[9] M. Chakraborty, N. Chaki, and A. Cortesi, “A New Intrusion Prevention System for
Protecting Smart Grids from ICMPv6 Vulnerabilities,” Conference: 2014 Federated

Conference on Computer Science and Information Systems, vol. 2, 2014.

[10] Fortinet, “Threats on the Horizon: The Rise of the Advanced Persistent Threat,” solution

report, Fortinet Inc., 2013.

94

http://www.rfc-editor.org/info/rfc4861
http://www.rfc-editor.org/info/rfc2460
http://www.rfc-editor.org/info/rfc3022
http://www.rfc-editor.org/info/rfc4443
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc792
http://www.rfc-editor.org/info/rfc792

[11] G. D. SecurityLabs, “Uroburos: Highly complex espionage software with Russian
roots,” tech. rep., G Data Software AG, 2014.

[12] N. Falliere, L. O. Murchu, and E. Chien. (2011) W32.Stuxnet Dossier. Accessed:
21-03-2016. [Online]. Available: http://www.symantec.com/content/en/us/enterprise/
media/security_response/whitepapers/w32_stuxnet_dossier.pdf

[13] F. Rajpari, “Finding the Advanced Persistent Adversary,” SANS Institute, 2014.

[14] S. Northcutt, J. Shenk, D. Shackleford, T. Rosenberg, R. Siles, and S. Mancini, “Pene-
tration Testing: Assessing Your Overall Security Before Attackers Do,” SANS Institute,
2006.

[15] S. Bradner, “The Internet Standards Process – Revision 3,” Internet Requests
for Comments, RFC Editor, RFC 2026, October 1996. [Online]. Available:
http://www.rfc-editor.org/info/rfc2026

[16] R. Bonica, D. Gan, D. Tappan, and C. Pignataro, “Extended ICMP to Support
Multi-Part Messages,” Internet Requests for Comments, RFC Editor, RFC 4884, April
2007. [Online]. Available: http://www.rfc-editor.org/info/rfc4884

[17] D. Perkins and J. Arkko, “Mobility Support in IPv6,” Internet Requests for
Comments, RFC Editor, RFC 3775, June 2004. [Online]. Available: http:
//www.rfc-editor.org/info/rfc3775

[18] R. Draves and D. Thaler, “Default Router Preferences and More-Specific Routes,”
Internet Requests for Comments, RFC Editor, RFC 4191, November 2005. [Online].
Available: http://www.rfc-editor.org/info/rfc4191

[19] D. Thaler, M. Talwar, and C. Patel, “Neighbor Discovery Proxies (ND Proxy),” Internet
Requests for Comments, RFC Editor, RFC 4389, April 2006. [Online]. Available:
http://www.rfc-editor.org/info/rfc4389

[20] R. Schaefer and C. Werny. (2014) IPv6 Attack and Defense Strategies. Accessed: 21-
10-2016. [Online]. Available: https://www.blackhat.com/docs/sp-14/materials/arsenal/
sp-14-Schaefer-Workshop-Slides.pdf

[21] IPv6 Ready Committee. (2013) IPv6 Ready Logo White Paper. Accessed: 2-04-
2016. [Online]. Available: https://www.ipv6ready.org/docs/IPv6_Ready_Logo_White_
Paper_Final.pdf

95

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.rfc-editor.org/info/rfc2026
http://www.rfc-editor.org/info/rfc4884
http://www.rfc-editor.org/info/rfc3775
http://www.rfc-editor.org/info/rfc3775
http://www.rfc-editor.org/info/rfc4191
http://www.rfc-editor.org/info/rfc4389
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Schaefer-Workshop-Slides.pdf
https://www.blackhat.com/docs/sp-14/materials/arsenal/sp-14-Schaefer-Workshop-Slides.pdf
https://www.ipv6ready.org/docs/IPv6_Ready_Logo_White_Paper_Final.pdf
https://www.ipv6ready.org/docs/IPv6_Ready_Logo_White_Paper_Final.pdf

[22] IPv6 Ready Committee. (2010) Core Conformance. Accessed: 2-04-2016. [Online].
Available: https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf

[23] IPv6 Ready Committee. (2010) Core Interoperability. Accessed: 2-04-2016. [Online].
Available: https://www.ipv6ready.org/docs/Core_Interoperability_Latest.pdf

[24] J. G. Simmons, “The prisoners’ problem and the subliminal channel,” Advances in

Cryptology, Proceedings of CRYPTO ’83, pages 51–67, 1984.

[25] A. Mileva and B. Panajotov, “Covert Channels in TCP/IP Protocol Stack,” Central Eu-

ropean Journal of Computer Science, 2014.

[26] N. Lucena, “Application-level protocol steganography,” PhD thesis, Syracuse Univer-

sity, 2008.

[27] D. Watson, M. Smart, and R. Malan, “Protocol Scrubbing: Network Security Through
Transparent Flow Modification,” IEEE/ACM TRANSACTIONS ON NETWORKING,

VOL. 12, NO. 2, 2004.

[28] R. P. Murphy. (2006) IPv6/ICMPv6 Covert Channels. Accessed: 2-04-2016.
[Online]. Available: https://www.defcon.org/images/defcon-14/dc-14-presentations/
DC-14-Murphy.pdf

[29] The Hacker Choice. (2006) Attacking the IPv6 Protocol Suite. Accessed: 4-04-2016.
[Online]. Available: https://www.thc.org/papers/vh_thc-ipv6_attack.pdf

[30] S. Peisert and M. Bishop, “How to Design Computer Security Experiments,” Fifth World

Conference on Information Security Education: Proceedings of the IFIP TC11 WG

11.8, WISE 5, 19 to 21 June 2007, United States Military Academy, West Point, New

York, USA, 2007.

[31] T. E. Carroll, D. Manz, T. Edgar, and F. L. Greitzer, “Realizing Scientific Methods for
Cyber Security,” Proceedings of the 2012 Workshop on Learning from Authoritative

Security Experiment Results, 2012.

[32] B. Kaplan and D. Duchon, “Combining Qualitative and Quantitative Methods in Infor-
mation Systems Research: A Case Study,” Management Information Systems Research

Center, University of Minnesota, 1988.

[33] National Institute of Standards and Technology. (2009) Guidelines on Firewalls
and Firewall Policy. Accessed: 22-04-2016. [Online]. Available: http://csrc.nist.gov/
publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf

96

https://www.ipv6ready.org/docs/Core_Conformance_Latest.pdf
https://www.ipv6ready.org/docs/Core_Interoperability_Latest.pdf
https://www.defcon.org/images/defcon-14/dc-14-presentations/DC-14-Murphy.pdf
https://www.defcon.org/images/defcon-14/dc-14-presentations/DC-14-Murphy.pdf
https://www.thc.org/papers/vh_thc-ipv6_attack.pdf
http://csrc.nist.gov/publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-41-Rev1/sp800-41-rev1.pdf

[34] Nasa Integrated Communication Services. (2014) NICS IPv6 Best Practices Guide.
Accessed: 22-04-2016. [Online]. Available: https://www.hpc.mil/images/hpcdocs/
ipv6/nics_ipv6_best_practices_guide.pdf

[35] E. Davies and J. Mohacsi, “Recommendations for Filtering ICMPv6 Messages in
Firewalls,” Internet Requests for Comments, RFC Editor, RFC 4890, May 2007.
[Online]. Available: http://www.rfc-editor.org/info/rfc4890

[36] Giobbi R. (2008) Filtering ICMPv6 Using Host-Based Firewalls. Ac-
cessed: 22-04-2016. [Online]. Available: https://insights.sei.cmu.edu/cert/2008/
11/filtering-icmpv6-using-host-based-firewalls.html

97

https://www.hpc.mil/images/hpcdocs/ipv6/nics_ipv6_best_practices_guide.pdf
https://www.hpc.mil/images/hpcdocs/ipv6/nics_ipv6_best_practices_guide.pdf
http://www.rfc-editor.org/info/rfc4890
https://insights.sei.cmu.edu/cert/2008/11/filtering-icmpv6-using-host-based-firewalls.html
https://insights.sei.cmu.edu/cert/2008/11/filtering-icmpv6-using-host-based-firewalls.html

A. Appendix - Cisco ASA Version

Cisco Adaptive Security Appliance Software Version 9.1(5)

Device Manager Version 7.5(2)

Compiled on Thu 27-Mar-14 09:36 by builders

System image file is "disk0:/asa915-k8.bin"

Config file at boot was "startup-config"

ASA-EXP up 5 hours 57 mins

Hardware: ASA5505, 256 MB RAM, CPU Geode 500 MHz,

Internal ATA Compact Flash, 128MB

BIOS Flash M50FW080 @ 0xfff00000, 1024KB

Encryption hardware device : Cisco ASA-5505 on-board accelerator (revision 0x0)

Boot microcode : CN1000-MC-BOOT-2.00

SSL/IKE microcode : CNLite-MC-SSLm-PLUS-2_05

IPSec microcode : CNlite-MC-IPSECm-MAIN-2.09

Number of accelerators: 1

0: Int: Internal-Data0/0 : address is 0021.a02e.8564, irq 11

1: Ext: Ethernet0/0 : address is 0021.a02e.855c, irq 255

2: Ext: Ethernet0/1 : address is 0021.a02e.855d, irq 255

3: Ext: Ethernet0/2 : address is 0021.a02e.855e, irq 255

4: Ext: Ethernet0/3 : address is 0021.a02e.855f, irq 255

5: Ext: Ethernet0/4 : address is 0021.a02e.8560, irq 255

6: Ext: Ethernet0/5 : address is 0021.a02e.8561, irq 255

7: Ext: Ethernet0/6 : address is 0021.a02e.8562, irq 255

8: Ext: Ethernet0/7 : address is 0021.a02e.8563, irq 255

9: Int: Internal-Data0/1 : address is 0000.0003.0002, irq 255

10: Int: Not used : irq 255

11: Int: Not used : irq 255

Licensed features for this platform:

Maximum Physical Interfaces : 8 perpetual

VLANs : 3 DMZ Restricted

Dual ISPs : Disabled perpetual

VLAN Trunk Ports : 0 perpetual

Inside Hosts : 50 perpetual

Failover : Disabled perpetual

Encryption-DES : Enabled perpetual

Encryption-3DES-AES : Enabled perpetual

AnyConnect Premium Peers : 25 perpetual

AnyConnect Essentials : Disabled perpetual

Other VPN Peers : 10 perpetual

Total VPN Peers : 25 perpetual

Shared License : Disabled perpetual

AnyConnect for Mobile : Disabled perpetual

AnyConnect for Cisco VPN Phone : Disabled perpetual

Advanced Endpoint Assessment : Disabled perpetual

UC Phone Proxy Sessions : 2 perpetual

Total UC Proxy Sessions : 2 perpetual

Botnet Traffic Filter : Disabled perpetual

98

Intercompany Media Engine : Disabled perpetual

Cluster : Disabled perpetual

This platform has a Base license.

Serial Number: JMX1247Z330

Running Permanent Activation Key: 0x4e25d64e 0xf8628255 0xb822197c 0x8714f8d8 0x0b31aba6

Configuration register is 0x1

Configuration last modified by enable_15 at 11:55:20.129 UTC Sat Oct 22 2016

B. Appendix - Test Set - First Hypothesis

Message Field Message Field
Destination Unreachable Code Router Solicitation Code
Destination Unreachable Length Router Solicitation Reserved
Destination Unreachable Unused Router Advertisement Code
Packet Too Big Code Router Advertisement Cur Hop Limit
Packet Too Big MTU Router Advertisement M
Time Exceeded Code Router Advertisement O
Time Exceeded Length Router Advertisement H
Time Exceeded Unused Router Advertisement Prf
Parameter Problem Code Router Advertisement P
Parameter Problem Pointer Router Advertisement Reserved
Echo Request Code Router Advertisement Router Life Time
Echo Request Identifier Router Advertisement Reachable Time
Echo Request Sequence Number Router Advertisement Retrans Timer
Echo Request Data Neighbor Solicitation Code
Echo Reply Code Neighbor Solicitation Reserved
Echo Reply Identifier Neighbor Solicitation Target Address
Echo Reply Sequence Number Neighbor Advertisement Code
Echo Reply Data Neighbor Advertisement R

Neighbor Advertisement S
Neighbor Advertisement O
Neighbor Advertisement Reserved
Neighbor Advertisement Target Address
Redirect Code
Redirect Reserved
Redirect Target Address
Redirect Destination Address

Table 9. Data Exfiltration Test Set

99

C. Appendix - Commands - Second Hypothesis

Test Command Test Command
1 execDestUnreachAllWin 29 execTimeExceededHopLimitWin
2 execDestUnreachAllLinux 30 execTimeExceededHopLimitLinux
3 execDestUnreachNoRouteWin 31 execTimeExceededFragmentReassemblyWin
4 execDestUnreachNoRouteLinux 32 execTimeExceededFragmentReassemblyLinux
5 execDestUnreachComAdminProhibWin 33 execTimeExceededBadCodeWin
6 execDestUnreachComAdminProhibLinux 34 execTimeExceededBadCodeLinux
7 execDestUnreachBeyondScopeWin 35 execTimeExceededLengthWin
8 execDestUnreachBeyondScopeLinux 36 execTimeExceededLengthLinux
9 execDestUnreachAdrUnreachWin 37 execParameterProblemErrHeaderWin
10 execDestUnreachAdrUnreachLinux 38 execParameterProblemErrHeaderLinux
11 execDestUnreachPortUnreachWin 39 execParameterProblemUnrecHeaderWin
12 execDestUnreachPortUnreachLinux 40 execParameterProblemUnrecHeaderLinux
13 execDestUnreachSrcFailedPolicyWin 41 execParameterProblemUnrecIPOptionWin
14 execDestUnreachSrcFailedPolicyLinux 42 execParameterProblemUnrecIPOptionLinux
15 execDestUnreachRejectRouteWin 43 execParameterProblemBadCodeWin
16 execDestUnreachRejectRouteLinux 44 execParameterProblemBadCodeLinux
17 execDestUnreachBadCodeWin 45 execParameterProblemFloodPointerWin
18 execDestUnreachBadCodeLinux 46 execParameterProblemFloodPointerLinux
19 execDestUnreachDifferentLengthWin 47 execParameterProblemFloodHighPointerWin
20 execDestUnreachDifferentLengthLinux 48 execParameterProblemFloodHighPointerLinux

21 execPacketTooBigMTUBigWin 49
execEchoRequestNeighCacheExhaustionDstVic-
timWin

22 execPacketTooBigMTUBigLinux 50
execEchoRequestNeighCacheExhaustionDstVictim-
Linux

23 execPacketTooBigMTUSmallWin 51
execEchoRequestNeighCacheExhaustionSrcVic-
timWin

24 execPacketTooBigMTUSmallLinux 52
execEchoRequestNeighCacheExhaustionSrcVictim-
Linux

25 execPacketTooBigMTUWin 53 execEchoReplyRemoteWin
26 execPacketTooBigMTULinux 54 execEchoReplyRemoteLinux
27 execPacketTooBigBadCodeWin 55 execEchoReplyRemoteWin
28 execPacketTooBigBadCodeLinux

Table 10. PoC Commands - Second Hypothesis

100

Test Command Test Command
56-61 execRAPrefixRemoteWin 70 execNSRemoteSelfSolLinux
62-67 execRAPrefixRemoteLinux 71 execNACacheFloodingRemoteLinux
68 execRAMTURemoteWin 72 execRedirectRemoteWin
69 execRAMTURemoteLinux 73 execRedirectRemoteLinux

Table 11. PoC Commands - Second Hypothesis

Command Command
execRSInternalWin execNSInternalFloodingWin
execRSInternalLinux execNSInternalFloodingLinux
execRSInternalFirewall execNSInternalSelfSolWin
execRAPrefixInternalWin execNSInternalSelfSolLinux
execRAPrefixInternalLinux execNACacheFloodingInternalWin
execRAMTUInternalWin execNACacheFloodingInternalLinux
execRAMTUInternalLinux execNAWinMitmInternal

execRedirectInternalWin

Table 12. PoC Commands - Internal Tests

101

D. Appendix - Results

D.1. First Hypothesis

Test
Num-

ber
Message Field

Bandwidth
(Bytes/-
Packet)

Firewall Configuration

1 2 3 4
1 Destination Unreachable Code 1
2 Destination Unreachable Length 1
3 Destination Unreachable Unused 3
4 Packet Too Big Code 1
5 Packet Too Big MTU 4
6 Time Exceeded Code 1
7 Time Exceeded Length 1
8 Time Exceeded Unused 3
9 Parameter Problem Code 1

10 Parameter Problem Pointer 4
11 Echo Request Code 1
12 Echo Request Identifier 2
13 Echo Request Sequence Number 2
14 Echo Request Data 8
15 Echo Reply Code 1
16 Echo Reply Identifier 2
17 Echo Reply Sequence Number 2
18 Echo Reply Data 8
19 Router Solicitation Code 1
20 Router Solicitation Reserved 4
21 Router Advertisement Code 1
22 Router Advertisement Cur Hop Limit 1
23 Router Advertisement M 0.12
24 Router Advertisement O 0.12
25 Router Advertisement H 0.12
26 Router Advertisement Prf 0.25
27 Router Advertisement P 0.12
28 Router Advertisement Reserved 0.25
29 Router Advertisement Router Life Time 2
30 Router Advertisement Reachable Time 4
31 Router Advertisement Retrans Timer 4

Table 13. Data Exfiltration Results

102

Test
Num-

ber
Message Field

Bandwidth
(Bytes/-
Packet)

Firewall Configuration

1 2 3 4
32 Neighbor Solicitation Code 1
33 Neighbor Solicitation Reserved 4
34 Neighbor Solicitation Target Address 16
35 Neighbor Advertisement Code 1
36 Neighbor Advertisement R 0.12
37 Neighbor Advertisement S 0.12
38 Neighbor Advertisement O 0.12
39 Neighbor Advertisement Reserved 3
40 Neighbor Advertisement Target Address 16
41 Redirect Code 1
42 Redirect Reserved 4
43 Redirect Target Address 16
44 Redirect Destination Address 16

Table 14. Data Exfiltration Results

103

D.2. Second Hypothesis

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

1
Testing general behavior by
sending all codes in sequence

Win
No reactions from target, using
Wireshark on firewall’s eth0

2
Testing general behavior by
sending all codes in sequence

Linux
No reactions from target, using
Wireshark on firewall’s eth0

3
Code 0, Src is Attacker, Echo
Request payload

Win
No effects on conversation (HTTP and
Echo Request)

4
Code 0, Src is Attacker, Echo
Request payload

Linux
No effects on conversation (HTTP and
Echo Request)

5
Code 1, Src is Firewall, TCP
payload

Win
No effects on conversation (HTTP and
Echo Request)

6
Code 1, Src is Firewall, TCP
payload

Linux
No effects on conversation (HTTP and
Echo Request)

7
Code 2, Src is Firewall, TCP
payload

Win
No effects on conversation (HTTP and
Echo Request)

8
Code 2, Src is Firewall, TCP
payload

Linux
No effects on conversation (HTTP and
Echo Request)

9
Code 3, Src is Attacker, TCP
payload

Win No effects on conversation (HTTP)

10
Code 3, Src is Attacker, TCP
payload

Linux No effects on conversation (HTTP)

11
Code 4, Src is Attacker, TCP
payload

Win No effects on conversation (HTTP)

12
Code 4, Src is Attacker, TCP
payload

Linux No effects on conversation (HTTP)

13
Code 5, Src is Firewall, TCP
payload

Win No effects on conversation (HTTP)

14
Code 5, Src is Firewall, TCP
payload

Linux No effects on conversation (HTTP)

15
Code 6, Src if Firewall, Echo
Request payload

Win
No effects on conversation (HTTP and
Echo Request)

16
Code 6, Src if Firewall, Echo
Request payload

Linux
No effects on conversation (HTTP and
echo Request)

17 Testing unknown codes (7 to 255) Win Packets dropped at destination
18 Testing unknown codes (7 to 255) Linux Packets dropped at destination
19 Testing Length field (0 to 255) Win Interpreted as part of Unused field
20 Testing Length field (0 to 255) Linux Interpreted as part of Unused field

Table 15. Attacking internal network, Destination Unreachable (Type 1)

104

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

21
MTU is 2000, Src is Firewall, Echo
Request payload

Win No evidence of changes

22
MTU is 2000, Src is Firewall, Echo
Request payload

Linux No evidence of changes

23
MTU is 500, Src is Firewall, Echo
Request payload

Win No evidence of changes

24
MTU is 500, Src is Firewall, Echo
Request payload

Linux No evidence of changes

25
MTU is 1300, Src is Firewall, Echo
Request payload

Win No evidence of changes

26
MTU is 1300, Src is Firewall, Echo
Request payload

Linux No evidence of changes

27
Unknown codes (1-255), Src is
Firewall, Echo Request payload

Win No evidence of changes

28
Unknown codes (1-255), Src is
Firewall, Echo Request payload

Linux No evidence of changes

Table 16. Attacking internal network, Packet Too Big (Type 2)

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

29
Code 0, Src is Firewall, Echo
Request payload

Win No evidence of effects

30
Code 0, Src is Firewall, Echo
Request payload

Linux No evidence of effects

31
Code 1, Src is Firewall, Echo
Request payload

Win No evidence of effects

32
Code 1, Src is Firewall, Echo
Request payload

Linux No evidence of effects

33
Unknown codes (2-255), Src is
Firewall, Echo Request payload

Win No evidence of effects

34
Unknown codes (2-255), Src is
Firewall, Echo Request payload

Linux No evidence of effects

35 Testing Length field (0 to 255) Win Interpreted as part of Unused field
36 Testing Length field (0 to 255) Linux Interpreted as part of Unused field

Table 17. Attacking internal network, Time Exceeded (Type 3)

105

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark
and OS specific commands)

1 2 3 4

37
Code 0, Src is Firewall, Echo
Request payload

Win No evidence of effects

38
Code 0, Src is Firewall, Echo
Request payload

Linux No evidence of effects

39
Code 1, Src is Firewall, Echo
Request payload

Win No evidence of effects

40
Code 1, Src is Firewall, Echo
Request payload

Linux No evidence of effects

41
Code 2, Src is Firewall, Echo
Request payload

Win No evidence of effects

42
Code 2, Src is Firewall, Echo
Request payload

Linux No evidence of effects

43
Unknown codes (4-255), Src is
Firewall, Echo Request payload

Win No evidence of effects

44
Unknown codes (4-255), Src is
Firewall, Echo Request payload

Linux No evidence of effects

45
Flooding pointer values (0-1024),
Src is Firewall, Echo Request
payload

Win
No changes in end device, possible
measurement and comparisons using
Task Manager

46
Flooding pointer values (0-1024),
Src is Firewall, Echo Request
payload

Linux
No changes in end device, possible
measurement and comparisons using
command top

47
Flooding pointer values
(3024000000-3024001000), Src is
Firewall, Echo Request payload

Win
No changes in end device, possible
measurement and comparisons using
Task Manager

48
Flooding pointer values
(3024000000,3024001000), Src is
Firewall, Echo Request payload

Linux
No changes in end device, possible
measurement and comparisons using
command top

Table 18. Attacking internal network, Parameter Problem (Type 4)

106

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

49
Neighbor Cache Exhaustion, Src is
spoofed prefix /64 plus 16 bits
range, Dst is Victim

Win Both victim and linux firewall affected

50
Neighbor Cache Exhaustion, Src is
spoofed prefix /64 plus 16 bits
range, Dst is Victim

Linux Both victim and linux firewall affected

51
Neighbor Cache Exhaustion, Src is
Victim, Dst is spoofed prefix /64
plus 16 bits range

Win Both victim and linux firewall affected

52
Neighbor Cache Exhaustion, Src is
Victim, Dst is spoofed prefix /64
plus 16 bits range

Linux Only linux firewall affected

Table 19. Attacking internal network, Echo Request (Type 128)

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

53
Src is Attacker, packet sent without
request

Win No evidence of effects

54
Src is Attacker, packet sent without
request

Linux No evidence of effects

55
Src is Attacker, Victim firewall
disabled

Win
Windows end system start to send
ICMPv6 Parameter Problem with code 1
to Src

Table 20. Attacking internal network, Echo Reply (Type 129)

Se-
lected

Internal Attack Description Tgt. OS Results

Flood Victim with NS Win
The test failed, the target host drops the packets without
generating new processes or messages

Flood Victim with NS Linux
The test failed, the target host drops the packets without
generating new processes or messages

Flood Victim with NS, Dst is all
router multicast

Firewall
Victim starts reachability process, test not selected because of
Dst

Table 21. Attacking internal network, Router Solicitation (Type 133)

107

Se-
lected

Internal Attack Description Tgt. OS Results

Inject arbitrary prefix address, Src
is Firewall Link-local

Win The prefix is successfully addedd and new address generated

Inject arbitrary prefix address, Src
is Firewall Link-local

Linux The prefix is successfully addedd and new address generated

Inject MTU value, Src is Firewall
Link-local

Win The MTU changed to 1350

Inject MTU value, Src is Firewall
Link-local

Linux The MTU changed to 1350

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

56
Remote implementation of
arbitrary prefix injection, Src is
Firewall

Win
Test fails: Hop Limit < 255, Src is not
Link-local

57
Remote implementation of
arbitrary prefix injection, Src is
Debian Linux

Win
Test fails: Hop Limit < 255, Src is not
Link-local

58
Remote implementation of
arbitrary prefix injection, Src is
Windows 7

Win
Test fails: Hop Limit < 255, Src is not
Link-local

59
Remote implementation of
arbitrary prefix injection, Src is
Firewall, L is 0

Win
Test fails: Hop Limit < 255, Src is not
Link-local

60
Remote implementation of
arbitrary prefix injection, Src is
Firewall, R is 0

Win
Test fails: Hop Limit < 255, Src is not
Link-local

61
Remote implementation of
arbitrary prefix injection, Src is
Firewall, L and R are 0

Win
Test fails: Hop Limit < 255, Src is not
Link-local

62
Remote implementation of
arbitrary prefix injection, Src is
Firewall

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

63
Remote implementation of
arbitrary prefix injection, Src is
Debian Linux

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

64
Remote implementation of
arbitrary prefix injection, Src is
Windows 7

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

65
Remote implementation of
arbitrary prefix injection, Src is
Firewall, L is 0

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

Table 22. Attacking internal network, Router Advertisement (Type 134)

108

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

66
Remote implementation of
arbitrary prefix injection, Src is
Firewall, R is 0

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

67
Remote implementation of
arbitrary prefix injection, Src is
Firewall, L and R are 0

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

68
Remote implementation of MTU
injection, Src is equal to Dst

Win
Test fails: Hop Limit < 255, Src is not
Link-local

69
Remote implementation of MTU
injection, Src is equal to Dst

Linux
Test fails: Hop Limit < 255, Src is not
Link-local

Table 23. Attacking internal network, Router Advertisement (Type 134)

Se-
lected

Internal Attack Description Tgt. OS Results

The aim of this attack is to flood
the target with NS, using spoofed
src address

Win
Linux

The test failed, the target hosts drop the packets without
generating new processes or messages

Attacker sends NS with Src MAC
and Dst Solicited Multicast both of
the target, the option Src link layer
is the firewall

Win Packets are ignored by the receiver

Attacker sends NS with Src MAC
and Solicited Multicast both of the
target, the option Src link layer is
the firewall

Linux Packets arrive at Dst and the device start to send NA to itself

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

70
Src MAC is Firewall, Dst and Src
IPv6 is the Target

Linux
Packets arrive but droped, Hop Limit <
255

Table 24. Attacking internal network, Neighbor Solicitation (Type 135)

109

Se-
lected

Internal Attack Description Tgt. OS Results

Internal Neighbor Cache flooding
with Solicited and Override flags

Win Failed, ignored by victim

Internal Neighbor Cache flooding
with Solicited and Override flags

Linux Test is successful, Neigh Cache overridden

Mitm attack using Debian Linux as
attacker. NA to Target, NAs to
Firewall with both Win temporary
and permanent IPv6

Win
Test is successful, from attacker (Debian Linux Internal) is
possible to intercept traffic from/to the target. Test not selected,
Win temporary not disclosed to external network

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

71
Remote implementation of internal
cache flooding, Src is spoofed
IPv6, Dst is Target

Linux
Echo Request arrives at Dst, Target start
sending NS, but the arrived NA is
droped, Hop Limit is <255

Table 25. Attacking internal network, Neighbor Advertisement (Type 136)

Se-
lected

Internal Attack Description Tgt. OS Results

Half Mitm attack using Debian
Linux as attacker. Redirect to
victim

Win
Target is blocking Redirect by default. Without host firewall
attack successful, half of the traffic is intercepted

Test Description Tgt. OS Firewall Configuration
Target behavior when packets reach
destination (observed using Wireshark)

1 2 3 4

72

Remote implementation of internal
half Mitm, Src is spoofed Firewall,
Dst is Victim, Redirect Target is
Attacker and Redirect Dst is
External Adr

Win

Test fails, with and without active host
firewall: Hop Limit < 255, Src is not
Link-local, Win start conversation with
tmp address. Note: for ASA tests,
packets blocked, but for experiment not
possible to use other external host

73

Remote implementation of internal
half Mitm, Src is spoofed Firewall,
Dst is Victim, Redirect Target is
Attacker and Redirect Dst is
External Adr

Linux

Test fails: Hop Limit < 255, Src is not
Link-local. Note: for ASA tests, packets
blocked, but for experiment not possible
to use other external host

Table 26. Attacking internal network, Redirect (Type 137)

110

E. Appendix - Firewall Configurations

E.1. Netfilter Open Configuration

Listing 1. Netfilter open
#!/bin/bash

#flush iptables

ip6tables -F

#activate forwarding

sysctl -w net/ipv6/conf/all/forwarding=1

#default policy

ip6tables -P INPUT ACCEPT

ip6tables -P FORWARD ACCEPT

ip6tables -P OUTPUT ACCEPT

#forwarding chain

ip6tables -A FORWARD -i eth0 -j ACCEPT

ip6tables -A FORWARD -i eth1 -j ACCEPT

E.2. ASA Default Configuration

Listing 2. ASA Default
: Saved

: Written by enable_15 at 14:36:57.759 UTC Fri Oct 14 2016

!

ASA Version 9.1(5)

!

hostname ASA-EXP

domain-name asaexperiment.org

enable password PmNe1e0C3tJdCLe8 encrypted

xlate per-session deny tcp any4 any4

xlate per-session deny tcp any4 any6

xlate per-session deny tcp any6 any4

xlate per-session deny tcp any6 any6

xlate per-session deny udp any4 any4 eq domain

xlate per-session deny udp any4 any6 eq domain

xlate per-session deny udp any6 any4 eq domain

xlate per-session deny udp any6 any6 eq domain

passwd 2KFQnbNIdI.2KYOU encrypted

names

!

interface Ethernet0/0

switchport access vlan 2

!

interface Ethernet0/1

111

!

interface Ethernet0/2

shutdown

!

interface Ethernet0/3

shutdown

!

interface Ethernet0/4

shutdown

!

interface Ethernet0/5

shutdown

!

interface Ethernet0/6

shutdown

!

interface Ethernet0/7

shutdown

!

interface Vlan1

nameif inside

security-level 100

no ip address

ipv6 address 2001:abcd:acad:2::1/64

ipv6 address fe80::1 link-local

!

interface Vlan2

nameif outside

security-level 0

no ip address

ipv6 address 2001:abcd:acad:1::1/64

ipv6 address fe80::1 link-local

!

ftp mode passive

dns server-group DefaultDNS

domain-name asaexperiment.org

pager lines 24

mtu inside 1500

mtu outside 1500

icmp unreachable rate-limit 1 burst-size 1

asdm image disk0:/asdm-752.bin

no asdm history enable

arp timeout 14400

no arp permit-nonconnected

timeout xlate 3:00:00

timeout pat-xlate 0:00:30

timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02

timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00

timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00

timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute

timeout tcp-proxy-reassembly 0:01:00

timeout floating-conn 0:00:00

dynamic-access-policy-record DfltAccessPolicy

user-identity default-domain LOCAL

aaa authentication ssh console LOCAL

112

http server enable

http fe80::/64 inside

http 2001:abcd:acad:2::/64 inside

no snmp-server location

no snmp-server contact

snmp-server enable traps snmp authentication linkup linkdown coldstart warmstart

crypto ipsec security-association pmtu-aging infinite

crypto ca trustpool policy

telnet timeout 5

ssh scopy enable

ssh stricthostkeycheck

ssh 2001:abcd:acad:2::/64 inside

ssh timeout 5

ssh key-exchange group dh-group1-sha1

console timeout 0

threat-detection statistics access-list

no threat-detection statistics tcp-intercept

username admin password f3UhLvUj1QsXsuK7 encrypted privilege 15

!

class-map inspection_default

match default-inspection-traffic

!

!

policy-map type inspect dns preset_dns_map

parameters

message-length maximum client auto

message-length maximum 512

policy-map global_policy

class inspection_default

inspect dns preset_dns_map

inspect ftp

inspect h323 h225

inspect h323 ras

inspect ip-options

inspect netbios

inspect rsh

inspect rtsp

inspect skinny

inspect esmtp

inspect sqlnet

inspect sunrpc

inspect tftp

inspect sip

inspect xdmcp

!

service-policy global_policy global

prompt hostname context

no call-home reporting anonymous

call-home

profile CiscoTAC-1

no active

destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService

destination address email callhome@cisco.com

destination transport-method http

113

subscribe-to-alert-group diagnostic

subscribe-to-alert-group environment

subscribe-to-alert-group inventory periodic monthly

subscribe-to-alert-group configuration periodic monthly

subscribe-to-alert-group telemetry periodic daily

Cryptochecksum:5538f7101b9219167b6700a3ec406957

: end

E.3. ASA Default with ICMP Module Configuration

Listing 3. ASA with ICMP module enabled
: Saved

: Written by enable_15 at 17:34:08.819 UTC Fri Oct 14 2016

!

ASA Version 9.1(5)

!

hostname ASA-EXP

domain-name asaexperiment.org

enable password PmNe1e0C3tJdCLe8 encrypted

xlate per-session deny tcp any4 any4

xlate per-session deny tcp any4 any6

xlate per-session deny tcp any6 any4

xlate per-session deny tcp any6 any6

xlate per-session deny udp any4 any4 eq domain

xlate per-session deny udp any4 any6 eq domain

xlate per-session deny udp any6 any4 eq domain

xlate per-session deny udp any6 any6 eq domain

passwd 2KFQnbNIdI.2KYOU encrypted

names

!

interface Ethernet0/0

switchport access vlan 2

!

interface Ethernet0/1

!

interface Ethernet0/2

shutdown

!

interface Ethernet0/3

shutdown

!

interface Ethernet0/4

shutdown

!

interface Ethernet0/5

shutdown

!

interface Ethernet0/6

shutdown

!

interface Ethernet0/7

shutdown

114

!

interface Vlan1

nameif inside

security-level 100

no ip address

ipv6 address 2001:abcd:acad:2::1/64

ipv6 address fe80::1 link-local

!

interface Vlan2

nameif outside

security-level 0

no ip address

ipv6 address 2001:abcd:acad:1::1/64

ipv6 address fe80::1 link-local

!

ftp mode passive

dns server-group DefaultDNS

domain-name asaexperiment.org

pager lines 24

mtu inside 1500

mtu outside 1500

icmp unreachable rate-limit 1 burst-size 1

asdm image disk0:/asdm-752.bin

no asdm history enable

arp timeout 14400

no arp permit-nonconnected

timeout xlate 3:00:00

timeout pat-xlate 0:00:30

timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02

timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00

timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00

timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute

timeout tcp-proxy-reassembly 0:01:00

timeout floating-conn 0:00:00

dynamic-access-policy-record DfltAccessPolicy

user-identity default-domain LOCAL

aaa authentication ssh console LOCAL

http server enable

http fe80::/64 inside

http 2001:abcd:acad:2::/64 inside

no snmp-server location

no snmp-server contact

snmp-server enable traps snmp authentication linkup linkdown coldstart warmstart

crypto ipsec security-association pmtu-aging infinite

crypto ca trustpool policy

telnet timeout 5

ssh scopy enable

no ssh stricthostkeycheck

ssh 2001:abcd:acad:2::/64 inside

ssh timeout 5

ssh key-exchange group dh-group14-sha1

console timeout 0

threat-detection statistics access-list

no threat-detection statistics tcp-intercept

115

username admin password SND/6wmAgmpgep14 encrypted privilege 15

!

class-map inspection_default

match default-inspection-traffic

!

!

policy-map type inspect dns preset_dns_map

parameters

message-length maximum client auto

message-length maximum 512

policy-map global_policy

class inspection_default

inspect dns preset_dns_map

inspect ftp

inspect h323 h225

inspect h323 ras

inspect ip-options

inspect netbios

inspect rsh

inspect rtsp

inspect skinny

inspect esmtp

inspect sqlnet

inspect sunrpc

inspect tftp

inspect sip

inspect xdmcp

inspect icmp

!

service-policy global_policy global

prompt hostname context

no call-home reporting anonymous

call-home

profile CiscoTAC-1

no active

destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService

destination address email callhome@cisco.com

destination transport-method http

subscribe-to-alert-group diagnostic

subscribe-to-alert-group environment

subscribe-to-alert-group inventory periodic monthly

subscribe-to-alert-group configuration periodic monthly

subscribe-to-alert-group telemetry periodic daily

Cryptochecksum:f6683b26250bf4261a0f68b833b7a365

: end

E.4. Netfilter with Best Practices Configuration

Listing 4. Netfilter with Best Practices
#!/bin/bash

#define in out variables

116

INSIDEIF=eth0

INSIDENET=2001:abcd:acad:2::1/64

OUTSIDEIF=eth1

OUTSIDENET=2001:abcd:acad:1::1/64

#activate forwarding

sysctl -w net/ipv6/conf/all/forwarding=1

#clean all

ip6tables -F

ip6tables -X ICMPV6-TO-OUT

ip6tables -X ICMPV6-TO-IN

ip6tables -X SSH-IN

ip6tables -X SSH-OUT

ip6tables -Z

#create ad hoc chains

ip6tables -N ICMPV6-TO-OUT

ip6tables -N ICMPV6-TO-IN

ip6tables -N SSH-IN

ip6tables -N SSH-OUT

#default policy is to drop (whitelist approach)

ip6tables -P INPUT DROP

ip6tables -P FORWARD DROP

ip6tables -P OUTPUT DROP

#loopback traffic is accepted

ip6tables -A INPUT -s ::1 -d ::1 -j ACCEPT

#accept new ssh traffic on internal interface and network only

ip6tables -A INPUT -i $INSIDEIF -s $INSIDENET -p tcp --dport 22 -m state --state NEW -j

ACCEPT

#accept established and related traffic on all interfaces

ip6tables -A INPUT -p tcp --dport 22 -m state --state ESTABLISHED,RELATED -j ACCEPT

#accept ndp messages directed to the router/firewall (this is needed because of the policy)

ip6tables -A INPUT -p icmpv6 --icmpv6-type router-advertisement -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type neighbor-solicitation -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type neighbor-advertisement -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type redirect -j ACCEPT

#accept ssh related and established traffic, and ns,na traffic on output chain

ip6tables -A OUTPUT -p tcp -m state --state RELATED,ESTABLISHED -j ACCEPT

ip6tables -A OUTPUT -p icmpv6 --icmpv6-type router-advertisement -j ACCEPT

ip6tables -A OUTPUT -p icmpv6 --icmpv6-type neighbor-solicitation -j ACCEPT

ip6tables -A OUTPUT -p icmpv6 --icmpv6-type neighbor-advertisement -j ACCEPT

ip6tables -A OUTPUT -j LOG --log-prefix "output drops"

ip6tables -A OUTPUT -j DROP

#drop icmpv6 packets with link-local src/dst address in forwarding chain

ip6tables -A FORWARD -p icmpv6 -d fe80::/10 -j DROP

ip6tables -A FORWARD -p icmpv6 -s fe80::/10 -j DROP

#drop echo reply with dst multicast address in forwarding chain

117

ip6tables -A FORWARD -p icmpv6 -d ff00::/8 --icmpv6-type echo-reply -j DROP

#icmpv6 traffic from internal to be forwarded to external

ip6tables -A FORWARD -s $INSIDENET -d $OUTSIDENET -p icmpv6 -j ICMPV6-TO-OUT

#ssh traffic from internal to be forwarded to external

ip6tables -A FORWARD -i $INSIDEIF -o $OUTSIDEIF -s $INSIDENET -d $OUTSIDENET -p tcp --dport

22 -m state --state NEW,ESTABLISHED,RELATED -j SSH-OUT

#icmpv6 traffic from external to be forwarded to internal

ip6tables -A FORWARD -d $INSIDENET -p icmpv6 -j ICMPV6-TO-IN

#ssh traffic from external to be forwarded to internal

ip6tables -A FORWARD -d $INSIDENET -p tcp --sport 22 -m state --state ESTABLISHED,RELATED -j

SSH-IN

ip6tables -A FORWARD -j LOG --log-prefix "FORWARDING DROPS"

#---------------------------------

#forwarding rules from IN to OUT -

#---------------------------------

#accept ssh to be forwarded to external network

ip6tables -A SSH-OUT -i $INSIDEIF -o $OUTSIDEIF -s $INSIDENET -d $OUTSIDENET -p tcp --dport

22 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

#accept error messages

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type destination-

unreachable -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type packet-too-

big -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type time-

exceeded -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type parameter-

problem -j ACCEPT

#echo request with rate limit

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type echo-request

-m limit --limit 900/min -j ACCEPT

#echo reply is dropped because of internal policy

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type echo-reply -

j DROP

#NDP messages only if they haven’t traversed a router (this is to underline the required hop

limit of 255)

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type router-

advertisement -m hl --hl-eq 255 -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type neighbor-

solicitation -m hl --hl-eq 255 -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type neighbor-

advertisement -m hl --hl-eq 255 -j ACCEPT

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 --icmpv6-type redirect -m

hl --hl-eq 255 -j ACCEPT

#drop remaining icmpv6 packets (for clarity, but redundant because of the policy)

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 -j LOG --log-prefix "

Firewall IN-OUT: dropped ICMPv6"

ip6tables -A ICMPV6-TO-OUT -s $INSIDENET -d $OUTSIDENET -p icmpv6 -j DROP

#--------------------------------

#forwarding rule from OUT to IN -

#--------------------------------

118

#accept established and related ssh to be forwarded to internal network

ip6tables -A SSH-IN -d $INSIDENET -p tcp --sport 22 -m state --state ESTABLISHED,RELATED -j

ACCEPT

#accept error messages

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type destination-unreachable -j

ACCEPT

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type packet-too-big -j ACCEPT

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type time-exceeded -j ACCEPT

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type parameter-problem -j ACCEPT

#echo request and reply , no ping from outside (internal policy), but allow reply to come

back with rate limit

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type echo-request -j DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type echo-reply -m limit --limit

900/min -j ACCEPT

#drop explicitly and log ndp messages

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type router-advertisement -j LOG

--log-prefix "Firewall OUT-IN: dropped ra"

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type router-solicitation -j LOG

--log-prefix "Firewall OUT-IN: dropped rs"

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type neighbor-advertisement -j

LOG --log-prefix "Firewall OUT-IN: dropped na"

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type neighbor-solicitation -j LOG

--log-prefix "Firewall OUT-IN: dropped ns"

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type redirect -j LOG --log-prefix

"Firewall OUT-IN: dropped redirect"

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type router-advertisement -j DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type router-solicitation -j DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type neighbor-advertisement -j

DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type neighbor-solicitation -j

DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 --icmpv6-type redirect -j DROP

ip6tables -A ICMPV6-TO-IN -d $INSIDENET -p icmpv6 -j DROP

F. Appendix - Monitor Windows Firewall - PoC

Listing 5. Monitor Windows Firewall - PoC
#!/usr/bin/python

import threading

import time

from scapy.all import *

def packet_callback(packet):

if ICMPv6ParamProblem in packet[0]:

adr = packet[IPv6].src

code = packet[ICMPv6ParamProblem].code

print code

print adr

119

def receiver(iface):

sniff(iface=iface, filter=’ip6’, prn=packet_callback, store=0, timeout=20)

class receiverThread(threading.Thread):

def __init__(self, iface):

threading.Thread.__init__(self)

self.iface = iface

def run(self):

print "Starting Receiving Packets"

rec = receiver(self.iface)

class echoSenderThread(threading.Thread):

def __init__(self, iface, target):

threading.Thread.__init__(self)

self.iface = iface

self.target = target

def run(self):

print "Starting sending pongs"

for x in range(1,100):

p = IPv6(dst=self.target)/ICMPv6EchoReply()

send(p, iface=self.iface, verbose=False)

time.sleep(2)

win = "2001:abcd:acad:2:b485:2aec:9447:fd83"

linux = "2001:abcd:acad:2:a00:27ff:fe84:bb37"

allNodes = "ff02::1"

rec = receiverThread("eth0")

sendEcho = echoSenderThread("eth0", win)

rec.start()

sendEcho.start()

120

	Introduction
	Background and Related Work
	Background
	Covert Channel
	Existing Tools
	Summary

	Methodology
	Scientific Method
	Research Questions and Hypothesis
	Experiment Foundation
	Summary

	Implementation
	Technical Details - Devices
	Network Configurations
	Firewall Configuration
	Proof of Concept (PoC) and Test Set

	Experiment
	First Hypothesis
	Second Hypothesis

	Results
	First Hypothesis
	Second Hypothesis

	Conclusions
	First Hypothesis
	Second Hypothesis
	Firewall and Protocol Design Evaluation
	Future Work

	References
	Appendix - Cisco ASA Version
	Appendix - Test Set - First Hypothesis
	Appendix - Commands - Second Hypothesis
	Appendix - Results
	First Hypothesis
	Second Hypothesis

	Appendix - Firewall Configurations
	Netfilter Open Configuration
	ASA Default Configuration
	ASA Default with ICMP Module Configuration
	Netfilter with Best Practices Configuration

	Appendix - Monitor Windows Firewall - PoC

