
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Martin Karu 152905IABM

WEAKLY SUPERVISED TRAINING OF

SPEAKER IDENTIFICATION MODELS

Master’s thesis

Supervisor: Tanel Alumäe

 Senior Researcher

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Martin Karu 152905IABM

KAUDSE JUHENDAMISEGA

KÕNELEJATUVASTUSE MUDELITE

TREENIMINE

Magistritöö

Juhendaja: Tanel Alumäe

 Vanemteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Martin Karu

08.05.2017

4

Abstract

The thesis studies deep neural networks and machine learning for training speaker

identification models. This enables identifying speakers solely based on the

characteristics of their voice. Usually, these models are trained on large amounts of

discretely annotated audio data, but creating such datasets is time-consuming.

We propose a novel approach based on weakly supervised learning for training speaker

identification models. Each audio recording in the training data is annotated only by a set

of speakers. Alignments between speaker labels and speech segments are not provided.

The audio is pre-processed with speaker diarization and i-vector extraction. The model is

trained with backpropagation and label regularization as the cost function – a novelty in

neural networks. The method compares the average prior probabilities of annotated data

with the posterior probabilities output by the model. The process is validated for recall

and precision with a random held-out set of audio files not used in the training process.

Our experiments on the dataset from Estonian Public Broadcasting archive prove that

weakly supervised training is a highly accurate method for identifying those speakers who

occurred several times in the training data.

This thesis is written in English, is 61 pages long and contains 8 chapters, 13 figures, 7

equations, and 10 tables.

5

Annotatsioon

KAUDSE JUHENDAMISEGA KÕNELEJATUVASTUSE

MUDELITE TREENIMINE

Magistritöö eesmärgiks on uurida süvanärvivõrkude ja masinõppe kasutamist

kõnelejatuvastuse mudelite treenimiseks. Tegemist on tehnoloogiaga, mis võimaldab

tuvastada helifailis kõnelevaid inimesi hääle karakteristika alusel. Tavaliselt kasutatakse

kõnelejamudelite treenimiseks suuri andmehulkasid, kus iga kõnesegmendi kohta on

teada tegelik kõneleja. Taoliste andmete kogumine on aja- ja ressursimahukas.

Töös rakendatakse uudset lähenemist, kus kõnelejate tuvastamiseks kasutatakse kaudse

juhendamise abil treenitud mudeleid. Iga salvestise kohta on teada ainult esinejate

nimekiri. Seosed kõnelejate nimede ja kõnesegmentide vahel puuduvad. Enne

kõnetuvastuse mudeli rakendamist töödeldakse helifaile. Süsteem jaotab esmalt helifaili

lühikesteks osadeks, märgistab kõik kõne sisaldavad segmendid ning koondab jaotised

vastavalt tuvastatud kõnelejate arvule kobaratesse. Seejärel kirjeldab süsteem

helisegmentide põhjal kõnelejate hääle omadused 600-mõõtmelise i-vektorina.

Mudelit treenitakse tagasisidestuse kaudu ning kuluvõrrandina kasutatakse närvivõrkude

vaatenurgast uudset lähenemist: tähistuste korrapärastamist (label regularization).

Tegemist on meetodiga, mis võrdleb eelnevate ja tagumiste tõenäosuste aritmeetilisi

keskmisi – erinevuste korral muudetakse mudeli kihtide ja sisendite kaalusid. Eelnevateks

tõenäosusteks on saate andmetes märgitud inimesed ja tagumisteks mudeli poolt pakutud

väärtused.

Tulemusi valideeritakse suvaliselt valitud raadiosaadete abil, mis ei esinenud

treeningandmetes. Helifailidest luuakse kõnelejate i-vektorid. i-Vektoritele märgitakse

esinejate nimed kahel moel: kõnelejatuvastuse mudeli kaudu ning käsitsi. Hinnatakse nii

saagist – mitmele kõnelejale oskas süsteem nime lisada – kui ka täpsust ehk kõnelejate

osakaal, kes on õigesti tuvastatud.

6

Katsetused, mis viidi läbi Eesti Rahvusringhäälingu „Päevakaja“ uudiste arhiivi

salvestustega, kinnitavad, et kaudne kõnetuvastuse mudelite juhendamine on sobiv

meetod varasemalt treeningandmetes esinenud inimeste tuvastamiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 61 leheküljel, 8 peatükki, 13

joonist, 7 valemit ja 10 tabelit.

7

List of abbreviations and terms

AI Artificial Intelligence

BIC Bayesian Information Criterion

CLR Conditional Logistic Regression

DNN Deep Neural Network

ID Unique Identifier

HMM Hidden Markov Model

LIUM Laboratoire d'Informatique de l'Université du Maine

Research Laboratory of the University of Maine

ReLU Rectified Linear Units

TUT Tallinn University of Technology

8

Table of Contents

1 Introduction ... 15

1.1 Problem ... 15

1.2 Objective ... 16

1.3 Methodology ... 16

1.4 Outline .. 17

2 Background Theory ... 18

2.1 Algorithms .. 18

2.1.1 Hidden Markov Models (HMM) ... 18

2.1.2 Universal Background Model (UBM) ... 18

2.1.3 Gaussian Mixture Model (GMM) ... 19

2.2 Speaker diarization ... 19

2.3 i-Vectors ... 20

2.4 Deep Neural Network (DNN) ... 21

2.4.1 Softmax Layer ... 22

2.4.2 Dense Layers ... 23

2.4.3 ReLU Activation Function .. 23

2.4.4 Dropout Layers .. 23

2.5 Label Regularization – Weakly Supervised Learning .. 23

9

3 Previous Implementations for Stated Problem .. 27

3.1 The 2015 Sheffield System for Longitudinal Diarisation of Broadcast Media 27

3.2 Semi-Supervised Learning for Transductive Speaker Annotation 28

3.3 Automatic Named Identification of Speakers Using Diarization and ASR Systems

 .. 28

3.4 Unsupervised Speaker Identification Using Overlaid Texts in TV Broadcast 29

4 Data .. 30

4.1 Audio Files ... 30

4.2 Metadata ... 30

4.3 Statistics .. 31

4.3.1 Total Number of Shows Used ... 31

4.3.2 Dates of Broadcasts – Years and Amounts ... 31

4.3.3 Average Show Length ... 32

4.3.4 Average Show Length Across Recording Years ... 33

4.3.5 Speaker and Vector Count in Shows ... 34

4.3.6 Derived Metrics for Speakers and i-Vectors ... 35

4.3.7 Average Number of Speakers and i-Vectors per Show Annually 36

4.3.8 Number of Occurrences for Speakers .. 37

4.3.9 Most Frequent Speakers .. 38

5 Speaker Identification .. 40

5.1 Process .. 40

5.1.1 Training the Model .. 40

10

5.1.2 Using the Model for Labelling Speakers ... 42

5.1.3 Explanation .. 43

5.2 Data Pre-processing .. 44

5.2.1 i-Vectors from Audio Recordings ... 44

5.2.2 Speaker Diarization Within Each Show .. 44

5.2.3 i-Vector Extraction .. 45

5.2.4 Pruning the Dataset .. 45

5.2.5 Removing Shows with not Enough Speakers .. 45

5.2.6 Removing Shows with not Enough i-Vectors ... 45

5.2.7 List of Distinct Speakers ... 46

5.3 DNN architecture .. 46

5.3.1 The Input Layer ... 47

5.3.2 Hidden Layers ... 47

5.3.3 Dense Layers with ReLU Activation Function ... 47

5.3.4 Dropout Layers .. 47

5.3.5 Output Probability Vector ... 47

5.4 Training the Model ... 47

5.5 Backpropagation Through Label Regularization ... 48

5.6 Technical implementation .. 49

5.6.1 Keras .. 49

6 Validation .. 50

11

6.1 Measuring the Precision ... 50

6.2 Process of Validation .. 50

6.3 Probability for Correct Speaker Identification ... 51

6.3.1 Recall and Precision Metrics ... 52

6.4 Speakers Not Recognized in the Speaker Diarization .. 53

7 Usage and Future Work ... 55

7.1 Implementing the Speaker Identification Model AS-IS 55

7.2 Possible Usage .. 55

7.3 Continuity of the “Päevakaja” Data.. 56

7.4 Future Work .. 56

8 Summary .. 58

9 Bibliography .. 60

10 Appendix 1 – Validation ... 62

10.1 “Päevakaja Nr 20444” .. 62

10.2 “Päevakaja Nr 20445” .. 63

10.3 “Päevakaja Nr 20446” .. 65

10.4 “Päevakaja Nr 20447” .. 67

10.5 “Päevakaja Nr 20448” .. 69

11 Appendix 2 – Python Code for Training the Model .. 71

12 Appendix 3 – Python Code for Applying the Model .. 75

12

List of Figures

Figure 1 Simplified Block Diagram of i-Vector Extraction and Scoring 20

Figure 2 Number of Shows Annually ... 31

Figure 3 Length of Shows (in Minutes) with the Number of Occurrences 32

Figure 4 Average Show Length Annually .. 33

Figure 5 Number of Shows with N Speakers Overlaid with Number of Shows with N i-

Vector ... 34

Figure 6 Number of Shows with N Speakers Overlaid with Number of Shows with N i-

Vectors (without 0-values) ... 35

Figure 7 Average Speaker and i-Vector Count per Show by Year 36

Figure 8 Total Number of Occurrences for Distinct Speakers in Training Metadata (in

log-scale) .. 38

Figure 9 Training Process Diagram .. 40

Figure 10 Labelling Process Diagram .. 42

Figure 11 i-Vector Example ... 44

Figure 12 Representation of the Deep Neural Network’s Architecture 46

Figure 13 Number of Speaker Occurrences in Training Data .. 51

13

List of Tables

Table 1 Most Annotated Speakers .. 39

Table 2 Algorithm for Training the DNN .. 41

Table 3 Algorithm for Labelling Speakers in New Shows ... 43

Table 4 Ordered List of Distinct Speakers ... 46

Table 5 Speakers not Recognized ... 54

Table 6 Validation Results for Show “Päevakaja Nr 20444” ... 63

Table 7 Validation Results for Show “Päevakaja Nr 20445” ... 65

Table 8 Validation Results for Show “Päevakaja Nr 20446” ... 66

Table 9 Validation Results for Show “Päevakaja Nr 20447” ... 68

Table 10 Validation Results for Show “Päevakaja Nr 20448” 70

14

List of Equations

Equation 1 Difference Between Prior and Posterior Probabilities 25

Equation 2 Distance of Prior and Posterior Probabilities as KL-divergence 25

Equation 3 The Sum of KL-divergences .. 26

Equation 4 Prior Probabilities for Speakers ... 26

Equation 5 Prior Probabilities for Speakers ... 41

Equation 6 Average Posterior Probability .. 48

Equation 7 Average Posterior Probability for Speakers Not in the Show 48

15

1 Introduction

This thesis investigates training speaker identification models in the context of weakly

supervised machine learning. Our model is trained with thousands of recordings and

accompanied metadata from the Estonian Public Broadcasting news archive. We use a

deep neural network that is trained using label regularization as the cost function.

The chapter describes the approaches and methodology used in the thesis and the novelty

of them. It outlines the basic differences between supervised and weakly supervised

learning and the occasions of using either. We define the problem, set a hypothesis for

solving it and set target goals to validate the constructed model.

1.1 Problem

The thesis investigates two unexplored areas of machine learning: firstly, using weakly

supervised learning in the context of speaker identification, and secondly, implementing

label regularization as the cost function in a neural network.

Up until now, most scientific research in the area of machine learning has been done with

either supervised or unsupervised learning. The first methodology requires discretely

labelled data for training, but obtaining it is time- and otherwise resource consuming. The

unsupervised learning uses unlabelled data, but it usually involves even larger datasets

for correctly training the model. Weakly supervised learning is more closely related to

supervised learning with the availability of somewhat labelled data. The approach the

thesis endeavours includes combining the data across thousands of audio recordings to

create a model for correctly identifying the speakers.

The second problem encompasses the way a neural network model for speaker

identification needs to be trained. Relations must be formed between the audio segment

representations and the list of annotated speakers that correspond to them. To achieve

this, we propose using a technique called label regularization. In typical label

regularization applications, the systems are trained with both strongly labelled and

unlabelled data, which can originate from different domains. In the scope of the thesis,

16

we task label regularization to match the average prior probabilities of the metadata labels

to the average posterior probabilities given by the speaker identification model.

1.2 Objective

We seek to create a weakly supervised neural network model, train it with audio

recordings and metadata from over 6600 news recordings from the Estonian Public

Broadcasting archives in order to correctly identify speakers in new recordings.

The results are validated in two aspects: recall – the proportion of audio segments that

have been labelled – and precision – the proportion of labels that are correct. This is

accomplished using a random held-out set of audio files that was not present in the

training. The labels assigned by the model are compared against manually annotated

speaker labels.

The goal is to achieve a result of 70% on recall and 90% precision. A confidence threshold

is used to retain only the correct predictions and accomplish the set objectives.

1.3 Methodology

The main speaker identification model is implemented as a weakly supervised deep neural

network – an artificial neural network, where deep learning is applied.

In training, the inputs include a fixed-dimensional representation of speaker audio

segment clusters called i-vectors, and a set of annotated speakers for each recording.

When using the model to identify speakers in new shows, the list of speakers is not used

and instead a confidence threshold is introduced. This is used to eliminate predictions that

are likely to be incorrect.

The model is trained using backpropagation. The cost function is implemented as label

regularization. The method encourages average model predictions within each show to

match label priors based on the annotated speakers in given show. This is in contrast to

typical supervised learning, where backpropagation is implemented by comparing strong

labels against the model’s posterior probabilities. The method is easy to implement and

scales well to large amounts of training data.

17

1.4 Outline

The first chapter describes the approaches and methodology used in the thesis and the

novelty of them. It introduces the basic differences between supervised and weakly

supervised learning and the occasions of using either. We define the problem, set a

hypothesis for solving it and set target goals to validate the constructed model.

The second chapter gives a detailed overview of the software design patterns used in the

thesis, e.g. DNNs, speaker diarization, i-vector extraction and label regularization. As

well, the underlying mathematical logic is depicted in the amount that is necessary to

understand the technical applications.

The third chapter analyses current solutions that are related to our problem in some

aspects. None of the solutions deal with either of the two problems postulated in “1.1

Problem”.

The fourth chapter looks at the composition and statistical aspects of the data used in the

identification experiments. It is collected from Estonian Public Broadcasting radio news

shows called “Päevakaja”. The data consists of two parts: audio recordings and the

metadata related to them.

The fifth chapter specifies the solution part of the thesis. It includes a detailed explanation

of both the training and speaker identification processes. The data pre-processing and

post-filtering is explained.

This sixth chapter validate whether the objectives of the thesis have been met. That is: the

model and its training is sufficient to correctly label new show’s speakers. A random held-

out set of recordings is used and after processing it through speaker identification, it is

compared against manually labelled data.

This seventh chapter analyses how to further improve the speaker identification system.

It gives examples, where the model can be used right away and possibilities of

implementing the findings of the thesis in similar research topics.

The eighth chapter draws conclusions on whether weakly labelled data and label

regularization are suitable for machine learning. The objectives and hypotheses are

revisited and analysed whether they were achieved as planned.

18

2 Background Theory

This chapter gives a detailed overview of the software design patterns used in the thesis,

e.g. DNNs, speaker diarization, i-vector extraction and label regularization. As well, the

underlying mathematical logic is depicted in the amount that is necessary to understand

the technical applications.

2.1 Algorithms

2.1.1 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) are used in almost all the current speech and speaker

recognition algorithms, computer vision (i.e. image and video recognition), in data

compression, and in other areas of AI.

A hidden Markov model is a tool for representing the probability distributions over

sequences of observations (Ghahramani, 2001). The observation at time 𝑡 is defined as

𝑌𝑡. The result is a discrete alphanumeric value or other object as long as its probability

distribution over time can be defined.

HMMs are defined by two main properties. Firstly, the observation 𝑌𝑡 done at a time 𝑡

upon a process 𝑃 produces a state 𝑆𝑡, which is hidden from the observer. Secondly, it

assumes that the state of this hidden process satisfies the Markov property – given the

value of 𝑆𝑡−1, the current state 𝑆𝑡 is independent of all the states prior to 𝑡 − 1. This means

that the state at any time contains all information necessary for predicting the future of

the process. The definition of the HMM also assumes that any state is discrete – this is

sometimes defined as the third characterizing property.

2.1.2 Universal Background Model (UBM)

A Universal Background Model (UBM) is a model used in biometric (e.g. speaker)

recognition and verification systems. It comprises of general person-independent

characteristics’ definitions and compares them against person-specific feature

characteristics’ models (Reynolds, 2009).

19

2.1.3 Gaussian Mixture Model (GMM)

A mixture model in statistics is a probabilistic model that represents sub-populations

within the whole population. It allows to define sub-populations based on fixed or known

parameters with unknown or varying parameters. Gaussian mixture models assume all

data points are generated from a mixture of a finite number of Gaussian distributions with

unknown parameters.

Mixture models are used for making statistical assumptions about individual observations

based on postulated sub-population attributes. This behaviour makes GMMs easy to be

used in unsupervised or clustering procedures (Greenberg, 2014).

2.2 Speaker diarization

Speaker Diarization is the process of deciding who spoke when in an audio stream

(Vijayasenan, 2009). The process involves determining the number of speakers and

splitting the audio stream into acoustically homogeneous segments (Madikeri, 2012). The

results contain the number of speakers and a set of audio segment clusters for each of

them. These values are extracted in an unsupervised manner. Speaker diarization can be

applied to several types of audio streams such as news recordings, conversational

telephone speech and meeting recordings.

The process starts with feature extraction, which builds derived values from initial data.

Next, the speech activity detection process is applied. The parts in which speech is present

or absent are determined. After isolating speech, the system looks for speaker changes

and cuts the audio into 1-2-second-long uniform segments. These are considered

homogeneous because of their short length.

The segments are linked together per similarity measures. Agglomerative bottom-up

clustering of acoustic segments is used. More precisely, Agglomerative Information

Bottleneck bases the clustering upon information theoretic principles. Once the clusters

have been found, their boundaries are refined using an ergodic Hidden Markov Model

(HMM) with duration constraints.

In most state-of-the-art models Bayesian Information Criterion (BIC) is used as the

complexity metric, but other similar metrics with equally viable stopping criterion are

20

available. Given the unsupervised nature of the linking – the final number of clusters is

unknown; the stopping criterion is often considered arbitrary to the outcome. Thus,

selecting any of the often-used stopping criterion should achieve desired results.

Current speaker diarization systems require too much time or computing power to be used

in regular settings. Research is being done on faster-than-real-time diarization systems

with low computational complexity. These can be used in many cases, such as mapping

meeting notes to the speakers during the meeting. The processing power required is

satisfied with a common desktop computer or a high-end laptop.

2.3 i-Vectors

i-Vector approach is used in state-of-the-art speaker recognition systems. The process

includes multiple steps. G. Greenberg describes it in detail in the paper “Speaker

Recognition i-Vector Machine Learning Challenge” – see Figure 1.

Speech activity detection is run on an audio segment such as a radio show or a copy of a

telephone call. The audio is processed and locations of speech in it are located. The

acoustic features that convey information about the speaker are extracted. This creates a

sequence of feature vectors – typically mel-frequency cepstra (short-term power spectrum

of a sound) at 100 feature vectors per second (Greenberg, 2014).

In speaker verification systems, a Universal Background Model (UBM) is used to identify

the distribution of feature vector sequences. In this case, it is implemented as a Gaussian

mixture model (GMM). The model is trained with speech samples from a large set of

Figure 1 Simplified Block Diagram of i-Vector Extraction and Scoring (Greenberg, 2014)

21

speakers in order to represent general speech characteristics. The sequence of parameters’

distribution is represented as a relative to the UBM.

The parameters of the speaker’s characteristics’ are transformed. Firstly, using a total

variability matrix (T) to a 600-dimension vector. Secondly, by whitening the vector – a

global mean (m) is subtracted from the values, and then scaled by the inverse square root

of a global covariance matrix (W) – see Figure 1. Lastly, the vector is then normalized to

unit length. These transformations create a more suitable vector for the GMM to process.

Usually, as the last step, a score between the model and a sample i-vector is computed.

Most likely, a cosine distance, but other similar methods can be used. This is employed

in supervised learning manner – the vectors are sent directly into the DNN and

backpropagated uniquely.

The segments after the initial front-end processing are known as the system’s hyper-

parameters. Before using the model, it must be trained. The model represents statistical

variance and distribution of general features. Thus, we can train it using unlabelled data.

The resulting i-vectors are input directly to the DNN – both in supervised and weakly

supervised learning.

2.4 Deep Neural Network (DNN)

Deep Neural Networks (DNN) extend Artificial Neural Networks (ANN) to find complex

non-linear relationships by incorporating Deep Learning (DL). Before this, most machine

learning techniques exploited shallow-structured architecture ANNs. These typically

contained one or two layers of non-linear feature transformations (Li, Dong, 2014). DNNs

extend the traditional classification models by having a larger capacity for learning and

finding relations. This is managed through multiple hidden layers between the input and

output layers (Szegedy, 2013). Added layers enable composing features from lower

layers, which allows processing complex data. Compared to similarly configured shallow

ANNs, the complex models use fewer units and are better optimized. (Bengio, 2009)

DNNs and deep learning combine the research areas of neural networks, artificial

intelligence, graphical modelling, optimization, pattern recognition, and signal

processing. Deep learning methods are used at an increasing level to exploit complex,

22

compositional nonlinear functions. Compared to ANNs the main reasons behind the

ability to learn distributed and hierarchical feature representations are:

1) Hardware implementations that drastically increase chip processing abilities.

These are put to practice in general-purpose graphical processing units (GPGPU);

2) The ability to use larger – both labelled and unlabelled – datasets for training;

3) The recent advances in machine learning and signal/information processing

research (Li, 2014).

An observation can be represented in multiple forms: i.e. an audio file can be represented

by its length, waveform, or the transcribed text. Similarly, an image can be described by

the collection of pixels, a colormap or other means. The purpose of Deep Learning is to

use multiple levels of representation and abstraction to make sense of data (Deep Learning

Tutorials, 5th of May 2017). The most suitable method for representing data and the layers

of abstractions that produce the required results can be chosen by trial and error. It is

possible to combine different methods, models and data representations.

Feed-forward DNNs are mostly trained with a backpropagation algorithm. The goal is to

minimize the error rate. The network is initialized with randomly chosen weights. A cost

function is applied: the model’s output values are compared to the expected values, a

penalty is calculated and the model’s weight features are altered. The backpropagation

algorithm can be selected based on the type of data used (Rojas, 1996). In 1986,

Rumelhart et al. showed with experiments that backpropagation could create complex

internal representations of the incoming data in the hidden layers of neural networks

(Schmidhuber, 2014).

The model used in the thesis is implemented as a type of artificial neural models: a

feedforward network. The input layers accept the data feed data to the strictly ordered

hidden layers. The layers in the model are connected consecutively in a defined order and

no cycles are created. Lastly, the processed data reaches the output: Softmax layer. This

defines posterior probabilities for speakers.

2.4.1 Softmax Layer

The Softmax function is used as the ultimate layer in the system. The Softmax function

insures that the outputs are positive and their sum is one. Because we are dealing with

http://deeplearning.net/tutorial/

23

probabilities, it is interpreted as 100% and allows the DNN to interpret the output values

more linearly. (Collobert, 2008).

2.4.2 Dense Layers

The neural networks’ layers consist of different number of units. In feed-forward

networks, each node can send the data to some or all the units in the next layer. If there

are few connections, the layer is called sparse. If every unit is connected to every unit in

the next layer, the layer is called dense.

2.4.3 ReLU Activation Function

The dense layers output is defined by the set of inputs. This is otherwise known as an

activation function. The thesis uses rectified linear units (ReLU) method for activation,

mostly because of two aspects. Firstly, it is able to create more generalized internal

relations, and secondly, ReLU does not use division or exponential calculations. Thus, it

is faster than other similar functions.

2.4.4 Dropout Layers

Deep neural networks can accomplish complex goals and are powerful machine learning

systems. One of the greatest problems they face is overfitting. This means that a model

optimizes its algorithms to minimize the error – for exactly the data that is used for

training it. Afterward, when it is used for classifying new values, the error rate is higher

than expected.

Dropout is a technique that modifies the DNN and during training randomly removes

units or their connections with nodes in the following layer. The randomness of the

dormant units creates abstract weights that satisfy a broader set of input data (Srivastava,

2014).

2.5 Label Regularization – Weakly Supervised Learning

Supervised machine learning methods require manually labelled training data. The

demand for strongly labelled data limits the applicability of machine learning: either a

small dataset can be utilized or a lot of time and resources must be invested. Therefore,

applying machine learning in the context of weakly labelled data has drawn considerable

amount of attention in recent years.

24

In fully supervised learning, each set of inputs is uniquely mapped to an expected (correct)

output. Weakly supervised learning combines a set of inputs (or a list of input sets) with

a list of possible values. The third option would be to use unlabelled data, which can

cluster the i-vectors, but not label them at all. For example, if an i-vector is processed by

a DNN: with strongly labelled, the cost function can simply compare the expected

outcome with the label provided and adjust weights accordingly. Weakly labelled

approach can validate that the outcome is in the list of possible labels. Unlabelled data

would be clustered by the model and to start adding labels, it should be combined with a

smaller list of supervised or semi-supervised data. The initial size of the dataset for

unlabelled approach is exceedingly larger than with the other two types.

If the DNN were tasked with computer vision and the dataset were a collection of images.

Fully supervised systems could be used to identify singular items on them, i.e. a photo of

a baseball, a photo of a basketball etc. Similarly, self-taught systems with unlabelled data

can be used to cluster the images, most likely containing a single item in them. Weakly

supervised systems would instead be able to identify images with multiple objects based

on statistical occurrences. For example, the images for training can be “hat and gloves”,

“hat and shoes”, “gloves, shoes and scarf”, “hat and belt” and so forth. As visible, the

object “hat” exists in three cases with other varying items. Not once is the object defined

as a unique label. Subsequently, when using the system to identify images, object “hat”

should be correctly labelled. The probability for correctly classifying inputs – using

weakly labelled data – is described in further chapters. (Stanford UFLDL Tutorial, 2017)

In our task, weak labels originate from the human-provided metadata for each show. The

metadata lists the identities of all the speakers appearing in the show. However, precise

timing information (i.e. who speaks when) is not given. This allows us to cast our task to

a weakly labelled learning problem: using speaker diarization, we can find the likely

partitioning of speech segments based on the speakers; then, we calculate an i-vector for

each such partition. Ideally, the number of i-vectors is equal to the number of speaker

identities provided in the metadata, and we know that each i-vector corresponds to exactly

one of the speaker identities, but of course, we do not know the exact mapping from i-

vectors to speaker identities. Our task is to train a model that learns the true mapping,

given many such weak mappings.

25

We propose to solve our weakly supervised learning problem using a technique called

label regularization. Label regularization is a special case of a more general method called

expectation regularization (Druck et al., 2007), originally proposed for semi-supervised

learning. In label regularization, the discriminative machine learning model is trained

using a certain amount of strongly labelled data, and a certain amount of unlabelled data,

possibly coming from another domain. However, the prior probabilities of the labels of

unlabelled data are given, and the task of label regularization is to match the average

posterior probabilities of the model on unsupervised data with the given prior

probabilities. This is implemented using an additional term for the training objective

function that characterizes the difference between the given prior probability and model’s

average posterior probability over training data (Equation 1):

The proposed distance metric is the Kullback–Leibler divergence – Equation 2 (Kullback,

Leibler 1951):

In our case, we not only know the prior probabilities of the labels (speaker identities) of

our whole training set. We we also know the prior probabilities over groups of examples,

corresponding to the i-vectors of each individual show. The prior probabilities

corresponding to the speakers that appear in the show is equal to 1/Ns where Ns is the

number of distinct speakers in show 𝑠 (since the speaker identity should be assigned to

one and only one i-vector of the show). It is equal to zero for all other speakers (Equation

4). That is, our objective function 𝑙 is a sum of the KL-divergences of the known prior

and predicted posterior probabilities over all shows in our training set (Equation 3):

𝐷(�̃�||𝑝θ)

Equation 1 Difference Between Prior and Posterior Probabilities

𝐷(�̃�||𝑝θ) = ∑ �̃� log
�̃�

�̂�θ
𝑦

Equation 2 Distance of Prior and Posterior Probabilities as KL-divergence

26

Where

In practice, this training should only work if the speakers occur in multiple shows, and no

speakers occur always in the same shows together. If the same two or more speakers are

present in the same shows, the identification model gives an equal probability for their

labels. As explained in “5.1.2 Using the Model for Labelling Speakers“, the results are

refined using a confidence threshold. Therefore, for two similar speakers, if the threshold

is set above 50%, both are invalidated.

𝑙 = ∑ 𝐷(�̃�𝑠||𝑝θ𝑠)

𝑦

Equation 3 The Sum of KL-divergences

�̃�𝑠(𝑠𝑝𝑒𝑎𝑘𝑒𝑟) = {

1

𝑁𝑠
 𝑖𝑓 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑠ℎ𝑜𝑤 𝑠

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 4 Prior Probabilities for Speakers

27

3 Previous Implementations for Stated Problem

The problem of using weak supervision with speaker identification, as described in this

thesis, has not been investigated in any earlier research to the best of the Author’s

knowledge.

The chapter describes a few previous works that are related to our problem in some

aspects. None of the papers cover the problems stated in the thesis.

3.1 The 2015 Sheffield System for Longitudinal Diarisation of Broadcast

Media

Broadcast media audio stream diarization is a particularly difficult task, due to the large

number of speakers and additional background noises. Longitudinal diarization is a type

of speaker diarization executed across a collection of connected audio streams. Using

information gathered from previous shows within a series improves the performance of

the model and the outcome, but it requires ways of matching speakers across consecutive

files.

Longitudinal Speaker Diarisation System by the University of Sheffield (Milner, 2015)

was created for participation in the 2015 Multi–Genre Broadcast (MGB) challenge and it

used data from BBC archives. The system constructed consists of three main stages:

1) Speech Activity Detection using a DNN;

2) Audio segmentation and clustering by speakers with DNN-based models;

3) Speaker linking across shows.

The system was validated on a set of 19 shows from five different TV series. The result

provided a Diarization Error Rate (DER) of around 50%.

The paper by the University of Sheffield is similar to our thesis until the Speaker

Identification part. The main emphasis on the paper was upon improving the speaker

DER. In our case, an existing diarization implementation is used on each single audio

28

stream, i-vectors are extracted and the linking is handled in order to connect labels to the

speakers’ clusters.

3.2 Semi-Supervised Learning for Transductive Speaker Annotation

The problem of annotating speech with speaker information is imposed and validated

using transductive learning. The paper postulates that this approach is optimal in many

cases, archived recordings as a prime example (Täckström, 2008).

The thesis proposes using a simple semi-supervised algorithm. It proves that when using

a very small number of labelled segments for training, the transductive model outperforms

the inductive fully supervised Support Vector Machine algorithm. When increasing the

sample size, the models’ performance is on par.

Täckström’s paper is similar to ours as it proves a low sample of labelled training data is

able to give the correct answer. It differs because the training data is still supervised

meaning each segment is discretely linked to a specific speaker.

3.3 Automatic Named Identification of Speakers Using Diarization and

ASR Systems

Automatic named identification considers extracting the name of the speaker from their

own speech. The audio stream is processed using speaker diarization, creating linked

utterances belonging to the speakers present in the recording. Speech recognition is ran

on the utterances to have a searchable text corpus. As the final step, the algorithm searches

the text for speaker names – if present, the speech segments are linked to the name found.

The algorithm relies on two possibilities: the speakers introduce themselves or the host

does it for them (Jousse, 2009).

Speaker Diarization System was experimented on French broadcast news recordings from

the ESTER 1 evaluation campaign. All the data was provided automatically – diarization,

speech-to-text and even the names of the speakers. The result was a two-fold increase in

speaker identification than without using the automatic named identification model.

29

The paper focuses on naming a single recording’s diarized audio segments and does not

extend the information – either the speaker models or the names – to neighbouring audio

streams.

3.4 Unsupervised Speaker Identification Using Overlaid Texts in TV

Broadcast

Similarly, to “Automatic Named Identification of Speakers Using Diarization and ASR

Systems” this paper proposes their approach on finding the name of the speaker

automatically from text related to the audio stream. In this case, instead of the speaker

name being vocally presented, the information is obtained from imagery. The video is

processed and any overlaid text is indexed, i.e. the presenters’ and guests’ names and

titles are displayed at the beginning of their appearance (Poignant, 2012).

The audio streams are processed using speaker diarization and the data is linked to the

indexed information. The model considered the co-occurrence of two or more people –

the names of partners or otherwise connected people are often displayed simultaneously.

The best un-supervised system reached a weighted harmonic mean of 70.2% and 81.7%

if the presenters of the show were left out. As a comparison, a supervised speaker

identification system with 535 trained speaker models was used providing results of

57.5% and 45.7% respectively.

The paper describes using unsupervised training for identifying speakers with external

methods for gathering speaker name data. This method focuses on identifying parties in

a single recording thus it would be possible to even further improve the outcome if it were

combined with the approach proposed in this thesis.

30

4 Data

This chapter describes the data used in the identification experiments. It is collected from

Estonian Public Broadcasting radio news shows called “Päevakaja”. The data consists of

two parts: audio recordings and the metadata related to them. The subsections give an

overview of the statistical aspects of both i-vectors and speaker lists. Processing the data

is described in “5. Solution”.

4.1 Audio Files

Audio recordings are an integral part of speaker identification – the process starts from

them. The shows consist mostly of a single person speaking at any time, making data pre-

processing simpler. There is no need to separate audio waveforms before speaker

diarization.

Shows are usually in Estonian, but they often contain foreign news pieces. Thankfully,

the process is impervious to it anyway – speech is represented by i-vectors and there is

no indication of words spoken or languages used.

4.2 Metadata

Information is collected to label the speakers after processing the audio form. The

knowledge that we gather consists of two parts: an identifier for the show (e.g. URL or

an arbitrary sequence number) and the names of speakers in it.

Names of the speakers are expressed in a uniform way and represented as “[Last name]

[First name]” – also present in the validation data shown in “Appendix 1 – Validation”.

During training, a list of distinct values is maintained. By eliminating variability in the

metadata, relations between different shows are simpler to define. The name is attached

as a label to the person’s audio segments’ cluster – the grouping receives the speaker’s

name. Afterwards, when using the DNN to identify speakers, the label of the most similar

cluster is set as the most probable name for the new speaker’s recording.

31

Speakers can be either presenters or guests of the show discussing a relevant topic or

reporters and people connected to the subject at hand. The largest clusters, as

demonstrated with upcoming statistics, are created by the people working in Estonian

Public Broadcasting corporation and producing the shows.

4.3 Statistics

4.3.1 Total Number of Shows Used

The number of shows since the first airing is slightly over 6800. In the last 5 years, on

average, one show is added daily.

The training data was extracted in the end of November 2016. At that, the number of

shows aired was 6604. The metadata stated that 4366 of them contain more than two

speakers. Thus, 33.8% of the shows cannot be used for training because they contain too

little information.

The i-vectors extraction is more reliable with only 50 shows with fewer than two speakers.

4.3.2 Dates of Broadcasts – Years and Amounts

“Päevakaja” show has been on air since 1944, but the number of shows recorded annually

varies.

Figure 2 Number of Shows Annually

32

Figure 2 displays the years the show has been aired. The values represent the total number

of shows per year. The earliest were recorded in 1944 and a slight rise in the number set

in the 1960s. Shows since 2004 make up 92% of all data.

The period from 2005 to 2010 had close to two recordings per day, since 2011 the

Estonian Public Broadcasting has aired approximately one show per day. The slight

decline at the end of 2016 is due to the training data being extracted on the 23rd of

November – about 40 shows from 2016 were not used.

4.3.3 Show Length

The shows deliver daily news reports and commentary from people involved. Most of

the shows range from 10 to 24 minutes in length. A small percentage of recordings are

less than 5 minutes or more than 25 minutes long.

The Figure 3 displays that the length of the 6604 shows has fluctuated. The x-axis

contains audio stream lengths rounded down to the nearest minute value. The values

correspond to the number of shows with given length.

The average show length is 16 minutes and 47 seconds.

Figure 3 Length of Shows (in Minutes) with the Number of Occurrences

33

4.3.4 Average Show Length across Recording Years

It is possible to graph the distribution of show length across the years.

Instead of displaying the total number of shows with any given length, Figure 4 contains

recording years left-to-right and the average show lengths as values.

Until the mid-2000s, the majority of shows were under 5 minutes. Since 2005, the average

has gone up to 17 minutes and 39 seconds. The highest arithmetic mean can be found in

1995. An average show length of 31 minutes and 19 seconds, but in fact, the year only

contained a single show. Similarly, in 2002 and 1999, there are high averages, but only

two and three shows recorded respectively.

Figure 4 Average Show Length Annually

34

4.3.5 Speaker and Vector Count in Shows

One of the most important aspects using a DNN is the amount of data available for

training it.

Figure 5 represents two values: firstly, the number of speakers annotated in the show’s

metadata (displayed in dark grey) and, secondly, the number of i-vectors extracted from

the recording’s audio stream (displayed in orange hue). The x-axis is the number of

speakers and/or i-vectors; the y-axis - the number of shows with given parameters.

There is a noticeable spike at the beginning of Figure 5. The number of shows with zero

speakers is 2237 – a total of 33.8% of all shows. Additionally, 1.6% of shows have exactly

one speaker annotated in the metadata.

The i-vector values are more equally distributed. The number of shows with no i-vectors

is eight – forming only 0.1% of the dataset – and only one i-vector in 42 shows (0.6%).

Figure 5 Number of Shows with N Speakers Overlaid with Number of Shows with N i-Vector

35

After removing the shows with zero speakers or i-vectors, the distribution is more

distinguishable in Figure 6.

First, the number of shows with 6 to 27 i-vectors always exceeds the number of shows

with 6 to 27 speakers. This means that even though metadata contained a great deal of

shows with zero speakers, the actual audio recordings involve presenters and multiple

guests.

Second, the i-vector and the speakers’ distributions are similar when the 0-values are

removed. The arithmetic mean over 6596 shows is 14.1 i-vectors per show and 14.0

speakers per show over 4367 values. With the zero-values included, the i-vector average

does not shift – still 14.1 i-vectors per show. The speakers per show average lowers to

9.2.

4.3.6 Derived Metrics for Speakers and i-Vectors

Per the metadata:

 On average, each show has 14 speakers;

 110 shows contain a single speaker.

Figure 6 Number of Shows with N Speakers Overlaid with Number of Shows with N i-Vectors (without

0-values)

36

 There is 185 shows with 25 or more speakers. Out of these 17 recordings,

contain 30 or more speakers.

 The greatest number of guests was present on the 31st of December in 2004. It

was the New Year’s Eve show with 45 speakers. The second most visited

recording is from The New Year’s Eve in 2002 with 35 guests.

4.3.7 Average Number of Speakers and i-Vectors per Show Annually

Recordings originate from a long period. This allows us to graph the average number of

speakers in a show per year and the average number of i-vectors per show per year. Figure

7 overlays these values.

In the beginning of the 1960s, start of 2000s and shows since June 2009 have been

annotated diligently. The Figure 7 has the years since the first recording up until the end

of 2016. The values display the number of either i-vectors or speakers on average in a

show for every year.

In the period from 1965 to 1994, the show was mostly on hold. This is displayed on the

Figure 7 - the period that has continuously the least number of both speakers and i-

vectors.

Most shows have 8 to 20 i-vectors. The amount of i-vectors is almost always higher or

on par with the speakers’ value. The only exceptions are years 1944, 1983, and 2001.

Figure 7 Average Speaker and i-Vector Count per Show by Year

37

This result is expected. The number of i-vectors in a show compared to speakers (by

metadata) is greater because of two main reasons: firstly, metadata is unreliable, and,

secondly, one person’s voice can be counted as two (or in some cases even 3) separate

ones.

In the years from 2006 to 2008, we can see that the average number of i-vectors remains

steadily around 12. However, the average number of speakers per show drops. This

means that the shows were continuously recorded in the years in question, but metadata

annotation was forsaken.

Clustering one person as multiple happens if there are different background conditions.

The diarization diverges enough to count one person’s voice as multiple ones if for

example:

1) The presenter starts talking when the Estonian Public Broadcasting show’s jingle

is still being played;

2) The presenter talks normally into the microphone;

3) The presenter has recorded a news segment beforehand, e.g. outside the (noise

cancelling) studio with wind whistle or passing traffic noises.

The model must take into account these possibilities and, if necessary, within one show

label multiple clusters with the same person’s name.

4.3.8 Number of Occurrences for Speakers

Most people are invited to only one show. So much so, that Figure 8, which is used to

display the number of occurrences for speakers, must display the values in log-scale. The

x-axis displays the unique number of times people have been to the show. The y-axis

graphs the number of people that have been annotated as many times in the metadata.

38

The total number of unique speakers in the training data is 13770. Out of all, 63.8% are

described in only one show and additionally 15.5% in two shows.

4.3.9 Most Frequent Speakers

Figure 8 shows that there are 80 people with more than 100 occurrences. The people with

the most recurrences are displayed in Table 1 Most Annotated Speakers.

Order Person Number of

Occurrences

Occupation/Relation

1 Toom Uku 1346 Presenter

2 Mälberg Mall 1230 Presenter

3 Eentalu Riina 1179 Presenter

4 Vare Kai 1040 Presenter

5 Karjatse Tõnu 946 Presenter

6 Otsmaa Margitta 940 Presenter

7 Kiisler Indrek 906 Presenter

8 Kelmsaar Vallo 669 Presenter

Figure 8 Total Number of Occurrences for Distinct Speakers in Training Metadata (in log-scale)

39

Order Person Number of

Occurrences

Occupation/Relation

9 Salme Janek 618 Presenter

10 Gaškov Ago 508 Reporter for the show

11 Ansip Andrus 498 Former Prime Minister of Estonia

Vice President of the European

Commission

12 Ojakivi Mirko 483 Reporter for the show

13 Kenk Olev 461 Reporter for the show

14 Lass Liisu 437 Presenter

Table 1 Most Annotated Speakers

40

5 Speaker Identification

The chapter specifies the solution part of the thesis. It includes a detailed explanation of

both the training and speaker identification processes; the data processing beforehand and

post-filtering for retaining only confidently identified speaker labels.

5.1 Process

The imperative part of the thesis lies in the process of identifying speakers. Upcoming

chapters describe how weakly supervised learning is used and the data is processed.

5.1.1 Training the Model

Before using the DNN for identifying speakers, it must be trained. In our case, the speaker

identification model processes weakly labelled data and backpropagates using label

regularization. The process, as shown in Figure 9, is also further explained as an algorithm

(Table 2 Algorithm for Training the DNN).

Figure 9 Training Process Diagram

41

5.1.1.1 Algorithm for Training the DNN

Given Data

1) Audio files for shows 𝑊 = 𝑤𝑖, where 𝑖 = 1 … 𝑁.

2) Set of speakers for each show 𝑆 = 𝑠𝑖𝑙𝑖
,

where 𝑙𝑖 is the number of speaker identities found in show 𝑖.

Algorithm

Action Result

1. Process audio streams using speaker diarization Audio cluster segments for each

show 𝐷 = 𝑣𝑖𝑘𝑖
, where 𝑘𝑖 is the

number of speaker clusters found

in show 𝑖.

2. Extract i-vectors i-Vectors for each show 𝑉 = 𝑣𝑖𝑘𝑖
.

3. Filter the set of i-vectors Pruned set of i-vectors for each

show 𝑉.

4. Create a Speaker Identification DNN with 𝑑 inputs

and 𝑐 outputs

𝑑 – Dimensionalitity of the i-vectors (600)

𝑐 = 𝐶𝑜𝑢𝑛𝑡(𝑁) - Number of unique

speakers over all the shows.

5. Train for 𝐸 epochs.

𝑓𝑜𝑟 𝑗 = 1 … 𝑁:

 𝑢𝑝𝑑𝑎𝑡𝑒 𝐷𝑁𝑁 𝑢𝑠𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 𝑙 = 𝐷(�̃�𝑗||𝑝θ𝑗
)

Where:

�̃�𝑗(𝑠𝑝𝑒𝑎𝑘𝑒𝑟) = {

1

𝑁𝑗
 𝑖𝑓 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑠ℎ𝑜𝑤 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 5 Prior Probabilities for Speakers

 𝑝θ – output of the DNN using its current parameters θ.

Table 2 Algorithm for Training the DNN

42

5.1.2 Using the Model for Labelling Speakers

The trained model is used for identifying speakers in new shows. The process – displayed

on Figure 10 and described as an algorithm in Table 3 Algorithm for Labelling Speakers

in New Shows - differs from training the system. The given data does not contain a

speakers’ information. Therefore, instead of filtering the speaker list before the speaker

identification process, it is done post. Most importantly: the i-vectors extracted from the

recording are classified – if probable labels are found.

Figure 10 Labelling Process Diagram

43

5.1.2.1 Algorithm for Labelling Speakers in New Shows

Given Data

1) Audio files for shows 𝑊 = 𝑤𝑖, where 𝑖 = 1 … 𝑁.

2) Threshold T – confidence score required to classify the i-vector.

Algorithm

Action Result

1. Process audio streams using speaker diarization Audio cluster segments for each

show 𝐷 = 𝑣𝑖𝑘𝑖
, where 𝑘𝑖 is the

number of speaker clusters found

in show 𝑖.

2. Extract i-vectors i-Vectors for each show 𝑉 = 𝑣𝑖𝑘𝑖
.

3. Classify 𝑉 using the trained model 𝐷𝑁𝑁θ 1) 𝑆 = 𝑠𝑖𝑘𝑖
 – name of the speaker

corresponding to the model

output.

2) 𝑃 = 𝑝𝑖𝑘𝑖
 – posterior

probability of the speaker to be

the owner of the cluster.

4. Retain predictions having a posterior probability

greater than the threshold 𝑇.

Pruned set of probable speakers for

each show 𝑆.

5. Output a list of confidently identified speakers 𝑆 Set of probable speakers for each

show 𝑆.

Table 3 Algorithm for Labelling Speakers in New Shows

5.1.3 Explanation

The core of the process lies in the Speaker Identification DNN. This solves the main

problem of the thesis. To properly employ it and achieve the goal set, the model must first

be trained. Afterwards, it can be used for attaching labels to audio files.

When training, it is important to teach the model relations between the radio shows and

the speakers in them. These constitute as the main input data. The most efficient way to

train the DNN is to use i-vectors instead of audio recordings or diarized audio segments.

This means that the input data must be transformed and pre-processed. The DNN is then

trained one show at a time. It matches the 𝑁 i-vectors with the 𝑀 speakers. Over several

training rounds – called epochs – statistical relations and clusters are formed.

44

After training, the DNN should be able to label speakers’ speech segments. Therefore, we

can use the same model for labelling new shows.

When using the model for labelling new recordings, the given data does not contain a list

of speakers. Instead of this, we introduce a confidence threshold. If the system suggests

a label with a corresponding probability that is less than the threshold, we regard it as a

weak guess. If it exceeds the threshold, the system is confident enough that the speaker is

correctly identified. Labelling new shows also creates an output a list of speakers with

their corresponding audio segments. The suitable threshold values and training epoch

amounts, where the model output is usually precise, can be found empirically.

5.2 Data Pre-processing

5.2.1 i-Vectors from Audio Recordings

As displayed on Figure 9 and Figure 10, the audio files are pre-processed in the same

way. The dataset comprises of 6604 audio recordings.

First, speaker diarization is applied. Initially, the audio is in a single recording. After the

process, there are N audio segments, which are grouped into M clusters.

Second, i-vectors are extracted. Audio segment clusters are put in and a text

representation is created, see Figure 11.

In its full length, the i-vector contains 600 values for characterizing the speaker’s voice.

5.2.2 Speaker Diarization Within Each Show

Speaker diarization is performed using the LIUM SpkDiarization (Meignier, Merlin,

2010) toolkit. Input audio data is first segmented into shorter sentence like chunks.

Segments are then classified as speech or non-speech using a Gaussian mixture model

built from our about 240 hours’ worth of training data, which originates from broadcast

-0.0977829, 4.147483, 1.895904, -1.869378, 0.6388721, 3.437083,-1.016486, …

Figure 11 i-Vector Example

45

speech and lecture recordings. Segments containing speech are clustered, each cluster

corresponding ideally to one unique speaker in the recording. BIC clustering followed by

CLR-like clustering is applied (Barras et al., 2006).

5.2.3 i-Vector Extraction

The diarized data is further processed and a fixed-length 600 dimensional i-vector is

extracted for each speaker. The process implements a speaker recognition system based

on the Kaldi toolkit (Povey et al., 2011).

5.2.4 Pruning the Dataset

The training data was gathered on the 23rd of November 2016 and at that time, there were

6604 valid “Päevakaja” shows. Ten recordings were manually removed because they

contained only the show’s jingle.

The dataset is pruned based on the values of the two lists: i-vectors in shows and speakers

in shows. The former is created with pre-processing methods – see “5.2.1 i-Vectors from

Audio Recordings”. The latter is the metadata.

5.2.5 Removing Shows with not Enough Speakers

For training the speaker identification, only shows with two or more speakers were used.

2347 shows were ruled out per the Figure 5 in chapter “4.3.4. Speaker and Vector Count

in Shows”. Thus, 4257 shows could be used for training the model.

5.2.6 Removing Shows with not Enough i-Vectors

The model is trained with shows with at least two i-vectors. As Figure 5 demonstrates,

eight shows container zero i-vectors and 42 shows contained one. Two of the shows

matched with the ones defined in “5.2.2.1 Removing Shows with not Enough Speakers”.

Therefore, 48 shows were ruled out from the training data.

After pruning the dataset, 4209 shows will be used for training the model.

46

5.2.7 List of Distinct Speakers

The system defines a list of possible speakers.

List of Speakers

Speaker 1

Speaker 2

Speaker 3

Speaker 4

…

Speaker 13770

Unknown

Table 4 Ordered List of Distinct Speakers

The list contains distinct speaker values (Table 4). An extra “unknown” value is added

because speaker names and shows with too few relations are removed. See “5.2.2 Pruning

the Dataset”. The values are used for applying labels to new users.

5.3 DNN architecture

The DNN – as shown on Figure 12 – consists of an input layer, output layer and several

hidden deep learning layers in between.

Figure 12 Representation of the Deep Neural Network’s Architecture

47

The architecture and different layers are described more precisely in the upcoming

subsections.

5.3.1 The Input Layer

The input layer accepts i-vectors with a fixed 600-value length. These characteristics

define the speaker’s voice.

5.3.2 Hidden Layers

The model consists of four hidden layers. These create the inner connections to process

complex data. Two of the layers are dropout layers and two are dense layers implementing

ReLU algorithm.

5.3.3 Dense Layers with ReLU Activation Function

The internal relations are formed using dense ReLU layers. Each node passes its

information to every node in the next layer. The use of fully connected layers helps form

complex representations of the input data.

5.3.4 Dropout Layers

Machine learning can accomplish complex tasks with neural networks. However, when

using dense layers, overfitting may occur. This can be minimized by using dropout layers.

5.3.5 Output Probability Vector

The Softmax function is the final layer. This insures that the outputs are positive

percentage values. The output is a list of speakers with a corresponding probability. It

represents how likely they are the person depicted by the input i-vector.

5.4 Training the Model

The most efficient way to train the model is with i-vectors. This is a uniform text

representation of the speakers’ audio segments. Each i-vector contains exactly 600

numeric values that characterize the speaker’s voice. Therefore, the model needs exactly

600 inputs.

The DNN is then trained one show at a time. It is taught to correlate the N i-vectors to the

M speakers of each show to another. The model is trained over 20 epochs – the number

48

was found empirically. The model was used to label new shows and 20 training rounds

was enough to satisfy the objectives of the thesis. During the training epochs, statistical

relations are formed. Based on this, speakers from new shows can be identified.

5.5 Backpropagation Through Label Regularization

The neural network is not fully supervised – the model is not trained with exact vector

and speaker name pairs. Instead, the data is weakly labelled. Therefore, backpropagation

is done one show at a time and implemented using label regularization. Label

regularization is a special case of expectation regularization (Druck et al., 2007). The

usual label regularization approach uses both strongly labelled data and unlabelled data

for training.

Within the thesis, the prior probabilities of the labels (speaker identities) over groups of

examples (shows) are known. Firstly, speakers who are annotated in the show’s metadata

have a prior probability of
1

𝑁𝑠
, where 𝑁𝑠 represents the number of speakers in the show.

Therefore, the posterior probability should also be optimized for this value (Equation 6):

Secondly, for speakers, who are not present in the annotated metadata, the model must be

optimized to output the probability of zero (Equation 7):

The distance is calculated as a sum of the KL-divergences of the known prior and

predicted posterior probabilities over all shows in our training set. This is because we are

not looking at a single speaker’s probabilities, but the whole list as one.

�̃�𝑠(𝑠𝑝𝑒𝑎𝑘𝑒𝑟) =
1

𝑁𝑠

Equation 6 Average Posterior Probability

�̃�𝑠(𝑠𝑝𝑒𝑎𝑘𝑒𝑟) = 0

Equation 7 Average Posterior Probability for Speakers Not in the Show

49

5.6 Technical implementation

The programme was written in Python. The language was chosen because of the multitude

of available libraries and the ease of use in prototyping. Methods for manipulating data

and implementing machine learning algorithms is are readily available. It was possible to

concentrate on the theoretical side of the problems first. After that, it was possible to write

the code with existing libraries and validate the proposed approaches.

The complete code used for training is available in “Appendix 2 – Python Code for

Training the Model”. The modified code that was used to identify speakers in new shows

is brought out in “Appendix 3 – Python Code for Applying the Model”.

5.6.1 Keras

The speaker identification DNN was implemented with Keras – a Deep Learning library

for Theano and TensorFlow. Keras has implemented the low-level functionality of neural

networks. The library is accessible via a Python API. The objective of Keras is to allow

high-level manipulation of neural networks (Keras.io, 4th of April 2017).

All the DNN’s layers – defined in “5.3 DNN Architecture” – are immediately available

for use. Nonetheless, it is possible to change the characteristics of the machine learning

algorithms completely. This means that the outcome of the defined models is fully in the

hands of their creator.

50

6 Validation

This chapter assures that the model is accurately constructed and trained; the labels

attached by it are in fact correct. A random held-out set of recordings is extracted,

processed through speaker identification and compared against manually labelled data.

The upcoming sections validate whether the objectives of the thesis have been met.

6.1 Measuring the Precision

The model is validated for recall and precision using a random set of audio files not used

for training it, labelling each speaker vector manually and comparing the results. The goal

is 70% recall – how many of the speakers in the random set were also in the training data

– and 90% precision – the number of recalled speakers’ vectors recognized correctly by

the model.

6.2 Process of Validation

For validation, five shows from the Estonian Public Broadcasting’s “Päevakaja” series

were selected at random from a later period of time – training data was up until November

2016, test data was from April 2017. The audio was processed similarly to as described

in “5.1.2 Using the Model for Labelling Speakers in a New Show”. Before submitting the

i-vectors to the Speaker Identification DNN, they were manually labelled to compare the

DNN’s outcome to the correct values.

The complete results are brought out in “Appendix 1 – Validation”.

The “Päevakaja” shows selected were:

 https://arhiiv.err.ee/vaata/paevakaja-nr-20444

 https://arhiiv.err.ee/vaata/paevakaja-nr-20445

 https://arhiiv.err.ee/vaata/paevakaja-nr-20446

 https://arhiiv.err.ee/vaata/paevakaja-nr-20447

https://arhiiv.err.ee/vaata/paevakaja-nr-20444
https://arhiiv.err.ee/vaata/paevakaja-nr-20445
https://arhiiv.err.ee/vaata/paevakaja-nr-20446
https://arhiiv.err.ee/vaata/paevakaja-nr-20447

51

 https://arhiiv.err.ee/vaata/paevakaja-nr-20448

The total number of speakers described in the metadata was 80. Juhan Kilumets, who

occurs often in the show as a sports reporter, was not annotated. However, the speaker

identification process was able to classify his audio segments correctly.

6.3 Probability for Correct Speaker Identification

The correlation between the number of occurrences in the training data and the precision.

Figure 13 characterizes the relationship between the number of speaker occurrences in

training data and the probability of re-identifying the speaker in a new show. Each red

dot corresponds to one or more missed identifications in the validation data. Each green

point corresponds to one or more identified speakers. The sizes of the dots correspond to

the number of such cases. The blue line is the actual recall probability, estimated using

logistic regression over the validation data. Since we prune the training data so that

speakers with less than two occurrences are eliminated, such speakers naturally receive a

zero recall probability.

Logistic regression shows that re-identification becomes more likely than not when the

number of training occurrences for the speaker is around 17, although the minimal

number of training occurrences that resulted in successful re-identification in the

validation data was only eight. On the other hand, the maximal number of occurrences

Figure 13 Number of Speaker Occurrences in Training Data

https://arhiiv.err.ee/vaata/paevakaja-nr-20448

52

that still did not result in confident re-identification was 60. Therefore, the tipping point,

where identification will be probable cannot be absolutely defined with such little

validation data.

In most cases, the system does not have problems identifying speakers with over 10

previous occurrences. The validation data contains only two instances of this. Eerik-

Niiles Kross has 17 recordings but is not recognized in any cases. It may be that the

previous audio segments were of telephone calls or the voice characteristics were not

similar enough to the previous i-vectors. Erle Loonurm, who occurred in 60 previous

recordings, had two different clusters in a single show. The second one was identified

correctly. The first had the show’s jingle playing in the background and was not

recognized.

The least likely “person” to be identified was the show’s jingle. This is a miscalculation

on behalf the speaker diarization model used, i.e. the chime should not be characterized

as voice altogether. The isolated chime was represented as six clusters in the five shows.

Other speakers, who were not identified by the DNN, either had no previous occurrences

or were not even annotated in the show’s data. For example, speakers from an un-

annotated crowd asked questions from the current Prime Minister of Estonia.

6.3.1 Recall and Precision Metrics

The success is calculated based on the number of speaker clusters created by speaker

diarization. The model at times creates multiple clusters for a single person and no clusters

for some. Still, the diarization method works correctly almost all the time and its success

rate is not the topic of the thesis.

The goal set is 70% on recall. Including all the vector clusters – the show’s chimes and

speakers not annotated – it was 59%. That means 35 out of 88 vectors did not receive any

label at all. The goal was not accomplished. Because the objective of the thesis is to create

relations based on previous occurrences, the model should not be invalidated because of

unknown speakers. Therefore, it is reasonable to remove the six show’s jingles, three

undocumented speakers and the 23 audio segment clusters belonging to people with zero

occurrences in the training data. When the model’s recall is validated with data from

previously occurring speakers, the objectives are achieved. The system attaches 53 labels

the 56 relevant audio segment clusters – resulting a value of 94.6%.

53

Precision is the metric that verifies that the label set to a cluster is indeed correct and

worth being added. The goal is set at 90%, which indicates that if the system applies a

label, then 9 out of 10 times, it will be valid. Out of the 53 vector clusters recalled, 52

were correct, i.e. 98%, thus more than accomplishing the goal. This metric is even more

important than recall because it represents that the problem stated in the thesis is correctly

solved.

6.4 Speakers Not Recognized in the Speaker Diarization

Speaker Diarization created 88 clusters total, but six of them were the show’s chime, three

were un-annotated speakers and many times a single speaker had multiple clusters.

Because of this, out of the 80 speakers, 13 did not receive a cluster, where the speaker

was the owner of the most segments.

Person Number of Prior Occurrences

Nauris Klava 1

Marine Le Pen 1

Toomas Kiho 11

Tiia Korv 0

Karli Lambot 6

Paul Ryan 1

Sebastien Baheux 0

Hilja Karakatš 0

Philippe Martin 0

Valérie Nataf 0

Katrin Rehemaa 40

54

Person Number of Prior Occurrences

Urmas Sule 42

Arthur Muller 0

Table 5 Speakers not Recognized

The list (Table 5) gives insight, why speaker diarization could not even create a cluster

for some speakers. Seven of these people are foreign politicians or public representatives,

meaning they were most likely to be broadcasted as a short recording, sometimes taken

from a press release with a lot of background noise. In some cases, because of the brevity

of the recordings, the audio segments are combined with another person’s cluster. For

example, Paul Ryan’s press release was added to Juhan Kilumets’s cluster.

Overall, diarizing and not diarizing speakers, is not the main effort in the thesis, but a

process for shaping the data available to be used in the Speaker Identification DNN.

55

7 Usage and Future Work

This chapter analyses, how to further improve the system. The real-world usages of the

system are illustrated along with ways of implementing the findings of the thesis in

similar research topics.

7.1 Implementing the Speaker Identification Model AS-IS

It is possible to use the speaker identification system in its current form. The Institute of

Cybernetics in Tallinn University of Technology has a hub for displaying latest

“Päevakaja” news recordings (Kõnesalvestuste Brauser, 2017). The institute has been

working many years on speech-to-text and speaker diarization with the exact show used

in the thesis. At the moment, the speech segments are annotated as “Speaker N”. We can

incorporate the trained speaker identification model with the already working

functionality. This will further improve the value and quality of the information in the

developed system.

7.2 Possible Usage

Speaker identification is a useful tool in many cases.

The simplest way to extend the list of applications of this thesis is to find a similar

recordings’ archive and apply weakly supervised learning to them. The objective would

be to properly annotate the recordings.

Similarly, it is possible to use Estonian Parliament’s verbatim records (Verbatim Records,

Parliament of Estonia, 23.12.2017). These recordings contain both audio-visual data and

the list of speakers. If the model has been trained with politicians’ voice characteristics,

it can also be applied to identify speech from public forums. This is most relevant during

election periods.

Label regularization can be used in combination with strictly labelled and unlabelled data.

This means that the writing of verbatim records of courts or shorthand reports in business

56

meetings could be implemented using the speaker identification model. To train the

model, either a short example of each participants’ voice would be required or weakly

labelled data or recordings from previous meetings would suffice.

The results can be used in many forms.

1) Together with speech recognition, an indexed and searchable text corpus is

created.

2) It is possible to re-listen the participants’ sentences - speaker diarization

assembles a list of each speaker’s audio segments.

3) The aggregated length of each speakers’ audio segments represents the amount of

time they had on the show. This is important in political debates – each candidate

should have equal time to convey their message and views.

7.3 Continuity of the “Päevakaja” Data

In recent years, the data has been annotated diligently. This is shown on Figure 2 in

“4.3.4.2. Average Number of Speakers and i-Vectors per Show per Year”.

It is possible and necessary to further train the model – new speakers may arise: be it

reporters and presenters or politicians and public figures. For example, the topic of French

presidential elections arose during the period after collecting the training data (the end of

November) and before selecting the validation data (the end of April). Thus, the validating

process did not recognize and identify Emmanuel Macron, because there were no

previous occurrences for him. If the process is continuously used, the results will improve

as well.

7.4 Future Work

The objectives of the thesis were achieved. Nonetheless, the process can be further

improved.

One of the biggest problems arose with validation: the show’s jingle was not annotated

in the shows’ metadata but was present in the audio segments. To improve the

identification process, the show’s jingle could be added as a “guest” to each show. Thus,

it can be identified as well.

57

If the process is implemented in a continuously updated environment such as

“Kõnetuvastuse Brauser”, the speaker identification process should often be run on older

recordings as well. A show exists, after which it is highly probable that the speaker is

correctly labelled – let this be defined as the 𝑁𝑡ℎ show. The thesis found empirically that

this might be the 8th or 17th show the person has occurred in. Therefore, there also exist

𝑁 − 1 shows, where the person was identified as “Unknown” or even incorrectly. After

the 𝑁𝑡ℎ show, the speaker identification model is sufficiently trained to identify the

person. Thus, we are able to correctly label the speaker in the previous 𝑁 − 1 shows that

were first used for training the model.

58

8 Summary

The chapter analyses whether the defined problems were solved and the set objectives

were achieved. The thesis is constructed around a speaker identification DNN, which was

trained with label regularization over thousands of recordings with weakly labelled data.

The problems, which it tried to solve, were creating a weakly supervised model for

speaker identification and using label regularization as a cost function.

The weakly supervised DNN was used in two phases: firstly, it was trained with 6604

audio recordings and the metadata related to them, and secondly, it was used to identify

speakers in new radio shows to validate it. For both the training part and using the model,

audio recordings were pre-processed with speaker diarization and i-vector extraction. The

uniform data was input to the DNN one show at a time.

The DNN was trained with backpropagation using a set of annotated speakers for each

show. The cost function was implemented as label regularization, which encourages

average model predictions within each show to match label priors based on the annotated

speakers in given show. If these values did not match, the model’s weights were adjusted

accordingly. A consolidated representation of the speakers’ audio segments was formed.

When identifying new shows, the DNN yielded a list of speakers with their respective

posterior probabilities. Only the speakers with a confidence score above a certain

threshold were retained.

The objectives were verified and validated using a randomly selected held-out of news

recordings. The basis for a perfect score was not the number of distinct speakers

identified, but the number of correctly labelled i-vectors. These values often differ,

because the speaker diarization may create multiple classifications for some people and

no clusters for others.

The goals were 70% on recall and 90% on precision. By the strictest measurements, the

objective for recall was not met. Out of 82 i-vectors, 29 were not labelled – that

corresponds a recall rate of 64.6%. Out of the unlabelled values, three belonged to

speakers that were undocumented in the shows’ metadata and another 23 represented

people with zero occurrences in the training data. After isolating speakers for whom no

59

training data exists, the objectives are achieved. 53 labels out of 56 relevant audio

segment clusters are attached – resulting a value of 94.6%. The precision metric was

achieved successfully: 98% of all labels were classified correctly. Only one label out of

all 53 identifications, was a false positive.

The thesis proves that it is possible and recommendable to use weakly supervised training

to identify speakers from audio recordings. The combination of using the weakly labelled

data with label regularization is enough to create valid models for identifying speakers.

This is validated with the recall and precision metrics, which conclude that the model can

label audio segments confidently and correctly.

60

9 Bibliography

 IEEE Transactions on Audio, Speech, and Language Processing: Multistage speaker

diarization of broadcast news. (2006). / C. Barras, Xuan Zhu, S. Meignier, and J. L. Gauvain.

 Bengio Y. (2009). Learning Deep Architectures for AI. Montreal, Canada.

 Collobert R. and Weston J. (2008). A Unified Architecture for Natural Language Processing:

Deep Neural Networks with Multitask Learning. Princeton, USA.

 Deep Learning Tutorials. (2nd of May 2017). Deep Learning [Online]

http://deeplearning.net/tutorial/

 Druck G. (2011). Generalized Expectation Criteria For Lightly Supervised Learning.

Massachusetts, USA.

 Ferras M. and Bourlard H. (2012). Speaker diarization and linking of large corpora. In

Proceedings of the IEEE Workshop on Spoken Language Technology. Martigny, Switzerland.

 Ghahramani Z. (2001). An Introduction to Hidden Markov Models and Bayesian Networks.

London, England.

 Speaker Recognition i-Vector Machine Learning Challenge. (2014). / G. S. Greenberg, D.

Bansé, G. R. Doddington., D. Garcia-Romero, J. J. Godfrey, T. Kinnunen, A. F. Martin, A.

McCree, M. Przybocki, M. A. Reynolds. Gaithersburg, USA.

 Institude of Cybernetics (12th of March 2017). Tallinn University of Technology [Online]

http://bark.phon.ioc.ee/tsab/p/index

 Automatic Named Identification Of Speakers Using Diarization And Asr Systems. (2009). V.

Jousse, S. Petit-Renaud, S. Meignier, Y. Estève, C. Jacquin. Nantes, France.

 Keras.io. (4th of April 2017). keras.io [Online] https://keras.io/

 Khoury, E., El Shafey L., Ferras M., and Marcel S. (2014). Hierarchical speaker clustering

methods for the nist i-vector challenge In Odyssey: The Speaker and Language Recognition

Workshop. Martigny, Switzerland.

 Kullback S., Leibler R. A. (1951) On Information and Sufficiency In The Annals of

Mathematical Statistics. Washington D.C., USA.

 Madikeri S., Bourlard H. (2012). Kl-Hmm Based Speaker Diarization System For Meetings.

Martigny, Switzerland.

 Meignier S. and Merlin T. (2010). LIUM SpkDiarization: an open source toolkit for

diarization In CMU SPUD Workshop. Dallas, USA.

 The 2015 Sheffield System For Longitudinal Diarisation Of Broadcast Media. (2015). / R.

Milner, O. Saz, S. Deena, M. Doulaty, R. W. M. Ng, T. Hain. Sheffield, UK.

 Unsupervised Speaker Identification using Overlaid Texts in TV Broadcast (2012). / J.

Poignant, H. Bredin, V. B. Le, L. Besacier, C. Barras, G. Quénot. Grenoble, France.

 IEEE ASRU Workshop: The Kaldi speech recognition toolkit. (2011). / D. Povey, A.

Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann, P. Motlicek, Y.

Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely. Microsoft Research, USA.

 Päevakaja uudised. (23rd of November 2016). Estonian Public Broadcasting [Online]

https://arhiiv.err.ee/seeria/paevakaja/0/69

http://deeplearning.net/tutorial/
http://bark.phon.ioc.ee/tsab/p/index
https://keras.io/
https://arhiiv.err.ee/seeria/paevakaja/0/69

61

 Reynolds D. (2009). Universal Background Models∗ In Encyclopedia of Biometrics.

Massachusetts, USA.

 Rojas R. (1996). The Backpropagation Algorithm. Berlin, Germany.

 Schmidhuber J. (2014). Deep Learning in Neural Networks: An Overview. Manno-Lugano,

Switzerland.

 Self Taught Learning. (15th of March 2017). Standford University [Online]

http://ufldl.stanford.edu/tutorial/selftaughtlearning/SelfTaughtLearning/

 Dropout: A Simple Way to Prevent Neural Networks from Overfitting. (2014). / N.

Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. Toronto, Canada.

 Szegedy C., Toshev A., Erhan D. (2013). Deep Neural Networks for Object Detection. San

Francisco, USA.

 Täckström O. (2008) Semi-Supervised Learning for Transductive Speaker Annotation.

Uppsala, Sweden.

 Verbatim records - Parliament of Estonia. (23rd of December 2016). riigikogu.ee [Online]

http://stenogrammid.riigikogu.ee/en/

 Vijayasenan D. (2009). An Information Theoretic Approach to Speaker Diarization of

Meeting Data. Martigny, Switzerland.

http://ufldl.stanford.edu/tutorial/selftaughtlearning/SelfTaughtLearning/
http://stenogrammid.riigikogu.ee/en/

Tallinn 2017

10 Appendix 1 – Validation

10.1 “Päevakaja Nr 20444”

Aired on: 20th of April 2017.

17 annotated speakers: Salme Janek, Sester Sven, Toom Uku, Kaasik Ülo, Ossinovski

Jevgeni, Aug Lembi, Vare Kai, Mälberg Mall, Terras Riho, Lepik Indrek, Muller Arthur,

Tralla Johannes, Lõhmus Asko, Leoma Rain, Saluorg Jane, Grabbi-Kaiv Silve, Vedru

Johannes.

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

F Show's chime 0 - No -

F Grabbi-Kaiv Silve 112 Grabbi-Kaiv

Silve

Yes Yes

F Saluorg Jane 49 Saluorg Jane Yes Yes

F Vare Kai 1040 Vare Kai Yes Yes

F Aug Lembi 3 - No -

M Salme Janek 618 Salme Janek Yes Yes

M Mälberg Mall 1230 Mälberg Mall Yes Yes

M Salme Janek 618 Salme Janek Yes Yes

M Terras Riho 48 Riho Terras Yes Yes

Tallinn 2017

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

M Lepik Indrek 158 Lepik Indrek Yes Yes

M Tralla Johannes 295 Tralla

Johannes

Yes Yes

M Leoma Rain 0 - No -

M Lõhmus Asko 0 - No -

M Vedru Johannes 17 Vedru

Johannes

Yes Yes

M Toom Uku 1346 Toom Uku Yes Yes

M Sester Sven 89 Sester Sven Yes Yes

M Ossinovski

Jevgeni

94 Ossinovski

Jevgeni

Yes Yes

M Sester Sven 89 Sester Sven Yes Yes

M Kaasik Ülo 19 Kaasik Ülo Yes Yes

Table 6 Validation Results for Show “Päevakaja Nr 20444”

10.2 “Päevakaja Nr 20445”

Aired on: 20th of April 2017.

24 annotated speakers: Vare Kai, Rehemaa Katrin, Sule Urmas, Ossinovski Jevgeni,

Lepik Indrek, Mälberg Mall, Nataf Valérie, Martin Philippe, Tralla Johannes, Baheux

Sebastien, Ehand Epp, Peterson Indrek, Tali Margus, Hindre Madis, Karakatš Hilja, Hinto

Tallinn 2017

Luule, Urman Peeter, Kilusk Jaan, Nutov Mirjam, Faust Maria, Erm Anne, Karjatse Tõnu,

Sild Kertu, Kaasik Ragnar.

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

F Vare Kai 1040 Vare Kai Yes Yes

F Vare Kai 1040 Vare Kai Yes Yes

F Vare Kai 1040 Vare Kai Yes Yes

F Nutov Mirjam 149 Nutov Mirjam Yes Yes

F Hinto Luule 0 - No -

F Erm Anne 8 Erm Anne Yes Yes

F Ehand Epp 1 - No -

F Sild Kertu 62 Sild Kertu Yes Yes

M Show's chime 0 - No -

M Ehand Epp, muu 1 - No -

M Ehand Epp 1 - No -

M Kilusk Jaan 0 - No -

M Hindre Madis 135 Hindre Madis Yes Yes

M Tali Margus 0 - No -

M Urman Peeter 0 - No -

M Karjatse Tõnu 946 Karjatse Tõnu Yes Yes

Tallinn 2017

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

M Maria Faust

(Tõnu Karjatse

interview)

0 - No -

M Mälberg Mall 1230 Mälberg Mall Yes Yes

M Lepik Indrek 158 Lepik Indrek Yes Yes

M Kaasik Ragnar 133 Kaasik Ragnar Yes Yes

M Rehemaa Katrin 40 Rehemaa

Katrin

Yes Yes

M Ossinovski

Jevgeni

94 Ossinovski

Jevgeni

Yes Yes

M Tralla Johannes 295 Tralla

Johannes

Yes Yes

Table 7 Validation Results for Show “Päevakaja Nr 20445”

10.3 “Päevakaja Nr 20446”

Aired on: 20th of April 2017.

13 annotated speakers: Otsmaa Margitta, Ryan Paul, Kiho Toomas, Lambot Karli, Leas

Reene, Ratas Jüri, Birk Siim, Korv Tiia, Transtok Eduard, Kundla Rene, Pervik Aino,

Merilain Merike, Kilumets Juhan.

Tallinn 2017

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

F Otsmaa Margitta 940 Otsmaa

Margitta

Yes Yes

F Transtok Eduard 0 - No -

F Pervik Aino 2 - No -

F Random child, not

annotated (Ratas

Jüri)

0 - No -

F Merilain Merike 259 Merilain

Merike

Yes Yes

F Leas Reene 302 Leas Reene Yes Yes

M Show's chime 0 - No -

M Kundla Rene 13 Kundla Rene Yes Yes

M Kilumets Juhan 309 Kilumets

Juhan

Yes Yes

M Random person,

not annotated

(Ratas Jüri)

0 - No -

M Ratas Jüri 72 Ratas Jüri Yes Yes

M Birk Siim 0 - No -

Table 8 Validation Results for Show “Päevakaja Nr 20446”

Tallinn 2017

10.4 “Päevakaja Nr 20447”

Aired on: 20th of April 2017.

9 annotated speakers: Loonurm Erle, Tralla Johannes, Ehand Epp, Talvik Artur, Herkel

Andres, Hindre Madis, Miil Tõnu, Vilgats Ester, Sild Kertu.

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

F Loonurm Erle

(with jingle)

60 - No -

F Loonurm Erle 60 Loonurm Erle Yes Yes

F Vilgats Ester 410 Vilgats Ester Yes Yes

F Sild Kertu 62 Sild Kertu Yes Yes

M Show's chime 0 - No -

M Miil Tõnu 2 - No -

M Ehand Epp 1 - No -

M Tralla Johannes 295 Tralla

Johannes

Yes Yes

M Talvik Artur 17 - No -

M Hindre Madis 135 Hindre Madis Yes Yes

Tallinn 2017

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

M Miil Tõnu

(with jingle)

2 - No -

M Herkel Andres 95 Herkel Andres Yes Yes

Table 9 Validation Results for Show “Päevakaja Nr 20447”

Tallinn 2017

10.5 “Päevakaja Nr 20448”

Aired on: 20th of April 2017.

17 annotated speakers: Toom Uku, Klava Nauris, Kaunissaare Kristjan, Simson Kadri,

Otsmaa Margitta, Macron Emmanuel, Le Pen Marine, Tralla Johannes, Sobak Kristi,

Kadai Martin, Joller Karmin, Karjatse Tõnu, Kross Eerik-Niiles, Mets Lembi, Tiko Teet,

Saluveer Aarne, Jõemaa Ülle.

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

F Show's chime 0 - No -

F Random person,

Sigre

0 Josing Marje Yes No

F Joller Karmin 0 - No -

F Mets Lembi 0 - No -

F Jõemaa Ülle 246 Jõemaa Ülle Yes Yes

F Otsmaa Margitta 940 Otsmaa

Margitta

Yes Yes

F Simson Kadri 158 Simson Kadri Yes Yes

F Simson Kadri 158 Simson Kadri Yes Yes

F Sobak Kristi 398 Sobak Kristi Yes Yes

M Show's chime 0 - No -

M Toom Uku 1346 Toom Uku Yes Yes

Tallinn 2017

Gender Manually

Labeled

Prior

Occurences

Speaker

Identification

Output

Recall? Correct?

M Karjatse Tõnu 946 Karjatse Tõnu Yes Yes

M Kadai Martin 0 - No -

M Kross Eerik-

Niiles

17 - No -

M Kross Eerik-

Niiles

17 - No -

M Tiko Teet 0 - No -

M Saluveer Aarne 19 Saluveer Aarne Yes Yes

M Kilumets Juhan 309 Kilumets

Juhan

Yes Yes

M Kaunissaare

Kristjan

0 - No -

M Tralla Johannes 295 Tralla

Johannes

Yes Yes

M Macron

Emmanuel

0 - No -

M Tralla Johannes 295 Tralla

Johannes

Yes Yes

Table 10 Validation Results for Show “Päevakaja Nr 20448”

Tallinn 2017

11 Appendix 2 – Python Code for Training the Model

#! /usr/bin/env python3.5

import argparse

import csv

import pandas

import random

import numpy

from keras import backend as K

from keras.models import Sequential

from keras.layers import Dense, Dropout

Label regularization loss, according to Keras API

Actually, our y_true is 1D, containing prior probabilities for

our labels. But Keras API wants it to be a 2D array of shape

(batch_size, num_classes)

So, we expand it to 2D when calling train_on_batch (see below) and

just take a mean

in this function

def label_reg_loss(y_true, y_pred):

 # KL-div

 y_true = K.clip(y_true, K.epsilon(), 1)

 y_pred = K.clip(y_pred, K.epsilon(), 1)

 y_true_mean = K.mean(y_true, axis=0)

 y_pred_mean = K.mean(y_pred, axis=0)

 return K.sum(y_true_mean * K.log(y_true_mean / y_pred_mean), axis=-1)

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description="Train a DNN")

 parser.add_argument("--save-model", default=None)

 parser.add_argument("--min-spk-occ", default=5, type=int,

 help="Keep speaker names that occur at least in that many shows")

 parser.add_argument("--num-epochs", type=int, default=20,

 help="Number of epochs to train")

 parser.add_argument("spk_file",

Tallinn 2017

 help="File speaker data (IDs and i-vectors) in CSV format")

 parser.add_argument("meta_file", help="Metadata file CSV format")

 args = parser.parse_args()

 metadata_df = pandas.read_csv(args.meta_file, sep=";", encoding='utf-8-sig')

 speaker_df = pandas.read_csv(args.spk_file, sep=",", header=None)

 # Dictionary that maps show ID to a set of names who appear in it

 show2names = {}

 # Reverse to above: speaker name -> set of show IDs

 name2shows = {}

 for index, row in metadata_df.iterrows():

 names_val = row['esinejad']

 if not pandas.isnull(names_val):

 names = set([s.strip() for s in names_val.split(",")])

 if len(names) > 0:

 show2names[row['id']] = names

 for name in names:

 name2shows.setdefault(name, set()).add(row['id'])

 # keep names that occur at least args.min_spk_occ times across all shows

 pruned_name2shows = \

 {name: shows for name, shows in name2shows.items() \

 if len(shows) >= args.min_spk_occ}

 print("%s speakers left after pruning" % len(pruned_name2shows))

 # pruned_name_list is a list of all names left after pruning, plus <unk>

 # name_ids is a dict that maps names to their indexes in pruned_name_list

 pruned_name_list = []

 pruned_name_list = ["<unk>"]

 pruned_name_list.extend(sorted(pruned_name2shows.keys()))

 name_ids = {}

 for name in pruned_name_list:

 name_ids[name] = len(name_ids)

 # keep only the ivectors that are from a show that has name data

Tallinn 2017

 valid_speaker_df = \

 speaker_df[speaker_df[0].isin(show2names.keys())].reset_index(drop=True)

 # name_ids_in_shows is a dict that maps show IDs to sets that contain

 # all name IDs in that show, with a special ID for <unk> for

 # pruned-out speakers

 name_ids_in_shows = {}

 for show, names in show2names.items():

 name_ids_in_show = set()

 for name in names:

 if name in name_ids:

 name_ids_in_show.add(name_ids[name])

 else:

 name_ids_in_show.add(name_ids["<unk>"])

 name_ids_in_shows[show] = name_ids_in_show

 ivecs = valid_speaker_df.ix[:,3:].as_matrix()

 # Create a DNN

 model = Sequential()

 model.add(Dense(512, activation='relu', input_shape=(ivecs.shape[1],)))

 model.add(Dropout(0.2))

 model.add(Dense(512, activation='relu'))

 model.add(Dropout(0.2))

 model.add(Dense(len(name_ids), activation='softmax'))

 model.compile(optimizer='sgd', loss=label_reg_loss)

 print("Model summary")

 print(model.summary())

 for epoch in range(args.num_epochs):

 # Train the DNN, show-by-show

 for show, names in random.sample(show2names.items(), k=len(show2names)):

 ivecs_for_show = \

 valid_speaker_df[valid_speaker_df[0] == show].ix[:,3:].as_matrix()

 # Label proportions: uniform over the names in that show

 label_props_for_show = numpy.zeros((len(name_ids)))

 label_props_for_show[list(name_ids_in_shows[show])] = \

 1.0 / len(name_ids_in_shows[show])

 # Expand label proportions, because Keras needs labels

 # to be of the same length as the minibatch

Tallinn 2017

 # We will later un-expand it in the cost function

 label_props_expanded = numpy.repeat(

 label_props_for_show.reshape(1,-1),

 len(ivecs_for_show), axis=0)

 model.train_on_batch(ivecs_for_show, label_props_expanded)

 print("Finished epoch %d" % epoch)

 print("Finished training")

 if args.save_model:

 model.save(args.save_model)

 print("Saved model to %s" % args.save_model)

 with open("%s.names" % args.save_model, "wt", encoding='utf-8') as f:

 for name in pruned_name_list:

 print(name, file=f)

Tallinn 2017

12 Appendix 3 – Python Code for Applying the Model

#! /usr/bin/env python3.5

import argparse

import csv

import pandas

import numpy

from keras.models import load_model

from train_dnn import label_reg_loss

def get_speaker_str(speaker_df, row_id):

 return "%s__%s__%s" %(speaker_df.ix[row_id, 0], \

 speaker_df.ix[row_id, 1],

 speaker_df.ix[row_id, 2])

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description="Apply the model")

 parser.add_argument("--confidence-threshold", type=float, default=0.7,

 help="Posterior probability threshold for confident predictions")

 parser.add_argument("model_file", help="Previously traine model")

 parser.add_argument("dev_spk_file",

 help="File with dev speaker data (IDs and i-vectors) in CSV format")

 args = parser.parse_args()

 model = load_model(args.model_file,

 custom_objects={"label_reg_loss" : label_reg_loss})

 # Load the name table, needed for mapping output IDs of the model

 # to real speaker names

 pruned_name_list = []

 name_ids = {}

 for l in open("%s.names" % args.model_file, "rt", encoding='utf-8'):

 name = l.strip()

 pruned_name_list.append(name)

 name_ids[name] = len(name_ids)

Tallinn 2017

 dev_speaker_df = pandas.read_csv(args.dev_spk_file, sep=",", header=None)

 dev_ivecs = dev_speaker_df.ix[:,3:].as_matrix()

 dev_predicted_targets = model.predict_on_batch(dev_ivecs)

 dev_predicted_speakers = (dev_predicted_targets).argmax(axis=1)

 dev_confident_predictions = \

 dev_predicted_targets[numpy.arange(len(dev_predicted_targets)), \

 dev_predicted_speakers] > args.confidence_threshold

 for i in numpy.where(dev_confident_predictions)[0]:

 if dev_predicted_speakers[i] != name_ids["<unk>"]:

 print(u"%s --> %s" % \

 (get_speaker_str(dev_speaker_df, i), \

 pruned_name_list[dev_predicted_speakers[i]].encode("utf-8")))

