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Abstract

The aim of this thesis is to develop an automatic tool for OWL ontology merging to ensure
well-coordinated task completion in the context of collaborative robotics. Ontology is a
type of formal knowledge representation that at the very least consists of classes properties
and relations between class members. A common language to express ontologies is OWL.

The technique developed for this tool is based on string and semantic matching with
additional consideration of structural heterogeneity of concepts. The project is mainly
implemented in SWI-Prolog in order to combine string and semantic matching techniques
with Prolog’s inherent unification mechanism. We refer to this approach as soft unification.

To validate the approach presented in this thesis, experiments were run on OAEI data
set with the matching accuracy of 60% across 42 tests. Additionally, we ran the tool on
several ontologies from the domain of robotics producing a small, but generally accurate,
set of matched concepts. These results clearly show a good capability of the tool to
match semantically similar concepts. The results also highlight the challenges related to
comparing ontologies without a definite ground truth.

The thesis is written in English and is 56 pages long, including 7 chapters, 2 figures and 9
tables.
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Annotatsioon
Ontoloogiate liitmine Prologis pehme unifitseerimise põhimõttel

Selle lõputöö eesmärk on arendada automaatne tööriist OWL-vormingus ontoloogiate
liitmiseks et tagada ülesannete hea koordineerimine koostöörobotite kontekstis. Ontoloogia
tähendab antud kontekstis mingit tüüpi formaalset teadmiste esitust, mille minimaalseteks
komponentideks on klassid, omadused ning relatsioonid klassiliikmete vahel. Üheks
üldlevinud ontoloogiate esitluskeeleks on OWL.

Rakenduses kasutatav tehnika põhineb sõne- ja semantilisel sarnasusel, mis võtab ühtlasi
arvesse võrreldavate mõistete struktuurset heterogeensust. Projekt on peamiselt imple-
menteeritud programmeerimiskeeles SWI-Prolog eesmärgiga kombineerida omavahel sõne-
ja semantilise sarnasuse tehnikad Prologi unifitseerimismehhanismiga. Seda lähenemist
nimetame pehmeks unifitseerimiseks.

Jooksutasime lõputöö valideerimiseks jooksutasime programmi OAEI testandmestikul,
mille keskmine täpsus 42 testi peale oli 60%. Ühtlasi kasutasime programmi võrdlemaks
omavahel mitut robootika valdkonna ontoloogiat, mille tulemuseks õnnestus tuvastada
väike, kuid üldjuhul korrektne, hulk omavahel sarnaseid mõisteid. Nende tulemuste põhjal
on selge, et arendatud tööriistal on hea võimekus tuvastada semantiliselt sarnaseid mõisteid.
Tulemuste analüüs toob välja ka ontoloogiate võrdlemisest johtuvaid väljakutseid olukorras,
kus puudub selgelt määratletud alustõde.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 56 leheküljel, 7 peatükki, 2 joonist,
9 tabelit.

3



List of Abbreviations and Terms

APRS Agility Performance of Robotic Systems
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1. Introduction

The topic of this thesis is ontology merging using Prolog and the principle of soft unification.
Ontologies in the field of informatics are generally understood as a formal representation of
domain-specific knowledge structured into concepts, properties of a concept and relations
between concepts. Ontology merging is a type of ontology operation where two or more
input ontologies are compared based on some sort of method and similar concepts within
these ontologies are matched. In order to decide whether a particular pair of concepts
are similar or not, different similarity measures can be applied - similarity based on the
unification of terms, similarity as an equivalence relation, similarity based on semantic
distance and many others.

The motivation for this thesis is to provide means for interoperability between knowledge-
based autonomous decision systems that have individual knowledge built in or acquire
this knowledge by learning and adjusting during the course of their earlier operational
experience. The prevailing knowledge representations and manipulation techniques in
autonomous robot systems rely on ontologies and ontology operations.

The aim of this work is to provide an algorithmic and automatic tool to consolidate the
knowledge, remove discrepancies and optimize knowledge bases of robot agents to assure
well-coordinated task completion in the context of collaborative multi-robot missions. We
provide an integrated approach by combining multiple metrics and exploiting mainstream
knowledge representation and manipulation frameworks such as RDF and OWL. This
allows easy porting of its results and integration with other knowledge platforms.

The main novelty of this thesis is the elaboration of weak unification principle for ontol-
ogy operations and its integration with existing RDF/OWL frameworks. The method is
implemented as a program that merges ontologies represented in RDF/OWL. The method
employs a structural approach where the multi-criterial weighed similarity metrics are used
to assess concepts by their structural composition and elements such as relations and their
values. The comparison of individual values is based on string and semantic matching,
making use of WordNet lexical database and string similarity measures.

While in natural language information can successfully be exchanged between participants
even if they have different or incomplete understanding of the same concept, the knowledge
representation of the same concept may differ in terms of its structure, terminology, level
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of detail which drastically hardens its proper interpretation in artificial systems. As such,
the developed approach to ontology merging permits a degree of difference between
semantically close concepts even if they substantially differ by syntactic representation.
This is achieved by the multi-criterial minimal confidence threshold and context sensitive
meta-parameters. The method is completely automated, producing a new merged ontology
in RDF/OWL as an output.

The findings of this work are presented from two different perspectives. Firstly, we provide
a quantitative validation based on the Ontology Alignment Evaluation Initiative (OAEI)
2016 benchmark test. The test data is designed so that each new test introduces some
form of variation to the original reference ontology. Variations include changes in the
value names, structure of the concept and the ontology in general. Secondly, we analyze
the results received from merging actual ontologies from the domain of robotics. These
ontologies vary in terms of scope, level of detail and structure and unlike OAEI benchmark
tests, no ground truth is provided in advance.

The rest of the thesis is structured as follows. Chapter 3 highlights related work and
state-of-the-art in the domain of ontology operations and positions our approach in that
context. In Chapter 2, we introduce the core concepts of ontology theory and ontology
operations. Chapter 4 presents the method developed in this work. Chapter 5 describes the
implementation of the method as a multi-plaftorm integrated software system. Chapter 6
presents experimental results to validate the method. Chapter 7 concludes the thesis with
the discussion on the main results, their validity and open questions for future work.
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2. Ontology and Ontology Operations

In this chapter, we describe the theoretical background for ontologies and their operations.

2.1 Definition for Ontology

The word ontology has its foundation in philosophy studies and metaphysics denoting
"being in general, or of what applies neutrally to everything that is real" [1]. In the
context of computer science, however, ontology is typically understood as a type of formal
knowledge representation used to hold domain knowledge. This knowledge representation
is usually expressed in the form of classes, properties and relations between class members
[2]. Furthermore, Euzenat and Shivaiko [3] have provided a formal definition for an
ontology as a tuple o = ⟨C, I,R, T, V,⊑,⊥,∈,=⟩ where

■ C is the set of classes;
■ I is the set of individuals;
■ R is the set of relations;
■ T is the set of data types;
■ V is the set of values (C, I , R, T , V being pairwise disjoint);
■ ⊑ is a relation on (C × C) ∪ (R×R) ∪ (T × T ) called specialisation;
■ ⊥ is a relation on (C × C) ∪ (R×R) ∪ (T × T ) called exclusion;
■ ∈ is a relation over (I × C) ∪ (V × T ) called instantiation;
■ = is a relation over I ×R× (I ∪ V ) called assignment.

In the terminology used in this thesis, what is named as a class in the above definitions
will be referred to as a concept in later chapters. This is done to avoid confusion with the
term class in the context of RDF/OWL framework. In addition, relation in the context
of RDF/OWL is understood as any value in the predicate position of an RDF triple.
Interpretation of ontology terms in the context of RDF/OWL are covered in Appendix 2.

Since the motivation of current research is to provide tools for semantic reasoning on
knowledge interpretable using ontologies, we consider ontologies as logic theories and
apply logic programming and logic constraint programming as a natural framework for
representation and reasoning about logic. The language of logic consists of individuals,
classes, functions, relations and axioms. The exact list of logic predicates and modalities
changes depending on the specific logic language one adopts. Usually an ontology is
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specified in First Order Language (FOL) though some logic programming languages
such as SWI-Prolog provide means for expressing constructs that raises the abstraction
level of ontology based semantic reasoning to the level of higher order constructs such
as predicate and function variables, enabling the construction and application of domain
agnostic meta-rules for semantic reasoning and meta-interpretive learning.

2.2 Taxonomy of Ontologies

Euzenat and Shivaiko discuss two main approaches to differentiate between types of
ontologies: 1) by the degree of formality and 2) by the hierarchy of the ontology [3].

Distinction by Formality

With regards to the degree of formality, the least formal type of ontology could be a
collection of tags or folksonomies describing some body of knowledge (e.g., annotating
pictures on Flickr). Conversely, the most formal type of ontology would be expressed in
some form of description logic, implemented as a special-purpose ontology language (such
as OWL) [3]. The motivation to use a formal language for expressing an ontology is that it
prescribes the possible ways of interpretation thus permitting unambigous interpretation
and automatic reasoning on the basis of the syntactic and semantic rules of that language.

Distinction by Hierarchy

With regards to the hierarchy of the ontology, difference can made between foundational,
upper-level and domain ontologies. Additional categorizations such as reference ontology
and application-level ontology are also used.

Foundational ontologies are ontologies that define fundamental concepts (e.g., concepts
such as endurant and pedurant that denote concepts we can perceive in their entirety at
any given time and concepts that only partially exist at any given time) used in other
ontologies. Foundational ontologies are complemented by upper-level ontologies which
define non-foundational commonplace concepts (such as vechicles, people, etc.) that
are typically also used by other ontologies [3]. For this reason, both foundational and
upper-level ontologies can be seen as horizontal ontologies, as they aim to cover a broad
spectrum of concepts on an abstract level. The distinction between these two types of
ontologies is not always clear. Examples of general-purpose foundational or upper-level
ontologies are the Unified Foundational Ontology (UFO) [4] and Suggested Upper Merged
Ontology (SUMO) [5].

Domain level ontologies are ontologies that encompass concepts relevant to a specific
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domain (e.g., robotics, bibilography, medicine, etc.). For that reason they can be seen as
vertical ontologies [3].

2.3 Ontology Operations

The term ontology operations refers to a number of manipulations that are conducted to
enhance the information contained in the ontologies. Usually this involves a comparison
of one or more ontologies though not always. Maroun distinguishes the following on-
tology operations: mapping, alignment, merging, annotation, matching and integration

[6]. However, it should be noted that the definitions of these operations are not entirely
univocal. As such, we will also provide an interpretation of operations that are used in our
own implementation.

2.3.1 Mapping

Mapping is an general term for "a formal expression describing the semantic relationship
between two (or more) concepts belonging to two (or more) different ontologies." [6]. This
semantic relationship could be for instance, equivalence, vertical (e.g. X is a child of Y) or
horizontal (e.g. X is part of Y) relationship.

Informally, mapping of an equivalence relationship could be some type of operation that
identifies concepts from different ontologies that refer to the same thing. Mapping of a
vertical is a sub-type of relationship could be some type of operation that identifies, for
example the concept of mammal from one ontolgoy to specific mammal species in another
ontology.

Namyoun et al distinguishes additional contexts for ontology mapping: 1) ontology
mapping between an integrated global ontology and local ontologies, 2) ontology mapping
between local ontologies and 3) ontology mapping in ontology merge and alignment.
In the context of this thesis, the third explanation is perhaps the most suitable. That is,
"mapping establishes correspondence among source (local) ontologies to be merged or
aligned, and determines the set of overlapping concepts, synonyms, or unique concepts to
those sources." [7].

In contrast, Euzenat and Shivaiko call this operation (i.e., establishment of a relationship
between concepts of different ontologies) as correspondence and describe mapping as the
directed version of alignment, strictly expressing equivalence relationship. [3]
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2.3.2 Alignment

Alignment is a "set of correspondences between two (or more) ontologies in the same
domain or in related fields. These correspondences are called mappings" [6]. As a result
of ontology alignment, source ontologies "become consistent with each other, but are kept
separate" [7]. Similar description is also provided by Euzenat and Shivaiko [3].

2.3.3 Merging

Merging is the combination of mapped concepts into one, creating a new ontology from
source ontologies [6]. This merged ontology contains the knowledge from all source
ontologies but leaves it unchanged [7], [3].

2.3.4 Annotation

Annotation is process of creating metadata using ontology as a vocabulary [6].

2.3.5 Matching

Matching denotes finding correspondences between linguistically related concepts from
different ontologies which can symbolize equivalence or any other semantic relationship
[6]. A more abstract description is provided by Doan et al as "the problem of finding
the semantic mappings between two given ontologies" [8]. Euzenat and Shivaiko call
matching the process of "finding relationships or correspondences between entities of
different ontologies" [3].

2.3.6 Integration

Maroun provides three definitions for ontology integration. The process of 1) building a
new ontology by reusing other already available ontologies, 2) building an ontology by
merging several ontologies into one that unifies them all or 3) building an application using
one or more ontologies [6]. To differentiate this operation from ontology merging, the
focus of integration is on the generation of a new functional ontology, whereas merging
entails the mapping of relationships between ontologies and the reproduction of its results.
This has been clearly observed by Nyamyoun et al [7] (emphasis my own):

Ontology integration is the process of generating a single ontology in one subject from two or

more existing and different ontologies in different subjects. The different subjects of the different
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ontologies may be related. Some change is expected in a single integrated ontology.

The same contrast is also expressed by Euzenat and Shivaiko, noting that in ontology
integration "contrary to merging, the first ontology is unaltered while the second one is
modified" [3].

2.4 Interpretation of Ontology Operations

The definitions for different ontology operations are not always fixed. Often the terms have
several meanings depending on the context of their use (e.g., mapping and integration).
The definitions may be interdependent (e.g., mapping is a expression of relationships that
are discerned from process of alignment, whereas alignment is a set of correspondences
called mappings). There is also interchangeable use of the terms on the general ontology
level and on the level of individual concepts (e.g., mapping expresses relationships between
concepts, but it can also be said that ontologies that are being mapped). For the sake of
clarity, we provide our own interpretation for key ontology operations.

Mapping occurs between individual concepts and solely concerns with the equivalence

relationship, as we attempt to identify concepts from two different ontologies that are
similar to one-another. While inheritance or other relationships are important to determine
how similar two concepts are, we do not attempt to map these relations between two
concepts of different ontologies.

Matching occurs between individual concepts resulting in a measure of how similar
(equivalent) those two concepts are. The methodology for matching in this work is
primarily based on semantic and string matching which will be further discussed in
Chapter 4.

Alignment occurs between ontologies and is the product of matching every concept in both
source ontologies either to an equivalent concept in the other ontology or to none at all if
no equivalent concept for a particular concept exists.

Merging occurs between ontologies, after mapping and matching have identified equivalent
concepts. As a result of merging, a new ontology is generated, where matched concepts are
presented as a single concept. We also introduce an additional step called specialization

where this single concept only holds those properties and relations that are similar according
to some form of metric, whereas separate sub-concepts are generated for those properties
and relations that are different. If no equivalence was identified for a particular concept, it
is generated as a separate concept with no additional relations.
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Annotation and integration operations are out of the scope of this thesis.

2.5 Heterogeneity of Ontologies

One of the major challenges of implementing ontology operations is the different ways
an ontology can be represented. Euzenat and Shivaiko [3] distinguish several types of
heterogeneity, among them:

1. Syntactic heterogeneity which is caused by modelling the ontology in different
ontology languages.

2. Terminological heterogeneity which is caused by variations in how concepts are
specified. This may occur when ontologies are written on the basis of different
natural languages, but also when synonyms or different phrasing is used in the same
natural language.

3. Conceptual heterogeneity which is caused by differences in how knowledge of
the same domain has been modelled in different ontologies. These differences may
occur in coverage (two ontologies have slightly different domains that partially
overlap), granularity (two onotologies have a different level of detail of the same
domain) and perspective (two ontologies describe the same domain with the same
level of detail but from a different perspective).

4. Semiotic heterogeneity which is caused by the interpretation of concepts by people.
Heterogeneity in this context refers to how entities with the same semantic interpre-
tation can be interpreted differently by humans depending on the context of their
use.

In this thesis, we are mainly concerned with terminological heterogeneity and conceptual
heterogeneity. We assume that concept names and other relation values are either written
in English or are formulated on the basis of that. We aim to solve the terminological
heterogeneity resulting from differences in the use of words or phrasing. As for conceptual
heterogeneity, we aim to mitigate variations in how concepts are structured as well as in
their level of detail.

17



3. Related Work

In this chapter we provide an overview of some of the main approaches used to implement
onotology operations. A comprehensive overview of the field falls beyond the scope of
this work, but we will outline main techniques used in existing work and how this relates
to the methodology proposed in this thesis. Additionally, we provide an overview the use
of ontologies in the domain of robotics which is the basis of validation of our own work.

3.1 Existing Work and Approaches

Most ontology operations rely on the notion of concept similarity. Euzenat and Shvaiko
[3] propose three broad categories for how to measure the similarity of two concepts.

1. Name-based techniques which analyse the name, comment or other linguistic data of
the concept. Difference is made between methods that purely use character strings
and those that employ some type of linguistic knowledge.

2. Internal structure-based techniques which additionally take into account the structure
of the concepts, such as the value and data type of their properties or the comparison
of the concept to other concepts it is related to.

3. Extensional techniques which measure similarity on the basis of individuals (in-
stances) of concepts. For example, if two concepts depicting the notion of a book
share an identical set of book titles, we can surmise that these two concepts are
equivalent. Extensional techniques are further distinguished into three distinct cases:

(a) comparing instances that are common between two concepts;
(b) instance identification in case a common set of instances does not exist;
(c) disjoint extension comparison where, rather than directly using a common

data set for both ontologies, statistical measures and approximation is used to
compare concept extensions

3.1.1 String and Semantic Matching

As outlined by Euzenat and Shivaiko, a common approach used in ontology matching
is analysing the string values of the concepts that are being compared. As this can be
equally done with both concept names and property values, we do not strictly distinguish a
name-based approach from an internal structure-based approach.
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By string matching we mean any kind of technique that analyzes the structural similarity
of two strings without considering the meaning of those strings in natural language. This
can be purely mechanical (e.g., Levenshtein distance) or on the basis of some larger corpus
of text (e.g., cosine distance).

By semantic matching we mean that the similarity of two strings is evaluated based on
the natural language meaning of those words (for example, by comparing whether two
English-language words are synonyms). This is typically done with the help of some
lexical database, such as WordNet for English, that links words based on their meaning,
semantic and grammatical relations [9].

String and semantic matching is extensively used, for example, in Robin and Uma [10]
which employs a mixed strategy of both, choosing the best outcome from several metrics.
Single-metric approaches also exist, such as Stoilos et al. that focuses solely on develop-
ing a single string-matching technique for ontology alignment [11]. String or semantic
matching can also serve as a complementary technique to some other approach, as for
example in Karimi and Kamandi [12] where trigram word-similarity is used as part of an
inductive logic programming approach to ontolgy alignment.

An obvious drawback of using string and semantic matching is that it assumes that the
names and property values of a concept are in some form meaningful in natural language.
Unconstrained use of string matching is prone for false positives (e.g., words such as
correct and incorrect are structurally very similar, despite being semantically opposite
to one-another). Semantic matching may require extensive pre-processing of the string
(such as identifying and separating individual words from a longer string) and be further
complicated by identical words having different meanings.

3.1.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a data analysis technique to study the relationship
between a set of objects and a set of attributes. Input data of FCA is typically represented
as a cross table where the set of objects and the set of attributes are the dimensions and
the presence of a property in an object is marked in the cross table. Using this data, FCA
produces groups that 1) represent "natural" concepts based on the attributes of the data and
2) a collection of implications describing specific dependencies that exist in the data [13].
FCA was first proposed by Rudolf Willie in 1982 [14]. Note that concept in the context of
FCA is not necessarily the same as in the discussion on ontologies.

Euzenat and Shivaiko position FCA as an extensional ontology matching technique for
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when a common set of instances already exists. In such a case, attributes of the FCA lattice
could be seen as the concepts where instances are known to belong, regardless of their
source ontology. FCA would allow to identify not only equivalence relationship but also
sub-type correspondences [3].

An example of FCA used in such a way can be found in the FCA-Merge approach proposed
by Stumme and Maedche [15]. FCA-Merge takes ontologies and a set of domain-specific
text documents as input. Natural language processing techniques are used to extract
instances from domain-specific texts. FCA is used to derive a concept lattice from this
input data. Finally a new merged ontology is generated on the basis of the concept lattice
and human domain specialist interaction.

3.1.3 Background Knowledge and Inductive Logic Programming

Inductive Logic Programming (ILP) is a branch of machine learning with a focus on
learning from examples (induction). ILP is used for instance to learn concept descriptions
from instances of those concepts or to find regularities from large amounts of data. ILP
typically makes use of background knowledge - some kind of data that is relevant for the
task at hand in the form of positive and negative examples [16]. A typical representation
of data and rules used in ILP is in first-order predicate logic.

ILP is used by Karimi and Kamandi by Karimi et al for ontology alignment. This approach
consists of 1) generating background from concept taxonomies, 2) explicit addition of
domain-specific background knowledge, 3) generation positive and negative examples
from a set of instances, 4) induction using an algorithm developed by the authors, 5)
interpretation of the result of induction as ontology mapping [12].

3.1.4 Our Approach

Based on the techniques described above, the approach developed in this thesis can be seen
as a structure-based analysis of all the relations attributed to a concept directly and inherited
from their ancestors. The values of these relations are compared for their similarity on the
basis of string and semantic matching. Additional techniques are adopted for asymmetric
structures, where the number of values a relation has does not match between the two
concepts (the application of weak unification principle). Additionally we use FCA to
pre-process the data on the relations of each concept and identify identical relations in
advance.
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Similarly, weak unification is applied for the aggregate similarity estimate, where several
input parameters in the range of [0,1] are used to determine the weight of different similarity
measures or the threshold of what constitutes a positive match. The method is intended to
be automatic without the need for human intervention.

3.2 Ontologies in Robotics

Ontologies may be used in any possible domain, ranging from a taxonomy of proteins
to describing the structure of an organisation. In the domain of robotics, ontologies are
particularly useful in the context of autonomous social robotic systems where knowledge
representation regarding the objects and the environment can be achieved through the
use of ontologies. Domain knowledge represented in ontologies improves the flexibility,
re-usability and adaptability of various robotic tasks [17].

To mitigate the heterogenity of ontologies developed for robotics, IEEE has proposed
a standard for knowledge representation and reasoning in autonomous robotics or au-
tonomous robot architecture ontology (ROA) which provides a conceptual framework for
sharing information about robot architectures [18]. ROA is built on top of Suggested Upper
Merged Ontology (SUMO) and Ontology for Robotics and Automation (CORA) that
pass on some of their concepts to ROA. CORA is an upper-level ontology specific to the
field of robotics, providing a knowledge representation of concepts such as robot, robotic

system, robot part among others [19]. Other upper-level ontologies relevant for robot
missions are Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE)
[20], Ontology-based Unified Robot Knowledge (OUR-K) [21], OpenRobots Common
Sense Ontology (ORO) [22].

We will not attempt to provide a comprehensive overview of domain-level ontologies as
these are numerous and specific to their domain or application. Rather we will use the
survey conducted by Manzoor et al [17] that describes a number of domain ontologies
related to robots with social roles. These are the KnowRob [23] project and related SOMA
ontology [24], Ontology for Robotic Orthopedic Surgery (OROSU) [25], CARESSES [26],
Perception and Manipulation Knowledge (PMK) [27], search and rescue SARbot [28],
indoor environmental quality (IEQ) [29], SmartRules [30], Adapting Robot Behaviour
based on Interaction (ARBI), Worker-cobot [31], Agility Performance of Robotic Systems
(APRS) [32].

A majority of these systems use OWL for knowledge representation. Prolog, the language
of choice in this thesis, is also used in KnowRob, PMK and ARBI. A common tool for
creating or editing ontologies was Protege [33].
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Work has also been done to develop a universal approach for linking an OWL ontology with
ROS middleware. One ongoing effort in this regard is the Java-based ROS Multi Ontology
Reference (ARMOR) framework [34] that also has a publicly available repository with
installation instructions and other tutorials [35]. Unfortunately, the project has not been
updated over several years and is dependent on a version of ROS that is by now outdated.

22



4. Developed Methodology

In this chapter, we describe in greater detail the methodology we developed in our approach
to ontology merging. It is assumed that the ontologies are represented in the RDF/OWL
framework. A thorough overview of RDF/OWL framework can be found in Appendix 2.

On the most abstract level and using the terminology introduced in Chapter 2, we interpret
ontology merging as the comparison of every concept Ci in ontology O1 to every concept
Cj in ontology O2 and matching the concept pairs that exceed some predefined similarity
threshold.

The degree of how similar two concept are is referred to as the confidence value of each
concept pair. The minimal degree of similarity to declare two concepts as being similar is
expressed as a parameter in the range of [0,1] and is referred to as confidence threshold.
A concept from ontology is matched to a concept from another ontology if neither of the
concepts is already matched, their confidence value exceeds the confidence threshold and
it is also the highest available confidence value for both concepts in the concept pair. If a
concept is not paired to any other concept, it is considered to be mismatched.

Let Ci ∈ O1, Cj ∈ O2

The signature of the merging operation could formally be expressed as

merge : O ←


O ∪match(Ci, Cj) if maxk∈[1,m](fk) ≥ fU ∧match(Ci, .) ̸∈

O ∧match(., Cj) ̸∈ O ∀Ci ∈ O1 ∧
∀Cj ∈ O2

O ∪ {Ci} ∪ {Cj} otherwise

(4.1)

where

■ Ci and Cj are input concepts;
■ O1 and O2 are input ontologies;
■ O is the merged output ontology;
■ match(Ci, Cj) is the match of concepts Ci and Cj;
■ maxk∈[1,m](fk) is the maximum confidence value from all possible comparison pairs
[1,m];
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■ fU is the confidence threshold.

The matched concept pairs are further refined by assessing the confidence value of each
relation value pair in the matched concept pair. If the confidence value of a particular value
pair falls below the confidence threshold fU , sub-concepts of the matched concept pair
are created and the diverging relation type and value are added as a distinct sub-concept.
This could be considered the specialization of matched concepts denoted as ⊑. The new
merged ontology is the return value after the completion of the specialization operation.

Let rels be an operation that return the set of all relation values of a concept:

rels : C −→ {rel1, ..., reln}

then

rels(match(Ci, Cj)) = rels(Ci) ∪ rels(Cj).

and the specialization operation ⊑ is expressed as

⊑ (rels(match(Ci, Cj))) =({rels(Ci) ∩f rels(Cj)}) ∪ {rels(C
′

i)} ∪ {rels(Cj
′)}

(4.2)

where

■ ∩f operator signifies the intersection of relation value pairs whose confidence value
exceeds the confidence threshold;

■ C
′
i and C

′
j are the new subconcepts created as a result of specialization;

■ rels(C
′
i) = rels(Ci)\rels(Cj) and rels(C

′
j) = rels(Cj)\rels(Ci).

4.1 Similarity Matching as a Form of Weak Unification

In the context of logic programming, unification of terms is the process of transforming
logic clauses using mgu-algorithm [36] to a form where some of their literals become
equivalent modulo negation, allowing the elimination of these literals from the derived
clause by the SLD-resolution rule. It is used in Prolog to evaluate the truth value of a goal
on the basis of clauses with the instantiation of their argument terms that are provided
in the knowledge base. In order to make better use of Prolog unification mechanism, we
apply the encapsulation of clauses [37], i.e., we transform all concepts to a single uniform
representation where relation types that were found in both input onotologies are taken as
arguments to be used for grounding of concepts. Therefore, the value of each argument is
represented as a list of relation values of that type. If a concept does not have a particular
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relation, the argument value is an empty list. The fundamental difference between strong
syntactic unification and the weak unification applied in our method for term comparison
and clause merging is following: while in syntactic unification, the terms are transformed
to syntactically equivalent form, weak unification contrary enables some difference in the
structure of terms and values up to predefined threshold in some well-defined similarity
metrics. The relation values are then calculated for their similarity.

Hence, in the case of strong unification, two concepts are matched only when their argument
values are either identical or they are variables that can be uniformly instantiated on the
basis of Prolog knowledge base. We call the current approach weak unification because we
use a similarity metric (confidence) instead of Prolog’s internal unification mechanism.

For example, the following two concepts named android would not be unified using strong
unification due to the asymmetry of relations and a differences in the values these relations
hold. However, they could be unified in the sense of weak unification if the semantic
connection between robot and automaton is made (using, for example, WordNet) and the
absence of a value in the relation equivalentClass is permitted.

a n d r o i d ( e q u i v a l e n t C l a s s ( [ ] ) , s u b C l a s s O f ( [ ’ r o b o t ’ ] ) .

a n d r o i d ( e q u i v a l e n t C l a s s ( [ ’ humanoid ’ ] ) , s u b C l a s s O f ( [ ’ automaton ’ ] ) ) .

4.2 Calculating the Confidence of a Concept Pair

The similarity confidence of a concept pair is the calculated average of the confidences
calculated over each relation value pair of compared concepts. If a relation has more
than one value, the values are matched using a best-first approach and each value pair is
considered separately. The two concepts need not have an identical structure: either one
of the concepts has a relation that the other does not or the two concepts have a different
number of values for the same relation. We use an additional input parameter referred to
as confidence value of an absence which determines what confidence value is attributed to
a relation that does not have a counterpart in the concept it is compared with.

Relation values of any ancestral concept are also used in similarity calculation, if the
concept has an ancestral relation (e.g., in RDF expressed either as rdfs:subClassOf
or rdfs:subPropertyOf) and there exists knowledge of the ancestor concept (e.g.,
either it is defined in the same ontology or is provided as background knowledge).
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OWL class descriptions (e.g., owl:Restriction, owl:intersectionOf, owl:
unionOf, owl:complementOf) are compared on same principles as concepts, but
are constrained to matching relation types. If a pair of class descriptions does not have
identical relation types, their similarity is considered to be 0, regardless of relation values.

The formal expression of calculating the similarity confidence
−
S(C1, C2) of a concept pair

(C1, C2) is
−
S(C1, C2) =

Σn
i=1(si)

n
(4.3)

where

■ n is the number of relation value pairs existing in both input concepts;
■ si is the similarity confidence of the i-th relation value pair.

Additional examples on calculating concept pair confidence can be found in Appendix 4.

4.3 Calculating the Confidence of a Relation value pair

In this section we describe the method for comparing individual relation value pairs that
make up the confidence of the concept pair. Several comparison methods are used in
parallel, the weights of which are determined as input parameters. From a more abstract
perspective, any number of methods may exist, each with their own weight. However, in
the current thesis, we specifically use semantic similarity and string similarity to calculate
the similarity of relation value pairs which were introduced in 3.1.1. The weight of either
method is implemented as an input parameter of the matching algorithm. Additionally, we
use an exception measure in situations where the weight of one metric has a high value
(i.e., greater than parameter Su) that is distinctly dominating over values of other metrics.

The calculation of the similarity confidence of a relation value pair
−
S(R1, R2) could be

formally expressed as

−
S(R1, R2) =

Σn
i=1(wi × Si(R1, R2)) if ∀i : Si(R1, R2) < Su

Sk(R1, R2) if ∃k ∈ [1, n] : max(Sk(R1, R2)) ≥ Su
(4.4)

where

■ R1 and R2 are relation values
■ n is the number of value matching techniques;
■ wi is the weight of method i
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■ Si(R1, R2) is the similarity confidence of a relation value pair using method i;
■ Su is the single dominance threshold of similarity confidence.

4.3.1 Semantic Similarity

WordNet is used to examine the meaning of word(s) that are found within the re-
lation value. Each relation value is discerned into a list of words and that are re-
duced to their root form for normalized comparison. For instance, relation values
rdf:about="iri1#isGridPowered" and rdf:about="iri2#has-grid-

power" would be processed into following list of words: [be, grid, power] and
[have, grid, power] respectively.

Every word in one list is then compared with every word in the other list for evaluating the
similarity in meaning. Three types of similarities are distinguished:

1. the words are identical, meaning that the similarity value of that word pair is 1.
2. the words are synonyms the value of which is taken from an input parameter. We

refer to this input parameter as the confidence value of a synonym.
3. the words express any other positive semantic relation in which case the similarity

value of the word pair is half of the synonym input parameter value. We refer to
this input parameter as the confidence value of other semantic relation. Any other
positive semantic relation could be for instance, hypernymy (i.e., the words have a
subordinate-superordinate relationship, such as cat is a mammal and mammal is an
animal), meronymy (i.e., the words have part-of relationship, such as hand is part of
a body), etc. The full description of semantic relations expressed in WordNet can be
found on [38].

The semantic similarity confidence of a relation value pair is the sum of all identified
similarities divided with the total number of words in both compared relations. The formal
representation of calculating semantic similarity is essentially the same as defined in
Formula 4.3.

For example, given 0.9 as confidence value of a synonym and 0.45 as confidence
value of other semantic relation, the similarity value for the list of words [bike]

and [electric, bike] would be 2÷3= 0.667. For [bike] and [electric,

bicycle], this would be 1.8÷3=0.6, as bike and bicycle are identified as synonyms. For
[velocipede] and [electric, bicycle], this would be 0.9÷3=0.3, as bicycle

is a hyperonym of velocipede.

27



Additional Heuristics

Some additional constraints have been introduced to improve the accuracy of semantic
similarity. These were employed on the basis of patterns exhibited in false positives and
can thus be seen as constraints to the grammatic context of where words occur. These will
discussed in greater detail in Chapter 5.

4.3.2 String Similarity

String similarity characterizes relation values without considering possible meaning of
words in those values. Relation values are similarly separated into a list individual words
which are then concatenated into a single string and then compared.

Different methods exist on how to measure the similarity of two strings. In our approach,
we are using a string metric developed by Stoilos et al. [11]. The method is based on
the length of common substrings, similar to Levenshtein distance which measures the
minimum number of changes needed to convert one string to another. The smaller the
number of changes, the more similar two strings are [39].

Reasons for choosing Stoilos et al. as the key metric are mostly implementation-related. As
possible alternative, we also considered cosine similarity which is a method of calculating
the similarity of two vectors by taking the dot product and dividing it by the magnitudes
of each vector [40]. The vector in this case is a body of text in vectorized form. Various
methods and tools exist to vectorize text, however, in its essence, it entails converting the
text into numerical representation (i.e., counting frequency of each word in text). The
closer the angle between the two vectors is to zero, the more similar these texts are.

One of the principal difference between Stoilos et al. and cosine similarity is that the
method proposed by Stoilos et al. is a purely mechanical approach, providing one singular
result. Conversely, the result of cosine similarity depends on an additional corpora of text
(NLP model(s)). The more attuned this model is to the specific topic of the texts that are
compared, the more accurate result one can expect.

In order to better determine the suitability of either string similarity method, we compared
the results provided by Stoilos et al. and cosine similarity with a number of ready-to-use
NLP models on the set of actual data which revealed that there was no overwhelming
advantage to using the more implementation-heavy cosine similarity. Results of this
comparison can be found in Appendix B.1.1.
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4.3.3 String Similarity of Comments

Concepts’ descriptions in ontologies sometimes include natural language comments, rep-
resented as the relation rdfs:comment. As the occurrence of comments is largely
ontology-specific and does not describe an additional property of a concept in itself, it
can rather be seen as an annotation on the concept. As such, they are not compared as a
separate relation, but as an supplementary value to the name of the concept. As comments
may range from a few words to several paragraphs, only string similarity method is used.
The weight of comment similarity is determined as an input parameter, however, if one of
the compared concepts does include a comment, this weight is ignored entirely.

4.3.4 Determining the Threshold Values of Similarity Metrics

Both semantic and string similarity method have a weight that is determined as an input
parameter of the matching algorithm and the similarity of a relation value pair is determined
as a weighed average of the results from each method. However, when the result of a
single method is greater or equal to an upper threshold (0.9 by default), only that particular
method is exclusively used to assess the similarity of the relation value pair. This approach
ensures reinforcement of more decisive matching result when other similarity methods
provide a low score.

For example, when comparing Robot to Automaton, semantic similarity method returns
a similarity score of 0.9, as the two words synonymous in WordNet (assuming 0.9 is the
input argument for synonym weight). However, string similarity method provides a
similarity score of 0. Clearly, providing a high similarity value on the basis of semantic
similarity alone is preferable to providing a considerably lower value as a weighed average
of both similarity values.

The opposite also applies when semantic matching either fails to identify words in the
relation value (e.g., the relation value is an abbrevation) or the underlying semantic
connection, while string matching is able to recognize the similarity of the two values. For
example, the comparison of relation and relational, semantic matching returns a
similarity score 0, because even though both words are documented in WordNet, there is
no explicit syntactic relation between them. String matching on the other hand identifies
the connection between these words and provides a confidence value of 0.96.
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4.3.5 Confidence Pre-Value

So far we have considered relation values as strings. However, when two relation values
both refer to a concept in their ontology, the last known confidence value of the already
compared concepts is used instead of the string comparison. We refer to this as confidence

pre-value as it is the confidence value of the concept pair that is known from the previous
comparison iteration and to exclude repeated evaluations, existing estimate is used.

In the following example, the relation rdfs:subClassOf values #Electric-

Vechicle and #WheeledVechicle are not calculated on the basis of their lexical or
string similarity, but rather the confidence value of the respective concepts is used instead.

Example A

<owl : C l a s s
r d f : a b o u t =" i r i 1 # E l e c t r i c B i k e ">
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e =" i r i 1 # Bike " / >
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e =
" i r i 1 # E l e c t r i c V e c h i c l e " / >

</ owl : C las s >

<owl : C l a s s
r d f : a b o u t =

" i r i 1 # E l e c t r i c V e c h i c l e ">
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e =" i r i 1 # O b j e c t " / >
</ owl : C las s >

Example B

<owl : C l a s s
r d f : a b o u t =" i r i 2 # E l e c t r i c B i k e ">
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e =" i r i 2 # T r a n s p o r t " / >
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e =
" i r i 2 # Whee ledVech ic le " / >

</ owl : C las s >

<owl : C l a s s
r d f : a b o u t =

" i r i 1 # Whee ledVech ic le ">
< r d f s : s u b C l a s s O f

r d f : r e s o u r c e = i r i 1 # O b j e c t " / >
</ owl : C las s >

4.4 Validation

We employ two approaches to validate our results: 1) a quantitative approach on the basis
of test data from the Ontology Alignment Evaluation Initiative OAEI, 2) a qualitative
approach based on the results from comparing robotics-related ontologies outlined in [17].
The results of both approaches will be discussed in Chapter 6.

4.4.1 OAEI Based Evaluation

OAEI is an international initiative that hosts a number of tests sets as well as annual
competitions and workshops for ontology matching. We use the 2016 benchmark test
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[41] [42] that comprises of a base ontology and 110 test ontologies from the domain of
bibliography. The base ontology consists of 33 named classes, 24 object properties, 40 data
properties, 56 named individuals and 20 anonymous individuals. Each new test introduces
some form of variation to the original reference ontology. These variations include changes
in the value names (e.g., different naming conventions, use of synonyms, scrambling),
structure of the concept (e.g., omission of restrictions, comments or other relations) and the
ontology in general (e.g., removal or addition of concepts). In addition, four tests are based
on real bibilographic ontologies that only partially correspond to the reference ontology.

4.4.2 Merging Robotics-Related Ontologies

In addition to OAEI test set, we analyze the results gathered by comparing selected
ontologies from the domain of robotics. More specifically, we compared three ontologies
introduced in Section 3.2: DOLCE, PMK, SOMA.

In terms of ontology taxonomy, PMK and SOMA are both domain level ontologies that
differ in terms of subdomain and scope. PMK focuses on autonomous robot perception and
manipulation [43] whereas SOMA on the characterization of physical and social activity
context [44]. DOLCE is a foundational ontology that aims to "model a commonsense view
of reality" [20]. SOMA is partially based on DOLCE foundational framework, whereas
PMK has no direct connection to DOLCE. As such, we can expect SOMA and DOLCE to
have the biggest and PMK and DOLCE to have the smallest overlap. The specific version
of DOLCE we used for the comparison is version 397 of Dolce-Lite [45]. In terms of
size SOMA ontology is the biggest, consisting of 839 defined concepts and 6,471 triplets.
DOLCE ontology consists of 107 defined concepts and 872 triplets, whereas PMK has
90 concepts and 306 triplets. This clearly shows how ontologies differ not only in the
number of concepts but also in their level of detail (average number of triplets/relations
per concept).
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5. Implementation

In this chapter, we cover the implementation of the methodology described in Chapter
4. We start by describing the general architecture and set of technologies used and then
discuss specific sub-parts of the program.

The main programming language we use is SWI-Prolog. The choice of language is
primarily due to the unification mechanism unique to Prolog that we use to our advantage.
Furthermore, SWI-Prolog provides an extensive library for RDF manipulation [46] that
we use for reading the input ontologies and creating the output ontology as well as other
useful libraries. Additionally we use Python as a supporting language to conduct FCA
and natural language processing. Python was chosen over other Programming languages
due to its relative ease of implementation as well as the useful libraries provided in that
language. Python scripts are launched directly from Prolog as additional processes, CSV
file format is used to communicate larger quantities of data between Prolog and Python.

Conceptually, the program can be divided into three distinct phases:

1. preprocessing phase that reads the input files in RDF/OWL format, transforms the
concepts to Prolog’s internal representation and runs the FCA;

2. comparison phase that reads the results of FCA from .csv files, compares the
concepts using the methodology described in Chapter 4, and produces the set of
matched concept pairs and the set of mismatched concepts;

3. refinement phase that further analyzes matched concept pairs on the basis of individ-
ual relation values and produces the merged ontology in RDF/OWL as output.

A visual representation of these phases can be found in Figure 1
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Figure 1. Conceptual architecture
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5.1 Preprocessing

Preprocessing handles the input reading using Prolog’s RDF manipulation library, identifies
what concepts exist in the input ontologies and transforms them to Prolog’s internal
representation as dynamic facts and runs the FCA. In addition, preprocessing handles
parsing relation values from various different naming conventions into a single uniform
representation and transforms rdf:List into Prolog lists. We will illustrate these
transformations with examples in Prolog-based pseudo-code.

5.1.1 Internal Representation of Concepts in Prolog

As described in Appendix 2, all data in RDF is represented as graph of triplets that consists
of interlinked subject, predicate and object elements. Any concept can be present both as a
subject as well as an object of any number of RDF triplets, whereas the predicate indicates
the type of relation that exists between the subject and the object.

In Prolog, we represent concepts as dynamic facts that are structured such that all the
relation types that were identified in both input ontologies (in other words, all the predicate
values identified in the RDF triplets) are taken as arguments of a concept. The value of
each argument is a tuple, consisting of the type of relation with a list of relation values
as the argument value. If a concept does not have particular relation, the tuple for that
relation takes an empty list as its argument value. Relation types are sorted beforehand so
as to ensure that the same relation type is present in the same argument position for every
concept.

For example, these two concepts expressed in RDF

34



Concept A

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 1 # i s G r i d P o w e r e d ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 1 # d e v i c e " / >

< r d f s : domain
r d f : r e s o u r c e =

" i r i 1 # a i r p l a n e s " / >
< r d f s : s u b P r o p e r t y O f

r d f : r e s o u r c e =
" i r i 1 # powerTypes " / >

</ owl : O b j e c t P r o p e r t y >

Concept B

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 2 # has − g r i d −power ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 1 # a i r p l a n e s " / >

< r d f s : r a n g e
r d f : r e s o u r c e =

" i r i 2 # b a t t e r y " / >
</ owl : O b j e c t P r o p e r t y >

would have the following internal representation in SWI-Prolog:

Concept A

’ i r i 1 # i sGr idPowered ’ ( domain ( [ ’ i r i 1 # a i r p l a n e s ’ , ’ i r i 1 # dev i ce ’ ] ) ,
r a n g e ( [ ] ) , s u b P r o p e r t y O f ( [ ’ i r i 1 # powerTypes ’ ] ) ,
t y p e ( [ ’ # O b j e c t P r o p e r t y ’ ] ) .

Concept B

’ i r i 2 # has − g r i d −power ’ ( domain ( [ ’ i r i 1 # a i r p l a n e s ’ ] ) ,
r a n g e ( [ ’ i r i 2 # b a t t e r y ’ ] ) , s u b P r o p e r t y O f ( [ ] ) ,
t y p e ( [ ’ # O b j e c t P r o p e r t y ’ ] ) .

The advantage of this representation is that it is universal regardless of the relation types
that exist in the input ontologies or what relation types have a value in the case of a specific
concept.

5.1.2 Parsing of Relation Values

As noted in Appendix 2, RDF does not prescribe any particular convention, how RDF
resources should be named. As such, the naming convention of relation values depends on
the creators or the tool used for generating ontology files. Typically, the IRI is separated
from the resource name by # and either CamelCase or dash-case is used for the
name. Different capitalization conventions may also be used depending on the type
of the resource (e.g., FullCamelCase is used for rdfs:Class concepts, whereas
lowerCamelCase is used for concepts that are of type rdf:Property).
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The current implementation handles CamelCase and dash-case regardless of capi-
talization. The IRI separator is expected to be either the last # or / character of the full
string.

Several representations of relation values are held as dynamic facts: 1) the full name with
the IRI for unique identification, 2) relation value split as per naming convention into
list of words as that is used for semantic similarity calculation, 3) atomic version of the
parsed word list which is used for string similarity calculation, 4) shorthand version of the
unparsed relation value with the IRI omitted that is used for referencing relation values
during the comparison phase.

The concept names of the previous example would have the following representations:

Concept A

’ i r i 1 # i sGr idPowered ’ , [ i s , g r i d , powered ] , ’ i s g r i d powered ’ ,
i s G r i d P o w e r e d

Concept B

’ i r i 2 # has − g r i d −power ’ , [ has , g r i d , power ] , ’ has g r i d power ’ ,
’ has − g r i d −power ’

5.1.3 Handling of rdf:List Resources

rdf:List is essentially a linked list where each element in the list refers to a the next one.
Unfortunately, this makes it extremely cumbersome to compare elements in rdf:List
as only the first element in the list is linked to the top level relation that applies to every
element in the list, while the actual order of elements in the list is irrelevant form a semantic
point of view. To ease later manipulation, all values in rdf:List are directly linked to
whatever relation lies immediately above the rdf:List.

We will use the following example, representing the statement "John is a friend of Alice,

Bob and anyone who is a friend of Bob".

< P e r so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : Class >
<owl : unionOf r d f : pa r seType =" C o l l e c t i o n ">

< P e r so n r d f : a b o u t ="# A l i c e " / >
< P e r so n r d f : a b o u t ="#Bob "/ >
<owl : R e s t r i c t i o n >
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<owl : o n P r o p e r t y
r d f : r e s o u r c e ="# i s F r i e n d O f " / >

<owl : hasVa lue r d f : r e s o u r c e ="#Bob " / >
</ owl : R e s t r i c t i o n >

</ owl : unionOf >
</ owl : C las s >

</ i s F r i e n d O f >
</ Person >

There are three rdf:List resources (Alice, Bob and a property restriction) encapsulated
into the anonymous class with a owl:unionOf relation which in return is an object of
the relation isFriendOf. In the Prolog implementation, elements of the rdf:List
are directly linked to the anonymous class using the following representation:

’# a n o n y m o u s _ c l a s s _ r e f ’ ,
[ unionOf ( [ ’ # Al ice ’ , ’#Bob ’ ,

’# p r o p e r t y _ r e s t r i c t i o n _ r e f ’ ] ) ]

This can be in return referred to from general representation of the concept, e.g.:

# John ( i s F r i e n d O f ( [ ’ # a n o n y m o u s _ c l a s s _ r e f ’ ] ) ,
t y p e ( [ ’ # Person ’ ] ) )

Note that it is important also retain the relation type (in this case owl:unionOf referring
to the list. Though rare, it is possible that a single RDF resource encapsulates more than
one collection of rdf:List with different relation types. For that reason relation types
with rdf:List resources are held as a list themselves, rather than single elements.

An exception is made if the immediate relation referring to the rdf:List is owl:inter-
sectionOf. In that case, the values of the rdf:List are lifted to the next immediate
relation as described in Section B.1 since multiple values of the same relation type can be
interpreted as an intersection of those values.

To illustrate this, we will use the example "John is a friend of anyone who is a friend of

both Alice and Bob".

< P e r so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : Class >
<owl : i n t e r s e c t i o n O f r d f : pa r seType =" C o l l e c t i o n ">

37



<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue r d f : r e s o u r c e ="# A l i c e " / >

</ owl : R e s t r i c t i o n >
<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y
r d f : r e s o u r c e ="# i s F r i e n d O f " / >

<owl : hasVa lue r d f : r e s o u r c e ="#Bob " / >
</ owl : R e s t r i c t i o n >

</ owl : i n t e r s e c t i o n O f >
</ owl : C las s >

</ i s F r i e n d O f >
</ Person >

In this case there are two rdf:List resources, both property restrictions. Rather than
linking them to the anonymous class with the owl:intersectionOf relation, we
replace the anonymous class with a (Prolog) list containing all the rdf:List resources
as an object of the isFriendOf relation. The internal representation of the concept
would therefore be:

# John ( i s F r i e n d O f ( [ ’ # p r o p e r t y _ r e s c t r i c t i o n _ r e f _ 1 ’ ,
’# p r o p e r t y _ r e s c t r i c t i o n _ r e f _ 2 ’ ] ) , t y p e ( [ ’ # Person ’ ] ) )

Note that this transformation is not possible when the anonymous class with owl:inter-
sectionOf is itself nested in another rdf:List or when there are other relations in
the same anonymous class. In such cases, the rdf:List resources are handled in the
same way as in the case of any other relation type.

5.1.4 FCA

Once the concepts have identified and their contents has been transformed into Prolog’s
internal representation, the next step is conducting FCA. As the input of FCA is a matrix
consisting of objects and attributes that they possess, every concept is interpreted as an
object and every single relation value is interpreted as an attribute in FCA. In addition to
relation values that are explicitly declared to a concept, the object is also attributed with
all the relation values they inherit from their ancestors. We consider concept types to be
strictly disjoint which is why FCA is conducted separately for each value of rdf:type.
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To illustrate this, we expand our example of iri1#isGridPowered and iri2#has-
grid-power from Section 5.1.1 with an ancestor to iri1#isGridPowered.

Concept C

<owl : O b j e c t P r o p e r t y r d f : a b o u t =" i r i 1 # powerTypes ">
< r d f s : domain r d f : r e s o u r c e =" i r i 1 # a v i a t i o n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" i r i 1 # b a t t e r y " / >

</ owl : O b j e c t P r o p e r t y >

The merged input data for FCA of owl:ObjectProperty type of concepts would be
following:

Table 1. Example of FCA input data

object domain
(iri1
#air-
planes)

domain
(iri1
#device)

subPropertyOf
(iri1 #power-
Types)

type
(Object-
Property)

domain
(iri1 #avi-
ation)

range
(iri1
#battery)

range
(iri2
#battery)

iri1 #pow-
erTypes

X X X

iri2
#has-grid-
power

X X X

iri1
#isGrid-
Powered

X X X X X X

External Python library [47] is used to perform the FCA. While a number of programs exist
for FCA [48], we chose in favour of this particular implementation due to its lightweights
nature and ease of use that does not rely on graphical interface or user interaction. We
use CSV as the input and output data format for the FCA because it is robust enough to
transmit the relatively sizeable input data without considerable overhead.

The output of FCA is a set of concept pairs where each concept pair is mapped for identical
(i.e., where IRI completely matches) and differing relation values.

5.2 Comparison

The comparison phase of the program handles the evaluation of each concept pair produced
by FCA for their similarity. This entails transforming the results of FCA from CSV back
to internal representation in Prolog, comparing differing relation values of a concept pair
for semantic similarity, calculating the overall similarity value of a concept and finally
unifying concept pairs that exceed the confidence threshold.
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5.2.1 Handling of FCA Output

As mentioned in Section 5.1.4, FCA produces a set of concept pairs where identical and
differing relation values are counted and identified. This output is written as CSV files and
used in Prolog to generate pruned versions of the concepts specific to that concept pair.
The pruning maintains only those relation values that differ within the concept pair and
discards all those relation types where neither concept has a relation value.

5.2.2 Comparison of Relation Values

The similarity of a concept pair comprises of the similarity of individual relation value
pairs. A concept can have any number of relation values for a particular relation type, so
this is essentially a comparison of two lists for best matching values. As the relation types
have been sorted in pre-processing and further pruned in FCA, lists of relation values can
be compared recursively, regardless of their type.

The comparison is conducted separately for both directions. This means that the compari-
son of relation values from concept A to B is conducted separately from the comparison
of relation values from concept B to A. Relation values from the source value list are
compared in the order of their appearance to the entire target relation value list and are
matched using the best first principle. If a source relation value no longer has any value in
the target value list, it is assigned absence confidence value instead. The final similarity of
a relation value pair is the average of both confidence values from both directions.

During the comparison of a specific relation value pair, it is checked whether both source
and target relation value refer to concepts within the same ontology. If this is true, pre-value
confidence of that concept pair is used instead of the lexical relation value pair. By default,
a concept pair is given the pre-value confidence of 0 which is then reassigned once all the
concept pairs have been compared and their similarity calculated. It is therefore necessary
to run several iterations of the comparison to stabilize the pre-values of concepts pairs. If
one of the elements a relation value pair does not refer to a concept, lexical similarity is
used instead. Unlike pre-value confidence, lexical similarity is a static value which needs
to be calculated only once.

5.2.3 Calculation of Lexical Similarity

Lexical similarity expresses how similar is a specific relation value pair using the methodol-
ogy described in Section 4.3. This entails calculating similarity value using both semantic
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and string matching as well as the string similarity of comments (if applicable) and
providing a combined similarity value using the weights provided as input parameters.

String Matching

The implementation of string similarity is relatively straightforward, making use of native
the isub library provided in SWI-Prolog [11]. When comparing relation values, the input
for string matching are the atomic versions of the parsed word list. When comparing
comments, it is the value of rdfs:comment in atomic form.

Semantic Matching

The WordNet-based semantic similarity is implemented using the prologdb(5WN)

library [38] which permits querying the WordNet database directly in Prolog. Alternatively,
it would be possible to query WordNet’s web API hosted by Princeton University, but
given the large amount of queries, we considered the direct and Prolog-native integration
to be more preferable.

A total of 14 different query types are run against the Prolog database for possible semantic
relations between words or phrases. The number of identified semantic relations are stored
and the semantic similarity value calculated as described in Section 4.3.1.

One of the major drawback of the WordNet database in Prolog is that it accepts only
exact case-sensitive matches. This means that for maximum effect, queries need run
for both individual words in the relation value (obtained during the parsing of relation
values in pre-processing) as well as a combination of words and a combination of cap-
italization. For example, given a relation value #TheUnitedStatesOfAmerica,
an exact combination of words and capitalization is needed to match the phrase
United States of America found in WordNet database.

In addition, relation value may include inflectional word forms or derivatives that need to be
transformed to their lemma (dictionary form) before they can be matched with a WordNet
entry. Typical English inflectional forms include 3. person singular verb form (e.g., takes

→ take, has→ have), various past tense verb forms (reached→ reach, spoken→ speak)
or plural noun forms (queries→ query, oxen→ ox). In addition, certain English words
may simultaneously be both lemmas and inflectional forms depending on the meaning
or grammatical context (e.g., found is both a dictionary form of a verb as well as past
participle for find).

For maximum effect, if a WordNet query yielded no result (meaning that there was no
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entry for that particular combination of characters), we attempted to reduce the input word
to the lemma and repeat the query until either a WordNet provided a result or there were
no additional lemmas for that word. We used an external Python module Lemminflect to
determine all possible dictionary forms of a word [49]. Querying Lemminflect for the
root form requires initiating the Python script as a new process for each query which is
significantly resource-consuming in case of larger input data.

SWI-Prolog does come with an implementation of Snowball stemming algorithms [50]
which are used to identify the root of a word. Using Snowball instead of Lemminflect
would significantly speed up querying WordNet. However, as this is a purely mechanical
approach that does not take into account whether the input is actually a valid inflected
form, using Snowball deemed unsuitable for our purposes.

To minimize resource-heavy queries, both Lemminflect and WordNet are queried only
once for each input and the results are stored in Prolog’s internal memory for reuse.

Additional Heuristics

In order to improve the accuracy of lexical similarity calculation, some additional con-
straints have been introduced. These constraints are purely intuitive based on the patterns
exhibited in false positives. As such we can see these as heuristic techniques employed on
grammatic context of where words occur. Two such constraints have been developed.

The first constraint excludes a predefined set of English prepositions and auxiliary verbs
from the similarity calculation of a relation value. However, if such preposition or auxiliary
verb does exist in the source relation value, it is required that it also exists in the target
relation value. If this does not apply, both string and semantic similarity default to 0. This
constraint was implemented on the grounds that while auxiliary verbs and prepositions
are common in relation values, they do not have semantic value of their own, but rather
describe the grammatic context of words with semantic value. Implementation of this
constraint removes the occurrence of false positives between relation values such as
#isPart, #isPartOf and #hasPart which are similar in their construction, but are
clearly different in meaning. Of course, it is possible to express the same meaning in many
different ways (for example, we can intuitively surmise that #isPartOf is the same as
#belongsTo). However, given the relatively formulaic approach to how relation values
tend to be expressed within a single ontology, adding such structural constraint does benefit
the overall accuracy of the method.

The second constraint excludes that the name of a concepts of types rdfs:Class,
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owl:Class and owl:NamedIndividual start with a verb. As concepts of these
types always refer to an object, we can assume that the first word in the concept’s name
is never a verb. This in return enables to exclude those WordNet queries that occur
between verbs in that position. For example, given two concepts of type owl:Class
named #Head (referring to the body part) and #Lead (referring to the type of metal), this
constraint excludes the false positive match as a verb with the meaning "to travel in front
of" or "be in charge of".

5.2.4 Calculation of Concept Pair Similarity

As described in Section 4.2, similarity of a concept pair is the calculated average of the
confidence of all related relation value pairs. During the comparison of relation values, the
similarity of each relation value pair is stored to a temporary list. Once all relation value
pairs have been compared, the similarity of the concept pair can be calculated by dividing
the sum of all values in the temporary list with the length of the list.

5.2.5 Unification of Similar Concepts

Once the similarity of all concept pairs have been calculated, similar concepts can be
matched by iterating through all the concept pairs and choosing the concept pair that has
the highest similarity value for a particular concept.

We use a top-down approach where the first iteration through the concept pairs matches
concept pairs with the confidence value 1, then decrementing this by 0.01 for the next
iteration (0.99, 0.98 and so on). If a concept pair is matched all other concept pairs
with either of those concepts are also removed thus ensuring that no concept is matched
multiple times. Once the confidence value falls below the minimal confidence threshold,
all remaining concept pairs are discarded and any concept that was not yet matched is
considered a mismatch.

Best results are achieved when the unification of similar concepts occurs after several
iterations of concept pairs being compared. This is due to the fact that the pre-value of a
concept pair is always based on the previous comparison iteration (defaulting to lexical
similarity on the first iteration). Since the pre-value of a concept pair is being used as the
similarity measure of a relation value pair where both values refer to such concepts that are
defined in either of the input ontologies, the similarity of these relation value pairs changes
from iteration to iteration. Due to time constraints, this behaviour was not extensively
observed, but the intuition is that the variance in the similarity is greater during the first
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few iterations and then stabilizes by the third or fourth iteration of the comparison process.

5.3 Specialization and Output Writing

As described in Chapter 4, specialization operation further refines the matched concepts,
generating, if needed, new sub-concepts for relation values that diverged (i.e., the relation
value pair fell below the minimal confidence threshold). In this phase of the program,
confidence of individual relation value pairs is mapped and output relation values with
necessary modifications are generated. Finally, RDF triplets are generated and written into
an output file.

5.3.1 Mapping of Concept Pair Relations

In this phase, every relation value pair of every matched concept pair is mapped to a
specific confidence value. This confidence value can be either the pre-value of a concept
pair when both relation values refer to a concept or lexical similarity value or value 1 in
case of an identical IRI. In addition, this phase is used to filter out values from ignored
relations that are not desired in output ontology and transform various compound values,
such as comments, into a more uniform representation.

5.3.2 Generation of Output Relation Values

Once relation value pairs of matched concept pairs have been mapped for their confidence,
data for the output ontology can be generated.

The general format for output relation values is ConceptList - RelationType

- RelationValue which can be easily transformed into RDF triplets. When gen-
erating new sub-concepts from diverging relation values of a matched concept pair,
naming pattern ConceptName-from-OntologyName is used to distinguish it from
the parent concept and an additional ancestral relation (either rdfs:subClassOf or
rdfs:subPropertyOf) referencing to the parent concept is generated. The same
naming pattern is also used for mismatched concepts.

As the values in the relation value pair are typically not identical, the following principles
are used to modify relation values:

■ if neither or both of the relation values refer to a defined concept, the first relation
value is used;
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■ if only one relation value refers to a defined concept, that relation value is used;
■ if a relation value refers to a defined concept that is mismatched, the same naming

pattern is used as for the concept name;
■ if a relation value refers to an RDF list resource, it is replaced with the contents of

that particular RDF list represented as a Prolog list;
■ if a relation value is a compound value, it is cast into an atomic form.

Exception is made for anonymous concept when handling diverging relation values. As
anonymous concepts cannot be further divided into sub-concepts, a single diverging relation
value will result the entire anonymous concept to be considered diverging with regards
to the relation(s) that refer to them. This applies to any type of anonymous concepts:
property restrictions, anonymous class descriptions, Axioms as well as RDF lists used
outside anonymous class descriptions.

To illustrate this, let us assume that the following property restriction pair was successfully
matched as the overall similarity of the pair that exceeds the minimal confidence threshold.
However, in the case of one relation value pair (owl:someValuesFrom), the similarity
falls below the minimal confidence threshold. As such, the entire property restriction pair
will be treated as diverged. Consequently, if a diverging anonymous concept pair is nested
in additional anonymous concept pairs, these will also be treated as diverged.

Example A

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="#common" / >
<owl : someValuesFrom

r d f : r e s o u r c e ="# V e c h i c l e " / >
</ owl : R e s t r i c t i o n >

Example B

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="#common" / >
<owl : someValuesFrom

r d f : r e s o u r c e ="# C a r r i a g e " / >
</ owl : R e s t r i c t i o n >

5.3.3 Writing RDF Triplets

In this phase the generated output relation values are transformed into output file consisting
of RDF triples. This also involves generating new RDF lists from relation values that are
Prolog lists and transforming any compound values in atomic form into generic literals.
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5.4 Testing

A total of 47 automatic tests are implemented using SWI-Prolog’s native testing library.
The majority of these tests follow the same general structure that validates the functionality
of the code by assessing the correctness of the following data: 1) matched concept pairs
and their confidence, 2) mismatched concepts, 3) concept pairs generated by FCA and 4)
generated output relation values. In that sense, we can see these more like integration tests
than typical unit tests.

The input data for tests is manually composed to consider the variety of different syntactic
structures possible in RDF/OWL. Unfortunately it is not possible to provide a definite value
for code coverage: while SWI-Prolog does provide a library to analyse code coverage, the
current implementation only provides code coverage of a single run, as each test requires
the program to be restarted. Running the whole test suit comes with a considerable time
cost in comparison to typical unit tests.

5.5 Other Topics

Multi-Threading

The program employs dynamic multi-threading as a separate thread is created for each
rdf:type value present in the input ontologies during the FCA and concept comparison
phase. Since multi-threading caused problems with the SWI-Prolog testing library, the
program can be run in a single-threaded mode, but this should be limited for running tests,
as it seems to generate sub-optimal results during normal operations.

Bash Scripts

In order to facilitate repeatedly running the program, two bash scripts have been created for
a more streamlined initialization: one for running the program with on two input ontologies
and the other for running tests.

Implemented Input Parameters

The following input parameters have been implemented for added customizability:

■ minimal confidence threshold;
■ confidence value of a synonym;
■ confidence value of an absence;
■ weights for semantic and string similarity;
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■ weights for lexical and comment similarity (if comments exist in concept pair);
■ boolean whether multi-threaded or single-threaded mode be used;
■ boolean whether output ontology should be generated;
■ paths for input ontologies.

Performance and profiling

It should be noted that the current implementation does come with a considerable compu-
tational expense and lengthier comparisons may potentially last for hours or even more
than a day. A thorough performance assessment falls out of the scope of this thesis, but
profiling does reveal that the main bottlenecks lie in handling dynamic facts that contain
large amounts of data. To illustrate that, we profiled three different comparisons: a small
comparison with few matches (PMK-DOLCE), a large comparison with few matches
(PMK-SOMA) and a medium-sized comparison with 100% matches (OAEI test 101). Note
that due to the limitations of the SWI-Prolog profiler, single-thread mode was used and that
results vary somewhat even under identical conditions. The below figures should therefore
not be taken for exact values, but rather as a general estimate.

Table 2. Key CPU Time per Comparison

Predicate name PMK-DOLCE PMK-SOMA OAEI 101
config:foundConcepts/5 25.6% 23.2% 0.3%
garbage_collect_atoms/0 14.6% 4.8% 1.0%
config:uncheckedConcepts/5 11.3% 33.7% 4.6%
config:pairedValues/3 10.1% 17.4% 42.5%
retractall/1 7.3% 6.3% 20.5%
runtime (seconds) 357 15473 65142

Predicate garbage_collect_atoms/0 and retractall/1 are system predi-
cates. The first is used to reclaim unused atoms, whereas the second to delete all
data found in a dynamic fact. The other predicates all refer to dynamic facts that
contain large amounts of data and are also frequently queried. The dynamic fact
config:foundConcepts/5 holds data on the concepts that were identified from
input ontologies, config:uncheckedConcepts/5 holds data on which concepts
have not yet been compared during a single iteration of the comparison phase and
config:pairedValues/3 holds data on which relation values have been paired
for every possible concept pair. The most notable variation across comparisons is with
config:pairedValues/3 which took more than twice the share during OAEI 101
than during other comparisons. This shows that perhaps one of the key factors determining
runtime is how similar the input ontologies are.
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6. Results

In this chapter, we discuss the results of the experiments run on the OAEI data set and the
three robotics-related ontologies. For comparability, identical input parameter values were
used for both experiments. The choice of input parameter values aimed to achieve the best
balance between minimizing false positives and permitting structural flexibility.

■ minimal confidence threshold = 0.7;
■ confidence value of a synonym = 0.9;
■ confidence value of other semantic relation = 0.675;
■ confidence value of an absence = 0.5;
■ semantic similarity weight = 0.5;
■ string similarity weight = 0.5;
■ multi-threaded mode was used.

6.1 Results of OAEI Test Set

We ran the program on 42 base tests and 4 additional tests which can be found in Table
3. The summed average of correct matches was 60% across the 42 base tests, including
17 tests 100% match and 8 tests with 0% matches. Better results were achieved in
tests that simplified the original ontology in some way: e.g., simplification of the OWL
language (tests 102, 103, 104), removal of subclass assertions (test 221), individuals
(test 224), property restrictions (test 225), properties (test 228), general simplification of
hierarchy (test 222). Test changing concept names to semantically irrelevant strings was
quite successful with 93% accuracy (test 201). However, when identical comments were
additionally removed, accuracy dropped considerably to 23% (test 202). Marginal loss of
accuracy also occurred when the hierarchy was increased with intermediate classes (test
223, 97%). From the perspective of semantic and string matching, test 209 is perhaps the
most relevant, as this introduces the use of synonyms while removing the comments. The
accuracy in this test was 58% which is slightly below the summed average.

We can distinguish two types weaknesses of the method in the matching process. The
first type is the incorrect categorization of a concept as mismatched due to the concept not
having any available pair over the minimal confidence threshold. The second type is the
occurrence of false positives due to matching incorrect concept in relation to ground truth.
Lowering the minimal confidence threshold would reduce occurrence of mistakes of the
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first type, but increase the occurrence of mistakes of the second type. With the current
input parameters the number of false positives remained relatively low in all tests with the
highest share being 8% for test 209.

Table 3. Results from OAEI Test Data

Test C/T False pos % Comment

101 97/97 0 100% Compares the ontology to itself.

102 0/0 0 100% Compares the ontology to a totally irrelevant one.

103 96/97 0 99% Compares the ontology with its generalisation in
OWL Lite

104 97/97 0 100% Compares the ontology with its restriction in OWL
Lite (where unavailable constraints have been dis-
carded).

201 90/97 2 93% Names and labels replaced by a random string.

202 22/97 0 23% Based on 201, comments have been removed.

203 97/97 0 100% Labels and comments have been removed.

204 97/97 0 100% Names and labels are written in a variety of differ-
ent naming conventions.

205 93/96* 2 97% Names and labels are replaced by synonyms.

208 96/97 0 99% Based on 204, comments have been removed.

209 56/96 8 58% Based on 205, comments have been removed.

221 97/97 0 100% No class hierarchy: all subclass assertions to named
classes are removed.

222 93/93 0 100% Reduced class hierarchy.

223 94/97 3 97% Extended class hierarchy: numerous intermediate
classes are introduced.

224 97/97 0 100% All individuals have been removed.

225 97/97 0 100% All local restrictions on properties have been re-
moved.

228 33/33 0 100% Properties and relations between objects have been
completely removed.

232 97/97 0 100% Combines 221 and 224

233 33/33 0 100% Combines 221 and 228

236 33/33 0 100% Combines 224 and 228

237 93/93 1 100% Combines 222 and 224

238 94/97 3 97% Combines 223 and 228

239 29/29 0 100% Combines 222 and 228

240 9/33 2 27% Combines 223 and 228
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Test C/T False pos % Comment

241 33/33 0 100% Combines 232, 233 and 236

246 29/29 0 100% Combines 236, 237 and 239

247 10/33 2 30% Combines 236, 238 and 240

248 6/97 0 6% Combines 202 and 221

249 24/97 0 25% Combines 202 and 224

250 0/33 0 0% Combines 202 and 228

251 12/93 1 13% Combines 202 and 222

252 3/97 3 3% Combines 202 and 223

253 6/97 0 6% Combines 202, 221 and 224

254 0/33 0 0% Combines 202, 221, 225

257 0/33 0 0% Combines 202, 224 and 228

258 12/93 1 13% Combines 202, 222 and 224

259 13/97 3 13% Combines 202, 223 and 224

260 0/29 0 0% Combines 202, 222 and 228

261 0/33 0 0% Combines 202, 223 and 228

262 0/33 2 0% Combines 202, 221, 224 and 228

265 0/29 0 0% Combines 202, 222, 224 and 225

266 0/33 0 0% Combines 202, 223, 224 and 225

301 9/52 1 17% Real ontology: BibTeX/MIT

302 0/35 0 0% Real ontology: BibTeX/UMBC

303 0/40 0 0% Real ontology: Karlsruhe

304 44/73 1 60% Real ontology: INRIA

6.2 Results of Robotics-Related Ontologies

Unlike the OAEI data set, there is no quantifiable ground truth for these experiments. In
order to have a better understanding of the matched concept pairs, we look at the following
meta-properties of the concept pairs:

■ the number of explicit relations of a concept;
■ the number of inherited relations of a concept;
■ the number of relations in the concept pair that were considered similar in the

specialization process;
■ the matching confidence of the concept pair.

The number of relations, both explicit and inherited, provides general characterization of the
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matched concepts: a considerable difference in the number of relations indicates asymmetry
in their structural definitions. Likewise, the number of similar relations indicates to what
extent did the specialization process consolidate the knowledge from each concepts. It
should be noted, that at the very minimum, each matched concept pair has at least two
similar relations (type and name).

6.2.1 Comparison of PMK and DOLCE

As it was expected due to their different nature, the comparison of PMK and DOLCE
yielded very small overlap. There is only a single matched concept pair and 195 concepts
were mismatched. In this case, the names of the matching concepts are identical in both
ontologies, the level of detail of the concepts differs considerably. Based on the identical
lexical content, we can assess that this is a valid match.

Table 4. Matched Concepts from PMK-DOLCE Comparison

PMK Relations DOLCE Relations
Name Explicit Inherited Name Explicit Inherited Similar Confidence
#Region 3 0 #region 4 5 2 0.72

6.2.2 Comparison of PMK and SOMA

The comparison between PMK and SOMA produced 12 matched concept pairs and 905
mismatched concepts. In several cases, the concept name is an identical match. However,
we there are also matches that could be seen as a match between a specification and a gen-
eral concept (e.g., #hasSensingComponent-#hasComponent, #ActionClass-
#Action) and false positives (e.g., #PhysicalEnvironment-#PhysicalAgent
and #WspaceClass-#SpaceRegion). The number of relations is relatively low in
most of matched concepts, even though the concepts in SOMA generally have a larger
number of relations.

Table 5. Matched Concepts from PMK-SOMA Comparison

PMK Relations SOMA Relations

Name Explicit Inherited Name Explicit Inherited Similar Conf

#has-
Sensing-
Component

2 0 #has-
Component

2 0 2 0.96

#is-
RelatedTo

2 0 #is-
RelatedTo-
Concept

2 0 2 0.96
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#Region 3 0 #Region 2 0 2 0.91

#Task 3 0 #Task 2 0 2 0.91

#Action-
Class

2 0 #Action 3 2 2 0.875

#objectType 3 1 #Object 2 0 2 0.84

#Quality-
Aggregation

3 0 #Quality 2 0 2 0.82

#Physical-
Environment

3 0 #Physical-
Agent

2 0 2 0.79

#Attributes 3 0 #Physical-
Attribute

2 0 2 0.79

#Situation 3 0 #Situation-
Transition

3 0 2 0.76

#Wspace-
Class

2 0 #Space-
Region

2 0 2 0.75

#Context-
Reasoning-
Class

2 0 #Reasoning 3 5 2 0.7

6.2.3 Comparison of DOLCE and SOMA

The comparison between DOLCE and SOMA produced 13 positive matches and 920
mismatched concepts. In most cases, the concept name is an identical match, although the
number of relations typically differs. We can explain this contrast as the same concept
being described in full detail in DOLCE, but being considerably abridged in SOMA.
Exceptions to this observation are clear false positives #particular-#Item and
#physical-quality-#PhysicalAttribute. With regards to the latter, SOMA
ontology seemingly does have more accurate concept named #PhysicalQuality

which is categorized as a mismatch instead.

Table 6. Matched Concepts from DOLCE-SOMA Comparison

DOLCE Relations SOMA Relations

Name Explicit Indirect Name Explicit Indirect Similar Conf

#quality-
space

4 0 #Quality 2 0 2 0.84

#overlaps 6 1 #overlaps 2 0 2 0.82
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#has-quality 6 2 #hasQuality 2 0 2 0.82

#particular 2 0 #Item 3 2 2 0.82

#region 4 5 #Region 2 0 2 0.81

#event 3 9 #Event 2 0 2 0.79

#process 3 10 #Process 2 0 2 0.79

#time-
interval

3 10 #Time-
Interval

2 0 2 0.79

#physical-
object

5 17 #Physical-
Object

2 0 2 0.77

#space-
region

5 13 #Space-
Region

2 0 2 0.78

#has-quale 6 8 #hasQuale 6 2 4 0.74

#physical-
quality

7 6 #Physical-
Attribute

2 0 2 0.73

#state 3 10 #State 3 0 2 0.71

6.3 Discussion

As seen from the results of comparing PMK, DOLCE and SOMA ontologies, the number
of matched concepts in all comparisons is remarkably low in relation to the total number
of concepts in those ontologies. This could be either due to the inherent dissimilarity of
the ontologies, the overly high accuracy of the matching process or both. Determining
the ground truth regarding the similarity of semantically close concepts in large weakly
related onotlogies is a challenge even for a human expert. This is not only because of
the complexity of ontological structures, but also because of the variety of contexts the
meaning of a concept pair can exhaustively be interpreted. As such, it is a challenge to
determine the extent of semantically equivalent concepts that could have been matched
but were not, as this is specific to each ontology and often even ground truth cannot be
assessed with full certainty.

The comparison between DOLCE and SOMA provides some insight in this regard, as
SOMA incorporates parts of DOLCE into their ontology. There are 15 concepts in total
with identical names between DOLCE and SOMA. Nine of those concepts were matched
correctly and one was matched incorrectly as discussed above. The remaining five concepts
(#Set, #Feature, #DependentPlace, #TimeInterval, #RelevantPart) were not matched at all.
Intuitively, this seems to be caused by differences in the relations these concepts have. It
should also be noted that the DOLCE concepts that were incorporated into SOMA, were
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re-defined within SOMA, meaning they are provided a new IRI as a SOMA concept. This
considerably limits the potential usability of common IRI-s as background knowledge.

The number of relations of matched concepts provides another useful insight. Clearly,
most matches occur between concepts with a low number of relations (often only the name
and type of the concept) whereas concepts with a large number relations tend to have a
lower similarity value in general. Conversely, having a match between concepts with a
high number of relations could be seen as an additional validation that these concepts
are indeed similar beyond simply having a similar name. One such example from our
results is the match between #has-quale and #hasQuale from DOLCE and SOMA
comparison. It is notable that not a single OWL class description exceeded the confidence
threshold in matched concepts, further highlighting the inherent differences of ontologies
not created for ontology merge benchmarking purposes.
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7. Further Work and Summary

7.1 Conclusions

In this thesis, we have introduced the motivation, principles and methodology of a new
algorithmic tool for ontology merging that relies on semantic and string matching combined
with structure-based analysis and Prolog built-in syntactic unification mechanism together
called weak unification.

We have provided several experimental results to validate the accuracy of the merging
process. Experiments run on the OAEI data set reveal relatively strong results of tests
focusing on structural variations and synonyms while being generally unsuccessful on tests
that removed all semantically meaningful labels.

Experiments run on real life robotics ontologies produced a relatively small number of
matched concepts. Given that, no ground truth could have been reliably established for this
type of test. More comprehensive set of comparisons are needed to asses whether this is
due to the dissimilarity of ontologies or the accuracy of the matching process. However, the
concept pairs that were matched, are generally of good quality, typically linking concepts
that could be considered either semantically equivalent or specification/generalization of
one another. In the comparison between PMK and DOLCE ontologies, the single match
is clearly between semantically equivalent concepts. In the comparison between PMK
and SOMA ontologies, 2 matches out of 12 (16.6%) are between semantically equivalent
concepts, 8 matches (66,6%) are between concepts that could be considered specialization-
generalization of one another and 2 matches (16.6%) that are clear false positives. In the
comparison between DOLCE and SOMA ontologies, 10 matches out of 13 (77%) are
between concepts that are clearly equivalent, one match (8%) can be considered to be
between specialization-generalization and 2 matches (15%) are clear false positives. As a
future improvement of the method, a number of relations attributed to a matched concepts
and other metadata can be used to better analyze the nature of a particular match.

7.2 Proposed Further Work

Several aspects of the tool can be improved to further enhance its accuracy, in addition to
improving the heuristics of the matching process.
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First and foremost, the best-first approach in relation value matching should be replaced
with a more comprehensive search that always ensures the best result. The current best-first
search is primarily a concern when the concept has many relation values of the same type
and can easily produce sub-optimal results.

Secondly, it could be beneficial to permit a more flexible type comparison. The current
implementation restricts concept matching to strictly by type. However, more flexibility
could be achieved by permitting comparison of concepts between a sub-type and its
generalization. This particularly pertinent in the context of OWL vocabulary that introduces
a hierarchical system of property types (e.g., owl:InverseFunctionalProperty,
owl:TransitiveProperty and owl:SymmetricProperty are all defined as
sub-classes of owl:ObjectProperty).

Furthermore, the current tool works the best under the assumption that input ontologies
have a common set of relations defined in a shared vocabulary (RDF, OWL, FOAF, etc.).
Relation types that are declared within the context of an input onotology introduce an
additional layer of heterogenity and need to be transformed to a more universal represen-
tation in order to be efficiently comparable. Some work was already done in this regard
essentially by treating all such locally declared relation types and their values as tuples that
that were compared under the same principles as anonymous concepts. However, results
of this approach proved inconclusive.

With regards to the speed and efficiency of the tool, it has to be noted that depending on the
size and structure of input ontologies, a single comparison can take considerable amount
of time (in the experiments run as part of this thesis, sometimes more than a day). The
most immediate solution to increasing the speed of individual comparisons is a aggressive
pruning of irrelevant possible concept pairs on the FCA phase. However, it is easy to
exclude valid matches and a well working technique for pruning in FCA was not developed
at the current state.

From a broader perspective, it is also worth to consider re-structuring the entire project so
that each phase of the program (pre-processing, comparison and specialization) is an iso-
lated module embedded in Python. In such case, each phase would operate independently
and any intermediary data they generate could be maintained, and manipulated if needed,
in a Python wrapper thus improving the modularity and robustness of the program. As an
added benefit, it would make it possible to implement any additional Python libraries in a
more seamless manner.
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Appendix 2 – RDF/OWL Framework

This appendix covers the RDF and OWL frameworks that are commonly used together for
representing ontologies and how it is interpreted in the context of this thesis.
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A. RDF

RDF stands for Resource Description Framework and is a standard developed by World
Wide Web Consortium (W3C) for expressing information about resources (e.g. information
on documents, people, physical objects or abstract concepts). The key motivation for RDF
is to express information on the Web so that it could be seamlessly processed and exchanged
between applications without loss of meaning.

A.1 Key RDF Concepts

RDF Triples

At the core of RDF is principle of semantic triples expressing some type of relationship
between two resources. This triple consists of a subject, predicate and object where subject
and object are the resources concerned and the predicate is the relationship between them.

The following pseudo-code example on RDF triples can be found in W3C website which
well exemplifies the variety of information that an RDF triplet can hold.

<Bob> < i s a> < person > .
<Bob> < i s a f r i e n d of > < Al ice > .
<Bob> < i s born on> < t h e 4 t h o f J u l y 1990 >.
<Bob> < i s i n t e r e s t e d in > < t h e Mona Lisa > .
< t h e Mona Lisa > <was c r e a t e d by> <Leonardo da Vinc i > .
< t h e v i d e o ’ La Joconde a Washington ’ > < i s about >

< t h e Mona Lisa > .

International Resource Identifier

To differentiate between resources with identical names, a unique identifier named Interna-

tional Resource Identifier (IRI) is used, similar to the URL of a web address. To expand on
the previous example, the subject Bob refers to two different resources whereas the object
person is the same resource in the following example.

< h t t p : / / un ique1 . o rg / Bob> < i s a>
< h t t p : / / common . org / pe r son > .

< h t t p : / / un ique2 . o rg / Bob / Bob> < i s a>
< h t t p : / / common . org / pe r son > .
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It is also important to note that RDF itself does not impose any uniform standard for the
format of the IRI, but organisations or tools using RDF usually have their own naming
conventions. This also has practical implications in the context of this project as a semantic
analysis of any resource assumes it is correctly extracted from the IRI.

Literals

Literals are any type of value that is not a resource themselves (i.e, they do not have an IRI).
They are associated with a datatype that enables correct parsing and interpretation of of that
value. In the SWI-Prolog RDF parser, literals are encapsulated as a tuple literal(...)
and are handled as a compound datatype.

Blank nodes

Blank nodes are RDF resources not have any value (be it an IRI or a literal) at all. These
typically occur when the value of a relation is nested inside some additional resource, most
notably owl:Restriction that is discussed in Chapter B. In the SWI-Prolog RDF
parser blank nodes are provided a generated value that can be used to refer to the blank
node.

A.2 RDF vocabulary

RDF vocabulary refers to a collection of pre-defined resources. Phrased in another way,
these are building blocks for describing the information about other resources. Difference
is made between classes that classify a resource and properties that describe the resource.
More specifically, property is a relation between the resource and some other resources
[51]. Additionally classes themselves are defined through a specific property called the
type property (rdf:type). In other words, a class is an instance of the type property.

The following table outlines some of the more common classes and properties.

Table 7. Common RDF Classes and Properties
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classes comment properties comment

rdfs:Resource All other classes
are subclasses of
this class

rdfs:range States that the values of a
property are instances of
one or more classes

rdfs:Class Resources that
are RDF classes

rdfs:domain States that any resource
that has a given property
is an instance of one or
more classes

rdfs:Datatype Class of RDF
datatypes

rdf:type States that a resource is
an instance of a class

rdfs:Property Class of RDF
properties

rdfs:subClassOf States that all the in-
stances of one class are
instances of another

rdf:List Class of RDF
Lists

rdfs:subPropertyOf States that all resources
related by one property
are also related by an-
other

rdfs:comment Used to provide a human-
readable description of a
resource

rdfs:label Used to provide a human-
readable version of a re-
source’s name

Of these resources, rdf:List deserves some additional explanation as it often requires
different handling than all other classes. rdf:List is essentially an entry in a linked list
with two properties: rdf:first that holds the value of the element and rdf:rest that
references to the next entry in the linked list (itself an rdf:List type resource). Value
of rdf:first can be any class. In practical terms this means that values of rdf:List
relation rdf:first need to be ’lifted’ out of the rdf:List element and be directly
linked to the overlying property. As the order of elements does not matter for our purposes,
the rdf:List elements can then be discarded.

A number of other vocabularies exist in addition to RDF vocabulary and can be used in
combination with one another. In the scope of this work, the most important of those
vocabularies is that of OWL (Ontology Web Language) and will be discussed in greater
length. In the above examples, the source of the vocabulary is indicated by the prefixes
rdf/rdfs which both refer to RDF. In this notation, a resource from OWL vocabulary would
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be prefixed with owl (e.g. owl:Class, owl:ObjectProperty) and similarly from
any other vocabulary (for example, foaf:Person would be a resource from a more
specific vocabulary called FOAF (Friend of a Friend) [52].

The definitions or explanations provided to resources in RDF and OWL vocabularies have
an important impact to how the similarity of two concepts is measured. For instance,
properties rdfs:subClassOf and rdfs:subPropertyOf express, unsurprisingly,
child-parent relationship which is interpreted such that each relation existing for a parent
concept should also be considered when measuring the similarity of the corresponding
child concept. A more in-depth description can be found in the methodolgy chapter.

It is also worth noting that the project is primarily focused on comparing concepts which are
instances of rdfs:Class, rdf:Property and rdfs:Datatype or some of their
sub-types described in the OWL vocabulary. Depending on the composition and scope of
the ontology, it is possible that a concept, an instance of some RDF class, is defined within
the ontology and is then used to define additional concepts using the rdf:type property.
Using the informal example from above, the statement Bob is a person could be expressed
using two resources: first that there exists an instance of rdfs:Class called Person and
then that there exists an instance of Person called Bob. In the methodology chapter such
occurrences are referred to as either custom types or custom relations.

A.3 RDF Data Formats

In lieu of the pseudo-code used in previous examples, a number of data formats have been
developed to represent RDF resources. Common formats listed in the W3C website are
1) Turtle family of RDF languages, 2) JSON-LD which uses JSON-based RDF syntax,
3) RDFa for HTML and XML embedding and 4) RDF/XML with XML syntax for RDF.
We will not be going into the technical description of these formats, but a more in-depth
analysis, including possible advantages or disadvantages of each format, has been covered
by Vladislav Ogorodnik in [53].

In the implementation, we limit input and output of ontology manipulation to the RDF/XML
due to the fact that this is the most common of the available options. Ultimately, the choice
of formats can be expanded relatively easily, as the tools used to parse RDF graphs into
Prolog internal form are also capable of handling other data formats. This would, however,
require extensive testing of alternative or mixed data formats in the pipeline and remains
out of scope for this project.

In the following, we reproduce the statements Bob is a person, Bob is a friend of Alice and
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Bob is born on the 4th of July 1990 in the RDF/XML format.

< r d f : C l a s s r d f : a b o u t =" h t t p : / / un ique1 . o rg # Pe r so n " / >

< r d f : P r o p e r t y r d f : a b o u t =" h t t p : / / un ique1 . o rg # i s F r i e n d O f ">
< r d f s : domain r d f : r e s o u r c e =" h t t p : / / un ique1 . o rg # Pe r so n " / >
< r d f s : r a n g e r d f : r e s o u r c e =" h t t p : / / un ique1 . o rg # Pe r so n " / >

</ r d f : P r o p e r t y >

< r d f : P r o p e r t y r d f : a b o u t =" h t t p : / / un ique1 . o rg # isBornOnDay ">
< r d f s : domain r d f : r e s o u r c e =" h t t p : / / un ique1 . o rg # Pe r so n " / >
< r d f s : range >

< r d f s : D a t a t y p e
r d f : a b o u t =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r " / >

</ r d f s : range >
</ r d f : P r o p e r t y >

< r d f : P r o p e r t y r d f : a b o u t =" h t t p : / / un ique1 . o rg # isBornOnMonth ">
< r d f s : domain r d f : r e s o u r c e =" h t t p : / / un ique1 . o rg # Pe r so n " / >
< r d f s : range >

< r d f s : D a t a t y p e
r d f : a b o u t =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g " / >

</ r d f s : range >
</ r d f : P r o p e r t y >

< r d f : P r o p e r t y r d f : a b o u t =" h t t p : / / un ique1 . o rg # isBornOnYear ">
< r d f s : domain r d f : r e s o u r c e =" h t t p : / / un ique1 . o rg # Pe r so n " / >
< r d f s : range >

< r d f s : D a t a t y p e
r d f : a b o u t =" h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# i n t e g e r " / >

</ r d f s : range >
</ r d f : P r o p e r t y >

< P e r so n r d f : a b o u t =" A l i c e " / >

< P e r so n r d f : a b o u t ="Bob">
< i s F r i e n d O f > Al ice < / i s F r i e n d O f >
<isBornOnDay >4 </ isBornOnDay >
<isBornOnMonth > Ju ly < / isBornOnMonth >
<isBornOnYear >1990 </ isBornOnYear >
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</ Person >

Looking at the example, it is clear that formally expressing even simple knowledge quickly
grows verbose and hard to follow with limited vocabulary. In addition, it is not possible
express certain notions that are semantically relevant (such as exactly expressing what is a
valid date of birth or not). To mitigate this, we can use the more expressive vocabulary of
OWL.
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B. OWL

OWL stands for Web Ontology Language and is a formal language developed by W3C.
It is built upon the structure described in RDF and the ontologies described in OWL are
typically exchanged in RDF documents [54]. As such, the data formats described for RDF
also apply for OWL and we will continue using RDF/XML format in our examples.

Essentially OWL expands the formal vocabulary of RDF and specifically geared towards
expressing ontologies. Several sublanguages of OWL exist, respectively OWL Lite, OWL

DL (Description Logic) and OWL Full, each with increased degree of expressiveness [55].
In addition, there exists an updated and backwards-compatible version of the language,
informally called OWL 2, that further expands the expressiveness and simplifies the syntax
[56].

We will not attempt to provide a comprehensive overview of all the features and differ-
ences between versions of OWL. Rather, this chapter will introduce some key vocabulary
elements that are common in actual ontologies.

B.1 Anonymous Concepts

The main addition of OWL is a greatly extended set of syntactic structures that do not have
a direct value of its own, but express some form of limitation or logic relation and hold
one or more values nested in themselves. In RDF terms these are all blank nodes, usually
differentiated by their type relation. In this subsection, we will provide an overview of the
most common such constructs and how they are interpreted in the implementation. We
will use the umbrella term anonymous concept to refer to all such elements.

Property Restrictions

Property restrictions are perhaps the most common new vocabulary element. A
blank node is a restriction when the relation rdf:type has been attributed with
the value owl:Restriction. Property restriction is commonly either the value of a
rdfs:subClassOf relation of some class or the value of an anonymous class restriction.
Semantically, property restrictions describe an anonymous class of all individuals that
satisfy some kind of restriction. An owl:Restriction element typically contains two
relations. The first relation is owl:onProperty and refers to the property resource
related to the restriction. The second relation depends on the type of restriction. There are
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two types of property restrictions: value constraints and cardinality constraints [57].

Value constraints restrict the range of the property when this property is applied
to a particular class description. There are three relation types: owl:hasValue,
owl:someValuesFrom and owl:allValuesFrom. owl:hasValue indicates a
specific value that the property should have, whereas owl:someValuesFrom corre-
sponds to existential (∃) and owl:allValuesFrom to universal (∀) quantifier from
predicate logic [57].

Cardinality constraints restrict the number of values a particular property can have per
instance of a class. There are three possible relation types: owl:minCardinality,
owl:maxCardinality and owl:cardinality. These express the minimum, max-
imum and specific number of values an instance of a class can have[57].

Using property restrictions, we can improve the above example by stating that the Person
class needs to have exactly one date of birth, month and year. To improve readability, we
also assume our IRI is unique across all concepts from now on

<owl : C l a s s r d f : a b o u t ="# Pe r so n ">
< r d f s : subClassOf >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# isBornOnDay " / >
<owl : c a r d i n a l i t y

r d f : d a t a t y p e ="&xsd ; n o n N e g a t i v e I n t e g e r " >1
</ owl : c a r d i n a l i t y >

</ owl : R e s t r i c t i o n >
</ r d f s : subClassOf >
< r d f s : subClassOf >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# isBornOnMonth " / >
<owl : c a r d i n a l i t y

r d f : d a t a t y p e ="&xsd ; n o n N e g a t i v e I n t e g e r " >1
</ owl : c a r d i n a l i t y >

</ owl : R e s t r i c t i o n >
</ r d f s : subClassOf >
< r d f s : subClassOf >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# isBornOnYear " / >
<owl : c a r d i n a l i t y

r d f : d a t a t y p e ="&xsd ; n o n N e g a t i v e I n t e g e r " >1
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</ owl : c a r d i n a l i t y >
</ owl : R e s t r i c t i o n >

</ r d f s : subClassOf >
</ owl : C las s >

Similarly, we can express "Bob is a friend of Alice" using property restrictions.

< P e r so n r d f : a b o u t ="Bob">
< r d f s : subClassOf >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue r d f : r e s o u r c e ="# A l i c e " / >

</ owl : R e s t r i c t i o n >
</ r d f s : subClassOf >

</ Person >

In the implementation phase of this project, property restrictions are handled as separate ele-
ments (i.e. every restriction from ontology A is compared to every restriction from ontology
B). As the choice of relations a restriction can have is relatively limited, strict matching of
relation types is used. For example, if a restriction with relation owl:someValuesFrom
is compared to a restriction that has a relation any other than owl:someValuesFrom,
their similarity will always default to 0, regardless of what is the value of that relation.

Restrictions Used with Axioms

Typically a owl:Restriction resource is only referenced once. However, in the OWL
2, there may exist an additional reference from an owl:Axiom resource that annotates
the restriction with additional information [54]. In the implementation phase, to separate
this from typical owl:Restriction use case, we refer to such owl:Axiom resources
as Axioms and owl:Restriction resources Nodes respectively.

Anonymous Class Descriptions

In addition to restrictions, there exist another type of blank nodes that express AND,
OR and NOT set-operations on classes - owl:intersectionOf, owl:unionOf,
and owl:complementOf respectively. These class descritions are always nested in
owl:Class relation, typically without any value of its own, which is why we will refer
to these as anonymous classes as a syntactic element. Unlike restrictions, anonymous
classes may occur in any other relation.
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As operations on a collection of sets, the relations owl:intersectionOf and
owl:unionOf always contain more than one value, it is nested in an rdf:List.

Below are some examples of owl:intersectionOf, owl:unionOf and owl:comp-
lementOf relations in context.

John is a friend of Alice, Bob and anyone who is a friend of Bob.

< P er so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : Class >
<owl : unionOf r d f : pa r seType =" C o l l e c t i o n ">

< P e r so n r d f : a b o u t ="# A l i c e " / >
< P e r so n r d f : a b o u t ="#Bob "/ >
<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y
r d f : r e s o u r c e ="# i s F r i e n d O f " / >

<owl : hasVa lue r d f : r e s o u r c e ="#Bob " / >
</ owl : R e s t r i c t i o n >

</ owl : unionOf >
</ owl : C las s >

</ i s F r i e n d O f >
</ Person >

John is a friend of anyone who is a friend of both Alice and Bob.

< P er so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : Class >
<owl : i n t e r s e c t i o n O f r d f : pa r seType =" C o l l e c t i o n ">

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue r d f : r e s o u r c e ="# A l i c e " / >

</ owl : R e s t r i c t i o n >
<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y
r d f : r e s o u r c e ="# i s F r i e n d O f " / >

<owl : hasVa lue r d f : r e s o u r c e ="#Bob " / >
</ owl : R e s t r i c t i o n >

73



</ owl : i n t e r s e c t i o n O f >
</ owl : C las s >

</ i s F r i e n d O f >
</ Person >

John is a friend of Bob and anyone who is not a friend of Alice.

< P er so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : Class >
<owl : unionOf r d f : pa r seType =" C o l l e c t i o n ">

< P e r so n r d f : a b o u t ="#Bob "/ >
<owl : C lass >

<owl : complementOf >
<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y
r d f : r e s o u r c e ="# i s F r i e n d O f " / >

<owl : hasVa lue
r d f : r e s o u r c e ="# A l i c e " / >

</ owl : R e s t r i c t i o n >
</ owl : complementOf >

</ owl : C las s >
</ owl : unionOf >

</ owl : C las s >
</ i s F r i e n d O f >

</ Person >

Like with property restrictions, only those anonymous classes that have matching a re-
lation type are compared. Values that are encapsulated inside rdf:List are trans-
formed to a Prolog list. Furthermore, as the two forms are equivalent, values of a
owl:intersectionOf relation are no longer presented as an rdf:List in the gen-
erated output and simply as relations of the parent resource. The statement John is a friend

of anyone who is a friend of both Alice and Bob would therefore be expressed as following:

< P e r so n r d f : a b o u t ="# John ">
< i s F r i e n d O f >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue r d f : r e s o u r c e ="# A l i c e " / >

</ owl : R e s t r i c t i o n >
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</ i s F r i e n d O f >
< i s F r i e n d O f >

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue r d f : r e s o u r c e ="#Bob " / >

</ owl : R e s t r i c t i o n >
</ i s F r i e n d O f >

</ Person >

The motivation for this transformation is to ease the manipulation and readability of such
elements as rdf:List elements are cumbersome to work with and are not split into
smaller elements in output writing.

Summary of Anonymous Concepts

To sum up, OWL introduces a number of vocabulary elements that do have a direct
value of its own, but convey some kind of semantic meaning. In our thesis, we refer
to these as anonymous concepts because they are compared on similar principles for
their similarity as (defined) concepts. We distinguish two major sub-types of anonymous
concepts: 1) property restrictions add some type of constraint to an owl:Class element
and 2) anonymous classes that express AND, OR and NOT set-operations. In addition
there are axioms that are typically linked to a property restriction and some relation of a
defined concept with the aim of further annotating that relation.

Similar to anonymous concepts is rdf:List from the RDF vocabulary. Like anonymous
concepts, rdf:List elements do not have a direct value of their own, but we do not
consider them anonymous concepts and do not compare them for their similarity as these
elements need to be considered in the context where they occur (i.e., the overlying relation).
However, it is important to note that rdf:List elements often occur nested inside an
anonymous class.

In Figure 2 we present a diagrammatic breakdown of various sub-types of anonymous
concepts.

B.1.1 OWL Property Categories

In addition to various constructs using blank nodes, OWL also extends the use of
properties, distinguishing between a number of different property categories. The two
main categories are owl:ObjectProperty that links individuals to individuals and
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Figure 2. Taxonomy of Anonymous Concepts

owl:DatatypeProperty that links individuals to data values. In addition, there are
less common categories owl:AnnotationProperty and owl:OntologyProp-

erty. All these new property categories are subclasses of rdf:Property. OWL
property categories make use of the same key relations as rdf:Property, most
notably rdfs:subPropertyOf, rdfs:domain and rdfs:range, but also re-
lations specific to OWL vocabulary, such as owl:equivalentProperty and
owl:inverseOf [57].

Both owl:ObjectProperty and owl:DatatypeProperty can be constrained
such that only one unique value of relation rdfs:domain is allowed for each value of
relation rdfs:range. This can be achieved by using owl:FunctionalProperty
which is also constructed a subclass of rdf:Property. In the following example
owl:FunctionalProperty husband is used to state that a woman can have only one
man as a husband.

<owl : O b j e c t P r o p e r t y r d f : ID=" husband ">
< r d f : t y p e r d f : r e s o u r c e ="&owl ; F u n c t i o n a l P r o p e r t y " / >
< r d f s : domain r d f : r e s o u r c e ="#Woman" / >
< r d f s : r a n g e r d f : r e s o u r c e ="#Man" / >

</ owl : O b j e c t P r o p e r t y >
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Similarly owl:ObjectProperty can be constrained such that only one unique value
of relation rdfs:range is allowed for each value of relation rdfs:domain by using
owl:InverseFunctionalProperty. Unlike owl:FunctionalProperty, it
cannot be used with owl:DatatypeProperty which is why it is constructed as a sub-
class of owl:ObjectProperty. Below is an example of owl:InverseFunctional-
Property biologicalMotherOf which states that every human can have only one mother.

<owl : I n v e r s e F u n c t i o n a l P r o p e r t y r d f : ID=" b i o l o g i c a l M o t h e r O f ">
< r d f s : domain r d f : r e s o u r c e ="#Woman"/ >
< r d f s : r a n g e r d f : r e s o u r c e ="#Human"/ >

</ owl : I n v e r s e F u n c t i o n a l P r o p e r t y >

Lastly owl:ObjectProperty has two additional subclasses that further refine the logi-
cal characteristics of the property: owl:TransitiveProperty and owl:Symmetric-
Property.

As indicated from the name, owl:TransitiveProperty expresses transitivity: if
pairs (x,y) and (y,z) are instances of P, then (x,z) is also an instance of P. For example, we
can use owl:TransitiveProperty to state that since Bob is a friend of Alice and
Alice is a friend of John, so is Bob also a friend of John without explicitly stating it. [57]

<owl : C l a s s r d f : a b o u t ="# Pe r so n " / >

<owl : T r a n s i t i v e P r o p e r t y r d f : ID=" i s F r i e n d O f ">
< r d f s : domain r d f : r e s o u r c e ="# Pe r so n " / >
< r d f s : r a n g e r d f : r e s o u r c e ="# Pe r so n " / >

</ owl : T r a n s i t i v e P r o p e r t y >

< P e r so n r d f : a b o u t ="# John " / >

< P e r so n r d f : a b o u t ="#Bob">
< i s F r i e n d O f r d f : r e s o u r c e ="# A l i c e " / >

</ Person >

< P e r so n r d f : a b o u t ="# A l i c e ">
< i s F r i e n d O f r d f : r e s o u r c e ="# John " / >

</ Person >

Conversely, owl:SymmetricProperty expresses symmetry, i.e. if pair (x,y) is an in-
stance of P, then (x,y) is also an instance of P. Thus we can use owl:SymmetricProperty
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to state that since Bob is a friend of Alice, Alice is also friend of Bob without explicitly
stating it [57].

<owl : C l a s s r d f : a b o u t ="# Pe r so n " / >

<owl : S y m m e t r i c P r o p e r t y r d f : ID=" i s F r i e n d O f ">
< r d f s : domain r d f : r e s o u r c e ="# Pe r so n " / >
< r d f s : r a n g e r d f : r e s o u r c e ="# Pe r so n " / >

</ owl : Symmet r i cP rope r ty >

< P e r so n r d f : a b o u t ="#Bob">
< i s F r i e n d O f r d f : r e s o u r c e ="# A l i c e " / >

</ Person >

< P e r so n r d f : a b o u t ="# A l i c e " / >

As different OWL property categories express distinctly different meaning, they are not
compared with one-another in the implementation. It is worth considering comparing
owl:ObjectProperty to its subtypes as a future development.
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Appendix 3 – Examples on Calculating Concept Pair Confi-
dence

This appendix illustrates the formal description of the methodology described in Chapter 4
with a number of examples represented in RDF/OWL format.

The simplest case would be when the concepts have no additional relations other than their
name. The confidence of a concept pair would in that case be the similarity of their names.

Example A

< r d f : D e s c r i p t i o n
r d f : a b o u t =" i r i 1 # Car " / >

Example B

< r d f : D e s c r i p t i o n
r d f : a b o u t =" i r i 2 # V e h i c l e " / >

Basic Example

Typically concepts do have some relations other than their name. In the following
example, both concepts have three relations in addition to their name: rdf:type,
rdfs:domain and rdfs:range. Note that both concept have two values for the
relation rdfs:domain.

Example A

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 1 # i s G r i d P o w e r e d ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 1 # d e v i c e " / >

< r d f s : domain
r d f : r e s o u r c e =

" i r i 1 # a i r p l a n e s " / >
< r d f s : r a n g e

r d f : r e s o u r c e =
" i r i 1 # b a t t e r y " / >

</ owl : O b j e c t P r o p e r t y >

Example B

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 2 # has − g r i d −power ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 2 # machine " / >

< r d f s : domain
r d f : r e s o u r c e =

" i r i 2 # a i r p l a n e s " / >
< r d f s : r a n g e

r d f : r e s o u r c e =
" i r i 2 # b a t t e r y " / >

</ owl : O b j e c t P r o p e r t y >

Let us suppose that the semantic and string similarity metric calculated the following
confidence relation values:

79



Table 8. Relation value pairs of basic example

Relation type Value A Value B Conf

rdf:type ObjectProperty ObjectProperty 1

rdfs:domain airplanes airplanes 1

rdfs:range battery battery 1

name isGridPowered has-grid-power 0.8

rdfs:domain device machine 0.6

In that case, calculated similarity of the entire concept pair is 6∗1+2∗0.8+2∗0.6
2∗5 = 0.88.

Example with Absent Relation Values

It is common that two concepts do not have an identical structure: either one of the
concepts has a relation that the other does not or the two concepts have a different number
of values for the same relation. In such case, the confidence value of an absence is used
instead. In the following example, the concepts have a different number of values in
both rdfs:range (0 value vs 1 value) and rdfs:domain (2 values vs 1 value). The
relation values that end up without a counterpart are assigned the absence confidence value.

Example A

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 1 # i s G r i d P o w e r e d ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 1 # d e v i c e " / >

< r d f s : domain
r d f : r e s o u r c e =

" i r i 1 # a i r p l a n e s " / >
</ owl : O b j e c t P r o p e r t y >

Example B

<owl : O b j e c t P r o p e r t y
r d f : a b o u t =

" i r i 2 # has − g r i d −power ">
< r d f s : domain

r d f : r e s o u r c e =
" i r i 1 # a i r p l a n e s " / >

< r d f s : r a n g e
r d f : r e s o u r c e =

" i r i 2 # b a t t e r y " / >
</ owl : O b j e c t P r o p e r t y >

Let us suppose that confidence value of an absence is set at 0.5 and we have the following
confidence relation values:

Table 9. Relation value pairs of example with absences

Relation type Value A Value B Conf

rdf:type ObjectProperty ObjectProperty 1

rdfs:domain airplanes airplanes 1

rdfs:range - battery 0.5

name isGridPowered has-grid-power 0.8

rdfs:domain device - 0.5
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In that case, calculated similarity of the entire concept pair is 4∗1+2∗0.8+2∗0.5
2∗4 = 0.825.

Note that the total number of relations is 8 and both concepts are missing asymmetrically
different relations in comparison to the previous example.

Example with Inherited Relations

If the concept has an ancestral relation (rdfs:subClassOf or rdfs:subPropertyOf
respectively) to another defined concept that exists in the same ontology, the relation
values of the ancestral concept are also used when calculating confidence value of the
descendant. This process is recursive, meaning that the relation values of all ancestors
on any level are considered. In the following example, calculating the confidence of the
concept #ElectricBike would also consider the relation values inherited by #Bike
and #Vehicle respectively.

<owl : C l a s s r d f : a b o u t =" h t t p : / / i r i 1 # E l e c t r i c B i k e ">
< r d f s : s u b C l a s s O f r d f : r e s o u r c e =" h t t p : / / i r i 1 # Bike " / >

</ owl : C las s >

<owl : C l a s s r d f : a b o u t =" h t t p : / / i r i 1 # Bike ">
< r d f s : s u b C l a s s O f r d f : r e s o u r c e =" h t t p : / / i r i 1 # V e h i c l e " / >

</ owl : C las s >

<owl : C l a s s r d f : a b o u t =" h t t p : / / i r i 1 # V e h i c l e ">
< r d f s : s u b C l a s s O f r d f : r e s o u r c e =" h t t p : / / i r i 1 # O b j e c t " / >

</ owl : C las s >

Example with Anonymous Concepts

Comparison of anonymous concept pairs is based on same principles, but is further
constrained to a specific set of relations. In other words, since there is a limited combination
of relations that can exist within an anonymous concept, only those pairs are considered
valid where relation types match completely.

For example, the following anonymous concept pairs are not considered valid (i.e., the
confidence of the pair is always 0) due to a differing relation type.
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Restriction A

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : hasVa lue

r d f : r e s o u r c e ="# A l i c e " / >
</ owl : R e s t r i c t i o n >

Restriction B

<owl : R e s t r i c t i o n >
<owl : o n P r o p e r t y

r d f : r e s o u r c e ="# i s F r i e n d O f " / >
<owl : a l l V a l u e s F r o m

r d f : r e s o u r c e ="# A l i c e " / >
</ owl : R e s t r i c t i o n >

Anonymous class A

<owl : Class >
<owl : unionOf

r d f : pa r seType =" C o l l e c t i o n ">
< P e r so n r d f : a b o u t ="# A l i c e " / >
< P e r so n r d f : a b o u t ="#Bob "/ >

</ owl : unionOf >
</ owl : C las s >

Anonymous class B

<owl : Class >
<owl : i n t e r s e c t i o n O f

r d f : pa r seType =" C o l l e c t i o n ">
< P e r so n r d f : a b o u t ="# A l i c e " / >
< P e r so n r d f : a b o u t ="#Bob "/ >

</ owl : i n t e r s e c t i o n O f >
</ owl : C las s >

It is worth noting that relations expressing ancestry can not exist within an anonymous
concept. As such, inherited relations never occur within comparison of anonymous concept
pairs.
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Appendix 4 – String Similarity Comparison Table

This appendix covers the results of an experiment to observe a the performance SWI-
Prolog’s isub library to cosine similarity. Open-source Python library Gensim [58] was
used for calculating cosine similarity. Two different pre-trained models available at [59]
were used as datasets for cosine similarity: glove-wiki-gigaword-300 based on the 2014
version of Wikipedia and word2vec-google-news-300 based on Google News

The relation value pairs are a subset from PMK-Dolce comparison where semantic or
string similarity exceed 0.4.

Value 1 Value 2 isub cosine
(Wiki)

cosine
(Google
News)

accomplishment ActionClass 0.1 0.13 0.13
achievement ActionClass 0.1 0.28 0.17
ActionClass process 0 0.31 0.13
set ActionClass 0 0.39 0.1
ActionClass state 0 0.32 0.12
hasSensingComponent part 0 0.48 0.36
ActionClass abstract 0.44 0.21 0.08
ActionClass abstract-region 0.58 0.35 0.13
hasMemory has-quale 0.64 0.48 0.47
hasMemory has-t-quality 0.59 0.6 0.32
ActionClass proposition 0.45 0.25 0.12
ActionClass region 0.46 0.27 0.11
has-quale hasSensingComponent 0.54 0.34 0.47
hasSensingComponent has-quality 0.48 0.54 0.34
hasSensingComponent partly-compresent 0.53 0.3 0.22
QualityAggregation quale 0.72 -0.08 0.21
QualityAggregation quality-space 0.73 0.49 0.58
isRelatedTo Immediate-relation 0.51 0.61 0.41
isRelatedTo mediated-relation 0.51 0.31 0.35
isRelatedTo mediated-relation-i 0.49 0.52 0.38
Situation spatio-temporal-particular 0.41 0.27 0.13
SpatialContext spatio-temporal-particular 0.64 0.69 0.62
TemporalContext spatio-temporal-particular 0.56 0.9 0.84
TemporallyExtendedStuff spatio-temporal-particular 0.41 0.29 0.35
WSpaceClass quality-space 0.57 0.6 0.53
WSpaceClass space-region 0.6 0.56 0.49
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