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Autorideklaratsioon

Deklareerin, et kéesolev 16putéoé on minu t66 tulemus ja seda ei ole kellegi teise poolt
varem kaitsmisele esitatud.

(kuupéev) (16puto kaitsja allkiri)



Abstract

Normalisation is the process of finding the normal form of a term. This gives us a
mechanism for deciding if two terms have the same meaning—we just need to check if
their normal forms are equal. In this thesis we look at normalisation by evaluation, a
semantic approach to normalisation, for simply typed lambda calculus augmented with
natural numbers, lists, pairs, and streams. We give an implementation of the normaliser
together with a proof of its correctness in the dependently typed programming language

Agda.



Annotatsioon

Normaliseerimine on protsess termi normaalkuju leidmiseks. See annab meile meeto-
di otsustamaks, kas kaks termi on samatihenduslikud—me peame lihtsalt kontrollima,
kas nende normaalkujud on vordsed. Selles t66s on uurimise all normaliseerimine ldbi
vadrtustamise, mis on semantiline ldhenemine normaliseerimisele. Meie objektkeeleks
on lihtsalt tiiiibitud lambda-arvutus laiendatuna naturaalarvude, listide, paaride ning
striimidega. T66 tulemusena me anname normaliseerija implementatsiooni koos toestusega
selle korrektsusest soltuvate tiitipidega programmeerimiskeeles Agda.
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1 Introduction

The main purpose of this thesis is to give an implementation of normalisation by evalu-
ation for simply typed lambda calculus extended with natural numbers, lists, pairs, and
streams, together with a proof of its correctness.

Normalisation is the process of simplifying terms (finding their normal forms) in a formal
system. We want two terms to be considered equal (they have the same meaning) if and
only if they have the same normal form. The process of obtaining a normal form may
change the structure of the term, but it must keep the meaning of it. When the system
is a programming language, the normaliser should therefore transform one program into
another program with the same meaning. As two terms which have the same normal form
have the same meaning, normal forms are a useful mechanism for deciding the equality of
two terms. If a system is normalising, then every term is reducible to its normal form. If
we are able to show that in a programming language every program has a normal form,
then it means that our programs will not go wrong or loop infinitely.

Normalisation is a central component in proof assistants like Agda and Coq, which are
based on intuitionistic type theory. There it is necessary to perform normalisation on the
types, since in those systems types can contain values and therefore we need to perform
computation to normalise the types. All this happens during type checking, before the
programs are executed.

As an example of normalisation, we can think about arithmetic expressions. If we have
an expression like 4 4+ 5, for example, then we know from arithmetic, that it is the same
as 9. There are also many other expressions which are essentially the same as 9. 14 8 is
one possible example. Somehow it seems that 9 is the best representative for this class
of expressions, we cannot simplify it any further. We choose 9 to be the normal form of
these expressions.

In this thesis we are going to implement normalisation using evaluation as the central
component of the normaliser. Evaluation is the process of computing the value of an
expression. For programs, it finds the meaning of a program—the value it evaluates to.
To normalise a term, we first compute the value of the expression in some model. We
then use an inverse of the evaluation function to extract the normal form of the original
expression from the value we got in the previous step.

1.1 Lambda calculus

Lambda calculus was invented by Church in the 1930s as part of a general theory of
functions and logic, intended to be a foundation for mathematics. Although this full
system was shown to be inconsistent, the subsystem dealing with only functions became a
successful model for the computable functions [5]. Lambda calculus is also the foundation
of functional programming languages.

The simplest representation of lambda calculus is type free. This means that every
expression (considered as a function) may be applied to every other expression (considered



as an argument). A simple example is the identity function I = Az.z, which may be
applied to any argument x to give the same x as a result. Interestingly, I can also be
applied to itself.

Lambda calculus has two basic operations, called application and abstraction. Applica-
tion, which is usually written as f a, denotes f considered as an algorithm applied to a
considered as an input. In a type free representation, it is allowed to have expressions like
f f, which mean f is applied to itself. This is a useful method for simulating recursion
inside lambda calculus.

Abstraction is a definition of an anonymous function. If m is an expression containing z,
then Ax.m|x] denotes the function which maps = to m[z]. The variable = does not need
actually to occur in m, in which case Az.m[z] is a constant function with the value m.

The following is a simple example about application and abstraction:

Ar.z® +1)3=32+1=10

(Az.z? + 1) 3 is essentially the function z — x? + 1 applied to the argument 3 resulting
in 32 + 1. In general,

(Ax.m)n = m[n/x]
where m[n/x] is the substitution of n for x in m. This is called S-conversion.

An abstraction binds the free variable x in m. For example, Ax.y x has x as a bound
variable and y as a free variable. It is assumed that bound variables in an expression
are different from the free ones. This can be achieved by renaming the bound variables.
For example, Ax.x becomes Ay.y. These two expressions denote the same program. Two
expressions which differ only by the names of the bound variables are considered the
same. This is called a-conversion.

The notion of n-conversion is concerned with the idea of extensionality. Under n-conversion,
every function f is equal to its expansion Ax.f x whenever x does not occur free in f.

Simply typed lambda calculus requires each expression to be associated with a type. This
is to avoid inconsistencies in the system. In the most basic version, there is a single base
type ¢ and a single constructor o — 7 which is used to denote the type of functions taking
something of type ¢ to something of type 7.

Using a typed representation limits the number of programs we can write. In the case of
application, f a, there is a strict rule for the term f, which must be of a function type
and for the term a which must be of an appropriate type. If f is of type ¢ — 7 then it
must be that a is of type 0. The result of the application is of type 7. In the abstraction
case, if m : 7 is an expression containing x : o, then the lambda abstraction Az : o.m[z]
is of type o — 7.

1.2 Normalisation by evaluation

One possible way of carrying out normalisation is by a stepwise reduction of terms. This
requires a predefined set of reduction rules of the form ¢ — ¢’ to mean that ¢ can be



transformed to ¢’ in a single step. The resulting term, after repeatedly applying these
rules until no more rules apply, is called a normal form. This is known as reduction based
normalisation. In this thesis we take another approach to normalisation—normalisation
by evaluation.

Normalisation by evaluation is based on the idea, that a normal form of a term can
be obtained by first interpreting (evaluating) the term in a suitable model and then
writing a function “reify” (or “quote”) which maps an object in this model to a normal
form representing it. The normalisation function is obtained by composing reify with
the interpretation function [8]. This is a semantic approach to normalisation and it is
sometimes called “reduction-free normalisation”.

In an informal notation, the normalisation function norm is given as the composition of
reify and eval.

norm t = reify o eval t

Therefore, we require that reify is the left inverse of eval. The aim of the normalisation
function is to pick a unique representative from each equivalence class. We are interested
in the correctness of our normaliser, that it actually picks the right things for normal
forms. The correctness is expressed in the following way.

t~t < normt=normt

This means that two terms ¢ and ¢’ are provably equal if they are equal in the model.
To prove this, we need to prove that the condition holds in both directions. For the if
direction (soundness), we must first prove a lemma about evaluating convertible terms:

t~t = evalt = eval

For proving the converse direction (completeness), it is necessary to prove an underlying
lemma, that a term is provably equal to its normal form:

t ~normt

Another property we are also interested in is the stability of our normaliser, that it
preserves normal forms (for terms that are already normal forms).

n=normn

In this thesis we have developed a formally verified implementation of normalisation
by evaluation for simply typed lambda calculus in the dependently typed programming
language Agda [17].

1.3 Agda

Our goal is to write a normaliser for lambda calculus and to prove its correctness. One
option would be to build the normaliser in any programming language and then use some
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external tools (annotating the source code with invariants, using a theorem prover) or
perhaps pen and paper to prove properties about the program. Another option is to use
a language with a more powerful type system, which allows us to encode invariants about
our programs directly in the same environment. For the formalisation in this thesis, we
have used the dependently typed programming language Agda.

In ordinary programming languages types and values are two entities which are quite
clearly separated. In a dependently typed language they become more related: types
can contain (depend on) arbitrary values. This makes it possible to encode properties of
values as types, whose elements are proofs that the property is true. To prove a property,
we must write a program of the required type. For it to be a consistent system, it is
required for all programs to be total [14].

One common example for dependently typed programming is to define the data type of
length-indexed lists, called vectors, and some operations on it. The type of vectors, Vec
A n is a dependent type. A is the type of the elements contained in this vector. The type
also contains a value n which represents the length of the vector. In Agda, vectors can
be defined in the following way.

data Vec (A : Set) : N — Set where
[ : Vec A zero
: V{m} — A — Vec Am — Vec A (suc m)

— 0 —

The type of this definition says that vectors are parametrized by a type A. The type of
vectors of A is then N — Set. All together, this means that vectors contain elements of
type A and are indexed by natural numbers. The next two lines describe how one can
create a vector: either you can create an empty vector [] (which has length zero) or you
can take an element of type A and a vector containing m (which may be zero) elements of
type A and as a result get a vector of length suc m.

In Agda, a parameter in curly braces is an implicit parameter. This means that we do not
have to supply it when using the constructor, Agda tries to figure out the value itself. The
underscore has several meanings. In the definition of vectors, it is used as a placeholder
for the values required by the constructor. It can also be used in places where we do not
care about the value of an expression at that point or we do not want to give a name to
a variable.

Now that we can express the length of a list like data structure in its type, it would be
very unfortunate if we would not be able to operate on the elements of this type without
preserving this information. As an example operation, we will consider concatenating
two vectors.

4+ : N—- N - N

Zzero + n =n
sucm +n = suc (m + n)

First, we have defined addition for natural numbers, since we will need to add together
the length of two vectors when concatenating them.

++_ : V{Amn} - Vec Am — Vec An — Vec A (m + n)



(] ++ b =b
(x , a) ++b=x, (a ++ b)

The function ++ takes two vectors, one with length m and the other with length n, and
produces a vector of length m + n. The actual definition of the function is identical to
what we would have for lists, we do not have to do anything for this extra property to
hold. We will now look at why this worked out so well.

In the first case, we are concatenating an empty vector to some other vector. We want
the result to be the other vector, since adding an empty vector to something should not
change it. The length of the resulting vector is therefore n, which is the length of the
second argument. Due to the definition of +, zero + n and n are definitionally equal,
meaning that Agda cannot distinguish between the two, we defined them to be equal, so
we are done. For the second case, the length of the first vector is suc m and the length
of the second is n. By the definition of +, suc m + n = suc (m + n). Vector a has
length m and we know by induction that a ++ b has length m + n. By the definition of ,
prepending an element to a vector of length m gives us a vector of length suc m, therefore
the length of the result is suc (m + n).

One important thing about functions in Agda is that they have to be structurally recur-
sive. Every recursive call in the definition of a function must be on a structurally smaller
argument. In the definition of ++ we can see that for the first case, this requirement is
fulfilled, because there is no recursive call. In the second case, the first argument has one
element fewer than the original call.

As said before, we would like to prove properties about our programs (which are written
in Agda) in Agda. To conduct proofs, we are often interested in equality. For example, we
would like to be able to prove properties likem + 0 = m, which do not hold definitionally.
In addition to definitional equality, we can also have propositional equality, which we use
when we want to prove properties about our programs. To formulate a property, we need
to express it in the type of an Agda program. Propositional equality can be defined in

the following way.

data _=_ {A : Set}(x : A) : A — Set where
refl : x &£ x

This may seem a bit strange. Surely, two things are equal if they are the same, but is
this enough for proving non-trivial properties about programs? Actually, this is quite
good, because we can define symmetry, transitivity and congruence using this definition.
If we would declare these properties also as members of the data type, then working with
the proofs would become much more tedious. In this thesis we will use the propositional
equality defined in Relation.Binary.HeterogeneousEquality in Agda standard library.
It is a more liberal version of the definition given above.

As an example, we will now prove that the empty vector is the right unit of vector
concatenation. The empty vector is also the left unit of concatenation, but that holds
definitionally.

++unitR : V{A m} (xs : Vec Am) — xs ++ [] & xs
++unitR [] = refl



++unitR {m = suc m} (x , xs) = proof
(x , xs) ++ []

=)

x , (xs ++ [

~( congy (A m’ xs” — _,_ {m = m’} x xs’) (+unitR m) (++unitR xs) )
X , XS

[

If the vector xs is actually empty, then the property holds definitionally. In the second
case, the vector is not empty. The proof for it uses equational reasoning, which allows
to write proofs with multiple steps in a nice way. The lines that begin with = are
justifications for those steps. The first step holds definitionally, and that is why we do
not need to give any justifications. We do not actually need to write out that step, but
it is here to make it clear what is happening.

For the next step, we need to show that two vectors are equal if the head elements are
the same and the tails are almost the same, only on one side there is an empty vector
appended to it. Notice that this is actually the same property we are currently proving,
just on a smaller vector. This means we already have a proof of it using the inductive
hypothesis.

To show that the full vectors are equivalent, we use cong which is a construct to show
that if x = x’ then f x = f x’ for any function £. We would like to write

cong (A xs’ — x , xs’) (++unitR xs)

to mean that A xs’ — x , xs’ produces equal results when applied to equal arguments.
In this case, the arguments would be equal by the inductive hypothesis. However, this
will not work, as on the left hand side the length of the tail ism + zero and on the other
side it is just m. Therefore, we need to abstract over two things: the tail of the vector and
the length of the tail. To show that m + zero = m we use +unitR which exactly states
that zero is the right unit of addition.

+unitR : (k : N) — k + zero = k
+unitR zero = refl
+unitR (suc k) = cong suc (+unitR k)

1.4 Relative monads

The design of the formalisation (the program and the proof) in this thesis is guided by
the idea of relative monads [3]. The structure of the components is chosen to highlight
the relative monadic properties of the evaluator. In this section we will look at relative
monads, some background category theory, and how to formalise them in Agda. The
Agda definitions are based on the formalisation of relative monads [4].

A monad is a structure known from category theory. Before defining monads we need
to define the underlying structures. A category is an algebraic structure that consists of
objects and morphisms. It has two basic properties: morphisms can be composed and
there exists an identity morphism for every object. The composition of morphisms is

7



associative and the identity morphism is the left and right unit of composition. In Agda,
this can be defined as a record.

record Cat : Set where
field Obj : Set
Hom : Obj — 0Obj — Set
iden : V{X} — Hom X X
comp : V{X Y Z} — Hom Y Z — Hom X Y — Hom X Z
idl : V{X Y}{f : Hom X Y} — comp iden f f
idr : V{X Y}f : Hom X Y} — comp f iden f
ass : V{W X Y Z}{f : Hom Y Z}{g : Hom X Y}{h : Hom W X} —
comp (comp f g) h = comp f (comp g h)

111

Records are a way to group together values of different type. They are similar to structs
in other languages, but the type of a field in a record can depend on the values of other
fields of the same record, which appear before it in the declaration. As an example, the
type of Hom depends on the value of 0bj.

We also need to define the category Fam where the objects are families of sets and the
morphisms are functions between them.

Fam : Set — Cat
Fam I = record {
Obj =1 — Set;
Hom = AAB — V{i} - A i — B i;

iden = id;
comp=\fg—fog;
idl = refl;

idr = refl;

ass = refl}

A functor is a mapping between two categories. Our definition of functors is a record,
which is parametrized by two categories, C and D, as the domain and codomain of the
functor. The record defines the object map OMap and the morphism map HMap. The
object map transforms objects in the first category to objects in the second category. The
morphism map transforms morphisms in the first category to morphisms in the second.
The record also includes the functor laws which state that identity in C is mapped to
identity in D and that composition in C is mapped to composition in D.

record Fun (C D : Cat) : Set where
field OMap : Obj C — Obj D
HMap : V{X Y} — Hom C X Y — Hom D (OMap X) (OMap Y)
fid : V{X} — HMap (iden C {X}) & iden D {OMap X}
fcomp : V{X Y Z}{f : Hom C Y Z}{g : Hom C X Y} —
HMap (comp C f g) = comp D (HMap f) (HMap g)

A relative monad is not defined on a single category, as ordinary monads, but on a functor
J from a source category C to a target category D. The functor J should be thought of as
a tool to fix the mismatch between the two categories.



record RMonad {C D : Cat}(J : Fun C D) : Set where
field T : Obj C — Obj D
n V{x} — Hom D (OMap J X) (T X)
bind : V{X Y} — Hom D (OMap J X) (T Y) — Hom D (T X) (T Y)
lawl : V{X} — bind (n {X}) = iden D {T X}
law2 : V{X Y}{f : Hom D (QMap J X) (T )} —
comp D (bind f) n = f
law3 : V{X Y Z}{f : Hom D (QMap J X) (T )} —
{g : Hom D (OMap J Y) (T 2)} —
bind (comp D (bind g) f) = comp D (bind g) (bind f)

An algebra for a relative monad M over a functor J is defined as follows. It has a carrier
acar in D and an algebra structure astr which for any Z : 0bj C takes a morphism from
OMap J Z to acar in D to a morphism from T M Z to acar in D. The algebra must also
satisfy two laws, which state that the algebra structure astr interacts appropriately with
the n and bind of the monad.

record RAlg {C D : Cat}{J : Fun C D}(M : RMonad J) : Set where
field acar : Obj D

astr : V{Z} — Hom D (OMap J Z) acar — Hom D (T M Z) acar

alawl : V{Z}{f : Hom D (OMap J Z) acar} —
f = comp D (astr f) (n M)

alaw2 : V{ZX{W}{k : Hom D (QMap J Z2) (T M W} —
{f : Hom D (OMap J W) acar } —
astr (comp D (astr f) k) = comp D (astr f) (bind M k)

1.5 Related work

The first known proof of normalisation for typed lambda calculus is from 1942 by Turing
[9]. Normalisation by evaluation itself was invented by Martin-Lof [13]. There it appears
as a special case of presenting a normalisation proof. Instead of proving that each term
has a normal form, one creates a function which computes the normal form together with
the proof that the result is actually a normal form.

Normalisation by evaluation for typed lambda calculus with g and n conversion was
discovered by Berger and Schwichtenberg [6]. They needed a normalisation algorithm for
their proof system MINLOG and normalisation by evaluation provided a simple solution.

Recently, Allais, McBride and Boutillier [2] have considered normalisation by evaluation
to solve the decision problem for an equational theory enriched with monoid, functor and
fusion laws. For example, they achieve that map swap o map swap = id, where swap
swaps the elements of a pair. Their implementation of normalisation by evaluation is
more syntactic in nature than ours and differs from the traditional approach.

Normalising infinite structures like streams has been investigated by de Vries and Severi
[16]. Their approach to normalisation is based on reduction, where they produce possibly
infinite normal forms.



1.6 Overview

In the following two chapters, we look at simply typed lambda calculus: how to represent a
language like simply typed lambda calculus in Agda and how to implement normalisation
for it. As a result, we have a normaliser for simply typed lambda calculus with additional
data types: natural numbers, lists, pairs, and streams.

Chapter two is devoted to the syntactic aspects of lambda calculus. There we look
at representing the syntax, renaming, and substitution, and we show some properties
about how these things fit together. Substitution is used in the conversion relation so it
appears in the correctness proof. At the end of the chapter, we look at how to extend
the development to additional data types.

Chapter three is mostly about the semantic parts of the normalisation process. We start
by defining the interpretation function, which maps terms to values. After that, we
shortly discuss normal forms, and then define the function reify to read values back
to normal forms. Similarly to the previous chapter, this chapter also includes various
properties related to the development, most of which lead up to the proof of correctness
of the normaliser. The end of the chapter is about extending the normaliser for additional
data types.
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2 Syntactic aspects of lambda calculus

In this chapter we will look at how to represent our object language, simply typed lambda
calculus, in Agda. This is introduced using the basic system with only base and function
types. This representation is taken from the formalisation of relative monads [4]. At the
end of the chapter, we will see how to extend our representation for additional data types
(not present in [4]).

2.1 Syntax

As we are working with a typed language, the first thing we should do is to define the
types in our language. We have a base type ¢ and function types ¢ = 7. This can be
represented in Agda as a data type with two constructors. The constructor for base types
is a constant and the one for functions takes two types and gives back a new type.

data Ty : Set where
L : Ty
—~>_ Ty = Ty — Ty

Next, we will define contexts, which are necessary for assigning a type to a term. We
are going to represent contexts as cons lists (sequences of types) growing in the “wrong”
direction. A context can be empty or it can be made up of a context and a type.

data Con : Set where
€ : Con
<_ : Con — Ty — Con

We are going to represent variables as de Bruijn indices [7]. This is a nameless approach
to variables: a variable is identified by how far it is from the binding lambda. This means
that variables are basically natural numbers and the value of the number is its location
in the context.

data Var : Con — Ty — Set where
vze : Y{[' 0} = Var (I' < o) o
vsu : VY{I'o 7} - Var ' 0 — Var (I' < 7) o

Finally, we can define terms. There are only three syntactic constructs in our object
language: variables, lambda abstractions, and applications. If we have a variable, we can
always turn it into a term. If we have a term of type 7 and a variable of type ¢ in the last
position in the context, then we can turn it into a function ¢ = 7. If we have a function,
we can apply it to an argument of a suitable type and get the result.

data Tm (I' : Con) : Ty — Set where

var : Y{o} = Var ' 0o - Tm " o

lam : o 7} > Tm "' <o) 7 == Tm ' (¢ = 7)
app : o7} = TmI' (0 = 7) = Tml'oc = TmI['7

An important observation is that in a dependently typed language we can define the syn-
tax and typing rules together. This gives us a “no junk” representation of our language,
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we have to consider only those expressions which are well-typed.

2.2 Renaming

Renaming a term is an operation which replaces a variable in a term with another variable.
We will define the type of renamings as a function mapping variables in one context to
variables in another.

Ren : Con — Con — Set
Ren ' A =V{o} - Var ' ¢ = Var A ¢

We are going to need an operation for weakening a renaming before we can actually
rename a term. Weakening is necessary for pushing the renaming inside the lambda term
by extending the context with the bound variable.

wk : V{I' A 0} - Ren ' A — Ren (I' < 0) (A < o)
wk p vze = vze
wk p (vsu y) = vsu (p y)

Now that we have weakening, we can define how to actually rename a term. Renaming
a term is defined by induction on the term.

ren : V{I' A} = Ren ' A - V{o} > TmI' 0 - Tm A o
ren « (var x) = var (o x)

ren o (lam t) lam (ren (wk «) t)

ren o (app t u) = app (ren a t) (ren a u)

If the term is a variable, we just need to apply the renaming. In the case of a lambda,
we first need to weaken the renaming and then apply it to the body of the lambda. For
application, we apply the renaming to the subterms.

As an example of renaming a term, we now look at applying the identity function to a
variable of type ¢« = . In a more convenient notation it would be (Az.x) y.

idapp : V{I'} = Tm (I" < . = ) G = )
idapp = app (lam (var vze)) (var vze)

A key thing to notice here is that the var vze inside the lambda is different from the
second argument of app. We now apply the vsu renaming to the term, which means that
variables get incremented by one, with the exception that when going under the lambda,
the renaming is weakened. This means that the variable bound by the current lambda
will not be renamed. The following is the result of applying the renaming.

app (lam (var vze)) (var (vsu vze))

We can also define the identity renaming and the composition of two renamings. The
identity is just the ordinary identity function and composition is just the ordinary function
composition.

renld : V{I'} - Ren I' T’
renld = id
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renComp : V{B ' A} - Ren ' A — Ren BI' — Ren B A
renComp f g =f o g

Now that we have defined what a renaming is, we are going to show some of its properties.
To do that, we need to be able to say when two renamings are equal. Since renamings
are functions, we need to be able to say when two functions are equal. For enabling this,
we postulate extensionality for functions.

postulate ext : {A : Set}{B B’ : A — Set} —
{f :Va—+BalHg:Va— B at} —
Va—fa=ga —-f=g

ext states that two functions £ and g are equal if their results are equal for every possible
input. Postulating something is essentially adding an axiom to Agda. This is something
which should be done with care as we might introduce inconsistencies into the system.
However, it has been shown that extensionality is a conservative extension of intensional
type theory [11]. We also postulate iext, which is basically the same, except that it
applies to functions taking implicit arguments.

Weakening the identity renaming should be the same as the identity renaming and re-
naming terms using the identity renaming should keep the terms unchanged. We are not
going to show many proofs of the properties in this thesis. We will give the first ones as
an example. Also, we will often omit the implicit arguments from the definitions. This
is purely to avoid excessive clutter. For the full details, we refer the reader to the full
formalisation available online [12].

wkid : V{I' ¢ 73}(x : Var (I' < 7) 0) — wk renld x = renld x
wkid vze = refl
wkid (vsu y) = refl

renid : V{I' o}(t : Tm I' 0) — ren renld t = t
renid (var x) = refl
renid (lam y) = proof
lam (ren (wk renlId) y)
=( cong (A (f : Ren _ _) — lam (ren f y)) (iext (A _ — ext wkid)) )
lam (ren renld y)
~( cong lam (renid y) )
lam y
[

renid (app t u) = congy app (renid t) (renid u)

As wk is defined by induction on the variable, the proof of wkid is by induction on the
variable as well. If the proof is refl, then it means that the property is so simple that
even Agda can see that it holds.

As ren is defined by induction on the term, proof of renid is by induction on the term.
In the lambda case we need to apply extensionality to show wk renId = renId. This is
because a renaming is a function and we want to show the equality of the two renamings.
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wkcomp : (f : Ren I' A)(g : Ren BI)(x : Var (B < o) 7) —

Y

wk (renComp f g) x = renComp (wk f) (wk g) x

rencomp : (f : Ren I' A)(g : Ren BI)(t : Tm B 0) —
ren (renComp f g) t = (ren f o ren g) t

Proofs of wkcomp and rencomp are very similar to proofs of wkid and renid, respectively.

As a final note about renamings, we can observe that our definition of renamings forms
a category on the contexts.

RenCat : Cat
RenCat = record {
Obj = Con;
Hom = Ren;
iden = renld;
comp = renComp;
idl = iext (A _ — refl);
idr = iext (A _ — refl);
ass = iext (A _ — refl)}

The objects of the category are the contexts, the morphisms are the renamings, identity
morphism is the identity renaming and the composition of morphisms is the composition
of renamings. The three properties almost hold definitionally, we need to apply exten-
sionality of implicit functions since our definition of renamings expects the type as the
implicit parameter.

Now we can define the functor VarF which will play the role of J in our instance of a
relative monad. Objects are transformed using Var and morphisms are transformed using
id. Since HMap is id, the properties fid and fcomp hold definitionally.

VarF : Fun RenCat (Fam Ty)
VarF = record {

OMap = Var;
HMap = id;
fid = refl;

fcomp = refl}

2.3 Substitution

Substitution is the operation of substituting one term for a variable in another. For
example, applying a function to an argument requires that we substitute this argument
term for the parameter in the function body. We will define a substitution as a function
mapping variables in one context to terms in another.

Sub : Con — Con — Set
Sub ' A =V{oc} = Var ' 0 — Tm A ¢
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Similarly to renamings, we now want to have an operation for weakening a substitution.
If have the zeroth variable, we just return itself. For other variables, we first apply the
substitution to the variable and then weaken the resulting term using ren vsu.

lift : V{I' A 6} == Sub I' A — Sub (I' < 0) (A < o)
lift £ vze = var vze
lift £ (vsu x) = ren vsu (f x)

The actual operation of substituting terms for variables is defined by induction on the
term. For variables, we just apply the substitution. In the lambda case, we lift it and
then apply it to the body, and in the application case, we apply it to both subterms.

sub : V{I' A} > Sub ' A - V{o} > Tm ' 0 — Tm A ¢
sub f (var x) f x

sub f (lam t) lam (sub (1lift f) t)

sub f (app t u) = app (sub f t) (sub f u)

To extend an existing substitution, we must bind a new term to the zeroth variable and
shift everything else by one.

sub<< : V{I' A} = Sub ' A = V{6} = Tm A ¢ — Sub (I' < 5) A
sub<< f t vze =t
sub<< f t (vsu x) = f x

The identity of substitutions cannot be the ordinary identity function as it was for re-
namings, since the domain of a substitution is a variable and the range is a term. The
identity substitution is actually the var constructor of terms. Two substitutions f and g
are composed by precomposing g with sub f, the substitution f operating on terms.

subId : V{I'} - Sub I' T’

subId = var

subComp : V{B ' A} - Sub ' A — Sub B I' — Sub B A
subComp f g = sub f o g

As an example of how substitution works, we now look at applying a variable of type ¢
= ¢ to a variable of type ¢. In a more convenient notation it would be written x y, the
variable z applied to the variable y.

appvars : V{I'} — Tm ((I' < ) < (0 = 1)) ¢
appvars = app (var vze) (var (vsu vze))

We now want to substitute the identity function lam (var vze) for the zeroth variable,
the function in the application. To do that, we extend the identity substitution with the
identity function and then apply it to the term.

sub (sub<< var (lam (var vze))) appvars

As the result we get the following term. The first argument of the application is now an
actual function, not a variable. Notice, that the second argument has become var vze.

app (lam (var vze)) (var vze)
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Lifting an identity substitution should be the same as the identity function. Substitution
using the identity substitution should not change the terms. The proof of 1iftid is by
induction on the variable and the proof of subid is by induction on the term. These are
again very similar to the proofs of wkid and renid.

liftid : (x : Var (I' < ) 7) — 1lift subld x = subld x
subid : (t : Tm ' 0) — sub subIld t & id t

Next, we have proved some properties relating together operations on renamings and
substitutions.

liftwk : (f : Sub ' A)(g : Ren BI)(x : Var (B < o) 7) —
(Lift f o wk g) x = lift (f o g) x

subren : (f : SubI' A)(g : Ren BI)(t : Tm B 0) —
(sub f oren g) t = sub (f o g) t

The proof of 1iftwk is by induction on the variable. The proof of subren is by induction
on the term. In the lambda case we need to apply 1liftwk.

renwklift : (f : Ren I' A)(g : Sub B I)(x : Var (B < o) 7) —
(ren (wk f) o 1lift g) x = 1lift (ren f o g) x

rensub : (f : Ren ' A)(g : SubB I)(t : Tm B o) —

Y

(ren f o sub g) t = sub (ren f 0 g) t

The proof of renwklift is by induction on the variable. In the successor case, we need
to use rencomp. The proof of rensub is by induction on the term. In the lambda case,
we need to apply renwklift.

liftcomp : (f : Sub I' A)(g : SubB I)(x : Var (B < o) 7) —
1lift (subComp f g) x = subComp (lift f) (1lift g) x

subcomp : (f : Sub I' A)(g : Sub B [){o}(t : Tm B o) —
sub (subComp f g) t = (sub f o sub g) t

The proof of 1iftcomp is by induction on the variable. In the successor case we need to
apply both rensub and subren. The proof of subcomp is by induction on the term. In
the lambda case we need to apply 1liftcomp.

After defining substitution, we can now give the proof that Tm forms a relative monad on
the VarF functor defined earlier. T is the Tm type constructor, n is the var constructor
and bind is the substitution operation. The first law is proved using subid and handling
extensionality. For the third law, we need to use subcomp under extensionality. The
second law holds definitionally.

TmRMonad : RMonad VarF
TmRMonad = record {

T = Tm;
7 = var;
bind = sub;
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lawl = iext (A 0 — ext subid);
law2 = refl;
lawd = A {_ _ _ f g} — iext (A 0 — ext (subcomp g £))}

2.4 Equational theory

This section is about the convertibility relation ~ which is defined as a data type. It can
be thought of as a specification of normalisation. Two terms are convertible (provably
equal) if they can be related together using the elements of this data type. Since we have
transitivity as one of the elements, two terms can be related through multiple steps. This
is similar to the definition of propositional equality given in the Introduction, but here
we have more than one constructor.

refl~ : t ~ t

data _~_ {I' : Con} : V{o : Ty} - Tm ' 0 — Tm [' 0 — Set where

sym~~ tt~u —>u~t

trans~ : t ~u > u~VvVv >t~V

beta~ : app (lam t) u ~ sub (sub<< var u) t
eta~ : t ~ lam (app (ren vsu t) (var vze))

congapp~ : t ~t> - u~u’ — apptu~ app t’ u’
conglam~ : t ~ t’ — lam t ~ lam t’

refl~, sym~ and trans~ are the reflexivity, symmetry and transitivity properties for our
convertibility relation. beta~ and eta~ state that our relation respects S-conversion and
n-conversion. congapp~ states that two applications are convertible if their corresponding
subterms are convertible. conglam~ states that two lambda terms are convertible if the
bodies of the lambda terms are convertible.

Notice that propositional equality implies convertibility. If we have two equal terms, then
it must be that they are convertible.

Sto~ : {tt? : TmIlNo} >t =2t -t ~t’

=to~ refl = refl~

2.5 Extensions

In this section, we are going to extend our treatment of simply typed lambda calculus
with additional data types. It will mostly be about highlighting the necessary changes

to accommodate these new types. Code for the modifications will be shown as excerpts,
not in full detail.

2.5.1 Natural numbers and lists

Natural numbers and lists are both inductive data types and share similarities in their
structure. Therefore, it is natural to consider them together. When viewed separately,
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the combination of function types with the type of natural numbers is also known as

Godel’s T [10].

We begin by extending the definition of types in our language. nat is the type of natural
numbers and [ o ] is the type of lists with elements of type o. We use the three dots
to indicate that the definition is incomplete.

data Ty : Set where

nat : Ty

L] Ty = Ty
We do not need to make any modifications to the definitions of contexts and variables.
For natural numbers, we extend the definition of terms with ze and su for constructing
natural numbers and primitive recursion rec for eliminating them. The situation is

similar for lists. We have nil for the empty list, cons for appending an element to the
head of the list and fold for eliminating the list.

data Tm (I" : Con) : Ty — Set where

ze : Tm I' nat
su : Tm I' nat — Tm I nat
rec : Y{o} > TmIl' o —+TmI (6 =0) > TmI nat - Tn I o
nil : V{o} > Tm I [ o]
cons : V{o}y > Tm I o —-Tm Il [oc] -Tm I [ o]
fold : Y{o 7} > TmI'7 - Tm ' (0 = 7= 7) —
Tm ' o] - Tm I 7

Now we look at how to rename these newly added terms. For ze and nil we do not need
to do anything since both are constants. For other cases we apply the renaming to the
subterms.

ren : V{I' A} 2 Ren Al' = YWHo} 2 Tm Ao - Tnl o

ren p ze = ze

ren p (su t) = su (ren p t)

ren p (rec z £ n) = rec (ren p z) (ren p f) (ren p n)
ren p nil = nil

ren p (cons h t) = cons (ren p h) (ren p t)

ren p (fold a f 1)

fold (ren p a) (ren p f) (ren p 1)

As before, we are not going to show the proofs in full detail and most of the time only
show the types. The proof for renid is here as an example of how the proofs work on
natural numbers and lists.

renid : V{I' 6}t : Tm ' 6) — ren renld t & ¢

refl
cong su (renid t)
congs rec (renid z) (renid f) (renid n)

renid ze
renid (su t)
renid (rec z f n)
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refl
cong, cons (renid h) (renid t)
congs fold (renid a) (renid f) (renid 1)

renid nil
renid (cons h t)
renid (fold a f 1)

For ze and nil the proof is just refl, which makes sense, since the operation of renaming
those terms does not involve anything. For other cases we need to apply the inductive
hypothesis to the constituents. The process is very similar for rencomp.

Applying a substitution to a term is very similar to renaming a term. For ze and nil we
do nothing and for others we apply the substitution to the constituents.

sub : V{I' A} 2 Sub ' A = o} = Tm "o — Tm A o

sub f ze = ze

sub f (su n) = su (sub f n)

sub f (rec z gn) = rec (sub f z) (sub f g) (sub f n)
sub f nil = nil

sub f (cons t u) = cons (sub f t) (sub f u)

sub f (fold a fn 1) fold (sub f a) (sub f fn) (sub f 1)

Additions to the proof of subid are very similar to the additions to the proof of renid.
We do not need to change anything in the proofs of 1liftwk and renwklift as these are
defined by induction on the variable. For subren, rensub and subcomp we need to add
similar cases as we showed for renid.

Finally, we will show how to extend the convertibility relation to consider the new data
types.

data _~_ {I' : Con} : Y{o : Ty} = Tm ' 0 — Tm [' 0 — Set where

congsu~ : t ~t’ — sut ~ sut’
congrec~ : z ~ 2z’ — f ~f> - n~n —
rec z fnn~recz’ f’n’
congrecze~ : rec z f ze ~ z
congrecsu~ : rec z £ (sun) ~ app f (rec z f n)
congcons~ : X ~ X’ — XS ~ xs’ — cons X XS ~ cons X’ xs’
congfold~ : z ~ 2z’ - f ~f’> - n~n’ —
fold z £f n ~ fold z’ £’ n’
congfoldnil~ : fold z f nil ~ =z
congfoldcons~ : fold z f (cons x xs)

~

app (app f x) (fold z f xs)

Notice that we have no cases for ze and nil, these are already covered by refl~. We
define that two natural numbers are convertible if their predecessors are convertible. We
have three cases for the recursor. congrec~ states that two rec terms are convertible
if their corresponding subterms are convertible. congrecze~ expresses the behaviour of
rec when the argument is zero, congrecsu~ expresses the behaviour when the argument
is a successor. The situation is similar for fold.
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2.5.2 Pairs and streams

A pair is a data type which contains two pieces of data: the first and the second pro-
jection. In other words, it is a tuple with two elements. A stream can be thought of
as an infinite sequence of values. It is similar to a pair in that we also interact with it
using observations—we can observe what the element at position n is by taking the n-th
projection of the stream. By this analogy, a stream can be seen as an infinite tuple, with
the exception that all elements of a stream must be of the same type, while a tuple can
have elements of different types.

Now we will look at how to represent pairs and streams in our language. We begin by
extending the set of types in our language to support pairs and streams. o A 7 is the
type of pairs, where the first component is of type ¢ and the second is of type 7. < o >
is the type of streams which contain elements of type o.

data Ty : Set where

A Ty = Ty — Ty
<> Ty = Ty

We continue by extending the definition of terms with constructors for creating and
eliminating pairs and streams. ,, is for creating a pair from two existing terms and fst
and snd are for projecting out the desired element. tup is for creating a stream from a
function from natural numbers to terms. To project out a value from a stream, we use
proj. Which element is projected is decided by the first argument, which is the position
of the element in the stream.

data Tm (I' : Con) : Ty — Set where

s Mo} = llo -TmI' 7T =>Tm T (0 A T)
fst : o7 > Tm ' (A7) =>Tm I o

snd : Yo7} —>Tn Il (c A7) > Tm I 7

tup : o = N —=>TmI'o) - Tm I <o >

proj : Y{o} = N> TmI'<oc > = Tm I o

Renaming pairs is rather similar to what we have done before. For streams, we need to
handle the natural number appearing in the terms.

ren : V{' A} 2 Ren ' A= Y{o} = Tm "o — Tm A o

ren o (t ,, u) =renat ,, ren o u

ren o (fst t) = fst (ren a t)

ren « (snd t) = snd (ren a t)

ren « (tup f) = tup (An — ren a (f n))
ren « (proj n s) = proj n (ren « s)

We again use renid as a simple example of how to prove properties about the new data
types.

renid : V{I' 6}(t : Tm ' 6) — ren renld t &£ t
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renid (a ,, b)
renid (fst t)
renid (snd t)
renid (tup f)
renid (proj n f)

congy _,,_ (renid a) (renid b)

cong fst (renid t)

cong snd (renid t)

cong tup (ext (A n — renid (f n)))
cong (proj n) (renid f)

The idea is to use the inductive hypothesis for the subterms. tup also requires the use
of extensionality since we are working with a function. The proof of rencomp is very
similar.

Again, applying a substitution is very similar to applying a renaming. The idea is to
push the substitution inside the term. For tup we apply the substitution to the result of
g n, that is the element at position n. Notice that this is done only when that element
is actually needed.

sub : V{I' A} 2 Sub ' A = o} = Tm "o — Tm A o

sub f (a ,, b) =gsub fa,, subfbd

sub f (fst t) = fst (sub f t)
sub f (snd t) = snd (sub f t)
sub f (tup g) = tup (An — sub f (g n))

sub f (proj n s) = proj n (sub f s)

Additions to the proof of subid are very similar to the additions to the proof of renid.
We do not need to change anything in the proofs of 1iftwk and renwklift as these are
defined by induction on the variable. For subren, rensub and subcomp we need to add
similar cases as we showed for renid.

Finally, we will show how to extend the convertibility relation for pairs and streams.

data _~_ {I' : Con} : Y{o : Ty} = Tm ' 0 — Tm [' 0 — Set where

congpair~ a~a —b~b = (a,, b~ (@ ,,Db)
paireta~ t ~ (fst t ,, snd t)

pairfst~ a~ fst (a ,, b)

pairsnd~ b ~ snd (a ,, b)

congfst~ a~a — fst a ~ fst a’

congsnd~ a~a — snd a ~ snd a’

congtup~ : (Vn—=>fn~gn) — tupf ~tupg
congproj~ : {n : N} - f ~ g — projnf ~ projng
streambeta~ : {n : N} — proj n (tup f) ~ f n
streameta~ : s ~ tup (A n — proj n s)

congpair~ gives us that two pairs are convertible if their both components are convert-
ible. paireta~ states that a pair is equal to its expansion. pairfst~ and pairsnd~
give us that a component of a pair is equal to the corresponding projection. congfst~
and congsnd~ state that the projections of two pairs are convertible if the two pairs are
convertible.
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congtup~ states that two streams are convertible if the underlying functions are con-
vertible. congproj~ states that the projections of convertible streams are convertible.
streambeta~ and streameta~ illustrate that tup and proj cancel each other out.
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3 Normalisation by evaluation

This chapter is about normalising the terms in our object language. We will look at
evaluating the terms and extracting the normal forms from the values. At the same time,
we will prove essential properties about the process, leading up to the correctness proof
of the normaliser. We will finish this chapter with the extensions of our language.

3.1 Evaluation

Evaluator is a function from terms (syntax) to values (semantics). First, we will define
the values (model) into which we want to evaluate our language.

Val : Con — Ty — Set
Val I' ¢ =Nf [' .
Val I' (0 = 7) =V{A} = Ren ' A - Val A ¢ — Val A 7

It is important to note that values are not defined as a data type (which was the case for
terms, for example). The type of values is defined as a function returning a type. Given
a context ' and a type o, it gives an Agda type which should be used for representing a
value of type o.

For base types, a value is just a normal form of base type. Normal forms are defined
in section 3.2. They can be thought of as a subset of terms. For functions, the value
is an actual Agda function. In addition to just taking a value of type o to a value of
type 7, this representation also takes implicitly a new context and a renaming from the
old context to this new (future) context, so that the function can be used in a different
context than where it was defined.

This definition of functions is slightly incomplete. The definition above is good enough
for implementing the normalisation algorithm, but for the proofs we actually extended
the definition by an additional property. A function value then becomes an existentially
quantified type stating that there exists a function from values of type o to values of type
7 such that renaming the result of the function is the same as renaming the argument and
the function. The evaluator must additionally create values that preserve that property.
We have decided to exclude this property from the remainder of this document to keep
the code simpler.

Val I' (0 = 7) =X (W{A} > Ren ' A — Val A ¢ — Val A 7)
Af — V{A A’}(p : Ren ' A)(p’> : Ren A A’)(v : Val A o) —
renval p’ (f pv) = £ (p’ o p) (renval p’ v)

We are also going to need a method for renaming values. For base types, renaming values
is just renaming normal forms, which is similar to renaming terms. For functions, we need
to change the renaming used when applying this function to a parameter.

renval : V{I' A o} - Ren ' A - Val I' 0 — Val A ¢
renval {c = (1} a x = renNf « x
renval {0 =0 = 7} a v =X {E} f v’ — v (renComp [ «a) v’
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Evaluating a term requires an environment for mapping variables to values. We are
going to represent it similarly to renamings and substitutions. Given two contexts, an
environment is a function which implicitly takes a type and gives back a function from
variables in the first context to values in the second context.

Env : Con — Con — Set
Env [ A =V{o} = Var ' 0 — Val A ¢

<< V{I' AY 2 Env ' A - V{o} - Val A 0 — Env (I' < 0) A
(y << v) vze =v
(y << v) (vsu x) = v x

Extending an environment is defined by what the result of applying the extended en-
vironment to a variable should be. For the zeroth variable, the value which was used
for extending the environment is returned. For other variables, the predecessor of the
variable in the original environment is returned.

Next, we are going to define evaluation together with some of its properties.

mutual
eval : V{I' A o} 2 Env Il A - Tm ' ¢ — Val A ¢
eval v (var x) = v X
eval v (lam t) = A o v — eval ((renval a o 7) << v) t

evallem : (v : Env ' A)(p : Ren A ADG® : Tm ' o) —

~J

renval p (eval 7 t) = eval (remval p o ) t

Our evaluator eval is defined by induction on the structure of the term which is evaluated.
For variables, we just look the value up from the environment. For the lambda case, we
extend the environment so that v is now the variable bound by the lambda and then
evaluate the body. The evaluator is defined mutually with a property about pushing a
renaming into the environment. The proof of evallem is by induction on the term t.

We now look at an example how the evaluator works. First, we define the identity function
on base types, which is just \z.x

id : V{I'} = Tm " (& = v)
id = lam (var vze)

This defines the term id to be a function on base types that given an argument returns
the zeroth variable—the variable bound by the lambda constructor lam in the definition.
We make this example a bit more interesting by applying this identity function to a
variable of type ¢ = ¢. The term is now essentially (\z.x) y

idapp : V{I'} - Tm (I' < (v = 1)) (L = 1)
idapp = app (lam (var vze)) (var vze)

Notice that in the last position of the context there is a function on base types, meaning
that the zeroth variable is of that type. We will evaluate this term in the identity
environment, similarly to what the normaliser will do. This results in the following meta
level function.
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A {A} @ v — ne (napp (nvar (a vze)) v)

This is a function which implicitly takes the new context, then takes a renaming from the
old context to the new context, and then takes a value in the new context. As a result, it
gives back the zeroth variable from the definition of idapp applied to the value v. Why a
variable of type ¢ = ¢ was expanded to this function definition, is because we evaluated
the term in the identity environment and in the identity environment we get the value of
a variable by reflecting it (turning it into a value). Reflection is defined in section 3.3.

We have proved some properties about how the evaluator fits together with renamings,
substitutions and environments.

wk<< : (@ : Ren I' A)(B8 : Env A E)(v : Val E o) —
V{p}(ly : Var( < o) p) —
((Boa)<<v) y= ((f<<v)owka)y

reneval : (o : Ren I' A)(f : Env AE)& : Tm ' 0) —
eval (f o ) t = (eval f o ren a) t

The proof of wk<< is by induction on the variable y. reneval states that first renaming a
term and then evaluating it is the same as evaluating the term in the renamed environment
(an environment composed with a renaming is a renamed environment, Env. A E becomes
Env I' E). The proof of it is by induction on the term t. In the lambda case, we need to
apply wk<<.

lifteval : (a : Sub I' A)(B : Env A E)(v : Val E o) —
(y : var " <o) 7) —
((eval B o a) << v) y = (eval (B << v) o 1lift a) y

subeval : (a : Sub ' A)(B : Env AE)(t : Tm ' 0) —
eval (eval f o a) t = (eval § o sub a) t

The proof of lifteval is by induction on the variable y. In the successor case, we
need to apply reneval. subeval states that first applying the substitution and then
evaluating the term is the same as pushing the substitution inside the environment.
Indeed, composing eval applied to an environment with a substitution gives a function
from variables to values, which is an environment. The proof of subeval is by induction
on the term t. In the lambda case, we need to apply 1lifteval.

We can now show that our representation of lambda calculus forms a relative Eilenberg-
Moore algebra. The carrier of the algebra is Val I' so it has the type Ty — Set. The
structure is given by the evaluator. The first law holds definitionally and the second law
follows from the property subeval.

EMRAlg : Con — RAlg TmRMonad
EMRAlg [' = record {

acar = Val I';

astr = A {['} = A v — eval v;

alawl = refl;

alaw2 = A {I' A a v} — iext (A ¢ — ext (subeval a 7))}
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3.2 Normal forms

Terms and normal forms are rather similar in structure, but normal forms have additional
constraints on them. We are going to represent normal forms as two mutually recursive
data types: normal forms and neutral terms.

mutual
data Nf (I' : Con) : Ty — Set where
nlam : V{o 7} - Nf (' <o) 7 = Nf I' (¢ = 1)
ne :Nel' v - NET

data Ne (I' : Con) : Ty — Set where
nvar : V{o} - Var ' 0 — Ne I' o
napp : V{o 7} - Nel' (6 = 7) > NfT['oc —- Nel 7

To be a normal form, the term has to be in constructor form. A function has to be
represented as a lambda abstraction. Neutral terms are terms which contain variables
in key positions and due to that, their computation is stuck. Variables are not only a
placeholder, but they also represent the unknowns of a program. Variables are neutral
terms. Function applications, where the term in the function position is a neutral term
and the argument is a normal form are also neutral terms. Since there are no more
[B-reductions and n-expansions to perform, this representation of a normal form is called
fB-normal n-long form.

In the proof of the normalisation algorithm, we are going to need to embed normal forms
back into terms. This is achieved using a mutually defined embedding function for normal
forms and neutral terms.

mutual
embNf : V{I' 0} = Nf "o — Tm I o
embNf (nlam n) = lam (embNf n)
embNf (ne x) = embNe x

embNe : V{I' 6} = Ne'oc - Tm I ¢
embNe (nvar x) = var x
embNe (napp t u) = app (embNe t) (embNf u)

We are also going to need to rename normal forms. This is done using the same renaming
for mapping variables to variables, as was used for terms. Since the renaming operation
for normal forms and neutral terms is very similar to the renaming operation for terms,
we will not give its full definition.

mutual
renNf : V{' A} = Ren AT = V{o} = Nf Ao = Nf ' o
renNe : V{ ' A} = Ren AT — V{o} = Ne A g = Ne I o

We also prove analogues of renid and rencomp for normal forms. The property is defined
mutually between normal forms and neutral terms, but the proofs for the corresponding
parts are very similar to the proofs of the same properties on terms.
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mutual

rennfid : (n : Nf I' 0¢) — renNf renld n & n
renneid : (n : Ne I' 0) — renNe renld n & n
mutual
rennfcomp : (p’ : Ren A E)(p : Ren I' A)(v : Nf " 0) —

Y

renNf p’ (renNf p v) = renNf (p’ o p) v

rennecomp : (p’ : Ren A E)(p : Ren I' A)(v : Ne I' 0) —

Y

renNe p’ (renNe p v) = renNe (p’ o p) v

3.3 Normalisation

In this section, we will define the last components needed for our normaliser, the nor-
maliser itself and the soundness and completeness proofs of it. We start by defining the
functions reify and its companion reflect, to read values back to normal forms and to
get values out of neutral terms, respectively.

mutual
reify : V{I'} 0 - Val ' 0 = Nf I' o
reify ¢ x =X

reify (0 = 7) x = nlam (reify 7 (x vsu (reflect o (var vze))))

reflect : V{I['} 0 - NeI' 0 - Val I' ¢
reflect ¢+ v = ne v
reflect (0 = 7)) n=Aa v —
reflect 7 (napp (renNe o n) (reify o v))

Both of these functions are type directed, they are defined by induction on the type.
Reifying at base type is simple, since a value of base type is already a normal form. For
function types, we construct a lambda abstraction where the body is the given function
applied to vsu renaming (which just does a shift) and a fresh zeroth variable. To reflect
a neutral term at base type is again simple, since we need to convert a neutral term to
a normal form, the ne constructor does exactly that. For function types, we create an
actual function which takes a renaming and a value, and gives back the given function
applied to the parameter of the lambda. Reflecting is the method for creating fresh
variables, as can be seen in the lambda case of reify.

idE : V{I'} - Env ' T
idE x = reflect (nvar x)

norm : V{I' 6} - Tm " 0 - Nf ' o
norm t = reify _ (eval idE t)

To normalise a term, we just have to put together evaluation with reification. The term
will be evaluated in the identity environment.
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We will now look at the same example as we did for evaluation (Az.z)y. There we applied
the identity function to a variable of type ¢+ = (. Applying the normalisation function
norm to the original term gives the following result.

nlam (ne (napp (nvar (vsu vze)) (ne (nvar vze))))
If we were to embed this normal form into terms, we would get the following term.
lam (app (var (vsu vze)) (var vze))

The zeroth variable from the definition of idapp has been n-expanded into a lambda.
This means, that our normalisation function transformed the original term (Az.x) y to
A2y z.

Our goal now is to prove the correctness of this normaliser. Recall from the Introduction
that correctness was expressed using the following property: ¢t ~ t/ <= norm t =
norm t'. To prove this, we need to show that the property holds in both directions. For
this, we need to prove some additional properties, the first one is evalsound.

evalsound : t ~ t’ = v = v’ — eval v t = eval 7y’ t’

It states that if we evaluate two convertible terms in equal environments, then we get
equal results. It is actually the main thing needed to prove for the soundness of our
normaliser. Its proof is by induction on the proof t ~ t’.

soundness : {t t’ : Tm ' 6} - t ~ t’ — norm t = norm t’
soundness p = cong (reify _) (evalsound p refl)

soundness is the if direction of the correctness property. Its proof is quite simple since
we already have evalsound and norm is just reify composed with eval.

To prove the only if direction, we first need to prove the completeness lemma: ¢ ~ norm t.
In the following proofs leading up to that, we are going to need a way to relate together
a term and a value. We will do that using logical relations [15].

SR VH{I'Yo - (t: Tm o) = (v :Val I' 0) = Set

Lt 2 tRvV = t ~ embNf (reify ¢ v)

(c = 7)>tREf=V{AY - (p : Ren _ A)(u : Tm A 0) —
(v : Val A o) —
c2uRv —>7>app (renpt) uRf pv

0 5 t R v means that the term t is related to the value v. They are related in the sense
that they represent the same thing, only one is syntactic and the other is semantic. For
base types, we require that embedding the reified value is related to the original term. For
function types, we require that given a renaming and another term and a value, which are
related, then the results of applying the functions to the new arguments are also related.

E_: V{I' AY - (p: Sub ' A) - (9 : Env ' A) — Set

pEn=Yo} - (x:Var _ o) - 0 > pxRnx

E is basically just the relation R for substitutions and environments. Whenever we have
a substitution and an environment which are related, then the results of looking up a
variable are also related.
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The first major component of the completeness proof is the fund-thm which is the so-
called fundamental theorem of logical relations.

fund-thm : (¢t : Tm ' 0)(p : Sub I' A)(p : Env ' A) —
pEn — o0 > subptR (eval n t)

It states that if we have a substitution and an environment which are related, then the
result of applying the substitution to the term is related to the result of evaluating the
term in the environment. The proof of it is by induction on the structure of the term. The
other major component consists of two mutually defined lemmas reifyR and reflectR.

mutual
reifyR : ¢ 2 t Rv = t ~ embNf (reify o v)
reflectR : t ~ embNe n — 0 > t R (reflect o n)

reifyR means that if we have a relation between a term and a value, then we can turn
it into a relation between a term and a normal form. reflectR means that if we have a
relation between a term and a neutral term, then we can turn it into a relation between
a term and a value. The proof is by induction on types for both properties at the same
time.

completeness-lem : (t : Tm [' 0) — t ~ embNf (norm t)
completeness-lem t = proof

t
~( Zto~ (sym (subid t)) )
sub subld t

~( reifyR _ (fund-thm t var idE idEE) )
embNf (norm t)
[ |

completeness-lem states that every term is related to its normal form. idEE is a proof
that the identity substitution and the identity environment are related. The fundamental
theorem gives us that the result of evaluating the term in the identity environment is
related to the result of applying the identity substitution to the term. We then use
reifyR to lift that to the convertibility relation.

completeness : (t t’> : Tm I' 0) — norm t = norm t’ — t ~ t’
completeness t t’ p = proof
t

~( completeness-lem t )

embNf (norm t)

~( Zto~ (cong embNf p) )

embNf (norm t’)

~( sym~ (completeness-lem t’) )
t)

|

This concludes our proof of correctness. completeness is proved using completeness-lem
on both sides of the equation to get the convertibility of the terms. One can observe a
similarity in the structure of the normalisation algorithm and its completeness proof.
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Additionally, we will look at the stability of our normaliser. We want that every normal
form is the normal form of itself. This is expressed as a mutually defined property in Agda.
The property we are interested in is the one about normal forms, the one about neutral
forms is needed for the proof of normal forms. stabilityNf is proved by induction on
the normal form n, stabilityNe is proved by induction on the neutral term n.

mutual
stabilityNf : (n : Nf I' ¢) — n = norm (embNf n)

stabilityNe : (n : Ne I' 0) — eval idE (embNe n) = (reflect _ n)

3.4 Extensions

In this section, we will look at the various changes necessary to extend our language to
support additional data types. We follow the route taken in the previous chapter where
we considered the extensions in two groups: natural numbers and lists, and pairs and
streams.

3.4.1 Natural numbers and lists

We are now going to extend our definition of values to consider both natural numbers
and lists.

Val : Con — Ty — Set

Val I' nat = Nf I nat
Val ' [ 0] = ListVal (Val I"'0) (Ne T' [ o 1)

Values of natural numbers are represented as normal forms of natural numbers. The case
for lists hints that this is a bit of a cheat, since we cannot adopt the same strategy we
followed for natural numbers.

For lists, first thing one might try is to use normal forms just like for natural numbers,
since this idea works there. This creates a problem: what should the fold operation be
for normal forms of type list? The problem appears in the cons case of a fold. Since
our list is a normal form, then the head is also a normal form, but the function in fold
expects a value. Another option one might try, is to use an ordinary lists of values. This
works nicely with folds, but it has the problem of how to reflect a neutral term into a
value, into an actual list. To avoid those problems, we use a special data type ListVal.

data ListVal (A B : Set) : Set where
nelV : B — ListVal A B
nillLV : ListVal A B
consLV : A — ListVal A B — ListVal A B

This definition allows our lists to contain two kinds of things. From the definition of
values, it is visible that we instantiate A to be Val I' ¢ and Bto be Ne I' [ ¢ ]. This
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means that our lists can either be entirely made out of ordinary values of type o or at
some point the tail of the list or the whole list is a neutral term of type [ o 1.

renval : V{I' A 6} = Ren ' A = Val ' ¢ = Val A ¢

nat} o« v = renNf a v
[ 0 1} a v = mapLV (renval {o = 0} «a) (renNe o) v

To rename a value of natural numbers we apply the renaming of normal forms, since we
actually have a normal form. For lists, we map over the list with two functions. The
first one is applied if the element at hand is a value and the second one is applied if the
element is a neutral term.

renval {o
renval {o

eval : V{I' Ao} - Env [ A = Tm[' 0 — Val A o

eval v ze = nze

eval v (su t) = nsu (eval v t)

eval v (rec z f n) = natfold (eval v z) (eval v f) (eval 7 n)
eval v nil = nillV

eval v (cons h t) = consLV (eval 7 h) (eval 7 t)

eval 7 (fold z f n) = listfold (eval v z) (eval v f) (eval 7 n)

For evaluating ze and su we use the constructors from normal forms and for nil and
cons we use the constructors from ListVal. rec and fold are turned into their semantic
counterparts which are defined as follows.

natfold : Val I' 0o - Val I' (¢ = 0) — Val ' nat —» Val I' ¢
natfold z f (nenat x) = reflect o (nrec (reify _ z) (reify _ f) x)
natfold z f nze =z

natfold z f (nsu n) f renld (natfold {0 = 0} z f n)

listfold : Val I' 7 - Val I' (6 = 7= 7) =2 Val ' [ o] > Val I' 7
listfold z f (nelLV x) reflect 7 (nfold (reify _ z) (reify _ f) x)
listfold z f nillV =z

listfold z f (consLV x xs) (f renld x) renId (listfold z f xs)

The proofs in evallem for the constructors are straightforward. For both rec and fold
case, we use a property that a renaming can be pushed inside a semantic fold.

renvalnatfold : (p : Ren I' A) —
renval p (natfold z f n)

~

natfold (remval p z) (remval p f) (renval p n)

renvallistfold : (p : Ren I' A) —
renval p (listfold z f n)

>~

listfold (renval p z) (renval p f) (renval p n)
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For reneval and subeval the additional proofs are quite simple. Mostly they are about
using the inductive hypothesis in the right place.

For normal forms, we are only going to show the additions to the definition of normal
forms and neutral terms. Renaming normal forms and neutral terms is very similar to
renaming terms and so are the proofs, we will skip them here.

mutual
data Nf (I' : Con) : Ty — Set where

nenat : Ne I' nat — Nf I' nat

ne[] : V{oe} > Nel' [oc] - NI [ 0]

nze : Nf I' nat

nsu : Nf I' nat — Nf I' nat

nnil : V{o} = Nf T [ o]

ncons : Y{o} > Nf 'oc - NfI' [ o] > NET [ o]

data Ne (I' : Con) : Ty — Set where

nrec : V{o} = NfI'o - NfI' (06 = 0) - Nel' nat - Nel o
nfold : V{o 7} —
NfETl 7 =Nl (6=7=7) 2Nel' [0] =Nl 7

The additions to reify and reflect are the following. For natural numbers, the algo-
rithm is the same as it was for base types. To reify a value of type list, we need to look
which one of the three constructors of ListVal we have. To reflect a neutral list, we just
wrap it in the ListVal constructor for neutral lists. This is what makes this special data
type useful for us.

mutual
reify : V{I'} 0 - Val ' 0 = Nf I' o

reify nat v

= v
reify [ 0 ] (nelV x) = nel] x
reify [ o ] nilLV = nnil

reify [ 0 ] (consLV x xs) = ncons (reify _ x) (reify _ xs)

reflect : V{I'} 0 = NeI' 0 — Val I' ¢

reflect nat n
reflect [ o 1 n

nenat n
nelV n

We do not need to change anything about our normalisation function, which is just
composition of reify and eval. To scale up the proofs of soundness and completeness,
we need to extend the logical relation R.

SR VI o - ¢t :TmIlo) = (v :Val ' 0) — Set

nat 2 t R nenat x = t ~ embNe x
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nat 3 t R nze =t ~ ze

nat >t Rnsuv =% (Tm _ nat) (A t> -t ~ sut’ X nat 5 t’ R v)
[ o] 2t R nelLV x = t ~ embNe x

[ o] >t RnillV =t ~ nil

[o]l] >t RconslVvvs=YX (Tm_o) Ah =X (Tm_[o]l)
(OAhs -t ~cons hhs Xx c hRvXx [oc] 2 hs R vs))

In the successor case, v is the predecessor of nsu v. To relate v with a term, we need to
also have the predecessor of t. Because of this, the definition is an existentially quantified
type, which says that there is a term t’, such that su t’ is convertible to t and t’ is
related to v. The situation is similar for lists in the cons case, only there we need to have
two existentially quantified types, one for the head and one for the tail of the list.

natfoldR : 0 >z R zv — (0 = ¢0) 2 f R fv — nat > n R nv —
0 O (rec z f n) R natfold zv fv nv

listfoldR : T2 zRzv - (c = 7= 7) 2 fR fv —
[o] 2 xs R xsv —
7 3 (fold z £ xs) R listfold zv fv xsv

To prove the fundamental theorem, we use two new lemmas, natfoldR and 1istfoldR
in the cases for rec and fold. The first property says that we can relate the syntactic
construct rec with its semantic counterpart natfold if their corresponding components
are related by the logical relation R. listfoldR is similar, just for lists. For reifyR we
need to induct also on the value we are reifying in the case of natural numbers and lists.
The modifications to fund-thm and reflectR are straightforward. Once we have proved
the fundamental theorem and modified reifyR and reflectR we are done, the remainder
of the correctness proofs do not need any changes.

We will now look at examples of evaluation and normalisation on natural numbers and
lists. First, we define addition on natural numbers.

add : V{I'} - Tm I' (nat = nat = nat)
add = lam (lam (rec (var vze) (lam (su (var vze))) (var (vsu vze))))

This may seem a bit confusing at first, but what it basically says is this. If the first argu-
ment is zero, then the result is the second argument. If the first argument is something
else, then we apply that many successor constructors to the second argument. A more
convenient notation would be add = \x.\y.rec y (A\z.su 2) .

Evaluating the addition function gives us a really similar result on values. rec has been
replaced with natfold and we have the extra arguments for the value level functions.

)\{A}OJV—))\{Al}OQVl—>
natfold v; (A {As} as vo — nsu vy) (renNf o v)

Reifying this (normalising the original term) gives us back the original term. We now try
to add together two natural numbers, two and two. Thus, we are evaluating the following
term.

app (app add (su (su ze))) (su (su ze))
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Since the function add is applied to two concrete arguments, not variables, the computa-
tion can be fully performed. Evaluating this term gives the number four as the result.

nsu (nsu (nsu (nsu nze)))

Since we represent values of natural numbers as normal forms, the normal form of the
term is exactly the same as the result of evaluation.

For lists, we look at folding a list of natural numbers. As the initial list, we will have a
list with three elements: zero, one and two.

0,1,2 : V{I'} - Tm " [ nat ]
0,1,2 = cons ze (cons (su ze) (cons (su (su ze)) nil))

By folding over this list with the addition operation and zero as the default value, we are
actually summing together the elements of the list.

fold ze add 0,1,2
Evaluating this term gives us the number three as the result.
nsu (nsu (nsu nze))

Again, due to our representation of values of natural numbers, the result of evaluation is
the same as the result of normalisation.

3.4.2 Pairs and streams

We will represent pairs as regular Agda pairs defined in Data.Product. A pair is a record
with two fields: the first projection and the second projection. The type of the second
projection depends on the value of the first projection. We will not use this dependently
typed aspect of Agda pairs for our representation of pair values. This definition of pairs
is the same which we have used for existential quantification.

record X (A : Set) (B : A — Set) : Set where

constructor _,_
field
proj: : A

projs : B proj;
The non-dependent version can be defined as
AXB=XA\N_—B

We are going to define an infinite data structure to represent values of type stream. Our
streams are parametrized by A, meaning that they contain values of type A. Every stream
has a head (which is a single element) and a tail (which is another stream). This seems
similar to lists, but the use of coinductive records allows us to have infinite streams,
whereas lists are finite.

record Stream (A : Set) : Set where
coinductive
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field shead : A
stail : Stream A

Since streams are infinite, we cannot use the same equality which we did for finite data
types. For streams, we are going to use bisimilarity.

record _S~_ {A : Set}(s s’ : Stream A) : Set where
coinductive
field hd~ : shead s = shead s’
tl~ : stail s S~ stail s’

postulate SEq : V{A} — {s s’ : Stream A} - s S~ s’ — s = g’

S~ is strong bisimilarity for streams. The definition of S~ tells us, that if two streams
are bisimilar, then inspecting the two streams in lockstep, we will always have that the
heads are equal and the tails are bisimilar. We postulate that S~ implies equality. We
cannot prove this, but this allows us to continue using equality in our proofs. The fact
that the equality of streams is not just strong bisimilarity can be seen as a flaw in Agda.

Next, we define lookup and tabulate which are the semantic counterparts of proj and
tup from terms.

lookup : V{A} — (s : Stream A) — (N — A)
lookup s zero shead s
lookup s (suc n) = lookup (stail s) n

tabulate : V{A} — (N — A) — Stream A
shead (tabulate f) = f zero
stail (tabulate f) = tabulate (A n — f (suc n))

To look up the element at position zero in the stream, we return its head element. For the
successor case, we look up the element at the preceding position in the tail. Accessing the
field of a record can be done using the field name as a function and giving it the record
as a parameter. This is possible only if the namespace of the record has been opened.

tabulate constructs a stream from a function. As the result is an infinite structure, we
do not want to compute all of it at once. To avoid that, we use copatterns [1], a feature
of Agda, which can be enabled by the copatterns compiler flag. In the definition of
tabulate, instead of defining how to transform a function to a stream, we define it by
what observations we can make on the result. Observations consist of an experiment
(copattern) and its outcome (the right hand side of =). We can observe, that taking the
head of the tabulated function f is the result of applying the function £ to zero. We can
also observe, that taking the tail of the tabulated function is the same as tabulating the
original function £ with the indices shifted by one.

Next, we show that lookup and tabulate cancel each other out.

lookuptab : V{A} — (f : N —- A) — (n : N) —
lookup (tabulate f) n = f n
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tablookup : V{A} — (s : Stream A) — tabulate (lookup s) S~ s

The proof of lookuptab is by induction on the argument n. As S~ is an infinite structure,
the proof of tablookup is defined using copatterns.

We will represent values of pair types as actual pairs and values of stream types as the
coinductive record defined earlier.

Val : Con — Ty — BSet

Val I' (o A7) =Val ' 0 x Val I' 7
Val [' < 0 > = Stream (Val I' o)

To rename a pair, we just rename the components. Renaming a stream is defined using
copatterns. Taking the head of a renamed stream is the result of renaming the head
element of the stream and taking the tail of the renamed stream is the result of renaming
the tail.

renval : V{I' Ao} 2 Ren ' A = Val ' ¢ — Val A ¢

renval {0 =0 AN T} a v =

(renval {o = o} a (proj; v)) , (remnval {o = 7} a (projs v))
shead (renval {0 = < ¢ >} a v) = renval {0 = ¢} a (shead v)
stail (renval {0 = < ¢ >} a v) = renval {0 = < ¢ >} « (stail v)

A renaming can be pushed inside tabulate and lookup, which is described by the follow-
ing two properties. The proof of renvallookup is by induction on the natural number
n. The proof of renvaltab uses copatterns, since S~ is an infinite structure.

renvallookup : (o : Ren I' A)(s : Stream (Val I' 6))(n : N) —
renval « (lookup s n) = lookup (renval o s) n

renvaltab :(f : N - Val ' 0) — (o : Ren ' A) —
renval o (tabulate f) S~ tabulate (A n — renval a (f n))

Now we will look how to evaluate pairs and streams.

eval : V{I' Ao} - Env I ' A = Tm[' 0 — Val A ¢

(eval v a) , (eval v b)

proj; (eval v t)

projs (eval v t)

lookup (eval 7 s) n

tabulate (A n — eval v (f n))

eval v (a ,, b)
eval v (fst t)
eval 7 (snd t)
eval v (proj n s)
eval v (tup f)

To evaluate a pair, we evaluate both of its components and then combine the values to a
pair. To evaluate fst and snd, we first evaluate the pair and then project out the result.
For proj and tup, we need to transform them to lookup and tabulate.

In the proof of evallem, the cases for pairs are similar to other proofs. For the proj
case we need to apply renvallookup and for the tup case we need to apply renvaltab
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to make the proof succeed.

For reneval and subeval the additional proofs are mostly about applying the inductive
hypothesis in the right place.

To the definition of normal forms we add cases for constructing a pair and constructing
a stream. To the definition of neutral terms we add cases for projections out of pairs and

streams.

mutual
data Nf (I' : Con) : Ty — Set where

= V{o1} > NfT'o > NET' 7 >N T (o0 AN T)
ntup : V{o} - N > Nf ["'o) - NET <0 >

data Ne (I' : Con) : Ty — Set where

nfst : V{o 7} - NeI' (6 A7) = Ne I' o
nsnd : V{o 7} = Nel (o A7) = Nel 7
nproj : V{o} = N = Nel' <o > = Nel o

To reify a pair, we just reify its components and from the results construct a pair of
normal forms. To reify a stream, we reify the results of the lookup function on the
stream. To reflect a pair, we reflect its components. To reflect a stream, we tabulate the
function which reflects the projections.

mutual

reify : V{I'} 0 - Val ' 0 = Nf I' o

reify (o0 A 7) v = reify o (proj; v) ,-, reify 7 (projs v)
reify < o >v = ntup (A n — reify o (lookup v n))

reflect : V{I['} 0 - NeI' 0 - Val I' ¢
reflect (¢ A 7) n = (reflect o (nfst n)) , (reflect 7 (nsnd n))

reflect < ¢ > n = tabulate (A a — reflect o (nproj a n))

The additions to the logical relation R are rather small compared to the case for lists and
natural numbers.

DR V{I'Y o - (t :TmI' o) - (v:Val I' ) — Set
(0o A7) Dt Rv=0>fst t Rproj; v X 7 3 snd t R projy v
<o >2tRv =Vn-— o0 >projntR lookup v n

A syntactic pair is related to a semantic pair if their first projections are related and their
second projections are related. A syntactic stream is related to a semantic stream if the
results of the lookup functions proj and lookup are related for every index n.
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Proving the fundamental theorem for the projections fst, snd and proj is easy, we just
need to project out the right element from the proof of the whole. For ,, we need to
show that the theorem holds for both components. For tup we need to show that the
theorem holds for every projection of the stream. For reifyR and reflectR we need
to show that every projection of the pair or stream satisfies the same property, which
follows by corresponding inductive hypothesis. This concludes the correctness proof of
these extensions.

We will now look at examples of normalisation for pairs and streams. First, we look at
taking the first projection of a pair consisting of a variable of type pair as the first and
second projection. Since ¢ A ¢ is in the last position in the context, we know that var
vze is of type ¢ A .

fst-proj : V{I'} — Tm (I' < (0 A ) G A W)
fst-proj = fst (var vze ,, var vze)

Evaluating this gives us the following value, a meta level pair.
ne (nfst (nvar vze)) , ne (nsnd (nvar vze))

Reifying and embedding it gives us the normal form of the original term, where the
variable var vze has been n-expanded into a pair.

fst (var vze) ,, snd (var vze)

For streams, we first need to define the function which will be used for constructing
the stream. We define it to give back a syntactic natural number one greater than the
argument it was given. This means that the resulting stream has elements starting from
one and increasing by one.

plus-one : V{I'} — N — Tm I' nat
plus-one zero = su ze
plus-one (suc n) = su (plus-one n)

To create a stream from it, we must apply the tup constructor to it.

stream : V{I'} — Tm I' < nat >
stream = tup plus-one

Evaluating the resulting stream gives us the following value. The result of looking up
element at position n in the stream is the value of the term given by the function plus-one
applied to n.

tabulate (A n — eval idE (plus-one n))
Reifying this value gives us
ntup (A n — lookup (tabulate (A n; — eval idE (plus-one n;))) n)

This is basically the result from evaluation wrapped inside 1lookup which is then wrapped
inside the tabulation constructor for normal forms.

Normalising the first projection of the stream
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proj (suc zero) stream
gives us the normal form of the element at that index.

nsu (nsu nze)
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4 Conclusion

In this thesis, we have studied the problem of normalising programs in simply typed
lambda calculus, which is the simplest form of a functional programming language. We
worked our way up to a formally verified implementation of normalisation by evaluation
for a basic system with only base and function types. We later extended our object
language with some additional data types: natural numbers, lists, pairs, and streams.
Both the implementation of the normaliser and the correctness proofs were done in the
dependently typed programming language Agda.

The parts about streams are probably the most interesting. Handling infinite structures
is intrinsically different from handling finite structures. Indeed, it is an active area of
research [1]. When representing this in Agda, one also needs to represent this infinity
in such a way that all the programs (and proofs) are still accepted by the termination
checker. To accomplish this, we used copatterns, a new feature in Agda.

One possible direction for further development would be to use a more common definition
of streams, where streams are constructed as an infinite unfolding of a function and a
start state. The following is an example of an unfold on value level streams.

unfold : V{A S : Set} — (S - A X S) —+ S — Stream A
shead (unfold f s) = proj; (f s)
stail (unfold f s) = unfold f (projs, (f s))

In the current work, we have looked at specific examples of inductive and coinductive
data types. Another possible direction for further work would be to look at an entire
class of data types together. Also, one area which could be further investigated, is the
part about the relative monadic properties of the whole normaliser, as we currently only
focused on the evaluator.

This work was supported by the Estonian Science Foundation grant no. 9219.
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