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1 Introduction

In recent years, the automotive domain has seen a transformation of vehicular architec-
tures from legacy, analog, serial, mechanical control to connected vehicles with software
and network-centric architectures. Autonomous Driving (AD) furthers this transformation,
replacing human control with software control, guided by intelligent algorithms. AD soft-
ware relies on input from telemetry of diverse sensors (LIDAR, Camera, Radar, IMU etc.)
to create perception of the driving environment and localisation for navigational planning
and motion-control [223]. Integrity and availability of sensing input are critical to ensuring
the robustness of autonomous control decisions [223] [276] [10]. Security of automotive
technologies has been a burgeoning area of research for the last decade since proof-of-
concept attacks on controller-area-networks (CAN) and infotainment systems introduced
to the public consciousness, the potentiality for an attacker to exploit insecure wireless
networks and software vulnerabilities to cause unsafe and adverse driving actions [196].
Within these attack models, the CAN messages for vehicle actuation communicated be-
tween embedded electrical (E/E) components can be manipulated to alter the behaviour
of the vehicle to produce unsafe outcomes. The attack surface is increased for AD architec-
tures for which the software replaces the human-in-the-loop, and thus the software acts
as the interpreter of sensing data, the manager of decision-control and the observer of
driving behaviour. Within this software-centric transformation, methods and tools to test
the robustness of AD software to cyber attacks and to assess vulnerabilities of decision-
control functions is of vital importance in the digital transformation of automotive.

1.1 Problem Statement

AVs have been introduced into real-world driving environments through diverse trials of
ride-hailing services [279] [214] [343] and last-mile public transportation shuttles [122] [73] [17].
During the course of their operation these vehicles have experienced a number of adver-
sarial events. Activists in San Francisco have used adversarial examples in the form of traf-
fic cones placed at incautious areas of the driving environment (Figure 1a) and stop signs
printed on t-shirts (Figure 1b). The aim of these attacks is to induce the object detection
to misclassify the adversarial example as an integrous part of the driving environment,
interrupt the driving mission, and cause decision uncertainty, effectively immobilising the
vehicle [203] [221] [147]. Adversaries are motivated by the challenge of manipulating the
autonomous cognition which is supplanting human control and the possibility to induce
the algorithmic control to perform actions which impact safety, security and result in an
unsuccessful mission.

¥ G

How a t-shirt stopped this autonomous car in its tracks

(a) Safe Street Activist Group Place Cone of Cruise AV [147] (b) Activist with Adversarial Example T-Shirt [221]

Figure 1: Attacks on AV ride-hailing systems
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AVs operating in the road environment are further susceptible to a range attacks.
These include usage of lasers to occlude perception sensors (Camera, LIDAR) [302] [159]
[5] [88], projection of adversarial examples on the road environment including transpar-
ent images [208] and physical invariants (malicious road patches etc.) [316] [114] [178]
and jamming and spoofing of GNSS, to name a few. Jamming and spoofing of GNSS is
a recurrent feature of driving environments located within and in proximity to areas of
geopolitical tensions (See Figure 2).

GPSIAM 'y

Daily maps of GPS interference B,
About | FAQ ¥a'

Moxa

Benukuii HoBropoa

Level of GPS interference favn
Low 0-2%
Medium2-10%

M High > 10%

o v
— P

Figure 2: GNSS Jamming Activity within the Baltic States 10th January 2025 [310].

Given the nascent nature of AD technology, there is a predominant need to investigate
the vulnerabilities of real-world, operational AD systems to cyber attack, understand how
the existing design lacks robustness to cyber attacks and develop mechanisms for testing
and assurance for operational readiness.

1.2 Problem Motivation

There is a preponderance of challenges of cybersecurity of AD software. This thesis fo-
cuses on three main areas, vulnerability testing, analysis of system impact from cyber
attacks and testing methods, tools and processes. The primary motivation for character-
ising the problem within these areas and orienting the focus of the thesis in this direction
is our overall aim which is to assess the vulnerability of a real-world vehicle to cyber attacks
and develop knowledge and tangible artifacts which can enhance cybersecurity testing.
As evidenced through the aforementioned examples of attacks on real-world vehicles the
robustness of the design of AD software is challenged by cyber attacks, particularly, inno-
vative attacks which develop from edge and corner cases. Development of AD technology
has predominantly focused on complex areas of system integration and safety validation.
Initial supporting technologies such as the ROS middleware [2] and Autoware software
framework [4] were designed without mechanisms for secure communication, authenti-
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cation and integrity checking. Further, within the cybersecurity domain, research is pre-
dominantly conducted in a silo, isolated from the knowledge of AD software developers,
control system designers and safety validation engineers. There are a sparsity of studies
that contend with AD software developed and customised for a real-world vehicle with
algorithms optimised for its body physical properties, driving maneuvers and ODD.

Cybersecurity testing of AD is challenged by a lack of comprehensive testing meth-
ods which delineate the affect cyber attacks have on system behaviour. Binary pass/fail
metrics are the predominant means for evaluating the success of attacks in contrast to
metrics which extrapolate a more meaningful evaluation of system behaviour in the con-
text of safety and security [263]. Algorithm designers need to receive detailed feedback
from cybersecurity testing to aid root-cause analysis of safety failures. Whether the failure
can be attributed to a lack of optimisation of the algorithm to a given scenario-based test
or if there exists a lack of robustness to cyber attack. Further, there is limited knowledge
on how attacks propagate within this system-of-systems architecture, what crucial break-
points exist which affect control behaviours and what response mechanisms are available.

At a practical level, to test software used in real-world, operational vehicles, a greater
understanding of testbed technologies and tools for structured testing is required. Attack
models overwhelmingly are targeted at the physical layer. Such examples include shining
lasers into LiDAR sensors, mirror reflections aimed at the camera and adversarial exam-
ples targeting road markings and traffic signs. These attacks, are primarily conducted in
simulation environments, using generic, off-the-shelf algorithms and vehicle sensor con-
figurations. For applicability to real-world programs, there is a need to investigate the
use of diverse testbed technologies including digital-twins which have fidelity to the soft-
ware stack and sensor configurations of the vehicle. Attacks are constructed as proof-of-
concepts, which for usage in operational settings, require customisation and/or reverse
engineering to deploy the attack outside its originating environment [263] [223]. Devel-
opment of structured attack test generation in simulation environments is essential to
enable agile and repeatable testing, lower the cost of testing and enable reproducability
and wider community usage.

1.3 Thesis Contributions

This thesis provides foundational knowledge for cybersecurity testing of AD software in
the context of real-world, operational systems. This work investigates the robustness of
AD software to cyber attacks and focuses on addressing a range of key areas of concern.
We propose solutions to cybersecurity testing to address the aforementioned challenges
that provide greater depth of insights into the robustness of AD software. More specifi-
cally, the thesis provides the following contributions to cybersecurity testing:

e We propose diverse iterative and agile AD cybersecurity testing methods. We apply
them to a case study of a real-world, operational, AV shuttle.

¢ We demonstrate the utility of these methods using a testing tool-chain approach
consisting of diverse test-bed technologies.

e We discover vulnerabilities in both modular and end-to-end software architectures.
Specifically in the planning and localisation software modules of the modular archi-
tecture, and the training of neural networks in the end-to-end architecture.

e We evaluate the findings with AD software control designers and safety validation
engineers and use this knowledge to understand system optimisation and develop
methods for root-cause analysis.

14



e We present tools for AD cybersecurity testing to enhance structured testing, and
community efforts towards standardisation of testing.

The itemised list of open-source tools are as follows:

e ADSecData Platform - Datasets of experiments conducted in this thesis: https:
//sites.google.com/view/adsecdataplatform/home

e REACT - Dynamic intrusion response system for automotive: https://github.
com/AndrewRobertsEst/REACT

e Self-driving testbed for cybersecurity demonstration videos https://tinyurl.
com/2xxvvkzd

e ADSecLang - Domain specific language for AD cybersecurity testing: https://github.
com/AndrewRobertsEst/AttackLa

e FuzzSense - Fuzzing tool for AD software: https://anonymous.4open.science/
r/FuzzSense-E680/README . mdFuzzSense

1.4 Thesis Structure

The thesis is divided into 7 Chapters. Chapter 2 details background information about AD
software, in particular the foundations of AD software frameworks, cyber threats and a
discussion of some related work (Pub. VIII). Next, in Chapter 3, we approach the problem
of evaluating affects of cyber attacks within the AD software. In this chapter, we present
a methodology for combined security and safety testing and utilise a testing-tool chain
approach to explore the problem amidst a range of diverse cyber attacks at the algorithm
and sensor level (Pub. IX, VII, IV). Chapter 4 deepens the analysis of cyber attacks in AD
software by presenting methods for fingerprinting cyber activity, debugging AD software
and investigates mechanisms cyber incident response (Pub. VI, V). Chapter 5 presents
conceptual frameworks for structured and fuzz testing and open-data sharing(Pub. X, IlI,
I, I1). Chapter 6 provides direction for future work. Chapter 7 concludes with a summary
of the findings and their relevance to the broader community.
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2 Preliminaries

The architecture of autonomous vehicles consist of a diverse technology stack incorpo-
rating from the low-level sensing, electromechanical devices to the high-level software
control. To understand the cybersecurity implications of driving autonomy, it is necessary
to first understand the technology stack of AVs. Within this section we will present first,
a high-level overview of autonomous driving. Consequently, a more detailed extrapola-
tion of the AV technology stack will be presented within the context of the case study AV
utilised in this thesis. Last, the cyber threats to autonomous driving are presented.

2.1 Autonomous Driving

To ensure a consistent taxonomy of driving autonomy, SAE [246] have defined diverse lev-
els of autonomy according to technology features and driving control. There are 6 levels of
driving automation according to the SAE Levels of Driving Automation (See Figure 3). Level
0 to 2 vehicular architectures are based on human driver control and supervision of the
vehicle. Level O represents legacy vehicles, there is no autonomy features and software
functionality is limited to the provision of warnings and driver assist notices. Level 1to
2, which is typical of modern connected vehicles, provide limited autonomy technologies
such as cruise control, lane-centering and steering, brake and acceleration support. Level
2 is a designation of popular limited autonomy technologies, OpenPilot [22] and Tesla Au-
topilot [332] (considered between level 2 and level 3). In level 2, the vehicular sensors
monitor the driving environment and from the sensing data, lane centering and adaptive
cruise control algorithms inform motion control and actuation decisions to maintain vehi-
cle position in the driving environment. The autonomy software does not perform com-
plex driving maneuvers such as overtaking and intersection management and is not able
to proactively respond to dynamic driving situations. The human driver is required to keep
control and supervision of the vehicle at all times. Level 3 offers limited self-driving func-
tionality with the requirement of human-control when the autonomy functionality en-
counters uncertainties that it cannot resolve. Full self-driving autonomy is defined within
level 4 and level 5. Within these autonomy levels, the autonomous software is expected
to control the vehicle without human intervention. This thesis focuses on self-driving au-
tonomy as defined from levels 4 to 5.

16
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Figure 3: SAE J3016 Levels of Driving Automation [246].

2.1.1 Autonomous Driving Software

Highly automated vehicles, SAE Level 4 to 5, exhibit a sensor layout which consists of
diverse sensors (Camera, LIDAR, RADAR, IMU, GNSS) and multiplicity of sensors to ensure
dense coverage. This is in contrast to semi-autonomous vehicles which predominantly use
camera and ultrasonic radar sensors. The number of camera sensors of semi-autonomous
vehicles can range from 3 in the case of comma ai to 8 in Tesla vehicle model [300]. In
highly automated vehicles, the AD software performs the tasks of perception, planning,
localisation and decision-control. Due to the reliance on algorithms to perform the driving
actions and the absence of active human supervision and intervention, highly automated
vehicles have the most robust sensing profile for perception and localisation. However,
due to cost, especially of the LIDAR and high-definition camera sensors, this architecture
is predominantly utilised for autonomous public-transit shuttles and specific commercial
use-cases such as logistics and freight [265]. Figure 4 displays the layout of sensors on a
level 4 AV for public transportation.
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Figure 4: Perception Sensor Layout of Autonomous Vehicle for Public Transport [87].

2.1.2 Autonomous Driving Software Frameworks

Architectures for AD are categorised in three types (Figure 5); modular/pipeline, end-to-
end and hybrid [244]. The modular/pipeline architecture compartmentalises the auton-
omy task pipeline (localisation, perception (detection), prediction, path planning, decision-
making, control) into modules. A major benefit of the modular approach is that each of the
algorithms for the AD tasks can be accessed and modified according to the requirements
of the vehicle development and testing team. This modular approach enables software
developers to work on each task, and more clearly understand the inputs, outputs and be-
haviours of each task in the pipeline. The modular architecture further allows the mixed
usage of commercial vendor developed modules with open-source modules. Each module
can be seen as the top of a hierarchical structure with sub-modules required for individual
processes. A module and its constituents can extend to hundreds of thousands lines of
code, considering the complexity of the task. This modularity can also be a disadvantage,
if there exists a lack of robustness of one module, it affects that performance of the oth-
ers. Further, there is additional effort to integrate modular components and ensure seam-
less communication and performance. The End-to-End architecture uses deep learning to
handle the entire navigation pipeline in an unified process. Sensing input is directed into a
neural network for processing of navigation decisions. The benefits of end-to-end include
a more simplified architecture and more holistic optimisation as optimisation takes place
on unified architecture rather than modular parts. Drawbacks include the requirements
for training data such as a need for large scale datasets and holistic data that includes edge
and corner cases. Also, the lack of transparency of the end-to-end DNN which resem-
bles a black-box. This opacity complicates efforts to debug and troubleshoot. The hybrid
approach uses elements of the modular and end-to-end architectures, leveraging neural
networks for path-planning, whilst maintaining separate modules for perception and con-
trol. The advantages of this approach the targeted use of deep learning for more complex
tasks, and deterministic algorithms for tasks that require reliability and interpretability.
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The drawbacks of the hybrid approach are complexity of integration and resource usage
driven by combined use of deep learning and deterministic algorithms [244].
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Figure 5: Autonomous Driving Architecture [244]

There are two predominant software frameworks for levels 4 and 5 autonomy, Auto-
ware [?](Figure. 6) and Apollo [15](Figure. 8).
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Figure 6: Autoware Architecture [?]

Autoware [?] is an open-source software framework, consisting of a modular/pipeline
architecture that encompasses the full-range of AD functionality (localisation, percep-
tion (detection), prediction, planning , control) with defined interfaces and APIs. Each
of the modules can take diverse sensor input to inform task performance. The develop-
ment of Autoware is supported by the Autoware foundation which consists of contributors
from industry and academia. The AV technology stack of Autoware (Figure 7) is based on
ROS [143]. ROS is a middleware that consists of software libraries to support the packag-
ing of hardware and devices and a messaging service to support communication between
actuation and high-level software processes.

Self-driving Unit

Control
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Coom [ o ]

Many/Multi Cores

GPU FPGAs

Figure 7: Autonomous Vehicle Technology Stack - Autoware [143]

Apollo [15] is an open platform, end-to-end architecture. The open-platform means
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that development and testing teams can access the simulation and execute tests, how-
ever, the neural network is a black-box and therefore its training and configuration is not
open-source. Developer access needs to be granted by Apollo to gain advanced privileges.
Cyber RT, like ROS, is the middleware software which underpins the run-time communi-
cations required for real-time operation.

ModelTraining m S

Practical Training
Vehicle Evaluation and calibration Sensor Calibration m
Mi

Tool Service

Application
Sanitation Logistics Inspection Sharing Bus

Application
Software
(Universal)

Education

Functional Safety

Software Core
(Core)

va2x

Apollo Cyber RT Adapter

RTOS

Reference Hardware Hardware Interface

Hardware Device

Certified Drive-by-wire Vehicle

Open Vehicle Interface

Updated
in10.0

Figure 8: Apollo 10.0 Architecture [15]

2.2 iseAuto: Autonomous Vehicle for Public Transportation

This thesis uses a real-world operational AV system as a case-study. The iseAuto [254](see
Figure 9), is a SAE level 4, real-world AV shuttle for public transportation. It provides last-
mile shuttle transport for public users in Tallinn, Estonia and has provided similar services
for cities in European countries such as Norway and Greece.

Figure 9: iseAuto autonomous shuttle [185]
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2.2.1 Architecture

The architecture of the iseAuto displayed in Figure 10 consists of advanced sensors, the AD
platform which contains the AD software, the supporting compute platform and networks,
and the low-level control and actuation [256].
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Figure 10: Autonomous vehicle high-level functional architecture [256]

2.2.2 Sensor Configuration

Sensors are connected to the AD platform running Al-based models for identification, de-
tection and segmentation of objects and environmental information through a Gigabit
ethernet switch. Data flow is managed and synchronized directly in the Autoware stack,
sending data as ROS topics to concurrent threads (nodes) running inference over the Al-
based deployed modules. Sensing information are used for perception-related function-
alities such as object detection, segmentation and sensor fusion.

The iseAuto uses a multi-LiDAR sensor system for perception and localisation. Two
Velodyne LiDARs are mounted at the top front (VLP-32) and the back (VLP-16) of the vehi-
cle, in addition to two Robosense RS-Bpearl at both sides (left and right), to decrease the
sensor blind zone around the vehicle. Table 1 lists the iseAuto sensors.

Table 1: Autonomous Vehicle Sensors

Sensor | Model

3D lidar (front) | Velodyne Ultra puck VLP 32
3D lidar (rear) | Velodyne VLP-16

2xSide lidar Robosense Bpearl

Safety lidar Ouster 0S0-90 (Safety)
3xCamera Flir

GNSS Trimble BX992

Radar Tl
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2.2.3 iseAuto Autonomous Driving Software
The iseAuto uses Autoware.ai [144] autonomous software stack. As Autoware is a mod-
ular architecture, each of the software modules of the iseAuto autonomy platform are
customised to the requirements of the vehicle. These include the types of missions, body
physical profile and driving environment.

iseAuto uses ROS to communicate with different blocks of the software stack. Figure 11
depicts a ROS-GRAPH displaying only a small subset of the nodes involved in communicat-
ing sensing data to the trajectory planning algorithm involved in the overtaking operation.

R
fop.pdate.ollouts.rumber -\ /JT%
‘ dule_mlinn!s_denslly

,é\-'_—' Vad

Jop trajectory_evaluator Jop_curr_global_local_ids
Jsafety_border
Iop_global_replan
Idynamic_collision_points_rviz

Tlocal_weighted trajectories \

Nane_waypoints_array

‘/ Hoca slected tajectory vz

Figure 11: ROS Graph of AV Shuttle During Overtaking Scenario

A part of the ROS nodes/topics running on the vehicle are represented in Figure 12. The
software stack is mainly composed of the following main components, sensing and per-
ception, mapping, localization and motion planning. Perception modules runs Al-based
modules for detection, segmentation and interpretation of traffic scenes. Localization and
mission planning receive constant feedback from vehicle and global positioning to gener-
ate new control commands.

Sensing & Perception Module

The algorithm uses the output of the kf_contour_track algorithms to consider all the per-
ceived objects based on the LiDARs point cloud in its local path planning. Earlier, the
euclidean clustering algorithm received the filtered point cloud data and prepared point
clusters, which is the input of the kf_contour_track. This combination of cluster and con-
tour tracking is done in each sequence for the open-planner to evaluate possible trajec-
tories and create the behaviour based on that.

Localisation Module

This module provides accurate information regarding the position and orientation of the
vehicle. Using a NDT matching search algorithm, it identifies the best matching position
based on sensor perception. It uses input from the IMU and the point cloud generated by
the LIDAR. Then, it attempts to match the points from our current scan to a grid of prob-
ability functions derived from the map. NDT matching algorithms can also benefit from
the GNSS sensor, which provides initial rough estimates of localization on geo-referenced
maps, thereby avoiding any sudden errors in localization calculations that may result in
failures. Figure 13 displays the flow of the localisation algorithm within the AD system.
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Figure 13: Localisation Algorithm Flow within AD System.

Mission & Motion-Planning Module

The iseAuto uses OpenPlanner [56] as its planning algorithm(see Figure 14). OpenPlanner
is one of the most widely used path-planner modules in AD software. In the latest version
of this algorithm, which is currently 2.5, the module has become noticeably more ad-
vanced in terms of supporting various high-definition map formats, predicting the trajec-
tories of other actors, and using a kinematics-based trajectory generator [56]. This version
is compatible with Autoware.ai 1.15. Open-planner combines global and local planners
that jointly utilize the road network map to generate local waypoints based on a global
route and manage discrete behaviours such as avoiding dynamic obstacles and following
traffic lights.

For the AD system to plan a mission, firstly, a global planner generates a global ref-
erence path using a vector (road network) map. The function of the global planner is to
stipulate a route between the starting position and goal position of the mission on the
road map. The local-planner generates smooth and obstacle-free trajectories in the oper-
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/local_weighted_trajectories

ational local domain following the global route.

The local-planner consists of several modules (see Figure 15); trajectory generation,
trajectory evaluation, intention and trajectory estimator, object-tracker and behavior se-
lection (decision making) [57].

The trajectory generation module generates alternative tracks parallel to the main
path defined by the global planner. These tracks are named roll-outs (see Figure 16).
The trajectory evaluation module assesses all possible roll-outs and the data input from
sensed-data of the AV and makes a cost estimation. The behaviour selector will lead the
AV to motion on a roll-out based on the least-cost. Figure 16 shows how open-planner
selected roll-out number 6 in order to pass the non-player character (NPC). It also detects
the curb lines and avoids those roll-outs which intersect the curbs.

Table 2 displays the input and outputs of each of the local-planning modules (Note.
intention and trajectory estimator and object-tracker are not visible are still developmen-
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tal).

Table 2: Local-Planning Module

Node Input Output

Trajectory Generator Initial_Pose Local Trajectories
Current_Pose
Current_Velocity

Lane_Waypoints_Array

Trajectory Evaluator ~ Current_Velocity Local Trajectory_Cost
Current_Pose
Local_Trajectories
Lane_Waypoints_Array
Predicted_Objects
Current_Global_Local_IDS

Behavioural Selector  Current_Velocity Current_Behaviour
Current_Pose
Local_Trajectory_Cost

Local_Weighted_Trajectories

Control Algorithm
The local motion planning algorithm generates a trajectory (or a set of control commands
for the AV) by minimizing a cost function, within a workspace, that includes a set of design
parameters. The cost function constitutes the rules for motion-planning which inform the
decision-making for autonomous driving.

The cost function is built on five factors and calculated in Equation 1:

Weent Ceent !
Wtrans Ctrans
C= WiongColl | - ClongColl (1)
WiatColl Crarcon
Wyis Cyis

where, C..p; is the cost associated to the central trajectory and is designed to keep the
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vehicle in the central trajectory; C; 4 is the transition cost that prevents the vehicle from
jumping between roll-outs; Cyynecon and Ciaicon are the cost of the longitudinal and lateral
collision respectively, and finally C,;, is the weight associated to the visibility [207]. Each
of these costs are weighted by their respective weighting factors w; [58].

2.2.4 Low-Level Control

Low-level control is at the base of our software stack having task to give actuators the
right commands to generate a desired behaviour. Analog controllers have the function
to follow a specific reference signal. It is clear that such signals are measured by trans-
ducers and applied to actuators as current or voltage signals to apply a torque to a motor
at the low level. The most common and well known analog controller in automotive is
the ECU, which regulates injection, speed, and other engine parameters. Brake control
modules are also very common and control various aspects of the braking system, such as
ABS, ESC, traction control, and brake force distribution. Now, assuming that our goal is to
keep any value of cruise speed, a velocity regulator works by receiving a measure of the
current speed, comparing it to the reference, and generate a control signal to accelerate
or brake accordingly. Low level controllers typically work on a simple control feedback
loop involving some type of linear system model (or a linearized one). The most common,
state of the art, and well established controller in automotive is the PID controller. They
are wide spread in automotive for their simplicity, robustness, usability and real-time ca-
pabilities. A PID controller continuously calculate an error signal based on the difference
between a desired setpoint and the measured process variable, and then adjust the con-
trol output accordingly. They use proportional, integral, and derivative actions to regulate
a vehicle actions. The underling equation is relatively easy involving three constants pro-
portional, integral and derivative constants, typically indicated as K, K;, and K, to weight
the each action respectively. With reference to Figure 10, PID controllers are at the base
of the "drive controller" and "steering controller" block. Control theory provides a very
stable mathematical theory about analysis and synthesis of the controllers, thus how dis-
turbance might affect the controller is, in principle, well known. This work aim to provide
insights on how the behaviour of the controller might affect the decision-making blocks
in a real-world, operational AV.

Intermediate Layer/Master Controller

The role of the Master Controller is to parse analog input to the digital network of the
vehicle. The Master Controller communicates with the low-level control through the CAN
bus. The low-level control section in Figure 10 shows all the basic components in our
system, which are connected to the master controller by 3 different CAN busses:

e CANT1 is used to connect all safety critical components, such as brake systems and
electric motor.

e CAN2 is used for redundancy over all the safety critical components.

e CANS3 is dedicated to low-priority body-related functions such as door automation
and lighting.

The Master Controller receives data from the low level via CAN bus and forwards to
the upper-layers via ethernet. Then receives processed signals from the intelligent blocks
(the upper-layers) and generate the control commands for the actuators, parsed via CAN
bus. Basic data from low-level sensors are processed here and forwarded to the upper
layer, this includes speed, acceleration, encoder positioning, voltage and currents. The
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master controller directly communicates with the upper levels (i.e. AD Software) via ROS
topics flowing over the ethernet connected to the Ubuntu-based Autoware PC.

2.3 Cyber Threats to Autonomous Driving

Cyber threats to AD software can be categorised as threats to Al semantic components
and the Al system components [263]. Al semantic components directly influence the AD
model and are defined as the advanced sensor technologies (LiDAR, camera, RADAR, GNSS
etc.) which generate input data to the AD model. Al system components are the support-
ing infrastructure. They are defined as those components which comprise the underlying
infrastructure which supports the AD model and the operational state of the AV. Such ex-
amples of Al system components include the application software, networks, hardware,
and E/E devices. The aim of each threat category is to induce the AD pipeline to influence
driving actions which violate safe behaviour.

2.3.1 Al Semantic Components

The adversarial threat models contained in literature, of attacks against Al semantic com-
ponents, exploit the physical properties of the sensor technology and the semantic prop-
erties of the AD algorithms. Advancement in threat research has emanated from founda-
tional work by Eykholt et al. [267] and Petit & Shladover [223]. Eykholt et al. [267] devel-
oped adversarial generated robust physical invariants in the form of stickers with pixels
manipulated in a manner to that would affect the object detection DNN. These stickers
which were placed on environmental objects such as stop signs and pedestrians. They
demonstrated that these adversarial examples in the form of physical invariants, could
manipulate the logic of the DNN of an object detector to fail to recognise (disappearance)
or incorrectly classify (creation) the object. Affects to the vehicle included failing to stop
for stop signs and accelerating when the object detector misclassified the adversarial stop
sign as an 80 speed limit sign. Petit & Shladover [223] compiled one of the first lists of
potential attacks to AD. Many of the innovations in threat research emanated from the
directions provided in their paper, especially targeting machine vision and LiDAR. Since
the publication of these papers, there has emerged a diverse range of proof-of-concept
attacks against the Al semantic components.

Threats to camera perception and localisation centre on assessing limitations of the
camera hardware and the training parameters of the DNN. Threat models include jamming
or spoofing light signals using adversary infrared and laser devices. This technique aims to
exploit vulnerabilities of the camera hardware and filtering within object detection algo-
rithms such as YOLO and R-CNN [337] [128] [321] [133] [305] [159] [317] [61]. Other attacks
include: manipulation of image pixels [267] [47][101] [212][206] [161] [27] [46], camouflag-
ing obstacles [335] [114] [302], projecting ghost or transparent images to make them ap-
pear physical [209] [191] [178] [5], adversarial generated malicious road patches [319] [316]
[132] [47] [134] and manipulating the bounding boxes used for object detection and colli-
sion avoidance so that obstacles appear larger or smaller than actual [163] [301] [277] [181].
Attacks against level 2 and level 3 autonomy focus on exploiting the parameters of ADAS
and LKAS systems [250] [138]. Studies which generate perturbations of lane-markings
have demonstrated vehicles can crash due to low-cost adversarial generated road mark-
ings [250] [138] [174]. Table 3 lists threats to the camera sensor.
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Table 3: Cyber Threats to camera perception and localisation

Cyber Threats to Camera Sensor

Paper Threat Model Attacker Knowledge | Test Environ-
ment
Object Detection
Luetal. [128] | Use of different angles | White-Box Simulation
and lighting for experi-
ments of perturbed physical
invariants.
Eykholt et | Robust physical invariants. | White-Box Real-World &
al. [267] Perturbation of Road Sign Simulation
Units (Stop Sign) using pix-
elized stickers to confuse ob-
ject detection.
Chen et | Manipulation of image pix- | White-Box Simulation
al. [46] els to fool DNN object detec-
tion.
Huang et | Manipulation of the param- | White-Box & Black- | Simulation
al. [163] eters of the bounding boxto | Box
manipulate confidence of R-
CNN and YOLO v3 object de-
tection.
Zhao et | Robust physical invariants | White-Box Simulation
al. [337] to manipulate R-CNN and
YOLO v3 object detection.
Xiao et | Adversarial generated 3D | White-Box Simulation
al. [319] mesh added to 3D ob-
jects to manipulate object
detection.
Zhang et | Camouflage vehicles using | White-Box & Black- | Simulation
al. [335] adversarial physical gener- | Box
ation against object detec-
tion.
Nassi et | Projected ghost objects on | Black-Box Real-World
al. [209] the camera sensor to fool
Tesla, autopilot, object de-
tection to perceive them as
physical objects.
Man et | Projection of ghost objects | White-Box Real-World &
al. [191] on the camera sensor to Simulation
manipulate object detection
(Yolo v3 and R-CNN).
Wu et al. [316] | Adversarial generated mali- | White-Box Simulation

cious patches to downgrade
object detection (COCO and
Yolo v2).
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Xu et al. [321]

Adversarial T-Shirts (moving
physical invariant) against
Yolo-v2 and R-CNN object
detection.

White-Box

Simulation

Hu et al. [114]

Adversarial generated cam-
ouflage attack against object
detection.

White-Box & Black-
Box

Simulation

Hamdi et
al. [101]

Semantic manipulation of
the learning parameters to
enable pixel manipulation of
the object detection DNN.

White-Box & Black-
Box

Simulation

Jietal. [133]

Manipulation of acoustic
signals used for communica-
tion with the IMU, triggers
motion compensation and
blurred camera image im-
pacting  object-detection
(YOLO v3/4/5, R-CNN and
Apollo).

White-Box & Black-
Box

Simulation
Real-World

Lovisotto et
al. [178]

Projection of physical invari-
ants to manipulate object-
detection (YOLOV3)

Black-Box

Simulation
Real-World

Wang et
al. [302]

Infrared light used to per-
turb camera sensor and ma-
nipulate object-detection of
Tesla, autopilot.

Black-Box

Real-World
Simulation

Kohler et
al. [159]

Laser perturbation of cam-
era sensor to distort object
detection.

Black-Box

Simulation

Wang et
al. [305]

Compresses dimensions
of detection boxes to ma-
nipulate  object-detection
(YOLOV3, R-CNN)

White-Box & Black-
Box

Simulation

Zolfi et al. [5]

Contactless translucent
adversarial generated patch
placed against the camera
lens to manipulate object
detection (YOLOV2,v5,
R-CNN).

White-Box

Simulation

Zhuetal.[317]

Placement of lighting bulb
on infrared pedestrian
detectors to attenuate the
lighting to perturb object
detection.

White-Box

Simulation
Real-World
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Davidson et
al. [61]

Spoofing of optical flow
sensing of the camera to
manipulate the flight of
the drone. Development
of RANSAC optical flow
algorithm enhancement.

White-Box

Simulation

Guo et al. [88]

Projection of modulated
light emission from an
adversarial source to induce
incorrect object-detection
of traffic-signs

White-Box

Real-World &
Simulation

Ma et al. [182]

Perturbation of  video
frames of the camera sen-
sor to increase latency of
object-tracking

White-Box

Simulation

Semantic Segm

entation

Nakka et
al. [206]

Attacker generates pertur-
bations in the image that im-
pact semantic segmentation
to cause the object detec-
tion to fail to detect road/-
navigational path frominter-
fering objects.

White-Box

Simulation

Nesti et
al. [212]

Adversarial generated road
and driving environment
(billboard)  patches to
impact semantic segmen-
tation to cause the object
detection to fail to detect
road/navigational path from
interfering objects.

White-Box

Simulation &
Real-World

Object Tracking

Jha et al. [132]

Manipulation of sensor
telemetry through physi-
cal attacks (road patches
etc.) induce the vehicle
to miscalculate distances
to pedestrians and other
driving obstacles. These
manipulations are gener-
ated by a DNN to evade
defensive mechanisms.

White-Box

Simulation

Jiaet al. [134]

Adversarial Examples
(Patches) to distract object
tracking.

White-Box

Simulation

Ding et
al. [65]

Adversarial perturbations of
video frames to misguide
object trackers.

White-Box

Real-World &
Simulation
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sensor.

Chen et | Adversarial patch gener- | White-Box Simulation
al. [47] ation to distract object

tracking.
Lane Detection
Sato et | Fool automated lane de- | White-Box Simulation
al. [250] tected algorithm  using

an adversarial generated

“dirty” road patch.
Jing et | Subtle manipulation of lane | White-Box & Black- | Simulation
al. [138] markings to fool automated | Box

lane detection.
Traffic Light Detection
Tang et | Tampering with the Region | White-Box Simulation
al. [277] of Interest (ROI) for the au-

tomated traffic light detec-

tion to fail to detect the traf-

fic light.
Wang et | Adversarial camouflage on | White-Box & Black- | Simulation
al. [301] driving environment objects | Box

to manipulate object detec-

tion (Yolo v5)
Camera Localisation
Wang et | Adversarial infrared sensor | White-Box Simulation &
al. [302] perturbation of the camera Real-World

Threats to LiDAR perception and localisation predominantly focus on injecting ma-
licious LiDAR point clouds into the LiDAR sensor and removing LiDAR point cloud data
points. Such attacks are aimed at limitations of the perception and localisation algorithm
to filter adversarial sensor telemetry manipulation [35] [273] [286] [341] [325] [340] [171]
[284]. Table 4 lists threats to the LiDAR sensor.

Table 4: Cyber Threats to LiDAR perception and localisation

Cyber Threats to LiDAR Sensor

Paper

Threat Model

Attacker Knowledge

Test Environ-
ment

LiDAR Perception

Cao et al. [35]

Spoofing and manipulation
of the input of the LiDAR
sensor. Two attack scenar-
ios are implemented, emer-
gency brake attack and AV
freezing attack/block traffic.

White-Box

Simulation
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Sun et
al. [273]

Black-box attacks on LiDAR
for general vulnerability
testing. Involves inputting
randomised adversarial
LiDAR points into LiDAR
stream to alter perception.
Paper develops CARLO
detection algorithm.

Black-Box

Simulation

Tu et al. [286]

Adversarial mesh on top of
the Autonomous vehicle to
obscure the LiDAR detec-
tor. Defensive mechanism
developed using data aug-
mentation.

White-Box

Simulation

Zhu et
al. [341]

Arbitrary objects with re-
flective surfaces placed
around driving location by
drones.

White-Box
Box

& Black-

Simulation
Real-World

Yang et
al. [325]

Injection of malicious LIDAR
point cloud data through ad-
versarial road-side objects.

White-Box
Box

& Black-

Simulation

Hau et
al. [340]

Manipulation of LiDAR sen-
sor stream through removal
of point clouds to disable
detection of 3D objects.

White-Box

Simulation

Li et al. [171]

Adversarial spoofing of a AV
trajectory with small pertur-
bations.

White-Box

Simulation

Semantic Segm

entation

Tsai et
al. [284]

Adversarial generated point
cloud data against DNN.

White-Box

Simulation
Real-World
(Not AV)

LiDAR Localisat

ion

Luo et
al. [180]

Side-Channel attack against
cache of LiDAR perception.
Attack reveals leakage of
data, including location and
planning of the AV.

White-Box

Simulation

Threats to SONAR and RADAR target the transmission of malicious communications
on frequencies such as mmWave [275]. These malicious communications take the form
of flooding signals and crafted adversarial signals in the specific spectrum band. The aim
is to manipulate the SONAR and RADAR to incorrectly interpret a signal as a close object
which will feed to the object detection algorithm [266]. Table 5 lists threats to the SONAR
and RADAR sensor.
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Table 5: Cyber Threats to SONAR & RADAR

Attacks to SONAR & RADAR Sensor

Paper

Threat Model

Attacker Knowledge

Test Environ-
ment

Radar Perception

Sun et
al. [275]

Spoofing of mmWave
sensing including adding
fake obstacles at arbitrary
locations and faking the
locations of existing ob-
stacles. Five scenarios
are generated in both
simulation and real-world
environments.  Defensive
mechanisms are developed
using challenge-response
authentication scheme and
RF fingerprinting.

White-Box & Black-
Box

Simulation &
Real-World
(AV)

Son et
al. [266]

noise
MEMS

Adversarial sound
to manipulate
gyroscopes.

White-Box

Real-World

Threats to IMU and GNSS sensors take the form of jamming, spoofing and data ma-
nipulation [103] [155] [59] [151] [198]. GNSS spoofing and jamming is prevalent in many
operational environments and impacts the reliability of the localisation of the AV which
can cause incorrect trajectory planning [59] [198]. Malicious injection of the odometry
data (velocity, yaw etc.) of the IMU which includes can impact the trajectory planning of
the AV which can have downstream affects to the control algorithm [103] [155]. Manipu-
lation of environmental telemetry (temperature, sensor pressure etc.) can invoke the AV
to take safety decisions such as a deploying emergency safety measures [151]. Table 6 lists
threats to the IMU and GNSS sensors.

Table 6: Cyber Threats & IMU Sensor

Cyber Threats to GNSS & IMU Sensor

Paper Threat Model Attacker Knowledge | Test Environ-
ment
Mitetal.[198] | GNSS spoofing attacks on | Black-Box Simulation
Tesla Model 3. and  exper-
iments on
real-world
vehicle.
Dasgupta et | Replication of target vehicle | White-Box Simulation
al. [59] satellite reception to inject based on
stealthy GPS perturbations data from
to alter vehicle course real-world
vehicle
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Han &
Zhou [103]

Fuzzing of the GNSS sensor
telemetry data input to ma-
nipulate the Apollo seman-
tic control program to crash
the AV

White-Box and Black-
Box

Simulation.

Kim et.al [155]

Fuzzing of the IMU data
used for feedback control on
robotic systems.

White-Box and Black-
Box

Simulation

Kim et.al [151]

Fuzzing of the telemetry of a
drone communicating using
the MAVLINK protocol. Ran-
dom generated input is sent
to sensor telemetry data in-
puts for IMU such as barom-
eter, gyroscopy which cause
the drone to crash.

White-Box and Black-
Box

Simulation

Threat models to sensor fusion algorithms exploit vulnerabilities of the diverse sensor
architecture. These include injecting LiDAR point clouds or infrared signals from an adver-
sarial device placed at an angle unobserved by the camera sensor [323] [288] [92] [264].
Table 7 lists threats to sensor fusion.

Table 7: Cyber Threats to Sensor Fusion

Sensor Fusion Perception

Localisation).

Paper Threat Model Attacker Knowledge | Test Environ-
ment
Cao et | Adversarial 3D printed ob- | White-Box Simulation
al. [323] ject that AV fails to detect. Real-World
This attack is tested against (non-AV)
MSF algorithms.
Hallyburton Placement of rogue LiDAR in | White-Box Simulation
et al.[92] a specified location near the
vehicle, the "frustrum" and
injection of malicious point
clouds between an angle of
invisibility of the camera and
LiDAR sensor
Tuetal. [288] | Adversarial 3D printed | White-Box Simulation
object targeting MSF algo-
rithms (LiDAR + Camera).
Sensor Fusion Localisation
Shen et | GNSS spoofing attack on | White-Box Simulation
al. [264] MSF (LIiDAR locator, GNSS

A shortcoming of the Al semantic component threat research include the lack of di-
versity of target systems. The threats contained in Tables 3-7 use passenger vehicles with
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a limited sensor profile and off-the-shelf software with no optimisation to the driving sce-
narios contained in the experiment. Threat models such as Hallyburton et al. [92] ex-
ploit a gap in sensor coverage in passenger vehicles which would do not apply to highly-
automated vehicles such as AV passenger shuttles.

2.3.2 Al System Components
Al system components include the following:

¢ Middleware software such as the ROS, CyberRT and others, which enable commu-
nication between the hardware and software and facilitate control messages from
the higher level AD software to the actuation.

e Networks which enable communication in this densely-interconnected ecosystem
and have unique properties, CAN, LIN, MOST, FlexRay.

e E/E components and compute platforms which support ECUs, AD software and
other real-time systems.

e The electromechanical components which support the actuation processes of the
vehicle.

These components were not designed with security in mind and have been proven to
be vulnerable to cyber threats which target the inherent lack of authentication and en-
cryption [232] [153]. Initial threat research on middleware software focused on spoof-
ing the publish-subscribe model of message communication which existed in an envi-
ronment where there are no mechanisms for a subscribing node to trust a publishing
node [232] [153]. This vulnerability of lack of authentication allowed attackers to spoof
the master node and issue motion-control commands to low-level actuation, in effect,
taking control of the autonomous vehicle [113]. Also, message flooding attacks which cre-
ate a denial-of-service (DOS) which impact the availability of the message communication
transmission which enables safe control of the AV [155]. Other middleware software and
communication protocols such as MQTT, which is used for V2X, suffer from the same lack
of security in their initial design [94].

Attacks which exploit vulnerabilities of system components aim to manipulate the sen-
sor data input are particularly dangerous as they have the direct ability to affect the AD
pipeline. Threats to network communication protocols target the external communication
interfaces and the internal communication system. Threat models of the external commu-
nication interfaces include manipulating the message exchange between the AV system
and the intelligent traffic control infrastructure [77]. Examples include manipulating the
geographical location broadcast by the AV system to the intelligent traffic control. This will
cause the traffic control to incorrectly estimate the location of the vehicle and make an
adverse decision for traffic management [77]. As concluded in Shen et al. [263], there is a
lack of cyber threat research on systems unique to the autonomous system architecture
and the initial research on ROS have only begun to explore the dependency of the seman-
tic components on system components [208]. There is lack of understanding of the rela-
tion of downstream Al system components to the how attacks of the system components
(malware, data manipulation and buffer overflows) impact driving decisions [245]. There
are numerous surveys of Al system component attacks [201] [63] [85] [327] [62] [172],
therefore, Table 8 presents two threats to the Al system components that directly involve
experimentation with AD systems.
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Table 8: Cyber Threats to Al System Components

Al System Components

Paper Threat Model Attacker Knowledge | Test Environ-
ment

Hong Exploitation of ROS pub- | White-Box Simulation

et.al [113] lish/subscribe privileges to

manipulate sensor data to
relocate NPCs into path of

vehicle.
Feng et | Manipulation of the geo- | White-Box Simulation
al. [77] location protocol of the V2X

to change the location of ve-
hicles and manipulation the
traffic management.

2.4 Autonomous Driving Cybersecurity Testing

The majority of the cybersecurity testing on autonomous transportation systems utilise
vulnerability testing methods (See Tables 3-8). Testing can be categorised as white-box,
black-box and gray-box. A white-box test is where the attacker has knowledge of the sys-
tem and is able to use that knowledge to develop an assumption or hypothesis on the
vulnerability of the system. The attacker is then able develop a threat model based on
this knowledge. A black-box test is where the attacker has no knowledge of the internal
processes or architecture of the target system. Gray-box testing is a combination of white-
box and black-box, select parts of the target system are known whilst others are opaque.
As seen in Tables 3-8, white-box testing is more prevalent. As white-box testing is guided
by knowledge of the system, interpretability of results is less challenging than black-box
testing where no system knowledge is assumed.

2.4.1 Autonomous Driving Test Platforms

Testing of AD systems are performed on simulation (SiL), cyber-physical (HiL) and real-
world testing platforms. Simulation platforms consists of a rendered 3D virtual environ-
ment (which can be customised to replicate the real-world physical environment through
3D LiDAR mapping) consisting of the ODD and AV. The AD software in the simulator, is a
digital-twin, which replicates the technology stack of the AV software (Autoware, Apollo
etc.). However, limitations of the SiL are that the algorithms underpinning the software
need to be customised to the body-physical profile of the vehicle (light-vehicle, shuttle
etc.), driving maneuvers and ODD (weather, pedestrians, other vehicles) and the amount
of fidelity of the physical properties of the sensors in the simulation environment is an
active topic of research [162] [251]. Without access to the AD software of a real-world,
validated AV, it is questionable whether a cyber attack conducted in a SiL succeeded due
to a vulnerability or a lack of optimisation of the AD algorithms for the type of vehicle,
driving maneuver and ODD. Whilst benchmarking/golden run tests are conducted in cy-
bersecurity studies [298], they lack the robustness of safety and software reliability testing
due to the extensive amount of tests required and the computational resources involved
in generating high-fidelity 3D test scenarios. Therefore, a number of studies use open-
pilot [22] and Apollo [15]. Openpilot is a level 2 system and therefore not applicable to
full-autonomy studies and as aforementioned, the black-box nature of the end-to-end
model and the lack of developer access for Apollo complicates debugging failures.
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Cyber-physical testbeds (HiL) are utilised where there is a need to observe integration
between hardware and software. This is most common in testing the integration between
actuation and E/E components with software control. Whilst HiL are commonplace in
legacy and connected automotive, there are few examples of AD Hil testbeds. Whilst new
contributions such as RAMN [282] exist, where ECUs are fused with AD software, they do
not explore integration with more advanced AD sensors (LiDAR, camera) and components
(Al computers (Nvidia Drive etc.)).

Real-World testbeds take the form of proving grounds and test track environments.
Proving grounds are predominantly used for type approval and test track environments
for functional testing and edge and corner cases. These testbeds are the most expensive
due to the costs and labor in building and maintenance. Recent research has shown an
increase in the use of real-world testbeds to conduct cybersecurity research [264] [224].
This is due to the aforementioned need to improve the understanding of the fidelity of the
simulation environments to real-world environments. Safety validation testing in provid-
ing grounds has also demonstrated the capability to stream the data from the real-world
test to the simulation platform. Thereby, enhancing the fidelity of the simulation. Table 9
lists the simulation platforms for AD.

Table 9: Autonomous Driving Software Simulation Platforms

Autonomous Driving Software Simulation Platforms
Simulator Characteristics Cybersecurity Testing
AWSIM [1] + Open-Source simulator for au- | + Sensor Attacks (LiDAR,
tonomous driving. Aligned to Auto- | camera, RADAR etc.).
ware Foundation. + System  Component
+ Integration with ROS. Attacks (Middleware,
+ Enhanced fidelity to physical | software, network etc.)
properties of LIDAR & camera sens-
ing
+ Allows custom configuration of
driving environment, AV, Sensors.
+ Scenario Test library integration
CARLA [68] + Open-Source simulator for au- | + Sensor Attacks (LiDAR,
tonomous driving. Camera, RADAR etc.).
+ Integration with ROS. + System  Component
+ Allows custom configuration of | Attacks (Middleware,
driving environment, AV, Sensors. software, network etc.)
+ Scenario Test library integration
LGSVL [242] + Open-Source simulator for au- | + Sensor Attacks (LiDAR,
tonomous driving Camera, RADAR etc.).
+ ROS Integration. + System Component
+ Allows custom configuration of | Attacks (Middleware,
driving environment, AV, Sensors. software, network etc.)
+ End-of-life/Sunsetted
+ Scenario Test library integration
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Apollo [146] + Open-Source but for supported | + Sensor (LiDAR, Camera,
for commercial activity. RADAR etc.).
+ Apollo 10.0 with Apollo Cyber RT | System Component Attacks
+ Custom Scenario Test Library (Middleware, software, net-

work etc.)

GAZEBO + Open-Source simulator based on | +  System  Component
ROS Attacks (Middleware,
+ Limited customisation of AV driv- | software, network etc.)
ing environment, AV, Sensors
+ Limited Scenario Test Case Inte-
gration

Air Sim [259] + Developed by Microsoft for Drone | System Component Attacks
and Autonomous Vehicle Software | (Middleware, software, net-
Development work etc.
+ Supports diverse autonomy soft-
ware control architectures (ROS in-
tegration, ArudPilot, HiTL, SiTL etc.)
+ Allows custom configuration of
driving environment and sensors.
+ No test libraries

SIMA4CV [204] | + Open-Source, developed for | +No Testinghasoccurred on
Computer Vision research SIM4cvV
+ Custom configuration of semantic
control program
+ End of life/Sunsetted

The literature of cyber threats to AD demonstrated that approximately 90% of the
experimentation was conducted in simulation environments [223] [276] [10]. Yet Eykolt
et al. [267] noted that the success rates of attacks in simulation, such as those on the
object-detection, differed from real-world. This is most prominent in the physical attacks
were the simulation is challenged in replicating lighting and other physical effects. There
is a lack of experimentation of cybersecurity testing on real-world systems due to limited
facilities and safety risk constraints.

There are numerous AD cybersecurity testing platforms [329] [79] [338] [200]. Whilst
these platforms are useful for advancing the research and development of threat models
they have sparse usage for validation testing of AD software to cyber threats. A reason for
this can be that the design of these testbeds are constrained by a lack of alignment with
safety validation testing methods. Further, AD software developers and safety engineers
prefer modular tools which can be utilised in their own customised digital-twin simulation
environments. Another shortcoming of the cybersecurity testing platforms are that they
are technology centric and attack plug-ins are developed for a specific technology stack.
There is a lack of overarching principles and methods to guide cybersecurity testing that
would enable a standardised approach. Table 10 lists AD cybersecurity testing platforms.
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Table 10: Autonomous Driving Cybersecurity Security Testing Platforms

Autonomous Driving Cybersecurity Security Testing Platforms

Simulator Characteristics Cybersecurity Testing
RAMN [282] + Cyber-physical testbed for AVs + Testbed was created to
+ Integration with AD software support automotive net-
+ Replicates features of AU- | work development, testing
TOSAR and automotive networks | of AD software HilL and pen-
(CAN/CAN-FD) etration testing of syntactic
software attacks
SEPAD [329] + Cyber-physical testbed for AVs + Not tested, but test bed
+ Limited autonomy based on | was created to support pen-
OpenPilot ADAS etration testing of syntactic
+ Replicates features of AUTOSAR | software attacks
and automotive ethernet
+ No further development since
release
SIMUTACK[79] | + Simulation environment based on | + Attacks to Sensors (LiDAR,
CARLA SUMA (Scenario Generator), | Camera etc.).
OMNeT++ (V2X). + V2X attacks.
+ Autopilot for AD Software + In-Vehicle network at-
+ Built-in plugins for Attack Genera- | tacks.
tion
+ No further development since re-
lease
PASS [338] + Simulation environment based on | + Attacks to Sensors (LiDAR,
Apollo Baidu and ROS. Camera etc.)
+ Built-in plugins for Attacks and | + Fuzz testing
Defenses + Has supported Capture-
+ Integrates evaluation metrics for | the-Flag style, game-based
safety testing
+ No further development since re-
lease
Simulator + CARLA and ROS based. Network Attacks to v2x
for Cooper- | + Integrates VEINS V2X network
ative and | emulation
Automated + SUMO Traffic Scenario Simulation
Driving Secu- | + No further development since re-
rity [200] lease
AVL Zala- | + Proving ground used for type ap- | + Cybersecurity testing of
zone Test | proval and R&D V2X and connected infras-
Track [20] tructures
Michigan MC- | + Real-world testbed + Cybersecurity testing of
ity [194] + Industry and academia R&D V2X and connected infras-

tructures + Testing of AD cy-
ber threats to advanced sen-
sor technologies
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TalTech  Au- | + Real-world testbed + Cybersecurity testing of

tonomous + Industry and academia R&D V2X and connected infras-
Systems tructures + Testing of AD cy-
Lab [18] ber threats to advanced sen-

sor technologies

2.4.2 Cybersecurity Testing Methods

Testing is predominantly conducted in high-fidelity digital twin simulation environments
and then test sets regressed to real-world proving grounds and test tracks. Cybersecurity
testing of AD software can be categorised as structured testing or penetration testing and
fuzz testing. There are limited methods and tools tailored for structured testing of AD
software. Contemporary approaches centre on methods used for connected and legacy
vehicles. These entail conducting the TARA and generating cybersecurity test cases tar-
geted at the SUT [192] [239]. Many of these test cases can be extrapolated from proof-of-
concept attacks such as those presented in Tables 3-8. The shortcomings of the available
proof-of-concept attacks are that considerable effort is required to reverse engineer the
attack model and replicate it for different SUTs. Further, the design of these attack models
lack consideration for parameters important for safety testing such as temporal aspects of
the scenario (time attack should be triggered, how long attack should be broadcast etc.)
and scenario design (ODD, driving configurations). There also exists a lack of guidance and
standardisation as to how threats can be translated from functional level descriptions to
the technical implementation in the digital-twin simulation environment.

Fuzzing is a popular testing technique used to discover vulnerabilities in a system to
randomised and unsanitised data input. Fuzzing can occur at three different layers of AD
software; the simulator, the scenario and the sensor. A simulation-based fuzzer manip-
ulates the properties of the simulation, this can include GPU and frame refresh rate and
CPU settings. A scenario-based fuzzer manipulates the parameters of the driving scenario,
these can range from weather (rain, puddles on lanes, snow etc.), odometry (speed, ve-
locity etc.) to planned navigation of road vehicles and pedestrians. A sensor-based fuzzer
manipulates the sensor data (LiDAR, camera etc.) which is used as input to the AD pipeline.

There are diverse approaches for the design of fuzzing tools for AD software:

e Adversarial neural networks for adversarial examples targeted at object detection
and to generate adversarial trajectories of other road vehicles and pedestrians [170]
[339] [281] [333].

e Mutation-based fuzzers predominantly used for sensor fuzzing. They are designed
to send unsanitised sensor data input to the AD pipeline [151] [153] [153] [281]. Test
cases which cause crashes are added to a seed pool which is used to mutate further
test cases in an iterative manner.

Table 11 lists AD fuzz testing tools.
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Table 11: Fuzzing Tools for Autonomous Driving

Fuzzing Tools for Autonomous Driving

Fuzzer Target Method Oracle Feedback

PGFuzz [151] Sensor Mutation- Policy-guided | Crashes, Devi-
Layer(Drone based (Physical ation from ex-
Software) Limitations) pected route,
+ Odometry sensor incon-
(velocity, sistency
gyroscope)

RoboFuzz[153] | Sensor Layer | Mutation- Physical Con- | Crashes, Devi-
(Drone) based straints ation from ex-
+ IMU (yaw, pected route,
acceleration, sensor incon-
speed) and sistency
user control
commands
(throttle, yaw,
pitch, roll)

RVFuzzer[155] | Sensor Layer | Mutation- Physical con- | Control pa-
(Drone) based straints rameters
+ IMU (yaw, and control
acceleration, instability
speed) and
user control
commands
(throttle, yaw,
pitch, roll)
messages
to control
program.

DeepRoad [333] Sensor Layer Neural Net- | Predicted Object Detec-
+ Camera im- | work Image and | tion Perfor-
ages predicted mance and

steering angle | crashes and
deviations of
AD

DeepTest [281] | Sensor Layer Neural Net- | Predicted Object Detec-
+ Camera | work Image and | tion Perfor-
images during predicted mance and
adverse driv- steering angle | crashes and
ing conditions deviations of
(rain, fog etc.) AD

PlanFuzz[298] | Scenario Mutation- Planning Planning
Layer based Invariants behaviour
+ Objects
(boxes, bicy-
cles)
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DriveFuzz[154] | Scenario Mutation- traffic  rules | Control
Layer based and regula- | behaviour
+  Weather, tions
mission  (lo-
cation of
SUT vehicle)
actor (other
vehicles,
pedestrians)

AVFuzzer [170] | Scenario Neural Net- | vehicle state | Control
Layer work (Collision, behaviour
+ Route Map, infraction,
SUT vehicle, mobility)
weather and
objects.

AutoFuzz[339] | Scenario Neural Net- | Traffic Viola- | Control
Layer work tions and APl | behaviour
+ Route Map, Grammar (collisions,
SUT vehicle, infraction)
weather and
objects.

2.5 Summary

AVs represent a dense ecosystem of diverse software and hardware technologies inte-
grated by an overarching AD software framework (Section 2.1). The research community
has contributed an initial list of proof-of-concept attacks and vulnerabilities of AD software
(Section 2.3). The predominant attack targets are the sensing and perception hardware
and software modules and the networked infrastructure which supports the algorithmic
AD platform. Limitations of this initial research include a lack of analysis as to how cyber
attacks propagate through the AD software and affect decision-control and knowledge as
to how attacks can be applied to real-world systems rather than open-source simulations.
Further, there is a lack of deeper investigation of the testing technologies which support
cybersecurity research and validation testing (Section 2.4). These limitations are mean-
ingful as this lack of knowledge leaves questions as to the utility of current methods, tools
and testing results to real-world AD programs. Therefore, there is an apparent need to
develop methods and tools to enable more repeatable and agile testing and to gain from
test results greater intuition as to the robustness and resilience of AD software to cyber at-
tacks. Within this thesis these gaps will be explored within the context of an experimental
case study of a real-world, operational AV (Section 2.2).
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3 Evaluation of Autonomous Driving Software to Cyber Attacks

3.1 Methodology for Combined Safety and Security of Autonomous Driv-
ing Software Testing

Testing AD algorithms for performance under safety test cases is a predominant focus for
developers to assess the reliability of the algorithm and for optimisation. AD algorithms
are also susceptible to manipulation from cyber threats which target the advanced hard-
ware technologies sensor telemetry which serves as an essential input for perception,
detection, and control decisions [27, 174, 325]. Existing methods [35, 92] for testing are
challenged by the complexity of evaluating system-of-system interactions to identify key
relationships and parameters, and limitations of testing inherent to real-world AV pro-
grams, resource usage and time. The main idea of this research is to establish a method
for combined safety and cybersecurity testing of developmental AD algorithms to evaluate
system-of-system interactions to identify and investigate parameters that impact safety
and the effect of cyber attacks, and to develop future ideas for optimisation of testing. To
develop such a method, we are interested in three research questions aligned with the
challenges of combined safety and cybersecurity for AD algorithms:

RQ1 How can AD algorithm designers evaluate the reliability and optimisation of the AD
algorithm to both safety and cybersecurity test cases?

RQ2 How can combined safety and cybersecurity testing be conducted on a developing
AD algorithm?

RQ3 What key relations and parameters can we identify that can optimise safety and
cybersecurity testing?

To evaluate these research questions, we apply the methodology to a developing AD
algorithm in a digital twin, SiL simulator and real-world AV testing environment. Cyber-
security testing and safety testing are often conducted separately, reducing our under-
standing of the relationship between failures of the algorithm caused under normal safety
scenarios and failures caused by the impact of cyber attacks. For AD algorithms in the
development stage, where the reliability and optimisation of the AD algorithm to safety
scenarios have not been established, this exploration of the relationship between safety
and cybersecurity can offer novel insights to improve the awareness of the AD algorithm
designer to shortcomings in the algorithm.

3.1.1 Combined Safety and Cybersecurity testing methodology for AD Algorithms

The architecture of the proposed combined testing methodology is presented in Figure 17.
This method takes advantage of a high-fidelity SiL simulation [255] approach to validate
and verify the performance of a AD software under critical cyber security conditions. This
method consists of three main following elements:

e Attack script: which simulates a critical security condition.

o High-fidelity simulator: It is a game engine environment that provides the physics
for modeling sensors and motion.

e AD software: It is the autonomous driving software that controls the AV.

The combined safety and cybersecurity methodology consists of the following iterative
steps:
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e Scenario Selection:
- Selection of driving scenario (intersection, overtaking manoeuvre etc.)
¢ Analysis of the scenario to extrapolate the safety evaluation criterion applicable:

- Selection of safety evaluation criteria is based on relevance to scenario i.e a
straight line navigation will not require distance-to-collision criteria metric as
there is no other vehicles.

o Safety Test Case Setup:
- Initialisation of the SiL high-fidelity simulator and configuration to the real-
world AV

- Initial scenario testing using the safety test cases to assess the reliability of the
algorithm and the quality of the test data

- Optimisation of the safety test cases to select a subset of the scenario tests to
assess the reliability of the algorithm

- Run of the safety test case scenarios

- Selection of distinct safety test case scenarios which provide most stable re-
sults in terms of success of mission and safety violation

e Cybersecurity Test Case Setup:

- Analysis of the scenario to determine cyber attack strategy for test cases

- Development of the code for adversary generation in the SITL high-fidelity sim-
ulator

- Selection of attack parameters
- Optimised the cybersecurity test cases
- Evaluate cybersecurity test cases in SiL high-fidelity simulator

- Real-World AV Testing for safety and cybersecurity
¢ Results Analysis:

- Analysis of the performance of AD algorithm to safety criteria

- Analysis of sensitivity of attack parameters and driving parameters

Testing Environment

All tests are conducted in a virtual environment powered by the “Unreal game engine”
(Unreal) [40]. CARLA simulator [69] is one of the open-source high-fidelity vehicle simu-
lators capable of connecting to different AD software and scenario generator applications.
In this study, we use Carla 0.9.13 as the high-fidelity simulator. Figure 17 illustrates the re-
quirements for the high-fidelity simulator to conduct simulation testing which are two
components, the digital twin of our AV and the virtual replication of our target environ-
ment. These replicated components help us to gain more accurate results of the proposed
platform [187]. The AV digital twin is a 3D model of our real-world world AV shuttle, de-
signed in Blender, a graphical 3D modeling software, and imported and built in Unreal
for deployment in CARLA. This model uses the same dimension and sensor configuration
(model, position, and orientation) from the real AV shuttle. The environment digital twin,
in our case, is identical to the location where we are testing and operating our shuttle,
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this includes the urban details and vegetation. The next module in the simulator is a sce-
nario generator that produces the desired scenario based on the user input specification.
Finally, the simulator engine generates sensor data from sensors, including LiDARs, cam-
eras and others and publishes it for other blocks (see Figure 17 the simulator block). Then,
the AD software receives this data as raw LiDAR point-cloud information and processes
the data as mentioned in the diagram (Figure 17).
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Figure 17: Architecture of the testing platform

This simulation setup was implemented on a desktop computer with the following
configuration:

e [ntel® Core™ i7-11700K @ 3.60GHz x 16 cores
e NVIDIA GeForce RTX 3080 10 GB

e RAM: 128 GB

Scenario Selection

To evaluate the combined safety and cybersecurity testing, we chose a simple overtaking
manoeuvre, which is one of the most safety challenging operations [186]. Figure 18 shows
the functional level of the planned scenario. To generate a variety of distinct scenarios,
we opt for the initial relative distance to the NPC D, and the NPC constant speed Sypc as
the distinct scenario parameters.

Overtaking

Figure 18: Overtaking Scenario and parameters
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Table 12: Target scenarios definition

Actor Speed D, Goal

AV [0:6]m/s 0 (m) overtake the NPC safely
NPC [11.41.82.12.5] [152025](m) keep moving

Safety Evaluation Criteria

In determining the evaluation criteria for AV safety we considered two conditions, 1) mis-
sion success and 2) safety violations. A safety violation consists of a collision and danger-
ous driving behaviour. In determining which criteria to apply, we considered the EuroN-
CAP [3] and 15026262 [127] standards as well those used in composite studies [35,89,92].
We derived that the safety goal of the AD algorithm is to execute the overtaking mission
without colliding or interfering with other ego vehicles or objects and without exhibiting
driving behaviour which is dangerous to the AV passengers. Table 13 details the safety
criteria applied in our experiments.

Table 13: Safety Evaluation Criteria

Safety Condition Data Label Description Metric

Succeed Suce AV Successful complete the mission Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to-Collision DTC Violation of the safe distance AV within 0.5m
between AV and NPC of other vehicle

Break on Driving Lane  BrD AV initiates emergency break on driving lane  Pass/Fail

Break on Passing Lane  BrP AV initiates emergency break on passing lane  Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Violation \Y Safety Violation

Safety Test Case Setup

To evaluate the reliability and optimisation of the AD algorithm for the overtaking ma-
noeuvre, we, firstly, initiated a run of 50 distinct scenarios in the high-fidelity simulator,
repeating 6 times. Each scenario was repeated 6 times to ensure the reproducibility of
the outcome. With the mentioned desktop configuration, it took approximately 100 sec
for each scenario and, in total, 8.3 hours for 300 runs. The purpose of the first scenario
run was to provide a general overview of the performance of the algorithm. We targeted
arange of 1to 3 m/s for the NPC speed and 15 to 30 m for the initial relative distance to
the NPC for selecting the 50 distinct scenario parameters. The results showed that the AD
algorithm could not safely overtake the NPC at an NPC speed higher than 2.5 m/s and a
distance (D,) of more than 25 m.

Although a high number of scenario variations shows better coverage in the scenario
space to find corner cases, it will lead to an increase in the time duration of the runs.
Furthermore, the number of each scenario repetitions was not sufficient to statistically
explain the occurrence of each safety violation. Finally, it is worth mentioning that, as our
primary study focus is not just the validation of the AV performance, we need to use an
optimum number of trials for both safety and cyber test cases. Due to this, we limited the
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scenario parameters space to the intervals listed in Table 19 that regressed the test set to
15 distinct cases in a full factorial setup. This enabled us to repeat the simulation of these
test cases 50 times and apply the full set of safety criteria: collision, DTC, break in passing
lane, break in driving lane, failure to finish, and mission success.

Each scenario is generated by the CARLA scenario runner utilizing the Python be-
haviour trees to handle series and parallel events in the scenario. Figure 19 depicts the
scenario scheme starting with the main sequence behaviour. This series begins with trans-
forming the actors into the environment and finishes by destroying the actor block. A par-
allel behaviour (Driving Toward Intersection) is defined to run the attack and the scenario
stop block while the NPC follows the defined waypoint. For safety test case scenarios, the
attack block is skipped, and the scenario waits till the stop criteria are satisfied.

Sequence

Behavior
l‘r Attack Stop

Waypoint Enable Attack
Follower Vv

Distance To
Vehicle

Driving
Towards

Trigger

I '

V
Disable Attack

Intersection Distance to > Stand Still
v Vehicle
| stoptheNnpc | | AttackorEnd
Condition

v
[ Actor Destroy J

Sequence

[
Distance To
End g Next
Condition Intersection

Figure 19: Flow-graph of how each scenario is processed in the simulation platform

Cyber Test Case Setup

To determine the cyber attack strategy for implementation in this test scenario, we anal-
ysed the overtaking scenario and its applicability to state-of-the-art attacks on AD algo-
rithms. We selected LiDAR spoofing as it is a realistic attack in the driving environment
of our real-world AV shuttle [35] and its impact is relevant to safety outcomes due to
the likelihood that the manipulated driving behaviour will result in collisions, emergency
breaking, and lane violations [325]. Attacks on LiDAR perception predominantly focus on
spoofing LiDAR 3D point-clouds through the following means: 1) injection of adversarial
LiDAR 3D point cloud data to add adversarial objects to the driving environment inducing
a false positive result of the AD perception [35, 273] 2) removal of LiDAR 3D point cloud
data to perturb the ability of the perception algorithm to detect objects in the driving en-
vironment, also known as a false negative result [92,340] 3) manipulating LIDAR 3D point
cloud data to obfuscate the true distance of environmental objects (Other road vehicles,
pedestrians, other road objects) from the AV, causing the perception to fail translation 4)
implementation of adversarial mesh in the driving environment to introduce manipulated
points into the LiDAR 3D point cloud and create unpredictable perception events [287].
The aim of the attacker, in adversarial LIDAR threat models, is to induce the victim AV to
perform dangerous driving manoeuvres, which include; emergency breaking, collisions,
and exceeding the limits of the driving lanes. Variables that have been shown to influ-
ence attack success include; angle of attack of the adversarial point cloud vector, density
of the spoofed points, duration of the broadcast of spoofed points, distance of the point
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cloud to the target [35, 92,273, 325]. We implemented a variation of the attack suggested
by Yang et al. [325], where the adversary creates an adversarial roadside object to inject
spoofed, malicious LiDAR point clouds into the target AV LiDAR. In our attack, an adver-
sary has configured a LiDAR on the roadside to inject malicious point cloud data into the
AV as it is conducting the overtaking manoeuvre. Using the knowledge gained from liter-
ature [92, 273, 325], the parameters we chose to generate our attack are: density of the
LiDAR point clouds, frequency (the publishing rate of the fake points), duration of the ad-
versarial point cloud broadcast, and location, which is the relative location between the
target vehicle and NPC. As an infinite number in the range of each of the parameters can
be chosen, we decided to limit our testing to parameter values that had demonstrated
utility to investigate the impact of cyberattacks on AD algorithms. For example, Hally-
burton et al. [92] found that the success of cyber attacks increased when spoofed point
density were over 80. Therefore we chose a range for spoof point density from 50 to 300.

Taguchi Analysis

In this study, we use the Taguchi method for statistical evaluation [285] of the attack pa-
rameters effect on each safety criterion. The number of tests with four parameters and
3 levels for each in full factorial mode would become unrealistic to perform, noting that
each experiment should repeat 50 times (81x50 = 4050 distinct scenarios). A design of the
experiment is recommended in order to avoid full factorial tests and reduce the number
of tests without compromising accuracy [285].

A Taguchi design of experiment (DOE) technique [285] was applied to quantify the in-
fluence of four proposed attack parameters; the false points (FP) density, the FP frequency,
the attack duration, and the attack location. In total, 9 experiments were designed with
3 different values for the four parameters. The analyses hence possess four factors and
three levels for the Taguchi L9 matrix. Table 14 lists the configuration for each run con-
ducted for cybersecurity tests.

Table 14: Taguchi L'9 matrix for study of factor influence

Num. Density Frequency Duration Location
1 50 5 3 3
2 50 7 6 6
3 50 10 9 9
4 150 5 6 9
5 150 7 9 3
6 150 10 3 6
7 300 5 9 6
8 300 7 3 9
9 300 10 6 3

| [50 150 300] [5710] [369] [369]

Figure 20 demonstrates the cyber attack setup within the overtaking scenario (Please
note, the Figure only depicts the overtaking frame and not the entire overtaking sequence.).
The proposed attack model will start by generating spoof points from the designated place
on the roadside. At the starting point, P;, the AV has relative distance to NPC that defines
the attack location. After a specific duration (Attack Duration), the AV reaches, P». While
the attacker keeps the malicious LiDAR pointing toward the AVs front LiDAR. Overall, the
spoofed point direction changes from 6; to 6,. Code was created for the generation of
the adversarial LiDAR fake points to be run in the digital twin, high-fidelity simulation en-
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vironment. This is available on the GitHub site [188].

Attacker

Figure 20: Attack scheme

3.1.2 Results and Analysis

In this section, we present the results of the safety and cybersecurity testing of the AD
algorithm. The purpose of the safety test case results is to evaluate the reliability and
optimisation of the algorithm.

Safety Test Case

The aim of the testing is to assess the utility of the methodology to evaluate the relation-
ship between the reliability of the AD algorithm to safety and the impact of cybersecurity.
As the testing is based on a real-world AV, we were motivated to establish what results
could be gained from an amount of tests that took into account the requirements for
CPU and GPU resources and the time involved in running high-fidelity simulations. For
instance, 50 distinct scenarios run 3 times expends x amount of resources, and takes x
amount of time. Therefore, we, firstly, performed a baseline evaluation test where we
ran 50 distinct scenarios of the overtaking manoeuvre, 3 times. Each scenario is distinct
based on changes to parameters such as NPC speed and initial distance to NPC.

In our proposed simulation platform, we perform 15 distinct scenarios, run 50 times;
in total, 750 consecutive simulation runs were conducted. Table 15 shows the parameters
of the distinct scenarios evaluated against the safety criteria. Using our configuration for
testing, the AD algorithm shows the performance for the overtaking manoeuvre with a
success rate of 43.9% of the simulated scenarios, whilst, 66.1% are safety violations.

Figure 21 displays the performance of the AD algorithm. NPC speed is an important
parameter as it influences the decision control for the critical cut-in manoeuvre of the
overtaking mission. In the context of the results of the simulations, we can see that NPC
speed impacts certain safety criteria. The first such relation that can be seen, is that more
collisions are caused at high speeds, > 2.1m/s. This can be the effect of a poor trajectory
evaluator that doesn’t consider the prediction of the other actors motions in the pro-
cess of the waypoint generation. In most collision cases the AV tried to perform a cut-in
while the NPC collided from the right side. The probability of this safety violation will be
increased as the NPC speed increases. NPC speed also impacts the likelihood of a DTC
safety violation. In the range of the NPC speed parameter, 1 m/s to 1.8 m/s, it can be
observed that AV Shuttle violates the safe distance to the NPC. This can be due to the AV
speed adjusting relative to the NPC speed and the cut-in is attempted at low-speed, whilst
acceleration is required to safely attempt the cut-in. This low-speed cut-in firstly causes a
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Table 15: Summary of the safety simulation

Dx  Snpc Veoo Vorc Ve Verd  VNotF Vsuce

11 15 1 18% 22% 0% 10%  24% 26%
2|20 1 18% 40% 8% 6% 18% 10%
3| 25 1 4% 20% 32% 8% 20% 16%
4 | 15 1.4 6% 32% 16% 2% 12% 32%
5120 14 22% 26% 14% 6% 2% 30%
6 | 25 1.4 4% 12% 22% 8% 0% 54%
71 15 1.8 36% 34% 8% 2% 6% 14%
8| 20 1.8 22% 12% 2% 2% 0% 62%
9 | 25 1.8 18% 6% 0% 4% 0% 72%
10 15 21 4% % 4% 2% 4% 86%
1] 20 21 8% 10% 0% 0% 0% 82%
12 | 25 2.1 24% 0% 0% 4% 0% 72%
13 | 15 2.5 14% 6% 0% 6% 2% 72%
14 | 20 2.5 44% 22% 14% 0% 2% 18%
15 | 25 2.5 64% 18% 0% 0% 6% 12%
mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%

STD 16.8% 2.3% 9.8% 32% 8.1% 28.3%

min 4% % 0% 0% 0% 10%

max 64% 40% 32% 10% 24% 86%

DTC violation and if the overtaking manoeuvre progresses it causes a collision. DTC and
collision correlate based on the relative speed. A low-speed NPC will likely result in a DTC
violation, whilst in a higher-speed scenario, a collision is more likely to happen.

In the lowest speed range, 1m/s to 1.4 m/s, it is more likely that the AV will initiate an
emergency break in the passing lane. This is due to the relationship of the NPC speed to
the AV Shuttle speed. The emergency break on the passing lane at low speeds is caused
by a failure of the open-planner trajectory evaluator to effectively plan the overtaking
trajectory. Figure 22 demonstrates the AV emergency break in the passing lane, for a
scenario with an NPC Speed of 1 m/s. The upper rectangle represents the AV and the
lower rectangle is the NPC. The two rectangles closest to the left represent the frame
that the first emergency break on the passing lane safety violation occurs. The most right
rectangles represent the end of the mission. The AV speed and the acceleration verify two
hard brakes in the mission while it was in the passing lane. The failure of the trajectory
planning of the open-planner algorithm is apparent.

The failure to finish the overtaking mission is most prominent at the lowest speed,
1m/s, this is due to the time the AV Shuttle is taking to perform the cut-in process and
therefore cannot enact the overtaking manoeuvre within the simulation timeout which is
40 s. It was observed that for the proposed configuration, for the lower speed of the NPC,
the open-planner trajectory evaluator is not reliable as it suggests waypoints that are not
within safe navigation and this is due to the lack of firm decision-making of which roll-
out to choose. Ultimately, this causes collision and DTC safety violations. Furthermore,
the failure to finish the simulation results, we see the low-speed delays in the overtaking
manoeuvre decision making which results in the breach of the 40 s time-out.

The success rate of the safety test cases increases as the NPC drives from 1.4 to 2.1m/s
speed. This focal success point around scenario 10 with an NPC speed of 2.1 m/s can be
a sign of matching the current configuration of perception and open-planner with the
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Figure 21: Safety results of 15 distinct scenarios

scenario situation.

The safety metrics results are shown in Figure 24 based on the initial relative distance
from the AV to NPC. It shows that the rate of collision safety violations for longer initial
distances from NPC slightly increased while the success rate decreased. This is the only
trend that can be identified from results for initial relative distance, so it can be concluded
that speed is a more determining parameter for the safety testing of our AV.

Overall, the results in Figure 21 indicate that speed is a critical parameter for our AV
safety testing platform.

Cybersecurity Test Case

For the cybersecurity test cases we chose 2 of the 15 distinct scenarios (Figure 21). This
was to allow a greater scale of testing to be conducted on a select number of relevant
scenarios. Scenario 10 was chosen as it demonstrated the most reliable performance, in
terms of the most successful overtaking manoeuvres. Scenario 2 was chosen as it demon-
strated the least successful results for overtaking. These two scenarios were run 50 times
each, as had been conducted with the safety scenario runs. Figure 25 shows the perfor-
mance of cybersecurity testing, conducted on scenario 2 and 10, in comparison to safety
test cases.

Scenario 10 results reveal a discernible impact of the cyber attack. The LiDAR spoofing
attack causes an increase in safety violations, prominently, in collisions and emergency
breaking in the passing lane. This is also a concurrent result of the Scenario 2 test cases.
Figure 17 shows the control level view, that incorporates sensor perception and mission
and motion-planning. In the safety violation cases, we noticed that the euclidean cluster-
ing and kf_countour detect the spoofed LiDAR injection as an object and this false positive
detection impacts the local-planning to force the AV to make the cut-in, in the overtak-
ing manoeuvre process. Specifically, as the placement of the adversarial LiDAR device is
on the left of the AV, the roll-outs of the left-side are blocked by the trajectory-evaluator.
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Figure 23: Test Results based on NPC Speed

This forces the AV to veer right and attempt the cut-in process that causes predominantly
collision, DTC safety violations.

Cao et al. [35] and Hallyburton et al. [92] identify density of the spoofed points to
be one of the key variables affecting cyber attack success rate. Figure 26 and figure 27
present the sensitivity of each attack parameter according to the cyber attack test cases.
From evaluating the raw data of the test sets, and the sensitivity analysis for the cyber
attack test cases of scenario 10, we concur with these assessments. We find the rate of
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Figure 24: Results based on Initial Relative Distance to NPC

collisions is influenced by the density of the point cloud and the location of the attack.
We can also see the influence the point of attack and duration have on causing a break
on passing lane safety violation. As the duration of transmitting of the LiDAR point clouds
increases and the location of the attack is further from the NPC, the likelihood of the AV
initiating its breaks is higher.

In comparison, Scenario 2 cyber attack test case results show that safety violations
are less sensitive to attack parameters. This can be due to the difficulty in interpreting the
impact of cybersecurity on this scenario due to the already high rate of safety violations
of the algorithms exhibited in the safety test case.

Table 16: Results of Cyber Attack applied to Scenario 10

Num. | Vol Vbrc Verr Ve VNotF Vsuce
1 54% 20% 2% 0% 6% 18%

2 38% 38% 6% 2% 6% 10%

3 30% 28% 22% 2% 4% 14%

4 24% 28% 16% 6% 2% 24%

5 26% 16% 12% 6% 4% 36%

6 4% 4% 6% 4% 0% 82%

7 32% 14% 14% 6% 0% 34%

8 50% 24% 8% 2% 0% 16%

9 50% 30% 2% 2% 0% 16%
mean | 34.2% 22.4% 9.8% 33% 2.4% 27.8%
std | 15.9% 10.1% 6.7% 22% 2.6% 22.2%
min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%
max | 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%
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Table 17: Results of Cyber Attack applied to Scenario 2

Num. Veol Vbre Vere  Vero WnotF Vsuce
1 16% 34% 28% 8% 14% 0%

2 26% 34% 20% 0% 8% 12%

3 20% 42% 20% 4% 6% 8%

4 26% 34% 16% 0% 14% 10%

5 22% 36% 16% 0% 20% 6%

6 22% 32% 20% 0% 18% 8%

7 0% 0% 0% 0% 0% 0%

8 0% 0% 0% 0% 0% 0%

9 0% 0% 0% 0% 0% 0%
mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%
std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%
min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
max | 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%

Real-World AV Testing

The real-world AV testing was conducted on a private road environment using our AV Shut-
tle, and an NPC vehicle (turquoise Mitsubishi iMIEV). The NPC vehicle is stationary during
the tests as a safety assessment deemed it was too dangerous to conduct the experiment
with a moving vehicle. This is due to the experiment being within a road environment
where pedestrians and other vehicles are present. We conducted 3 test cases; a safety
test case, cybersecurity test case and an optimised cybersecurity test case. The first test
was an overtaking safety scenario. Two repetitions of the safety test case were conducted.
The first test demonstrated a successful execution of the overtaking mission. The second
test resulted in a DTC safety violation. The AV motioned to within 0.42 m of the NPC.
The DTC violation is evident in Frame 3 of Figure 28, which details the second overtaking
safety test case. Frame 4 demonstrates the eventual overtake after the DTC safety vio-
lation. Whilst the number of repetitions in the real-world pale in comparison to those
conducted in the simulator, the real-world results concur with simulation results, that the

55



B Succeed Brake on Driving Lane EEADTC Violation
E@Not Finished [[1Brake on Passing Lane Il Collision

251 Density | ! ~ Freguency | Duration Place

" |

f\ | o

/ . B
T\ /)

[\ ) AV
4] * . .
i | ) . | .
Q15 : i AN o\
CRITN S . /\ A
- N d P »
=] f B s
c ! ' \ J o \
8 { i ®
=

H
{=]
,_/’f T i
o«
\
\
AN
\
b
¢
[ ]

50 150 300 5 7 10 3 6 9 3 6 9
Attack Parameters Levels

Figure 26: Scenario 10 - Cyber Attack Test Cases - Parameter Sensitivity

AD algorithm does not have enough reliability for the deployment in real-world missions.

Table 18: Result of the 3 real-world test cases

Test Type \ Num. of repeats success Safety Violations
Safety Tests 2 1 1DTC=0.42m
Cyber Tests 2 1 1DTC=0.38m
Optimised Cyber Tests 1 0 1DTC=0.32m

The cybersecurity test was conducted 3 times. Table 18 lists all the real-word exper-
iments and their results. The first cybersecurity test demonstrated no impact from the
spoofed LiDAR points and the overtaking manoeuvre was successful. The second cyber-
security test resulted in a DTC violation, the AV motioned to within 0.38 m of the NPC.
After these two tests, we optimised the target angle of the spoofed points in relation to
the attack scheme in Figure 75, to reduce the attack starting angle of 6,. We did this be-
cause during the real-world test we observed that the reduced angle would provide assist
the spoofed points to be closer to the AV trajectory and would cause the AV to detour
from its intended route. It can be seen that this did work as the DTC decreased to 0.32 m.
Figure 29 depicts the real-world cybersecurity test. Frame 2 represents the moment the
attack was generated and perceived by the AD algorithm.

3.1.3 Discussion
From the analysis of the results we interpreted that different safety violations are con-

nected to different modules of the AD algorithm.

Perception Module: We interpreted the cause of safety violations of the emergency
break in the passing lane and emergency break in the driving lane to be related to the
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Figure 27: Scenario 2 - Cyber Attack Test Cases - Parameter Sensitivity

quality of the ground filtration. As we observed, ground filtering outcome changes dur-
ing the AV manoeuvres (turns) because the shuttle body is tilted because of suspension
and this results in the lidar reference frame orientation changing. Then some part of the
ground point cloud as an unfiltered perception can be seen in the detection algorithms as
an obstacle. This fake sudden obstacle might stop the AV during the motion. The spoofed
LiDAR point cloud threat model is likely to make this condition worse. Optimisations for
this: New body designs to rectify or limit the issues of LIDAR with the physics of the AV
Shuttle are being developed. To focus specifically on these corner and edge cases and look
at optimisation of the filtering of the perception algorithm. The latter recommendation
is complicated by the fact it may include trade-offs; if the LIDAR perception algorithm is
specifically tuned for this corner/edge case it could lead to over-filtration in normal driv-
ing scenarios, therefore this is one of the optimisation options to resolve the perception
for the algorithm.

Open-Planner Module: We interpret the cause of safety violations for DTC and colli-
sion as due to an issue of the open-planner in predicting the trajectory of the NPC during
the process of performing a cut-in, in front of the NPC. The optimisation would involve in-
corporation of features that would enable the prediction of the trajectory of the NPC and
for perception improve the perception of the side-lidar to accurately perceive the NPC.
We found that optimising all the perception and open-planner parameters for our shuttle
model would significantly improve the reliability of the AD algorithm.

Open-Planner Developer Feedback

We sent a presentation of our results to the developers of the open-planner AD algorithm.
In response, they acknowledged that it is a developing algorithm and we are engaged in
more detailed discussions with them on how to optimise the algorithm. They also an-
nounced they are transitioning from Autoware.ai to Autoware.universe which is a more
developed and advanced platform. Amongst their responses, they also pointed to the
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Figure 28: Real-World AV Test - Safety Test Case

novelty of receiving feedback on the reliability of cybersecurity test cases in addition to
safety test cases.

3.1.4 Related Work

The closest contributions to our work are Yang et al. [325], Hallyburton et al. [92], Cao et
al. [35] and Zhu et al. [341]. Each of these papers utilises a LIDAR spoofing threat model
that varies based on the method for delivering the attack, adversarial generation and the
type AD algorithm. Hallyburton et al. [92] target camera and LiDAR sensor fusion. They
identify a blind spot between the camera and LiDAR sensor at the rear of the target AV.
They use a malicious, 3D LiDAR point cloud array to inject malicious spoof points into the
rear angle of the target AV. The attack was tested in a high-fidelity simulation and real-
world against multiple perception algorithms. The results revealed a high rate of success
utilising this attack. Cao et al [35], Yang et al [325], and Zhu et al [341] developed LiDAR
spoofing attacks based on a threat model of a malicious LiDAR 3D point cloud injection
in the road environment and by the roadside. Each of these contributions demonstrated
that cyber attack results from AV simulation testing can be used to identify key parame-
ters such as point cloud density, attack location and duration and that these parameters
can be optimised to test the robustness of perception algorithms. We chose to extend
from the related literature, in our work, in three areas; simulation testing configuration,
safety criteria evaluation and target AD algorithm is in the developmental phase and is
used within a real-world AV program. A feature of the selected work is that simulation
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Figure 29: Real-World AV Test - Cyber Attack Test Case

testing often selected only one frame or a limited amount of frames and therefore the
full driving mission was not observed. Whilst this is useful for reducing testing resource
usage, running massive scale of tests and applicable to the scope of their work, as our
study evaluates the AD algorithm and combines safety, our study focused on conducting
simulation testing for the entire driving mission. Secondly, the evaluation of cyber attacks
focused on attack success rate and attack parameters whilst the safety impact on the AV
as a result of cyber attacks was not as clearly elaborated. In our study, we evaluate the
cyber attack test cases with the same criteria as the safety case to derive the category of
safety violation. Lastly, most of the simulations use default AV configurations and evalu-
ate well-established algorithms. Our study uses a simulator configured for a real-world AV
and evaluates an AD algorithm in the developmental stage where reliability and optimi-
sation are required to be assessed under safety, non-cyber test cases before the impact
of cyber attacks can be understood.

3.2 Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms
for Autonomous Driving

Navigation and planning algorithms are essential for AD. For the self-driving vehicle to nav-

igate the road environment, the navigation and path-planning algorithm must calculate a

route that ensures safety for the passenger and external environmental actors (pedes-
trians, other vehicles and road users, etc.) and achievement of the journey (mission).
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Initial studies of navigation and path planning algorithms for AD have shown them to be
vulnerable to adversarial attacks that introduce uncertainties into the route calculation,
which causes downstream effects on the safe behavioral control of the AV. To improve
the reliability of navigation and planning algorithms, they need to be further tested for
uncertainties, and these methods are incorporated into the architecture of autonomous
driving [34, 37,334].

There are a few studies that focus on adversarial attacks on local-planning. These stud-
ies target machine learning algorithms for local-planning modules such as trajectory pre-
diction (Trajectron++, Agentformer and GRIP++) [34, 36, 334]. The predominant threat
model adopted, focuses on developing methods and tools of adversarial learning to un-
derstand the trajectory prediction model of the target AV and then either crafting mali-
cious sensor data input or training other ego AVs in the driving environment to interfere
with the target AVs predicted trajectory [34, 36, 303, 334]. The required result of a suc-
cessful adversarial attack is to cause the target AV to generate a trajectory that is unsafe,
inefficient, or uncomfortable for passengers. In this work, we expand on the target of
attacks to a rule-based algorithm for local-planning, and focus on the trajectory gener-
ation and estimation of an AV. Our justification for focusing on rule-based algorithms is
that, whilst Al approximate reasoning algorithms seem to be highly promising for the near
future, an impediment to current adoption is the lack of feedback in real-world driving
scenarios [52]. Rule-based algorithms for path-planning in robot navigation and AD are
well-established, and more ubiquitous in real-world deployments.

A rule-based local-planning algorithm uses a cost function to estimate the least-cost
path. The cost function takes input from immediately sensed-data; current pose, velocity
etc.. The cost estimation is based on a calculation of factors such as; lateral collision, lon-
gitudinal collision, lane transition, central deviation etc., and weighting is given to these
factors based on criteria such as safety and efficiency. By interpreting the cost-function,
used for trajectory generation and estimation, as part of local-planning, an adversarial
attack can be crafted which affects the downstream behavioral control whose decisions
impact the safe driving state of the AV.

The main idea is that the white-box knowledge of the cost estimation function of the
rule-based local planning algorithm can be used to craft adversarial attacks by manipulat-
ing factors inherent to the cost function. Evaluating white-box generated attacks enable
an understanding of the level of stealth of the adversarial threat, and whether adversarial
manipulation by the cyber attack can be distinguished from noise. Furthermore, these
attacks will enable evaluation and assessment of the optimisation of the algorithm to un-
certainties and the quality of decision-making.

The key questions we engage are the following:

1. What is the sensitivity of the cost function to adversarial data manipulation of key
driving parameters?

2. How can an adversarial attack hide in the cost function from detection?

3. What optimisations of the rule-based algorithm can be considered to mitigate against
adversarial data manipulation?

The problem area of this research, is centred on a local-planning algorithm, open-
planner 2.5, which is used in an AV shuttle program that operates in real-world road
conditions in Europe [57]. As with the open-source software community, development
of vulnerability research and testing methods proliferate across the ecosystem and are
utilised and innovated for diverse platforms. The aim of this study is to focus on the vul-
nerability of the local-planning function of autonomous driving and provide direction and
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guidance to the autonomous driving security community to develop vulnerability testing
on diverse planners and algorithms. In a broader sense, this research aims to understand
how AD algorithms used in real-world AD programs can be tested for adversarial threats
and validated to improve assurance for real-world operational driving.

3.2.1 Threat Model

The attack targets the local planning cost function, with the aim of inducing the trajectory
evaluation to choose a motion-planning route that is not optimal for safety, functional-
ity of the driving mission and comfort of the passengers. To achieve this, the most direct
mechanism to impact the cost function is to manipulate, with adversarial data, the sensed-
data input that is inherent to local-planning. The Current_Pose data is the optimal target
for this as it is the primary sensed-data for localisation of the vehicle, containing the longi-
tudinal, lateral positioning and orientation of the AV. Whilst altering the pose data of the
vehicle has previously been conducted in other studies [34,36,303,334], in our attack we
aim to explore the sensitivity of our cost function to data manipulations and conducting
the attack during specific time-intervals.

For the threat model used in our study, we assume that the attacker has access to
the internal network of the AV and is able to listen to control message communications
and collect data. This could be achieved through supply-chain compromise of a library
in the control software, insider threat actor, or many of the vulnerabilities in existing
communication frameworks for autonomous systems such as the robotic operating sys-
tem (ROS) [64]. Given the attacker has access to the internal network, the question arises,
why not change the Lane_ID or a driving parameter which would be more simplistic and
direct? We view these attacks as overt in nature and likely to be detected, the compelling
nature of adversarial data manipulation is that the attack is difficult for AV safety engi-
neers to interpret between noise and an explicit cyber threat. Another consideration are
the external interfaces of the vehicle localisation sensing, which generates the pose data.
It is a possibility that the pose data can be manipulated by an external attack in the form
of GPS spoofing or an adversarial LIiDAR, dependent on the sensor configuration used for
the localisation of the vehicle. The study focused on the vulnerability of the planner and
its search space, considering localisation. We considered internal attacks to be important
due to the increase in attacks through software and hardware supply-chains, and there-
fore the scope of the attacks within the study highlighted this area.

Attack Case 1: Position Offset Attack

The attacker creates a spoofed ROS topic which is able to deliver malicious input data of
the Current_Pose (longitude, latitude, and velocity) to all the nodes of the local planning
module. The data manipulation is injected online/dynamically during the critical overtak-
ing manoeuvre involving the AV and NPC. Figure 30 displays the critical driving scenario
and the time frames in which the manipulated Current_Pose data is injected into the lo-
cal planning pipeline cost estimation. The red dashed lines in Figure 30 represent the
roll-outs, and the green highlighted, denoting the selected motion-path.
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Figure 30: Threat Model

For the manipulation of the Current_Pose data, we introduce a deviation to lateral

and longitudinal pose. For the lateral pose data, the sensitivity deviation introduced was
structured as follows:

e Attack Case 1a: 0.16%
e Attack Case 1b: 0.33%

e Attack Case 1c: 0.5%

In designing the range of deviation, we considered state-of-the-art attacks such as
AdvDO attack [34], which noted two requirements for developing adversarial threats to
planning algorithms:

1. Malicious data input needs to be feasible to the real, physical constraints of the
vehicle [34].

2. Malicious data input of the local-planning algorithm should be close to the nominal
trajectory [34].

Therefore, we chose a range from a slight perturbation of pose to a 1m deviation.
The longitudinal pose data sensitivity deviation range was structured as follows:
e Attack Case 1d: 0.33%

e Attack Case 1e: 0.66%

e Attack Case 1f: 1.00%

This range is the same as the longitudinal deviation. The difference in percentage
comes from the difference in coordinate values of lateral and longitude. The lateral value
is almost double those of the longitudinal, and therefore the percentage is doubled.

Attack Case 2: Message Time-Delay
For the second attack case, we inserted a time-delay into the messages of the Current_Pose
topic communicating to the nodes of the local planning module. We introduced a mes-

sage delay when the AV passes 2m in front of the NPC (from the centre) in the lateral
direction. We introduce 3 different time delays in the message:
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e Attack Case 2a: 0.3 seconds
e Attack Case 2b: 0.6 seconds
e Attack Case 2c: 1.0 seconds

The message frequency is approximately 50hz, so this is a message every 20 millisec-
onds. We chose the above range of deviation of time-delay as it enabled a spectrum of a
message from the delay from approximately 15, to 50 messages.

3.2.2 Experimental Setup
Test Environment and Configuration

In terms of conducting such experiments, simulation is the best method among all testing
methods for AVs. To accelerate the testing, we bypassed the sensing and detection nodes
of the algorithm and focused on the planning part by utilizing the low-fidelity simulation
feature provided by Autoware.ai and Openplanner. The low-fidelity simulation uses the
open-planner 2.5 control algorithm. It provides simulated localization and detection data
for the planning nodes and receives the actuation commands to simulate the AV kinemat-
ics. This process runs faster due to the low-detail environment required for the simulation
and the lack of the process to simulate the sensors. Figure 31displays the different frames
of an overtaking simulation in the simulator.
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Figure 31: Example of an overtaking simulation in the low-fidelity simulator, a) starting point of the
overtaking b) middle of the mission, AV is on the opposite lane reaching the NPC c) AV cuts in

Target Mission

Overtaking is one of the most challenging maneuvers for AVs [186]. In this research, we
selected this operation as the target scenario for studying the planning algorithm under
the cyber-attack. The scenario parameters in Figure 32 are listed in Table 19.
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Overtaking

Figure 32: Overtaking Scenario and parameters

Table 19: Target scenarios definition

Actor Speed (m/s) Dy(m) Goal
AV [0:6] 0 overtake the NPC safely
NPC 3 25 keep moving

Safety Evaluation Test

To assess the safety and reliability of the planning algorithm in normal conditions (no at-
tack), we ran the scenario simulation 300 times to reach a meaningful statistical popu-
lation. Then, the planning algorithm behavior in each case was evaluated with the local-
planner performance evaluation criteria (explained in the next section).

Attack Test Cases

Finally, the platform was used to simulate the proposed adversarial data manipulations
and time-delay messaging, during the overtaking mission and monitor the algorithm'’s
behavior. For each attack case, we ran the simulation (with attack) 100 times. Overall,
900 simulations were conducted for all attack cases.

Evaluation Criteria

For the evaluation, we used previously established safety criterion [190] with evaluation
criteria recommended by SafeBench, a benchmarking framework for safety evaluation of
AD algorithms for critical driving scenarios [320]. Table 20 displays the metrics used for
the performance evaluation.

Table 20: Safety Evaluation Criteria

Safety Condition Data Label Description Metric

Succeed Suce AV Successful complete the mission Pass/Fail

Not Finished NotF Failure to finish the mission Pass/Fail

Distance-to-Collision DTC Violation of the safe distance AV within 0.5m
between AV and NPC of other vehicle

Break on Driving Lane  BrD AV initiates emergency break on driving lane  Pass/Fail

Break on Passing Lane  BrP AV initiates emergency break on passing lane  Pass/Fail

Collision Col AV collides with NPC Pass/Fail

Violation \Y, Safety Violation
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3.2.3 Results

After running 1200 simulations, all recorded data including the AV and the NPC position
and orientation were processed to assess the simulations based on the evaluation crite-
ria. We also visualized the recorded data to study the violation and their cause in each
simulation as shown in Figure 33. Figure 33.a represents a safety run completed success-
fully. Next, (b) and (c) display lateral and longitudinal attack cases which experienced
brake and collision safety violations respectively. Finally, (d) shows a message time delay
attack which is finished by a collision. The asterisk signs in the AV trajectory show the
point where the Openplanner changes the rollout. Overall, all the safety violation results
for the whole experiment are presented in Figure 34.

—AV - - NPC|

=1

Start
Stop

l

Figure 33: 2D representation of the simulation of each test group. a) a successful safety test, b)
a lateral attack case that led to a brake violation, ¢) a longitudinal attack case that experienced a
collision, and d) a message time delay that causes a collision. for the attack cases a vertical line
shows the start and stop point of the attack

For each of the attack test cases, we saw an increase in safety violations of the AV
compared to the normal safety test case experiment. As the value of the deviation for
lateral and longitudinal values increased the number of successful mission completions
decreased. Although marginal, the greater number of safety violations for the attacks on
the Current_Pose data were observed in the lateral deviations. Given the importance of
lateral positioning to the overtaking manoeuvre, this can be understood as any deviation
increases the complexity of executing the overtaking manoeuvre. In the 1f attack test case,
the highest value longitudinal change (approximately 1 meter) led to a crash with curbside
and not able to continue the mission. This event was reported as a braking safety violation.

The time-delay messaging attack test case saw the only result for mission not finished
metric. Furthermore, the greater the delay of the Current_Pose data reaching the local-
planning nodes, the increased likelihood that a safety violation will occur, and in the case
of our experiments, the greater the likelihood of a the most serious safety violation, col-
lision.
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Figure 34: All simulation result based on the proposed safety criteria

Table 21 demonstrates the results of the safety test according to the performance eval-
uation criteria. The level of safety violations are reflective of an algorithm which is in de-
velopment and being optimised for critical driving scenarios such as overtaking.

Table 21: Summary of the Safety Simulation

Num. Ve Vorc  Verr Voo WNotF Vsuce
300 4.6% 8.6% 19% 6% 0% 51.6%
TS ACC YV LI
mean 291 0.4 3.8 7.1
STD 6.7 0.2 2.2 4.6
min 21.9 0.2 1.8 2
max 42.3 1.3 21.7 25

Table 22 shows that for each deviation there is a high number of safety violations in
comparison to the safety test case results. In regards to the sensitivity analysis, a smaller
deviation of around 20 to 25 cm can achieve the result that the local-planning algorithm
is only successful in generating a trajectory that completes the mission in 24% of the total
test set. Furthermore, a small deviation in the lateral pose, can achieve a higher number of
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Table 22: Summary of the Attack Case 1: Position Offset Attack Simulation

Case Num. Veo Vorc Verr VBd  WNotF Vsuce
1a 100 24% NMN% 34% 7% 0% 24%
1b 100 5% 1% 81% 1% 0% 2%
1c 100 13% NMN% 74% 2% 0% 0%

1a TS ACC YV LI
mean 353 04 9 7.5
STD 7.4 02 75 5.4
min 219 02 19 1
max 424 1 23 23

1b TS ACC YV LI
mean 414 04 9.5 4.8
STD 3.5 0.1 4.4 3
min 221 0.2 3.1 1
max 424 1.2 237 21

1c TS ACC YV LI
mean 417 04 78 4.7
STD 1.7 0.1 1.2 2.7
min 32 0.3 43 1
max 42.3 1 9.8 15

collisions with an ego vehicle. It may also be seen from the lane invasion and steering angle
results that small deviations to lateral pose result in a fluctuation of the cost of different
rollouts which cause greater lane transitions as the cost function causes the AV to choose
a route based on minimum cost. The higher deviation results in a higher occurrence of
breaking activity and hitting the curb. Furthermore, the higher deviation results in the
AV being stuck in the passing lane, this is due the dramatic change in lateral pose. The 1
meter deviation attack case results in 0% success of finishing the mission.

Table 23 results of the longitudinal deviations also display a high number of safety vio-
lations in comparison to the safety test case results. Collision safety violation is highest for
the longitudinal deviation attack. This can be reasoned as the longitudinal deviation does
not experience the same high volume of breaking passing lane safety violations, where
the vehicle gets stuck, as seen with the lateral pose deviation. The higher deviation of
longitudinal pose, results in increased acceleration and this causes sharp breaking. This is
indicated with the 1f result, the 1 meter deviation attack case, which displays a higher in-
stance of breaking safety violation. The 1 meter deviation attack case results in 0% success
of finishing the mission.

Table 24 demonstrates the shorter delay of local pose data has minimal impact on the
success of the mission and safety violations. As the time duration of the message delay
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Table 23: Summary of the Attack Case 1: Position Offset Longitudinal Deviation Simulation

Case Num. Veo Vorc Verr VBd  WNotF Vsuce
1d 100 23% 16% 30% 7% 0% 24%
le 100 58% 9% 25% 3% 0% 5%
1f 100 34% 14% 51% 1% 0% 0%
1d TS ACC YV LI
mean 338 05 57 9.1
STD 7.6 0.3 4.9 5.4
min 181 02 17 2
max 432 1.4 23 27
le TS ACC YV LI
mean 322 0.6 6.7 10.5
STD 9.5 02 32 5
min 178 02 19 2
max 432 11 20.5 25
1f TS ACC YV LI
mean 322 0.7 59 1.3
STD 7.9 02 25 4.7
min 18 03 27 2
max 432 1.4 221 26

is increased the impact to the reliability of the local-planning algorithm is higher. Test 2c,
which is the delay of Current_Pose data of 1.0 second, shows considerable increases in
collisions and decreases in the likelihood of the success of the mission. The time-delay of
the pose data to the local-planning nodes results in a loss of localisation and the greater
delay the greater impact on the cost calculation which in turn causes uncertainty for the
behaviour selector/decision-making.

3.2.4 Discussion

The results of the test simulations demonstrated that the cost function is sensitive to mi-
nor deviations of both the lateral and longitudinal pose. The success rate of the mission is
visibly diminished when adding adversarial data manipulations to the sensed-data input.
The higher the deviation, the higher the likelihood of mission failure. The minor deviation
attacks, where the deviation is a range of 20 to 25cm offer a good starting point to mutate
adversarial data for further attacks based on this range. Whilst the higher range attacks
conducted in our experiments showed a higher rate of mission failure, a deviation of 1
meter can be seen a noisy enough to be observable. We also noticed such behaviour in a
real-world AV shuttle [254] and a manual emergency break had to be enacted to prevent
an emergency.

68



Table 24: Summary of the Attack Case 2: White-Box Delay Simulation

Case Num. Voo Vorc Ve Vep  WNotr Vsuce
2a 100 20% 9% 16% 4% 0% 51%

2b 100 21% 8% 7% 7% 0% 47%
2c 100 M1% 10% 14% 2% 4% 29%

2a TS ACC YV LI
mean 29.3 04 4.2 7.6
STD 8.1 0.2 2.2 5.4
min 181 0.2 18 2
max 53 11 16.7 24

2b TS ACC YV LI
mean 30.6 04 438 7.8
STD 86 03 37 4.8
min 229 0.2 1.8 2
max 58 11 238 21

2c TS ACC YV LI
mean 329 04 7 8.3
STD 9.6 0.3 52 5
min 13 0.2 11 0
max 58.2 13 22,9 23

The time-delay attack demonstrated that minor delays cause minimal impact on the
success of the mission and the occurrence of safety violations. Delays in sensed-data input
flowing to the local-planning modules of greater than 1 second increase the rate of mission
failure and safety violations. Given that 1 message is broadcast every 20 milliseconds, 1
second represents around 50 messages, and a delay of this magnitude is also likely to be
more observable.

For the attack to hide in the cost function, investigating mutations for minor deviations of
lateral and longitudinal values in the range of 20 to 30 cm, offer an optimal target range.

Mitigation of the adversarial deviation and time-delay attack could include the imple-
mentation of a redundant driver. This means that the AV should run a concurrent process
executing a concurrent planning instance. If the redundant driver and the actual driving
algorithm give different results, then this could indicate that an attack might be happen-
ing. In such a case, the AV could either stop safely awaiting for human intervention or
switch to the redundant driver to complete its mission. The development of the architec-
ture for a redundant driving integrity checking function also needs to consider isolation
from the primary driving function so that an attacker cannot also compromise both.
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3.2.5 Relation to existing solutions

As safety validation of AD algorithms is a critical field for the adoption of AD in real-world
environments, there is a focus on testing the reliability of trajectory prediction and gen-
eration to adversarial driving actors in the road environment. Wang et al. [303], Abeysiri-
goonawardena, Dudek & Shkurti [6], Chen et al. [44], Klischat et al. [157], and O’Kelly et
al. [215] use simulation environments to develop adversarial trained NPCs whose driving
actions cause safety violations of the trajectory prediction of the targeted AV. These sim-
ulations are focused on safety validation and are not focused on the exploitation of the
algorithm by adversarial threat actors, however, their methods in generating adversarial
examples and target parameters and data values are of great use in developing adversarial
cyber threats.

On a practical level, involving the real-world operation of AVs, there are few research
studies into the robustness of planning and navigation algorithms to adversarial threats.
Prominent among them are Zhang et al. [334], Cao et al. [36] and Cao et al. [34]. These
studies focus on the robustness of the trajectory prediction, the ability of the AV to predict
the trajectory of another ego vehicle or environmental object (pedestrian, animals etc.)
and make driving decisions accordingly. The attacks in these studies are targeted at deep-
neural networks (DNNs), and therefore focus on adversarial learning to develop robust
adversarial trajectories. In relation to our work, the observations on ranges for deviation
of lateral and longitudinal values and the considerations for crafting adversarial data were
useful in developing our attack cases.

In this experimental research, we conducted a sensitivity analysis of the openplanner
2.5 rule-based planning algorithm to adversarial data manipulation of lateral and longi-
tude values and delayed sensed-input messages to local-planning nodes. We evaluated
these attacks in a low-fidelity simulation test environment using an overtaking manoeuvre
critical driving scenario. The results showed that the planning cost-function is sensitive to
adversarial data manipulation that introduces deviations to the lateral and longitudinal
values. These adversarial deviations cause higher rates of failure to complete missions
and cause safety violations. For the message delay attack, limited delays in the range up
to approximately 0.6 seconds have a limited impact on the trajectory calculation. Mes-
sage delays for 1second or greater cause a visible difference in the safety violation rate and
mission success. We opine that limited deviations are an optimal area to explore further
attacks and in more diverse critical driving scenarios. Through this work we propose a
class of stealthy attacks on the local-planning function of AD. An area of future research
is the development of monitoring systems developed around such basis of attacks. The
results show the feasibility of monitoring real-time properties of the messages
propagations and therefore post-mortem forensics might be able to determine the
presence of an attacker causing safety violations of AVs.

3.3 Analysis of Autonomous Driving Software to Low-Level Sensor Cyber
Attacks

Cyber attacks which manipulate input to physical processes in cyber-physical systems present
a fundamental challenge to secure system design [331]. Within the domain of automotive
systems, transformation of legacy, analog architectures to digitally connected and AD
technologies present new challenges. Legacy, analog automotive systems were designed
based on a principle of contained, isolated system boundaries, restricting the flow of data
within an analog system and sub-system [30]. The AD system architecture transforms this
design, requiring the lower-level, analog control of actuation processes (steering control,
braking, acceleration etc.) to be open and connected to digital controllers so their process
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signals can be translated to digital input for the higher-level decision control [205].

There have been numerous real-world examples of semi-autonomous control archi-
tectures enacting unsafe decisions from erroneous sensing data from low-level actuation
sensors [294] [74]. The 2018 SmartLynx Airline incident demonstrated that a physical dis-
turbance from a maintenance activity on the horizontal stabilising sensor caused the sens-
ing input to send erroneous data which propagated through to the control systems for
flight planning, stabilisation and safety. The control systems initiated multiple concurrent
actuation decisions (horizontal stabilisation, acceleration etc.) which affected the safe
operation of the flight [74]. Ultimately, manual intervention to override the autonomous
control resolved the unsafe state of the flight.

Within the context of cyber threats, numerous studies have proven the vulnerability of
microelectronic sensors to electromagnetic interference (EMI) [225], [290], [336], acoustic
sensor [289] [283] and data manipulation attacks [60], [131], [202], [51]. Furthermore,
the network that exchanges actuation signals, CAN Bus network, has been shown to be
inherently vulnerable to a diversity of man-in-the-middle [31,139] attacks. Yet, there is a
lack of practical investigation which extends this analysis of the propagation of malicious

data input within an AD system, where physical processes are software controlled and
manual, human intervention is not available.
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Figure 35: High-level architecture of Steering Angle Sensor Manipulation within AD System.

This experimental research is motivated to investigate how cyber attacks to electrome-
chanical components, in our case, a steering-angle sensor, propagate through the AV sys-
tem, affecting higher-level decision-making. The aim of this research is to analyse the
design of a real-world AD vehicular system and assess mechanisms to enhance the de-
sign of the architecture of AD systems to be more robust and resilient. To achieve this,
we, firstly, investigate a real-world AV software ecosystem, analysing the integration be-
tween the lower-level control, characterised by electromechanical components, and the
high-level control, characterised by digital systems which support algorithmic decision-
making. Secondly, how malicious input propagates within this ecosystem. Finally, deter-
mine mechanisms for enhancing secure design.

To guide this research, we focus on the following research questions:

)

Actuation Steering
‘Command

PID

RQ1 How does a manipulation to the electromechanical component propagate through
the AD software stack?

RQ2 What dependencies exist between the AD control algorithm and low-level control?

RQ3 Where in the architecture of the autonomous vehicle can defensive mechanisms be
placed to defend against control invariants?
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3.3.1 Approach Overview

Our approach (see Figure 36) is to, firstly, implement the sensor interference attack model
in our custom high-fidelity AD test-bed environment. The test-bed environment contains
the software stack of our real-world vehicle and configurations consistent with the real-
world kinematics of the vehicle.

Secondly, from the results of the experiments, we assess the impact of the cyber at-
tacks utilising defined safety criteria. Furthermore, we conduct a sensitivity analysis of
the vehicles dynamic parameters to identify the behavioural affect of the malicious input
and assist in pinpointing critical areas of the AV software which are affected by the attack.

Third, we conduct a bottom-up analysis, to ascertain what happens to the high-level,
decision-control, when malicious data is injected into the low-level. The bottom-up anal-
ysis details the relationship between inputs and outputs in the AV software stack.

Fourth, the previous analysis enables backstepping at a conceptual level to stabilize
elements of the control model which are susceptible to the sensor interference attack.

Attack on Low-Level |=| Analysis of Vehicle

. . A Bottom-Up Aalysis
Steering Sensor Dynamic Behaviour

of AV Software

Stack

Backstepping
Control Model

N

Figure 36: Conceptualization of our approach, from attack to backstepping.

We justify the use of this approach as it enables us to take an architectural view of the
AV software stack. Existing studies use methods that view the problem of manipulation of
low-level sensor input either within the context of a PID control [225] [290] issue or solely
focus on the autonomous control [131]. We believe, taking an architectural perspective,
where the interconnections and dependencies of the system are encountered, enables
the designer/s of the AV to gain more insight into the functioning of the system under
attacks.

3.3.2 Adversarial Model

The objective of the attacker is to cause the AV to take unsafe driving actions resulting
from manipulation of the steering angle sensor. We assume the attackers cannot directly
access the digitised sensor readings. Instead, we assume that the attacker can exploit
vulnerabilities in the steering angle sensor using proven techniques such as EMI, to affect
the integrity of the sensor data (analog signals on the signal conditioning path before
being digitised).We assume that the attackers can physically place an EMI device near
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the steering angle sensor and are capable of crafting and transmitting interference to the
sensor during the navigation of the AV and thus transform the waveform of the sensor
output. We further assume that the attackers do not possess an in-depth understanding
of the voltage levels of the steering sensor and therefore focus on injecting incremental
noise into the sensor. We assume that the attackers can observe the operation of the AV
and control the attack in terms of initiation and cessation of the attack during varied time
periods or within the frames of a critical driving manoeuvre.

3.3.3 Attack Model

The attack is conducted in the measurement of the input and output of the PID controller
for the steering angle (See Figure. 37).
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Figure 37: Steering angle sensor attack.

The key parameters that affect the success rate of the attack are: duration, noise,
attack trigger action.

Within, our attack model, attacks are conducted with differing sensitivity levels of the
steering angle sensor, durations and are triggered at targeted points of the AV mission.
We have chosen a range of sensor attack noise levels (0.01, 0.05, 0.1, 0.2), rather than
a specific target point. We expect that our attack, will generate errors that propagate
from the low level to the localizer and trajectory-generator blocks. The study of Péliny et
al. [225], which conducted EMI attacks on a sensor used in an automotive ECU, indicated
that an attacker does not need to set a specific value for the steering angle attack, but
simply to find the sufficiently high level of noise that would alter system behaviour to the
attacker goal.

Whilst, EMI attacks have been proven successful against microelectronic components
in [150] [131] [225] [60] [290] [336] [283], the attacks are applied to the stand-alone sensor
hardware and application use-cases such as microphones, temperature sensors, drones.
The novelty of the attack model in our study is the implementation of the attack to a
fully-autonomous vehicle that integrates low-level actuation with high-level AD decision-
making. This enables the ability to assess the affect of the attack to the entire AV software
stack. Furthermore, the attack is conducted utilising scenario-specific testing. This is of
critical importance, as it is widely understand that the performance of the AD decision-
making layer differs based on scenario specific behaviour [131]. For the AD algorithms may
be better optimised for specific driving manoeuvres such as overtaking, or ODDs such as
busy intersections. Our attack is conducted in a simulation test environment, as attacks
at the physical, hardware-level are proven, the gap in existing research, is how these in-
puts propagate within the system and affect the decision-making within an autonomous
system.
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3.3.4 Experiment
Experimental Setup

To conduct the attack and analyse the subsequent effects, we developed an experimental
test environment.This environment consists of a simulation platform that fuses the low-
level actuation, simulated in MATLAB, with a high-fidelity simulation of the AV software of
our real-world vehicle, simulated in CARLA. The simulation test environment provides an
optimal platform as it uses the same mathematical model of the steering actuation sen-
sor and the same software stack as the real-world vehicle. Furthermore, the simulation
environment enables attack testing to be conducted in an agile manner, whilst, removing
the safety risk factors of testing the AV in the physical, road environment.

Attack Implementation

We chose to conduct the low-level attack on three diverse scenarios (see Figure. 38):
1) Straight-line, 2) Overtaking manoeuvre and, 3) Left-turning maneuver at intersection.
These scenarios were chosen as they are consistent with the most-popularly tested driv-
ing scenarios according to the survey of test methods and practices by Lou, Deng, Zheng,
Zhang & Zhang [177]. As shown in Figure 38, the high-fidelity simulation view for the 3
scenarios is conducted. The Straight-Line scenario shows that the EMI attack is initiated
after the vehicle traveled 20 meters, with two different attack durations: 10 and 20 me-
ters. For the overtaking manoeuvre, the attack begins during the cut-in process and lasts
for 10 meters. Finally, in the intersection scenario, the attack is launched as the vehicle
enters the intersection and persists for a distance of 10 meters.

To conduct our experiments, firstly, we conduct the scenario with no-attack for 100
runs. This establishes a baseline of the performance of the AV without attacks. From
there, each of the attacks with different noise levels and duration are run 100 times. Over-
all, approx. 1900 simulation runs are recorded, and as the high-fidelity simulation uses
GPU and CPU resources, this is a time-consuming process. Figure 39 presents the sce-
nario flow used to integrate the attack into the mission in CARLA. It outlines the sequence
of behaviors from the vehicle’s initialization and driving towards the goal to executing an
attack or stopping based on a distance trigger. The attack is enabled based on a prede-
fined condition. This structured flow allows for precise control over when and how the
attack occurs during the scenario, ensuring consistent testing of the AV’s response to dis-
turbances.

Evaluation Criteria

Table 25 and 26 detail the safety and performance criteria applied in our experiments,
respectively. As we have diverse scenarios which involve scenarios with ego vehicles, cer-
tain criteria is only applicable to their corresponding scenario. In this analysis, mission
failure (NotF) and safety violations (SafetyV) are distinct evaluation criteria used to assess
the performance and safety of the AV during the scenarios.

Mission failure (NotF) refers to instances where the vehicle was unable to complete
the mission. This typically occurs due to critical events that prevent the AV from finishing
its task, such as collisions (V¢,;), localization loss (Vypris), or sidewalk incursions (Vsiz,).
These violations are severe enough to terminate the mission.

Safety violations (SafetyV), on the other hand, refer to any breaches of safety that oc-
cur during the mission but do not necessarily prevent the vehicle from completing it. A
mission may still be considered successful even if multiple safety violations are recorded.
Examples of these include deviation to the center lane (Vprz), sharp braking (V,p), local-
ization loss (Vvpris), collisions (Vc,;), and violations of distance to collision (VprcVDTC).
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Figure 38: Game-engine view of three simulated scenarios representing the attack occurrence place
during the mission; 1) Straight-line 2) Overtake 3) Intersection.

In these cases, while the AV may exhibit unsafe behaviors or suboptimal performance, it
is still able to complete the mission.

Two critical safety metrics are sidewalk incursions (Vs;;,) and collisions (V,;), both
representing severe safety hazards. A sidewalk incursion indicates where the AV veered off
its intended path and encroached into pedestrian zones, potentially endangering people
on sidewalks. Similarly, a collision signifies an event where the AV collided with a nearby
NPC vehicle.

Another key performance indicator is the deviation to the reference path (Dev2Ref),
which measures how far the AV strayed from its intended trajectory. It isimportant to note
that Dev2Ref is not the deviation at a single point; rather, it represents the summation
of the deviations at several reference points along the planned path to the actual route
traveled by the AV. This cumulative nature of the metric results in larger values, especially
when the AV frequently deviates from the intended trajectory.
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Figure 39: Flow-graph of how each scenario is processed in the simulation platform.

Table 25: Safety Evaluation Criteria

Safety Data Description Metric
Condition Label
Not Finished NotF Failure to finish the mission Pass/Fail
Sidewalk Incursion  Siln AV deviation Pass/Fail
into pedestrian zone

Collision Col AV collides with NPC Pass/Fail
Distance-to DTC Violation of the safe distance AV within 0.5m
-Collision between AV and NPC of other vehicle
Distance-to DTL Violation of the safe distance AV within 0.4m
-Centre Lane between AV and Centre Lane  of centre lane
Break on BrD AV initiates emergency break  Pass/Fail
Driving Lane on driving lane
Localization NDTLs Localization Loss NDTerror > 1.0
Violation v Safety Violation

3.3.5 Results

For each of the scenario’s, the results, as expressed in Tables. 27, 28, 29 demonstrate that
increasing level of noise and duration of the EMI attack impact the safety and performance
of the AV.

The manipulation of the steering sensor input, at higher noise levels, affects the feedback-
loop for calculation of localisation which results in the AV experiencing loss and jumps of
localisation. The NDT algorithm, used in the localisation algorithm, exhibits weakness in
holding the position of the AV during sensor manipulation, which is demonstrated by loss
of localisation, in attempting to re-correct, it incurs jumps. The loss and jumps of the lo-
calisation affect the displacement of the AV as such the cost-based algorithm used by the
mission and motion planning module, recalculates the trajectories and chooses a new roll-
out. The choice of new trajectory of the AV disrupts the flow of critical maneuvers within
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Table 26: Performance Evaluation Criteria

Performance Data Description Metric

Criteria Label

Lane Transition RlOut AV executes multiple roll-out Pass/Fail
transition

Localization NDT Localization AV localization matching
Performance

Localization NDTer Mean localization pose error Localization error margin

Duration Dur Duration in seconds

Max NDT score MxNDTSr  Max NDT score Smaller = Better

during a mission

Path Deviation Dev2Ref  Sum of deviation to the Smaller = Better
reference path in sampled points

Max Lat Deviation MxLaDev  Max lateral deviation Smaller = Better
from original path

the scenario such as the cut-in process of overtaking, smoothing of trajectory in keeping
straight-line and turning at the intersection.

Scenario 1: Straight-Line

Within the Straight-Line Scenario Safety Results (Table. 27), safety violations begin to oc-
cur when 0.05 noise is introduced into the sensor input, marking the threshold where the
AV system starts to struggle with maintaining safety. At this noise level, a 10% safety vio-
lation rate provided by lateral deviation violations was observed. As the noise level and
attack duration increase, the AV experiences a progressive degradation in performance,
culminating in the highest noise level (0.2) and the longest attack duration (20 meters),
which results in a 42% safety violation rate and 38% lateral deviation violation.

A key characteristic of the AV’s behavior in this scenario is the Deviation-to-Centre-
Lane. The noise is injected into the steering sensor, and abrupt changes in the steering
actuation cause the vehicle’s control system to oscillate between making corrections and
following the desired path. Autoware’s motion planner attempts to rectify the vehicle’s
course, but the corrections are often sub-optimal, resulting in the AV veering to a danger-
ous proximity to the center line. This behavior indicates a weakness in the resilience of
the AV’s planning algorithm when recovering from anomalous inputs, as the system fails
to regain optimal performance after the attack.

A more extreme example of dangerous trajectories, is where the EMI injection causes
the AV to lose localisation which, cascades to affect the decision-making of the planning
algorithm. The attack localization loss, as indicated by the NDT Error Value and NDT Score
increasing, and the sharp variances between autoware and simulator. This behaviour re-
sults in the AV veering into the adjacent lane and hitting the side curb, a behaviour char-
acteristic of 6% of the runs within the maximum noise and duration simulation set. Asso-
ciated with these safety violations are significant performance degradation. In scenarios
with low noise levels (0.01), the maximum lateral deviation is limited to around 0.2 me-
ters. However, under maximum noise (0.2) and 20-meter duration conditions, the lateral
deviation increases dramatically to 8.2 meters, showcasing the substantial impact of noise
on the AV’s ability to maintain its path. This severe lateral deviation illustrates the danger
posed by noise-induced errors in the vehicle’s steering and localization systems.
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Table 27: Summary of the Safety and Performance Evaluation - Straight Line Scenario. The first line
is our baseline path where no attack was applied.

SAFETY
Length Noise ‘ NotF  SafetyV Vsiin Vo Vaors Veod
- baseline [ 0% 0% 0% 0% 0% 0%
10m 0.01 0% 0% 0% 0% 0% 0%
10m 0.05 10% 10% 0% 10% 0% 0%
10m 0.1 12% 12% 0% 6% 6% 0%
10m 0.2 30% 30% 2% 26% 12% 8%
20 m 0.01 0% 0% 0% 0% 0% 0%
20 m 0.05 34% 34% 2% 30% 8% 2%
20 m 0.1 34% 36% 1% 28% 18% 6%
20m 0.2 42% 42% 6% 38% 14% 2%
PERFORMANCE

Length Noise\ Dur RIOut MxLaDev MxNDTSr

- baseline | 57.6s 0 0.1m 1.9
10m 0.01 | 59.9s 0 0.2m 1.9
10m 0.05 | 61.5s 0.16 1.6m 12.0
10m 0.1 | 65.5s 0.3 1.5m 12.5
10m 0.2 | 71.8s 118 8.3m 25.5
20m 0.01 | 70.2s 0 0.3m 14.2
20m 0.05 | 75.6s 0.94 1.7m 25.5
20m 0.1 | 82.6s 1.36 8.2m 46.9
20m 0.2 | 85.6s 1.64 8.2m 35.0

Moreover, the RIOut metric—which tracks the average number of local trajectory tran-
sitions during a mission—shows a significant increase under high-noise conditions. This
indicates the motion planner’s growing uncertainty and inability to maintain a stable tra-
jectory. As the AV continuously switches between trajectories, it struggles to converge on
an optimal path, leading to erratic driving behavior and further deviations. Another factor
exacerbating these challenges is the increased mission duration under noise attacks. The
AV, displaced from its efficient path due to trajectory deviations and localization errors,
takes longer to complete the mission. In the 0.2 noise / 20-meter scenario, the mission
duration extended by nearly 28 seconds compared to the no-attack baseline, reflecting
the inefficiency introduced by the noise attacks.

Scenario 2: Overtake Maneuver

In this experiment, the attack length was fixed at 10 meters while varying the noise levels
to assess their impact on the vehicle’s performance and safety. In the no-attack scenario
(see Table. 27), the AV successfully completed the overtaking maneuver with minimal dis-
ruptions. The mission failure rate (NotF) was 0%, and a 1% violation of distance to collision
(Vbrc) was recorded, indicating that in one case, the vehicle exceeded the safe distance
from nearby objects. Despite this, there were no sidewalk incursions (Vs;;,,), collisions
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(Vicor), or localization loss (Vypris). The vehicle maintained a safe average DTC of 0.4 me-
ters. The mission duration was 104.7 seconds, with an NDT error of 0.2 and a standard
deviation of 0.1.

Table 28: Summary of the Safety and Performance Evaluation - Overtake Scenario. No attack was
carried out in the baseline experiment.

SAFETY

Noise ‘ NotF SafetyV VSiIn VCoI VNDTLS VDTC VBrD
baseline | 0% % 0% 0% 0% 1% 0%
0.01 7% 18% 2% 3% 4% 14% 1%
0.05 16% 23% 8% 3% 1% 10% 2%
0.1 29% 40% 18% 2% 26% 14% 1%
02| 33%  39% 23% 7% 28% 14% 2%

PERFORMANCE

Noise\ Dur RIOut DTC MxNDTSr NDTer S-NDTer

baseline \ 104.7s 8.2 0.4m 19.4 0.2m 0.1m
0.01 | 107.3s 7.8 0.2m 55.9 0.2m 0.2m
0.05 | 121.4s 8.9 0.2m 73.9 0.4m 0.5m
0.1 | 125.4s 10.0 0.2m 63.9 0.7m 0.9m

0.2 | 124.7s 10.2 0.2m 531 0.6m 0.8m

In the 0.01 noise scenario, Vy,r increased to 7%, and by the 0.2 noise level, it reached
33%. Similarly, Vyprioss Was first observed at 0.01 noise (4%), growing to 28% in the 0.2
noise scenario. These results indicate that noise in the sensor input significantly disrupts
the vehicle’s ability to maintain accurate localization, directly impacting mission success.

In the no-attack scenario, Vg;j,, and V,,; were recorded at 0%, reflecting ideal behav-
ior where the AV stayed within its designated path and successfully avoided NPCs during
overtaking. However, as noise levels increased, both metrics worsened. In the 0.01 noise
scenario, Vg, rose to 2%, and V,; to 3%, showing the system’s diminished capacity to
maintain lane discipline and avoid nearby vehicles. At the highest noise level (0.2), side-
walk incursions increased to 23%, while collisions reached 7%, a significant rise indicating
the AV’s inability to safely manage the overtaking maneuver under heavy noise interfer-
ence. These results suggest that sensor noise not only disrupts the vehicle’s path but also
critically impacts its ability to avoid hazards that could lead to severe accidents involving
both pedestrians and other vehicles.

The Vpre, which reflects the rate at which the AV exceeded safe distances from nearby
objects, increased from 1% in the no-attack case to 14% in the 0.2 noise scenario. This
was accompanied by arise in sharp braking events as the AV’s control system struggled to
compensate for the noisy input, leading to more frequent sudden stops. As the noise level
increased, the RollOut metric showed greater instability. In the 0.2 noise case, the Roll-
Out metric increased from 8.2 (in the no-attack scenario) to 10.2, indicating the planner’s
increasing uncertainty in maintaining a stable trajectory.

The mission duration increased as the noise level rose. In the 0.2 noise scenario, the
AV took 124.7 seconds to complete the maneuver, an increase from 104.7 seconds in the

79



no-attack scenario. Additionally, the NDT error and its standard deviation saw significant
increases, with the NDTer rising from 0.2 to 0.6 and the S-NDTer increasing from 0.1 to
0.8, highlighting the degradation in localization performance under noisy conditions.

Scenario 3: Intersection

In the intersection scenario, the attack length remained unchanged at 10 m, while the
noise levels varied to assess their impact on the AV’s performance during this complex
maneuver. In the baseline scenario, the AV successfully navigated the intersection without
mission failure (0%) or significant safety violations, aside from a small 3% Vprc. There
were no recorded Vg;;, or Ve, and the AV maintained an average DTC of 0.4 meters,
with an NDTer of 0.1 and a minimal deviation from the reference path of 20.4 meters.
The overall mission duration was 65.8 seconds, and the system performed with only 2.2
RollOut changes, indicating a stable and efficient planning process.

Table 29: Summary of the Safety and Performance Evaluation - Intersection Scenario. No attack was
carried out in the baseline experiment.

SAFETY

Noise | NotF SafetyV Vsin Vol ViDTLoss Vbre DTC
baseline [ 0% 3% 0% 0% 0% 3% 0.4m
0.01 8% 15% 0% 1% 7% 10% 0.2m
0.05 19% 27% 2% 3% 16% 13% 0.2m
0.1 23% 32% 6% 3% 19% 16% 0.2m

0.2 25% 28% 4% 4% 22% 7% 0.1m

PERFORMANCE

Noise \ Dur RIOut MxNDTSr NDTer S-NDTer Dev2Ref S-Dev2Ref
baseline \ 65.8s 2.2 38.5 0.1m 0.1m 20.4m 8.2m
0.01 | 70.5s 3.1 39.5 0.2m 0.2m 39.1m 98.8m
0.05 | 72.9s 3.9 40.9 0.4m 0.4m 63.6m 170.4m
0.1 | 74.2s 4.5 37.5 0.5m 0.5m 69.6m 147.5m

0.2 | 74.5s 4.1 391 0.4m 0.5m 77.9m 154.9m

As noise levels increased, the NotF rate rose from 8% at 0.01 noise to 25% at 0.2 noise.
Safety violations also saw a sharp increase, particularly in terms of Vyprr,, which jumped
from 7% at 0.01 noise to 22% at 0.2 noise. This degradation in localization directly im-
pacted the AV's ability to make timely decisions and follow the intended trajectory, leading
to more dangerous driving behavior.

While sidewalk incursions and collisions were rare in the baseline scenario, they be-
came more frequent as noise levels rose. At 0.2 noise, 4% of the runs resulted in Vg,
and 4% in V,; with NPCs within the intersection. This behavior indicates a critical safety
failure, where the AV not only lost control of its lane discipline but also failed to avoid
NPCs and pedestrian zones.

The cumulative deviation remained relatively low in the no-attack baseline scenario,
indicating stable performance. However, under the influence of noise, this deviation in-
creased significantly. For example, in the 0.2 noise scenario, the Dev2Ref reached 77.9
meters, with a high standard deviation of 154.9 meters, demonstrating the system’s grow-
ing instability under attack. The high standard deviation reflects the inconsistency in the
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AV’s ability to maintain a predictable trajectory, as deviations varied considerably at dif-
ferent points along the path. The increasing Dev2Ref values show that the AV struggled
to recover from noise-induced errors, leading to significant drift from the planned path.

The results show that the roll-out metric increased as noise levels rose. In the 0.01
noise scenario, the roll-out increased to 3.1, and by 0.2 noise, it rose to 4.1, indicating the
planning system’s growing uncertainty in selecting and maintaining a stable path. The
maximum NDT score also fluctuated, reaching a high of 40.9 in the 0.05 noise scenario,
highlighting the deteriorating localization performance.

The NDT error and its standard deviation also increased with higher noise levels. At
0.2 noise, the NDT error rose to 0.4, with a standard deviation of 0.5, indicating significant
localization drift. This localization instability contributed to unsafe driving behavior, as
reflected in the increased Vpr¢ and collisions. The mission duration also increased with
noise levels, from 65.8 seconds in the baseline scenario to 74.5 seconds at 0.2 noise. This
duration increase indicates the AV's struggle to efficiently navigate the intersection under
attack, as the planning algorithm and control systems were frequently forced to adjust to
counteract the noise-induced deviations.

Comparison Between Safety Violations and Simulated Scenario

Figure 40 represents radar graphs that provide a clear visual representation of the impact
of noise attacks on the AV across all different mission types: straight-line driving, overtak-
ing, and intersection maneuvers, with varying attack lengths (10 meters and 20 meters)
for the straight-line scenario. By comparing these radar graphs, we can discern how the
attack influences the AV in different maneuvers and understand whether the vulnerability
is related to the nature of each maneuver.

In the straight-line scenario (Figure 40 (a) and (b)), the radar plots show a clear differ-
ence between the 10-meter and 20-meter attack lengths. With the 10-meter attack (Fig-
ure (a)), the Vprr and Vyprr,s are relatively contained at noise levels below 0.1, but they
spike at 0.2 noise, indicating that longer attack lengths exacerbate the vehicle’s struggle
to maintain its trajectory. By contrast, in the 20-meter attack scenario (Figure (b)), the
impact of noise is more pronounced across all noise levels, with a higher percentage of
NotF and significantly greater Vpr, and Vyprrs values. This suggests that the longer at-
tack duration amplifies the system’s inability to recover from perturbations in the steering
sensor, causing the AV to deviate further from the planned path.

In the overtaking scenario (Fig. 40 (c)), the radar plot highlights that this maneuver is
particularly vulnerable to Vyprrs and Vpre as noise levels increase. Even at 0.01 noise,
the AV shows a marked increase in these safety violations, and by 0.2 noise, Vyprrs and
Vprc reach critical levels. This indicates that overtaking is a more complex and challenging
maneuver for the AV compared to straight-line driving, as it requires the vehicle to safely
execute lane changes and avoid collisions with NPCs. The complexity of coordinating be-
tween localization, path planning, and collision avoidance makes the system more prone
to safety violations when noise is introduced.

In the intersection scenario (Fig. 40 (d)), the radar plot demonstrates that this maneu-
ver is less affected by Vpr¢e compared to the overtaking scenario, but the mission failure
rate and localization loss are notably higher. Even at 0.01 noise, NotF jumps to 8%, and
VnprLs reaches 7%, while at 0.2 noise, NotF reaches 25%, indicating a substantial failure
rate. The intersection maneuver places a high demand on the AV’s localization and plan-
ning systems, as it requires precise decision-making in a constrained environment with
multiple potential collision points. The increase in safety violations with rising noise lev-
els reflects the difficulty the AV faces in maintaining control during complex navigation

81



(a) StraightLine 10m (b) StraightLine 20m
%NotF %NotF

50.0 50.0

%V

(c) Overtaking (d) Intersection
%NotF %NotF
50.0 506.0

\—O—baseline ——N0.01 NO.05 —#—N0.1 —#—N0.2

Figure 40: Safety violation of simulated scenarios.

tasks in intersections, where it must simultaneously monitor multiple potential threats
and adjust its trajectory.

The vulnerability of the AV to noise attacks appears closely tied to the nature of the
maneuver. Straight-line driving is less demanding in terms of control and localization, and
as a result, the AV is able to handle noise better—though longer attack durations (as in
Fig. 40 (b)) significantly increase the risk of mission failure. In contrast, overtaking involves
more dynamic path changes and collision avoidance, making it more susceptible to noise,
as seen in the sharp rise in Vprc and Vyprrs even at low noise levels. Intersection maneu-
vers also present significant challenges, particularly due to the need for precise localiza-
tion and decision-making at multiple points, resulting in higher mission failure rates and
localization loss as noise levels increase. These findings suggest that the more complex
the maneuver (i.e., those requiring more dynamic control and interaction with external
factors like NPCs or intersection points), the more vulnerable the AV is to noise attacks.

Violation to noise correlation analysis

The correlation heatmap shown in Figure 41 reveals significant insights into how different
safety violations and performance metrics are affected by noise levels across various ma-
neuvers and attack durations. Among all the maneuvers, straight-line driving (10m attack)
demonstrates the highest correlation between noise levels and mission failure, with a co-
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Figure 41: Correlation coefficients between violation metrics (horizontal axis) and noise levels ([0,
0.01, 0.05, 0.1, 0.2]) for each scenario (vertical axis). The values indicate the strength of the rela-
tionship between the likelihood of each violation and changes in noise levels.

efficient of 0.99, indicating that shorter attack duration in straight-line driving are highly
sensitive to noise. The overtake scenario follows this with a correlation of 0.93. Both
the intersection and straight-line 20m scenarios show a correlation of 0.84 for mission
failure, suggesting that longer attack duration and intersection maneuvers are somewhat
less sensitive to noise, possibly due to the nature of the mission. Regarding sidewalk incur-
sions, longer attack duration in the straight-line (20m) and overtake scenarios show the
strongest correlations, at 0.98 and 0.96, respectively. In contrast, the intersection ma-
neuver displays the weakest correlation for sidewalk incursions, reflecting the controlled,
slower nature of this maneuver.

When examining localization loss, straight-line 10m and overtake show the highest cor-
relations, 0.97 and 0.92, respectively, indicating that these scenarios are most affected by
noise in terms of localization. The intersection scenario, though still sensitive to noise
(0.86), shows a somewhat lower correlation, likely due to the AV’s reduced speed and
static behavior at stop points. Collision, on the other hand, shows similarly strong correla-
tions in overtaking (0.84) and intersection (0.87) scenarios, but this metric is irrelevant in
straight-line driving, as there are no NPCs involved in those maneuvers. The correlation for
RollOut switches is also highest in straight-line 10m attacks (0.97), followed by straight-line
20m and overtake, while intersections have the lowest correlation (0.71) in this category.
For NDTer, longer attack durations in straight-line scenarios show the highest correlation
(0.92), while intersections and overtakes show lower values.

Overall, the straight-line (10m) and overtake scenarios exhibit the highest sensitivity to
noise across several metrics, such as mission failure, sidewalk incursions, and localization
loss. Intersection scenarios, in contrast, show consistently lower correlations, likely due
to the nature of the maneuver, where the vehicle slows down or stops, reducing the dy-
namic impact of noise during attacks. This behavior at intersections explains the weaker
overall correlation with noise, as the AV is generally at lower speeds and is less engaged
in continuous movement compared to the overtake and straight-line scenarios. This high-
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lights how the nature of each maneuver, particularly its dynamic or static characteristics,
influences the vehicle’s vulnerability to noise-induced safety violations and performance
degradation.

3.3.6 Discussion

Throughout the paper, we demonstrated that AD software is sensitive to EMI attacks that
can generate different levels of safety violations from low-priority violations, from which
the vehicle can recover but resulting in suboptimal behaviour, to severe violations causing
collisions or endangering other road users.

RQ1 How does a manipulation to the electromechanical component propagate
through the AD software stack?

From our results, it emerges that an EMI attack at the steering sensor level often causes
Siln, DTL, or DTC violations, which are the most commonly visible in Figure 40. To back-
step this behaviour, to eventually debug such a complex AD software stack in a general
purpose approach, developers will require an accurate analysis of each block in terms of
data input-output relation. In our case, we carried out a back-step analysis at the ROS-
topic level to identify the nodes that subscribe to specific messages. Here, we found out
that the most probable user of steering sensor data, thus generating violations, is the
mission and motion planning module, visible in Figure 12, and composed of several sub-
blocks including op_trajectory_generator and op_waypoint_follower, that repre-
sent the most probable components generating wrong decisions. While at the low level,
PID controllers might be able to withstand noise to some extent, intelligent controllers
have shown inherent vulnerability to this attack propagating from the low level up as raw
sensor data to the master controller and up to the ROS topics.

RQ2 What dependencies exist between the AD control algorithm and low-level
control?

High-level intelligent controllers trust digital data flowing over the in-vehicle network
communication level. The interdependence of control algorithms resides in the feedback
loop reading data from the low level while the AD acts in a hybrid deliberate/reactive
robotic paradigm. In such a paradigm, well studied in robotics, an AD reacts quickly upon
sensing without performing global-planning, which is typically a computationally demand-
ing task running concurrently. Siln, DTL, or DTC violations, which are the most commonly
found in our analysis, are a typical result of the reactive behaviour of ADs. Similarly, the
planner might generate unsafe trajectories in case of localization data corruption such
as NDTLs violation or increase in NDTer margin. Eventually, the vehicle can recover from
some violation when the global-planner generates a new waypoint, but this is not always
guaranteed when some stochasticity is involved in the process.

RQ3 Where in the architecture of the autonomous vehicle can defensive mecha-
nisms be placed to defend against control invariants?

Strategies to detect and mitigate low-level sensor data input manipulation focus on
redundancy and multiple levels of data integrity checks. To investigate this question we
step through each of the layers of the AV:

¢ Low-Level PID Controller: Integrity and plausibility checking of the PID can miti-
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gate but not stop the injection of anomalous sensor input values. The PID has its
own robustness, which is mathematically proved, the PID lacks the intelligence to
interpret the meaning behind the input data. Therefore, attacks which manipulate
the sensor input always have the possibility of traversing the PID. It is also possible
to implement analog filters and hardware saturation, however, as mentioned, at
this level, there is no means to discern attack behaviour which resembles regular
signal/circuit specification and its operating characteristic.

¢ Intermediate Layer: At this level, it is possible to conduct inspection of the CAN
data. The master controller has low-computational capacity. Therefore, implemen-
tation of mechanisms to interpret and provide intelligence of the CAN data is lim-
ited. Data saturation and filtering is possible at this level. However, filtering and
saturation strategies would be challenged to defend against an adaptive sensor ma-
nipulation attack which searches for the filtering and saturation parameters and
develop a 1-step or n-step attack which falls outside the range.

¢ High-Level Control Layer: A redundant, fall-back controller has a cost in terms of
financial, compute and network resources, and cannot guarantee that an attack
would also aim to manipulate the redundant controller. Furthermore, redundant
controllers accessing the same sensor data might generate the same unexpected
behaviour.

Our recommendations, for this particular use case, is to accurately model the sensor
behaviour at the physical level considering the physical world world we live in. In this
context, sensors, such as everything else, should obey Newton (for motion) and Maxwell
equations (for electromagnetism). To detect sensor data anomaly our knowledge of the
physical model of the sensor can be utilised to predict variances to this model. This would
effectively detect a possible attack much earlier and thus prevent DTC & DTL violations
occurring in the motion planning block. The validation of sensor data can run in a con-
current process throwing exceptions in case of unexpected levels of noise. The response
action to an exception need to be modelled on the level of risk.

3.4 Summary

Within this section we developed methods for cybersecurity testing of AD software and
illustrated their utility for vulnerability discovery by conducting applied, experimental test-
ing. Precise metrics that incorporate safety, which represent the integration and stability
of vehicle dynamics and autonomous software control, and security, which represent the
parameters of the attack model, enable the ability the discern the affect of cyber attacks
to the semantic properties of AD software. Malicious injection and time-delay attacks
targeted at the perception and planning modules, and the low-level actuation sensing,
results in malicious input propagating through the software to affect the reliability and
safety of control decisions. From the conducted sensitivity analysis, vulnerabilities of the
software modules can be characterised as a lack of robustness to malicious injection of
input data at parameter ranges which represent minimal deviation. Whilst the sensitivity
ranges present a finding in terms of the case study vehicle, iseAuto, these values will differ
based on the class of vehicle (light-passenger, heavy rigid) and the design of the control
system. Therefore, the novelty lies in the overarching methods used to distinct the im-
pact of cyber attacks to the software and vehicle dynamics and testing approach used to
deliver the attack and generate feedback of the system. Furthermore, the results, within
the context of applied, experimental testing on a real-world system, illuminates the gap
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in comprehensive scenario-based testing where cyber attack test cases are considered. It
further highlights the need for integration of control software design processes and test
feedback. The next section contends with this issue through investigating techniques to
assist software and control system designers with debugging and root-cause analysis.
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4 Debugging Autonomous Control Software to Cyber Attacks
4.1 ADAssure: A Debugging Methodology for AD Control Algorithms

AVs are increasingly being utilised for transportation on public roads. Waymo and Cruise
offer AD ride-hailing services in San Francisco, Apollo Baidu in China, and numerous such
services are operating in Europe. Central to the wider-adoption of AD vehicles on public
roads is the security and safety of their control algorithms that enable self-driving technol-
ogy. AD control algorithms comprise a complex code-base of interconnected modules that
perform tasks and sub-tasks that enable a vehicle to sense, perceive, localise, and navi-
gate in a driving environment. With the increase in diversity of AD use-cases from valet
parking to public transportation in public traffic, the code base of AD control algorithms
will reputedly grow from 100-200 million to billions of lines of code [28].

Within this complex environment, debugging the code for logical errors arising from
unexpected control behaviour is a fundamental challenge [330]. AD system designers
need to pinpoint where in the control software weaknesses are, in order to focus debug-
ging efforts in an efficient manner. Existing studies attempt to rectify unexpected AD con-
trol behaviour at run-time through smoothing trajectories utilising neural networks [41]
[137] [173]. The applicability of these studies in real-world AD programs are limited due
to the highly dynamic environment of autonomous driving and the probabilistic nature of
the algorithms for planning.

Furthermore, in these studies, the analysis lacks the expertise from the algorithm de-
signer and safety engineer to inform on the nature of the behaviour of vehicle dynamics,
whether noise identified as irregular could be considered for a control engineer within
normal constraints, whether AD behaviour could be considered a legitimate safety re-
sponse to an unexpected event and whether the parameters for which the run-time solu-
tion is designed are appropriate for differing class of vehicles with different dynamic pro-
files. We consider the design phase to offer the most promising area of initial investigation
to improve the robustness of control algorithms, which can be translated to real-world AD
systems.

We propose ADAssure, a methodology for debugging control algorithms during the
design-time phase of AD control software development (Figure 42). ADAssure is built upon
the idea that the data of vehicle dynamics and sensing of AD systems can be analysed for
anomalous control behaviour, which can then be transformed into assertions on the AD
control. We use association rules that enable us to mine datasets of varying scales and
fingerprint the pattern of anomalous activity. These rules can be used to guide AD system
designers to focus on the debugging of the control algorithms. To evaluate ADAssure, we
focus on a control system algorithm used in a real-world AD vehicular system providing
ride-hailing services.

4.1.1 ADAssure: Methodology

The development of ADAssure has three main motivations. First, it aims to provide AD
system designers with a methodology to identify and fix vulnerabilities that align with
the design of AD algorithms. Second, given the ever-changing nature of the autonomous
vehicle system, it strives to establish a structured methodology that allows for consistent,
flexible, and repeatable testing. Third, it aims to support unit testing, allowing testing of
individual components of the autonomous system in isolation from other dynamic factors
affecting autonomous control.

The foundations of the ADAssure methodology are based on the analysis of the vehi-
cle dynamics and sensing data to guide the creation of assertions of the vulnerability of
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Figure 42: Comprehensive ADAssure methodology overview that illustrates each step of the process,
from data collection to assertion creation, review of assertions, and debugging.

the AD control algorithms. The analysis consists of a sensitivity analysis of vehicle dynam-
ics data (e.g., velocity, yaw, and steering angle), sensor data (e.g., lateral and longitudi-
nal movement), and visualisation of the trajectory of the AD system. This helps identify
key parameters to build assertions of the AD control algorithms. The AD control system
designers can use the assertions to identify and locate the vulnerabilities of the control
model and develop mechanisms to test and fix the errors. The ADAssure methodology
comprises three main phases: AD Data Collection, Association Rule Generation, and As-
sertion Review and Debugging. Next, we will explore each phase in more depth.

Autonomous Driving Data Collection

This phase consists of generating data from the real-world system or simulation environ-
ment. The benefit of a simulation environment is that driving scenarios can be automated
or designed to test a specific condition, such as a cyber-attack or a corner case. The data
output is structured according to established metrics. These can be vehicle dynamics pa-
rameters (yaw angle, velocity, etc.), sensing data (position co-variance, point-cloud, etc.),
and safety parameters (distance-to-collision, etc.). The AD data is outputted in a format
that can be interpreted by analytical tools, in our use-case, .csv format.

Datasets Association Rule Mining Time Notation Attack Detection
i ¢ N P :
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| 9 -EE
: X P = S
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: . H E I Assertion
Malicious . Mining i 1 Time Temporal Association, i Review and
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Figure 43: Phases for Assertion Generation
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Algorithm 1 Association rule mining & time notation

Input: 4", Z Output: next[A'] = antecedent — next[.¥ |consequent, be fore[ V'] = antecedent —
before[ N |consequent {*}[|]Initialization and Preprocessing % = antecedent — consequent

forall f € 2 do 2’ =MoveUp(f(.#)) {*}IIMining Z « apriori(2’') {*}[l]Time Notation
if (Z.antecedent == (t € ")) and (% .consequent == (f € Z')) then next[./'] + label(%Z)
if (Z.antecedent == (f € 9')) and (#.consequent == (t € 9')) then before[. /| + label(Z)

4.1.2 Association Rule Generation Phase

The goal of this phase is to process the data generated from the previous phase and pro-
duce a set of association rules that can be translated into assertions in the Assertion Re-
view and Debugging phase. This phase is comprised of three primary steps (as shown in
Figure 43):

1. Association Rule Mining,
2. Time Notation,
3. Attack Detection.

The association rule mining is applied to both benign and malicious datasets, resulting
in two distinct sets of association rules. These rules are then processed through the Time
Notation step to incorporate temporal information, yielding temporal association rules
(assertions) in the form of next[-4"] and before[.#] patterns. We define next[-4] type
of rule in the general form of 2~ — next[#"|%# . This rule indicates that when 2" occurs,
after .4 time instants, %" will occur. .4 is a positive integer value. Moreover, we de-
fine be fore[./] rule in the general form of 2" — before[ 4% . This rule demonstrates
that whenever 2" happens, % should have occurred .4 time instants before that. The
"Attack Detection" step compares these temporal association rules, ultimately detecting
attacks and anomalies within the datasets. Subsequent sections provide a more in-depth
discussion of each step.

4.1.3 Association Rule Mining

This step primarily serves two objectives: pre-processing the datasets and subsequently
mining association rules from the preprocessed data. To mine the association rules, apriori
algorithm [102] was adopted and enhanced to mine temporal rules capable of detecting
attacks at various time instances during autonomous vehicle (AV) operation. Algorithm
1 presents the details of the Association Rule Mining and Time Notation steps. In this
algorithm, 2 denotes the dataset and 2’ is the preprocessed dataset, while f and ¢ rep-
resent the dataset’s features and target values. To prepare the dataset for mining the
next[./] and be fore[.#"] temporal patterns, all the features of the dataset are moved .4
records above its original position. However, the target of the dataset remains as it is.
Afterwards, the apriori algorithm is applied to the preprocessed dataset to mine a set of
association rules. The output of this phase is a set of association rules in the general form
of antecedent — consequent that are ready to be forwarded to the Time Notation step.

4.1.3.1 Time Notation In this step, the method integrates the concept of time into the
association rules generated in the association rule mining step, leading to a set of tem-
poral association rules. The method determines to which temporal pattern (next[ 4]
or before|./]) each extracted rule belongs and subsequently assigns the corresponding
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time label to the rule. If the antecedent value matches a target value in the dataset, and
the consequent value has already been moved to another record in the dataset, the rule is
labelled as a next temporal association rule. Otherwise, if the antecedent of a rule mined
in the association rule mining step matches a dataset feature that has already been moved
to another record and the consequent of the rule matches the target value of the dataset,
we label this rule as a be fore temporal association rule. The mined rules are in the forms
of antecedent — next[N'|consequent, and antecedent — before[ N |consequent, serving
as assertions for debugging the AD system.

4.1.3.2 Attack Detection This step aims to identify rules indicating attacks on the AV.
We assume that the sets of mined rules from the benign and malicious datasets should
be similar under normal conditions, without any AV attacks. Any deviation between these
rule sets signifies an anomaly in the autonomous vehicle. Per this assumption, the tem-
poral association rules (assertions) mined during the time notation phase are classified
into two sets. The first category comprises rules exclusively mined from the malicious
dataset, lacking counterparts in the benign dataset. Any rule extracted solely from the
malicious dataset, without a corresponding counterpart in the benign dataset, signifies an
attack. These rules reveal abnormal behaviour in the malicious dataset, contrasting with
different behaviour observed in the corresponding time instance of the benign dataset.
Consequently, we classify these as attacks. The second category comprises similar rules
mined from both benign and malicious datasets, but with different minimum support
(min_supp) and minimum confidence (min_conf) values. The variations in these values
indicate that, while the mined rules are similar, abnormal behaviours and anomalies exist
between the datasets. The apriori algorithm employs these two metrics (i.e., min_supp
andmin_conf). Themin_supp value is the threshold and a minimum value that is chosen
by the expert to decide whether a rule occurs frequently in the dataset or not [107, 328].
The min_conf is the minimum value that is chosen by the expert and is an indication of
how often a rule has been found to be true [102,260]. Increasing the min_supp value re-
sults in fewer association rules that describe more general behaviour of the autonomous
vehicle, while decreasing the min_supp value leads to rules covering rare behaviours (cor-
ner cases). Similarly, raising the min_conf value produces fewer but more valid rules.
Valid rules refer to association rules that will not be violated with different attack scenar-
ios like corner cases. These values in the ADAssure facilitate an effective attack detection
process. The second category of rules aids the ADAssure in effectively identifying corner
cases and the attacks that rarely occur on the AV. These rare attacks exhibit behaviour
very similar to normal vehicle operation but are malicious and can lead to AV failure.

4.1.4 Assertion Review and Debugging

Within this phase, the association rules generated from the association rule mining are
reviewed in conjunction with an analysis of the control behaviour and individual data
parameters to develop assertions. Trajectory maps of the AD system and graphs, which
demonstrate the sensitivity of the data parameters during benign and cyber-attack sce-
narios, are compared to the anomalous behavioral patterns detected by the association
rule mining tool. Using expertise from the algorithm designer and safety validation engi-
neer assists in understanding which parameters can uniquely demonstrate a vulnerability
of an algorithm within the system. From developing an assertion on the system’s vulner-
ability, the debugging effort focuses on a control flow analysis. As the assertion assists
in pinpointing the specific module, the static analysis can focus on the control flow of
the substituent functions within the module. As an example of the importance of this
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pinpointing, a local-planning module could have 15 diverse algorithms, and within these,
each could have multiple different methods or functions. As the code of AD algorithms
are differential equations, debugging can suggest optimisations that enable mitigation
mechanisms against the identified vulnerabilities.

4.1.5 Autonomous Driving Control Algorithm

To evaluate the methodology, we focus on an AD control algorithm used in a real-world
AD ride-hailing service. Within the AD pipeline, there are four key modules: localisation,
perception, planning, and control. Within our study, we focus on the localisation and
planning modules.

4.1.6 Experimentation and Results

To evaluate the impact of corner cases on AD system behaviour using the ADAssure method-
ology, we use datasets of corner cases from simulation and real-world driving from the
target AD system. The 1¥ corner case scenario dataset is of three diverse cyber-security
attacks on the AD system conducted in a simulation environment. As our focus is the
planning and localisation algorithms, we used a low-fidelity simulation provided by Au-
toware.Al and the OpenPlanner 2.5 planning algorithm. The 2nd corner case scenario
dataset is of a Global Positioning System (GPS) spoofing event that occurred on the AD
system during its operation on the roads of a capital city.

4.1.7 AD Control System Datasets

Cybersecurity Corner Case Dataset: Within this dataset, three attacks were conducted on
the target AD vehicular system, which is attempting an overtaking maneuver. The three
attacks are classified as:

1. Lateral Position Offset Attack
2. Longitudinal Position Offset Attack
3. Message Time-Delay.

In the lateral and longitudinal position offset attack, an attacker injects malicious data
input into the lateral or longitudinal pose whilst the AD vehicular system is in the pro-
cess of the overtaking manoeuvre (Figure 44). This attack could be conducted through
GPS spoofing or interception and manipulation of the localisation sensor data. The at-
tacker introduces a delay into the current_pose (lateral and longitudinal) sensor mes-
sages reaching the AD control pipeline for the message time-delay. The malicious data is
injected at around the 21 m mark of the AV journey (travelled distanced) to the 67 m. Each
attack was conducted 300 times, accommodating a variation of different attack parame-
ters. The lateral and longitudinal attacks introduced a deviation ranging from 0.16 % to
1.0 %, which equates to around 20 cm to 1 m. The message time-delay introduced delays
of 0.3 %, 0.6 %, 1.0 % second, as a message is transmitted every 20 ms, this range rep-
resents a delay of 15 to 50 messages. In total, the dataset comprises over 1500 scenario
runs of attacks and benign safety cases.

GPS Spoofing Real-World AV Dataset: The AD ride-hailing service transmits its sensor
data via a logging node to an edge server, which stores the AD System data in a database.
During its operations near the port area of the city, the AD vehicle encountered a loss
of localisation from a GPS spoofing event which also affected other GPS-enabled plat-
forms. This GPS spoofing continued intermittently throughout the preceding months. The
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Table 30: AD System Data.

AD Data Type Description

AV_X Longitudinal Position of the AD System as to the HD Map
AV_Y Lateral Position of the AD System as to the HD Map
AV_Steer Steering Angle of the AD System

AV_Vel Velocity of the AD System

AV_Yaw Orientation of the AD System based on its centre of gravity

Roll-out_Num
DTC

Position Co-variance
Altitude

Current Lane according to the lane selector of the AD Con-
trol Algorithm

Distance to collision of the AD vehicular system to the over-
taking vehicle.

GPS position co-variance

Altitude derived from the GPS

dataset used in this study is from the logging system of AD ride-hailing service.

AD System Data: The simulation and real-world datasets were structured to output

data as shown in Table 30.
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Figure 44: The threat model used for conducting the attack cases.

Table 31: ADAssure Assertion Generation phase results.

Dataset

Assertion Execution
Time

Name #Records Total #Next[./] #Before[. V]

Longitude 412
Latitude 356
Delay 417
GNSS 16

5 3 2 1ns
7 7 0 1ns
5 3 2 Ins
5 4 1 Ins

92



Experimental Results

To evaluate the ADAssure methodology, we chose six attack types and their corresponding
safety (benign) scenarios. These attack types included each of the aforementioned attacks
with differing levels of noise (lateral and longitudinal position offset, delay message).

4.1.7.1 Automated Analysis Utilising the ADAssure methodology on the three types of
attacks yields three distinct set of assertions corresponding to each attack type. The re-
sults of the assertion generation phase are presented in Table 31.

The threshold for minimum support (min_supp) is set at 0.01 , while the minimum
confidence (min_conf) threshold is 1 Notably, the method exhibits a swift execution time.

Within the 3 attacks of the cybersecurity corner case dataset, the assertions iden-
tify two patterns of anomalous AD behaviour. Firstly, extreme steering angles of 20° and
—20° and sudden lane transition. Secondly, multiple lane-transitions combined with the
extreme steering angle and sudden changes in vehicular velocity. This behaviour can be
seen to be the effect of cyber activity on the smoothness of the initiation of the over-
taking manoeuvre which results in turbulent movements and in some cases, a collision
event. The assertions generated from the GNSS spoofing dataset identified the changes
to the altitude and position co-variance. These were consistent with dramatic change in
the values of the GPS coordinates and the resultant change in altitude.

4.1.7.2 Assertion Review and Debugging The patterns identified in the association rules
enables us to extrapolate that the Yaw angle and angular velocity are good reference point
to show the effect of cyber-attacks. During the injection of the position offset attacks, the
vehicle’s orientation demonstrates dramatic action; in some circumstances, the vehicle
can be seen to be essentially spinning. As displayed in Figure 45, the Lateral Position Off-
set Attack displays the Yaw (angle) of the vehicle making sharp changes, of 15 deg/sec
from 15 meters mark of the AV journey. This vehicle dynamic behaviour is a characteristic
also seen in both the longitudinal position offset (Figure 46) and delay message attack
(Figure 47). The results for the velocity parameter demonstrate that it only indicates im-
mediate collision of the vehicle, and it does not support early identification of anomalous
vehicle behaviour. Assertion 1 contends that the AD system should not allow movements
that challenge the physical limitations of the steering model.

Assertion 1: To determine the vulnerability of the yaw angle and mo-
mentum, we can derive the assertion: AV.displacement_of_yaw_angle >
max_yaw_angle_threshold && time < time_threshold.

The roll-out transition, steer, and distance-to-collision parameters demonstrate iden-
tifiable change during a cyber-attack. The manipulation of the lateral and longitudinal
position alters the vehicle position on the map and, therefore, has the effect of inducing
greater transitions between roll-outs, which is the effective position of the vehicle on the
road. The frequency of transition impacts the smoothness of the steering angle. From the
distance-to-collision parameter, it is noted that the effect of the attack is most prominent
during the overtaking maneuver and mostly during the cut-in process, when the vehicle
cuts-in front of the passing vehicle (NPC). Assertion 2 contends that when the vehicle tran-
sitions across multiple roll-outs and displays 180° steering and closes to less than 0.5 m
to the passing vehicle, this represents affected behaviour from the cyber attack.

93



——Cyber Lat ——Safety
30

o 20}
<
) 20 ;
a £ 0
10 5
L
o -201
0
0 40 80 120
Traveled Dustance (m) Traveled Distance (m)
-6 o 20
£ 3
3
z = 0
g2 S
] =
o0 2 20
0 40 80 120 0 40 80 120
- Traveled Distance (m) Traveled Distance (m)
o
=1 =4
g 20 g
v £
=4 2
=2 2
g £ I
3 -
z 0 )
0 40 80 120 0 40 80 120
Traveled Distance (m) Traveled Distance (m)
NS
e
E
= 1r
0 |
0 40

Traveled Dlstance (m)

Figure 45: Lateral position offset attack vehicle parameters.

Assertion 2: To identify vehicle dynamic changes from cyber-attack: AV.x —
NPC.x < distance_threshold && AV.lane_transition > max_transition_number &&
AV.steer_angle ¢ [min, max]_steer_angle

Assertion 3 contends with activity seen in the longitudinal position offset (Figure 46)
where the AV collides with the passing vehicle and then accelerates to the previous set-
point.

Assertion 3: To identify collisions we can derive the assertion: [AV.v; — AV.v; | >
threshold.

Assertion 3 could also be used to detect anomalies in GPS data. The GNSS spoofing
attack demonstrates a significant deviation in the altitude and position co-variance param-
eters. Assuming that velocity data comes from two sources, a wheel sensor measurement
and calculated by deriving the position from GPS data, the two results should be close to
each other. In the case of a GNSS spoofing attack, the deviation in the position co-variance
would generate a spike in the velocity (calculated by deriving the position in GPS data),
and thus violating assertion 3.

For our specific AD system, the threshold for assertion 1is 15° yaw angle displacement
within 1 s duration. Assertion 2 threshold is identified as a distance between AV and pass-
ing vehicle as less than 0.5 m, lane transition greater than 1 roll-out and steering angle that
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Figure 46: Longitudinal position offset attack vehicle parameters.

is outside the bounds of 20 and —20°. It is important to note that these values are valid
for a low-speed AV ride-hailing service and for designers of different classes of vehicles, it
is required to calculate values consistent with their specific application.

Solvable bugs come from several points in the controller; a simple one is wrong or im-
precise saturation values of the control signal, which generates a high acceleration or a
high steering angle in the vehicle. This is clearly visible in Figure 46 where a signal over-
shoot causes the vehicle to change lane multiple times. Another example, clearly visible
in Figure 45,46& 47 is the lack of a fallback plan. There is a clear indication of a collision as
the vehicle speed suddenly drops to 0 ms~! and then quickly accelerates to the reference
point, this is a violation of Assertion 3. A robust controller should have a fallback plan
for such a case which indicates a bug in the functional design of the controller. In such a
case, the vehicle should be aware of the fact that the global trajectory cannot be followed
anymore and switch to emergency mode.

The main reason for searching for unexpected behaviours is to debug the controller,
with reference to the experimental results, a violation of Assertion 1 can be associated to
abugin the /ndt_pose module (see Figure 13), while a violation of Assertion 2 can be back-
propagated to the module /op_trajectory_evaluator. A violation of assertion three can be
backpropagated to the modules of /op_trajectory_generator and /op_behaviour_selector
(see Figure 13). To pinpoint the violation of assertion 3 to a specific function, we abstracted
from the local_planner algorithm and its substituent lane_rule algorithm, the getClosest-
WaypointNumber method, which selects the next waypoint to follow in the global trajec-
tory and returned an exception to be handled as a different driving behaviour (e.g., there
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Figure 47: Delay message attack vehicle parameters.

was a crash, emergency mode activated).

In the case of GNSS attack, the NDT localisation algorithm doesn’t detect the deviation
in position co-variance, and this is due to the normal vector pointing in the same direc-
tion. Debugging focuses on optimisation of the NDT localisation using visual odometry for
holding the local position at short-distances until the source of the disturbance has been
resolved.

4.1.8 Relation to Existing Work

Recent publications on anomaly detection in vehicular AD control systems propose the
usage of vehicle dynamics as a key detection indicator for cyber-attacks [140] [183] [262].
Studies such as Guo et al. [90] emphasise the effect cyber-attacks have on the trajectory
of the AD system and the noise of individual sensors. Mitigation mechanisms focus on
two diverse approaches 1) implementation of an observer of AD vehicle state estimation
which can inform an emergency action (sensor switching etc.) [90] 2) implementation of
trajectory smoothing algorithm to correct unplanned vehicle behaviour [183] [262]. How-
ever, these solutions for detection and mitigation are developed based on assumptions of
driving environment and algorithm configuration and this limits the scope of their appli-
cability.
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4.2 REACT: Autonomous Intrusion Response for Intelligence Vehicles

In recent years, there has been remarkable progress in the development of smart vehicles.
Today's vehicles resemble interconnected networks on wheels, with numerous embedded
computers, called ECU, linked through various types of networks, hosting an extensive
number of software components totaling over a hundred million lines of code. Moreover,
these networks incorporate various intelligent sensors (such as Cameras, LiDAR, Radar,
etc.) and different connectivity technologies that enhance the vehicle’s ability to perceive
and interact with the surrounding environment, thus bolstering autonomy and minimiz-
ing the reliance on human intervention. However, with the rise of connectivity and the
transformation to SDV, the vulnerability to cyberattacks targeting these systems has also
escalated [295].
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Figure 48: On the left side, the current vehicle system shares attack information with the VSOC but
often has to wait for extended periods to receive necessary security patches and updates. This wait-
ing period puts the vehicle in a malicious status (red, diagonal lines). On the right side, the vehicle
can select and implement security solutions to avoid the long waiting time for security patches and
updates and return to normal status (green, cross diagonal lines).

Recently, there has been a growing interest in addressing the security threats that
may target smart vehicles. For instance, the 1SO 21434 [123] standard has been intro-
duced, with a significant portion dedicated to the development of threat analysis and risk
assessment methodologies. Moreover, the field of intrusion detection and prevention in
the automotive domain has witnessed extensive research, leading to various avenues for
research [152]. However, despite these efforts, the number of attacks targeting smart ve-
hicles continues to rise [295]. This is to be expected, as security is not absolute, and we
must acknowledge that complete prevention of all security threats may not be attainable.
Therefore, greater emphasis should be placed on defining how the system should behave
when confronted with such unavoidable attacks.

The cybersecurity incident response is an integral aspect of security management, as
outlined in ISO/SAE 21434 within the operational and maintenance clause [123]. Based on
the standard, this process aims to provide remedial actions and updates, which may in-
volve post-development changes to address security vulnerabilities. The process necessi-
tates the vehicle to share cybersecurity information about the vulnerability that triggered
the cybersecurity incident response. Being part of the ISO/SAE 21434, it is now imperative
that manufacturers comply with new regulations by having a cybersecurity management
system that oversees the cybersecurity activities and processes in the product life-cycle.
To achieve this, Vehicle Security Operation Centers (VSOCs) will be utilized to support
monitoring [23, 216, 257]. Such VSOCs will employ expert teams that continuously analyze
data collected from all connected vehicles, enabling automakers to swiftly and efficiently
address security incidents [216]. Although it’s arguable that numerous tasks within a VSOC
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could be automated, the challenge of scalability persists, especially considering the ex-
tensive fleet of connected vehicles and the immense data volumes accumulated by each
vehicle, reaching terabytes [314]. The transfer and processing of such data turn out to be
significant issues, particularly in urban areas with hundreds of cars per vicinity, leading to
bottlenecks. Additionally, the connectivity itself could be an attractive target for attack-
ers. In this context, the integration of VSOCs into the smart vehicle ecosystem demands
solutions for addressing connectivity challenges between vehicles and the VSOC, as well
as managing privacy concerns tied to shared data [98].

Finally, and more importantly, there is a need to ensure a near-real-time response
to security attacks. Taking into account the need for a human in the loop, as well as the
latency introduced by high-volume shared data and communication between the vehicles
and the VSOC, achieving a near-real-time response seems unrealistic. This perspective is
supported by the European Union Agency for Cybersecurity (ENISA), which has cautioned
that responding to high-criticality attacks could potentially take days or even weeks [75].
The scenario of extended waiting presents a dilemma, with two options, each having its
own disadvantages. Allowing a vehicle to operate with a compromised component due
to extended waiting for a security update is far from the ideal situation. Alternatively,
suspending the compromised component until the security update is received might not
be the best course of action either, particularly if the component plays a crucial role in
operations.

Contributions: Therefore, there is a need for vehicles to be equipped with the capa-
bility to swiftly respond to cyberattacks. However, having such a capability requires the
answering of three main questions (see Figure 48):

Q1: What are the possible responses that can be taken?
Q2: What factors need to be considered when evaluating these responses?

Q3: How to select one or more of these responses at the run-time based on the re-
sponses’ evaluation?

This research aims to address these questions by investigating and categorizing po-
tential responses according to the impact of various cyber attacks to which each response
aims to react. Consequently, we present a dynamic risk assessment and cost evaluation for
attacks and responses, utilizing given data such as attack information and vehicle status.
This assessment supports the selection of suitable responses. Furthermore, the we ex-
plore different approaches for response selection, conducts comparisons, and identifies
those best suited for automotive systems. We introduce an intrusion response system,
referred to as REACT, and evaluate its utility using two attack scenarios. We evaluate the
quality of the responses REACT generates and its overall efficiency. In summary, the main
contributions of this paper are as follows:

4.2.1 Response Strategies

The purpose of this section is to address the first question (Q1) about possible response
strategies. To do so, it is critical to have a deep understanding of the system as well as the
potential attacks and threats it may face. Therefore, this section introduces the design
of an automotive reference architecture, discusses the potential threats that may arise,
and provides a comprehensive summary of the different response strategies that can be
utilized to mitigate these attacks.
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Figure 49: Reference vehicle architecture with possible attack surfaces (orange).

Automotive Reference Architecture

In order to understand how Intrusion Response System (IRS) can be integrated into mod-
ern vehicles and the potential responses they can provide, it is essential to first understand
their system architecture. Figure 49 presents a generic, realistic and comprehensive ref-
erence architecture that can be found in modern vehicles. It is notable that a modern
vehicle includes highly interconnected subsystems. The figure also shows how modern
vehicles have many embedded devices, known as Electronic Control Units (ECUs), which
are distributed allover the vehicle, communicating among themselves via different types
of networks such as CAN, Flexray and Ethernet. These ECUs are grouped in different do-
mains or zones based on the functionality such as infotainment, Advanced Driver Assis-
tance System (ADAS), powertrains, etc. Besides ECUs, modern vehicles are equipped with
many sensors (e.g., cameras, LIDAR, etc.), advanced communication technology for con-
necting with the external world, and diagnostic ports (e.g., OBD-II) that collectively form
a significant attack surface for different types of attacks and threats [42]. The unrestricted
or/and uncontrolled interaction among all those components puts the whole system in
danger. Attackers could launch a stepping-stone attack [293], where they compromise
a non-critical ECU with weaker security (e.g., the infotainment system), in order to gain
control of a more crucial one (e.g., engine control) [53,197]. All these characteristics of
the vehicle architecture suggest that any proposed IRS should take into account the con-
strained resources and the highly interconnected and distributed nature of a vehicular
system.

Threats and Attacks

Threat Analysis and Risk Assessment (TARA), an essential component of ISO 21434, is em-
ployed as a systematic way to identify and assess cybersecurity threats and risks in the
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Figure 50: Classification of intrusion results and examples of attacks for each possible intrusion re-
sult.

automotive industry, facilitating the implementation of effective mitigation strategies.
Since TARA does not dictate a specific method to identify threats, various methods have
been proposed, such as STRIDE [142], SAVTA [97], attack trees [96, 109], and many oth-
ers [179]. Following the methodology of TARA, these methods provide a comprehensive
list of threats and attacks that may target the vehicular system and offer preventive mea-
sures. However, they do not address the reactive measures required for an automotive
IRS.

Using the list of threats and attacks to create a response for each of them seems to be
not ideal due to several challenges, including the large number of attacks and the require-
ments for precise information about each attack, which must be provided by the Intrusion
Detection System (IDS). This challenge becomes evident when considering Zero-Day at-
tacks, where information about such attacks may not be available to the IRS at the time
of detection by the IDS. Even if an anomaly-based IDS shares some information about the
attack pattern with the IRS, a response solely based on known attack patterns may not
sufficiently react to these Zero-Day attacks. Therefore, the most effective approach is to
enable the IRS to understand the situation it aims to respond to. This involves focusing on
the impact or outcome of different attacks rather than solely on the attacks themselves.

To achieve that, we have developed a model, illustrated in 50, which represents the ac-
tual results of intrusions collected from various research works. The model encompasses
five main attack outcomes, each of which can result from multiple types of attacks. Exam-
ples of these attacks are depicted in the outer nodes of 50. Also, to reflect the outcome
of stepping-stone attacks, the model links the different outcomes to demonstrate that
certain attacks may cause a series of results. The five attack outcomes are:

e Falsify / Alter Information: Different attacks have the potential to modify informa-
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tion on a bus or within an ECU. It is important to note that not every alteration of
information automatically results in undesirable behavior. For instance, adversarial
samples [184], such as incorrect classifications of objects detected by a camera, may
not necessarily lead to incorrect behaviors.

e Falsify / Alter Timing: This outcome typically occurs as a result of attacks targeting
the communication buses of the vehicle [175,311] or the real-time tasks on the ECUs
[95].

¢ Information Disclosure: This outcome is the result of attacks, such as spoofing,
eavesdropping, and others, that aim to allow attackers to gain unauthorized ac-
cess to sensitive information exchanged during communication or stored within the
ECUs [54].

e System Unavailability: This outcome typically occurs as a result of Denial of Service
(DoS) attacks that aim to cause a loss of availability for a specific component or sub-
system in the vehicle [218]. Such attacks can lead to severe damage to the system,
especially if they target high-critical components [9].

o Falsify / Alter behavior: This outcome is the result of tampering attacks that specif-
ically target the components, data, or parameters of a system with the intention
of altering the system'’s intended behavior and achieving unauthorized or malicious
outcomes [197]. While this intrusion outcome may appear similar to falsify/alter in-
formation, the key distinction is that in falsify/alter information attacks, the goal is
to tamper with the information itself without the explicit method of changing the
system’s behavior, even though it may indirectly lead to such changes.

Response Possibilities

After classifying the outcome of the attack, it becomes easier to determine which re-
sponses can be used to address that particular outcome and handle the attacks that cause
it. In order to do so, we have examined typical responses discussed in both the automo-
tive and non-automotive domains. It should be noted that while some research papers in
the automotive domain have discussed the need for responses to certain attacks, there is
currently no comprehensive research that lists and classifies all possible responses. Fur-
thermore, it is important to consider that some of the responses we collected were orig-
inally designed for computer networks and may not be directly applicable to automotive
bus systems due to the lack of specific security mechanisms [72]. For example, response
actions such as IP address changes or port blocking [14] are highly specific to Ethernet and
higher protocols such as IP, and therefore have limited suitability for certain aspects of
communication in vehicles. To address this challenge, we have defined a list of generic
responses that are specific enough to be applied in an automotive IRS, while also being
adaptable to constrained and potentially insecure devices. Table 32 provides an overview
of the different responses based on the identified attack outcomes. In addition, we have
included a General category that encompasses responses applicable to all five categories.
For more detailed information about each response, please refer to the respective sources
cited in Table 32.

4.2.2 Dynamic Cost and Impact Evaluation
In this section, we will address Q2 by outlining the key factors required to enable the

selection of the most effective response by the IRS. These factors can be categorized into
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Table 32: Classification of generic responses to intrusion results.

Intrusion Result

Response Index. Response

Falsify / Alter Tim-
ing

Falsify / Alter In-
formation

Information
Disclosure

System Unavail-
ability

Falsify / Alter Be-
havior

General

1. Use of redundant information [100], 2. Correction of timing
[72,219], 3. Force additional authentication [14], 4. Restart the de-
vice/system [149], 5. Change settings [117], 6. Redirect traffic [117],
7. Re-initialization [110]

1. Use of redundant information (Reallocation) [100], 3. Force ad-
ditional authentication [14], 4. Restart the device/system [149], 8.
Create a backup [49], 5. Change settings [117], 7. Re-initialization
[110], 9. Correct protocol specification faults [111], 10. Split or merge
functions [326]

11. Issue authentication challenges [219], 12. Re-enforce access con-
trol [12], 3. Force additional authentication [14], 13. Introduce a
honeypot [12], 4. Restart the device/system [149], 14. Modify fire-
wall [117], 6. Redirect traffic [117], 10. Split or merge functions [326],
7. Re-initialization [110], 15. Network isolation [72]

1. Use of redundant information (Reallocation) [100], 12. Re-enforce
access control [12], 13. Introduce a honeypot [12], 4. Restart the de-
vice/system (source or destination) [149], 14. Modify firewall [117],
6. Redirect traffic [117], 10. Split or merge functions [326], 7. Re-
initialization [110], 16. Limit resources of the attacker [49], 17. Safe
mode [99]

1. Use of redundant information (Reallocation) [100], 18. Correction
of behavior [219], 9. Correct protocol specification faults [111], 3.
Force additional authentication [14], 19. Restart the miss-behaving
system [149], 5. Change settings [117], 10. Split or merge functions
[326], 7. Re-initialization of the miss-behaving device [110], 17. Safe
mode [99], 8. Create a backup [49]

20. Isolation [100], 21. Limit communication of malicious system
[100], 22. Drop packets [149], 23. Trace communication [100], 24. In-
troduce additional logging [14], 25. Block network traffic [12], 26. Kill
process [100], 27. Reduce trust level of the source [100], 28. Perform
a security auditing [99], 29. Request / Perform software update [219],
30. Notify Security Operations Center (SOC) / administrator [12, 13],
31. No action [13], 32. Adapt parameters for IDS [108], 33. Warn /
inform other ECUs [19, 100]

two groups: intrusion-related factors, which pertain to the attack’s impact and risk, and
response-related factors, which concern the cost and benefit of the chosen response.

Intrusion-Related Factors

Intrusion Properties

For each detected intrusion, the following properties need to be determined:

e Source of the intrusion: This represents the component from which the attack was
launched. Referring to the automotive reference architecture depicted in Figure 49,
sources can include entities from the attack surface as well as external attackers
targeting any of these components.
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e Destination of the intrusion: The attacked entity can be described as the destination
of the intrusion. This could be ECUs, sensors, or bus systems.

e Intrusion result: This refers to one of the outcomes that were previously defined in
Subsection 4.2.1. Similar to the source and destination of an intrusion, this informa-
tion is also provided by an IDS.

e Intrusion impact: This information serves to depict the impact of the intrusion on
the system and is essential for evaluating the risks during the attack.

Dynamic Attack Impact Assessment

To assess the potential risks associated with an intrusion, it is necessary to understand the
impact of the attack and the likelihood of its occurrence [123,168]. To calculate the impact
of the intrusion, many methods were already adopted such as HEAVENS [126]. HEAVENS
classifies the impact of a given threat based on four metrics [179, 306]:

1. Safety impact, denoted as S with S € {0, 10, 100, 1000}
2. Financial impact, denoted as F with F' € {0, 10,100, 1000}
3. Operational impact, denoted as O with O € {0,1,10,100}

4. Privacy impact, denoted as P with P € {0,1, 10,100}

In the original HEAVENS method, the overall impact I is calculated as a sum of the four
single impacts as depicted in Equation 2 [306].

I=S+F+O0+P (2)

One issue with the impact calculation, as presented in Equation 2, is the overempha-
sis on safety and financial parameters. This skewed emphasis not only complicates the
comparison and independent evaluation of the four metrics but also renders it unsuit-
able for an automotive IRS. In the automotive context, safety and operational considera-
tions typically outweigh financial and privacy-related aspects for most automotive func-
tions. Considering the aforementioned issue, we propose normalizing all possible values
to 0,1, 10, 100, representing no, low, medium, or high impact for each of the four metrics
in HEAVENS.

Another limitation of the current risk assessment methods, including HEAVENS, is their
failure to account for dynamic environmental factors, such as run-time context, opera-
tional status, and the surrounding environment. This gap may arise because HEAVENS
is primarily applied during the design phase, making it somewhat oblivious to run-time
conditions. To address this challenge and enhance the method’s applicability for use
within automotive IRS, we introduce a new metric termed "Environment," denoted as
E. This metric, E, encompasses dynamic factors that are crucial for assessing intrusion
impact [100]. Potential inputs that can be used to derive the environmental parameter E
include vehicle speed, road conditions, the proximity of nearby objects, and more. These
parameters can exert significant influence, as a single intrusion may yield different impacts
depending on physical and environmental considerations.

The final enhancement option for the HEAVENS method involves the capability to dy-
namically adjust the assessment of intrusion impact. Following a successful intrusion re-
sponse, it may become evident that the stored parameters for S, F, O, P, and E require
a different representation. HEAVENS currently confines impact values to 0,1, 10, 100, and
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a simple adjustment to a new value could result in significant over-representation. To ad-
dress this issue, introducing weights for each of the five evaluation metrics (wg, wr, wo,
wp, and wg) offers a valuable mechanism for accommodating learning and adaptation
processes. The optimization proposals discussed earlier to transform the calculation of
intrusion impact using the HEAVENS method into a dynamic process lead to Equation 3.

I=ws-S4+wr-F4+wo-O+wp-P+wg-E (3)

Utilizing dynamically adjusted static values for S, F, O, and P, each incorporating their
respective weights, in addition to dynamically acquired values for E along with an adapted
static weight. In cases involving specific automotive architectures, the equation can also
be applied in a more granular fashion for particular assets. Initial values for all these pa-
rameters can be established by security experts, drawing upon their experiential knowl-
edge.

The source and destination of the attack are employed to determine the attack’s lo-
cation, aiding in the calculation of the subsequent attack likelihood, especially when con-
sidering step-stone attacks, across various parts of the system. This assessment of attack
likelihood, in conjunction with the evaluation of attack impact, contributes to the overall
risk assessment.

Response-Related Factors
Response Properties
Similar to the intrusion, each response will have five properties that need to be identified:

e Actual action: They refer to the actual actions taken in the event of an intrusion.
These actions can be selected from those presented in Table 32.

e Precondition: Some responses may require preconditions that must be met. These
preconditions can be expressed as Boolean expressions and serve as prerequisites
to trigger the response.

e Place of application: Refers to the location where the response will be implemented.
A response can be applied either at the source entity of an intrusion, the destina-
tion, or at both locations.

e Stop condition: Refers to the condition for which the implemented response should
cease. This condition can be related to a specific time [176], the successful reestab-
lishment of security policies [100], or the necessity for persistent measures [293].

e Cost and benefit of the response: Refers to the costs and benefits incurred when
implementing a response to an intrusion or security incident.

Dynamic response cost and benefit assessment

When considering the cost of responses, various methods were employed to determine
their value in IT systems [261]. These methods primarily rely on one of three models: a
static cost model that assigns a fixed cost value for each response, a static evaluated cost
model that calculates cost using a static function with some adjustment possibilities, or dy-
namic evaluated cost models that offer fully dynamic evaluation based on real-time data.
Each model varies in terms of simplicity, adaptability, and accuracy, catering to different
system requirements and scenarios.
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Statically evaluated cost models provide a valid trade-off between achievable imple-
mentation efforts, especially on constrained devices similar to the ones used in automo-
tive systems, and plausible results. These models maintain a static approach to calcu-
lating response costs, even though the actual cost values may vary. Various metrics for
calculating response costs are mentioned in current literature. The first metric evaluates
the impact of the response on availability [261]. Availability’s impact is represented as
A €0,1,10,100, with O meaning negligible and 100 meaning severe impact on availability,
to ensure consistency with intrusion metrics. The second metric, describing the response
cost, assesses its effect on the performance of the (sub)system [261], similar to the de-
ployment cost of countermeasures [91]. This metric is denoted as Perf € 0,1,10, 100,
with O meaning negligible impact on performance and 100 meaning severe impact on
performance, to maintain a uniform scale with the impact of the response on availability.

To achieve results similar to the adapted HEAVENS method described in 4.2.2, a com-
parable equation can be employed to calculate the cost (c¢) of a response. By adopting
specific weights (w4 and wp,,¢) for the impact on availability and performance along with
their actual values (A and Perf), the response cost can be computed as shown in Equa-
tion 4. This approach results in a highly adaptable method for calculating the response
cost. While the initial values for A and Per f can be manually determined, they can also be
adjusted over time. The specific weights offer a means to introduce a learning component
within the mathematical framework.

¢ =Wa-A+Wpers - Perf (4)

Likewise, the adapted HEAVENS method introduced in 4.2.2 can be repurposed for
evaluating the benefit of a response, with the exception of the environmental parame-
ter E and its associated weight wg. While HEAVENS assesses intrusion impact using four
metrics, these same metrics can be employed to quantify the benefits in these four cat-
egories when assessing response value. By employing identical value possibilities with
S,F,0,P € 0,1,10,100, a corresponding benefit value can be determined. The calcula-
tion of the benefit (b) for each response option, as shown in Equation 5, is derived from
Equation 3.

b=ws-S+wp-F+wo-O+wp-P (5)

Compared to existing research [91, 270], this repurposed HEAVENS method of Equa-
tion 5 provides a more holistic approach on evaluating the benefit of applied responses.
For each response option classified in Table 32, the cost calculated using Equation 4 and
the benefit determined using Equation 5 must be applied, and preconditions must be es-
tablished. Initial values for S, F, O, P, A, and Perf, along with their respective weights,
can be assigned by security experts and subsequently updated either manually or through
learning algorithms within an IRS. Similar to the impact calculation of intrusions, these
weights can be adjusted to improve the accuracy of the model.

4.2.3 Optimal Selection Algorithms

In this section, we will address the third question Q3, by exploring numerous potential
methods for selecting response strategies(4.2.3), compare these approaches and pro-
vide a rationale for our chosen strategy(4.2.3), and describe how to adopt the selected
strategies(4.2.3).
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Possible Algorithms

To determine the best method for selecting appropriate responses, we explore various
algorithms and solutions used in non-automotive domains and compare them to identify
the most suitable one that can be implemented within the vehicle system. Several surveys,
such as [24, 25, 211], provide valuable insights into response selection approaches in non-
automotive domains, making them worth investigating for more comprehensive details.

Simple Additive Weighting (SAW)

SAW [80] is the simplest and most often used method. The basic concept of this method
is to find a preference value (p) for each possible response, and then select the response
with the highest preference value as the best option. To illustrate how this method works,
let us assume that we have n possible responses (# = {ri,r2,...,r,}) and m criteria
(€% = {cri,cra,...,crn}) that will be used as a reference for evaluating the responses.
Each criterion will be assigned a weight w; where Z;":I w; = 1. To calculate the preference
values, a normalized decision matrix is first created, where each element of the matrix is
normalized based on the nature of the criterion, whether it is a cost or benefit, as shown
in Equation 6.

—=L—if criterion cr; is a benefit
i = max; (v; ;) (6)
LV min,-(v;ﬁj) . . . .
—, &, ifcriterion cr is a cost

L]
where v; ; is the performance value of the response r; when it is evaluated in terms of
criterion cr;. The preference value (p;) of response r; is then obtained by calculating the
weighted sum of the normalized performance values using Equation 7.

m
pi=Y wi-0 (7)
=1

Finally, the response r; with the highest preference value (p;) is considered as the best
selection response.

Linear Programming (LP)

LP is a mathematical technique that can be employed to select optimal responses [112].
LP can be used to find the best combination of responses that maximizes or minimizes
a certain objective function. To illustrate the workings of this method, let us consider a
scenario where we have n possible responses (#Z = ry,r»,...,r,). The optimization of the
objective function can be as in Equation 8.

n

insi — max ormin (8)

i=1
where x; represents a criterion related to the response r; and s be a vector of binary
decision variables, where s; is equal to 1, it indicates that the corresponding response
r; € Z will be executed. Conversely, if s; is equal to 0, it signifies that the response r; € #
will not be executed. The optimization problem typically includes constraints to ensure
the selection process adheres to specific conditions or limitations.

Game-Theoretic Algorithm

Another mathematical method to determine optimal responses against cyber attacks is
game-theoretic algorithms [299, 326, 342]. In the game-theoretic approach, the attacker
and the IRS are modeled as two players. Each player has a set of actions available to
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them, such as different attack strategies & = {a,as,...,a;} for the attacker and re-
sponse strategies % = {ry,ra,...,r,} for the IRS. The goal of the IRS is to select the optimal
response to the attack at a given time. One way to achieve that is by minimizing the max-
imum damage of the attack: min,,c(max,c.s (U(ri,a;))) where U(r;,a;) represents the
utility function for the IRS when the attacker chooses attack a; and the IRS responds with
response r;.

Al-based mechanisms

Many Al-based mechanisms were used to support the dynamic selection of the response
such as Genetic Algorithms [78], Convolutional Neural Networks [318], Supervised ma-
chinelearning [269], Q-Learning [120], and many more [243]. Using any of these Al models
usually requires many steps including data collection and pre-processing, feature extract-
ing, model training, and feedback loop to improve the quality of the selected responses.

Other Methods

There are alternative mathematical approaches to IRSs that are not derived from general
mathematical problems. One example is REASSESS [217] that uses human-evaluated met-
rics and prior responses to select optimal responses. While it offers simplicity, this reliance
on human evaluation can lead to inaccurate assumptions. Its mandatory learning behav-
ior is unsuitable for automotive systems, and it lacks the option for flexible learning to en-
hance responses, requiring a well-established feedback loop. Another simpler approach
is the cost-sensitive generic framework [271, 272], which includes steps like defining op-
erational costs, ranking responses using a weighted sum method, and selecting the best
response with an intrusion matrix. However, its reliance on static value assignments and
sensitive parameters, typically defined by human experts, can make objective assessment
challenging and results in potentially harmful responses.

Comparison
Table 33 summarizes all the advantages and the drawbacks of the five classes of response
selection algorithms.

The primary advantage of SAW is its relative simplicity and utilization of lightweight
mathematical operators, making it suitable for running on constrained devices with a poly-
nomial run-time, without requiring complex external libraries [29]. However, the main
drawback of SAW is the need for an adapted SAW method to achieve more accurate re-
sults. This often leads to increased complexity and longer run-time compared to the orig-
inal SAW. Another drawback is the dependency on subjective parameters such as specific
weights. This dependency can result in highly variable outcomes that may not accurately
reflect the system state [160].

A major benefit of LP is its ability to formulate a single objective function and multiple
constraints, providing an accurate representation of multi-objective optimization prob-
lems. However, compared to SAW, LP requires complex implementation, resulting in in-
creased computational complexity for large systems [112]. The run-time of the algorithm
depends on the solving method employed, such as the commonly used Simplex algorithm.
While the Simplex algorithm has polynomial run-time for typical problems [253], it exhibits
exponential worst-case run-time in theory [156].

The advantage of game-theoretic approaches lies in their consideration of the system
state, resulting in a highly accurate representation of the system. Furthermore, game-
theoretic approaches can be deployed in a distributed manner, as highlighted in [342]. A
major drawback of this method is the use of highly complex models, which are necessary
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Table 33: Comparison of the different response selection methods

Method Benefits Drawbacks

SAW + Simplicity and lightweight - Adapted methods for accuracy in-
operators crease complexity
+ Suitable for constrained de- - Reliance on subjective parameters
vices
+ Polynomial run-time

LP + Flexible structures - Higher complexity for modeling and

+ Typically polynomial run-
time
+ Existing libraries for solvers

calculation
- Theoretically exponential run-time

Game-Theoretic

+ System state consideration

- Very complex models

Algorithms + Accurate system represen- - Computational complexity

tation - Reliance on subjective parameters
Al-based Solu- + Handle large amount of - Uncertainty of the selected re-
tions data sponses

+ Fast response selection - High resource requirements
Other Methods + Simple mathematical mod- - Complexity raises with large systems

els
+ Typically fast

- Human influence has always subjec-
tive opinions

+ Combination with other
methods possible
+ Learning is possible

to determine optimal moves in game-theoretic algorithms. Solving such complex models
often requires significant resources and leads to large communication overhead [342],
making this approach unsuitable for constrained devices. Additionally, most models in
practice make assumptions or simplifications due to the near-infinite number of possible
system states [299, 326, 342], as complete modeling of all states is infeasible.

Using Al-based methods is still limited because of many issues such as the high mem-
ory and computation requirements of some of these methods [118] and the unrealistic
responses that some models can produce (e.g., Genetic Algorithms). Additionally, un-
certainty surrounding the outputs of these models limits their adoption. Finally, most
of these methods rely on the availability of datasets for model training. However, au-
tonomous vehicles often operate in dynamic and unpredictable environments. When the
operating environment significantly deviates from what the Al has learned, it may en-
counter challenges in adapting effectively or making appropriate decisions.

Finally, while the cost-sensitive generic framework and REASSESS are simple and demon-
strate promising in computer and network technologies, adapting them to a highly het-
erogeneous multi-bus architecture, like the vehicular reference architecture, presents sig-
nificant challenges.

After careful consideration of the factors discussed above, we have chosen to explore
the adapted SAW method, as well as LP with a focus on both benefit maximization and
cost minimization for the design of an automotive IRS. The decision to focus on these two
methods is based on their relative simplicity, computational efficiency, and their ability
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to accurately represent multi-objective optimization problems. The remaining algorithm
families were assessed but are not pursued further due to reasons such as increased com-
plexity, resource requirements, and limitations in modeling all possible system states.

Adopting of SAW and LP
Adopting of SAW
To adopt the SAW method for automotive IRSs, we first need to define the criteria €%
that will be used to evaluate each response. For this purpose, we can utilize the HEAV-
ENS parameters, including the cost of a response ¢ (see Equations 4) and the benefit of
a response b (see Equation 5). However, using these two parameters still presents some
issues that need to be addressed in order to effectively use and adapt SAW for valid re-
sults. The first problem arises when using these parameters during the creation of the
elements of the normalized decision matrix, as depicted in Equation 6. This problem orig-
inates from the fact that our modified HEAVENS method allows values of v; ; to be in the
set 0,1, 10,100 for both criteria (i.e., ¢ and b). If max;(v; ;) = 0 applies, Equation 6 results
in an illegal operation if the criterion is a benefit. Similarly, if the criterion is a cost and
va,j = 0, Equation 6 also results in an illegal operation. This issue can be circumvented
by using a small value greater than 0 instead of 0. The second problem does not stem
from a mathematical perspective but rather from the application of this method in a fully
automated IRS. Since the SAW method only considers criteria €% from the applicable
response set %, it does not take into account the impact I of an intrusion. As a result of
this limitation, it is possible that a response incurring high costs may be chosen even for a
minor intrusion. Although this is a significant challenge for the application of SAW in IRSs,
this drawback has not been addressed in existing research.

To tackle this problem, it is mandatory to set the preference value p (see Equation
7) into relation with the intrusion impact I. For each asset A of the vehicle reference
architecture and each intrusion result %, a normalized intrusion impact can be calculated.
Such a normalized intrusion impact must be calculated for each metric S, F, O, P and E of
the adapted HEAVENS method in Equation 3. This behavior is formulated in Equation 9.

WIS,F,0,PE} A% " V{S,FOPE}AZ
U s F.0PE) A2 = { Ly (Wis.F0.PEY A VisFOPE}NA)

)

if Z\%|(W{S,F,O,P.E},A : V{S,F,O,P,E},A) #0

otherwise
(9)
Similar to Equation 7, a weighted sum must be calculated. But, since the individ-
ual weights w are already included in Equation 9, a simple summation over all metrics
S,F,0,P and E of the adapted HEAVENS method is sufficient. This sum will be set into
relation with the preference value of the responses from Equation 7, such that the re-
sponse r; with the highest preference value p will be used, which is below the sum of all
normalized HEAVENS values as depicted in Equation 10.

best response = max {p,' |pi<p- Z a,,Au%} (10)
1€{S,F,0,PE}

The parameter p in Equation 10 is a parameter to adjust larger deviations in the order
of magnitude between the sum of the normalized HEAVENS and the preference value p.

Adopting of Linear Programming

The first step to adopt the LP is defining the objective function. For the set of possible
responses %, it is possible to define two different objective functions:
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¢ The first option of an objective function follows the principle of maximum benefit
as depicted in Equation 11. The goal is to solve the binary decision vector Y to
maximize the benefit b. Although this can lead to very good solutions, it is possible
that the best executable response is not found immediately since preconditions of
identified responses are not satisfied.

|Z|
Zs,-bi — max (1)

i=1

¢ The second option of an objective function follows the minimum cost principle and
is comparable to existing IRSs [110,112]. Equation 12 therefore leads to more conser-
vative responses since the cost ¢ will be minimized and the benefit b of a response is
not considered. A drawback is that the identified solution inside s’ might not heal
the system completely and another try might be necessary.

|Z|
Zs,-ci — min (12)

i=1
For both objective functions from Equation 11 and 12 the same constraints must be
satisfied for a response to qualify for execution. Existing constraints of IRSs using LP [110,

112] are not suitable for an automotive IRS. Because of that, specific constraints must be
elaborated:

1. The cost ¢ of the response must be below the impact I of the detected intrusion [112].
Equation 13 depicts this first constraint.
|Z|

Z sici <1 (13)
i=1

2. Only one response can and must be executed as depicted in Equation 14.

1%

Y si=1 (14)
i=1

It is additionally necessary that Yisa binary vector, leading to the variable definition
NES {0, 1}

4.2.4 Proposed Automotive IRS
In this section, we will discuss some design decisions regarding REACT, our proposed auto-
motive IRS (refer to sec;rsdeployment )anddetailitscomponents(re fertosec : irscomponents).

IRS Deployment
Our proposed automotive IRS can be deployed in three different locations:

e Central Gateway: The vehicle will have one IRS that receives information from var-
ious ECUs. This central IRS will have a comprehensive view and understanding of
the entire system. However, it is considered a single point of failure.

e Domain Gateway: The vehicle will have one IRS per domain gateway. Each one
will be mainly responsible for the ECUs belonging to that domain and will interact
with other IRSs. Implementing this solution requires the existence of an Intrusion
Response eXchange Protocol (IRXP) [100].
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Figure 51: Internal architecture of REACT.

e ECU: The vehicle will have one IRS per ECU. This IRS will be primarily responsible
for reacting to attacks related to its host ECU. Simultaneously, it can exchange re-
sponses related to other ECUs if needed. Choosing this option ensures the absence
of a single point of failure. However, deploying such a solution requires that each
ECU is capable of running the IRS, and it also necessitates the existence and the
support of an IRXP [100].

The architecture depicted in Figure 51 illustrates the scenario where the IRS is de-
ployed in the central gateway. Any potential change would be primarily associated with
the source of certain information required for the functionality of the IRS, whether it orig-
inates from the same ECU (in the case of implementing the IRS per ECU) or from external
sources such as other ECUs or domains at the gateway. Regardless of the chosen deploy-
ment location for the IRS, it necessitates the reception and sharing of information with
other components within the vehicle, as outlined below:

e Attack Information: This information is provided by the IDS, and as described in
4.2.2, it includes the source of the attack, the destination, the intrusion result, and
the impact of the attack. Recent IDSs, such as [66, 129], are capable of identify-
ing the source and destination of an intrusion using various technologies, such as
CAN databases (used by [129]) or ECU fingerprinting [50, 158]. The intrusion im-
pact can be calculated as described in 4.2.2. Additionally, the intrusion result can
be derived from the attack type, which existing IDSs, such as [105], can provide.
In our research, we consider the IDS functionality as trusted, treating it as a black-
box that reliably detects intrusions without requiring additional false-positive han-
dling [111,292]. In our architecture, we place the IDS in the domain gateway. Conse-
quently, a security sensor [13] is needed to monitor its portion of the environment
for security-related observations. This data is then reported to the domain-specific
gateway, which houses the domain IDS.

e Status Information: This includes information about the various states of the vehicle
and its surroundings. This data is collected and aggregated from various vehicle
sensors and shared with the IRS.

e Response Information: This information can encompass the precise responses needed
for specific ECUs or those that need to be shared with the SOC. In our architecture,
we assume the presence of response agents located in each ECU. These agents are
responsible for receiving responses and deploying them within the respective ECU.

Itis crucial to mention the necessity of ensuring the security of this data by implementing
secure communication between the ECU, domain gateway, and the IRS.
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4.2.5 IRS component
The IRS consists of the following sub-components (as shown in Figure 51):

Risk Evaluation Module: This module will be responsible for assessing the impact of
an intrusion. The component will receive information about the intrusion from the
IDS as well as information about the vehicle status.

Response Set Generation: This module compiles a list of possible responses, utiliz-
ing information obtained from both the IDS and the risk evaluation module. Please
note that not every response is applicable to every type of intrusion result (refer to
Table 32).

Optimal Response Selection: This component integrates data from all previous mod-
ules to determine the optimal response that can be applied. Within this component,
any of the algorithms presented in sec:posiblealgo can be integrated.

Precondition Checking: Given the limitations imposed by the system architecture,
where not all types of responses can be applied (for example, in cases where a
sensor is unavailable due to a DoS attack, it may not always be possible to use a
redundant source of information from another sensor if such a backup sensor does
not exist), it is imperative to verify whether the selected optimal response is ap-
plicable or if an alternative response must be chosen. The Precondition Checking
module receives the chosen response and assesses its feasibility. If a response is
found to be inapplicable, a feedback loop is established with the previous Optimal
Selection Module. This inner loop is repeated until the necessary preconditions for
an individual response are met. The order of the Optimal Response Selection and
the Precondition Checking is carefully evaluated and results in time benefits:

1. "Check-First-Then-Select": The logical order of first eliminating all inapplicable
responses and subsequently selecting the best response r from the remaining
available options is illustrated by the timing behavior of Equation 15.

i=1

|Z|
1= <Ztcheck‘r,' +tselect,r+texecure,r (15)

The time to select the optimal response ... » and the time to execute the
response foxecure,r are summed only once, since the selected response will sat-
isfy the preconditions. In contrast, the time to check the preconditions f.peci
is summed over the set of possible responses Z, since every response’s pre-
condition will be checked.

2. "Select-First-Then-Check": While a response may be applied with the proba-
bility p, it might also be that the constraints are not satisfied with a probability
(1— p). This leads to a timing behavior of Equation 2.

1= tselecur] +tcheck,r1 +p- texecute,rl + (l - p)
|Z|

: Z (t.\'elect,rl‘ + tcheck.ri) (16)
i=2
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While the first selected response must always be checked, it is only executed with
the probability p. If the preconditions are not satisfied, the Inner Loop will be re-
peated maximum |Z| — 1 times.

Itis evident that for a certain number of responses approaching infinity, Equations 15 and 2
yield the same runtime ¢ when p = 0.5. For higher values of p, the runtime as per Equa-
tion 2 is even lower. This holds true even when t,,;..; - decreases, as the number of possi-
ble responses decreases accordingly. Based on these equations, the architecture depicted
in Figure 51 exhibits a "Select-First-Then-Check" behavior.

Response Execution: This component is responsible for transmitting the chosen response
initially to the domain-specific gateways and subsequently to the respective ECUs for im-
plementation through their local response engines. After a predefined duration, this com-
ponent triggers the IDS to assess the effectiveness of the applied response in mitigating
the intrusion. By incorporating this IDS-Feedback loop, the Outer Loop can be iterated
multiple times, each iteration involving a system re-evaluation. This concept serves to
counter persistent attacks or stepping-stone attacks effectively. Furthermore, the feed-
back loop can be utilized to update the parameters of the risk evaluation module for ad-
dressing future intrusions.

An essential consideration in the IRS architecture shown in Figure 51 is the implemen-
tation of termination criteria for the inner and outer loop. The absence of such criteria
could lead to an endless loop, posing a risk to the stability of the entire IRS system. While
some prior research has addressed termination criteria [100,261], these methods often in-
volve complex evaluation techniques [38,119] or rely on artificial intelligence support [176].
However, the high computational requirements and intricate modeling approaches asso-
ciated with these methods are impractical for automotive infrastructure. To address the
challenge of preventing endless loops in both the inner and outer loops, we employ two
distinct methods.

1. Preventing Inner Endless Loops: To avoid an endless evaluation of preconditions,
we continuously reduce the possible response set by eliminating non-applicable re-
sponses. Additionally, we have introduced a special response, labeled as "No Ac-
tion" (indexed as 31), which will consistently lead to the last possible response. This
specific response carries the highest cost, similar to the impact of an intrusion, but
provides no benefit. These attributes ensure that the inner loop never reaches a
deadlock since "No Action" can always be applied.

2. Avoiding Outer Endless Loops: Once a response is applied, the system undergoes an
analysis through the IDS-Feedback mechanism to identify if a new stepping-stone
attack is detected or if the system is secure. In case a new stepping-stone attack is
detected, the entire outer loop illustrated in Figure 51 reiterates. To prevent an end-
less loop scenario when the same response is repeatedly applied, we implement
changes to the parameters of the applied response based on the success of the re-
sponse. The parameter adaptation differs between a successful and a non-successful
response. When the selected response is unsuccessful, it indicates that the bene-
fit values assigned to all HEAVENS parameters may not be accurate. Consequently,
an adjustment is needed, resulting in a reduction of the benefit values for all HEAV-
ENS parameters in the previously applied response. This entails the assumption that
the relative order of each parameter remains unchanged; for example, if the safety
benefit held a higher value than the financial benefit prior to the adjustment, it will
continue to do so afterward. This behavior is mathematically expressed in Equation
17.
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Vie {S,F,0,P}:
10, ifigq =100
inew(iold) = 1; if iold = 10
0, ifigg=10rigq=0

(17)

A similar parameter adaptation is required in case the response was applied suc-
cessfully. However, the parameters cannot simply be increased, as this could lead
to predictable responses. Predictable responses pose security risks, as attackers can
exploit this behavior [29]. For that reason, two adaptations are made if the response
is successful to avoid predictable behavior:

e Original values are restored if the response was previously not successful and
its values were adapted according to Equation 17.

e In a second step, the corresponding weights w;cs r 0., are randomly adjusted
using a prefactor r, where rp,;,, < r < rpa. This retains the original order of
magnitude of w; while introducing sufficient variation through the multiplica-
tion r - w; to generate different results in the next iteration.

As previously mentioned, the parameters to calculate the intrusion impact (Equa-
tion 3), the response cost (Equation 4) and the response benefit (Equation 5) rely
on input by security experts. However, this input may not always be optimal [168].
Consequently, this can lead to the selection of an undesired response. Fortunately,
the outer loop provides a mechanism to compensate for potentially incorrect param-
eters. In cases where responses prove ineffective, the parameters are dynamically
adapted using Equation 17.

Note that Equation 17 presented earlier does not account for the dynamic environ-
mental parameter, denoted as E, and its corresponding weight, wg. Further details
and definitions are necessary to incorporate this parameter into the adaptation pro-
cess. These details should encompass various aspects of the vehicle’s status and
its surrounding environment. For simplicity, we have focused on the vehicle's ve-
locity as a parameter that can help represent the vehicle’s status. To determine a
realistic rating for the impact of vehicle speed, several factors must be taken into
account. Studies of traffic accidents have revealed that the impact is influenced not
only by the types of vehicles involved but also by their positions at the potential
crash site [141]. Additionally, the age of the passengers in the vehicles can affect the
impact of injuries in a traffic accident [231]. Based on this research, the approach
presented in Equation 18 is applied to the parameter E in the adapted HEAVENS
method’s prototype implementation [141, 231].

100, ifv>75km/h
1 if <

E(v) = 0, I 50 km/h <v <75 km/h (18)
1, if 30 km/h <v <50km/h

0, if0km/h<v<30km/h

Response Storage: Within this component, a repository is maintained containing a range
of potential responses alongside their associated metrics. These metrics can be updated
through the feedback mechanism or expanded with the inclusion of new responses and
parameters via an external connectivity interface. When implementing this on specific
hardware, it is crucial to implement security measures to prevent unauthorized tampering
with the memory area.
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Our proposed IRS architecture, featuring both an inner loop and an outer loop, cou-
pled with the incorporation of automotive-specific considerations into the external ar-
chitecture, introduces a novel paradigm in the realm of fully automated IRSs. Note that
there is already some related work for each part of the IRS (such as the selection method),
which was covered in the previous sections. However, there is no system that attempts to
include all the aspects against which we can compare our work.

4.2.6 Evaluation

Table 34: IDS-related information and vehicle state parameters for both evaluation scenarios.

Property Scenario 1 Scenario 2

Name Adversarial sample Information disclosure at the info-
tainment system

Infected Asset Front Camera Infotainment Gateway

Affected Asset Acceleration control Infotainment Gateway

Intrusion Result Falsify / Alter behavior Information Disclosure

Dynamic Param-  Velocity: 70 km/h Velocity: O km/h

eter

Implementation, Testbed, and Use Cases

The proposed IRS was implemented using the Python programming language. To imple-
ment Linear Programming and the associated Simplex algorithm, we utilized the PuLP
library [199], a well-established choice, along with the GNU Linear Programming Kit as
the solver. It is important to note that the adapted SAW method remains independent of
this decision, as it relies solely on standard Python mathematical operators.

The testbed designed for evaluating the IRS incorporates an embedded system setup
to realistically emulate the automotive infrastructure. To ensure this fidelity, our imple-
mentation was executed on a Raspberry Pi 4 Model B Rev 1.2, a choice justified by the de-
vice's ARM-based quad-core processor running at 1.5 GHz. This processing power closely
aligns with the high-performance chips commonly found in the automotive industry.

The goal of the evaluation is to assess two key aspects of the proposed IRS. Firstly,
we aim to evaluate its proficiency in optimal response selection, and secondly, we intend
to measure various computational metrics, including memory consumption and the time
required to obtain optimal responses while using the three different selection algorithms:
LP with maximum benefit, LP with minimum cost, and adapted SAW.

For our evaluation, we employed two representative intrusion scenarios inspired by
real-world intrusions:

1. Adversarial Sample: This scenario involves slight modifications to the input data
of a machine learning algorithm, resulting in significantly different outputs from
the original [184]. Given the prevalent use of machine learning algorithms in cam-
eras for automated vehicles, they are vulnerable to exploitation via adversarial sam-
ples [184]. In our evaluation, we exploited a front camera in a rural setting, leading
to an altered behavior in the acceleration control.

2. Information Disclosure at the Infotainment System: This scenario draws inspiration
from an actual attack on a vehicle, where an information disclosure in the infotain-
ment system served as the initial step in a stepping-stone attack [197].
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The specific IDS parameters and vehicle states employed as input for the scenarios are
meticulously detailed in Table 34. Please remember that in our prototype of the IRS, we
consider only the velocity of the attacked vehicle as an illustrative example of a vehicle’s
status.

4.2.7 Results

In this section, we will present the results of testing our IRS using two prominent scenarios.
We will evaluate response quality, response selection time, memory consumption, and
the adaptation of response parameters for each of the three selection algorithms: LP with
maximum benefit, LP with minimum cost, and the adapted SAW.

Response Quality

The objective of the response quality evaluation is to assess how different optimal selec-
tion algorithms prioritize responses and determine the overall impact and benefit of the
applied responses. To achieve that, the precondition of each response is set to ‘rejected’
for every proposed response. This ensures that the IRS will continue to suggest responses
from the list of possible responses. Each applied response can have both positive and neg-
ative effects on the system, so the cost and benefit values of the selected responses are
presented. In this evaluation, default parameters are utilized for each new test, ensuring
uniformity in the algorithm evaluation across various metrics.

Figure 52 depicts the cost and benefit of all proposed responses in the order they are
applied by the respective algorithm for both scenarios. The figure shows that our pro-
posed IRS suggests a different number and order of responses for various scenarios and
for different selection algorithms within the same scenario. Please note that the figure
shows that some responses were selected twice. For example, the response of restart-
ing the misbehaving system (indexed with number 19, see Table 32), was selected twice.
However, it is important to clarify that the response was selected for different systems.
In other words, the first restart is related to the camera, while the second is for the ac-
celeration control. In addition, as expected and shown in Figure 52(a) and Figure 52(b),
the LP method with maximum benefit starts at very high benefits. Similarly, the LP with
minimum response costs starts at a very low cost and more expensive responses are not
selected until later stages, as shown in Figure52(c) and Figure 52(d). Notably, the LP with
maximum benefit operates independently of the cost. However, it always ensures that
the cost of the response is less than the impact of the intrusion (see Equation 13).

The reason for the arbitrary behavior is that Linear Programming only follows one op-
timization function and just satisfies the constraints, but does not sort by constraints.
Similarly, LP with minimum cost delivers arbitrary values with respect to the benefit be-
cause it only considers cost metrics in its optimization. While the LP with the minimum
cost provides more conservative solutions, the LP with maximum benefit suggests more
offensive solutions. In a real-world scenario, LP with minimum cost might require multiple
responses since its benefits are arbitrarily sorted, while LP with maximum benefit might
require more iterations of the "inner loop" since the preconditions for more offensive
responses might not be fulfilled.

The adapted SAW method exhibits a similar arbitrary behavior as shown in Figure 52(e)
and Figure 52(f). However, it is noticeable that adapted SAW may select responses with
a cost higher than the impact of the intrusion (see Figure 52(f)). Given that the adapted
SAW method does not consider constraints, it is an unattractive solution to use any SAW
method in an automatic IRS.
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Figure 52: Evaluation of the response benefit and cost for Scenario 1 (left) and Scenario 2 (right)
using LP with maximum benefit (top), LP with minimum cost (middle), and adapted SAW (bottom)

Time of Response Selection

To evaluate the time required for selecting a response from a given response list using the
selection algorithms, we utilized the previously described method where the inner loop of
the IRS repeats multiple times. It is important to note that the generation of the response
set occurs only once for an individual intrusion. The time required for list generation is
independent of the selection algorithm, measuring at 4.32 ms for scenario 1 and 3.82 ms
for scenario 2. The difference in the measured time between the scenarios is due to the
variation in number of possible responses.

Figure 53 illustrates the time consumed by the three selection algorithms during the
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Table 35: Memory consumption of the IRS in kB using static evaluation.

LP with Max Ben-  LP with Min Cost ~ Adapted SAW

efit
Scenario 1 19308 19206 11296
Scenario 2 19228 19344 11220

process of selecting different responses. Please note that the X-axis represents the order
of the response, not the index of the response. The figure indicates that the adapted SAW
method consumes less time compared to the LP methods. Specifically, the LP method with
maximum benefit typically consumes more time due to the need for multiple iterations, as
its offensive responses may not meet necessary preconditions. Slightly less time is needed
for the LP method with minimum cost, although its conservative responses are selected
after fewer precondition checks. Overall, all algorithms demonstrate good performance
on a resource-constrained embedded system.

Memory Consumption

To measure memory consumption, we utilized Python’s internal resource module [227].
Since some of the optimal selection algorithms rely on third-party libraries, the assess-
ment of memory consumption includes the memory allocated for these functionalities
as well. The results are presented in Table 35. The results show that both LP with max-
imum benefit and LP with minimum cost methods consume nearly the same amount of
memory, while the adapted SAW method exhibits considerably lower memory consump-
tion. This difference can be attributed to the external libraries PuLP and the GNU Linear
Programming Kit, which require more memory due to their complex data structures
and solving methods. Nevertheless, all three selection algorithms exhibit low memory
consumption, making them suitable for use in resource-constrained embedded hardware
systems.

Dynamic Evaluation
The dynamic evaluation concentrates on two key aspects: response and threat impact pa-

rameters adaptation (refer to 4.2.2) and the inclusion of velocity considerations (as shown
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Figure 54: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered successful.
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Figure 55: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered unsuccessful.

in Equation 18). When it comes to parameters adaptation, response quality is assessed
based on their cost and benefit. In terms of velocity, we evaluate response variation.
These assessments are conducted for both scenarios 1 and 2. By testing all three imple-
mented optimal selection algorithms, we can compare their dynamic behavior.
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4.2.7.1 Parameters adaption To assess the impact of changing parameters, we conducted
two repetitions of each scenario, each comprising five iterations of the outer loop. In one
set of iterations for each scenario, we consistently deemed the responses as successful,
while in the other set of five iterations, the responses were uniformly considered unsuc-
cessful. The benefits and costs of the five optimally selected responses for both scenarios,
as determined by the three selection algorithms, under the assumption that the
responses were always successful, are presented in Figure 54. Correspondingly, the
results under the assumption that the responses were consistently unsuccessful are
displayed in Figure 55.

In consistently successful attacks, we observed that parameter weights change within
the range of +20% (we have selected r,,;, = 0.8 and 7,0 = 1.2). The purpose of these
changes was to reduce response predictability. In both scenarios, changes in response
benefit were evident. However, in the first scenario, all three algorithms retained the
same response as shown in Figures 54(a), 54(b), and 54(c). This was changed in the
second scenario, where responses were altered for the LP with maximum benefit and
adaptive SAW algorithms as shown in Figures 54(d), and 54(f). The reason for the absence
of changes in the selected responses in the first scenario when using LP with maximum
benefits or adapted SAW algorithms can be attributed to the specific response chosen:
transitioning to a safe mode (indexed with 17). This response had very high benefit values,
as determined through the initial evaluation process, making minor variations of +20%
inconse-quential to the overall result. Consequently, minor variations of +20% did not
affect the overall result, as the next possible response had significantly lower benefit
values. To avoid such a constant behavior, a more substantial modification of the
response parameters or the use of an asymmetric window for the prefactor, with a higher
probability of negative values, can be implemented. Notably, the LP method with
minimum cost (Figure 54(b) and 54(e) did not consider response benefits in its
optimization function, rendering modifications to response benefit irrelevant. This
method-related limitation persisted across both simulated scenarios.

In the case of consistently unsuccessful attacks, we observe more substantial varia-
tions in the selected responses compared to the previous case (see Figure 55). This be-
havior is expected, as the parameter adaptation in a non-successful case involves higher
orders of magnitude, as shown in Equation 17, compared to the successful case. Similar to
the previous analysis, the LP method with minimum cost optimization consistently
generates the same response due to the exclusion of response benefit in the optimiza-
tion process, as shown in Figures 55(b) and 55(e). Conversely, LP with maximum benefit
optimization aligns with expectations. Although the initial response is similar to the suc-
cessful case, subsequent responses exhibit lower benefits (Figures 55(a) and 55(d)) and
higher costs as a side effect. Notably, response index 26 (killing the process) appeared
twice in Figures 55(a) and 55(c), each referring to different components (i.e., camera and
acceleration control). The adapted SAW method consistently produces varying results
with less distinct trends in benefit and cost when compared to LP with maximum benefit
(Figures 55(c) and 55(f)). This observed behavior holds true for both scenarios 1 and 2, un-
derscoring the expected functionality of parameter adaptation for non-successful cases.

In conclusion, this assessment of dynamic parameter adaptation confirms that LP with
maximum benefit and the adapted SAW methods perform effectively with adjusted pa-
rameters, rendering the results valid for both test cases. On the other hand, the LP
method with minimum cost optimization falls short in its capacity to respond to
parameter shifts in response benefit values. Consequently, this method appears less
appealing for identifying optimal responses in autonomous IRS.

120



Table 36: Impact of the velocity for the evaluated scenarios, using Equation 3.

Impact (unitless)
Okm/h 50km/h 100 km/h

Scenario 1 200 210 300
Scenario 2 120 130 220

4.2.7.2 Inclusion of Velocity Considerations The second key aspect of dynamic evalua-
tion involves assessing the influence of vehicle velocity on the selected responses. In our
current prototype system, the environmental parameter E is treated similarly to other
HEAVENS parameters in Equation 3, as their respective weights w are either one or zero.
As we alter the velocity, the environmental parameter for an intrusion takes on different
values, as indicated in Equation 18. Therefore, intrusion’s impact is more significant at
higher velocities. For this test, both scenario one and two are assessed at three veloci-
ties: 0, 50, and 100 km/h, using all three implemented algorithms, with each evaluation
beginning with the default data-set.

While the intrusion impact calculation in Table 36 functions as expected, each algo-
rithm consistently selects the same response within each scenario, regardless of the ve-
locity. This behavior can be attributed to the high impact values in the two evaluated
scenarios. In cases of less severe intrusions or during the early stages of a stepping-stone
attack, where the HEAVENS parameters result in lower values, the velocity’s impact be-
comes relatively more substantial, thus leading to varying results. Nonetheless, it’s im-
portant to emphasize that the proposed IRS architecture is adaptable since the individual
weights w for HEAVENS parameters can be customized as per Equation 3. This customiza-
tion minimizes the over-representation of static HEAVENS parameters, enabling the ve-
locity to exert a more pronounced influence on the selected response.

Final Remarks

The evaluation of the developed IRS reveals the advantages and drawbacks of each selec-
tion method. The adapted SAW method is limited by its inability to consider constraints.
Consequently, it is not feasible to employ this method in a fully automated IRS. On the
other hand, LP with minimum cost consistently favors constant responses and is, there-
fore, unsuitable for optimal response identification. Despite its successful application in
existing research [110, 112], the results demonstrate suboptimal behavior for the automo-
tive use case. Nevertheless, it is well-suited for proposing follow-up responses once the
primary intrusion has been mitigated. These follow-up responses can enhance security
by alerting a SOC and providing information to the car manufacturer, ultimately leading
to updated software. In contrast, the LP method with maximum benefit, excels in all met-
rics evaluated for an automotive IRS. Since it offers responses with high benefits from the
outset, it is well-suited to respond to the primary intrusion.

4.2.8 Conclusion and Outlook

Modern vehicles’ intricate architecture and advanced connectivity present unique intru-
sion challenges. While automotive security research has traditionally emphasized IDSs as
a secondary defense layer, the development of vehicle IRS is in its early stages, drawing in-
spiration from related industries. To delve into the development of an automotive IRS, we
sought answers to three key questions: defining potential responses, outlining response
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evaluation criteria, and optimizing response selection. Initially, we categorized automo-
tive intrusions and stepping-stone attacks into five distinct categories to create a more
versatile intrusion model. Similarly, we classified responses, creating a formal description
for both intrusions and responses. Additionally, we investigated necessary adjustments
to existing risk assessment models to support response evaluation. Furthermore, we con-
ducted a comprehensive comparison of various optimal selection algorithms, highlighting
the adaptability of the SAW method and Linear Programming (LP) with various optimiza-
tions for IRS integration. Although other algorithm families may gain relevance in the
future, they currently face limitations in the automotive context. In addition to these
findings, we proposed an IRS architecture that accommodates the distributed nature of
vehicles and addresses automotive-specific constraints. Evaluation in real-world scenar-
ios has led to the development of a novel vehicular IRS, demonstrating its potential for
integration into modern distributed vehicle architectures and enhancing overall security.

While the focus of the paper is on the analysis and design of the IRS, the implementa-
tion of the external architecture and the response execution modules on the local engines
on each ECU is still a challenge towards an IRS as a system. To test such an overall IRS
system, real-world data sets, including both normal operation and attack scenarios, are
needed. Extensive evaluation in Software-in-the-Loop or Hardware-in-the-Loop testbeds
can extend the existing evaluations of algorithms and the overall system. With respect to
the secure communication of intrusions and responses, further research and standardiza-
tion are needed to be performed in order to ensure that the developed IRS does not only
reply in an adequate manner but also distributes its responses. In this direction, leveraging
existing efforts such as [124, 193] by extending them towards establishing a standardized
method for securely exchanging the proposed responses within the vehicle and with other
vehicles would provide a solid foundation, as these existing standards and guidelines al-
ready offer valuable insights. Also, it is important to note that the functionality of our
proposed system depends on the availability of information about the attack, such as its
source, destination, and type, which needs to be provided by the IDS. This information can
be obtained by integrating existing research approaches, as demonstrated in [66,129]. Fi-
nally, the modular architecture of REACT allows an easy extension towards more complex
vehicle architectures and new intrusions or responses. Additionally it allows the integra-
tion of new selection algorithms in the future to adapt to possible changed needs.

4.3 Summary

Within this section, we developed methods for fingerprinting, debugging and intrusion
response in AD systems. The ADAssure methodology leverages vehicle dynamics data for
automated and manual analysis of indicators of activity of cyber attack. ADAssure demon-
strated that indicators of attack could be found through vehicle dynamics data and that
assertions on the system could be generated. These assertions can aid in the improve-
ment of the design of the control system software. The analysis of IRS techniques for
automotive consequently demonstrates the difficulty in finding an optimal solution for a
real-time, safety-critical system with timing and resource constraints. Both analyses high-
light the complexity of development of cyber defensive mechanisms given the vast data
ecosystem and system-of-system environment. Within the next section we will conversely
explore the development of tools for cybersecurity testing of AD software.
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5 Tools for Autonomous Driving Software Cybersecurity Test-
ing
5.1 Cybersecurity Test Range for Autonomous Vehicles

AV shuttles for public transportation are being piloted in European cities [121]. Cybersecu-
rity of AV shuttles is of predominant importance for the safety of passengers and pedes-
trians in the traffic environment. Digitisation of vehicles and the transitioning to intelli-
gent control by algorithms have exposed vulnerabilities to traditional cyber attacks such
as ransomware, distributed denial of service, and new attack surfaces such as adversarial
machine learning and sensor manipulation [43, 220, 223, 280]. Recent examples [7, 11] of
software failures of semi-autonomous vehicles resulting in fatalities of passengers have
shown the lethal potentiality of cyber attacks. There are many challenges to securing AV
shuttles against cyber attacks.

Cyber ranges are popular tools to experiment with edge and corner cybersecurity test
cases and training for skills development and situational awareness of cybersecurity inci-
dent response. However, there is a lack of evaluation of cyber range technologies for AV
cybersecurity and knowledge as to how cyber-physical systems can translate to support
real-world, operational AV shuttles.

To address the challenges of AV cybersecurity, cybersecurity testing platforms for cyber-
physical systems and methods for testing and training are required. In this research we
evaluate the Massachusetts Institute of Technology (MIT) Duckietown, low-cost, small-
factor, cyber-physical AV test bed to support cybersecurity testing of a real-world AV Shut-
tle, operating in Tallinn, Estonia. The purpose is to understand how a cyber-physical test
bed can be used for cybersecurity testing of AV shuttles and how this can transform cy-
ber ranges and training for AV cybersecurity. The main activities of this research are the
following:

1. We investigate the utility of a cyber-physical test bed for AV shuttles to support a
real-world, operational AV shuttle.

2. We demonstrate, through a series of practical cybersecurity test scenarios, that a
low-cost, cyber-physical test bed can be used to test the general cybersecurity of
an AV shuttle and improve issues with the architecture and training for situational
awareness of operators.

3. We outline recommendations how a cyber-physical test bed can be used to validate
cybersecurity edge and corner cases.

5.1.1 Relation to Existing Work

Cyber-physical test beds for AVs have featured in numerous studies. However, the related
work is focused on the design of the test bed and there are few works that include con-
siderations for cybersecurity testing and training.

Three studies are prominent in the related literature for their focus on designing low-
cost cyber-physical test beds for automotive.

Axelsson et al. created a vehicle test bed for security evaluation of cyber physical sys-
tem. The test bed was based on a small-factor mobile vehicle which was customised to
support AUTOSAR, a software framework for automotive. The vehicle test bed, developed
in 2014, demonstrated that a small-factor device could provide a solution to emulate the
protocols and features of a full-factor real-life vehicle. The test bed was not autonomous
and relied on remote control by human operator [21].
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Tian developed a low-cost cyber-physical AV for research of neural networks. The re-
search involved creating a code base for a line following car in a low-noise, controlled,
test environment. The study developed the environment which could have applications
for test bed and cyber range capability. However, as this was not the primary focus of the
study, the translation of the cyber-physical AV for testing was not explored [70].

Bhadani et al. created a Cognitive and Autonomous Test (CAT) Vehicle test bed to eval-
uate AVs. The research problem highlighted in the study was the cost, time and risks of
real-world testing and the problems translating test cases from simulators to real-world
environments. The study designs and builds a hybrid virtual-physical test bed that incor-
porates the body physics of a real world vehicle with virtualised sensors and software
platforms. ROS is used as the middleware platform. The evaluation of the platform was
conducted through an educational program where students used extracted data from the
CAT vehicle to improve object detection and tracking. The study was focused on the design
of the vehicle and not cybersecurity, testing or training [26].

Zelle et al. and Santos & Schoop extended the design of a test bed for AVs to include
a framework for cybersecurity testing of AVs. Both of these studies focused on test cases
generated from either formal methods or system analysis [67,329]. Zelle et al. built a se-
curity test platform for AVs using small-factor cyber-physical systems. The methods used
in designing the platform comprised eliciting an attack model of cybersecurity attacks
against autonomous vehicles. Based on this attack model the test bed was designed. The
test bed is innovative, it includes most of the diverse range of sensors used for perception
as well as in-vehicular networks and infotainment systems. The contribution is closest to
this work. The main differentiation is that this study provided a practical assessment of
the test bed and analysed testing and training methods that a cyber-physical AV test bed
could support [329].

Santos & Schoop developed a framework for cybersecurity testing of AVs and eval-
uated its efficiency through investigation of the survivability of autonomous vehicles af-
ter a cyber attack to the vehicles sensors. Their framework consisted of developing test
cases from formal methods and a tool to auto-generate test cases. Their practical evalua-
tion involved the security testing of two sensors; camera and LiDAR. An open-source au-
tonomous driving simulator, CARLA, was used as the experimental testing environment.
The authors tool for automatic test case generation only supports CARLA. Their study ac-
knowledges the limitations of this approach, the attack to the sensors was delivered by
manual scripts and assumed the attackers could manipulate the sensors perfectly each
time. The findings are limited to the CARLA environment and the simulation environment
testing could not replicate a real-world physical attack or the operational driving domain
of the vehicle [67].

5.1.2 AV Shuttle Cybersecurity Program

To select a low-cost, cyber-physical test bed to evaluate for AV shuttle cybersecurity, we
begin by providing an overview of the Tallinn, Estonia, iseAuto, a real-world, operational
AV shuttle.

AV shuttles are a type of AV used for public transportation in predominantly urban
environments. AV shuttles can accommodate up to 15 passengers and are limited is speed
to approximately 25 km/h. Table 37 lists a few of the different models of operational AV
shuttles. There are thousands of AV shuttles currently operating around the world [121].
Figure 56 depicts a public transport AV shuttle.
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Table 37: AV Shuttles for Public Transportation [121]

AV Shuttle Location Environment

Navya Arma Parc Olympique Lyonnais, Public Road
France

EasyMile EZ10 Airport Velizy-Villacoublay, Government Prop-
Paris, France erty

iseAuto Tallinn, Estonia Private Road

Baidu Apollo Software Park Xiamen, Public Road
China

Local Motors Olli Goodyear, Colmar-Berg, Private Road
Luxembourg

Figure 56: iseAuto Public transport AV Shuttle [16]

AV Shuttles use either open-source or proprietary software designed for AVs. ROS is one
of the key open-source systems. ROS is an open-source middleware that provides support
for hardware abstraction, low-level device control, message-passing between processes,
and package management. ROS is popularly used as it integrates with Autoware, a large
open-source research and development community that provides a software platform
for autonomous driving. The Autoware platform provides modules for self-driving, these
include localisation, detection, prediction, planning and control [?]. These modules are
essential for the vehicle to understand where it is located in the driving environment,
map the route it must drive and detect the objects in the driving environment such as
pedestrians. Furthermore, the control module is crucial for the vehicle to coordinate the
conditions under which the control of the vehicle will be maintained and important deci-
sions will be made, such as when control of the vehicle will be passed back to the human
operator.

The AV shuttle architecture integrates this software ecosystem with advanced hard-
ware technology and sensors: LiDAR, ultrasonic radar, camera and GNSS.

AVs use teleoperation. Teleoperation is the remote monitoring and controlling of the
AV by a human operator. In the real-world vehicle used in this study, the teleoperation is
a software module of the ROS, enabling communication between the on-board computer
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and a remote teleoperation centre located in a building along the private road environ-
ment.

AV Shuttles are densely interconnected. The internal self-driving vehicle network con-
sists of layers of communicating devices from the embedded components of the vehicle,
including the ECUs using the CAN Bus protocol, to the IP connected sensors. The vehicle
communicates with smart road-sign-units (RSUs) and internet-connected devices, which
is termed V2X, and with other vehicles, known as V2V.

The AV shuttles autonomous driving cognition and sensonics are tested in simulators
and cyber-physical test beds. Popular simulators include; Apollo Baidu, LGSVL, CARLA and
ROS Gazebo [241]. Simulators consist of a 3D generated driving environment, normally
from the maps generated by LiDAR sensor. The simulated AV can take as input the same
configurations used in the ROS software of the real-world vehicle and similar sensor soft-
ware profiles. Cyber-physical test beds can be either small-factor replicas or hardware-
in-the-loop test benches. Cyber-physical test beds allow the same features and function-
alities of the simulated environment with the additional benefit of providing testing of
physical interfaces and the dynamic of real-world physical conditions.

In 2015, researches demonstrated that the in-vehicle network, Controller Area Net-
work (CAN) Bus, of a Jeep Cherokee could be exploited through malware and remote
code injection, to stop the brakes of the vehicle [55]. This event precipitated the increase
in focus on testing methods and test platforms for CAN Bus and connected vehicle tech-
nologies; communication interfaces and infotainment systems. This increase in research
activity has lead to an increasing amount of vulnerabilities found in connected vehicles
(Table 38).

Table 38: Examples of Cyber Attacks on Connected Vehicles

Vehicle Cyber Threat

Tesla Model S Spoof Passive keyless entry to take advantage of
weak cryptography, lack of mutual authentication
for challenge-response and lack of firmware protec-
tion [313].
Malicious firmware with linux kernel exploitation for the
ConnMan open-source internet connection manager al-
lows WiFi of the Tesla to be exploited to allow remote
connections [307].

Jeep Cherokee 2014 Malware on Infotainment system to allow remote root
privileges and pivot into CAN Bus network [55].

KIA Reverse-engineered Android OS Infotainment system.
Found vulnerabilities to allow remote root privi-
leges [82].

There has been growing research in cybersecurity vulnerabilities of autonomous driv-
ing. These mainly focus on adversarial machine learning that aims to exploit weaknesses
in the autonomous driving cognition, fuzzing of ROS and other middleware software, and
network interfaces used for V2V and V2X communication (Table 39). Most of this research
is conducted in simulators or on isolated systems and components and very few of the
testing methods relate to real-world operational vehicles [43,195, 220, 223, 230, 280]. An
exhaustive list of vulnerabilities of connected vehicles and AVs can be found here [148]
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Table 39: Examples of Cyber Attacks on AVs

Attack Surface Cyber Threat
Autonomous Cogni- Tamper with RSU Stop Sign to manipulate autonomous
tion cognition [267].
Tamper with lane markings to manipulate lane-keeping
system(LKAS) [249].
Spoofed images in driving environment to manipulate
object-detection [210].

Sensors Jam LiDAR point cloud sensor with laser [35].
Tamper with sensor data to manipulate navigation
path [61].

System Spoofing of ROS Master and interception of ROS mes-

sages [130]

Malware in firmware update [308]

Fuzzing of AV middleware [103].
Network Intercept and spoof RSU messages [223]

Despite commonly used regression testing methods and standards for cyber assurance
testing of AVs, the vulnerabilities of AV systems continue grow.

Public transportation AV shuttles undergo limited testing for cybersecurity, this is due
to many reasons. Firstly, cybersecurity testing on real-world proving grounds with op-
erational vehicles is expensive and time-consuming, requiring extensive labour effort in
the setup, execution and safety monitoring of the tests [297]. Secondly, there is a reluc-
tance to test cybersecurity test cases that could damage the vehicle. This is mainly due to
the cost and time involved in rebuilding and re-configuring vehicular systems and compo-
nents. Thirdly, the AV shuttle architecture is a distributed systems architecture and due
to lack of testing there is a gap in understanding how cyber attacks cause cascading af-
fects and how, for instance, malware could propagate throughout the system. Fourthly,
there is a lack of investigation of novel testing methods and techniques for cybersecurity.
These include software simulators and cyber-physical test beds commonly used for test-
ing autonomous driving cognition. Lastly, there is lack of training of teleoperation, remote
control vehicle operators for situational awareness for cybersecurity. As AV shuttles rely
on teleoperation operators to override the autonomous cognition in emergency situations
and make manual driving decisions, their awareness as to how cyber attacks can impact
situational awareness is critical for safe driving operation.

Flexible testing environments that allow agile testing of edge and corner cyberseecu-
rity test scenarios would help assist in identifying vulnerabilities of the AV system architec-
ture. Whilst simulators and small-factor cyber-physical test beds are used for testing and
improving autonomous driving algorithms there has been limited practical exploration of
these test beds for cybersecurity testing.

Test beds such as the MIT DuckieTown, provide a low-cost, small-factor environment
accessible to autonomous self-driving vehicle developers and quality assurance testers [278].
These environments, which utilise the same software and network interfaces as Autonomous
Vehicle (AV) Shuttles have the potential to be used for cybersecurity testing and research.
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5.1.3 Cybersecurity Test Beds for AV Shuttles
Key factors which influence the design and usage of test beds to support the operational
AV shuttle include cost, complexity and fidelity of the test bed to the operational system.

Cost

To support agile testing and cybersecurity test cases that impart physical damage on the
AV, the cost of the test bed needs to be as limited as possible. The low-cost requirement
has two intended beneficiaries. Firstly, a low-cost agile test bed can be given to students
and researchers in innovative testing formats such as crowd sourcing. This enables a wider
scope of testing for minimal cost. Secondly, AV shuttle programs for public transportation
do not have exhaustive resources for testing in comparison to the major original equip-
ment manufacturers. Therefore, low cost test beds are required to test edge and corner
cases and prioritise test cases for testing on the real-world vehicle.

Complexity

AV shuttles are a complex distributed system architecture, it is essential that the test bed
support observation of distributed system interaction whilst limiting the complexity to
allow rebuilding of damaged systems. For example, allowing a clean rebuilding of a soft-
ware or hardware system infected by malware. This agility will allow repeatable testing of
cybersecurity test cases and enable dynamic testing such as crowdsourced vulnerability
analysis and training such as capture-the-flag style learning activities.

Fidelity to Operational Vehicle

To evaluate cybersecurity and situational awareness there needs to be a level of abstrac-
tion of the operational vehicle architecture. An evaluation of the real-world AV shuttle
considered the Al & Drive systems, sensonics and the network connectivity with the tele-
operation as key features of the autonomous driving architecture to emulate in a test bed.

Test Bed Analysis

A comparison of test beds used for autonomous driving and cybersecurity research found
the cyber-physical test bed to be an optimal platform for evaluation (Table 40). Advan-
tages of the cyber-physical system are the low cost and agile, modular architecture which
can allow sensors and systems to be added or removed. Due to the lack of evaluation
of cyber-physical test beds to support cybersecurity testing their fidelity to real-world,
operational system is yet to be determined, and will be explored in this study. Whilst real-
world proving grounds offer the highest fidelity, they come with a considerable cost due
to resources required to engineer tests with real vehicles and manage the safety risks of
such tests.

Table 40: Comparison of Test Bed Architectures to support Cybersecurity

Testing Considera- | Simulation Cyber- Real-World Proving
tions Physical Ground

Cost Low Low High

Complexity Low Medium High

Fidelity Medium Not evaluated | High

Table 41 presents an evaluation of the test bed architectures to support testing for the
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cyber attacks listed in Table 38 and Table 39.

Table 41: Comparison of Test Bed Architectures to support AV Shuttle cybersecurity Test Cases

Cyber Threat Test | Simulation Cyber- Real-World Proving
Cases Physical Ground
Hardware and Com- | Yes Yes Yes
pute

Connected Vehicle Yes Yes Yes
Sensor and Percep- | Yes Yes Yes
tion

Physical Access No Yes Yes
Damage Incurring No Yes Yes
Environmental Per- | No Yes Yes
turbations

AV Shuttle Cyber Range for Cybersecurity

The MIT CSAIL Duckietown is a small-factor test bed used for evaluating autonomous driv-
ing software modules, algorithms and education. Duckietown consists of a driving envi-
ronment (Figure 57a) and an AV, called, DuckieBot (Figure 57b).The cost of the components
to build the MIT Duckietown test bed is approximately €400.

:x;ww

(a) DuckieTown - Cyber-Physical Test Bed (b) Duckiebot - AV Cyber-Physical Device

Figure 57: MIT DuckieTown Self-Driving TestBed

The DuckieBot uses a 5 mega pixel Raspberry Pi camera for sensing. The hardware for
the Al and Drive Algorithm is built on Raspberry Pi Model 3B hardware. The software plat-
form is built upon Docker utilising ROS Kinetic. A 32GB SD card is used for local on-board
storage and a 100Gb USB drive can be inserted in the Raspberry Pi to allow more storage
for logging. A 5 volt, 10400 mAh, battery is used to power the DuckieBot. Actuation is per-
formed by the motor driver which connects to servo motors. The DuckieBot is calibrated
to operate in the DuckieTown driving environment. This consists of a floor layer with road
markings, conventional to the standard markings of real-world traffic.

Table 42 represents detailed analysis of the DuckieBot with the iseAuto AV shuttle,
operating in Tallinn, Estonia.
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Table 42: Feature Comparison of Test Bed and iseAuto AV Shuttle

DuckieBot iseAuto AV Shuttle
ROS Kinetic Kame ROS Kinetic Kame
Linux Network Interfaces and 4G | Linux Network Interfaces and

Cellular Network

4G/5G Cellular Connectivity (*V2X
is yet to be added as a feature)

Camera Sensing

Camera, LiDAR, Ultrasonic Radar,
GNSS

Actuation, motor driver controls
servo motors

Actuation, Drive Controller controls
CAR ECU

On-board Control PC (ARM proces-
sor)

On-board Control PC (ARM proces-
sor) different hardware specifica-
tions

Teleoperation - Mission Control
System

Teleoperation - Mission Control
System

The DuckieBot is an optimal test bed for experimentation as it uses the containerised
architecture of Docker. This allows software packages for sensors, hardware and AD to
be centralised in a configurable system. This enables packages to be added or removed
depending on the test case and for new sensors and hardware to be added easily. The
other major advantage is that the DuckieBot is an actively supported open-source project
and new AD algorithms are published regularly. This helps to ensure that test cases are
tested against the newest available AD algorithms.

5.1.4 Cybersecurity Test Scenarios for AV Shuttles

Test Scenario Generation Process

Selected use-cases are used to evaluate the usefulness of the cyber-physical range. To
generate the cyber test scenarios we asked experts in AV cybersecurity from vehicle man-
ufacturers and system designers to detail edge and corner cybersecurity test cases that
they would want a AV cybersecurity test bed to support. The experts represented or-
ganisations that develop autonomous robots for logistics, autonomous driving assistance
systems and AV shuttle operators. Table 43 lists illustrates our chosen demonstration use-
cases.
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Table 43: Security Test Case Scenarios

Test Case Description

Scenario 1 (S01) An external threat actor spoofs the road markings
to manipulate the driving logic to veer the vehicle
off the road.

Scenario 2 (S02) An external threat actor tampers with the road

markings to manipulate the drive logic to veer the
vehicle off the road.

Scenario 3 (S03) An external threat actor tampers with the camera
sensor using a laser pointer to blind or shield it’s
perception to manipulate the drive logic to veer
the vehicle off the road.

Scenario 4 (S04) An external threat actor spoofs the RSU to ma-
nipulate the drive logic to veer the vehicle off the
road.

Scenario 5 (SO5) An innocent maintenance engineer executes a

malicious cryptocurrency or ransomware mal-
ware hiding as a firmware update for a vehicle sys-

tem.

Scenario 6 (S06) An external threat actor eavesdrops on the ROS
vehicular messaging system for information gath-
ering

Scenario 7 (SO7) An external threat actor attacker conducts a

denial-of-service of the teleoperation communi-
cation link with the AV.

Scenario 8 (SO8) An external threat actor uses a smoke gun to per-
turb the camera sensor vision and alter the driving
course of the vehicle
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Scenarios

The aim of the test scenarios is to understand the utility of cybersecurity testing in an AV
cyber-physical testbed environment to the real-world AV shuttle. The verification of the
test results does not focus on a binary, yes/no conclusion, rather, a deeper analysis of
whether the behaviour of the AV system observed during the cybersecurity testing can be
used to identify vulnerabilities of the real-world AV shuttle architecture to cyber attacks.
All of the scenarios can be viewed at the YouTube channel that was created to demonstrate
the AV cyber range: https://tinyurl. com/2xxvvkzd

SO1 - Projected Road Markings

Problem: The projector attack consists of an attacker crafting a spoof image to be pro-
jected onto the traffic environment. The aim for the attacker is to fool the autonomous
drive cognition to accept the spoofed image as genuine and alter the driving behaviour.
An example would be a project of a lane marking on the road to alter the course of the AV.
The projection attack experiments as detailed in Nassi et al. [210], used trial-and-error as a
method of testing. The attack was trialled on real-world vehicles in a private campus envi-
ronment. The testing environment was tightly controlled for safety reasons and the setup
of the test took considerable time and effort. In DuckieTown, this attack can be tested
and repeated using as many diverse methods as possible. The small, cyber-physical test-
ing environment allowed for agility and repeatability and enabled replication of a cyber
threat identified in a paper to test the validity of the results to our Av shuttle.

Whilst a spoofing attack using projection is a novel and interesting method to manipu-
late an autonomous vehicle it is unlikely or has low probability of success. The projection
must contend with natural light, which means the attack must be undertaken at night.
DuckieTown can be used for situational awareness for projections and spoofed images
in the training of teleoperation operators. They must understand that these attacks can
occur and have the ability to confuse the human operator into thinking the autonomous
cognition has failed to detect a lane marking.

Scenario: An external threat actor spoofs the road markings to manipulate the drive
logic to veer the vehicle off the road.

Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-
tonomous drive cognition makes decisions.

2. Attacker crafts a spoofed image of a lane marking for projection on the driving en-
vironment.

3. Attacker positions a drone with a projector attached to it, in proximity to the vehicle
and uses a remote control to initiate the projection attack.

Results: The spoofed projection attacks were unable to alter the driving actions of the
DuckieBot. Figure 58a shows the faint image of the phantom spoofed yellow line which
is barely visible due to the bright profile of the driving environment. Figure 58b visibly
shows the spoofed line marking, due to a larger spoofed image being projected by the
attacker. The figure 58b image, from the DuckieBot camera shows that the autonomous
drive cognition is detecting the edges and texture of the yellow lines and white boundaries
but is not detecting the spoofed projection image. This is due to the lack of edges, texture
and geometry of the spoofed projection image.

Multiple diverse attack methods were trialled, the spoofed projection images were
left projecting on the road surface for 10 minutes, the size of the images were increased,
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the definition of the images increased, projection on different sections of the floor and
different environmental light. The DuckieBot was resilient to the projected road markings
attack and the autonomous drive cognition was not manipulated.
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Figure 58: Scenario 1- Projected Road Markings Attack

S02 - Tampered Lane Markings
Problem: Although this threat seems simplistic in the experimental test bed environment,
the implications for a real-world operational vehicle are stark. An attacker can use a 3D
printer to print a tampered road patch and place it on the road markings of a highway. If
this test had occurred on an autonomous vehicle travelling at 40 mph it would have re-
sulted in physical damage to the AV. This attack shows the usefulness of the cyber-physical
AV. The cyber-physical AV enabled this attack to be experimented repeatably and we were
able to try different lane marking manipulations. This is an improvement on the methods
used by Sato et al. [249] where they used a simulation for testing and this simulation envi-
ronment wasn't able to replicate the role of the teleoperation or camera sensing. Through
testing this attack in the DuckieTown, we can see that the teleoperation operator must
maintain situational awareness of the road environment if there have been any manip-
ulations by a threat actor or environmental damage. In translating this scenario to the
real-world AV we were able to detect that the operational vehicle would be susceptible to
this same attack. From this experiment, a greater examination of the sensing and detec-
tion algorithms of the real-world vehicle was conducted and updates to the multi-sensor
fusion were made to mitigate the risk of this attack.

Scenario: An external threat actor tampers with the road markings to manipulate the
drive logic to veer the vehicle off the road

Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-
tonomous driving cognition makes decisions.

2. Attacker, using the understanding of the drive control algorithm, perturbs the road
markings in the DuckieTown environment.

Result: Perturbation of a road marking can manipulate the drive algorithm to cause
the autonomous self-driving vehicle to veer off the intended path of travel.

In the first experiment the attacker tampered with the yellow lane markers to manip-
ulate the autonomous self-driving vehicle to drive off the road. The curve road part was
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changed to a straight trajectory and the angle of the lane borders (white lines) were re-
duced to lessen the width of the road. As Figure 59b demonstrates, the change to the road
markings is demonstrable in the DuckieBot camera sensor footage, from the expected
road markings exhibited in Figure 59a. The first experiment was successful in manipulat-
ing the autonomous drive cognition of the DuckieBot, however, the DuckieBot autonomy
is programmed to firstly respect the lane boundaries. The DuckieBot followed the tam-
pered yellow line until it detected the lane boundary and then adjusted it’s travel path to
the correct route.
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(a) Normal Lane Markings (b) Manipulated Lane Marking

Figure 59: Scenario 2 - Tampered Lane Marking Attack

In the second and third the attacker extended the yellow lane markings further into
the lane boundaries. The DuckieBot still respected the boundaries and corrected the path
of travel.

In the fourth and fifth experiment the attacker removed the lane boundaries and ex-
tended the yellow lane markings, as shown in Figure 60 . The attack was successful and
the DuckieBot veered off the DuckieTown environment and was unable to recover.
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Figure 60: Extended Manipulated Lane Marking

SO5 - Firmware update compromise

Problem: Malware in a distributed system provides interesting observations, an autonomous
vehicle could lose access to a secure network and connect to a more vulnerable network
which would allow malware to propagate more extensively. In testing the findings of Weiss
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et al. [308], we were able, in DuckieTown, use real malware and observe how it propa-
gates in an AV system. We were able to clean the system and repeat the attack to observe
any differences in behaviour. In translating the results of the malware attack to the real-
world AV shuttle, the AV engineers were unaware of the risks posed in connecting wireless
networks in the transit environment. There are many applications for this range scenario
for training. Firstly, this scenario would be useful to test incident response to malware in
AVs. Secondly, it would be beneficial for the engineers to understand the risks posed by a
lack of validation of firmware updates and how malware can spread within a distributed
system.

Scenario: An innocent maintenance engineer executes a malicious cryptocurrency or
ransomware malware hiding as a firmware update for a vehicle system created by an angry
mechanic/insider.

Attack Sequence:

1. Angry Mechanic uploads malware from dark web or publically available repository.
2. Malware script is packaged as a bash script that is labelled "update".

3. Maintenance engineer initiates "update" script with intention of update AV shuttle
firmware.

Result: The "update" firmware was executed by the innocent maintenance engineer. The
update firmware contained a bash script which executed a cryptomining program. Once
infected on a host computer the malware installs several libraries and processes for it’s
operation and then tries to install zmap (net-work scanner) and ssh pass (utility for es-
tablishing SSH connections). It uses zmap, in an infinite loop,to discover then network
and find embedded devices with port 22 (SSH) open. If these are found, it connects to
the device using ssh with default passwords. It then changes the configuration settings of
the device to allow a connection to a command and control node used for cryptomining.
On the DuckieBot, the malware installed it’s libraries and zmap and ssh pass and began
a zmap scan of the network. The DuckieBot was on a private 4G network that also had
another AV connected. As these devices do not use default passwords it was unable to es-
tablish a connection to them. The zmap scans only marginally impacted the performance
of the network of the DuckieBot. The zmap scan was sending 50,000 packets to the tar-
get device, but these are only looking for open port 22. An interesting event happened
during the experiment. The 4G cellular private network lost connection during the mal-
ware execution and the DuckieBot switched over to an open wireless network connection
(controlled by us). The zmap process then started to scan the network for open embed-
ded devices. The malware attack was attempted again and this time the wireless campus
network was removed. The malware behaved in the same manner and was unsuccessful
in brute forcing the DuckieBot.

S06 - Eavesdropping of AV Shuttle operations

Problem: ROS is highly insecure. The version that the DuckieBot is running is the same
as the vehicles used by real-world AV Shuttles. There is no authentication and secure
communication of the ROS Master. The ROS Master also uses HTTP so it is vulnerable to a
number of other malicious web application attacks. The AV testing environment enabled
us to test on a real-time system to understand dynamically the information that can be
gathered from reading ROS messages and the possibilities of how this information can
be used to develop an attack on the vehicle platform. In translation of this to our real-
world AV, the mitigating action is to filter the ROS port with a firewall rule. However, if the
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attacker gains access to the internal network of the AV system there is little possibility to
prevent this attack other than to upgrade to the latest version of ROS, ROS2, which is still
under development.

Scenario: An external threat actor eavesdrops on the ROS vehicular messaging system for
information gathering.

Attack Sequence: For this attack, the attacker needs to be on the same network as the
vehicle.

1. Attacker scans the network and identifies the vehicle
2. Attacker eavesdrops on the ROS communication by spoofing the ROS Master.

Result: The attacker was able to spoof the ROS Master easily and read the ROS mes-
sages which are used for AV operations. The attacker was able to generate a ROS graph
that showed all of the communication ROS messages (picture not shown/included for
anonymity reasons). From this, the attacker could develop a diverse range of attacks such
as injection of ROS commands to manipulate a ROS node and replay attacks.

S07 - DDoS Teleoperation Network
Problem: The DDoS attack is an important scenario to replicate in a cyber range due to the
loss of control of the teleoperation operator to safely stop the vehicle. This scenario was
interesting for the real-world AV shuttle teleoperation staff. When the DDoS attack was
conducted the teleoperation console froze and only when the network was re-established
did they see that the AV had crashed. This scenario is important for situational awareness
training.

Scenario: An external threat actor conducts a denial of service of the short-range wire-
less network of the autonomous self-driving vehicle.
Attack Sequence:

1. Attacker scans wireless and cellular networks of the vehicle using scanning software
such as nmap or airmagnet.

2. Attacker finds the WiFi access point connecting to the human operator console and
autonomous self-driving vehicle.

3. Attacker De-authenticates the devices connected to the WiFi access point.

Result: A scan of all wireless networks was conducted on the attackers PC. The attacker
used a wireless scanning device that can be considered a malicious access point that acts
as a man-in-the-middle between the wireless network and the client device. It can scan,
capture traffic and execute a number of attacks such as capturing passwords of insecure
network protocols.

The deauthentication attack was attempted twice. Both attempts were successful.
Figure 61a shows the teleoperation console after it loses access to the network connec-
tion with the DuckieBot and the DuckieBot accelerates off the road. Figure 61b shows
the DuckieBot impacting the wall when it loses connectivity. The DuckieBot continues to
accelerate on hitting the wall.

S08 - Smoke machine sensor perturbation

Problem: The expert from the autonomous robotics for logistics organisation requested
this test case as they wanted to see environmental impacts on the cyber-physical system
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Figure 61: Scenario 7 - DDoS Teleoperation Network

and how they can relate to their real-world autonomous systems. The test case demon-
strated the utility of cyber-physical AV test bed in being able to simulate diverse environ-
ment conditions. Based on the results of the test case it may be possible to include safety
testing in the scope of the test bed.

Scenario: An external threat actor uses a smoke machine to perturb the camera sensor
vision and alter the driving course of the vehicle.
Attack Sequence:

1. A 400w smoke machine is placed next to the environment. The smoke machine is
filled with special liquid and then activated using the command controller. Smoke
envelops the driving environment.

Result: The experiments were conducted under three different lighting conditions:
controlled lights, natural light, controlled dark lighting. In all lighting conditions the smoke
was able to perturb the camera sensor to alter the driving path of the DuckieBot to crash
out of the road environment.

The initial experimental tests, which were unsuccessful in altering the DuckieBot path,
showed that the most important variables were the denseness of the smoke and the abil-
ity of the smoke to linger in the air to envelop the camera. The first three smoke experi-
mental tests demonstrated the autonomous driving cognition being lost due to the smoke
hazard, however, as the smoke stream was momentary, the detection of the lane mark-
ings were recovered in time to navigate accurately. Figure 62a shows the lane detection
functioning, and Figure62b shows the smoke perturbing the lane detection of the lane
markings.

5.1.5 Discussion

The MIT DuckieTown cyber-physical AV shuttle test bed demonstrated it’s use in validat-
ing the viability of proof-of-concept attacks such as that of the projector attack and the
spoofed lane keeping assistance. The test bed enabled agility and repeatably of testing
which facilitated greater understanding of the complexity of implementation of cyber at-
tacks on AVs as well as the challenges for situational awareness for AV operators. A clear
representation is the projector attack which demonstrated that it was very difficult for the
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Figure 62: Scenario 8 - Smoke machine sensor perturbation

adversary to accomplish due to the lighting, projection and camera angle requirements.
The WiFi test case provided insights into possibilities for interoperability and human oper-
ator research. The vulnerabilities of the network interface, exploited in the cybersecurity
test case, impacted the vehicle behaviour and human control.

The results of the testing were provided to the iseAuto, real-world AV Shuttle program.
Based on the results analysis, the AV shuttle operator identified a number of vulnerabili-
ties in the AV shuttle architecture. This resulted in the updating of the network package to
stop the vehicle in the event of network unavailability or outage. Furthermore, the results
helped to educate the teleoperation AV shuttle operators about some of the scenarios
they could encounter from an adversarial actor in the driving environment and based on
this it assisted in initiating a discussion on what decisions the operator would make when
faced with a scenario such as the projection attack or environmental perturbations.

The feedback from the iseAuto concluded that the cyber-physical test bed offered a
platform for which they could test corner and edge cases that would be out-of-scope of
the real-world vehicle due to cost and risk impacts. It helped the iseAuto AV shuttle pro-
gram in understanding how their AV Shuttle could be impacted by cyber attacks and with
prioritising which attacks were most likely and require further testing on the real AV shut-
tle.

5.2 ADSecLang - A Domain Specific Language for Cybersecurity Testing of
Autonomous Vehicles

Vulnerability testing of AD to cyber attacks is a burgeoning field of research. Initial con-
tributions to this field have focused on novel vulnerability discovery utilising penetration
testing methods [92] [33] and fuzzing [154, 298]. However, there exists a gap between
this novel, experimental work and the practical implementation of testing to validate the
operational readiness of real-world AD systems. Real-world, operational AV testing re-
quires a more rigid approach centered on a structured testing methodology aligned to
composite vehicle development and test validation processes. For safety validation test-
ing, domain-specific languages for safety scenario generation, such as SCENIC [81] and
ASAM OpenSCENARIO [45], provide a systematic expression that enables a common tax-
onomy, traceability of testing processes and repeatability and automation of testing for
scalability. Yet, there exists a sparsity of research on the development of a domain-specific
language for cybersecurity testing of AD systems. One of the primary benefits of the de-
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Figure 63: ADSecLang: scenario-based abstraction view.

velopment of a domain-specific language for cybersecurity is that it can simplify the task
of writing scenarios for security by providing a concise syntax. In addition, the lack of a
domain-specific taxonomy for cybersecurity testing of AD systems further challenges the
development and evaluation of AD security testing tools, processes, and methods.

The aim of exploring this problem is to develop such a language, which we call ADSe-
cLang. ADSeclang acts as an intermediary layer in the testing process, which constructs
scenarios for cybersecurity through the translation of functional threat descriptions to
concrete test cases. Figure 63 depicts the scenario-based abstraction of ADSecLang, which
represents the incremental and iterative definition of the threat scenario. First, the ab-
stract description of the threat scenario originates from adversarial analysis, which can
leverage sources such as threat libraries, system data, and other knowledge-base repos-
itories. Second, a logical, syntactical expression of the threat scenario is created using a
taxonomy. Finally, the technical description of the threat scenario is integrated within the
AD simulation testing platform. ADSecLang aims to contribute greater intuition through
readable, concise syntax for the development of adversarial agents in simulation testing
that would otherwise require complex expressions and constraints. ADSecLang requires
the tester to consider all elements of the threat model from attacker tools to desired
attack outcomes at both an abstract and parameterised level of abstraction. To demon-
strate the utility of ADSecLang, we initially focus on semantic Al security and we evaluate
the language to support two use-case scenarios of a camera manipulation attack.

5.2.1 ADSecLang: The Proposed Solution

This section introduces the attack taxonomy used to support the development of ADSe-
cLang and presents the cybersecurity testing framework where ADSecLang can be adopted.

Attack Taxonomy

Attack Tuple |
e

| Action { Impact |
I Method ‘ ‘ Preconditions ‘ I Influenced Asset ] [ Influence ]
T T T T
- Spoofing - AD SUT Condtitons - Sensors - Raw Data
- Tampering - System State -ECUs - Luminance
- Repudiation - Vulnerabilities - - Velocity
- Information Disclosure | - Attackers Conditions - Acceleration
- DoS - Tool - Direction

- Elevation of Privilege - Knowledge - Position

Figure 64: Attack Taxonomy - Detailed Description.

The attack taxonomy of ADSecLang (as shown in Figure 64) categorizes cyber attacks
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into two domains: Action and Impact.

Action

represents the execution of an attack method. The success of an action depends on the
fulfillment of one or more preconditions. As a result, we subdivide the Action domain
into two sub-domains: Method and Preconditions. The Method is defined as the threat
technique. This threat description can be derived from a functional description such as
STRIDE, Attack Trees, or a textual interpretation. Preconditions are a set of conditions
that must be met to execute an attack. These preconditions must be inherent attributes
that already exist and are not generated by the execution of the attack. The preconditions
can be further divided into two categories: conditions on the AD System-Under-Test (SUT)
and conditions on the attacker.

e AD SUT Conditions are categorized into requirements for the state of the tested
system and vulnerabilities within the system. System state conditions refer to the
requirement that the target system must be in a specific state (such as a particu-
lar version of an operating system, system software/application, or a specific hard-
ware/software state, such as firmware update status) for the attack to be executed.
System vulnerabilities refer to exploitable weaknesses in the system’s design and
operation.

o Attacker Conditions can be further segmented into three types: attack tools, at-
tacker knowledge (capabilities, skills), and the level of privileges that an attacker can
obtain. The tools and knowledge of the attacker help to profile the type of threat
actor capable of conducting the attack. The level of privileges refers to the permis-
sions needed to access or manipulate target system assets. An example would be
permission to run processes on the target or existing access to the target asset to
manipulate data.

Some attack methods can only be executed successfully when multiple preconditions
are met simultaneously. Such conditions will be grouped within braces {}. For example, the
precondition [{A, B}, C] can be interpreted as ‘A and B must be met simultaneously,
or C must be met’. To encompass the requirement for multiple preconditions, we define
an Action Group:

1 action: [method, preconditions]

2 method: [category, description]

3 preconditions: [precondl, precond2, ...]
precondl: [category, description]
precond2: [category, description]

Impact

Executing an Action will introduce one or more Impacts into the system. In other stud-
ies [43], these impacts are also denoted as consequence and effect. Although Impacts
represent the outcomes and effects of attacks, they can also serve as preconditions for
subsequent attacks. Consequently, some researchers [164] have alternatively referred to
them as post-conditions. In our taxonomy, the utilization of Impact aims to identify the
direct consequences of an Action, which may additionally serve as preconditions for fur-
ther attacks. The term ’'goal’ in the attack model represents the ultimate impact. The
dimension of Impact can be subdivided into two sub-dimensions, namely Influenced As-
sets and Influence, which serve to identify the assets directly affected by the Action and
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Figure 65: ADSecLang Cybersecurity Testing Workflow - Camera Attack.

ascertain the direct impact incurred on these assets. Influenced Assets can be character-
ized by their respective category and name. For example, the sensor category can include
cameras, radars, LIDAR, GPS, or any other AD sensor. The electronic control unit (ECU) cat-
egory comprises brake control ECUs, engine control ECUs, tire pressure monitoring ECUs,
or any other vehicular ECU. Influence can be specified as its Parameter and Value, denot-
ing the specific parameter influenced by the attack and the corresponding altered value,
respectively. For instance, if we aim to adjust the brightness of an image captured by
a camera, we should specify the parameter as luminance and set its value to 300% (in-
dicating that the brightness has been increased to 300% of the original brightness). To
achieve the scalability of ADSecLang, users can add new parameters and a value range in
the property configuration file. The Impact Group is defined as follows:

1 impact: [influenced_asset, influence]
2 influenced_asset: [category, name]
3 influence: [parameter, valuel

5.2.2 Semantics of ADSecLang

The safety scenario domain-specific languages are based on scenario abstraction method-
ologies such as the Pegasus method [45], which segments three levels of abstraction of
the scenario: 1) abstract, 2) logistic, and 3) concrete. For example, an abstract scenario
could be described as: 'A malicious actor motivated to cause a safety violation using a
laser beam device targeted at a car’. The logical scenario might be: 'A malicious actor us-
ing a laser beam device projecting a luminance of approximately 100 to 300% with a pulse
width of O to 1. Finally, the concrete scenario would specify: 'A malicious actor using a
laser beam device projecting 300% luminance with a pulse width of 1. Within ADSecLang,
the abstract describes the cyber threat scenario according to local parameters. The logical
cyber threat scenario extends this description by adding parameter value ranges. Finally,
the concrete scenario description contains the set parameter values, which will be utilized
as the scenario implementation within the AD simulation testing platform. ADSeclLang is
designed as an extension of the safety scenario languages [45,81], using the same abstrac-
tion method, language semantics and syntax. ADSecLang provides an extension to these
areas for cybersecurity.

Compilation of ADSecLang
Compilation of ADSecLang involves three configuration files. Each file contains various
user-defined parameters:

e Environment Configuration File: This file provides adjustable parameters for scene

generation, including town, weather, and traffic density. It also allows users to de-
fine constraints on these parameters for scene sampling.
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e \ehicle Configuration File: This file allows the user to define the parameters of the
autonomous vehicle; these include the sensors required, the location of the sensors
in the vehicle, the type of sensors, the data to be recorded, and the frequency of
recording.

e Attack Description File: This file is formatted in the YAML syntax and allows users to
define the attack model.

The first two configuration files are relatively simple: the Environment Configuration
File and the Vehicle Configuration File. The environment and vehicle configurations stored
in their respective configuration files are read as parameters for generating the driving
simulation world and transferred to the world generator. The Attack Description File is a
more complicated design which has two functions:

e The attack description file is utilized to extract the parameters, which are then trans-
lated into concrete code implementation for data processing based on the corre-
sponding attack parameters.

e It is also responsible for connecting the simulation environment, attack code, and
autonomous driving system. The attack description file defines the input and output
interfaces of the attack code. The input interface connects real-time data captured
by sensors in the rendering engine in a simulation environment, such as images
captured by camera sensors or status information of ECUs. The output interface
sends malicious data generated by attacks to the target AD solution.

Cybersecurity Testing Framework

Architecture

The proposed cybersecurity testing framework has diverse modules for environmental,
vehicle, and attack configuration, simulation test, and result evaluation (Figure 65). The
functions and roles of these modules are as follows:

e Environment and Vehicle Interpreter: Reads the environment and vehicle configura-
tion stored in their respective configuration files as a parameter for generating the
world.

e Attack Model Interpreter: We read the attack description file as attack parameters.
We have defined input and output interfaces for the attack model. The input in-
terface obtains images captured by sensors in the real-time rendering engine and
completes the data processing corresponding to the attack parameters read by the
interpreter in the specific implementation code of the interface. The specific imple-
mentation of the output interface is to send the output of the attack model to the
user’s chosen autonomous driving solution.

e World Generator: Initialise the world based on the environment and entity parame-
ters read by the environment interpreter, including object properties and attribute
distribution functions. The world generator randomly samples from the distribu-
tion function whenever it is called. By reading the sampling results of the world
initializer, a specific world is generated in the real-time rendering engine according
to certain steps. The generated world contains at least one vehicle and one camera
sensor and exposes the calling interfaces of the vehicle and sensors to the attack
model.
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e Scenario generation and result evaluation: We use a CARLA plugin called CARLA
Leaderboard [39] to provide us with scenario generation and evaluation of driving
violations. Violation testing includes route completion testing, collision testing, red
light running testing, stop running testing, lane crossing testing, proxy blocking test-
ing, and timeout testing.

Cybersecurity Testing Workflow

The overall workflow of the system is shown in Figure 65. The attack target system illus-
trated here is an end-to-end autonomous driving system based on a monocular camera.
The target asset in the vehicle of the attack is the monocular front RGB camera.

The workflow is initiated by storing the predefined environment configuration, object
properties, and attack description in configuration files. Execution of the World Generator
uses the Environment and Vehicle Interpreter to read the environment information. Sub-
sequently, each time the scenario is generated, sampling is carried out according to the
predetermined process, and the sampling results are converted into the parameterized
form we designed and then handed over to the World Generator. The World Genera-
tor first initializes the basic configuration of the real-time rendering engine and creates a
specific world in the it, step by step, based on the obtained parameters. Once the world
is created, the Scenario Generator starts generating test scenarios based on the preset
parameters. Subsequently, the Attack Model Interpreter retrieves the attack information
from the Attack Description File and injects the manipulated data to the end-to-end AD
system based on the parameters specified by the attack model. Finally, the Results Eval-
uation checks conformity of the AV to safety metrics, as aforementioned, as part of the
CARLA Leaderboard [39]. Through conducting multiple iterations of the testing workflow
it is possible to evaluate the effectiveness of the attack model.

5.2.3 Evaluation Case Studies

This section examines the use of ADSecLang for supporting the security testing of AV sys-
tems. It includes a description of the experimental setup (Sec. 5.2.3) and an analysis of re-
sults derived from two attack scenarios (Sec. 5.2.3 and 5.2.3). The goal of the experiments
is to assess the ability of ADSecLang to generate attack test cases capable of identifying
vulnerabilities in AD systems.

Experimental Setup

The experiments were run on a desktop computer with 12th Gen Intel(R) Core(TM) i3-
12100F 4-Core Processor, NVIDIA GeForce GTX 1070Ti GPU, and 16 GB RAM. The use-case
scenario testing is conducted on the simulator CARLA 0.9.10. The AD solution tested in
the following experiments is a trajectory-guided end-to-end AD solution [315]. This AD
solution achieves a new state-of-the-art performance on the CARLA AD Leaderboard [39],
in which they rank first in terms of the Driving Score and Infraction Penalty using only a
single camera as input. The image captured by the camera has a resolution of 900x256
pixels, and the field of view is maximized at 100 degree.

Attack Case | - Strong Light Exposure Attack

Attack Design

State-of-the-art camera attacks [324] have shown that strong white LED light directed at
the camera sensor will result in significantly higher hue values and cause the entire image
to be completely white. This results in the camera being unable to capture any visual in-
formation. This attack is based on the fact that CMOS/CCD sensors can be interfered with
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by malicious optical inputs and will produce unrecognizable images. The broken image
will further affect the victim AV’s decision control. As a result, it will cause uncertainties,
which may lead the victim’s AV to deviate or emergency brake, both of which can lead to
a collision and/or other safety violations. Common methods of attacking camera devices
are lasers or LEDs. The Strong Light Exposure Attack interferes with the camera’s auto-
matic exposure control. Under laser irradiation, the surface temperature will rise rapidly
due to the non-uniform temperature field. Avalanche breakdown of semiconductor ma-
terials will cause irreversible damage to optoelectronic devices. Whilst we cannot achieve
the physical effects of a targeted light on the camera sensor in a virtual simulator, we can
modify the data to simulate the profile of the cyber-physical attack.

ADSecLang Attack Configuration
The concrete scenario using the ADSecLang attack interpreter file is provided below.

1 attack_name: strong light exposure attack
> attack_target: monocular camera-based end-to-end autonomous
driving system
3 attack_goal: safety hazard
action: [method, preconditions]
5 method: [tampering, modifying the data captured in
the asset]

6 preconditions: [{precondl AND precond2 AND
precond3}]
7 precondl: [attacker’s knowledge, the attacker

knows the basic information about the cameras on
the victim’s autonomous driving vehicle]

8 precond2: [attack tool, strong LED light]

9 precond3: [attacker’s capability, attackers can
shine LED light at AV camera sensor]

10 impact: [influenced_asset, influencel

m influenced_asset: [sensor, rgb_camera_front]

12 influence: [luminance, 300%]

The attack description YAML file is translated using the attack interpreter within the
simulation platform.

1 if (config[’attack name’]=="Strong light exposure attack"

):

2 percentage = config[’impact’][’influence’][’luminance’]

3 file.write(? data = cv2.cvtColor (data, cv2.
COLOR_RGB2YUV)\n’)

4 file.write(’ h = data.shape[0]\n’)

3 file.write(’ w = data.shape[1]\n’)

6 file.write(’ for i in range(h):\n?)

7 file.write(’ for j in range(w):\n’)

8 file.write(’ y = datali][jl1[0]*’+str(float(
percentage[:-1]) / 100.0)+’\n’)

9 file.write(’ if y > 255:\n’)

10 file.write(’ y = 255\n’)

i file.write(’ datal[i][j]1[0] = int(y)\n?’)

12 file.write(? data = cv2.cvtColor (data, cv2.

COLOR_YUV2RGB)\n’)
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Figure 66: Camera view of attack case 1: before (a) and after (b) the implementation of the Strong
Light Exposure Attack.

Table 44: Evaluation result of attack case 1.

Criterion Result Value
RouteCompletionTest FAILURE 8.06 %
OutsideRoutelLanesTest FAILURE 11.79 %
CollisionTest SUCCESS 0Otimes
RunningRedLightTest SUCCESS 1 times
RunningStopTest SUCCESS Otimes
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout SUCCESS

Results

From the comparison of Figure 66a and Figure 66b, we can see that the Strong Light Ex-
posure Attack was successfully implemented. On initiation of the malicious change to the
luminance, the monocular camera perception fails to identify the lane lines in the field of
view. As a result, the victim AV veered off the lane onto the sidewalk, entering the off-
road section of the driving environment. It lost perception and traversed the oncoming
lane after being subjected to the Strong Light Exposure Attack. This immediately triggered
the failure of the Outside Route Test and the Route Completion Test, terminating the sim-
ulation, as presented in Table 44.

Attack Case Il - Laser Beam
Attack Design

Adversarial machine learning (ML), as a form of cyber attack, involves designing a targeted
numerical vector to make ML models misjudge and cause system failures and crashes.
In this attack test case, the laser construction process is determined by several local-
parameters: intercept, injection Angle, wavelength, and laser width. This laser attack is
executed by randomly selecting a parameter and generating adversarial samples. If the
confidence level of the classification is reduced, the current parameter settings are re-
tained, which is often similar to the greedy strategy. After adding a laser beam projection
to an image, the image pixels change, which in turn affected the results of the classifier.
This adversarial attack, when applied to AD, can target the recognition of traffic lights,
speed limit signs, and stop signs. Shining a laser on a stop sign can cause the AD system
to fail to identify it correctly, leading to a violation of the required safety condition to stop
the vehicle. Also, shining a laser on a traffic light can also create color spoofing attacks. Ex-
perimentation with laser beam attacks has shown that if the laser covers the entire traffic
light, regardless of its color, the accuracy of detecting red or green lights is hardly affected.
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However, if the laser only shines on one traffic light, there will be a significant decrease
in the recognition of the traffic light [71]. However, in our testing, we found that if we use
this greedy strategy to search for the optimal parameters for 4000 cycles, the generation
of adversarial samples is very slow, and it is impossible to inject adversarial samples into
the AD test in real time. Therefore, we generate a laser that can make target recognition
ineffective and recognise it as another object, by inputting images captured by the cam-
era into an adversarial sample generation program. We then inject this laser in real-time
in the AD test scenario. As in the previous case, we assume that the attacker can find
appropriate attack scenarios and not be detected by others in advance. For example, the
attacker can deploy multiple infrared light sources next to the road where the attacker’s
vehicle must pass or on a drone.

ADSecLang Configuration
The cyber threat scenario description using the ADSecLang is provided below.

1 attack_name: laser beam attack
attack_target: monocular camera-based end-to-end autonomous
driving system
3 attack_goal: safety hazard
4 action: [method, preconditions]

5 method: [spoofing, shooting laser on the cameral

6 preconditions: [{precondl, precond2, precond3}]

7 precondl: [attack tool, laser pointer]

8 precond2: [attacker’s knowledge, machine learning

adversarial sample generation technology]

9 precond3: [attacker’s capability, attackers can aim
lasers at camera sensors on the roadside]

10 impact: [influenced asset, influencel

1 influenced_asset: [sensor, rgb_camera_front]

2 influence: [raw_data, spoofed datal

The attack description YAML file is translated using the attack interpreter within the
simulation platform.

1 if (config[’attack name’]=="Laser beam attack"):

> file.write(’ laser_pattern = cv2.imread ("
laser_for_carriage.png")\n’)

s file.write(’ if laser_pattern is None:\n’)

file.write(’ print ("read image fail!!")\n’)

s file.write(’ return O\n’)

¢ file.write(’ laser_pattern = cv2.cvtColor(laser_pattern,
cv2.COLOR_BGR2RGB)\n’)

;7 file.write(’ data = data.astype(np.float32)\n’)

¢ file.write(’ laser_pattern = laser_pattern.astype(np.
float32)\n’)

9 file.write(’ data = cv2.addWeighted(data, 1.0 ,
laser_pattern, 1.0 , 0)\n’)

o file.write(’ data = np.clip(data, 0.0, 255.0).astype ("

uint8")\n?)

Results
From the comparison of Figure 67, we can see that the laser beam attack was success-
fully implemented in the AD simulation. The attack achieved its objective of inducing AV
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(a) Before (b) Generated Laser (c) After

Figure 67: Camera view of test case 2: (a) before the attack, (b) the generated laser beam, and (c)
after applying the attack.

Table 45: Evaluation result of attack case 2.

Criterion Result Value
RouteCompletionTest FAILURE 71.3%
OutsideRouteLanesTest SUCCESS 0%
CollisionTest SUCCESS Otimes
RunningRedLightTest FAILURE 1 times
RunningStopTest SUCCESS Otimes
InRouteTest SUCCESS
AgentBlockedTest SUCCESS

Timeout FAILURE

behaviour to violate a safety condition. As shown in Table 45, the vehicle completed ap-
prox. 70% of the route (Route Completion Test) and violated a safety condition by driving
through a red light (Running Red Light Test). The result of the laser attack demonstrated
that the laser beam was able to perturb the AD solutions perception of the traffic light,
thus causing the victim AV to run a red light.

Future work for the development of ADSecLang will be to extend the language to en-
compass more diverse semantic cybersecurity scenarios and evaluate the utility of the lan-
guage to support system-level attack scenarios (Buffer Overflow, Denial-of-Service, Net-
work Attacks, etc.). We further aim to improve the results evaluation module. Metrics for
AD testing predominantly focus on safety impacts, however, we would consider it neces-
sary to define metrics that assist in directly evaluating the security of the system under
test. Whilst this has proven a difficult challenge, the contemporaneous work on bench-
marking for machine learning security and cybersecurity assurance levels (CALs) for au-
tomotive systems as conducted by the autonomous vehicle cybersecurity standardisation
bodies provides some guidance how to achieve this. We further see the importance of
integrating the language within a common AD cybersecurity testing evaluation platform,
such as Simutack [79], for an open-source release.

5.2.4 Relation to Existing Work

ADSecLang distinguishes itself from the state-of-the-art as it is the only domain-specific
language, to our knowledge, for AD cybersecurity testing and it is designed to integrate
within a software simulation testing environment for AD systems. Furthermore, the lan-
guage has been designed to be agnostic to AD solutions or sensor technology and adapt-
able to accommodate diverse threat scenarios. SCENIC has been utilized to develop driv-
ing scenarios for cybersecurity testing. Salgado et al. [247] used the abstract and concrete
scenario composition of SCENIC to create a scenario of a malicious leading vehicle in a con-
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voy to test the robustness of cruise control and collision avoidance. This scenario demon-
strates the effect if an attack had already succeeded, whereas the aim of ADSecLang is to
incorporate the technical method of attack to assess the performance.

For more conventional threat modeling, VehicleLang [145] and ALLIA (Agnostic Domain
Specific Language for Implementing Attacks in an Automotive Use Case) [312] are the two
most prominent studies for legacy automotive architectures. Both of these solutions are
focused on modeling cyber threats to connected vehicular systems and focus their case
study evaluations on vehicular communication protocols and connected components. Ve-
hicleLang provides a conceptual contribution, which is the generation of text-based test
cases whose feasibility can be validated by expert opinion. ALLIA extends this work by pro-
viding a technical implementation, which transforms the text-based test case generation
into a technical test case implementation.

5.3 SenseFuzz

Fuzz testing of AD software aims to use unsanitised and invalid input to trigger exceptional
or abnormal behavior of the driving logic. AD fuzzers are designed in a disparate manner,
seeding input from either the sensor data, vehicle dynamics data, scenario and simulator
configuration. EnFuzz [48] demonstrated that a collective framework could ensemble di-
verse fuzzers exhibiting different fuzzing techniques to obtain deeper penetration of one
specific type of target, in this instance, application software. As the architecture of AD
software relies on a mixture of different sensor technologies and data sources, the inno-
vation required of ensemble fuzzing for AD software is that the framework must be exten-
sible to allow different fuzzers for different targets and target groups. Our idea with this
research is to explore such a concept as an ensemble fuzzing framework for AD software
and present our ideas on how this could be architected. To this end, we present FuzzSense
(Figure 68), a conceptual architecture based on a modular, black-box, mutation-based
fuzzing framework.

The architecture of FuzzSense is envisioned to integrate within the AD software simu-
lation environment (CARLA, AWSIM, Apollo), allowing diverse fuzzing tools as plug-ins to
generate test cases, collect output data in a seed corpus, and mutate new inputs. Our mo-
tivation in presenting this work is to provoke discussion within the community on how AD
systems are fuzzed, establish community efforts for fuzzing and to gather initial feedback
on FuzzSense and understand potential improvements on the foundations of the design of
the framework. This work is not a benchmarking study or a statistical evaluation of fuzzing
performance, as the motivation is purely to understand how the design of an overarching
fuzzing framework for AD software may be achieved. Therefore, to clearly state the aims
of this research, we have focused on the development of the initial concept of the AD
ensemble fuzzing framework, developed source code, and conducted an initial test case.
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5.3.1 FuzzSense

FuzzSense involves the following key components: the fuzzing broker, the fuzzing envi-
ronment, and the repository. The interactions of these key components with the ADS and
simulator are displayed in Figure 69.

Fuzzing Broker The Fuzzing Broker is the central part of the FuzzSense framework,
acting as an intermediary layer, facilitating communication between the simulator, ADS,
and fuzzing environment. The fuzzing broker has full control over the exchanged sensor
data and listens to data, such as steering commands.

While the Fuzzing broker was described as an intermediary for the whole framework,
it additionally functions as a controller, initiating and terminating the operations in the
connected Simulator and ADS. Depending on the used Fuzzers, Simulator, and ADS, the
Fuzzing Broker transforms the sensor data to the required formats of the endpoints.

Fuzzing Environment The Fuzzing Environment is the collection of the components
responsible for fuzzing and creating scenarios, manipulating the sensor data, interpreting
the results, and mutating parameters. This continues the idea of the modular architec-
ture of the fuzzing framework. It also allows for the decomposition of other integrated
modules, as the Mutator is not required to be a part of the fuzzers.

The Fuzzing Environment contains the following modules: orchestrator, mutator, sce-
nario fuzzer, sensor fuzzer/s, and oracle and evaluation.

5.3.1.1 Orchestrator: The Fuzzing Environment is a composition of diverse components
with unique tasks. The role of the orchestrator is to provide a central management func-
tion to ensemble these diverse components to achieve the task of fuzzing the selected
targets. The idea of a fuzzing orchestrator performing a central management role was
inspired by EnFuzz [48], which uses a similar design to integrate and manage diverse
fuzzing modules using diverse techniques. The Orchestrator possesses the intelligence
in the Fuzzing environment. This is reached by always knowing the current status of the
fuzzing campaign and its iterations, therefore, it can start fuzzing iterations, telling each
component (Fuzzers, Oracle, Mutators, Fuzzing Broker) when they should perform which
of their tasks, monitor the components to understand their status to be able to efficiently

149



_y ADS

Data not ’ Manipulated I

ADS
relevant for fuzzing Sensor
v Outcome
: Data
- ’ S Data=> ’
5 ——Sensor Data Fuzzing e 5 e
Sltulaion <—Scenario Setup—  Broker Visualization Data=¥ Visualization
5
Scenario Fuzzing Environment
Setup
Monitor
Scenaro | | S “Data
tz2e] ned Manipulated
Y. % ADS Sensor
3 Outcome Data
Monitor 3
and . ¥
Manage "4
Orchestrator .. )
Monitor
Write/Read kA . Monitor '--.M and Sensor Fuzzers
Data Monitor and ... \anage .....
and Manage g [
Write/Read ~Manage Oracle Py
Data k and_
Mutator Evaluation
LIDAR
Wr\te/Read/ Write/Read// Fuzzer

Write/Read

‘A/Em/ Data Data
ey /

Figure 69: FuzzSense: High-level Architecture of Fuzzing Framework

start the next step with the required components. This requires the Orchestrator to use
adapters to communicate to the APIs of the different fuzzing modules. As such, no inter-
communication is required for different fuzzing modules; hence, this communication is
managed centrally by the Orchestrator. The benefit of central management is that ex-
pected new fuzzing modules can be integrated in less time and with less complexity. Fur-
ther, it even allows decoupling the mutation of parameters and the fuzzers where they
are processed.

5.3.1.2 Mutator: The Mutator creates the parameters utilized by the scenario and sen-
sor fuzzing modules. In the first round/s the Mutator is providing the fuzzers with the
seeds but does no actual mutation on them. In this architecture, the Mutator is extracted
from the scenario and sensor fuzzers. The aim is to allow the combination of different mu-
tation algorithms and fuzzers. Furthermore, it allows a closer synchronization between
the mutation of parameters when using multiple fuzzers. For the proof of concept, the
mutation is a brute-force/grid search iteration through parameters, where limits are ap-
plied and derived from logical boundaries like the perception distance of the sensors.

5.3.1.3 Scenario Fuzzer: Scenario fuzzers use parameters of the driving scenario as the
seed pool. These can include weather, pedestrians, and other vehicles. Mutations can be
built from the mission, weather, and scenario actors. Prominent scenario fuzzers include
only the distinct module creating the scenarios based on parameters given by the Mutator,
which is called the Scenario Fuzzer in the FuzzSense architecture.
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5.3.1.4 Sensor Data Fuzzers: Autonomous vehicles can use a range of sensor technolo-
gies and different hardware and software configurations and can be positioned at differ-
ent locations on the vehicle. In general, the sensor data of any of those sensors could
be fuzzed. The idea motivating our ensemble fuzzing design is that a dedicated sensor
data fuzzing plug-in is responsible for each sensor data stream that should be fuzzed. The
parameters provided by the Mutator can either be synchronized between several or be
mutated individually.

5.3.1.5 Oracle and Evaluation: The Oracle and the Evaluation are giving further intelli-
gence to the Fuzzing Environment. The Oracle and Evaluation component is responsible
for creating ground truth, known commonly as the Golden Run. Afterward, every fuzzing
iteration must be checked for possible findings, and thus, the Mutator must be provided
with an evaluation of the parameters. This framework does not suggest certain conditions
once a finding is detected. The idea is to set this based on the subject of testing. For in-
stance, it could be limited to deviations of the trajectory of the Golden Run or only focus
on temporal aspects (speed of the vehicle, etc.) introduced by the fuzzing.

Repository In this architecture the repository enables the Fuzzing Environment to
write logs, store data and dependent on the communication allow the components to
exchange data. When the modules exchange data using the repository, it allows a decou-
pling and a simpler integration of new components, especially, because the orchestrator
is handling the management centrally and thus modules do not need custom integrations
with all other required in the Fuzzing Environment.

5.3.2 Sensor Data Fuzzing
AD software relies on sensing data for situational awareness and to inform navigation and
motion-planning activities. FuzzSense is designed to apply manipulations to the sensor
data stream before it reaches the downstream AD software. The initial version of the
fuzzer manipulates pixels in the camera feed or points in the LIDAR feed. The fuzzer is
triggered during a scenario simulation. For each future scenario, the fuzzing test case is
mutated based on evaluation of the feedback. The delivery of the manipulation of the
sensor data is achieved through the application of changing or adding data in the data
stream based on the coordinates given by the fuzzing mask.

Fuzzing Mask

The fuzzing mask is created based on parameters given by the sensors and vehicle that
are to be tested. For the camera stream, which can be represented as a matrix with def-
initions of each pixel’s coordinates, color, and sometimes the alpha channel, the fuzzing
mask provides a collection of coordinates for pixels that are changed in the camera stream.
For LiDAR, the same concept is used to add points to the point cloud, and only the dis-
tance is added. Our goal is to achieve several advantages with this approach. First, the
same mutation strategy for most parameters can be used. Second, the computation of
the next data points to manipulate in the LiDAR data stream is independent of the actual
point cloud data. This could potentially increase the performance. Third, by limiting the
space of possible manipulations in the search space, possible mutations of the parame-
ters can be drastically reduced to the areas of interest (e.g., in front of the vehicle). Within
a point cloud, points can be hidden behind others from the sensors perspective. The con-
cept with the fuzzing mask prevents such cases so that no added points are shadowed by
other added points (see Figure 70).

The fuzzing mask .% (Algorithm 2) is defined as a set of coordinates where the sensor
data is manipulated .% = {(x;,y;) | x; € [0,W],y; € [0,H]}. For the camera sensor, the
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Figure 70: Fuzzing Mask for LiDAR.

location of the pixel, and for the LiDAR sensor corresponds to the coordinates of a per-
pendicular plane in the pointcloud where each point is inserted. The third dimension for
LiDAR is provided by the distance parameter between the LiDAR sensor and the plane.
The coordinates are relative to width, height, and, for 3D data, the center of the plane.
For the camera stream, they are taken from the metadata of the sensor stream, and for
LiDAR, they are preset and could potentially be mutated.

Algorithm 2 Generate Fuzzing Mask .

Require: rr, 07, X, Y, W, H
0: (0y,0y) - (W 0y, H )
s rp<WxHxry
)TZJV(rf,Gx,X,W)
y= JV(rf~, Gy,Y,H)
fori<Otory—1do

F + add(x[i],yli])
end for
: return .% =0

PPQQQQeQ

Let r; represent the fuzzing change ratio, defined as ry = WAQH. Where: N, is the
number of changed data points, W and H are the width and height of the fuzzing mask
matrix in discrete steps (e.g. pixels for the camera stream). The result is expressed as a
percentage. Then, let 67 represent the standard deviation of the manipulated data points,
computed as the deviation relative to width W and height H. Together, X and Y are the
coordinates of the center of the fuzzing mask and the means of the standard-deviation.
X and y are the vectors corresponding to the each x and y coordinate vector respectively.
In line 3-4 W and H ensure, that no coordinates outside of the fuzzing mask are created.
Where in line 6 .Z is created by column stacking the X and y arrays with the calculated
normal-distributions.
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5.3.3 Multi-Stage Approach

FuzzSense combines multiple stages during fuzzing. Each time the fuzzing setup is started,
it is called a Fuzzing Campaign. Each of the scenarios running with different fuzzing pa-
rameters is defined as a Fuzzing Iteration. This allows to better distinct between phases
and to have an easier understanding of the complete process and architecture. The aim
of this process design choice is that the focus for the fuzzing campaign can be chosen with
more granularity as the multi-stages allows to provide intelligence to the iterations. The
logic when to exit the inner iteration (sensor fuzzing iteration) can be set based on the aim
of the fuzzing campaign. This is possible, because the inner and outer iteration (scenario
fuzzing iteration) can be logically separated.

Fuzzing Campaign The Fuzzing Campaign defines the whole duration of the fuzzer run-
ning. A Fuzzing Campaign consists of one or many Fuzzing Iterations. To start a fuzzing
campaign, one or several seeds are required. Each seed contains starting values for each
parameter. While there is not any condition met, which qualifies the end of the campaign,
new scenario fuzzing iterations are started. The campaign also could be stopped manu-
ally. The final step is to stop all required services and store the results from the fuzzing
campaign to allow further investigations.

Fuzzing Iteration The Fuzzing Iteration defines one single scenario run. It starts with
the parameter mutation and ends once the scenario is stopped because of a failure or
because it has successfully finished. The fuzzing of every single data frame is not called
iteration. A here defined Fuzzing Iteration includes all those manipulated sensor data
frames throughout the whole scenario until it finishes or fails with a finding. As the main
focus of the fuzzing is on the sensor data, the mutation for the scenario parameters is
not performed in every iteration. Thus, the same scenario is present throughout several
iterations. To distinguish also between those two, there can be Scenario Fuzzing Iterations
and Sensor Fuzzing Iterations. One Scenario Fuzzing Iteration consists of one or many
Sensor Fuzzing Iterations.

5.3.3.1 Scenario Fuzzing Iteration The ADS of the AV must act within a scenario to allow
relations to its intended real-world use. A scenario defines not only the ego-vehicle itself
but also the road, traffic signs, and signals, road conditions, environment, other actors,
including their behavior, and the weather conditions. The Scenario Fuzzing Iteration is the
outer iteration and contains all Sensor Fuzzing Iterations in the same scenario. It contains
the following steps:

Step 1: Mutate Scenario Parameters
Step 2: Create a Scenario and set it up in the simulator and ADS
Step 3: Create Golden Run

Step 4: Start Sensor Fuzzing Iterations

5.3.3.2 Sensor Fuzzing Iteration Within the same Scenario Fuzzing Iteration, the param-
eters for the Fuzzing Mask should not be the same twice. However, within a new Scenario
Fuzzing Iteration, the same parameters can be used again. Each sensor fuzzer takes the
original sensor data from the simulator and applies manipulations to the data stream be-
fore it reaches the ADS. Those manipulations are single pixels in the camera feed or points
in the LiDAR feed. In the current state, within one run, the planned drive of the vehicle, no
mutations on the parameters are performed. This means the same fuzzing masks are ap-
plied to the data streams from the start to the end of the drive. The mutator is only active
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between runs. Therefore, compared to a plain simulation, the only computational over-
head during a running simulation is the rerouting and manipulation of the sensor data. It
contains the following steps:

Step 1: Mutate Sensor Parameters

Step 2: Set scenario up in simulator and ADS

Step 3: Create Fuzzing Masks

Step 4: Start scenario and manipulate sensor data streams

5.3.4 Experiment & Results

Experimental Setup

The evaluation of FuzzSense is conducted in AWSIM, a high-fidelity, digital-twin simulation
environment. The target AD system uses the Autoware.Universe software framework. As
this instantiation of the AD software uses the LiDAR sensor for perception and localisation,
the sensor fuzzing module is configured to fuzz the LiDAR sensor. The evaluation was
conducted on a system running Ubuntu 22.04.03 LTS with 1 TB of storage, 32 GB of CPU
memory, 10 GB of GPU memory, a 12th Gen Intel® Core™ i7-12700KF processor, and a
GeForce RTX 3080 Lite Hash Rate graphics card.

Results & Discussion

The driving scenario consists of a planned navigation in an urban driving environment.
We selected an urban environment since attacks can cause more severe effects within a
congested operational driving domain. As the vehicle navigates through its planned tra-
jectory, the sensor fuzzing plug-in of FuzzSense initiates its fuzzing mask, manipulating
the parameters of the LiDAR 3D geometry. For this set of experiments, the parameters
were randomly set at x (0.4),y (0.5), the distance of the fuzzed LiDAR points (30m), and
the intensity 0.1. and dispersion (width 100, height 60). The experiments mutated the
location and dispersion parameters. The fuzzing broker is fuzzing every frame. In the sim-
ulation, the environment exhibits a performance of time of approx. 30 frames per second
or 33 milliseconds. Figure 71 displays the initiation of the fuzzing mask (the yellow box
is used for identification and does not represent the full mask) to the driving simulation.
The fuzzing mask is applied at different distances from the vehicle and different locations
within the environment. As shown in Figure 71, the fuzzing mask is located at an approach-
ing distance to the vehicle of approx. 30 meters outside the lane does not produce any
unsafe changes in the vehicle the vehicle's behavior.

Figure 71: Fuzzing Mask applied to the right edge of lane

Figure 72 displays the movement of the fuzzing mask to a more central location in the
driving environment. The fuzzing parameters for amount and dispersion are the same as
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Figure 71 in both fuzzing iterations. The parameter for the distance is the same for both.
The affect of the fuzzing mask displayed in Figure 72, is that the vehicle detects the fuzzed

Figure 72: Fuzzing Mask applied to central location of vehicle trajectory

LiDAR points as an obstacle (red wall) and plans a reduction in acceleration to observe the
obstacle. This can be seen by the orange color in the planned trajectory.

Figure 73 displays the fuzzing mask applied at a close distance and within the planned
trajectory of the vehicle. The vehicle detects the fuzzing mask as an object in immediate
proximity to the vehicle and therefore initiates a braking action. The vehicle is unable
to recompute an alternative planned trajectory due to the fuzzed points presenting an
obstacle across the road and therefore the vehicle is unable to progress.

|

\

Figure 73: Top down view of vehicle with fuzzing mask affecting planned navigation of the vehicle

The experiments provide initial feedback on the utility of FuzzSense. From observing
the behaviour of the AD software, displayed in Figures 72 and 73 we can discern that
sensor fuzzing is a useful exercise to find vulnerabilities of the AD software stack. The
results indicate that the AD software is either unstable or can be influenced by inserted
LiDAR points. We found that when the fuzzing mask was located on or near the planned
trajectory of the vehicle, the perception algorithm was unable to filter the manipulated
points and instead, observed them as an obstacle. Further to this, when the fuzzing mask
was located in close proximity to the vehicle, it resulted in a complete stop of the vehicle.

5.3.5 Related Work

The EnFuzz architecture [48] demonstrates the advantage of combining multiple fuzzers
which use diverse techniques of fuzzing, to get a greater and deeper penetration of the
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target. The EnFuzz design further inspired our adoption within FuzzSense of an orches-
trator (monitor) for coordination. Our contribution is unique from EnFuzz as our focus is
specific to AD software and we incorporate in the design considerations for the diversity
of AD technology and targets.

Aforementioned, there are various fuzzers focused on disparate targets of the AD sys-
tem. Popularly cited fuzzing tools include DeepRoad [333], DeepTest [281] which target
the camera sensor and AV-Fuzzer [170], Auto-Fuzz [339] and DriveFuzz [154] which target
the driving scenario. These fuzzers are not designed to operate concurrently with differ-
ent fuzzers, but focus on a seed pool limited to there target. For the optimization of the
search space reduction, these fuzzing tools mainly focus on driving quality and task per-
formance metrics as a measure to direct the mutations towards more promising scenarios
where the ego-vehicle is more likely to struggle.

Our work does not aim to compete with these fuzzers nor do we seek to build on there
designers. FuzzSense, is an overarching framework whose concept is based on enabling
the usage of the fuzzing tools as plug-ins in an integrated fuzzing environment. A future
test case would be to use DeepRoad [333] and DriveFuzz [154] within FuzzSense to under-
stand how diverse fuzzing techniques generate bugs.

5.3.6 Future Direction of FuzzSense

Future work, aims to experiment with FuzzSense utlising the modularity to benchmark
the performance of different fuzzing plug-ins. Further, advancing the design of the fuzzing
mask by adding support for further sensor types. As part of providing FuzzSense open-
source, we also aim to actively gather community feedback and develop the framework
further.

5.4 ADSecData Platform: Open-Source Data Platform for Autonomous
Driving Cybersecurity

AD software must be secure, with decision control optimized to ensure robustness against
cyberattacks. A key challenge in achieving this goal is the lack of open-source data specif-
ically for AD cybersecurity. Without available data, software designers do not have an im-
mediate understanding of the considerations for secure design required to ensure robust-
ness against cyber threats. In contrast, there are many open-source datasets for safety
validation, algorithm optimization, and sensor configuration. Popular examples include
KITTI [84], Waymo [274], Baidu Apolloscape [304], Argoverse [309] and NuScenes [32].
Common datasets for safety validation have enabled platforms such as CARLA Leader-
board [39] to establish challenges to benchmark solutions for perception and trajectory
planning algorithms. The problem motivation that this research confronts is that AD cy-
bersecurity doesn’t have a readily available source of open datasets available to advance
research and there is a lack of guidance on how to conduct cybersecurity research to gen-
erate datasets for benchmarking.

To confront this problem, we have developed ADSecData Platform, a consolidated
platform that provides open-source AD data for cybersecurity. (See Figure. 74), ADSec-
Data Platform consists of a data generation process, which is the method used to gener-
ate datasets from simulation and real-world experiments. We validate the platform in a
case study using the data generation method to create datasets based on an operational
autonomous vehicle (AV) program. We demonstrate the utility of our open-source plat-
form to the community in advancing cybersecurity testing to measure and improve the
robustness of autonomous driving systems to cyberattacks.

To construct an AD cybersecurity open-source data platform, we used these guiding
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Figure 74: ADSecData Platform - Data Generation Process.

questions to establish an understanding of the relationship of AD data to cybersecurity:
1. What data types generated by the AD system are utilized for cyber attack test cases?
2. What is the utility of each data type to enhancing the cybersecurity of AD?

3. What type of metrics are available to benchmark AD algorithms from a cybersecu-
rity perspective and defense mechanisms?

5.4.1 Autonomous Vehicle Cybersecurity Data

The emerging field of automotive cybersecurity research over the last decade has focused
predominantly on the CAN Bus protocol, connected vehicle protocols, electrical and em-
bedded hardware (such as wireless controllers and Bluetooth), and in-vehicle software
systems (e.g., infotainment systems). To support the development of defensive technolo-
gies and the secure design of communication protocols and software, numerous open-
source datasets of automotive telemetry have been created. These datasets primarily ad-
dress legacy and connected vehicle technologies, with a strong emphasis on the CAN Bus
protocol. However, there is a significant lack of open-source cyber attack datasets specific
to AD technology. Developing such datasets and promoting the exchange of open-source
data are critical steps toward advancing the still-maturing field of AD cybersecurity.
Autonomous Vehicle Data

AD systems generate a vast amount of data from diverse hardware and system compo-
nents. We classify AD data into four major sub-categories of data sources: sensing, system,
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network, and vehicle dynamics. For each data source, we discuss its value for
, cybersecurity, and its availability.

Sensing

Sensing data is produced by advanced sensors in the AD system, including LiDAR, cameras,
ultrasonic radar, and global navigation systems (GPS, GLONASS, Baidu, Galileo). This data
is critical for mapping the driving environment, perception, and localization. However, one
of the key challenges with sensor data is the high data rate generated by autonomous
vehicles. Xu et al. [322] estimated that diverse sensors could generate approximately 4
terabytes of data per day. The transmission of LiDAR and high-definition camera frames
from on-board sensors to edge data logging servers further complicates data collection.
Although compression techniques are available to optimize transmission efficiency, there
is limited understanding of how these methods impact cybersecurity research in computer
vision and perception.

Software Development Value: Sensing data is used by AD software designers to
train and optimise algorithms for SLAM, object detection and tracking, sensor fu-
sion and semantic segmentation. One of the many examples of the progress in this
area is the CARLA Autonomous Driving Leaderboard [39] which is platform used for
the development of AD agents.

Cybersecurity Value: Sensing data can be used to assess vulnerabilities of AD soft-
ware to adversarial examples and also to generate new attack models for adversar-
ial examples. Select examples include:

e LiDAR point cloud manipulation [35]
e Adversarial examples for camera perception neural networks. [76]

e Light manipulation attacks on camera hardware and driving objects (road
signs etc.) [248]

e Fuzzing and parameter manipulation attacks against AD algorithms (Object
Detection, Sensor Fusion) [92]

e GPS Spoofing cause uncertainties to trajectory planning algorithms. [136]
Defensive technologies can also be developed from sensing data, these include:

e Kalman filters and ML detection solutions to filter noise from data manipu-
lation attacks. [135]

e Physical intrusion detection solutions which fingerprint patterns of noise
from adversarial activity. [228]

e Improvements to the security of ML models to protect against ML evasion,
training data poisoning attacks.
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Data Availability: Open-Source cybersecurity datasets for sensing, of which there
are very few, predominantly focus on camera based perception and neural net-
works for perception algorithms. Available datasets include:

e Natural Denoising Diffusion Attack (NDDA) dataset [252]

e SlowTrack: Camera based perception latency attack dataset [181]

System

System data consists of data from the on-board software systems of the AD system. These
include the firmware, operating system, application software and real-time operating sys-
tems used in the electronic/embedded components such as the electronic control units
(ECUs) and micro electronic control units (MCUs).

Software Development Value: System data is used by software developers to de-
bug errors and understand application performance and functionality. Crucial for
AV developers is to understand the performance and reliability of the AD software
(Autoware, Nvidia Drive, Apollo) and middleware (Robotic Operating System (ROS),
Cyber RT).

Cybersecurity Value: System data is used for vulnerability and exploit analysis. Ac-
tivities that are included in this description include, reverse engineering firmware,
code analysis, taint-analysis and fuzz testing.

Data Availability: System datasets are generally available from the manufacturer.
These are then used for vulnerability and exploit analysis. Cybersecurity datasets
are rare as the responsible disclosure process usually results in the removal and
updating of new software. An example of an cybersecurity system artifact are the
following:

e Kia OFFensiVE Exploit (KOFFE) metaslpoit module [82]

e Mazda Infotainment USB attack [291]

Network
Network data consists of data produced from the AV internal and external network. CAN
Bus is the network of predominance for in-vehicle communication between ECUs which
handles critical real-time functions such as braking and steering actuation. Automotive
ethernet is gaining in popularity and is mostly used for drive-by-wire communication.
Other communication such as MOST is used for infotainment systems and LIN can be
found in more upmarket vehicle classes. The difficulty in providing CAN (and most other
in-vehicle protocols) datasets is that CAN is used in a proprietary format by vehicle manu-
facturers. To decipher the meaning of CAN messages, either the manufacturer diagnostic
tool is required or knowledge to reverse engineer CAN messages from investigation of
firmware and system manuals.

For legacy and connected vehicles great progress has been made and there exist many
available datasets and tools to help with the CAN message extraction process [222] . How-
ever, to our knowledge there exists no CAN cybersecurity specific datasets for AD tech-
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nology. Reasons for this could be the enhanced commercial sensitivity of AD technology,
more diverse range of AV manufacturers, implementation of encrypted messaging with
CAN-FD, cutting-edge nature of AD technology. Other network concepts typical in AD
architectures include Vehicle-to-vehicle (v2v) and vehicle-to-everything (v2x) which use
wireless and cellular connectivity for connectivity. Different application layer protocols
are used for distinct purposes, these may include MQTT for vehicle on-board unit (OBU)
to edge communication and Cooperative v2x (C-V2x) protocols that including basic safety
messages (BSM) for cooperative perception and intelligent feedback for decision-making.

Cybersecurity research in this field is well-developed and there are many available
studies which investigate attack models to the integrity of cooperative vehicular messages
and availability of networks which support vehicle data processing and cooperative com-
munication.

Software Development Value: For software developers, network datasets can as-
sist in understanding system interconnection and latency of data flow through sit-
uational awareness data to control actions decided by AD software and physical
processes made by actuation.

Cybersecurity Value: Network datasets are primarily used for defensive, intrusion
detection solutions. Network datasets also aid in developing new attack strategies
(DDoS, Replay etc.) and fuzzing strategies to test the robustness of communication
architectures. Lately, as more CAN cybersecurity datasets are available, research
has focussed on ML and Al solutions for automated attack detection and fuzzing [8].
Within AD architectures, network data is utilised to evaluate the security aspects of
cooperative driving such as message trust and authentication. Perhaps the great-
est contribution of cybersecurity CAN datasets has been the increase in attention
brought by attacks which demonstrate the feasibility of cyber attacks to manipu-
late safety critical functions such as braking, steering and acceleration. Recognition
of these threats has seen the development of security within automotive software
architectures (AUTOSAR Adaptive) and new zonal communication architectures for
in-vehicle network communications.

Data Availability: Open-Source CAN hacking datasets exist for legacy and con-
nected vehicles, a sample of this long list include:

e Car-Hacking-Dataset [258] [268]

e Survival Analysis Dataset [104]

e CAN-Train-And-Test Dataset [166] [165]
e CANet Dataset [106]

e CrySyS Dataset [83]

e CIC loV 2024 Dataset [213]

e CAN-MIRGU Dataset™* [229]

*The CAN-MIRGU dataset is generated from a vehicle with AD capabilities, how-
ever, these capabilities are not detailed due to privacy reasons and the AD functions
are deactivated for safety reasons.
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For V2X and V2V selected datasets include:
e Simulated VANET Attack Dataset [125]

e Simulated VANET Attack Dataset [86]

Vehicle Dynamics

Vehicle dynamics data include body physical movement (lateral and longitudinal pose,
yaw etc.), acceleration, braking, steering actuation. Vehicle dynamics is crucial for a soft-
ware developer and cybersecurity engineer to understand how behaviour at a system-
level affects the vehicle. Existing cyber attack research which focuses on vehicle dynam-
ics, predominantly concern themselves with providing artifacts such as docker images of
the attack simulation and the code-base for adversarial examples and fuzzing tools. A
limitation of this approach is that it requires of custom configuration of the attack in the
user environment and an understanding of the vehicle model and metrics engine for data
output, used in the original research.

Software Development Value: This data is crucial for control algorithm designers
to assess the robustness of control and trajectory planning algorithms. Software
developer and control designers will use vehicle dynamics data for backstepping
and back-propagation of the AD control software.

Cybersecurity Value: Vehicle dynamics data enables a greater understanding of the
affect of cyber attacks to vehicle behavior. The utility of vehicle dynamics data in-
cludes research and development of physical intrusion detection systems solutions
and root cause analysis.

Data Availability: We are not aware of any datasets for vehicle dynamics in the
context of cybersecurity.

Gaps in Autonomous Vehicle Datasets

Our exploration of diverse AD data types and the usage in cybersecurity has identified a
number of limitations:

o Lack of a consolidated research data platform. Datasets are distributed across
github accounts and research papers. There is a lack of consolidation of datasets
that would enable security research across the AD technology stack.

¢ Siloed research. Defensive mechanisms are often developed based on a single data
type (e.g., CAN, Camera, etc.). The lack of availability of other data sources and an
understanding of how this data impacts vehicle dynamics and propagates through
the AD system results in the creation of defense mechanisms that lack system-level
validation.

e Lack of cybersecurity data: There is a lack of data for cybersecurity, and in some
of the sub-categories explored, there is, to our knowledge, no data available. The

available datasets overwhelmingly consist of legacy and connected vehicles.
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5.4.2 ADSecData Platform

In developing a method for generation of cybersecurity data for AD systems, the significant
change from legacy vehicles is the focus on vehicle behaviour. As the vehicle is controlled
by software and algorithms, it is important to understand the affect to the vehicle from
cyber activity and its implications for decision-control. In addition to attacks that directly
target AD technologies such as advanced sensors, attacks to network and system com-
ponents can have downstream affect on autonomous control. The ADSecData Platform
(shown in Figure 74) follows a four-stage process for generating data.

Scenario Generation

Scenario-based testing (SBT) involves evaluating the performance of a module or the full
AD pipeline (perception, localization, planning, and decision-control) to perform its task
during a specified driving scenario. Since the performance of algorithms can vary under
diverse scenarios, SBT has become the standardized approach for AD algorithm safety
validation and verification testing [116]. Cybersecurity represents an edge and corner case
for SBT. For the ADSecData methodology, we propose that scenario generation is a crucial
step for cybersecurity, as it is essential to understand whether the effect of a cyber attack
on the vehicle differs based on the scenario. Since scenario libraries for AD cybersecurity
testing are not available, our methodology recommends using safety validation testing
libraries (such as ASAM OpenScenario, etc.) and customizing the scenarios with attack
models.

Simulation/Test Environment

As the task of driving can encounter a vast number of diverse scenarios, simulation is the
only feasible mechanism to incorporate large-scale testing in an agile manner. Cyberse-
curity testing should be aligned with safety validation testing, where the choice of test
environment is based on evaluating the algorithm’s ability to perform tasks. This is part
of a testing process that uses regression testing to map scenario test sets from simulation
test environments to real-world proving grounds. Within the ADSecData platform, we rec-
ommend using low-fidelity test environments for large-scale testing of driving logic, high-
fidelity test environments to include testing of advanced sensors (such as LIDAR, Camera,
etc.), and real-world proving grounds. Another factor influencing the integrity of cyberse-
curity data is the tendency of automotive cybersecurity practitioners to provide singular
datasets based on attack type. Due to the experimental nature of AD algorithms, suffi-
cient tests need to be run to ensure that anomalous vehicle behavior is caused by cyber
activity and not system errors or a lack of optimization of the algorithm.

Another key aspect of the simulation/test environment stage is defining metrics and
configuring the format of output data. To quantify the impact of cyber activity on the
vehicle, safety metrics and vehicle dynamic parameters are applied. Cybersecurity labels
include details such as the initiation of the attack during the scenario, attack parame-
ters (e.g., sensor interference noise level, GPS positioning offset), and their corresponding
weighting.

Analysis

The analysis stage involves interrogating the data to assess its integrity and accuracy, en-
suring consistency with the experimentation performed. Popular tools, including MATLAB
and Python, are used to plot data, visualize patterns, and analyze trends. For example, an-
alyzing a dataset from the trajectory planning module could generate trajectory maps to
visualize the vehicle’s path and highlight any deviations from the reference path. Analysis
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Table 46: Requirements for ADSecData

Category

Requirement

Documentation

e Dataset should be accompanied by general documentation de-

scribing content and origin.

e Documentation should include description of the attacks in the
dataset and how they were executed/recorded.

e Documentation should include description of the features
(e.g., origin, meaning, range) and their physical context (e.g.,
how vehicle speed, engine speed and gear are related).

Labels e Each entry in the dataset may be given a label for identifying
whether that entry is benign or an attack.
Parseability, correct- e Data should be stored in an appropriate machine/humanread-

able format (e.g., PCAP or CSV rather than SQL databases)

o All entries should be correctly formatted (e.g., no corrupt en-
tries)

e use a single data format for all entries

e Dataset should not be legacy (> 5 years old etc.) and consist
of a balance between benign and cyber attack data.

o Dataset should be complete in the sense that no key features
or entries have been discarded.

e Data should not be irreversibly transformed (changing times-
tamps etc.) and not be anonymised to the point that it bias’ de-
tection mechanisms.

e Dataset should include diverse attacks and not be wholly based
on synthetic data.

ness and consistency

Age, Size, Objective

Completeness

Transformation and

anonymization

Dataset and Attack
Realism

is a crucial activity for identifying problems with the experimentation process and evalu-
ating the quality of the data.

ADSecData

Data should be benchmarked for measurement and comparison. The benchmarks for
automotive cybersecurity datasets from Vahidi et al. [296] systematic evaluation of au-
tomotive intrusion datasets serve as a good starting point. We utilise their requirements
for data in development of the ADSecData Platform and data readiness labels. Table. 46
provide the requirements for ADSecData datasets.

5.4.3 ADSecData Case Study
Target Autonomous Vehicle

The target vehicle is an AV for public transportation, that is an autonomous electric vehi-
cle (AEV). The shuttle operates at Level 4 autonomy (high automation), meaning that it
can handle most driving tasks without human intervention in predefined areas, and it is
equipped with advanced LiDAR, radar, cameras, and GPS systems to navigate safely and
carry out perception tasks in urban environment. Its software backbone is based on ROS
and autoware controlling all the driving functionalities and implementing the driving dy-
namic model of the vehicle.
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Scenarios
Our initial dataset consists of 4 attack cases conducted during diverse driving scenarios.

Attack Case 1 - LiDAR point-cloud manipulation: The LiDAR point-cloud manipulation
attack, as shown in Figure 75, consists of an adversary with a LiDAR capable of injecting
malicious LiDAR point clouds into the LiDARs of the AV. This attack is conducted whilst the
AV is attempting an overtaking maneuver.

Attack Case 2 - Position Offset: Attack Case 3 - Message Delay: The attacker creates
a spoofed ROS topic which is able to deliver malicious input data of the Current_Pose
(longitude, latitude, and velocity) to all the nodes of the local planning module. The data
manipulation is injected online/dynamically during the critical overtaking manoeuvre in-
volving the AV and NPC (Non-playable character). Figure 76 displays the critical driving
scenario and the time frames in which the manipulated Current_Pose data is injected
into the local planning pipeline cost estimation. The red dashed lines in Figure 76 repre-
sent the roll-outs, and the green highlighted, denoting the selected motion-path.

For the manipulation of the Current_Pose data, we introduce a deviation to lateral
and longitudinal pose. For the lateral pose data, the sensitivity deviation introduced was
structured as follows:

e Attack Case 2a: 0.16%
e Attack Case 2b: 0.33%
e Attack Case 2c: 0.5%
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This range represents a slight perturbation of pose to a 1m deviation. The longitudinal
pose data sensitivity deviation range was structured as follows:

e Attack Case 2d: 0.33%
e Attack Case 2e: 0.66%
e Attack Case 2f: 1.00%

This range is the same as the longitudinal deviation. The difference in percentage
comes from the difference in coordinate values of lateral and longitude. The lateral value
is almost double those of the longitudinal, and therefore the percentage is doubled.

This attack scenario involves introducing a time-delay into the messages of the Cur-
rent_Pose topic communicating to the nodes of the local planning module.

We introduced a message delay when the AV passes 2m in front of the vehicle that it
is passing in the lateral direction. We introduce 3 different time delays in the message:

e Attack Case 3a: 0.3 seconds
e Attack Case 3b: 0.6 seconds
e Attack Case 3c: 1.0 seconds

The message frequency is approximately 50hz, so this is a message every 20 millisec-
onds. We chose the above range of deviation of time-delay as it enabled a spectrum of a
message from the delay from approximately 15, to 50 messages.

Attack Case 4 - GPS Spoofing: The attack model of GPS spoofing involves an adversary
using a transmitter near the AV and interferes with the GPS signals being transmitted.

Simulation/Test Environment
Attack Case 1 was conducted in the high-fidelity CARLA simulator [69]. In this study, we
use Carla 0.9.13 as the high-fidelity simulator. Figure 77 illustrates the requirements for the
high-fidelity simulator to conduct simulation testing, which are two components, the digi-
tal twin of the target AV and the virtual replication of our target environment. These repli-
cated components help us to gain more accurate results of the proposed platform [187].
The AV digital twin is a 3D model of the target real-world world AV shuttle, designed in
Blender, a graphical 3d modeling software, and imported and built in Unreal for deploy-
ment in CARLA. This model uses the same dimension and sensor configuration (model,
position, and orientation) from the real AV shuttle. The environment digital twin, in our
case, is identical to the location where the vehicle operates.

This simulation setup was implemented on a desktop computer with the following
configuration:

e ntel® Core™ i7-117700K @ 3.60GHz x 16 cores
e NVIDIA GeForce RTX 3080 10 GB
e RAM: 128 GB

Attack Case 2 and 3 were conducted in a low-fidelity simulator. To accelerate the test-
ing, we bypassed the sensing and detection nodes of the algorithm and focused on the
planning part by utilizing the low-fidelity simulation feature provided by Autoware.ai and
Openplanner. The low-fidelity simulation uses the open-planner 2.5 control algorithm. It
provides simulated localization and detection data for the planning nodes and receives the
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Figure 77: Architecture of the testing platform.

actuation commands to simulate the AV kinematics. This process runs faster due to the
low-detail environment required for the simulation and the lack of the process to simulate
the sensors.

Attack Case 4 dataset was generated from the real-world vehicle. GPS spoofing activity
occurred during a point-in-time of a 3 month trial of AVs in a city in Northern Europe.

Analysis

The data output parameters were defined based on safety, vehicle dynamics and security
criteria. A sample of these include, for safety criteria, mission success, violation, break
status, distance-to-collision. Vehicle dynamics included steer, yaw, lateral and longitu-
dinal position. Security criteria includes 2 labels, is_attack denoting when the attack is
occurring and cyber_weight which denotes the level of sensor noise manipulation.

ADSecData

The 4 attack case scenarios datasets were generated as a .csv files. Each attack includes a
corresponding benign (no attack) dataset to benchmark the stability of the AD algorithms
under the given driving scenario. Attack Case 1included over 1200 simulations. Attack
Case 2 and 3 included over 900 simulations collectively.

5.5 Discussion

The case study provides a starting point for the development of a common dataset for the
community to perform fair and reproducible evaluations of AD algorithms for cybersecu-
rity and defensive mechanisms. The datasets generated from the 4 attack cases demon-
strate the importance of following the 4 stage ADSecData method where particular careful
consideration is taken in the definition of data output parameters and experimental eval-
uation analysis. For the development of ADSecData platform, community challenges and
a roadmap are fundamental.

Community Challenges
These are the first tranche of community challenges that we recommend for the ADSec-

Data platform:
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Ch1 Performance and Accuracy of Semantic Fuzzing Tools
Ch2 Intrusion Detection of Semantic AD Sensor Attacks
Ch3 Robust Sensor Fusion Algorithms

Ch4 Robust and Resilient Trajectory Planning Algorithm

We see these challenges as of most immediate importance and value for the com-
munity. Furthermore, we would like to see the community use ADSecData platform to
generate a seed corpus for guided semantic data fuzzing tools. As large language mod-
els (LLMs) are gaining in popularity, another foreseeable use would be to apply LLMs to
ADSecData to generate scenarios for cybersecurity testing. As AD cybersecurity lacks a
common scenario library, generation of cybersecurity scenarios would help to close this
gap. Finally, IDS solutions for attacks to the AD sensors is essential to mitigate the risk to
the AD control. There needs to be more data to understand the profile of cyber attacks
comparative to emergency, safety actions from edge and corner cases.

5.6 Future Roadmap of ADSecData

Short term aims of ADSecData platform are to add more datasets from all 4 sub-categories
of data types and different vehicle classes and increase the communities awareness of
the platform. There will be a need to improve the development of both the front-end
and back-end platform to enable secure data sharing and more intuitive user experience.
Longer terms aims include a need to investigate metrics for intrusion detection solutions
for AD, which is an Al-based system. Traditionally MITRE ATT&CK is used for benchmarking
IDS solutions, and MITRE has a framework for Al, MITRE ATLAS. It would be interesting to
evaluate how this would work in a practical use-case for AD.

5.7 Relation to Existing Work

There have been attempts by the community to build common infrastructure for AV cyber-
security testing. PASS [115] and Simutack [79] are community simulation testing platforms.
Whilst these platforms are valuable to the community and enable accessibility of simula-
tion testing to researchers, the usage of community simulation testing platforms is limited
as real-world operators tend to use their own customised platforms. Furthermore, nei-
ther of these studies focused on the data aspect of cybersecurity testing as part of their
scope. Lauinger et al. [167] developed an attack data generation framework for AVs. Our
work enhances this contribution by integrating the concepts of scenario generation and
simulation and testing environments for data generation.

From a community data sharing perspective, there are initiatives such as Platform for
Innovative use of Vehicle Open Telematics (PIVOT) [226], which is a U.S National Science
Foundation project to create a open-source portal for vehicle telemetry data in the context
of cybersecurity. However, as of writing this portal was unavailable.

As aforementioned in Section. 5.4.1, there exists a diversity of datasets for legacy and
connected vehicles. There are also the studies of Vahidi et al. [296], Lampe & Meng [165]
and Lee et al. [169] which evaluate cybersecurity data of legacy and connected vehicles
for intrusion detection. However, to our knowledge, there are no existing contributions
that focus on the autonomous technology stack of Avs.
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5.8 Summary

Within this section, we provide the AD cybersecurity testing community with foundational
frameworks for the development of structured and fuzz testing. The ADSecLang frame-
work proposes a methods-based approach to translation of attack models from concept
to technical implementation. FuzzSense proposes an Ensemble architecture which aligns
with the complexity of the AD software ecosystem as it enable fuzzing of multiple testing
targets using diverse techniques. The investigation into the value of data to AD cyber-
security testing uncovered a fundamental sparsity of available datasets for cybersecurity
and a lack of knowledge as to the value of datasets and methods for their use to develop
defensive mechanisms and offensive toolsets for testing. Datasets are of predominant im-
portance to develop a seed corpus in which to advance more effective test strategies. With
each of these contributions we provide a foundational base for the research community
to build-upon.

168



6 Future Direction

AD software is transforming, utilising the advances in Al to control broader areas of the ve-
hicular architecture such as connected interfaces and energy infrastructure (batteries and
power management). Further, LLMs extend the capability of AD to enable explainability
of the automated driving actions and prediction of events in the driving environment. Fu-
ture work is directed at developing more robust software architectures to cyber attacks to
suit the needs of a complex distributed system environment with a code base of millions
lines of code. An architectural approach is necessary as the contemporary focus to the
development of defensive mechanisms centers on patching vulnerabilities resultant from
cyber attacks. The shortcoming of this approach is presumption that defense will outpace
innovation of cyber attacks and due to the safety critical nature of AVs, a successful cy-
ber attack has significant consequences for passenger safety. There are many areas which
offer promising research directions:

e Development of software architectures for AVs which is based on security zoning to
classify areas as trusted and untrusted. Innovative transformation of in-vehicular
architectures to include virtualisation of ECUs for resource sharing and enhanced
security configuration and management.

¢ Development of resilient and robust AD software to protect against semantic level
attacks.

¢ Development of secure protocols for intelligence battery management and power
consumption.

e Secure connected protocols for vehicle-to-edge communication to enable resource
sharing between on-board and edge compute platforms.

Within the AD testing domain, a greater focus is required on automated testing meth-
ods to enable more efficient testing. As stated in the thesis, the lack of standardised meth-
ods and tools for attack models and performance benchmarking result in considerable
manual effort to reverse-engineer available artifacts for further use. To advance the field,
cybersecurity needs to provide open-source, community tools in the same manner as the
software development and safety validation community.
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7 Conclusion

AD software comprises a complex ecosystem required to support a real-time, safety crit-
ical system. AD software must support diverse hardware and technology platforms, in-
tegration of mechanical, analog components with digital systems and execution of mas-
sive parallel tasks in a time-constrained manner. Whilst software designers are concerned
about the robustness of this software to safety validation use-cases, there is a sparsity
of research which investigates the design of this software for security. This thesis inves-
tigated the design of AD software from the security perspective and focused on 3 critical
areas of concern. First, vulnerabilities of AD software to cyber attacks. Second, the affects
of cyber attacks to AD software. Third, approaches to cybersecurity testing.

Vulnerabilities of AD software to cyber attacks: AD software is vulnerable to seman-
tic and system-level cyber attacks. The results of the experimental testing demonstrate
that malicious data injection, spoofing and jamming attacks on LiDAR, GNSS, sensing data
transmission and low-level sensors are successful in the discovery and exploit of vulner-
abilities in modular and end-to-end AD software architectures. The modular architec-
ture, exhibited in the real-world case study vehicle, iseAuto, reveals weaknesses of the
robustness of its OpenPlanner planning software, NDT-matching based localisation soft-
ware module and decision-control software modules. A weakness in one software module
propagates through the AD pipeline, ultimately affecting the decision-control and result in
unsafe driving actions. The results of cyber attacks targeted at the camera perception of
the end-to-end architecture of Baidu Apollo demonstrate a lack of training for adversarial
examples. The attacks on AWSIM and Baidu Apollo illustrate the limitations of reliance
on singular sources of sensor input data. The vulnerabilities discovered in this thesis in
the aforementioned software, were reasoned by AD software designers and safety val-
idation engineers as due to a lack of cross validation of input data and mechanisms for
resiliency and recovery. he thesis introduces REACT, a proposed architecture for intrusion
response in automotive systems. REACT contains methodology for response evaluation,
and various response selection methods. We evaluate REACT on 2 diverse attack cases
of an adversarial sample targeted at the camera sensor and information disclosure of the
infotainment system. The results demonstrates that the LP and SAW algorithms used for
optimal selection of response had sub-optimal performance for automated intrusion re-
sponse in automotive, however, presented encouraging results for proposing follow-up
responses to vehicle security operations centre for further action.

Affects of cyber attacks to AD software: One of the aims of this thesis was to develop
intuitive methods for security testing that would enable the ability to discern affects to
the vehicle from cyber attacks. The thesis developed a method for combined safety and
cybersecurity testing which fused the metrics of safety validation which evaluated the
vehicles conformance to safety regulations and passenger comfort with attack model pa-
rameters. This approach, which was utilised consistently on the real-world vehicle case
study, produced valuable insights such as the role of scenario-based testing and tempo-
ral aspects in affecting the severity of cyber attack behaviour consequence. The vehicle
demonstrated more acute affects to cyber attacks during specific driving maneuvers such
as overtaking of passing vehicle and during time periods when the vehicle was attempt-
ing the cut-in. Experts reasoned this as being due to engagement of more operations of
the software as lane position transitioning and obstacle avoidance are more prominent
during these maneuvers. Further, there is a greater need for precision and less tolerance
for edge and corner cases. In the thesis’ investigation of AD software debugging, vehicle
dynamics are added to the evaluation metrics to engage a more intensive analysis of the
relationship between cyber attacks, AD software and vehicle behaviour. We found that at-
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tacks to the localisation module could be traced to a vehicle dynamic affect, specifically, a
GNSS spoofing and jamming attack resulted in an alteration of the vehicles yaw angle and
momentum, and its orientation as indicated from the position co-variance and altitude.
Furthermore, these attacks triggered the OpenPlanner planning module to execute lane
position transitions with greater frequency. The thesis presented the ADAssure method,
which involves analysis of the feedback from security testing to develop assertions on the
behaviour of the system characteristic with the system being cyber attack. These asser-
tions can then be used for debugging and root-cause analysis. The analysis of low-level
sensor attacks, demonstrated how an attack at the system-level, an EMI attack, which al-
tered the values of a steering sensor, could propagate through the sensing and actuation
layer through to the high-level control resulting in the sub-modules for the OpenPlanner
module, tasked with trajectory generation and waypoint following, generating decisions
with the downstream affect of unsafe vehicle behaviour. This analysis showed the benefit
of the backstepping technique to pinpoint breakpoints in the software architecture were
failures were occurring.

Approaches to cybersecurity testing: Overwhelmingly, cybersecurity testing conducted
by the research community uses off-the-shelf, open-source software which is not opti-
mised to the driving maneuvers and operational environments for which it is tested. One
of the primary innovations of this thesis is the development and usage of a testing tool-
chain approach which utilised digital-twins containing the technology stack of a real-world
vehicle. The testing tool-chain approach was used to conduct agile and repeatable testing
and regress test cases from a simulation environment to the real-world, physical vehicle.
In the cyber test range evaluation, we explored the capability of a small factor testbed
to support cybersecurity testing. We found that the small factor testbed could provide
insights into the vulnerability of the AD software to semantic-level attacks such as adver-
sarial examples targeted at the camera perception and system-level attacks in the case of
a network DDoS on the teleoperation protocol and a SSH brute force attack. These diverse
environments, digital-twin simulation, cyber-physical small factor testbed and real-world
vehicle, can be utilised to regress testing, with the simulation and small factor testbed
offering the benefits of agile and repeatable testing at minimal cost and effort. Another
limitation of the research community is the lack of knowledge as to the development of
attack models. With our contributions, ADSecLang and FuzzSense, we provide founda-
tional frameworks for the development of community-driven structured adversarial test-
ing and fuzz testing. ADSecLang contributes a method for the translation of attack models
from concept to technical implementation. FuzzSense contributes a conceptual frame-
work based on ensemble fuzzing, a modular approach where diverse testing targets and
diverse fuzzers can be utilised to gain a deeper penetration of the system. With both these
contributions we presented initial results which demonstrated that these tools could be
used to find vulnerabilities in the Baidu Apollo and AWSIM software frameworks. AD-
SecData Platform further provides an initial contribution to enhancing testing methods
and tools through the collation and provision of AD cybersecurity datasets. The analysis
contained in this thesis found insufficient awareness of the community of the importance
of datasets and how data can be used to enhance testing tools, defensive mechanisms
and guide efficient testing methods. ADSecData Platform provides a 4 phase data gener-
ation process to generate datasets from testing. The initial ADSecData Platform provides
datasets and challenges for community participation.

Significance of thesis findings: The main contribution of this thesis is to study the
design of AD software within the perspective of cyber attacks. We investigated this:

¢ via development of diverse attack models utilising a testing tool-chain to discover
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vulnerabilities in software used in a real-world, operational vehicle.

¢ via creation of methods able to characterise the affects of cyber attacks to the soft-
ware and vehicular system.

¢ via debugging and root-cause analysis of cyber attacks to pinpoint vulnerable areas
of the software architecture and analysis of incident response capability.

¢ via development of platforms and toolsets for structured and fuzz testing.

We provide these contributions in the backdrop of a community-wide effort to ensure
the robustness and reliability of AVs to cyber threats. This thesis provides tangible artifacts
which include the ADSecLang & FuzzSense code and the datasets from the experiments
as collated by the ADSecData Platform.
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Abstract

Cybersecurity Testing and Attack Propagation Analysis of Autonomous
Driving Software

Autonomous driving software needs to be robust and resilient to cyber attacks to en-
sure the safety of passengers and road users. Software for highly automated vehicles in
which driving actions are taken and supervised by software, are in developmental stage.
Software developers and control system designers must contend with the complexity of
massive parallel real-time system operations in a densely connected system-of-system en-
vironment. As the software architecture of autonomous driving is developing, there are
a preponderance of challenges for cybersecurity. Software developers and control sys-
tem designers require an understanding as to how cyber attacks discernibly propagate
throughout the autonomous driving architecture and affect the decision-making of the
vehicle. Additionally, there is a need to explore methods for fingerprinting the effects of
cyber attacks and debugging failures of the autonomy caused by these attacks to pinpoint
vulnerabilities within the software. As autonomous driving systems are a dynamic, real-
time system, it is imperative to explore options for intrusion response to cyber attacks, to
mitigate or deter risks to safety. Furthermore, the development of testing tools to facili-
tate agile and repeatable testing is of great importance. The objective of this thesis is to
develop new methods for cybersecurity testing of autonomous driving software. There-
fore, new approaches to testing and evaluation, debugging, intrusion response and design
of testing tools.

The thesis starts by developing a combined safety and cybersecurity testing method-
ology. The methodology incorporates safety metrics (distance-to-collision, acceleration,
braking, steering etc.), parameters for cybersecurity (attack weighting/density etc.) and
safety validation analysis to discern the effect to the autonomous driving software of cy-
ber attacks. Utilising this approach to conduct experiments using a testing tool-chain,
consisting of a digital-twin simulation testbed and a real-world testbed, vulnerabilities of
the planning module for navigation and the localisation module used in a real-world au-
tonomous driving system were found. Scenario-based testing, which focuses on an over-
taking scenario, revealed the planning module was vulnerable to sensor manipulation at-
tacks of the LiDAR and localisation sensors during the cut-in process, where the target
vehicle is executing the overtake of the passing vehicle. An attack triggered during the
cut-in induces decision-making uncertainty which results in erratic, attempted overtak-
ing and side collision to the passing vehicle. Electromagnetic interference attacks were
also conducted within a purpose-built hybrid testbed environment consisting of actua-
tion processes and the high-level autonomous driving software. The evaluation of the
electromagnetic interference attacks demonstrated that an attack on the steering actua-
tion sensor, with minimal noise, could propagate through the software architecture and
exploit weakness in the sub-modules of the path planning software, consisting of trajec-
tory generation and waypoint following. Attacks to the localisation software which were
conducted in a digital-twin simulation environment and also included a dataset from real-
world GPS spoofing against an operational autonomous vehicle shuttle operating in the
city, revealed vulnerabilities in the design of the localisation module. During a GPS spoof-
ing attack the autonomous vehicle shuttle lost localisation, and the localisation module
was unable to hold a position in relative proximity on the map and this resulted in the
re-plotting of sub-optimal and unsafe trajectories. From this attack, the thesis developed,
ADAssure, a methodology to debug autonomous driving software that utilises backstep-
ping to pinpoint the root cause of failure. The ADAssure method comprises analysing
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the vehicle dynamics data (steering angel, yaw angle, yaw derivative, acceleration etc.) in
comparison with sensing data, to develop assertions of the system under attack. The eval-
uation, using diverse localisation attacks, found three assertions consisting of displace-
ment of yaw angle within a time threshold that challenges the physical limitations of the
steering model, multiple trajectory transitions with a steering angle of 180 degrees and
deviation of altitude and position co-variance which result in a spike in velocity. These as-
sertions can be used within the domain application of an autonomous vehicle shuttle for
public transportation, to detect vehicle dynamic changes characteristic of cyber activity.
The thesis introduces REACT, a proposed architecture for intrusion response in automo-
tive systems. REACT contains methodology for response evaluation, and various response
selection methods. We evaluate REACT on two diverse attack cases of an adversarial sam-
ple targeted at the camera sensor and information disclosure of the infotainment system.
The results demonstrates that the algorithms used for optimal selection of response had
sub-optimal performance for automated intrusion response in automotive, however, pre-
sented encouraging results for proposing follow-up responses to vehicle security opera-
tions centre for further action. The thesis further contributes tools for autonomous driv-
ing cybersecurity testing. FuzzSense and ADSeclLang are an initial proof-of-concept tools
for fuzzing and structured cybersecurity testing. FuzzSense is a conceptual architecture
for fuzzing diverse layers of the autonomous driving software, the simulator, the driving
scenario and the sensor data. ADSecLang provides a domain specific language for cy-
bersecurity testing of autonomous driving software. The results of the experimentation
for FuzzSense, fuzzing LiDAR sensing data, found vulnerabilities in the Autoware.Universe
software. ADSecLang developed cyber attack scenarios for manipulation of camera sens-
ing which revealed vulnerabilities in the camera-sensing based perception module de-
signed for Apollo software. To further contribute to the community, the data of all of
the experiments conducted in this research are made available in ADSecData Platform, a
conceptual community data sharing environment developed in this thesis to enhance au-
tonomous driving cybersecurity testing and product development. This thesis contributes
numerous diverse testing methods and validates their utility through experimentation on
a real-world, operational vehicle.
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Kokkuvote

Autonoomse soiduki juhtimistarkvara kiiberturvalisuse testimine ja riin-
nakute leviku analiiiis

Autonoomse soiduki juhtimistarkvara peab olema vastupidav kiiberriinnakutele, et tagada
reisijate ja liiklejate ohutus. Tarkvara autonoomsetele soidukitele, mille juhtimistoimin-
guid teostab ja kontrollib tarkvara, on arendusjargus. Insenerid peavad moistma, kuidas
kiiberrinnakud mojutavad autonoomsete soidukite tarkvara. Kuna autonoomsete
soidukite tarkvara arhitektuur on arengujargus, siis on palju kiiberturvalisusega seotud
valjakutsed. Tarkvaraarendajad ja juhtimissiisteemide disainerid peavad moistma,
kuidas kiiberriinnakutega kaasnevad mojud levivad (le kogu arhitektuuri ja mojutavad
sOiduki otsuste tegemist. Lisaks, on vaja uurida meetodeid kiiberriinnakute maojude
hindamiseks ja nendest riinnakutest pohjustatud torgetest taastumiseks, et teha kindlaks
tarkvara haavatavused. Kuna autonoomne soéiduki juhtimistarkvara on dinaamiline
reaalajas tegutsev slisteem, on hdadavajalik uurida voimalusi kiberriinnakutele
reageerimiseks, et leevendada voi dra hoida ohutusega seotud riske. Lisaks on viga
oluline testimisvahendite valjatéotamine, et holbustada testimist. Kiesoleva |6put6o
eesmargiks on vélja tootada uued meetodid autonoomse soiduki juhtimistarkvara
kiiberturvalisuse testimiseks. See sisaldab uusi lahenemisviise testimisele ja hindamisele,
riinnakutele reageerimisele ja testimisvahendite disainile. Loput66 algab kombineeritud
ohutuse ja kiliberturvalisuse testimise metoodika viljatoGtamisest. Metoodika sisaldab
ohutusmdddikuid, kiberturvalisuse parameetreid ja ohutuse valideerimise analilisi, et
kindlaks teha kiberriinnakute moju autonoomse soiduki juhtimistarkvarale. Kasutades
seda l|dhenemisviisi eksperimentide labiviimiseks testimisprotsessis, mis koosneb
digitaalse kaksiku simulatsiooni keskkonnast ja reaalse maailma simulatsiooni
keskkonnast, leiti haavatavused planeerimismoodulis ja lokaliseerimismoodulis.
Stsenaariumipohine testimine, mis keskendub moé6dasdidu stsenaariumile, niitas, et
planeerimismoodul oli haavatav anduri manipulatsioonile. Anduri manipulat-sioon
pohjustab autonoomse sodiduki avarii. EMI rinnakuid testiti ka hibriid-testkeskkonnas. EMI
rinnakute analiilis nditas, et planeerimismoodulil olid haavatavused. Rinnakud
lokaliseerimistarkvarale, paljastasid haavatavused lokaliseerimismooduli disainis. GPS-
signaali segamise rlinnaku ajal kaotas autonoomne séiduk GPS asukoha andmed. Sellest
riinnakust ldhtudes tootati vilja ADAssure metoodika, mis kasutab torke algpohjuse
valjaselgitamiseks "alt Ules" meetodit. ADAssure’i meetod hdolmab soéiduki andmete
analliGisi, et toctada valja reeglid riinnatava slisteemi kohta. GPS-signaali segamise
rinnaku anallitisi kaudu leiti 3 reeglit. Reegleid saab kasutada soiduki turvalisemaks
muutmiseks. Loputdd tutvustab REACT-i - arhitektuuri kiiberintsidentidele reageerimiseks.
REACT sisaldab kiiberintsidentidele reageerimise vastuse hindamise metoodikat.
Hindame REACT-i, kasutades kahte rilinnaku stsenaariumi. Tulemused n&itavad, et
REACT-i arhitektuuri kasutamine on kasulik. Loputdd tutvustab kahte tooriista -
FuzzSense ja ADSecLang - kiiberturvalisuse testimiseks. See |0putdéé annab panuse
arvukatesse erinevatesse testimismeetoditesse ja kinnitab nende kasulikkust.
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