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1 Introduction
In recent years, the automotive domain has seen a transformation of vehicular architec-tures from legacy, analog, serial, mechanical control to connected vehicles with softwareandnetwork-centric architectures. AutonomousDriving (AD) furthers this transformation,replacing human control with software control, guided by intelligent algorithms. AD soft-ware relies on input from telemetry of diverse sensors (LIDAR, Camera, Radar, IMU etc.)to create perception of the driving environment and localisation for navigational planningandmotion-control [223]. Integrity and availability of sensing input are critical to ensuringthe robustness of autonomous control decisions [223] [276] [10]. Security of automotivetechnologies has been a burgeoning area of research for the last decade since proof-of-concept attacks on controller-area-networks (CAN) and infotainment systems introducedto the public consciousness, the potentiality for an attacker to exploit insecure wirelessnetworks and software vulnerabilities to cause unsafe and adverse driving actions [196].Within these attack models, the CAN messages for vehicle actuation communicated be-tween embedded electrical (E/E) components can be manipulated to alter the behaviourof the vehicle to produce unsafe outcomes. The attack surface is increased for AD architec-tures for which the software replaces the human-in-the-loop, and thus the software actsas the interpreter of sensing data, the manager of decision-control and the observer ofdriving behaviour. Within this software-centric transformation, methods and tools to testthe robustness of AD software to cyber attacks and to assess vulnerabilities of decision-control functions is of vital importance in the digital transformation of automotive.
1.1 Problem Statement
AVs have been introduced into real-world driving environments through diverse trials ofride-hailing services [279] [214] [343] and last-mile public transportation shuttles [122] [73] [17].During the course of their operation these vehicles have experienced a number of adver-sarial events. Activists in San Francisco have used adversarial examples in the form of traf-fic cones placed at incautious areas of the driving environment (Figure 1a) and stop signsprinted on t-shirts (Figure 1b). The aim of these attacks is to induce the object detectionto misclassify the adversarial example as an integrous part of the driving environment,interrupt the driving mission, and cause decision uncertainty, effectively immobilising thevehicle [203] [221] [147]. Adversaries are motivated by the challenge of manipulating theautonomous cognition which is supplanting human control and the possibility to inducethe algorithmic control to perform actions which impact safety, security and result in anunsuccessful mission.

(a) Safe Street Activist Group Place Cone of Cruise AV [147] (b) Activist with Adversarial Example T-Shirt [221]

Figure 1: Attacks on AV ride-hailing systems
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AVs operating in the road environment are further susceptible to a range attacks.These include usage of lasers to occlude perception sensors (Camera, LiDAR) [302] [159][5] [88], projection of adversarial examples on the road environment including transpar-ent images [208] and physical invariants (malicious road patches etc.) [316] [114] [178]and jamming and spoofing of GNSS, to name a few. Jamming and spoofing of GNSS isa recurrent feature of driving environments located within and in proximity to areas ofgeopolitical tensions (See Figure 2).

Figure 2: GNSS Jamming Activity within the Baltic States 10th January 2025 [310].

Given the nascent nature of AD technology, there is a predominant need to investigatethe vulnerabilities of real-world, operational AD systems to cyber attack, understand howthe existing design lacks robustness to cyber attacks and develop mechanisms for testingand assurance for operational readiness.
1.2 Problem Motivation
There is a preponderance of challenges of cybersecurity of AD software. This thesis fo-cuses on three main areas, vulnerability testing, analysis of system impact from cyberattacks and testing methods, tools and processes. The primary motivation for character-ising the problem within these areas and orienting the focus of the thesis in this directionis our overall aimwhich is to assess the vulnerability of a real-world vehicle to cyber attacksand develop knowledge and tangible artifacts which can enhance cybersecurity testing.As evidenced through the aforementioned examples of attacks on real-world vehicles therobustness of the design of AD software is challenged by cyber attacks, particularly, inno-vative attacks which develop from edge and corner cases. Development of AD technologyhas predominantly focused on complex areas of system integration and safety validation.Initial supporting technologies such as the ROS middleware [2] and Autoware softwareframework [4] were designed without mechanisms for secure communication, authenti-
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cation and integrity checking. Further, within the cybersecurity domain, research is pre-dominantly conducted in a silo, isolated from the knowledge of AD software developers,control system designers and safety validation engineers. There are a sparsity of studiesthat contend with AD software developed and customised for a real-world vehicle withalgorithms optimised for its body physical properties, driving maneuvers and ODD.Cybersecurity testing of AD is challenged by a lack of comprehensive testing meth-ods which delineate the affect cyber attacks have on system behaviour. Binary pass/failmetrics are the predominant means for evaluating the success of attacks in contrast tometrics which extrapolate a more meaningful evaluation of system behaviour in the con-text of safety and security [263]. Algorithm designers need to receive detailed feedbackfrom cybersecurity testing to aid root-cause analysis of safety failures. Whether the failurecan be attributed to a lack of optimisation of the algorithm to a given scenario-based testor if there exists a lack of robustness to cyber attack. Further, there is limited knowledgeon how attacks propagate within this system-of-systems architecture, what crucial break-points exist which affect control behaviours andwhat responsemechanisms are available.At a practical level, to test software used in real-world, operational vehicles, a greaterunderstanding of testbed technologies and tools for structured testing is required. Attackmodels overwhelmingly are targeted at the physical layer. Such examples include shininglasers into LiDAR sensors, mirror reflections aimed at the camera and adversarial exam-ples targeting road markings and traffic signs. These attacks, are primarily conducted insimulation environments, using generic, off-the-shelf algorithms and vehicle sensor con-figurations. For applicability to real-world programs, there is a need to investigate theuse of diverse testbed technologies including digital-twins which have fidelity to the soft-ware stack and sensor configurations of the vehicle. Attacks are constructed as proof-of-concepts, which for usage in operational settings, require customisation and/or reverseengineering to deploy the attack outside its originating environment [263] [223]. Devel-opment of structured attack test generation in simulation environments is essential toenable agile and repeatable testing, lower the cost of testing and enable reproducabilityand wider community usage.
1.3 Thesis Contributions
This thesis provides foundational knowledge for cybersecurity testing of AD software inthe context of real-world, operational systems. This work investigates the robustness ofAD software to cyber attacks and focuses on addressing a range of key areas of concern.We propose solutions to cybersecurity testing to address the aforementioned challengesthat provide greater depth of insights into the robustness of AD software. More specifi-cally, the thesis provides the following contributions to cybersecurity testing:

• We propose diverse iterative and agile AD cybersecurity testing methods. We applythem to a case study of a real-world, operational, AV shuttle.
• We demonstrate the utility of these methods using a testing tool-chain approachconsisting of diverse test-bed technologies.
• Wediscover vulnerabilities in bothmodular and end-to-end software architectures.Specifically in the planning and localisation software modules of the modular archi-tecture, and the training of neural networks in the end-to-end architecture.
• We evaluate the findings with AD software control designers and safety validationengineers and use this knowledge to understand system optimisation and developmethods for root-cause analysis.
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• We present tools for AD cybersecurity testing to enhance structured testing, andcommunity efforts towards standardisation of testing.
The itemised list of open-source tools are as follows:
• ADSecData Platform - Datasets of experiments conducted in this thesis: https:
//sites.google.com/view/adsecdataplatform/home

• REACT - Dynamic intrusion response system for automotive: https://github.
com/AndrewRobertsEst/REACT

• Self-driving testbed for cybersecurity demonstration videos https://tinyurl.
com/2xxvvkzd

• ADSecLang -Domain specific language for AD cybersecurity testing:https://github.
com/AndrewRobertsEst/AttackLa

• FuzzSense - Fuzzing tool for AD software: https://anonymous.4open.science/
r/FuzzSense-E680/README.mdFuzzSense

1.4 Thesis Structure
The thesis is divided into 7 Chapters. Chapter 2 details background information about ADsoftware, in particular the foundations of AD software frameworks, cyber threats and adiscussion of some related work (Pub. VIII). Next, in Chapter 3, we approach the problemof evaluating affects of cyber attacks within the AD software. In this chapter, we presenta methodology for combined security and safety testing and utilise a testing-tool chainapproach to explore the problem amidst a range of diverse cyber attacks at the algorithmand sensor level (Pub. IX, VII, IV). Chapter 4 deepens the analysis of cyber attacks in ADsoftware by presenting methods for fingerprinting cyber activity, debugging AD softwareand investigates mechanisms cyber incident response (Pub. VI, V). Chapter 5 presentsconceptual frameworks for structured and fuzz testing and open-data sharing(Pub. X, III,I, II). Chapter 6 provides direction for future work. Chapter 7 concludes with a summaryof the findings and their relevance to the broader community.
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2 Preliminaries
The architecture of autonomous vehicles consist of a diverse technology stack incorpo-rating from the low-level sensing, electromechanical devices to the high-level softwarecontrol. To understand the cybersecurity implications of driving autonomy, it is necessaryto first understand the technology stack of AVs. Within this section we will present first,a high-level overview of autonomous driving. Consequently, a more detailed extrapola-tion of the AV technology stack will be presented within the context of the case study AVutilised in this thesis. Last, the cyber threats to autonomous driving are presented.
2.1 Autonomous Driving
To ensure a consistent taxonomy of driving autonomy, SAE [246] have defined diverse lev-els of autonomy according to technology features and driving control. There are 6 levels ofdriving automation according to the SAE Levels of Driving Automation (See Figure 3). Level0 to 2 vehicular architectures are based on human driver control and supervision of thevehicle. Level 0 represents legacy vehicles, there is no autonomy features and softwarefunctionality is limited to the provision of warnings and driver assist notices. Level 1 to2, which is typical of modern connected vehicles, provide limited autonomy technologiessuch as cruise control, lane-centering and steering, brake and acceleration support. Level2 is a designation of popular limited autonomy technologies, OpenPilot [22] and Tesla Au-topilot [332] (considered between level 2 and level 3). In level 2, the vehicular sensorsmonitor the driving environment and from the sensing data, lane centering and adaptivecruise control algorithms informmotion control and actuation decisions to maintain vehi-cle position in the driving environment. The autonomy software does not perform com-plex driving maneuvers such as overtaking and intersection management and is not ableto proactively respond to dynamic driving situations. The human driver is required to keepcontrol and supervision of the vehicle at all times. Level 3 offers limited self-driving func-tionality with the requirement of human-control when the autonomy functionality en-counters uncertainties that it cannot resolve. Full self-driving autonomy is defined withinlevel 4 and level 5. Within these autonomy levels, the autonomous software is expectedto control the vehicle without human intervention. This thesis focuses on self-driving au-tonomy as defined from levels 4 to 5.
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Figure 3: SAE J3016 Levels of Driving Automation [246].

2.1.1 Autonomous Driving SoftwareHighly automated vehicles, SAE Level 4 to 5, exhibit a sensor layout which consists ofdiverse sensors (Camera, LiDAR, RADAR, IMU, GNSS) and multiplicity of sensors to ensuredense coverage. This is in contrast to semi-autonomous vehicles which predominantly usecamera and ultrasonic radar sensors. The number of camera sensors of semi-autonomousvehicles can range from 3 in the case of comma ai to 8 in Tesla vehicle model [300]. Inhighly automated vehicles, the AD software performs the tasks of perception, planning,localisation and decision-control. Due to the reliance on algorithms to perform the drivingactions and the absence of active human supervision and intervention, highly automatedvehicles have the most robust sensing profile for perception and localisation. However,due to cost, especially of the LiDAR and high-definition camera sensors, this architectureis predominantly utilised for autonomous public-transit shuttles and specific commercialuse-cases such as logistics and freight [265]. Figure 4 displays the layout of sensors on alevel 4 AV for public transportation.
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Figure 4: Perception Sensor Layout of Autonomous Vehicle for Public Transport [87].

2.1.2 Autonomous Driving Software Frameworks
Architectures for AD are categorised in three types (Figure 5); modular/pipeline, end-to-
end and hybrid [244]. The modular/pipeline architecture compartmentalises the auton-omy task pipeline (localisation, perception (detection), prediction, path planning , decision-making, control) intomodules. Amajor benefit of themodular approach is that each of thealgorithms for the AD tasks can be accessed and modified according to the requirementsof the vehicle development and testing team. This modular approach enables softwaredevelopers to work on each task, andmore clearly understand the inputs, outputs and be-haviours of each task in the pipeline. The modular architecture further allows the mixedusage of commercial vendor developedmoduleswith open-sourcemodules. Eachmodulecan be seen as the top of a hierarchical structure with sub-modules required for individualprocesses. A module and its constituents can extend to hundreds of thousands lines ofcode, considering the complexity of the task. This modularity can also be a disadvantage,if there exists a lack of robustness of one module, it affects that performance of the oth-ers. Further, there is additional effort to integratemodular components and ensure seam-less communication and performance. The End-to-End architecture uses deep learning tohandle the entire navigation pipeline in an unified process. Sensing input is directed into aneural network for processing of navigation decisions. The benefits of end-to-end includea more simplified architecture and more holistic optimisation as optimisation takes placeon unified architecture rather than modular parts. Drawbacks include the requirementsfor training data such as a need for large scale datasets and holistic data that includes edgeand corner cases. Also, the lack of transparency of the end-to-end DNN which resem-bles a black-box. This opacity complicates efforts to debug and troubleshoot. The hybridapproach uses elements of the modular and end-to-end architectures, leveraging neuralnetworks for path-planning, whilst maintaining separate modules for perception and con-trol. The advantages of this approach the targeted use of deep learning for more complextasks, and deterministic algorithms for tasks that require reliability and interpretability.

18



The drawbacks of the hybrid approach are complexity of integration and resource usagedriven by combined use of deep learning and deterministic algorithms [244].

Figure 5: Autonomous Driving Architecture [244]

There are two predominant software frameworks for levels 4 and 5 autonomy, Auto-ware [?](Figure. 6) and Apollo [15](Figure. 8).
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Figure 6: Autoware Architecture [?]

Autoware [?] is an open-source software framework, consisting of a modular/pipelinearchitecture that encompasses the full-range of AD functionality (localisation, percep-tion (detection), prediction, planning , control) with defined interfaces and APIs. Eachof the modules can take diverse sensor input to inform task performance. The develop-ment of Autoware is supported by theAutoware foundationwhich consists of contributorsfrom industry and academia. The AV technology stack of Autoware (Figure 7) is based onROS [143]. ROS is a middleware that consists of software libraries to support the packag-ing of hardware and devices and a messaging service to support communication betweenactuation and high-level software processes.

Figure 7: Autonomous Vehicle Technology Stack - Autoware [143]

Apollo [15] is an open platform, end-to-end architecture. The open-platform means
20



that development and testing teams can access the simulation and execute tests, how-ever, the neural network is a black-box and therefore its training and configuration is notopen-source. Developer access needs to be granted by Apollo to gain advanced privileges.Cyber RT, like ROS, is the middleware software which underpins the run-time communi-cations required for real-time operation.

Figure 8: Apollo 10.0 Architecture [15]

2.2 iseAuto: Autonomous Vehicle for Public Transportation

This thesis uses a real-world operational AV system as a case-study. The iseAuto [254](seeFigure 9), is a SAE level 4, real-world AV shuttle for public transportation. It provides last-mile shuttle transport for public users in Tallinn, Estonia and has provided similar servicesfor cities in European countries such as Norway and Greece.

Figure 9: iseAuto autonomous shuttle [185]
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2.2.1 Architecture
The architecture of the iseAuto displayed in Figure 10 consists of advanced sensors, the ADplatformwhich contains theAD software, the supporting compute platformandnetworks,and the low-level control and actuation [256].

Figure 10: Autonomous vehicle high-level functional architecture [256]

2.2.2 Sensor Configuration
Sensors are connected to the AD platform running AI-based models for identification, de-tection and segmentation of objects and environmental information through a Gigabitethernet switch. Data flow is managed and synchronized directly in the Autoware stack,sending data as ROS topics to concurrent threads (nodes) running inference over the AI-based deployed modules. Sensing information are used for perception-related function-alities such as object detection, segmentation and sensor fusion.

The iseAuto uses a multi-LiDAR sensor system for perception and localisation. TwoVelodyne LiDARs are mounted at the top front (VLP-32) and the back (VLP-16) of the vehi-cle, in addition to two Robosense RS-Bpearl at both sides (left and right), to decrease thesensor blind zone around the vehicle. Table 1 lists the iseAuto sensors.
Table 1: Autonomous Vehicle Sensors

Sensor Model

3D lidar (front) Velodyne Ultra puck VLP 323D lidar (rear) Velodyne VLP-162xSide lidar Robosense BpearlSafety lidar Ouster OS0-90 (Safety)3xCamera FlirGNSS Trimble BX992Radar TI
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2.2.3 iseAuto Autonomous Driving SoftwareThe iseAuto uses Autoware.ai [144] autonomous software stack. As Autoware is a mod-ular architecture, each of the software modules of the iseAuto autonomy platform arecustomised to the requirements of the vehicle. These include the types of missions, bodyphysical profile and driving environment.iseAuto uses ROS to communicate with different blocks of the software stack. Figure 11depicts a ROS-GRAPH displaying only a small subset of the nodes involved in communicat-ing sensing data to the trajectory planning algorithm involved in the overtaking operation.

Figure 11: ROS Graph of AV Shuttle During Overtaking Scenario

Apart of the ROS nodes/topics running on the vehicle are represented in Figure 12. Thesoftware stack is mainly composed of the following main components, sensing and per-ception, mapping, localization and motion planning. Perception modules runs AI-basedmodules for detection, segmentation and interpretation of traffic scenes. Localization andmission planning receive constant feedback from vehicle and global positioning to gener-ate new control commands.
Sensing & Perception ModuleThe algorithm uses the output of the kf_contour_track algorithms to consider all the per-ceived objects based on the LiDARs point cloud in its local path planning. Earlier, theeuclidean clustering algorithm received the filtered point cloud data and prepared pointclusters, which is the input of the kf_contour_track. This combination of cluster and con-tour tracking is done in each sequence for the open-planner to evaluate possible trajec-tories and create the behaviour based on that.
Localisation ModuleThis module provides accurate information regarding the position and orientation of thevehicle. Using a NDT matching search algorithm, it identifies the best matching positionbased on sensor perception. It uses input from the IMU and the point cloud generated bythe LiDAR. Then, it attempts to match the points from our current scan to a grid of prob-ability functions derived from the map. NDT matching algorithms can also benefit fromthe GNSS sensor, which provides initial rough estimates of localization on geo-referencedmaps, thereby avoiding any sudden errors in localization calculations that may result infailures. Figure 13 displays the flow of the localisation algorithm within the AD system.
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Figure 12: Intelligent driving software stack structure showing ROS nodes/topics communication
between essential elements

Figure 13: Localisation Algorithm Flow within AD System.

Mission & Motion-Planning Module
The iseAuto uses OpenPlanner [56] as its planning algorithm(see Figure 14). OpenPlanneris one of the most widely used path-planner modules in AD software. In the latest versionof this algorithm, which is currently 2.5, the module has become noticeably more ad-vanced in terms of supporting various high-definition map formats, predicting the trajec-tories of other actors, and using a kinematics-based trajectory generator [56]. This versionis compatible with Autoware.ai 1.15. Open-planner combines global and local plannersthat jointly utilize the road network map to generate local waypoints based on a globalroute and manage discrete behaviours such as avoiding dynamic obstacles and followingtraffic lights.For the AD system to plan a mission, firstly, a global planner generates a global ref-erence path using a vector (road network) map. The function of the global planner is tostipulate a route between the starting position and goal position of the mission on theroad map. The local-planner generates smooth and obstacle-free trajectories in the oper-
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Figure 14: OpenPlanner 2.5 Architecture [57]

Figure 15: Abstract Local Planning Algorithm Flow within AD System.

ational local domain following the global route.The local-planner consists of several modules (see Figure 15); trajectory generation,trajectory evaluation, intention and trajectory estimator, object-tracker and behavior se-lection (decision making) [57].The trajectory generation module generates alternative tracks parallel to the mainpath defined by the global planner. These tracks are named roll-outs (see Figure 16).The trajectory evaluation module assesses all possible roll-outs and the data input fromsensed-data of the AV and makes a cost estimation. The behaviour selector will lead theAV to motion on a roll-out based on the least-cost. Figure 16 shows how open-plannerselected roll-out number 6 in order to pass the non-player character (NPC). It also detectsthe curb lines and avoids those roll-outs which intersect the curbs.Table 2 displays the input and outputs of each of the local-planning modules (Note.intention and trajectory estimator and object-tracker are not visible are still developmen-
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Figure 16: How open-planner generates different trajectory to pass an object

tal).
Table 2: Local-Planning Module

Node Input Output

Trajectory Generator Initial_Pose Local Trajectories
Current_Pose
Current_Velocity
Lane_Waypoints_Array

Trajectory Evaluator Current_Velocity Local Trajectory_Cost
Current_Pose
Local_Trajectories
Lane_Waypoints_Array
Predicted_Objects
Current_Global_Local_IDS

Behavioural Selector Current_Velocity Current_Behaviour
Current_Pose
Local_Trajectory_Cost
Local_Weighted_Trajectories

Control Algorithm
The local motion planning algorithm generates a trajectory (or a set of control commandsfor the AV) byminimizing a cost function, within a workspace, that includes a set of designparameters. The cost function constitutes the rules for motion-planning which inform thedecision-making for autonomous driving.The cost function is built on five factors and calculated in Equation 1:

C =


wcent
wtrans

wlongColl
wlatColl

wvis

 ·


Ccent
Ctrans

ClongColl
ClatColl

Cvis


T

(1)

where, Ccent is the cost associated to the central trajectory and is designed to keep the
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vehicle in the central trajectory;Ctrans is the transition cost that prevents the vehicle fromjumping between roll-outs;ClongColl andClatColl are the cost of the longitudinal and lateralcollision respectively, and finally Cvis is the weight associated to the visibility [207]. Eachof these costs are weighted by their respective weighting factors wi [58].
2.2.4 Low-Level ControlLow-level control is at the base of our software stack having task to give actuators theright commands to generate a desired behaviour. Analog controllers have the functionto follow a specific reference signal. It is clear that such signals are measured by trans-ducers and applied to actuators as current or voltage signals to apply a torque to a motorat the low level. The most common and well known analog controller in automotive isthe ECU, which regulates injection, speed, and other engine parameters. Brake controlmodules are also very common and control various aspects of the braking system, such asABS, ESC, traction control, and brake force distribution. Now, assuming that our goal is tokeep any value of cruise speed, a velocity regulator works by receiving a measure of thecurrent speed, comparing it to the reference, and generate a control signal to accelerateor brake accordingly. Low level controllers typically work on a simple control feedbackloop involving some type of linear systemmodel (or a linearized one). The most common,state of the art, and well established controller in automotive is the PID controller. Theyare wide spread in automotive for their simplicity, robustness, usability and real-time ca-pabilities. A PID controller continuously calculate an error signal based on the differencebetween a desired setpoint and the measured process variable, and then adjust the con-trol output accordingly. They use proportional, integral, and derivative actions to regulatea vehicle actions. The underling equation is relatively easy involving three constants pro-portional, integral and derivative constants, typically indicated asKp,Ki, andKd , toweightthe each action respectively. With reference to Figure 10, PID controllers are at the baseof the "drive controller" and "steering controller" block. Control theory provides a verystable mathematical theory about analysis and synthesis of the controllers, thus how dis-turbance might affect the controller is, in principle, well known. This work aim to provideinsights on how the behaviour of the controller might affect the decision-making blocksin a real-world, operational AV.
Intermediate Layer/Master ControllerThe role of the Master Controller is to parse analog input to the digital network of thevehicle. The Master Controller communicates with the low-level control through the CANbus. The low-level control section in Figure 10 shows all the basic components in oursystem, which are connected to the master controller by 3 different CAN busses:

• CAN1 is used to connect all safety critical components, such as brake systems andelectric motor.
• CAN2 is used for redundancy over all the safety critical components.
• CAN3 is dedicated to low-priority body-related functions such as door automationand lighting.
The Master Controller receives data from the low level via CAN bus and forwards tothe upper-layers via ethernet. Then receives processed signals from the intelligent blocks(the upper-layers) and generate the control commands for the actuators, parsed via CANbus. Basic data from low-level sensors are processed here and forwarded to the upperlayer, this includes speed, acceleration, encoder positioning, voltage and currents. The

27



master controller directly communicates with the upper levels (i.e. AD Software) via ROStopics flowing over the ethernet connected to the Ubuntu-based Autoware PC.

2.3 Cyber Threats to Autonomous Driving

Cyber threats to AD software can be categorised as threats to AI semantic componentsand the AI system components [263]. AI semantic components directly influence the ADmodel and are defined as the advanced sensor technologies (LiDAR, camera, RADAR, GNSSetc.) which generate input data to the AD model. AI system components are the support-ing infrastructure. They are defined as those components which comprise the underlyinginfrastructure which supports the AD model and the operational state of the AV. Such ex-amples of AI system components include the application software, networks, hardware,and E/E devices. The aim of each threat category is to induce the AD pipeline to influencedriving actions which violate safe behaviour.

2.3.1 AI Semantic Components

The adversarial threat models contained in literature, of attacks against AI semantic com-ponents, exploit the physical properties of the sensor technology and the semantic prop-erties of the AD algorithms. Advancement in threat research has emanated from founda-tional work by Eykholt et al. [267] and Petit & Shladover [223]. Eykholt et al. [267] devel-oped adversarial generated robust physical invariants in the form of stickers with pixelsmanipulated in a manner to that would affect the object detection DNN. These stickerswhich were placed on environmental objects such as stop signs and pedestrians. Theydemonstrated that these adversarial examples in the form of physical invariants, couldmanipulate the logic of the DNN of an object detector to fail to recognise (disappearance)or incorrectly classify (creation) the object. Affects to the vehicle included failing to stopfor stop signs and accelerating when the object detector misclassified the adversarial stopsign as an 80 speed limit sign. Petit & Shladover [223] compiled one of the first lists ofpotential attacks to AD. Many of the innovations in threat research emanated from thedirections provided in their paper, especially targeting machine vision and LiDAR. Sincethe publication of these papers, there has emerged a diverse range of proof-of-conceptattacks against the AI semantic components.
Threats to camera perception and localisation centre on assessing limitations of thecamera hardware and the training parameters of theDNN. Threatmodels include jammingor spoofing light signals using adversary infrared and laser devices. This technique aims toexploit vulnerabilities of the camera hardware and filtering within object detection algo-rithms such as YOLO and R-CNN [337] [128] [321] [133] [305] [159] [317] [61]. Other attacksinclude: manipulation of image pixels [267] [47] [101] [212] [206] [161] [27] [46], camouflag-ing obstacles [335] [114] [302], projecting ghost or transparent images to make them ap-pear physical [209] [191] [178] [5], adversarial generatedmalicious road patches [319] [316][132] [47] [134] and manipulating the bounding boxes used for object detection and colli-sion avoidance so that obstacles appear larger or smaller than actual [163] [301] [277] [181].Attacks against level 2 and level 3 autonomy focus on exploiting the parameters of ADASand LKAS systems [250] [138]. Studies which generate perturbations of lane-markingshave demonstrated vehicles can crash due to low-cost adversarial generated road mark-ings [250] [138] [174]. Table 3 lists threats to the camera sensor.
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Table 3: Cyber Threats to camera perception and localisation

Cyber Threats to Camera Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
Object DetectionLu et al. [128] Use of different anglesand lighting for experi-ments of perturbed physicalinvariants.

White-Box Simulation

Eykholt etal. [267] Robust physical invariants.Perturbation of Road SignUnits (Stop Sign) using pix-elized stickers to confuse ob-ject detection.

White-Box Real-World &Simulation

Chen etal. [46] Manipulation of image pix-els to fool DNNobject detec-tion.
White-Box Simulation

Huang etal. [163] Manipulation of the param-eters of the bounding box tomanipulate confidence of R-CNN and YOLO v3 object de-tection.

White-Box & Black-Box Simulation

Zhao etal. [337] Robust physical invariantsto manipulate R-CNN andYOLO v3 object detection.
White-Box Simulation

Xiao etal. [319] Adversarial generated 3Dmesh added to 3D ob-jects to manipulate objectdetection.

White-Box Simulation

Zhang etal. [335] Camouflage vehicles usingadversarial physical gener-ation against object detec-tion.

White-Box & Black-Box Simulation

Nassi etal. [209] Projected ghost objects onthe camera sensor to foolTesla, autopilot, object de-tection to perceive them asphysical objects.

Black-Box Real-World

Man etal. [191] Projection of ghost objectson the camera sensor tomanipulate object detection(Yolo v3 and R-CNN).

White-Box Real-World &Simulation

Wu et al. [316] Adversarial generated mali-cious patches to downgradeobject detection (COCO andYolo v2).

White-Box Simulation
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Xu et al. [321] Adversarial T-Shirts (movingphysical invariant) againstYolo-v2 and R-CNN objectdetection.

White-Box Simulation

Hu et al. [114] Adversarial generated cam-ouflage attack against objectdetection.
White-Box & Black-Box Simulation

Hamdi etal. [101] Semantic manipulation ofthe learning parameters toenable pixelmanipulation ofthe object detection DNN.

White-Box & Black-Box Simulation

Ji et al. [133] Manipulation of acousticsignals used for communica-tion with the IMU, triggersmotion compensation andblurred camera image im-pacting object-detection(YOLO v3/4/5, R-CNN andApollo).

White-Box & Black-Box Simulation &Real-World

Lovisotto etal. [178] Projection of physical invari-ants to manipulate object-detection (YOLOv3)
Black-Box Simulation &Real-World

Wang etal. [302] Infrared light used to per-turb camera sensor and ma-nipulate object-detection ofTesla, autopilot.

Black-Box Real-World &Simulation

Köhler etal. [159] Laser perturbation of cam-era sensor to distort objectdetection.
Black-Box Simulation

Wang etal. [305] Compresses dimensionsof detection boxes to ma-nipulate object-detection(YOLOv3, R-CNN)

White-Box & Black-Box Simulation

Zolfi et al. [5] Contactless translucentadversarial generated patchplaced against the cameralens to manipulate objectdetection (YOLOv2,v5,R-CNN).

White-Box Simulation

Zhu et al. [317] Placement of lighting bulbon infrared pedestriandetectors to attenuate thelighting to perturb objectdetection.

White-Box Simulation &Real-World
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Davidson etal. [61] Spoofing of optical flowsensing of the camera tomanipulate the flight ofthe drone. Developmentof RANSAC optical flowalgorithm enhancement.

White-Box Simulation

Guo et al. [88] Projection of modulatedlight emission from anadversarial source to induceincorrect object-detectionof traffic-signs

White-Box Real-World &Simulation

Ma et al. [182] Perturbation of videoframes of the camera sen-sor to increase latency ofobject-tracking

White-Box Simulation

Semantic SegmentationNakka etal. [206] Attacker generates pertur-bations in the image that im-pact semantic segmentationto cause the object detec-tion to fail to detect road/-navigational path from inter-fering objects.

White-Box Simulation

Nesti etal. [212] Adversarial generated roadand driving environment(billboard) patches toimpact semantic segmen-tation to cause the objectdetection to fail to detectroad/navigational path frominterfering objects.

White-Box Simulation &Real-World

Object TrackingJha et al. [132] Manipulation of sensortelemetry through physi-cal attacks (road patchesetc.) induce the vehicleto miscalculate distancesto pedestrians and otherdriving obstacles. Thesemanipulations are gener-ated by a DNN to evadedefensive mechanisms.

White-Box Simulation

Jia et al. [134] Adversarial Examples(Patches) to distract objecttracking.
White-Box Simulation

Ding etal. [65] Adversarial perturbations ofvideo frames to misguideobject trackers.
White-Box Real-World &Simulation
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Chen etal. [47] Adversarial patch gener-ation to distract objecttracking.
White-Box Simulation

Lane DetectionSato etal. [250] Fool automated lane de-tected algorithm usingan adversarial generated“dirty” road patch.

White-Box Simulation

Jing etal. [138] Subtle manipulation of lanemarkings to fool automatedlane detection.
White-Box & Black-Box Simulation

Traffic Light DetectionTang etal. [277] Tampering with the Regionof Interest (ROI) for the au-tomated traffic light detec-tion to fail to detect the traf-fic light.

White-Box Simulation

Wang etal. [301] Adversarial camouflage ondriving environment objectsto manipulate object detec-tion (Yolo v5)

White-Box & Black-Box Simulation

Camera LocalisationWang etal. [302] Adversarial infrared sensorperturbation of the camerasensor.
White-Box Simulation &Real-World

Threats to LiDAR perception and localisation predominantly focus on injecting ma-licious LiDAR point clouds into the LiDAR sensor and removing LiDAR point cloud datapoints. Such attacks are aimed at limitations of the perception and localisation algorithmto filter adversarial sensor telemetry manipulation [35] [273] [286] [341] [325] [340] [171][284]. Table 4 lists threats to the LiDAR sensor.
Table 4: Cyber Threats to LiDAR perception and localisation

Cyber Threats to LiDAR Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
LiDAR PerceptionCao et al. [35] Spoofing and manipulationof the input of the LiDARsensor. Two attack scenar-ios are implemented, emer-gency brake attack and AVfreezing attack/block traffic.

White-Box Simulation
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Sun etal. [273] Black-box attacks on LiDARfor general vulnerabilitytesting. Involves inputtingrandomised adversarialLiDAR points into LiDARstream to alter perception.Paper develops CARLOdetection algorithm.

Black-Box Simulation

Tu et al. [286] Adversarial mesh on top ofthe Autonomous vehicle toobscure the LiDAR detec-tor. Defensive mechanismdeveloped using data aug-mentation.

White-Box Simulation

Zhu etal. [341] Arbitrary objects with re-flective surfaces placedaround driving location bydrones.

White-Box & Black-Box Simulation &Real-World

Yang etal. [325] Injection of malicious LiDARpoint cloud data through ad-versarial road-side objects.
White-Box & Black-Box Simulation

Hau etal. [340] Manipulation of LiDAR sen-sor stream through removalof point clouds to disabledetection of 3D objects.

White-Box Simulation

Li et al. [171] Adversarial spoofing of a AVtrajectory with small pertur-bations.
White-Box Simulation

Semantic SegmentationTsai etal. [284] Adversarial generated pointcloud data against DNN. White-Box SimulationReal-World(Not AV)
LiDAR LocalisationLuo etal. [180] Side-Channel attack againstcache of LiDAR perception.Attack reveals leakage ofdata, including location andplanning of the AV.

White-Box Simulation

Threats to SONAR and RADAR target the transmission of malicious communicationson frequencies such as mmWave [275]. These malicious communications take the formof flooding signals and crafted adversarial signals in the specific spectrum band. The aimis to manipulate the SONAR and RADAR to incorrectly interpret a signal as a close objectwhich will feed to the object detection algorithm [266]. Table 5 lists threats to the SONARand RADAR sensor.
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Table 5: Cyber Threats to SONAR & RADAR

Attacks to SONAR & RADAR Sensor
Paper Threat Model Attacker Knowledge Test Environ-

ment
Radar PerceptionSun etal. [275] Spoofing of mmWavesensing including addingfake obstacles at arbitrarylocations and faking thelocations of existing ob-stacles. Five scenariosare generated in bothsimulation and real-worldenvironments. Defensivemechanisms are developedusing challenge-responseauthentication scheme andRF fingerprinting.

White-Box & Black-Box Simulation &Real-World(AV)

Son etal. [266] Adversarial sound noiseto manipulate MEMSgyroscopes.
White-Box Real-World

Threats to IMU and GNSS sensors take the form of jamming, spoofing and data ma-nipulation [103] [155] [59] [151] [198]. GNSS spoofing and jamming is prevalent in manyoperational environments and impacts the reliability of the localisation of the AV whichcan cause incorrect trajectory planning [59] [198]. Malicious injection of the odometrydata (velocity, yaw etc.) of the IMU which includes can impact the trajectory planning ofthe AV which can have downstream affects to the control algorithm [103] [155]. Manipu-lation of environmental telemetry (temperature, sensor pressure etc.) can invoke the AVto take safety decisions such as a deploying emergency safety measures [151]. Table 6 liststhreats to the IMU and GNSS sensors.
Table 6: Cyber Threats & IMU Sensor

Cyber Threats to GNSS & IMU Sensor
Paper Threat Model Attacker Knowledge Test Environ-

mentMit et al. [198] GNSS spoofing attacks onTesla Model 3. Black-Box Simulationand exper-iments onreal-worldvehicle.Dasgupta etal. [59] Replication of target vehiclesatellite reception to injectstealthy GPS perturbationsto alter vehicle course

White-Box Simulationbased ondata fromreal-worldvehicle
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Han &Zhou [103] Fuzzing of the GNSS sensortelemetry data input to ma-nipulate the Apollo seman-tic control program to crashthe AV

White-Box and Black-Box Simulation.

Kim et.al [155] Fuzzing of the IMU dataused for feedback control onrobotic systems.
White-Box and Black-Box Simulation

Kim et.al [151] Fuzzing of the telemetry of adrone communicating usingthe MAVLINK protocol. Ran-dom generated input is sentto sensor telemetry data in-puts for IMU such as barom-eter, gyroscopy which causethe drone to crash.

White-Box and Black-Box Simulation

Threat models to sensor fusion algorithms exploit vulnerabilities of the diverse sensorarchitecture. These include injecting LiDAR point clouds or infrared signals from an adver-sarial device placed at an angle unobserved by the camera sensor [323] [288] [92] [264].Table 7 lists threats to sensor fusion.
Table 7: Cyber Threats to Sensor Fusion

Sensor Fusion Perception
Paper Threat Model Attacker Knowledge Test Environ-

mentCao etal. [323] Adversarial 3D printed ob-ject that AV fails to detect.This attack is tested againstMSF algorithms.

White-Box SimulationReal-World(non-AV)
Hallyburtonet al. [92] Placement of rogue LiDAR ina specified location near thevehicle, the "frustrum" andinjection of malicious pointclouds between an angle ofinvisibility of the camera andLiDAR sensor

White-Box Simulation

Tu et al. [288] Adversarial 3D printedobject targeting MSF algo-rithms (LiDAR + Camera).
White-Box Simulation

Sensor Fusion LocalisationShen etal. [264] GNSS spoofing attack onMSF (LiDAR locator, GNSSLocalisation).
White-Box Simulation

A shortcoming of the AI semantic component threat research include the lack of di-versity of target systems. The threats contained in Tables 3-7 use passenger vehicles with
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a limited sensor profile and off-the-shelf software with no optimisation to the driving sce-narios contained in the experiment. Threat models such as Hallyburton et al. [92] ex-ploit a gap in sensor coverage in passenger vehicles which would do not apply to highly-automated vehicles such as AV passenger shuttles.
2.3.2 AI System ComponentsAI system components include the following:

• Middleware software such as the ROS, CyberRT and others, which enable commu-nication between the hardware and software and facilitate control messages fromthe higher level AD software to the actuation.
• Networks which enable communication in this densely-interconnected ecosystemand have unique properties, CAN, LIN, MOST, FlexRay.
• E/E components and compute platforms which support ECUs, AD software andother real-time systems.
• The electromechanical components which support the actuation processes of thevehicle.

These components were not designed with security in mind and have been proven tobe vulnerable to cyber threats which target the inherent lack of authentication and en-cryption [232] [153]. Initial threat research on middleware software focused on spoof-ing the publish-subscribe model of message communication which existed in an envi-ronment where there are no mechanisms for a subscribing node to trust a publishingnode [232] [153]. This vulnerability of lack of authentication allowed attackers to spoofthe master node and issue motion-control commands to low-level actuation, in effect,taking control of the autonomous vehicle [113]. Also, message flooding attacks which cre-ate a denial-of-service (DOS) which impact the availability of themessage communicationtransmission which enables safe control of the AV [155]. Other middleware software andcommunication protocols such as MQTT, which is used for V2X, suffer from the same lackof security in their initial design [94].Attackswhich exploit vulnerabilities of system components aim tomanipulate the sen-sor data input are particularly dangerous as they have the direct ability to affect the ADpipeline. Threats to network communication protocols target the external communicationinterfaces and the internal communication system. Threatmodels of the external commu-nication interfaces include manipulating the message exchange between the AV systemand the intelligent traffic control infrastructure [77]. Examples include manipulating thegeographical location broadcast by the AV system to the intelligent traffic control. This willcause the traffic control to incorrectly estimate the location of the vehicle and make anadverse decision for traffic management [77]. As concluded in Shen et al. [263], there is alack of cyber threat research on systems unique to the autonomous system architectureand the initial research on ROS have only begun to explore the dependency of the seman-tic components on system components [208]. There is lack of understanding of the rela-tion of downstream AI system components to the how attacks of the system components(malware, data manipulation and buffer overflows) impact driving decisions [245]. Thereare numerous surveys of AI system component attacks [201] [63] [85] [327] [62] [172],therefore, Table 8 presents two threats to the AI system components that directly involveexperimentation with AD systems.
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Table 8: Cyber Threats to AI System Components

AI System Components
Paper Threat Model Attacker Knowledge Test Environ-

mentHonget.al [113] Exploitation of ROS pub-lish/subscribe privileges tomanipulate sensor data torelocate NPCs into path ofvehicle.

White-Box Simulation

Feng etal. [77] Manipulation of the geo-location protocol of the V2Xto change the location of ve-hicles and manipulation thetraffic management.

White-Box Simulation

2.4 Autonomous Driving Cybersecurity Testing
The majority of the cybersecurity testing on autonomous transportation systems utilisevulnerability testing methods (See Tables 3-8). Testing can be categorised as white-box,black-box and gray-box. A white-box test is where the attacker has knowledge of the sys-tem and is able to use that knowledge to develop an assumption or hypothesis on thevulnerability of the system. The attacker is then able develop a threat model based onthis knowledge. A black-box test is where the attacker has no knowledge of the internalprocesses or architecture of the target system. Gray-box testing is a combination of white-box and black-box, select parts of the target system are known whilst others are opaque.As seen in Tables 3-8, white-box testing is more prevalent. As white-box testing is guidedby knowledge of the system, interpretability of results is less challenging than black-boxtesting where no system knowledge is assumed.
2.4.1 Autonomous Driving Test Platforms
Testing of AD systems are performed on simulation (SiL), cyber-physical (HiL) and real-
world testing platforms. Simulation platforms consists of a rendered 3D virtual environ-ment (which can be customised to replicate the real-world physical environment through3D LiDAR mapping) consisting of the ODD and AV. The AD software in the simulator, is adigital-twin, which replicates the technology stack of the AV software (Autoware, Apolloetc.). However, limitations of the SiL are that the algorithms underpinning the softwareneed to be customised to the body-physical profile of the vehicle (light-vehicle, shuttleetc.), driving maneuvers and ODD (weather, pedestrians, other vehicles) and the amountof fidelity of the physical properties of the sensors in the simulation environment is anactive topic of research [162] [251]. Without access to the AD software of a real-world,validated AV, it is questionable whether a cyber attack conducted in a SiL succeeded dueto a vulnerability or a lack of optimisation of the AD algorithms for the type of vehicle,driving maneuver and ODD. Whilst benchmarking/golden run tests are conducted in cy-bersecurity studies [298], they lack the robustness of safety and software reliability testingdue to the extensive amount of tests required and the computational resources involvedin generating high-fidelity 3D test scenarios. Therefore, a number of studies use open-pilot [22] and Apollo [15]. Openpilot is a level 2 system and therefore not applicable tofull-autonomy studies and as aforementioned, the black-box nature of the end-to-endmodel and the lack of developer access for Apollo complicates debugging failures.
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Cyber-physical testbeds (HiL) are utilised where there is a need to observe integrationbetween hardware and software. This is most common in testing the integration betweenactuation and E/E components with software control. Whilst HiL are commonplace inlegacy and connected automotive, there are few examples of AD HiL testbeds. Whilst newcontributions such as RAMN [282] exist, where ECUs are fused with AD software, they donot explore integration withmore advanced AD sensors (LiDAR, camera) and components(AI computers (Nvidia Drive etc.)).Real-World testbeds take the form of proving grounds and test track environments.Proving grounds are predominantly used for type approval and test track environmentsfor functional testing and edge and corner cases. These testbeds are the most expensivedue to the costs and labor in building and maintenance. Recent research has shown anincrease in the use of real-world testbeds to conduct cybersecurity research [264] [224].This is due to the aforementioned need to improve the understanding of the fidelity of thesimulation environments to real-world environments. Safety validation testing in provid-ing grounds has also demonstrated the capability to stream the data from the real-worldtest to the simulation platform. Thereby, enhancing the fidelity of the simulation. Table 9lists the simulation platforms for AD.
Table 9: Autonomous Driving Software Simulation Platforms

Autonomous Driving Software Simulation Platforms
Simulator Characteristics Cybersecurity Testing
AWSIM [1] + Open-Source simulator for au-tonomous driving. Aligned to Auto-ware Foundation.+ Integration with ROS.+ Enhanced fidelity to physicalproperties of LiDAR & camera sens-ing+ Allows custom configuration ofdriving environment, AV, Sensors.+ Scenario Test library integration

+ Sensor Attacks (LiDAR,camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)

CARLA [68] + Open-Source simulator for au-tonomous driving.+ Integration with ROS.+ Allows custom configuration ofdriving environment, AV, Sensors.+ Scenario Test library integration

+ Sensor Attacks (LiDAR,Camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)
LGSVL [242] + Open-Source simulator for au-tonomous driving+ ROS Integration.+ Allows custom configuration ofdriving environment, AV, Sensors.+ End-of-life/Sunsetted+ Scenario Test library integration

+ Sensor Attacks (LiDAR,Camera, RADAR etc.).+ System ComponentAttacks (Middleware,software, network etc.)
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Apollo [146] + Open-Source but for supportedfor commercial activity.+ Apollo 10.0 with Apollo Cyber RT+ Custom Scenario Test Library

+ Sensor (LiDAR, Camera,RADAR etc.).System Component Attacks(Middleware, software, net-work etc.)
GAZEBO + Open-Source simulator based onROS+ Limited customisation of AV driv-ing environment, AV, Sensors+ Limited Scenario Test Case Inte-gration

+ System ComponentAttacks (Middleware,software, network etc.)

Air Sim [259] +Developed byMicrosoft for Droneand Autonomous Vehicle SoftwareDevelopment+ Supports diverse autonomy soft-ware control architectures (ROS in-tegration, ArudPilot, HiTL, SiTL etc.)+ Allows custom configuration ofdriving environment and sensors.+ No test libraries

System Component Attacks(Middleware, software, net-work etc.

SIM4CV [204] + Open-Source, developed forComputer Vision research+ Custom configuration of semanticcontrol program+ End of life/Sunsetted

+No Testing has occurred onSIM4CV

The literature of cyber threats to AD demonstrated that approximately 90% of theexperimentation was conducted in simulation environments [223] [276] [10]. Yet Eykoltet al. [267] noted that the success rates of attacks in simulation, such as those on theobject-detection, differed from real-world. This is most prominent in the physical attackswere the simulation is challenged in replicating lighting and other physical effects. Thereis a lack of experimentation of cybersecurity testing on real-world systems due to limitedfacilities and safety risk constraints.There are numerous AD cybersecurity testing platforms [329] [79] [338] [200]. Whilstthese platforms are useful for advancing the research and development of threat modelsthey have sparse usage for validation testing of AD software to cyber threats. A reason forthis can be that the design of these testbeds are constrained by a lack of alignment withsafety validation testing methods. Further, AD software developers and safety engineersprefer modular tools which can be utilised in their own customised digital-twin simulationenvironments. Another shortcoming of the cybersecurity testing platforms are that theyare technology centric and attack plug-ins are developed for a specific technology stack.There is a lack of overarching principles and methods to guide cybersecurity testing thatwould enable a standardised approach. Table 10 lists AD cybersecurity testing platforms.
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Table 10: Autonomous Driving Cybersecurity Security Testing Platforms

Autonomous Driving Cybersecurity Security Testing Platforms
Simulator Characteristics Cybersecurity Testing
RAMN [282] + Cyber-physical testbed for AVs+ Integration with AD software+ Replicates features of AU-TOSAR and automotive networks(CAN/CAN-FD)

+ Testbed was created tosupport automotive net-work development, testingof AD software HiL and pen-etration testing of syntacticsoftware attacks
SEPAD [329] + Cyber-physical testbed for AVs+ Limited autonomy based onOpenPilot ADAS+ Replicates features of AUTOSARand automotive ethernet+ No further development sincerelease

+ Not tested, but test bedwas created to support pen-etration testing of syntacticsoftware attacks

SIMUTACK [79] + Simulation environment based onCARLA SUMA (Scenario Generator),OMNeT++ (V2X).+ Autopilot for AD Software+ Built-in plugins for Attack Genera-tion+ No further development since re-lease

+ Attacks to Sensors (LiDAR,Camera etc.).+ V2X attacks.+ In-Vehicle network at-tacks.

PASS [338] + Simulation environment based onApollo Baidu and ROS.+ Built-in plugins for Attacks andDefenses+ Integrates evaluation metrics forsafety+ No further development since re-lease

+ Attacks to Sensors (LiDAR,Camera etc.)+ Fuzz testing+ Has supported Capture-the-Flag style, game-basedtesting

Simulator
for Cooper-
ative and
Automated
Driving Secu-
rity [200]

+ CARLA and ROS based.+ Integrates VEINS V2X networkemulation+ SUMO Traffic Scenario Simulation+ No further development since re-lease

Network Attacks to v2x

AVL Zala-
zone Test
Track [20]

+ Proving ground used for type ap-proval and R&D + Cybersecurity testing ofV2X and connected infras-tructures
Michigan MC-
ity [194] + Real-world testbed+ Industry and academia R&D + Cybersecurity testing ofV2X and connected infras-tructures + Testing of AD cy-ber threats to advanced sen-sor technologies
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TalTech Au-
tonomous
Systems
Lab [18]

+ Real-world testbed+ Industry and academia R&D + Cybersecurity testing ofV2X and connected infras-tructures + Testing of AD cy-ber threats to advanced sen-sor technologies
2.4.2 Cybersecurity Testing MethodsTesting is predominantly conducted in high-fidelity digital twin simulation environmentsand then test sets regressed to real-world proving grounds and test tracks. Cybersecuritytesting of AD software can be categorised as structured testing or penetration testing andfuzz testing. There are limited methods and tools tailored for structured testing of ADsoftware. Contemporary approaches centre on methods used for connected and legacyvehicles. These entail conducting the TARA and generating cybersecurity test cases tar-geted at the SUT [192] [239]. Many of these test cases can be extrapolated from proof-of-concept attacks such as those presented in Tables 3-8. The shortcomings of the availableproof-of-concept attacks are that considerable effort is required to reverse engineer theattackmodel and replicate it for different SUTs. Further, the design of these attackmodelslack consideration for parameters important for safety testing such as temporal aspects ofthe scenario (time attack should be triggered, how long attack should be broadcast etc.)and scenario design (ODD, driving configurations). There also exists a lack of guidance andstandardisation as to how threats can be translated from functional level descriptions tothe technical implementation in the digital-twin simulation environment.Fuzzing is a popular testing technique used to discover vulnerabilities in a system torandomised and unsanitised data input. Fuzzing can occur at three different layers of ADsoftware; the simulator, the scenario and the sensor. A simulation-based fuzzer manip-ulates the properties of the simulation, this can include GPU and frame refresh rate andCPU settings. A scenario-based fuzzermanipulates the parameters of the driving scenario,these can range from weather (rain, puddles on lanes, snow etc.), odometry (speed, ve-locity etc.) to planned navigation of road vehicles and pedestrians. A sensor-based fuzzermanipulates the sensor data (LiDAR, camera etc.) which is used as input to theADpipeline.There are diverse approaches for the design of fuzzing tools for AD software:

• Adversarial neural networks for adversarial examples targeted at object detectionand to generate adversarial trajectories of other road vehicles and pedestrians [170][339] [281] [333].
• Mutation-based fuzzers predominantly used for sensor fuzzing. They are designedto send unsanitised sensor data input to the AD pipeline [151] [153] [153] [281]. Testcases which cause crashes are added to a seed pool which is used tomutate furthertest cases in an iterative manner.
Table 11 lists AD fuzz testing tools.
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Table 11: Fuzzing Tools for Autonomous Driving

Fuzzing Tools for Autonomous Driving
Fuzzer Target Method Oracle Feedback
PGFuzz [151] Sensor

Layer(Drone
Software)+ Odometry(velocity,gyroscope)

Mutation-based Policy-guided(PhysicalLimitations)
Crashes, Devi-ation from ex-pected route,sensor incon-sistency

RoboFuzz [153] Sensor Layer
(Drone)+ IMU (yaw,acceleration,speed) anduser controlcommands(throttle, yaw,pitch, roll)

Mutation-based Physical Con-straints Crashes, Devi-ation from ex-pected route,sensor incon-sistency

RVFuzzer [155] Sensor Layer
(Drone)+ IMU (yaw,acceleration,speed) anduser controlcommands(throttle, yaw,pitch, roll)messagesto controlprogram.

Mutation-based Physical con-straints Control pa-rametersand controlinstability

DeepRoad [333] Sensor Layer+ Camera im-ages
Neural Net-work PredictedImage andpredictedsteering angle

Object Detec-tion Perfor-mance andcrashes anddeviations ofAD
DeepTest [281] Sensor Layer+ Cameraimages duringadverse driv-ing conditions(rain, fog etc.)

Neural Net-work PredictedImage andpredictedsteering angle

Object Detec-tion Perfor-mance andcrashes anddeviations ofAD
PlanFuzz [298] Scenario

Layer+ Objects(boxes, bicy-cles)

Mutation-based PlanningInvariants Planningbehaviour
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DriveFuzz [154] Scenario
Layer+ Weather,mission (lo-cation ofSUT vehicle)actor (othervehicles,pedestrians)

Mutation-based traffic rulesand regula-tions
Controlbehaviour

AVFuzzer [170] Scenario
Layer+ Route Map,SUT vehicle,weather andobjects.

Neural Net-work vehicle state(Collision,infraction,mobility)

Controlbehaviour

AutoFuzz [339] Scenario
Layer+ Route Map,SUT vehicle,weather andobjects.

Neural Net-work Traffic Viola-tions and APIGrammar
Controlbehaviour(collisions,infraction)

2.5 Summary
AVs represent a dense ecosystem of diverse software and hardware technologies inte-grated by an overarching AD software framework (Section 2.1). The research communityhas contributed an initial list of proof-of-concept attacks and vulnerabilities of AD software(Section 2.3). The predominant attack targets are the sensing and perception hardwareand software modules and the networked infrastructure which supports the algorithmicAD platform. Limitations of this initial research include a lack of analysis as to how cyberattacks propagate through the AD software and affect decision-control and knowledge asto how attacks can be applied to real-world systems rather than open-source simulations.Further, there is a lack of deeper investigation of the testing technologies which supportcybersecurity research and validation testing (Section 2.4). These limitations are mean-ingful as this lack of knowledge leaves questions as to the utility of current methods, toolsand testing results to real-world AD programs. Therefore, there is an apparent need todevelop methods and tools to enable more repeatable and agile testing and to gain fromtest results greater intuition as to the robustness and resilience of AD software to cyber at-tacks. Within this thesis these gaps will be explored within the context of an experimentalcase study of a real-world, operational AV (Section 2.2).
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3 EvaluationofAutonomousDriving Software to CyberAttacks
3.1 Methodology for Combined Safety and Security of Autonomous Driv-

ing Software Testing
Testing AD algorithms for performance under safety test cases is a predominant focus fordevelopers to assess the reliability of the algorithm and for optimisation. AD algorithmsare also susceptible to manipulation from cyber threats which target the advanced hard-ware technologies sensor telemetry which serves as an essential input for perception,detection, and control decisions [27, 174, 325]. Existing methods [35, 92] for testing arechallenged by the complexity of evaluating system-of-system interactions to identify keyrelationships and parameters, and limitations of testing inherent to real-world AV pro-grams, resource usage and time. The main idea of this research is to establish a methodfor combined safety and cybersecurity testing of developmental AD algorithms to evaluatesystem-of-system interactions to identify and investigate parameters that impact safetyand the effect of cyber attacks, and to develop future ideas for optimisation of testing. Todevelop such a method, we are interested in three research questions aligned with thechallenges of combined safety and cybersecurity for AD algorithms:
RQ1 How can AD algorithm designers evaluate the reliability and optimisation of the ADalgorithm to both safety and cybersecurity test cases?
RQ2 How can combined safety and cybersecurity testing be conducted on a developingAD algorithm?
RQ3 What key relations and parameters can we identify that can optimise safety andcybersecurity testing?

To evaluate these research questions, we apply the methodology to a developing ADalgorithm in a digital twin, SiL simulator and real-world AV testing environment. Cyber-security testing and safety testing are often conducted separately, reducing our under-standing of the relationship between failures of the algorithm caused under normal safetyscenarios and failures caused by the impact of cyber attacks. For AD algorithms in thedevelopment stage, where the reliability and optimisation of the AD algorithm to safetyscenarios have not been established, this exploration of the relationship between safetyand cybersecurity can offer novel insights to improve the awareness of the AD algorithmdesigner to shortcomings in the algorithm.
3.1.1 Combined Safety and Cybersecurity testing methodology for AD AlgorithmsThe architecture of the proposed combined testingmethodology is presented in Figure 17.This method takes advantage of a high-fidelity SiL simulation [255] approach to validateand verify the performance of a AD software under critical cyber security conditions. Thismethod consists of three main following elements:

• Attack script: which simulates a critical security condition.
• High-fidelity simulator: It is a game engine environment that provides the physicsfor modeling sensors and motion.
• AD software: It is the autonomous driving software that controls the AV.
The combined safety and cybersecuritymethodology consists of the following iterativesteps:
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• Scenario Selection:

– Selection of driving scenario (intersection, overtaking manoeuvre etc.)
• Analysis of the scenario to extrapolate the safety evaluation criterion applicable:

– Selection of safety evaluation criteria is based on relevance to scenario i.e astraight line navigation will not require distance-to-collision criteria metric asthere is no other vehicles.
• Safety Test Case Setup:

– Initialisation of the SiL high-fidelity simulator and configuration to the real-world AV
– Initial scenario testing using the safety test cases to assess the reliability of thealgorithm and the quality of the test data
– Optimisation of the safety test cases to select a subset of the scenario tests toassess the reliability of the algorithm
– Run of the safety test case scenarios
– Selection of distinct safety test case scenarios which provide most stable re-sults in terms of success of mission and safety violation

• Cybersecurity Test Case Setup:

– Analysis of the scenario to determine cyber attack strategy for test cases
– Development of the code for adversary generation in the SITL high-fidelity sim-ulator
– Selection of attack parameters
– Optimised the cybersecurity test cases
– Evaluate cybersecurity test cases in SiL high-fidelity simulator
– Real-World AV Testing for safety and cybersecurity

• Results Analysis:

– Analysis of the performance of AD algorithm to safety criteria
– Analysis of sensitivity of attack parameters and driving parameters

Testing EnvironmentAll tests are conducted in a virtual environment powered by the “Unreal game engine”(Unreal) [40]. CARLA simulator [69] is one of the open-source high-fidelity vehicle simu-lators capable of connecting to different AD software and scenario generator applications.In this study, we use Carla 0.9.13 as the high-fidelity simulator. Figure 17 illustrates the re-quirements for the high-fidelity simulator to conduct simulation testing which are twocomponents, the digital twin of our AV and the virtual replication of our target environ-ment. These replicated components help us to gainmore accurate results of the proposedplatform [187]. The AV digital twin is a 3D model of our real-world world AV shuttle, de-signed in Blender, a graphical 3D modeling software, and imported and built in Unrealfor deployment in CARLA. This model uses the same dimension and sensor configuration(model, position, and orientation) from the real AV shuttle. The environment digital twin,in our case, is identical to the location where we are testing and operating our shuttle,
45



this includes the urban details and vegetation. The next module in the simulator is a sce-nario generator that produces the desired scenario based on the user input specification.Finally, the simulator engine generates sensor data from sensors, including LiDARs, cam-eras and others and publishes it for other blocks (see Figure 17 the simulator block). Then,the AD software receives this data as raw LiDAR point-cloud information and processesthe data as mentioned in the diagram (Figure 17).

Figure 17: Architecture of the testing platform

This simulation setup was implemented on a desktop computer with the followingconfiguration:
• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB

Scenario Selection
To evaluate the combined safety and cybersecurity testing, we chose a simple overtakingmanoeuvre, which is one of the most safety challenging operations [186]. Figure 18 showsthe functional level of the planned scenario. To generate a variety of distinct scenarios,we opt for the initial relative distance to the NPC Dx and the NPC constant speed SNPC asthe distinct scenario parameters.

Figure 18: Overtaking Scenario and parameters
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Table 12: Target scenarios definition

Actor Speed Dx Goal
AV [0:6]m/s 0 (m) overtake the NPC safelyNPC [1 1.4 1.8 2.1 2.5] [15 20 25](m) keep moving

Safety Evaluation Criteria
In determining the evaluation criteria for AV safety we considered two conditions, 1) mis-sion success and 2) safety violations. A safety violation consists of a collision and danger-ous driving behaviour. In determining which criteria to apply, we considered the EuroN-CAP [3] and ISO26262 [127] standards as well those used in composite studies [35,89,92].We derived that the safety goal of the AD algorithm is to execute the overtaking missionwithout colliding or interfering with other ego vehicles or objects and without exhibitingdriving behaviour which is dangerous to the AV passengers. Table 13 details the safetycriteria applied in our experiments.

Table 13: Safety Evaluation Criteria

Safety Condition Data Label Description Metric
Succeed Suce AV Successful complete the mission Pass/Fail
Not Finished NotF Failure to finish the mission Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Break on Driving Lane BrD AV initiates emergency break on driving lane Pass/Fail
Break on Passing Lane BrP AV initiates emergency break on passing lane Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Violation V Safety Violation

Safety Test Case Setup
To evaluate the reliability and optimisation of the AD algorithm for the overtaking ma-noeuvre, we, firstly, initiated a run of 50 distinct scenarios in the high-fidelity simulator,repeating 6 times. Each scenario was repeated 6 times to ensure the reproducibility ofthe outcome. With the mentioned desktop configuration, it took approximately 100 secfor each scenario and, in total, 8.3 hours for 300 runs. The purpose of the first scenariorun was to provide a general overview of the performance of the algorithm. We targeteda range of 1 to 3 m/s for the NPC speed and 15 to 30 m for the initial relative distance tothe NPC for selecting the 50 distinct scenario parameters. The results showed that the ADalgorithm could not safely overtake the NPC at an NPC speed higher than 2.5 m/s and adistance (Dx) of more than 25 m.Although a high number of scenario variations shows better coverage in the scenariospace to find corner cases, it will lead to an increase in the time duration of the runs.Furthermore, the number of each scenario repetitions was not sufficient to statisticallyexplain the occurrence of each safety violation. Finally, it is worth mentioning that, as ourprimary study focus is not just the validation of the AV performance, we need to use anoptimum number of trials for both safety and cyber test cases. Due to this, we limited the
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scenario parameters space to the intervals listed in Table 19 that regressed the test set to15 distinct cases in a full factorial setup. This enabled us to repeat the simulation of thesetest cases 50 times and apply the full set of safety criteria: collision, DTC, break in passinglane, break in driving lane, failure to finish, and mission success.Each scenario is generated by the CARLA scenario runner utilizing the Python be-haviour trees to handle series and parallel events in the scenario. Figure 19 depicts thescenario scheme startingwith themain sequence behaviour. This series beginswith trans-forming the actors into the environment and finishes by destroying the actor block. A par-allel behaviour (Driving Toward Intersection) is defined to run the attack and the scenariostop block while the NPC follows the defined waypoint. For safety test case scenarios, theattack block is skipped, and the scenario waits till the stop criteria are satisfied.

Figure 19: Flow-graph of how each scenario is processed in the simulation platform

Cyber Test Case SetupTo determine the cyber attack strategy for implementation in this test scenario, we anal-ysed the overtaking scenario and its applicability to state-of-the-art attacks on AD algo-rithms. We selected LiDAR spoofing as it is a realistic attack in the driving environmentof our real-world AV shuttle [35] and its impact is relevant to safety outcomes due tothe likelihood that the manipulated driving behaviour will result in collisions, emergencybreaking, and lane violations [325]. Attacks on LiDAR perception predominantly focus onspoofing LiDAR 3D point-clouds through the following means: 1) injection of adversarialLiDAR 3D point cloud data to add adversarial objects to the driving environment inducinga false positive result of the AD perception [35, 273] 2) removal of LiDAR 3D point clouddata to perturb the ability of the perception algorithm to detect objects in the driving en-vironment, also known as a false negative result [92,340] 3) manipulating LiDAR 3D pointcloud data to obfuscate the true distance of environmental objects (Other road vehicles,pedestrians, other road objects) from the AV, causing the perception to fail translation 4)implementation of adversarial mesh in the driving environment to introducemanipulatedpoints into the LiDAR 3D point cloud and create unpredictable perception events [287].The aim of the attacker, in adversarial LiDAR threat models, is to induce the victim AV toperform dangerous driving manoeuvres, which include; emergency breaking, collisions,and exceeding the limits of the driving lanes. Variables that have been shown to influ-ence attack success include; angle of attack of the adversarial point cloud vector, densityof the spoofed points, duration of the broadcast of spoofed points, distance of the point
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cloud to the target [35,92,273,325]. We implemented a variation of the attack suggestedby Yang et al. [325], where the adversary creates an adversarial roadside object to injectspoofed, malicious LiDAR point clouds into the target AV LiDAR. In our attack, an adver-sary has configured a LiDAR on the roadside to inject malicious point cloud data into theAV as it is conducting the overtaking manoeuvre. Using the knowledge gained from liter-ature [92, 273, 325], the parameters we chose to generate our attack are: density of theLiDAR point clouds, frequency (the publishing rate of the fake points), duration of the ad-versarial point cloud broadcast, and location, which is the relative location between thetarget vehicle and NPC. As an infinite number in the range of each of the parameters canbe chosen, we decided to limit our testing to parameter values that had demonstratedutility to investigate the impact of cyberattacks on AD algorithms. For example, Hally-burton et al. [92] found that the success of cyber attacks increased when spoofed pointdensity were over 80. Therefore we chose a range for spoof point density from 50 to 300.
Taguchi AnalysisIn this study, we use the Taguchi method for statistical evaluation [285] of the attack pa-rameters effect on each safety criterion. The number of tests with four parameters and3 levels for each in full factorial mode would become unrealistic to perform, noting thateach experiment should repeat 50 times (81x50 = 4050 distinct scenarios). A design of theexperiment is recommended in order to avoid full factorial tests and reduce the numberof tests without compromising accuracy [285].A Taguchi design of experiment (DOE) technique [285] was applied to quantify the in-fluence of four proposed attack parameters; the false points (FP) density, the FP frequency,the attack duration, and the attack location. In total, 9 experiments were designed with3 different values for the four parameters. The analyses hence possess four factors andthree levels for the Taguchi L9 matrix. Table 14 lists the configuration for each run con-ducted for cybersecurity tests.

Table 14: Taguchi L’9 matrix for study of factor influence

Num. Density Frequency Duration Location
1 50 5 3 32 50 7 6 63 50 10 9 94 150 5 6 95 150 7 9 36 150 10 3 67 300 5 9 68 300 7 3 99 300 10 6 3

[50 150 300] [5 7 10] [3 6 9] [3 6 9]
Figure 20 demonstrates the cyber attack setup within the overtaking scenario (Pleasenote, the Figure only depicts the overtaking frameandnot the entire overtaking sequence.).The proposed attackmodelwill start by generating spoof points from the designated placeon the roadside. At the starting point, P1, the AV has relative distance to NPC that definesthe attack location. After a specific duration (Attack Duration), the AV reaches, P2. Whilethe attacker keeps the malicious LiDAR pointing toward the AVs front LiDAR. Overall, thespoofed point direction changes from θ1 to θ2. Code was created for the generation ofthe adversarial LiDAR fake points to be run in the digital twin, high-fidelity simulation en-
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vironment. This is available on the GitHub site [188].

Figure 20: Attack scheme

3.1.2 Results and Analysis
In this section, we present the results of the safety and cybersecurity testing of the ADalgorithm. The purpose of the safety test case results is to evaluate the reliability andoptimisation of the algorithm.
Safety Test Case
The aim of the testing is to assess the utility of the methodology to evaluate the relation-ship between the reliability of the AD algorithm to safety and the impact of cybersecurity.As the testing is based on a real-world AV, we were motivated to establish what resultscould be gained from an amount of tests that took into account the requirements forCPU and GPU resources and the time involved in running high-fidelity simulations. Forinstance, 50 distinct scenarios run 3 times expends x amount of resources, and takes xamount of time. Therefore, we, firstly, performed a baseline evaluation test where weran 50 distinct scenarios of the overtaking manoeuvre, 3 times. Each scenario is distinctbased on changes to parameters such as NPC speed and initial distance to NPC.In our proposed simulation platform, we perform 15 distinct scenarios, run 50 times;in total, 750 consecutive simulation runs were conducted. Table 15 shows the parametersof the distinct scenarios evaluated against the safety criteria. Using our configuration fortesting, the AD algorithm shows the performance for the overtaking manoeuvre with asuccess rate of 43.9% of the simulated scenarios, whilst, 66.1% are safety violations.Figure 21 displays the performance of the AD algorithm. NPC speed is an importantparameter as it influences the decision control for the critical cut-in manoeuvre of theovertaking mission. In the context of the results of the simulations, we can see that NPCspeed impacts certain safety criteria. The first such relation that can be seen, is that morecollisions are caused at high speeds, > 2.1 m/s. This can be the effect of a poor trajectoryevaluator that doesn’t consider the prediction of the other actors motions in the pro-cess of the waypoint generation. In most collision cases the AV tried to perform a cut-inwhile the NPC collided from the right side. The probability of this safety violation will beincreased as the NPC speed increases. NPC speed also impacts the likelihood of a DTCsafety violation. In the range of the NPC speed parameter, 1 m/s to 1.8 m/s, it can beobserved that AV Shuttle violates the safe distance to the NPC. This can be due to the AVspeed adjusting relative to the NPC speed and the cut-in is attempted at low-speed, whilstacceleration is required to safely attempt the cut-in. This low-speed cut-in firstly causes a
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Table 15: Summary of the safety simulation

Dx SNPC VCol VDTC VBrP VBrD VNotF VSuce
1 15 1 18% 22% 0% 10% 24% 26%2 20 1 18% 40% 8% 6% 18% 10%3 25 1 4% 20% 32% 8% 20% 16%4 15 1.4 6% 32% 16% 2% 12% 32%5 20 1.4 22% 26% 14% 6% 2% 30%6 25 1.4 4% 12% 22% 8% 0% 54%7 15 1.8 36% 34% 8% 2% 6% 14%8 20 1.8 22% 12% 2% 2% 0% 62%9 25 1.8 18% 6% 0% 4% 0% 72%10 15 2.1 4% 0% 4% 2% 4% 86%11 20 2.1 8% 10% 0% 0% 0% 82%12 25 2.1 24% 0% 0% 4% 0% 72%13 15 2.5 14% 6% 0% 6% 2% 72%14 20 2.5 44% 22% 14% 0% 2% 18%15 25 2.5 64% 18% 0% 0% 6% 12%

mean 20.4% 17.3% 8.0% 4.0% 6.4% 43.9%STD 16.8% 2.3% 9.8% 3.2% 8.1% 28.3%min 4% 0% 0% 0% 0% 10%max 64% 40% 32% 10% 24% 86%

DTC violation and if the overtaking manoeuvre progresses it causes a collision. DTC andcollision correlate based on the relative speed. A low-speed NPC will likely result in a DTCviolation, whilst in a higher-speed scenario, a collision is more likely to happen.
In the lowest speed range, 1 m/s to 1.4 m/s, it is more likely that the AV will initiate anemergency break in the passing lane. This is due to the relationship of the NPC speed tothe AV Shuttle speed. The emergency break on the passing lane at low speeds is causedby a failure of the open-planner trajectory evaluator to effectively plan the overtakingtrajectory. Figure 22 demonstrates the AV emergency break in the passing lane, for ascenario with an NPC Speed of 1 m/s. The upper rectangle represents the AV and thelower rectangle is the NPC. The two rectangles closest to the left represent the framethat the first emergency break on the passing lane safety violation occurs. The most rightrectangles represent the end of themission. The AV speed and the acceleration verify twohard brakes in the mission while it was in the passing lane. The failure of the trajectoryplanning of the open-planner algorithm is apparent.
The failure to finish the overtaking mission is most prominent at the lowest speed,1 m/s, this is due to the time the AV Shuttle is taking to perform the cut-in process andtherefore cannot enact the overtaking manoeuvre within the simulation timeout which is40 s. It was observed that for the proposed configuration, for the lower speed of the NPC,the open-planner trajectory evaluator is not reliable as it suggests waypoints that are notwithin safe navigation and this is due to the lack of firm decision-making of which roll-out to choose. Ultimately, this causes collision and DTC safety violations. Furthermore,the failure to finish the simulation results, we see the low-speed delays in the overtakingmanoeuvre decision making which results in the breach of the 40 s time-out.
The success rate of the safety test cases increases as the NPC drives from 1.4 to 2.1m/sspeed. This focal success point around scenario 10 with an NPC speed of 2.1 m/s can bea sign of matching the current configuration of perception and open-planner with the
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Figure 21: Safety results of 15 distinct scenarios

scenario situation.
The safety metrics results are shown in Figure 24 based on the initial relative distancefrom the AV to NPC. It shows that the rate of collision safety violations for longer initialdistances from NPC slightly increased while the success rate decreased. This is the onlytrend that can be identified from results for initial relative distance, so it can be concludedthat speed is a more determining parameter for the safety testing of our AV.
Overall, the results in Figure 21 indicate that speed is a critical parameter for our AVsafety testing platform.

Cybersecurity Test Case
For the cybersecurity test cases we chose 2 of the 15 distinct scenarios (Figure 21). Thiswas to allow a greater scale of testing to be conducted on a select number of relevantscenarios. Scenario 10 was chosen as it demonstrated the most reliable performance, interms of themost successful overtaking manoeuvres. Scenario 2 was chosen as it demon-strated the least successful results for overtaking. These two scenarios were run 50 timeseach, as had been conducted with the safety scenario runs. Figure 25 shows the perfor-mance of cybersecurity testing, conducted on scenario 2 and 10, in comparison to safetytest cases.

Scenario 10 results reveal a discernible impact of the cyber attack. The LiDAR spoofingattack causes an increase in safety violations, prominently, in collisions and emergencybreaking in the passing lane. This is also a concurrent result of the Scenario 2 test cases.Figure 17 shows the control level view, that incorporates sensor perception and missionand motion-planning. In the safety violation cases, we noticed that the euclidean cluster-ing and kf_countour detect the spoofed LiDAR injection as an object and this false positivedetection impacts the local-planning to force the AV to make the cut-in, in the overtak-ing manoeuvre process. Specifically, as the placement of the adversarial LiDAR device ison the left of the AV, the roll-outs of the left-side are blocked by the trajectory-evaluator.
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Figure 22: A Brake on Passing Lane safety violation

Figure 23: Test Results based on NPC Speed

This forces the AV to veer right and attempt the cut-in process that causes predominantlycollision, DTC safety violations.Cao et al. [35] and Hallyburton et al. [92] identify density of the spoofed points tobe one of the key variables affecting cyber attack success rate. Figure 26 and figure 27present the sensitivity of each attack parameter according to the cyber attack test cases.From evaluating the raw data of the test sets, and the sensitivity analysis for the cyberattack test cases of scenario 10, we concur with these assessments. We find the rate of
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Figure 24: Results based on Initial Relative Distance to NPC

collisions is influenced by the density of the point cloud and the location of the attack.We can also see the influence the point of attack and duration have on causing a breakon passing lane safety violation. As the duration of transmitting of the LiDAR point cloudsincreases and the location of the attack is further from the NPC, the likelihood of the AVinitiating its breaks is higher.
In comparison, Scenario 2 cyber attack test case results show that safety violationsare less sensitive to attack parameters. This can be due to the difficulty in interpreting theimpact of cybersecurity on this scenario due to the already high rate of safety violationsof the algorithms exhibited in the safety test case.

Table 16: Results of Cyber Attack applied to Scenario 10

Num. VCol VDTC VBrP VBrD VNotF VSuce
1 54% 20% 2% 0% 6% 18%2 38% 38% 6% 2% 6% 10%3 30% 28% 22% 2% 4% 14%4 24% 28% 16% 6% 2% 24%5 26% 16% 12% 6% 4% 36%6 4% 4% 6% 4% 0% 82%7 32% 14% 14% 6% 0% 34%8 50% 24% 8% 2% 0% 16%9 50% 30% 2% 2% 0% 16%

mean 34.2% 22.4% 9.8% 3.3% 2.4% 27.8%std 15.9% 10.1% 6.7% 2.2% 2.6% 22.2%min 4.0% 4.0% 2.0% 0.0% 0.0% 10.0%max 54.0% 38.0% 22.0% 6.0% 6.0% 82.0%
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Figure 25: Performance Results Comparing Cyber Vs Safety Test Cases

Table 17: Results of Cyber Attack applied to Scenario 2

Num. VCol VDTC VBrP VBrD VNotF VSuce
1 16% 34% 28% 8% 14% 0%2 26% 34% 20% 0% 8% 12%3 20% 42% 20% 4% 6% 8%4 26% 34% 16% 0% 14% 10%5 22% 36% 16% 0% 20% 6%6 22% 32% 20% 0% 18% 8%7 0% 0% 0% 0% 0% 0%8 0% 0% 0% 0% 0% 0%9 0% 0% 0% 0% 0% 0%

mean 14.7% 23.6% 13.3% 1.3% 8.9% 4.9%std 11.4% 17.9% 10.6% 2.8% 7.9% 4.9%min 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%max 26.0% 42.0% 28.0% 8.0% 20.0% 12.0%
Real-World AV Testing
The real-world AV testingwas conducted on a private road environment using our AV Shut-tle, and an NPC vehicle (turquoise Mitsubishi iMIEV). The NPC vehicle is stationary duringthe tests as a safety assessment deemed it was too dangerous to conduct the experimentwith a moving vehicle. This is due to the experiment being within a road environmentwhere pedestrians and other vehicles are present. We conducted 3 test cases; a safetytest case, cybersecurity test case and an optimised cybersecurity test case. The first testwas an overtaking safety scenario. Two repetitions of the safety test casewere conducted.The first test demonstrated a successful execution of the overtaking mission. The secondtest resulted in a DTC safety violation. The AV motioned to within 0.42 m of the NPC.The DTC violation is evident in Frame 3 of Figure 28, which details the second overtakingsafety test case. Frame 4 demonstrates the eventual overtake after the DTC safety vio-lation. Whilst the number of repetitions in the real-world pale in comparison to thoseconducted in the simulator, the real-world results concur with simulation results, that the
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Figure 26: Scenario 10 - Cyber Attack Test Cases - Parameter Sensitivity

AD algorithm does not have enough reliability for the deployment in real-world missions.

Table 18: Result of the 3 real-world test cases

Test Type Num. of repeats success Safety Violations
Safety Tests 2 1 1 DTC=0.42mCyber Tests 2 1 1 DTC=0.38mOptimised Cyber Tests 1 0 1 DTC=0.32m

The cybersecurity test was conducted 3 times. Table 18 lists all the real-word exper-iments and their results. The first cybersecurity test demonstrated no impact from thespoofed LiDAR points and the overtaking manoeuvre was successful. The second cyber-security test resulted in a DTC violation, the AV motioned to within 0.38 m of the NPC.After these two tests, we optimised the target angle of the spoofed points in relation tothe attack scheme in Figure 75, to reduce the attack starting angle of θ1. We did this be-cause during the real-world test we observed that the reduced angle would provide assistthe spoofed points to be closer to the AV trajectory and would cause the AV to detourfrom its intended route. It can be seen that this did work as the DTC decreased to 0.32 m.Figure 29 depicts the real-world cybersecurity test. Frame 2 represents the moment theattack was generated and perceived by the AD algorithm.
3.1.3 DiscussionFrom the analysis of the results we interpreted that different safety violations are con-nected to different modules of the AD algorithm.

Perception Module: We interpreted the cause of safety violations of the emergencybreak in the passing lane and emergency break in the driving lane to be related to the
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Figure 27: Scenario 2 - Cyber Attack Test Cases - Parameter Sensitivity

quality of the ground filtration. As we observed, ground filtering outcome changes dur-ing the AV manoeuvres (turns) because the shuttle body is tilted because of suspensionand this results in the lidar reference frame orientation changing. Then some part of theground point cloud as an unfiltered perception can be seen in the detection algorithms asan obstacle. This fake sudden obstacle might stop the AV during the motion. The spoofedLiDAR point cloud threat model is likely to make this condition worse. Optimisations forthis: New body designs to rectify or limit the issues of LiDAR with the physics of the AVShuttle are being developed. To focus specifically on these corner and edge cases and lookat optimisation of the filtering of the perception algorithm. The latter recommendationis complicated by the fact it may include trade-offs; if the LiDAR perception algorithm isspecifically tuned for this corner/edge case it could lead to over-filtration in normal driv-ing scenarios, therefore this is one of the optimisation options to resolve the perceptionfor the algorithm.
Open-Planner Module: We interpret the cause of safety violations for DTC and colli-sion as due to an issue of the open-planner in predicting the trajectory of the NPC duringthe process of performing a cut-in, in front of the NPC. The optimisation would involve in-corporation of features that would enable the prediction of the trajectory of the NPC andfor perception improve the perception of the side-lidar to accurately perceive the NPC.We found that optimising all the perception and open-planner parameters for our shuttlemodel would significantly improve the reliability of the AD algorithm.

Open-Planner Developer Feedback
We sent a presentation of our results to the developers of the open-planner AD algorithm.In response, they acknowledged that it is a developing algorithm and we are engaged inmore detailed discussions with them on how to optimise the algorithm. They also an-nounced they are transitioning from Autoware.ai to Autoware.universe which is a moredeveloped and advanced platform. Amongst their responses, they also pointed to the
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Figure 28: Real-World AV Test - Safety Test Case

novelty of receiving feedback on the reliability of cybersecurity test cases in addition tosafety test cases.
3.1.4 Related Work
The closest contributions to our work are Yang et al. [325], Hallyburton et al. [92], Cao etal. [35] and Zhu et al. [341]. Each of these papers utilises a LiDAR spoofing threat modelthat varies based on the method for delivering the attack, adversarial generation and thetype AD algorithm. Hallyburton et al. [92] target camera and LiDAR sensor fusion. Theyidentify a blind spot between the camera and LiDAR sensor at the rear of the target AV.They use a malicious, 3D LiDAR point cloud array to inject malicious spoof points into therear angle of the target AV. The attack was tested in a high-fidelity simulation and real-world against multiple perception algorithms. The results revealed a high rate of successutilising this attack. Cao et al [35], Yang et al [325], and Zhu et al [341] developed LiDARspoofing attacks based on a threat model of a malicious LiDAR 3D point cloud injectionin the road environment and by the roadside. Each of these contributions demonstratedthat cyber attack results from AV simulation testing can be used to identify key parame-ters such as point cloud density, attack location and duration and that these parameterscan be optimised to test the robustness of perception algorithms. We chose to extendfrom the related literature, in our work, in three areas; simulation testing configuration,safety criteria evaluation and target AD algorithm is in the developmental phase and isused within a real-world AV program. A feature of the selected work is that simulation
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Figure 29: Real-World AV Test - Cyber Attack Test Case

testing often selected only one frame or a limited amount of frames and therefore thefull driving mission was not observed. Whilst this is useful for reducing testing resourceusage, running massive scale of tests and applicable to the scope of their work, as ourstudy evaluates the AD algorithm and combines safety, our study focused on conductingsimulation testing for the entire driving mission. Secondly, the evaluation of cyber attacksfocused on attack success rate and attack parameters whilst the safety impact on the AVas a result of cyber attacks was not as clearly elaborated. In our study, we evaluate thecyber attack test cases with the same criteria as the safety case to derive the category ofsafety violation. Lastly, most of the simulations use default AV configurations and evalu-ate well-established algorithms. Our study uses a simulator configured for a real-world AVand evaluates an AD algorithm in the developmental stage where reliability and optimi-sation are required to be assessed under safety, non-cyber test cases before the impactof cyber attacks can be understood.
3.2 AnalysingAdversarial Threats toRule-Based Local-PlanningAlgorithms

for Autonomous Driving
Navigation and planning algorithms are essential for AD. For the self-driving vehicle to nav-igate the road environment, the navigation and path-planning algorithm must calculate aroute that ensures safety for the passenger and external environmental actors (pedes-trians, other vehicles and road users, etc.) and achievement of the journey (mission).
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Initial studies of navigation and path planning algorithms for AD have shown them to bevulnerable to adversarial attacks that introduce uncertainties into the route calculation,which causes downstream effects on the safe behavioral control of the AV. To improvethe reliability of navigation and planning algorithms, they need to be further tested foruncertainties, and these methods are incorporated into the architecture of autonomousdriving [34, 37, 334].There are a few studies that focus on adversarial attacks on local-planning. These stud-ies target machine learning algorithms for local-planning modules such as trajectory pre-diction (Trajectron++, Agentformer and GRIP++) [34, 36, 334]. The predominant threatmodel adopted, focuses on developing methods and tools of adversarial learning to un-derstand the trajectory prediction model of the target AV and then either crafting mali-cious sensor data input or training other ego AVs in the driving environment to interferewith the target AVs predicted trajectory [34, 36, 303, 334]. The required result of a suc-cessful adversarial attack is to cause the target AV to generate a trajectory that is unsafe,inefficient, or uncomfortable for passengers. In this work, we expand on the target ofattacks to a rule-based algorithm for local-planning, and focus on the trajectory gener-ation and estimation of an AV. Our justification for focusing on rule-based algorithms isthat, whilst AI approximate reasoning algorithms seem to be highly promising for the nearfuture, an impediment to current adoption is the lack of feedback in real-world drivingscenarios [52]. Rule-based algorithms for path-planning in robot navigation and AD arewell-established, and more ubiquitous in real-world deployments.A rule-based local-planning algorithm uses a cost function to estimate the least-costpath. The cost function takes input from immediately sensed-data; current pose, velocityetc.. The cost estimation is based on a calculation of factors such as; lateral collision, lon-gitudinal collision, lane transition, central deviation etc., and weighting is given to thesefactors based on criteria such as safety and efficiency. By interpreting the cost-function,used for trajectory generation and estimation, as part of local-planning, an adversarialattack can be crafted which affects the downstream behavioral control whose decisionsimpact the safe driving state of the AV.The main idea is that the white-box knowledge of the cost estimation function of therule-based local planning algorithm can be used to craft adversarial attacks by manipulat-ing factors inherent to the cost function. Evaluating white-box generated attacks enablean understanding of the level of stealth of the adversarial threat, and whether adversarialmanipulation by the cyber attack can be distinguished from noise. Furthermore, theseattacks will enable evaluation and assessment of the optimisation of the algorithm to un-certainties and the quality of decision-making.The key questions we engage are the following:
1. What is the sensitivity of the cost function to adversarial data manipulation of keydriving parameters?
2. How can an adversarial attack hide in the cost function from detection?
3. What optimisations of the rule-based algorithmcanbe considered tomitigate againstadversarial data manipulation?
The problem area of this research, is centred on a local-planning algorithm, open-planner 2.5, which is used in an AV shuttle program that operates in real-world roadconditions in Europe [57]. As with the open-source software community, developmentof vulnerability research and testing methods proliferate across the ecosystem and areutilised and innovated for diverse platforms. The aim of this study is to focus on the vul-nerability of the local-planning function of autonomous driving and provide direction and
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guidance to the autonomous driving security community to develop vulnerability testingon diverse planners and algorithms. In a broader sense, this research aims to understandhow AD algorithms used in real-world AD programs can be tested for adversarial threatsand validated to improve assurance for real-world operational driving.
3.2.1 Threat ModelThe attack targets the local planning cost function, with the aim of inducing the trajectoryevaluation to choose a motion-planning route that is not optimal for safety, functional-ity of the driving mission and comfort of the passengers. To achieve this, the most directmechanism to impact the cost function is tomanipulate, with adversarial data, the sensed-data input that is inherent to local-planning. The Current_Pose data is the optimal targetfor this as it is the primary sensed-data for localisation of the vehicle, containing the longi-tudinal, lateral positioning and orientation of the AV. Whilst altering the pose data of thevehicle has previously been conducted in other studies [34,36,303,334], in our attack weaim to explore the sensitivity of our cost function to data manipulations and conductingthe attack during specific time-intervals.For the threat model used in our study, we assume that the attacker has access tothe internal network of the AV and is able to listen to control message communicationsand collect data. This could be achieved through supply-chain compromise of a libraryin the control software, insider threat actor, or many of the vulnerabilities in existingcommunication frameworks for autonomous systems such as the robotic operating sys-tem (ROS) [64]. Given the attacker has access to the internal network, the question arises,why not change the Lane_ID or a driving parameter which would be more simplistic anddirect? We view these attacks as overt in nature and likely to be detected, the compellingnature of adversarial data manipulation is that the attack is difficult for AV safety engi-neers to interpret between noise and an explicit cyber threat. Another consideration arethe external interfaces of the vehicle localisation sensing, which generates the pose data.It is a possibility that the pose data can be manipulated by an external attack in the formof GPS spoofing or an adversarial LiDAR, dependent on the sensor configuration used forthe localisation of the vehicle. The study focused on the vulnerability of the planner andits search space, considering localisation. We considered internal attacks to be importantdue to the increase in attacks through software and hardware supply-chains, and there-fore the scope of the attacks within the study highlighted this area.
Attack Case 1: Position Offset AttackThe attacker creates a spoofed ROS topic which is able to deliver malicious input data ofthe Current_Pose (longitude, latitude, and velocity) to all the nodes of the local planningmodule. The data manipulation is injected online/dynamically during the critical overtak-ing manoeuvre involving the AV and NPC. Figure 30 displays the critical driving scenarioand the time frames in which the manipulated Current_Pose data is injected into the lo-cal planning pipeline cost estimation. The red dashed lines in Figure 30 represent theroll-outs, and the green highlighted, denoting the selected motion-path.
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Figure 30: Threat Model

For the manipulation of the Current_Pose data, we introduce a deviation to lateraland longitudinal pose. For the lateral pose data, the sensitivity deviation introduced wasstructured as follows:
• Attack Case 1a: 0.16%
• Attack Case 1b: 0.33%
• Attack Case 1c: 0.5%
In designing the range of deviation, we considered state-of-the-art attacks such asAdvDO attack [34], which noted two requirements for developing adversarial threats toplanning algorithms:
1. Malicious data input needs to be feasible to the real, physical constraints of thevehicle [34].
2. Malicious data input of the local-planning algorithm should be close to the nominaltrajectory [34].
Therefore, we chose a range from a slight perturbation of pose to a 1m deviation.The longitudinal pose data sensitivity deviation range was structured as follows:
• Attack Case 1d: 0.33%
• Attack Case 1e: 0.66%
• Attack Case 1f: 1.00%
This range is the same as the longitudinal deviation. The difference in percentagecomes from the difference in coordinate values of lateral and longitude. The lateral valueis almost double those of the longitudinal, and therefore the percentage is doubled.

Attack Case 2: Message Time-Delay
For the second attack case, we inserted a time-delay into themessages of theCurrent_Posetopic communicating to the nodes of the local planning module. We introduced a mes-sage delay when the AV passes 2m in front of the NPC (from the centre) in the lateraldirection. We introduce 3 different time delays in the message:
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• Attack Case 2a: 0.3 seconds
• Attack Case 2b: 0.6 seconds
• Attack Case 2c: 1.0 seconds
The message frequency is approximately 50hz, so this is a message every 20 millisec-onds. We chose the above range of deviation of time-delay as it enabled a spectrum of amessage from the delay from approximately 15, to 50 messages.

3.2.2 Experimental Setup
Test Environment and Configuration
In terms of conducting such experiments, simulation is the best method among all testingmethods for AVs. To accelerate the testing, we bypassed the sensing and detection nodesof the algorithm and focused on the planning part by utilizing the low-fidelity simulationfeature provided by Autoware.ai and Openplanner. The low-fidelity simulation uses theopen-planner 2.5 control algorithm. It provides simulated localization and detection datafor the planning nodes and receives the actuation commands to simulate the AV kinemat-ics. This process runs faster due to the low-detail environment required for the simulationand the lack of the process to simulate the sensors. Figure 31 displays the different framesof an overtaking simulation in the simulator.

Figure 31: Example of an overtaking simulation in the low-fidelity simulator, a) starting point of the
overtaking b) middle of the mission, AV is on the opposite lane reaching the NPC c) AV cuts in

Target Mission
Overtaking is one of the most challenging maneuvers for AVs [186]. In this research, weselected this operation as the target scenario for studying the planning algorithm underthe cyber-attack. The scenario parameters in Figure 32 are listed in Table 19.
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Figure 32: Overtaking Scenario and parameters

Table 19: Target scenarios definition

Actor Speed (m/s) Dx(m) Goal
AV [0:6] 0 overtake the NPC safely
NPC 3 25 keep moving

Safety Evaluation Test
To assess the safety and reliability of the planning algorithm in normal conditions (no at-tack), we ran the scenario simulation 300 times to reach a meaningful statistical popu-lation. Then, the planning algorithm behavior in each case was evaluated with the local-planner performance evaluation criteria (explained in the next section).
Attack Test Cases
Finally, the platform was used to simulate the proposed adversarial data manipulationsand time-delay messaging, during the overtaking mission and monitor the algorithm’sbehavior. For each attack case, we ran the simulation (with attack) 100 times. Overall,900 simulations were conducted for all attack cases.
Evaluation Criteria
For the evaluation, we used previously established safety criterion [190] with evaluationcriteria recommended by SafeBench, a benchmarking framework for safety evaluation ofAD algorithms for critical driving scenarios [320]. Table 20 displays the metrics used forthe performance evaluation.

Table 20: Safety Evaluation Criteria

Safety Condition Data Label Description Metric
Succeed Suce AV Successful complete the mission Pass/Fail
Not Finished NotF Failure to finish the mission Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Break on Driving Lane BrD AV initiates emergency break on driving lane Pass/Fail
Break on Passing Lane BrP AV initiates emergency break on passing lane Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Violation V Safety Violation
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3.2.3 ResultsAfter running 1200 simulations, all recorded data including the AV and the NPC positionand orientation were processed to assess the simulations based on the evaluation crite-ria. We also visualized the recorded data to study the violation and their cause in eachsimulation as shown in Figure 33. Figure 33.a represents a safety run completed success-fully. Next, (b) and (c) display lateral and longitudinal attack cases which experiencedbrake and collision safety violations respectively. Finally, (d) shows a message time delayattack which is finished by a collision. The asterisk signs in the AV trajectory show thepoint where the Openplanner changes the rollout. Overall, all the safety violation resultsfor the whole experiment are presented in Figure 34.

Figure 33: 2D representation of the simulation of each test group. a) a successful safety test, b)
a lateral attack case that led to a brake violation, c) a longitudinal attack case that experienced a
collision, and d) a message time delay that causes a collision. for the attack cases a vertical line
shows the start and stop point of the attack

For each of the attack test cases, we saw an increase in safety violations of the AVcompared to the normal safety test case experiment. As the value of the deviation forlateral and longitudinal values increased the number of successful mission completionsdecreased. Although marginal, the greater number of safety violations for the attacks onthe Current_Pose data were observed in the lateral deviations. Given the importance oflateral positioning to the overtaking manoeuvre, this can be understood as any deviationincreases the complexity of executing the overtakingmanoeuvre. In the 1f attack test case,the highest value longitudinal change (approximately 1 meter) led to a crash with curbsideand not able to continue themission. This eventwas reported as a braking safety violation.The time-delay messaging attack test case saw the only result for mission not finishedmetric. Furthermore, the greater the delay of the Current_Pose data reaching the local-planning nodes, the increased likelihood that a safety violation will occur, and in the caseof our experiments, the greater the likelihood of a the most serious safety violation, col-lision.
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Figure 34: All simulation result based on the proposed safety criteria

Table 21 demonstrates the results of the safety test according to the performance eval-uation criteria. The level of safety violations are reflective of an algorithm which is in de-velopment and being optimised for critical driving scenarios such as overtaking.
Table 21: Summary of the Safety Simulation

Num. VCol VDTC VBrP VBrD VNotF VSuce
300 4.6% 8.6% 19% 6% 0% 51.6%

TS ACC YV LI
mean 29.1 0.4 3.8 7.1
STD 6.7 0.2 2.2 4.6
min 21.9 0.2 1.8 2
max 42.3 1.3 21.7 25

Table 22 shows that for each deviation there is a high number of safety violations incomparison to the safety test case results. In regards to the sensitivity analysis, a smallerdeviation of around 20 to 25 cm can achieve the result that the local-planning algorithmis only successful in generating a trajectory that completes the mission in 24% of the totaltest set. Furthermore, a small deviation in the lateral pose, can achieve a higher number of
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Table 22: Summary of the Attack Case 1: Position Offset Attack Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
1a 100 24% 11 % 34% 7% 0% 24%
1b 100 5% 11 % 81% 1% 0% 2%
1c 100 13% 11 % 74% 2% 0% 0%
1a TS ACC YV LI

mean 35.3 0.4 9 7.5
STD 7.4 0.2 7.5 5.4
min 21.9 0.2 1.9 1
max 42.4 1 23 23

1b TS ACC YV LI
mean 41.4 0.4 9.5 4.8
STD 3.5 0.1 4.4 3
min 22.1 0.2 3.1 1
max 42.4 1.2 23.7 21

1c TS ACC YV LI
mean 41.7 0.4 7.8 4.7
STD 1.7 0.1 1.2 2.7
min 32 0.3 4.3 1
max 42.3 1 9.8 15

collisionswith an ego vehicle. Itmay also be seen from the lane invasion and steering angleresults that small deviations to lateral pose result in a fluctuation of the cost of differentrollouts which cause greater lane transitions as the cost function causes the AV to choosea route based on minimum cost. The higher deviation results in a higher occurrence ofbreaking activity and hitting the curb. Furthermore, the higher deviation results in theAV being stuck in the passing lane, this is due the dramatic change in lateral pose. The 1meter deviation attack case results in 0% success of finishing the mission.
Table 23 results of the longitudinal deviations also display a high number of safety vio-lations in comparison to the safety test case results. Collision safety violation is highest forthe longitudinal deviation attack. This can be reasoned as the longitudinal deviation doesnot experience the same high volume of breaking passing lane safety violations, wherethe vehicle gets stuck, as seen with the lateral pose deviation. The higher deviation oflongitudinal pose, results in increased acceleration and this causes sharp breaking. This isindicated with the 1f result, the 1 meter deviation attack case, which displays a higher in-stance of breaking safety violation. The 1meter deviation attack case results in 0% successof finishing the mission.
Table 24 demonstrates the shorter delay of local pose data has minimal impact on thesuccess of the mission and safety violations. As the time duration of the message delay
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Table 23: Summary of the Attack Case 1: Position Offset Longitudinal Deviation Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
1d 100 23% 16 % 30% 7% 0% 24%
1e 100 58% 9 % 25% 3% 0% 5%
1f 100 34% 14 % 51% 1% 0% 0%
1d TS ACC YV LI

mean 33.8 0.5 5.7 9.1
STD 7.6 0.3 4.9 5.4
min 18.1 0.2 1.7 2
max 43.2 1.4 23 27

1e TS ACC YV LI
mean 32.2 0.6 6.7 10.5
STD 9.5 0.2 3.2 5
min 17.8 0.2 1.9 2
max 43.2 1.1 20.5 25

1f TS ACC YV LI
mean 32.2 0.7 5.9 11.3
STD 7.9 0.2 2.5 4.7
min 18 0.3 2.7 2
max 43.2 1.4 22.1 26

is increased the impact to the reliability of the local-planning algorithm is higher. Test 2c,which is the delay of Current_Pose data of 1.0 second, shows considerable increases incollisions and decreases in the likelihood of the success of the mission. The time-delay ofthe pose data to the local-planning nodes results in a loss of localisation and the greaterdelay the greater impact on the cost calculation which in turn causes uncertainty for thebehaviour selector/decision-making.
3.2.4 Discussion
The results of the test simulations demonstrated that the cost function is sensitive to mi-nor deviations of both the lateral and longitudinal pose. The success rate of the mission isvisibly diminished when adding adversarial data manipulations to the sensed-data input.The higher the deviation, the higher the likelihood of mission failure. The minor deviationattacks, where the deviation is a range of 20 to 25cm offer a good starting point to mutateadversarial data for further attacks based on this range. Whilst the higher range attacksconducted in our experiments showed a higher rate of mission failure, a deviation of 1meter can be seen a noisy enough to be observable. We also noticed such behaviour in areal-world AV shuttle [254] and a manual emergency break had to be enacted to preventan emergency.
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Table 24: Summary of the Attack Case 2: White-Box Delay Simulation

Case Num. VCol VDTC VBrP VBrD VNotF VSuce
2a 100 20% 9 % 16% 4% 0% 51%
2b 100 21% 8 % 17% 7% 0% 47%
2c 100 41% 10 % 14% 2% 4% 29%
2a TS ACC YV LI

mean 29.3 0.4 4.2 7.6
STD 8.1 0.2 2.2 5.4
min 18.1 0.2 1.8 2
max 53 1.1 16.7 24

2b TS ACC YV LI
mean 30.6 0.4 4.8 7.8
STD 8.6 0.3 3.7 4.8
min 22.9 0.2 1.8 2
max 58 1.1 23.8 21

2c TS ACC YV LI
mean 32.9 0.4 7 8.3
STD 9.6 0.3 5.2 5
min 13 0.2 1.1 0
max 58.2 1.3 22.9 23

The time-delay attack demonstrated that minor delays cause minimal impact on the success of the mission and the occurrence of safety violations. Delays in sensed-data input flowing to the local-planning modules of greater than 1 second increase the rate of mission failure and safety violations. Given that 1 message is broadcast every 20 milliseconds, 1 second represents around 50 messages, and a delay of this magnitude is also likely to be more observable.For the attack to hide in the cost function, investigating mutations for minor deviations of lateral and longitudinal values in the range of 20 to 30 cm, offer an optimal target range.Mitigation of the adversarial deviation and time-delay attack could include the imple-mentation of a redundant driver. This means that the AV should run a concurrent process executing a concurrent planning instance. If the redundant driver and the actual driving algorithm give different results, then this could indicate that an attack might be happen-ing. In such a case, the AV could either stop safely awaiting for human intervention or switch to the redundant driver to complete its mission. The development of the architec-ture for a redundant driving integrity checking function also needs to consider isolation from the primary driving function so that an attacker cannot also compromise both.
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3.2.5 Relation to existing solutionsAs safety validation of AD algorithms is a critical field for the adoption of AD in real-world environments, there is a focus on testing the reliability of trajectory prediction and gen-eration to adversarial driving actors in the road environment. Wang et al. [303], Abeysiri-goonawardena, Dudek & Shkurti [6], Chen et al. [44], Klischat et al. [157], and O’Kelly et al. [215] use simulation environments to develop adversarial trained NPCs whose driving actions cause safety violations of the trajectory prediction of the targeted AV. These sim-ulations are focused on safety validation and are not focused on the exploitation of the algorithm by adversarial threat actors, however, their methods in generating adversarial examples and target parameters and data values are of great use in developing adversarial cyber threats.On a practical level, involving the real-world operation of AVs, there are few research studies into the robustness of planning and navigation algorithms to adversarial threats. Prominent among them are Zhang et al. [334], Cao et al. [36] and Cao et al. [34]. These studies focus on the robustness of the trajectory prediction, the ability of the AV to predict the trajectory of another ego vehicle or environmental object (pedestrian, animals etc.) and make driving decisions accordingly. The attacks in these studies are targeted at deep-neural networks (DNNs), and therefore focus on adversarial learning to develop robust adversarial trajectories. In relation to our work, the observations on ranges for deviation of lateral and longitudinal values and the considerations for crafting adversarial data were useful in developing our attack cases.In this experimental research, we conducted a sensitivity analysis of the openplanner 2.5 rule-based planning algorithm to adversarial data manipulation of lateral and longi-tude values and delayed sensed-input messages to local-planning nodes. We evaluated these attacks in a low-fidelity simulation test environment using an overtaking manoeuvre critical driving scenario. The results showed that the planning cost-function is sensitive to adversarial data manipulation that introduces deviations to the lateral and longitudinal values. These adversarial deviations cause higher rates of failure to complete missions and cause safety violations. For the message delay attack, limited delays in the range up to approximately 0.6 seconds have a limited impact on the trajectory calculation. Mes-sage delays for 1 second or greater cause a visible difference in the safety violation rate and mission success. We opine that limited deviations are an optimal area to explore further attacks and in more diverse critical driving scenarios. Through this work we propose a class of stealthy attacks on the local-planning function of AD. An area of future research is the development of monitoring systems developed around such basis of attacks. The results show the feasibility of monitoring real-time properties of the messages propagations and therefore post-mortem forensics might be able to determine the presence of an attacker causing safety violations of AVs.
3.3 Analysis of Autonomous Driving Software to Low-Level Sensor Cyber

Attacks
Cyber attacks which manipulate input to physical processes in cyber-physical systems present a fundamental challenge to secure system design [331]. Within the domain of automotive systems, transformation of legacy, analog architectures to digitally connected and AD technologies present new challenges. Legacy, analog automotive systems were designed based on a principle of contained, isolated system boundaries, restricting the flow of data within an analog system and sub-system [30]. The AD system architecture transforms this design, requiring the lower-level, analog control of actuation processes (steering control, braking, acceleration etc.) to be open and connected to digital controllers so their process
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signals can be translated to digital input for the higher-level decision control [205].There have been numerous real-world examples of semi-autonomous control archi-tectures enacting unsafe decisions from erroneous sensing data from low-level actuationsensors [294] [74]. The 2018 SmartLynx Airline incident demonstrated that a physical dis-turbance from amaintenance activity on the horizontal stabilising sensor caused the sens-ing input to send erroneous data which propagated through to the control systems forflight planning, stabilisation and safety. The control systems initiated multiple concurrentactuation decisions (horizontal stabilisation, acceleration etc.) which affected the safeoperation of the flight [74]. Ultimately, manual intervention to override the autonomouscontrol resolved the unsafe state of the flight.Within the context of cyber threats, numerous studies have proven the vulnerability ofmicroelectronic sensors to electromagnetic interference (EMI) [225], [290], [336], acousticsensor [289] [283] and data manipulation attacks [60], [131], [202], [51]. Furthermore,the network that exchanges actuation signals, CAN Bus network, has been shown to beinherently vulnerable to a diversity of man-in-the-middle [31, 139] attacks. Yet, there is alack of practical investigation which extends this analysis of the propagation of maliciousdata input within an AD system, where physical processes are software controlled andmanual, human intervention is not available.

Figure 35: High-level architecture of Steering Angle Sensor Manipulation within AD System.

This experimental research ismotivated to investigate how cyber attacks to electrome-chanical components, in our case, a steering-angle sensor, propagate through the AV sys-tem, affecting higher-level decision-making. The aim of this research is to analyse thedesign of a real-world AD vehicular system and assess mechanisms to enhance the de-sign of the architecture of AD systems to be more robust and resilient. To achieve this,we, firstly, investigate a real-world AV software ecosystem, analysing the integration be-tween the lower-level control, characterised by electromechanical components, and thehigh-level control, characterised by digital systems which support algorithmic decision-making. Secondly, how malicious input propagates within this ecosystem. Finally, deter-mine mechanisms for enhancing secure design.To guide this research, we focus on the following research questions:
RQ1 How does a manipulation to the electromechanical component propagate through

the AD software stack?

RQ2 What dependencies exist between the AD control algorithm and low-level control?

RQ3 Where in the architecture of the autonomous vehicle can defensive mechanisms be
placed to defend against control invariants?
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3.3.1 Approach Overview
Our approach (see Figure 36) is to, firstly, implement the sensor interference attackmodelin our custom high-fidelity AD test-bed environment. The test-bed environment containsthe software stack of our real-world vehicle and configurations consistent with the real-world kinematics of the vehicle.

Secondly, from the results of the experiments, we assess the impact of the cyber at-tacks utilising defined safety criteria. Furthermore, we conduct a sensitivity analysis ofthe vehicles dynamic parameters to identify the behavioural affect of the malicious inputand assist in pinpointing critical areas of the AV software which are affected by the attack.
Third, we conduct a bottom-up analysis, to ascertain what happens to the high-level,decision-control, when malicious data is injected into the low-level. The bottom-up anal-ysis details the relationship between inputs and outputs in the AV software stack.
Fourth, the previous analysis enables backstepping at a conceptual level to stabilizeelements of the control model which are susceptible to the sensor interference attack.

Figure 36: Conceptualization of our approach, from attack to backstepping.

We justify the use of this approach as it enables us to take an architectural view of theAV software stack. Existing studies usemethods that view the problem ofmanipulation oflow-level sensor input either within the context of a PID control [225] [290] issue or solelyfocus on the autonomous control [131]. We believe, taking an architectural perspective,where the interconnections and dependencies of the system are encountered, enablesthe designer/s of the AV to gain more insight into the functioning of the system underattacks.
3.3.2 Adversarial Model
The objective of the attacker is to cause the AV to take unsafe driving actions resultingfrom manipulation of the steering angle sensor. We assume the attackers cannot directlyaccess the digitised sensor readings. Instead, we assume that the attacker can exploitvulnerabilities in the steering angle sensor using proven techniques such as EMI, to affectthe integrity of the sensor data (analog signals on the signal conditioning path beforebeing digitised).We assume that the attackers can physically place an EMI device near
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the steering angle sensor and are capable of crafting and transmitting interference to thesensor during the navigation of the AV and thus transform the waveform of the sensoroutput. We further assume that the attackers do not possess an in-depth understandingof the voltage levels of the steering sensor and therefore focus on injecting incrementalnoise into the sensor. We assume that the attackers can observe the operation of the AVand control the attack in terms of initiation and cessation of the attack during varied timeperiods or within the frames of a critical driving manoeuvre.
3.3.3 Attack Model
The attack is conducted in the measurement of the input and output of the PID controllerfor the steering angle (See Figure. 37).

Figure 37: Steering angle sensor attack.

The key parameters that affect the success rate of the attack are: duration, noise,
attack trigger action.Within, our attack model, attacks are conducted with differing sensitivity levels of thesteering angle sensor, durations and are triggered at targeted points of the AV mission.We have chosen a range of sensor attack noise levels (0.01, 0.05, 0.1, 0.2), rather thana specific target point. We expect that our attack, will generate errors that propagatefrom the low level to the localizer and trajectory-generator blocks. The study of Pöllny etal. [225], which conducted EMI attacks on a sensor used in an automotive ECU, indicatedthat an attacker does not need to set a specific value for the steering angle attack, butsimply to find the sufficiently high level of noise that would alter system behaviour to theattacker goal.Whilst, EMI attacks have been proven successful against microelectronic componentsin [150] [131] [225] [60] [290] [336] [283], the attacks are applied to the stand-alone sensorhardware and application use-cases such as microphones, temperature sensors, drones.The novelty of the attack model in our study is the implementation of the attack to afully-autonomous vehicle that integrates low-level actuation with high-level AD decision-making. This enables the ability to assess the affect of the attack to the entire AV softwarestack. Furthermore, the attack is conducted utilising scenario-specific testing. This is ofcritical importance, as it is widely understand that the performance of the AD decision-making layer differs based on scenario specific behaviour [131]. For the AD algorithmsmaybe better optimised for specific driving manoeuvres such as overtaking, or ODDs such asbusy intersections. Our attack is conducted in a simulation test environment, as attacksat the physical, hardware-level are proven, the gap in existing research, is how these in-puts propagate within the system and affect the decision-making within an autonomoussystem.
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3.3.4 Experiment
Experimental Setup
To conduct the attack and analyse the subsequent effects, we developed an experimentaltest environment.This environment consists of a simulation platform that fuses the low-level actuation, simulated inMATLAB, with a high-fidelity simulation of the AV software ofour real-world vehicle, simulated in CARLA. The simulation test environment provides anoptimal platform as it uses the same mathematical model of the steering actuation sen-sor and the same software stack as the real-world vehicle. Furthermore, the simulationenvironment enables attack testing to be conducted in an agile manner, whilst, removingthe safety risk factors of testing the AV in the physical, road environment.
Attack Implementation
We chose to conduct the low-level attack on three diverse scenarios (see Figure. 38):1) Straight-line, 2) Overtaking manoeuvre and, 3) Left-turning maneuver at intersection.These scenarios were chosen as they are consistent with the most-popularly tested driv-ing scenarios according to the survey of test methods and practices by Lou, Deng, Zheng,Zhang & Zhang [177]. As shown in Figure 38, the high-fidelity simulation view for the 3scenarios is conducted. The Straight-Line scenario shows that the EMI attack is initiatedafter the vehicle traveled 20 meters, with two different attack durations: 10 and 20 me-ters. For the overtaking manoeuvre, the attack begins during the cut-in process and lastsfor 10 meters. Finally, in the intersection scenario, the attack is launched as the vehicleenters the intersection and persists for a distance of 10 meters.To conduct our experiments, firstly, we conduct the scenario with no-attack for 100runs. This establishes a baseline of the performance of the AV without attacks. Fromthere, each of the attacks with different noise levels and duration are run 100 times. Over-all, approx. 1900 simulation runs are recorded, and as the high-fidelity simulation usesGPU and CPU resources, this is a time-consuming process. Figure 39 presents the sce-nario flow used to integrate the attack into the mission in CARLA. It outlines the sequenceof behaviors from the vehicle’s initialization and driving towards the goal to executing anattack or stopping based on a distance trigger. The attack is enabled based on a prede-fined condition. This structured flow allows for precise control over when and how theattack occurs during the scenario, ensuring consistent testing of the AV’s response to dis-turbances.
Evaluation Criteria
Table 25 and 26 detail the safety and performance criteria applied in our experiments,respectively. As we have diverse scenarios which involve scenarios with ego vehicles, cer-tain criteria is only applicable to their corresponding scenario. In this analysis, missionfailure (NotF) and safety violations (SafetyV) are distinct evaluation criteria used to assessthe performance and safety of the AV during the scenarios.Mission failure (NotF) refers to instances where the vehicle was unable to completethe mission. This typically occurs due to critical events that prevent the AV from finishingits task, such as collisions (VCol), localization loss (VNDT Ls), or sidewalk incursions (VSiIn).These violations are severe enough to terminate the mission.Safety violations (SafetyV), on the other hand, refer to any breaches of safety that oc-cur during the mission but do not necessarily prevent the vehicle from completing it. Amission may still be considered successful even if multiple safety violations are recorded.Examples of these include deviation to the center lane (VDT L), sharp braking (VBrD), local-ization loss (VNDT Ls), collisions (VCol), and violations of distance to collision (VDTCVDTC).
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Figure 38: Game-engine view of three simulated scenarios representing the attack occurrence place
during the mission; 1) Straight-line 2) Overtake 3) Intersection.

In these cases, while the AV may exhibit unsafe behaviors or suboptimal performance, itis still able to complete the mission.
Two critical safety metrics are sidewalk incursions (VSiIn) and collisions (VCol), bothrepresenting severe safety hazards. A sidewalk incursion indicateswhere theAV veeredoffits intended path and encroached into pedestrian zones, potentially endangering peopleon sidewalks. Similarly, a collision signifies an event where the AV collided with a nearbyNPC vehicle.
Another key performance indicator is the deviation to the reference path (Dev2Ref),whichmeasures how far the AV strayed from its intended trajectory. It is important to notethat Dev2Ref is not the deviation at a single point; rather, it represents the summationof the deviations at several reference points along the planned path to the actual routetraveled by the AV. This cumulative nature of the metric results in larger values, especiallywhen the AV frequently deviates from the intended trajectory.
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Figure 39: Flow-graph of how each scenario is processed in the simulation platform.

Table 25: Safety Evaluation Criteria

Safety
Condition

Data
Label

Description Metric

Not Finished NotF Failure to finish the mission Pass/Fail
Sidewalk Incursion SiIn AV deviationinto pedestrian zone Pass/Fail
Collision Col AV collides with NPC Pass/Fail
Distance-to-Collision DTC Violation of the safe distancebetween AV and NPC AV within 0.5mof other vehicle
Distance-to-Centre Lane DTL Violation of the safe distancebetween AV and Centre Lane AV within 0.4mof centre lane
Break onDriving Lane BrD AV initiates emergency breakon driving lane Pass/Fail
Localization NDTLs Localization Loss NDTerror> 1.0
Violation V Safety Violation

3.3.5 Results
For each of the scenario’s, the results, as expressed in Tables. 27, 28, 29 demonstrate thatincreasing level of noise and duration of the EMI attack impact the safety and performanceof the AV.Themanipulation of the steering sensor input, at higher noise levels, affects the feedback-loop for calculation of localisation which results in the AV experiencing loss and jumps oflocalisation. The NDT algorithm, used in the localisation algorithm, exhibits weakness inholding the position of the AV during sensor manipulation, which is demonstrated by lossof localisation, in attempting to re-correct, it incurs jumps. The loss and jumps of the lo-calisation affect the displacement of the AV as such the cost-based algorithm used by themission andmotion planningmodule, recalculates the trajectories and chooses a new roll-out. The choice of new trajectory of the AV disrupts the flow of critical maneuvers within
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Table 26: Performance Evaluation Criteria

Performance
Criteria

Data
Label

Description Metric

Lane Transition RlOut AV executes multiple roll-outtransition Pass/Fail
Localization NDT LocalizationPerformance AV localization matching
Localization NDTer Mean localization pose error Localization error margin
Duration Dur Duration in seconds
Max NDT score MxNDTSr Max NDT scoreduring a mission Smaller = Better
Path Deviation Dev2Ref Sum of deviation to thereference path in sampled points Smaller = Better
Max Lat Deviation MxLaDev Max lateral deviationfrom original path Smaller = Better

the scenario such as the cut-in process of overtaking, smoothing of trajectory in keepingstraight-line and turning at the intersection.
Scenario 1: Straight-Line
Within the Straight-Line Scenario Safety Results (Table. 27), safety violations begin to oc-cur when 0.05 noise is introduced into the sensor input, marking the threshold where theAV system starts to struggle with maintaining safety. At this noise level, a 10% safety vio-lation rate provided by lateral deviation violations was observed. As the noise level andattack duration increase, the AV experiences a progressive degradation in performance,culminating in the highest noise level (0.2) and the longest attack duration (20 meters),which results in a 42% safety violation rate and 38% lateral deviation violation.

A key characteristic of the AV’s behavior in this scenario is the Deviation-to-Centre-Lane. The noise is injected into the steering sensor, and abrupt changes in the steeringactuation cause the vehicle’s control system to oscillate between making corrections andfollowing the desired path. Autoware’s motion planner attempts to rectify the vehicle’scourse, but the corrections are often sub-optimal, resulting in the AV veering to a danger-ous proximity to the center line. This behavior indicates a weakness in the resilience ofthe AV’s planning algorithm when recovering from anomalous inputs, as the system failsto regain optimal performance after the attack.
A more extreme example of dangerous trajectories, is where the EMI injection causesthe AV to lose localisation which, cascades to affect the decision-making of the planningalgorithm. The attack localization loss, as indicated by the NDT Error Value and NDT Scoreincreasing, and the sharp variances between autoware and simulator. This behaviour re-sults in the AV veering into the adjacent lane and hitting the side curb, a behaviour char-acteristic of 6% of the runs within the maximum noise and duration simulation set. Asso-ciated with these safety violations are significant performance degradation. In scenarioswith low noise levels (0.01), the maximum lateral deviation is limited to around 0.2 me-ters. However, under maximum noise (0.2) and 20-meter duration conditions, the lateraldeviation increases dramatically to 8.2meters, showcasing the substantial impact of noiseon the AV’s ability to maintain its path. This severe lateral deviation illustrates the dangerposed by noise-induced errors in the vehicle’s steering and localization systems.
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Table 27: Summary of the Safety and Performance Evaluation - Straight Line Scenario. The first line
is our baseline path where no attack was applied.

SAFETY
Length Noise NotF SafetyV VSiIn VDTL VNDTLs VBrD

- baseline 0% 0% 0% 0% 0% 0%
10 m 0.01 0% 0% 0% 0% 0% 0%10 m 0.05 10% 10% 0% 10% 0% 0%10 m 0.1 12% 12% 0% 6% 6% 0%10 m 0.2 30% 30% 2% 26% 12% 8%
20 m 0.01 0% 0% 0% 0% 0% 0%20 m 0.05 34% 34% 2% 30% 8% 2%20 m 0.1 34% 36% 4% 28% 18% 6%20 m 0.2 42% 42% 6% 38% 14% 2%

PERFORMANCE
Length Noise Dur RlOut MxLaDev MxNDTSr

- baseline 57.6s 0 0.1m 11.9
10 m 0.01 59.9s 0 0.2m 11.910 m 0.05 61.5s 0.16 1.6m 12.010 m 0.1 65.5s 0.3 1.5m 12.510 m 0.2 71.8s 1.18 8.3m 25.5
20 m 0.01 70.2s 0 0.3m 14.220 m 0.05 75.6s 0.94 1.7m 25.520 m 0.1 82.6s 1.36 8.2m 46.920 m 0.2 85.6s 1.64 8.2m 35.0

Moreover, the RIOutmetric—which tracks the average number of local trajectory tran-sitions during a mission—shows a significant increase under high-noise conditions. Thisindicates the motion planner’s growing uncertainty and inability to maintain a stable tra-jectory. As the AV continuously switches between trajectories, it struggles to converge onan optimal path, leading to erratic driving behavior and further deviations. Another factorexacerbating these challenges is the increased mission duration under noise attacks. TheAV, displaced from its efficient path due to trajectory deviations and localization errors,takes longer to complete the mission. In the 0.2 noise / 20-meter scenario, the missionduration extended by nearly 28 seconds compared to the no-attack baseline, reflectingthe inefficiency introduced by the noise attacks.
Scenario 2: Overtake Maneuver
In this experiment, the attack length was fixed at 10 meters while varying the noise levelsto assess their impact on the vehicle’s performance and safety. In the no-attack scenario(see Table. 27), the AV successfully completed the overtaking maneuver with minimal dis-ruptions. Themission failure rate (NotF) was 0%, and a 1% violation of distance to collision(VDTC) was recorded, indicating that in one case, the vehicle exceeded the safe distancefrom nearby objects. Despite this, there were no sidewalk incursions (VSiIn), collisions
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(VCol), or localization loss (VNDT Ls). The vehicle maintained a safe average DTC of 0.4 me-ters. The mission duration was 104.7 seconds, with an NDT error of 0.2 and a standarddeviation of 0.1.
Table 28: Summary of the Safety and Performance Evaluation - Overtake Scenario. No attack was
carried out in the baseline experiment.

SAFETY
Noise NotF SafetyV VSiIn VCol VNDTLs VDTC VBrD

baseline 0% 1% 0% 0% 0% 1% 0%
0.01 7% 18% 2% 3% 4% 14% 1%0.05 16% 23% 8% 3% 11% 10% 2%0.1 29% 40% 18% 2% 26% 14% 1%0.2 33% 39% 23% 7% 28% 14% 2%

PERFORMANCE
Noise Dur RlOut DTC MxNDTSr NDTer S-NDTer

baseline 104.7s 8.2 0.4m 19.4 0.2m 0.1m
0.01 107.3s 7.8 0.2m 55.9 0.2m 0.2m0.05 121.4s 8.9 0.2m 73.9 0.4m 0.5m0.1 125.4s 10.0 0.2m 63.9 0.7m 0.9m0.2 124.7s 10.2 0.2m 53.1 0.6m 0.8m

In the 0.01 noise scenario,VNotF increased to 7%, and by the 0.2 noise level, it reached33%. Similarly, VNDT Loss was first observed at 0.01 noise (4%), growing to 28% in the 0.2noise scenario. These results indicate that noise in the sensor input significantly disruptsthe vehicle’s ability to maintain accurate localization, directly impacting mission success.
In the no-attack scenario, VSiIn and VCol were recorded at 0%, reflecting ideal behav-ior where the AV stayed within its designated path and successfully avoided NPCs duringovertaking. However, as noise levels increased, both metrics worsened. In the 0.01 noisescenario, VSiIn rose to 2%, and VCol to 3%, showing the system’s diminished capacity tomaintain lane discipline and avoid nearby vehicles. At the highest noise level (0.2), side-walk incursions increased to 23%, while collisions reached 7%, a significant rise indicatingthe AV’s inability to safely manage the overtaking maneuver under heavy noise interfer-ence. These results suggest that sensor noise not only disrupts the vehicle’s path but alsocritically impacts its ability to avoid hazards that could lead to severe accidents involvingboth pedestrians and other vehicles.
TheVDTC, which reflects the rate at which the AV exceeded safe distances from nearbyobjects, increased from 1% in the no-attack case to 14% in the 0.2 noise scenario. Thiswas accompanied by a rise in sharp braking events as the AV’s control system struggled tocompensate for the noisy input, leading tomore frequent sudden stops. As the noise levelincreased, the RollOut metric showed greater instability. In the 0.2 noise case, the Roll-Out metric increased from 8.2 (in the no-attack scenario) to 10.2, indicating the planner’sincreasing uncertainty in maintaining a stable trajectory.
The mission duration increased as the noise level rose. In the 0.2 noise scenario, theAV took 124.7 seconds to complete the maneuver, an increase from 104.7 seconds in the
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no-attack scenario. Additionally, the NDT error and its standard deviation saw significantincreases, with the NDTer rising from 0.2 to 0.6 and the S-NDTer increasing from 0.1 to0.8, highlighting the degradation in localization performance under noisy conditions.
Scenario 3: Intersection
In the intersection scenario, the attack length remained unchanged at 10 m, while thenoise levels varied to assess their impact on the AV’s performance during this complexmaneuver. In the baseline scenario, the AV successfully navigated the intersectionwithoutmission failure (0%) or significant safety violations, aside from a small 3% VDTC. Therewere no recorded VSiIn or VCol , and the AV maintained an average DTC of 0.4 meters,with an NDTer of 0.1 and a minimal deviation from the reference path of 20.4 meters.The overall mission duration was 65.8 seconds, and the system performed with only 2.2RollOut changes, indicating a stable and efficient planning process.
Table 29: Summary of the Safety and Performance Evaluation - Intersection Scenario. No attack was
carried out in the baseline experiment.

SAFETY
Noise NotF SafetyV VSiIn VCol VNDTLoss VDTC DTC

baseline 0% 3% 0% 0% 0% 3% 0.4m
0.01 8% 15% 0% 1% 7% 10% 0.2m0.05 19% 27% 2% 3% 16% 13% 0.2m0.1 23% 32% 6% 3% 19% 16% 0.2m0.2 25% 28% 4% 4% 22% 7% 0.1m

PERFORMANCE
Noise Dur RlOut MxNDTSr NDTer S-NDTer Dev2Ref S-Dev2Ref

baseline 65.8s 2.2 38.5 0.1m 0.1m 20.4m 8.2m
0.01 70.5s 3.1 39.5 0.2m 0.2m 39.1m 98.8m0.05 72.9s 3.9 40.9 0.4m 0.4m 63.6m 170.4m0.1 74.2s 4.5 37.5 0.5m 0.5m 69.6m 147.5m0.2 74.5s 4.1 39.1 0.4m 0.5m 77.9m 154.9m

As noise levels increased, the NotF rate rose from 8% at 0.01 noise to 25% at 0.2 noise.Safety violations also saw a sharp increase, particularly in terms ofVNDT Ls, which jumpedfrom 7% at 0.01 noise to 22% at 0.2 noise. This degradation in localization directly im-pacted theAV’s ability tomake timely decisions and follow the intended trajectory, leadingto more dangerous driving behavior.While sidewalk incursions and collisions were rare in the baseline scenario, they be-came more frequent as noise levels rose. At 0.2 noise, 4% of the runs resulted in VSiIn,and 4% in VCol with NPCs within the intersection. This behavior indicates a critical safetyfailure, where the AV not only lost control of its lane discipline but also failed to avoidNPCs and pedestrian zones.The cumulative deviation remained relatively low in the no-attack baseline scenario,indicating stable performance. However, under the influence of noise, this deviation in-creased significantly. For example, in the 0.2 noise scenario, the Dev2Ref reached 77.9meters, with a high standard deviation of 154.9 meters, demonstrating the system’s grow-ing instability under attack. The high standard deviation reflects the inconsistency in the
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AV’s ability to maintain a predictable trajectory, as deviations varied considerably at dif-ferent points along the path. The increasing Dev2Ref values show that the AV struggledto recover from noise-induced errors, leading to significant drift from the planned path.
The results show that the roll-out metric increased as noise levels rose. In the 0.01noise scenario, the roll-out increased to 3.1, and by 0.2 noise, it rose to 4.1, indicating theplanning system’s growing uncertainty in selecting and maintaining a stable path. Themaximum NDT score also fluctuated, reaching a high of 40.9 in the 0.05 noise scenario,highlighting the deteriorating localization performance.
The NDT error and its standard deviation also increased with higher noise levels. At0.2 noise, the NDT error rose to 0.4, with a standard deviation of 0.5, indicating significantlocalization drift. This localization instability contributed to unsafe driving behavior, asreflected in the increased VDTC and collisions. The mission duration also increased withnoise levels, from 65.8 seconds in the baseline scenario to 74.5 seconds at 0.2 noise. Thisduration increase indicates the AV’s struggle to efficiently navigate the intersection underattack, as the planning algorithm and control systems were frequently forced to adjust tocounteract the noise-induced deviations.

Comparison Between Safety Violations and Simulated Scenario
Figure 40 represents radar graphs that provide a clear visual representation of the impactof noise attacks on the AV across all different mission types: straight-line driving, overtak-ing, and intersection maneuvers, with varying attack lengths (10 meters and 20 meters)for the straight-line scenario. By comparing these radar graphs, we can discern how theattack influences the AV in different maneuvers and understand whether the vulnerabilityis related to the nature of each maneuver.

In the straight-line scenario (Figure 40 (a) and (b)), the radar plots show a clear differ-ence between the 10-meter and 20-meter attack lengths. With the 10-meter attack (Fig-ure (a)), the VDT L and VNDT Ls are relatively contained at noise levels below 0.1, but theyspike at 0.2 noise, indicating that longer attack lengths exacerbate the vehicle’s struggleto maintain its trajectory. By contrast, in the 20-meter attack scenario (Figure (b)), theimpact of noise is more pronounced across all noise levels, with a higher percentage ofNotF and significantly greater VDT L and VNDT Ls values. This suggests that the longer at-tack duration amplifies the system’s inability to recover from perturbations in the steeringsensor, causing the AV to deviate further from the planned path.
In the overtaking scenario (Fig. 40 (c)), the radar plot highlights that this maneuver isparticularly vulnerable to VNDT Ls and VDTC as noise levels increase. Even at 0.01 noise,the AV shows a marked increase in these safety violations, and by 0.2 noise, VNDT Ls and

VDTC reach critical levels. This indicates that overtaking is amore complex and challengingmaneuver for the AV compared to straight-line driving, as it requires the vehicle to safelyexecute lane changes and avoid collisions with NPCs. The complexity of coordinating be-tween localization, path planning, and collision avoidance makes the system more proneto safety violations when noise is introduced.
In the intersection scenario (Fig. 40 (d)), the radar plot demonstrates that this maneu-ver is less affected by VDTC compared to the overtaking scenario, but the mission failurerate and localization loss are notably higher. Even at 0.01 noise, NotF jumps to 8%, and

VNDT Ls reaches 7%, while at 0.2 noise, NotF reaches 25%, indicating a substantial failurerate. The intersection maneuver places a high demand on the AV’s localization and plan-ning systems, as it requires precise decision-making in a constrained environment withmultiple potential collision points. The increase in safety violations with rising noise lev-els reflects the difficulty the AV faces in maintaining control during complex navigation
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Figure 40: Safety violation of simulated scenarios.

tasks in intersections, where it must simultaneously monitor multiple potential threatsand adjust its trajectory.The vulnerability of the AV to noise attacks appears closely tied to the nature of themaneuver. Straight-line driving is less demanding in terms of control and localization, andas a result, the AV is able to handle noise better—though longer attack durations (as inFig. 40 (b)) significantly increase the risk ofmission failure. In contrast, overtaking involvesmore dynamic path changes and collision avoidance, making it more susceptible to noise,as seen in the sharp rise inVDTC andVNDT Ls even at low noise levels. Intersectionmaneu-vers also present significant challenges, particularly due to the need for precise localiza-tion and decision-making at multiple points, resulting in higher mission failure rates andlocalization loss as noise levels increase. These findings suggest that the more complexthe maneuver (i.e., those requiring more dynamic control and interaction with externalfactors like NPCs or intersection points), the more vulnerable the AV is to noise attacks.
Violation to noise correlation analysis
The correlation heatmap shown in Figure 41 reveals significant insights into how differentsafety violations and performance metrics are affected by noise levels across various ma-neuvers and attack durations. Among all the maneuvers, straight-line driving (10m attack)demonstrates the highest correlation between noise levels and mission failure, with a co-
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Figure 41: Correlation coefficients between violation metrics (horizontal axis) and noise levels ([0,
0.01, 0.05, 0.1, 0.2]) for each scenario (vertical axis). The values indicate the strength of the rela-
tionship between the likelihood of each violation and changes in noise levels.

efficient of 0.99, indicating that shorter attack duration in straight-line driving are highlysensitive to noise. The overtake scenario follows this with a correlation of 0.93. Boththe intersection and straight-line 20m scenarios show a correlation of 0.84 for missionfailure, suggesting that longer attack duration and intersection maneuvers are somewhatless sensitive to noise, possibly due to the nature of themission. Regarding sidewalk incur-sions, longer attack duration in the straight-line (20m) and overtake scenarios show thestrongest correlations, at 0.98 and 0.96, respectively. In contrast, the intersection ma-neuver displays the weakest correlation for sidewalk incursions, reflecting the controlled,slower nature of this maneuver.When examining localization loss, straight-line 10mand overtake show the highest cor-relations, 0.97 and 0.92, respectively, indicating that these scenarios are most affected bynoise in terms of localization. The intersection scenario, though still sensitive to noise(0.86), shows a somewhat lower correlation, likely due to the AV’s reduced speed andstatic behavior at stop points. Collision, on the other hand, shows similarly strong correla-tions in overtaking (0.84) and intersection (0.87) scenarios, but this metric is irrelevant instraight-line driving, as there are noNPCs involved in thosemaneuvers. The correlation forRollOut switches is also highest in straight-line 10mattacks (0.97), followed by straight-line20m and overtake, while intersections have the lowest correlation (0.71) in this category.For NDTer, longer attack durations in straight-line scenarios show the highest correlation(0.92), while intersections and overtakes show lower values.Overall, the straight-line (10m) and overtake scenarios exhibit the highest sensitivity tonoise across several metrics, such as mission failure, sidewalk incursions, and localizationloss. Intersection scenarios, in contrast, show consistently lower correlations, likely dueto the nature of the maneuver, where the vehicle slows down or stops, reducing the dy-namic impact of noise during attacks. This behavior at intersections explains the weakeroverall correlation with noise, as the AV is generally at lower speeds and is less engagedin continuous movement compared to the overtake and straight-line scenarios. This high-
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lights how the nature of each maneuver, particularly its dynamic or static characteristics,influences the vehicle’s vulnerability to noise-induced safety violations and performancedegradation.
3.3.6 Discussion
Throughout the paper, we demonstrated that AD software is sensitive to EMI attacks thatcan generate different levels of safety violations from low-priority violations, from whichthe vehicle can recover but resulting in suboptimal behaviour, to severe violations causingcollisions or endangering other road users.

RQ1 How does a manipulation to the electromechanical component propagate
through the AD software stack?

Fromour results, it emerges that an EMI attack at the steering sensor level often causesSiIn, DTL, or DTC violations, which are the most commonly visible in Figure 40. To back-step this behaviour, to eventually debug such a complex AD software stack in a generalpurpose approach, developers will require an accurate analysis of each block in terms ofdata input-output relation. In our case, we carried out a back-step analysis at the ROS-topic level to identify the nodes that subscribe to specific messages. Here, we found outthat the most probable user of steering sensor data, thus generating violations, is themission and motion planning module, visible in Figure 12, and composed of several sub-blocks including op_trajectory_generator and op_waypoint_follower, that repre-sent the most probable components generating wrong decisions. While at the low level,PID controllers might be able to withstand noise to some extent, intelligent controllershave shown inherent vulnerability to this attack propagating from the low level up as rawsensor data to the master controller and up to the ROS topics.
RQ2 What dependencies exist between the AD control algorithm and low-level
control?

High-level intelligent controllers trust digital data flowing over the in-vehicle networkcommunication level. The interdependence of control algorithms resides in the feedbackloop reading data from the low level while the AD acts in a hybrid deliberate/reactiverobotic paradigm. In such a paradigm, well studied in robotics, an AD reacts quickly uponsensingwithout performing global-planning, which is typically a computationally demand-ing task running concurrently. SiIn, DTL, or DTC violations, which are the most commonlyfound in our analysis, are a typical result of the reactive behaviour of ADs. Similarly, theplanner might generate unsafe trajectories in case of localization data corruption suchas NDTLs violation or increase in NDTer margin. Eventually, the vehicle can recover fromsome violation when the global-planner generates a new waypoint, but this is not alwaysguaranteed when some stochasticity is involved in the process.
RQ3 Where in the architecture of the autonomous vehicle can defensive mecha-
nisms be placed to defend against control invariants?

Strategies to detect and mitigate low-level sensor data input manipulation focus onredundancy and multiple levels of data integrity checks. To investigate this question westep through each of the layers of the AV:
• Low-Level PID Controller: Integrity and plausibility checking of the PID can miti-
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gate but not stop the injection of anomalous sensor input values. The PID has itsown robustness, which is mathematically proved, the PID lacks the intelligence tointerpret the meaning behind the input data. Therefore, attacks which manipulatethe sensor input always have the possibility of traversing the PID. It is also possibleto implement analog filters and hardware saturation, however, as mentioned, atthis level, there is no means to discern attack behaviour which resembles regularsignal/circuit specification and its operating characteristic.
• Intermediate Layer: At this level, it is possible to conduct inspection of the CANdata. The master controller has low-computational capacity. Therefore, implemen-tation of mechanisms to interpret and provide intelligence of the CAN data is lim-ited. Data saturation and filtering is possible at this level. However, filtering andsaturation strategies would be challenged to defend against an adaptive sensor ma-nipulation attack which searches for the filtering and saturation parameters anddevelop a 1-step or n-step attack which falls outside the range.
• High-Level Control Layer: A redundant, fall-back controller has a cost in terms offinancial, compute and network resources, and cannot guarantee that an attackwould also aim to manipulate the redundant controller. Furthermore, redundantcontrollers accessing the same sensor data might generate the same unexpectedbehaviour.
Our recommendations, for this particular use case, is to accurately model the sensorbehaviour at the physical level considering the physical world world we live in. In thiscontext, sensors, such as everything else, should obey Newton (for motion) and Maxwellequations (for electromagnetism). To detect sensor data anomaly our knowledge of thephysical model of the sensor can be utilised to predict variances to this model. This wouldeffectively detect a possible attack much earlier and thus prevent DTC & DTL violationsoccurring in the motion planning block. The validation of sensor data can run in a con-current process throwing exceptions in case of unexpected levels of noise. The responseaction to an exception need to be modelled on the level of risk.

3.4 Summary
Within this section we developed methods for cybersecurity testing of AD software andillustrated their utility for vulnerability discovery by conducting applied, experimental test-ing. Precise metrics that incorporate safety, which represent the integration and stabilityof vehicle dynamics and autonomous software control, and security, which represent theparameters of the attack model, enable the ability the discern the affect of cyber attacksto the semantic properties of AD software. Malicious injection and time-delay attackstargeted at the perception and planning modules, and the low-level actuation sensing,results in malicious input propagating through the software to affect the reliability andsafety of control decisions. From the conducted sensitivity analysis, vulnerabilities of thesoftware modules can be characterised as a lack of robustness to malicious injection ofinput data at parameter ranges which represent minimal deviation. Whilst the sensitivityranges present a finding in terms of the case study vehicle, iseAuto, these values will differbased on the class of vehicle (light-passenger, heavy rigid) and the design of the controlsystem. Therefore, the novelty lies in the overarching methods used to distinct the im-pact of cyber attacks to the software and vehicle dynamics and testing approach used todeliver the attack and generate feedback of the system. Furthermore, the results, withinthe context of applied, experimental testing on a real-world system, illuminates the gap
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in comprehensive scenario-based testing where cyber attack test cases are considered. Itfurther highlights the need for integration of control software design processes and testfeedback. The next section contends with this issue through investigating techniques toassist software and control system designers with debugging and root-cause analysis.
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4 Debugging Autonomous Control Software to Cyber Attacks
4.1 ADAssure: A Debugging Methodology for AD Control Algorithms
AVs are increasingly being utilised for transportation on public roads. Waymo and Cruiseoffer AD ride-hailing services in San Francisco, Apollo Baidu in China, and numerous suchservices are operating in Europe. Central to the wider-adoption of AD vehicles on publicroads is the security and safety of their control algorithms that enable self-driving technol-ogy. AD control algorithms comprise a complex code-base of interconnectedmodules thatperform tasks and sub-tasks that enable a vehicle to sense, perceive, localise, and navi-gate in a driving environment. With the increase in diversity of AD use-cases from valetparking to public transportation in public traffic, the code base of AD control algorithmswill reputedly grow from 100-200 million to billions of lines of code [28].

Within this complex environment, debugging the code for logical errors arising fromunexpected control behaviour is a fundamental challenge [330]. AD system designersneed to pinpoint where in the control software weaknesses are, in order to focus debug-ging efforts in an efficient manner. Existing studies attempt to rectify unexpected AD con-trol behaviour at run-time through smoothing trajectories utilising neural networks [41][137] [173]. The applicability of these studies in real-world AD programs are limited dueto the highly dynamic environment of autonomous driving and the probabilistic nature ofthe algorithms for planning.
Furthermore, in these studies, the analysis lacks the expertise from the algorithm de-signer and safety engineer to inform on the nature of the behaviour of vehicle dynamics,whether noise identified as irregular could be considered for a control engineer withinnormal constraints, whether AD behaviour could be considered a legitimate safety re-sponse to an unexpected event and whether the parameters for which the run-time solu-tion is designed are appropriate for differing class of vehicles with different dynamic pro-files. We consider the design phase to offer themost promising area of initial investigationto improve the robustness of control algorithms, which can be translated to real-world ADsystems.
We propose ADAssure, a methodology for debugging control algorithms during thedesign-timephase of AD control software development (Figure 42). ADAssure is built uponthe idea that the data of vehicle dynamics and sensing of AD systems can be analysed foranomalous control behaviour, which can then be transformed into assertions on the ADcontrol. We use association rules that enable us to mine datasets of varying scales andfingerprint the pattern of anomalous activity. These rules can be used to guide AD systemdesigners to focus on the debugging of the control algorithms. To evaluate ADAssure, wefocus on a control system algorithm used in a real-world AD vehicular system providingride-hailing services.

4.1.1 ADAssure: Methodology
The development of ADAssure has three main motivations. First, it aims to provide ADsystem designers with a methodology to identify and fix vulnerabilities that align withthe design of AD algorithms. Second, given the ever-changing nature of the autonomousvehicle system, it strives to establish a structured methodology that allows for consistent,flexible, and repeatable testing. Third, it aims to support unit testing, allowing testing ofindividual components of the autonomous system in isolation from other dynamic factorsaffecting autonomous control.

The foundations of the ADAssure methodology are based on the analysis of the vehi-cle dynamics and sensing data to guide the creation of assertions of the vulnerability of
87



Radar

Input Sensor Data

End-to-End Learning

Perception Localisation Planning ControlCamera

GPS /
IMU LiDAR Acceleration/Deceleration

Turning/Braking…

Autonomous Driving Control Algorithms Output Action

Cyber Attack Scenario

Corner Case Scenario
ADAssure Methodology

Assertion
Review and
Debugging

AD Data
Collection

Assertion
Generation 

Or

Figure 42: Comprehensive ADAssuremethodology overview that illustrates each step of the process,
from data collection to assertion creation, review of assertions, and debugging.

the AD control algorithms. The analysis consists of a sensitivity analysis of vehicle dynam-ics data (e.g., velocity, yaw, and steering angle), sensor data (e.g., lateral and longitudi-nal movement), and visualisation of the trajectory of the AD system. This helps identifykey parameters to build assertions of the AD control algorithms. The AD control systemdesigners can use the assertions to identify and locate the vulnerabilities of the controlmodel and develop mechanisms to test and fix the errors. The ADAssure methodologycomprises three main phases: AD Data Collection, Association Rule Generation, and As-sertion Review and Debugging. Next, we will explore each phase in more depth.
Autonomous Driving Data CollectionThis phase consists of generating data from the real-world system or simulation environ-ment. The benefit of a simulation environment is that driving scenarios can be automatedor designed to test a specific condition, such as a cyber-attack or a corner case. The dataoutput is structured according to established metrics. These can be vehicle dynamics pa-rameters (yaw angle, velocity, etc.), sensing data (position co-variance, point-cloud, etc.),and safety parameters (distance-to-collision, etc.). The AD data is outputted in a formatthat can be interpreted by analytical tools, in our use-case, .csv format.
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Algorithm 1 Association rule mining & time notation
Input: N ,D Output: next[N ] = antecedent→ next[N ]consequent, be f ore[N ] = antecedent→
be f ore[N ]consequent {*}[l]Initialization and Preprocessing R = antecedent→ consequent

for all f ∈D do D ′ = MoveUp( f (N )) {*}[l]Mining R← apriori(D ′) {*}[l]Time Notation
if (R.antecedent == (t ∈D ′)) and (R.consequent == ( f ∈D ′)) then next[N ]← label(R)

if (R.antecedent == ( f ∈D ′)) and (R.consequent == (t ∈D ′)) then be f ore[N ]← label(R)

4.1.2 Association Rule Generation Phase
The goal of this phase is to process the data generated from the previous phase and pro-duce a set of association rules that can be translated into assertions in the Assertion Re-view and Debugging phase. This phase is comprised of three primary steps (as shown inFigure 43):

1. Association Rule Mining,
2. Time Notation,
3. Attack Detection.
The association rule mining is applied to both benign andmalicious datasets, resultingin two distinct sets of association rules. These rules are then processed through the TimeNotation step to incorporate temporal information, yielding temporal association rules(assertions) in the form of next[N ] and be f ore[N ] patterns. We define next[N ] typeof rule in the general form of X → next[N ]Y . This rule indicates that when X occurs,after N time instants, Y will occur. N is a positive integer value. Moreover, we de-fine be f ore[N ] rule in the general form of X → be f ore[N ]Y . This rule demonstratesthat whenever X happens, Y should have occurred N time instants before that. The"Attack Detection" step compares these temporal association rules, ultimately detectingattacks and anomalies within the datasets. Subsequent sections provide a more in-depthdiscussion of each step.

4.1.3 Association Rule Mining
This step primarily serves two objectives: pre-processing the datasets and subsequentlymining association rules from thepreprocesseddata. Tomine the association rules, apriorialgorithm [102] was adopted and enhanced to mine temporal rules capable of detectingattacks at various time instances during autonomous vehicle (AV) operation. Algorithm1 presents the details of the Association Rule Mining and Time Notation steps. In thisalgorithm, D denotes the dataset and D ′ is the preprocessed dataset, while f and t rep-resent the dataset’s features and target values. To prepare the dataset for mining the
next[N ] and be f ore[N ] temporal patterns, all the features of the dataset are movedNrecords above its original position. However, the target of the dataset remains as it is.Afterwards, the apriori algorithm is applied to the preprocessed dataset to mine a set ofassociation rules. The output of this phase is a set of association rules in the general formof antecedent→ consequent that are ready to be forwarded to the Time Notation step.
4.1.3.1 Time Notation In this step, the method integrates the concept of time into theassociation rules generated in the association rule mining step, leading to a set of tem-poral association rules. The method determines to which temporal pattern (next[N ]or be f ore[N ]) each extracted rule belongs and subsequently assigns the corresponding
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time label to the rule. If the antecedent value matches a target value in the dataset, andthe consequent value has already beenmoved to another record in the dataset, the rule islabelled as a next temporal association rule. Otherwise, if the antecedent of a rule minedin the association rulemining stepmatches a dataset feature that has already beenmovedto another record and the consequent of the rule matches the target value of the dataset,we label this rule as a be f ore temporal association rule. The mined rules are in the formsof antecedent → next[N ]consequent, and antecedent → be f ore[N ]consequent, servingas assertions for debugging the AD system.

4.1.3.2 Attack Detection This step aims to identify rules indicating attacks on the AV.We assume that the sets of mined rules from the benign and malicious datasets shouldbe similar under normal conditions, without any AV attacks. Any deviation between theserule sets signifies an anomaly in the autonomous vehicle. Per this assumption, the tem-poral association rules (assertions) mined during the time notation phase are classifiedinto two sets. The first category comprises rules exclusively mined from the maliciousdataset, lacking counterparts in the benign dataset. Any rule extracted solely from themalicious dataset, without a corresponding counterpart in the benign dataset, signifies anattack. These rules reveal abnormal behaviour in the malicious dataset, contrasting withdifferent behaviour observed in the corresponding time instance of the benign dataset.Consequently, we classify these as attacks. The second category comprises similar rulesmined from both benign and malicious datasets, but with different minimum support(min_supp) and minimum confidence (min_conf) values. The variations in these valuesindicate that, while the mined rules are similar, abnormal behaviours and anomalies existbetween the datasets. The apriori algorithm employs these two metrics (i.e., min_suppand min_conf). The min_supp value is the threshold and aminimum value that is chosenby the expert to decide whether a rule occurs frequently in the dataset or not [107, 328].The min_conf is the minimum value that is chosen by the expert and is an indication ofhow often a rule has been found to be true [102,260]. Increasing the min_supp value re-sults in fewer association rules that describe more general behaviour of the autonomousvehicle, while decreasing the min_supp value leads to rules covering rare behaviours (cor-ner cases). Similarly, raising the min_conf value produces fewer but more valid rules.Valid rules refer to association rules that will not be violated with different attack scenar-ios like corner cases. These values in the ADAssure facilitate an effective attack detectionprocess. The second category of rules aids the ADAssure in effectively identifying cornercases and the attacks that rarely occur on the AV. These rare attacks exhibit behaviourvery similar to normal vehicle operation but are malicious and can lead to AV failure.
4.1.4 Assertion Review and Debugging
Within this phase, the association rules generated from the association rule mining arereviewed in conjunction with an analysis of the control behaviour and individual dataparameters to develop assertions. Trajectory maps of the AD system and graphs, whichdemonstrate the sensitivity of the data parameters during benign and cyber-attack sce-narios, are compared to the anomalous behavioral patterns detected by the associationrule mining tool. Using expertise from the algorithm designer and safety validation engi-neer assists in understanding which parameters can uniquely demonstrate a vulnerabilityof an algorithm within the system. From developing an assertion on the system’s vulner-ability, the debugging effort focuses on a control flow analysis. As the assertion assistsin pinpointing the specific module, the static analysis can focus on the control flow ofthe substituent functions within the module. As an example of the importance of this

90



pinpointing, a local-planning module could have 15 diverse algorithms, and within these,each could have multiple different methods or functions. As the code of AD algorithmsare differential equations, debugging can suggest optimisations that enable mitigationmechanisms against the identified vulnerabilities.
4.1.5 Autonomous Driving Control Algorithm
To evaluate the methodology, we focus on an AD control algorithm used in a real-worldAD ride-hailing service. Within the AD pipeline, there are four key modules: localisation,perception, planning, and control. Within our study, we focus on the localisation andplanning modules.
4.1.6 Experimentation and Results
To evaluate the impact of corner cases onAD systembehaviour using theADAssuremethod-ology, we use datasets of corner cases from simulation and real-world driving from thetarget AD system. The 1st corner case scenario dataset is of three diverse cyber-securityattacks on the AD system conducted in a simulation environment. As our focus is theplanning and localisation algorithms, we used a low-fidelity simulation provided by Au-
toware.AI and the OpenPlanner 2.5 planning algorithm. The 2nd corner case scenariodataset is of a Global Positioning System (GPS) spoofing event that occurred on the ADsystem during its operation on the roads of a capital city.
4.1.7 AD Control System Datasets
Cybersecurity Corner Case Dataset:Within this dataset, three attacks were conducted onthe target AD vehicular system, which is attempting an overtaking maneuver. The threeattacks are classified as:

1. Lateral Position Offset Attack
2. Longitudinal Position Offset Attack
3. Message Time-Delay.
In the lateral and longitudinal position offset attack, an attacker injects malicious datainput into the lateral or longitudinal pose whilst the AD vehicular system is in the pro-cess of the overtaking manoeuvre (Figure 44). This attack could be conducted throughGPS spoofing or interception and manipulation of the localisation sensor data. The at-tacker introduces a delay into the current_pose (lateral and longitudinal) sensor mes-sages reaching the AD control pipeline for the message time-delay. The malicious data isinjected at around the 21 mmark of the AV journey (travelled distanced) to the 67 m. Eachattack was conducted 300 times, accommodating a variation of different attack parame-ters. The lateral and longitudinal attacks introduced a deviation ranging from 0.16 % to

1.0 %, which equates to around 20 cm to 1 m. The message time-delay introduced delaysof 0.3 %, 0.6 %, 1.0 % second, as a message is transmitted every 20 ms, this range rep-resents a delay of 15 to 50 messages. In total, the dataset comprises over 1500 scenarioruns of attacks and benign safety cases.
GPS Spoofing Real-World AV Dataset: The AD ride-hailing service transmits its sensordata via a logging node to an edge server, which stores the AD System data in a database.During its operations near the port area of the city, the AD vehicle encountered a lossof localisation from a GPS spoofing event which also affected other GPS-enabled plat-forms. This GPS spoofing continued intermittently throughout the precedingmonths. The
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Table 30: AD System Data.

AD Data Type Description

AV_X Longitudinal Position of the AD System as to the HD MapAV_Y Lateral Position of the AD System as to the HD MapAV_Steer Steering Angle of the AD SystemAV_Vel Velocity of the AD SystemAV_Yaw Orientation of the AD System based on its centre of gravityRoll-out_Num Current Lane according to the lane selector of the AD Con-trol AlgorithmDTC Distance to collision of the AD vehicular system to the over-taking vehicle.Position Co-variance GPS position co-varianceAltitude Altitude derived from the GPS

dataset used in this study is from the logging system of AD ride-hailing service.
AD System Data: The simulation and real-world datasets were structured to outputdata as shown in Table 30.

Figure 44: The threat model used for conducting the attack cases.

Table 31: ADAssure Assertion Generation phase results.

Dataset Assertion Execution
Time

Name #Records Total #Next[N ] #Be f ore[N ]

Longitude 412 5 3 2 1 nsLatitude 356 7 7 0 1 nsDelay 417 5 3 2 1 nsGNSS 16 5 4 1 1 ns
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Experimental Results
To evaluate the ADAssuremethodology, we chose six attack types and their correspondingsafety (benign) scenarios. These attack types included each of the aforementioned attackswith differing levels of noise (lateral and longitudinal position offset, delay message).

4.1.7.1 Automated Analysis Utilising the ADAssure methodology on the three types ofattacks yields three distinct set of assertions corresponding to each attack type. The re-sults of the assertion generation phase are presented in Table 31.
The threshold for minimum support (min_supp) is set at 0.01 , while the minimumconfidence (min_conf) threshold is 1Notably, themethod exhibits a swift execution time.
Within the 3 attacks of the cybersecurity corner case dataset, the assertions iden-tify two patterns of anomalous AD behaviour. Firstly, extreme steering angles of 20◦ and

−20◦ and sudden lane transition. Secondly, multiple lane-transitions combined with theextreme steering angle and sudden changes in vehicular velocity. This behaviour can beseen to be the effect of cyber activity on the smoothness of the initiation of the over-taking manoeuvre which results in turbulent movements and in some cases, a collisionevent. The assertions generated from the GNSS spoofing dataset identified the changesto the altitude and position co-variance. These were consistent with dramatic change inthe values of the GPS coordinates and the resultant change in altitude.

4.1.7.2 Assertion Review andDebugging The patterns identified in the association rulesenables us to extrapolate that the Yaw angle and angular velocity are good reference pointto show the effect of cyber-attacks. During the injection of the position offset attacks, thevehicle’s orientation demonstrates dramatic action; in some circumstances, the vehiclecan be seen to be essentially spinning. As displayed in Figure 45, the Lateral Position Off-set Attack displays the Yaw (angle) of the vehicle making sharp changes, of 15 deg/secfrom 15 meters mark of the AV journey. This vehicle dynamic behaviour is a characteristicalso seen in both the longitudinal position offset (Figure 46) and delay message attack(Figure 47). The results for the velocity parameter demonstrate that it only indicates im-mediate collision of the vehicle, and it does not support early identification of anomalousvehicle behaviour. Assertion 1 contends that the AD system should not allow movementsthat challenge the physical limitations of the steering model.
Assertion 1: To determine the vulnerability of the yaw angle and mo-mentum, we can derive the assertion: AV.displacement_of_yaw_angle >
max_yaw_angle_threshold && time< time_threshold.
The roll-out transition, steer, and distance-to-collision parameters demonstrate iden-tifiable change during a cyber-attack. The manipulation of the lateral and longitudinalposition alters the vehicle position on the map and, therefore, has the effect of inducinggreater transitions between roll-outs, which is the effective position of the vehicle on theroad. The frequency of transition impacts the smoothness of the steering angle. From thedistance-to-collision parameter, it is noted that the effect of the attack is most prominentduring the overtaking maneuver and mostly during the cut-in process, when the vehiclecuts-in front of the passing vehicle (NPC). Assertion 2 contends that when the vehicle tran-sitions across multiple roll-outs and displays 180◦ steering and closes to less than 0.5 mto the passing vehicle, this represents affected behaviour from the cyber attack.
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Figure 45: Lateral position offset attack vehicle parameters.

Assertion 2: To identify vehicle dynamic changes from cyber-attack: AV.x −
NPC.x < distance_threshold && AV.lane_transition >max_transition_number &&
AV.steer_angle /∈ [min, max]_steer_angle

Assertion 3 contends with activity seen in the longitudinal position offset (Figure 46)where the AV collides with the passing vehicle and then accelerates to the previous set-point.
Assertion 3: To identify collisions we can derive the assertion: |AV.vk−AV.vk+1|>
threshold.
Assertion 3 could also be used to detect anomalies in GPS data. The GNSS spoofingattack demonstrates a significant deviation in the altitude and position co-variance param-eters. Assuming that velocity data comes from two sources, a wheel sensormeasurementand calculated by deriving the position from GPS data, the two results should be close toeach other. In the case of a GNSS spoofing attack, the deviation in the position co-variancewould generate a spike in the velocity (calculated by deriving the position in GPS data),and thus violating assertion 3.For our specific AD system, the threshold for assertion 1 is 15◦ yaw angle displacementwithin 1 s duration. Assertion 2 threshold is identified as a distance between AV and pass-ing vehicle as less than 0.5 m, lane transition greater than 1 roll-out and steering angle that
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Figure 46: Longitudinal position offset attack vehicle parameters.

is outside the bounds of 20 and −20◦. It is important to note that these values are validfor a low-speed AV ride-hailing service and for designers of different classes of vehicles, itis required to calculate values consistent with their specific application.Solvable bugs come from several points in the controller; a simple one is wrong or im-precise saturation values of the control signal, which generates a high acceleration or ahigh steering angle in the vehicle. This is clearly visible in Figure 46 where a signal over-shoot causes the vehicle to change lane multiple times. Another example, clearly visiblein Figure 45,46& 47 is the lack of a fallback plan. There is a clear indication of a collision asthe vehicle speed suddenly drops to 0 ms−1 and then quickly accelerates to the referencepoint, this is a violation of Assertion 3. A robust controller should have a fallback planfor such a case which indicates a bug in the functional design of the controller. In such acase, the vehicle should be aware of the fact that the global trajectory cannot be followedanymore and switch to emergency mode.The main reason for searching for unexpected behaviours is to debug the controller,with reference to the experimental results, a violation of Assertion 1 can be associated toa bug in the /ndt_posemodule (see Figure 13), while a violation of Assertion 2 can be back-propagated to themodule /op_trajectory_evaluator. A violation of assertion three can bebackpropagated to themodules of /op_trajectory_generator and /op_behaviour_selector(see Figure 13). To pinpoint the violation of assertion 3 to a specific function, we abstractedfrom the local_planner algorithm and its substituent lane_rule algorithm, the getClosest-
WaypointNumbermethod, which selects the next waypoint to follow in the global trajec-tory and returned an exception to be handled as a different driving behaviour (e.g., there
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Figure 47: Delay message attack vehicle parameters.

was a crash, emergency mode activated).
In the case of GNSS attack, the NDT localisation algorithm doesn’t detect the deviationin position co-variance, and this is due to the normal vector pointing in the same direc-tion. Debugging focuses on optimisation of the NDT localisation using visual odometry forholding the local position at short-distances until the source of the disturbance has beenresolved.

4.1.8 Relation to Existing Work

Recent publications on anomaly detection in vehicular AD control systems propose theusage of vehicle dynamics as a key detection indicator for cyber-attacks [140] [183] [262].Studies such as Guo et al. [90] emphasise the effect cyber-attacks have on the trajectoryof the AD system and the noise of individual sensors. Mitigation mechanisms focus ontwo diverse approaches 1) implementation of an observer of AD vehicle state estimationwhich can inform an emergency action (sensor switching etc.) [90] 2) implementation oftrajectory smoothing algorithm to correct unplanned vehicle behaviour [183] [262]. How-ever, these solutions for detection andmitigation are developed based on assumptions ofdriving environment and algorithm configuration and this limits the scope of their appli-cability.
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4.2 REACT: Autonomous Intrusion Response for Intelligence Vehicles
In recent years, there has been remarkable progress in the development of smart vehicles.Today’s vehicles resemble interconnected networks onwheels, with numerous embeddedcomputers, called ECU, linked through various types of networks, hosting an extensivenumber of software components totaling over a hundred million lines of code. Moreover,these networks incorporate various intelligent sensors (such as Cameras, LiDAR, Radar,etc.) and different connectivity technologies that enhance the vehicle’s ability to perceiveand interact with the surrounding environment, thus bolstering autonomy and minimiz-ing the reliance on human intervention. However, with the rise of connectivity and thetransformation to SDV, the vulnerability to cyberattacks targeting these systems has alsoescalated [295].
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Figure 48: On the left side, the current vehicle system shares attack information with the VSOC but
often has to wait for extended periods to receive necessary security patches and updates. This wait-
ing period puts the vehicle in a malicious status (red, diagonal lines). On the right side, the vehicle
can select and implement security solutions to avoid the long waiting time for security patches and
updates and return to normal status (green, cross diagonal lines).

Recently, there has been a growing interest in addressing the security threats thatmay target smart vehicles. For instance, the ISO 21434 [123] standard has been intro-duced, with a significant portion dedicated to the development of threat analysis and riskassessment methodologies. Moreover, the field of intrusion detection and prevention inthe automotive domain has witnessed extensive research, leading to various avenues forresearch [152]. However, despite these efforts, the number of attacks targeting smart ve-hicles continues to rise [295]. This is to be expected, as security is not absolute, and wemust acknowledge that complete prevention of all security threats may not be attainable.Therefore, greater emphasis should be placed on defining how the system should behave
when confronted with such unavoidable attacks.The cybersecurity incident response is an integral aspect of security management, asoutlined in ISO/SAE 21434 within the operational and maintenance clause [123]. Based onthe standard, this process aims to provide remedial actions and updates, which may in-volve post-development changes to address security vulnerabilities. The process necessi-tates the vehicle to share cybersecurity information about the vulnerability that triggeredthe cybersecurity incident response. Being part of the ISO/SAE 21434, it is now imperativethat manufacturers comply with new regulations by having a cybersecurity managementsystem that oversees the cybersecurity activities and processes in the product life-cycle.To achieve this, Vehicle Security Operation Centers (VSOCs) will be utilized to supportmonitoring [23,216,257]. Such VSOCs will employ expert teams that continuously analyzedata collected from all connected vehicles, enabling automakers to swiftly and efficientlyaddress security incidents [216]. Although it’s arguable that numerous taskswithin a VSOC
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could be automated, the challenge of scalability persists, especially considering the ex-tensive fleet of connected vehicles and the immense data volumes accumulated by eachvehicle, reaching terabytes [314]. The transfer and processing of such data turn out to besignificant issues, particularly in urban areas with hundreds of cars per vicinity, leading tobottlenecks. Additionally, the connectivity itself could be an attractive target for attack-ers. In this context, the integration of VSOCs into the smart vehicle ecosystem demandssolutions for addressing connectivity challenges between vehicles and the VSOC, as wellas managing privacy concerns tied to shared data [98].
Finally, and more importantly, there is a need to ensure a near-real-time responseto security attacks. Taking into account the need for a human in the loop, as well as thelatency introduced by high-volume shared data and communication between the vehiclesand the VSOC, achieving a near-real-time response seems unrealistic. This perspective issupported by the European Union Agency for Cybersecurity (ENISA), which has cautionedthat responding to high-criticality attacks could potentially take days or even weeks [75].The scenario of extended waiting presents a dilemma, with two options, each having itsown disadvantages. Allowing a vehicle to operate with a compromised component dueto extended waiting for a security update is far from the ideal situation. Alternatively,suspending the compromised component until the security update is received might notbe the best course of action either, particularly if the component plays a crucial role inoperations.
Contributions: Therefore, there is a need for vehicles to be equipped with the capa-bility to swiftly respond to cyberattacks. However, having such a capability requires theanswering of three main questions (see Figure 48):

Q1: What are the possible responses that can be taken?
Q2: What factors need to be considered when evaluating these responses?
Q3: How to select one or more of these responses at the run-time based on the re-sponses’ evaluation?
This research aims to address these questions by investigating and categorizing po-tential responses according to the impact of various cyber attacks to which each responseaims to react. Consequently, we present a dynamic risk assessment and cost evaluation forattacks and responses, utilizing given data such as attack information and vehicle status.This assessment supports the selection of suitable responses. Furthermore, the we ex-plore different approaches for response selection, conducts comparisons, and identifiesthose best suited for automotive systems. We introduce an intrusion response system,referred to as REACT, and evaluate its utility using two attack scenarios. We evaluate thequality of the responses REACT generates and its overall efficiency. In summary, the maincontributions of this paper are as follows:

4.2.1 Response Strategies
The purpose of this section is to address the first question (Q1) about possible responsestrategies. To do so, it is critical to have a deep understanding of the system as well as thepotential attacks and threats it may face. Therefore, this section introduces the designof an automotive reference architecture, discusses the potential threats that may arise,and provides a comprehensive summary of the different response strategies that can beutilized to mitigate these attacks.
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Figure 49: Reference vehicle architecture with possible attack surfaces (orange).

Automotive Reference Architecture
In order to understand how Intrusion Response System (IRS) can be integrated into mod-ern vehicles and the potential responses they can provide, it is essential to first understandtheir system architecture. Figure 49 presents a generic, realistic and comprehensive ref-erence architecture that can be found in modern vehicles. It is notable that a modernvehicle includes highly interconnected subsystems. The figure also shows how modernvehicles have many embedded devices, known as Electronic Control Units (ECUs), whichare distributed allover the vehicle, communicating among themselves via different typesof networks such as CAN, Flexray and Ethernet. These ECUs are grouped in different do-mains or zones based on the functionality such as infotainment, Advanced Driver Assis-tance System (ADAS), powertrains, etc. Besides ECUs, modern vehicles are equipped withmany sensors (e.g., cameras, LiDAR, etc.), advanced communication technology for con-necting with the external world, and diagnostic ports (e.g., OBD-II) that collectively forma significant attack surface for different types of attacks and threats [42]. The unrestrictedor/and uncontrolled interaction among all those components puts the whole system indanger. Attackers could launch a stepping-stone attack [293], where they compromisea non-critical ECU with weaker security (e.g., the infotainment system), in order to gaincontrol of a more crucial one (e.g., engine control) [53, 197]. All these characteristics ofthe vehicle architecture suggest that any proposed IRS should take into account the con-strained resources and the highly interconnected and distributed nature of a vehicularsystem.
Threats and Attacks
Threat Analysis and Risk Assessment (TARA), an essential component of ISO 21434, is em-ployed as a systematic way to identify and assess cybersecurity threats and risks in the
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automotive industry, facilitating the implementation of effective mitigation strategies.Since TARA does not dictate a specific method to identify threats, various methods havebeen proposed, such as STRIDE [142], SAVTA [97], attack trees [96, 109], and many oth-ers [179]. Following the methodology of TARA, these methods provide a comprehensivelist of threats and attacks that may target the vehicular system and offer preventive mea-sures. However, they do not address the reactive measures required for an automotiveIRS.Using the list of threats and attacks to create a response for each of them seems to benot ideal due to several challenges, including the large number of attacks and the require-ments for precise information about each attack, whichmust be provided by the IntrusionDetection System (IDS). This challenge becomes evident when considering Zero-Day at-tacks, where information about such attacks may not be available to the IRS at the timeof detection by the IDS. Even if an anomaly-based IDS shares some information about theattack pattern with the IRS, a response solely based on known attack patterns may notsufficiently react to these Zero-Day attacks. Therefore, the most effective approach is toenable the IRS to understand the situation it aims to respond to. This involves focusing onthe impact or outcome of different attacks rather than solely on the attacks themselves.To achieve that, wehave developed amodel, illustrated in 50, which represents the ac-tual results of intrusions collected from various research works. The model encompassesfivemain attack outcomes, each of which can result frommultiple types of attacks. Exam-ples of these attacks are depicted in the outer nodes of 50. Also, to reflect the outcomeof stepping-stone attacks, the model links the different outcomes to demonstrate thatcertain attacks may cause a series of results. The five attack outcomes are:
• Falsify / Alter Information: Different attacks have the potential to modify informa-
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tion on a bus or within an ECU. It is important to note that not every alteration ofinformation automatically results in undesirable behavior. For instance, adversarialsamples [184], such as incorrect classifications of objects detected by a camera, maynot necessarily lead to incorrect behaviors.
• Falsify / Alter Timing: This outcome typically occurs as a result of attacks targetingthe communication buses of the vehicle [175,311] or the real-time tasks on the ECUs[95].
• Information Disclosure: This outcome is the result of attacks, such as spoofing,eavesdropping, and others, that aim to allow attackers to gain unauthorized ac-cess to sensitive information exchanged during communication or storedwithin theECUs [54].
• System Unavailability: This outcome typically occurs as a result of Denial of Service(DoS) attacks that aim to cause a loss of availability for a specific component or sub-system in the vehicle [218]. Such attacks can lead to severe damage to the system,especially if they target high-critical components [9].
• Falsify / Alter behavior: This outcome is the result of tampering attacks that specif-ically target the components, data, or parameters of a system with the intentionof altering the system’s intended behavior and achieving unauthorized or maliciousoutcomes [197]. While this intrusion outcomemay appear similar to falsify/alter in-formation, the key distinction is that in falsify/alter information attacks, the goal isto tamper with the information itself without the explicit method of changing thesystem’s behavior, even though it may indirectly lead to such changes.

Response Possibilities
After classifying the outcome of the attack, it becomes easier to determine which re-sponses can be used to address that particular outcome and handle the attacks that causeit. In order to do so, we have examined typical responses discussed in both the automo-tive and non-automotive domains. It should be noted that while some research papers inthe automotive domain have discussed the need for responses to certain attacks, there iscurrently no comprehensive research that lists and classifies all possible responses. Fur-thermore, it is important to consider that some of the responses we collected were orig-inally designed for computer networks and may not be directly applicable to automotivebus systems due to the lack of specific security mechanisms [72]. For example, responseactions such as IP address changes or port blocking [14] are highly specific to Ethernet andhigher protocols such as IP, and therefore have limited suitability for certain aspects ofcommunication in vehicles. To address this challenge, we have defined a list of genericresponses that are specific enough to be applied in an automotive IRS, while also beingadaptable to constrained and potentially insecure devices. Table 32 provides an overviewof the different responses based on the identified attack outcomes. In addition, we haveincluded a General category that encompasses responses applicable to all five categories.Formore detailed information about each response, please refer to the respective sourcescited in Table 32.
4.2.2 Dynamic Cost and Impact Evaluation
In this section, we will address Q2 by outlining the key factors required to enable theselection of the most effective response by the IRS. These factors can be categorized into
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Table 32: Classification of generic responses to intrusion results.

Intrusion Result Response Index. Response

Falsify / Alter Tim-ing 1. Use of redundant information [100], 2. Correction of timing[72, 219], 3. Force additional authentication [14], 4. Restart the de-vice/system [149], 5. Change settings [117], 6. Redirect traffic [117],
7. Re-initialization [110]Falsify / Alter In-formation 1. Use of redundant information (Reallocation) [100], 3. Force ad-ditional authentication [14], 4. Restart the device/system [149], 8.Create a backup [49], 5. Change settings [117], 7. Re-initialization[110], 9. Correct protocol specification faults [111], 10. Split or mergefunctions [326]InformationDisclosure 11. Issue authentication challenges [219], 12. Re-enforce access con-trol [12], 3. Force additional authentication [14], 13. Introduce ahoneypot [12], 4. Restart the device/system [149], 14. Modify fire-wall [117], 6. Redirect traffic [117], 10. Split or merge functions [326],
7. Re-initialization [110], 15. Network isolation [72]System Unavail-ability 1. Use of redundant information (Reallocation) [100], 12. Re-enforceaccess control [12], 13. Introduce a honeypot [12], 4. Restart the de-vice/system (source or destination) [149], 14. Modify firewall [117],
6. Redirect traffic [117], 10. Split or merge functions [326], 7. Re-initialization [110], 16. Limit resources of the attacker [49], 17. Safemode [99]Falsify / Alter Be-havior 1. Use of redundant information (Reallocation) [100], 18. Correctionof behavior [219], 9. Correct protocol specification faults [111], 3.Force additional authentication [14], 19. Restart the miss-behavingsystem [149], 5. Change settings [117], 10. Split or merge functions[326], 7. Re-initialization of the miss-behaving device [110], 17. Safemode [99], 8. Create a backup [49]General 20. Isolation [100], 21. Limit communication of malicious system[100], 22. Drop packets [149], 23. Trace communication [100], 24. In-troduce additional logging [14], 25. Block network traffic [12], 26. Killprocess [100], 27. Reduce trust level of the source [100], 28. Performa security auditing [99], 29. Request / Perform software update [219],
30. Notify Security Operations Center (SOC) / administrator [12, 13],
31. No action [13], 32. Adapt parameters for IDS [108], 33. Warn /inform other ECUs [19, 100]

two groups: intrusion-related factors, which pertain to the attack’s impact and risk, and
response-related factors, which concern the cost and benefit of the chosen response.
Intrusion-Related Factors
Intrusion PropertiesFor each detected intrusion, the following properties need to be determined:

• Source of the intrusion: This represents the component from which the attack waslaunched. Referring to the automotive reference architecture depicted in Figure 49,sources can include entities from the attack surface as well as external attackerstargeting any of these components.
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• Destination of the intrusion: The attacked entity can be described as the destinationof the intrusion. This could be ECUs, sensors, or bus systems.
• Intrusion result: This refers to one of the outcomes that were previously defined inSubsection 4.2.1. Similar to the source and destination of an intrusion, this informa-tion is also provided by an IDS.
• Intrusion impact: This information serves to depict the impact of the intrusion onthe system and is essential for evaluating the risks during the attack.

Dynamic Attack Impact Assessment
To assess the potential risks associated with an intrusion, it is necessary to understand theimpact of the attack and the likelihood of its occurrence [123,168]. To calculate the impactof the intrusion, many methods were already adopted such as HEAVENS [126]. HEAVENSclassifies the impact of a given threat based on four metrics [179, 306]:

1. Safety impact, denoted as S with S ∈ {0,10,100,1000}

2. Financial impact, denoted as F with F ∈ {0,10,100,1000}

3. Operational impact, denoted as O with O ∈ {0,1,10,100}

4. Privacy impact, denoted as P with P ∈ {0,1,10,100}

In the original HEAVENSmethod, the overall impact I is calculated as a sum of the foursingle impacts as depicted in Equation 2 [306].
I = S+F +O+P (2)

One issue with the impact calculation, as presented in Equation 2, is the overempha-sis on safety and financial parameters. This skewed emphasis not only complicates thecomparison and independent evaluation of the four metrics but also renders it unsuit-able for an automotive IRS. In the automotive context, safety and operational considera-tions typically outweigh financial and privacy-related aspects for most automotive func-tions. Considering the aforementioned issue, we propose normalizing all possible valuesto 0,1,10,100, representing no, low, medium, or high impact for each of the four metricsin HEAVENS.Another limitation of the current risk assessmentmethods, includingHEAVENS, is theirfailure to account for dynamic environmental factors, such as run-time context, opera-tional status, and the surrounding environment. This gap may arise because HEAVENSis primarily applied during the design phase, making it somewhat oblivious to run-timeconditions. To address this challenge and enhance the method’s applicability for usewithin automotive IRS, we introduce a new metric termed "Environment," denoted as
E. This metric, E, encompasses dynamic factors that are crucial for assessing intrusionimpact [100]. Potential inputs that can be used to derive the environmental parameter Einclude vehicle speed, road conditions, the proximity of nearby objects, and more. Theseparameters can exert significant influence, as a single intrusionmay yield different impactsdepending on physical and environmental considerations.The final enhancement option for the HEAVENS method involves the capability to dy-namically adjust the assessment of intrusion impact. Following a successful intrusion re-sponse, it may become evident that the stored parameters for S, F , O, P, and E requirea different representation. HEAVENS currently confines impact values to 0,1,10,100, and
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a simple adjustment to a new value could result in significant over-representation. To ad-dress this issue, introducing weights for each of the five evaluation metrics (wS, wF , wO,
wP, and wE ) offers a valuable mechanism for accommodating learning and adaptationprocesses. The optimization proposals discussed earlier to transform the calculation ofintrusion impact using the HEAVENS method into a dynamic process lead to Equation 3.

I = wS ·S+wF ·F +wO ·O+wP ·P+wE ·E (3)
Utilizing dynamically adjusted static values for S, F , O, and P, each incorporating theirrespectiveweights, in addition to dynamically acquired values forE alongwith an adaptedstatic weight. In cases involving specific automotive architectures, the equation can alsobe applied in a more granular fashion for particular assets. Initial values for all these pa-rameters can be established by security experts, drawing upon their experiential knowl-edge.The source and destination of the attack are employed to determine the attack’s lo-cation, aiding in the calculation of the subsequent attack likelihood, especially when con-sidering step-stone attacks, across various parts of the system. This assessment of attacklikelihood, in conjunction with the evaluation of attack impact, contributes to the overallrisk assessment.

Response-Related Factors
Response Properties
Similar to the intrusion, each response will have five properties that need to be identified:

• Actual action: They refer to the actual actions taken in the event of an intrusion.These actions can be selected from those presented in Table 32.
• Precondition: Some responses may require preconditions that must be met. Thesepreconditions can be expressed as Boolean expressions and serve as prerequisitesto trigger the response.
• Place of application: Refers to the locationwhere the responsewill be implemented.A response can be applied either at the source entity of an intrusion, the destina-tion, or at both locations.
• Stop condition: Refers to the condition for which the implemented response shouldcease. This condition can be related to a specific time [176], the successful reestab-lishment of security policies [100], or the necessity for persistent measures [293].
• Cost and benefit of the response: Refers to the costs and benefits incurred whenimplementing a response to an intrusion or security incident.

Dynamic response cost and benefit assessment
When considering the cost of responses, various methods were employed to determinetheir value in IT systems [261]. These methods primarily rely on one of three models: astatic cost model that assigns a fixed cost value for each response, a static evaluated costmodel that calculates cost using a static functionwith someadjustment possibilities, or dy-namic evaluated cost models that offer fully dynamic evaluation based on real-time data.Each model varies in terms of simplicity, adaptability, and accuracy, catering to differentsystem requirements and scenarios.
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Statically evaluated cost models provide a valid trade-off between achievable imple-mentation efforts, especially on constrained devices similar to the ones used in automo-tive systems, and plausible results. These models maintain a static approach to calcu-lating response costs, even though the actual cost values may vary. Various metrics forcalculating response costs are mentioned in current literature. The first metric evaluatesthe impact of the response on availability [261]. Availability’s impact is represented as
A∈ 0,1,10,100, with 0meaning negligible and 100meaning severe impact on availability,to ensure consistency with intrusion metrics. The second metric, describing the responsecost, assesses its effect on the performance of the (sub)system [261], similar to the de-ployment cost of countermeasures [91]. This metric is denoted as Per f ∈ 0,1,10,100,with 0 meaning negligible impact on performance and 100 meaning severe impact onperformance, to maintain a uniform scale with the impact of the response on availability.

To achieve results similar to the adapted HEAVENS method described in 4.2.2, a com-parable equation can be employed to calculate the cost (c) of a response. By adoptingspecific weights (wA and wPer f ) for the impact on availability and performance along withtheir actual values (A and Per f ), the response cost can be computed as shown in Equa-tion 4. This approach results in a highly adaptable method for calculating the responsecost. While the initial values for A and Per f can bemanually determined, they can also beadjusted over time. The specific weights offer ameans to introduce a learning componentwithin the mathematical framework.
c = wA ·A+wPer f ·Per f (4)

Likewise, the adapted HEAVENS method introduced in 4.2.2 can be repurposed forevaluating the benefit of a response, with the exception of the environmental parame-ter E and its associated weight wE . While HEAVENS assesses intrusion impact using fourmetrics, these same metrics can be employed to quantify the benefits in these four cat-egories when assessing response value. By employing identical value possibilities with
S,F,O,P ∈ 0,1,10,100, a corresponding benefit value can be determined. The calcula-tion of the benefit (b) for each response option, as shown in Equation 5, is derived fromEquation 3.

b = wS ·S+wF ·F +wO ·O+wP ·P (5)
Compared to existing research [91, 270], this repurposed HEAVENS method of Equa-tion 5 provides a more holistic approach on evaluating the benefit of applied responses.For each response option classified in Table 32, the cost calculated using Equation 4 andthe benefit determined using Equation 5 must be applied, and preconditions must be es-tablished. Initial values for S, F , O, P, A, and Per f , along with their respective weights,can be assigned by security experts and subsequently updated eithermanually or throughlearning algorithms within an IRS. Similar to the impact calculation of intrusions, theseweights can be adjusted to improve the accuracy of the model.

4.2.3 Optimal Selection Algorithms
In this section, we will address the third question Q3, by exploring numerous potentialmethods for selecting response strategies(4.2.3), compare these approaches and pro-vide a rationale for our chosen strategy(4.2.3), and describe how to adopt the selectedstrategies(4.2.3).
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Possible AlgorithmsTo determine the best method for selecting appropriate responses, we explore variousalgorithms and solutions used in non-automotive domains and compare them to identifythemost suitable one that can be implementedwithin the vehicle system. Several surveys,such as [24, 25, 211], provide valuable insights into response selection approaches in non-automotive domains, making them worth investigating for more comprehensive details.
Simple Additive Weighting (SAW)SAW [80] is the simplest and most often used method. The basic concept of this methodis to find a preference value (p) for each possible response, and then select the responsewith the highest preference value as the best option. To illustrate how this method works,let us assume that we have n possible responses (R = {r1,r2, . . . ,rn}) and m criteria(C R = {cr1,cr2, . . . ,crm}) that will be used as a reference for evaluating the responses.Each criterionwill be assigned aweightw j where∑

m
j=1 w j = 1. To calculate the preferencevalues, a normalized decision matrix is first created, where each element of the matrix isnormalized based on the nature of the criterion, whether it is a cost or benefit, as shownin Equation 6.

αi j =


vi, j

maxi(vi, j)
, if criterion cr j is a benefit

mini(vi, j)
vi, j

, if criterion cr j is a cost (6)
where vi, j is the performance value of the response ri when it is evaluated in terms ofcriterion cr j. The preference value (pi) of response ri is then obtained by calculating theweighted sum of the normalized performance values using Equation 7.

pi =
m

∑
j=1

w j ·αi j (7)
Finally, the response ri with the highest preference value (pi) is considered as the bestselection response.
Linear Programming (LP)LP is a mathematical technique that can be employed to select optimal responses [112].LP can be used to find the best combination of responses that maximizes or minimizesa certain objective function. To illustrate the workings of this method, let us consider ascenario where we have n possible responses (R = r1,r2, . . . ,rn). The optimization of theobjective function can be as in Equation 8.

n

∑
i=1

xisi→maxor min (8)
where xi represents a criterion related to the response ri and −→s be a vector of binarydecision variables, where si is equal to 1, it indicates that the corresponding response
ri ∈R will be executed. Conversely, if si is equal to 0, it signifies that the response ri ∈Rwill not be executed. The optimization problem typically includes constraints to ensurethe selection process adheres to specific conditions or limitations.
Game-Theoretic AlgorithmAnother mathematical method to determine optimal responses against cyber attacks isgame-theoretic algorithms [299, 326, 342]. In the game-theoretic approach, the attackerand the IRS are modeled as two players. Each player has a set of actions available to
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them, such as different attack strategies A = {a1,a2, . . . ,ak} for the attacker and re-sponse strategiesR = {r1,r2, . . . ,rn} for the IRS. The goal of the IRS is to select the optimalresponse to the attack at a given time. One way to achieve that is by minimizing the max-imum damage of the attack: minri∈R(maxai∈A (U(ri,ai)))whereU(ri,ai) represents theutility function for the IRS when the attacker chooses attack ai and the IRS responds withresponse ri.
AI-based mechanisms
Many AI-based mechanisms were used to support the dynamic selection of the responsesuch as Genetic Algorithms [78], Convolutional Neural Networks [318], Supervised ma-chine learning [269], Q-Learning [120], andmanymore [243]. Using any of these AImodelsusually requires many steps including data collection and pre-processing, feature extract-ing, model training, and feedback loop to improve the quality of the selected responses.
Other Methods
There are alternative mathematical approaches to IRSs that are not derived from generalmathematical problems. One example is REASSESS [217] that uses human-evaluated met-rics and prior responses to select optimal responses. While it offers simplicity, this relianceon human evaluation can lead to inaccurate assumptions. Its mandatory learning behav-ior is unsuitable for automotive systems, and it lacks the option for flexible learning to en-hance responses, requiring a well-established feedback loop. Another simpler approachis the cost-sensitive generic framework [271, 272], which includes steps like defining op-erational costs, ranking responses using a weighted sum method, and selecting the bestresponse with an intrusion matrix. However, its reliance on static value assignments andsensitive parameters, typically defined by human experts, canmake objective assessmentchallenging and results in potentially harmful responses.
Comparison
Table 33 summarizes all the advantages and the drawbacks of the five classes of responseselection algorithms.The primary advantage of SAW is its relative simplicity and utilization of lightweightmathematical operators, making it suitable for running on constrained deviceswith a poly-nomial run-time, without requiring complex external libraries [29]. However, the maindrawback of SAW is the need for an adapted SAW method to achieve more accurate re-sults. This often leads to increased complexity and longer run-time compared to the orig-inal SAW. Another drawback is the dependency on subjective parameters such as specificweights. This dependency can result in highly variable outcomes that may not accuratelyreflect the system state [160].A major benefit of LP is its ability to formulate a single objective function and multipleconstraints, providing an accurate representation of multi-objective optimization prob-lems. However, compared to SAW, LP requires complex implementation, resulting in in-creased computational complexity for large systems [112]. The run-time of the algorithmdepends on the solvingmethod employed, such as the commonly used Simplex algorithm.While the Simplex algorithmhas polynomial run-time for typical problems [253], it exhibitsexponential worst-case run-time in theory [156].The advantage of game-theoretic approaches lies in their consideration of the systemstate, resulting in a highly accurate representation of the system. Furthermore, game-theoretic approaches can be deployed in a distributed manner, as highlighted in [342]. Amajor drawback of this method is the use of highly complex models, which are necessary

107



Table 33: Comparison of the different response selection methods

Method Benefits Drawbacks

SAW + Simplicity and lightweightoperators+ Suitable for constrained de-vices+ Polynomial run-time

- Adapted methods for accuracy in-crease complexity- Reliance on subjective parameters

LP + Flexible structures+ Typically polynomial run-time+ Existing libraries for solvers

- Higher complexity for modeling andcalculation- Theoretically exponential run-time
Game-Theoretic
Algorithms

+ System state consideration+ Accurate system represen-tation
- Very complex models- Computational complexity- Reliance on subjective parameters

AI-based Solu-
tions

+ Handle large amount ofdata+ Fast response selection
- Uncertainty of the selected re-sponses- High resource requirements

Other Methods + Simple mathematical mod-els+ Typically fast+ Combination with othermethods possible+ Learning is possible

- Complexity raises with large systems- Human influence has always subjec-tive opinions

to determine optimal moves in game-theoretic algorithms. Solving such complex modelsoften requires significant resources and leads to large communication overhead [342],making this approach unsuitable for constrained devices. Additionally, most models inpractice make assumptions or simplifications due to the near-infinite number of possiblesystem states [299, 326, 342], as complete modeling of all states is infeasible.
Using AI-based methods is still limited because of many issues such as the high mem-ory and computation requirements of some of these methods [118] and the unrealisticresponses that some models can produce (e.g., Genetic Algorithms). Additionally, un-certainty surrounding the outputs of these models limits their adoption. Finally, mostof these methods rely on the availability of datasets for model training. However, au-tonomous vehicles often operate in dynamic and unpredictable environments. When theoperating environment significantly deviates from what the AI has learned, it may en-counter challenges in adapting effectively or making appropriate decisions.
Finally, while the cost-sensitive generic framework andREASSESS are simple anddemon-strate promising in computer and network technologies, adapting them to a highly het-erogeneousmulti-bus architecture, like the vehicular reference architecture, presents sig-nificant challenges.
After careful consideration of the factors discussed above, we have chosen to explorethe adapted SAW method, as well as LP with a focus on both benefit maximization andcost minimization for the design of an automotive IRS. The decision to focus on these twomethods is based on their relative simplicity, computational efficiency, and their ability
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to accurately represent multi-objective optimization problems. The remaining algorithmfamilies were assessed but are not pursued further due to reasons such as increased com-plexity, resource requirements, and limitations in modeling all possible system states.
Adopting of SAW and LP
Adopting of SAWTo adopt the SAW method for automotive IRSs, we first need to define the criteria C Rthat will be used to evaluate each response. For this purpose, we can utilize the HEAV-ENS parameters, including the cost of a response c (see Equations 4) and the benefit ofa response b (see Equation 5). However, using these two parameters still presents someissues that need to be addressed in order to effectively use and adapt SAW for valid re-sults. The first problem arises when using these parameters during the creation of theelements of the normalized decision matrix, as depicted in Equation 6. This problem orig-inates from the fact that our modified HEAVENS method allows values of vi, j to be in theset 0,1,10,100 for both criteria (i.e., c and b). If maxi(vi, j) = 0 applies, Equation 6 resultsin an illegal operation if the criterion is a benefit. Similarly, if the criterion is a cost and
va, j = 0, Equation 6 also results in an illegal operation. This issue can be circumventedby using a small value greater than 0 instead of 0. The second problem does not stemfrom a mathematical perspective but rather from the application of this method in a fullyautomated IRS. Since the SAW method only considers criteria C R from the applicableresponse set R, it does not take into account the impact I of an intrusion. As a result ofthis limitation, it is possible that a response incurring high costs may be chosen even for aminor intrusion. Although this is a significant challenge for the application of SAW in IRSs,this drawback has not been addressed in existing research.To tackle this problem, it is mandatory to set the preference value p (see Equation7) into relation with the intrusion impact I. For each asset A of the vehicle referencearchitecture and each intrusion resultR, a normalized intrusion impact can be calculated.Such a normalized intrusion impact must be calculated for eachmetric S, F , O, P and E ofthe adapted HEAVENS method in Equation 3. This behavior is formulated in Equation 9.

[l]α{S,F,O,P,E},A,R =

{ w{S,F,O,P,E},A,R · v{S,F,O,P,E},A,R
∑|R|(w{S,F,O,P,E},A · v{S,F,O,P,E},A)

, if ∑|R|(w{S,F,O,P,E},A · v{S,F,O,P,E},A) ̸= 0

0, otherwise (9)Similar to Equation 7, a weighted sum must be calculated. But, since the individ-ual weights w are already included in Equation 9, a simple summation over all metrics
S,F,O,P and E of the adapted HEAVENS method is sufficient. This sum will be set intorelation with the preference value of the responses from Equation 7, such that the re-sponse ri with the highest preference value p will be used, which is below the sum of allnormalized HEAVENS values as depicted in Equation 10.

best response= max

{
pi | pi < ρ · ∑

l∈{S,F,O,P,E}
αl,A,R

}
(10)

The parameter ρ in Equation 10 is a parameter to adjust larger deviations in the orderof magnitude between the sum of the normalized HEAVENS and the preference value p.
Adopting of Linear ProgrammingThe first step to adopt the LP is defining the objective function. For the set of possibleresponses R, it is possible to define two different objective functions:
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• The first option of an objective function follows the principle of maximum benefitas depicted in Equation 11. The goal is to solve the binary decision vector −→s tomaximize the benefit b. Although this can lead to very good solutions, it is possiblethat the best executable response is not found immediately since preconditions ofidentified responses are not satisfied.
|R|

∑
i=1

sibi→max (11)
• The second option of an objective function follows the minimum cost principle andis comparable to existing IRSs [110,112]. Equation 12 therefore leads tomore conser-vative responses since the cost cwill beminimized and the benefit b of a response isnot considered. A drawback is that the identified solution inside−→s might not healthe system completely and another try might be necessary.

|R|

∑
i=1

sici→min (12)
For both objective functions from Equation 11 and 12 the same constraints must besatisfied for a response to qualify for execution. Existing constraints of IRSs using LP [110,112] are not suitable for an automotive IRS. Because of that, specific constraints must beelaborated:
1. The cost cof the responsemust bebelow the impact I of the detected intrusion [112].Equation 13 depicts this first constraint.

|R|

∑
i=1

sici < I (13)
2. Only one response can and must be executed as depicted in Equation 14.

|R|

∑
i=1

si = 1 (14)
It is additionally necessary that−→s is a binary vector, leading to the variable definition

si ∈ {0,1}.
4.2.4 Proposed Automotive IRSIn this section, wewill discuss some design decisions regarding REACT, our proposed auto-motive IRS (refer to secirsdeployment)anddetailitscomponents(re f ertosec : irscomponents).

IRS DeploymentOur proposed automotive IRS can be deployed in three different locations:
• Central Gateway: The vehicle will have one IRS that receives information from var-ious ECUs. This central IRS will have a comprehensive view and understanding ofthe entire system. However, it is considered a single point of failure.
• Domain Gateway: The vehicle will have one IRS per domain gateway. Each onewill be mainly responsible for the ECUs belonging to that domain and will interactwith other IRSs. Implementing this solution requires the existence of an IntrusionResponse eXchange Protocol (IRXP) [100].
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Figure 51: Internal architecture of REACT.

• ECU: The vehicle will have one IRS per ECU. This IRS will be primarily responsiblefor reacting to attacks related to its host ECU. Simultaneously, it can exchange re-sponses related to other ECUs if needed. Choosing this option ensures the absenceof a single point of failure. However, deploying such a solution requires that eachECU is capable of running the IRS, and it also necessitates the existence and thesupport of an IRXP [100].
The architecture depicted in Figure 51 illustrates the scenario where the IRS is de-ployed in the central gateway. Any potential change would be primarily associated withthe source of certain information required for the functionality of the IRS, whether it orig-inates from the same ECU (in the case of implementing the IRS per ECU) or from externalsources such as other ECUs or domains at the gateway. Regardless of the chosen deploy-ment location for the IRS, it necessitates the reception and sharing of information withother components within the vehicle, as outlined below:
• Attack Information: This information is provided by the IDS, and as described in4.2.2, it includes the source of the attack, the destination, the intrusion result, andthe impact of the attack. Recent IDSs, such as [66, 129], are capable of identify-ing the source and destination of an intrusion using various technologies, such asCAN databases (used by [129]) or ECU fingerprinting [50, 158]. The intrusion im-pact can be calculated as described in 4.2.2. Additionally, the intrusion result canbe derived from the attack type, which existing IDSs, such as [105], can provide.In our research, we consider the IDS functionality as trusted, treating it as a black-box that reliably detects intrusions without requiring additional false-positive han-dling [111,292]. In our architecture, we place the IDS in the domain gateway. Conse-quently, a security sensor [13] is needed to monitor its portion of the environmentfor security-related observations. This data is then reported to the domain-specificgateway, which houses the domain IDS.
• Status Information: This includes information about the various states of the vehicleand its surroundings. This data is collected and aggregated from various vehiclesensors and shared with the IRS.
• Response Information: This information can encompass the precise responses neededfor specific ECUs or those that need to be shared with the SOC. In our architecture,we assume the presence of response agents located in each ECU. These agents areresponsible for receiving responses and deploying them within the respective ECU.

It is crucial to mention the necessity of ensuring the security of this data by implementingsecure communication between the ECU, domain gateway, and the IRS.
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4.2.5 IRS component
The IRS consists of the following sub-components (as shown in Figure 51):

• Risk EvaluationModule: This module will be responsible for assessing the impact ofan intrusion. The component will receive information about the intrusion from theIDS as well as information about the vehicle status.
• Response Set Generation: This module compiles a list of possible responses, utiliz-ing information obtained from both the IDS and the risk evaluation module. Pleasenote that not every response is applicable to every type of intrusion result (refer toTable 32).
• Optimal Response Selection: This component integrates data fromall previousmod-ules to determine the optimal response that can be applied. Within this component,any of the algorithms presented in sec:posiblealgo can be integrated.
• Precondition Checking: Given the limitations imposed by the system architecture,where not all types of responses can be applied (for example, in cases where asensor is unavailable due to a DoS attack, it may not always be possible to use aredundant source of information from another sensor if such a backup sensor doesnot exist), it is imperative to verify whether the selected optimal response is ap-plicable or if an alternative response must be chosen. The Precondition Checkingmodule receives the chosen response and assesses its feasibility. If a response isfound to be inapplicable, a feedback loop is established with the previous OptimalSelection Module. This inner loop is repeated until the necessary preconditions foran individual response are met. The order of the Optimal Response Selection andthe Precondition Checking is carefully evaluated and results in time benefits:

1. "Check-First-Then-Select": The logical order of first eliminating all inapplicableresponses and subsequently selecting the best response r from the remainingavailable options is illustrated by the timing behavior of Equation 15.
t =

(
|R|

∑
i=1

tcheck,ri

)
+ tselect,r + texecute,r (15)

The time to select the optimal response tselect,r and the time to execute theresponse texecute,r are summed only once, since the selected response will sat-isfy the preconditions. In contrast, the time to check the preconditions tcheck,ris summed over the set of possible responses R, since every response’s pre-condition will be checked.
2. "Select-First-Then-Check": While a response may be applied with the proba-bility p, it might also be that the constraints are not satisfiedwith a probability

(1− p). This leads to a timing behavior of Equation 2.
t = tselect,r1 + tcheck,r1 + p · texecute,r1 +(1− p)

·
|R|

∑
i=2

(
tselect,ri + tcheck,ri

) (16)
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While the first selected response must always be checked, it is only executed withthe probability p. If the preconditions are not satisfied, the Inner Loop will be re-peated maximum |R|−1 times.
It is evident that for a certain number of responses approaching infinity, Equations 15 and 2yield the same runtime t when p = 0.5. For higher values of p, the runtime as per Equa-tion 2 is even lower. This holds true even when tselect,r decreases, as the number of possi-ble responses decreases accordingly. Based on these equations, the architecture depictedin Figure 51 exhibits a "Select-First-Then-Check" behavior.
Response Execution: This component is responsible for transmitting the chosen responseinitially to the domain-specific gateways and subsequently to the respective ECUs for im-plementation through their local response engines. After a predefined duration, this com-ponent triggers the IDS to assess the effectiveness of the applied response in mitigatingthe intrusion. By incorporating this IDS-Feedback loop, the Outer Loop can be iteratedmultiple times, each iteration involving a system re-evaluation. This concept serves tocounter persistent attacks or stepping-stone attacks effectively. Furthermore, the feed-back loop can be utilized to update the parameters of the risk evaluation module for ad-dressing future intrusions.An essential consideration in the IRS architecture shown in Figure 51 is the implemen-tation of termination criteria for the inner and outer loop. The absence of such criteriacould lead to an endless loop, posing a risk to the stability of the entire IRS system. Whilesomeprior research has addressed termination criteria [100,261], thesemethods often in-volve complex evaluation techniques [38,119] or rely on artificial intelligence support [176].However, the high computational requirements and intricate modeling approaches asso-ciated with these methods are impractical for automotive infrastructure. To address thechallenge of preventing endless loops in both the inner and outer loops, we employ twodistinct methods.

1. Preventing Inner Endless Loops: To avoid an endless evaluation of preconditions,we continuously reduce the possible response set by eliminating non-applicable re-sponses. Additionally, we have introduced a special response, labeled as "No Ac-tion" (indexed as 31), which will consistently lead to the last possible response. Thisspecific response carries the highest cost, similar to the impact of an intrusion, butprovides no benefit. These attributes ensure that the inner loop never reaches adeadlock since "No Action" can always be applied.
2. Avoiding Outer Endless Loops: Once a response is applied, the system undergoes ananalysis through the IDS-Feedback mechanism to identify if a new stepping-stoneattack is detected or if the system is secure. In case a new stepping-stone attack isdetected, the entire outer loop illustrated in Figure 51 reiterates. To prevent an end-less loop scenario when the same response is repeatedly applied, we implementchanges to the parameters of the applied response based on the success of the re-sponse. The parameter adaptation differs between a successful and a non-successfulresponse. When the selected response is unsuccessful, it indicates that the bene-fit values assigned to all HEAVENS parameters may not be accurate. Consequently,an adjustment is needed, resulting in a reduction of the benefit values for all HEAV-ENS parameters in the previously applied response. This entails the assumption thatthe relative order of each parameter remains unchanged; for example, if the safetybenefit held a higher value than the financial benefit prior to the adjustment, it willcontinue to do so afterward. This behavior is mathematically expressed in Equation17.
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∀i ∈ {S,F,O,P} :

inew(iold) =


10, if iold = 100
1, if iold = 10
0, if iold = 1 or iold = 0

(17)

A similar parameter adaptation is required in case the response was applied suc-cessfully. However, the parameters cannot simply be increased, as this could leadto predictable responses. Predictable responses pose security risks, as attackers canexploit this behavior [29]. For that reason, two adaptations aremade if the responseis successful to avoid predictable behavior:
• Original values are restored if the response was previously not successful andits values were adapted according to Equation 17.
• In a second step, the corresponding weights wi∈S,F,O,P are randomly adjustedusing a prefactor r, where rmin ≤ r ≤ rmax. This retains the original order ofmagnitude of wi while introducing sufficient variation through the multiplica-tion r ·wi to generate different results in the next iteration.

As previously mentioned, the parameters to calculate the intrusion impact (Equa-tion 3), the response cost (Equation 4) and the response benefit (Equation 5) relyon input by security experts. However, this input may not always be optimal [168].Consequently, this can lead to the selection of an undesired response. Fortunately,the outer loop provides amechanism to compensate for potentially incorrect param-eters. In cases where responses prove ineffective, the parameters are dynamicallyadapted using Equation 17.
Note that Equation 17 presented earlier does not account for the dynamic environ-mental parameter, denoted as E, and its corresponding weight, wE . Further detailsand definitions are necessary to incorporate this parameter into the adaptation pro-cess. These details should encompass various aspects of the vehicle’s status andits surrounding environment. For simplicity, we have focused on the vehicle’s ve-locity as a parameter that can help represent the vehicle’s status. To determine arealistic rating for the impact of vehicle speed, several factors must be taken intoaccount. Studies of traffic accidents have revealed that the impact is influenced notonly by the types of vehicles involved but also by their positions at the potentialcrash site [141]. Additionally, the age of the passengers in the vehicles can affect theimpact of injuries in a traffic accident [231]. Based on this research, the approachpresented in Equation 18 is applied to the parameter E in the adapted HEAVENSmethod’s prototype implementation [141, 231].

E(v) =


100, if v≥ 75 km/h
10, if 50 km/h≤ v < 75 km/h
1, if 30 km/h≤ v < 50 km/h
0, if 0 km/h≤ v < 30 km/h

(18)

Response Storage: Within this component, a repository is maintained containing a rangeof potential responses alongside their associated metrics. These metrics can be updatedthrough the feedback mechanism or expanded with the inclusion of new responses andparameters via an external connectivity interface. When implementing this on specifichardware, it is crucial to implement securitymeasures to prevent unauthorized tamperingwith the memory area.
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Our proposed IRS architecture, featuring both an inner loop and an outer loop, cou-pled with the incorporation of automotive-specific considerations into the external ar-chitecture, introduces a novel paradigm in the realm of fully automated IRSs. Note thatthere is already some related work for each part of the IRS (such as the selectionmethod),which was covered in the previous sections. However, there is no system that attempts toinclude all the aspects against which we can compare our work.
4.2.6 Evaluation

Table 34: IDS-related information and vehicle state parameters for both evaluation scenarios.

Property Scenario 1 Scenario 2

Name Adversarial sample Information disclosure at the info-tainment system
Infected Asset Front Camera Infotainment Gateway
Affected Asset Acceleration control Infotainment Gateway
Intrusion Result Falsify / Alter behavior Information Disclosure
Dynamic Param-
eter

Velocity: 70 km/h Velocity: 0 km/h

Implementation, Testbed, and Use CasesThe proposed IRS was implemented using the Python programming language. To imple-ment Linear Programming and the associated Simplex algorithm, we utilized the PuLP
library [199], a well-established choice, along with the GNU Linear Programming Kit asthe solver. It is important to note that the adapted SAWmethod remains independent ofthis decision, as it relies solely on standard Python mathematical operators.The testbed designed for evaluating the IRS incorporates an embedded system setupto realistically emulate the automotive infrastructure. To ensure this fidelity, our imple-mentation was executed on a Raspberry Pi 4 Model B Rev 1.2, a choice justified by the de-vice’s ARM-based quad-core processor running at 1.5 GHz. This processing power closelyaligns with the high-performance chips commonly found in the automotive industry.The goal of the evaluation is to assess two key aspects of the proposed IRS. Firstly,we aim to evaluate its proficiency in optimal response selection, and secondly, we intendto measure various computational metrics, including memory consumption and the timerequired to obtain optimal responses while using the three different selection algorithms:LP with maximum benefit, LP with minimum cost, and adapted SAW.For our evaluation, we employed two representative intrusion scenarios inspired byreal-world intrusions:

1. Adversarial Sample: This scenario involves slight modifications to the input dataof a machine learning algorithm, resulting in significantly different outputs fromthe original [184]. Given the prevalent use of machine learning algorithms in cam-eras for automated vehicles, they are vulnerable to exploitation via adversarial sam-ples [184]. In our evaluation, we exploited a front camera in a rural setting, leadingto an altered behavior in the acceleration control.
2. Information Disclosure at the Infotainment System: This scenario draws inspirationfrom an actual attack on a vehicle, where an information disclosure in the infotain-ment system served as the initial step in a stepping-stone attack [197].
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The specific IDS parameters and vehicle states employed as input for the scenarios aremeticulously detailed in Table 34. Please remember that in our prototype of the IRS, weconsider only the velocity of the attacked vehicle as an illustrative example of a vehicle’sstatus.
4.2.7 Results
In this section, wewill present the results of testing our IRS using twoprominent scenarios.We will evaluate response quality, response selection time, memory consumption, andthe adaptation of response parameters for each of the three selection algorithms: LP withmaximum benefit, LP with minimum cost, and the adapted SAW.
Response Quality
The objective of the response quality evaluation is to assess how different optimal selec-tion algorithms prioritize responses and determine the overall impact and benefit of theapplied responses. To achieve that, the precondition of each response is set to ‘rejected’for every proposed response. This ensures that the IRS will continue to suggest responsesfrom the list of possible responses. Each applied response can have both positive and neg-ative effects on the system, so the cost and benefit values of the selected responses arepresented. In this evaluation, default parameters are utilized for each new test, ensuringuniformity in the algorithm evaluation across various metrics.

Figure 52 depicts the cost and benefit of all proposed responses in the order they areapplied by the respective algorithm for both scenarios. The figure shows that our pro-posed IRS suggests a different number and order of responses for various scenarios andfor different selection algorithms within the same scenario. Please note that the figureshows that some responses were selected twice. For example, the response of restart-ing the misbehaving system (indexed with number 19, see Table 32), was selected twice.However, it is important to clarify that the response was selected for different systems.In other words, the first restart is related to the camera, while the second is for the ac-celeration control. In addition, as expected and shown in Figure 52(a) and Figure 52(b),the LP method with maximum benefit starts at very high benefits. Similarly, the LP withminimum response costs starts at a very low cost and more expensive responses are notselected until later stages, as shown in Figure52(c) and Figure 52(d). Notably, the LP withmaximum benefit operates independently of the cost. However, it always ensures thatthe cost of the response is less than the impact of the intrusion (see Equation 13).
The reason for the arbitrary behavior is that Linear Programming only follows one op-timization function and just satisfies the constraints, but does not sort by constraints.Similarly, LP with minimum cost delivers arbitrary values with respect to the benefit be-cause it only considers cost metrics in its optimization. While the LP with the minimumcost provides more conservative solutions, the LP with maximum benefit suggests moreoffensive solutions. In a real-world scenario, LP withminimum costmight requiremultipleresponses since its benefits are arbitrarily sorted, while LP with maximum benefit mightrequire more iterations of the "inner loop" since the preconditions for more offensiveresponses might not be fulfilled.
The adapted SAWmethod exhibits a similar arbitrary behavior as shown in Figure 52(e)and Figure 52(f). However, it is noticeable that adapted SAW may select responses witha cost higher than the impact of the intrusion (see Figure 52(f)). Given that the adaptedSAW method does not consider constraints, it is an unattractive solution to use any SAWmethod in an automatic IRS.
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Figure 52: Evaluation of the response benefit and cost for Scenario 1 (left) and Scenario 2 (right)
using LP with maximum benefit (top), LP with minimum cost (middle), and adapted SAW (bottom)

Time of Response Selection
To evaluate the time required for selecting a response from a given response list using theselection algorithms, we utilized the previously describedmethodwhere the inner loop ofthe IRS repeats multiple times. It is important to note that the generation of the responseset occurs only once for an individual intrusion. The time required for list generation isindependent of the selection algorithm, measuring at 4.32 ms for scenario 1 and 3.82 msfor scenario 2. The difference in the measured time between the scenarios is due to thevariation in number of possible responses.Figure 53 illustrates the time consumed by the three selection algorithms during the
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Figure 53: Evaluation of consumed time for response selection using the three selection algorithms
for both scenarios

Table 35: Memory consumption of the IRS in kB using static evaluation.

LP with Max Ben-efit LP with Min Cost Adapted SAW
Scenario 1 19308 19206 11296Scenario 2 19228 19344 11220

process of selecting different responses. Please note that the X-axis represents the orderof the response, not the index of the response. The figure indicates that the adapted SAWmethod consumes less time compared to the LPmethods. Specifically, the LPmethodwithmaximumbenefit typically consumesmore time due to the need formultiple iterations, asits offensive responsesmay notmeet necessary preconditions. Slightly less time is neededfor the LP method with minimum cost, although its conservative responses are selectedafter fewer precondition checks. Overall, all algorithms demonstrate good performanceon a resource-constrained embedded system.
Memory Consumption
To measure memory consumption, we utilized Python’s internal resourcemodule [227].Since some of the optimal selection algorithms rely on third-party libraries, the assess-ment of memory consumption includes the memory allocated for these functionalitiesas well. The results are presented in Table 35. The results show that both LP with max-imum benefit and LP with minimum cost methods consume nearly the same amount ofmemory, while the adapted SAWmethod exhibits considerably lower memory consump-tion. This difference can be attributed to the external libraries PuLP and the GNU Linear
Programming Kit, which require more memory due to their complex data structuresand solving methods. Nevertheless, all three selection algorithms exhibit low memoryconsumption, making them suitable for use in resource-constrained embedded hardwaresystems.
Dynamic Evaluation
The dynamic evaluation concentrates on two key aspects: response and threat impact pa-rameters adaptation (refer to 4.2.2) and the inclusion of velocity considerations (as shown
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Figure 54: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered successful.

Figure 55: Evaluation of parameter adaptation in Scenario 1 (top) and Scenario 2 (bottom) for the
responses selected over five iterations using the three selection algorithms, assuming the responses
were consistently considered unsuccessful.

in Equation 18). When it comes to parameters adaptation, response quality is assessedbased on their cost and benefit. In terms of velocity, we evaluate response variation.These assessments are conducted for both scenarios 1 and 2. By testing all three imple-mented optimal selection algorithms, we can compare their dynamic behavior.
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4.2.7.1 Parameters adaption To assess the impact of changing parameters, we conducted two repetitions of each scenario, each comprising five iterations of the outer loop. In one set of iterations for each scenario, we consistently deemed the responses as successful, while in the other set of five iterations, the responses were uniformly considered unsuc-cessful. The benefits and costs of the five optimally selected responses for both scenarios, as determined by the three selection algorithms, under the assumption that the responses were always successful, are presented in Figure 54. Correspondingly, the results under the assumption that the responses were consistently unsuccessful are displayed in Figure 55.In consistently successful attacks, we observed that parameter weights change within the range of ±20% (we have selected rmin = 0.8 and rmax = 1.2). The purpose of these changes was to reduce response predictability. In both scenarios, changes in response benefit were evident. However, in the first scenario, all three algorithms retained the same response as shown in Figures 54(a), 54(b), and 54(c). This was changed in the second scenario, where responses were altered for the LP with maximum benefit and adaptive SAW algorithms as shown in Figures 54(d), and 54(f). The reason for the absence of changes in the selected responses in the first scenario when using LP with maximum benefits or adapted SAW algorithms can be attributed to the specific response chosen: transitioning to a safe mode (indexed with 17). This response had very high benefit values, as determined through the initial evaluation process, making minor variations of ±20% inconse-quential to the overall result. Consequently, minor variations of ±20% did not affect the overall result, as the next possible response had significantly lower benefit values. To avoid such a constant behavior, a more substantial modification of the response parameters or the use of an asymmetric window for the prefactor, with a higher probability of negative values, can be implemented. Notably, the LP method with minimum cost (Figure 54(b) and 54(e) did not consider response benefits in its optimization function, rendering modifications to response benefit irrelevant. This method-related limitation persisted across both simulated scenarios.In the case of consistently unsuccessful attacks, we observe more substantial varia-tions in the selected responses compared to the previous case (see Figure 55). This be-havior is expected, as the parameter adaptation in a non-successful case involves higher orders of magnitude, as shown in Equation 17, compared to the successful case. Similar to the previous analysis, the LP method with minimum cost optimization consistently generates the same response due to the exclusion of response benefit in the optimiza-tion process, as shown in Figures 55(b) and 55(e). Conversely, LP with maximum benefit optimization aligns with expectations. Although the initial response is similar to the suc-cessful case, subsequent responses exhibit lower benefits (Figures 55(a) and 55(d)) and higher costs as a side effect. Notably, response index 26 (killing the process) appeared twice in Figures 55(a) and 55(c), each referring to different components (i.e., camera and acceleration control). The adapted SAW method consistently produces varying results with less distinct trends in benefit and cost when compared to LP with maximum benefit (Figures 55(c) and 55(f)). This observed behavior holds true for both scenarios 1 and 2, un-derscoring the expected functionality of parameter adaptation for non-successful cases.In conclusion, this assessment of dynamic parameter adaptation confirms that LP with maximum benefit and the adapted SAW methods perform effectively with adjusted pa-rameters, rendering the results valid for both test cases. On the other hand, the LP method with minimum cost optimization falls short in its capacity to respond to parameter shifts in response benefit values. Consequently, this method appears less appealing for identifying optimal responses in autonomous IRS.
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Table 36: Impact of the velocity for the evaluated scenarios, using Equation 3.

Impact (unitless)

0 km/h 50 km/h 100 km/h

Scenario 1 200 210 300
Scenario 2 120 130 220

4.2.7.2 Inclusion of Velocity Considerations The second key aspect of dynamic evalua-tion involves assessing the influence of vehicle velocity on the selected responses. In ourcurrent prototype system, the environmental parameter E is treated similarly to otherHEAVENS parameters in Equation 3, as their respective weights w are either one or zero.As we alter the velocity, the environmental parameter for an intrusion takes on differentvalues, as indicated in Equation 18. Therefore, intrusion’s impact is more significant athigher velocities. For this test, both scenario one and two are assessed at three veloci-ties: 0, 50, and 100 km/h, using all three implemented algorithms, with each evaluationbeginning with the default data-set.
While the intrusion impact calculation in Table 36 functions as expected, each algo-rithm consistently selects the same response within each scenario, regardless of the ve-locity. This behavior can be attributed to the high impact values in the two evaluatedscenarios. In cases of less severe intrusions or during the early stages of a stepping-stoneattack, where the HEAVENS parameters result in lower values, the velocity’s impact be-comes relatively more substantial, thus leading to varying results. Nonetheless, it’s im-portant to emphasize that the proposed IRS architecture is adaptable since the individualweights w for HEAVENS parameters can be customized as per Equation 3. This customiza-tion minimizes the over-representation of static HEAVENS parameters, enabling the ve-locity to exert a more pronounced influence on the selected response.

Final Remarks
The evaluation of the developed IRS reveals the advantages and drawbacks of each selec-tion method. The adapted SAW method is limited by its inability to consider constraints.Consequently, it is not feasible to employ this method in a fully automated IRS. On theother hand, LP with minimum cost consistently favors constant responses and is, there-fore, unsuitable for optimal response identification. Despite its successful application inexisting research [110, 112], the results demonstrate suboptimal behavior for the automo-tive use case. Nevertheless, it is well-suited for proposing follow-up responses once theprimary intrusion has been mitigated. These follow-up responses can enhance securityby alerting a SOC and providing information to the car manufacturer, ultimately leadingto updated software. In contrast, the LP method with maximum benefit, excels in all met-rics evaluated for an automotive IRS. Since it offers responses with high benefits from theoutset, it is well-suited to respond to the primary intrusion.
4.2.8 Conclusion and Outlook
Modern vehicles’ intricate architecture and advanced connectivity present unique intru-sion challenges. While automotive security research has traditionally emphasized IDSs asa secondary defense layer, the development of vehicle IRS is in its early stages, drawing in-spiration from related industries. To delve into the development of an automotive IRS, wesought answers to three key questions: defining potential responses, outlining response
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evaluation criteria, and optimizing response selection. Initially, we categorized automo-tive intrusions and stepping-stone attacks into five distinct categories to create a moreversatile intrusion model. Similarly, we classified responses, creating a formal descriptionfor both intrusions and responses. Additionally, we investigated necessary adjustmentsto existing risk assessment models to support response evaluation. Furthermore, we con-ducted a comprehensive comparison of various optimal selection algorithms, highlightingthe adaptability of the SAW method and Linear Programming (LP) with various optimiza-tions for IRS integration. Although other algorithm families may gain relevance in thefuture, they currently face limitations in the automotive context. In addition to thesefindings, we proposed an IRS architecture that accommodates the distributed nature ofvehicles and addresses automotive-specific constraints. Evaluation in real-world scenar-ios has led to the development of a novel vehicular IRS, demonstrating its potential forintegration into modern distributed vehicle architectures and enhancing overall security.While the focus of the paper is on the analysis and design of the IRS, the implementa-tion of the external architecture and the response executionmodules on the local engineson each ECU is still a challenge towards an IRS as a system. To test such an overall IRSsystem, real-world data sets, including both normal operation and attack scenarios, areneeded. Extensive evaluation in Software-in-the-Loop or Hardware-in-the-Loop testbedscan extend the existing evaluations of algorithms and the overall system. With respect tothe secure communication of intrusions and responses, further research and standardiza-tion are needed to be performed in order to ensure that the developed IRS does not onlyreply in an adequatemanner but also distributes its responses. In this direction, leveragingexisting efforts such as [124, 193] by extending them towards establishing a standardizedmethod for securely exchanging the proposed responseswithin the vehicle andwith othervehicles would provide a solid foundation, as these existing standards and guidelines al-ready offer valuable insights. Also, it is important to note that the functionality of ourproposed system depends on the availability of information about the attack, such as itssource, destination, and type, which needs to be provided by the IDS. This information canbe obtained by integrating existing research approaches, as demonstrated in [66,129]. Fi-nally, the modular architecture of REACT allows an easy extension towards more complexvehicle architectures and new intrusions or responses. Additionally it allows the integra-tion of new selection algorithms in the future to adapt to possible changed needs.
4.3 Summary
Within this section, we developed methods for fingerprinting, debugging and intrusionresponse in AD systems. The ADAssure methodology leverages vehicle dynamics data forautomated andmanual analysis of indicators of activity of cyber attack. ADAssure demon-strated that indicators of attack could be found through vehicle dynamics data and thatassertions on the system could be generated. These assertions can aid in the improve-ment of the design of the control system software. The analysis of IRS techniques forautomotive consequently demonstrates the difficulty in finding an optimal solution for areal-time, safety-critical system with timing and resource constraints. Both analyses high-light the complexity of development of cyber defensive mechanisms given the vast dataecosystem and system-of-system environment. Within the next sectionwewill converselyexplore the development of tools for cybersecurity testing of AD software.
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5 Tools for Autonomous Driving Software Cybersecurity Test-
ing

5.1 Cybersecurity Test Range for Autonomous Vehicles
AV shuttles for public transportation are being piloted in European cities [121]. Cybersecu-rity of AV shuttles is of predominant importance for the safety of passengers and pedes-trians in the traffic environment. Digitisation of vehicles and the transitioning to intelli-gent control by algorithms have exposed vulnerabilities to traditional cyber attacks suchas ransomware, distributed denial of service, and new attack surfaces such as adversarialmachine learning and sensor manipulation [43, 220, 223, 280]. Recent examples [7, 11] ofsoftware failures of semi-autonomous vehicles resulting in fatalities of passengers haveshown the lethal potentiality of cyber attacks. There are many challenges to securing AVshuttles against cyber attacks.Cyber ranges are popular tools to experiment with edge and corner cybersecurity testcases and training for skills development and situational awareness of cybersecurity inci-dent response. However, there is a lack of evaluation of cyber range technologies for AVcybersecurity and knowledge as to how cyber-physical systems can translate to supportreal-world, operational AV shuttles.To address the challenges of AV cybersecurity, cybersecurity testing platforms for cyber-physical systems and methods for testing and training are required. In this research weevaluate the Massachusetts Institute of Technology (MIT) Duckietown, low-cost, small-factor, cyber-physical AV test bed to support cybersecurity testing of a real-world AV Shut-tle, operating in Tallinn, Estonia. The purpose is to understand how a cyber-physical testbed can be used for cybersecurity testing of AV shuttles and how this can transform cy-ber ranges and training for AV cybersecurity. The main activities of this research are thefollowing:

1. We investigate the utility of a cyber-physical test bed for AV shuttles to support areal-world, operational AV shuttle.
2. We demonstrate, through a series of practical cybersecurity test scenarios, that alow-cost, cyber-physical test bed can be used to test the general cybersecurity ofan AV shuttle and improve issues with the architecture and training for situationalawareness of operators.
3. We outline recommendations how a cyber-physical test bed can be used to validatecybersecurity edge and corner cases.

5.1.1 Relation to Existing Work
Cyber-physical test beds for AVs have featured in numerous studies. However, the relatedwork is focused on the design of the test bed and there are few works that include con-siderations for cybersecurity testing and training.Three studies are prominent in the related literature for their focus on designing low-cost cyber-physical test beds for automotive.Axelsson et al. created a vehicle test bed for security evaluation of cyber physical sys-tem. The test bed was based on a small-factor mobile vehicle which was customised tosupport AUTOSAR, a software framework for automotive. The vehicle test bed, developedin 2014, demonstrated that a small-factor device could provide a solution to emulate theprotocols and features of a full-factor real-life vehicle. The test bed was not autonomousand relied on remote control by human operator [21].
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Tian developed a low-cost cyber-physical AV for research of neural networks. The re-search involved creating a code base for a line following car in a low-noise, controlled,test environment. The study developed the environment which could have applicationsfor test bed and cyber range capability. However, as this was not the primary focus of thestudy, the translation of the cyber-physical AV for testing was not explored [70].Bhadani et al. created a Cognitive and Autonomous Test (CAT) Vehicle test bed to eval-uate AVs. The research problem highlighted in the study was the cost, time and risks ofreal-world testing and the problems translating test cases from simulators to real-worldenvironments. The study designs and builds a hybrid virtual-physical test bed that incor-porates the body physics of a real world vehicle with virtualised sensors and softwareplatforms. ROS is used as the middleware platform. The evaluation of the platform wasconducted through an educational programwhere students used extracted data from theCAT vehicle to improve object detection and tracking. The studywas focused on the designof the vehicle and not cybersecurity, testing or training [26].Zelle et al. and Santos & Schoop extended the design of a test bed for AVs to includea framework for cybersecurity testing of AVs. Both of these studies focused on test casesgenerated from either formal methods or system analysis [67, 329]. Zelle et al. built a se-curity test platform for AVs using small-factor cyber-physical systems. The methods usedin designing the platform comprised eliciting an attack model of cybersecurity attacksagainst autonomous vehicles. Based on this attack model the test bed was designed. Thetest bed is innovative, it includes most of the diverse range of sensors used for perceptionas well as in-vehicular networks and infotainment systems. The contribution is closest tothis work. The main differentiation is that this study provided a practical assessment ofthe test bed and analysed testing and training methods that a cyber-physical AV test bedcould support [329].Santos & Schoop developed a framework for cybersecurity testing of AVs and eval-uated its efficiency through investigation of the survivability of autonomous vehicles af-ter a cyber attack to the vehicles sensors. Their framework consisted of developing testcases from formal methods and a tool to auto-generate test cases. Their practical evalua-tion involved the security testing of two sensors; camera and LiDAR. An open-source au-tonomous driving simulator, CARLA, was used as the experimental testing environment.The authors tool for automatic test case generation only supports CARLA. Their study ac-knowledges the limitations of this approach, the attack to the sensors was delivered bymanual scripts and assumed the attackers could manipulate the sensors perfectly eachtime. The findings are limited to the CARLA environment and the simulation environmenttesting could not replicate a real-world physical attack or the operational driving domainof the vehicle [67].
5.1.2 AV Shuttle Cybersecurity ProgramTo select a low-cost, cyber-physical test bed to evaluate for AV shuttle cybersecurity, webegin by providing an overview of the Tallinn, Estonia, iseAuto, a real-world, operationalAV shuttle.

AV shuttles are a type of AV used for public transportation in predominantly urban
environments. AV shuttles can accommodate up to 15 passengers and are limited is speedto approximately 25 km/h. Table 37 lists a few of the different models of operational AVshuttles. There are thousands of AV shuttles currently operating around the world [121].Figure 56 depicts a public transport AV shuttle.
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Table 37: AV Shuttles for Public Transportation [121]

AV Shuttle Location EnvironmentNavya Arma Parc Olympique Lyonnais,France Public Road
EasyMile EZ10 Airport Velizy-Villacoublay,Paris, France Government Prop-ertyiseAuto Tallinn, Estonia Private RoadBaidu Apollo Software Park Xiamen,China Public Road
Local Motors Olli Goodyear, Colmar-Berg,Luxembourg Private Road

Figure 56: iseAuto Public transport AV Shuttle [16]

AV Shuttles use either open-source or proprietary software designed for AVs. ROS is oneof the key open-source systems. ROS is an open-sourcemiddleware that provides supportfor hardware abstraction, low-level device control, message-passing between processes,and package management. ROS is popularly used as it integrates with Autoware, a largeopen-source research and development community that provides a software platformfor autonomous driving. The Autoware platform provides modules for self-driving, theseinclude localisation, detection, prediction, planning and control [?]. These modules areessential for the vehicle to understand where it is located in the driving environment,map the route it must drive and detect the objects in the driving environment such aspedestrians. Furthermore, the control module is crucial for the vehicle to coordinate theconditions under which the control of the vehicle will be maintained and important deci-sions will be made, such as when control of the vehicle will be passed back to the humanoperator.
The AV shuttle architecture integrates this software ecosystem with advanced hard-ware technology and sensors: LiDAR, ultrasonic radar, camera and GNSS.
AVs use teleoperation. Teleoperation is the remote monitoring and controlling of theAV by a human operator. In the real-world vehicle used in this study, the teleoperation isa software module of the ROS, enabling communication between the on-board computer
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and a remote teleoperation centre located in a building along the private road environ-ment.
AV Shuttles are densely interconnected. The internal self-driving vehicle network con-sists of layers of communicating devices from the embedded components of the vehicle,including the ECUs using the CAN Bus protocol, to the IP connected sensors. The vehiclecommunicates with smart road-sign-units (RSUs) and internet-connected devices, whichis termed V2X, and with other vehicles, known as V2V.
The AV shuttles autonomous driving cognition and sensonics are tested in simulators

and cyber-physical test beds. Popular simulators include; Apollo Baidu, LGSVL, CARLA andROS Gazebo [241]. Simulators consist of a 3D generated driving environment, normallyfrom the maps generated by LiDAR sensor. The simulated AV can take as input the sameconfigurations used in the ROS software of the real-world vehicle and similar sensor soft-ware profiles. Cyber-physical test beds can be either small-factor replicas or hardware-in-the-loop test benches. Cyber-physical test beds allow the same features and function-alities of the simulated environment with the additional benefit of providing testing ofphysical interfaces and the dynamic of real-world physical conditions.In 2015, researches demonstrated that the in-vehicle network, Controller Area Net-work (CAN) Bus, of a Jeep Cherokee could be exploited through malware and remotecode injection, to stop the brakes of the vehicle [55]. This event precipitated the increasein focus on testing methods and test platforms for CAN Bus and connected vehicle tech-nologies; communication interfaces and infotainment systems. This increase in researchactivity has lead to an increasing amount of vulnerabilities found in connected vehicles(Table 38).
Table 38: Examples of Cyber Attacks on Connected Vehicles

Vehicle Cyber ThreatTesla Model S Spoof Passive keyless entry to take advantage ofweak cryptography, lack of mutual authenticationfor challenge-response and lack of firmware protec-tion [313].Malicious firmware with linux kernel exploitation for theConnMan open-source internet connection manager al-lows WiFi of the Tesla to be exploited to allow remoteconnections [307].Jeep Cherokee 2014 Malware on Infotainment system to allow remote rootprivileges and pivot into CAN Bus network [55].KIA Reverse-engineered Android OS Infotainment system.Found vulnerabilities to allow remote root privi-leges [82].

There has been growing research in cybersecurity vulnerabilities of autonomous driv-ing. These mainly focus on adversarial machine learning that aims to exploit weaknessesin the autonomous driving cognition, fuzzing of ROS and other middleware software, andnetwork interfaces used for V2V and V2X communication (Table 39). Most of this researchis conducted in simulators or on isolated systems and components and very few of thetesting methods relate to real-world operational vehicles [43, 195,220,223,230,280]. Anexhaustive list of vulnerabilities of connected vehicles and AVs can be found here [148]
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Table 39: Examples of Cyber Attacks on AVs

Attack Surface Cyber ThreatAutonomous Cogni-tion Tamper with RSU Stop Sign to manipulate autonomouscognition [267].Tamper with lane markings to manipulate lane-keepingsystem(LKAS) [249].Spoofed images in driving environment to manipulateobject-detection [210].Sensors Jam LiDAR point cloud sensor with laser [35].Tamper with sensor data to manipulate navigationpath [61].System Spoofing of ROS Master and interception of ROS mes-sages [130]Malware in firmware update [308]Fuzzing of AV middleware [103].Network Intercept and spoof RSU messages [223]

Despite commonly used regression testingmethods and standards for cyber assurancetesting of AVs, the vulnerabilities of AV systems continue grow.
Public transportation AV shuttles undergo limited testing for cybersecurity, this is dueto many reasons. Firstly, cybersecurity testing on real-world proving grounds with op-erational vehicles is expensive and time-consuming, requiring extensive labour effort inthe setup, execution and safety monitoring of the tests [297]. Secondly, there is a reluc-tance to test cybersecurity test cases that could damage the vehicle. This is mainly due tothe cost and time involved in rebuilding and re-configuring vehicular systems and compo-nents. Thirdly, the AV shuttle architecture is a distributed systems architecture and dueto lack of testing there is a gap in understanding how cyber attacks cause cascading af-fects and how, for instance, malware could propagate throughout the system. Fourthly,there is a lack of investigation of novel testing methods and techniques for cybersecurity.These include software simulators and cyber-physical test beds commonly used for test-ing autonomous driving cognition. Lastly, there is lack of training of teleoperation, remotecontrol vehicle operators for situational awareness for cybersecurity. As AV shuttles relyon teleoperation operators to override the autonomous cognition in emergency situationsand make manual driving decisions, their awareness as to how cyber attacks can impactsituational awareness is critical for safe driving operation.
Flexible testing environments that allow agile testing of edge and corner cyberseecu-rity test scenarios would help assist in identifying vulnerabilities of the AV system architec-ture. Whilst simulators and small-factor cyber-physical test beds are used for testing andimproving autonomous driving algorithms there has been limited practical exploration ofthese test beds for cybersecurity testing.
Test beds such as the MIT DuckieTown, provide a low-cost, small-factor environmentaccessible to autonomous self-driving vehicle developers andquality assurance testers [278].These environments, which utilise the same software andnetwork interfaces as AutonomousVehicle (AV) Shuttles have the potential to be used for cybersecurity testing and research.
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5.1.3 Cybersecurity Test Beds for AV ShuttlesKey factors which influence the design and usage of test beds to support the operationalAV shuttle include cost, complexity and fidelity of the test bed to the operational system.
CostTo support agile testing and cybersecurity test cases that impart physical damage on theAV, the cost of the test bed needs to be as limited as possible. The low-cost requirementhas two intended beneficiaries. Firstly, a low-cost agile test bed can be given to studentsand researchers in innovative testing formats such as crowd sourcing. This enables awiderscope of testing for minimal cost. Secondly, AV shuttle programs for public transportationdo not have exhaustive resources for testing in comparison to the major original equip-ment manufacturers. Therefore, low cost test beds are required to test edge and cornercases and prioritise test cases for testing on the real-world vehicle.
ComplexityAV shuttles are a complex distributed system architecture, it is essential that the test bedsupport observation of distributed system interaction whilst limiting the complexity toallow rebuilding of damaged systems. For example, allowing a clean rebuilding of a soft-ware or hardware system infected by malware. This agility will allow repeatable testing ofcybersecurity test cases and enable dynamic testing such as crowdsourced vulnerabilityanalysis and training such as capture-the-flag style learning activities.
Fidelity to Operational VehicleTo evaluate cybersecurity and situational awareness there needs to be a level of abstrac-tion of the operational vehicle architecture. An evaluation of the real-world AV shuttleconsidered the AI & Drive systems, sensonics and the network connectivity with the tele-operation as key features of the autonomous driving architecture to emulate in a test bed.
Test Bed AnalysisA comparison of test beds used for autonomous driving and cybersecurity research foundthe cyber-physical test bed to be an optimal platform for evaluation (Table 40). Advan-tages of the cyber-physical system are the low cost and agile, modular architecture whichcan allow sensors and systems to be added or removed. Due to the lack of evaluationof cyber-physical test beds to support cybersecurity testing their fidelity to real-world,operational system is yet to be determined, and will be explored in this study. Whilst real-world proving grounds offer the highest fidelity, they come with a considerable cost dueto resources required to engineer tests with real vehicles and manage the safety risks ofsuch tests.

Table 40: Comparison of Test Bed Architectures to support Cybersecurity

Testing Considera-
tions

Simulation Cyber-
Physical

Real-World Proving
GroundCost Low Low HighComplexity Low Medium HighFidelity Medium Not evaluated High

Table 41 presents an evaluation of the test bed architectures to support testing for the
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cyber attacks listed in Table 38 and Table 39.
Table 41: Comparison of Test Bed Architectures to support AV Shuttle cybersecurity Test Cases

Cyber Threat Test
Cases

Simulation Cyber-
Physical

Real-World Proving
GroundHardware and Com-pute Yes Yes Yes

Connected Vehicle Yes Yes YesSensor and Percep-tion Yes Yes Yes
Physical Access No Yes YesDamage Incurring No Yes YesEnvironmental Per-turbations No Yes Yes

AV Shuttle Cyber Range for CybersecurityTheMIT CSAIL Duckietown is a small-factor test bed used for evaluating autonomous driv-ing software modules, algorithms and education. Duckietown consists of a driving envi-ronment (Figure 57a) and anAV, called, DuckieBot (Figure 57b).The cost of the componentsto build the MIT Duckietown test bed is approximately =C400.

(a) DuckieTown - Cyber-Physical Test Bed (b) Duckiebot - AV Cyber-Physical Device

Figure 57: MIT DuckieTown Self-Driving TestBed

The DuckieBot uses a 5 mega pixel Raspberry Pi camera for sensing. The hardware forthe AI and Drive Algorithm is built on Raspberry Pi Model 3B hardware. The software plat-form is built upon Docker utilising ROS Kinetic. A 32GB SD card is used for local on-boardstorage and a 100Gb USB drive can be inserted in the Raspberry Pi to allow more storagefor logging. A 5 volt, 10400mAh, battery is used to power the DuckieBot. Actuation is per-formed by the motor driver which connects to servo motors. The DuckieBot is calibratedto operate in the DuckieTown driving environment. This consists of a floor layer with roadmarkings, conventional to the standard markings of real-world traffic.Table 42 represents detailed analysis of the DuckieBot with the iseAuto AV shuttle,operating in Tallinn, Estonia.
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Table 42: Feature Comparison of Test Bed and iseAuto AV Shuttle

DuckieBot iseAuto AV ShuttleROS Kinetic Kame ROS Kinetic KameLinux Network Interfaces and 4GCellular Network Linux Network Interfaces and4G/5G Cellular Connectivity (*V2Xis yet to be added as a feature)Camera Sensing Camera, LiDAR, Ultrasonic Radar,GNSSActuation, motor driver controlsservo motors Actuation, Drive Controller controlsCAR ECUOn-board Control PC (ARM proces-sor) On-board Control PC (ARM proces-sor) different hardware specifica-tionsTeleoperation - Mission ControlSystem Teleoperation - Mission ControlSystem

The DuckieBot is an optimal test bed for experimentation as it uses the containerisedarchitecture of Docker. This allows software packages for sensors, hardware and AD tobe centralised in a configurable system. This enables packages to be added or removeddepending on the test case and for new sensors and hardware to be added easily. Theother major advantage is that the DuckieBot is an actively supported open-source projectand new AD algorithms are published regularly. This helps to ensure that test cases aretested against the newest available AD algorithms.
5.1.4 Cybersecurity Test Scenarios for AV Shuttles
Test Scenario Generation ProcessSelected use-cases are used to evaluate the usefulness of the cyber-physical range. Togenerate the cyber test scenarios we asked experts in AV cybersecurity from vehicle man-ufacturers and system designers to detail edge and corner cybersecurity test cases thatthey would want a AV cybersecurity test bed to support. The experts represented or-ganisations that develop autonomous robots for logistics, autonomous driving assistancesystems and AV shuttle operators. Table 43 lists illustrates our chosen demonstration use-cases.
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Table 43: Security Test Case Scenarios

Test Case DescriptionScenario 1 (S01) An external threat actor spoofs the roadmarkingsto manipulate the driving logic to veer the vehicleoff the road.Scenario 2 (S02) An external threat actor tampers with the roadmarkings tomanipulate the drive logic to veer thevehicle off the road.Scenario 3 (S03) An external threat actor tampers with the camerasensor using a laser pointer to blind or shield it’sperception to manipulate the drive logic to veerthe vehicle off the road.Scenario 4 (S04) An external threat actor spoofs the RSU to ma-nipulate the drive logic to veer the vehicle off theroad.Scenario 5 (S05) An innocent maintenance engineer executes amalicious cryptocurrency or ransomware mal-ware hiding as a firmware update for a vehicle sys-tem.Scenario 6 (S06) An external threat actor eavesdrops on the ROSvehicular messaging system for information gath-eringScenario 7 (S07) An external threat actor attacker conducts adenial-of-service of the teleoperation communi-cation link with the AV.Scenario 8 (S08) An external threat actor uses a smoke gun to per-turb the camera sensor vision and alter the drivingcourse of the vehicle
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Scenarios
The aim of the test scenarios is to understand the utility of cybersecurity testing in an AVcyber-physical testbed environment to the real-world AV shuttle. The verification of thetest results does not focus on a binary, yes/no conclusion, rather, a deeper analysis ofwhether the behaviour of the AV system observed during the cybersecurity testing can beused to identify vulnerabilities of the real-world AV shuttle architecture to cyber attacks.All of the scenarios can be viewed at the YouTube channel thatwas created to demonstratethe AV cyber range: https://tinyurl.com/2xxvvkzd
S01 - Projected Road Markings
Problem: The projector attack consists of an attacker crafting a spoof image to be pro-jected onto the traffic environment. The aim for the attacker is to fool the autonomousdrive cognition to accept the spoofed image as genuine and alter the driving behaviour.An example would be a project of a lanemarking on the road to alter the course of the AV.The projection attack experiments as detailed in Nassi et al. [210], used trial-and-error as amethod of testing. The attack was trialled on real-world vehicles in a private campus envi-ronment. The testing environment was tightly controlled for safety reasons and the setupof the test took considerable time and effort. In DuckieTown, this attack can be testedand repeated using as many diverse methods as possible. The small, cyber-physical test-ing environment allowed for agility and repeatability and enabled replication of a cyberthreat identified in a paper to test the validity of the results to our Av shuttle.Whilst a spoofing attack using projection is a novel and interesting method tomanipu-late an autonomous vehicle it is unlikely or has low probability of success. The projectionmust contend with natural light, which means the attack must be undertaken at night.DuckieTown can be used for situational awareness for projections and spoofed imagesin the training of teleoperation operators. They must understand that these attacks canoccur and have the ability to confuse the human operator into thinking the autonomouscognition has failed to detect a lane marking.

Scenario: An external threat actor spoofs the road markings to manipulate the drivelogic to veer the vehicle off the road.
Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-tonomous drive cognition makes decisions.
2. Attacker crafts a spoofed image of a lane marking for projection on the driving en-vironment.
3. Attacker positions a dronewith a projector attached to it, in proximity to the vehicleand uses a remote control to initiate the projection attack.
Results: The spoofed projection attacks were unable to alter the driving actions of theDuckieBot. Figure 58a shows the faint image of the phantom spoofed yellow line whichis barely visible due to the bright profile of the driving environment. Figure 58b visiblyshows the spoofed line marking, due to a larger spoofed image being projected by theattacker. The figure 58b image, from the DuckieBot camera shows that the autonomousdrive cognition is detecting the edges and texture of the yellow lines andwhite boundariesbut is not detecting the spoofed projection image. This is due to the lack of edges, textureand geometry of the spoofed projection image.Multiple diverse attack methods were trialled, the spoofed projection images wereleft projecting on the road surface for 10 minutes, the size of the images were increased,
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the definition of the images increased, projection on different sections of the floor anddifferent environmental light. The DuckieBot was resilient to the projected road markingsattack and the autonomous drive cognition was not manipulated.

(a) Low Noise Signature - Projected Lane Marking (b) High-Noise Signature Projected Lane Marking

Figure 58: Scenario 1 - Projected Road Markings Attack

S02 - Tampered Lane Markings
Problem: Although this threat seems simplistic in the experimental test bed environment,the implications for a real-world operational vehicle are stark. An attacker can use a 3Dprinter to print a tampered road patch and place it on the road markings of a highway. Ifthis test had occurred on an autonomous vehicle travelling at 40 mph it would have re-sulted in physical damage to the AV. This attack shows the usefulness of the cyber-physicalAV. The cyber-physical AV enabled this attack to be experimented repeatably andwewereable to try different lane marking manipulations. This is an improvement on the methodsused by Sato et al. [249] where they used a simulation for testing and this simulation envi-ronmentwasn’t able to replicate the role of the teleoperation or camera sensing. Throughtesting this attack in the DuckieTown, we can see that the teleoperation operator mustmaintain situational awareness of the road environment if there have been any manip-ulations by a threat actor or environmental damage. In translating this scenario to thereal-world AV wewere able to detect that the operational vehicle would be susceptible tothis same attack. From this experiment, a greater examination of the sensing and detec-tion algorithms of the real-world vehicle was conducted and updates to the multi-sensorfusion were made to mitigate the risk of this attack.

Scenario: An external threat actor tampers with the road markings to manipulate thedrive logic to veer the vehicle off the road
Attack Sequence:

1. Attacker observes the autonomous self-driving vehicle to understand how the au-tonomous driving cognition makes decisions.
2. Attacker, using the understanding of the drive control algorithm, perturbs the roadmarkings in the DuckieTown environment.
Result: Perturbation of a road marking can manipulate the drive algorithm to causethe autonomous self-driving vehicle to veer off the intended path of travel.In the first experiment the attacker tampered with the yellow lane markers to manip-ulate the autonomous self-driving vehicle to drive off the road. The curve road part was
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changed to a straight trajectory and the angle of the lane borders (white lines) were re-duced to lessen thewidth of the road. As Figure 59b demonstrates, the change to the roadmarkings is demonstrable in the DuckieBot camera sensor footage, from the expectedroad markings exhibited in Figure 59a. The first experiment was successful in manipulat-ing the autonomous drive cognition of the DuckieBot, however, the DuckieBot autonomyis programmed to firstly respect the lane boundaries. The DuckieBot followed the tam-pered yellow line until it detected the lane boundary and then adjusted it’s travel path tothe correct route.

(a) Normal Lane Markings (b) Manipulated Lane Marking

Figure 59: Scenario 2 - Tampered Lane Marking Attack

In the second and third the attacker extended the yellow lane markings further intothe lane boundaries. The DuckieBot still respected the boundaries and corrected the pathof travel.In the fourth and fifth experiment the attacker removed the lane boundaries and ex-tended the yellow lane markings, as shown in Figure 60 . The attack was successful andthe DuckieBot veered off the DuckieTown environment and was unable to recover.

Figure 60: Extended Manipulated Lane Marking

S05 - Firmware update compromise
Problem:Malware in a distributed systemprovides interesting observations, an autonomousvehicle could lose access to a secure network and connect to a more vulnerable networkwhichwould allowmalware to propagatemore extensively. In testing the findings ofWeiss
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et al. [308], we were able, in DuckieTown, use real malware and observe how it propa-gates in an AV system. We were able to clean the system and repeat the attack to observeany differences in behaviour. In translating the results of the malware attack to the real-world AV shuttle, the AV engineerswere unaware of the risks posed in connectingwirelessnetworks in the transit environment. There are many applications for this range scenariofor training. Firstly, this scenario would be useful to test incident response to malware inAVs. Secondly, it would be beneficial for the engineers to understand the risks posed by alack of validation of firmware updates and how malware can spread within a distributedsystem.
Scenario: An innocent maintenance engineer executes a malicious cryptocurrency orransomwaremalware hiding as a firmware update for a vehicle system created by an angrymechanic/insider.
Attack Sequence:

1. Angry Mechanic uploads malware from dark web or publically available repository.
2. Malware script is packaged as a bash script that is labelled "update".
3. Maintenance engineer initiates "update" script with intention of update AV shuttlefirmware.

Result: The "update" firmware was executed by the innocent maintenance engineer. Theupdate firmware contained a bash script which executed a cryptomining program. Onceinfected on a host computer the malware installs several libraries and processes for it’soperation and then tries to install zmap (net-work scanner) and ssh pass (utility for es-tablishing SSH connections). It uses zmap, in an infinite loop,to discover then networkand find embedded devices with port 22 (SSH) open. If these are found, it connects tothe device using ssh with default passwords. It then changes the configuration settings ofthe device to allow a connection to a command and control node used for cryptomining.On the DuckieBot, the malware installed it’s libraries and zmap and ssh pass and begana zmap scan of the network. The DuckieBot was on a private 4G network that also hadanother AV connected. As these devices do not use default passwords it was unable to es-tablish a connection to them. The zmap scans only marginally impacted the performanceof the network of the DuckieBot. The zmap scan was sending 50,000 packets to the tar-get device, but these are only looking for open port 22. An interesting event happenedduring the experiment. The 4G cellular private network lost connection during the mal-ware execution and the DuckieBot switched over to an open wireless network connection(controlled by us). The zmap process then started to scan the network for open embed-ded devices. The malware attack was attempted again and this time the wireless campusnetwork was removed. The malware behaved in the same manner and was unsuccessfulin brute forcing the DuckieBot.
S06 - Eavesdropping of AV Shuttle operations
Problem: ROS is highly insecure. The version that the DuckieBot is running is the sameas the vehicles used by real-world AV Shuttles. There is no authentication and securecommunication of the ROSMaster. The ROSMaster also uses HTTP so it is vulnerable to anumber of other malicious web application attacks. The AV testing environment enabledus to test on a real-time system to understand dynamically the information that can begathered from reading ROS messages and the possibilities of how this information canbe used to develop an attack on the vehicle platform. In translation of this to our real-world AV, the mitigating action is to filter the ROS port with a firewall rule. However, if the

135



attacker gains access to the internal network of the AV system there is little possibility toprevent this attack other than to upgrade to the latest version of ROS, ROS2, which is stillunder development.
Scenario: An external threat actor eavesdrops on the ROS vehicular messaging system forinformation gathering.
Attack Sequence: For this attack, the attacker needs to be on the same network as thevehicle.

1. Attacker scans the network and identifies the vehicle
2. Attacker eavesdrops on the ROS communication by spoofing the ROS Master.

Result: The attacker was able to spoof the ROS Master easily and read the ROS mes-sages which are used for AV operations. The attacker was able to generate a ROS graphthat showed all of the communication ROS messages (picture not shown/included foranonymity reasons). From this, the attacker could develop a diverse range of attacks suchas injection of ROS commands to manipulate a ROS node and replay attacks.
S07 - DDoS Teleoperation Network
Problem: The DDoS attack is an important scenario to replicate in a cyber range due to theloss of control of the teleoperation operator to safely stop the vehicle. This scenario wasinteresting for the real-world AV shuttle teleoperation staff. When the DDoS attack wasconducted the teleoperation console froze and only when the network was re-establisheddid they see that the AV had crashed. This scenario is important for situational awarenesstraining.

Scenario: An external threat actor conducts a denial of service of the short-rangewire-less network of the autonomous self-driving vehicle.
Attack Sequence:

1. Attacker scans wireless and cellular networks of the vehicle using scanning softwaresuch as nmap or airmagnet.
2. Attacker finds theWiFi access point connecting to the human operator console andautonomous self-driving vehicle.
3. Attacker De-authenticates the devices connected to the WiFi access point.
Result: A scan of all wireless networkswas conducted on the attackers PC. The attackerused a wireless scanning device that can be considered a malicious access point that actsas a man-in-the-middle between the wireless network and the client device. It can scan,capture traffic and execute a number of attacks such as capturing passwords of insecurenetwork protocols.The deauthentication attack was attempted twice. Both attempts were successful.Figure 61a shows the teleoperation console after it loses access to the network connec-tion with the DuckieBot and the DuckieBot accelerates off the road. Figure 61b showsthe DuckieBot impacting the wall when it loses connectivity. The DuckieBot continues toaccelerate on hitting the wall.

S08 - Smoke machine sensor perturbation
Problem: The expert from the autonomous robotics for logistics organisation requestedthis test case as they wanted to see environmental impacts on the cyber-physical system
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(a) Camera Sensor Vision - DDoS Attack Crash (b) DuckieBot crashed after DDoS

Figure 61: Scenario 7 - DDoS Teleoperation Network

and how they can relate to their real-world autonomous systems. The test case demon-strated the utility of cyber-physical AV test bed in being able to simulate diverse environ-ment conditions. Based on the results of the test case it may be possible to include safetytesting in the scope of the test bed.
Scenario: An external threat actor uses a smokemachine to perturb the camera sensorvision and alter the driving course of the vehicle.

Attack Sequence:

1. A 400w smoke machine is placed next to the environment. The smoke machine isfilled with special liquid and then activated using the command controller. Smokeenvelops the driving environment.
Result: The experiments were conducted under three different lighting conditions:controlled lights, natural light, controlled dark lighting. In all lighting conditions the smokewas able to perturb the camera sensor to alter the driving path of the DuckieBot to crashout of the road environment.The initial experimental tests, which were unsuccessful in altering the DuckieBot path,showed that the most important variables were the denseness of the smoke and the abil-ity of the smoke to linger in the air to envelop the camera. The first three smoke experi-mental tests demonstrated the autonomous driving cognition being lost due to the smokehazard, however, as the smoke stream was momentary, the detection of the lane mark-ings were recovered in time to navigate accurately. Figure 62a shows the lane detectionfunctioning, and Figure62b shows the smoke perturbing the lane detection of the lanemarkings.

5.1.5 Discussion
The MIT DuckieTown cyber-physical AV shuttle test bed demonstrated it’s use in validat-ing the viability of proof-of-concept attacks such as that of the projector attack and thespoofed lane keeping assistance. The test bed enabled agility and repeatably of testingwhich facilitated greater understanding of the complexity of implementation of cyber at-tacks on AVs as well as the challenges for situational awareness for AV operators. A clearrepresentation is the projector attack which demonstrated that it was very difficult for the
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(a) Lane Detection (b) Smoke Perturbed Lane Detection

Figure 62: Scenario 8 - Smoke machine sensor perturbation

adversary to accomplish due to the lighting, projection and camera angle requirements.TheWiFi test case provided insights into possibilities for interoperability and human oper-ator research. The vulnerabilities of the network interface, exploited in the cybersecuritytest case, impacted the vehicle behaviour and human control.The results of the testingwere provided to the iseAuto, real-world AV Shuttle program.Based on the results analysis, the AV shuttle operator identified a number of vulnerabili-ties in the AV shuttle architecture. This resulted in the updating of the network package tostop the vehicle in the event of network unavailability or outage. Furthermore, the resultshelped to educate the teleoperation AV shuttle operators about some of the scenariosthey could encounter from an adversarial actor in the driving environment and based onthis it assisted in initiating a discussion on what decisions the operator would make whenfaced with a scenario such as the projection attack or environmental perturbations.The feedback from the iseAuto concluded that the cyber-physical test bed offered aplatform for which they could test corner and edge cases that would be out-of-scope ofthe real-world vehicle due to cost and risk impacts. It helped the iseAuto AV shuttle pro-gram in understanding how their AV Shuttle could be impacted by cyber attacks and withprioritising which attacks were most likely and require further testing on the real AV shut-tle.
5.2 ADSecLang - A Domain Specific Language for Cybersecurity Testing of

Autonomous Vehicles
Vulnerability testing of AD to cyber attacks is a burgeoning field of research. Initial con-tributions to this field have focused on novel vulnerability discovery utilising penetrationtesting methods [92] [33] and fuzzing [154, 298]. However, there exists a gap betweenthis novel, experimental work and the practical implementation of testing to validate theoperational readiness of real-world AD systems. Real-world, operational AV testing re-quires a more rigid approach centered on a structured testing methodology aligned tocomposite vehicle development and test validation processes. For safety validation test-ing, domain-specific languages for safety scenario generation, such as SCENIC [81] andASAM OpenSCENARIO [45], provide a systematic expression that enables a common tax-onomy, traceability of testing processes and repeatability and automation of testing forscalability. Yet, there exists a sparsity of research on the development of a domain-specificlanguage for cybersecurity testing of AD systems. One of the primary benefits of the de-
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Figure 63: ADSecLang: scenario-based abstraction view.

velopment of a domain-specific language for cybersecurity is that it can simplify the taskof writing scenarios for security by providing a concise syntax. In addition, the lack of adomain-specific taxonomy for cybersecurity testing of AD systems further challenges thedevelopment and evaluation of AD security testing tools, processes, and methods.The aim of exploring this problem is to develop such a language, which we call ADSe-cLang. ADSecLang acts as an intermediary layer in the testing process, which constructsscenarios for cybersecurity through the translation of functional threat descriptions toconcrete test cases. Figure 63 depicts the scenario-based abstraction of ADSecLang, whichrepresents the incremental and iterative definition of the threat scenario. First, the ab-stract description of the threat scenario originates from adversarial analysis, which canleverage sources such as threat libraries, system data, and other knowledge-base repos-itories. Second, a logical, syntactical expression of the threat scenario is created using ataxonomy. Finally, the technical description of the threat scenario is integrated within theAD simulation testing platform. ADSecLang aims to contribute greater intuition throughreadable, concise syntax for the development of adversarial agents in simulation testingthat would otherwise require complex expressions and constraints. ADSecLang requiresthe tester to consider all elements of the threat model from attacker tools to desiredattack outcomes at both an abstract and parameterised level of abstraction. To demon-strate the utility of ADSecLang, we initially focus on semantic AI security and we evaluatethe language to support two use-case scenarios of a camera manipulation attack.
5.2.1 ADSecLang: The Proposed Solution
This section introduces the attack taxonomy used to support the development of ADSe-cLang andpresents the cybersecurity testing frameworkwhereADSecLang canbe adopted.
Attack Taxonomy
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Figure 64: Attack Taxonomy - Detailed Description.

The attack taxonomy of ADSecLang (as shown in Figure 64) categorizes cyber attacks
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into two domains: Action and Impact.
Actionrepresents the execution of an attack method. The success of an action depends on thefulfillment of one or more preconditions. As a result, we subdivide the Action domaininto two sub-domains: Method and Preconditions. TheMethod is defined as the threattechnique. This threat description can be derived from a functional description such asSTRIDE, Attack Trees, or a textual interpretation. Preconditions are a set of conditionsthat must be met to execute an attack. These preconditions must be inherent attributesthat already exist and are not generated by the execution of the attack. The preconditionscan be further divided into two categories: conditions on the AD System-Under-Test (SUT)and conditions on the attacker.

• AD SUT Conditions are categorized into requirements for the state of the testedsystem and vulnerabilities within the system. System state conditions refer to therequirement that the target system must be in a specific state (such as a particu-lar version of an operating system, system software/application, or a specific hard-ware/software state, such as firmware update status) for the attack to be executed.System vulnerabilities refer to exploitable weaknesses in the system’s design andoperation.
• Attacker Conditions can be further segmented into three types: attack tools, at-tacker knowledge (capabilities, skills), and the level of privileges that an attacker canobtain. The tools and knowledge of the attacker help to profile the type of threatactor capable of conducting the attack. The level of privileges refers to the permis-sions needed to access or manipulate target system assets. An example would bepermission to run processes on the target or existing access to the target asset tomanipulate data.
Some attack methods can only be executed successfully when multiple preconditionsaremet simultaneously. Such conditionswill be groupedwithin braces {}. For example, theprecondition [{A, B}, C] can be interpreted as ‘A and B must be met simultaneously,or C must be met’. To encompass the requirement for multiple preconditions, we definean Action Group:

1 action: [method , preconditions]
2 method: [category , description]
3 preconditions: [precond1 , precond2 , ...]
4 precond1: [category , description]
5 precond2: [category , description]

ImpactExecuting an Action will introduce one or more Impacts into the system. In other stud-ies [43], these impacts are also denoted as consequence and effect. Although Impactsrepresent the outcomes and effects of attacks, they can also serve as preconditions forsubsequent attacks. Consequently, some researchers [164] have alternatively referred tothem as post-conditions. In our taxonomy, the utilization of Impact aims to identify thedirect consequences of an Action, which may additionally serve as preconditions for fur-ther attacks. The term ’goal’ in the attack model represents the ultimate impact. Thedimension of Impact can be subdivided into two sub-dimensions, namely Influenced As-
sets and Influence, which serve to identify the assets directly affected by the Action and
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Figure 65: ADSecLang Cybersecurity Testing Workflow - Camera Attack.

ascertain the direct impact incurred on these assets. Influenced Assets can be character-ized by their respective category and name. For example, the sensor category can includecameras, radars, LiDAR, GPS, or any other AD sensor. The electronic control unit (ECU) cat-egory comprises brake control ECUs, engine control ECUs, tire pressure monitoring ECUs,or any other vehicular ECU. Influence can be specified as its Parameter and Value, denot-ing the specific parameter influenced by the attack and the corresponding altered value,respectively. For instance, if we aim to adjust the brightness of an image captured bya camera, we should specify the parameter as luminance and set its value to 300% (in-dicating that the brightness has been increased to 300% of the original brightness). Toachieve the scalability of ADSecLang, users can add new parameters and a value range inthe property configuration file. The Impact Group is defined as follows:
1 impact: [influenced_asset , influence]
2 influenced_asset: [category , name]
3 influence: [parameter , value]

5.2.2 Semantics of ADSecLang
The safety scenario domain-specific languages are based on scenario abstractionmethod-ologies such as the Pegasus method [45], which segments three levels of abstraction ofthe scenario: 1) abstract, 2) logistic, and 3) concrete. For example, an abstract scenariocould be described as: ’A malicious actor motivated to cause a safety violation using a
laser beam device targeted at a car’. The logical scenario might be: ’A malicious actor us-
ing a laser beam device projecting a luminance of approximately 100 to 300%with a pulse
width of 0 to 1’. Finally, the concrete scenario would specify: ’A malicious actor using a
laser beam device projecting 300% luminance with a pulse width of 1’. Within ADSecLang,the abstract describes the cyber threat scenario according to local parameters. The logicalcyber threat scenario extends this description by adding parameter value ranges. Finally,the concrete scenario description contains the set parameter values, whichwill be utilizedas the scenario implementation within the AD simulation testing platform. ADSecLang isdesigned as an extension of the safety scenario languages [45,81], using the same abstrac-tion method, language semantics and syntax. ADSecLang provides an extension to theseareas for cybersecurity.
Compilation of ADSecLang
Compilation of ADSecLang involves three configuration files. Each file contains varioususer-defined parameters:

• Environment Configuration File: This file provides adjustable parameters for scenegeneration, including town, weather, and traffic density. It also allows users to de-fine constraints on these parameters for scene sampling.
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• Vehicle Configuration File: This file allows the user to define the parameters of theautonomous vehicle; these include the sensors required, the location of the sensorsin the vehicle, the type of sensors, the data to be recorded, and the frequency ofrecording.
• Attack Description File: This file is formatted in the YAML syntax and allows users todefine the attack model.
The first two configuration files are relatively simple: the Environment Configuration

File and the Vehicle Configuration File. The environment and vehicle configurations storedin their respective configuration files are read as parameters for generating the drivingsimulation world and transferred to the world generator. The Attack Description File is amore complicated design which has two functions:
• The attack description file is utilized to extract the parameters, which are then trans-lated into concrete code implementation for data processing based on the corre-sponding attack parameters.
• It is also responsible for connecting the simulation environment, attack code, andautonomous driving system. The attack description file defines the input and outputinterfaces of the attack code. The input interface connects real-time data capturedby sensors in the rendering engine in a simulation environment, such as imagescaptured by camera sensors or status information of ECUs. The output interfacesends malicious data generated by attacks to the target AD solution.

Cybersecurity Testing Framework
Architecture
The proposed cybersecurity testing framework has diverse modules for environmental,vehicle, and attack configuration, simulation test, and result evaluation (Figure 65). Thefunctions and roles of these modules are as follows:

• Environment and Vehicle Interpreter: Reads the environment and vehicle configura-tion stored in their respective configuration files as a parameter for generating theworld.
• Attack Model Interpreter: We read the attack description file as attack parameters.We have defined input and output interfaces for the attack model. The input in-terface obtains images captured by sensors in the real-time rendering engine andcompletes the data processing corresponding to the attack parameters read by theinterpreter in the specific implementation code of the interface. The specific imple-mentation of the output interface is to send the output of the attack model to theuser’s chosen autonomous driving solution.
• World Generator: Initialise the world based on the environment and entity parame-ters read by the environment interpreter, including object properties and attributedistribution functions. The world generator randomly samples from the distribu-tion function whenever it is called. By reading the sampling results of the worldinitializer, a specific world is generated in the real-time rendering engine accordingto certain steps. The generated world contains at least one vehicle and one camerasensor and exposes the calling interfaces of the vehicle and sensors to the attackmodel.
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• Scenario generation and result evaluation: We use a CARLA plugin called CARLALeaderboard [39] to provide us with scenario generation and evaluation of drivingviolations. Violation testing includes route completion testing, collision testing, redlight running testing, stop running testing, lane crossing testing, proxy blocking test-ing, and timeout testing.
Cybersecurity Testing Workflow
The overall workflow of the system is shown in Figure 65. The attack target system illus-trated here is an end-to-end autonomous driving system based on a monocular camera.The target asset in the vehicle of the attack is the monocular front RGB camera.The workflow is initiated by storing the predefined environment configuration, objectproperties, and attack description in configuration files. Execution of theWorld Generatoruses the Environment and Vehicle Interpreter to read the environment information. Sub-sequently, each time the scenario is generated, sampling is carried out according to thepredetermined process, and the sampling results are converted into the parameterizedform we designed and then handed over to the World Generator. The World Genera-
tor first initializes the basic configuration of the real-time rendering engine and creates aspecific world in the it, step by step, based on the obtained parameters. Once the worldis created, the Scenario Generator starts generating test scenarios based on the presetparameters. Subsequently, the Attack Model Interpreter retrieves the attack informationfrom the Attack Description File and injects the manipulated data to the end-to-end ADsystem based on the parameters specified by the attack model. Finally, the Results Eval-
uation checks conformity of the AV to safety metrics, as aforementioned, as part of theCARLA Leaderboard [39]. Through conducting multiple iterations of the testing workflowit is possible to evaluate the effectiveness of the attack model.
5.2.3 Evaluation Case Studies
This section examines the use of ADSecLang for supporting the security testing of AV sys-tems. It includes a description of the experimental setup (Sec. 5.2.3) and an analysis of re-sults derived from two attack scenarios (Sec. 5.2.3 and 5.2.3). The goal of the experimentsis to assess the ability of ADSecLang to generate attack test cases capable of identifyingvulnerabilities in AD systems.
Experimental Setup
The experiments were run on a desktop computer with 12th Gen Intel(R) Core(TM) i3-12100F 4-Core Processor, NVIDIA GeForce GTX 1070Ti GPU, and 16 GB RAM. The use-casescenario testing is conducted on the simulator CARLA 0.9.10. The AD solution tested inthe following experiments is a trajectory-guided end-to-end AD solution [315]. This ADsolution achieves a new state-of-the-art performance on the CARLA AD Leaderboard [39],in which they rank first in terms of the Driving Score and Infraction Penalty using only asingle camera as input. The image captured by the camera has a resolution of 900×256pixels, and the field of view is maximized at 100 degree.
Attack Case I - Strong Light Exposure Attack
Attack Design
State-of-the-art camera attacks [324] have shown that strong white LED light directed atthe camera sensor will result in significantly higher hue values and cause the entire imageto be completely white. This results in the camera being unable to capture any visual in-formation. This attack is based on the fact that CMOS/CCD sensors can be interfered with
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by malicious optical inputs and will produce unrecognizable images. The broken imagewill further affect the victim AV’s decision control. As a result, it will cause uncertainties,which may lead the victim’s AV to deviate or emergency brake, both of which can lead toa collision and/or other safety violations. Common methods of attacking camera devicesare lasers or LEDs. The Strong Light Exposure Attack interferes with the camera’s auto-matic exposure control. Under laser irradiation, the surface temperature will rise rapidlydue to the non-uniform temperature field. Avalanche breakdown of semiconductor ma-terials will cause irreversible damage to optoelectronic devices. Whilst we cannot achievethe physical effects of a targeted light on the camera sensor in a virtual simulator, we canmodify the data to simulate the profile of the cyber-physical attack.
ADSecLang Attack Configuration
The concrete scenario using the ADSecLang attack interpreter file is provided below.

1 attack_name: strong light exposure attack
2 attack_target: monocular camera -based end -to -end autonomous

driving system
3 attack_goal: safety hazard
4 action: [method , preconditions]
5 method: [tampering , modifying the data captured in

the asset]
6 preconditions: [{ precond1 AND precond2 AND

precond3 }]
7 precond1: [attacker ’s knowledge , the attacker

knows the basic information about the cameras on
the victim ’s autonomous driving vehicle]

8 precond2: [attack tool , strong LED light]
9 precond3: [attacker ’s capability , attackers can

shine LED light at AV camera sensor]
10 impact: [influenced_asset , influence]
11 influenced_asset: [sensor , rgb_camera_front]
12 influence: [luminance , 300%]

The attack description YAML file is translated using the attack interpreter within thesimulation platform.
1 if(config[’attack name’]=="Strong light exposure attack"

):
2 percentage = config[’impact ’][’influence ’][’luminance ’]
3 file.write(’ data = cv2.cvtColor(data , cv2.

COLOR_RGB2YUV)\n’)
4 file.write(’ h = data.shape [0]\n’)
5 file.write(’ w = data.shape [1]\n’)
6 file.write(’ for i in range(h):\n’)
7 file.write(’ for j in range(w):\n’)
8 file.write(’ y = data[i][j][0]* ’+str(float(

percentage [:-1]) / 100.0)+’\n’)
9 file.write(’ if y > 255:\n’)
10 file.write(’ y = 255\n’)
11 file.write(’ data[i][j][0] = int(y)\n’)
12 file.write(’ data = cv2.cvtColor(data , cv2.

COLOR_YUV2RGB)\n’)
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(a) Before (b) After

Figure 66: Camera view of attack case 1: before (a) and after (b) the implementation of the Strong
Light Exposure Attack.

Table 44: Evaluation result of attack case 1.

Criterion Result Value
RouteCompletionTest FAILURE 8.06 %
OutsideRouteLanesTest FAILURE 11.79 %
CollisionTest SUCCESS 0 times
RunningRedLightTest SUCCESS 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout SUCCESS

Results
From the comparison of Figure 66a and Figure 66b, we can see that the Strong Light Ex-posure Attack was successfully implemented. On initiation of the malicious change to theluminance, the monocular camera perception fails to identify the lane lines in the field ofview. As a result, the victim AV veered off the lane onto the sidewalk, entering the off-road section of the driving environment. It lost perception and traversed the oncominglane after being subjected to the Strong Light Exposure Attack. This immediately triggeredthe failure of the Outside Route Test and the Route Completion Test, terminating the sim-ulation, as presented in Table 44.
Attack Case II - Laser Beam
Attack Design
Adversarial machine learning (ML), as a form of cyber attack, involves designing a targetednumerical vector to make ML models misjudge and cause system failures and crashes.In this attack test case, the laser construction process is determined by several local-parameters: intercept, injection Angle, wavelength, and laser width. This laser attack isexecuted by randomly selecting a parameter and generating adversarial samples. If theconfidence level of the classification is reduced, the current parameter settings are re-tained, which is often similar to the greedy strategy. After adding a laser beam projectionto an image, the image pixels change, which in turn affected the results of the classifier.This adversarial attack, when applied to AD, can target the recognition of traffic lights,speed limit signs, and stop signs. Shining a laser on a stop sign can cause the AD systemto fail to identify it correctly, leading to a violation of the required safety condition to stopthe vehicle. Also, shining a laser on a traffic light can also create color spoofing attacks. Ex-perimentation with laser beam attacks has shown that if the laser covers the entire trafficlight, regardless of its color, the accuracy of detecting red or green lights is hardly affected.
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However, if the laser only shines on one traffic light, there will be a significant decreasein the recognition of the traffic light [71]. However, in our testing, we found that if we usethis greedy strategy to search for the optimal parameters for 4000 cycles, the generationof adversarial samples is very slow, and it is impossible to inject adversarial samples intothe AD test in real time. Therefore, we generate a laser that can make target recognitionineffective and recognise it as another object, by inputting images captured by the cam-era into an adversarial sample generation program. We then inject this laser in real-timein the AD test scenario. As in the previous case, we assume that the attacker can findappropriate attack scenarios and not be detected by others in advance. For example, theattacker can deploy multiple infrared light sources next to the road where the attacker’svehicle must pass or on a drone.
ADSecLang ConfigurationThe cyber threat scenario description using the ADSecLang is provided below.

1 attack_name: laser beam attack
2 attack_target: monocular camera -based end -to -end autonomous

driving system
3 attack_goal: safety hazard
4 action: [method , preconditions]
5 method: [spoofing , shooting laser on the camera]
6 preconditions: [{precond1 , precond2 , precond3 }]
7 precond1: [attack tool , laser pointer]
8 precond2: [attacker ’s knowledge , machine learning

adversarial sample generation technology]
9 precond3: [attacker ’s capability , attackers can aim

lasers at camera sensors on the roadside]
10 impact: [influenced asset , influence]
11 influenced_asset: [sensor , rgb_camera_front]
12 influence: [raw_data , spoofed data]

The attack description YAML file is translated using the attack interpreter within thesimulation platform.
1 if(config[’attack name’]=="Laser beam attack"):
2 file.write(’ laser_pattern = cv2.imread ("

laser_for_carriage.png")\n’)
3 file.write(’ if laser_pattern is None:\n’)
4 file.write(’ print ("read image fail !!")\n’)
5 file.write(’ return 0\n’)
6 file.write(’ laser_pattern = cv2.cvtColor(laser_pattern ,

cv2.COLOR_BGR2RGB)\n’)
7 file.write(’ data = data.astype(np.float32)\n’)
8 file.write(’ laser_pattern = laser_pattern.astype(np.

float32)\n’)
9 file.write(’ data = cv2.addWeighted(data , 1.0 ,

laser_pattern , 1.0 , 0)\n’)
10 file.write(’ data = np.clip(data , 0.0, 255.0).astype ("

uint8")\n’)

ResultsFrom the comparison of Figure 67, we can see that the laser beam attack was success-fully implemented in the AD simulation. The attack achieved its objective of inducing AV
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(a) Before (b) Generated Laser (c) After

Figure 67: Camera view of test case 2: (a) before the attack, (b) the generated laser beam, and (c)
after applying the attack.

Table 45: Evaluation result of attack case 2.

Criterion Result Value
RouteCompletionTest FAILURE 71.3 %
OutsideRouteLanesTest SUCCESS 0 %
CollisionTest SUCCESS 0 times
RunningRedLightTest FAILURE 1 times
RunningStopTest SUCCESS 0 times
InRouteTest SUCCESS
AgentBlockedTest SUCCESS
Timeout FAILURE

behaviour to violate a safety condition. As shown in Table 45, the vehicle completed ap-prox. 70% of the route (Route Completion Test) and violated a safety condition by drivingthrough a red light (Running Red Light Test). The result of the laser attack demonstratedthat the laser beam was able to perturb the AD solutions perception of the traffic light,thus causing the victim AV to run a red light.
Future work for the development of ADSecLang will be to extend the language to en-compassmore diverse semantic cybersecurity scenarios and evaluate the utility of the lan-guage to support system-level attack scenarios (Buffer Overflow, Denial-of-Service, Net-work Attacks, etc.). We further aim to improve the results evaluation module. Metrics forAD testing predominantly focus on safety impacts, however, we would consider it neces-sary to define metrics that assist in directly evaluating the security of the system undertest. Whilst this has proven a difficult challenge, the contemporaneous work on bench-marking for machine learning security and cybersecurity assurance levels (CALs) for au-tomotive systems as conducted by the autonomous vehicle cybersecurity standardisationbodies provides some guidance how to achieve this. We further see the importance ofintegrating the language within a common AD cybersecurity testing evaluation platform,such as Simutack [79], for an open-source release.

5.2.4 Relation to Existing Work
ADSecLang distinguishes itself from the state-of-the-art as it is the only domain-specificlanguage, to our knowledge, for AD cybersecurity testing and it is designed to integratewithin a software simulation testing environment for AD systems. Furthermore, the lan-guage has been designed to be agnostic to AD solutions or sensor technology and adapt-able to accommodate diverse threat scenarios. SCENIC has been utilized to develop driv-ing scenarios for cybersecurity testing. Salgado et al. [247] used the abstract and concretescenario composition of SCENIC to create a scenario of amalicious leading vehicle in a con-
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voy to test the robustness of cruise control and collision avoidance. This scenario demon-strates the effect if an attack had already succeeded, whereas the aim of ADSecLang is toincorporate the technical method of attack to assess the performance.Formore conventional threatmodeling, VehicleLang [145] andALLIA (Agnostic Domain
Specific Language for Implementing Attacks in an Automotive Use Case) [312] are the twomost prominent studies for legacy automotive architectures. Both of these solutions arefocused on modeling cyber threats to connected vehicular systems and focus their casestudy evaluations on vehicular communication protocols and connected components. Ve-
hicleLang provides a conceptual contribution, which is the generation of text-based testcaseswhose feasibility can be validated by expert opinion. ALLIA extends this work by pro-viding a technical implementation, which transforms the text-based test case generationinto a technical test case implementation.
5.3 SenseFuzz
Fuzz testing of AD software aims to use unsanitised and invalid input to trigger exceptionalor abnormal behavior of the driving logic. AD fuzzers are designed in a disparate manner,seeding input from either the sensor data, vehicle dynamics data, scenario and simulatorconfiguration. EnFuzz [48] demonstrated that a collective framework could ensemble di-verse fuzzers exhibiting different fuzzing techniques to obtain deeper penetration of onespecific type of target, in this instance, application software. As the architecture of ADsoftware relies on a mixture of different sensor technologies and data sources, the inno-vation required of ensemble fuzzing for AD software is that the frameworkmust be exten-sible to allow different fuzzers for different targets and target groups. Our idea with thisresearch is to explore such a concept as an ensemble fuzzing framework for AD softwareand present our ideas on how this could be architected. To this end, we present FuzzSense(Figure 68), a conceptual architecture based on a modular, black-box, mutation-basedfuzzing framework.The architecture of FuzzSense is envisioned to integrate within the AD software simu-lation environment (CARLA, AWSIM, Apollo), allowing diverse fuzzing tools as plug-ins togenerate test cases, collect output data in a seed corpus, andmutate new inputs. Ourmo-tivation in presenting this work is to provoke discussion within the community on how ADsystems are fuzzed, establish community efforts for fuzzing and to gather initial feedbackon FuzzSense and understand potential improvements on the foundations of the design ofthe framework. This work is not a benchmarking study or a statistical evaluation of fuzzingperformance, as the motivation is purely to understand how the design of an overarchingfuzzing framework for AD software may be achieved. Therefore, to clearly state the aimsof this research, we have focused on the development of the initial concept of the ADensemble fuzzing framework, developed source code, and conducted an initial test case.
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Figure 68: High-level Architecture all Components

5.3.1 FuzzSense
FuzzSense involves the following key components: the fuzzing broker, the fuzzing envi-ronment, and the repository. The interactions of these key components with the ADS andsimulator are displayed in Figure 69.

Fuzzing Broker The Fuzzing Broker is the central part of the FuzzSense framework,acting as an intermediary layer, facilitating communication between the simulator, ADS,and fuzzing environment. The fuzzing broker has full control over the exchanged sensordata and listens to data, such as steering commands.While the Fuzzing broker was described as an intermediary for the whole framework,it additionally functions as a controller, initiating and terminating the operations in theconnected Simulator and ADS. Depending on the used Fuzzers, Simulator, and ADS, theFuzzing Broker transforms the sensor data to the required formats of the endpoints.
Fuzzing Environment The Fuzzing Environment is the collection of the componentsresponsible for fuzzing and creating scenarios, manipulating the sensor data, interpretingthe results, and mutating parameters. This continues the idea of the modular architec-ture of the fuzzing framework. It also allows for the decomposition of other integratedmodules, as the Mutator is not required to be a part of the fuzzers.The Fuzzing Environment contains the following modules: orchestrator, mutator, sce-nario fuzzer, sensor fuzzer/s, and oracle and evaluation.

5.3.1.1 Orchestrator: The Fuzzing Environment is a composition of diverse componentswith unique tasks. The role of the orchestrator is to provide a central management func-tion to ensemble these diverse components to achieve the task of fuzzing the selectedtargets. The idea of a fuzzing orchestrator performing a central management role wasinspired by EnFuzz [48], which uses a similar design to integrate and manage diversefuzzing modules using diverse techniques. The Orchestrator possesses the intelligencein the Fuzzing environment. This is reached by always knowing the current status of thefuzzing campaign and its iterations, therefore, it can start fuzzing iterations, telling eachcomponent (Fuzzers, Oracle, Mutators, Fuzzing Broker) when they should perform whichof their tasks, monitor the components to understand their status to be able to efficiently
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Figure 69: FuzzSense: High-level Architecture of Fuzzing Framework

start the next step with the required components. This requires the Orchestrator to useadapters to communicate to the APIs of the different fuzzing modules. As such, no inter-communication is required for different fuzzing modules; hence, this communication ismanaged centrally by the Orchestrator. The benefit of central management is that ex-pected new fuzzing modules can be integrated in less time and with less complexity. Fur-ther, it even allows decoupling the mutation of parameters and the fuzzers where theyare processed.
5.3.1.2 Mutator: The Mutator creates the parameters utilized by the scenario and sen-sor fuzzing modules. In the first round/s the Mutator is providing the fuzzers with theseeds but does no actual mutation on them. In this architecture, the Mutator is extractedfrom the scenario and sensor fuzzers. The aim is to allow the combination of differentmu-tation algorithms and fuzzers. Furthermore, it allows a closer synchronization betweenthe mutation of parameters when using multiple fuzzers. For the proof of concept, themutation is a brute-force/grid search iteration through parameters, where limits are ap-plied and derived from logical boundaries like the perception distance of the sensors.
5.3.1.3 Scenario Fuzzer: Scenario fuzzers use parameters of the driving scenario as theseed pool. These can include weather, pedestrians, and other vehicles. Mutations can bebuilt from the mission, weather, and scenario actors. Prominent scenario fuzzers includeonly the distinctmodule creating the scenarios based on parameters given by theMutator,which is called the Scenario Fuzzer in the FuzzSense architecture.
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5.3.1.4 Sensor Data Fuzzers: Autonomous vehicles can use a range of sensor technolo-gies and different hardware and software configurations and can be positioned at differ-ent locations on the vehicle. In general, the sensor data of any of those sensors couldbe fuzzed. The idea motivating our ensemble fuzzing design is that a dedicated sensordata fuzzing plug-in is responsible for each sensor data stream that should be fuzzed. Theparameters provided by the Mutator can either be synchronized between several or bemutated individually.
5.3.1.5 Oracle and Evaluation: The Oracle and the Evaluation are giving further intelli-gence to the Fuzzing Environment. The Oracle and Evaluation component is responsiblefor creating ground truth, known commonly as the Golden Run. Afterward, every fuzzingiteration must be checked for possible findings, and thus, the Mutator must be providedwith an evaluation of the parameters. This framework does not suggest certain conditionsonce a finding is detected. The idea is to set this based on the subject of testing. For in-stance, it could be limited to deviations of the trajectory of the Golden Run or only focuson temporal aspects (speed of the vehicle, etc.) introduced by the fuzzing.

Repository In this architecture the repository enables the Fuzzing Environment towrite logs, store data and dependent on the communication allow the components toexchange data. When the modules exchange data using the repository, it allows a decou-pling and a simpler integration of new components, especially, because the orchestratoris handling the management centrally and thus modules do not need custom integrationswith all other required in the Fuzzing Environment.
5.3.2 Sensor Data Fuzzing
AD software relies on sensing data for situational awareness and to inform navigation andmotion-planning activities. FuzzSense is designed to apply manipulations to the sensordata stream before it reaches the downstream AD software. The initial version of thefuzzer manipulates pixels in the camera feed or points in the LiDAR feed. The fuzzer istriggered during a scenario simulation. For each future scenario, the fuzzing test case ismutated based on evaluation of the feedback. The delivery of the manipulation of thesensor data is achieved through the application of changing or adding data in the datastream based on the coordinates given by the fuzzing mask.

Fuzzing MaskThe fuzzingmask is created based on parameters given by the sensors and vehicle thatare to be tested. For the camera stream, which can be represented as a matrix with def-initions of each pixel’s coordinates, color, and sometimes the alpha channel, the fuzzing
mask provides a collection of coordinates for pixels that are changed in the camera stream.For LiDAR, the same concept is used to add points to the point cloud, and only the dis-tance is added. Our goal is to achieve several advantages with this approach. First, thesame mutation strategy for most parameters can be used. Second, the computation ofthe next data points to manipulate in the LiDAR data stream is independent of the actualpoint cloud data. This could potentially increase the performance. Third, by limiting thespace of possible manipulations in the search space, possible mutations of the parame-ters can be drastically reduced to the areas of interest (e.g., in front of the vehicle). Withina point cloud, points can be hidden behind others from the sensors perspective. The con-cept with the fuzzing mask prevents such cases so that no added points are shadowed byother added points (see Figure 70).The fuzzing mask F (Algorithm 2) is defined as a set of coordinates where the sensordata is manipulated F = {(xi,yi) | xi ∈ [0,W ],yi ∈ [0,H]}. For the camera sensor, the
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Figure 70: Fuzzing Mask for LiDAR.

location of the pixel, and for the LiDAR sensor corresponds to the coordinates of a per-pendicular plane in the pointcloud where each point is inserted. The third dimension forLiDAR is provided by the distance parameter between the LiDAR sensor and the plane.The coordinates are relative to width, height, and, for 3D data, the center of the plane.For the camera stream, they are taken from the metadata of the sensor stream, and forLiDAR, they are preset and could potentially be mutated.
Algorithm 2 Generate Fuzzing Mask F

Require: r f ,σ f ,X ,Y,W,H
0: (σx,σy)← (W ∗σ f ,H ∗σ f )0: r f ←W ∗H ∗ r f0: x = N (r f ,σx,X ,W )
0: y = N (r f ,σy,Y,H)
0: for i← 0 to r f −1 do
0: F ← add(x[i],y[i])
0: end for
0: return F =0
Let r f represent the fuzzing change ratio, defined as r f =

Nc
W×H . Where: Nc is thenumber of changed data points, W and H are the width and height of the fuzzing maskmatrix in discrete steps (e.g. pixels for the camera stream). The result is expressed as apercentage. Then, letσ f represent the standard deviation of themanipulated data points,computed as the deviation relative to width W and height H. Together, X and Y are thecoordinates of the center of the fuzzing mask and the means of the standard-deviation.

x and y are the vectors corresponding to the each x and y coordinate vector respectively.In line 3-4W and H ensure, that no coordinates outside of the fuzzing mask are created.Where in line 6 F is created by column stacking the x and y arrays with the calculatednormal-distributions.
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5.3.3 Multi-Stage Approach
FuzzSense combinesmultiple stages during fuzzing. Each time the fuzzing setup is started,it is called a Fuzzing Campaign. Each of the scenarios running with different fuzzing pa-rameters is defined as a Fuzzing Iteration. This allows to better distinct between phasesand to have an easier understanding of the complete process and architecture. The aimof this process design choice is that the focus for the fuzzing campaign can be chosen withmore granularity as the multi-stages allows to provide intelligence to the iterations. Thelogic when to exit the inner iteration (sensor fuzzing iteration) can be set based on the aimof the fuzzing campaign. This is possible, because the inner and outer iteration (scenariofuzzing iteration) can be logically separated.

Fuzzing Campaign The Fuzzing Campaign defines thewhole duration of the fuzzer run-ning. A Fuzzing Campaign consists of one or many Fuzzing Iterations. To start a fuzzingcampaign, one or several seeds are required. Each seed contains starting values for eachparameter. While there is not any conditionmet, which qualifies the end of the campaign,new scenario fuzzing iterations are started. The campaign also could be stopped manu-ally. The final step is to stop all required services and store the results from the fuzzingcampaign to allow further investigations.
Fuzzing Iteration The Fuzzing Iteration defines one single scenario run. It starts withthe parameter mutation and ends once the scenario is stopped because of a failure orbecause it has successfully finished. The fuzzing of every single data frame is not callediteration. A here defined Fuzzing Iteration includes all those manipulated sensor dataframes throughout the whole scenario until it finishes or fails with a finding. As the mainfocus of the fuzzing is on the sensor data, the mutation for the scenario parameters isnot performed in every iteration. Thus, the same scenario is present throughout severaliterations. To distinguish also between those two, there can be Scenario Fuzzing Iterationsand Sensor Fuzzing Iterations. One Scenario Fuzzing Iteration consists of one or manySensor Fuzzing Iterations.

5.3.3.1 Scenario Fuzzing Iteration The ADS of the AVmust act within a scenario to allowrelations to its intended real-world use. A scenario defines not only the ego-vehicle itselfbut also the road, traffic signs, and signals, road conditions, environment, other actors,including their behavior, and the weather conditions. The Scenario Fuzzing Iteration is theouter iteration and contains all Sensor Fuzzing Iterations in the same scenario. It containsthe following steps:
Step 1: Mutate Scenario Parameters
Step 2: Create a Scenario and set it up in the simulator and ADS
Step 3: Create Golden Run
Step 4: Start Sensor Fuzzing Iterations
5.3.3.2 Sensor Fuzzing Iteration Within the same Scenario Fuzzing Iteration, the param-eters for the FuzzingMask should not be the same twice. However, within a new ScenarioFuzzing Iteration, the same parameters can be used again. Each sensor fuzzer takes theoriginal sensor data from the simulator and applies manipulations to the data stream be-fore it reaches the ADS. Thosemanipulations are single pixels in the camera feed or pointsin the LiDAR feed. In the current state, within one run, the planned drive of the vehicle, nomutations on the parameters are performed. This means the same fuzzing masks are ap-plied to the data streams from the start to the end of the drive. The mutator is only active
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between runs. Therefore, compared to a plain simulation, the only computational over-head during a running simulation is the rerouting and manipulation of the sensor data. Itcontains the following steps:
Step 1: Mutate Sensor Parameters
Step 2: Set scenario up in simulator and ADS
Step 3: Create Fuzzing Masks
Step 4: Start scenario and manipulate sensor data streams
5.3.4 Experiment & Results
Experimental SetupThe evaluation of FuzzSense is conducted in AWSIM, a high-fidelity, digital-twin simulationenvironment. The target AD system uses the Autoware.Universe software framework. Asthis instantiation of the AD software uses the LiDAR sensor for perception and localisation,the sensor fuzzing module is configured to fuzz the LiDAR sensor. The evaluation wasconducted on a system running Ubuntu 22.04.03 LTS with 1 TB of storage, 32 GB of CPUmemory, 10 GB of GPU memory, a 12th Gen Intel® Core™ i7-12700KF processor, and aGeForce RTX 3080 Lite Hash Rate graphics card.
Results & DiscussionThe driving scenario consists of a planned navigation in an urban driving environment.We selected an urban environment since attacks can cause more severe effects within acongested operational driving domain. As the vehicle navigates through its planned tra-jectory, the sensor fuzzing plug-in of FuzzSense initiates its fuzzing mask, manipulatingthe parameters of the LiDAR 3D geometry. For this set of experiments, the parameterswere randomly set at x (0.4),y (0.5), the distance of the fuzzed LiDAR points (30m), andthe intensity 0.1. and dispersion (width 100, height 60). The experiments mutated thelocation and dispersion parameters. The fuzzing broker is fuzzing every frame. In the sim-ulation, the environment exhibits a performance of time of approx. 30 frames per secondor 33 milliseconds. Figure 71 displays the initiation of the fuzzing mask (the yellow boxis used for identification and does not represent the full mask) to the driving simulation.The fuzzing mask is applied at different distances from the vehicle and different locationswithin the environment. As shown in Figure 71, the fuzzingmask is located at an approach-ing distance to the vehicle of approx. 30 meters outside the lane does not produce anyunsafe changes in the vehicle the vehicle’s behavior.

Figure 71: Fuzzing Mask applied to the right edge of lane

Figure 72 displays the movement of the fuzzing mask to a more central location in thedriving environment. The fuzzing parameters for amount and dispersion are the same as
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Figure 71 in both fuzzing iterations. The parameter for the distance is the same for both.The affect of the fuzzing mask displayed in Figure 72, is that the vehicle detects the fuzzed

Figure 72: Fuzzing Mask applied to central location of vehicle trajectory

LiDAR points as an obstacle (red wall) and plans a reduction in acceleration to observe theobstacle. This can be seen by the orange color in the planned trajectory.Figure 73 displays the fuzzing mask applied at a close distance and within the plannedtrajectory of the vehicle. The vehicle detects the fuzzing mask as an object in immediateproximity to the vehicle and therefore initiates a braking action. The vehicle is unableto recompute an alternative planned trajectory due to the fuzzed points presenting anobstacle across the road and therefore the vehicle is unable to progress.

Figure 73: Top down view of vehicle with fuzzing mask affecting planned navigation of the vehicle

The experiments provide initial feedback on the utility of FuzzSense. From observingthe behaviour of the AD software, displayed in Figures 72 and 73 we can discern thatsensor fuzzing is a useful exercise to find vulnerabilities of the AD software stack. Theresults indicate that the AD software is either unstable or can be influenced by insertedLiDAR points. We found that when the fuzzing mask was located on or near the plannedtrajectory of the vehicle, the perception algorithm was unable to filter the manipulatedpoints and instead, observed them as an obstacle. Further to this, when the fuzzing maskwas located in close proximity to the vehicle, it resulted in a complete stop of the vehicle.
5.3.5 Related WorkThe EnFuzz architecture [48] demonstrates the advantage of combining multiple fuzzerswhich use diverse techniques of fuzzing, to get a greater and deeper penetration of the
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target. The EnFuzz design further inspired our adoption within FuzzSense of an orches-trator (monitor) for coordination. Our contribution is unique from EnFuzz as our focus isspecific to AD software and we incorporate in the design considerations for the diversityof AD technology and targets.Aforementioned, there are various fuzzers focused on disparate targets of the AD sys-tem. Popularly cited fuzzing tools include DeepRoad [333], DeepTest [281] which targetthe camera sensor and AV-Fuzzer [170], Auto-Fuzz [339] and DriveFuzz [154] which targetthe driving scenario. These fuzzers are not designed to operate concurrently with differ-ent fuzzers, but focus on a seed pool limited to there target. For the optimization of thesearch space reduction, these fuzzing tools mainly focus on driving quality and task per-formancemetrics as ameasure to direct themutations towardsmore promising scenarioswhere the ego-vehicle is more likely to struggle.Our work does not aim to compete with these fuzzers nor dowe seek to build on theredesigners. FuzzSense, is an overarching framework whose concept is based on enablingthe usage of the fuzzing tools as plug-ins in an integrated fuzzing environment. A futuretest case would be to use DeepRoad [333] and DriveFuzz [154] within FuzzSense to under-stand how diverse fuzzing techniques generate bugs.
5.3.6 Future Direction of FuzzSense
Future work, aims to experiment with FuzzSense utlising the modularity to benchmarkthe performance of different fuzzing plug-ins. Further, advancing the design of the fuzzingmask by adding support for further sensor types. As part of providing FuzzSense open-source, we also aim to actively gather community feedback and develop the frameworkfurther.
5.4 ADSecData Platform: Open-Source Data Platform for Autonomous

Driving Cybersecurity
AD softwaremust be secure, with decision control optimized to ensure robustness againstcyberattacks. A key challenge in achieving this goal is the lack of open-source data specif-ically for AD cybersecurity. Without available data, software designers do not have an im-mediate understanding of the considerations for secure design required to ensure robust-ness against cyber threats. In contrast, there are many open-source datasets for safetyvalidation, algorithm optimization, and sensor configuration. Popular examples includeKITTI [84], Waymo [274], Baidu Apolloscape [304], Argoverse [309] and NuScenes [32].Common datasets for safety validation have enabled platforms such as CARLA Leader-board [39] to establish challenges to benchmark solutions for perception and trajectoryplanning algorithms. The problem motivation that this research confronts is that AD cy-bersecurity doesn’t have a readily available source of open datasets available to advanceresearch and there is a lack of guidance on how to conduct cybersecurity research to gen-erate datasets for benchmarking.To confront this problem, we have developed ADSecData Platform, a consolidatedplatform that provides open-source AD data for cybersecurity. (See Figure. 74), ADSec-Data Platform consists of a data generation process, which is the method used to gener-ate datasets from simulation and real-world experiments. We validate the platform in acase study using the data generation method to create datasets based on an operationalautonomous vehicle (AV) program. We demonstrate the utility of our open-source plat-form to the community in advancing cybersecurity testing to measure and improve therobustness of autonomous driving systems to cyberattacks.To construct an AD cybersecurity open-source data platform, we used these guiding
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Figure 74: ADSecData Platform - Data Generation Process.

questions to establish an understanding of the relationship of AD data to cybersecurity:
1. What data types generated by the AD systemare utilized for cyber attack test cases?

2. What is the utility of each data type to enhancing the cybersecurity of AD?

3. What type of metrics are available to benchmark AD algorithms from a cybersecu-
rity perspective and defense mechanisms?

5.4.1 Autonomous Vehicle Cybersecurity Data
The emerging field of automotive cybersecurity research over the last decade has focusedpredominantly on the CAN Bus protocol, connected vehicle protocols, electrical and em-bedded hardware (such as wireless controllers and Bluetooth), and in-vehicle softwaresystems (e.g., infotainment systems). To support the development of defensive technolo-gies and the secure design of communication protocols and software, numerous open-source datasets of automotive telemetry have been created. These datasets primarily ad-dress legacy and connected vehicle technologies, with a strong emphasis on the CAN Busprotocol. However, there is a significant lack of open-source cyber attack datasets specificto AD technology. Developing such datasets and promoting the exchange of open-sourcedata are critical steps toward advancing the still-maturing field of AD cybersecurity.
Autonomous Vehicle DataAD systems generate a vast amount of data from diverse hardware and system compo-nents. We classify ADdata into fourmajor sub-categories of data sources: sensing, system,

157



network, and vehicle dynamics. For each data source, we discuss its value for software de-velopment, cybersecurity, and its availability.
SensingSensing data is produced by advanced sensors in the AD system, including LiDAR, cameras,ultrasonic radar, and global navigation systems (GPS, GLONASS, Baidu, Galileo). This datais critical formapping the driving environment, perception, and localization. However, oneof the key challenges with sensor data is the high data rate generated by autonomousvehicles. Xu et al. [322] estimated that diverse sensors could generate approximately 4terabytes of data per day. The transmission of LiDAR and high-definition camera framesfrom on-board sensors to edge data logging servers further complicates data collection.Although compression techniques are available to optimize transmission efficiency, thereis limited understanding of how thesemethods impact cybersecurity research in computervision and perception.

Software Development Value: Sensing data is used by AD software designers totrain and optimise algorithms for SLAM, object detection and tracking, sensor fu-sion and semantic segmentation. One of the many examples of the progress in thisarea is the CARLA Autonomous Driving Leaderboard [39] which is platform used forthe development of AD agents.

Cybersecurity Value: Sensing data can be used to assess vulnerabilities of AD soft-ware to adversarial examples and also to generate new attack models for adversar-ial examples. Select examples include:
• LiDAR point cloud manipulation [35]
• Adversarial examples for camera perception neural networks. [76]
• Light manipulation attacks on camera hardware and driving objects (roadsigns etc.) [248]
• Fuzzing and parameter manipulation attacks against AD algorithms (ObjectDetection, Sensor Fusion) [92]
• GPS Spoofing cause uncertainties to trajectory planning algorithms. [136]

Defensive technologies can also be developed from sensing data, these include:
• Kalman filters and ML detection solutions to filter noise from data manipu-lation attacks. [135]
• Physical intrusion detection solutions which fingerprint patterns of noisefrom adversarial activity. [228]
• Improvements to the security of ML models to protect against ML evasion,training data poisoning attacks.
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Data Availability: Open-Source cybersecurity datasets for sensing, of which thereare very few, predominantly focus on camera based perception and neural net-works for perception algorithms. Available datasets include:
• Natural Denoising Diffusion Attack (NDDA) dataset [252]
• SlowTrack: Camera based perception latency attack dataset [181]

System
System data consists of data from the on-board software systems of the AD system. Theseinclude the firmware, operating system, application software and real-time operating sys-tems used in the electronic/embedded components such as the electronic control units(ECUs) and micro electronic control units (MCUs).

Software Development Value: System data is used by software developers to de-bug errors and understand application performance and functionality. Crucial forAV developers is to understand the performance and reliability of the AD software(Autoware, Nvidia Drive, Apollo) andmiddleware (Robotic Operating System (ROS),Cyber RT).
Cybersecurity Value: System data is used for vulnerability and exploit analysis. Ac-tivities that are included in this description include, reverse engineering firmware,code analysis, taint-analysis and fuzz testing.
Data Availability: System datasets are generally available from the manufacturer.These are then used for vulnerability and exploit analysis. Cybersecurity datasetsare rare as the responsible disclosure process usually results in the removal andupdating of new software. An example of an cybersecurity system artifact are thefollowing:

• Kia OFFensivE Exploit (KOFFE) metaslpoit module [82]
• Mazda Infotainment USB attack [291]

Network
Network data consists of data produced from the AV internal and external network. CANBus is the network of predominance for in-vehicle communication between ECUs whichhandles critical real-time functions such as braking and steering actuation. Automotiveethernet is gaining in popularity and is mostly used for drive-by-wire communication.Other communication such as MOST is used for infotainment systems and LIN can befound in more upmarket vehicle classes. The difficulty in providing CAN (and most otherin-vehicle protocols) datasets is that CAN is used in a proprietary format by vehicle manu-facturers. To decipher the meaning of CAN messages, either the manufacturer diagnostictool is required or knowledge to reverse engineer CAN messages from investigation offirmware and system manuals.For legacy and connected vehicles great progress has beenmade and there exist manyavailable datasets and tools to help with the CANmessage extraction process [222] . How-ever, to our knowledge there exists no CAN cybersecurity specific datasets for AD tech-
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nology. Reasons for this could be the enhanced commercial sensitivity of AD technology,more diverse range of AV manufacturers, implementation of encrypted messaging withCAN-FD, cutting-edge nature of AD technology. Other network concepts typical in ADarchitectures include Vehicle-to-vehicle (v2v) and vehicle-to-everything (v2x) which usewireless and cellular connectivity for connectivity. Different application layer protocolsare used for distinct purposes, these may include MQTT for vehicle on-board unit (OBU)to edge communication and Cooperative v2x (C-V2x) protocols that including basic safetymessages (BSM) for cooperative perception and intelligent feedback for decision-making.Cybersecurity research in this field is well-developed and there are many availablestudies which investigate attackmodels to the integrity of cooperative vehicularmessagesand availability of networks which support vehicle data processing and cooperative com-munication.
Software Development Value: For software developers, network datasets can as-sist in understanding system interconnection and latency of data flow through sit-uational awareness data to control actions decided by AD software and physicalprocesses made by actuation.
Cybersecurity Value: Network datasets are primarily used for defensive, intrusiondetection solutions. Network datasets also aid in developing new attack strategies(DDoS, Replay etc.) and fuzzing strategies to test the robustness of communicationarchitectures. Lately, as more CAN cybersecurity datasets are available, researchhas focussed onML andAI solutions for automated attack detection and fuzzing [8].Within AD architectures, network data is utilised to evaluate the security aspects ofcooperative driving such as message trust and authentication. Perhaps the great-est contribution of cybersecurity CAN datasets has been the increase in attentionbrought by attacks which demonstrate the feasibility of cyber attacks to manipu-late safety critical functions such as braking, steering and acceleration. Recognitionof these threats has seen the development of security within automotive softwarearchitectures (AUTOSAR Adaptive) and new zonal communication architectures forin-vehicle network communications.
Data Availability: Open-Source CAN hacking datasets exist for legacy and con-nected vehicles, a sample of this long list include:

• Car-Hacking-Dataset [258] [268]
• Survival Analysis Dataset [104]
• CAN-Train-And-Test Dataset [166] [165]
• CANet Dataset [106]
• CrySyS Dataset [83]
• CIC IoV 2024 Dataset [213]
• CAN-MIRGU Dataset* [229]

*The CAN-MIRGU dataset is generated from a vehicle with AD capabilities, how-
ever, these capabilities are not detailed due to privacy reasons and the AD functions
are deactivated for safety reasons.
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For V2X and V2V selected datasets include:
• Simulated VANET Attack Dataset [125]
• Simulated VANET Attack Dataset [86]

Vehicle Dynamics
Vehicle dynamics data include body physical movement (lateral and longitudinal pose,yaw etc.), acceleration, braking, steering actuation. Vehicle dynamics is crucial for a soft-ware developer and cybersecurity engineer to understand how behaviour at a system-level affects the vehicle. Existing cyber attack research which focuses on vehicle dynam-ics, predominantly concern themselves with providing artifacts such as docker images ofthe attack simulation and the code-base for adversarial examples and fuzzing tools. Alimitation of this approach is that it requires of custom configuration of the attack in theuser environment and an understanding of the vehicle model and metrics engine for dataoutput, used in the original research.

Software Development Value: This data is crucial for control algorithm designersto assess the robustness of control and trajectory planning algorithms. Softwaredeveloper and control designers will use vehicle dynamics data for backsteppingand back-propagation of the AD control software.
Cybersecurity Value: Vehicle dynamics data enables a greater understanding of theaffect of cyber attacks to vehicle behavior. The utility of vehicle dynamics data in-cludes research and development of physical intrusion detection systems solutionsand root cause analysis.
Data Availability: We are not aware of any datasets for vehicle dynamics in thecontext of cybersecurity.

Gaps in Autonomous Vehicle Datasets
Our exploration of diverse AD data types and the usage in cybersecurity has identified anumber of limitations:

• Lack of a consolidated research data platform. Datasets are distributed acrossgithub accounts and research papers. There is a lack of consolidation of datasetsthat would enable security research across the AD technology stack.
• Siloed research. Defensive mechanisms are often developed based on a single datatype (e.g., CAN, Camera, etc.). The lack of availability of other data sources and anunderstanding of how this data impacts vehicle dynamics and propagates throughthe AD system results in the creation of defense mechanisms that lack system-levelvalidation.
• Lack of cybersecurity data: There is a lack of data for cybersecurity, and in someof the sub-categories explored, there is, to our knowledge, no data available. Theavailable datasets overwhelmingly consist of legacy and connected vehicles.
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5.4.2 ADSecData Platform
In developing amethod for generation of cybersecurity data for AD systems, the significantchange from legacy vehicles is the focus on vehicle behaviour. As the vehicle is controlledby software and algorithms, it is important to understand the affect to the vehicle fromcyber activity and its implications for decision-control. In addition to attacks that directlytarget AD technologies such as advanced sensors, attacks to network and system com-ponents can have downstream affect on autonomous control. The ADSecData Platform(shown in Figure 74) follows a four-stage process for generating data.
Scenario Generation
Scenario-based testing (SBT) involves evaluating the performance of a module or the fullAD pipeline (perception, localization, planning, and decision-control) to perform its taskduring a specified driving scenario. Since the performance of algorithms can vary underdiverse scenarios, SBT has become the standardized approach for AD algorithm safetyvalidation and verification testing [116]. Cybersecurity represents an edge and corner casefor SBT. For the ADSecData methodology, we propose that scenario generation is a crucialstep for cybersecurity, as it is essential to understand whether the effect of a cyber attackon the vehicle differs based on the scenario. Since scenario libraries for AD cybersecuritytesting are not available, our methodology recommends using safety validation testinglibraries (such as ASAM OpenScenario, etc.) and customizing the scenarios with attackmodels.
Simulation/Test Environment
As the task of driving can encounter a vast number of diverse scenarios, simulation is theonly feasible mechanism to incorporate large-scale testing in an agile manner. Cyberse-curity testing should be aligned with safety validation testing, where the choice of testenvironment is based on evaluating the algorithm’s ability to perform tasks. This is partof a testing process that uses regression testing to map scenario test sets from simulationtest environments to real-world proving grounds. Within the ADSecData platform, we rec-ommend using low-fidelity test environments for large-scale testing of driving logic, high-fidelity test environments to include testing of advanced sensors (such as LiDAR, Camera,etc.), and real-world proving grounds. Another factor influencing the integrity of cyberse-curity data is the tendency of automotive cybersecurity practitioners to provide singulardatasets based on attack type. Due to the experimental nature of AD algorithms, suffi-cient tests need to be run to ensure that anomalous vehicle behavior is caused by cyberactivity and not system errors or a lack of optimization of the algorithm.Another key aspect of the simulation/test environment stage is defining metrics andconfiguring the format of output data. To quantify the impact of cyber activity on thevehicle, safety metrics and vehicle dynamic parameters are applied. Cybersecurity labelsinclude details such as the initiation of the attack during the scenario, attack parame-ters (e.g., sensor interference noise level, GPS positioning offset), and their correspondingweighting.
Analysis
The analysis stage involves interrogating the data to assess its integrity and accuracy, en-suring consistency with the experimentation performed. Popular tools, includingMATLABand Python, are used to plot data, visualize patterns, and analyze trends. For example, an-alyzing a dataset from the trajectory planning module could generate trajectory maps tovisualize the vehicle’s path and highlight any deviations from the reference path. Analysis
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Table 46: Requirements for ADSecData

Category Requirement

Documentation •Dataset should be accompanied by general documentation de-scribing content and origin.
•Documentation should include description of the attacks in thedataset and how they were executed/recorded.
• Documentation should include description of the features(e.g., origin, meaning, range) and their physical context (e.g.,how vehicle speed, engine speed and gear are related).Labels • Each entry in the dataset may be given a label for identifyingwhether that entry is benign or an attack.Parseability, correct-ness and consistency • Data should be stored in an appropriate machine/humanread-able format (e.g., PCAP or CSV rather than SQL databases)
• All entries should be correctly formatted (e.g., no corrupt en-tries)
• use a single data format for all entriesAge, Size, Objective • Dataset should not be legacy (> 5 years old etc.) and consistof a balance between benign and cyber attack data.Completeness • Dataset should be complete in the sense that no key featuresor entries have been discarded.Transformation andanonymization • Data should not be irreversibly transformed (changing times-tamps etc.) and not be anonymised to the point that it bias’ de-tection mechanisms.Dataset and AttackRealism •Dataset should include diverse attacks and not bewholly basedon synthetic data.

is a crucial activity for identifying problems with the experimentation process and evalu-ating the quality of the data.
ADSecData

Data should be benchmarked for measurement and comparison. The benchmarks forautomotive cybersecurity datasets from Vahidi et al. [296] systematic evaluation of au-tomotive intrusion datasets serve as a good starting point. We utilise their requirementsfor data in development of the ADSecData Platform and data readiness labels. Table. 46provide the requirements for ADSecData datasets.
5.4.3 ADSecData Case Study

Target Autonomous Vehicle

The target vehicle is an AV for public transportation, that is an autonomous electric vehi-cle (AEV). The shuttle operates at Level 4 autonomy (high automation), meaning that itcan handle most driving tasks without human intervention in predefined areas, and it isequipped with advanced LiDAR, radar, cameras, and GPS systems to navigate safely andcarry out perception tasks in urban environment. Its software backbone is based on ROSand autoware controlling all the driving functionalities and implementing the driving dy-namic model of the vehicle.
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Figure 75: Attack Case 1 Threat Model.

Figure 76: Attack Case 2 & 3 Threat Model.

ScenariosOur initial dataset consists of 4 attack cases conducted during diverse driving scenarios.
Attack Case 1 - LiDAR point-cloud manipulation: The LiDAR point-cloud manipulationattack, as shown in Figure 75, consists of an adversary with a LiDAR capable of injectingmalicious LiDAR point clouds into the LiDARs of the AV. This attack is conducted whilst theAV is attempting an overtaking maneuver.
Attack Case 2 - Position Offset: Attack Case 3 - Message Delay: The attacker createsa spoofed ROS topic which is able to deliver malicious input data of the Current_Pose(longitude, latitude, and velocity) to all the nodes of the local planning module. The datamanipulation is injected online/dynamically during the critical overtaking manoeuvre in-volving the AV and NPC (Non-playable character). Figure 76 displays the critical drivingscenario and the time frames in which the manipulated Current_Pose data is injectedinto the local planning pipeline cost estimation. The red dashed lines in Figure 76 repre-sent the roll-outs, and the green highlighted, denoting the selected motion-path.For the manipulation of the Current_Pose data, we introduce a deviation to lateraland longitudinal pose. For the lateral pose data, the sensitivity deviation introduced wasstructured as follows:
• Attack Case 2a: 0.16%
• Attack Case 2b: 0.33%
• Attack Case 2c: 0.5%
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This range represents a slight perturbation of pose to a 1m deviation. The longitudinalpose data sensitivity deviation range was structured as follows:
• Attack Case 2d: 0.33%
• Attack Case 2e: 0.66%
• Attack Case 2f: 1.00%
This range is the same as the longitudinal deviation. The difference in percentagecomes from the difference in coordinate values of lateral and longitude. The lateral valueis almost double those of the longitudinal, and therefore the percentage is doubled.This attack scenario involves introducing a time-delay into the messages of the Cur-rent_Pose topic communicating to the nodes of the local planning module.We introduced a message delay when the AV passes 2m in front of the vehicle that itis passing in the lateral direction. We introduce 3 different time delays in the message:
• Attack Case 3a: 0.3 seconds
• Attack Case 3b: 0.6 seconds
• Attack Case 3c: 1.0 seconds
The message frequency is approximately 50hz, so this is a message every 20 millisec-onds. We chose the above range of deviation of time-delay as it enabled a spectrum of amessage from the delay from approximately 15, to 50 messages.
Attack Case 4 - GPS Spoofing: The attack model of GPS spoofing involves an adversaryusing a transmitter near the AV and interferes with the GPS signals being transmitted.

Simulation/Test Environment
Attack Case 1 was conducted in the high-fidelity CARLA simulator [69]. In this study, weuse Carla 0.9.13 as the high-fidelity simulator. Figure 77 illustrates the requirements for thehigh-fidelity simulator to conduct simulation testing, which are two components, the digi-tal twin of the target AV and the virtual replication of our target environment. These repli-cated components help us to gain more accurate results of the proposed platform [187].The AV digital twin is a 3D model of the target real-world world AV shuttle, designed inBlender, a graphical 3d modeling software, and imported and built in Unreal for deploy-ment in CARLA. This model uses the same dimension and sensor configuration (model,position, and orientation) from the real AV shuttle. The environment digital twin, in ourcase, is identical to the location where the vehicle operates.This simulation setup was implemented on a desktop computer with the followingconfiguration:

• Intel® Core™ i7-11700K @ 3.60GHz × 16 cores
• NVIDIA GeForce RTX 3080 10 GB
• RAM: 128 GB
Attack Case 2 and 3 were conducted in a low-fidelity simulator. To accelerate the test-ing, we bypassed the sensing and detection nodes of the algorithm and focused on theplanning part by utilizing the low-fidelity simulation feature provided by Autoware.ai andOpenplanner. The low-fidelity simulation uses the open-planner 2.5 control algorithm. Itprovides simulated localization and detection data for the planning nodes and receives the
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Figure 77: Architecture of the testing platform.

actuation commands to simulate the AV kinematics. This process runs faster due to thelow-detail environment required for the simulation and the lack of the process to simulatethe sensors.
Attack Case 4 datasetwas generated from the real-world vehicle. GPS spoofing activityoccurred during a point-in-time of a 3 month trial of AVs in a city in Northern Europe.

Analysis
The data output parameters were defined based on safety, vehicle dynamics and securitycriteria. A sample of these include, for safety criteria, mission success, violation, breakstatus, distance-to-collision. Vehicle dynamics included steer, yaw, lateral and longitu-dinal position. Security criteria includes 2 labels, is_attack denoting when the attack isoccurring and cyber_weight which denotes the level of sensor noise manipulation.
ADSecData
The 4 attack case scenarios datasets were generated as a .csv files. Each attack includes acorresponding benign (no attack) dataset to benchmark the stability of the AD algorithmsunder the given driving scenario. Attack Case 1 included over 1200 simulations. Attack
Case 2 and 3 included over 900 simulations collectively.
5.5 Discussion
The case study provides a starting point for the development of a common dataset for thecommunity to perform fair and reproducible evaluations of AD algorithms for cybersecu-rity and defensive mechanisms. The datasets generated from the 4 attack cases demon-strate the importance of following the 4 stage ADSecDatamethodwhere particular carefulconsideration is taken in the definition of data output parameters and experimental eval-uation analysis. For the development of ADSecData platform, community challenges anda roadmap are fundamental.
Community Challenges
These are the first tranche of community challenges that we recommend for the ADSec-Data platform:
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Ch1 Performance and Accuracy of Semantic Fuzzing Tools

Ch2 Intrusion Detection of Semantic AD Sensor Attacks

Ch3 Robust Sensor Fusion Algorithms

Ch4 Robust and Resilient Trajectory Planning Algorithm

We see these challenges as of most immediate importance and value for the com-munity. Furthermore, we would like to see the community use ADSecData platform togenerate a seed corpus for guided semantic data fuzzing tools. As large language mod-els (LLMs) are gaining in popularity, another foreseeable use would be to apply LLMs toADSecData to generate scenarios for cybersecurity testing. As AD cybersecurity lacks acommon scenario library, generation of cybersecurity scenarios would help to close thisgap. Finally, IDS solutions for attacks to the AD sensors is essential to mitigate the risk tothe AD control. There needs to be more data to understand the profile of cyber attackscomparative to emergency, safety actions from edge and corner cases.
5.6 Future Roadmap of ADSecData
Short term aims of ADSecData platform are to addmore datasets from all 4 sub-categoriesof data types and different vehicle classes and increase the communities awareness ofthe platform. There will be a need to improve the development of both the front-endand back-end platform to enable secure data sharing and more intuitive user experience.Longer terms aims include a need to investigate metrics for intrusion detection solutionsfor AD,which is an AI-based system. TraditionallyMITRE ATT&CK is used for benchmarkingIDS solutions, and MITRE has a framework for AI, MITRE ATLAS. It would be interesting toevaluate how this would work in a practical use-case for AD.
5.7 Relation to Existing Work
There have been attempts by the community to build common infrastructure for AV cyber-security testing. PASS [115] and Simutack [79] are community simulation testing platforms.Whilst these platforms are valuable to the community and enable accessibility of simula-tion testing to researchers, the usage of community simulation testing platforms is limitedas real-world operators tend to use their own customised platforms. Furthermore, nei-ther of these studies focused on the data aspect of cybersecurity testing as part of theirscope. Lauinger et al. [167] developed an attack data generation framework for AVs. Ourwork enhances this contribution by integrating the concepts of scenario generation andsimulation and testing environments for data generation.

From a community data sharing perspective, there are initiatives such as Platform forInnovative use of Vehicle Open Telematics (PIVOT) [226], which is a U.S National ScienceFoundation project to create a open-source portal for vehicle telemetry data in the contextof cybersecurity. However, as of writing this portal was unavailable.
As aforementioned in Section. 5.4.1, there exists a diversity of datasets for legacy andconnected vehicles. There are also the studies of Vahidi et al. [296], Lampe &Meng [165]and Lee et al. [169] which evaluate cybersecurity data of legacy and connected vehiclesfor intrusion detection. However, to our knowledge, there are no existing contributionsthat focus on the autonomous technology stack of AVs.
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5.8 Summary
Within this section, we provide the AD cybersecurity testing communitywith foundationalframeworks for the development of structured and fuzz testing. The ADSecLang frame-work proposes a methods-based approach to translation of attack models from conceptto technical implementation. FuzzSense proposes an Ensemble architecture which alignswith the complexity of the AD software ecosystem as it enable fuzzing of multiple testingtargets using diverse techniques. The investigation into the value of data to AD cyber-security testing uncovered a fundamental sparsity of available datasets for cybersecurityand a lack of knowledge as to the value of datasets and methods for their use to developdefensivemechanisms and offensive toolsets for testing. Datasets are of predominant im-portance to develop a seed corpus inwhich to advancemore effective test strategies. Witheach of these contributions we provide a foundational base for the research communityto build-upon.
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6 Future Direction
AD software is transforming, utilising the advances in AI to control broader areas of the ve-hicular architecture such as connected interfaces and energy infrastructure (batteries andpower management). Further, LLMs extend the capability of AD to enable explainabilityof the automated driving actions and prediction of events in the driving environment. Fu-ture work is directed at developingmore robust software architectures to cyber attacks tosuit the needs of a complex distributed system environment with a code base of millionslines of code. An architectural approach is necessary as the contemporary focus to thedevelopment of defensive mechanisms centers on patching vulnerabilities resultant fromcyber attacks. The shortcoming of this approach is presumption that defense will outpaceinnovation of cyber attacks and due to the safety critical nature of AVs, a successful cy-ber attack has significant consequences for passenger safety. There are many areas whichoffer promising research directions:

• Development of software architectures for AVs which is based on security zoning toclassify areas as trusted and untrusted. Innovative transformation of in-vehiculararchitectures to include virtualisation of ECUs for resource sharing and enhancedsecurity configuration and management.
• Development of resilient and robust AD software to protect against semantic levelattacks.
• Development of secure protocols for intelligence battery management and powerconsumption.
• Secure connected protocols for vehicle-to-edge communication to enable resourcesharing between on-board and edge compute platforms.
Within the AD testing domain, a greater focus is required on automated testing meth-ods to enablemore efficient testing. As stated in the thesis, the lack of standardisedmeth-ods and tools for attack models and performance benchmarking result in considerablemanual effort to reverse-engineer available artifacts for further use. To advance the field,cybersecurity needs to provide open-source, community tools in the samemanner as thesoftware development and safety validation community.
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7 Conclusion
AD software comprises a complex ecosystem required to support a real-time, safety crit-ical system. AD software must support diverse hardware and technology platforms, in-tegration of mechanical, analog components with digital systems and execution of mas-sive parallel tasks in a time-constrainedmanner. Whilst software designers are concernedabout the robustness of this software to safety validation use-cases, there is a sparsityof research which investigates the design of this software for security. This thesis inves-tigated the design of AD software from the security perspective and focused on 3 criticalareas of concern. First, vulnerabilities of AD software to cyber attacks. Second, the affectsof cyber attacks to AD software. Third, approaches to cybersecurity testing.
Vulnerabilities of AD software to cyber attacks: AD software is vulnerable to seman-tic and system-level cyber attacks. The results of the experimental testing demonstratethat malicious data injection, spoofing and jamming attacks on LiDAR, GNSS, sensing datatransmission and low-level sensors are successful in the discovery and exploit of vulner-abilities in modular and end-to-end AD software architectures. The modular architec-ture, exhibited in the real-world case study vehicle, iseAuto, reveals weaknesses of therobustness of its OpenPlanner planning software, NDT-matching based localisation soft-waremodule and decision-control softwaremodules. Aweakness in one softwaremodulepropagates through the AD pipeline, ultimately affecting the decision-control and result inunsafe driving actions. The results of cyber attacks targeted at the camera perception ofthe end-to-end architecture of Baidu Apollo demonstrate a lack of training for adversarialexamples. The attacks on AWSIM and Baidu Apollo illustrate the limitations of relianceon singular sources of sensor input data. The vulnerabilities discovered in this thesis inthe aforementioned software, were reasoned by AD software designers and safety val-idation engineers as due to a lack of cross validation of input data and mechanisms forresiliency and recovery. he thesis introduces REACT, a proposed architecture for intrusionresponse in automotive systems. REACT contains methodology for response evaluation,and various response selection methods. We evaluate REACT on 2 diverse attack casesof an adversarial sample targeted at the camera sensor and information disclosure of theinfotainment system. The results demonstrates that the LP and SAW algorithms used foroptimal selection of response had sub-optimal performance for automated intrusion re-sponse in automotive, however, presented encouraging results for proposing follow-upresponses to vehicle security operations centre for further action.

Affects of cyber attacks to AD software: One of the aims of this thesis was to developintuitive methods for security testing that would enable the ability to discern affects tothe vehicle from cyber attacks. The thesis developed a method for combined safety andcybersecurity testing which fused the metrics of safety validation which evaluated thevehicles conformance to safety regulations and passenger comfort with attack model pa-rameters. This approach, which was utilised consistently on the real-world vehicle casestudy, produced valuable insights such as the role of scenario-based testing and tempo-ral aspects in affecting the severity of cyber attack behaviour consequence. The vehicledemonstrated more acute affects to cyber attacks during specific driving maneuvers suchas overtaking of passing vehicle and during time periods when the vehicle was attempt-ing the cut-in. Experts reasoned this as being due to engagement of more operations ofthe software as lane position transitioning and obstacle avoidance are more prominentduring these maneuvers. Further, there is a greater need for precision and less tolerancefor edge and corner cases. In the thesis’ investigation of AD software debugging, vehicledynamics are added to the evaluation metrics to engage a more intensive analysis of therelationship between cyber attacks, AD software and vehicle behaviour. We found that at-
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tacks to the localisation module could be traced to a vehicle dynamic affect, specifically, aGNSS spoofing and jamming attack resulted in an alteration of the vehicles yaw angle andmomentum, and its orientation as indicated from the position co-variance and altitude.Furthermore, these attacks triggered the OpenPlanner planning module to execute laneposition transitions with greater frequency. The thesis presented the ADAssure method,which involves analysis of the feedback from security testing to develop assertions on thebehaviour of the system characteristic with the system being cyber attack. These asser-tions can then be used for debugging and root-cause analysis. The analysis of low-levelsensor attacks, demonstrated how an attack at the system-level, an EMI attack, which al-tered the values of a steering sensor, could propagate through the sensing and actuationlayer through to the high-level control resulting in the sub-modules for the OpenPlannermodule, tasked with trajectory generation and waypoint following, generating decisionswith the downstream affect of unsafe vehicle behaviour. This analysis showed the benefitof the backstepping technique to pinpoint breakpoints in the software architecture werefailures were occurring.
Approaches to cybersecurity testing: Overwhelmingly, cybersecurity testing conductedby the research community uses off-the-shelf, open-source software which is not opti-mised to the driving maneuvers and operational environments for which it is tested. Oneof the primary innovations of this thesis is the development and usage of a testing tool-chain approachwhich utilised digital-twins containing the technology stack of a real-worldvehicle. The testing tool-chain approach was used to conduct agile and repeatable testingand regress test cases from a simulation environment to the real-world, physical vehicle.In the cyber test range evaluation, we explored the capability of a small factor testbedto support cybersecurity testing. We found that the small factor testbed could provideinsights into the vulnerability of the AD software to semantic-level attacks such as adver-sarial examples targeted at the camera perception and system-level attacks in the case ofa network DDoS on the teleoperation protocol and a SSH brute force attack. These diverseenvironments, digital-twin simulation, cyber-physical small factor testbed and real-worldvehicle, can be utilised to regress testing, with the simulation and small factor testbedoffering the benefits of agile and repeatable testing at minimal cost and effort. Anotherlimitation of the research community is the lack of knowledge as to the development ofattack models. With our contributions, ADSecLang and FuzzSense, we provide founda-tional frameworks for the development of community-driven structured adversarial test-ing and fuzz testing. ADSecLang contributes a method for the translation of attack modelsfrom concept to technical implementation. FuzzSense contributes a conceptual frame-work based on ensemble fuzzing, a modular approach where diverse testing targets anddiverse fuzzers can be utilised to gain a deeper penetration of the system. With both thesecontributions we presented initial results which demonstrated that these tools could beused to find vulnerabilities in the Baidu Apollo and AWSIM software frameworks. AD-SecData Platform further provides an initial contribution to enhancing testing methodsand tools through the collation and provision of AD cybersecurity datasets. The analysiscontained in this thesis found insufficient awareness of the community of the importanceof datasets and how data can be used to enhance testing tools, defensive mechanismsand guide efficient testing methods. ADSecData Platform provides a 4 phase data gener-ation process to generate datasets from testing. The initial ADSecData Platform providesdatasets and challenges for community participation.
Significance of thesis findings: The main contribution of this thesis is to study thedesign of AD software within the perspective of cyber attacks. We investigated this:
• via development of diverse attack models utilising a testing tool-chain to discover
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vulnerabilities in software used in a real-world, operational vehicle.
• via creation of methods able to characterise the affects of cyber attacks to the soft-ware and vehicular system.
• via debugging and root-cause analysis of cyber attacks to pinpoint vulnerable areasof the software architecture and analysis of incident response capability.
• via development of platforms and toolsets for structured and fuzz testing.
We provide these contributions in the backdrop of a community-wide effort to ensurethe robustness and reliability of AVs to cyber threats. This thesis provides tangible artifactswhich include the ADSecLang & FuzzSense code and the datasets from the experimentsas collated by the ADSecData Platform.
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Abstract
Cybersecurity Testing and Attack Propagation Analysis of Autonomous
Driving Software

Autonomous driving software needs to be robust and resilient to cyber attacks to en-sure the safety of passengers and road users. Software for highly automated vehicles inwhich driving actions are taken and supervised by software, are in developmental stage.Software developers and control system designers must contend with the complexity ofmassive parallel real-time system operations in a densely connected system-of-system en-vironment. As the software architecture of autonomous driving is developing, there area preponderance of challenges for cybersecurity. Software developers and control sys-tem designers require an understanding as to how cyber attacks discernibly propagatethroughout the autonomous driving architecture and affect the decision-making of thevehicle. Additionally, there is a need to explore methods for fingerprinting the effects ofcyber attacks and debugging failures of the autonomy caused by these attacks to pinpointvulnerabilities within the software. As autonomous driving systems are a dynamic, real-time system, it is imperative to explore options for intrusion response to cyber attacks, tomitigate or deter risks to safety. Furthermore, the development of testing tools to facili-tate agile and repeatable testing is of great importance. The objective of this thesis is todevelop new methods for cybersecurity testing of autonomous driving software. There-fore, new approaches to testing and evaluation, debugging, intrusion response and designof testing tools.
The thesis starts by developing a combined safety and cybersecurity testing method-ology. The methodology incorporates safety metrics (distance-to-collision, acceleration,braking, steering etc.), parameters for cybersecurity (attack weighting/density etc.) andsafety validation analysis to discern the effect to the autonomous driving software of cy-ber attacks. Utilising this approach to conduct experiments using a testing tool-chain,consisting of a digital-twin simulation testbed and a real-world testbed, vulnerabilities ofthe planning module for navigation and the localisation module used in a real-world au-tonomous driving system were found. Scenario-based testing, which focuses on an over-taking scenario, revealed the planning module was vulnerable to sensor manipulation at-tacks of the LiDAR and localisation sensors during the cut-in process, where the targetvehicle is executing the overtake of the passing vehicle. An attack triggered during thecut-in induces decision-making uncertainty which results in erratic, attempted overtak-ing and side collision to the passing vehicle. Electromagnetic interference attacks werealso conducted within a purpose-built hybrid testbed environment consisting of actua-tion processes and the high-level autonomous driving software. The evaluation of theelectromagnetic interference attacks demonstrated that an attack on the steering actua-tion sensor, with minimal noise, could propagate through the software architecture andexploit weakness in the sub-modules of the path planning software, consisting of trajec-tory generation and waypoint following. Attacks to the localisation software which wereconducted in a digital-twin simulation environment and also included a dataset from real-world GPS spoofing against an operational autonomous vehicle shuttle operating in thecity, revealed vulnerabilities in the design of the localisation module. During a GPS spoof-ing attack the autonomous vehicle shuttle lost localisation, and the localisation modulewas unable to hold a position in relative proximity on the map and this resulted in there-plotting of sub-optimal and unsafe trajectories. From this attack, the thesis developed,ADAssure, a methodology to debug autonomous driving software that utilises backstep-ping to pinpoint the root cause of failure. The ADAssure method comprises analysing
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the vehicle dynamics data (steering angel, yaw angle, yaw derivative, acceleration etc.) incomparisonwith sensing data, to develop assertions of the system under attack. The eval-uation, using diverse localisation attacks, found three assertions consisting of displace-ment of yaw angle within a time threshold that challenges the physical limitations of thesteering model, multiple trajectory transitions with a steering angle of 180 degrees anddeviation of altitude and position co-variance which result in a spike in velocity. These as-sertions can be used within the domain application of an autonomous vehicle shuttle forpublic transportation, to detect vehicle dynamic changes characteristic of cyber activity.The thesis introduces REACT, a proposed architecture for intrusion response in automo-tive systems. REACT contains methodology for response evaluation, and various responseselectionmethods. We evaluate REACT on two diverse attack cases of an adversarial sam-ple targeted at the camera sensor and information disclosure of the infotainment system.The results demonstrates that the algorithms used for optimal selection of response hadsub-optimal performance for automated intrusion response in automotive, however, pre-sented encouraging results for proposing follow-up responses to vehicle security opera-tions centre for further action. The thesis further contributes tools for autonomous driv-ing cybersecurity testing. FuzzSense and ADSecLang are an initial proof-of-concept toolsfor fuzzing and structured cybersecurity testing. FuzzSense is a conceptual architecturefor fuzzing diverse layers of the autonomous driving software, the simulator, the drivingscenario and the sensor data. ADSecLang provides a domain specific language for cy-bersecurity testing of autonomous driving software. The results of the experimentationfor FuzzSense, fuzzing LiDAR sensing data, found vulnerabilities in the Autoware.Universesoftware. ADSecLang developed cyber attack scenarios for manipulation of camera sens-ing which revealed vulnerabilities in the camera-sensing based perception module de-signed for Apollo software. To further contribute to the community, the data of all ofthe experiments conducted in this research are made available in ADSecData Platform, aconceptual community data sharing environment developed in this thesis to enhance au-tonomous driving cybersecurity testing and product development. This thesis contributesnumerous diverse testing methods and validates their utility through experimentation ona real-world, operational vehicle.

207



Kokkuvõte
Autonoomse sõiduki juhtimistarkvara küberturvalisuse testimine ja rün-
nakute leviku analüüs
Autonoomse sõiduki juhtimistarkvara peab olema vastupidav küberrünnakutele, et tagada reisijate ja liiklejate ohutus. Tarkvara autonoomsetele sõidukitele, mille juhtimistoimin-guid teostab ja kontrollib tarkvara, on arendusjärgus. Insenerid peavad mõistma, kuidas küberrünnakud mõjutavad autonoomsete sõidukite tarkvara. Kuna autonoomsete sõidukite tarkvara arhitektuur on arengujärgus, siis on palju küberturvalisusega seotud väljakutsed. Tarkvaraarendajad ja juhtimissüsteemide disainerid peavad mõistma, kuidas küberrünnakutega kaasnevad mõjud levivad üle kogu arhitektuuri ja mõjutavad sõiduki otsuste tegemist. Lisaks, on vaja uurida meetodeid küberrünnakute mõjude hindamiseks ja nendest rünnakutest põhjustatud tõrgetest taastumiseks, et teha kindlaks tarkvara haavatavused. Kuna autonoomne sõiduki juhtimistarkvara on dünaamiline reaalajas tegutsev süsteem, on hädavajalik uurida võimalusi küberrünnakutele reageerimiseks, et leevendada või ära hoida ohutusega seotud riske. Lisaks on väga oluline testimisvahendite väljatöötamine, et hõlbustada testimist. Käesoleva lõputöö eesmärgiks on välja töötada uued meetodid autonoomse sõiduki juhtimistarkvara küberturvalisuse testimiseks. See sisaldab uusi lähenemisviise testimisele ja hindamisele, rünnakutele reageerimisele ja testimisvahendite disainile. Lõputöö algab kombineeritud ohutuse ja küberturvalisuse testimise metoodika väljatöötamisest. Metoodika sisaldab ohutusmõõdikuid, küberturvalisuse parameetreid ja ohutuse valideerimise analüüsi, et kindlaks teha küberrünnakute mõju autonoomse sõiduki juhtimistarkvarale. Kasutades seda lähenemisviisi eksperimentide läbiviimiseks testimisprotsessis, mis koosneb digitaalse kaksiku simulatsiooni keskkonnast ja reaalse maailma simulatsiooni keskkonnast, leiti haavatavused planeerimismoodulis ja lokaliseerimismoodulis. Stsenaariumipõhine testimine, mis keskendub möödasõidu stsenaariumile, näitas, et planeerimismoodul oli haavatav anduri manipulatsioonile. Anduri manipulat-sioon põhjustab autonoomse sõiduki avarii. EMI rünnakuid testiti ka hübriid-testkeskkonnas. EMI rünnakute analüüs näitas, et planeerimismoodulil olid haavatavused. Rünnakud lokaliseerimistarkvarale, paljastasid haavatavused lokaliseerimismooduli disainis. GPS-signaali segamise rünnaku ajal kaotas autonoomne sõiduk GPS asukoha andmed. Sellest rünnakust lähtudes töötati välja ADAssure metoodika, mis kasutab tõrke algpõhjuse väljaselgitamiseks "alt üles" meetodit. ADAssure’i meetod hõlmab sõiduki andmete analüüsi, et töötada välja reeglid rünnatava süsteemi kohta. GPS-signaali segamise rünnaku analüüsi kaudu leiti 3 reeglit. Reegleid saab kasutada sõiduki turvalisemaks muutmiseks. Lõputöö tutvustab REACT-i - arhitektuuri küberintsidentidele reageerimiseks. REACT sisaldab küberintsidentidele reageerimise vastuse hindamise metoodikat. Hindame REACT-i, kasutades kahte rünnaku stsenaariumi. Tulemused näitavad, et REACT-i arhitektuuri kasutamine on kasulik. Lõputöö tutvustab kahte tööriista - FuzzSense ja ADSecLang - küberturvalisuse testimiseks. See lõputöö annab panuse arvukatesse erinevatesse testimismeetoditesse ja kinnitab nende kasulikkust.
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