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Abstract 

The COVID-19 pandemic has had an extraordinarily disruptive impact on the educational 

systems all over the world. The frequent suspension of classes and the near-total closures 

of thousands of educational institutions worldwide have created an insuperable 

impediment to conventional face-to-face classes, making remote learning the only 

feasible alternative. Unfortunately, learners’ facial expressions –– a valuable natural 

source of instant feedback to the learning experience for any educator –– are commonly 

overlooked during online sessions. Although modern Deep Learning (DL) systems 

classifying human emotions by facial expressions may effectively tackle this challenge, 

the general reasoning and decision-making of those systems often remain ignored by their 

evaluators.   

This study addresses this problem by proposing a robust, theory-driven, and case-oriented 

evaluation framework enabling preliminary selection of the facial expression recognition 

(FER) models that provide accurate, valid and trustworthy information on students’ 

learning experience in a web-based learning environment. Contrary to the existing 

evaluation approaches, the proposed framework goes beyond conventional performance 

metrics (e.g., accuracy), shifting the focus to detecting potentially inherent biases, 

evaluating algorithmic generalisation capabilities and models’ interpretability. By 

following the Design Science (DS) research methodology, this study also includes the 

controlled experiment that validates the proposed evaluation criteria and serves as an 

input for a new cycle of the artefact’s building and refinement. The proposed evaluation 

framework is arguably the first documented scientific attempt to enable comprehensive 

analysis and evaluation of FER models for their eventual deployment in web-based 

learning environments. 

This thesis is written in English and is 116 pages long, including 4 chapters, 52 figures 

and 10 tables. 

Keywords: facial expression recognition (FER), interpretability, explainable artificial 

intelligence (XAI), data biases, black-box models, evaluation framework.
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Annotatsioon 

COVID-19 pandeemia on avaldanud erakordselt häirivat mõju haridussüsteemidele kogu 

maailmas. Sagedane kontaktõppe peatamine ja tuhandete haridusasutuste peaaegu täielik 

sulgemine kogu maailmas on takistanud tavapärastele näost näkku tundide läbiviimist, 

muutes distantsõppe ainsaks võimalikuks alternatiiviks. Kahjuks jäetakse online-

sessioonide ajal kahe silma vahele õppijate näoilmed, mis on õpetajale väärtuslikuks 

allikaks õpikogemuse osas  kohese tagasiside saamiseks. Ehkki tänapäevased süvaõppe 

(DL) süsteemid, mis klassifitseerivad inimese emotsioone näoilmete järgi, võivad selle 

väljakutsega tõhusalt toime tulla, siis jäävad nende süsteemide üldised põhjendused ja 

otsustused tihti hindajate poolt tähelepanuta. 

Selles uurimuses käsitletakse just seda probleemi, pakkudes välja tugeva, teooria- ja 

juhtumipõhise hindamisraamistiku võimaldades näo tuvastamise (FER) mudelite 

eelvalikut, mis annab täpset ja usaldusväärset teavet õpilaste õppimiskogemuse kohta 

veebitundides. Vastupidiselt olemasolevatele hindamiskäsitlustele läheb kavandatav 

raamistik kaugemale tavapärasest jõudluse mõõdikust (nt täpsus), suunates fookuse 

võimalike korduvate  omaduste tuvastamisele, algoritmide üldistusvõime hindamisele ja 

mudelite tõlgendatavusele. DS-i uurimismetoodika põhimõtteid järgides hõlmab see 

uuring ka katset kontrollitud keskkonnas, mis kinnitab pakutud hindamiskriteeriumid ja 

on sisendiks artefakti ehitamisele ja täiustamisele uue tsükli jaoks. Kavandatav 

hindamisraamistik on vaieldamatult esimene dokumenteeritud teaduslik katse 

võimaldada FER-mudelite põhjalikku analüüsi ja hindamist nende võimaliku juurutamise 

jaoks veebipõhistes õpikeskkondades. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 116 leheküljel, 4 peatükki, 52 

joonist, 10 tabelit. 

Märksõnad: näoilmete tuvastamine (FER), tõlgendatavus, seletatav tehisintellekt (XAI), 

andmete eelarvamused, musta kasti mudelid, hindamisraamistik.
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1 Introduction and Problem Statement 

In 2020 and 2021, for thousands of education institutions around the world, distance 

learning became probably the only viable option to guarantee that the fundamental right 

to education is still indefeasible. Unfortunately, the global transition to remote learning 

has not been an example of an evolutionary transformation or gradual development of 

education. On the contrary, the abrupt and hasty decision to shut down education 

institutions and switch to online learning was a desperate attempt to curb the COVID-19 

pandemic. Although distance learning might help reduce social interactions and slow 

down the spread of the virus, its limitations may negatively affect students’ performance 

and academic success. In particular, learners’ emotions –– crucial for stimulating 

attention and triggering the learning process (Linnenbrink-Garcia & Pekrun, 2012) –– are 

commonly overlooked during online sessions.  

Given that students’ mental health and physiological well-being tend to worsen during 

the pandemic (Essadek & Rabeyron, 2020; Khan et al., 2020; Jiang, 2020; Kecojevic et 

al., 2020; Elmer et al., 2020), observing emotions of learners during online classes may 

be crucial for ongoing efforts of schools and universities to make better-informed 

decisions on the teaching strategies, modes of interactions and support. Due to recent 

developments in the field of Deep Learning (DL), a vast range of algorithms are now able 

to recognise human emotions based on facial expressions with astonishing accuracy 

(Benitez-Quiroz et al., 2016; Mollahosseini et al., 2016; Lopes et al., 2017; Zeng et al., 

2018). However, the decision-making of the DL models often requires comprehensive 

analysis and evaluation to become reliable, trusted and tailored to the needs of their end-

users (Samek et al., 2017; Holzinger et al., 2019; Guidotti et al., 2019; Rothman, 2020). 

Although some recent studies investigated the application of facial expression recognition 

(FER) algorithms in e-learning systems (El Hammoumi et al., 2018; Sun et al., 2018; 

Zhang et al., 2020;), most of them focused on performance and accuracy, vastly 

overlooking potentially inherent biases, generalisation and interpretability of the 

proposed models. This study aims to address this gap by proposing a robust, theory-driven 

and case-oriented evaluation framework enabling preliminary selection of the most 
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suitable FER models that can guarantee accurate, unbiased, and trustworthy information 

on students’ learning experience for any educator working in a web-based learning 

environment. 

This study’s intended audience includes two primary groups. The first group consists of 

FER algorithm developers and researchers concerned with robust algorithmic 

comparability and evaluation that go beyond the analysis of conventional performance 

metrics. The second group includes IT specialists tasked with the selection of a particular 

FER model for a web-based learning environment in which the risks implied by “black-

box” architecture and data-related biases are mitigated.



16 

2 Research Design  

As the ultimate goal of this thesis is to design, build and evaluate an innovative IT artefact 

— i.e., evaluation framework for FER models — this research is oriented towards Design 

Science (DS) research. In particular, the study follows several guidelines for Design 

Science in Information Systems Research outlined and proposed by Hevner et al. (2004). 

As suggested by the first guideline, the resulting evaluation framework is designed as a 

purposeful IT artefact intended to address the specific organisational problem in the 

domain of distance learning. |However, as noted in the original paper, the proposed 

framework may not and should not solve the problem per se (Hevner et al., 2004). 

Instead, the ultimate goal of the resulting IT artefact in DS is to generate knowledge and 

define practices applicable to the class of field problems that the research problem 

exemplifies.  

As recommended by the second guideline, the research is carried out by ensuring the 

relevance of the proposed evaluation framework to the specific business problem — i.e., 

valid and trustworthy facial expression analysis in web-based learning environments. In 

particular, the research focuses on the thorough problem formulation and in-depth 

investigation of the potential solutions that create solid premises for the initial design of 

the evaluation framework and ensure its relevance to the specific use-case. 

Moreover, by following the third guideline of DS methodology, this thesis lays the 

foundation for rigorous and comprehensive evaluation design. Given the subjects’ 

novelty, complexity and specificity, the artefact’s evaluation is carried out via the 

controlled experiment. Its primary goal is to study the proposed framework in the 

controlled environment, discover its potential shortcomings and validate its core 

components (i.e., evaluation criteria). The overall robustness and replicability of the 

experiment and subsequent evaluation are ensured by using publicly available algorithms 

and real training data – i.e., pre-trained FER models and datasets with labelled facial 

expressions.  
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Moreover, recognising that the design is inherently an iterative and incremental process, 

the evaluation results from the controlled experiment also serve as an input for a new 

cycle of the artefact’s building and refinement. On the one hand, it helps the proposed 

evaluation framework better meet the requirements and constraints of the problem it aims 

to solve. On the other hand, it views designing and building the IT artefact as a search 

process whose end goal is to discover an optimal solution. The latter is suggested by the 

sixth guideline proposed by Hevner et al. (2004) as an effective strategy to create feasible, 

good designs that can be later implemented in the business environment. 

2.1 Research Questions 

The core research question of the thesis is as follows:  

RQ: What evaluation criteria should be applied to FER models for their further 

adjustment to and deployment in a web-based learning environment, so that educators 

can receive valid and trustworthy information on students’ learning experience? 

As DS methodology suggests, answering this research question and proposing the initial 

design of the IT artefact (i.e., the evaluation framework) will require capturing the two 

seemingly conflicting perspectives. On the one hand, the framework should include 

genuinely technical criteria or requirements that permit comparisons and rigorously 

demonstrate the quality and efficacy of any FER model considered for the deployment in 

a web-based environment. For example, this study focuses on performance and 

interpretability as major technical properties of FER algorithms suggested by the 

scientific community. On the other hand, the proposed evaluation framework as an IT-

artefact should accommodate the needs and limitations imposed by the organisational 

context – i.e., peculiarities of the teaching-learning process and the role of emotions in 

this process, the nature of facial expressions and peculiarities of their recognition. 

Importantly, DS research recognises the inseparable influences mutually exerted by the 

technical domain and the organisational context. Therefore, the research findings related 

to the latter are bound to shape selection, use or interpretation of the technical design 

constructs from the former, and vice versa. 

To accomplish the goal of combining technical and non-technical perspectives into the 

solid and coherent artefact, four sub-questions have been framed. Each sub-question 
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seeks to describe a particular component of facial expression recognition as a technical 

or social phenomenon with its respective limitations and possibilities. This information 

will be used to discover existing as well as to infer new evaluation criteria for FER models 

in a web-based learning environment.  

SQ1: How emotions of learners may influence their learning experience and academic 

performance in a web-based learning environment? 

Based on a thorough literature review, the presumed link between students’ emotions and 

academic performance will be investigated. In particular, objective evidence on the role 

of specific emotions in the learning process will be summarised to be used for inferring 

both technical and non-technical evaluation criteria for FER algorithms selection. 

SQ2: What is the taxonomy of modern FER algorithms? 

Based on a comprehensive literature review, distinct characteristics and generic 

classification of various FER algorithms will be identified. The discovered advantages 

and shortcomings of the particular groups of FER algorithms for web-based learning 

environments will be translated into the specific evaluation and selection criteria. 

SQ3: What are the tools and methods of Explainable AI (XAI) suitable for the validation 

of FER models given their algorithmic complexity and high-dimensional input? 

Based on a thorough literature review, general taxonomy of the most relevant XAI tools 

and methods will be investigated. The research findings in this Section (3) will become a 

theoretical basis for deciding what XAI techniques can be used to validate FER models’ 

rationale and decision-making for each class of emotions. 

SQ4: What are the evaluation criteria currently used to evaluate different FER 

algorithms? 

Based on a comprehensive literature review, this Section (4) will provide an overview of 

the well-established evaluation metrics and criteria used for the variety of FER 

approaches and algorithms discovered in Section 2. The identified criteria will become 

the backbone of the proposed evaluation framework balancing scientifically proven 

conventional measures with those inferred in Sections 1, 2, 3.  
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Figure 1 illustrates how different research stages and components defined by the DS 

methodology were integrated into this research. 

 

Figure 1. Research framework oriented towards the Design Science research methodology. 

2.2 Limitations  

This thesis focuses primarily on the thorough problem formulation and in-depth 

investigation of the potential solutions that create solid theoretical premises for the initial 

design of the evaluation framework. The research also contains the controlled experiment 

that attempts to challenge the initial, theory-driven design of the proposed framework and 

adjust it to the use case based on empirical evidence. However, due to the temporal 

limitations of this research, this thesis does not include multiple cycles of the framework’s 

design refinement and evaluation that seem indispensable for ensuring the artefact’s 

generality, validity, reliability and utility.  

Moreover, the specificity and novelty of the research problem make the involvement of 

practitioners with the relevant domain expertise extremely valuable and yet challenging. 

Considering the imposed time limit and complexity of this research, the direct and 

comprehensive inclusion of the practitioners’ perspective fall naturally out of its scope. 

Therefore, the resulting evaluation framework should be regarded as a generic construct 

that undoubtedly requires further adjustment to the specific environment and 

organisational context. Moreover, in the absence of any qualitative or quantitative input 

from the domain experts, the proposed framework neither includes any scoring nor 

assigns weights to any particular evaluation criteria. Furthermore, as this research deals 

with the highly novel and insufficiently studied realm of Explainable AI, even the most 
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rigorous theories and assumptions ingrained in the evaluation framework should be 

repeatedly tested and be subject to users’ assumptions, expectations, and knowledge. 

Additionally, the controlled experiment itself includes several significant limitations. 

Firstly, considering the absence of funding for the research, the controlled experiment 

does not include analysis and evaluation of commercial FER models available on the 

market. Secondly, the controlled experiment does not include any FER models trained to 

distinguish compound emotions based on Auction Units (AU) determined in FACS. This 

particular limitation is imposed by the relatively small number of publicly available 

datasets with the annotated AU. The latter would be an unavoidable impediment to testing 

the pre-selected FER on different unseen data. Moreover, to enable a profound analysis 

of the models’ decisions via various attribution methods during the controlled experiment, 

this thesis utilises the DeepExplain1 framework – the only framework for XAI in Python 

supporting a wide range of gradient-based and perturbation-based local explanation 

techniques. As DeepExplain is compatible with Tensorflow and Keras libraries only, the 

FER models trained and compiled with different libraries (e.g., PyTorch) were dismissed 

for the experiment. Thus, further research and more comprehensive testing may reveal 

other weaknesses or ambiguities of the proposed evaluation framework that were 

unnoticed during the controlled experiment.  

Last but not least, the primary goal of the proposed evaluation framework is to provide 

robust theory-driven and case-oriented criteria enabling effective comparison, filtering, 

and selection of the most suitable FER models for potential deployment in web-based 

environments. However, the given framework assumes that even the best performing 

models with perfect criteria satisfaction need further comprehensive adjustment to 

specific organisational and user needs. Thus, the proposed evaluation framework may be 

unsuitable for organisations or individuals looking for fully-fledged FER systems with an 

option of immediate deployment. 

                                                
 
1 Available at https://github.com/marcoancona/DeepExplain 
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3 Related Work 

3.1 Emotions and Learning 

Section 3.1 aims to explore and provide scientific evidence that forms the basis for an 

answer to the first research sub-question (SQ1). Essentially, this Section investigates the 

literature on the presumed link between students’ emotions and academic performance. 

The evidence on the role of specific emotions in the learning process discovered in this 

Section is summarised and translated into specific evaluation criteria in the proposed 

framework (see Section 4). 

The academic community has extensively explored the presumed link between students’ 

emotions and academic performance. Previous studies have shown compelling evidence 

that emotions do play a crucial role in students’ learning outcomes (Linnenbrink-Garcia 

& Pekrun, 2012). For instance, Pekrun et al. (2011) suggest that negative emotions such 

as anger, anxiety, shame, hopelessness, and boredom are linked to students’ use of 

learning strategies, self-regulation of learning, and academic performance. Skinner et al. 

(2008) generally confirm that behavioural and emotional components are positively 

correlated, therefore, students’ disengagement, withdrawal, and academic failure can 

result from negative emotions associated with learning. Williams et al. (2013) investigate 

how students’ experience of positive emotions in the classroom environment can 

stimulate and enhance learning. Their findings indicate that students who experience 

positive emotions during classes are likely to be academically successful, dedicating more 

resources to studying, attending classes, participating in classroom discussions, and 

engaging in extracurricular activities. Um et al. (2012) argue that positive emotions can 

increase motivation, satisfaction, and perception toward the didactic materials. 

Some studies also discuss how emotions can affect memory storage and retrieval, 

attention and problem-solving capabilities. Nielson & Lorber (2009) evaluated that 

emotional arousal experienced by students after learning new information contributes to 

better information retention and retrieval. A recent study by Vogel & Schwabe (2016) 

concludes that negative emotions such as emotional stress or confusion have far-reaching 
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consequences on students’ ability to learn and remember academic material. Timely 

identification of emotional instability among students may help educators personalise 

approaches or tailor training programmes to prevent stress-induced impairments. 

Several groups of researchers have also investigated how teachers’ communication styles 

and behaviours are associated with the emotions that students experience in the 

classroom. Maresh (2007) was one of the first researchers who studied how students react 

to various classroom communication styles. He explores that students experience 

negative emotions and try to save face by changing majors or avoiding future interactions 

with the instructor who enacts heartful messages. Mazer et al. (2014) identify that students 

who deal with teachers lacking in clarity and communication competence are more likely 

to report an increased level of deactivating emotions such as shame, boredom, 

hopelessness, and a heightened level of activating emotions like anxiety and anger. 

Conversely, Skinner et al. (2008) present that in situations when teachers communicate 

in a supportive manner, learners report higher levels of emotional engagement and lower 

levels of boredom, frustration, and anxiety. Moreover, Titsworth et al. (2013) demonstrate 

that active listening, emotional support and clarity in teachers’ communication behaviour 

tend to arouse positive emotions such as enjoyment, hope, and pride.  

It is worth mentioning that learning experience during online sessions may show different 

emotion dynamics when compared to the dynamics resulting from traditional classroom 

instructions. As such, online or distance learning may differ from the traditional one due 

to temporal, spatial, and technical conditions. Students who study in web-based learning 

environments must exercise a higher degree of self-regulation to succeed academically. 

They have to manage the time, place, and progress of their learning more effectively and 

to a greater extent than their classroom counterparts (Dabbagh & Kitsantas, 2004). 

Moreover, as the success in online studies depends largely on self-evaluation and self-

management of a learner (Yukselturk & Bulut, 2007), the importance of providing timely 

and meaningful feedback and encouragement by educators increases (Eom et al., 2006).  

Although the difference between online learning and learning in the traditional classroom 

environment for students is significant, little scientific research has been conducted to 

show the link between students’ emotions and learning outcomes in web-based 

environments. Artino Jr & Jones II (2012) addressed this research gap by investigating 

the relations between several achievement-related emotions – i.e., frustration, boredom, 
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and enjoyment – and some self-regulated learning behaviours – i.e., elaboration and 

metacognition – in a fully online course. Their findings reveal that online learning 

environments rely on the same theoretical and empirical evidence from the prior research 

in traditional classrooms (Pekrun et al., 2006; Pekrun et al., 2002). Additionally, Bosch 

& D’Mello (2017) call upon broader use of the so-called affect-aware learning 

technologies in web-based learning environments to detect specific emotional states of 

learners and identify when an intervention from instructors is needed. In particular, the 

findings presented in their paper suggest that the above-mentioned technologies should 

focus on recognising confusion, engagement, frustration, curiosity, and boredom as the 

most frequent and informative emotional states. 

3.2 Facial Expression Recognition 

Section 3.2 thoroughly investigates the taxonomy of modern FER algorithms to provide 

an answer to the second research sub-question (SQ2). In particular, the scientific literature 

reviewed in this Section identifies distinct characteristics and generic classification of 

various FER algorithms. The discovered advantages and shortcomings of the particular 

groups of FER algorithms for a web-based learning environment are translated into 

specific evaluation criteria in the proposed framework (see Section 4). 

According to various studies, nonverbal behaviour and communication are at least as 

important as verbal (Cuddy et al., 2015; Jacob et al., 2016). Among several nonverbal 

components, facial expressions may arguably be the most explicit in revealing an 

individual’s actual emotional state. Indeed, a brisk nod, a broad smile or slightly lifted 

eyebrows can convey precise information about human emotional states, intentions and 

mood (Ochs et al., 2015). Moreover, ample evidence on the universality of facial 

expression of emotions (Matsumoto, 2001; Elfenbein & Ambady, 2002) also sparked 

scientific interest and gained scrupulous attention in the field of computer vision and 

Machine Learning (ML). As a result, various facial expression recognition (FER) systems 

have been proposed to encode expression information and features from facial 

representations. 

According to the survey conducted by Li & Deng (2020), most of the FER systems can 

identify six prototypical emotions initially suggested by Ekman and Friesen in 1971. 

Those are anger, disgust, fear, happiness, sadness, and surprise. Some of the systems also 
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include contempt that was also proposed by Ekman & Friesen (1986) as another not 

culture-specific basic emotion. Although some complex models (Du & Martinez, 2014; 

Zhang et al., 2017) based on the Facial Action Coding System (FACS) (Ekman, 1997) 

can distinguish compound emotions, the categorical models that limit human emotions to 

“discrete basic emotions are still the most popular perspective for FER, due to its 

pioneering investigations along with the direct and intuitive definition of facial 

expressions” (Li & Deng, 2020). 

Generally, all FER systems can be divided into two groups by the approaches used for 

feature extraction and classification. The so-called conventional or traditional FER 

systems have a clear prediction process flow consisting of three distinctive steps: (1) face 

and facial component detection, (2) feature extraction, and (3) input classification. The 

major difference between more recent – deep learning (DL) – methods and traditional 

FER systems lies in the fact that feature extraction schemes and classification methods in 

those DL models are not handcrafted (Ko, 2018). For instance, the Local Binary Patterns 

(LBP) (Shan et al., 2009), the LBP On Three Orthogonal Planes (LBP-TOP) (Zhao & 

Pietikainen, 2007), Local Phase Quantisation (LPQ) (Chan et al., 2009), Histogram of 

Oriented Gradients (HOG) (Carcagnì & Distante, 2015), or the Non-Negative Matrix 

Factorisation (NMF) (Buciu & Pitas, 2004) belong to the group of the handcrafted feature 

descriptors widely used in traditional FER systems. Figure 2 illustrates the differences in 

training between conventional and DL FER models. 

 

Figure 2. Process flow diagram depicting the training process for conventional and DL FER models 
(Perez, 2018). 
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In the meanwhile, due to the dramatic increase in computing power, speed-up gains 

obtained with powerful GPU cards and recent improvements in deep learning 

methodology (LeCun et al., 2012), FER based on deep learning techniques have attracted 

more academic attention. Moreover, since the 2010s, more training data have become 

available (Li & Deng, 2020). Hence, recent FER systems empowered by multi-layered 

structure have demonstrated greater accuracy and performance when compared to the 

conventional FER algorithms (e.g., Szegedy et al., 2015; Jung et al., 2015; Hamester et 

al., 2015). In addition, as deep neural networks (DNNs) have the ability to extract relevant 

features from the training data without human tuning, they succeed in learning more 

implicit patterns of the input and thus perform better in real-world scenarios. 

3.2.1 Deep-Learning Based FER Approaches 

Most of the state-of-the-art DNN algorithms for FER can be divided into static-based 

FER and sequence-based FER algorithms. In static-based FER systems, a feature vector 

contains numerical information about the current input only – i.e., a single image or a 

video frame with recorded facial expression. Conversely, sequence-based FER systems 

presume temporal correlation among consecutive frames of a video, so they analyse and 

recognise the expression based on multiple frames’ input. Sequence-based FER systems 

are also often called dynamic (Dong et al., 2018; Sun et al., 2016; Sun et al., 2020). 

Although a comparatively higher number of the deep FER models focus on the analysis 

of static images (Revina & Emmanuel, 2018), in the real-world scenarios – where learners 

display facial expressions dynamically, e.g., from slightly subtle to explicit, and vice 

versa – applying DNNs to video data may provide a far more accurate picture on emotion 

dynamics to educators. Therefore, video- or sequence-based deep FER algorithms (e.g., 

Hasani & Mahoor, 2017; Zhang et al., 2019;) may better analyse learners’ facial 

expressions at a particular moment as well as their variations over time. Li & Deng (2018) 

group sequence-based deep FER algorithms into three categories: FER with frame 

aggregation, expression intensity-invariant and spatiotemporal FER systems.  

In a FER system with frame aggregation, each frame of a sequence gets an n-class 

probability vector. These probabilities are then aggregated to create a fixed-length 

representation for each video. As the length of a sequence cannot be known, two 

aggregation techniques have been proposed to ensure that a fixed-length video descriptor 

is generated: frame averaging and frame expansion (Kanou et al., 2013; Kahou et al., 
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2016). Bargal et al. (2016) suggest generating a feature vector of the entire video sequence 

with a statistical encoding module (STAT). In particular, frame aggregation is achieved 

by computing the mean, variance, minimum, and maximum of each frame’s feature 

vectors.  

One obvious limitation of the proposed aggregation methods is that they regard the 

importance of each frame for FER equally. In reality, a video or an image set may contain 

frames with facial expressions captured under different conditions (e.g., varying lighting 

conditions, head poses, camera angles, different occlusions). For better performance, an 

algorithm should select the more discriminative frames and downweigh the importance 

of frames with low expression density for the final recognition (Yang et al., 2017). Meng 

et al. (2019) introduce Frame Attention Network (FAN) that extracts frame-level features 

from a video and aggregates them via a weighted averaging. Due to discriminative frame 

selection, fixed-size feature representation of the video fragments may become more 

accurate and informative. Moreover, computational simplicity and fair accuracy of frame 

aggregation methods make them highly efficient and quite popular.  

However, as frame aggregation techniques focus on recognising high-intensity (i.e., peak) 

expressions and discard lower-intensity (i.e., non-peak) expressions, they may fail to 

classify the emotions of learners whose facial expressions are less intense. Moreover, as 

non-peak expressions are more common than peak expressions, it may be even more 

important to distinguish them for higher accuracy and better discriminative capabilities. 

Expression intensity-invariant networks address this challenge by training on data 

samples with different expression intensities indicated in input to exploit the intrinsic 

correlations between peak and non-peak facial expressions. Zhao et al. (2016) propose a 

peak-piloted deep network (PPDN) architecture, which is based on a heuristic that peak 

and non-peak facial expressions from the same subject often show significant visual 

correlations (e.g., similar face attributes) and can naturally contribute to the recognition 

of one another. The authors embed the evolution of expressions into the PPDN framework 

by applying the L2-norm loss function to the feature maps of non-peak and peak 

expression images. Then, the PPDN is trained with a novel back-propagation algorithm 

– peak gradient suppression (PGS) –  that “drives the feature responses to non-peak 

expressions towards those of the corresponding peak expressions, while avoiding the 

inverse”. As a result, the proposed algorithm performs intensity-invariant FER by 

effectively recognising the most frequent non-peak expressions.  
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Yu et al. (2018) propose a refined version of the PPDN to boost recognition of low-intense 

expressions and fundamentally improve overall FER accuracy. The authors introduce a 

deeper cascaded peak-piloted network (DCPN) that takes advantage of a deeper and 

larger architecture, capturing the subtle details of week (i.e., non-peak) expressions with 

higher accuracy. A new integration training method – cascaded fine-tuning – is proposed 

to prevent the enlarged network architecture from overfitting. Nevertheless, even though 

expression intensity-invariant networks may demonstrate adequate performance, they 

require prior knowledge of expression intensity, which may be quite challenging to collect 

and label in real-world scenarios. 

When compared to frame aggregation and expression intensity-invariant networks, deep 

spatiotemporal networks can encode temporal dependencies in consecutive frames and 

learn spatial features along with temporal features. The deep learning community has 

established several tools that capture both temporal and spatial features for sequence-

based FER. The most popular are those enabled by Recurrent Neural Network (RNN), 

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and 3D 

Convolutional Neural Network (Byeon & Kwak, 2014). Ebrahimi Kahou et al. (2015) 

model the spatiotemporal evolution of facial expressions using an RNN combined with a 

Convolutional Neural Network. The higher layer representation from the CNN provides 

structural information of a frame, and the RNN models the spatiotemporal evolution of 

the structure over time. Kim et al. (2019) propose a spatiotemporal learning method that 

also incorporates qualities of expression intensity-invariant networks. In particular, they 

suggest using the CNN with representative expression-states (i.e., onset, onset to apex 

transition, apex, apex to offset transition and offset) to learn spatial feature representation 

of the facial expressions. In order to capture the facial expression dynamics, temporal 

feature representation of the facial expression is learned via the LSTM. As a result, the 

proposed method can generate discriminative spatiotemporal feature representations that 

improve FER performance at different expression intensities. 

Additionally, some researchers expand a 2D structure of CNN to a 3D structure for 

dynamic FER (Byeon & Kwak, 2014; Ji et al., 2012). Due to 3D convolution, both spatial 

and temporal features from video data are extracted, thus capturing motion information 

in video streams. Li et al. (2019) propose a FER model that also builds upon 3D-CNN 

and additionally incorporates an optical flow for more accurate micro-expression 

detection in sequence-based FER. Hasani & Mahoor (2017) introduce a 3D Inception-
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ResNet architecture accompanied by an LSTM unit. The authors also extract and 

incorporate facial landmarks, which improve the recognition of subtle changes in the 

facial expressions in a sequence. As we see, RNN and its variations (e.g., LSTM) along 

with 3D-CNN are apparently the most well-studied networks for learning spatiotemporal 

features. Nevertheless, the performance of these networks is somewhat poor. Moreover, 

training and utilising such extensive and complex networks is computationally expensive. 

3.3 Explainable Artificial Intelligence (XAI)  

Section 3.3 provides an answer to the third research sub-question (SQ3) by exploring the 

XAI tools and methods suitable for the validation of FER models given their algorithmic 

complexity and high-dimensional input. Essentially, this Section identifies the general 

taxonomy of the most relevant XAI tools and methods and shortly discusses their main 

advantages and shortcomings. The research findings in Section 3.3 form a theoretical 

basis for deciding what XAI techniques can be used to validate FER models’ rationale 

and decision-making via the proposed evaluation framework (see Section 4). 

The exponential development in machine learning and artificial intelligence (AI) has 

resulted in numerous complex algorithms that transform, disrupt or give impetus to the 

emergence of entirely new industries and sectors. As argued earlier, deep learning models 

for FER have become remarkably accurate and at times successfully surpass human 

performance. However, the difficulty of explaining the decisions made by any modern 

DNN has grown proportionally to the progress made. Due to inherent multi-layer 

architecture and consequent non-linearity, state-of-the-art FER systems become highly 

non-transparent. Essentially, developers of such FER systems may not determine with 

certainty what information in the input data makes these algorithms arrive at specific 

predictions. Thus, these models are typically seen as “black boxes”. To address this lack 

of transparency, a completely new field of research began to emerge – Explainable AI.  

3.3.1 Definition and Nature of XAI 

Explainable AI (XAI) as a term was first coined and described by Van Lent et al. (2010), 

who determined that XAI systems “can explain their behaviour either during execution 

or after the fact”. Nevertheless, there is no standard and generally accepted definition of 

Explainable AI. Sometimes this term may generally refer to some initiatives, projects, 
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and efforts seeking to achieve higher transparency, interpretability and trust in the AI-

enabled systems. According to David Gunning from DARPA (2017) – an organisation 

that lavishly funds XAI-related research – XAI aims to “produce more explainable 

models while maintaining a high level of learning performance (i.e., 

prediction/classification accuracy); and enable human users to understand, appropriately, 

trust, and effectively manage the emerging generation of artificially intelligent partners”. 

Unfortunately, along with somewhat ambiguity around the term XAI, there is no 

universally agreed definition of interpretability. Lipton (2018) suggests that AI 

interpretability reflects several distinct ideas and concepts that may refer to trust, systems’ 

architecture or extensive explanations behind each prediction. Doshi-Velez & Kim (2017) 

argue that interpretability in the context of ML is “the ability of a system to explain or to 

present its predictions and decisions in understandable terms to humans”. Therefore, the 

interpretability of FER in the context of web-based learning environments should be 

determined by and tailored to its end-users, e.g., educators. 

In academic literature, interpretability and explainability are usually used as synonyms. 

For instance, Doran et al. (2017) use terms understanding, explaining and interpreting 

often interchangeably. Nevertheless, some researchers emphasise certain differences. 

Montavon et al. (2018) suggest that an interpretation is the mapping of abstract concepts 

into a domain that humans can understand (e.g., sequences of words or arrays of pixels), 

whereas an explanation is a collection of features of the interpretable domain (e.g., 

specific pixels displayed as a heatmap) that have contributed for a given input to reach a 

decision (e.g., classification). Rothman (2020) proposes a definition that goes pretty much 

in line with Montavon et al. (2018). In particular, explaining means making something 

understandable and plain to see. In contrast, interpreting as a process goes beyond 

explaining and provides a user with the underlying meaning of classification. In that view, 

the European Union’s General Data Protection Regulation1 (GDPR) focuses primarily on 

explainability, as it obliges a business using personal data for automated processing to 

explain how the system arrives at specific decisions. Freitas (2014) uses 

comprehensibility as another synonym for interpretability, and Lipton (2018) refers to 

                                                
 
1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 
protection of natural persons with regard to the processing of personal data and on the free movement of 
such data, and repealing Directive 95/46/EC (General Data Protection Regulation). 
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interpretability as an understanding of the model’s inner logic. However, none of the 

definitions mentioned above is restrictive or specific enough to provide formalisation. 

Therefore, their use depends on the context, author’s preferences and expertise (Došilović 

et al., 2018).   

3.3.2 Rationale Behind Building XAI 

As the most recent AI solutions based on neural network architectures are becoming 

more efficient and accurate, their adoption is inevitably spreading across sectors – from 

private companies to governments. (Ammanath et al., 2020). For many ML models 

deployed today – in customer segmentation or personalised recommendation services – 

interpretability may not be a key requirement as long as these systems perform well and 

effectively meet business needs. In case of some failures – e.g., Netflix recommends a 

film that one may not enjoy or a search engine does not seem to find a website of one’s 

interest – the consequences are not disastrous. Conversely, for applications where one’s 

safety or monetary interests are in place, the situation may be quite different. For 

instance, relying unquestionably on a black-box system’s decisions in medical (Reddy 

et al., 2019), banking (Lui & Lamb, 2018), judiciary (Sourdin, 2018), or autonomous 

driving (Fagnant & Kockelman, 2015) domains may have detrimental repercussions. 

Understanding the evidence and underlying logic behind each algorithm’s decision 

becomes essential as the output predictions may not be obviously wrong (Goebel et al., 

2018).  

The transparency issues related to DL gain even greater significance as some black-box 

systems can make decisions on possibly unethical grounds, e.g. when they accurately 

predict a person’s weight, health (Kocabey et al., 2017) and sexual orientation (Wang & 

Kosinski, 2018) based on social media images, ethnicity and intelligence by likes on 

Facebook (Kosinski et al., 2013), score probability of committing a crime or quitting a 

job (Zhao et al., 2018). Hence, the lack of transparency in “how” and “why” such 

algorithms reach decisions may be a limiting or even disqualifying factor for their 

further use and adoption. 

A. XAI for Trust and Confidence.  

There is a unanimous consensus within the academic community that the ability to 

verify an AI system’s decisions is an essential prerequisite for fostering trust and 
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confidence among its users (Hengstler et al., 2016). This assumption is valid in 

situations where some AI system performs a supportive role (e.g., virtual assistants such 

as Apple’s Siri or automated grammar checker Grammarly) and situations where it takes 

decisions without a human in the loop (e.g., autonomous driving). In the first case, 

explanations enable the user to compare different alternatives by describing them in 

detail and providing justification behind the decision. The primary purpose of providing 

such explanations is to give the user confidence in the decisions of the system. Notably, 

the users may not be interested in opening the black box and learning its inner workings; 

instead, they may need to know why it is a reasonable decision (Pieters, 2011). In the 

second case, where the user partly or entirely relinquishes control, explanations may 

help comprehend how and in which scenarios a system reaches a specific decision. For 

instance, if the explanations confirm that some DNN accurately mimics human logic – 

i.e., it is commonly accurate whenever humans are accurate – then it can engender trust 

due to the absence of risks related to relinquishing control. Conversely, if the 

explanations reveal that a model fails to perform as expected for inputs that humans 

classify accurately, its adoption or autonomous use should be questioned (Lipton, 

2018).  

Besides, the actual need in providing explanations may also have a social dimension. 

Heath & Bryant (2013) suggest that human interactions heavily rely on understanding the 

rationale behind our decisions. Moreover, trust is an essential prerequisite for overcoming 

human perceptions of risk and uncertainty to accept novel technologies (Gefen et al., 

2003). Thus, making AI systems transparent and interpretable via XAI tools may help 

gain trust for their further adoption and use. Explanations and extra information provided 

along with a model’s decisions can also ensure and maintain two-way interactions that 

are crucial for building up trust among its end-users in a gradual manner (Li et al., 2008). 

Based on the finding of Rempel et al. (1985), Lee & See (2004) suggest that trust 

stemming from an understanding of the motives of an autonomous system will be less 

fragile than trust built on the reliability of the system’s performance. The scholars also 

conclude that designing interfaces that provide operators (i.e., users) with information 

regarding the purpose, process, and performance of automation could help build and 

maintain trust in the long run. 

B. XAI as Legal Prerequisite.  
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AI is already making its way into every aspect of our life, from boosting our analytical 

abilities and streamlining business processes to unleashing automation potential in 

decision-making and production. As ML algorithms take on new roles, they pose 

numerous questions related to their ethical, social, and economic impact (Mittelstadt et 

al., 2016). The issues of responsibility gap (Matthias, 2004), opaque determination of 

liability (Fagnant & Kockelman, 2015; Vladeck, 2014) or concerns about anti-

discrimination and fairness (Hajian et al., 2016; Mehrabi et al., 2019; Osoba & Welser, 

2017) have sparked heated debate in the academic community. Most of them call for new 

policies and regulations.  

Some of the countries have already introduced new regulations that enshrine a right to 

receive an explanation for algorithmic decisions. For instance, in April 2016, the member 

states of the European Union (EU) adopted the GDPR. The Articles 13, 14 and 22 of this 

Regulation stipulate that, when some automated processing or profiling takes place, a data 

subject (i.e., a natural person to whom data relates) has a right to receive an explanation 

of the algorithmic decision and “meaningful information about the logic” (Goodman & 

Flaxman, 2017). France adopted Loi pour une République numérique1 (e.g., the Digital 

Republic Law), which goes beyond the GDPR and provides an explicit framework for 

explaining decisions made by algorithms. In particular, a data subject can access 

information about the classification parameters, and where appropriate, their weighting 

applied to the individual case of the person concerned (Edwards & Veale, 2018). These 

examples demonstrate that citizens’ right to receive an explanation for decisions reached 

by some AI-powered system implies new design requirements such as human 

interpretability and transparency. If, as expected, the current trend on a more 

comprehensive AI regulation persists, there will be a pressing need for almost any 

algorithm in place to operate within this new legal framework. 

C. XAI for Verification and Validation.  

Besides social and legal reasons, an explanation can become a useful tool to verify a 

peculiar algorithmic decision as well as validate an entire AI-empowered system. As 

argued earlier, understanding the evidence and underlying logic behind each algorithm’s 

                                                
 
1 Available at https://www.economie.gouv.fr/republique-numerique 
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decision becomes essential when testing whether the learned strategy is valid and 

generalisable or whether the model reaches its decision due to some spurious correlation 

in the training data. In psychology, the reliance on such spurious correlations is generally 

called the Clever Hans phenomenon (Pfungst, 1911). The phenomenon owes its name to 

a horse named Clever Hans that could supposedly perform arithmetic and thus attracted 

considerable scientific attention in the 1900s. As it turned out later, strikingly high 

accuracy – roughly 90% of correct answers – was due to Hans’ ability to derive the right 

answers from the questioner’s posture and facial expression. Lapushkin et al. (2016) have 

recently demonstrated analogous behaviour in state-of-the-art AI systems. Due to one of 

the XAI tools, they showed how the algorithms learned some spurious correlations in the 

training data, and similarly to Hans, predicted correct answers based on the wrong 

reasoning. For instance, the authors proved that the PASCAL Visual Object Classes 

(VOC) competition’s winning method often failed to detect the presence of objects of 

interest in the image but instead utilised correlations or background details to generate 

correct classification. In particular, the model recognised trains and boats due to the 

presence of railroads and water on the bottom of the image. Moreover, the algorithm 

could recognise a horse by the presence of a copyright tag that was discriminative of this 

class in the training data. Interestingly, both organisers and participants of the challenge 

had overlooked these tags in the dataset for many years.  

Ribeiro et al. (2016), known for proposing Local Interpretable Model-agnostic 

Explanations (LIME), used Google’s pre-trained Inception neural network (Szegedy et 

al., 2015) to train on an image dataset wolves and huskies. The researchers show that the 

DNN distinguished the classes “Wolf” and “Husky” mostly by the presence of snow or 

light background in the image. Another striking research was carried out by Mordvintsev 

et al. (2015), who discovered that some neural networks trained to classify different 

images had quite a bit of the information needed to generate respective visual 

representations of the learnt classes. One particular experiment showed that the DNN 

learned to recognise dumbbells along with a muscular arm lifting them. The authors 

demonstrate that the network failed to learn dumbbells as an independent concept and 

could consequently underperform in real-life scenarios. Overall, these cases support the 

view that XAI helps detect implicit biases in a model or data. Moreover, they illustrate 

that explanations provided for a single input image can also reveal the classifier’s 

misbehaviour (e.g., an extreme focus on background details such as snow or a 



34 

watermark). Thus, understanding a model’s inner workings and logic help validate that a 

given product fulfils all the goals and expectations. Additionally, it is a powerful tool to 

identify some room for the algorithm’s improvement. 

Apart from ensuring that some AI system is the “right” product, the model’s verification 

and validation via XAI tools can also lead to new discoveries. As argued earlier, DNN 

can considerably exceed human performance in discovering patterns and inter-

dependencies. Therefore, explaining and interpreting what features an AI system uses for 

classification, can be more valuable than the classification itself, because it may reveal 

information or scientific insights about the previously unnoticed phenomena or 

dependencies (Samek & Müller, 2019). 

3.3.3 Scope of Interpretability 

Interpretability can imply understanding an automated agent and its logic of making 

decisions. However, the scope of a model’s interpretability can vary. It can either refer to 

providing explanations of the entire model behaviour or to understanding a single 

prediction. In the academic literature, both levels of interpretability have been carefully 

studied and covered. Thus, scholars tend to distinguish between two subclasses: global 

interpretability and local interpretability (Adadi & Berrada, 2018; Das & Rad, 2020; 

Carvalho et al., 2019; Rai, 2020).  

A. Local Interpretability 

Explaining the reasons for a specific decision implies a major focus on a single input and 

explicit understanding of a model’s reasoning with regards to its particular prediction. 

For instance, in the context of FER in web-based learning environments, an educator may 

need a thorough understanding of why a model predicted that certain students experienced 

fear or disgust at the particular moment of the lecture. Interpretability of individual 

decisions made by a classifier can be achieved due to local explanation methods. 

Sometimes they are also known as attribution methods, as they produce an explanation 

by assigning a scalar attribution value to each input feature of a network (Ancona et al., 

2017). Generally, local explanation methods identify what dimensions of a single input 

data instance have most contributed to a specific DNN’s output. Technically, these 

methods generate an explanation 𝒈 for the decisions 𝒚 made by a model 𝒇	based on a 
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single input instance 𝒙. A schematic diagram displaying a high-level design of local 

explanation methods is illustrated in Figure 3.  

 

Figure 3. A high-level design of local explanation methods (Das & Rad, 2020). 

Das & Rad (2020) conclude that different local explanation methods can expose feature 

correlations and importance towards output predictions due to a wide variety of 

techniques: heatmaps, Bayesian techniques, rule-based methods and feature importance 

matrices. They discovered that the earliest methods tend to provide output explanations 

in the form of positive real-valued matrices or vectors. Conversely, more recent local 

explanation methods advance by incorporating attribution maps, graph-based, and game-

theory based models that score features based on their positive or negative contribution 

to the final classification. Specifically, an attributed score or a colour on a heatmap 

reflects how the particular feature or a data point increases or decreases the probability 

for a given classification output. 

Activation Maximisation. As argued earlier, most of the dynamic deep neural networks 

used for FER take advantage of CNN. In a CNN, each convolutional layer can have 

several learned filters that maximise a given hidden unit activation when a similar 

template pattern is detected in the input image. First convolutional layer learns the high-

level features, so it is easy to project – simple multiplication of the learned weights by 

input pixels generates highly interpretable visualisation. However, subsequent 

convolutional layers and their filters strongly rely on the outputs of the previous layers, 

thus, any summarisation and visualisation become particularly challenging.  

In 2009, Erhan et al. were arguably among the first who introduced a robust technique 

that would identify and visualise feature importance of DL models. The proposed method 

called Activation Maximisation identifies input patterns of images which maximise a 

hidden unit activation. The rationale behind their idea was that a pattern to which a hidden 
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unit responds most actively could be a suitable first-order representation of what the unit 

is doing. The authors thus define maximising the activation of a unit as an optimisation 

problem. If 𝜃 denotes neural network parameters, 	𝑧),+(𝜃, 𝑥) is the activation of a unit 𝑖 in 

a layer 𝑗. By assuming fixed parameters θ after training the network, an activation map 

𝑥∗ can be generated as shown in Equation (1). 

𝑥∗ 	= 	arg max
𝐱	8.:.		‖𝐱‖<=

𝑧),+(𝜃, 𝑥) (1) 

By performing a gradient ascent in the input space, one finds local minima that can be 

averaged or selected by their maximisation level to generate an explanation map 𝑔. The 

ultimate goal is to minimise the activation maximisation loss that outputs larger filter 

activations correlated to specific input patterns. Thus, we can compute and highlight 

layer-wise feature importance with respect to a particular input instance. The activation 

maximisation method later inspired other researchers who based on its core idea proposed 

other powerful techniques for local and global interpretability (e.g., Simonyan et al., 

2013).  

Sensitivity analysis. Sensitivity analysis was one of the first methods for local 

interpretability that was built upon an idea of using the gradient information to generate 

attributions to an input image (Simonyan et al., 2013). This method constructs attributions 

by taking the absolute value of the partial derivative of the target output 𝑆@ with respect 

to the input features 𝑥A. Thus, importance of the corresponding pixels 𝑤 from the input 

image 𝑥 can be calculated as shown in Equation (2). 

𝑤	 = 	
𝜕𝑆@
𝜕𝑥

D
	
	
𝑥E

 (2) 

Intuitively, the gradient’s absolute value indicates those input features (i.e., pixels) that 

need to be changed or perturbed the least to affect the classification score for the class 𝑐 

most. The resulting attribution map would supposedly highlight critical regions in the 

input space. In practice, the sensitivity analysis does produce an attribution map showing 

a correlation with regions where the object of classification is present (Simonyan et al., 

2013). However, taking the absolute value in the core of the method discards the 

“direction of the change”. In other words, the absolute value does not show how specific 

pixels contribute to a given prediction score – either positively or negatively. Moreover, 
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saliency maps are usually rather noisy and, thus, may bring little clarity on the role of 

specific input regions (Smilkov et al., 2017). Figure 4 is a good illustration of the 

explanation quality that saliency maps provide. 

 

Figure 4. A saliency map generated for the class “gazelle” (Smilkov et al., 2017). 

Gradient * Input. This method was initially proposed in attempt to improve the sharpness 

of saliency maps (Shrikumar, 2016). The attribution map 𝑅E@ is constructed by taking the 

partial derivatives of the output 𝑆@	with respect to the input features 𝑥A and multiplying 

them feature-wise by the input values as seen in Equation (3).  

𝑅E@(𝑥) 	= 	
𝜕𝑆@(𝑥)
𝜕𝑥E

	⊙	𝑥E (3) 

The intuition for this approach was replicated from linear models – the gradients are 

regarded as the coefficients of each input feature (e.g., pixel), and the product of the input 

with a coefficient constitute the total contribution of the input feature to the model’s 

output. Both Sensitivity analysis and the Gradient∗Input method have obvious short-

comings, as the partial derivative 𝜕𝑆@	(𝑥)/𝜕𝑥E		varies not only with 𝑥E	but also with the 

value of other input features (Ancona et al., 2017). Moreover, visual explanations 

produced by these two methods can be extremely noisy as DNNs do not filter out 

irrelevant input features during forward propagation (Kim et al., 2019). When irrelevant 

input features have positive pre-activation values and consequently pass through an 

activation function (e.g., the Rectified Linear Unit), they result in nonzero gradients at 

unimportant regions. Figure 5 clearly shows how both methods tend to highlight 

obviously irrelevant features for the class predicted. 
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Figure 5. Explanations generated by Sensitivity analysis (i.e., Gradient) and Gradient∗Input method 
(Adebayo et al., 2018). 

Local Interpretable Model-Agnostic Explanations (LIME). In 2016, Ribeiro et al. 

proposed a novel explanation technique that would explain the predictions of any 

regressor or classifier in an interpretable and faithful manner, by approximating it locally 

with a linear regression model. The method has two important characteristics: it is model-

agnostic and locally faithful. The former stands for the capability of the method to explain 

any black-box model without knowing its inner mechanism of making predictions. The 

latter, local fidelity, corresponds to generating explanations for the rationale behind an 

individual prediction based on the understanding of how the model behaves in the vicinity 

of the instance being predicted. However, the resulting local surrogate model does not 

imply global fidelity – i.e., features that are locally important may not be relevant in the 

global context, and vice versa. 

Mathematically, the authors define an explanation as a model 𝑔 ∈ 𝐺	, where 𝐺 is a class 

of potentially interpretable models (e.g. linear regression model), so that 𝑔 can be readily 

demonstrated to the user with its textual or/and visual artefacts. A model 𝑔 seeks to 

minimise loss 𝐿 (e.g. mean squared error), which measures how faithful the explanation 

is to the prediction of the original model 𝑓 with a proximity measure 𝜋OP. Moreover, it 

should also minimise its explanation complexity Ω(𝑔) – selecting the minimum number 

of the most informative features for a given classification. For instance, for decision trees 

Ω(𝑔) may equal to the depth of the tree, whereas for linear regression models, Ω(𝑔) may 

equal to the number of non-zero coefficients. 
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explanation(𝑥E) 	= 	arg	min
T∈U

𝐿(𝑓, 𝑔, 𝜋OP) 	+ 	Ω(𝑔) (4) 

Essentially, in order to learn the local behaviour of 𝑓, the LIME algorithm creates a new 

dataset by sampling instances around an observation 𝑥E. The vicinity of the sampled 

instances is weighted by 𝜋OP. Importantly, numerical features are selected based on the 

distribution and categorical variables are picked according to their occurrence. Next, the 

algorithm feeds new data into original model 𝑓 and then opts for the defined number of 

the most informative features based on Ω(𝑔). Finally, it fits a simple model (e.g., linear 

regression model) to the permuted data with Ω(𝑔) features and similarity scores as 

weights. The weights and selected arguments of the linear model serve as an explanation 

of a decision 𝑥E. Figure 6 illustrates an explanation generated by the LIME algorithm on 

a single instance.  

 

Figure 6. Explanation for image classification made by Google’s Inception neural network. The top 3 
classes predicted are “Electric Guitar” (𝑝	 = 	0.32), “Acoustic guitar” (𝑝	 = 	0.24) and “Labrador” (𝑝	 =
	0.21) (Ribeiro et al., 2016). 

Layer-wise Relevance Propagation (LRP). The method was proposed in 2015 as an 

explanation technique that operates by propagating the prediction score 𝑓(𝑥) for a given 

input 𝑥 backwards through the DNN’s layers by following specially devised local 

propagation rules (Bach et al., 2015). Fundamentally, the method utilises the idea of 

tracing back the individual contributions of input nodes (e.g., pixels) to the final 

classification. The rule for propagating relevance score (𝑅])]	across DNN’s layers is 

presented in Equation (5): 

𝑅+ = 	^
𝑧+]
∑ 𝑧+]+]

𝑅]  (5) 

In Equation (5), 𝑗 and 𝑘 denote neurons at two consecutive layers, and 𝑧+]  equals to the 

activation 𝑎+ of the neuron 𝑗 multiplied by the weight 𝑤+]  between these neurons. In 
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essence, the variable 𝑧+]  quantifies the extent to which neuron 𝑗 has contributed to the 

relevance of neuron 𝑘. The denominator in Equation (5) serves to ensure the conservation 

property – some value received by a neuron must be propagated backwards in equal 

amount to the lower level. The propagation terminates once it reaches the input layer. 

When applying the procedure mentioned above, one can verify the layer-wise 

conservation property ∑ 𝑅+ = 	∑ 𝑅]]) , and, consequently, the global conservation 

property ∑ 𝑅) = 	𝑓(𝑥)) . The schematic illustration of the LRP method can be seen in 

Figure 7. 

 

Figure 7. The Layer-wise Relevance Propagation procedure in a DNN (Montavon et al., 2019). 

In the original paper, Bach et al. also present some enhancements for the generic LRP 

procedure. For example, the authors propose the so-called LRP-ε, which modifies the 

original formula by adding a small positive term ε to the denominator as depicted in 

Equation (6). Adding ε may prevent 𝑅+←]	from taking unbounded values when the 

contributions to the activation of neuron 𝑘 are contradictory or minuscule. As ε grows 

with each layer, only the most informative nodes survive the “absorption”. This simple 

modification typically results in fewer input features highlighted and, therefore, less noisy 

explanations.  

𝑅+ = 	^
𝑧+]

ε	 + ∑ 𝑧+]+]

𝑅] (6) 

Another modification called LRP-γ tends to favour positive contributions of specific input 

features over negative ones (Montavon et al., 2019). The parameter γ defines the extent 

by how much positive contributions are favoured. As the value of γ grows, negative 

contributions become less significant and evident. This technique helps provide more 

stable explanations. Equation (7) stands for mathematical implementation of LRP-γ. 
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𝑅+ = 	^
𝑎+ ⋅ (𝑤+] +	γ𝑤+]f )
∑ 𝑎+ ⋅ (𝑤+] +	γ𝑤+]f )+]

𝑅]  (7) 

However, Montavon et al. (2019) suggest using Composite LRP, which means selecting 

and applying a specific version of the LRP method depending on layers’ location in the 

neural network’s structure. For example, the authors argue that generic LRP should be 

applied to upper layers, LRP-ε to middle layers, and LRP-γ to lower ones.  

 

Figure 8. Pixel-wise explanations generated by various LRP procedures for the output class “castle”. Red-
coloured pixels highlight input features that positively contributed to the current prediction, whereas blue 
ones decreased the prediction score for this class (Montavon et al., 2019).  

SHapley Additive exPlanations (SHAP). In a similar way to LIME or LRP, this local 

explanation method proposed by Lundberg & Lee (2016) seeks to explain an algorithmic 

decision by computing the contribution of each input feature of some instance 𝑥 to the 

final prediction. The core idea of SHAP is based on approximating Sharpley values 

introduced and conceptualised by Lloyd Shapley (1953) as an extension of the 

cooperative game theory. Shapley values express the contribution that a single feature or 

a group of features has on the output of a model in the presence of multicollinearity. 

Classic approach of calculating Sharpley values for a linear regression requires retraining 

the model on all possible feature subsets 𝑆	 ⊆ 	𝐹, where 𝐹 is the set of all input features. 

To compute and attribute an importance value to each predictor (i.e., input feature), two 

models 𝑓i∪{)}	 and 𝑓i are trained with and without the feature respectively. Next, predicted 
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outputs from the two models are compared on the current input 𝑓i∪{)}(𝑥i∪{)}) 	− 	𝑓i(𝑥i), 

where 𝑥i stands for the values of the predictors in the set S. As the input feature's 

withdrawal affects the other features in the model, the preceding differences are 

calculated for all possible subsets 𝑆	 ⊆ 	𝐹	\	{𝑖}. The computed Shapley values are then 

used as feature attributions. In essence, they equal to a weighted average of all possible 

differences as shown in Equation 8. 

𝜑+ = 	 ^
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
i	⊆	r∖{)}

[𝑓i∪{)}	(𝑥i∪{)}	) − 𝑓i(𝑥i)] (8) 

However, the total number of input features in DNNs can often amount to thousands; 

therefore, computing Shapley values for each feature is computationally expensive. As 

an alternative, the authors suggest approximating Shapley values either with Shapley 

sampling values (Strumbelj & Kononenko, 2010; Štrumbelj & Kononenko, 2014) or with 

another approximation method proposed in the paper – Kernel SHAP. Two years later, 

the authors presented another highly effective implementation of SHAP – the Tree SHAP 

algorithm – which is specific to tree-based ML models such as decision trees, gradient 

boosted trees, and random forests (Lundberg et al., 2018). 
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Figure 9. Example of SHAP explanations based on the image classification performed by CNN-TL-DE 

(Podgorelec et al., 2020)1. 

Although SHAP and LIME provide locally accurate and consistent explanations, they 

have several significant disadvantages. The quality and complexity of the generated 

explanations in both methods may heavily rely on the number of input features defined 

as a hyperparameter. This problem becomes particularly acute when working with image 

data. A larger number of input features (i.e., superpixels) is likely to result in a more 

explicit representation of an image's most important areas. However, each new input 

feature, in turn, severely increases computation time. Moreover, LIME and SHAP are 

post-hoc explanations techniques that rely on input perturbations. Therefore, they may be 

susceptible to adversary attacks in which it is possible to generate a biased classifier 

whose post hoc explanations can be arbitrarily controlled and mask biases (Slack et al., 

2020). 

B. Global Interpretability 

                                                
 
1 Red pixels indicate areas of the image with a positive contribution towards specific classification output 
(e.g., “Soccer” or “Rugby”), whereas blue pixels highlight areas of the image that do the opposite. For 
instance, a hockey stick is apparently the most crucial feature for the third image to be classified as “Field 
hockey”, while the presence of a soccer ball on the second image decreases the probability for classes “Field 
hockey” and “Field hockey”. 
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Global interpretability refers to understanding the generalised reasoning of a model and 

its view of the data features. Essentially, this level of interpretability aims to estimate the 

global impact of input features on the model’s decisions in the form of parameters, 

weights, or rules. One of the most vivid examples of the globally interpretable models is 

linear regression. Its coefficients are estimates of some unknown population parameters 

that describe the magnitude of changes in the model’s output as a result of one unit of 

change in its input variables (Neter et al., 1989). Although linear regression models might 

fail to encode non-linear dependencies, their regression coefficients may still shed some 

light on global effects or trends in different domains such as sociology, psychology, 

medicine, and other quantitative research fields. Decision trees (Hastie et al., 2009) or 

decision rules (Fürnkranz et al., 2012) are other examples of globally interpretable ML 

models. If-then rules and cut-off point inherent to their architecture enable tracing back 

the output decision back to the input (i.e., root node). However, as argued earlier, models 

built with a multi-layered neural network surpass linear regression and decision tree 

models’ performance in most of the cases. Therefore, the need for specific methods 

explaining the global rationale of black-box models is bound to keep growing.  

Generally, methods for global interpretability work on groups of inputs to approximate 

the overall behaviour of the black-box model as illustrated in Figure 10. In particular, the 

explanation 𝑔 describes the aggregated feature attributions of the model 𝑓 on some set of 

inputs {𝑥v, 𝑥w, . . . , 𝑥x}. Therefore, methods for global explanations may become 

particularly helpful in forging a better understanding of the model’s behaviour that is 

tested on a large variety of inputs and previously unseen data. As far as FER models are 

concerned, global explanations may bring more clarity about the role of the main features 

and distinct areas of the face in predicting a specific class (i.e., emotion).  

 

Figure 10. A high-level design of methods for global interpretability (Das & Rad, 2020). 
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Guidotti et al. (2018) made a comprehensive review of the methods for global 

interpretability. Unlike the local interpretability methods, the variety of techniques for 

generating global explanations for the black-box models dealing with image or video data 

is extremely limited. The authors showed that most of the existing methods attempt to 

approximate the black box with another globally explainable model (e.g., linear 

regression, decision tree). These models are often called global surrogate models. 

However, this approach may appear inept at mimicking the entire reasoning of the image 

or video classification models due to their complexity. Moreover, Rudin (2019) argues 

that global surrogate models cannot have perfect fidelity with respect to the original 

black-box model. If their explanations were utterly faithful to what the original model 

computes, the surrogate model would equal the original one, and one would not need to 

utilise the original model in the first place. Thus, the author suggests that any explanation 

method approximating the inner logic of a black-box model can be its inaccurate 

representation. For instance, a global surrogate model that computes the same output as 

the original model in 90% of the cases indeed explains the original model most of the 

time. However, if such a model is correct 90% of the time, it must be wrong 10% of the 

time. If a hundred out of a thousand hypothetical patients receive a false explanation for 

their diagnosis, one cannot trust the explanations, and thus one is unlikely to trust the 

original black box. Therefore, all the global interpretability methods covered here are 

based on the aggregation of the local explanations generated with the inner workings of 

the original models. 

Class Model Visualisation. Apart from image-specific class saliency visualisation 

introduced by Simonyan et al. (2013), in the same paper the authors also proposed the 

method called class model visualisation. Given a learnt classification DNN and a class of 

interest, the visualisation method is built upon the numeric generation of an image (Erhan 

et al., 2009). The resulting image appears to be discriminative enough to represent the 

entire class in terms of the DNN’ class scoring.  

In Equation 9, 𝑆@(𝐼) denotes the score of the class 𝑐, computed at the classification layer 

of the selected DNN for an input image 𝐼. We seek to reconstruct an image with 𝐿w-

regularisation 𝜆, such that the score 𝑆@ is high: 

𝐼{ 	= 	argmax
|
𝑆@(𝐼) 	−	𝜆‖𝐼‖ww	 (9) 
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The procedure is closely connected to the training procedure of the DNN, where the back-

propagation algorithm adjusts the model's parameters (i.e., weights). However, in contrast 

to the classic training procedure, the optimisation is performed with respect to the input 

image, while the weights determined during the training stage remain constant. 

 

Figure 11. Visualisations of various class appearance models learnt by a multi-layered CNN (Simonyan et 
al., 2013). 

In the paper, the authors exemplify the proposed method with a deep CNN trained on the 

large-scale ImageNet dataset for image classification (Deng et al., 2012). They initialised 

the optimisation with the zero image, as the CNN was trained on the pre-processed data 

with mean centring, and then added a mean image of the training set to receive the final 

result. Visualisations generated with the class model visualisation method for three 

different classes are shown in Figure 11. 

Spectral Relevance Analysis (SpRAy). Lapuschkin et al. (2019) proposed this method as 

a technique for efficient investigation of classifier behaviour on large-scale datasets. At 

its core, SpRAy takes advantage of spectral clustering (Von Luxburg, 2007) and applies 

it to a dataset of local explanations generated by the LRP algorithm. Due to clustering, 

the method may identify typical as well as anomalous decision behaviours of the ML 

model and present the results in a concise and interpretable manner to its end-user. 

Technically, SpRAy detects various prediction strategies of the classifier based on 

frequently reoccurring patterns in the heatmaps (e.g., specific input features). As the 

authors suggest, the identified groups (i.e., clusters) of image features may be meaningful 

representatives of a particular class. Conversely, these clusters may also be some 

groupings of co-occurring features learnt by the model but not intended to be 

discriminative properties of the class and ultimately of the model’s reasoning.  
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The workflow of SpRAy consists of four steps: 

1. We compute the relevance maps for some sample of the class objects we want to 

explain. Theoretically, the relevance maps generated by the LRP algorithm will 

highlight the most critical input features for the model’s classifier. 

2. We reduce the dimensionality of the relevance maps and make them uniform in 

shape and size. The dimensionality reduction makes the subsequent analysis more 

computationally efficient and statistically tractable. 

3. We perform a spectral cluster analysis on the relevance maps. At this stage, we 

structure the distribution of relevance maps by grouping various classifier 

behaviours into a finite number of discriminative clusters. 

4. We identify potentially interesting clusters with eigengap analysis. The spectral 

clustering algorithm encodes the cluster structure of the relevance maps with the 

eigenvalue spectrum. Considerable differences between two successive 

eigenvalues (i.e., eigengap) are likely to indicate well-separated clusters, 

including anomalous classification strategies. Therefore, such clusters will require 

further inspection from the user.  

Additionally, the authors suggest visualising the analysis results with t-Stochastic 

Neighbourhood Embedding (t-SNE). Although this last step is not a part of the proposed 

method, it may bring more clarity on how SpRAy works. The workflow of the SpRAy 

analysis is illustrated in Figure 12.  

Moreover, in the very paper proposing SpRAy, the authors practically demonstrated how 

this method helped detect a previously unknown bias in the prediction behaviour of the 

DNNs trained on the Pascal VOC database (Everingham et al., 2015). In particular, the 

researchers showed how the analysed multi-label classifier learned that uniform pixel 

values next to the image borders are discriminative for object class “aeroplane”. In fact, 

the classifier “expected” that any image depicting an aeroplane should have some areas 

of uniform colour – i.e., sky – at its top and bottom. As Lapuschkin et al. argue, using 

that model as a predictor for aeroplanes outside the laboratory is likely to result in high 

rates of false-positive predictions if an input image captures the sky. Thus, the researchers 

verified the efficacy of SpRAy as an effective method for pinpointing implicit patterns in 

the model’s prediction behaviour.  
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Figure 12. The workflow of SpRAy (a) and four different classification strategies for the class “horse”: (b) 
images with a horse (and rider), (c) portrait-oriented images with a source tag, (d) images depicting wooden 
hurdles and other elements of horseback riding, and (e) landscape-oriented images with a source tag 
(Lapuschkin et al, 2019). 

3.4 Evaluation Criteria for FER Models 

Section 3.4 investigates scientific evidence on the evaluation criteria currently used to 

evaluate different FER algorithms. Essentially, this Section aims to give an answer to the 

fourth research sub-question (SQ4). The scientific literature analysed in Section 3.4 

provides an overview of the well-established evaluation metrics and criteria used for the 

variety of FER approaches and algorithms discovered in Section 3.2. The identified 

criteria form the backbone of the proposed evaluation framework balancing some 

conventional measures with those inferred in Sections 3.1, 3.2 and 3.3 (see Section 4).  
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Given different FER approaches and a wide variety of pre-trained models, some objective 

evaluation criteria are essential to enable unbiased comparisons and robust assessment. 

Without careful scrutiny of the relative performance of competing algorithms, one may 

not get the clear picture of their strengths and weaknesses that are essential for making 

further decisions regarding their deployment. As any IT artefact, FER models can be 

evaluated in terms of their functionality, completeness, consistency, accuracy, 

performance, reliability, usability, and other relevant attributes (Hevner et al., 2004). The 

ISO/IEC 25023:2016 also includes security, portability and maintainability as essential 

software quality dimensions (ISO/IEC, 2015).  

Generally, most of the research papers on FER algorithms focus primarily on the limited 

number of evaluation criteria such as predictive accuracy or performance (e.g., Revina & 

Emmanuel, 2018; Saxena et al., 2020). The most likely causes of such a strong emphasis 

on these particular model’s properties can be their unambiguous definition, relatively 

simple computation and easy comparability (Giraud-Carrier, 1998). Moreover, evaluating 

security, reliability, usability, or other properties of the FER models mentioned above 

may not be feasible or reasonable. Principally, in all the reviewed papers, the researchers 

present some novel technology or method for FER with a primary goal to demonstrate its 

state-of-the-art accuracy or/and performance on specific datasets. Such a strong emphasis 

on performance metrics seems logical, given that most academic publications on FER 

may aim to disseminate and test new scientific ideas rather than propose a fully 

customised market product. 

Moreover, as argued in section 3.3.2, attempts to make highly complex DNNs explainable 

and comprehensible have gained growing scientific and public interest. Besides multiple 

examples of XAI tools helping verify, justify and improve black-box models, 

interpretability has also become a legal prerequisite for the deployment of such models in 

certain cases. Thus, evaluating the inner logic of an algorithm is nothing but a legal and 

societal demand for trust and fairness in algorithmic decision-making. Moreover, 

introducing interpretability as an evaluation criterion may significantly contribute to a 

more robust assessment of models with no significant difference in predictive accuracy.    

Therefore, this section provides an overview of the most popular metrics and criteria used 

for a FER model evaluation within the scientific community. These evaluation metrics 

and criteria are grouped into two major clusters: performance-related and interpretability-
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related metrics. This particular grouping is chosen according to the model’s dimension 

these metrics aim to evaluate. 

3.4.1 Performance-related Metrics 

Choosing the right metrics may help address evaluation bias that ultimately arises because 

of a need to compare different models against each other objectively (Suresh & Guttag, 

2019). Arbitrary preference for the particular metrics to report performance may 

significantly exacerbate this bias. For instance, Suresh et al. (2018) demonstrate how 

aggregate measures can hide subgroup underperformance. Moreover, considering a single 

type of metric (e.g., accuracy) can also mask disparities in other types of errors (e.g., 

false-positive rate). Buolamwini & Gebru (2018) demonstrated how three commercial 

facial analysis algorithms with error rates less than 1% for lighter male faces under- 

performed on darker female faces (20.8% − 34.7% error rate). The researchers aimed to 

emphasise the need for rigorous reporting on the performance metrics to ensure 

algorithmic fairness and explainability.  

 

Figure 13. Example of the confusion matrices for the case of binary classification (on the left) and multi-
class classification (on the right). 

Generally, any classification model can generate four different types of outcomes. 

Grouping the model’s outcomes into distinctive groups helps calculate different 

performance-related metrics. These four groups are true positives, true negatives, false 

positives, and false negatives. True positive is a classification outcome when the model 

correctly identifies the actual class of the input. For instance, a true positive for any FER 
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model is an input image of a smiling person classified as “happy”. Conversely, true 

negatives occur when the model correctly classifies the negative class – this type of 

classification outcome is mainly used in binary classification. A false positive is an 

outcome when the model classifies some input instance with a class to which it does not 

belong. For example, the model assigns class “angry” to an input image of a smiling 

person. Finally, a false negative is a classification outcome when the model classifies an 

input with some other class. These four types of outcomes are often depicted on a 

confusion matrix. Figure 13 illustrates an example of two confusion matrices for the case 

of binary classification and multi-class classification respectively.   

Classification Accuracy. This evaluation metric is a common measure of statistical bias 

quantifying how often some trained classifier is correct. Mathematically, it equals the 

ratio of all correctly predicted classes to the total number of all predictions (Equation 10).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	 	 (10) 

This evaluation metric can be reliable only if there is an equal number of samples 

belonging to each class. In the case of an imbalanced dataset (i.e., unequal distribution of 

instances belonging to different classes), a misclassified instance of the minor class is 

unlikely to affect accuracy significantly. 

Precision. The precision for a class is the fraction of true positives among all input 

instances classified as belonging to the positive class (i.e. the sum of true positives and 

false positives). This evaluation metric is also known as positive predictive value. High 

precision means that a classification algorithm primarily generates a correct label for a 

given class. For instance, if some FER model classifies five separate images of a smiling 

person as “happy” and one image of a crying person as “happy” too, the precision for 

class “happy” would equal roughly 83%. This value would signify that the model is 

correct 83% of the time when it predicts happy emotion. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 (11) 
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Recall. The recall is the measure quantifying the proportion of true positives that some 

model correctly identified. For instance, if our FER model has a recall value of 75% for 

the class “surprised”, it identifies 75% of all “surprised” learners. This metric is also 

known as true positive rate or sensitivity (Yerushalmy, 1947).  

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠	 (12) 

Measuring both precision and recall is crucial, as the former ensures that the model does 

not overlook instances of a specific class, while the latter shows whether the model has 

an excessive misclassification. In some domains, these two metrics may be especially 

significant. For instance, Walsh et al. (2017) proposed an algorithm that demonstrated 

state-of-the-art accuracy in predicting future suicide attempts. In the paper, the 

researchers emphasised the importance of the precision and recall values for their model. 

Moreover, achieving the highest possible value for the latter was particularly critical, as 

it implied minimising the probability of missing someone who was really considering 

suicide.  

F-score. There can be many situations when both precision and recall are equally 

important. In such cases, one can use another evaluation metric called the F-score (i.e., 

the F-measure, the F1-score). To calculate the F-score, one needs to take the harmonic 

mean of precision and recall (Equation 13). Its highest possible value is 1, meaning 

perfect precision and recall, and the lowest possible value is 0 if either the precision or 

the recall equals zero. 

𝐹v = 	2	 ⋅ 	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙	 

(13) 

Another version of the F-score, 𝐹�, may be more useful if one needs to treat recall and 

precision differently. The 𝐹� uses a real positive factor 𝛽, where 𝛽 can be chosen such 

that recall is considered  𝛽 times as significant as precision (Equation 14). Two common 

values for 𝛽 are 0.5, which weighs the value of recall lower than precision, and 2, which 

weighs recall higher than precision.  
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𝐹� = 	 (1	 +	𝛽w) 	 ⋅ 	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽w ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙	 (14) 

Although the F-score may be a more informative and rigorous measure of the algorithm’s 

classification performance than accuracy, this metric may be still misleading when testing 

on datasets with the imbalanced class distribution. Jeni et al. (2013) maintain that any 

performance metric such as the F-score may reveal more about skew (i.e., imbalance) 

than about actual algorithmic performance. The researchers also claimed that FER 

databases that are identical with respect to the action unit intensity or a head pose might 

yield very different metric values due to differences in class distribution. To minimise 

biased estimates of performance metrics, Jeni et al. suggest measuring performance both 

with original and skew-normalised (i.e., balanced) data. Due to this data manipulation, 

classifiers may become more comparable across different databases. 

Generally, Ponce et al. (2006) argue that any performance-related metrics should be only 

a means, not an end in itself. In particular, the researchers indicated that the scientific 

community tends to be overly obsessed with maximising the value of a specific metric, 

forgetting that any performance increase – e.g., in accuracy – by itself is not necessarily 

a sign of progress toward better generalisation or recognition in the wild. Torralba & 

Efros (2011) demonstrated that instead of using a particular performance metric as an 

absolute measure, one might better evaluate classifier’s generalisation abilities by 

calculating its average performance drop from testing on unseen data. Li & Deng (2020) 

applied a similar approach in the context of FER. However, instead of measuring 

performance drop, the researchers chose the average cross-dataset performance as a 

metric to evaluate algorithmic generalisation. The researchers observed a significant drop 

in performance when testing two pre-trained DL models on different datasets. 

Specifically, the average in-dataset performance of algorithms trained on different 

datasets was 63.83%, and it dropped to 39.40% for the average cross-dataset performance.  

Liao et al. (2020) identified that understanding the performance of an algorithm may also 

contribute to the interpretability of its predictions. In particular, based on performance 

evaluation of some system, one can tell how often it makes mistakes, what kinds of 

misclassification occur more often, and in which scenarios the system is likely to be 

incorrect. The answers to these questions can be critical in discovering potential 

limitations and underlying logic of the model’s decision-making.  
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3.4.2 Interpretability-related Criteria 

As argued in Section 3.3.1, because of the subjective and multidimensional nature of 

interpretability, researchers can agree neither upon its definition nor its measure. This 

study groups different interpretability-related criteria according to the taxonomy 

described by Carvalho et al. (2019). In particular, the researchers grouped different 

methods of achieving interpretability of a model in three major categories: pre-model, in-

model (i.e., intrinsic), and post-model (i.e., post-hoc) interpretability. Pre-model 

interpretability is closely related to a comprehensive exploratory analysis of training data. 

Generally, it aims to summarise major characteristics of a dataset and reveal potential 

data biases that can eventually affect the model’s performance (Tukey, 1977). Intrinsic 

interpretability refers to models that are inherently globally interpretable (e.g., linear 

regression). Finally, post-hoc interpretability refers to explanation methods that are 

applied to the trained model and its prediction outcomes (e.g., local and global 

interpretability methods). As this study focuses solely on DL algorithms for FER that are 

not intrinsically interpretable, it suggests grouping the evaluation criteria for the model’s 

interpretability into two clusters: data-related interpretability criteria and post-hoc 

interpretability criteria. 

A. Data-related Interpretability Criteria 

The foundation of any classification model is the data chosen to train it. When selected 

and used arbitrarily, the data can entail undesirable risks and consequences, especially 

when regarded as a basis for decision-making. Unfortunately, in most research papers on 

FER, extensive analysis of the training data and its potentially inherent biases seems to 

be the exception rather than the rule. Even though some research papers might seek to 

evaluate interpretability of the proposed FER methods, they tend to disregard their data-

related interpretability and focus solely on the post-hoc interpretability.  

Generally, being aware of the training and test data specifications can be crucial for 

understanding the limits in any learning method’s generalisation abilities (Ponce et al., 

2006; Torralba & Efros, 2011). The limits affecting the model’ generalisation are often 

called data biases. Mitchell et al. (2018) decompose the notion of data-related biases into 

more precise notions of statistical bias – i.e. issues regarding non-representative sampling 

and measurement error – and societal bias – i.e. problems with definitions of the social 

phenomena measured by and represented in the data (see Figure 14). Suresh & Guttag 
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(2019) extended the notion of data-related biases with aggregation bias – i.e., 

generalising the patterns of a specific subgroup for the entire population or some other 

weakly related subgroup. Torralba & Efros (2011) also identified capture bias – i.e., the 

way how image or video data are recorded. 

 

Figure 14. Two components of “biased” data: societal bias and statistical bias (Mitchell et al., 2018). 

Sampling Bias. This bias represents a systematic mismatch between the sample used to 

train and validate the model and the real world as it currently is. Specifically, this bias 

occurs when some selected data set is not representative of the entire population to which 

the trained model is applied. Interestingly, Suresh & Guttag (2019) argue that 

representation bias (i.e., sampling bias) can arise for several reasons. For one thing, the 

sampling methods can only reach a portion of the target population. For instance, datasets 

collected from social media can under-represent lower-income or older groups, who are 

less likely to use social platforms. For another thing, the target population has changed or 

is distinct from the population used during model training. Data that was representative 

of students at Harvard 20 years ago will probably not reflect today’s population. 

Measurement Error. This type of bias occurs when the classification error varies between 

different population groups (Mitchell et al., 2018). Suresh & Guttag (2019) maintain that 

this error occurs when data quality varies across groups. Alternatively, they argue that the 

defined classification task may be an oversimplification – choosing a biased proxy label 

that only captures a particular aspect of what one aims to measure. A vivid example of 

the measurement error is the study carried out by Grother et al. (2019), who quantified 

the accuracy of more than 180 commercial face recognition algorithms for different 
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demographic groups defined by age, sex, and race or country of birth. They trained and 

validated these algorithms on four large image datasets collected in U.S. governmental 

applications that were in operation as of 2019. Their findings concluded that some 

algorithms misidentified African American and Asian people up to 100 times more likely 

than white men. Moreover, according to the study, Native Americans had the highest 

false-positive rate of all ethnicities. The researchers suggest that varying error rate 

discovered in some algorithms could depend on the data used to train them.  

Societal bias. Sometimes training data can be representative and accurate. However, an 

algorithm may still record objectionable social structures that contradict the decision-

maker’s goals (Mitchell et al., 2018). For instance, using arrests as a crime measure can 

introduce statistical bias from measurement error that is differential by race because of a 

potentially racist policing system (Lum & Isaac, 2016). But even if one could measure 

crime with perfect accuracy, it would unlikely make data free from “bias” in a normative 

sense. Any phenomenon such as crime rates may reflect societal bias, including how 

crime is generally defined. Similarly, any image or video data capturing facial expressions 

are biased, as its quality depends on how one understands different emotions. 

Unfortunately, Mitchell et al. (2018) argue that this bias may not have technical solutions 

at all. 

Aggregation Bias. Aggregation bias occurs when one draws false conclusions for a 

subgroup based on observations made for a different subgroup. Suresh & Guttag (2019) 

suggest that underlying aggregation bias assumes that the mapping function from inputs 

to labels is consistent across various groups. However, this often may not be the case. 

Aggregation bias can result in a not optimal or accurate model for any group or a model 

that is tuned to some dominant population. For example, training a FER model on a data 

set with the facial expression of Asian females may lead to poor performance for African 

people.  

Capture bias. Torralba & Efros (2011) argue that this type of bias is inherent to many 

datasets with labelled images for object detection and classification. In particular, the 

researchers observed that photographers tended to take pictures of objects for the 

inspected datasets in similar ways. This bias can potentially occur in the datasets for FER, 

as some of them contain photos or videos made in a professional studio. For instance, all 

the photos from JAFFE (Lyons et al., 1998) are frontal-view, while MMI (Pantic et al., 
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2005) includes only image and video data recorded with professional studio lighting. 

These factors may considerably affect emotion recognition in the wild. 

B. Post-hoc Interpretability Criteria  

As demonstrated in Section 3.3, the interpretability of ML models has sparked paramount 

academic interest and induced extensive scientific research on its very notion, scope and 

methods. However, despite remarkable progress, there is still no consensus about defining 

(as shown in Section 3.3.1), quantifying, or measuring ML models’ interpretability 

(Adadi & Berrada, 2018; Doshi-Velez & Kim, 2017; Carvalho et al., 2019). Its different 

notions, such as simplicity, fairness, simulatability, transparency, or trustworthiness, may 

be conflated (Lipton, 2016). This problem is further exacerbated by the fact that ML 

models may have a wide range of stakeholders with varying needs and goals depending 

on their roles and expertise (Hohman et al., 2019; Tomsett et al., 2018). For instance, the 

approach suitable for regulatory bodies auditing a case when some black-box system 

rejected a loan application may significantly differ from the approach that works best for 

a team of data scientists debugging the model. 

Poursabzi-Sangdeh et al. (2018) argue the lack of consensus around defining or 

quantifying interpretability mentioned above, as well as insufficient scientific evidence 

for its benefits, make interpretability hard to directly manipulate or measure. The 

researchers maintain that interpretability is a latent and fundamentally human property. 

Their argument stems from the fact that the model’s interpretability can depend on 

different manipulable factors such as the number of input features (Ribeiro et al., 2016), 

the complexity of the model’s explanation (Lage et al., 2019), or the user interface (Weitz 

et al., 2020). Thus, Poursabzi-Sangdeh et al. conclude that interpretability and its 

measures must be built upon people’s behaviour, not by what appeals to intuition. 

A vast majority of studies on XAI focus solely on discovering general principles and 

practices of tailoring explanations generated by various XAI tools to lay-user needs and 

requirements (e.g., Arrieta et al., 2020; Doshi-Velez & Kim, 2017; Hall et al., 2019; 

Kulesza et al., 2013; Miller et al., 2017; Miller, 2019). In particular, they primarily focus 

on an assessment of how good an explanation is.  

For example, Lipton (1990) argues that good human-oriented explanations should 

be contrastive. His line of argument relies on the fact that people are usually relatively 
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interested in real causes why an algorithm reaches a particular prediction. Instead, the 

researcher suggests that people may prefer to know why the specific prediction was made 

instead of another. Moreover, Lipton suggests that people may not be specifically 

interested in all the factors that led to the classification, but the factors could bring about 

a different (i.e., contrastive) one if input values are changed. Similarly, Wachter et al. 

(2018) maintain that counterfactual (i.e., contrastive) explanations are intentionally 

restricted and crafted in such a way as to provide a minimal amount of information 

capable of altering an algorithmic decision. The researchers also emphasise that such 

explanations do not require its end-user to understand any of the internal workings of a 

model to make use of it. Thus, contrastive or counterfactual explanations may 

be incomplete, nevertheless, they require defining a meaningful reference point.  

Miller (2018, 2019) argues that explanations for a black-box model’s decisions should 

be selective. His suggestion is very much in line with the arguments of Wachter et al. 

(2018) and Lipton (1990) about the restrictive or incomplete nature of human-friendly 

explanations. Miller suggests that people do not expect explanations to cover the actual 

and complete list of causes of an event. In contrast, they prefer limiting the entire variety 

of causes to one or two principal ones and regard them as an actual explanation. Thus, 

explanation methods should ideally provide selected explanations or, at least, explicitly 

highlight which of their components are the principal causes for a prediction. Apart from 

the selectivity of algorithmic explanations, Miller also claims that they should be 

presented in the form of a conversation or any other type of human interaction with high 

awareness of the end-users’ social context.  

Molnar (2020) maintains that the causes that generally have a small probability but did 

happen should also be included in the explanation. He exemplifies the research of 

Kahneman & Tversky (1981), who stated that humans tend to focus more on abnormal 

causes to explain specific events. Molnar also argues that abnormal causes are a great 

example of a counterfactual, as they can dramatically affect the model’s final decision. 

Thus, including information on abnormalities that possibly impacted algorithmic 

prediction can appeal to human counterfactual thinking and make explanations look 

reasonable to the end-user.  

Additionally, Molnar (2020) suggests that user-oriented explanations should be consistent 

with the end user’s prior beliefs. His assumption is based on the study of Nickerson 
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(1998), who argued that humans tend to ignore or underestimate evidence that clashes 

with their prior hypotheses or beliefs. Doshi-Velez & Kim (2017) also argue that human 

evaluation is essential to assessing interpretability. Specifically, they proposed a 

taxonomy for the evaluation of interpretability with three different modes of human 

involvement – application-grounded, human-grounded and functionally-grounded 

evaluation. Human-grounded evaluation seems particularly appropriate in the case of 

FER models, as this type of evaluation was proposed for the situations when double-

checking model’s predictions with simultaneous real-world experiments may be 

challenging without experts with domain-specific knowledge. As Doshi-Velez & Kim 

propose, one can present an explanation, an input, and an output to the end-users and ask 

them to indicate what must be changed to make the model’s prediction generate the 

desired output. Cheng & Bernstein (2015) suggest that end-users select or “nominate” a 

list of features relevant for a specific classification to check via XAI methods how well 

the trained model picks up those or similar features. There are multiple examples of 

research papers in which the authors just followed suit and validated different black-box 

models according to some ground truth (e.g., Samek et al., 2021; Zhou et al., 2016). Yet, 

the researchers have failed so far to discover methods or some general rules of how XAI 

tools can help validate the model. 
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4 A Proposal of an Evaluation Framework for FER Algorithms 

in Web-based Learning Environments  

As shown in Section 3.1, emotions play a crucial role in students’ learning outcomes. 

They are linked to students’ use of learning strategies, self-regulation of learning, and 

academic performance. Timely and accurate identification of negative emotions can help 

address students’ disengagement, withdrawal, and academic failure. Moreover, negative 

emotions may help better identify educators who may lack clarity and communication 

competence. Conversely, positive emotions can signify more chances for academic 

success, engagement and motivation to learn. Therefore, to maximise the potential 

advantages of deploying a FER model in a web-based learning environment, both positive 

and negative emotions should be identifiable for the FER system in use.  

The reviewed literature in Section 3.2 shows that the scientific community generally 

agreed that the human face can express seven universal (i.e., not culture-specific) 

emotions: anger, disgust, fear, happiness, sadness, surprise, and contempt. In the case of 

the suppressed or inactive facial muscles, the expression is regarded as neutral. 

Therefore, the validity of any FER model trained to classify emotions not mentioned 

above may be questionable. Moreover, extensive reviews and surveys on FER algorithms 

mentioned in Section 3.2 reveal superior classification accuracy among DL models. 

Thus, the priority among different FER models should be given for the algorithms with a 

multilayer network. 

In Subsection 3.2.1, the study presents a variety of approaches utilised by DL models for 

FER in videos. In particular, current literature distinguishes three major methods: frame 

aggregation, emotion classification with expression intensity-invariant networks, and 

emotion classification with deep spatiotemporal networks. Although there is no general 

consensus within the academic community on the superiority of any of these approaches, 

FER algorithms from the latter group may be considered more promising. Specifically, 

their advantage lies in their ability to encode temporal dependencies in consecutive 

frames and learn spatial features along with temporal features. Given that any facial 

expression is of temporal nature – i.e., it has varying dynamics and intensity in time –
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deployment of the FER models classifying on sequences (i.e., videos) rather than discrete 

frames should be prioritised. 

Introduction to Section 3 briefly discusses that the FER models designed as an artificial 

neural network (ANN) with multiple layers do not provide explicit information on the 

role of input data’ variations for the specific predictions. Therefore, due to the lack of 

transparency in decision-making, these models are often called black-boxes. Subsections 

3.3.1 and 3.3.2 give an overview of Explainable AI (XAI) – a recent research field that 

attempts to improve the black-box algorithms’ interpretability and comprehensibility. 

Specifically, the reviewed research papers argue that different XAI tools can help 

engender users’ trust and confidence as well as contribute to the model’s verification and 

validation. Moreover, in some cases, the interpretability of ML models has already 

become a legal prerequisite for their deployment and operation. Therefore, understanding 

FER models’ rationale and inner workings via XAI methods and tools can be an 

additional safeguard against potential algorithmic biases, severe public opposition or 

lawsuits.  

Subsection 3.3.3 delves deeper into the XAI and discusses different scopes of the ML 

models’ interpretability. Based on the overview of different methods, one can conclude 

that there is no optimal way to explain algorithmic decisions despite a great variety of 

explanation techniques. Therefore, when evaluating and explaining a FER model’s 

decisions, one should refrain from overreliance on any particular method.  

In Section 3.4, the literature review reveals that the research community focuses primarily 

on the limited number of evaluation criteria for FER models. This study outlines two 

groups of evaluation metrics: performance-related and interpretability related. As for the 

former group, the F-score is likely to be the most optimal and informative metric for the 

FER model evaluation among the other metrics described in Subsection 3.4.1. This metric 

gives two valuable insights into whether the model does not overlook or does not 

excessively misclassify instances of a specific class (i.e., emotion). Thus, calculating the 

F-score can help reveal which emotions the given FER model recognises best and worst. 

Moreover, this metric can indicate how often the chosen model makes mistakes, what 

kinds of misclassification occur more often, and in which scenarios the system is likely 

to be incorrect. Therefore, the F-score can help discover potential limitations and 

underlying logic of the FER model’s decision-making.  
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Moreover, some papers reviewed in Subsection 3.4.1 suggest using performance metric 

also as a relative measure of algorithmic generalisation. Specifically, calculating the 

classifier’s average performance drop on unseen data may provide a more informative 

metric regarding the FER model’s generalisation abilities.  

The literature review in Subsection 3.4.2 shows that the evaluation criteria for any DNN 

model's interpretability can be grouped into two clusters: data-related interpretability 

criteria and post-hoc interpretability criteria. The former cluster of criteria summarises 

the training dataset's major characteristics and reveals potential data biases that can affect 

the model’s performance. In particular, the training data and the FER model itself should 

be carefully inspected for the presence of the following biases: sampling bias, 

aggregation bias, and capture bias. The list of the biases suggested in this study may not 

be exhaustive. 

As for the post-hoc interpretability criteria, the research findings from different papers 

suppose it to be a group of abstract and rather case-specific criteria. Most of the studies 

exemplified in Subsection 3.4.2 maintain that FER models’ explainability should be 

linked to some ground truth determined by domain experts or the model’s users. 

Specifically, the ground truth can be expressed in the form of input features that 

predefined a particular algorithmic decision. Moreover, different research papers 

recommend displaying only the most informative and contrastive input features for a 

particular models’ prediction.  

In view of the research findings discovered and outlined above, this study can propose 

the following selection criteria that can help identify the most suitable FER model for 

further adjustment to and deployment in a web-based learning environment: 

1. The model classifies both positive and negative emotions 

2. All the emotions identifiable by the model belong to the seven universal emotions  

3. The model is an ANN with multiple hidden layers 

4. The model takes a video fragment (i.e., sequence of multiple frames) as an input 

5. The model was trained with data without capture bias 



63 

6. The model was trained with data without sampling bias 

7. The model does not demonstrate aggregation bias 

8. The model demonstrates fair generalisation abilities. I.e., the mean performance 

drop – is the smallest among the other models considered for the selection 

9. The model’s importance attribution to the specific input features (i.e., particular 

areas of human face activated for each emotion)1 coincides with the one defined 

by humans. 

 

Figure 15. The workflow of the evaluation process of different FER models according to the proposed 
framework. 

                                                
 
1 The model’s importance attribution to the specific input features (i.e., particular areas of human face 

activated for each emotion) is determined by different explanation methods. This study suggests that an 

image area can be considered significant for a given prediction if it meets two requirements: 1) it has the 

above-average concentration of highlighted pixels on the attribution maps or above-average colour intensity 

on a heatmap; 2) it is highlighted in at least 2/3 of attributions maps generated by different explanation 

methods for the given prediction. 
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By following the design science methodology, we will conduct a controlled experiment 

to test the use of the proposed framework. The experiment should be regarded as an 

integral part of the artefact’s emergence and refinement. It must also be noted that this 

refinement may result in trivial fixes as likely as substantial changes to the design of the 

initially proposed evaluation framework and its components (Walls et al. 1992). 

4.1 Experimental Use of the Proposed Evaluation Framework 

4.1.1 Preliminary Model Selection 

To make the experiment resemble the real-world conditions, three different pre-trained 

FER models from the Papers with Code1 website were selected. The number of the models 

eventually analysed during the controlled experiment appeared to be limited due to the 

following constraints: 

• As required in the proposed framework, the FER models classifying emotions 

other than those regarded as universal were not considered for the controlled 

experiment. 

• In the absence of funding for this research, commercial FER models were not 

considered for the controlled experiment. 

• The FER models trained to distinguish compound emotions based on Auction 

Units (AU) determined in FACS were not considered for the controlled 

experiment.  

• To ensure variability and more comprehensive evaluation, priority was given to 

the models trained on different datasets. 

• To analyse models’ decisions and inner logic via various attribution methods, this 

study utilises the DeepExplain2 framework – the only framework for XAI in 

Python supporting a wide range of gradient-based and perturbation-based local 

explanation techniques. As DeepExplain is compatible with Tensorflow and 

                                                
 
1 This is a specialised portal providing free and open access to state-of-the-art ML papers, code and 
evaluation tables. Available at https://paperswithcode.com/ 
2 Available at https://github.com/marcoancona/DeepExplain 
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Keras libraries only, the FER models trained and compiled with different libraries 

(e.g., PyTorch) were not considered for the controlled experiment. 

4.1.2 General Analysis 

As a result, only three out of 12 models discovered on the Papers with Code portal were 

selected for the controlled experiment. Table 1 provides a detailed overview of the 

shortlisted FER models.  

Table 1. Summarised information about FER models selected for the experiment. 

 Model 11 Model 22 Model 33 

Architecture ResNet-50 (He 
et al., 2016) 

Inception-v3 
(Szegedy et al., 

2016) 

MobileNets (Howard et al., 
2017) 

Input Image (i.e., a single frame) 

Training 

dataset 
FER-2013 (Goodfellow et al., 

2013) 
RAF-DB (Li et al., 2017; Li & 

Deng, 2018) 

Classified 

emotions Anger, Disgust, Fear, Happiness, Sadness, Surprise, Neutral 

Accuracy 71.25% 63.86% 76.96% 

F1-score 0.69 0.60 0.69 

 

As Table 1 shows, all the selected models can be used for real-time emotion analysis. 

Moreover, all these FER models process video data as a set of independent input images, 

ignoring potentially high interdependencies between adjacent frames. Thus, none of the 

discovered models considers the temporal dynamics of facial expressions. Moreover, 

Model 1 and Model 2 were trained with the same database. It means that these FER 

models may have encoded the common data biases inherent to the training dataset. 

Therefore, it will be particularly intriguing to compare their performance, as any recurrent 

similarities between Model 1 and Model 2 will be a sign of the validity of our assumption. 

As for the performance metrics, Model 2 has the lowest accuracy equalling 63.86%, 

                                                
 
1 Available at https://github.com/ivadym/FER 
2 Available at https://github.com/ivadym/FER 
3 Available at https://github.com/Jackli95/real-time_emotion_recognition 
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whereas Model 3 has the highest one reaching 76.96%. Interestingly, the difference in 

accuracy between Model 1 and Model 2 makes up almost 6%, however, the computed 

values of the F1-score of both models are equal. Thus, the decision not to include accuracy 

as a metric for FER models’ comparison and evaluation seems to be justified.  

Based on the information collected in Table 1, we can already state that the selected 

models have met the three first general criteria determined in the evaluation framework. 

However, none of them fulfils the fourth criteria related to input specifications. To 

determine whether the selected FER models meet criteria 5, and 6, we need firstly to 

scrutinise their training data. 

4.1.3 Analysis of Training Data  

A. General Description of the FER-2013 Database 

As indicated in Table 1, Model 1 and Model 2 were trained with the FER-2013 database 

created by Pierre Luc Carrier and Aaron Courville for the Facial Expression Recognition 

contest in 2013. In contrast to some other datasets for FER, it is publicly available for 

download1. The FER-2013 dataset was created using the Google image search API to 

collect images of human faces that matched a set of 184 emotion-related keywords (e.g., 

“blissful”, “enraged”). Additionally, the emotion-related keywords were combined with 

words related to age, gender or ethnicity, to generate nearly 600 strings for image search 

queries. OpenCV computer vision library (Bradski & Kaehler, 2008) was used to obtain 

bounding boxes around each face in the first 1000 images returned for each query. Human 

labellers filtered out incorrectly labelled images, corrected the cropping, and removed 

duplicate data. Finally, cropped images were resized to 48x48 pixel resolution and 

converted to grayscale. Ian Goodfellow and Mehdi Mirza prepared a subset of the images 

for the contest mentioned above and mapped the emotion keywords into the seven basic 

emotion categories. The resulting FER-2013 dataset contains 35887 images – 28709 

images for the training set, 3589 images for the validation set, and 3589 images for the 

test set respectively. The distribution of the emotions in all the sets is near-identical. 

Figure 16 displays randomly sampled 12 images from the FER-2013 database. 

                                                
 
1 Available at https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-
recognition-challenge 
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Figure 16. Random sample of images from the FER-2013 database. 

B. General Description of the RAF-DB Database 

As shown in Table 1, Model 3 was trained with the RAF-DB database. The curators of 

the database – i.e., Shan Li, Weihong Deng, and JunPing Du – used a data collection 

strategy similar to the one implemented for FER-2013. Firstly, they determined a set of 

emotion-related keywords (e.g., “smile”, “cry”, “scared”, “frightened”, “expressionless”) 

to enable automatic image search via Flickr API on the Internet. Human annotators 

filtered out the resulting set of images according to the seven basic emotions. Finally, the 

images were aligned and resized to 100x100 pixel resolution. As a result, the original 

dataset contains 29672 real-world facial images captured in an unconstrained 

environment. However, only 15339 images are available for the general public – 12271 

images in the training set and 3068 in the test subset. The distribution of the emotions in 

both sets is near-identical. Moreover, the database creators also specify some metadata. 

In particular, the age of the subjects depicted on the RAF-DB images varies from 0 to 70 

years old. In the full version of the database, 52% are female, 43% are male, and 5% are 

undefined. As for racial distribution, most of the database is comprised of Caucasians 

(i.e., white) – 77%. Asians and African-Americans make up 15% and 8% respectively. 

Figure 17 displays randomly sampled 12 images from the RAF-DB database. 
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Figure 17. Random sample of images from the RAF-DB database. 

C. Capture Bias 

The general analysis of both training datasets showed that images in FER-2013 and RAF-

DB were collected in the unconstrained environment without applying any specific 

filtering. Moreover, the randomly sampled examples confirmed that the captured facial 

expressions in both databases greatly vary in terms of camera angles, head poses, lighting 

conditions and occlusions. Thus, there is sufficient evidence to suppose that the 

possibility of a specific capture bias in FER-2013 or RAF-DB is likely to be insignificant. 

D. Sampling Bias  

As far as the sampling bias is concerned, we can look at it at least from two different 

perspectives. On the one hand, we can regard it as a highly skewed distribution of classes 

(i.e., emotions) in the training set. On the other hand, we can interpret it as an uneven 

distribution of images in terms of age, gender or ethnicity of people they display. In light 

of this newly discovered ambiguity, this specific criterion of the evaluation framework 

should be specified. Firstly, we define sampling bias as an uneven distribution of target 

classes (i.e., emotions). Secondly, we refer to the lack of representativeness of the training 

data regarding human biological characteristics – e.g., age, gender, ethnic diversity – as 

to representation bias. As the latter may be equally important as the former for the 
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classifier’s generalisation ability, we add the representation bias to the framework as a 

stand-alone evaluation criterion.  

However, discovering representation bias in the dataset may pose additional challenges. 

For example, given 28709 images in the FER-2013 training set, figuring out the actual 

distribution of data instances in terms of human biological characteristics may be 

technically burdensome. Thus, when precise information about the above-mentioned 

characteristics is not available, we suggest random sampling with statistically determined 

size to check manually if the training data generally reflect any ethnic, gender, and age 

diversity. When there is a possibility to determine the actual value distribution 

quantitatively, training data should closely reflect the specified characteristics of a target 

population at present. Nevertheless, the question of “how close” should be determined by 

an organisation or institution selecting a model. 

As for the sampling bias, Figure 18 vividly demonstrates the uneven distribution of target 

classes in the FER-2013 dataset. In particular, the class “Happiness” alone makes up 25% 

of the image set. Obviously, Model 1 and Model 2 demonstrate the highest values of the 

F1-score for this particular emotion – 0.89 and 0.87 respectively (see Figure 29 and Figure 

30 in Appendix 2). Moreover, the class “Disgust” is significantly underrepresented, 

accounting for only 1.5% of the overall data. Yet, both FER models succeed in classifying 

it more accurately than “Fear” or “Sadness”. Thus, we may assume that poor classification 
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accuracy for some emotions may potentially result from less intense facial muscle 

activation rather than underrepresentation. 

 

Figure 18. Distribution of classes in the FER-2013 training set. 

Surprisingly, the class “Happiness” in the RAF-DB dataset also ranks first by constituting 

roughly 39% of the training set. And similarly to Model 1 and Model 2, Model 3 

recognises this class with the utmost accuracy (see Figure 31 in Appendix 2). 

Nevertheless, images depicting emotions such as “Fear”, “Disgust”, and “Anger” 

altogether fall short of making up even a quarter of the RAF-DB database (see Figure 19). 

Interestingly, despite considerable underrepresentation of the latter class, Model 3 

classifies it as accurately as more numerous “Sadness” or “Neutral”. Moreover, Model 3 

also demonstrates decent accuracy for the class “Surprise”. This category’s F1-score is 

the second highest despite its relatively moderate fraction in the dataset.  

Thus, we can conclude that, in our case, class imbalance does necessarily result in poor 

classification for the underrepresented groups. It may imply that looking at the 

distribution of classes in the training dataset does not always help predict classifier 

performance for certain categories. To refute or confirm this observation, we will later 

test each model on unseen data. During each test, we will document three best and three 

worst recognisable classes for each model. If the models similarly classify the same 

classes in other databases, we, therefore, may suggest that sampling bias in a multiclass 

FER training set should be a minor concern during the evaluation. 
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Figure 19. Distribution of classes in the RAF-DB training set. 

E. Representation Bias  

As argued earlier, we define representation bias as the lack of representativeness of the 

training data regarding biological characteristics of the individuals that these data depict 

– e.g., age, gender, ethnic diversity. Thus, during this experiment, we will analyse the 

distribution of data subjects for each training set according to two human biological 

characteristics: race and sex. We will consider that the training data is likely to have 

representation bias if it does not reflect the racial and sex distribution of the target 

population. To make the controlled experiment resemble real-world evaluation, we will 

use the 2019 enrolment data by race and sex provided by Yale University1.  

It is important to note that we intentionally omit the age distribution analysis of the 

training sets for two reasons. Firstly, the FER-2013 database documentation does not 

provide any information related to the data subjects’ age. Secondly, determining human 

age based on a single input image with varying occlusions, head poses and camera angles 

seems at best unrealistic.  

E.1 Racial Distribution of Data Subjects 

                                                
 
1 Yale University / The Office of Institutional Research (OIR). (2019). 2019-2020 Factsheet. 
https://www.yale.edu/about-yale/yale-facts  
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As far as the racial distribution in FER-2013 is concerned, the original paper describing 

the dataset does not provide any information about the biological characteristics of the 

depicted people. Given the limited human resources and time constraints for this research, 

a human check is a troublesome option. To address this challenge, we will take advantage 

of the Deepface package – a lightweight face recognition and facial attribute analysis 

framework in Python (Serengil & Ozpinar, 2020). Based on single image input, the 

Deepface inbuilt DL models can predict a person’s gender and race. Therefore, we will 

utilise this framework to get the approximate racial distribution of data subjects in the 

FER-2013 database. It is important to stress that the predicted values are just rough 

approximations with a high chance of considerable deviation from the actual numbers.  

Figure 20 illustrates the distribution of the predicted categories. Importantly, the original 

model classifies images of individuals by six categories. Besides those displayed in 

Figure 20, the model predicted Indian and Middle Eastern ethnic groups. However, to 

enable comparability of this distribution with the Yale original data, we merged “White” 

and “Middle Eastern” into a single “White” class, and we added data instances of “Indian” 

to the “Asian” class. These aggregations are carried out according to the U.S. Guidance 

on Maintaining, Collecting, and Reporting Racial and Ethnic Data1. Figure 33 in 

Appendix 4 displays the original distribution of the predicted races. 

 

Figure 20. Predicted racial distribution in the FER-2013 training set. 

                                                
 
1 Final Guidance on Maintaining, Collecting, and Reporting Racial and Ethnic Data to the U.S. 
Department of Education. (2007). Federal Register Volume 72, Issue 202. Available at: 
https://www.govinfo.gov/app/details/FR-2007-10-19 
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One can see that FER-2013 has a vast diversity of races whose facial expressions are 

captured in this training set. Figure 20 clearly shows that the predominant group is White. 

Asians are the second biggest race present in the FER-2013 training set. Hispanic and 

Black comprise relatively equal fractions. Most importantly, racial categories present in 

the FER-2013 dataset represent approximately 90% of all students at Yale University. 

Moreover, racial distribution in the analysed dataset is similar to the one at Yale. 

Nevertheless, the trustworthiness of the predicted numbers is questionable, as the actual 

accuracy of the prediction model is unknown. 

 

Figure 21. Actual vs predicted racial distribution in the RAF-DB training set. 

As for the racial distribution in RAF-DB, Figure 21 depicts actual numbers for the training 

set as indicated in the database documentation. Interestingly, RAF-DB seems to reflect 

the diversity of students enrolled in Yale University to a lesser extent than FER-2013. 

Generally, it includes the images of individuals representing three major races: Caucasian 

(i.e., White), Asian, and African-American (i.e., Black). As the data were annotated by 

volunteers, it is impossible to find out whether they followed any objective criteria for 

racial classification. For example, it may be the case that annotators did not differentiate 

people of Hispanic origin as a separate category and instead added those to the “White” 

class. Given that images were collected in the wild without any filtering related to human 

ethnicity, the aforementioned annotation strategy seems particularly probable. To check 

this assumption, we utilised the Deepface framework to compare the predicted 

distribution of classes by race with the actual one in the RAF-DB database. We used the 

same aggregation techniques applied to FER-2013. Additionally, following our 

assumption, we add the predicted instances of the “Hispanic” class to the “Caucasian” 
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(i.e., White) category. Figure 21 also illustrates the predicted distribution of data subjects 

by race in the RAF-DB database. Moreover, Figure 34 in Appendix 4 demonstrates the 

predicted racial distribution in RAF-DB before aggregation. 

As shown in Figure 21, the difference between the actual and predicted class fractions 

after aggregation is not critical. Therefore, we can suggest that RAF-DB images may be 

racially more diverse than the annotators decided them to be. However, the result of our 

controlled experiment does not provide sufficient and indubitable evidence to either 

confirm or refute our hypothesis. Provided that the exemplified races in RAF-DB 

represent roughly 80% of all the students at Yale University, representation bias regarding 

the ethnic set-up of this database is obvious and yet not critical. 

E.2 Sex Ratio of Data Subjects 

 

Figure 22. Sex ratio in the FER-2013 and RAF-DB training set. 

As mentioned earlier, the paper proposing and describing the FER-2013 database does 

not contain any information related to the people depicted in the images. However, 

determining the sex of a person does not require any domain-specific knowledge, as in 

the case of classifying individuals into ethnic groups. Therefore, we determine the sex 

ratio in the FER-2013 dataset via sampling and manual annotation. As we aspire to make 

the sample closely represent the database’s overall population in terms of sex, our sample 

size equals 380, ensuring a 95% confidence level and 5% precision. The author of the 

paper carried out the initial annotation. After that, each of the three volunteers additionally 

checked the annotated images. The images that created any ambiguity among the 

volunteers and the author were classified as “Undefined”. The list of the volunteers and 
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their contact information can be found in Appendix 5. Figure 22 displays the sex ratio 

among data subjects in the FER-2013 sample and RAF-DB training set. 

As one can see, the fraction of male subjects in FER-2013 is likely to be slightly smaller 

than females, accounting for approximately 42%. Those images grouped into the 

“Undefined” category mostly depict babies or children whose sex differences are not yet 

conspicuous. Most importantly, the numbers on the graph demonstrate that the sex ratio 

in the FER-2013 database with high confidence may correspond to the one at Yale 

University (see Figure 32 in Appendix 3).  

The graph on the right in Figure 22 also displays the sex ratio in the RAF-DB training 

dataset. The exact fractions were calculated based on the detailed information provided 

by the database annotators for each image. As one can see, the population distribution by 

sex in RAF-DB is almost similar to FER-2013. Notably, the fraction of females in this 

dataset is the same as at Yale University, although the proportion of males is 6% less. 

However, the observed differences in both datasets are, in fact, negligible. Thus, we can 

conclude that the representation bias regarding the sex ratio in FER-2013 and RAF-DB 

is absent or insignificant.  

F. Aggregation Bias 

As argued in Section 3.4.2, aggregation bias occurs when one draws false conclusions for 

some population group based on observations made for a different group. This bias can 

also be present in the model tuned to the quantitatively dominant class in the training 

dataset. For example, in our case, the analysed models may potentially perform varying 

accuracy levels depending on learners’ ethnicity, gender, or age. However, to detect 

anomalous model’s performance with regards to a specific population group requires 

testing with thoroughly profiled and annotated data. 

To check the presence of aggregation bias in the analysed models, we will use the RAF-

DB test set, which contains 3068 images annotated by sex, race, and age. As argued 

earlier, determining the age of a person based on a single image may be quite unrealistic, 

so the quality of annotations made by volunteers is likely to be questionable. Thus, during 

the experiment, we will focus on the models’ performance for different gender and ethnic 

groups, ignoring the age factor. The proportions of those groups closely resemble their 
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distribution in the RAF-DB training set (see Figure 21 and Figure 22). Figure 23 and 

Figure 24 depict the results of the testing.  

 

Figure 23. Performance of the analysed models for the different ethnic groups – Caucasian, Asian, and 
African-American. 

Figure 23 vividly shows that each model demonstrates similar accuracy levels (measured 

as the F1-score) for different ethnic groups. (see Figures 35, 36 and 37 in Appendix 6 for 

detailed classification results). Figure 24 shows similar results. The models classify 

people of different sexes with almost the same accuracy. Thus, based on the presented 

evidence, we may suppose that Model 1, Model 2, and Model 3 are unlikely to 

demonstrate aggregation bias regarding gender and ethnicity of the data subjects (i.e., 

learners) during the classification.  

 

Figure 24. Performance of the analysed models for the different gender groups – males and females. 

G. Performance drop  
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As argued in Section 3.4.1, evaluating the classifier’s generalisation abilities by 

calculating its average performance drop may be a simple yet very informative metric. 

Therefore, we proposed it in the evaluation framework as a separate criterion. However, 

as also shown in Section 3.4.1, algorithmic performance can be measured via different 

metrics. For example, Torralba & Efros (2011) chose accuracy as a performance metric. 

Provided that a different metric had been selected, the calculated values of the 

performance drop might have shown different results. Therefore, to make the proposed 

framework more objective, we calculated the performance drop of the analysed models 

based on two metrics – accuracy and the F1-score.  

Since the calculation of the performance drop requires testing on unseen data, we used 

five different FER datasets. Additionally, we tested Model 1 and Model 2 on the RAF-

DB test set and Model 3 on the FER-2013 test set respectively. The complete list of the 

datasets used in this part of the controlled experiment is provided below. As FER-2013 

and RAF-DB were thoroughly described earlier in this section, they are not mentioned in 

the list. 

1) CK+ (Lucey et al., 2010). The database consists of images depicting 182 adults 

between the ages of 18 and 50 years. 69% of the subjects are female, whereas 31% 

are male. The paper proposing the dataset also indicates that 81% of adults are 

Euro-American, 13% are Afro-American, and 6% belong to other ethnic groups. 

The images presented in CK are 2105 fragmented frontal-view video sequences 

recorded in a studio with uniform lighting conditions. This study uses a fragment 

of the original database consisting of 1520 images representing six basic facial 

expressions (i.e., anger, disgust, fear, happiness, sadness, surprise) and a neutral 

face.   

2) JAFFE (Lyons et al., 1998). The database consists of 219 frontal-view facial 

expression images recorded from ten subjects in a studio with uniform lighting 

conditions. All the subjects are Japanese females. The hair of the subjects was 

intentionally tied to expose all expressive zones of the face. The database includes 

three or four examples of each female expressing one of the six basic facial 

expressions (i.e., anger, disgust, fear, happiness, sadness, surprise) and a neutral 

face.  
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3) iSAFE (Singh & Benedict, 2019). The dataset consists of image sequences of 44 

volunteers of Indian origin whose age ranges from 17 to 22 years. Out of 44 

recorded subjects, 25 are male, whereas 19 are female. All the volunteers were 

placed in a brightly lit room and shown a set of carefully pre-selected videos 

aimed to induce particular emotions. A camera placed in front of the subjects 

recorded their facial response throughout the experiment. The subjects’ recorded 

facial expressions were self-annotated and later cross-annotated by a professional 

annotator according to the six basic facial expressions. The recorded videos were 

analysed and trimmed to include only the segments with identifiable facial 

expressions. This study uses a fragment of the original database consisting of 9046 

images depicting the facial expressions of 22 subjects.   

4) IMPA-FACE3D (Mena-Chalco et al., 2011). The dataset is composed of 38 

subjects – 22 men and 16 women whose age ranges from 19 to 65 years. The 

images of the subjects were captured in a frontal position in a room with controlled 

lighting conditions. The subjects were not allowed to wear eyeglasses or other 

objects that could modify their facial appearance. However, no restrictions on 

clothing or hairstyle were imposed. This study uses a fragment of the original 

database consisting of 252 images depicting the facial expressions of 36 subjects. 

All the images represent one of the six basic facial expressions (i.e., anger, disgust, 

fear, happiness, sadness, surprise) or a neutral face. Moreover, in the following, 

this study will refer to this database as to FacesDB. 

5) AffectNet (Mollahosseini et al., 2017). This database is arguably the largest 

database of images depicting human facial expressions collected in the wild. The 

images were automatically collected by querying emotion-related keywords from 

three search engines – i.e., Google, Bing, and Yahoo. In addition, the keywords 

were combined with words related to gender, age, or ethnicity. Besides English, 

the search queries were also written in Spanish, Portuguese, German, Arabic and 

Farsi. The OpenCV computer vision library was used to obtain bounding boxes 

around each face returned by the query. Human annotators labelled a total of 

450,000 images into both discrete categorical and continuous dimensional 

models. The former includes the following facial expressions: neutral, happy, sad, 

surprise, fear, anger, disgust, contempt, none, uncertain, and non-face. This study 

uses a fragment of the original database consisting of 3500 images depicting one 
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of the six basic facial expressions (i.e., anger, disgust, fear, happiness, sadness, 

surprise) or a neutral face.   

Table 2 shows the results of the testing with the datasets described above. The numbers 

in Table 2 represent the performance of the analysed models that is measured as accuracy. 

Table 3 also demonstrates the performance of the pre-selected models, however, their 

classification accuracy is measured as the F1-score. In addition, Table 9 in Appendix 7 

demonstrates the top three best and worst identifiable facial expressions by each model 

for a respective test set.  

Table 2. Performance (measured as the F1-score) of the selected FER models on different datasets. The 
numbers marked with an asterisk (i.e., ‘*’) stand for the original/initial classification accuracy (also 
measured as the F1-score) for a respective model on the test set.  

        Dataset 

Model 
FER-
2013 RAF-DB CK+ JAFFE iSAFE FacesDB AffectNet 

Model 1 0.69* 0.31 0.61 0.41 0.17 0.23 0.26 

Model 2 0.61* 0.27 0.56 0.23 0.18 0.18 0.24 

Model 3 0.45 0.69* 0.67 0.33 0.30 0.45 0.45 

 

Table 3. Performance (measured as accuracy) of the selected FER models on different datasets. The 
numbers marked with an asterisk (i.e., ‘*’) stand for the original/initial classification accuracy of a 
respective model on the test set. 

 
       Dataset 

Model 
FER-
2013 RAF-DB CK+ JAFFE iSAFE FacesDB AffectNet 

Model 1 71.25* 56.06 72.43 43.66 32.85 26.19 30.26 

Model 2 63.86* 51.33 70.26 29.58 33.43 25.0 28.89 

Model 3 51.52 76.96* 79.34 38.03 46.09 45.63 40.53 

 

As we used data from Table 2 and Table 3 as an input to calculate the mean performance 

drop of each model, we will not comment on it. Nevertheless, the data presented in Table 

4 and Table 5 are of primary interest for this research. The former shows the mean 

performance drop calculated with data from Table 2, whereas the latter illustrates the 

values of the mean performance drop calculated with data from Table 3.    

Table 4. The mean performance drop of the analysed FER models. The performance drop was calculated 
based on the data presented in Table 2. 
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         Dataset 

Model 
FER-
2013 

RAF-
DB CK+ JAFFE iSAFE FacesDB AffectNet Mean 

Drop 

Model 1 X -55.1 -11.6 -40.6 -75.4 -66.7 -62.3 -52.0% 

Model 2 X -55.7 -8.2 -62.3 -70.5 -70.5 -60.7 -54.65% 

Model 3 -34.8 X -2.9 -52.2 -56.5 -34.8 -34.8 -36.0% 

 

Table 5. The mean performance drop of the analysed FER models. The performance drop was calculated 
based on the data presented in Table 3. 

         Dataset 

Model 
FER-
2013 

RAF-
DB CK+ JAFFE iSAFE FacesDB AffectNet Mean 

Drop 

Model 1 X -21.3 +1.7 -38.7 -53.9 -63.2 -57.5 -38.8% 

Model 2 X -19.6 +10.0 -53.7 -47.7 -60.9 -54.8 -37.8% 

Model 3 -33.1 X +3.1 -50.6 -40.1 -40.7 -47.3 -34.8% 

The data in both tables vividly demonstrates that none of the analysed models has perfect 

generalisation capability. Each of them showed more than a 30% drop in classification 

accuracy. Provided that the test datasets have an uneven distribution of classes, the mean 

performance drop that takes accuracy as an input metric fails to provide a robust measure 

of the models’ performance for the minor classes, especially if those classes tend to have 

a higher classification error. Thus, based on the experiment’s results demonstrated above, 

we can suppose that the mean performance drop suggested by the framework as an 

evaluation criterion should take the F1-score as an input metric rather than accuracy. 

Additionally, even though Model 1 and Model 2 were trained with the same data set, the 

information presented in Table 2 and Table 4 provides convincing evidence that the latter 

performs worse. Therefore, the decision-making of Model 2 regarding the classification 

of the universal facial expressions will not be analysed in Section 4.1.4. 

4.1.4 Analysis of Post-hoc Interpretability 

As discovered in Subsection 3.4.2, the interpretability of the analysed model should be 

linked to some ground truth determined by domain experts or the model’s users. Besides, 

the last evaluation criterion in the proposed framework specifies that in the context of 

FER, the ground truth for each class can be a group of particular areas of a human face 

activated for each facial expression. In addition, the framework requires that the 

importance attribution of the analysed FER model should coincide with the one defined 
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by humans. Specifically, this study suggests that an image area can be considered 

significant for a given prediction if it meets two requirements:  

1) The area of interest in the image has the above-average concentration of 

highlighted pixels on the attribution maps or above-average colour intensity on a 

heatmap 

2) The area of interest in the image is highlighted in at least 2/3 of attributions maps 

generated by different explanation methods for the given prediction. 

As shown in Section 3.3.3, the research community has proposed numerous attribution 

methods that can explain the logic behind the model’s decisions either globally or locally.  

As there is a considerably wider variety of local rather than global interpretability 

methods, this study will focus on the former group. Nevertheless, it is important to note 

that each local interpretability method may have some disadvantages and controversies 

related to its fidelity, noisiness or accuracy. To reduce the risk of over-reliance on any 

particular method, the proposed framework suggests analysing models’ decisions and 

inner logic via several different attribution methods. Thus, as a part of the controlled 

experiment, this study will utilise the following methods: Gradient∗Input (Shrikumar, 

2016), Integrated Gradients (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 

2017), ε-LRP (Bach et al., 2015) and LIME (Ribeiro et al., 2016). This study used the 

DeepExplain framework in which all of the before-mentioned methods, except for LIME, 

had been implemented. Moreover, the study took advantage of the Python 

implementation of LIME provided on its author’s GitHub account1.  

As for ground truth, this study relied on the description of the seven basic facial 

expressions provided on the official website2 of Paul Ekman – the very researcher who 

discovered micro-expressions and provided substantial and ample evidence for their 

universality. As an example, Figure 25 demonstrates the description and mapping for 

“Anger”. The rest of the Figures describing the movement and mapping of different facial 

regions for each universal expression can be found in Appendix 8. 

                                                
 
1 Available at https://github.com/marcotcr/lime 
2 Available at https://www.paulekman.com/universal-emotions/ 
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Figure 25. The face of anger1.  

In fact, we analysed the hidden logic of Model 1 and Model 3 by selecting six images 

from the CK+ database. Each image represents one of the six universal facial expressions 

– i.e., anger, disgust, fear, happiness, sadness and surprise. The decision to select CK+ as 

a test database was made for two reasons. Firstly, the images from that database can be 

considered as “unseen data” for both models. Therefore, none of the models had any 

advantage when given data from CK+. Secondly, among all the datasets mentioned and 

used in this study, CK+ is arguably the most widely-used database for the development, 

validation and testing of FER algorithms within the scientific community.  

Figure 26 and Figure 27 illustrate the attribution maps generated for the input image of 

the class “Angry” for Model 1 and Model 3 respectively2. In particular, as determined by 

Ekman, red rectangles outline areas of the human face that are discriminative for this 

particular emotion (see Appendix 8). Additionally, the concentration of crimson pixels in 

some areas of this face signifies the importance of these regions for the given facial 

expression to be classified as angry. It must be noted, however, that a heatmap generated 

by LIME shows a positive contribution of the specific image fragments with different 

                                                
 
1 Available at https://www.paulekman.com/universal-emotions/what-is-anger/ 
2 The rest of the attribution maps generated for Model 1 and Model 3 can be found in Appendix 9 and 
Appendix 10 respectively. 
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shades of blue, not crimson. Crimson colour, in this case, highlights image areas that 

decrease the probability of the given facial expression being classified as angry.  

Generally, Figure 26 demonstrates that Model 1 follows human logic, as most of the 

pixels or highlighted fragments are concentrated within the red rectangles. In contrast, 

attribution maps generated for Model 3 (see Figure 27) are slightly nosier – i.e., a 

significant number of highlighted pixels fall outside the outlined areas. Nevertheless, 

even though importance attribution by Model 1 may seem more reasonable to humans, 

none of the analysed models demonstrated perfect alignment with the human theoretical 

underpinnings.  

 

Figure 26. Attribution maps generated for the input image of the class “Angry” (Model 1).  

 

Figure 27. Attribution maps generated for the input image of the class “Angry” (Model 3). 
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Moreover, despite the minimal number of input images analysed with the attribution maps 

during the experiment, one can already observe that both models tend to consider image 

fragments beyond the area of a human face as relevant for the classification – e.g., Figures 

41, 42, 44 and 51 in Appendix 9 and 10. Such behaviour may signify the potential 

presence of biases inherited from the training data. For example, the training set could 

contain watermarked images for specific classes so that the presence or absence of these 

patterns could have become an extra feature affecting the model’s classification. As 

Lapuschkin et al. (2019) demonstrated, SpRAy could be most helpful in this case, as it 

proved to be an effective method for pinpointing implicit and anomalous patterns in the 

model’s prediction behaviour. Although this study did not apply any global explanation 

methods to the models’ inner workings due to temporal constraints, the controlled 

experiment vividly demonstrated that an evaluation of any DNN without analysing its 

global logic should be considered incomplete.  

All in all, Table 6 shows the aggregated results of the models’ evaluation during the 

controlled experiment. Each column informs of the model’s compatibility with one 

specific evaluation criterion presented in the framework. As one can see, all three models 

demonstrate relatively good results. Their training data do not seem to have any notable 

biases and thus closely resemble real-world setting. When judged by information from 

the first eight columns, Model 1 and Model 2 are equally suitable for deployment in a 

web-based learning environment. However, the values of the mean performance drop tilt 

this balance in favour of Model 3, indicating its more advanced generalisation 

capabilities. Unfortunately, due to the reasons outlined above, drawing conclusions on 

the given models’ interpretability does not seem feasible within the scope of this 

controlled experiment. 

Table 6. Aggregated results of the controlled experiment. 

    Criteria 
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Model 3 0.69 + + + – + + + + 36.0 NA 

 

4.1.5 Summary of the Controlled Experiment and Discussions 

The controlled experiment demonstrated that the proposed framework ensures a 

comprehensive multidimensional evaluation of any FER model considered for 

deployment in a web-based learning environment. The variety of criteria can give a better 

understanding of the model’s strengths and pinpoint its potential weaknesses. Moreover, 

the controlled experiment showed that the proposed evaluation order can help filter out 

the most unsuitable FER models at the very beginning and allocate more time to a 

thorough analysis of the most relevant ones. 

Additionally, the experiment proved to be an effective technique to discover several 

ambiguities and limitations of the initially determined criteria. First of all, the sixth 

criteria regarding the absence of sampling bias in its initial form proved to be somewhat 

vague in practice. Therefore, we suggested that the absence of sampling bias in the 

training data should be regarded as a balanced distribution of the model’s target classes 

(i.e., emotions). Secondly, by narrowing down the definition of sampling bias, it was 

crucial to ensure that the age, gender and ethnic diversity of the analysed people are duly 

considered during the evaluation. As those biological characteristics may be equally 

important as the distribution of target classes for the classifier’s generalisation capability, 

we modified the framework by adding the representation bias as a stand-alone evaluation 

criterion. Moreover, taking actual statistics of Yale University as a baseline for 

comparison justified the decision to include representation bias as another crucial 

criterion for the models’ all-around evaluation. 
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Additionally, the controlled experiment verified the validity of applying the idea of 

performance drop to FER models. As expected, all the pre-selected models demonstrated 

a significant drop in classification accuracy when tested with “unseen” data. Moreover, 

we empirically demonstrated that using the F-score rather than accuracy as a metric for 

performance drop calculation may provide a more informative and robust measure of 

algorithmic generalisation capabilities.  

Finally, conducting the controlled experiment helped reinforce the line of reasoning that 

local explanation methods alone are not sufficient to evaluate a model’s interpretability. 

Although local explanations provide valuable insight into the algorithmic logic for 

particular cases, they do not reveal the models’ decision-making and potential inherent 

biases on a general level.  

Based on the outcomes of the experiment outlined above, the thesis proposes the modified 

version of the evaluation framework for FER models. Its evaluation criteria now look as 

follows: 

1. The model classifies both positive and negative emotions 

2. All the emotions identifiable by the model belong to the seven universal emotions  

3. The model is an ANN with multiple hidden layers 

4. The model takes a video fragment (i.e., sequence of multiple frames) as an input 

5. The model was trained with data without capture bias 

6. The model was trained with data without sampling bias. I.e., the training data did 

not have any severe imbalances in terms of its target classes (i.e., emotions). 

7. The model was trained with data without representation bias. I.e., the training data 

generally reflects the age, gender and ethnic diversity of the target population. 

8. The model does not demonstrate aggregation bias.  

9. The model demonstrates fair generalisation abilities. I.e., the mean performance 

drop – which is calculated based on the F-score for each test dataset – is the 

smallest among the other models considered for the selection 
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10. The model’s importance attribution to the specific input features (i.e., particular 

areas of human face activated for each emotion) coincides with the one defined 

by humans. This rule applies to local and global explanations equally.  

Figure 28 presents an updated visualisation of the evaluation process’ workflow 

suggested by the proposed framework. 

 

Figure 28. The workflow of the evaluation process of different FER models suggested by the modified 
version of the initially proposed framework. 

 

The proposed framework is the first documented attempt to suggest generic evaluation 

criteria for FER model evaluation and selection that go beyond performance metrics. 

Moreover, the framework includes interpretability as an essential requirement for model 

validation and deployment in real-time.
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Summary 

As a result of the COVID-19 pandemic, the frequent suspension of classes and the near-

total closures of thousands of educational institutions worldwide create an insuperable 

impediment to conventional face-to-face classes and thus make remote learning the only 

feasible alternative. Unfortunately, learners’ facial expressions –– a valuable natural 

source of instant feedback to the learning experience for any educator –– are commonly 

overlooked during online sessions. Although modern DL systems classifying human 

emotions by a single facial expression may be crucial for improving the online learning 

experience, the general reasoning and decision-making of those systems often remain 

ignored during their evaluation and deployment.   

This study addresses this problem by proposing a robust, theory-driven, and case-oriented 

evaluation framework enabling preliminary selection of the FER models that provide 

accurate, valid and trustworthy information on students’ learning experience in a web-

based learning environment. Contrary to the existing evaluation approaches, the proposed 

framework goes beyond conventional performance metrics (e.g., accuracy), shifting the 

focus to detecting potentially inherent biases, evaluating algorithmic generalisation 

capabilities and models’ interpretability. By following the DS research methodology, this 

study also includes the controlled experiment that validates the proposed evaluation 

criteria and serves as an input for a new cycle of the artefact’s building and refinement. 

The overall robustness and replicability of the experiment are ensured by using publicly 

available algorithms and real training data – i.e., pre-trained FER models and datasets 

with labelled facial expressions.  

Despite the multiple limitations discussed in this study, the proposed evaluation 

framework is arguably the first documented scientific attempt to enable comprehensive 

analysis and evaluation of FER models for their eventual deployment in web-based 

learning environments. 
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Future work 

Although this research and its findings lay the solid groundwork for comparing and 

evaluating different FER models for a web-based learning environment, the limitations 

outlined in Section 2.2 make further research particularly crucial for expanding and 

strengthening its initial results. First and foremost, the proposed evaluation framework 

requires extensive recurrent testing and evaluation with the involvement of the 

practitioners — i.e., FER researchers, developers and educators. Their feedback is bound 

to challenge and verify the assumptions and findings presented in this thesis. Moreover, 

future experiments and testing should also cover commercial FER systems (e.g., Amazon 

Rekognition API1). Irrespective of the outcome, such testing is likely to result in 

interesting findings with a high utility for the research community and potentially 

significant implications for the FER market players.  

Additionally, as more and more human interactions occur on the web, models for facial 

expression recognition have enormous potential for deployment in use cases going 

beyond the scope of the current study. For instance, FER algorithms may be helpful 

during negotiations with a business partner, bring additional insights during the 

presentation of a new product, or provide an instant evaluation of the user experience with 

intelligent virtual assistants. Moreover, some researchers have already demonstrated the 

tremendous importance of emotional awareness and facial expression recognition in the 

context of semi-autonomous or fully autonomous vehicles (Gressenbuch & Bergemann; 

Izquierdo-Reyes et al., 2018). Thus, a constantly growing variety of use cases for the 

application of FER models create a pressing need for further research about their robust 

comparison and evaluation in each given example.     

 

 

                                                
 
1 Available at https://aws.amazon.com/rekognition/?nc=sn&loc=1&blog-cards.sort-
by=item.additionalFields.createdDate&blog-cards.sort-order=desc 
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I Ruslan Kononov  

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my 
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Deployment in Web-Based Learning Environments”, supervised by Sadok Ben Yahia 
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2. I am aware that the author also retains the rights specified in clause 1 of the non-
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Appendix 2 – Performance Metrics of the Tested Models 

 

Figure 29. Performance of Model 1 (the FER-2013 test set). 

 

Figure 30. Performance of Model 2 (the FER-2013 test set). 

 

Figure 31. Performance of Model 3 (the RAF-DB test set).
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Appendix 3 – Ethnic- and Gender-related Statistics at Yale 

University 

Table 7. Total enrolment to Yale University by race in Fall 2019. The data does not include international 
students1. 

 
Table 8. Total enrolment to Yale University by sex in Fall 2019. The data excludes international 

students1. 

 
 

 

Figure 32. Distribution of people with conferred degrees from Yale University between July 2018 and June 
2019 by sex (non-Doctorates). The graph illustrates the numbers indicted in Table 3.

                                                
 
1 Yale University / The Office of Institutional Research (OIR). (2019). 2019-2020 Factsheet. 
https://www.yale.edu/about-yale/yale-facts 
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Appendix 4 – Predicted Racial Distribution in FER-2013  

 

Figure 33. Predicted racial distribution of the data subjects in FER-2013 before aggregation. 

 

 
Figure 34. Predicted racial distribution of the data subjects in RAF-DB before aggregation. 
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Appendix 5 – List of Independent Annotators  

Table 9. Independent evaluators of gender-related annotations for the RAF-DB sampled images. 

Annotator’s name  Contact info 

Halyna Kiryk halynaskiryk@gmail.com 

Hanna Khudyk anna.hudyk@gmail.com 

Valentyna Tsap valentyna.tsap@taltech.ee 

Yevdokymova Oleksandra sevdokimova99@gmail.com 
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Appendix 6 – Accuracy of the Pre-selected Models on Different 

Population Groups  

     

Figure 35. Performance of Model 1 for the different gender groups – males (on the left) and females (on 
the right). 

     
Figure 36. Performance of Model 2 for the different gender groups – males (on the left) and females (on 

the right). 

     
Figure 37. Performance of Model 3 for the different gender groups – males (on the left) and females (on 

the right).
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Appendix 7 – The Top Identifiable Facial Expressions by Each 

Model 

Table 10. The top three best and worst identifiable facial expressions by each model for a respective 
dataset. 

        Dataset 

Model 
FER-
2013 RAF-DB CK JAFFE iSAFE FacesDB AffectNet 

Model 1 

Happiness, 
Sadness, 
Neutral 

--- 
Fear, 

Sadness, 
Anger 

Happiness, 
Sadness, 
Neutral 

--- 
Surprise, 
Disgust, 

Fear 

Surprise, 
Happiness, 

Neutral 
--- 

Anger, 
Fear, 

Sadness 

Happiness,  
Surprise, 

Fear 
--- 

Disgust, 
Anger, 
Sadness 

Happiness, 
Sadness, 
Neutral 

--- 
Surprise, 
Disgust, 

Fear 

Happiness, 
Neutral, 
Sadness 

--- 
Surprise, 
Disgust, 
Anger 

Happiness, 
Sadness, 
Neutral 

--- 
Disgust, 
Surprise, 

Anger 

Model 2 

Happiness, 
Surprise, 
Neutral 

--- 
Fear, 

Sadness, 
Disgust 

Happiness, 
Neutral, 
Sadness 

--- 
Disgust, 
Surprise, 

Fear 

Happiness, 
Neutral, 
Surprise 

--- 
Disgust, 

Fear, 
Sadness 

Surprise, 
Happiness, 

Sadness 
--- 

Disgust, 
Neutral, 
Anger 

Happiness, 
Neutral, 
Sadness 

--- 
Disgust, 
Surprise, 

Fear 

Happiness, 
Neutral, 
Sadness 

--- 
Anger, 

Surprise 
Fear 

Happiness, 
Neutral, 
Sadness 

--- 
Disgust, 
Surprise, 

Anger 

Model 3 

Happiness, 
Surprise, 
Sadness 

--- 
Fear, 

Disgust, 
Anger 

Happiness, 
Surprise, 
Neutral 

--- 
Disgust, 

Fear, 
Sadness 

Happiness, 
Surprise, 
Neutral 

--- 
Anger, 
Sadness 

Fear 

Happiness, 
Fear, 

Sadness 
--- 

Disgust, 
Anger, 
Neutral 

Happiness, 
Sadness, 
Surprise 

--- 
Fear, 

Neutral, 
Anger 

Happiness, 
Neutral, 

Fear  
--- 

Anger, 
Disgust, 
Surprise 

Happiness, 
Sadness, 
Neutral  

--- 
Anger, 

Disgust, 
Fear 
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Appendix 8 – Universal Facial Expressions  

   
Figure 38. The face of anger (on the left) and the face of disgust (on the right)1. 

 

   
Figure 39. The face of fear (on the left) and the face of happiness (on the right)1. 

 

   
Figure 40. The face of sadness (on the left) and the face of surprise (on the right)1. 

                                                
 
1  Available at https://www.paulekman.com/universal-emotions/ 
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Appendix 9 – Attribution maps (Model 1)  

 
Figure 41. Attribution maps generated for the input image of the class “Angry” (Model 1).  

 
Figure 42. Attribution maps generated for the input image of the class “Disgust” (Model 1). 

 
Figure 43. Attribution maps generated for the input image of the class “Fear” (Model 1). 
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Figure 44. Attribution maps generated for the input image of the class “Happiness” (Model 1). 

 
Figure 45. Attribution maps generated for the input image of the class “Sadness” (Model 1). 

 
Figure 46. Attribution maps generated for the input image of the class “Surprise” (Model 1). 



115 

Appendix 10 – Attribution maps (Model 3)  

 
Figure 47. Attribution maps generated for the input image of the class “Angry” (Model 3). 

 
Figure 48. Attribution maps generated for the input image of the class “Disgust” (Model 3). 

 
Figure 49. Attribution maps generated for the input image of the class “Fear” (Model 3). 
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Figure 50. Attribution maps generated for the input image of the class “Happiness” (Model 3). 

 
Figure 51. Attribution maps generated for the input image of the class “Sadness” (Model 3). 

 
Figure 52. Attribution maps generated for the input image of the class “Surprise” (Model 3). 


