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Ülevaade 

Tänapäeval on terve rida pobleeme, mille lahendamine pole sugugi lihtne ning neile 

lahenduse leidmine nõuab liiga palju aega. Enamik selliseid probleeme on pärit matemaatikast ja 

informaatikast; neid teatakse kui NP-täielikke probleeme ning need suunatakse edasi 

graafiteooria probleemideks. Graafiteooria kohaselt võib ära jätta kõik ebaolulised üksikasjad 

ning keskenduda probleemi juurele, kasutades selleks graafe – erilisi objektide vahelisi seoseid 

kujutavaid skeeme.  

See töö keskendub suurima kliki leidmisele orienteerimata ja kaalumata graafidest. 

Suurima kliki probleem on üks enamlevinud NP täielikest probleemidest, kõige 

komplitseeritumatest NP liigi probleemidest. Paljud muud probleemid saab teisendada 

klikiprobleemideks, mistõttu nende lahendamine või vähemalt kiirema algoritmi leidmine kliki 

jaoks aitab automaatselt lahendada palju muid ülesandeid.  

See tees algab graafiteooria põhikontseptsiooni kirjeldamisest, et anda lühisissejuhatus 

põhiteemale. Pärast seda kirjeldatakse mõningaid täpseid algoritme suurima kliki leidmiseks. On 

teada-tuntud fakt, et paljud harude ja tõkete algoritmid (mida kasutatakse suurima kliki 

leidmiseks) on muutunud paremaks neile kohaldatud erineva heuristika abil. Seetõttu on uuritud 

ka mõnesid heuristikaid graafide värvimiseks, sõltumatu hulga ja tippude katmise leidmiseks. 

Seejärel esitleti vägagi paljulubavaid moodsaid ja tõhusaid algoritme, mis tutuvustavad erinevaid 

ideid paremaks ja kiiremaks kliki leidmiseks.  

Sellele teesile on põhiliselt kaasa aidanud uus täpne algoritm suurima kliki leidmiseks, 

mis toimib kiiremini kui ükski senine algoritm, ja seda väga laia valiku graafide puhul. Põhiidee 

on ühendada rida tõhusaid täiustusi erinevatest algoritmidest üheks uueks algoritmiks. 

Esmapilgul ei pruugi need täiustused koos toimida, kuid uus lähenemisviis, mis jätab ära tippude 

edasise avardumise harude kärpimise asemel võimaldab nende uuenduste kasutamist ühes 

algoritmis. Edaspidi tuleb samm-sammulisi näiteid koos selgitustega, mis demonstreerivad, 

kuidas kavandatud algoritmi kasutada.  

Lõpuks kõiki algoritme omavahel võrreldatakse graafide juhusliku genereerimise teel ja 

DIMACS’i näited tõestavad, et uus algoritm leiab suurima kliki kiiremini kui ükski teine 

tihedustel alla 75%. On ka muid paljulubavaid ideid, mille kohaselt eelpoolkirjeldatu on hea 



 

teema tulevaste uurimustööde jaoks. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 99 leheküljel, 6 peatükki, 40 

kujundit, 5 tabelit ja 1 lisa. 



 

 

Abstract 

A wide variety of problems nowadays cannot be solved easily and these problems 

require too much time to find a solution. Most of such problems come from mathematics and 

computer science and are known as NP-complete problems and they were abstracted into 

graph theory problems. Graph theory allows removing all insignificant details and focusing on 

the root of a problem using graphs, special representations of objects and relationships 

between them. 

This work concentrates on finding maximum clique from undirected and unweighted 

graphs. Maximum clique problem is one of the most known NP-complete problems, the most 

complex problems of NP class. Many other problems can be transformed into clique problem, 

therefore solving or at least finding a faster algorithm for finding clique will automatically 

help to solve lots of other tasks.  

This thesis starts from describing basic concepts of graph theory to introduce the main 

topic. After that, some basic exact algorithms for finding maximum clique are described. It is 

a well-known fact that many branch-and-bound algorithms (which are used for maximum 

clique finding) are improved by different heuristic applied to them. Due to this, some heuristic 

for graph coloring, independent set and vertex cover finding is studied as well. Thereafter 

most promising and efficient modern algorithms are presented, which introduce different ideas 

for improving and fastening clique finding. 

The main contribution of this thesis is a new exact algorithm for finding maximum 

clique, which works faster than any currently existing algorithm on a wide variety of graphs. 

The main idea is to combine a number of efficient improvements from different algorithms 

into a new one. At first sight, these improvements cannot cooperate, but a new approach of 

skipping vertices from further expanding instead of pruning the whole branch allows to use all 

the upgrades at ones. There will be some step-by-step examples with explanations, which 

demonstrate how to use a proposed algorithm. 

At last, all algorithms are compared to each other on randomly generated graphs and 

DIMACS instances therefore proving the new algorithm finding maximum clique faster than 

any other on densities lower than 75%. There are also some promising ideas stated that might 



 

be a good themes for future research works. 

The thesis is in English and contains 99 pages of text, 6 chapters, 40 figures, 5 tables 

and 1 appendix.  



 

Abbreviations glossary 

CBC Current best clique. Abbreviation used in multiple algorithms to define 

an array for storing the largest clique vertices found by far. Sometimes it 

is used as |CBC| that means the number of vertices contained in a current 

best clique. 

DIMACS Center for Discrete Mathematics and Theoretical Computer Science. 

Presents a pack of benchmarks instances, which represent different 

graphs, constructed on the real life problem basis. These instances can be 

used for testing maximum clique algorithms performance. 

ILS Iterated local search algorithm. Heuristic algorithm for searching a better 

solution by applying different improvements to already existing heuristic 

solution. In this thesis, ILS abbreviation is applied to particular algorithm 

for finding maximum independent set [Andrade, Resende, Werneck 

2012]. 

MCSI MCS Improved algorithm. Exact maximum clique algorithm, successor 

of MCS, presented in 2014 by four authors [Batsyn, Goldengorin, 

Maslov, Pardalos 2014]. 

MCQ, MCR, MCS Exact maximum clique algorithms published by Tomita and his 

colleagues [Tomita, Seki 2003] [Tomita, Kameda 2007] [Tomita, Sutani, 

Higashi, Takahashi, Wakatsuki 2010]. Each algorithm is a successor of 

the previous one and adds some improvements for fastening search. 

MDG Maximum degree greedy algorithm. Heuristic algorithm for finding 

maximum vertex cover published by Clarkson [Clarkson 1983]. 

MIS Maximum independent set problem. The problem of finding the largest 

possible edgeless subgraph of a given graph. 



 

NP complexity class Nondeterministic polynomial time complexity class. Class of problems 

that can be solved with a polynomial amount of time by nondeterministic 

Turing machine. 

P complexity class Polynomial time complexity class. Class of problems that can be solved 

with a polynomial amount of time by deterministic Turing machine. 

VColor-BT-u Vertex color with backtracking for unweighted cases. Exact maximum 

clique finding algorithm published by D. Kumlander [Kumlander 2005] 

based on Östergård’s algorithm. The main idea is to apply vertex 

coloring with backtracking for fastening maximum clique finding. 

VColor-u Vertex color for unweighted cases. Exact maximum clique finding 

algorithm published by D. Kumlander [Kumlander 2005] based on 

Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990]. The main 

idea is to apply vertex coloring for fastening maximum clique finding. 

VRecolor-BT-u Vertex recolor with backtracking for unweighted cases. A new exact 

algorithm presented in the current thesis based on VColor-BT-u. The 

main idea is to apply additional in depth coloring (recoloring) to fasten 

maximum clique search. 
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1. Introduction 

1.1 Graph theory 

Graph theory is a study of graphs which is the main topic of this work, it can be used 

as a tool that helps scientists to transform real life problem into special representations i.e. 

graphs. This process allows omitting unnecessary details, relaxing a problem, and 

concentrating on the source of the problem. Number of applications and algorithms for 

solving different types of problems within graph theory area is growing very fast, so a lot of 

tasks can be converted into already solved ones, which let people optimize and ease their 

daily life. 

When working with graphs it is often convenient to imagine a graph as a diagram, 

which represents objects as a vertices or points and relationships between these objects are 

depicted as edges or lines joining the two relevant points. Let us assume that we need to 

organize a timetable in the airport. A number of aircrafts should be assigned to multiple 

flights in a set period of time. If two flights overlap, then it is not possible to assign one 

airplane to both flights. This problem can be transformed into a graph. We indicate each flight 

as a vertex and if two flights overlap then corresponding vertices will be connected to each 

other. When a real problem is modeled as a graph, we are going to solve it using already 

existing techniques, in our case it is a graph coloring. We need to assign a label i.e. color to 

each vertex in a manner that no two connected points share the same color. As a result, gained 

number of colors will show how many aircrafts we will need to organize all the flights. 

To make things clear we are going to demonstrate a well-known example making use 

of graphs. In the 18
th

 century, there were seven bridges in the town of Königsberg. Residents 

were interested whether it is possible to cross all the bridges with one walk without recrossing 

the same road multiple times. Figures 1.1 and 1.2 show how the situation in this town is 

represented by a graph. Vertices are treated as land areas and the two vertices a connected by 

a number of edges equal to the number of bridges between corresponding lands. After this 
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transformation, the problem is narrowed to the question: is it possible to find a trail containing 

all the edges? 

 

Figure 1.1 The Königsberg Bridge Problem. Map representation [Chartrand 1985]   

 

Figure 1.2 The Königsberg Bridge Problem. Graph representation [Chartrand 1985] 

Swiss mathematician Leonhard Euler (1707-1783) solved the Königsberg Bridge 

Problem and it gave an answer to various different puzzles, mazes, and tasks that were similar 

to this problem. The same way nowadays, graph theory allows solving problems from 

multiple areas like computer science, sociology, medicine, biology and so on. Studying the 

root problems of graph theory is important not only for a particular problem by itself but for 

all connected areas.  
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1.2 Preliminaries 

A graph G is a representation of objects, which is a set of vertices V, and a number of 

relationships between these objects, called edges i.e. a set of edges E. The order of G is a 

number of vertices in G and the number of edges is called the size of G. Therefore, order is |V| 

and |E| is equal to size of G. If two vertices u and v are connected to each other they are called 

adjacent              and u and v are both incident to e. If              then u 

and v are nonadjacent. It is essential on what position each vertex is located and by what lines 

(straight, curve) adjacent vertices are connected. The only crucial point is a fact that some 

vertices are connected. Figure 1.3 demonstrates exactly the same graph G, which might look 

different when vertices are relocated and curved lines used instead of straight ones. Both 

diagrams represent exactly the same set of vertices and set of edges, so they describe the same 

graph. 

 

Figure 1.3 Different ways to draw the same graph G [Chartrand 1985] 
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The number of adjacent vertices or neighbors of a vertex is called vertex degree 

deg(v). Vertex can be called even or odd if its degree is even or odd. The maximum vertex 

degree of a graph G is denoted ∆ G . Vertex support is a sum of degrees of all neighbors of a 

given vertex. As we can see from figure 1.4 degree of v3 is four and support of v3 is equal to 

five. 

 

Figure 1.4 Degrees of vertices 

Graphs can be divided into directed and undirected. A directed graph D i.e. digraph 

has non-symmetric arcs (directed edge is called arc), which means that vertex u can has 

relation to vertex v, but there might not be relation from v to u. From the other hand, directed 

graph always has symmetric relation between two vertices. Moreover, graphs are divided to 

weighted and unweighted. Weight is a number (generally non-negative integer) assigned to 

each edge or vertex that can represent additional property like length of a route, cost, required 

power, etc. depending on the problem context. On the opposite side, unweighted graph does 

not have weights or, in other words, all their weights are equal to one. Loop is an edge that 

connects a vertex to itself. Simple graph is an undirected graph that does not contain any 

loops and there is no more than one edge connecting two vertices. It should be noted that in 

this paper we are studying only unweighted simple graphs. 

An undirected graph where all the vertices are adjacent to each other is called 

complete. Otherwise, a graph with no edges is called edgeless, in other words no two vertices 

are adjacent to each other. A clique is a complete subgraph of a graph G and an independent 

set is an edgeless subgraph of G. Complement graph G’ of a simple graph G is a graph that has 
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the same vertex set, but the edge set consists only from vertices that are not present G. 

          , where K is the edge set consisting from all possible edges. Vertex cover of a 

graph G is a vertex set such that each edge of G is incident to at least one vertex from this set. 

Graph coloring is process of assigning labels i.e. colors to vertices with a special property that 

no two adjacent vertices can share the same color. A color class is a set of vertices containing 

vertices with the same color. It is clearly seen from coloring property that each color class is 

nothing more than an independent set. Graph is called k-colorable if it can be colored into k 

colors. The minimum number of colors required for coloring a graph G is called the chromatic 

number - χ G  and in this case graph is called k-chromatic. 

There are multiple problems stated from the definitions listed above. They are the 

following: 

 Maximum clique problem – a problem of finding maximum possible complete 

subgraph of a graph G. 

 Independent set problem – a problem of finding maximum possible edgeless subgraph 

of a graph G. 

 Minimum vertex cover – a problem of finding the smallest possible vertex cover of a 

graph G. 

 Graph coloring - a problem of coloring a graph with the least possible number of 

colors. 

All the described problems are computationally equivalent and one problem can be 

transformed into another one. For instance, a clique of graph G is an independent set of a 

complement graph G’ and a vertex cover of G’ is a set containing all vertices of G’, except 

those who belong to the found independent set. That means a clique problem can be 

transformed into an independent set problem and to a vertex cover problem. 

All these problems are NP-Complete which means that there is no polynomial time 

algorithm can be found. On the other hand, there are heuristic algorithms that give a solution 

within polynomial time, but this solution is not guaranteed to be the best one (maximum or 

minimum depending on a problem). Heuristic algorithms are widely used to quickly gain 

additional information and perform a short analysis of a graph like defining independent sets 

or initializing upper and lower bounds. 
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1.3 Complexity 

1.3.1 Complexity functions 

Algorithm is a step-by-step procedure for solving different problems. We say that an 

algorithm solves the problem if it produces a guaranteed solution for any instance of the given 

problem. This means we cannot state that there is an algorithm, which completely solves 

maximum clique problem unless it will always give the maximum possible clique on any 

graph. As a result, we face some problems that cannot be solved easily. These problems are 

called NP-complete problems, in other words they are very hard to solve. 

A function f(n), where n is a size of its input, is said to have complexity O(g(n)) if 

there exists a constant c such that                 for each n ≥ 0. An algorithm with time 

complexity function O(p(n)), where p is a polynomial time function with input length n, is 

called polynomial time algorithm. All other algorithms which complexity functions cannot be 

bounded this way are called exponential time algorithms. The definition of exponential 

algorithms also includes some non-polynomial time complexity functions, which are neither 

polynomial nor exponential, for example nlog(n). Table 1.1 shows time consumption of 

different time complexity functions. It clearly seen that even a several times input length 

increment results in the explosive execution time growth for the exponential functions. Of 

course, polynomial time complexity functions are generally much more desirable than 

exponential ones. It should be noted that on some small inputs exponential complexity 

function takes less time than a polynomial one, for instance n5 
and 2n for n   20. 

Unfortunately, problems in real life are much larger than described in this table. 

Table 1.1 Difference between polynomial and exponential time complexity functions. [Garey, 

Johnson 2003] 

Time 

complexity 

function 

Size n 

10 20 30 40 50 60 

n 
.00001 

second 

.00002 

second 

.00003 

second 

.00004 

second 

.00005 

second 

.00006 

second 

n
2
 

.0001  

second 

.0004  

second 

.0009 

second 

.0016 

second 

.0025   

second 

.0036 

second 
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n
3
 .001 second .008 second .027 second .064 second .125 second .216 second 

n
5
 .1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.0 minutes 

2
n
 

.001    

second 

1.0          

second 

17.9  

minutes 

12.7            

days 

35.7            

years 

366 

centuries 

3
n
 

.059    

second 

58           

minutes 

6.5             

years 

3855 

centuries 

2 x 10
8 

centuries 

1.3 x 10
13

 

centuries 

1.3.2 NP-complexity 

The first serious result in algorithms complexity field were done by Alan Turing in 

1940s. Turing showed that there are some “undecidable” problems. These problems are so 

hard that it is not possible to find an algorithm for solving them. Turing invented an abstract 

computer model called Turing machine. There are P class problems that can be solved with a 

polynomial time on a deterministic Turing machine. Problems that are solvable by non-

deterministic Turing machine are NP class problems in polynomial time. It is not right to say 

that NP means non-polynomial and NP class problems cannot be solved on the deterministic 

Turing machine, because P ⊆ NP. All the problems of NP except P (NP-P) are not solvable by 

deterministic Turing machine. 

The fundamentals of NP-completeness theory were published in “The Complexity of 

Theorem Proving Procedures” paper in 1971 [Cook 1971]. With his work, Cook presented the 

following important things: 

 Importance of “polynomial time reducibility”. That means if there is a polynomial 

time transformation from one problem into another, then it ensures that any 

polynomial time algorithm for the second problem can be converted into polynomial 

time algorithm for the first problem. 

 Focused attention on the class NP of decision problems. A decision problem is a 

problem whose solution is either “yes” or “no”. 

 There is a “satisfiability” problem in NP class that has a special property. Every 

problem in NP can be reduced to the satisfiability problem. It means if the 

satisfiability problem will be solved with a polynomial time algorithm, then all the 

problems from NP are solvable in polynomial time. Otherwise, if it will be proved 

that it is not possible to solve some problem in NP with a polynomial time then 
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satisfiability problem does not have polynomial time solution too. As a result, 

satisfiability problem is the hardest problems in NP. 

Now we can move to NP-complete problems. NP-complete is a class of problems that 

contains the “hardest” problems of NP. There is a polynomial time transformation from any 

problem of NP-class into NP-complete problem. It can be proven by the following algorithm 

that a decision problem H is NP-complete: 

1. Show that the problem H is NP 

2. Choose already existing NP-complete problem H’ that is the most identical to H 

3. Develop a transformation f  from H’ to H 

4. Prove that f  is a polynomial transformation 

Nowadays scientists have found many NP-complete problems but some of them are 

more suitable for transforming other problems to them. These problems are used as the basic 

ones and all of them are decision problems. Here is a list of six basic NP-complete problems 

[Garey, Johnson 2003]. 

3-SATISFIABILITY (3SAT) 

INSTANCE: Collection                of clauses on a finite set  of variables such that 

       for      . 

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C? 

3-DIMENSIONAL MATCHING (3DM) 

INSTANCE: A set  ⊆      , where W, X and Y are disjoint sets having the same 

number q of elements.  

QUESTION: Does M contain a matching, that is, a subset   ⊆  such that        and no 

two elements of    agree in any coordinate? 

VERTEX COVER (VC) 

INSTANCE: A graph         and a positive integer      . 

QUESTION: Is there a vertex cover of size K or less for G, that is, a subset   ⊆   such that 

       and, for each edge        , at least one of u and v belongs to   ? 

CLIQUE 

INSTANCE: A graph         and a positive integer      . 

QUESTION: Does G contain a clique of size J or more, that is, a subset   ⊆   such that 

    ≥   and every two vertices in    are joined by edge in E? 

HAMILTONIAN CIRCUIT (HC) 
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INSTANCE: A graph        . 

QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering              of 

the vertices of G, where      , such that           and             for all       

 ? 

PARTITION 

INSTANCE: A finite set A and a “size”        for each    . 

QUESTION: Is there a subset   ⊆   such that 

      

    

     

      

   

 

Figure 1.5 Diagram of the sequence of transformation of six basic NP-complete problems. 

[Garey, Johnson 2003] 

As can be seen above “Clique” problem belongs to the basic NP-complete problems 

and maximum clique problem is polynomially equivalent to this. As a result solving 

maximum clique problem or upgrading algorithms for finding maximum clique will not only 

improve one specific, narrow problem but help to find better algorithms for all the problems 

reducible to maximum clique problem. Therefore current topic is very important. 
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1.4 Goals of the study 

The topic of this thesis is quite extensive, so the following goals were determined to 

achieve a certain solution for some defined problems. 

1. Implement and study modern algorithms for finding maximum clique 

2. Define the most efficient and promising improvements for finding maximum clique 

3. Study the influence of heuristic on exact algorithms 

4. Develop a better algorithm for finding maximum clique 

5. Implement testing environment to compare performance of the algorithms 

6. Define if there exists some graph groups or special cases that are solved better by one 

or another algorithm. 

1.5 Work overview 

Chapter 1 of this thesis introduces the problem. Definitions and basic concepts of the 

studied area are presented. There is a short overview on the complexity of the problem giving 

explanations why current problem is valuable. After that, goals of study are identified. 

Basic algorithms are described in the Chapter 2. This chapter contains exact maximum 

clique finding algorithms and other heuristic algorithms like coloring, maximum independent 

set or minimum vertex cover finding. These algorithms describe the fundamental ideas for 

solving maximum clique problem. Moreover, some important properties are outlined. 

Chapter 3 presents different modern algorithm and shows the current state of the 

problem. There is a brief description of each algorithm and an overview of the results gained 

by the authors of those algorithms. The main focus of the chapter is to describe the 

implemented upgrades and analyze the impact of them on overall performance. 

The main part of this thesis is demonstrated in the Chapter 4. A new algorithm for 

finding maximum clique is acquired. The idea of the algorithm is described giving step-by-

step instructions of implementing it. After that, two examples are explained in details. 

All the previously described algorithms are compared to the new algorithm in the 

Chapter 5. First of all, algorithms were tested on randomly generated graphs giving an 

overview of algorithms performance. Generated graphs are divided by their density and 
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presented as diagrams. After that, algorithms were tested on DIMACS benchmark instances 

and presented as tables analyzing time consumption and number of created branches. 

Finally, Chapter 6 contains a summary of the study. Possible topics for future studies 

are also noted in here. 

The new algorithm’s code written on C# language is located in appendix. Code can be 

used to reproduce the algorithm exactly the way it was designed initially and avoid 

misunderstandings with implementation. 
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2. Algorithm basics 

The first part of this chapter contains an overview of basic algorithms for solving 

maximum clique problem. These algorithms are branch and bound, but depict two different 

approaches of solving the clique problem. It will be clearly seen later that all modern 

algorithms are based on them. 

There are not only clique finding algorithms but also graph coloring, maximum 

independent set and minimum vertex cover algorithms are included in this chapter. Other 

algorithms are needed to gather additional information about a graph for later use to skip 

unnecessary steps therefore fastening clique finding. 

2.1 Basic maximum clique algorithms 

2.1.1 Carraghan and Pardalos algorithm 

Randy Carraghan and Panos M. Pardalos published “An exact algorithm for the 

maximum clique problem” article in 1990 [Carraghan, Pardalos 1990]. The main benefits of 

this algorithm are simplicity and efficiency. The algorithm gives basic concepts of how a 

clique can be found. Furthermore, even nowadays it shows relatively good results on lower 

density graphs. 

One of the fundamental and crucial points for this is algorithm is notion of depth. 

Initially (depth 1) we take (expand in other words) one vertex   . Then, at depth 2, only 

vertices adjacent to    are considered. We take    from depth 2 and construct depth 3 from 

the vertices that are adjacent to    and    and so on. Every depth construction is creating a 

new branch in this branch and bound algorithm. Use of this approach leads to the fact that any 

vertex on the depth   is adjacent to all previously expanded vertices within current branch, 

giving us a clique of size  .  
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The second very important aspect is a good bound rule. Current best clique (CBC) or 

the biggest depth number found by far should be stored. Let   be the current depth,   - 

currently expanding vertex and   - number of vertices on current depth. In this case   is a 

current clique size and     gives a number of vertices that not yet expanded and potentially 

can form clique. Obviously the biggest possible clique size in the current state is        . 

That means if             we can prune this branch. It is not possible that current 

expanding vertex will give us a larger clique. Algorithm works on any depth until the pruning 

formula does not hold or there are some vertices to expand. If we are out of vertices or 

pruning formula holds on the first depth then algorithm stops. 

Authors of the algorithm state that it can be improved by initially ordering vertices 

with response to their degrees. If we say that vertices in graph G ordered as             then 

   is a vertex with the smallest degree in G,    has the smallest degree in G – {  } and so on. 

In general    is a vertex with smallest degree in G - {           } for     2. This 

ordering can be reapplied on depths higher than one. It lowers overall time consumed to find 

maximum clique, but only on dense graphs. It is advised not to use any ordering on lower 

densities. 

This algorithm is based on a simple branch construction and efficient pruning formula. 

It shows great results on low densities. On the other hand, the main drawback is really poor 

performance on dense graphs. As long as all the vertices have a lot of connections, every 

branch consists of much more vertices than best clique size. As a result pruning formula is not 

working. 

function Main  

 CBC := 0 // the maximum clique’s size  

 clique (V, 0)  

 return CBC 

end function  

 

function clique(V, depth)   

 if |V| = 0 then  

  if depth > CBC then  

   New record - save it.  

CBC := depth 

  end if  

  return  

 end if  

 i := 0  

 while i < |V| do  
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  if depth + |V| - i ≤ CBC then // prune  

   return  

  i := i + 1  

  // form a new depth. N(  ) denotes a neighborhood of 

  .  

  clique (N(  ) | ∀   : j > i, j ≤ |V|, depth + 1)  

 end while  

 return  

end function 

Figure 2.1 Carraghan and Pardalos algorithm. Pseudo code [Kumlander 2005] 

2.1.2 Östergård algorithm 

Patrick R.J. Östergård published “A fast algorithm for the maximum clique problem” 

article in 2002 [Östergård 2002]. He introduced a new approach for finding maximum clique. 

Let       ,            be a subgraph processed on any depth. Previous Carraghan and 

Pardalos algorithm initially starts from the whole graph    and considers all the vertices 

finding cliques in   that contain    first. Then it searches for cliques in    that contains    

and so on till   . In an Östergård’s algorithm cliques are considered in reversed order starting 

from        . This subgraph contains only one vertex and initial clique size is one by 

default. Then      containing two vertices is being processed. Clique sizes for each subgraph 

   are stored in cache     . Using this additional information is possible to implement a new 

pruning formula           . d is a current depth,   is a vertex index currently being 

expanded and     (current best clique) is the biggest clique size found by far. The second 

crucial point to understand is that only one vertex is added to a new subgraph    compared to 

     which means that     potentially can be increased only by one and not more.  It results 

in a new condition that if            we can stop further search within    and go to 

    .  

There are some possibilities to improve algorithm performance with proper initial 

ordering. It is advised to use the approach as in Carraghan and Pardalos algorithm to sort 

vertices by their degree in increasing order, so that    is always a vertex with the smallest 

degree taken from the subgraph induced by the vertices that have not yet been ordered. 

function Main 

 max := 0  

 for i := n downto 1 do  
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  found := false  

  clique (   & N(  ), 1)  

  c[i] := max 

 end for  

 return max 

end function  

 

function clique (U, size)  

 if |U| = 0 then  

  if size > max then  

   max := size  

   New record; //save it  

   found = true  

  end if  

  return  

 end if  

 while U ≠ Ø do  

  // prune as Carraghan and Pardalos algorithm does  

  if size + |U| ≤ max then 

   return  

  i := min { j |      U } 

  // new pruning technique  

  if size + c[i] ≤ max then  

   return  

  U := U \ {    }  

  clique(U & N(  ), size + 1)  

  if found = true then // stopping condition 

   return  

 end while  

 return  

end function 

Figure 2.2 Östergård algorithm. Pseudo code [Kumlander 2005] 

2.2 Graph coloring heuristic algorithms 

Graph (G) coloring is a graph vertices mapping to labels i.e. colors so that V(G) → S, 

where V – set of vertices of G and S – set of colors. 

A color class is a subset of V that was assigned to one color. The main coloring 

property is that no two adjacent vertices can obtain the same color. A graph is called k-
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colorable if it can be colored into k colors. The least k such that a graph is k-colorable is a 

chromatic number χ G . The best coloring of G is χ G -coloring. 

Graph coloring gives us some useful properties, which will be used later in algorithms 

for clique finding. These properties are: 

 Each color class forms an independent set. This property comes from definition of 

graph coloring that vertices set to one color cannot be adjacent to each other. 

 Colors number is an upper bound for maximum clique, i.e. k-colorable graph cannot 

contain clique of size larger than k. Clique of k+1 size in k-colored graph means that 

two adjacent vertices within a clique are set to one color, which is contrary to the 

definition of graph coloring and lead us to improper coloring. 

 Each color class formed by coloring of complement graph H of G gives a clique within 

G. 

2.2.1 Greedy coloring algorithm 

Greedy is one of the simplest heuristic coloring algorithms. This algorithm has solid 

benefits such as easy implementation and high performance. On the other side number of 

color classes is not always close to chromatic number. In general, this algorithm is a great 

compromise between speed and result quality. Algorithm can be described in four steps: 

1. Color the first vertex in color number 1. 

2. Take not yet colored vertex    and try to color it to the lowest numbered color k, so 

that there is no any adjacent vertex to    with the k color number. 

3. If it is not possible to color a vertex    into any of existing colors, a new color must be 

created and assigned to   . 

4. Repeat steps two and three until all the vertices are colored. 

// n – number of vertices, k – number of colors on each step 

k = 1; Color    with    (  )  

For i := 2 to n 

 Try to color    with color   , where j = min (1, ... , k)  

 If none color was used to color    then  

  k := k+1 [Produce a new color] 

  Color    with    

 End if  
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Next  

Figure 2.3 Greedy coloring algorithm. Pseudo code 

Greedy algorithm results heavily depend on vertex coloring order. It is clearly seen on 

coloring bipartite graph. When vertices from bipartite graph are ordered in a way that we 

firstly color all the vertices from one partite set and after from the other partite set, then this 

approach results in a good coloring (left graph on figure 2.4). However, if vertices are taken 

from different partite sets one by one it leads to the huge amount of colors (right graph on 

figure 2.4). 

 

Figure 2.4 Bipartite graph coloring 
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There is one important point to keep in mind that with this coloring approach we take 

vertices in the exact same order as they were initially ordered. As a result, vertices within 

each color class keep initial ordering to each other. In other words if initial index   <   and 

vertices   ,    have the same color then index    of    will definitely be less than index    of 

   within   color class. 

2.2.2 Greedy coloring algorithm with swaps 

There is a slightly modified version of greedy coloring used in further algorithms 

[Kumlander 2005]. Instead of coloring, each vertex to the least possible color this algorithm 

tries to color all the vertices to the first color, then to the second one and so on. The main idea 

of this approach is to order vertices during the coloring process using vertex swaps to lower 

time consumption. Algorithm consists of the following steps: 

1. Color the first vertex in color number   . Set the least not colored vertex index u 

(initially u = 2). 

2. Take not yet colored vertex    starting from index u and try to color it to the lowest 

numbered color k, so that there is no any adjacent vertex to    with the k color 

number. 

3. If a vertex    is colored swap    and   , where    is the least not colored vertex. 

Increase u by 1. 

4. If all the vertices were processed and u is not bigger than total number of vertices, 

create a new color class and repeat steps 2 and 3. 

// n – number of vertices, k – number of colors on each step 

// u - the least not colored vertex index 

k = 1; Color    with    (  ) 

u = 2 

While True 

 For i := u to n 

  Try to color    with color    

  If    was colored then  

   swap    and    

   u := u+1 

   Color    with    
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  End if  

 Next 

 If u   n Then  

        k := k+1 [Produce a new color] 

 Else 

  Exit While  

  End If  

End While 

Figure 2.5 Greedy coloring algorithm with swaps. Pseudo code  

As long as vertex swapping is used, it is not possible to maintain the same vertices 

ordering within color classes as in previous greedy algorithm. Current algorithm is suitable 

when solving maximum clique problem on low densities where initial vertex order is useless. 

2.3 Maximum independent set and minimum vertex cover heuristic 

Let G = (V, E), where V – set of vertices and E – set of edges. Independent set problem 

tries to find a subset   ⊆ V such that no two vertices in S are adjacent to each other i.e. S is an 

empty graph. Maximum independent set is the largest possible subset S in a graph. 

 

Figure 2.6 Independent set example. 

Maximum independent set problem (MIS) is closely connected with maximum clique 

problem. Let K be a set of all possible edges between elements of V. Then the complement 

graph of G is H = (V, K \ E). Each independent set in H is a clique in G from the first 
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property. Consequently, every independent set problem can be easily transformed into 

maximum clique problem and vice versa. 

Heuristic independent set algorithm can be used to acquire initial clique size value for 

clique searching algorithms. The better heuristic is used, the closer initial clique size will be to 

the maximum clique size. 

Vertex cover is a subset   ⊆ V such that each edge in E is incident to at least one 

vertex in C  i.e. vertices from C „cover“ the edges of a graph. 

  

Figure 2.7 Vertex cover example 

Here are some simple steps of how to obtain approximate vertex cover: 

 

1. Take a random edge {u, v} from a graph  

2. Add edge {u, v} to the current vertex cover set C. 

3. Remove all edges incident to u or v from E. 

4. Repeat steps from one to three until E is empty. 

C = Ø // vertex cover array 

While E ≠ Ø  

 take random edge {u, v}   E 

 C = C ∪ {u, v} 

 remove all edges incident to u or v from E 

End While 

Return C 

Figure 2.8 Approximate vertex cover algorithm. Pseudo code 
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Vertex cover algorithm has one good property that can be easily used to gain 

independent set quickly. When a vertex cover C is found using approximate algorithm there 

will be some set of vertices S left that are outside of vertex cover S = V \ C and no edges in a 

graph. As a result, S is an independent set. Moreover, it means the “better” vertex cover is 

found the larger independent set is obtained. 

2.3.1 Maximum Degree Greedy algorithm (MDG) 

In the current work only heuristic vertex cover algorithms are studied. Therefore, 

result is influenced by random edge picks. There is a MDG algorithm [Clarkson 1983] to 

improve approximate vertex cover result. Random edge guessing is not a very good and 

reliable approach for vertex cover finding. MDG algorithm takes a vertex with the highest 

degree and removes all its edges. This step is repeated until there are no edges left. 

// deg(v) - degree of vertex v 

C = Ø // vertex cover array 

While E ≠ Ø  

 find vertex v with maximum deg(v) 

 C = C ∪ {v} 

 remove all edges incident to v from E 

End While 

Return C 

Figure 2.9 MDG algorithm. Pseudo code 

There is an example of approximate vertex cover algorithm on figure 2.10. Red 

numbers mean in what order edges were chosen. In this case the result is quite bad (C = {1, 2, 

3, 5, 4, 6}). Figure 2.11 demonstrates a result of MDG algorithm, blue numbers show in what 

order vertices were selected. There is a 50% reduction in a vertex cover size (C = {5, 2, 4}). It 

is clearly seen that random edge choice is not reliable technique and some more intelligent 

way must be implemented. 
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Figure 2.10 Approximate vertex cover algorithm result. 

 

Figure 2.11 MDG algorithm result. 

2.3.2 Iterated local search algorithm (ILS) 

There are different heuristic algorithms to get independent set. The easiest way is to 

use greedy approach, which is not very good sometimes. MDG algorithm might give better 

solution. In general, we can try to improve already existing heuristic solution by using a 

notion of plateau search, which is based on vertex swaps. Swap is a replacement of one vertex 

by the other from its neighbors. Swap will not definitely improve the solution, but it possibly 

can lead to some non-solution vertices become free (without neighbors inside solution) and 

therefore they can be inserted into existing solution. “Fast local search for the maximum 

independent set problem” article [Andrade, Resende, Werneck 2012] gives a number of tools 

to perform swaps more efficiently and not in a random way.  
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Let (j, k) – swap will consist of removing j vertices from solution and inserting k 

vertices into solution. In particular, each made (k-1, k) – swap leads to increasing 

independent set by one. Let (k-1, k) – swap is called k-improvement. ILS algorithm core idea 

is to search for 2- and 3- improvements until no more can be found. ILS should have some 

initial solution to start improving it. For these purposes greedy or MDG algorithms can be 

used. 
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3. Modern algorithms 

Multiple modern algorithms will be demonstrated in this chapter. All of them are 

based on the ideas presented in the previous topic. Old algorithms were focused on the 

information about adjacent vertices and almost absolutely ignored the opposite side – vertices 

that are nonadjacent. Modern algorithms are heavily depending on heuristic and, in particular, 

on vertex coloring. Two nonadjacent vertices cannot be added into one clique, therefore two 

vertices from different independent sets will not contain in a solution also. Graph coloring 

allows building several independent sets and use additional properties based on gathered 

information. Moreover, rationally used heuristic approaches will not increase time 

consumption dramatically. Unfortunately, it is not possible to use exact algorithms for finding 

color classes because coloring problem is NP-complete. In general, modern algorithms carry 

out preliminary work gathering and analyzing additional information before starting clique 

searching or, more precisely, branch processing. 

3.1 VColor-u 

Deniss Kumlander published “Some Practical Algorithms to Solve The Maximum 

Clique Problem” thesis in 2005 [Kumlander 2005] introducing VColor-u algorithm (Vertex 

Color unweighted). The core idea was to demonstrate efficiency of using independent sets 

within clique finding algorithms. 

Let    be a subgraph of G on the depth d and    is a set of vertices of   . Each time a 

vertex from    is expanded and a branch created from it is analyzed it is then removed from a 

current depth d and the next vertex will be expanded. From this property, Carraghan and 

Pardalos created their pruning formula. D. Kumlander modified the formula to be   –    

                 , where d – 1 is the number of vertices, which were expanded prior to 

d-th depth, and form current clique, CBC is currently biggest clique size found and 

            is a function that gives number of colors of   . The main point of this method 
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is that a graph cannot contain clique larger than the number of color classes obtained by 

coloring this graph. 

It should also be noted that graph is being colored only once in the beginning of the 

algorithm and later on a degree of subgraph    is counted by specific approach. It would take 

too much time to recount number of colors each time a new branch is created. As long as  and 

this order is not changed during the whole process, it is simpler to count number of color 

classes when a new depth is formed. Later on if a vertex on the same depth is expanded and it 

is from the same color class then degree is not changed. If color classes are different then the 

degree is decreased by one. 

function Main  

Heuristic vertex coloring 

 Order vertices that first color classes have the last 

indexes 

 CBC := 0 // the maximum clique’s size  

 clique (V, 1)  

 return CBC 

end function  

 

function clique(V, depth)   

 if |V| = 0 then  

  if depth > CBC then  

   New record - save it.  

CBC := depth 

  end if  

  return  

 end if  

 i := 0  

 while i < |V| do  

  if depth - 1 + degree(V) ≤ CBC then // prune  

   return  

  i := i + 1  

  // form a new depth. N(  ) denotes a neighborhood of 

  .  

  clique (N(  ) | ∀   : j > i, j ≤ |V|, depth + 1)  

 end while  

 return  

end function 

Figure 3.1 VColor-u algorithm. Pseudo code 
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As noted by the author of the algorithm there is no any other optimizations than vertex 

coloring. It is done to evaluate influence of coloring on overall performance purely. 

Compared to two previous clique finding algorithms VColor-u demonstrates good results 

especially on high densities. Time consumption can be 50 times lower on 90% density graphs. 

Although on low densities (20%-50%) results are not so impressive, but anyway the new 

algorithm works about 15% faster. 

An important note must be done that VColor-u algorithm works worse (~20% in time 

increase) than Carraghan and Pardalos algorithm on almost edgeless graphs (about 10% 

density). It can be explained by the fact that graph coloring and vertices ordering takes time 

and these steps are useless on a low density and pruning formula is not effective enough. 

3.2 VColor-BT-u 

There was a second algorithm introduced in the same article called VColor-BT-u 

[Kumlander 2005]. The idea was the same - to apply initial vertex coloring, but instead of the 

Carraghan and Pardalos approach in VColor-u, the new VColor-BT-u bases on the 

Östergård’s algorithm.  

As it was already noted, Östergård’s algorithm starts with the only vertex and searches 

for a clique increasing graph size by one vertex. VColor-BT-u does the same, except it 

operates not with single vertices but with independent sets. Initially all the vertices are divided 

into several color classes                 , where    contains vertices colored with color 

i. Note that color class indexes stand in reversed order because the algorithm starts from the 

rightmost vertex. First of all, algorithm tries to find the largest clique within    on a first 

iteration (which, of course, equals 1, as there are no any adjacent vertices within independent 

set), then    ∪     (second iteration) and so forth until all the color classes are taken into 

account. In general at step i  vertices of    ∪     ∪  ∪    are considered. 

VColor-BT-u uses two pruning formulas to skip even more unnecessary branches. The 

idea for the first bound rule comes from Östergård’s algorithm. New algorithm holds clique 

sizes in special cache array b for each independent set added into consideration. Therefore, 

b[i] contains a size of the largest clique inside               . Using this cache allow to use 

the following pruning formula                  , where d stands for depth level,     
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is a vertex on depth d and index i,        is a color of a vertex     and     is a current best 

(maximum) clique. Moreover, clique size for a current iteration can be equal or bigger on one 

compared to the previous iteration, because on each iteration we add a new color class and it 

is not possible that two vertices from an independent set will be added to a new clique, as 

these two vertices are not adjacent to each other by definition of independent set. Therefore, if 

on any step a larger clique is found we can continue with a new iteration. 

In addition to the first pruning technique, it is possible to use the second one   –    

                  taken from VColor-u algorithm in parallel. Degree function is copied 

from the previous algorithm as well. 

VColor-BT-u is described using the following steps (Figure 3.2): 

Algorithm for the maximum clique problem – “V olor-BT-u” 
 
CBC - current best (maximum) clique 

d – depth 

i – index of the currently processed colour class in the backtracking 

b – array of the backtrack search results 

      – a function that return a colour class to which the vertex vi belongs 

   – subgraph of G formed by vertices existing on the depth d 

 
Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so 

that first vertices belong to the last found colour class then vertices of the previous to 
last colour class and so forth – vertices at the end should belong to the first colour 
class. Note: It is advisable to use a special array to solve order of vertices to avoid 

changing the adjacency matrix during reordering vertices. 
 
Step 1. Backtracking: For each colour class starting from the first one up to the last, 

i.e. i = i+1: 
Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the 
current colour class under the analysis and other colour classes, whose index is 
smaller than the index of the current colour class. 

i = the index of the current colour class. 
Step 1.2. Run the subgraph research: Go to the step 2 

 
Step 2. Initialization: d = 1. 
Step 3. Check: If the current depth can contain a larger clique than already 

found: 
Step 3.1. If d –1 + Degree(  )   |CBC| then go to the step 6. 
Step 3.2. if C(   ) > i  then If d –1 + b[C(   )]   |CBC| then go to the step 
6. 
Step 4. Expand vertex: Get the next vertex to expand. 

If all vertices have been expanded or there are no vertices then: 
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Check if the current clique is the largest one. If yes then save it. 
Go to the step 1.3. 

Step 5. The next depth: Form a new depth by selecting all remaining 
vertices 

that are connected to the expanding vertex from the current depth; 
d = d + 1; 
Go to the step 3. 

Step 6. Step back: 
d = d – 1; 
Delete the expanded vertex from the analysis on this depth; 
if d = 0, then go to the step 1.3, otherwise go to the step 3. 
 

Step 1.3. Completing iteration: b[i] =CBC, go to the step 1. 
End: Return the maximum clique. 

Figure 3.2 VColor-BT-u algorithm. [Kumlander 2004] 

A new algorithm results are much better compared to previously described ones. 

VColor-BT-u is approximately two times faster than VColor-u on almost all the densities. 

Compared to Östergård’s algorithm the new algorithm is also faster 50%-100% on lower 

densities and 13-25 times on dense graphs, so a combination of two pruning techniques is 

really effective. 

3.3 MCQ 

MCQ algorithm was firstly introduced in 2003 by Tomita and Seki [Tomita, Seki 

2003] and later Tomita and Kameda revised it with more computational experiments in 2007 

[Tomita, Kameda 2007]. This algorithm bases on the Carraghan and Pardalos idea. Tomita 

and Seki noted that a number of vertices of a maximum clique w(G) in a graph G = (V,E) is 

always less or equal to the maximum degree ∆(G) plus 1 (     ∆     ). Using this 

property, they reworked an existing pruning formula. 

Tomita and Seki applied approximate coloring of vertices to prune unnecessary 

branches, giving a positive integer value called Number of Color (or color number) No[p] for 

every vertex p. Number of Color has the special properties as described above: 

1. Adjacent vertices cannot have the same color number i.e. if         then       
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2. Number of Color is always set to lowest possible positive integer i.e.         , or if 

         , when there exist some vertices              adjacent to p and 

        ,        2, … ,             . 

Consequently maximum color number inside a subset  ⊆                  is 

always bigger or equal to the number of maximum clique in R i.e.               ≥

     . Therefore it is possible to prune that branch R  if                           

(Q stands for clique) holds. It should be noted here that each branch processing should start 

from a vertex having the biggest color number.  

Color numbers can be easily assigned by greedy coloring algorithm applied to all 

vertices containing in a newly created branch R. It is important that vertices in R are ordered 

in a manner that vertices from the first color class C stand first, so that 

                   . Authors of the algorithm say there might be more efficient way 

of coloring, but preliminary computation experiments show that more elaborate coloring 

requires more time. As soon as color numbers are assigned on each branch, more complicated 

coloring leads to overall negative impact on time consumption. Therefore, the key point of a 

“good” coloring algorithm is a balance between coloring quality and its performance. 

For initial vertex numbering Tomita and Seki use special technique. Vertices with 

index i, where i from 1 to ∆ G  have color number equal to i. All others vertices are assigned 

to ∆     ) color number. Using such approach allows us to use 

                          pruning formula, as the largest clique size cannot exceed 

graph size or maximum degree plus 1. 

Tomita and Seki demonstrate computational results to confirm their proposal on initial 

vertex ordering. Vertices should be sorted in the descending order in response to their 

degrees. This approach is approximately 50 times better than increasing ordering on dense 

graphs and gives about 15% time reduction on low densities. 

// N(p) – set of neighbors of p 

// No – set of color numbers 

 

function MCQ  

 Q := 0 // current clique 

     := 0// maximum clique 

{SORT} 

Sort vertices of V in a descending order with respect to 

their degrees; 
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{NUMBER} 

for i := 1 to ∆(G) 

No[V[i]] := i 

for i := ∆(G) + 1 to |V| 

No[V[i]] := (G) + 1 

 EXPAND(V, No) 

return      

end function  

 

function EXPAND(R, No)   

 while R ≠ ∅ 
p := the vertex in R 

such that No[p] = Max{No[q] | q   R}; 
{i.e., the last (rightmost) vertex in R} 

if |Q| + No[p] > |    | then 

Q := Q ∪ {p}; 
  := R ∩ N(p); 

if   ≠ ∅ then 
NUMBER-SORT(  , No’); // assign color 

numbers to    

{the initial value of No’ has no 

significance} 

EXPAND(  , No’) 

else if |Q| > |    | then  

    := Q 

Q := Q − {p} 

else  

return 

R := R − {p} 

end function 

Figure 3.3 MCQ algorithm. Pseudo code 

3.4 MCR 

“An efficient branch-and-bound algorithm for finding a maximum clique with 

computational experiments” article published by Tomita and Kameda in 2007 [Tomita, 

Kameda 2007] introduced a new MCR algorithm, a successor of MCQ algorithm. Compared 

to the older version, MCR mainly focused on initial sorting and color numbering. Branch 

processing i.e. EXPAND function was not changed, so we will spotlight only modified 

features and skip all the steps inherited from MCQ. 
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The main idea of improved initial sorting is that vertices in any subgraph R of G = (V, 

E) should be ordered with response to their degrees in a decreasing order. If    

        2  . . .        is a vertex set of a subgraph R then V[i] must always has the minimum 

degree for      . To get this ordering we need to take a vertex with the smallest degree 

and set it to the last position of an array. This process is continued until all the rest unordered 

vertices have the same degree. Sometimes there might be several vertices with the same 

degree. For such cases, a new parameter vertex support S must be introduced. Support of a 

vertex v S(v) is a sum of neighbor’s degrees of v i.e.                     . If V[i-1] and 

V[i] have the same degree then   V      ≥   V    . 

At last, a subgraph R becomes induced by all the rest unordered vertices 

       2  . . .      , that have the same minimum degree. At this point R is regular graph. It is 

useless to continue vertex sorting on a regular graph. In this case, we start to assign color 

numbers (NUMBER-SORT function) to vertices in R as was described in MCQ. Vertices with 

index higher than i :            2  . . .       must be numbered as   n    no    

∆G       n    no  2 ∆G    , ...,   n    no   n     ∆G     respectively, where 

maxno is a maximum color number acquired by NUMBER-SORT of R. Furthermore, if all 

vertices        2  . . .       in R have the same degree (i-1), then these vertices form a clique 

of size i  and initial clique size can be set to i. 

Initial sorting and color numbering is quite complicated and time consuming 

operations, but it has no significant influence on overall algorithm performance as it is done 

only one time at the begging of MCR algorithm. 

// N(p) – set of neighbors of p 

// No – set of color numbers 

// deg(p) – degree of p 

// s(p) – support of p 

 

function MCR(G = (V, E)) 

 Q := 0 // current clique 

     := 0// maximum clique 

{SORT} 

i := |V|; 

R := V; V := ∅; 
    := set of vertices with the minimum degree in R; 

while |    | ≠ |R| 

if |    | ≥ 2 then 
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p := a vertex in      such that S(p) = Min{S(q) | 

q       } 

else  

p :=      [1]; 

V[i] := p; R := R − {p}; 

i := i − 1; 

for j := 1 to |R| 

if R[j] is adjacent to p then 

   deg(R[j]) := deg(R[j]) – 1 

    := set of vertices with the minimum degree in R 

{Regular subgraph} 

NUMBER-SORT(    , No); 

for i := 1 to |    | 

V[i] :=     [i] 

{NUMBER} 

m := Max{No[q] | q       }; 

mmax := |    | + (G) − m; 

m := m + 1; 

i := |    | + 1; 

while i ≤ mmax 

if i > |V| then  

goto Start 

No[V[i]] := m; 

m := m + 1; 

i := i + 1 

for i := mmax + 1 to |V| do 

No[V[i]] := ∆(G) + 1 

Start: 

if        
    = |    | − 1 for all q        then 

    :=      

EXPAND(V, No) 

return      

end function 

Figure 3.4 MCR algorithm. Pseudo code 

3.5 MCS 

Three years later after MCR was released a new improvement for the same algorithm 

appeared called MCS [Tomita, Sutani, Higashi, Takahashi, Wakatsuki 2010]. This time 

authors focused on approximate coloring enhancements. There is a crucial property derived 

from MCR bounding condition                          . Greedy approximate 



46 

coloring assigns color numbers to vertices and order them in a manner that vertices with the 

biggest number stand last. On each depth, the rightmost vertex is expanded first i.e. the vertex 

with biggest color number                     ). Therefore, if              

    we prune a branch.            forms a kind of a threshold after which we skip all the 

vertices. Taking a new property into consideration it is much more important to reduce a 

number of vertices (it might look like reduction of number of color classes is the main goal, 

but it is not) from which searching is necessary in other words approximate coloring should 

produce more vertices with color numbers less than a threshold to skip them later. 

A new approximate coloring algorithm was introduced to meet new requirements. It 

can be described with the following steps: 

1. Calculate threshold     . Threshold is equal to maximum clique value minus current 

clique value                . 

2. Try to find a vertex q within neighbors of p (N[p]) with a color number less than a 

threshold                 , such that        . 

3. If q is found, the next step is an attempt to find color number    such than there is no 

neighbor of q (N[q]) colored in   . 

4. If    is found, then q and p should change their color numbers so that           

and          . (It is crucial to understand that this operation changes initial vertex 

order, as after each coloring vertices are ordered with response to their color numbers.) 

5. If no vertex q or color number    is found, nothing happens. 

A new approximate coloring algorithm triggers each time a new color number bigger 

or equal to a threshold is created. Then it tries to insert current vertex to any of the previous 

color classes less that the threshold. If operation succeeds, a new color class becomes empty 

and should be removed. The inserted vertex will not be expanded later because of the 

bounding condition that will prune a branch containing that vertex. 

function Re-NUMBER(p, No[p],  o  ,   ,   , ...,       ) 

for    := 1 to  o  − 1 

if |   ∩ N(p)| = 1 then 

q := the element in (   ∩ N(p)); 

for    :=    + 1 to  o   

if |   ∩ N(p)| = ∅ then 
{Exchange the Numbers of p and q.} 

       :=        − {p}; 

   := (    − {q}) ∪ {p}; 
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   :=     ∪ {q}; 
return 

Figure 3.5 MCS algorithm. Renumbering function pseudo code. 

As was already noted before a new approximate greedy coloring operation changes the 

initial vertex order. To inherit the same ordering through the whole algorithm a new array    

(the same data structure as array of vertices V) must be created. Vertices are copied to    and 

then passed to coloring function. This means that vertices will be reordered inside    and 

initial order is still present in array V. 

In comparison with older MCR version, a new MCS algorithm shows good results 

especially on dense graphs. It is clearly seen on DIMACS graphs such as r200.98 or r300.98 

where MCS performs more than 100 times better than MCR. 

3.6 MCS improved 

“Improvements to MCS algorithm for the maximum clique problem” article was 

released in 2014 by Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov and Panos M. 

Pardalos [Batsyn, Goldengorin, Maslov, Pardalos 2014]. Authors proposed the following 

improvements to fasten search of maximum clique: 

 At the beginning of the algorithm ILS heuristic [Andrade, Resende, Werneck 2012] is 

applied to gain initially „good“ (i.e. close to the maximum possible) solution. This 

value is then used to prune branches. This improvement gives the noticeable reduction 

of branches number especially on dense graph therefore decreasing time consumption. 

 On each depth if a set of candidates contains some vertex which is connected to all 

other vertices in this set, this vertex is immediately added to current clique, 

consequently the vertex is not expanded later and upper bound is increasing faster. 

This improvement means that on each depth it is possible to increase current clique 

size more than on one. As a result, the faster upper bound grows the more branches we 

can prune. 
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 Authors of the article state that storing sets of candidate vertices and color numbers on 

stack is more efficient than in dynamic memory. This property was gained from 

experimental results. 

 MCS Improved initially use simple vertex ordering with response to their degrees as 

proposed in Carraghan and Pardalos article [Carraghan, Pardalos 1990]. There is no 

any additional reordering applied as it was done in the previous MCR and MCS 

algorithms. Moreover, at the beginning of algorithm all the vertices are colored by 

greedy algorithm without swaps. 

function MCSWithHeuristic( ) 

 Q  = HeuristicSolution( ) 

 InitialOrderingAndColouring(L0) 

 for i = |L0|, 1 do 

  υ =   
 
 

  i if UpperBound(υ) > |Q | then 

   ProcessBranch(υ, L0) 

  end if 

 end for 

end function 

Figure 3.6 MCS with incorporated ILS heuristic and other improvements. Pseudo code. 

[Batsyn, Goldengorin, Maslov, Pardalos 2014] 

MCSI show very good results on dense graphs using high-quality solution gained by 

ILS heuristic algorithm. Authors compare their new algorithm to MCS on special DIMACS 

graphs. The most significant result is on gen400_p0.9_65 instance where number of branches 

was reduced more than 7000 times. Moreover, improved MCS algorithm solves p_hat1000-3 

instance that was not possible to solve by MCS algorithm with a reasonable time. Authors 

also propose that there might be better heuristic algorithm for searching initial solution than 

ILS algorithm. 
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4. New algorithm 

In this chapter, we are going to introduce a new algorithm solving maximum clique 

problem. It is called VRecolor-BT-u as this algorithm is a successor of VColor-BT-u 

algorithm and it implements recoloring on each depth. There were multiple algorithms 

described previously in this work. The idea of a new one is to gather and combine all the 

gained knowledge to fasten maximum clique finding even more. 

It can be clearly seen from the modern algorithms that almost all of them are focused 

on Carraghan and Pardalos approach and only VColor-BT-u implements Östergård’s idea. 

Moreover, initially Östergård’s approach with reversed search showed much better results 

than Carraghan and Pardalos algorithm. Even after when D. Kumlander applied coloring to 

both these basic algorithms, performance of Östergård’s algorithm successor VColor-BT-u 

was much faster than VColor-u, an improvement to Carraghan and Pardalos algorithm. 

From the other hand, algorithms from Tomita and his colleagues proved that in-depth 

coloring is a very efficient technique and initial coloring is not enough as the “deeper” level 

we are constructing the more diffused initial coloring becomes. When depth is high, we 

definitely need to recolor vertices to update colors and gain the most accurate data about 

independent sets on this level. 

4.1 Description 

The main idea of a new algorithm is to combine reversed search by color classes (from 

VColor-BT-u) and in-depth coloring i.e. recoloring (from MCQ and successors). Before we 

can start there should be some useful properties from previous algorithms noted: 

1. Reversed search by color classes means searching for a clique in a constantly 

increasing subgraph adding each color class one by one holding a cache b[] for each 

color class, where cache is a maximum clique found by given color class. First of all, 

we consider a subgraph S1 consisting only from vertices of a first color class C1. After 
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than subgraph S2 is created with two color classes C1 and C2. In general    

            . 

2. Pruning formula for reversed search by color classes is                     

can be used only if vertices in each subgraph Si are ordered by initial color classes 

(using this color classes we are constructing a new subgraph on each iteration). 

3. If vertices are ordered by their color numbers and are expanded starting from the 

largest color number then all the vertices with color number lower than a threshold 

(               can be ignored as they will not be expanded because of a 

pruning formula                         . 

4. Pruning formula                          can be used when we are 

reapplying coloring on each depth and vertices are reordered with response to these 

colors. 

From this point, it is seen that properties 2 and 4 are conflicting with each other, as 

two pruning formulas require different vertex ordering. As a result, if both bounding rules are 

used we are going to miss some cliques when a promising branch will be pruned. To avoid 

such situations the formula                          was used not to prune a 

branch but to skip a current vertex as expanding it is not going to give us a better solution. 

This means that if vertices are recolored on each depth, but are not ordered with response to 

new colors, we can skip a vertex without expanding it, if and only if its color number is lower 

than a current threshold and there is no neighbors of this vertex with color number larger than 

threshold and who stand after the bound gained from the first pruning formula     

               . 

There is an example on figure 4.1 that shows how a conflict with two different 

colorings is solved. Green lines show adjacency of two vertices (not all the adjacent vertices 

are marked with green lines, but only two that are interesting for us in this specific example). 

Let us assume that current depth is two and we have the following prerequisites: 

 d = 2 (depth is 2) 

         (current best clique is 3) 

        2     2 (threshold taken from skipping formula, we need to expand 

vertices having color number bigger than threshold) 

          2  2               (cache values found from previous iterations) 
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      2 (index of a rightmost vertex expanding which a pruning formula     

                will prune current branch) 

    – array storing initial color classes,    – array storing in-depth color classes 

 

Figure 4.1 Different coloring conflict detailed example. 

Let us analyze the current example (figure 4.1). We start with the rightmost vertex h 

with in-depth color number 1 (No[h] = 1). We skip this vertex as long as its color number is 

lower than a threshold (th = 2). As you can see vertex h might be contained in a larger clique 

as it is connected with a vertex r (No[r] = 3), but we skip it anyway because vertex r will be 

expanded later. Now we proceed with the next vertex t. Color number of t is 1 (No[t] = 1), the 

same as vertex h has, but in this case it is not possible to skip vertex t, because it is adjacent to 

vertex k (No[k] = 3). Vertex k stands after the pruning bound (bnd = 2), therefore it will not 

be expanded at all. If we skip vertex t right now we might possibly skip a larger clique, this 

means that vertex t should be expanded. The next vertex to analyze is vertex a, we skip it as 

its in-depth color number is equal to the threshold (th = No[a] = 2) and there are no adjacent 

vertex standing after bound. In addition, the last expanded vertex on current depth is r (No[a] 

= 3) as its color number is larger than the threshold. It should be noted that skipped vertices 

are not thrown away from further considerations (when building the next depth), they should 

be stored in a separate array and added to the next depth with preserved order. 

There is another pruning formula used right after recoloring is done. As we already 

know, number of color classes obtained by coloring subgraph Gd is an upper bound for 
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maximum clique in a current subgraph. This property allows us to use the following pruning 

formula             , where cn is a number of colors gained from recoloring. 

4.2 Coloring choice based on density 

There are two coloring algorithms used in VRecolor-BT-u. They are both greedy, but 

the first one is using swaps when coloring and the other one is not. Each time coloring is 

applied, we need to determine which algorithm to use. Moreover, there are two places where 

we need to use coloring: initial coloring performed one time at the beginning of the algorithm 

and in-depth coloring applied each time a new depth is constructed. Coloring algorithm 

choice is made according to graph density using special constants; they are 0.35 density for 

initial coloring and 0.55 density for in-depth coloring. Coloring choice can be described with 

the following diagram (figure 4.2). 

  density < 0.35 0.35 ≤ density < 0.55 0.55 ≤ density density > 0.55 

initial 
coloring       

 

in-depth 
coloring       

 

     

 

   

  coloring with swaps  

   

  coloring without swaps  

Figure 4.2 Coloring choice based on density 

Constants 0.35 and 0.55 were found using experimental results and are a subject of 

future studies. Figures 4.3 and 4.4 demonstrate performance of VRecolor-BT-u with swaps 

and VRecolor-BT-u with swaps. As seen from these graphs algorithm with swapping works 

better on low densities (density < 0.35) and must be replaced by coloring without swaps 

already on density 0.4. The same approach works with in-depth coloring but coefficient is 

bigger in that case, it is 0.55. Figures 4.5 and 4.6 demonstrate a coefficient choice for 

recoloring algorithm. It should be noted that on figures from 4.3 to 4.6 y-axis demonstrates 

time (in milliseconds) consumed by tested algorithms for finding maximum clique. 
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Figure 4.3 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.3. 

 

Figure 4.4 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.4. 
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Figure 4.5 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density 

0.5. 

 

Figure 4.6 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density 

0.6. 
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4.3 Algorithm 

This part demonstrates the VRecolor-BT-u algorithm. There are two example graphs 

are solved using the following algorithm. 

4.3.1 VRecolor-BT-u 

CBC – current best clique, largest clique found by so far. 

d – depth. 

c – index of the currently processed color class. 

di – index of the currently processed vertex on depth d. 

b – array to save maximum clique values for each color class. 

Ca – initial color classes array. 

Cb – color classes array recalculated on each depth. 

   - subgraph of graph G induced by vertices on depth d. 

cn – number of color classes recalculated on each depth. 

CanBeSkipped(     ) - function that returns true if a vertex can skipped without expanding 

it. 

1. Graph density calculation. If graph density is lower than 35% go to step 2a, else go 

to step 2b. 

2. Heuristic vertex greedy coloring. There should be two arrays created to store initial 

color classes defined only once (Ca) and color classes recalculated on each depth (Cb). 

During this step, both arrays must be equal. 

a. Before coloring vertices are unordered and colored with swaps. 

b. Before coloring vertices are in decreasing order with response to their degree 

and colored without swaps. 

3. Searching. For each color class starting from the first (current color class index c). 

3.1. Subgraph (branch) building. Build the first depth selecting all the vertices 

from color classes whose number c is equal or smaller than current. Vertices 
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from the first color class should stand first. Vertices at the end should belong to 

c color class. 

3.2. Process subgraph.  

3.2.1. Initialize depth. d = 1. 

3.2.2. Initialize current vertex. Set current vertex index    to be 

expanded (initially the first expanded vertex is the rightmost 

one).      . 

3.2.3. Bounding rule check. If current branch can possibly contain 

larger clique than found by so far. If            and     

                 then prune. Go to step 3.2.7. 

3.2.4. Vertex skipping check. If current vertex can possibly contain 

larger clique than found by so far. If                   

and CanBeSkipped(     ) skip this vertex. Decrease index i = 

i -1. Go to step 3.2.3. 

3.2.5. Expand current vertex. Form new depth by selecting all the 

adjacent vertices (neighbors) to current vertex     (     

      ). Set the next expanding vertex on current depth    = 

    . 

3.2.6. New depth analysis. Check if new depth contains vertices.  

a. If       ∅ then check if current clique is the 

largest one it must be saved. Go to step 3.3. 

b. If       ∅ then check graph density. If graph 

density is lower than 55% apply greedy coloring 

with swaps to     , else use greedy coloring without 

swaps. Save number of color classes (cn) acquired 

by this coloring. If number of color classes cannot 

possibly give us a larger clique then prune. If 

             decrease index i = i - 1 and go 

to step 3.2.3, else increase depth d = d + 1. Go to 

step 3.2.2. 



57 

3.2.7. Step back. Decrease depth d = d – 1. Delete expanding vertex 

from the current depth. If d = 0 go to step 3.3, else go to step 

3.2.3. 

3.3. Complete iteration. Save current best clique value for this color. b[c] = 

|CBC|. 

4. Return maximum clique. Return CBC. 

4.3.2 CanBeSkipped function 

th – threshold from which branch will be pruned 

CBC – current best clique, largest clique found by so far. 

d – depth. 

c – index of the currently processed color class. 

di – index of the currently processed vertex on depth d. 

bnd – bound from which vertices cannot be skipped. 

b – array to save maximum clique values for each color class. 

Ca – initial color classes array. 

Cb – color classes array recalculated on each depth. 

1. Define threshold.               . 

2. Find skipping bound. For each vertex index dj from di – 1 to 0. If           and 

              then bnd = j. 

3. Decide whether vertex can be skipped. For each adjacent (to currently expanded) 

vertex with index dj from bnd to zero. If            then return false. If 

           had never occurred return true. 
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4.4 Example 1 

 

Figure 4.7 VRecolor-BT-u example 1. Processed graph. 

First of all, we need to determine graph density. Number of vertices is 10 (|V| = 10), 

edge number is 14 (|E| = 14). Density is 0.31 (  
    

          
   

    

    
 0.  ). 

The next step is to apply greedy coloring and define color classes. As long as density 

is lower than 0.35 and 0.55, we use coloring with swaps without initial ordering in both cases 

in the algorithm. In result, we have the following initial color classes (Ca) (Please note that 

initially Ca values are copied to Cb. Later on Cb will be changed while Ca stays unmodified): 

Class 1: {1, 4, 6, 9} 

Class 2: {5, 7, 2} 

Class 3: {8, 10} 

Class 4: {3} 
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Now we will start depth construction and searching for a clique. Grayed out vertices 

are currently expanded. 

Table 4.1 VRecolor-BT-u algorithm example 1 

Depth Subgraph G 

Color classes Cb 

Current 

color 

class 

(c) 

Description 

d = 1 G = {1, 4, 6, 9} 

Cb[1] = {1, 4, 6, 

9} 

1 Construct the first subgraph using first color class 

vertices only. |CBC| = 0. 

Bounding rule check:              - false. We 

continue search because 1 ≥ current color. 

Vertex skipping check:   –          0     0 - 

false. We continue search because 1 > |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 

d = 2 G = ∅ 1 Save current clique if it is larger than |CBC|. Current 

clique = {9}. 1 > 0 – true. |CBC| = {9}. 

Complete iteration. b[1] = 1. 

d = 1 G = {1, 4, 6, 9, 

5, 7, 2} 

Cb[1] = {1, 4, 6, 

9} 

Cb[2] = {5, 7, 

2} 

2 Construct subgraph using first and second color class 

vertices. |CBC| = 1. 

Bounding rule check:    2  2  2  2 - false. We 

continue search because 2 ≥ current color. 

Vertex skipping check:   –      2      2    - 

false. We continue search because 2 > |CBC|. 

  2     . 
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d = 2 G = {1} 

Cb[1] = {1} 

2 cn = 1. Check if number of color classes can possibly 

give a larger clique: 2 –             2   . We 

continue search because 2 > |CBC|. 

Bounding rule check:            2 - true. 

Check the second condition        2        

– false. We continue search because 2   |CBC|. 

Vertex skipping check: 2 –             2    - 

false. We continue search because 2 > |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 

d = 3 G = ∅ 2 Save current clique if it is larger than |CBC|. Current 

clique = {2, 1}. 2 > 1 – true. |CBC| = {2, 1}. 

Complete iteration. b[2] = 2. 

d = 1 G = {1, 4, 6, 9, 

5, 7, 2, 8, 10} 

Cb[1] = {1, 4, 6, 

9} 

Cb[2] = {5, 7, 

2} 

Cb[3] = {8, 10} 

3 Construct subgraph using vertices of color classes 1, 2, 

3. |CBC| = 2. 

Bounding rule check:     0         - false. We 

continue search because 3 ≥ current color. 

Vertex skipping check:   –          2     2 - 

false. We continue search because 3 > |CBC|. 

Search current vertex neighbors and construct new 

depth.    0       2 . 

d = 2 G = {6, 9, 2} 

Cb[1] = {6, 9, 

2} 

3 cn = 1. Check if number of color classes can possibly 

give a larger clique: 2 –          2  2  2. We 

prune this branch because 2 ≤ |CBC|. 
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Go to the previous depth. 

d = 1 G = {1, 4, 6, 9, 

5, 7, 2, 8, 10} 

Cb[1] = {1, 4, 6, 

9} 

Cb[2] = {5, 7, 

2} 

Cb[3] = {8, 10} 

3 Take the next vertex to expand. 

Bounding rule check:              - false. We 

continue search because 3 ≥ current color. 

Vertex skipping check:   –          2     2 - 

false. We continue search because 3 > |CBC|. 

          . 

d = 2 G = {6, 5} 

Cb[1] = {6, 5} 

3 cn = 1. Check if number of color classes can possibly 

give a larger clique: 2 –          2  2  2. We 

prune this branch because 2 ≤ |CBC|. 

Go to the previous depth. 

d = 1 G = {1, 4, 6, 9, 

5, 7, 2, 8, 10} 

Cb[1] = {1, 4, 6, 

9} 

Cb[2] = {5, 7, 

2} 

Cb[3] = {8, 10} 

3 Take the next vertex to expand. 

Bounding rule check:    2  2  2    - true. 

Check the second condition   2  2      2  2 

– true. We prune this branch because 2 ≤ |CBC|. 

Complete iteration. b[3] = 2. 

d = 1 G = {1, 4, 6, 9, 

5, 7, 2, 8, 10, 3} 

Cb[1] = {1, 4, 6, 

9} 

Cb[2] = {5, 7, 

4 Construct subgraph using vertices of color classes 1, 2, 

3, 4. |CBC| = 2. 

Bounding rule check:              - false. We 

continue search because 4 ≥ current color. 

Vertex skipping check:   –          2     2 - 
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2} 

Cb[3] = {8, 10} 

Cb[4] = {3} 

false. We continue search because 4 > |CBC|. 

Search current vertex neighbors and construct new 

depth.                  0 . 

d = 2 G = {1, 4, 9, 5, 

8, 10} 

Cb[1] = {1, 4, 9, 

8} 

Cb[2] = {5, 10} 

4 cn = 2. Check if number of color classes can possibly 

give a larger clique: 2 –      2   2     2. We 

continue search because 3 ≥ |CBC|. 

Bounding rule check:     0         - true. 

Check the second condition      2  2    2  2 

– false. We continue search because 3 > |CBC|. 

Vertex skipping check: 2 –      2   2    2 - 

false. We continue search because 3 > |CBC|. 

Search current vertex neighbors and construct new 

depth.    0     . 

d = 3 G = {9} 

Cb[1] = {9} 

4 cn = 1. Check if number of color classes can possibly 

give a larger clique:   –          2     2. We 

continue search because 3 ≥ |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 

d = 4 G = ∅ 4 Save current clique if it is larger than |CBC|. Current 

clique = {3, 10, 9}. 3 > 2 – true. |CBC| = {3, 10, 9}. 

Complete iteration. b[4] = 3. 

Since there are no more color classes, we stop. The maximum clique is {3, 10, 9} and 

its size is three. 
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4.5 Example 2 

 

 

Figure 4.8 VRecolor-BT-u example 2. Processed graph. 

 

Number of vertices is 10 (|V| = 10), edge number is 18 (|E| = 18). Density is 0.4 

(  
    

          
   

    

    
 0. ). 

Density is higher than 0.35 we set vertices in decreasing order with response to their 

degrees and obtain initial color classes (Ca) using greedy coloring without swaps. Since 

density is lower than 0.55, we use coloring with swaps without ordering by degree when 

recoloring on each depth. In result, we have the following initial color classes (Ca): 

Class 1: {3, 8, 9} 

Class 2: {6, 7, 2, 4} 

Class 3: {1, 5, 10} 
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Table 4.2 VRecolor-BT-u algorithm example 2 

Depth Subgraph G 

Color classes Cb 

Current 

color 

class 

(c) 

Description 

d = 1 G = {3, 8, 9} 

Cb[1] = {3, 8, 

9} 

1 Construct the first subgraph using first color class 

vertices only. |CBC| = 0. 

Bounding rule check:              - false. We 

continue search because 1 ≥ current color. 

Vertex skipping check:   –          0     0 - 

false. We continue search because 1 > |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 

d = 2 G = ∅ 1 Save current clique if it is larger than |CBC|. Current 

clique = {9}. 1 > 0 – true. |CBC| = {9}. 

Complete iteration. b[1] = 1. 

d = 1 G = {3, 8, 9, 6, 

7, 2, 4} 

Cb[1] = {3, 8, 

9} 

Cb[2] = {6, 7, 2, 

4} 

2 Construct subgraph using first and second color class 

vertices. |CBC| = 1. 

Bounding rule check:       2  2  2 - false. We 

continue search because 2 ≥ current color. 

Vertex skipping check:   –      2      2    - 

false. We continue search because 2 > |CBC|. 

Search current vertex neighbors and construct new 

depth.         . 

d = 2 G = {3} 2 cn = 1. Check if number of color classes can possibly 

give a larger clique: 2 –             2   . We 
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Cb[1] = {3} continue search because 2 > |CBC|. 

Bounding rule check:            2 - true. 

Check the second condition        2        

– false. We continue search because 2   |CBC|. 

Vertex skipping check: 2 –             2    - 

false. We continue search because 2 > |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 

d = 3 G = ∅ 2 Save current clique if it is larger than |CBC|. Current 

clique = {4, 3}. 2 > 1 – true. |CBC| = {2, 1}. 

Complete iteration. b[2] = 2. 

d = 1 G = {3, 8, 9, 6, 

7, 2, 4, 1, 5, 10} 

Cb[1] = {3, 8, 

9} 

Cb[2] = {6, 7, 2, 

4} 

Cb[3] = {1, 5, 

10} 

3 Construct subgraph using vertices of color classes 1, 2, 

3. |CBC| = 2. 

Bounding rule check:     0         - false. We 

continue search because 3 ≥ current color. 

Vertex skipping check:   –          2     2 - 

false. We continue search because 3 > |CBC|. 

Search current vertex neighbors and construct new 

depth.    0       2 . 

d = 2 G = {8, 6, 2} 

Cb[1] = {8, 2} 

Cb[2] = {6} 

3 cn = 2. Check if number of color classes can possibly 

give a larger clique: 2 –      2   2     2. We 

continue search because 3 ≥ |CBC|. 

Bounding rule check:    2  2  2    - true. 

Check the second condition   2  2  2    2  2 
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– false. We continue search because 3 > |CBC|. 

Vertex skipping check: 2 –         2  2  2 - true. 

Call CanBeSkipped(2) function. th = 2 – (2 – 1) = 1. 

bnd = 1, since Ca(8) = 1 and b[Ca(8)] ≤ 1. 

CanBeSkipped returns true because there are no 

adjacent vertices to currently expanding vertex 2 with 

index lower or equal to bnd. Skip this vertex it will not 

give bigger clique. 

d = 2 G = {8, 6, 2} 

Cb[1] = {8, 2} 

Cb[2] = {6} 

3 Take the next vertex to expand. 

Bounding rule check:       2  2    - true. 

Check the second condition   2  2  2    2  2 

– false. We continue search because 3 > |CBC|. 

Vertex skipping check: 2 –      2   2     2 - 

false. We continue search because 3 > |CBC|. 

        . 

d = 3 G = {8} 

Cb[1] = {8} 

3 cn = 1. Check if number of color classes can possibly 

give a larger clique:   –          2     2. We 

continue search because 3 > |CBC|. 

Bounding rule check:              - true. 

Check the second condition              2 

– false. We continue search because 3   |CBC|. 

Vertex skipping check:   –                2 - 

false. We continue search because 3 > |CBC|. 

Search current vertex neighbors and construct new 

depth.      ∅. 
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d = 4 G = ∅ 3 Save current clique if it is larger than |CBC|. Current 

clique = {10, 6, 8}. 3 > 2 – true. |CBC| = {10, 6, 8}. 

Complete iteration. b[3] = 3. 

 

Since there are no more color classes, we stop. The maximum clique is {10, 6, 8} and 

its size is three. 
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5. Results 

In this chapter, we are going to compare the new algorithm to all the previously 

described ones. The following algorithms take part in testing: Carraghan and Pardalos, 

Östergård, VColor-u, VColor-BT-u, MCQ, MCR, MCS, MCS Improved and VRecolor-BT-u. 

All algorithms were implemented on C# language using Visual Studio 2013 

Professional (.NET Framework 4.5). 

The first part of this chapter consists of randomly generated graphs. These random 

tests give a general overview of algorithms performance and therefore whether a new 

algorithm is worth to be used for clique finding. All test cases are divided by graphs density 

and for each density different algorithms are being tested. Note that algorithms that perform 

much worse compared to others are removed from test results figures to show behavior of the 

best algorithms. 

The second part contains analysis of algorithm results of DIMACS instances. Each 

DIMACS graph has a special structure with response to some specific real problem. Four 

algorithms were tested with this benchmark: MCS, MCSI, VColor-BT-u and VRecolor-BT-u. 

5.1 Generated test results 

All algorithms were tested on randomly generated graphs. Randomness was generated 

using Random class from .NET Framework 4.5 which represents a pseudo-random number 

generator. Figure 5.1 demonstrates a function used for generation random graphs, where 

Graph is an object containing adjacency matrix inside Values array. Generation function takes 

number of vertices and density of a graph as parameters and returns a generated graph object.  

public static Graph GenerateGraph(int nodes, double density) 

{ 

int numberOfEdges = Convert.ToInt32(Math.Round(nodes * 

(nodes - 1) *                                                                                                                                        

density / 2, 0)); 
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 var graph = new Graph 

 { 

  Values = new bool[nodes, nodes], 

  Edges = numberOfEdges 

 }; 

 

 var random = new Random(); 

 Thread.Sleep(40); 

 var random2 = new Random(); 

 

 int x, y; 

 for (int i = 0; i < numberOfEdges; i++) 

 { 

  do 

  { 

   x = random.Next(0, nodes); 

   y = random2.Next(0, nodes); 

  } while (x == y || graph.Values[x, y]); 

  graph.Values[x, y] = true; 

  graph.Values[y, x] = true; 

 } 

 

 return graph; 

} 

Figure 5.1 Random graph generation code. (C# language) 

Figures from 5.2 to 5.5 demonstrate that VRecolor-BT-u consumes the least amount of 

time than the fastest of the rest algorithms on sparse graphs where density is lower than 40%. 

On graphs where density is very low (about 10%) basic algorithms (Carraghan and Pardalos, 

Östergård) show really good results as they does not perform any additional operations like 

coloring, searching for initial solution, reordering and so on. Basic pruning formulas are really 

effective on such small density. Although VRecolor-BT-u outperforms them proving that 

skipping technique gives overall positive impact, even with a fact that algorithm needs to 

spend time for coloring and proving that a vertex can be skipped. On densities from 20% to 

40%, the closest to VRecolor-BT-u are results of MCQ and MCR but the new algorithm 

performs about 20-25% faster. On all the figures from 5.2 to 5.10 y-axis shows time (in 

milliseconds) consumed by tested algorithms to find the maximum clique. 
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Figure 5.2 Randomly generated graphs test. Density 10%.  

 

Figure 5.3 Randomly generated graphs test. Density 20%. 
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Figure 5.4 Randomly generated graphs test. Density 30%. 

 

Figure 5.5 Randomly generated graphs test. Density 40%. 
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At first sight, there might be a strange behavior visible on a figure 5.6. VRecolor-BT-u 

time consumption is growing faster than MCQ and MCR have. Initially the new algorithm 

performs better (about 10%) when number of vertices is low (less than 440). It is clearly seen 

that already when number of vertices reaches 500 VRecolor-BT-u falls behind MCQ and 

MCR. This behavior can be explained by special constant, which determines what coloring 

algorithm is chosen for recoloring. When graphs density is 0.5 (which is our case), there is 

still a greedy coloring with swaps used for in-depth coloring, but after 0.55 density we switch 

to greedy coloring without swaps and this improvement gives significant impact on overall 

performance. If we move to figures 5.7 and 5.8 which demonstrate results on random graphs 

with 60% and 70% density you will see that VRecolor-BT-u shows stable best result from all 

the algorithms (about 5-10% faster). 

 

Figure 5.6 Randomly generated graphs test. Density 50%. 
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Figure 5.7 Randomly generated graphs test. Density 60%. 

 

Figure 5.8 Randomly generated graphs test. Density 70%. 
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It is easy to see from figures 5.9 and 5.10 that VRecolor-BT-u algorithm’s 

performance is not the best on dense graph. MCS and MCS Improved (MCSI) algorithms 

were specially designed for dense graphs and their techniques as in-depth vertex reordering or 

initial solution analysis result in lower time consumption. Although the new algorithm still 

demonstrates acceptable results and is able to find maximum clique on dense graphs where 

most other algorithms cannot. 

 

Figure 5.9 Randomly generated graphs test. Density 80%. 
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Figure 5.10 Randomly generated graphs test. Density 90%. 

Based on randomly generated graph results we can conclude with the following 

statements: 

 Graphs with densities lower than 50% are best solved using VRecolor-BT-u algorithm 

 When graphs density is about 50%, there are three algorithms MCQ, MCR and 

VRecolor-BT-u that are the fastest but time consumption fluctuates a bit compared to 

each other 

 If density of graph lies between 55% and 75%, then VRecolor-BT-u algorithm is a 

best choice 

 For dense graphs with density more than 75%, MCS Improved is fastest algorithm. 

5.2 DIMACS test results 

In this subchapter, four algorithms are tested on DIMACS graph instances. These 

algorithms are MCS, MCSI, VColor-BT-u and VRecolor-BT-u. MCS and MCSI were chosen 
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algorithms. VColor-BT-u is a predecessor of VRecolor-BT-u and is the best candidate to be 

compared with a new algorithm. With these tests, we are adding a new important 

characteristic as number of traversed branches. This parameter helps to understand how many 

branches each algorithm is analyzing and, of course, the better pruning formulas work the less 

branches are created. All considered algorithms are “branch and bound” which means the less 

branches analyzed the faster algorithm works. Number of branches demonstrates why one 

algorithm works faster than another, but time consumption and number of branches are not in 

a linear dependence. There are many factors that influence time consumption and branches 

number is only one of them. 

Table 5.1 demonstrates that VRecolor-BT-u algorithm works faster compared to MCS 

and MCSI on almost all graphs where density is lower than 0.75.  When VColor-BT-u and 

VRecolor-BT-u are compared, it is clearly seen that the new algorithm consumes less time for 

each test except “hamming” instances and “johnson16-2-4”. This behavior can be explained 

simply if we move to table 6-2 and check number of branches created by these two 

algorithms. VRecolor-BT-u creates less branches on all the DIMACS instances taken into 

testing compared to VColor-BT-u, which means that on “hamming” instances improvements 

from additional skipping formula and recoloring are not giving positive effect on overall 

performance. On these specific graph types vertex skipping is almost useless as branch 

number reduction is insignificant. 

It should be noted that on table 5.2 number of branches between MCS, MCSI and 

VColor-BT-u, VRecolor-BT-u pairs vary dramatically, this is a result of two diametrically 

different approaches. The first pair is based on Carraghan and Pardalos approach where 

initially all the vertices are taken into account and later analyzed graph size is decreasing, on 

the other hand Östergård’s approach state that we start with the only vertex (the only color 

class in VColor-BT-u and VRecolor-BT-u) and later on graph size is growing. This means 

that branches by themselves differ a lot (and so number of branches as well) between these 

two different approaches. 

One more detail about number of branches on table 5.2. There are quite a lot of 

instances where MCSI branch number is equal to zero. This algorithm is taking initial clique 

size from heuristic algorithm that is, of course, done at the very beginning. When heuristic 

solution is equal to the best possible clique size this results in a situation, when it is not 

needed to create any branches at all.   
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In general, DIMACS instances test proves results gained from randomly generated 

graphs testing. VRecolor-BT-u algorithm works better on densities lower than 75%. 

Table 5.1 DIMACS graphs results. Time consumption (ms). 

Graph Size Density Time (ms) 

MCS MCSI VColor-
BT-u 

VRecolor-
BT-u 

c-fat500-1.clq 500 0,04 44 229 6 2 

c-fat500-10.clq 500 0,37 190 175 18 136 

c-fat500-2.clq 500 0,07 27 112 4 1 

c-fat500-5.clq 500 0,19 62 100 6 11 

gen200_p0.9_44.clq 200 0,9 3867 2103 140082 21045 

gen200_p0.9_55.clq 200 0,9 8988 98 3650 2276 

hamming10-2.clq 1024 0,99 496 50636 1290 61271 

hamming6-2.clq 64 0,9 0 1 0 1 

hamming6-4.clq 64 0,35 0 1 0 0 

hamming8-2.clq 256 0,97 10 38 22 245 

hamming8-4.clq 256 0,64 633 654 3 14 

johnson16-2-4.clq 120 0,76 702 800 244 581 

johnson8-2-4.clq 28 0,56 0 0 1 0 

johnson8-4-4.clq 70 0,77 1 3 0 0 

keller4.clq 171 0,65 85 97 133 73 

MANN_a27.clq 378 0,99 7201 291385 68105 10231 

MANN_a9.clq 45 0,93 0 2 0 0 

p_hat1000-1.clq 1000 0,24 2592 2788 3540 2046 

p_hat300-1.clq 300 0,24 35 78 15 12 

p_hat300-2.clq 300 0,49 108 109 464 238 

p_hat300-3.clq 300 0,74 17796 9200 161323 16421 

p_hat500-1.clq 500 0,25 110 198 139 91 

p_hat500-2.clq 500 0,5 4816 2613 24391 8539 

p_hat700-1.clq 700 0,25 386 453 239 236 

san1000.clq 1000 0,5 7270 4989 410 945 

san200_0.7_1.clq 200 0,7 18 39 889338 1819 

san200_0.7_2.clq 200 0,7 16 45 3 5 

san200_0.9_1.clq 200 0,9 2166 38 250 51 

san200_0.9_2.clq 200 0,9 265 35 2828 1402 

san400_0.5_1.clq 400 0,5 57 341 42 29 
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Table 5.2 DIMACS graphs results. Number of branches. 

Graph Size Density Branches 

MCS MCSI VColor-BT-u VRecolor-
BT-u 

c-fat500-1.clq 500 0,04 486 0 105 105 

c-fat500-10.clq 500 0,37 374 0 8001 8001 

c-fat500-2.clq 500 0,07 474 0 351 351 

c-fat500-5.clq 500 0,19 436 0 2080 2080 

gen200_p0.9_44.clq 200 0,9 38520 16605 72627446 932250 

gen200_p0.9_55.clq 200 0,9 124975 544 1629229 97769 

hamming10-2.clq 1024 0,99 512 136714 140033 131328 

hamming6-2.clq 64 0,9 32 0 569 528 

hamming6-4.clq 64 0,35 82 80 138 70 

hamming8-2.clq 256 0,97 128 0 8849 8256 

hamming8-4.clq 256 0,64 31794 31782 1524 788 

johnson16-2-4.clq 120 0,76 237952 256098 489432 323070 

johnson8-2-4.clq 28 0,56 26 22 74 44 

johnson8-4-4.clq 70 0,77 126 114 692 252 

keller4.clq 171 0,65 6978 7317 203053 11236 

MANN_a27.clq 378 0,99 9091 1893248 7528324 55389 

MANN_a9.clq 45 0,93 43 149 375 189 

p_hat1000-1.clq 1000 0,24 120465 116675 5457636 357619 

p_hat300-1.clq 300 0,24 1519 964 16737 2538 

p_hat300-2.clq 300 0,49 2027 1368 272364 24826 

p_hat300-3.clq 300 0,74 228931 121147 88917523 664515 

p_hat500-1.clq 500 0,25 7953 7374 213594 19821 

p_hat500-2.clq 500 0,5 63031 28547 11620047 584983 

p_hat700-1.clq 700 0,25 22447 13656 304679 45157 

san1000.clq 1000 0,5 83831 0 57284 13356 

san200_0.7_1.clq 200 0,7 403 0 2241214630 547738 

san200_0.7_2.clq 200 0,7 768 0 1490 398 

san200_0.9_1.clq 200 0,9 31555 0 97985 3350 

san200_0.9_2.clq 200 0,9 2063 0 1502178 87250 

san400_0.5_1.clq 400 0,5 1562 0 16340 1241 
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6. Conclusion 

The main topic of this study was to develop a new improved algorithm for maximum 

clique finding. Only undirected, unweighted graphs were researched. Importance of the 

problem was stated in subchapter 1.3. Clique finding problem belongs to the NP-complete 

class, which means that finding a better algorithm for this kind of problems allows improving 

all the problems transformed to it. That is why better understanding of the clique problem 

provides us with a better solution for almost any other NP problem. As currently described 

problem belongs to NP-compete, all the existing algorithms complexity (for this problem) can 

be described with exponential functions, which means that even a small increase in the size of 

the problem can result in additional days or weeks of work time. Therefore, development of a 

better algorithm even for some specific graph groups can save this working time and can 

seriously influence different areas of real life. 

6.1 Summary 

With this resume, we are going to summarize all the work done to reach the goals 

stated in the chapter 1.4. They all are successfully completed and described in the current 

work. Although, there is enough space for further improvements, that will be presented in the 

next subchapter. 

The two basic algorithms for finding maximum clique are studied in chapter 2 giving 

introduction to branch and bound algorithms. There are two general approaches of traversing 

a graph. The first one is Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990], which 

starts considering all the vertices of a graph. On the other hand, the second approach is 

demonstrated by Östergård’s algorithm that uses reversed search, taking into account only one 

vertex initially and constantly adds vertices one by one. In addition, other basic coloring, 

independent set and vertex cover finding heuristic algorithms are reviewed. 
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Chapter 3 contains description of the most efficient modern algorithms nowadays. 

Studying these algorithms allows understanding what are the main properties and upgrades, 

which influence algorithms performance the most. VColor-u and VColor-BT-u algorithms 

published by D. Kumlander [Kumlander 2005] demonstrate a high positive impact of heuristic 

coloring on exact algorithms performance. What is more D. Kumlander applied coloring to 

both basic approaches of finding maximum clique. Such algorithms as MCQ [Tomita, Seki 

2003], MCR [Tomita, Kameda 2007] and MCS [Tomita, Sutani, Higashi, Takahashi, 

Wakatsuki 2010] show that initial vertex ordering does matter and needs to be chosen 

properly. Moreover, in-depth heuristic coloring proved its efficiency and confirmed the fact 

that only initial coloring is not enough as the deeper search goes the more diffused initial 

color classes become. MCS algorithm introduced a notion of color number threshold and 

demonstrated how it can be successfully used to reduce the amount of expanded vertices, 

therefore lowering unnecessary branch creation. Finally, MCS Improved algorithm [Batsyn, 

Goldengorin, Maslov, Pardalos 2014] showed that initial clique value obtained using good 

heuristic combined with in-depth clique vertices analysis can sometimes reduce the number of 

produced branches dramatically. As can be clearly seen from all the modern algorithm 

heuristic has a great positive overall impact on the clique finding exact algorithms. 

The new maximum clique algorithm called VRecolor-BT-u is demonstrated in chapter 

4. This algorithm is a successor of VColor-BT-u and is constructed based on reversed search 

by color classes. The main idea of the new algorithm is quite simple: we need to apply 

coloring on each depth to preserve the most up-to-date color classes and combine updated 

vertex colors with the reversed search approach. At the first sight, the idea of in-depth 

recoloring might be unclear as reversed search is built around initial color classes, but 

introduction of a new skipping technique instead of pruning allows avoiding this conflict. 

Furthermore, there are two different greedy coloring algorithms (with swaps and without 

swaps) used for initial and in-depth coloring. Experimentally gained constants, which depend 

on graph density, determine which coloring is applied (subchapter 4.2). The algorithm is 

described as a step-by-step operation set in subchapter 4.3. The previous experience with 

different algorithms realization shows that it is very easy to miss or distort the meaning of 

some inaccurately described details. Each small mistake in implementation might lead to 

extreme performance drops or result in improper solutions. To prevent such cases there are 

two examples in subchapters 4.4 and 4.5 which demonstrate VRecolor-BT-u workflow in 
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details. Moreover, the implementation of the new algorithm, written in C# language, is 

attached in the appendix 1. These subchapters make it easy to understand and implement the 

new algorithm and the exact implementation on a real programming language allows 

excluding all the possible misunderstandings. 

One of the most important things to do with a new algorithm is a proper testing. All 

the implemented algorithms were compared using two types of tests in chapter 5. The first 

one is randomly generated graphs tests. Generated tests allow obtaining comparative diagrams 

that graphically demonstrate time consumption of different algorithms. The new algorithm 

shows the best results on the graphs with low or average densities and loses only on dense 

graphs to MCS and MCSI algorithms specially designed for high densities. The second type 

of testing is DIMACS benchmark instances. Firstly, these instances already contain the best 

solution, so small DIMACS graph are very convenient to use as the smoke tests for a new 

algorithm. Secondly, these test instances allows testing the algorithm on close to real life 

problems as they are constructed based on real tasks. Moreover, in addition to time 

consumption comparison there are branch number results. Number of branches is not the 

primary characteristic but allows explaining why one algorithm works faster or slower than 

the other does. VRecolor-BT-u produces less branches that its predecessor for all the 

DIMACS instances. However, there are some cases where the new algorithm consumes more 

time. Decreasing branch number resulting in performance degradation might be misleading at 

a glance, but can be described with a simple fact that on some special cases additional in-

depth recoloring consumes a lot of time while skipping technique is practically not working. 

As a result, we have a slightly lower branch number but increased time consumption. 

Finally, it was noted that each graph should be solved by a different algorithm with 

response to graphs density. On low to mid densities, it is advised to use VRecolor-BT-u 

algorithm while the best option for dense graphs is MCS Improved algorithm. 

6.2 Future studies 

In this subchapter, we are going to introduce some ideas for further studies. First of 

all, there are multiple possible improvements for VRecolor-BT-u algorithm: 



82 

 Improved initial coloring. Only greedy coloring is currently applied, but the less color 

classes we have the less iterations will be performed. Moreover, initial coloring is 

applied only once before branching starts, which means that there might be more 

complex and time-consuming coloring applied. That time spend on initial coloring 

should be compensated due to reduction of iterations number. 

 Improved in-depth coloring. As long as recoloring is used each time a new branch is 

created, it is not acceptable to apply any time consuming in-depth coloring algorithm. 

There should be a balanced solution found between the “good” coloring and time 

consumption. What is more, “good” recoloring does not mean the least number of 

color classes; the main goal is to assign as much vertices as possible to color numbers 

that are lower or equal to the threshold value. Well optimized for these specific needs 

coloring algorithm might be a key to imposing performance improvements. 

 Overall subgraph analysis on each new iteration. With each iteration, we are adding a 

new color class into consideration. As we know this might increase current clique 

value by one at maximum. The easiest way of analysis is to check whether any vertex 

of a new color class can be added to the already existing clique. If yes, then the whole 

iteration can be skipped. There might be the more complex ways of analysis 

introduced such as obtaining maximum clique of a new subgraph by heuristic 

algorithm. If heuristically gained value is bigger than current clique, then iteration is 

skipped. 

As rough computational results show, when using Carraghan and Pardalos searching 

approach (without reversed search), largest clique is found at 30% of total time consumed. 

The rest 70% algorithm is trying to prove that current clique is the largest one. The situation 

can be even worse on dense graph with a lot of parallel cliques with the same size. Incomplete 

solution and excessive expectations are two interesting topics to be studied that might 

improve this field. Incomplete solution studies how fast the maximum clique is found. Using 

this data, we might predict at what point we have already obtained solution. After that point 

there should be a way, other that analyzing all the rest vertices, to prove that current clique is 

the largest one. Excessive expectation is a proposal of searching a clique with initial clique 

value n larger than expected. If an excessive clique is not found this means that value n is an 

upper bound for the maximum clique. Combination of these two approaches might fasten 

already existing algorithms even more. 
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Kokkuvõtte 

Selle uurimistöö põhiteemaks on välja töötada uus täiustatud algoritm suurima kliki 

leidmiseks. Uuuritud on ainult orienteerimata ja kaalumata graafe. Probleemi olulisus on välja 

toodud alapeatükis 1.3. Klikileidmise problem kuulub NP-täielik-klassi, mis tähendab, et 

sedalaadi probleemide lahendamiseks parema algoritmi leidmine võimaldab lahendada kõiki 

probleeme, mis on selliseks ümber muudetud.  Seetõttu klikiprobleemi parem mõistmine 

pakub meie jaoks paremat lahendust peaagu igale muule NP probleemile. Kuna praegu 

kirjeldatud probleem kuulub NP-täieliku hulka, siis kõigi olemasolevate algoritmide 

keerukust (selle probleemi jaoks) saab kirjeldada eksponentfunktsiooni abil, mis tähendab, et 

pisimgi probleemi suuruse tõus võib kaasa tuua lisatööpäevi või isegi nädalaid. See tähendab, 

et parema algoritmi väljatöötamine kas või mõne spetsiifilise graafirühma jaoks säästab 

tööaega ning avaldab olulist mõju erinevatele reaalelu valdkondadele. 

 

Tehtud töö 

Selle resümeega võtame kokku kogu töö, mis on tehtud selleks, et saavutada peatükis 

1.4 kirjeldatud eesmärke. Kõik on edukalt lõpule viidud ja kirjeldatud käesolevas töös. Ehkki 

muidugi oleks ruumi veel edasisekski täiustamiseks, mida kirjeldatakse järgmises alapeatükis.  

Kahte põhialgoritmi maksimaalse kliki leidmiseks käsitletakse 2. peatükis, kus on ka 

sissejuhatus harude-tõkete algoritmidele. On kaks peamist lähenemisviisi graafist üle 

liikumiseks. Kiireim on Carraghani and Pardalos algoritm [Carraghan, Pardalos 1990], mis 

hakkab arvestama graafi kõiki tippe. Teisest küljest, teistsugust lähenemisviisi tutvustab  

Östergårdi algoritm, mis kasutab pöördotsingut, võttes alguses arvesse ainult üht tippu, 

seejärel lisab ükshaaval tippe juurde. Lisaks vaadeldakse muid põhivärve, sõltumatut hulka ja 

tipu katet, mis aitavad leida heuristilisi algoritme.  

3. peatükis on tänapäeva kõige tõhusamate ja moodsamate algoritmide kirjeldus. 

Nende algoritmide uurimine aitab aru saada nende põhilistest omadustest ja uuendustest, mis 

algoritmide suutlikkust kõige rohkem mõjutavad. D. Kumlanderi poolt avaldatud VColor-u ja 
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VColor-BT-u algoritmid [Kumlander 2005] demonstreerivad heuristilise värvimise kõrget 

positiivset mõju algoritmi täpsele soorituskiirusele. Veelgi enam, D. Kumlander rakendas 

värvimist mõlema põhilähenemisviisi puhul suurima kliki leidmiseks. Sellised algoritmid 

nagu MCQ [Tomita, Seki 2003], MCR [Tomita, Kameda 2007] ja MCS [Tomita, Sutani, 

Higashi, Takahashi, Wakatsuki 2010] näitavad, et algne tippude järjestus on oluline ja seda 

tuleb hoolikalt valida.  Veelgi enam, sügavuti heuristiline värvimine tõestas oma tõhusust ja 

kinnitas fakti, et esialgne värvimine ei ole piisav, ja mida põhjalikum on uurimine, seda 

laialivalguvamaks muutuvad algsed värviliigid. MCS algoritm võttis kasutusele värvinumbrite 

mõiste ning demonstreeris, kuidas on võimalik vähendada avardatud tippude arvu, mis 

omakorda vähendab tarbetut harude loomist. Lõpuks MCS täiustatud algoritm Batsyn, 

Goldengorin, Maslov, Pardalos 2013] näitas, et esialgne klikiväärtus, mis saavutati kasutades 

head heuristikat kombinatsioonis sügavuti teostatud klikitippude analüüsiga võib mõnikord 

dramaatiliselt vähendada toodetud harude arvu. On selge, et moodsate algoritmide puhul on 

heuristikal tohutu positiivne mõju täpsete algoritmide klikileidmisele.  

Uut suurima kliki mehhanismi nimega VRecolor-BT-u’d kirjeldatakase 4. peatükis. 

See algoritm on VColor-BT-u järeltulija ning on konstrueeritud värviliikide poolt 

pöördotsingu põhjal. Uue algoritmi idee on üsna lihtne: kanname värvi peale igal sügavusel, 

et säilitada kõige uuemaid värviliike ja kombineerida uusimaid tipuvärve  pöördotsingu abil. 

Esmapilgul võib idee sügavuti ülevärvimisest tunduda ebareaalsena, kuna pöördotsing 

põhineb algsetel värviliikidel, kuid uus vahelejätmistehnika kärpimise asemel võimaldab 

sellise konflikti vältimist.  

Lisaks on kaks erinevat ahnet värvivat algoritmi (värvivahetusega ja ilma), mida 

kasutatakse nii esialgseks kui sügavuti värvimiseks. Katse tulemusena saadud konstandid, mis 

olenevad graafi tihedusest, määravad ära, millist värvi kasutada (alapeatükk 4.2). Algoritmi 

kui samm-sammult teostatavat tegevuste jada  kirjeldatakse alapeatükis 4.3. Eelnevad 

kogemused erinevate algoritmide teostamisel näitavad, et on väga lihtne tähelepanuta jätta või 

moonutada mõningaid ebatäpselt kirjeldatud üksikasjade tähendusi. Iga pisemgi viga 

algoritmi rakendamisel võib tuua kaasa soorituse halvenemise või ebaõige lahenduse. Selliste 

juhtumite ärahoidmiseks on alapeatükkides 4.4 ja 4.5 toodud kaks näidet, mis 

demonstreerivad üksikasjalikult VRecolor-BT-u tööprotsessi. Lisaks sellele on C# keeles 

kirjutatud uue algoritmi rakendusjuhend manusena Lisas 1. Need alapeatükid muudavad uue 



85 

algoritmi mõistmise ja rakendamise lihtsamaks. Täpne rakendamine päris 

programmeerimiskeeles aitab välistada kõikvõimalikke arusaamatusi.  

Üks väga oluline asi uue algoritmi puhul on korralik testimine. Kõiki rakendatavaid 

algoritme võrreldi kaht liiki testide abil peatükis 5. Esimene neist on juhuslikult genereeritud 

graafitest. Genereeritud testid võimaldavad saada võrdlevaid diagramme, mis näitavad 

graafiliselt erinevate algoritmide tarbimist. Uus algoritm näitab parimaid tulemusi madala või 

keskmise tihedusega graafil, jäädes alla ainult tihedatele graafidele MCS ja MCSI algoritmide 

jaoks, mis ongi spetsiaalselt disainitud kõrgete tiheduste jaoks. Teine testimisliik on DIMACS 

võrdlused. Esiteks, need näited sisaldavad juba iseenesest parimat lahendust, nii et väikesed 

DIMACS graafid on väga sobilikud kasutamiseks ”suitsutestidena” uue algoritmi jaoks. 

Teiseks, sel viisil saab testida algoritme reaalse elu probleemide jaoks, kuna nende 

väljatöötamine põhineb reaalelu ülesannetel. Veelgi enam, ajakulu võrdluse kõrval näitavad 

nad ka harude arvu tulemusi. Harude arv pole küll kõige olulisem karakteristik, kuid annab 

selgust selles, miks üks algoritm toimib kiiremini kui teine. Kõik DIMACS juhtumid 

näitavad, et VRecolor-BT-u toodab vähem harusid kui tema eelkäija. Ometi on juhtumeid, kus 

uus algoritm vajab rohkem aega. Vähenev harude arv, mille tulemuseks on jõudluse 

nõrgenemine, võib olla esmapilgul eksitav, aga seda seletab lihtne fakt, et teatud juhtudel 

sügavuti ülevärvimine võtab palju aega, samal ajal kui vahelejätutehnika prakiliselt ei toimi. 

Tulemuseks on väiksem harude arv, aga suurem ajakulu. Lõpuks täheldati, et iga graaf tuleks 

lahendada erineva algoritmi abil, mis vastab graafi tihedusele. Madala ja keskmise tiheduse 

puhul on soovitav kasutada VRecolor-BT-u algoritmi, suurema tihedusega graafide puhul on 

parim variant MCS Improved (täiustatud) algoritm. 

 

Tulevased uuringud 

Selles alapeatükis tutvustame mõnigaid ideid edasisteks uurimusteks. Kõigepealt on 

mitmeid võimalikke täiustusi VRecolor-BT-u algoritmi jaoks: 

 Täiustatud esialgne värvimine. Momendil on saada ainult ahnet värvimist, kuid mida 

vähem värviliike me kasutame, seda vähem iteratsioone toimub. Veelgi enam, esialgne 

värvimine tehakse ainult üks kord, enne kui harude moodustamine algab, mis 

tähendab, et võib ette tulla keerulisemat ja rohkem aeganõudvat värvimist. Aeg, mis 

kulutatakse esialgsele värvimisele, peaks saama korvatud iteratsioonide arvu 

vähendamisega. 
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 Täiustatud sügavuti värvimine. Nii kaua kui iga uue haru loomise puhul viiakse läbi 

ülevärvimine, ei ole vastuvõetav, et kohaldatakse mistahes aeganõudvat sügavuti 

värvimise algoritmi. Tuleks leida tasakaalustatud lahendus ”hea” värvimise ja vastava 

ajakulu vahel. Edasi, ”hea” ülevärvimine ei tähenda võimalikult väheseid värviliike, 

põhieesmärgiks on vastavusse seada nii palju tippe kui võimalik, nii et see oleks 

madalam kui piirväärtus või sellega võrdne. Kui nende spetsiifiliste vajadustega 

optimaalselt ümber käia, võib värvimise algoritm olla võti jõudluse tõstmise jaoks.  

 Üldine alamgraafi analüüs iga uue iteratsiooni puhul. Iga iteratsiooni puhul võtame 

kaalumisele uue värviliigi. Nagu teame, see võib tõsta praegust klikiväärtust 

maksimaalselt 1 võrra. Lihtsaim viis analüüsi teha on kontrollida, kas ühtegi uut 

värviliiki saab lisada olemasolevale klikile. Kui saab, siis võib kogu iteratsiooni ära 

jätta. On olemas kindlasti ka keerulisemaid viise analüüside tutvustamiseks, nagu 

näiteks saavutada uue alamgraafi suurim klikk, kasutates heuristilist algoritmi. Kui 

heuristilisel teel saadud väärtus on suurem, kui käesolev klikk, siis iteratsioon jäetakse 

vahele. Olles nende spetsiifiliste vajaduste jaoks hästi optimeeritud, võib värviv 

algoritm olla võtmeks sooritusjõudluse parandamisel. 

Nagu töötlemata arvutuslikud tulemused näitvad, kasutades Carraghani ja Pardalose 

otsivat lähenemisviisi (jättes välja pöördotsingu), siis suurim leitud klikk oli 30% kogu 

kulutatud ajast. Ülejäänud 70% algoritm üritab tõestada, et käesolev klikk on suurim. Olukord 

võib olla hullem tiheda graafi puhul, millel on palju ühesuguse suurusega paralleelklikke. 

Puudulik lahendus ja liigne ootus on kaks huvitavat teemat, mille uurimine võiks seda 

valdkonda paremaks muuta. Puudulik lahendus uurib, kui kiiresti on võimlik leida kiireimat 

klikki. Seda andmebaasi kasutades võime ennustada, mis hetkel lahenduseni jõutakse. 

Seejärel tuleb leida viis, mõni muu kui kõigi ülejäänud tippude analüüsimine, tõestamaks et 

just see klikk on kõige suurem. Liigne ootus on sellise kliki otsimine, mille esialgne väärtus n 

on oodatust kõrgem. Kui liigset klikki ei leita, tähendab see, et väärtus n on suurima kliki 

jaoks ülempiir. Nende kahe lähenemisviisi ühendamine võib juba olemasolevaid algoritme 

veelgi enam kiirendada. 
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Appendix 1 

Base class Algorithm 

using System.Diagnostics; 

using MaximumClique.Base; 

 

namespace MaximumClique.NewAlgorithms 

{ 

    public abstract class Algorithm 

    { 

        protected readonly Stopwatch _stopwatch = new 

Stopwatch(); 

        private bool _solved; 

        protected Graph Graph; 

 

        protected Algorithm(Graph graph) 

        { 

            Graph = graph; 

            SolutionFoundElapsed = 1; 

        } 

 

        #region Properties 

 

        public bool IsSolved 

        { 

            get 

            { 

                return _solved; 

            } 

        } 

 

        public double Elapsed 

        { 

            get { return _stopwatch.ElapsedMilliseconds; } 

        } 

 

        protected long branches; 

        public long Branches 

        { 

            get { return branches; } 

        } 
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        public double SolutionFoundElapsed { get; protected 

set; } 

 

        private int _nodesNumber = -1; 

        protected int NodesNumber 

        { 

            get 

            { 

                return _nodesNumber == -1 ? (_nodesNumber = 

Graph.Values.GetLength(0)) : _nodesNumber; 

            } 

        } 

 

        public abstract int Result { get; } 

 

        #endregion //Properties 

 

        protected abstract void Solution(); 

 

        public void Start() 

        { 

            _stopwatch.Start(); 

            Solution(); 

            _stopwatch.Stop(); 

            _solved = true; 

        } 

    } 

} 

 

VRecolor-BT-u algorithm 

using System.Linq; 

using MaximumClique.Base; 

 

namespace MaximumClique.NewAlgorithms 

{ 

    public class VRecolorBtu : Algorithm 

    { 

        private int maxCliqueSize; 

        private int[,] levelNodes; 

        private int initialColorsNumber; 

        private int[][] initialColorClasses; 

        private int[] initialNodesNumInColorClass; 

        private int[] initialColors; 

        private int[,] inDepthColors; 

        private int[] numberOfNodesArr; 

        private int[] inDepthElementIndex; 
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        private int[,] skippedNodes; 

        private int[] skippedNodesNumber; 

        private int[] cache; 

 

        public VRecolorBtu(Graph graph) 

            : base(graph) 

        { 

            levelNodes = new int[NodesNumber, NodesNumber]; 

            initialColorClasses = new int[NodesNumber][]; 

            initialNodesNumInColorClass = new 

int[NodesNumber]; 

            initialColors = new int[NodesNumber]; 

            inDepthColors = new int[NodesNumber, NodesNumber]; 

            numberOfNodesArr = new int[NodesNumber + 1]; 

            inDepthElementIndex = new int[NodesNumber + 1]; 

 

            skippedNodes = new int[NodesNumber, NodesNumber]; 

            skippedNodesNumber = new int[NodesNumber + 1]; 

            cache = new int[NodesNumber]; 

        } 

 

        public override int Result 

        { 

            get { return maxCliqueSize; } 

        } 

 

        protected override void Solution() 

        { 

            if (Graph.Density < 0.35) 

                InitialColoringWithSwaps(); 

            else 

                InitialColoring(); 

 

            var inDepthDegree = new int[NodesNumber]; 

            for (int c = 0; c < initialColorsNumber; c++) 

            { 

                skippedNodesNumber[0] = 0; 

                int depth = 0; 

                numberOfNodesArr[depth] = 0; 

                inDepthDegree[depth] = 0; 

                for (int i = 0; i <= c; i++) 

                { 

                    for (int j = 0; j < 

initialNodesNumInColorClass[i]; j++) 

                    { 

                        levelNodes[depth, 

numberOfNodesArr[depth]] = initialColorClasses[i][j]; 

                        numberOfNodesArr[depth]++; 

                    } 
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                } 

                inDepthElementIndex[depth] = 

numberOfNodesArr[depth] - 1; 

                while (depth >= 0) 

                { 

                    int inDepthIndex = 

inDepthElementIndex[depth]; 

                    if (inDepthIndex == -1) 

                    { 

                        depth--; 

                        continue; 

                    } 

                    int p = levelNodes[depth, inDepthIndex]; 

                    var color = initialColors[p - 1]; 

                    if (color < c + 1 && depth + cache[color - 

1] <= maxCliqueSize) 

                    { 

                        depth--; 

                        continue; 

                    } 

                    if ((depth + inDepthColors[depth, p - 1] 

                        <= maxCliqueSize) && 

CanBeSkipped(inDepthIndex, depth, c + 1)) 

                    { 

                        skippedNodes[depth, 

skippedNodesNumber[depth]] = p; 

                        skippedNodesNumber[depth]++; 

                        inDepthElementIndex[depth]--; 

                        continue; 

                    } 

                    branches++; 

                    int prevDepth = depth; 

                    depth++; 

                    numberOfNodesArr[depth] = 0; 

                    inDepthElementIndex[depth] = 0; 

 

                    for (int i = 0; i < inDepthIndex; i++) 

                    { 

                        if (Graph.Values[levelNodes[prevDepth, 

inDepthIndex] - 1, levelNodes[prevDepth, i] - 1]) 

                        { 

                            levelNodes[depth, 

numberOfNodesArr[depth]] = levelNodes[prevDepth, i]; 

                            numberOfNodesArr[depth]++; 

                        } 

                    } 

                    for (int i = skippedNodesNumber[prevDepth] 

- 1; i >= 0; i--) 

                    { 
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                        if (Graph.Values[levelNodes[prevDepth, 

inDepthIndex] - 1, skippedNodes[prevDepth, i] - 1]) 

                        { 

                            levelNodes[depth, 

numberOfNodesArr[depth]] = skippedNodes[prevDepth, i]; 

                            numberOfNodesArr[depth]++; 

                        } 

                    } 

 

                    inDepthElementIndex[depth] = 

numberOfNodesArr[depth] - 1; 

 

                    if (numberOfNodesArr[depth] > 0) 

                    { 

                        int colNum = Graph.Density < 0.55 ? 

RecolorWithSwaps(depth) : Recolor(depth); 

                         

                        if (depth + colNum <= maxCliqueSize) 

                            depth--; 

                    } 

                    else 

                    { 

                        if (depth > maxCliqueSize) 

                        { 

                            maxCliqueSize = depth; 

                            break; 

                        } 

                        depth--; 

                    } 

                    inDepthElementIndex[prevDepth]--; 

 

                } 

                cache[c] = maxCliqueSize; 

            } 

        } 

 

        private bool CanBeSkipped(int vertIndex, int depth, 

int currentColor) 

        { 

            int threshold = maxCliqueSize - depth; 

            int vert = levelNodes[depth, vertIndex]; 

 

            // on current depth on what vertex index we will 

cut?? 

            // if (color < c + 1 && depth + cache[color - 1] 

<= maxCliqueSize){ depth--; } 

            int initialColorThresholdIndex = -1; 

            for (int i = vertIndex - 1; i >= 0; i--) 

            { 
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                int vert2 = levelNodes[depth, i]; 

                if (initialColorThresholdIndex == -1) 

                { 

                    int color = initialColors[vert2 - 1]; 

                    if (color < currentColor && cache[color - 

1] <= threshold) 

                    { 

                        initialColorThresholdIndex = i; 

                        break; 

                    } 

                } 

            } 

 

            // if we want to skip a vertex, we have to check 

if current vertex 

            // is adjacent to any vertex INSIDE vertices that 

will be CUT!! (from initialColorThresholdIndex to zero) on 

this depth 

            // with color higher than threshold 

            for (int i = initialColorThresholdIndex; i >= 0; 

i--) 

            { 

                int vert2 = levelNodes[depth, i]; 

                if (Graph.Values[vert - 1, vert2 - 1]) 

                { 

                    if (inDepthColors[depth, vert2 - 1] > 

threshold) 

                        return false; 

                } 

            } 

            return true; 

        } 

 

        public int FindNumberOfColorClasses(int depth, int 

numberOfNodes) 

        { 

            int nPrevColor = 0; 

 

            int numberOfColorClasses = 0; 

            for (int i = 0; i < numberOfNodes; i++) 

            { 

                int currentColor = 

initialColors[levelNodes[depth, i] - 1]; 

                if (currentColor != nPrevColor) 

                { 

                    numberOfColorClasses++; nPrevColor = 

currentColor; 

                } 

            } 
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            return numberOfColorClasses; 

        } 

        private void InitialColoring() 

        { 

            var verticesWithDegrees = new int[NodesNumber][]; 

            // count degrees of vertices 

 

            for (int i = 0; i < NodesNumber; i++) 

            { 

                verticesWithDegrees[i] = new int[2]; 

                verticesWithDegrees[i][0] = i + 1; 

            } 

 

            for (int i = 0; i < NodesNumber; i++) 

                for (int j = i + 1; j < NodesNumber; j++) 

                    if (Graph.Values[i, j]) 

                    { 

                        verticesWithDegrees[i][1]++; 

                        verticesWithDegrees[j][1]++; 

                    } 

 

            // order vertices by degree  

            var orderedVertices = 

verticesWithDegrees.OrderByDescending(i => i[1]).ToArray(); 

 

            // color vertices, find color classes 

            for (int i = 0; i < NodesNumber; i++) 

            { 

                int vert = orderedVertices[i][0]; 

                bool isAdded = false; 

                for (int j = 0; j < initialColorsNumber; j++) 

                { 

                    bool connected = false; 

                    for (int k = 0; k < 

initialNodesNumInColorClass[j]; k++) 

                    { 

                        if (Graph.Values[vert - 1, 

initialColorClasses[j][k] - 1]) 

                        { 

                            connected = true; 

                            break; 

                        } 

                    } 

                    if (!connected) 

                    { 

                        

initialColorClasses[j][initialNodesNumInColorClass[j]] = vert; 

                        initialColors[vert - 1] = j + 1; 

                        inDepthColors[0, vert - 1] = j + 1; 
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                        initialNodesNumInColorClass[j]++; 

                        isAdded = true; 

                        break; 

                    } 

                } 

                if (!isAdded) 

                { 

                    initialColorClasses[initialColorsNumber] = 

new int[NodesNumber]; 

                    

initialColorClasses[initialColorsNumber][initialNodesNumInColo

rClass[initialColorsNumber]] = vert; 

                    

initialNodesNumInColorClass[initialColorsNumber]++; 

                    initialColorsNumber++; 

                    initialColors[vert - 1] = 

initialColorsNumber; 

                    inDepthColors[0, vert - 1] = 

initialColorsNumber; 

                } 

            } 

        } 

 

        private void InitialColoringWithSwaps() 

        { 

            var array = new int[NodesNumber]; 

            for (int i = 0; i < NodesNumber; i++) 

                array[i] = i + 1; 

 

            int colored = 0; 

            initialColorsNumber = 0; 

 

            while (true) 

            { 

                initialColorClasses[initialColorsNumber] = new 

int[NodesNumber]; 

                

initialColorClasses[initialColorsNumber][initialNodesNumInColo

rClass[initialColorsNumber]] = array[colored]; 

                

initialNodesNumInColorClass[initialColorsNumber]++; 

                initialColorsNumber++; 

                initialColors[array[colored] - 1] = 

initialColorsNumber; 

                inDepthColors[0, array[colored] - 1] = 

initialColorsNumber; 

 

                colored++; 

                int lowerBound = colored - 1; 
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                for (int i = colored; i < NodesNumber; i++) 

                { 

                    bool canBeColored = true; 

                    for (int j = lowerBound; j < colored; j++) 

                        if (Graph.Values[array[i] - 1, 

array[j] - 1]) 

                        { 

                            canBeColored = false; 

                            break; 

                        } 

                    if (canBeColored) 

                    { 

                        if (i != colored) 

                        { 

                            var node = array[i]; 

                            array[i] = array[colored]; 

                            array[colored] = node; 

                        } 

                        inDepthColors[0, array[colored] - 1] = 

initialColorsNumber; 

                        initialColors[array[colored] - 1] = 

initialColorsNumber; 

                        

initialColorClasses[initialColorsNumber - 

1][initialNodesNumInColorClass[initialColorsNumber - 1]] = 

array[colored]; 

                        

initialNodesNumInColorClass[initialColorsNumber - 1]++; 

                        colored++; 

                    } 

                } 

                if (colored == NodesNumber) 

                    break; 

            } 

        } 

 

        private int Recolor(int depth) 

        { 

            int colorsNumber = 0; 

            var colorClasses = new int[NodesNumber][]; 

            var nodesNumInColorClass = new int[NodesNumber]; 

            skippedNodesNumber[depth] = 0; 

            // color vertices, find color classes 

            for (int i = 0; i < numberOfNodesArr[depth]; i++) 

            { 

                int vert = levelNodes[depth, i]; 

                bool isAdded = false; 

 

                for (int j = 0; j < colorsNumber; j++) 
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                { 

                    bool connected = false; 

                    for (int k = 0; k < 

nodesNumInColorClass[j]; k++) 

                    { 

                        if (Graph.Values[vert - 1, 

colorClasses[j][k] - 1]) 

                        { 

                            connected = true; 

                            break; 

                        } 

                    } 

                    if (!connected) 

                    { 

                        

colorClasses[j][nodesNumInColorClass[j]] = vert; 

                        inDepthColors[depth, vert - 1] = j + 

1; 

                        nodesNumInColorClass[j]++; 

                        isAdded = true; 

                        break; 

                    } 

                } 

                if (!isAdded) 

                { 

                    colorClasses[colorsNumber] = new 

int[NodesNumber]; 

                    

colorClasses[colorsNumber][nodesNumInColorClass[colorsNumber]] 

= vert; 

                    nodesNumInColorClass[colorsNumber]++; 

                    colorsNumber++; 

                    inDepthColors[depth, vert - 1] = 

colorsNumber; 

                } 

            } 

            return colorsNumber; 

        } 

 

        private int RecolorWithSwaps(int depth) 

        { 

            int colorsNumber = 0; 

            int length = numberOfNodesArr[depth]; 

            skippedNodesNumber[depth] = 0; 

            int colored = 0; 

            var array = new int[length]; 

            for (int i = 0; i < length; i++) 

            { 

                array[i] = levelNodes[depth, i]; 
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            } 

            while (true) 

            { 

                colorsNumber++; 

                inDepthColors[depth, array[colored] - 1] = 

colorsNumber; 

                colored++; 

                int lowerBound = colored - 1; 

                for (int i = colored; i < length; i++) 

                { 

                    bool canBeColored = true; 

                    for (int j = lowerBound; j < colored; j++) 

                        if (Graph.Values[array[i] - 1, 

array[j] - 1]) 

                        { 

                            canBeColored = false; 

                            break; 

                        } 

                    if (canBeColored) 

                    { 

                        if (i != colored) 

                        { 

                            var node = array[i]; 

                            array[i] = array[colored]; 

                            array[colored] = node; 

                        } 

                        inDepthColors[depth, array[colored] - 

1] = colorsNumber; 

                        colored++; 

                    } 

                } 

                if (colored == length) 

                    break; 

            } 

            return colorsNumber; 

        } 

    } 

} 


