

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

Infosüsteemide õppetool

Reversed Search Maximum Clique

Algorithm Based on Recoloring

Magistritöö

Üliõpilane: Aleksandr Porošin

Üliõpilaskood: 121872 IAPM

Juhendaja: Deniss Kumlander

Tallinn

2015

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Ülevaade

Tänapäeval on terve rida pobleeme, mille lahendamine pole sugugi lihtne ning neile

lahenduse leidmine nõuab liiga palju aega. Enamik selliseid probleeme on pärit matemaatikast ja

informaatikast; neid teatakse kui NP-täielikke probleeme ning need suunatakse edasi

graafiteooria probleemideks. Graafiteooria kohaselt võib ära jätta kõik ebaolulised üksikasjad

ning keskenduda probleemi juurele, kasutades selleks graafe – erilisi objektide vahelisi seoseid

kujutavaid skeeme.

See töö keskendub suurima kliki leidmisele orienteerimata ja kaalumata graafidest.

Suurima kliki probleem on üks enamlevinud NP täielikest probleemidest, kõige

komplitseeritumatest NP liigi probleemidest. Paljud muud probleemid saab teisendada

klikiprobleemideks, mistõttu nende lahendamine või vähemalt kiirema algoritmi leidmine kliki

jaoks aitab automaatselt lahendada palju muid ülesandeid.

See tees algab graafiteooria põhikontseptsiooni kirjeldamisest, et anda lühisissejuhatus

põhiteemale. Pärast seda kirjeldatakse mõningaid täpseid algoritme suurima kliki leidmiseks. On

teada-tuntud fakt, et paljud harude ja tõkete algoritmid (mida kasutatakse suurima kliki

leidmiseks) on muutunud paremaks neile kohaldatud erineva heuristika abil. Seetõttu on uuritud

ka mõnesid heuristikaid graafide värvimiseks, sõltumatu hulga ja tippude katmise leidmiseks.

Seejärel esitleti vägagi paljulubavaid moodsaid ja tõhusaid algoritme, mis tutuvustavad erinevaid

ideid paremaks ja kiiremaks kliki leidmiseks.

Sellele teesile on põhiliselt kaasa aidanud uus täpne algoritm suurima kliki leidmiseks,

mis toimib kiiremini kui ükski senine algoritm, ja seda väga laia valiku graafide puhul. Põhiidee

on ühendada rida tõhusaid täiustusi erinevatest algoritmidest üheks uueks algoritmiks.

Esmapilgul ei pruugi need täiustused koos toimida, kuid uus lähenemisviis, mis jätab ära tippude

edasise avardumise harude kärpimise asemel võimaldab nende uuenduste kasutamist ühes

algoritmis. Edaspidi tuleb samm-sammulisi näiteid koos selgitustega, mis demonstreerivad,

kuidas kavandatud algoritmi kasutada.

Lõpuks kõiki algoritme omavahel võrreldatakse graafide juhusliku genereerimise teel ja

DIMACS’i näited tõestavad, et uus algoritm leiab suurima kliki kiiremini kui ükski teine

tihedustel alla 75%. On ka muid paljulubavaid ideid, mille kohaselt eelpoolkirjeldatu on hea

teema tulevaste uurimustööde jaoks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 99 leheküljel, 6 peatükki, 40

kujundit, 5 tabelit ja 1 lisa.

Abstract

A wide variety of problems nowadays cannot be solved easily and these problems

require too much time to find a solution. Most of such problems come from mathematics and

computer science and are known as NP-complete problems and they were abstracted into

graph theory problems. Graph theory allows removing all insignificant details and focusing on

the root of a problem using graphs, special representations of objects and relationships

between them.

This work concentrates on finding maximum clique from undirected and unweighted

graphs. Maximum clique problem is one of the most known NP-complete problems, the most

complex problems of NP class. Many other problems can be transformed into clique problem,

therefore solving or at least finding a faster algorithm for finding clique will automatically

help to solve lots of other tasks.

This thesis starts from describing basic concepts of graph theory to introduce the main

topic. After that, some basic exact algorithms for finding maximum clique are described. It is

a well-known fact that many branch-and-bound algorithms (which are used for maximum

clique finding) are improved by different heuristic applied to them. Due to this, some heuristic

for graph coloring, independent set and vertex cover finding is studied as well. Thereafter

most promising and efficient modern algorithms are presented, which introduce different ideas

for improving and fastening clique finding.

The main contribution of this thesis is a new exact algorithm for finding maximum

clique, which works faster than any currently existing algorithm on a wide variety of graphs.

The main idea is to combine a number of efficient improvements from different algorithms

into a new one. At first sight, these improvements cannot cooperate, but a new approach of

skipping vertices from further expanding instead of pruning the whole branch allows to use all

the upgrades at ones. There will be some step-by-step examples with explanations, which

demonstrate how to use a proposed algorithm.

At last, all algorithms are compared to each other on randomly generated graphs and

DIMACS instances therefore proving the new algorithm finding maximum clique faster than

any other on densities lower than 75%. There are also some promising ideas stated that might

be a good themes for future research works.

The thesis is in English and contains 99 pages of text, 6 chapters, 40 figures, 5 tables

and 1 appendix.

Abbreviations glossary

CBC Current best clique. Abbreviation used in multiple algorithms to define

an array for storing the largest clique vertices found by far. Sometimes it

is used as |CBC| that means the number of vertices contained in a current

best clique.

DIMACS Center for Discrete Mathematics and Theoretical Computer Science.

Presents a pack of benchmarks instances, which represent different

graphs, constructed on the real life problem basis. These instances can be

used for testing maximum clique algorithms performance.

ILS Iterated local search algorithm. Heuristic algorithm for searching a better

solution by applying different improvements to already existing heuristic

solution. In this thesis, ILS abbreviation is applied to particular algorithm

for finding maximum independent set [Andrade, Resende, Werneck

2012].

MCSI MCS Improved algorithm. Exact maximum clique algorithm, successor

of MCS, presented in 2014 by four authors [Batsyn, Goldengorin,

Maslov, Pardalos 2014].

MCQ, MCR, MCS Exact maximum clique algorithms published by Tomita and his

colleagues [Tomita, Seki 2003] [Tomita, Kameda 2007] [Tomita, Sutani,

Higashi, Takahashi, Wakatsuki 2010]. Each algorithm is a successor of

the previous one and adds some improvements for fastening search.

MDG Maximum degree greedy algorithm. Heuristic algorithm for finding

maximum vertex cover published by Clarkson [Clarkson 1983].

MIS Maximum independent set problem. The problem of finding the largest

possible edgeless subgraph of a given graph.

NP complexity class Nondeterministic polynomial time complexity class. Class of problems

that can be solved with a polynomial amount of time by nondeterministic

Turing machine.

P complexity class Polynomial time complexity class. Class of problems that can be solved

with a polynomial amount of time by deterministic Turing machine.

VColor-BT-u Vertex color with backtracking for unweighted cases. Exact maximum

clique finding algorithm published by D. Kumlander [Kumlander 2005]

based on Östergård’s algorithm. The main idea is to apply vertex

coloring with backtracking for fastening maximum clique finding.

VColor-u Vertex color for unweighted cases. Exact maximum clique finding

algorithm published by D. Kumlander [Kumlander 2005] based on

Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990]. The main

idea is to apply vertex coloring for fastening maximum clique finding.

VRecolor-BT-u Vertex recolor with backtracking for unweighted cases. A new exact

algorithm presented in the current thesis based on VColor-BT-u. The

main idea is to apply additional in depth coloring (recoloring) to fasten

maximum clique search.

List of tables

Table 1.1 Difference between polynomial and exponential time complexity functions. [Garey,

Johnson 2003] ... 19

Table 4.1 VRecolor-BT-u algorithm example 1 ... 59

Table 4.2 VRecolor-BT-u algorithm example 2 ... 64

Table 5.1 DIMACS graphs results. Time consumption (ms). .. 77

Table 5.2 DIMACS graphs results. Number of branches. .. 78

List of figures

Figure 1.1 The Königsberg Bridge Problem. Map representation [Chartrand 1985] 15

Figure 1.2 The Königsberg Bridge Problem. Graph representation [Chartrand 1985] 15

Figure 1.3 Different ways to draw the same graph G [Chartrand 1985] 16

Figure 1.4 Degrees of vertices .. 17

Figure 1.5 Diagram of the sequence of transformation of six basic NP-complete problems.

[Garey, Johnson 2003] .. 22

Figure 2.1 Carraghan and Pardalos algorithm. Pseudo code [Kumlander 2005] 27

Figure 2.2 Östergård algorithm. Pseudo code [Kumlander 2005] .. 28

Figure 2.3 Greedy coloring algorithm. Pseudo code .. 30

Figure 2.4 Bipartite graph coloring .. 30

Figure 2.5 Greedy coloring algorithm with swaps. Pseudo code ... 32

Figure 2.6 Independent set example. .. 32

Figure 2.7 Vertex cover example ... 33

Figure 2.8 Approximate vertex cover algorithm. Pseudo code .. 33

Figure 2.9 MDG algorithm. Pseudo code ... 34

Figure 2.10 Approximate vertex cover algorithm result. ... 35

Figure 2.11 MDG algorithm result. .. 35

Figure 3.1 VColor-u algorithm. Pseudo code ... 38

Figure 3.2 VColor-BT-u algorithm. [Kumlander 2004] ... 41

Figure 3.3 MCQ algorithm. Pseudo code ... 43

Figure 3.4 MCR algorithm. Pseudo code ... 45

Figure 3.5 MCS algorithm. Renumbering function pseudo code. .. 47

Figure 3.6 MCS with incorporated ILS heuristic and other improvements. Pseudo code.

[Batsyn, Goldengorin, Maslov, Pardalos 2014] ... 48

Figure 4.1 Different coloring conflict detailed example. ... 51

Figure 4.2 Coloring choice based on density ... 52

Figure 4.3 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.3.

 .. 53

Figure 4.4 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.4.

 .. 53

Figure 4.5 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density

0.5. .. 54

Figure 4.6 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density

0.6. .. 54

Figure 4.7 VRecolor-BT-u example 1. Processed graph. ... 58

Figure 4.8 VRecolor-BT-u example 2. Processed graph. ... 63

Figure 5.1 Random graph generation code. (C# language) .. 69

Figure 5.2 Randomly generated graphs test. Density 10%... 70

Figure 5.3 Randomly generated graphs test. Density 20%... 70

Figure 5.4 Randomly generated graphs test. Density 30%... 71

Figure 5.5 Randomly generated graphs test. Density 40%... 71

Figure 5.6 Randomly generated graphs test. Density 50%... 72

Figure 5.7 Randomly generated graphs test. Density 60%... 73

Figure 5.8 Randomly generated graphs test. Density 70%... 73

Figure 5.9 Randomly generated graphs test. Density 80%... 74

Figure 5.10 Randomly generated graphs test. Density 90%... 75

Table of Contents

1. Introduction .. 14

1.1 Graph theory ... 14

1.2 Preliminaries ... 16

1.3 Complexity ... 19

1.3.1 Complexity functions .. 19

1.3.2 NP-complexity ... 20

1.4 Goals of the study ... 23

1.5 Work overview ... 23

2. Algorithm basics ... 25

2.1 Basic maximum clique algorithms ... 25

2.1.1 Carraghan and Pardalos algorithm .. 25

2.1.2 Östergård algorithm ... 27

2.2 Graph coloring heuristic algorithms ... 28

2.2.1 Greedy coloring algorithm .. 29

2.2.2 Greedy coloring algorithm with swaps .. 31

2.3 Maximum independent set and minimum vertex cover heuristic 32

2.3.1 Maximum Degree Greedy algorithm (MDG) .. 34

2.3.2 Iterated local search algorithm (ILS) ... 35

3. Modern algorithms ... 37

3.1 VColor-u ... 37

3.2 VColor-BT-u .. 39

3.3 MCQ ... 41

3.4 MCR ... 43

3.5 MCS .. 45

3.6 MCS improved ... 47

4. New algorithm .. 49

4.1 Description.. 49

4.2 Coloring choice based on density ... 52

4.3 Algorithm.. 55

4.3.1 VRecolor-BT-u .. 55

4.3.2 CanBeSkipped function ... 57

4.4 Example 1 ... 58

4.5 Example 2 ... 63

5. Results .. 68

5.1 Generated test results .. 68

5.2 DIMACS test results ... 75

6. Conclusion .. 79

6.1 Summary ... 79

6.2 Future studies .. 81

Kokkuvõtte ... 83

References .. 87

Appendix 1 ... 89

14

1. Introduction

1.1 Graph theory

Graph theory is a study of graphs which is the main topic of this work, it can be used

as a tool that helps scientists to transform real life problem into special representations i.e.

graphs. This process allows omitting unnecessary details, relaxing a problem, and

concentrating on the source of the problem. Number of applications and algorithms for

solving different types of problems within graph theory area is growing very fast, so a lot of

tasks can be converted into already solved ones, which let people optimize and ease their

daily life.

When working with graphs it is often convenient to imagine a graph as a diagram,

which represents objects as a vertices or points and relationships between these objects are

depicted as edges or lines joining the two relevant points. Let us assume that we need to

organize a timetable in the airport. A number of aircrafts should be assigned to multiple

flights in a set period of time. If two flights overlap, then it is not possible to assign one

airplane to both flights. This problem can be transformed into a graph. We indicate each flight

as a vertex and if two flights overlap then corresponding vertices will be connected to each

other. When a real problem is modeled as a graph, we are going to solve it using already

existing techniques, in our case it is a graph coloring. We need to assign a label i.e. color to

each vertex in a manner that no two connected points share the same color. As a result, gained

number of colors will show how many aircrafts we will need to organize all the flights.

To make things clear we are going to demonstrate a well-known example making use

of graphs. In the 18
th

 century, there were seven bridges in the town of Königsberg. Residents

were interested whether it is possible to cross all the bridges with one walk without recrossing

the same road multiple times. Figures 1.1 and 1.2 show how the situation in this town is

represented by a graph. Vertices are treated as land areas and the two vertices a connected by

a number of edges equal to the number of bridges between corresponding lands. After this

15

transformation, the problem is narrowed to the question: is it possible to find a trail containing

all the edges?

Figure 1.1 The Königsberg Bridge Problem. Map representation [Chartrand 1985]

Figure 1.2 The Königsberg Bridge Problem. Graph representation [Chartrand 1985]

Swiss mathematician Leonhard Euler (1707-1783) solved the Königsberg Bridge

Problem and it gave an answer to various different puzzles, mazes, and tasks that were similar

to this problem. The same way nowadays, graph theory allows solving problems from

multiple areas like computer science, sociology, medicine, biology and so on. Studying the

root problems of graph theory is important not only for a particular problem by itself but for

all connected areas.

16

1.2 Preliminaries

A graph G is a representation of objects, which is a set of vertices V, and a number of

relationships between these objects, called edges i.e. a set of edges E. The order of G is a

number of vertices in G and the number of edges is called the size of G. Therefore, order is |V|

and |E| is equal to size of G. If two vertices u and v are connected to each other they are called

adjacent and u and v are both incident to e. If then u

and v are nonadjacent. It is essential on what position each vertex is located and by what lines

(straight, curve) adjacent vertices are connected. The only crucial point is a fact that some

vertices are connected. Figure 1.3 demonstrates exactly the same graph G, which might look

different when vertices are relocated and curved lines used instead of straight ones. Both

diagrams represent exactly the same set of vertices and set of edges, so they describe the same

graph.

Figure 1.3 Different ways to draw the same graph G [Chartrand 1985]

17

The number of adjacent vertices or neighbors of a vertex is called vertex degree

deg(v). Vertex can be called even or odd if its degree is even or odd. The maximum vertex

degree of a graph G is denoted ∆ G . Vertex support is a sum of degrees of all neighbors of a

given vertex. As we can see from figure 1.4 degree of v3 is four and support of v3 is equal to

five.

Figure 1.4 Degrees of vertices

Graphs can be divided into directed and undirected. A directed graph D i.e. digraph

has non-symmetric arcs (directed edge is called arc), which means that vertex u can has

relation to vertex v, but there might not be relation from v to u. From the other hand, directed

graph always has symmetric relation between two vertices. Moreover, graphs are divided to

weighted and unweighted. Weight is a number (generally non-negative integer) assigned to

each edge or vertex that can represent additional property like length of a route, cost, required

power, etc. depending on the problem context. On the opposite side, unweighted graph does

not have weights or, in other words, all their weights are equal to one. Loop is an edge that

connects a vertex to itself. Simple graph is an undirected graph that does not contain any

loops and there is no more than one edge connecting two vertices. It should be noted that in

this paper we are studying only unweighted simple graphs.

An undirected graph where all the vertices are adjacent to each other is called

complete. Otherwise, a graph with no edges is called edgeless, in other words no two vertices

are adjacent to each other. A clique is a complete subgraph of a graph G and an independent

set is an edgeless subgraph of G. Complement graph G’ of a simple graph G is a graph that has

18

the same vertex set, but the edge set consists only from vertices that are not present G.

 , where K is the edge set consisting from all possible edges. Vertex cover of a

graph G is a vertex set such that each edge of G is incident to at least one vertex from this set.

Graph coloring is process of assigning labels i.e. colors to vertices with a special property that

no two adjacent vertices can share the same color. A color class is a set of vertices containing

vertices with the same color. It is clearly seen from coloring property that each color class is

nothing more than an independent set. Graph is called k-colorable if it can be colored into k

colors. The minimum number of colors required for coloring a graph G is called the chromatic

number - χ G and in this case graph is called k-chromatic.

There are multiple problems stated from the definitions listed above. They are the

following:

 Maximum clique problem – a problem of finding maximum possible complete

subgraph of a graph G.

 Independent set problem – a problem of finding maximum possible edgeless subgraph

of a graph G.

 Minimum vertex cover – a problem of finding the smallest possible vertex cover of a

graph G.

 Graph coloring - a problem of coloring a graph with the least possible number of

colors.

All the described problems are computationally equivalent and one problem can be

transformed into another one. For instance, a clique of graph G is an independent set of a

complement graph G’ and a vertex cover of G’ is a set containing all vertices of G’, except

those who belong to the found independent set. That means a clique problem can be

transformed into an independent set problem and to a vertex cover problem.

All these problems are NP-Complete which means that there is no polynomial time

algorithm can be found. On the other hand, there are heuristic algorithms that give a solution

within polynomial time, but this solution is not guaranteed to be the best one (maximum or

minimum depending on a problem). Heuristic algorithms are widely used to quickly gain

additional information and perform a short analysis of a graph like defining independent sets

or initializing upper and lower bounds.

19

1.3 Complexity

1.3.1 Complexity functions

Algorithm is a step-by-step procedure for solving different problems. We say that an

algorithm solves the problem if it produces a guaranteed solution for any instance of the given

problem. This means we cannot state that there is an algorithm, which completely solves

maximum clique problem unless it will always give the maximum possible clique on any

graph. As a result, we face some problems that cannot be solved easily. These problems are

called NP-complete problems, in other words they are very hard to solve.

A function f(n), where n is a size of its input, is said to have complexity O(g(n)) if

there exists a constant c such that for each n ≥ 0. An algorithm with time

complexity function O(p(n)), where p is a polynomial time function with input length n, is

called polynomial time algorithm. All other algorithms which complexity functions cannot be

bounded this way are called exponential time algorithms. The definition of exponential

algorithms also includes some non-polynomial time complexity functions, which are neither

polynomial nor exponential, for example nlog(n). Table 1.1 shows time consumption of

different time complexity functions. It clearly seen that even a several times input length

increment results in the explosive execution time growth for the exponential functions. Of

course, polynomial time complexity functions are generally much more desirable than

exponential ones. It should be noted that on some small inputs exponential complexity

function takes less time than a polynomial one, for instance n5
and 2n for n 20.

Unfortunately, problems in real life are much larger than described in this table.

Table 1.1 Difference between polynomial and exponential time complexity functions. [Garey,

Johnson 2003]

Time

complexity

function

Size n

10 20 30 40 50 60

n
.00001

second

.00002

second

.00003

second

.00004

second

.00005

second

.00006

second

n
2

.0001

second

.0004

second

.0009

second

.0016

second

.0025

second

.0036

second

20

n
3
 .001 second .008 second .027 second .064 second .125 second .216 second

n
5
 .1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.0 minutes

2
n

.001

second

1.0

second

17.9

minutes

12.7

days

35.7

years

366

centuries

3
n

.059

second

58

minutes

6.5

years

3855

centuries

2 x 10
8

centuries

1.3 x 10
13

centuries

1.3.2 NP-complexity

The first serious result in algorithms complexity field were done by Alan Turing in

1940s. Turing showed that there are some “undecidable” problems. These problems are so

hard that it is not possible to find an algorithm for solving them. Turing invented an abstract

computer model called Turing machine. There are P class problems that can be solved with a

polynomial time on a deterministic Turing machine. Problems that are solvable by non-

deterministic Turing machine are NP class problems in polynomial time. It is not right to say

that NP means non-polynomial and NP class problems cannot be solved on the deterministic

Turing machine, because P ⊆ NP. All the problems of NP except P (NP-P) are not solvable by

deterministic Turing machine.

The fundamentals of NP-completeness theory were published in “The Complexity of

Theorem Proving Procedures” paper in 1971 [Cook 1971]. With his work, Cook presented the

following important things:

 Importance of “polynomial time reducibility”. That means if there is a polynomial

time transformation from one problem into another, then it ensures that any

polynomial time algorithm for the second problem can be converted into polynomial

time algorithm for the first problem.

 Focused attention on the class NP of decision problems. A decision problem is a

problem whose solution is either “yes” or “no”.

 There is a “satisfiability” problem in NP class that has a special property. Every

problem in NP can be reduced to the satisfiability problem. It means if the

satisfiability problem will be solved with a polynomial time algorithm, then all the

problems from NP are solvable in polynomial time. Otherwise, if it will be proved

that it is not possible to solve some problem in NP with a polynomial time then

21

satisfiability problem does not have polynomial time solution too. As a result,

satisfiability problem is the hardest problems in NP.

Now we can move to NP-complete problems. NP-complete is a class of problems that

contains the “hardest” problems of NP. There is a polynomial time transformation from any

problem of NP-class into NP-complete problem. It can be proven by the following algorithm

that a decision problem H is NP-complete:

1. Show that the problem H is NP

2. Choose already existing NP-complete problem H’ that is the most identical to H

3. Develop a transformation f from H’ to H

4. Prove that f is a polynomial transformation

Nowadays scientists have found many NP-complete problems but some of them are

more suitable for transforming other problems to them. These problems are used as the basic

ones and all of them are decision problems. Here is a list of six basic NP-complete problems

[Garey, Johnson 2003].

3-SATISFIABILITY (3SAT)

INSTANCE: Collection of clauses on a finite set of variables such that

 for .

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set ⊆ , where W, X and Y are disjoint sets having the same

number q of elements.

QUESTION: Does M contain a matching, that is, a subset ⊆ such that and no

two elements of agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph and a positive integer .

QUESTION: Is there a vertex cover of size K or less for G, that is, a subset ⊆ such that

 and, for each edge , at least one of u and v belongs to ?

CLIQUE

INSTANCE: A graph and a positive integer .

QUESTION: Does G contain a clique of size J or more, that is, a subset ⊆ such that

 ≥ and every two vertices in are joined by edge in E?

HAMILTONIAN CIRCUIT (HC)

22

INSTANCE: A graph .

QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering of

the vertices of G, where , such that and for all

 ?

PARTITION

INSTANCE: A finite set A and a “size” for each .

QUESTION: Is there a subset ⊆ such that

Figure 1.5 Diagram of the sequence of transformation of six basic NP-complete problems.

[Garey, Johnson 2003]

As can be seen above “Clique” problem belongs to the basic NP-complete problems

and maximum clique problem is polynomially equivalent to this. As a result solving

maximum clique problem or upgrading algorithms for finding maximum clique will not only

improve one specific, narrow problem but help to find better algorithms for all the problems

reducible to maximum clique problem. Therefore current topic is very important.

23

1.4 Goals of the study

The topic of this thesis is quite extensive, so the following goals were determined to

achieve a certain solution for some defined problems.

1. Implement and study modern algorithms for finding maximum clique

2. Define the most efficient and promising improvements for finding maximum clique

3. Study the influence of heuristic on exact algorithms

4. Develop a better algorithm for finding maximum clique

5. Implement testing environment to compare performance of the algorithms

6. Define if there exists some graph groups or special cases that are solved better by one

or another algorithm.

1.5 Work overview

Chapter 1 of this thesis introduces the problem. Definitions and basic concepts of the

studied area are presented. There is a short overview on the complexity of the problem giving

explanations why current problem is valuable. After that, goals of study are identified.

Basic algorithms are described in the Chapter 2. This chapter contains exact maximum

clique finding algorithms and other heuristic algorithms like coloring, maximum independent

set or minimum vertex cover finding. These algorithms describe the fundamental ideas for

solving maximum clique problem. Moreover, some important properties are outlined.

Chapter 3 presents different modern algorithm and shows the current state of the

problem. There is a brief description of each algorithm and an overview of the results gained

by the authors of those algorithms. The main focus of the chapter is to describe the

implemented upgrades and analyze the impact of them on overall performance.

The main part of this thesis is demonstrated in the Chapter 4. A new algorithm for

finding maximum clique is acquired. The idea of the algorithm is described giving step-by-

step instructions of implementing it. After that, two examples are explained in details.

All the previously described algorithms are compared to the new algorithm in the

Chapter 5. First of all, algorithms were tested on randomly generated graphs giving an

overview of algorithms performance. Generated graphs are divided by their density and

24

presented as diagrams. After that, algorithms were tested on DIMACS benchmark instances

and presented as tables analyzing time consumption and number of created branches.

Finally, Chapter 6 contains a summary of the study. Possible topics for future studies

are also noted in here.

The new algorithm’s code written on C# language is located in appendix. Code can be

used to reproduce the algorithm exactly the way it was designed initially and avoid

misunderstandings with implementation.

25

2. Algorithm basics

The first part of this chapter contains an overview of basic algorithms for solving

maximum clique problem. These algorithms are branch and bound, but depict two different

approaches of solving the clique problem. It will be clearly seen later that all modern

algorithms are based on them.

There are not only clique finding algorithms but also graph coloring, maximum

independent set and minimum vertex cover algorithms are included in this chapter. Other

algorithms are needed to gather additional information about a graph for later use to skip

unnecessary steps therefore fastening clique finding.

2.1 Basic maximum clique algorithms

2.1.1 Carraghan and Pardalos algorithm

Randy Carraghan and Panos M. Pardalos published “An exact algorithm for the

maximum clique problem” article in 1990 [Carraghan, Pardalos 1990]. The main benefits of

this algorithm are simplicity and efficiency. The algorithm gives basic concepts of how a

clique can be found. Furthermore, even nowadays it shows relatively good results on lower

density graphs.

One of the fundamental and crucial points for this is algorithm is notion of depth.

Initially (depth 1) we take (expand in other words) one vertex . Then, at depth 2, only

vertices adjacent to are considered. We take from depth 2 and construct depth 3 from

the vertices that are adjacent to and and so on. Every depth construction is creating a

new branch in this branch and bound algorithm. Use of this approach leads to the fact that any

vertex on the depth is adjacent to all previously expanded vertices within current branch,

giving us a clique of size .

26

The second very important aspect is a good bound rule. Current best clique (CBC) or

the biggest depth number found by far should be stored. Let be the current depth, -

currently expanding vertex and - number of vertices on current depth. In this case is a

current clique size and gives a number of vertices that not yet expanded and potentially

can form clique. Obviously the biggest possible clique size in the current state is .

That means if we can prune this branch. It is not possible that current

expanding vertex will give us a larger clique. Algorithm works on any depth until the pruning

formula does not hold or there are some vertices to expand. If we are out of vertices or

pruning formula holds on the first depth then algorithm stops.

Authors of the algorithm state that it can be improved by initially ordering vertices

with response to their degrees. If we say that vertices in graph G ordered as then

 is a vertex with the smallest degree in G, has the smallest degree in G – { } and so on.

In general is a vertex with smallest degree in G - { } for 2. This

ordering can be reapplied on depths higher than one. It lowers overall time consumed to find

maximum clique, but only on dense graphs. It is advised not to use any ordering on lower

densities.

This algorithm is based on a simple branch construction and efficient pruning formula.

It shows great results on low densities. On the other hand, the main drawback is really poor

performance on dense graphs. As long as all the vertices have a lot of connections, every

branch consists of much more vertices than best clique size. As a result pruning formula is not

working.

function Main

 CBC := 0 // the maximum clique’s size

 clique (V, 0)

 return CBC

end function

function clique(V, depth)

 if |V| = 0 then

 if depth > CBC then

 New record - save it.

CBC := depth

 end if

 return

 end if

 i := 0

 while i < |V| do

27

 if depth + |V| - i ≤ CBC then // prune

 return

 i := i + 1

 // form a new depth. N() denotes a neighborhood of

 .

 clique (N() | ∀ : j > i, j ≤ |V|, depth + 1)

 end while

 return

end function

Figure 2.1 Carraghan and Pardalos algorithm. Pseudo code [Kumlander 2005]

2.1.2 Östergård algorithm

Patrick R.J. Östergård published “A fast algorithm for the maximum clique problem”

article in 2002 [Östergård 2002]. He introduced a new approach for finding maximum clique.

Let , be a subgraph processed on any depth. Previous Carraghan and

Pardalos algorithm initially starts from the whole graph and considers all the vertices

finding cliques in that contain first. Then it searches for cliques in that contains

and so on till . In an Östergård’s algorithm cliques are considered in reversed order starting

from . This subgraph contains only one vertex and initial clique size is one by

default. Then containing two vertices is being processed. Clique sizes for each subgraph

 are stored in cache . Using this additional information is possible to implement a new

pruning formula . d is a current depth, is a vertex index currently being

expanded and (current best clique) is the biggest clique size found by far. The second

crucial point to understand is that only one vertex is added to a new subgraph compared to

 which means that potentially can be increased only by one and not more. It results

in a new condition that if we can stop further search within and go to

 .

There are some possibilities to improve algorithm performance with proper initial

ordering. It is advised to use the approach as in Carraghan and Pardalos algorithm to sort

vertices by their degree in increasing order, so that is always a vertex with the smallest

degree taken from the subgraph induced by the vertices that have not yet been ordered.

function Main

 max := 0

 for i := n downto 1 do

28

 found := false

 clique (& N(), 1)

 c[i] := max

 end for

 return max

end function

function clique (U, size)

 if |U| = 0 then

 if size > max then

 max := size

 New record; //save it

 found = true

 end if

 return

 end if

 while U ≠ Ø do

 // prune as Carraghan and Pardalos algorithm does

 if size + |U| ≤ max then

 return

 i := min { j | U }

 // new pruning technique

 if size + c[i] ≤ max then

 return

 U := U \ { }

 clique(U & N(), size + 1)

 if found = true then // stopping condition

 return

 end while

 return

end function

Figure 2.2 Östergård algorithm. Pseudo code [Kumlander 2005]

2.2 Graph coloring heuristic algorithms

Graph (G) coloring is a graph vertices mapping to labels i.e. colors so that V(G) → S,

where V – set of vertices of G and S – set of colors.

A color class is a subset of V that was assigned to one color. The main coloring

property is that no two adjacent vertices can obtain the same color. A graph is called k-

29

colorable if it can be colored into k colors. The least k such that a graph is k-colorable is a

chromatic number χ G . The best coloring of G is χ G -coloring.

Graph coloring gives us some useful properties, which will be used later in algorithms

for clique finding. These properties are:

 Each color class forms an independent set. This property comes from definition of

graph coloring that vertices set to one color cannot be adjacent to each other.

 Colors number is an upper bound for maximum clique, i.e. k-colorable graph cannot

contain clique of size larger than k. Clique of k+1 size in k-colored graph means that

two adjacent vertices within a clique are set to one color, which is contrary to the

definition of graph coloring and lead us to improper coloring.

 Each color class formed by coloring of complement graph H of G gives a clique within

G.

2.2.1 Greedy coloring algorithm

Greedy is one of the simplest heuristic coloring algorithms. This algorithm has solid

benefits such as easy implementation and high performance. On the other side number of

color classes is not always close to chromatic number. In general, this algorithm is a great

compromise between speed and result quality. Algorithm can be described in four steps:

1. Color the first vertex in color number 1.

2. Take not yet colored vertex and try to color it to the lowest numbered color k, so

that there is no any adjacent vertex to with the k color number.

3. If it is not possible to color a vertex into any of existing colors, a new color must be

created and assigned to .

4. Repeat steps two and three until all the vertices are colored.

// n – number of vertices, k – number of colors on each step

k = 1; Color with ()

For i := 2 to n

 Try to color with color , where j = min (1, ... , k)

 If none color was used to color then

 k := k+1 [Produce a new color]

 Color with

 End if

30

Next

Figure 2.3 Greedy coloring algorithm. Pseudo code

Greedy algorithm results heavily depend on vertex coloring order. It is clearly seen on

coloring bipartite graph. When vertices from bipartite graph are ordered in a way that we

firstly color all the vertices from one partite set and after from the other partite set, then this

approach results in a good coloring (left graph on figure 2.4). However, if vertices are taken

from different partite sets one by one it leads to the huge amount of colors (right graph on

figure 2.4).

Figure 2.4 Bipartite graph coloring

31

There is one important point to keep in mind that with this coloring approach we take

vertices in the exact same order as they were initially ordered. As a result, vertices within

each color class keep initial ordering to each other. In other words if initial index < and

vertices , have the same color then index of will definitely be less than index of

 within color class.

2.2.2 Greedy coloring algorithm with swaps

There is a slightly modified version of greedy coloring used in further algorithms

[Kumlander 2005]. Instead of coloring, each vertex to the least possible color this algorithm

tries to color all the vertices to the first color, then to the second one and so on. The main idea

of this approach is to order vertices during the coloring process using vertex swaps to lower

time consumption. Algorithm consists of the following steps:

1. Color the first vertex in color number . Set the least not colored vertex index u

(initially u = 2).

2. Take not yet colored vertex starting from index u and try to color it to the lowest

numbered color k, so that there is no any adjacent vertex to with the k color

number.

3. If a vertex is colored swap and , where is the least not colored vertex.

Increase u by 1.

4. If all the vertices were processed and u is not bigger than total number of vertices,

create a new color class and repeat steps 2 and 3.

// n – number of vertices, k – number of colors on each step

// u - the least not colored vertex index

k = 1; Color with ()

u = 2

While True

 For i := u to n

 Try to color with color

 If was colored then

 swap and

 u := u+1

 Color with

32

 End if

 Next

 If u n Then

 k := k+1 [Produce a new color]

 Else

 Exit While

 End If

End While

Figure 2.5 Greedy coloring algorithm with swaps. Pseudo code

As long as vertex swapping is used, it is not possible to maintain the same vertices

ordering within color classes as in previous greedy algorithm. Current algorithm is suitable

when solving maximum clique problem on low densities where initial vertex order is useless.

2.3 Maximum independent set and minimum vertex cover heuristic

Let G = (V, E), where V – set of vertices and E – set of edges. Independent set problem

tries to find a subset ⊆ V such that no two vertices in S are adjacent to each other i.e. S is an

empty graph. Maximum independent set is the largest possible subset S in a graph.

Figure 2.6 Independent set example.

Maximum independent set problem (MIS) is closely connected with maximum clique

problem. Let K be a set of all possible edges between elements of V. Then the complement

graph of G is H = (V, K \ E). Each independent set in H is a clique in G from the first

7

2

1

3

4 6

5

33

property. Consequently, every independent set problem can be easily transformed into

maximum clique problem and vice versa.

Heuristic independent set algorithm can be used to acquire initial clique size value for

clique searching algorithms. The better heuristic is used, the closer initial clique size will be to

the maximum clique size.

Vertex cover is a subset ⊆ V such that each edge in E is incident to at least one

vertex in C i.e. vertices from C „cover“ the edges of a graph.

Figure 2.7 Vertex cover example

Here are some simple steps of how to obtain approximate vertex cover:

1. Take a random edge {u, v} from a graph

2. Add edge {u, v} to the current vertex cover set C.

3. Remove all edges incident to u or v from E.

4. Repeat steps from one to three until E is empty.

C = Ø // vertex cover array

While E ≠ Ø

 take random edge {u, v} E

 C = C ∪ {u, v}

 remove all edges incident to u or v from E

End While

Return C

Figure 2.8 Approximate vertex cover algorithm. Pseudo code

7

2

1

3

4 6

5

34

Vertex cover algorithm has one good property that can be easily used to gain

independent set quickly. When a vertex cover C is found using approximate algorithm there

will be some set of vertices S left that are outside of vertex cover S = V \ C and no edges in a

graph. As a result, S is an independent set. Moreover, it means the “better” vertex cover is

found the larger independent set is obtained.

2.3.1 Maximum Degree Greedy algorithm (MDG)

In the current work only heuristic vertex cover algorithms are studied. Therefore,

result is influenced by random edge picks. There is a MDG algorithm [Clarkson 1983] to

improve approximate vertex cover result. Random edge guessing is not a very good and

reliable approach for vertex cover finding. MDG algorithm takes a vertex with the highest

degree and removes all its edges. This step is repeated until there are no edges left.

// deg(v) - degree of vertex v

C = Ø // vertex cover array

While E ≠ Ø

 find vertex v with maximum deg(v)

 C = C ∪ {v}

 remove all edges incident to v from E

End While

Return C

Figure 2.9 MDG algorithm. Pseudo code

There is an example of approximate vertex cover algorithm on figure 2.10. Red

numbers mean in what order edges were chosen. In this case the result is quite bad (C = {1, 2,

3, 5, 4, 6}). Figure 2.11 demonstrates a result of MDG algorithm, blue numbers show in what

order vertices were selected. There is a 50% reduction in a vertex cover size (C = {5, 2, 4}). It

is clearly seen that random edge choice is not reliable technique and some more intelligent

way must be implemented.

35

Figure 2.10 Approximate vertex cover algorithm result.

Figure 2.11 MDG algorithm result.

2.3.2 Iterated local search algorithm (ILS)

There are different heuristic algorithms to get independent set. The easiest way is to

use greedy approach, which is not very good sometimes. MDG algorithm might give better

solution. In general, we can try to improve already existing heuristic solution by using a

notion of plateau search, which is based on vertex swaps. Swap is a replacement of one vertex

by the other from its neighbors. Swap will not definitely improve the solution, but it possibly

can lead to some non-solution vertices become free (without neighbors inside solution) and

therefore they can be inserted into existing solution. “Fast local search for the maximum

independent set problem” article [Andrade, Resende, Werneck 2012] gives a number of tools

to perform swaps more efficiently and not in a random way.

2

1

3

4 6

5

7

1

2

3

36

Let (j, k) – swap will consist of removing j vertices from solution and inserting k

vertices into solution. In particular, each made (k-1, k) – swap leads to increasing

independent set by one. Let (k-1, k) – swap is called k-improvement. ILS algorithm core idea

is to search for 2- and 3- improvements until no more can be found. ILS should have some

initial solution to start improving it. For these purposes greedy or MDG algorithms can be

used.

37

3. Modern algorithms

Multiple modern algorithms will be demonstrated in this chapter. All of them are

based on the ideas presented in the previous topic. Old algorithms were focused on the

information about adjacent vertices and almost absolutely ignored the opposite side – vertices

that are nonadjacent. Modern algorithms are heavily depending on heuristic and, in particular,

on vertex coloring. Two nonadjacent vertices cannot be added into one clique, therefore two

vertices from different independent sets will not contain in a solution also. Graph coloring

allows building several independent sets and use additional properties based on gathered

information. Moreover, rationally used heuristic approaches will not increase time

consumption dramatically. Unfortunately, it is not possible to use exact algorithms for finding

color classes because coloring problem is NP-complete. In general, modern algorithms carry

out preliminary work gathering and analyzing additional information before starting clique

searching or, more precisely, branch processing.

3.1 VColor-u

Deniss Kumlander published “Some Practical Algorithms to Solve The Maximum

Clique Problem” thesis in 2005 [Kumlander 2005] introducing VColor-u algorithm (Vertex

Color unweighted). The core idea was to demonstrate efficiency of using independent sets

within clique finding algorithms.

Let be a subgraph of G on the depth d and is a set of vertices of . Each time a

vertex from is expanded and a branch created from it is analyzed it is then removed from a

current depth d and the next vertex will be expanded. From this property, Carraghan and

Pardalos created their pruning formula. D. Kumlander modified the formula to be –

 , where d – 1 is the number of vertices, which were expanded prior to

d-th depth, and form current clique, CBC is currently biggest clique size found and

 is a function that gives number of colors of . The main point of this method

38

is that a graph cannot contain clique larger than the number of color classes obtained by

coloring this graph.

It should also be noted that graph is being colored only once in the beginning of the

algorithm and later on a degree of subgraph is counted by specific approach. It would take

too much time to recount number of colors each time a new branch is created. As long as and

this order is not changed during the whole process, it is simpler to count number of color

classes when a new depth is formed. Later on if a vertex on the same depth is expanded and it

is from the same color class then degree is not changed. If color classes are different then the

degree is decreased by one.

function Main

Heuristic vertex coloring

 Order vertices that first color classes have the last

indexes

 CBC := 0 // the maximum clique’s size

 clique (V, 1)

 return CBC

end function

function clique(V, depth)

 if |V| = 0 then

 if depth > CBC then

 New record - save it.

CBC := depth

 end if

 return

 end if

 i := 0

 while i < |V| do

 if depth - 1 + degree(V) ≤ CBC then // prune

 return

 i := i + 1

 // form a new depth. N() denotes a neighborhood of

 .

 clique (N() | ∀ : j > i, j ≤ |V|, depth + 1)

 end while

 return

end function

Figure 3.1 VColor-u algorithm. Pseudo code

39

As noted by the author of the algorithm there is no any other optimizations than vertex

coloring. It is done to evaluate influence of coloring on overall performance purely.

Compared to two previous clique finding algorithms VColor-u demonstrates good results

especially on high densities. Time consumption can be 50 times lower on 90% density graphs.

Although on low densities (20%-50%) results are not so impressive, but anyway the new

algorithm works about 15% faster.

An important note must be done that VColor-u algorithm works worse (~20% in time

increase) than Carraghan and Pardalos algorithm on almost edgeless graphs (about 10%

density). It can be explained by the fact that graph coloring and vertices ordering takes time

and these steps are useless on a low density and pruning formula is not effective enough.

3.2 VColor-BT-u

There was a second algorithm introduced in the same article called VColor-BT-u

[Kumlander 2005]. The idea was the same - to apply initial vertex coloring, but instead of the

Carraghan and Pardalos approach in VColor-u, the new VColor-BT-u bases on the

Östergård’s algorithm.

As it was already noted, Östergård’s algorithm starts with the only vertex and searches

for a clique increasing graph size by one vertex. VColor-BT-u does the same, except it

operates not with single vertices but with independent sets. Initially all the vertices are divided

into several color classes , where contains vertices colored with color

i. Note that color class indexes stand in reversed order because the algorithm starts from the

rightmost vertex. First of all, algorithm tries to find the largest clique within on a first

iteration (which, of course, equals 1, as there are no any adjacent vertices within independent

set), then ∪ (second iteration) and so forth until all the color classes are taken into

account. In general at step i vertices of ∪ ∪ ∪ are considered.

VColor-BT-u uses two pruning formulas to skip even more unnecessary branches. The

idea for the first bound rule comes from Östergård’s algorithm. New algorithm holds clique

sizes in special cache array b for each independent set added into consideration. Therefore,

b[i] contains a size of the largest clique inside . Using this cache allow to use

the following pruning formula , where d stands for depth level,

40

is a vertex on depth d and index i, is a color of a vertex and is a current best

(maximum) clique. Moreover, clique size for a current iteration can be equal or bigger on one

compared to the previous iteration, because on each iteration we add a new color class and it

is not possible that two vertices from an independent set will be added to a new clique, as

these two vertices are not adjacent to each other by definition of independent set. Therefore, if

on any step a larger clique is found we can continue with a new iteration.

In addition to the first pruning technique, it is possible to use the second one –

 taken from VColor-u algorithm in parallel. Degree function is copied

from the previous algorithm as well.

VColor-BT-u is described using the following steps (Figure 3.2):

Algorithm for the maximum clique problem – “V olor-BT-u”

CBC - current best (maximum) clique

d – depth

i – index of the currently processed colour class in the backtracking

b – array of the backtrack search results

 – a function that return a colour class to which the vertex vi belongs

 – subgraph of G formed by vertices existing on the depth d

Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so

that first vertices belong to the last found colour class then vertices of the previous to
last colour class and so forth – vertices at the end should belong to the first colour
class. Note: It is advisable to use a special array to solve order of vertices to avoid

changing the adjacency matrix during reordering vertices.

Step 1. Backtracking: For each colour class starting from the first one up to the last,

i.e. i = i+1:
Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the
current colour class under the analysis and other colour classes, whose index is
smaller than the index of the current colour class.

i = the index of the current colour class.
Step 1.2. Run the subgraph research: Go to the step 2

Step 2. Initialization: d = 1.
Step 3. Check: If the current depth can contain a larger clique than already

found:
Step 3.1. If d –1 + Degree() |CBC| then go to the step 6.
Step 3.2. if C() > i then If d –1 + b[C()] |CBC| then go to the step
6.
Step 4. Expand vertex: Get the next vertex to expand.

If all vertices have been expanded or there are no vertices then:

41

Check if the current clique is the largest one. If yes then save it.
Go to the step 1.3.

Step 5. The next depth: Form a new depth by selecting all remaining
vertices

that are connected to the expanding vertex from the current depth;
d = d + 1;
Go to the step 3.

Step 6. Step back:
d = d – 1;
Delete the expanded vertex from the analysis on this depth;
if d = 0, then go to the step 1.3, otherwise go to the step 3.

Step 1.3. Completing iteration: b[i] =CBC, go to the step 1.
End: Return the maximum clique.

Figure 3.2 VColor-BT-u algorithm. [Kumlander 2004]

A new algorithm results are much better compared to previously described ones.

VColor-BT-u is approximately two times faster than VColor-u on almost all the densities.

Compared to Östergård’s algorithm the new algorithm is also faster 50%-100% on lower

densities and 13-25 times on dense graphs, so a combination of two pruning techniques is

really effective.

3.3 MCQ

MCQ algorithm was firstly introduced in 2003 by Tomita and Seki [Tomita, Seki

2003] and later Tomita and Kameda revised it with more computational experiments in 2007

[Tomita, Kameda 2007]. This algorithm bases on the Carraghan and Pardalos idea. Tomita

and Seki noted that a number of vertices of a maximum clique w(G) in a graph G = (V,E) is

always less or equal to the maximum degree ∆(G) plus 1 (∆). Using this

property, they reworked an existing pruning formula.

Tomita and Seki applied approximate coloring of vertices to prune unnecessary

branches, giving a positive integer value called Number of Color (or color number) No[p] for

every vertex p. Number of Color has the special properties as described above:

1. Adjacent vertices cannot have the same color number i.e. if then

42

2. Number of Color is always set to lowest possible positive integer i.e. , or if

 , when there exist some vertices adjacent to p and

 , 2, … , .

Consequently maximum color number inside a subset ⊆ is

always bigger or equal to the number of maximum clique in R i.e. ≥

 . Therefore it is possible to prune that branch R if

(Q stands for clique) holds. It should be noted here that each branch processing should start

from a vertex having the biggest color number.

Color numbers can be easily assigned by greedy coloring algorithm applied to all

vertices containing in a newly created branch R. It is important that vertices in R are ordered

in a manner that vertices from the first color class C stand first, so that

 . Authors of the algorithm say there might be more efficient way

of coloring, but preliminary computation experiments show that more elaborate coloring

requires more time. As soon as color numbers are assigned on each branch, more complicated

coloring leads to overall negative impact on time consumption. Therefore, the key point of a

“good” coloring algorithm is a balance between coloring quality and its performance.

For initial vertex numbering Tomita and Seki use special technique. Vertices with

index i, where i from 1 to ∆ G have color number equal to i. All others vertices are assigned

to ∆) color number. Using such approach allows us to use

 pruning formula, as the largest clique size cannot exceed

graph size or maximum degree plus 1.

Tomita and Seki demonstrate computational results to confirm their proposal on initial

vertex ordering. Vertices should be sorted in the descending order in response to their

degrees. This approach is approximately 50 times better than increasing ordering on dense

graphs and gives about 15% time reduction on low densities.

// N(p) – set of neighbors of p

// No – set of color numbers

function MCQ

 Q := 0 // current clique

 := 0// maximum clique

{SORT}

Sort vertices of V in a descending order with respect to

their degrees;

43

{NUMBER}

for i := 1 to ∆(G)

No[V[i]] := i

for i := ∆(G) + 1 to |V|

No[V[i]] := (G) + 1

 EXPAND(V, No)

return

end function

function EXPAND(R, No)

 while R ≠ ∅
p := the vertex in R

such that No[p] = Max{No[q] | q R};
{i.e., the last (rightmost) vertex in R}

if |Q| + No[p] > | | then

Q := Q ∪ {p};
 := R ∩ N(p);

if ≠ ∅ then
NUMBER-SORT(, No’); // assign color

numbers to

{the initial value of No’ has no

significance}

EXPAND(, No’)

else if |Q| > | | then

 := Q

Q := Q − {p}

else

return

R := R − {p}

end function

Figure 3.3 MCQ algorithm. Pseudo code

3.4 MCR

“An efficient branch-and-bound algorithm for finding a maximum clique with

computational experiments” article published by Tomita and Kameda in 2007 [Tomita,

Kameda 2007] introduced a new MCR algorithm, a successor of MCQ algorithm. Compared

to the older version, MCR mainly focused on initial sorting and color numbering. Branch

processing i.e. EXPAND function was not changed, so we will spotlight only modified

features and skip all the steps inherited from MCQ.

44

The main idea of improved initial sorting is that vertices in any subgraph R of G = (V,

E) should be ordered with response to their degrees in a decreasing order. If

 2 . . . is a vertex set of a subgraph R then V[i] must always has the minimum

degree for . To get this ordering we need to take a vertex with the smallest degree

and set it to the last position of an array. This process is continued until all the rest unordered

vertices have the same degree. Sometimes there might be several vertices with the same

degree. For such cases, a new parameter vertex support S must be introduced. Support of a

vertex v S(v) is a sum of neighbor’s degrees of v i.e. . If V[i-1] and

V[i] have the same degree then V ≥ V .

At last, a subgraph R becomes induced by all the rest unordered vertices

 2 . . . , that have the same minimum degree. At this point R is regular graph. It is

useless to continue vertex sorting on a regular graph. In this case, we start to assign color

numbers (NUMBER-SORT function) to vertices in R as was described in MCQ. Vertices with

index higher than i : 2 . . . must be numbered as n no

∆G n no 2 ∆G , ..., n no n ∆G respectively, where

maxno is a maximum color number acquired by NUMBER-SORT of R. Furthermore, if all

vertices 2 . . . in R have the same degree (i-1), then these vertices form a clique

of size i and initial clique size can be set to i.

Initial sorting and color numbering is quite complicated and time consuming

operations, but it has no significant influence on overall algorithm performance as it is done

only one time at the begging of MCR algorithm.

// N(p) – set of neighbors of p

// No – set of color numbers

// deg(p) – degree of p

// s(p) – support of p

function MCR(G = (V, E))

 Q := 0 // current clique

 := 0// maximum clique

{SORT}

i := |V|;

R := V; V := ∅;
 := set of vertices with the minimum degree in R;

while | | ≠ |R|

if | | ≥ 2 then

45

p := a vertex in such that S(p) = Min{S(q) |

q }

else

p := [1];

V[i] := p; R := R − {p};

i := i − 1;

for j := 1 to |R|

if R[j] is adjacent to p then

 deg(R[j]) := deg(R[j]) – 1

 := set of vertices with the minimum degree in R

{Regular subgraph}

NUMBER-SORT(, No);

for i := 1 to | |

V[i] := [i]

{NUMBER}

m := Max{No[q] | q };

mmax := | | + (G) − m;

m := m + 1;

i := | | + 1;

while i ≤ mmax

if i > |V| then

goto Start

No[V[i]] := m;

m := m + 1;

i := i + 1

for i := mmax + 1 to |V| do

No[V[i]] := ∆(G) + 1

Start:

if
 = | | − 1 for all q then

 :=

EXPAND(V, No)

return

end function

Figure 3.4 MCR algorithm. Pseudo code

3.5 MCS

Three years later after MCR was released a new improvement for the same algorithm

appeared called MCS [Tomita, Sutani, Higashi, Takahashi, Wakatsuki 2010]. This time

authors focused on approximate coloring enhancements. There is a crucial property derived

from MCR bounding condition . Greedy approximate

46

coloring assigns color numbers to vertices and order them in a manner that vertices with the

biggest number stand last. On each depth, the rightmost vertex is expanded first i.e. the vertex

with biggest color number). Therefore, if

 we prune a branch. forms a kind of a threshold after which we skip all the

vertices. Taking a new property into consideration it is much more important to reduce a

number of vertices (it might look like reduction of number of color classes is the main goal,

but it is not) from which searching is necessary in other words approximate coloring should

produce more vertices with color numbers less than a threshold to skip them later.

A new approximate coloring algorithm was introduced to meet new requirements. It

can be described with the following steps:

1. Calculate threshold . Threshold is equal to maximum clique value minus current

clique value .

2. Try to find a vertex q within neighbors of p (N[p]) with a color number less than a

threshold , such that .

3. If q is found, the next step is an attempt to find color number such than there is no

neighbor of q (N[q]) colored in .

4. If is found, then q and p should change their color numbers so that

and . (It is crucial to understand that this operation changes initial vertex

order, as after each coloring vertices are ordered with response to their color numbers.)

5. If no vertex q or color number is found, nothing happens.

A new approximate coloring algorithm triggers each time a new color number bigger

or equal to a threshold is created. Then it tries to insert current vertex to any of the previous

color classes less that the threshold. If operation succeeds, a new color class becomes empty

and should be removed. The inserted vertex will not be expanded later because of the

bounding condition that will prune a branch containing that vertex.

function Re-NUMBER(p, No[p], o , , , ...,)

for := 1 to o − 1

if | ∩ N(p)| = 1 then

q := the element in (∩ N(p));

for := + 1 to o

if | ∩ N(p)| = ∅ then
{Exchange the Numbers of p and q.}

 := − {p};

 := (− {q}) ∪ {p};

47

 := ∪ {q};
return

Figure 3.5 MCS algorithm. Renumbering function pseudo code.

As was already noted before a new approximate greedy coloring operation changes the

initial vertex order. To inherit the same ordering through the whole algorithm a new array

(the same data structure as array of vertices V) must be created. Vertices are copied to and

then passed to coloring function. This means that vertices will be reordered inside and

initial order is still present in array V.

In comparison with older MCR version, a new MCS algorithm shows good results

especially on dense graphs. It is clearly seen on DIMACS graphs such as r200.98 or r300.98

where MCS performs more than 100 times better than MCR.

3.6 MCS improved

“Improvements to MCS algorithm for the maximum clique problem” article was

released in 2014 by Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov and Panos M.

Pardalos [Batsyn, Goldengorin, Maslov, Pardalos 2014]. Authors proposed the following

improvements to fasten search of maximum clique:

 At the beginning of the algorithm ILS heuristic [Andrade, Resende, Werneck 2012] is

applied to gain initially „good“ (i.e. close to the maximum possible) solution. This

value is then used to prune branches. This improvement gives the noticeable reduction

of branches number especially on dense graph therefore decreasing time consumption.

 On each depth if a set of candidates contains some vertex which is connected to all

other vertices in this set, this vertex is immediately added to current clique,

consequently the vertex is not expanded later and upper bound is increasing faster.

This improvement means that on each depth it is possible to increase current clique

size more than on one. As a result, the faster upper bound grows the more branches we

can prune.

48

 Authors of the article state that storing sets of candidate vertices and color numbers on

stack is more efficient than in dynamic memory. This property was gained from

experimental results.

 MCS Improved initially use simple vertex ordering with response to their degrees as

proposed in Carraghan and Pardalos article [Carraghan, Pardalos 1990]. There is no

any additional reordering applied as it was done in the previous MCR and MCS

algorithms. Moreover, at the beginning of algorithm all the vertices are colored by

greedy algorithm without swaps.

function MCSWithHeuristic()

 Q = HeuristicSolution()

 InitialOrderingAndColouring(L0)

 for i = |L0|, 1 do

 υ =

 i if UpperBound(υ) > |Q | then

 ProcessBranch(υ, L0)

 end if

 end for

end function

Figure 3.6 MCS with incorporated ILS heuristic and other improvements. Pseudo code.

[Batsyn, Goldengorin, Maslov, Pardalos 2014]

MCSI show very good results on dense graphs using high-quality solution gained by

ILS heuristic algorithm. Authors compare their new algorithm to MCS on special DIMACS

graphs. The most significant result is on gen400_p0.9_65 instance where number of branches

was reduced more than 7000 times. Moreover, improved MCS algorithm solves p_hat1000-3

instance that was not possible to solve by MCS algorithm with a reasonable time. Authors

also propose that there might be better heuristic algorithm for searching initial solution than

ILS algorithm.

49

4. New algorithm

In this chapter, we are going to introduce a new algorithm solving maximum clique

problem. It is called VRecolor-BT-u as this algorithm is a successor of VColor-BT-u

algorithm and it implements recoloring on each depth. There were multiple algorithms

described previously in this work. The idea of a new one is to gather and combine all the

gained knowledge to fasten maximum clique finding even more.

It can be clearly seen from the modern algorithms that almost all of them are focused

on Carraghan and Pardalos approach and only VColor-BT-u implements Östergård’s idea.

Moreover, initially Östergård’s approach with reversed search showed much better results

than Carraghan and Pardalos algorithm. Even after when D. Kumlander applied coloring to

both these basic algorithms, performance of Östergård’s algorithm successor VColor-BT-u

was much faster than VColor-u, an improvement to Carraghan and Pardalos algorithm.

From the other hand, algorithms from Tomita and his colleagues proved that in-depth

coloring is a very efficient technique and initial coloring is not enough as the “deeper” level

we are constructing the more diffused initial coloring becomes. When depth is high, we

definitely need to recolor vertices to update colors and gain the most accurate data about

independent sets on this level.

4.1 Description

The main idea of a new algorithm is to combine reversed search by color classes (from

VColor-BT-u) and in-depth coloring i.e. recoloring (from MCQ and successors). Before we

can start there should be some useful properties from previous algorithms noted:

1. Reversed search by color classes means searching for a clique in a constantly

increasing subgraph adding each color class one by one holding a cache b[] for each

color class, where cache is a maximum clique found by given color class. First of all,

we consider a subgraph S1 consisting only from vertices of a first color class C1. After

50

than subgraph S2 is created with two color classes C1 and C2. In general

 .

2. Pruning formula for reversed search by color classes is

can be used only if vertices in each subgraph Si are ordered by initial color classes

(using this color classes we are constructing a new subgraph on each iteration).

3. If vertices are ordered by their color numbers and are expanded starting from the

largest color number then all the vertices with color number lower than a threshold

(can be ignored as they will not be expanded because of a

pruning formula .

4. Pruning formula can be used when we are

reapplying coloring on each depth and vertices are reordered with response to these

colors.

From this point, it is seen that properties 2 and 4 are conflicting with each other, as

two pruning formulas require different vertex ordering. As a result, if both bounding rules are

used we are going to miss some cliques when a promising branch will be pruned. To avoid

such situations the formula was used not to prune a

branch but to skip a current vertex as expanding it is not going to give us a better solution.

This means that if vertices are recolored on each depth, but are not ordered with response to

new colors, we can skip a vertex without expanding it, if and only if its color number is lower

than a current threshold and there is no neighbors of this vertex with color number larger than

threshold and who stand after the bound gained from the first pruning formula

 .

There is an example on figure 4.1 that shows how a conflict with two different

colorings is solved. Green lines show adjacency of two vertices (not all the adjacent vertices

are marked with green lines, but only two that are interesting for us in this specific example).

Let us assume that current depth is two and we have the following prerequisites:

 d = 2 (depth is 2)

 (current best clique is 3)

 2 2 (threshold taken from skipping formula, we need to expand

vertices having color number bigger than threshold)

 2 2 (cache values found from previous iterations)

51

 2 (index of a rightmost vertex expanding which a pruning formula

 will prune current branch)

 – array storing initial color classes, – array storing in-depth color classes

Figure 4.1 Different coloring conflict detailed example.

Let us analyze the current example (figure 4.1). We start with the rightmost vertex h

with in-depth color number 1 (No[h] = 1). We skip this vertex as long as its color number is

lower than a threshold (th = 2). As you can see vertex h might be contained in a larger clique

as it is connected with a vertex r (No[r] = 3), but we skip it anyway because vertex r will be

expanded later. Now we proceed with the next vertex t. Color number of t is 1 (No[t] = 1), the

same as vertex h has, but in this case it is not possible to skip vertex t, because it is adjacent to

vertex k (No[k] = 3). Vertex k stands after the pruning bound (bnd = 2), therefore it will not

be expanded at all. If we skip vertex t right now we might possibly skip a larger clique, this

means that vertex t should be expanded. The next vertex to analyze is vertex a, we skip it as

its in-depth color number is equal to the threshold (th = No[a] = 2) and there are no adjacent

vertex standing after bound. In addition, the last expanded vertex on current depth is r (No[a]

= 3) as its color number is larger than the threshold. It should be noted that skipped vertices

are not thrown away from further considerations (when building the next depth), they should

be stored in a separate array and added to the next depth with preserved order.

There is another pruning formula used right after recoloring is done. As we already

know, number of color classes obtained by coloring subgraph Gd is an upper bound for

52

maximum clique in a current subgraph. This property allows us to use the following pruning

formula , where cn is a number of colors gained from recoloring.

4.2 Coloring choice based on density

There are two coloring algorithms used in VRecolor-BT-u. They are both greedy, but

the first one is using swaps when coloring and the other one is not. Each time coloring is

applied, we need to determine which algorithm to use. Moreover, there are two places where

we need to use coloring: initial coloring performed one time at the beginning of the algorithm

and in-depth coloring applied each time a new depth is constructed. Coloring algorithm

choice is made according to graph density using special constants; they are 0.35 density for

initial coloring and 0.55 density for in-depth coloring. Coloring choice can be described with

the following diagram (figure 4.2).

 density < 0.35 0.35 ≤ density < 0.55 0.55 ≤ density density > 0.55

initial
coloring

in-depth
coloring

 coloring with swaps

 coloring without swaps

Figure 4.2 Coloring choice based on density

Constants 0.35 and 0.55 were found using experimental results and are a subject of

future studies. Figures 4.3 and 4.4 demonstrate performance of VRecolor-BT-u with swaps

and VRecolor-BT-u with swaps. As seen from these graphs algorithm with swapping works

better on low densities (density < 0.35) and must be replaced by coloring without swaps

already on density 0.4. The same approach works with in-depth coloring but coefficient is

bigger in that case, it is 0.55. Figures 4.5 and 4.6 demonstrate a coefficient choice for

recoloring algorithm. It should be noted that on figures from 4.3 to 4.6 y-axis demonstrates

time (in milliseconds) consumed by tested algorithms for finding maximum clique.

53

Figure 4.3 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.3.

Figure 4.4 VRecolor-BT-u with and without swaps initial coloring comparison. Density 0.4.

0

1000

2000

3000

4000

5000

6000

7000

800 880 960 1040 1120 1200

Ti
m

e
 (

m
s)

Number of vertices

30%

VRecolorBtuSwaps

VRecolorBtuNoSwaps

0

1000

2000

3000

4000

5000

6000

600 620 640 660 680 700

Ti
m

e
 (

m
s)

Number of vertices

40%

VRecolorBtuSwaps

VRecolorBtuNoSwaps

54

Figure 4.5 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density

0.5.

Figure 4.6 VRecolor-BT-u with and without swaps in-depth coloring comparison. Density

0.6.

0

2000

4000

6000

8000

10000

12000

400 420 440 460 480 500

Ti
m

e
 (

m
s)

Number of vertices

50%

VRecolorBtuNoSwaps

VRecolorBtuSwaps

0

2000

4000

6000

8000

10000

12000

290 302 314 326 338 350

Ti
m

e
 (

m
s)

Number of vertices

60%

VRecolorBtuNoSwaps

VRecolorBtuSwaps

55

4.3 Algorithm

This part demonstrates the VRecolor-BT-u algorithm. There are two example graphs

are solved using the following algorithm.

4.3.1 VRecolor-BT-u

CBC – current best clique, largest clique found by so far.

d – depth.

c – index of the currently processed color class.

di – index of the currently processed vertex on depth d.

b – array to save maximum clique values for each color class.

Ca – initial color classes array.

Cb – color classes array recalculated on each depth.

 - subgraph of graph G induced by vertices on depth d.

cn – number of color classes recalculated on each depth.

CanBeSkipped() - function that returns true if a vertex can skipped without expanding

it.

1. Graph density calculation. If graph density is lower than 35% go to step 2a, else go

to step 2b.

2. Heuristic vertex greedy coloring. There should be two arrays created to store initial

color classes defined only once (Ca) and color classes recalculated on each depth (Cb).

During this step, both arrays must be equal.

a. Before coloring vertices are unordered and colored with swaps.

b. Before coloring vertices are in decreasing order with response to their degree

and colored without swaps.

3. Searching. For each color class starting from the first (current color class index c).

3.1. Subgraph (branch) building. Build the first depth selecting all the vertices

from color classes whose number c is equal or smaller than current. Vertices

56

from the first color class should stand first. Vertices at the end should belong to

c color class.

3.2. Process subgraph.

3.2.1. Initialize depth. d = 1.

3.2.2. Initialize current vertex. Set current vertex index to be

expanded (initially the first expanded vertex is the rightmost

one). .

3.2.3. Bounding rule check. If current branch can possibly contain

larger clique than found by so far. If and

 then prune. Go to step 3.2.7.

3.2.4. Vertex skipping check. If current vertex can possibly contain

larger clique than found by so far. If

and CanBeSkipped() skip this vertex. Decrease index i =

i -1. Go to step 3.2.3.

3.2.5. Expand current vertex. Form new depth by selecting all the

adjacent vertices (neighbors) to current vertex (

). Set the next expanding vertex on current depth =

 .

3.2.6. New depth analysis. Check if new depth contains vertices.

a. If ∅ then check if current clique is the

largest one it must be saved. Go to step 3.3.

b. If ∅ then check graph density. If graph

density is lower than 55% apply greedy coloring

with swaps to , else use greedy coloring without

swaps. Save number of color classes (cn) acquired

by this coloring. If number of color classes cannot

possibly give us a larger clique then prune. If

 decrease index i = i - 1 and go

to step 3.2.3, else increase depth d = d + 1. Go to

step 3.2.2.

57

3.2.7. Step back. Decrease depth d = d – 1. Delete expanding vertex

from the current depth. If d = 0 go to step 3.3, else go to step

3.2.3.

3.3. Complete iteration. Save current best clique value for this color. b[c] =

|CBC|.

4. Return maximum clique. Return CBC.

4.3.2 CanBeSkipped function

th – threshold from which branch will be pruned

CBC – current best clique, largest clique found by so far.

d – depth.

c – index of the currently processed color class.

di – index of the currently processed vertex on depth d.

bnd – bound from which vertices cannot be skipped.

b – array to save maximum clique values for each color class.

Ca – initial color classes array.

Cb – color classes array recalculated on each depth.

1. Define threshold. .

2. Find skipping bound. For each vertex index dj from di – 1 to 0. If and

 then bnd = j.

3. Decide whether vertex can be skipped. For each adjacent (to currently expanded)

vertex with index dj from bnd to zero. If then return false. If

 had never occurred return true.

58

4.4 Example 1

Figure 4.7 VRecolor-BT-u example 1. Processed graph.

First of all, we need to determine graph density. Number of vertices is 10 (|V| = 10),

edge number is 14 (|E| = 14). Density is 0.31 (

 0.).

The next step is to apply greedy coloring and define color classes. As long as density

is lower than 0.35 and 0.55, we use coloring with swaps without initial ordering in both cases

in the algorithm. In result, we have the following initial color classes (Ca) (Please note that

initially Ca values are copied to Cb. Later on Cb will be changed while Ca stays unmodified):

Class 1: {1, 4, 6, 9}

Class 2: {5, 7, 2}

Class 3: {8, 10}

Class 4: {3}

2

3

6

5

4

7

8

9 1

10

59

Now we will start depth construction and searching for a clique. Grayed out vertices

are currently expanded.

Table 4.1 VRecolor-BT-u algorithm example 1

Depth Subgraph G

Color classes Cb

Current

color

class

(c)

Description

d = 1 G = {1, 4, 6, 9}

Cb[1] = {1, 4, 6,

9}

1 Construct the first subgraph using first color class

vertices only. |CBC| = 0.

Bounding rule check: - false. We

continue search because 1 ≥ current color.

Vertex skipping check: – 0 0 -

false. We continue search because 1 > |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

d = 2 G = ∅ 1 Save current clique if it is larger than |CBC|. Current

clique = {9}. 1 > 0 – true. |CBC| = {9}.

Complete iteration. b[1] = 1.

d = 1 G = {1, 4, 6, 9,

5, 7, 2}

Cb[1] = {1, 4, 6,

9}

Cb[2] = {5, 7,

2}

2 Construct subgraph using first and second color class

vertices. |CBC| = 1.

Bounding rule check: 2 2 2 2 - false. We

continue search because 2 ≥ current color.

Vertex skipping check: – 2 2 -

false. We continue search because 2 > |CBC|.

 2 .

60

d = 2 G = {1}

Cb[1] = {1}

2 cn = 1. Check if number of color classes can possibly

give a larger clique: 2 – 2 . We

continue search because 2 > |CBC|.

Bounding rule check: 2 - true.

Check the second condition 2

– false. We continue search because 2 |CBC|.

Vertex skipping check: 2 – 2 -

false. We continue search because 2 > |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

d = 3 G = ∅ 2 Save current clique if it is larger than |CBC|. Current

clique = {2, 1}. 2 > 1 – true. |CBC| = {2, 1}.

Complete iteration. b[2] = 2.

d = 1 G = {1, 4, 6, 9,

5, 7, 2, 8, 10}

Cb[1] = {1, 4, 6,

9}

Cb[2] = {5, 7,

2}

Cb[3] = {8, 10}

3 Construct subgraph using vertices of color classes 1, 2,

3. |CBC| = 2.

Bounding rule check: 0 - false. We

continue search because 3 ≥ current color.

Vertex skipping check: – 2 2 -

false. We continue search because 3 > |CBC|.

Search current vertex neighbors and construct new

depth. 0 2 .

d = 2 G = {6, 9, 2}

Cb[1] = {6, 9,

2}

3 cn = 1. Check if number of color classes can possibly

give a larger clique: 2 – 2 2 2. We

prune this branch because 2 ≤ |CBC|.

61

Go to the previous depth.

d = 1 G = {1, 4, 6, 9,

5, 7, 2, 8, 10}

Cb[1] = {1, 4, 6,

9}

Cb[2] = {5, 7,

2}

Cb[3] = {8, 10}

3 Take the next vertex to expand.

Bounding rule check: - false. We

continue search because 3 ≥ current color.

Vertex skipping check: – 2 2 -

false. We continue search because 3 > |CBC|.

 .

d = 2 G = {6, 5}

Cb[1] = {6, 5}

3 cn = 1. Check if number of color classes can possibly

give a larger clique: 2 – 2 2 2. We

prune this branch because 2 ≤ |CBC|.

Go to the previous depth.

d = 1 G = {1, 4, 6, 9,

5, 7, 2, 8, 10}

Cb[1] = {1, 4, 6,

9}

Cb[2] = {5, 7,

2}

Cb[3] = {8, 10}

3 Take the next vertex to expand.

Bounding rule check: 2 2 2 - true.

Check the second condition 2 2 2 2

– true. We prune this branch because 2 ≤ |CBC|.

Complete iteration. b[3] = 2.

d = 1 G = {1, 4, 6, 9,

5, 7, 2, 8, 10, 3}

Cb[1] = {1, 4, 6,

9}

Cb[2] = {5, 7,

4 Construct subgraph using vertices of color classes 1, 2,

3, 4. |CBC| = 2.

Bounding rule check: - false. We

continue search because 4 ≥ current color.

Vertex skipping check: – 2 2 -

62

2}

Cb[3] = {8, 10}

Cb[4] = {3}

false. We continue search because 4 > |CBC|.

Search current vertex neighbors and construct new

depth. 0 .

d = 2 G = {1, 4, 9, 5,

8, 10}

Cb[1] = {1, 4, 9,

8}

Cb[2] = {5, 10}

4 cn = 2. Check if number of color classes can possibly

give a larger clique: 2 – 2 2 2. We

continue search because 3 ≥ |CBC|.

Bounding rule check: 0 - true.

Check the second condition 2 2 2 2

– false. We continue search because 3 > |CBC|.

Vertex skipping check: 2 – 2 2 2 -

false. We continue search because 3 > |CBC|.

Search current vertex neighbors and construct new

depth. 0 .

d = 3 G = {9}

Cb[1] = {9}

4 cn = 1. Check if number of color classes can possibly

give a larger clique: – 2 2. We

continue search because 3 ≥ |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

d = 4 G = ∅ 4 Save current clique if it is larger than |CBC|. Current

clique = {3, 10, 9}. 3 > 2 – true. |CBC| = {3, 10, 9}.

Complete iteration. b[4] = 3.

Since there are no more color classes, we stop. The maximum clique is {3, 10, 9} and

its size is three.

63

4.5 Example 2

Figure 4.8 VRecolor-BT-u example 2. Processed graph.

Number of vertices is 10 (|V| = 10), edge number is 18 (|E| = 18). Density is 0.4

(

 0.).

Density is higher than 0.35 we set vertices in decreasing order with response to their

degrees and obtain initial color classes (Ca) using greedy coloring without swaps. Since

density is lower than 0.55, we use coloring with swaps without ordering by degree when

recoloring on each depth. In result, we have the following initial color classes (Ca):

Class 1: {3, 8, 9}

Class 2: {6, 7, 2, 4}

Class 3: {1, 5, 10}

2

3

6

5

4

7

8

9 1

10

64

Table 4.2 VRecolor-BT-u algorithm example 2

Depth Subgraph G

Color classes Cb

Current

color

class

(c)

Description

d = 1 G = {3, 8, 9}

Cb[1] = {3, 8,

9}

1 Construct the first subgraph using first color class

vertices only. |CBC| = 0.

Bounding rule check: - false. We

continue search because 1 ≥ current color.

Vertex skipping check: – 0 0 -

false. We continue search because 1 > |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

d = 2 G = ∅ 1 Save current clique if it is larger than |CBC|. Current

clique = {9}. 1 > 0 – true. |CBC| = {9}.

Complete iteration. b[1] = 1.

d = 1 G = {3, 8, 9, 6,

7, 2, 4}

Cb[1] = {3, 8,

9}

Cb[2] = {6, 7, 2,

4}

2 Construct subgraph using first and second color class

vertices. |CBC| = 1.

Bounding rule check: 2 2 2 - false. We

continue search because 2 ≥ current color.

Vertex skipping check: – 2 2 -

false. We continue search because 2 > |CBC|.

Search current vertex neighbors and construct new

depth. .

d = 2 G = {3} 2 cn = 1. Check if number of color classes can possibly

give a larger clique: 2 – 2 . We

65

Cb[1] = {3} continue search because 2 > |CBC|.

Bounding rule check: 2 - true.

Check the second condition 2

– false. We continue search because 2 |CBC|.

Vertex skipping check: 2 – 2 -

false. We continue search because 2 > |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

d = 3 G = ∅ 2 Save current clique if it is larger than |CBC|. Current

clique = {4, 3}. 2 > 1 – true. |CBC| = {2, 1}.

Complete iteration. b[2] = 2.

d = 1 G = {3, 8, 9, 6,

7, 2, 4, 1, 5, 10}

Cb[1] = {3, 8,

9}

Cb[2] = {6, 7, 2,

4}

Cb[3] = {1, 5,

10}

3 Construct subgraph using vertices of color classes 1, 2,

3. |CBC| = 2.

Bounding rule check: 0 - false. We

continue search because 3 ≥ current color.

Vertex skipping check: – 2 2 -

false. We continue search because 3 > |CBC|.

Search current vertex neighbors and construct new

depth. 0 2 .

d = 2 G = {8, 6, 2}

Cb[1] = {8, 2}

Cb[2] = {6}

3 cn = 2. Check if number of color classes can possibly

give a larger clique: 2 – 2 2 2. We

continue search because 3 ≥ |CBC|.

Bounding rule check: 2 2 2 - true.

Check the second condition 2 2 2 2 2

66

– false. We continue search because 3 > |CBC|.

Vertex skipping check: 2 – 2 2 2 - true.

Call CanBeSkipped(2) function. th = 2 – (2 – 1) = 1.

bnd = 1, since Ca(8) = 1 and b[Ca(8)] ≤ 1.

CanBeSkipped returns true because there are no

adjacent vertices to currently expanding vertex 2 with

index lower or equal to bnd. Skip this vertex it will not

give bigger clique.

d = 2 G = {8, 6, 2}

Cb[1] = {8, 2}

Cb[2] = {6}

3 Take the next vertex to expand.

Bounding rule check: 2 2 - true.

Check the second condition 2 2 2 2 2

– false. We continue search because 3 > |CBC|.

Vertex skipping check: 2 – 2 2 2 -

false. We continue search because 3 > |CBC|.

 .

d = 3 G = {8}

Cb[1] = {8}

3 cn = 1. Check if number of color classes can possibly

give a larger clique: – 2 2. We

continue search because 3 > |CBC|.

Bounding rule check: - true.

Check the second condition 2

– false. We continue search because 3 |CBC|.

Vertex skipping check: – 2 -

false. We continue search because 3 > |CBC|.

Search current vertex neighbors and construct new

depth. ∅.

67

d = 4 G = ∅ 3 Save current clique if it is larger than |CBC|. Current

clique = {10, 6, 8}. 3 > 2 – true. |CBC| = {10, 6, 8}.

Complete iteration. b[3] = 3.

Since there are no more color classes, we stop. The maximum clique is {10, 6, 8} and

its size is three.

68

5. Results

In this chapter, we are going to compare the new algorithm to all the previously

described ones. The following algorithms take part in testing: Carraghan and Pardalos,

Östergård, VColor-u, VColor-BT-u, MCQ, MCR, MCS, MCS Improved and VRecolor-BT-u.

All algorithms were implemented on C# language using Visual Studio 2013

Professional (.NET Framework 4.5).

The first part of this chapter consists of randomly generated graphs. These random

tests give a general overview of algorithms performance and therefore whether a new

algorithm is worth to be used for clique finding. All test cases are divided by graphs density

and for each density different algorithms are being tested. Note that algorithms that perform

much worse compared to others are removed from test results figures to show behavior of the

best algorithms.

The second part contains analysis of algorithm results of DIMACS instances. Each

DIMACS graph has a special structure with response to some specific real problem. Four

algorithms were tested with this benchmark: MCS, MCSI, VColor-BT-u and VRecolor-BT-u.

5.1 Generated test results

All algorithms were tested on randomly generated graphs. Randomness was generated

using Random class from .NET Framework 4.5 which represents a pseudo-random number

generator. Figure 5.1 demonstrates a function used for generation random graphs, where

Graph is an object containing adjacency matrix inside Values array. Generation function takes

number of vertices and density of a graph as parameters and returns a generated graph object.

public static Graph GenerateGraph(int nodes, double density)

{

int numberOfEdges = Convert.ToInt32(Math.Round(nodes *

(nodes - 1) *

density / 2, 0));

69

 var graph = new Graph

 {

 Values = new bool[nodes, nodes],

 Edges = numberOfEdges

 };

 var random = new Random();

 Thread.Sleep(40);

 var random2 = new Random();

 int x, y;

 for (int i = 0; i < numberOfEdges; i++)

 {

 do

 {

 x = random.Next(0, nodes);

 y = random2.Next(0, nodes);

 } while (x == y || graph.Values[x, y]);

 graph.Values[x, y] = true;

 graph.Values[y, x] = true;

 }

 return graph;

}

Figure 5.1 Random graph generation code. (C# language)

Figures from 5.2 to 5.5 demonstrate that VRecolor-BT-u consumes the least amount of

time than the fastest of the rest algorithms on sparse graphs where density is lower than 40%.

On graphs where density is very low (about 10%) basic algorithms (Carraghan and Pardalos,

Östergård) show really good results as they does not perform any additional operations like

coloring, searching for initial solution, reordering and so on. Basic pruning formulas are really

effective on such small density. Although VRecolor-BT-u outperforms them proving that

skipping technique gives overall positive impact, even with a fact that algorithm needs to

spend time for coloring and proving that a vertex can be skipped. On densities from 20% to

40%, the closest to VRecolor-BT-u are results of MCQ and MCR but the new algorithm

performs about 20-25% faster. On all the figures from 5.2 to 5.10 y-axis shows time (in

milliseconds) consumed by tested algorithms to find the maximum clique.

70

Figure 5.2 Randomly generated graphs test. Density 10%.

Figure 5.3 Randomly generated graphs test. Density 20%.

2000

3000

4000

5000

6000

7000

8000

9000

10000

3500 3700 3900 4100 4300 4500

Ti
m

e
 (

m
s)

Number of vertices

10%

CarraghanPardalos Ostergard VColorBtu Mcq Mcr VRecolorBtu

1000

2000

3000

4000

5000

6000

7000

8000

9000

1500 1600 1700 1800 1900 2000

Ti
m

e
 (

m
s)

Number of vertices

20%

CarraghanPardalos Ostergard VColorBtu Mcq Mcr VRecolorBtu

71

Figure 5.4 Randomly generated graphs test. Density 30%.

Figure 5.5 Randomly generated graphs test. Density 40%.

800

1800

2800

3800

4800

5800

6800

7800

8800

9800

800 880 960 1040 1120 1200

Ti
m

e
 (

m
s)

Number of vertices

30%

Ostergard VColorBtu Mcq Mcr VRecolorBtu

1800

2800

3800

4800

5800

6800

7800

8800

9800

10800

11800

600 620 640 660 680 700

Ti
m

e
 (

m
s)

Number of vertices

40%

Ostergard VColorBtu Mcq Mcr Mcs VRecolorBtu

72

At first sight, there might be a strange behavior visible on a figure 5.6. VRecolor-BT-u

time consumption is growing faster than MCQ and MCR have. Initially the new algorithm

performs better (about 10%) when number of vertices is low (less than 440). It is clearly seen

that already when number of vertices reaches 500 VRecolor-BT-u falls behind MCQ and

MCR. This behavior can be explained by special constant, which determines what coloring

algorithm is chosen for recoloring. When graphs density is 0.5 (which is our case), there is

still a greedy coloring with swaps used for in-depth coloring, but after 0.55 density we switch

to greedy coloring without swaps and this improvement gives significant impact on overall

performance. If we move to figures 5.7 and 5.8 which demonstrate results on random graphs

with 60% and 70% density you will see that VRecolor-BT-u shows stable best result from all

the algorithms (about 5-10% faster).

Figure 5.6 Randomly generated graphs test. Density 50%.

1900

3900

5900

7900

9900

11900

13900

400 420 440 460 480 500

Ti
m

e
 (

m
s)

Number of vertices

50%

Mcq Mcr Mcs Mcsi VRecolorBtu

73

Figure 5.7 Randomly generated graphs test. Density 60%.

Figure 5.8 Randomly generated graphs test. Density 70%.

3000

5000

7000

9000

11000

13000

300 310 320 330 340 350

Ti
m

e
 (

m
s)

Number of vertices

60%

Mcq Mcr Mcs Mcsi VRecolorBtu

1900

3900

5900

7900

9900

11900

13900

15900

17900

200 212 224 236 248 260

Ti
m

e
 (

m
s)

Number of vertices

70%

Mcq Mcr Mcs Mcsi VRecolorBtu

74

It is easy to see from figures 5.9 and 5.10 that VRecolor-BT-u algorithm’s

performance is not the best on dense graph. MCS and MCS Improved (MCSI) algorithms

were specially designed for dense graphs and their techniques as in-depth vertex reordering or

initial solution analysis result in lower time consumption. Although the new algorithm still

demonstrates acceptable results and is able to find maximum clique on dense graphs where

most other algorithms cannot.

Figure 5.9 Randomly generated graphs test. Density 80%.

1000

6000

11000

16000

21000

150 158 166 174 182 190

Ti
m

e
 (

m
s)

Number of vertices

80%

Mcr Mcs Mcsi VRecolorBtu

75

Figure 5.10 Randomly generated graphs test. Density 90%.

Based on randomly generated graph results we can conclude with the following

statements:

 Graphs with densities lower than 50% are best solved using VRecolor-BT-u algorithm

 When graphs density is about 50%, there are three algorithms MCQ, MCR and

VRecolor-BT-u that are the fastest but time consumption fluctuates a bit compared to

each other

 If density of graph lies between 55% and 75%, then VRecolor-BT-u algorithm is a

best choice

 For dense graphs with density more than 75%, MCS Improved is fastest algorithm.

5.2 DIMACS test results

In this subchapter, four algorithms are tested on DIMACS graph instances. These

algorithms are MCS, MCSI, VColor-BT-u and VRecolor-BT-u. MCS and MCSI were chosen

for testing because they demonstrated the best results on DIMACS instances of all modern

1000

6000

11000

16000

21000

125 130 135 140 145 150

Ti
m

e
 (

m
s)

Number of vertices

90%

Mcr Mcs Mcsi VRecolorBtu

76

algorithms. VColor-BT-u is a predecessor of VRecolor-BT-u and is the best candidate to be

compared with a new algorithm. With these tests, we are adding a new important

characteristic as number of traversed branches. This parameter helps to understand how many

branches each algorithm is analyzing and, of course, the better pruning formulas work the less

branches are created. All considered algorithms are “branch and bound” which means the less

branches analyzed the faster algorithm works. Number of branches demonstrates why one

algorithm works faster than another, but time consumption and number of branches are not in

a linear dependence. There are many factors that influence time consumption and branches

number is only one of them.

Table 5.1 demonstrates that VRecolor-BT-u algorithm works faster compared to MCS

and MCSI on almost all graphs where density is lower than 0.75. When VColor-BT-u and

VRecolor-BT-u are compared, it is clearly seen that the new algorithm consumes less time for

each test except “hamming” instances and “johnson16-2-4”. This behavior can be explained

simply if we move to table 6-2 and check number of branches created by these two

algorithms. VRecolor-BT-u creates less branches on all the DIMACS instances taken into

testing compared to VColor-BT-u, which means that on “hamming” instances improvements

from additional skipping formula and recoloring are not giving positive effect on overall

performance. On these specific graph types vertex skipping is almost useless as branch

number reduction is insignificant.

It should be noted that on table 5.2 number of branches between MCS, MCSI and

VColor-BT-u, VRecolor-BT-u pairs vary dramatically, this is a result of two diametrically

different approaches. The first pair is based on Carraghan and Pardalos approach where

initially all the vertices are taken into account and later analyzed graph size is decreasing, on

the other hand Östergård’s approach state that we start with the only vertex (the only color

class in VColor-BT-u and VRecolor-BT-u) and later on graph size is growing. This means

that branches by themselves differ a lot (and so number of branches as well) between these

two different approaches.

One more detail about number of branches on table 5.2. There are quite a lot of

instances where MCSI branch number is equal to zero. This algorithm is taking initial clique

size from heuristic algorithm that is, of course, done at the very beginning. When heuristic

solution is equal to the best possible clique size this results in a situation, when it is not

needed to create any branches at all.

77

In general, DIMACS instances test proves results gained from randomly generated

graphs testing. VRecolor-BT-u algorithm works better on densities lower than 75%.

Table 5.1 DIMACS graphs results. Time consumption (ms).

Graph Size Density Time (ms)

MCS MCSI VColor-
BT-u

VRecolor-
BT-u

c-fat500-1.clq 500 0,04 44 229 6 2

c-fat500-10.clq 500 0,37 190 175 18 136

c-fat500-2.clq 500 0,07 27 112 4 1

c-fat500-5.clq 500 0,19 62 100 6 11

gen200_p0.9_44.clq 200 0,9 3867 2103 140082 21045

gen200_p0.9_55.clq 200 0,9 8988 98 3650 2276

hamming10-2.clq 1024 0,99 496 50636 1290 61271

hamming6-2.clq 64 0,9 0 1 0 1

hamming6-4.clq 64 0,35 0 1 0 0

hamming8-2.clq 256 0,97 10 38 22 245

hamming8-4.clq 256 0,64 633 654 3 14

johnson16-2-4.clq 120 0,76 702 800 244 581

johnson8-2-4.clq 28 0,56 0 0 1 0

johnson8-4-4.clq 70 0,77 1 3 0 0

keller4.clq 171 0,65 85 97 133 73

MANN_a27.clq 378 0,99 7201 291385 68105 10231

MANN_a9.clq 45 0,93 0 2 0 0

p_hat1000-1.clq 1000 0,24 2592 2788 3540 2046

p_hat300-1.clq 300 0,24 35 78 15 12

p_hat300-2.clq 300 0,49 108 109 464 238

p_hat300-3.clq 300 0,74 17796 9200 161323 16421

p_hat500-1.clq 500 0,25 110 198 139 91

p_hat500-2.clq 500 0,5 4816 2613 24391 8539

p_hat700-1.clq 700 0,25 386 453 239 236

san1000.clq 1000 0,5 7270 4989 410 945

san200_0.7_1.clq 200 0,7 18 39 889338 1819

san200_0.7_2.clq 200 0,7 16 45 3 5

san200_0.9_1.clq 200 0,9 2166 38 250 51

san200_0.9_2.clq 200 0,9 265 35 2828 1402

san400_0.5_1.clq 400 0,5 57 341 42 29

78

Table 5.2 DIMACS graphs results. Number of branches.

Graph Size Density Branches

MCS MCSI VColor-BT-u VRecolor-
BT-u

c-fat500-1.clq 500 0,04 486 0 105 105

c-fat500-10.clq 500 0,37 374 0 8001 8001

c-fat500-2.clq 500 0,07 474 0 351 351

c-fat500-5.clq 500 0,19 436 0 2080 2080

gen200_p0.9_44.clq 200 0,9 38520 16605 72627446 932250

gen200_p0.9_55.clq 200 0,9 124975 544 1629229 97769

hamming10-2.clq 1024 0,99 512 136714 140033 131328

hamming6-2.clq 64 0,9 32 0 569 528

hamming6-4.clq 64 0,35 82 80 138 70

hamming8-2.clq 256 0,97 128 0 8849 8256

hamming8-4.clq 256 0,64 31794 31782 1524 788

johnson16-2-4.clq 120 0,76 237952 256098 489432 323070

johnson8-2-4.clq 28 0,56 26 22 74 44

johnson8-4-4.clq 70 0,77 126 114 692 252

keller4.clq 171 0,65 6978 7317 203053 11236

MANN_a27.clq 378 0,99 9091 1893248 7528324 55389

MANN_a9.clq 45 0,93 43 149 375 189

p_hat1000-1.clq 1000 0,24 120465 116675 5457636 357619

p_hat300-1.clq 300 0,24 1519 964 16737 2538

p_hat300-2.clq 300 0,49 2027 1368 272364 24826

p_hat300-3.clq 300 0,74 228931 121147 88917523 664515

p_hat500-1.clq 500 0,25 7953 7374 213594 19821

p_hat500-2.clq 500 0,5 63031 28547 11620047 584983

p_hat700-1.clq 700 0,25 22447 13656 304679 45157

san1000.clq 1000 0,5 83831 0 57284 13356

san200_0.7_1.clq 200 0,7 403 0 2241214630 547738

san200_0.7_2.clq 200 0,7 768 0 1490 398

san200_0.9_1.clq 200 0,9 31555 0 97985 3350

san200_0.9_2.clq 200 0,9 2063 0 1502178 87250

san400_0.5_1.clq 400 0,5 1562 0 16340 1241

79

6. Conclusion

The main topic of this study was to develop a new improved algorithm for maximum

clique finding. Only undirected, unweighted graphs were researched. Importance of the

problem was stated in subchapter 1.3. Clique finding problem belongs to the NP-complete

class, which means that finding a better algorithm for this kind of problems allows improving

all the problems transformed to it. That is why better understanding of the clique problem

provides us with a better solution for almost any other NP problem. As currently described

problem belongs to NP-compete, all the existing algorithms complexity (for this problem) can

be described with exponential functions, which means that even a small increase in the size of

the problem can result in additional days or weeks of work time. Therefore, development of a

better algorithm even for some specific graph groups can save this working time and can

seriously influence different areas of real life.

6.1 Summary

With this resume, we are going to summarize all the work done to reach the goals

stated in the chapter 1.4. They all are successfully completed and described in the current

work. Although, there is enough space for further improvements, that will be presented in the

next subchapter.

The two basic algorithms for finding maximum clique are studied in chapter 2 giving

introduction to branch and bound algorithms. There are two general approaches of traversing

a graph. The first one is Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990], which

starts considering all the vertices of a graph. On the other hand, the second approach is

demonstrated by Östergård’s algorithm that uses reversed search, taking into account only one

vertex initially and constantly adds vertices one by one. In addition, other basic coloring,

independent set and vertex cover finding heuristic algorithms are reviewed.

80

Chapter 3 contains description of the most efficient modern algorithms nowadays.

Studying these algorithms allows understanding what are the main properties and upgrades,

which influence algorithms performance the most. VColor-u and VColor-BT-u algorithms

published by D. Kumlander [Kumlander 2005] demonstrate a high positive impact of heuristic

coloring on exact algorithms performance. What is more D. Kumlander applied coloring to

both basic approaches of finding maximum clique. Such algorithms as MCQ [Tomita, Seki

2003], MCR [Tomita, Kameda 2007] and MCS [Tomita, Sutani, Higashi, Takahashi,

Wakatsuki 2010] show that initial vertex ordering does matter and needs to be chosen

properly. Moreover, in-depth heuristic coloring proved its efficiency and confirmed the fact

that only initial coloring is not enough as the deeper search goes the more diffused initial

color classes become. MCS algorithm introduced a notion of color number threshold and

demonstrated how it can be successfully used to reduce the amount of expanded vertices,

therefore lowering unnecessary branch creation. Finally, MCS Improved algorithm [Batsyn,

Goldengorin, Maslov, Pardalos 2014] showed that initial clique value obtained using good

heuristic combined with in-depth clique vertices analysis can sometimes reduce the number of

produced branches dramatically. As can be clearly seen from all the modern algorithm

heuristic has a great positive overall impact on the clique finding exact algorithms.

The new maximum clique algorithm called VRecolor-BT-u is demonstrated in chapter

4. This algorithm is a successor of VColor-BT-u and is constructed based on reversed search

by color classes. The main idea of the new algorithm is quite simple: we need to apply

coloring on each depth to preserve the most up-to-date color classes and combine updated

vertex colors with the reversed search approach. At the first sight, the idea of in-depth

recoloring might be unclear as reversed search is built around initial color classes, but

introduction of a new skipping technique instead of pruning allows avoiding this conflict.

Furthermore, there are two different greedy coloring algorithms (with swaps and without

swaps) used for initial and in-depth coloring. Experimentally gained constants, which depend

on graph density, determine which coloring is applied (subchapter 4.2). The algorithm is

described as a step-by-step operation set in subchapter 4.3. The previous experience with

different algorithms realization shows that it is very easy to miss or distort the meaning of

some inaccurately described details. Each small mistake in implementation might lead to

extreme performance drops or result in improper solutions. To prevent such cases there are

two examples in subchapters 4.4 and 4.5 which demonstrate VRecolor-BT-u workflow in

81

details. Moreover, the implementation of the new algorithm, written in C# language, is

attached in the appendix 1. These subchapters make it easy to understand and implement the

new algorithm and the exact implementation on a real programming language allows

excluding all the possible misunderstandings.

One of the most important things to do with a new algorithm is a proper testing. All

the implemented algorithms were compared using two types of tests in chapter 5. The first

one is randomly generated graphs tests. Generated tests allow obtaining comparative diagrams

that graphically demonstrate time consumption of different algorithms. The new algorithm

shows the best results on the graphs with low or average densities and loses only on dense

graphs to MCS and MCSI algorithms specially designed for high densities. The second type

of testing is DIMACS benchmark instances. Firstly, these instances already contain the best

solution, so small DIMACS graph are very convenient to use as the smoke tests for a new

algorithm. Secondly, these test instances allows testing the algorithm on close to real life

problems as they are constructed based on real tasks. Moreover, in addition to time

consumption comparison there are branch number results. Number of branches is not the

primary characteristic but allows explaining why one algorithm works faster or slower than

the other does. VRecolor-BT-u produces less branches that its predecessor for all the

DIMACS instances. However, there are some cases where the new algorithm consumes more

time. Decreasing branch number resulting in performance degradation might be misleading at

a glance, but can be described with a simple fact that on some special cases additional in-

depth recoloring consumes a lot of time while skipping technique is practically not working.

As a result, we have a slightly lower branch number but increased time consumption.

Finally, it was noted that each graph should be solved by a different algorithm with

response to graphs density. On low to mid densities, it is advised to use VRecolor-BT-u

algorithm while the best option for dense graphs is MCS Improved algorithm.

6.2 Future studies

In this subchapter, we are going to introduce some ideas for further studies. First of

all, there are multiple possible improvements for VRecolor-BT-u algorithm:

82

 Improved initial coloring. Only greedy coloring is currently applied, but the less color

classes we have the less iterations will be performed. Moreover, initial coloring is

applied only once before branching starts, which means that there might be more

complex and time-consuming coloring applied. That time spend on initial coloring

should be compensated due to reduction of iterations number.

 Improved in-depth coloring. As long as recoloring is used each time a new branch is

created, it is not acceptable to apply any time consuming in-depth coloring algorithm.

There should be a balanced solution found between the “good” coloring and time

consumption. What is more, “good” recoloring does not mean the least number of

color classes; the main goal is to assign as much vertices as possible to color numbers

that are lower or equal to the threshold value. Well optimized for these specific needs

coloring algorithm might be a key to imposing performance improvements.

 Overall subgraph analysis on each new iteration. With each iteration, we are adding a

new color class into consideration. As we know this might increase current clique

value by one at maximum. The easiest way of analysis is to check whether any vertex

of a new color class can be added to the already existing clique. If yes, then the whole

iteration can be skipped. There might be the more complex ways of analysis

introduced such as obtaining maximum clique of a new subgraph by heuristic

algorithm. If heuristically gained value is bigger than current clique, then iteration is

skipped.

As rough computational results show, when using Carraghan and Pardalos searching

approach (without reversed search), largest clique is found at 30% of total time consumed.

The rest 70% algorithm is trying to prove that current clique is the largest one. The situation

can be even worse on dense graph with a lot of parallel cliques with the same size. Incomplete

solution and excessive expectations are two interesting topics to be studied that might

improve this field. Incomplete solution studies how fast the maximum clique is found. Using

this data, we might predict at what point we have already obtained solution. After that point

there should be a way, other that analyzing all the rest vertices, to prove that current clique is

the largest one. Excessive expectation is a proposal of searching a clique with initial clique

value n larger than expected. If an excessive clique is not found this means that value n is an

upper bound for the maximum clique. Combination of these two approaches might fasten

already existing algorithms even more.

83

Kokkuvõtte

Selle uurimistöö põhiteemaks on välja töötada uus täiustatud algoritm suurima kliki

leidmiseks. Uuuritud on ainult orienteerimata ja kaalumata graafe. Probleemi olulisus on välja

toodud alapeatükis 1.3. Klikileidmise problem kuulub NP-täielik-klassi, mis tähendab, et

sedalaadi probleemide lahendamiseks parema algoritmi leidmine võimaldab lahendada kõiki

probleeme, mis on selliseks ümber muudetud. Seetõttu klikiprobleemi parem mõistmine

pakub meie jaoks paremat lahendust peaagu igale muule NP probleemile. Kuna praegu

kirjeldatud probleem kuulub NP-täieliku hulka, siis kõigi olemasolevate algoritmide

keerukust (selle probleemi jaoks) saab kirjeldada eksponentfunktsiooni abil, mis tähendab, et

pisimgi probleemi suuruse tõus võib kaasa tuua lisatööpäevi või isegi nädalaid. See tähendab,

et parema algoritmi väljatöötamine kas või mõne spetsiifilise graafirühma jaoks säästab

tööaega ning avaldab olulist mõju erinevatele reaalelu valdkondadele.

Tehtud töö

Selle resümeega võtame kokku kogu töö, mis on tehtud selleks, et saavutada peatükis

1.4 kirjeldatud eesmärke. Kõik on edukalt lõpule viidud ja kirjeldatud käesolevas töös. Ehkki

muidugi oleks ruumi veel edasisekski täiustamiseks, mida kirjeldatakse järgmises alapeatükis.

Kahte põhialgoritmi maksimaalse kliki leidmiseks käsitletakse 2. peatükis, kus on ka

sissejuhatus harude-tõkete algoritmidele. On kaks peamist lähenemisviisi graafist üle

liikumiseks. Kiireim on Carraghani and Pardalos algoritm [Carraghan, Pardalos 1990], mis

hakkab arvestama graafi kõiki tippe. Teisest küljest, teistsugust lähenemisviisi tutvustab

Östergårdi algoritm, mis kasutab pöördotsingut, võttes alguses arvesse ainult üht tippu,

seejärel lisab ükshaaval tippe juurde. Lisaks vaadeldakse muid põhivärve, sõltumatut hulka ja

tipu katet, mis aitavad leida heuristilisi algoritme.

3. peatükis on tänapäeva kõige tõhusamate ja moodsamate algoritmide kirjeldus.

Nende algoritmide uurimine aitab aru saada nende põhilistest omadustest ja uuendustest, mis

algoritmide suutlikkust kõige rohkem mõjutavad. D. Kumlanderi poolt avaldatud VColor-u ja

84

VColor-BT-u algoritmid [Kumlander 2005] demonstreerivad heuristilise värvimise kõrget

positiivset mõju algoritmi täpsele soorituskiirusele. Veelgi enam, D. Kumlander rakendas

värvimist mõlema põhilähenemisviisi puhul suurima kliki leidmiseks. Sellised algoritmid

nagu MCQ [Tomita, Seki 2003], MCR [Tomita, Kameda 2007] ja MCS [Tomita, Sutani,

Higashi, Takahashi, Wakatsuki 2010] näitavad, et algne tippude järjestus on oluline ja seda

tuleb hoolikalt valida. Veelgi enam, sügavuti heuristiline värvimine tõestas oma tõhusust ja

kinnitas fakti, et esialgne värvimine ei ole piisav, ja mida põhjalikum on uurimine, seda

laialivalguvamaks muutuvad algsed värviliigid. MCS algoritm võttis kasutusele värvinumbrite

mõiste ning demonstreeris, kuidas on võimalik vähendada avardatud tippude arvu, mis

omakorda vähendab tarbetut harude loomist. Lõpuks MCS täiustatud algoritm Batsyn,

Goldengorin, Maslov, Pardalos 2013] näitas, et esialgne klikiväärtus, mis saavutati kasutades

head heuristikat kombinatsioonis sügavuti teostatud klikitippude analüüsiga võib mõnikord

dramaatiliselt vähendada toodetud harude arvu. On selge, et moodsate algoritmide puhul on

heuristikal tohutu positiivne mõju täpsete algoritmide klikileidmisele.

Uut suurima kliki mehhanismi nimega VRecolor-BT-u’d kirjeldatakase 4. peatükis.

See algoritm on VColor-BT-u järeltulija ning on konstrueeritud värviliikide poolt

pöördotsingu põhjal. Uue algoritmi idee on üsna lihtne: kanname värvi peale igal sügavusel,

et säilitada kõige uuemaid värviliike ja kombineerida uusimaid tipuvärve pöördotsingu abil.

Esmapilgul võib idee sügavuti ülevärvimisest tunduda ebareaalsena, kuna pöördotsing

põhineb algsetel värviliikidel, kuid uus vahelejätmistehnika kärpimise asemel võimaldab

sellise konflikti vältimist.

Lisaks on kaks erinevat ahnet värvivat algoritmi (värvivahetusega ja ilma), mida

kasutatakse nii esialgseks kui sügavuti värvimiseks. Katse tulemusena saadud konstandid, mis

olenevad graafi tihedusest, määravad ära, millist värvi kasutada (alapeatükk 4.2). Algoritmi

kui samm-sammult teostatavat tegevuste jada kirjeldatakse alapeatükis 4.3. Eelnevad

kogemused erinevate algoritmide teostamisel näitavad, et on väga lihtne tähelepanuta jätta või

moonutada mõningaid ebatäpselt kirjeldatud üksikasjade tähendusi. Iga pisemgi viga

algoritmi rakendamisel võib tuua kaasa soorituse halvenemise või ebaõige lahenduse. Selliste

juhtumite ärahoidmiseks on alapeatükkides 4.4 ja 4.5 toodud kaks näidet, mis

demonstreerivad üksikasjalikult VRecolor-BT-u tööprotsessi. Lisaks sellele on C# keeles

kirjutatud uue algoritmi rakendusjuhend manusena Lisas 1. Need alapeatükid muudavad uue

85

algoritmi mõistmise ja rakendamise lihtsamaks. Täpne rakendamine päris

programmeerimiskeeles aitab välistada kõikvõimalikke arusaamatusi.

Üks väga oluline asi uue algoritmi puhul on korralik testimine. Kõiki rakendatavaid

algoritme võrreldi kaht liiki testide abil peatükis 5. Esimene neist on juhuslikult genereeritud

graafitest. Genereeritud testid võimaldavad saada võrdlevaid diagramme, mis näitavad

graafiliselt erinevate algoritmide tarbimist. Uus algoritm näitab parimaid tulemusi madala või

keskmise tihedusega graafil, jäädes alla ainult tihedatele graafidele MCS ja MCSI algoritmide

jaoks, mis ongi spetsiaalselt disainitud kõrgete tiheduste jaoks. Teine testimisliik on DIMACS

võrdlused. Esiteks, need näited sisaldavad juba iseenesest parimat lahendust, nii et väikesed

DIMACS graafid on väga sobilikud kasutamiseks ”suitsutestidena” uue algoritmi jaoks.

Teiseks, sel viisil saab testida algoritme reaalse elu probleemide jaoks, kuna nende

väljatöötamine põhineb reaalelu ülesannetel. Veelgi enam, ajakulu võrdluse kõrval näitavad

nad ka harude arvu tulemusi. Harude arv pole küll kõige olulisem karakteristik, kuid annab

selgust selles, miks üks algoritm toimib kiiremini kui teine. Kõik DIMACS juhtumid

näitavad, et VRecolor-BT-u toodab vähem harusid kui tema eelkäija. Ometi on juhtumeid, kus

uus algoritm vajab rohkem aega. Vähenev harude arv, mille tulemuseks on jõudluse

nõrgenemine, võib olla esmapilgul eksitav, aga seda seletab lihtne fakt, et teatud juhtudel

sügavuti ülevärvimine võtab palju aega, samal ajal kui vahelejätutehnika prakiliselt ei toimi.

Tulemuseks on väiksem harude arv, aga suurem ajakulu. Lõpuks täheldati, et iga graaf tuleks

lahendada erineva algoritmi abil, mis vastab graafi tihedusele. Madala ja keskmise tiheduse

puhul on soovitav kasutada VRecolor-BT-u algoritmi, suurema tihedusega graafide puhul on

parim variant MCS Improved (täiustatud) algoritm.

Tulevased uuringud

Selles alapeatükis tutvustame mõnigaid ideid edasisteks uurimusteks. Kõigepealt on

mitmeid võimalikke täiustusi VRecolor-BT-u algoritmi jaoks:

 Täiustatud esialgne värvimine. Momendil on saada ainult ahnet värvimist, kuid mida

vähem värviliike me kasutame, seda vähem iteratsioone toimub. Veelgi enam, esialgne

värvimine tehakse ainult üks kord, enne kui harude moodustamine algab, mis

tähendab, et võib ette tulla keerulisemat ja rohkem aeganõudvat värvimist. Aeg, mis

kulutatakse esialgsele värvimisele, peaks saama korvatud iteratsioonide arvu

vähendamisega.

86

 Täiustatud sügavuti värvimine. Nii kaua kui iga uue haru loomise puhul viiakse läbi

ülevärvimine, ei ole vastuvõetav, et kohaldatakse mistahes aeganõudvat sügavuti

värvimise algoritmi. Tuleks leida tasakaalustatud lahendus ”hea” värvimise ja vastava

ajakulu vahel. Edasi, ”hea” ülevärvimine ei tähenda võimalikult väheseid värviliike,

põhieesmärgiks on vastavusse seada nii palju tippe kui võimalik, nii et see oleks

madalam kui piirväärtus või sellega võrdne. Kui nende spetsiifiliste vajadustega

optimaalselt ümber käia, võib värvimise algoritm olla võti jõudluse tõstmise jaoks.

 Üldine alamgraafi analüüs iga uue iteratsiooni puhul. Iga iteratsiooni puhul võtame

kaalumisele uue värviliigi. Nagu teame, see võib tõsta praegust klikiväärtust

maksimaalselt 1 võrra. Lihtsaim viis analüüsi teha on kontrollida, kas ühtegi uut

värviliiki saab lisada olemasolevale klikile. Kui saab, siis võib kogu iteratsiooni ära

jätta. On olemas kindlasti ka keerulisemaid viise analüüside tutvustamiseks, nagu

näiteks saavutada uue alamgraafi suurim klikk, kasutates heuristilist algoritmi. Kui

heuristilisel teel saadud väärtus on suurem, kui käesolev klikk, siis iteratsioon jäetakse

vahele. Olles nende spetsiifiliste vajaduste jaoks hästi optimeeritud, võib värviv

algoritm olla võtmeks sooritusjõudluse parandamisel.

Nagu töötlemata arvutuslikud tulemused näitvad, kasutades Carraghani ja Pardalose

otsivat lähenemisviisi (jättes välja pöördotsingu), siis suurim leitud klikk oli 30% kogu

kulutatud ajast. Ülejäänud 70% algoritm üritab tõestada, et käesolev klikk on suurim. Olukord

võib olla hullem tiheda graafi puhul, millel on palju ühesuguse suurusega paralleelklikke.

Puudulik lahendus ja liigne ootus on kaks huvitavat teemat, mille uurimine võiks seda

valdkonda paremaks muuta. Puudulik lahendus uurib, kui kiiresti on võimlik leida kiireimat

klikki. Seda andmebaasi kasutades võime ennustada, mis hetkel lahenduseni jõutakse.

Seejärel tuleb leida viis, mõni muu kui kõigi ülejäänud tippude analüüsimine, tõestamaks et

just see klikk on kõige suurem. Liigne ootus on sellise kliki otsimine, mille esialgne väärtus n

on oodatust kõrgem. Kui liigset klikki ei leita, tähendab see, et väärtus n on suurima kliki

jaoks ülempiir. Nende kahe lähenemisviisi ühendamine võib juba olemasolevaid algoritme

veelgi enam kiirendada.

87

References

Andrade DV, Resende MGC, Werneck RF (2012) Fast local search for the maximum

independent set problem. J Heuristics 18(4), pp 525–547

Batsyn M., Goldengorin B., Maslov E., Panos M. Pardalos (2014) Improvements to MCS

algorithm for the maximum clique problem. Journal of Combinatorial Optimization 27(2), pp

397-416

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Op.

Research Letters 9, pp 375-382

Chartrand G (1985) The Königsberg Bridge Problem: An Introduction to Eulerian Graphs,

Introductory Graph Theory. New York: Dover 3(1), pp 51-60

Clarkson K. (1983) A modification to the greedy algorithm for vertex cover problem,

Information Processing Letters 16(1), pp 23-25

Cook SA (1971) The complexity of theorem proving procedures, Proceedings of the 3
rd

Annual ACM Symposium on Theory of Computing, pp 151-158

Garey MR, Johnson DS (2003) Computers and Intractability: A Guide to the Theory of NP-

completeness, Freeman, New-York

Kumlander D. (2005) Some Practical Algorithms to Solve The Maximum Clique Problem

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. J Global Optim 37(1), pp 95–111

Tomita E, Seki T (2003) An efficient branch-and-bound algorithm for finding a maximum

clique. In: Proceedings of the 4th international conference on discrete mathematics and

theoretical computer science, DMTCS’03. Springer-Verlag, Berlin, Heidelberg, pp 278–289

88

Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A simple and faster

branch-and-bound algorithm for finding a maximum clique. In: Proceedings of the 4th

international conference on algorithms and computation, WALCOM’10. Springer-Verlag,

Berlin, Heidelberg, pp 191–203

Östergård PRJ (2002) A fast algorithm for the maximum clique problem, Discrete Applied

Mathematics 120, pp 197-207

Clique Benchmark Instances ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

The Microsoft Developer Network (MSDN) https://msdn.microsoft.com/en-

us/library/system.random(v=vs.110).aspx

89

Appendix 1

Base class Algorithm

using System.Diagnostics;

using MaximumClique.Base;

namespace MaximumClique.NewAlgorithms

{

 public abstract class Algorithm

 {

 protected readonly Stopwatch _stopwatch = new

Stopwatch();

 private bool _solved;

 protected Graph Graph;

 protected Algorithm(Graph graph)

 {

 Graph = graph;

 SolutionFoundElapsed = 1;

 }

 #region Properties

 public bool IsSolved

 {

 get

 {

 return _solved;

 }

 }

 public double Elapsed

 {

 get { return _stopwatch.ElapsedMilliseconds; }

 }

 protected long branches;

 public long Branches

 {

 get { return branches; }

 }

90

 public double SolutionFoundElapsed { get; protected

set; }

 private int _nodesNumber = -1;

 protected int NodesNumber

 {

 get

 {

 return _nodesNumber == -1 ? (_nodesNumber =

Graph.Values.GetLength(0)) : _nodesNumber;

 }

 }

 public abstract int Result { get; }

 #endregion //Properties

 protected abstract void Solution();

 public void Start()

 {

 _stopwatch.Start();

 Solution();

 _stopwatch.Stop();

 _solved = true;

 }

 }

}

VRecolor-BT-u algorithm

using System.Linq;

using MaximumClique.Base;

namespace MaximumClique.NewAlgorithms

{

 public class VRecolorBtu : Algorithm

 {

 private int maxCliqueSize;

 private int[,] levelNodes;

 private int initialColorsNumber;

 private int[][] initialColorClasses;

 private int[] initialNodesNumInColorClass;

 private int[] initialColors;

 private int[,] inDepthColors;

 private int[] numberOfNodesArr;

 private int[] inDepthElementIndex;

91

 private int[,] skippedNodes;

 private int[] skippedNodesNumber;

 private int[] cache;

 public VRecolorBtu(Graph graph)

 : base(graph)

 {

 levelNodes = new int[NodesNumber, NodesNumber];

 initialColorClasses = new int[NodesNumber][];

 initialNodesNumInColorClass = new

int[NodesNumber];

 initialColors = new int[NodesNumber];

 inDepthColors = new int[NodesNumber, NodesNumber];

 numberOfNodesArr = new int[NodesNumber + 1];

 inDepthElementIndex = new int[NodesNumber + 1];

 skippedNodes = new int[NodesNumber, NodesNumber];

 skippedNodesNumber = new int[NodesNumber + 1];

 cache = new int[NodesNumber];

 }

 public override int Result

 {

 get { return maxCliqueSize; }

 }

 protected override void Solution()

 {

 if (Graph.Density < 0.35)

 InitialColoringWithSwaps();

 else

 InitialColoring();

 var inDepthDegree = new int[NodesNumber];

 for (int c = 0; c < initialColorsNumber; c++)

 {

 skippedNodesNumber[0] = 0;

 int depth = 0;

 numberOfNodesArr[depth] = 0;

 inDepthDegree[depth] = 0;

 for (int i = 0; i <= c; i++)

 {

 for (int j = 0; j <

initialNodesNumInColorClass[i]; j++)

 {

 levelNodes[depth,

numberOfNodesArr[depth]] = initialColorClasses[i][j];

 numberOfNodesArr[depth]++;

 }

92

 }

 inDepthElementIndex[depth] =

numberOfNodesArr[depth] - 1;

 while (depth >= 0)

 {

 int inDepthIndex =

inDepthElementIndex[depth];

 if (inDepthIndex == -1)

 {

 depth--;

 continue;

 }

 int p = levelNodes[depth, inDepthIndex];

 var color = initialColors[p - 1];

 if (color < c + 1 && depth + cache[color -

1] <= maxCliqueSize)

 {

 depth--;

 continue;

 }

 if ((depth + inDepthColors[depth, p - 1]

 <= maxCliqueSize) &&

CanBeSkipped(inDepthIndex, depth, c + 1))

 {

 skippedNodes[depth,

skippedNodesNumber[depth]] = p;

 skippedNodesNumber[depth]++;

 inDepthElementIndex[depth]--;

 continue;

 }

 branches++;

 int prevDepth = depth;

 depth++;

 numberOfNodesArr[depth] = 0;

 inDepthElementIndex[depth] = 0;

 for (int i = 0; i < inDepthIndex; i++)

 {

 if (Graph.Values[levelNodes[prevDepth,

inDepthIndex] - 1, levelNodes[prevDepth, i] - 1])

 {

 levelNodes[depth,

numberOfNodesArr[depth]] = levelNodes[prevDepth, i];

 numberOfNodesArr[depth]++;

 }

 }

 for (int i = skippedNodesNumber[prevDepth]

- 1; i >= 0; i--)

 {

93

 if (Graph.Values[levelNodes[prevDepth,

inDepthIndex] - 1, skippedNodes[prevDepth, i] - 1])

 {

 levelNodes[depth,

numberOfNodesArr[depth]] = skippedNodes[prevDepth, i];

 numberOfNodesArr[depth]++;

 }

 }

 inDepthElementIndex[depth] =

numberOfNodesArr[depth] - 1;

 if (numberOfNodesArr[depth] > 0)

 {

 int colNum = Graph.Density < 0.55 ?

RecolorWithSwaps(depth) : Recolor(depth);

 if (depth + colNum <= maxCliqueSize)

 depth--;

 }

 else

 {

 if (depth > maxCliqueSize)

 {

 maxCliqueSize = depth;

 break;

 }

 depth--;

 }

 inDepthElementIndex[prevDepth]--;

 }

 cache[c] = maxCliqueSize;

 }

 }

 private bool CanBeSkipped(int vertIndex, int depth,

int currentColor)

 {

 int threshold = maxCliqueSize - depth;

 int vert = levelNodes[depth, vertIndex];

 // on current depth on what vertex index we will

cut??

 // if (color < c + 1 && depth + cache[color - 1]

<= maxCliqueSize){ depth--; }

 int initialColorThresholdIndex = -1;

 for (int i = vertIndex - 1; i >= 0; i--)

 {

94

 int vert2 = levelNodes[depth, i];

 if (initialColorThresholdIndex == -1)

 {

 int color = initialColors[vert2 - 1];

 if (color < currentColor && cache[color -

1] <= threshold)

 {

 initialColorThresholdIndex = i;

 break;

 }

 }

 }

 // if we want to skip a vertex, we have to check

if current vertex

 // is adjacent to any vertex INSIDE vertices that

will be CUT!! (from initialColorThresholdIndex to zero) on

this depth

 // with color higher than threshold

 for (int i = initialColorThresholdIndex; i >= 0;

i--)

 {

 int vert2 = levelNodes[depth, i];

 if (Graph.Values[vert - 1, vert2 - 1])

 {

 if (inDepthColors[depth, vert2 - 1] >

threshold)

 return false;

 }

 }

 return true;

 }

 public int FindNumberOfColorClasses(int depth, int

numberOfNodes)

 {

 int nPrevColor = 0;

 int numberOfColorClasses = 0;

 for (int i = 0; i < numberOfNodes; i++)

 {

 int currentColor =

initialColors[levelNodes[depth, i] - 1];

 if (currentColor != nPrevColor)

 {

 numberOfColorClasses++; nPrevColor =

currentColor;

 }

 }

95

 return numberOfColorClasses;

 }

 private void InitialColoring()

 {

 var verticesWithDegrees = new int[NodesNumber][];

 // count degrees of vertices

 for (int i = 0; i < NodesNumber; i++)

 {

 verticesWithDegrees[i] = new int[2];

 verticesWithDegrees[i][0] = i + 1;

 }

 for (int i = 0; i < NodesNumber; i++)

 for (int j = i + 1; j < NodesNumber; j++)

 if (Graph.Values[i, j])

 {

 verticesWithDegrees[i][1]++;

 verticesWithDegrees[j][1]++;

 }

 // order vertices by degree

 var orderedVertices =

verticesWithDegrees.OrderByDescending(i => i[1]).ToArray();

 // color vertices, find color classes

 for (int i = 0; i < NodesNumber; i++)

 {

 int vert = orderedVertices[i][0];

 bool isAdded = false;

 for (int j = 0; j < initialColorsNumber; j++)

 {

 bool connected = false;

 for (int k = 0; k <

initialNodesNumInColorClass[j]; k++)

 {

 if (Graph.Values[vert - 1,

initialColorClasses[j][k] - 1])

 {

 connected = true;

 break;

 }

 }

 if (!connected)

 {

initialColorClasses[j][initialNodesNumInColorClass[j]] = vert;

 initialColors[vert - 1] = j + 1;

 inDepthColors[0, vert - 1] = j + 1;

96

 initialNodesNumInColorClass[j]++;

 isAdded = true;

 break;

 }

 }

 if (!isAdded)

 {

 initialColorClasses[initialColorsNumber] =

new int[NodesNumber];

initialColorClasses[initialColorsNumber][initialNodesNumInColo

rClass[initialColorsNumber]] = vert;

initialNodesNumInColorClass[initialColorsNumber]++;

 initialColorsNumber++;

 initialColors[vert - 1] =

initialColorsNumber;

 inDepthColors[0, vert - 1] =

initialColorsNumber;

 }

 }

 }

 private void InitialColoringWithSwaps()

 {

 var array = new int[NodesNumber];

 for (int i = 0; i < NodesNumber; i++)

 array[i] = i + 1;

 int colored = 0;

 initialColorsNumber = 0;

 while (true)

 {

 initialColorClasses[initialColorsNumber] = new

int[NodesNumber];

initialColorClasses[initialColorsNumber][initialNodesNumInColo

rClass[initialColorsNumber]] = array[colored];

initialNodesNumInColorClass[initialColorsNumber]++;

 initialColorsNumber++;

 initialColors[array[colored] - 1] =

initialColorsNumber;

 inDepthColors[0, array[colored] - 1] =

initialColorsNumber;

 colored++;

 int lowerBound = colored - 1;

97

 for (int i = colored; i < NodesNumber; i++)

 {

 bool canBeColored = true;

 for (int j = lowerBound; j < colored; j++)

 if (Graph.Values[array[i] - 1,

array[j] - 1])

 {

 canBeColored = false;

 break;

 }

 if (canBeColored)

 {

 if (i != colored)

 {

 var node = array[i];

 array[i] = array[colored];

 array[colored] = node;

 }

 inDepthColors[0, array[colored] - 1] =

initialColorsNumber;

 initialColors[array[colored] - 1] =

initialColorsNumber;

initialColorClasses[initialColorsNumber -

1][initialNodesNumInColorClass[initialColorsNumber - 1]] =

array[colored];

initialNodesNumInColorClass[initialColorsNumber - 1]++;

 colored++;

 }

 }

 if (colored == NodesNumber)

 break;

 }

 }

 private int Recolor(int depth)

 {

 int colorsNumber = 0;

 var colorClasses = new int[NodesNumber][];

 var nodesNumInColorClass = new int[NodesNumber];

 skippedNodesNumber[depth] = 0;

 // color vertices, find color classes

 for (int i = 0; i < numberOfNodesArr[depth]; i++)

 {

 int vert = levelNodes[depth, i];

 bool isAdded = false;

 for (int j = 0; j < colorsNumber; j++)

98

 {

 bool connected = false;

 for (int k = 0; k <

nodesNumInColorClass[j]; k++)

 {

 if (Graph.Values[vert - 1,

colorClasses[j][k] - 1])

 {

 connected = true;

 break;

 }

 }

 if (!connected)

 {

colorClasses[j][nodesNumInColorClass[j]] = vert;

 inDepthColors[depth, vert - 1] = j +

1;

 nodesNumInColorClass[j]++;

 isAdded = true;

 break;

 }

 }

 if (!isAdded)

 {

 colorClasses[colorsNumber] = new

int[NodesNumber];

colorClasses[colorsNumber][nodesNumInColorClass[colorsNumber]]

= vert;

 nodesNumInColorClass[colorsNumber]++;

 colorsNumber++;

 inDepthColors[depth, vert - 1] =

colorsNumber;

 }

 }

 return colorsNumber;

 }

 private int RecolorWithSwaps(int depth)

 {

 int colorsNumber = 0;

 int length = numberOfNodesArr[depth];

 skippedNodesNumber[depth] = 0;

 int colored = 0;

 var array = new int[length];

 for (int i = 0; i < length; i++)

 {

 array[i] = levelNodes[depth, i];

99

 }

 while (true)

 {

 colorsNumber++;

 inDepthColors[depth, array[colored] - 1] =

colorsNumber;

 colored++;

 int lowerBound = colored - 1;

 for (int i = colored; i < length; i++)

 {

 bool canBeColored = true;

 for (int j = lowerBound; j < colored; j++)

 if (Graph.Values[array[i] - 1,

array[j] - 1])

 {

 canBeColored = false;

 break;

 }

 if (canBeColored)

 {

 if (i != colored)

 {

 var node = array[i];

 array[i] = array[colored];

 array[colored] = node;

 }

 inDepthColors[depth, array[colored] -

1] = colorsNumber;

 colored++;

 }

 }

 if (colored == length)

 break;

 }

 return colorsNumber;

 }

 }

}

