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Ulevaade

Tanapéeval on terve rida pobleeme, mille lahendamine pole sugugi lihtne ning neile
lahenduse leidmine nduab liiga palju aega. Enamik selliseid probleeme on périt matemaatikast ja
informaatikast; neid teatakse kui NP-tdielikke probleeme ning need suunatakse edasi
graafiteooria probleemideks. Graafiteooria kohaselt vdib ara jatta kdik ebaolulised Uksikasjad
ning keskenduda probleemi juurele, kasutades selleks graafe — erilisi objektide vahelisi seoseid
kujutavaid skeeme.

See t00 keskendub suurima kliki leidmisele orienteerimata ja kaalumata graafidest.
Suurima Kkliki probleem on Uks enamlevinud NP téielikest probleemidest, kdige
komplitseeritumatest NP liigi probleemidest. Paljud muud probleemid saab teisendada
Klikiprobleemideks, mistottu nende lahendamine voi védhemalt kiirema algoritmi leidmine kliki
jaoks aitab automaatselt lahendada palju muid tlesandeid.

See tees algab graafiteooria pohikontseptsiooni kirjeldamisest, et anda luhisissejuhatus
pdhiteemale. Parast seda kirjeldatakse mdningaid tépseid algoritme suurima kliki leidmiseks. On
teada-tuntud fakt, et paljud harude ja tbkete algoritmid (mida kasutatakse suurima Kliki
leidmiseks) on muutunud paremaks neile kohaldatud erineva heuristika abil. Seetdttu on uuritud
ka mdnesid heuristikaid graafide vérvimiseks, s6ltumatu hulga ja tippude katmise leidmiseks.
Seejdrel esitleti vagagi paljulubavaid moodsaid ja tGhusaid algoritme, mis tutuvustavad erinevaid
ideid paremaks ja kiiremaks kliki leidmiseks.

Sellele teesile on pohiliselt kaasa aidanud uus tapne algoritm suurima kliki leidmiseks,
mis toimib kiiremini kui tkski senine algoritm, ja seda vaga laia valiku graafide puhul. P6hiidee
on (Uhendada rida tdhusaid taiustusi erinevatest algoritmidest (heks uueks algoritmiks.
Esmapilgul ei pruugi need taiustused koos toimida, kuid uus ldahenemisviis, mis jatab &ra tippude
edasise avardumise harude karpimise asemel vGimaldab nende uuenduste kasutamist Uhes
algoritmis. Edaspidi tuleb samm-sammulisi néiteid koos selgitustega, mis demonstreerivad,
kuidas kavandatud algoritmi kasutada.

Lopuks kdiki algoritme omavahel vorreldatakse graafide juhusliku genereerimise teel ja
DIMACS’i niited tdestavad, et uus algoritm leiab suurima Kliki kiiremini kui tkski teine

tihedustel alla 75%. On ka muid paljulubavaid ideid, mille kohaselt eelpoolkirjeldatu on hea



teema tulevaste uurimustoode jaoks.

LOputdd on Kirjutatud inglise keeles ning sisaldab teksti 99 lehekiljel, 6 peatikki, 40
kujundit, 5 tabelit ja 1 lisa.



Abstract

A wide variety of problems nowadays cannot be solved easily and these problems
require too much time to find a solution. Most of such problems come from mathematics and
computer science and are known as NP-complete problems and they were abstracted into
graph theory problems. Graph theory allows removing all insignificant details and focusing on
the root of a problem using graphs, special representations of objects and relationships
between them.

This work concentrates on finding maximum clique from undirected and unweighted
graphs. Maximum clique problem is one of the most known NP-complete problems, the most
complex problems of NP class. Many other problems can be transformed into clique problem,
therefore solving or at least finding a faster algorithm for finding clique will automatically
help to solve lots of other tasks.

This thesis starts from describing basic concepts of graph theory to introduce the main
topic. After that, some basic exact algorithms for finding maximum clique are described. It is
a well-known fact that many branch-and-bound algorithms (which are used for maximum
clique finding) are improved by different heuristic applied to them. Due to this, some heuristic
for graph coloring, independent set and vertex cover finding is studied as well. Thereafter
most promising and efficient modern algorithms are presented, which introduce different ideas
for improving and fastening clique finding.

The main contribution of this thesis is a new exact algorithm for finding maximum
clique, which works faster than any currently existing algorithm on a wide variety of graphs.
The main idea is to combine a number of efficient improvements from different algorithms
into a new one. At first sight, these improvements cannot cooperate, but a new approach of
skipping vertices from further expanding instead of pruning the whole branch allows to use all
the upgrades at ones. There will be some step-by-step examples with explanations, which
demonstrate how to use a proposed algorithm.

At last, all algorithms are compared to each other on randomly generated graphs and
DIMACS instances therefore proving the new algorithm finding maximum clique faster than

any other on densities lower than 75%. There are also some promising ideas stated that might



be a good themes for future research works.

The thesis is in English and contains 99 pages of text, 6 chapters, 40 figures, 5 tables
and 1 appendix.



CBC

DIMACS

ILS

MCSI

MCQ, MCR, MCS

MDG

MIS

Abbreviations glossary

Current best clique. Abbreviation used in multiple algorithms to define
an array for storing the largest clique vertices found by far. Sometimes it
is used as |CBC]| that means the number of vertices contained in a current

best clique.

Center for Discrete Mathematics and Theoretical Computer Science.
Presents a pack of benchmarks instances, which represent different
graphs, constructed on the real life problem basis. These instances can be

used for testing maximum clique algorithms performance.

Iterated local search algorithm. Heuristic algorithm for searching a better
solution by applying different improvements to already existing heuristic
solution. In this thesis, ILS abbreviation is applied to particular algorithm
for finding maximum independent set [Andrade, Resende, Werneck
2012].

MCS Improved algorithm. Exact maximum clique algorithm, successor
of MCS, presented in 2014 by four authors [Batsyn, Goldengorin,
Maslov, Pardalos 2014].

Exact maximum clique algorithms published by Tomita and his
colleagues [Tomita, Seki 2003] [Tomita, Kameda 2007] [Tomita, Sutani,
Higashi, Takahashi, Wakatsuki 2010]. Each algorithm is a successor of

the previous one and adds some improvements for fastening search.

Maximum degree greedy algorithm. Heuristic algorithm for finding

maximum vertex cover published by Clarkson [Clarkson 1983].

Maximum independent set problem. The problem of finding the largest

possible edgeless subgraph of a given graph.



NP complexity class

P complexity class

VColor-BT-u

VColor-u

VRecolor-BT-u

Nondeterministic polynomial time complexity class. Class of problems
that can be solved with a polynomial amount of time by nondeterministic

Turing machine.

Polynomial time complexity class. Class of problems that can be solved

with a polynomial amount of time by deterministic Turing machine.

Vertex color with backtracking for unweighted cases. Exact maximum
clique finding algorithm published by D. Kumlander [Kumlander 2005]
based on Ostergard’s algorithm. The main idea is to apply vertex

coloring with backtracking for fastening maximum clique finding.

Vertex color for unweighted cases. Exact maximum clique finding
algorithm published by D. Kumlander [Kumlander 2005] based on
Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990]. The main

idea is to apply vertex coloring for fastening maximum clique finding.

Vertex recolor with backtracking for unweighted cases. A new exact
algorithm presented in the current thesis based on VColor-BT-u. The
main idea is to apply additional in depth coloring (recoloring) to fasten

maximum clique search.
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1. Introduction

1.1 Graph theory

Graph theory is a study of graphs which is the main topic of this work, it can be used
as a tool that helps scientists to transform real life problem into special representations i.e.
graphs. This process allows omitting unnecessary details, relaxing a problem, and
concentrating on the source of the problem. Number of applications and algorithms for
solving different types of problems within graph theory area is growing very fast, so a lot of
tasks can be converted into already solved ones, which let people optimize and ease their
daily life.

When working with graphs it is often convenient to imagine a graph as a diagram,
which represents objects as a vertices or points and relationships between these objects are
depicted as edges or lines joining the two relevant points. Let us assume that we need to
organize a timetable in the airport. A number of aircrafts should be assigned to multiple
flights in a set period of time. If two flights overlap, then it is not possible to assign one
airplane to both flights. This problem can be transformed into a graph. We indicate each flight
as a vertex and if two flights overlap then corresponding vertices will be connected to each
other. When a real problem is modeled as a graph, we are going to solve it using already
existing techniques, in our case it is a graph coloring. We need to assign a label i.e. color to
each vertex in a manner that no two connected points share the same color. As a result, gained
number of colors will show how many aircrafts we will need to organize all the flights.

To make things clear we are going to demonstrate a well-known example making use
of graphs. In the 18" century, there were seven bridges in the town of Kénigsberg. Residents
were interested whether it is possible to cross all the bridges with one walk without recrossing
the same road multiple times. Figures 1.1 and 1.2 show how the situation in this town is
represented by a graph. Vertices are treated as land areas and the two vertices a connected by
a number of edges equal to the number of bridges between corresponding lands. After this
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transformation, the problem is narrowed to the question: is it possible to find a trail containing

all the edges?

Figure 1.1 The Konigsberg Bridge Problem. Map representation [Chartrand 1985]

Figure 1.2 The Konigsberg Bridge Problem. Graph representation [Chartrand 1985]

Swiss mathematician Leonhard Euler (1707-1783) solved the Konigsberg Bridge
Problem and it gave an answer to various different puzzles, mazes, and tasks that were similar
to this problem. The same way nowadays, graph theory allows solving problems from
multiple areas like computer science, sociology, medicine, biology and so on. Studying the
root problems of graph theory is important not only for a particular problem by itself but for

all connected areas.
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1.2 Preliminaries

A graph G'is a representation of objects, which is a set of vertices I; and a number of
relationships between these objects, called edges i.e. a set of edges £ The order of G is a
number of vertices in ¢'and the number of edges is called the size of G. Therefore, order is /V/
and /E/is equal to size of G. If two vertices u and vare connected to each other they are called
adjacent e = {u,v} € E(G) and u and v are both incident to e. If e # {u,v} € E(G) then u
and vare nonadjacent. It is essential on what position each vertex is located and by what lines
(straight, curve) adjacent vertices are connected. The only crucial point is a fact that some
vertices are connected. Figure 1.3 demonstrates exactly the same graph &, which might look
different when vertices are relocated and curved lines used instead of straight ones. Both

diagrams represent exactly the same set of vertices and set of edges, so they describe the same

graph.
v Va Vg
o
V2 vy
s V3 (r
Vg V3

Figure 1.3 Different ways to draw the same graph & [Chartrand 1985]
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The number of adjacent vertices or neighbors of a vertex is called vertex degree
deg(v). Vertex can be called even or odd if its degree is even or odd. The maximum vertex
degree of a graph G'is denoted 4(G). Vertex support is a sum of degrees of all neighbors of a

given vertex. As we can see from figure 1.4 degree of vz is four and support of v3is equal to

five.
degfvi) =1 vy Y2 deglvz) =2
Vg
]
deg(vs) =0
o2 —0
deg(vs) =4 Y3 deg(vs) =2

Figure 1.4 Degrees of vertices

Graphs can be divided into directed and undirected. A directed graph D i.e. digraph
has non-symmetric arcs (directed edge is called arc), which means that vertex u can has
relation to vertex v, but there might not be relation from vto u. From the other hand, directed
graph always has symmetric relation between two vertices. Moreover, graphs are divided to
weighted and unweighted. Weight is a number (generally non-negative integer) assigned to
each edge or vertex that can represent additional property like length of a route, cost, required
power, etc. depending on the problem context. On the opposite side, unweighted graph does
not have weights or, in other words, all their weights are equal to one. Loop is an edge that
connects a vertex to itself. Simple graph is an undirected graph that does not contain any
loops and there is no more than one edge connecting two vertices. It should be noted that in
this paper we are studying only unweighted simple graphs.

An undirected graph where all the vertices are adjacent to each other is called
complete. Otherwise, a graph with no edges is called edgeless, in other words no two vertices
are adjacent to each other. A clique is a complete subgraph of a graph ¢ and an independent

set is an edgeless subgraph of G. Complement graph ¢’ of a simple graph G'is a graph that has
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the same vertex set, but the edge set consists only from vertices that are not present G.
G' = (V,K\E), where Kis the edge set consisting from all possible edges. Vertex cover of a
graph Gis a vertex set such that each edge of G is incident to at least one vertex from this set.
Graph coloring is process of assigning labels i.e. colors to vertices with a special property that
no two adjacent vertices can share the same color. A color class is a set of vertices containing
vertices with the same color. It is clearly seen from coloring property that each color class is
nothing more than an independent set. Graph is called Acolorable if it can be colored into &
colors. The minimum number of colors required for coloring a graph G is called the chromatic
number - y(G) and in this case graph is called k-chromatic.

There are multiple problems stated from the definitions listed above. They are the
following:

e Maximum clique problem — a problem of finding maximum possible complete

subgraph of a graph G.

e Independent set problem — a problem of finding maximum possible edgeless subgraph

of a graph G.

e Minimum vertex cover — a problem of finding the smallest possible vertex cover of a

graph G.

e Graph coloring - a problem of coloring a graph with the least possible number of
colors.

All the described problems are computationally equivalent and one problem can be
transformed into another one. For instance, a clique of graph & is an independent set of a
complement graph ¢’ and a vertex cover of ¢’ is a set containing all vertices of G’ except
those who belong to the found independent set. That means a clique problem can be
transformed into an independent set problem and to a vertex cover problem.

All these problems are NP-Complete which means that there is no polynomial time
algorithm can be found. On the other hand, there are heuristic algorithms that give a solution
within polynomial time, but this solution is not guaranteed to be the best one (maximum or
minimum depending on a problem). Heuristic algorithms are widely used to quickly gain
additional information and perform a short analysis of a graph like defining independent sets

or initializing upper and lower bounds.
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1.3 Complexity

1.3.1 Complexity functions

Algorithm is a step-by-step procedure for solving different problems. We say that an
algorithm solves the problem if it produces a guaranteed solution for any instance of the given
problem. This means we cannot state that there is an algorithm, which completely solves
maximum clique problem unless it will always give the maximum possible clique on any
graph. As a result, we face some problems that cannot be solved easily. These problems are
called NP-complete problems, in other words they are very hard to solve.

A function f{n), where n is a size of its input, is said to have complexity O(g(n)) if
there exists a constant csuch that |f(n)| < ¢ * |g(n)| for each n > 0. An algorithm with time
complexity function O(p(n)), where p is a polynomial time function with input length n, is
called polynomial time algorithm. All other algorithms which complexity functions cannot be
bounded this way are called exponential time algorithms. The definition of exponential
algorithms also includes some non-polynomial time complexity functions, which are neither
polynomial nor exponential, for example n’s®, Table 1.1 shows time consumption of
different time complexity functions. It clearly seen that even a several times input length
increment results in the explosive execution time growth for the exponential functions. Of
course, polynomial time complexity functions are generally much more desirable than
exponential ones. It should be noted that on some small inputs exponential complexity
function takes less time than a polynomial one, for instance n° and 27 for n < 20.

Unfortunately, problems in real life are much larger than described in this table.

Table 1.1 Difference between polynomial and exponential time complexity functions. [Garey,
Johnson 2003]

Time Sizen
complexity
function 10 20 30 40 50 60

n .00001 .00002 .00003 .00004 .00005 .00006
second second second second second second
2 .0001 .0004 .0009 .0016 .0025 .0036

n
second second second second second second
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n® .001 second .008 second  .027 second  .064 second .125 second .216 second

n° .1 second 3.2 second 24.3second 1.7 minutes 5.2 minutes  13.0 minutes

o .001 1.0 17.9 12.7 35.7 366
second second minutes days years centuries

g .059 58 6.5 3855 2x10° 1.3x 10"
second minutes years centuries centuries centuries

1.3.2 NP-complexity

The first serious result in algorithms complexity field were done by Alan Turing in
1940s. Turing showed that there are some “undecidable” problems. These problems are so
hard that it is not possible to find an algorithm for solving them. Turing invented an abstract
computer model called Turing machine. There are P class problems that can be solved with a
polynomial time on a deterministic Turing machine. Problems that are solvable by non-
deterministic Turing machine are NP class problems in polynomial time. It is not right to say
that NP means non-polynomial and NP class problems cannot be solved on the deterministic
Turing machine, because P € NP. All the problems of NP except P (NP-P) are not solvable by
deterministic Turing machine.

The fundamentals of NP-completeness theory were published in “The Complexity of
Theorem Proving Procedures” paper in 1971 [Cook 1971]. With his work, Cook presented the
following important things:

e Importance of “polynomial time reducibility”. That means if there is a polynomial
time transformation from one problem into another, then it ensures that any
polynomial time algorithm for the second problem can be converted into polynomial
time algorithm for the first problem.

e Focused attention on the class NP of decision problems. A decision problem is a
problem whose solution is either “yes” or “no”.

e There is a “satisfiability” problem in NP class that has a special property. Every
problem in NP can be reduced to the satisfiability problem. It means if the
satisfiability problem will be solved with a polynomial time algorithm, then all the
problems from NP are solvable in polynomial time. Otherwise, if it will be proved

that it is not possible to solve some problem in NP with a polynomial time then

20



satisfiability problem does not have polynomial time solution too. As a result,

satisfiability problem is the hardest problems in NP.

Now we can move to NP-complete problems. NP-complete is a class of problems that
contains the “hardest” problems of NP. There is a polynomial time transformation from any
problem of NP-class into NP-complete problem. It can be proven by the following algorithm
that a decision problem H is NP-complete:

1. Show that the problem H is NP

2. Choose already existing NP-complete problem H’ that is the most identical to H
3. Develop a transformation £ from H’ to H

4. Prove that £is a polynomial transformation

Nowadays scientists have found many NP-complete problems but some of them are
more suitable for transforming other problems to them. These problems are used as the basic
ones and all of them are decision problems. Here is a list of six basic NP-complete problems
[Garey, Johnson 2003].
3-SATISFIABILITY (3SAT)

INSTANCE: Collection C = {cy, ¢y, ..., ¢, } Of clauses on a finite set Uof variables such that
lc;] =3for1 <i<m.

QUESTION: Is there a truth assignment for Uthat satisfies all the clauses in €?
3-DIMENSIONAL MATCHING (3DM)

INSTANCE: Aset MC W x X xY, where W, X and Y are disjoint sets having the same
number q of elements.

QUESTION: Does M contain a matching, that is, a subset M' < Msuch that |[M'| = q and no
two elements of M’ agree in any coordinate?

VERTEX COVER (VC)

INSTANCE: A graph ¢ = (V,E) and a positive integer K < |V].

QUESTION: Is there a vertex cover of size Kor less for G, that is, a subset V' < V such that
|V'| < K and, for each edge {u, v} € E, at least one of zand vbelongs to VV'?

CLIQUE

INSTANCE: A graph G = (V, E) and a positive integer ] < [V].

QUESTION: Does ¢ contain a clique of size / or more, that is, a subset V' € V such that
|V'| = J and every two vertices in V' are joined by edge in £?

HAMILTONIAN CIRCUIT (HC)
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INSTANCE: A graph G = (V, E).

QUESTION: Does ¢ contain a Hamiltonian circuit, that is, an ordering < v4, v,, ..., v, > of
the vertices of G, where n = |V|, such that {v,,,v;} € E and {v;,v;;.1} €E forall i,1 <i<
n?

PARTITION

INSTANCE: A finite set 4 and a “size” s(a) € Z*for each a € A.

QUESTION: Is there a subset A" € A such that

Z s(a) = Z s(a) ?

aeA’ acA-A'

SATISFIABILITY

l

3SAT

— T

3DM vC

PZAN

PARTITIONING HC CLIQUE

Figure 1.5 Diagram of the sequence of transformation of six basic NP-complete problems.
[Garey, Johnson 2003]

As can be seen above “Clique” problem belongs to the basic NP-complete problems
and maximum clique problem is polynomially equivalent to this. As a result solving
maximum clique problem or upgrading algorithms for finding maximum clique will not only
improve one specific, narrow problem but help to find better algorithms for all the problems

reducible to maximum clique problem. Therefore current topic is very important.
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1.4 Goals of the study

The topic of this thesis is quite extensive, so the following goals were determined to

achieve a certain solution for some defined problems.

Implement and study modern algorithms for finding maximum clique

Define the most efficient and promising improvements for finding maximum clique
Study the influence of heuristic on exact algorithms

Develop a better algorithm for finding maximum clique

Implement testing environment to compare performance of the algorithms

o a0~ w e

Define if there exists some graph groups or special cases that are solved better by one

or another algorithm.

1.5 Work overview

Chapter 1 of this thesis introduces the problem. Definitions and basic concepts of the
studied area are presented. There is a short overview on the complexity of the problem giving
explanations why current problem is valuable. After that, goals of study are identified.

Basic algorithms are described in the Chapter 2. This chapter contains exact maximum
clique finding algorithms and other heuristic algorithms like coloring, maximum independent
set or minimum vertex cover finding. These algorithms describe the fundamental ideas for
solving maximum clique problem. Moreover, some important properties are outlined.

Chapter 3 presents different modern algorithm and shows the current state of the
problem. There is a brief description of each algorithm and an overview of the results gained
by the authors of those algorithms. The main focus of the chapter is to describe the
implemented upgrades and analyze the impact of them on overall performance.

The main part of this thesis is demonstrated in the Chapter 4. A new algorithm for
finding maximum clique is acquired. The idea of the algorithm is described giving step-by-
step instructions of implementing it. After that, two examples are explained in details.

All the previously described algorithms are compared to the new algorithm in the
Chapter 5. First of all, algorithms were tested on randomly generated graphs giving an
overview of algorithms performance. Generated graphs are divided by their density and
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presented as diagrams. After that, algorithms were tested on DIMACS benchmark instances
and presented as tables analyzing time consumption and number of created branches.

Finally, Chapter 6 contains a summary of the study. Possible topics for future studies
are also noted in here.

The new algorithm’s code written on C# language is located in appendix. Code can be
used to reproduce the algorithm exactly the way it was designed initially and avoid

misunderstandings with implementation.
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2. Algorithm basics

The first part of this chapter contains an overview of basic algorithms for solving
maximum clique problem. These algorithms are branch and bound, but depict two different
approaches of solving the clique problem. It will be clearly seen later that all modern
algorithms are based on them.

There are not only clique finding algorithms but also graph coloring, maximum
independent set and minimum vertex cover algorithms are included in this chapter. Other
algorithms are needed to gather additional information about a graph for later use to skip

unnecessary steps therefore fastening clique finding.

2.1 Basic maximum clique algorithms

2.1.1 Carraghan and Pardalos algorithm

Randy Carraghan and Panos M. Pardalos published “An exact algorithm for the
maximum clique problem” article in 1990 [Carraghan, Pardalos 1990]. The main benefits of
this algorithm are simplicity and efficiency. The algorithm gives basic concepts of how a
clique can be found. Furthermore, even nowadays it shows relatively good results on lower
density graphs.

One of the fundamental and crucial points for this is algorithm is notion of depth.
Initially (depth 1) we take (expand in other words) one vertex v,;. Then, at depth 2, only
vertices adjacent to v, are considered. We take v, from depth 2 and construct depth 3 from
the vertices that are adjacent to v, and v, and so on. Every depth construction is creating a
new branch in this branch and bound algorithm. Use of this approach leads to the fact that any
vertex on the depth d is adjacent to all previously expanded vertices within current branch,

giving us a clique of size d.
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The second very important aspect is a good bound rule. Current best clique (CBC) or
the biggest depth number found by far should be stored. Let d be the current depth, i -
currently expanding vertex and m - number of vertices on current depth. In this case d is a
current clique size and m — i gives a number of vertices that not yet expanded and potentially
can form clique. Obviously the biggest possible clique size in the current state is d + (m — i).
That means if d + (m — i) < CBC we can prune this branch. It is not possible that current
expanding vertex will give us a larger clique. Algorithm works on any depth until the pruning
formula does not hold or there are some vertices to expand. If we are out of vertices or
pruning formula holds on the first depth then algorithm stops.

Authors of the algorithm state that it can be improved by initially ordering vertices
with response to their degrees. If we say that vertices in graph ¢ ordered as vy, vy, ... , v, then
v, IS a vertex with the smallest degree in G, v, has the smallest degree in ¢— {v,} and so on.
In general v, is a vertex with smallest degree in G - {vy,v,, ... ,v;} for k <n — 2. This
ordering can be reapplied on depths higher than one. It lowers overall time consumed to find
maximum clique, but only on dense graphs. It is advised not to use any ordering on lower
densities.

This algorithm is based on a simple branch construction and efficient pruning formula.
It shows great results on low densities. On the other hand, the main drawback is really poor
performance on dense graphs. As long as all the vertices have a lot of connections, every
branch consists of much more vertices than best clique size. As a result pruning formula is not
working.

function Main
CBC := 0 // the maximum clique’s size
clique (V, 0)
return CBC

end function

function clique (V, depth)

if |V|] = 0 then
if depth > CBC then
New record - save it.
CBC := depth
end if
return
end if
i :=0

while 1 < |V]| do
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if depth + |V| - i £ CBC then // prune
return
i =1+ 1
// form a new depth. N(v;) denotes a neighborhood of

clique (N (v;) | VW : 3 > 1, 3 £ |V], depth + 1)
end while
return
end function

Figure 2.1 Carraghan and Pardalos algorithm. Pseudo code [Kumlander 2005]

2.1.2 Ostergérd algorithm

Patrick R.J. Ostergard published “A fast algorithm for the maximum clique problem”
article in 2002 [Ostergard 2002]. He introduced a new approach for finding maximum clique.
Let S; = {v;, vi+1, ..., vy} be a subgraph processed on any depth. Previous Carraghan and
Pardalos algorithm initially starts from the whole graph S; and considers all the vertices
finding cliques in S that contain v, first. Then it searches for cliques in S, that contains v,
and so on till S,,. In an Ostergard’s algorithm cliques are considered in reversed order starting
from S,, = {v,}. This subgraph contains only one vertex and initial clique size is one by
default. Then S,,_, containing two vertices is being processed. Clique sizes for each subgraph
S; are stored in cache c[i]. Using this additional information is possible to implement a new
pruning formula d + c[i] < CBC. d is a current depth, i is a vertex index currently being
expanded and CBC (current best clique) is the biggest clique size found by far. The second
crucial point to understand is that only one vertex is added to a new subgraph S, compared to
Sr+1 Which means that CBC potentially can be increased only by one and not more. It results
in a new condition that if d + c[i] > CBC we can stop further search within S, and go to
S_1.

There are some possibilities to improve algorithm performance with proper initial
ordering. It is advised to use the approach as in Carraghan and Pardalos algorithm to sort
vertices by their degree in increasing order, so that v; is always a vertex with the smallest
degree taken from the subgraph induced by the vertices that have not yet been ordered.

function Main
max := 0
for 1 := n downto 1 do
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found := false
Clique (Sl & N(Vi), 1)
c[i1] := max

end for
return max
end function

function clique (U, size)

if |U|l = 0 then
if size > max then
max := size
New record; //save it
found = true
end if
return
end if

while U # @ do

// prune as Carraghan and Pardalos algorithm does
if size + |U| £ max then
return
i:=min { J | v; € U }
// new pruning technique
if size + c[i] £ max then
return
U =0\ { v}
clique (U & N{(vj), size + 1)
if found = true then // stopping condition
return

end while
return
end function

Figure 2.2 Ostergard algorithm. Pseudo code [Kumlander 2005]

2.2 Graph coloring heuristic algorithms

Graph (G) coloring is a graph vertices mapping to labels i.e. colors so that V(G) — S,

where V- set of vertices of G and S— set of colors.

A color class is a subset of I that was assigned to one color. The main coloring

property is that no two adjacent vertices can obtain the same color. A graph is called 4-
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colorable if it can be colored into & colors. The least & such that a graph is A-colorable is a
chromatic number y(G). The best coloring of Gis y(G)-coloring.

Graph coloring gives us some useful properties, which will be used later in algorithms
for clique finding. These properties are:

e Each color class forms an independent set. This property comes from definition of
graph coloring that vertices set to one color cannot be adjacent to each other.

e Colors number is an upper bound for maximum clique, i.e. k-colorable graph cannot
contain clique of size larger than k. Clique of k41 size in k-colored graph means that
two adjacent vertices within a clique are set to one color, which is contrary to the
definition of graph coloring and lead us to improper coloring.

e Each color class formed by coloring of complement graph A of G gives a clique within
G.

2.2.1 Greedy coloring algorithm

Greedy is one of the simplest heuristic coloring algorithms. This algorithm has solid
benefits such as easy implementation and high performance. On the other side number of
color classes is not always close to chromatic number. In general, this algorithm is a great
compromise between speed and result quality. Algorithm can be described in four steps:

1. Color the first vertex in color number 1.

2. Take not yet colored vertex v; and try to color it to the lowest numbered color %, so
that there is no any adjacent vertex to v; with the & color number.

3. Ifitis not possible to color a vertex v; into any of existing colors, a new color must be

created and assigned to v;.

4. Repeat steps two and three until all the vertices are colored.

// n — number of vertices, k - number of colors on each step
k = 1; Color vy with C; (Cg)
For i := 2 to n
Try to color v; with color Q, where 7 = min (1, ... , k)
If none color was used to color v; then
k := k+1 [Produce a new color]
Color v; with Cy
End if

29



Next

Figure 2.3 Greedy coloring algorithm. Pseudo code

Greedy algorithm results heavily depend on vertex coloring order. It is clearly seen on
coloring bipartite graph. When vertices from bipartite graph are ordered in a way that we
firstly color all the vertices from one partite set and after from the other partite set, then this

approach results in a good coloring (left graph on figure 2.4). However, if vertices are taken

from different partite sets one by one it leads to the huge amount of colors (right graph on
figure 2.4).

Figure 2.4 Bipartite graph coloring
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There is one important point to keep in mind that with this coloring approach we take
vertices in the exact same order as they were initially ordered. As a result, vertices within
each color class keep initial ordering to each other. In other words if initial index i <j and

vertices v;, v; have the same color then index ki of v; will definitely be less than index kj of

v; within k color class.

2.2.2 Greedy coloring algorithm with swaps

There is a slightly modified version of greedy coloring used in further algorithms
[Kumlander 2005]. Instead of coloring, each vertex to the least possible color this algorithm
tries to color all the vertices to the first color, then to the second one and so on. The main idea
of this approach is to order vertices during the coloring process using vertex swaps to lower
time consumption. Algorithm consists of the following steps:

1. Color the first vertex in color number k,. Set the least not colored vertex index u
(initially u = 2).

2. Take not yet colored vertex v; starting from index u and try to color it to the lowest
numbered color &, so that there is no any adjacent vertex to v; with the & color
number.

3. If a vertex v; is colored swap v; and v,, where v, is the least not colored vertex.
Increase u by 1.

4. If all the vertices were processed and « is not bigger than total number of vertices,

create a new color class and repeat steps 2 and 3.

// n — number of vertices, k - number of colors on each step
// u - the least not colored vertex index
k = 1; Color vy with C; (Cy)
u = 2
While True
For i := u to n
Try to color v; with color Cg
If vi was colored then
swap vy and Vj
u := utl

Color Vi with Ck
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End 1if

Next
If u £ n Then
k := k+1 [Produce a new color]
Else
Exit While
End If
End While

Figure 2.5 Greedy coloring algorithm with swaps. Pseudo code

As long as vertex swapping is used, it is not possible to maintain the same vertices
ordering within color classes as in previous greedy algorithm. Current algorithm is suitable

when solving maximum clique problem on low densities where initial vertex order is useless.

2.3 Maximum independent set and minimum vertex cover heuristic

Let G = (V, E), where V—set of vertices and £— set of edges. Independent set problem
tries to find a subset S < Vsuch that no two vertices in S are adjacent to each other i.e. Sis an

empty graph. Maximum independent set is the largest possible subset S'in a graph.

2 /3\ 5

Figure 2.6 Independent set example.

Maximum independent set problem (MIS) is closely connected with maximum clique
problem. Let K be a set of all possible edges between elements of V. Then the complement
graph of Gis H = (V, K | E). Each independent set in A is a clique in & from the first
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property. Consequently, every independent set problem can be easily transformed into
maximum clique problem and vice versa.

Heuristic independent set algorithm can be used to acquire initial clique size value for
clique searching algorithms. The better heuristic is used, the closer initial clique size will be to
the maximum clique size.

Vertex cover is a subset € < V such that each edge in £ is incident to at least one

vertex in C i.e. vertices from C,,cover* the edges of a graph.

2 (3) s

Figure 2.7 Vertex cover example

Here are some simple steps of how to obtain approximate vertex cover:

Take a random edge {u, v} from a graph
Add edge {u, v}to the current vertex cover set C.

Remove all edges incident to u or v from £

M w0 b

Repeat steps from one to three until £is empty.

C =@ // vertex cover array
While E # ¢
take random edge {u, v} € E
cC=CcuU {u, v}
remove all edges incident to u or v from E
End While
Return C

Figure 2.8 Approximate vertex cover algorithm. Pseudo code
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Vertex cover algorithm has one good property that can be easily used to gain
independent set quickly. When a vertex cover Cis found using approximate algorithm there
will be some set of vertices S left that are outside of vertex cover § = I/'| Cand no edges in a
graph. As a result, Sis an independent set. Moreover, it means the “better” vertex cover is

found the larger independent set is obtained.

2.3.1 Maximum Degree Greedy algorithm (MDG)

In the current work only heuristic vertex cover algorithms are studied. Therefore,
result is influenced by random edge picks. There is a MDG algorithm [Clarkson 1983] to
improve approximate vertex cover result. Random edge guessing is not a very good and
reliable approach for vertex cover finding. MDG algorithm takes a vertex with the highest

degree and removes all its edges. This step is repeated until there are no edges left.

// deg(v) - degree of vertex v
C =@ // vertex cover array
While E # @
find vertex v with maximum deg(v)
C=CU {v}
remove all edges incident to v from E
End While

Return C

Figure 2.9 MDG algorithm. Pseudo code

There is an example of approximate vertex cover algorithm on figure 2.10. Red
numbers mean in what order edges were chosen. In this case the result is quite bad (€ = {1, 2,
3,5, 4, 6}). Figure 2.11 demonstrates a result of MDG algorithm, blue numbers show in what
order vertices were selected. There is a 50% reduction in a vertex cover size (C = {5, 2, 4}). It
is clearly seen that random edge choice is not reliable technique and some more intelligent

way must be implemented.
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Figure 2.10 Approximate vertex cover algorithm result.

I‘ ©® O

Figure 2.11 MDG algorithm result.

2.3.2 Iterated local search algorithm (ILS)

There are different heuristic algorithms to get independent set. The easiest way is to
use greedy approach, which is not very good sometimes. MDG algorithm might give better
solution. In general, we can try to improve already existing heuristic solution by using a
notion of plateau search, which is based on vertex swaps. Swap is a replacement of one vertex
by the other from its neighbors. Swap will not definitely improve the solution, but it possibly
can lead to some non-solution vertices become free (without neighbors inside solution) and
therefore they can be inserted into existing solution. “Fast local search for the maximum
independent set problem” article [Andrade, Resende, Werneck 2012] gives a number of tools

to perform swaps more efficiently and not in a random way.
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Let (j, k) — swap will consist of removing ; vertices from solution and inserting &
vertices into solution. In particular, each made (k-1, k) — swap leads to increasing
independent set by one. Let (k-1, k) — swap is called Aimprovement. ILS algorithm core idea
is to search for 2- and 3- improvements until no more can be found. ILS should have some

initial solution to start improving it. For these purposes greedy or MDG algorithms can be
used.
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3. Modern algorithms

Multiple modern algorithms will be demonstrated in this chapter. All of them are
based on the ideas presented in the previous topic. Old algorithms were focused on the
information about adjacent vertices and almost absolutely ignored the opposite side — vertices
that are nonadjacent. Modern algorithms are heavily depending on heuristic and, in particular,
on vertex coloring. Two nonadjacent vertices cannot be added into one clique, therefore two
vertices from different independent sets will not contain in a solution also. Graph coloring
allows building several independent sets and use additional properties based on gathered
information. Moreover, rationally used heuristic approaches will not increase time
consumption dramatically. Unfortunately, it is not possible to use exact algorithms for finding
color classes because coloring problem is NP-complete. In general, modern algorithms carry
out preliminary work gathering and analyzing additional information before starting clique

searching or, more precisely, branch processing.

3.1 VColor-u

Deniss Kumlander published “Some Practical Algorithms to Solve The Maximum
Clique Problem” thesis in 2005 [Kumlander 2005] introducing VColor-u algorithm (Vertex
Color unweighted). The core idea was to demonstrate efficiency of using independent sets
within clique finding algorithms.

Let G, be a subgraph of G on the depth dand V, is a set of vertices of G,. Each time a
vertex from V; is expanded and a branch created from it is analyzed it is then removed from a
current depth d and the next vertex will be expanded. From this property, Carraghan and
Pardalos created their pruning formula. D. Kumlander modified the formula to be d -1 +
Degree(G;) < CBC, where d— 1 is the number of vertices, which were expanded prior to
d-th depth, and form current cliqgue, CBC is currently biggest clique size found and

Degree(G,) is a function that gives number of colors of G,;. The main point of this method
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is that a graph cannot contain clique larger than the number of color classes obtained by
coloring this graph.

It should also be noted that graph is being colored only once in the beginning of the
algorithm and later on a degree of subgraph G, is counted by specific approach. It would take
too much time to recount number of colors each time a new branch is created. As long as and
this order is not changed during the whole process, it is simpler to count number of color
classes when a new depth is formed. Later on if a vertex on the same depth is expanded and it
is from the same color class then degree is not changed. If color classes are different then the

degree is decreased by one.

function Main

Heuristic vertex coloring

Order vertices that first color classes have the last
indexes

CBC := 0 // the maximum clique’s size

clique (v, 1)

return CBC
end function

function clique (V, depth)

if |V] = 0 then
if depth > CBC then
New record - save it.
CBC := depth
end if
return
end if
i :=0

while i < |V] do
if depth - 1 + degree (V) < CBC then // prune

return
i :=1i + 1
// form a new depth. N(v;) denotes a neighborhood of
Vi.
clique (N(vj) | Vvj @ J > 1, J < |V], depth + 1)
end while
return

end function

Figure 3.1 VVColor-u algorithm. Pseudo code
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As noted by the author of the algorithm there is no any other optimizations than vertex
coloring. It is done to evaluate influence of coloring on overall performance purely.
Compared to two previous clique finding algorithms VColor-u demonstrates good results
especially on high densities. Time consumption can be 50 times lower on 90% density graphs.
Although on low densities (20%-50%) results are not so impressive, but anyway the new
algorithm works about 15% faster.

An important note must be done that VVColor-u algorithm works worse (~20% in time
increase) than Carraghan and Pardalos algorithm on almost edgeless graphs (about 10%
density). It can be explained by the fact that graph coloring and vertices ordering takes time

and these steps are useless on a low density and pruning formula is not effective enough.

3.2 VColor-BT-u

There was a second algorithm introduced in the same article called VColor-BT-u
[Kumlander 2005]. The idea was the same - to apply initial vertex coloring, but instead of the
Carraghan and Pardalos approach in VColor-u, the new VColor-BT-u bases on the
Ostergard’s algorithm.

As it was already noted, Ostergard’s algorithm starts with the only vertex and searches
for a clique increasing graph size by one vertex. VColor-BT-u does the same, except it
operates not with single vertices but with independent sets. Initially all the vertices are divided
into several color classes V = {C,, C,,_4, ..., C1}, Where C; contains vertices colored with color
1. Note that color class indexes stand in reversed order because the algorithm starts from the
rightmost vertex. First of all, algorithm tries to find the largest clique within C; on a first
iteration (which, of course, equals 1, as there are no any adjacent vertices within independent
set), then C; U C, (second iteration) and so forth until all the color classes are taken into
account. In general at step 7 vertices of C; U C, U ...U C; are considered.

VColor-BT-u uses two pruning formulas to skip even more unnecessary branches. The
idea for the first bound rule comes from Ostergard’s algorithm. New algorithm holds clique
sizes in special cache array b for each independent set added into consideration. Therefore,
b/i] contains a size of the largest clique inside {C;, C;_4, ..., C; }. Using this cache allow to use

the following pruning formula d — 1 + b[C(v4;)] < CBC, where d stands for depth level, vy,
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is a vertex on depth dand index 7, C(vy;) is a color of a vertex v, and CBC is a current best
(maximum) clique. Moreover, clique size for a current iteration can be equal or bigger on one
compared to the previous iteration, because on each iteration we add a new color class and it
is not possible that two vertices from an independent set will be added to a new clique, as
these two vertices are not adjacent to each other by definition of independent set. Therefore, if
on any step a larger clique is found we can continue with a new iteration.

In addition to the first pruning technique, it is possible to use the second one d -1 +
Degree(G;) < CBC taken from VColor-u algorithm in parallel. Degree function is copied
from the previous algorithm as well.

VColor-BT-u is described using the following steps (Figure 3.2):

Algorithm for the maximum clique problem - “VColor-BT-u”

CBC - current best (maximum) clique

d- depth

i - index of the currently processed colour class in the backtracking

b - array of the backtrack search results

C(v;) - a function that return a colour class to which the vertex vibelongs
G4 - subgraph of G'formed by vertices existing on the depth d

Step 0. Heuristic vertex-colouring: Find a vertex colouring and reorder vertices so
that first vertices belong to the last found colour class then vertices of the previous to
last colour class and so forth - vertices at the end should belong to the first colour
class. Note: It is advisable to use a special array to solve order of vertices to avoid
changing the adjacency matrix during reordering vertices.

Step 1. Backtracking: For each colour class starting from the first one up to the last,
Le. i =1+1:
Step 1.1. Subgraph building. Form the first depth by selecting all vertices of the
current colour class under the analysis and other colour classes, whose index is
smaller than the index of the current colour class.
i = the index of the current colour class.
Step 1.2. Run the subgraph research: Go to the step 2

Step 2. Initialization: d= 1.

Step 3. Check: If the current depth can contain a larger clique than already
found:

Step 3.1. If d-1 + Degree(G,;) < | CB(] then go to the step 6.

Step 3.2.if C(v4,)> i then If d-1 + b[((v4,)] < | CBC(] then go to the step

6.

Step 4. Expand vertex: Get the next vertex to expand.
If all vertices have been expanded or there are no vertices then:
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Check if the current clique is the largest one. If yes then save it.
Go to the step 1.3.
Step 5. The next depth: Form a new depth by selecting all remaining

vertices
that are connected to the expanding vertex from the current depth;
d=d+ 1;

Go to the step 3.
Step 6. Step back:
d=d-1;
Delete the expanded vertex from the analysis on this depth;
if d= 0, then go to the step 1.3, otherwise go to the step 3.

Step 1.3. Completing iteration: 4[/] =CBC, go to the step 1.
End: Return the maximum clique.

Figure 3.2 VVColor-BT-u algorithm. [Kumlander 2004]

A new algorithm results are much better compared to previously described ones.
VColor-BT-u is approximately two times faster than VVColor-u on almost all the densities.
Compared to Ostergard’s algorithm the new algorithm is also faster 50%-100% on lower
densities and 13-25 times on dense graphs, so a combination of two pruning techniques is

really effective.

3.3 MCQ

MCQ algorithm was firstly introduced in 2003 by Tomita and Seki [Tomita, Seki
2003] and later Tomita and Kameda revised it with more computational experiments in 2007
[Tomita, Kameda 2007]. This algorithm bases on the Carraghan and Pardalos idea. Tomita
and Seki noted that a number of vertices of a maximum clique w(G) in a graph ¢ = (VE) is
always less or equal to the maximum degree 4(G) plus 1 (w(G) < A(G) + 1). Using this
property, they reworked an existing pruning formula.

Tomita and Seki applied approximate coloring of vertices to prune unnecessary
branches, giving a positive integer value called Number of Color (or color number) No/p] for
every vertex p. Number of Color has the special properties as described above:

1. Adjacent vertices cannot have the same color number i.e. if (p,r) € E then No[p] #

No|r]
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2. Number of Color is always set to lowest possible positive integer i.e. No[p] = 1, or if
No[p] = k > 1, when there exist some vertices p;,p,, ..., Pr—1 adjacent to p and
No[p;] =1, No[p,] =2, ..., No[px-1] = k — 1.

Consequently maximum color number inside a subset R €V Max{No[p]|p € R} is
always bigger or equal to the number of maximum clique in R i.e. Max{No[p]lp € R} =
w(R). Therefore it is possible to prune that branch R if |Q| + Max{No[p]l|p € R} < |Qmax|
(@ stands for clique) holds. It should be noted here that each branch processing should start
from a vertex having the biggest color number.

Color numbers can be easily assigned by greedy coloring algorithm applied to all
vertices containing in a newly created branch R. It is important that vertices in R are ordered
in a manner that vertices from the first color class ¢ stand first, so that
R = C;U C, U ... U Cpraxno- Authors of the algorithm say there might be more efficient way
of coloring, but preliminary computation experiments show that more elaborate coloring
requires more time. As soon as color numbers are assigned on each branch, more complicated
coloring leads to overall negative impact on time consumption. Therefore, the key point of a
“good” coloring algorithm is a balance between coloring quality and its performance.

For initial vertex numbering Tomita and Seki use special technique. Vertices with
index 7 where 7 from 1 to 4(G) have color number equal to 7 All others vertices are assigned
to A(G)+1) color number. Using such approach allows wus to use
|Q] + Max{No[p]lp € R} < |Qmax| Pruning formula, as the largest clique size cannot exceed
graph size or maximum degree plus 1.

Tomita and Seki demonstrate computational results to confirm their proposal on initial
vertex ordering. Vertices should be sorted in the descending order in response to their
degrees. This approach is approximately 50 times better than increasing ordering on dense

graphs and gives about 15% time reduction on low densities.

// N(p) - set of neighbors of p
// No — set of color numbers

function MCQ

Q := 0 // current clique
Qmax:= 0// maximum clique
{SORT}

Sort vertices of V in a descending order with respect to
their degrees;
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{NUMBER}
for 1 :=

for i :=
o[V
EXPAND(V No
return Qmax
end function

function EXPAND (R, No)
while R # @

p := the vertex in R
such that Nol[p] = Max{Nol[gq]
{i.e., the last (rightmost)

1f [Ql + No[p] > [Qmax! then
Q := QU {p};
Rp:= R N N(p);
if Rp# @ then

NUMBER—SORT(Rp, No’) ;

numbers to Ry

| a9 € R};
vertex in R}

// assign color

{the initial wvalue of No’ has no

significance}
EXPAND(Rp, No’)
else 1f Q| > |Qmax!| then

Qmax:= Q
Q :=Q - {p}
else

return

R := R - {p}
end function

Figure 3.3 MCQ algorithm. Pseudo code

3.4 MCR

“An efficient branch-and-bound algorithm for finding a maximum clique with
computational experiments” article published by Tomita and Kameda in 2007 [Tomita,
Kameda 2007] introduced a new MCR algorithm, a successor of MCQ algorithm. Compared
to the older version, MCR mainly focused on initial sorting and color numbering. Branch

processing i.e. EXPAND function was not changed, so we will spotlight only modified

features and skip all the steps inherited from MCQ.
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The main idea of improved initial sorting is that vertices in any subgraph Rof ¢ = (V,
E) should be ordered with response to their degrees in a decreasing order. If V' =
{V[1],V[2],...,V]i]} is a vertex set of a subgraph R then V//i]/ must always has the minimum
degree for 1 < i < V. To get this ordering we need to take a vertex with the smallest degree
and set it to the last position of an array. This process is continued until all the rest unordered
vertices have the same degree. Sometimes there might be several vertices with the same
degree. For such cases, a new parameter vertex support S must be introduced. Support of a
vertex v S(v) is a sum of neighbor’s degrees of vi.e. S(v) = },enw)deg (r). If V[i-1] and
V[i] have the same degree then S(V[i — 1]) = S(V[i]).

At last, a subgraph R becomes induced by all the rest unordered vertices
V[1],V][2],...,V[i], that have the same minimum degree. At this point R is regular graph. It is
useless to continue vertex sorting on a regular graph. In this case, we start to assign color
numbers (NUMBER-SORT function) to vertices in Ras was described in MCQ. Vertices with
index higher than 7: V[i+ 1],V[i+ 2],...,V[n] must be numbered as Min{maxno + 1,
AG + 1}, Min{maxno + 2, AG + 1}, ..., Min{maxno + (n — i), AG + 1} respectively, where
maxno is a maximum color number acquired by NUMBER-SORT of R. Furthermore, if all
vertices V[1],V[2],...,V[i] in R have the same degree (7-1), then these vertices form a clique
of size 7 and initial clique size can be set to 7.

Initial sorting and color numbering is quite complicated and time consuming
operations, but it has no significant influence on overall algorithm performance as it is done

only one time at the begging of MCR algorithm.

// N(p) - set of neighbors of p
// No — set of color numbers

// deg(p) - degree of p

// s(p) - support of p

function MCR(G = (V, E))

Q := 0 // current clique
Qmax:= 0// maximum clique
{SORT}
i = 1V];
R :=V; V :=0;
Rpin:= set of vertices with the minimum degree in R;

while |Rpinl # [R]
if |Rminl 2 2 then
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p := a vertex in Ry, such that S(p) = Min{S(qg) |

d € Rpin!
else
P := Rpin [1];
V[i] :=p; R := R - {p};
i::=1-1;
for j := 1 to |R]
if R[J] is adjacent to p then
deg(R[]J]) := deg(R[]]) -1
Rmin:= set of vertices with the minimum degree in R

{Regular subgraph}
NUMBER-SORT (Rynin, NoO) ;

for 1 := 1 to |Rpyjnl
V[i] := Rpjnli]
{NUMBER }
m := Max{No[g] | g € Rpin}’
mmax := |Rpjnl + (G) — m;
m :=m+ 1;
i := |Rpp!l + 17

while 1 £ mmax
if 1 > |V| then

goto Start

No[V[i]] := m;
m :=m + 1;
i :=1+ 1

for 1 := mmax + 1 to |V]| do
No[V[i]] := A(G) + 1

Start:

if degg,, (@ = |Rpinl — 1 for all g € Ry, then

Qmax:= Rmin

EXPAND (V, No)
return Qmax
end function

Figure 3.4 MCR algorithm. Pseudo code

3.5 MCS

Three years later after MCR was released a new improvement for the same algorithm
appeared called MCS [Tomita, Sutani, Higashi, Takahashi, Wakatsuki 2010]. This time
authors focused on approximate coloring enhancements. There is a crucial property derived

from MCR bounding condition |Q| + Max{No[p]lp € R} < |Qmax|- Greedy approximate
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coloring assigns color numbers to vertices and order them in a manner that vertices with the
biggest number stand last. On each depth, the rightmost vertex is expanded first i.e. the vertex
with biggest color number No[r] = Max{No[p]|p € R}). Therefore, if No[r] < |Qmax| —
|@Q| we prune a branch. |Q,.| — |Q| forms a kind of a threshold after which we skip all the
vertices. Taking a new property into consideration it is much more important to reduce a
number of vertices (it might look like reduction of number of color classes is the main goal,
but it is not) from which searching is necessary in other words approximate coloring should
produce more vertices with color numbers less than a threshold to skip them later.

A new approximate coloring algorithm was introduced to meet new requirements. It
can be described with the following steps:

1. Calculate threshold No.,. Threshold is equal to maximum clique value minus current
clique value Noy, = |Qmax!| — 10Q1.

2. Try to find a vertex g within neighbors of p (N/pj) with a color number less than a
threshold (No[q] = ki) < Noyy, such that |C4| = 1.

3. If g is found, the next step is an attempt to find color number k, such than there is no
neighbor of g (N/q)) colored in k.

4. If k, is found, then g and p should change their color numbers so that No[p] = k;
and No[q] = k,. (It is crucial to understand that this operation changes initial vertex
order, as after each coloring vertices are ordered with response to their color numbers.)

5. If no vertex g or color number k, is found, nothing happens.

A new approximate coloring algorithm triggers each time a new color number bigger
or equal to a threshold is created. Then it tries to insert current vertex to any of the previous
color classes less that the threshold. If operation succeeds, a new color class becomes empty
and should be removed. The inserted vertex will not be expanded later because of the
bounding condition that will prune a branch containing that vertex.

function Re-NUMBER (p, Nol[p], Now, Ci, Cs, ..., Chaxno)
for ky := 1 to Noy— 1
if |CN N(p)| = 1 then
g := the element in (Cyg N N(p));
for k, := k; + 1 to Noy
if [CgN N(p)| = @ then
{Exchange the Numbers of p and g.}
CNofp] *= CNopp) — {P}/

Ck1:= (Cxx — {a}) U {p}:
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Ck2:= Cro U {qg};
return

Figure 3.5 MCS algorithm. Renumbering function pseudo code.

As was already noted before a new approximate greedy coloring operation changes the
initial vertex order. To inherit the same ordering through the whole algorithm a new array V,
(the same data structure as array of vertices 1) must be created. Vertices are copied to V, and
then passed to coloring function. This means that vertices will be reordered inside ¥, and
initial order is still present in array V.

In comparison with older MCR version, a new MCS algorithm shows good results
especially on dense graphs. It is clearly seen on DIMACS graphs such as r200.98 or r300.98
where MCS performs more than 100 times better than MCR.

3.6 MCS improved

“Improvements to MCS algorithm for the maximum clique problem” article was
released in 2014 by Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov and Panos M.
Pardalos [Batsyn, Goldengorin, Maslov, Pardalos 2014]. Authors proposed the following
improvements to fasten search of maximum clique:

e At the beginning of the algorithm ILS heuristic [Andrade, Resende, Werneck 2012] is
applied to gain initially ,,good” (i.e. close to the maximum possible) solution. This
value is then used to prune branches. This improvement gives the noticeable reduction
of branches number especially on dense graph therefore decreasing time consumption.

e On each depth if a set of candidates contains some vertex which is connected to all
other vertices in this set, this vertex is immediately added to current clique,
consequently the vertex is not expanded later and upper bound is increasing faster.
This improvement means that on each depth it is possible to increase current clique
size more than on one. As a result, the faster upper bound grows the more branches we

can prune.
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e Authors of the article state that storing sets of candidate vertices and color numbers on
stack is more efficient than in dynamic memory. This property was gained from
experimental results.

e MCS Improved initially use simple vertex ordering with response to their degrees as
proposed in Carraghan and Pardalos article [Carraghan, Pardalos 1990]. There is no
any additional reordering applied as it was done in the previous MCR and MCS
algorithms. Moreover, at the beginning of algorithm all the vertices are colored by

greedy algorithm without swaps.

function MCSWithHeuristic( )
Q* = HeuristicSolution( )
InitialOrderingAndColouring (L°)
for i = |L°, 1 do
v = L
i if UpperBound(u) > |Q*| then
ProcessBranch (v, L%
end if
end for
end function

Figure 3.6 MCS with incorporated ILS heuristic and other improvements. Pseudo code.

[Batsyn, Goldengorin, Maslov, Pardalos 2014]

MCSI show very good results on dense graphs using high-quality solution gained by
ILS heuristic algorithm. Authors compare their new algorithm to MCS on special DIMACS
graphs. The most significant result is on gen400_p0.9 65 instance where number of branches
was reduced more than 7000 times. Moreover, improved MCS algorithm solves p_hat1000-3
instance that was not possible to solve by MCS algorithm with a reasonable time. Authors
also propose that there might be better heuristic algorithm for searching initial solution than

ILS algorithm.
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4. New algorithm

In this chapter, we are going to introduce a new algorithm solving maximum clique
problem. It is called VRecolor-BT-u as this algorithm is a successor of VColor-BT-u
algorithm and it implements recoloring on each depth. There were multiple algorithms
described previously in this work. The idea of a new one is to gather and combine all the
gained knowledge to fasten maximum clique finding even more.

It can be clearly seen from the modern algorithms that almost all of them are focused
on Carraghan and Pardalos approach and only VColor-BT-u implements Ostergéard’s idea.
Moreover, initially Ostergard’s approach with reversed search showed much better results
than Carraghan and Pardalos algorithm. Even after when D. Kumlander applied coloring to
both these basic algorithms, performance of Ostergard’s algorithm successor VColor-BT-u
was much faster than VVColor-u, an improvement to Carraghan and Pardalos algorithm.

From the other hand, algorithms from Tomita and his colleagues proved that in-depth
coloring is a very efficient technique and initial coloring is not enough as the “deeper” level
we are constructing the more diffused initial coloring becomes. When depth is high, we
definitely need to recolor vertices to update colors and gain the most accurate data about

independent sets on this level.

4.1 Description

The main idea of a new algorithm is to combine reversed search by color classes (from
VColor-BT-u) and in-depth coloring i.e. recoloring (from MCQ and successors). Before we
can start there should be some useful properties from previous algorithms noted:

1. Reversed search by color classes means searching for a clique in a constantly
increasing subgraph adding each color class one by one holding a cache b[] for each
color class, where cache is a maximum clique found by given color class. First of all,

we consider a subgraph S; consisting only from vertices of a first color class C;. After
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than subgraph S, is created with two color classes C; and C,. In general S; =

UG U...UC.

2. Pruning formula for reversed search by color classes is d — 1 + b[C(v4)] < |CBC|
can be used only if vertices in each subgraph Si are ordered by initial color classes
(using this color classes we are constructing a new subgraph on each iteration).

3. If vertices are ordered by their color numbers and are expanded starting from the
largest color number then all the vertices with color number lower than a threshold
(th =|CBC| — (d — 1) can be ignored as they will not be expanded because of a
pruning formula d — 1 + Max{No[p]|p € R} < |CBC]|.

4. Pruning formula d — 1+ Max{No[p]lp € R} < |CBC| can be used when we are
reapplying coloring on each depth and vertices are reordered with response to these
colors.

From this point, it is seen that properties 2 and 4 are conflicting with each other, as
two pruning formulas require different vertex ordering. As a result, if both bounding rules are
used we are going to miss some cliques when a promising branch will be pruned. To avoid
such situations the formula d — 1 + Max{No[p]|p € R} < |CBC| was used not to prune a
branch but to skip a current vertex as expanding it is not going to give us a better solution.
This means that if vertices are recolored on each depth, but are not ordered with response to
new colors, we can skip a vertex without expanding it, if and only if its color number is lower
than a current threshold and there is no neighbors of this vertex with color number larger than
threshold and who stand after the bound gained from the first pruning formula d — 1 +
b[C(vai)] < |CBC|.

There is an example on figure 4.1 that shows how a conflict with two different
colorings is solved. Green lines show adjacency of two vertices (not all the adjacent vertices
are marked with green lines, but only two that are interesting for us in this specific example).
Let us assume that current depth is two and we have the following prerequisites:

e d=2(depthis?2)

e |CBC| = 3 (current best cligue is 3)

e th= 3—(2—1) =2 (threshold taken from skipping formula, we need to expand
vertices having color number bigger than threshold)

e b[1] =1,b[2] = 2,b[3] = 3,b[4] = 3 (cache values found from previous iterations)

50



e bnd = 2 (index of a rightmost vertex expanding which a pruning formula d — 1 +
b[C(v4;)] < |CBC| will prune current branch)

e (Ca —array storing initial color classes, Cb — array storing in-depth color classes

1 1 2/ﬁ3 4 |nitial colors (Ca)

2 1 3 3 2 1 1 In depth colors (Cb)

Figure 4.1 Different coloring conflict detailed example.

Let us analyze the current example (figure 4.1). We start with the rightmost vertex h
with in-depth color number 1 (No[h] = 1). We skip this vertex as long as its color number is
lower than a threshold (th = 2). As you can see vertex h might be contained in a larger clique
as it is connected with a vertex r (No[r] = 3), but we skip it anyway because vertex r will be
expanded later. Now we proceed with the next vertex t. Color number of t is 1 (No[t] = 1), the
same as vertex h has, but in this case it is not possible to skip vertex t, because it is adjacent to
vertex k (No[k] = 3). Vertex k stands after the pruning bound (bnd = 2), therefore it will not
be expanded at all. If we skip vertex t right now we might possibly skip a larger clique, this
means that vertex t should be expanded. The next vertex to analyze is vertex a, we skip it as
its in-depth color number is equal to the threshold (th = No[a] = 2) and there are no adjacent
vertex standing after bound. In addition, the last expanded vertex on current depth is r (No[a]
= 3) as its color number is larger than the threshold. It should be noted that skipped vertices
are not thrown away from further considerations (when building the next depth), they should
be stored in a separate array and added to the next depth with preserved order.

There is another pruning formula used right after recoloring is done. As we already

know, number of color classes obtained by coloring subgraph G4 is an upper bound for
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maximum clique in a current subgraph. This property allows us to use the following pruning

formulad — 1 + cn < |CBC|, where cn is a number of colors gained from recoloring.

4.2 Coloring choice based on density

There are two coloring algorithms used in VRecolor-BT-u. They are both greedy, but
the first one is using swaps when coloring and the other one is not. Each time coloring is
applied, we need to determine which algorithm to use. Moreover, there are two places where
we need to use coloring: initial coloring performed one time at the beginning of the algorithm
and in-depth coloring applied each time a new depth is constructed. Coloring algorithm
choice is made according to graph density using special constants; they are 0.35 density for
initial coloring and 0.55 density for in-depth coloring. Coloring choice can be described with

the following diagram (figure 4.2).

density < 0.35 0.35 < density < 0.55 0.55 < density density > 0.55

initial
coloring

in-depth
coloring

coloring with swaps
coloring without swaps

Figure 4.2 Coloring choice based on density

Constants 0.35 and 0.55 were found using experimental results and are a subject of
future studies. Figures 4.3 and 4.4 demonstrate performance of VRecolor-BT-u with swaps
and VRecolor-BT-u with swaps. As seen from these graphs algorithm with swapping works
better on low densities (density < 0.35) and must be replaced by coloring without swaps
already on density 0.4. The same approach works with in-depth coloring but coefficient is
bigger in that case, it is 0.55. Figures 4.5 and 4.6 demonstrate a coefficient choice for
recoloring algorithm. It should be noted that on figures from 4.3 to 4.6 y-axis demonstrates

time (in milliseconds) consumed by tested algorithms for finding maximum clique.
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4.3 Algorithm

This part demonstrates the VVRecolor-BT-u algorithm. There are two example graphs

are solved using the following algorithm.
4.3.1 VRecolor-BT-u

CBC- current best clique, largest clique found by so far.

d— depth.

c— index of the currently processed color class.

di— index of the currently processed vertex on depth d.

b — array to save maximum clique values for each color class.
Ca— initial color classes array.

Cb — color classes array recalculated on each depth.

G, - subgraph of graph G induced by vertices on depth d.
cn— number of color classes recalculated on each depth.
CanBeSkipped(v,;, c) - function that returns true if a vertex can skipped without expanding
it.

1. Graph density calculation. If graph density is lower than 35% go to step 2a, else go
to step 2b.

2. Heuristic vertex greedy coloring. There should be two arrays created to store initial
color classes defined only once (Ca) and color classes recalculated on each depth (Cb).
During this step, both arrays must be equal.

a. Before coloring vertices are unordered and colored with swaps.
b. Before coloring vertices are in decreasing order with response to their degree
and colored without swaps.

3. Searching. For each color class starting from the first (current color class index ¢).

3.1. Subgraph (branch) building. Build the first depth selecting all the vertices

from color classes whose number c is equal or smaller than current. Vertices
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from the first color class should stand first. Vertices at the end should belong to

ccolor class.

3.2. Process subgraph.

3.2.1.
3.2.2.

3.2.3.

3.2.4.

3.2.5.

3.2.6.

Initialize depth. d = 1.

Initialize current vertex. Set current vertex index di to be
expanded (initially the first expanded vertex is the rightmost
one). di = ny.

Bounding rule check. If current branch can possibly contain
larger clique than found by so far. If Ca(vy;) < candd — 1 +
b[Ca(vy)] < |CBC| then prune. Go to step 3.2.7.

Vertex skipping check. If current vertex can possibly contain
larger clique than found by so far. If d — 1 + Cb(v,;) < |CBC|
and CanBeSkipped(v;, c) skip this vertex. Decrease index 7 =
i-1. Go to step 3.2.3.

Expand current vertex. Form new depth by selecting all the
adjacent vertices (neighbors) to current vertex vy (Gge1 =
N(vg;)). Set the next expanding vertex on current depth di =
di —1.

New depth analysis. Check if new depth contains vertices.

a. If G441 = @ then check if current clique is the
largest one it must be saved. Go to step 3.3.

b. If G441 # @ then check graph density. If graph
density is lower than 55% apply greedy coloring
with swaps to G, 1, else use greedy coloring without
swaps. Save number of color classes (cn) acquired
by this coloring. If number of color classes cannot
possibly give us a larger clique then prune. If
d — 1+ cn < |CBC| decrease index 7/ =7 - 7 and go
to step 3.2.3, else increase depth d = d + 1. Go to
step 3.2.2.
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3.2.7. Step back. Decrease depth d = d - 1. Delete expanding vertex
from the current depth. If d = 0 go to step 3.3, else go to step
3.2.3.
3.3. Complete iteration. Save current best clique value for this color. b/c/ =
JCBC/.

4. Return maximum clique. Return CBC.
4.3.2 CanBeSkipped function

th— threshold from which branch will be pruned
CBC - current best clique, largest clique found by so far.
d— depth.
c— index of the currently processed color class.
di— index of the currently processed vertex on depth d.
bnd— bound from which vertices cannot be skipped.
b — array to save maximum clique values for each color class.
Ca— initial color classes array.
Cb — color classes array recalculated on each depth.
1. Define threshold. th = [CBC| — (d — 1).
2. Find skipping bound. For each vertex index dj from di - 7t0 0. If Ca(v,;) < c and
b[Ca(vdj)] < th then bnd = .
3. Decide whether vertex can be skipped. For each adjacent (to currently expanded)

vertex with index @ from bnd to zero. If Cb(v,;) > th then return false. If

Cb(vy;) > th had never occurred return true.
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4.4 Example 1

Figure 4.7 VVRecolor-BT-u example 1. Processed graph.

First of all, we need to determine graph density. Number of vertices is 10 (/V/ = 10),

2| 2414
wiavi-n — P = 100 = 0:31)

edge number is 14 (/E/ = 14). Density is 0.31 (D =
The next step is to apply greedy coloring and define color classes. As long as density
is lower than 0.35 and 0.55, we use coloring with swaps without initial ordering in both cases
in the algorithm. In result, we have the following initial color classes (Ca) (Please note that
initially Ca values are copied to Cb. Later on Ch will be changed while Ca stays unmodified):

Class 1: {1, 4, 6, 9}
Class 2: {5, 7, 2}
Class 3: {8, 10}
Class 4: {3}
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are currently expanded.

Now we will start depth construction and searching for a clique. Grayed out vertices

Table 4.1 VRecolor-BT-u algorithm example 1

Depth | Subgraph ¢ Current | Description
Color classes ¢b | color
class
(9
d=1 |¢={1,4,6,9} |1 Construct the first subgraph using first color class
vertices only. /CBC/= 0.
Ch/1]={1, 4, 6,
9} Bounding rule check: Ca(9) =1 =1 < 1- false. We
continue search because 1 > current color.
Vertex skipping check: 1-14+1<0=1<0 -
false. We continue search because 1 > /CBC].
Search current vertex neighbors and construct new
depth. N(9) = 0.
d=2 | G=0 1 Save current clique if it is larger than |CBC|. Current
clique = {9}. 1 > 0 —true. /CBC/ ={9}.
Complete iteration. b/1/=1.
d=1 | ¢={1,4,6,9, |2 Construct subgraph using first and second color class
57,2} vertices. /CBC/= 1.
Cb[1]={1, 4,6, Bounding rule check: Ca(2) =2 = 2 < 2 - false. We
9} continue search because 2 > current color.
cvfz] = {5 7, Vertex skipping check: 1-1+2 <1 =2 <1 -
2} false. We continue search because 2 > /CBC(].

N(2) = (1}.
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d=2 | ¢={1} cn = 1. Check if number of color classes can possibly
give a larger clique: 2-1+1<1=2<1 We
Cb[1]={1} .
continue search because 2 > /CBC].
Bounding rule check: Ca(1) =1 =>1<2 - true.
Check the second condition b[1]=1=>2-1+1<1
— false. We continue search because 2 < /CBC].
Vertex skipping check: 2-1+4+1<1=22<1 -
false. We continue search because 2 > /CBC].
Search current vertex neighbors and construct new
depth. N(1) = @.
d=3 | G=0 Save current clique if it is larger than /CBC/. Current
clique ={2, 1}. 2> 1 —true. /CBC/ ={2, 1}.
Complete iteration. b/2]= 2.
d=1 | ¢={1 4,69, Construct subgraph using vertices of color classes 1, 2,
5,7,2,8, 10} 3. /[CBC/=2.
Cb[1]={1, 4,6, Bounding rule check: Ca(10) = 3 = 3 < 3 - false. We
9} continue search because 3 > current color.
of2] = {5, 7, Vertex skipping check: 1-1+3 <2 =3 <2 -
2} false. We continue search because 3 > /CBC(].
Cb[3]={8, 10} Search current vertex neighbors and construct new
depth. N(10) = {6,9, 2}.
d=2 | ¢={6,9, 2} cn = 1. Check if number of color classes can possibly
give a larger clique: 2-1+1 <2 =2 <2 We
Cch/1] = {6, 9,
2 prune this branch because 2 < /CBC(].

60




Go to the previous depth.

d=1 | G={1 4,69, Take the next vertex to expand.
57,2,8, 10}
Bounding rule check: Ca(8) =3 = 3 < 3 - false. We
Ch[1]={1, 4, 6, continue search because 3 > current color.
9}
Vertex skipping check: 1-1 +3 <2 =3 <2 -
Cbf2] = {5, T, false. We continue search because 3 > /CBC].
2}
N(8) = {6,5}.
Cb/3]=48, 10}
d=2 | ¢={6,5} cn = 1. Check if number of color classes can possibly
give a larger clique: 2-1+1 <2 =2 <2. We
Cb/1]={6, 5}
prune this branch because 2 < /CBC].
Go to the previous depth.
d=1 | &¢={1 4,69, Take the next vertex to expand.
57,28, 10}
Bounding rule check: Ca(2) =2 =22<3 - true.
Cb[1]={1, 4,6, Check the second condition b[2] =2=>1-1+4+2<2
9} — true. We prune this branch because 2 < /CBC].
cb/2] = {5, 7, Complete iteration. b/3/= 2.
2}
Cb/3] =48, 10}
d=1 |¢={1 4,69, Construct subgraph using vertices of color classes 1, 2,
57,2,8,10,3} 3,4. /CBC/=2.
Cb[1]={1, 4,6, Bounding rule check: Ca(3) =4 = 4 < 4 - false. We
9} continue search because 4 > current color.
cvfz] = {5 7, Vertex skipping check: 1-1 4+ 4 <2 =4 <2 -
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2}

Cb/3] = {8, 10}

Cb[4]= {3}

false. We continue search because 4 > /CBC].

Search current vertex neighbors and construct new
depth. N(3) = {1,4,9,5,8,10}.

d=2 | G={1, 4,975,
8, 10}

Cb[1]={1, 4,9,
8}

Cb[2] = {5, 10}

cn = 2. Check if number of color classes can possibly

give a larger clique: 2-1+2 <2 =3 <2. We

continue search because 3 > /CBC].

Bounding rule check: Ca(10) =3 =3 < 4- true.
Check the second condition b[3] =2=>2—-1+2<2

— false. We continue search because 3 > /CBC].

Vertex skipping check: 2-1+2 <2 =3<2 -

false. We continue search because 3 > /CBC(].

Search current vertex neighbors and construct new
depth. N(10) = {9}.

d=3 | ¢={9} cn = 1. Check if number of color classes can possibly
give a larger clique: 3-1+1 <2 =3 <2 We
Cb[1]= {9}
continue search because 3 > /CBC(].
Search current vertex neighbors and construct new
depth. N(9) = @.
d=4 | G=0 Save current clique if it is larger than /CBC/. Current

clique = {3, 10, 9}. 3> 2 —true. /CBC/ ={3, 10, 9}.

Complete iteration. b/4]= 3.

Since there are no more color classes, we stop. The maximum clique is {3, 10, 9} and

its size is three.
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4.5 Example 2

Figure 4.8 VRecolor-BT-u example 2. Processed graph.

Number of vertices is 10 (/V/ = 10), edge number is 18 (/E/ = 18). Density is 0.4

2|E|
D=
( vi(ivi-1)

_ 2%18
T 1049

=D

= 0.4).

Density is higher than 0.35 we set vertices in decreasing order with response to their
degrees and obtain initial color classes (Ca) using greedy coloring without swaps. Since
density is lower than 0.55, we use coloring with swaps without ordering by degree when
recoloring on each depth. In result, we have the following initial color classes (Ca):

Class 1: {3, 8, 9}
Class 2: {6, 7, 2, 4}
Class 3: {1, 5, 10}
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Table 4.2 VVRecolor-BT-u algorithm example 2

Depth | Subgraph ¢ Current | Description
Color classes €b | color
class
(9
d=1 | ¢=4{3,8,9} 1 Construct the first subgraph using first color class
vertices only. /CBC/= 0.
Ch[1] = {3, 8,
9} Bounding rule check: Ca(9) =1 =1 < 1- false. We
continue search because 1 > current color.
Vertex skipping check: 1-1+1<0=1<0 -
false. We continue search because 1 > /CBC].
Search current vertex neighbors and construct new
depth. N(9) = @.
d=2 | G=0 1 Save current clique if it is larger than /CBC/. Current
clique = {9}. 1 > 0 —true. /CBC/ ={9}.
Complete iteration. b/1/=1.
d=1 | 6=43,8,96,|2 Construct subgraph using first and second color class
7,2,4} vertices. /CBC/= 1.
Cchb/1] = {3, 8, Bounding rule check: Ca(4) =2 = 2 < 2 - false. We
9} continue search because 2 > current color.
Cb[2]={6,7, 2, Vertex skipping check: 1-1+2<1=2<1 -
4} false. We continue search because 2 > /CBC(].
Search current vertex neighbors and construct new
depth. N(4) = {3}.
d=2 | ¢={3} 2 cn = 1. Check if number of color classes can possibly

give a larger clique: 2-1+1<1=2<1. We
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Cb[1]= {3}

continue search because 2 > /CBC].

Bounding rule check: Ca(3)=1=>1<2 - true.
Check the second condition b[1]=1=>2-1+1<1

— false. We continue search because 2 < /CBC(J.

Vertex skipping check: 2-1+1<1=2<1 -

false. We continue search because 2 > /CBC].

Search current vertex neighbors and construct new
depth. N(3) = @.

d=3 | G=0 Save current clique if it is larger than /CBC/. Current
clique = {4, 3}. 2> 1 —true. /CBC/ ={2, 1}.
Complete iteration. b/2]= 2.
d=1 | ¢=43, 8,096, Construct subgraph using vertices of color classes 1, 2,
7,2,4,1,5,10} 3. /CBC/=2.
Cchb/1] = {3, 8, Bounding rule check: Ca(10) =3 = 3 < 3 - false. We
9} continue search because 3 > current color.
Cb[2]={6,7, 2, Vertex skipping check: 1-1+ 3 <2 =3 <2 -
4} false. We continue search because 3 > /CBC(].
cv/3] = {1, 5, Search current vertex neighbors and construct new
10} depth. N(10) = {8,6,2}.
d=2 | &={8,6,2} cn = 2. Check if number of color classes can possibly
give a larger clique: 2-1 4+ 2 <2 =3 <2. We
Cb/1]={8, 2}
continue search because 3 > /CBC(].
Cb[2]= {6}

Bounding rule check: Ca(2) =2 =2<3 - true.
Check the second condition b[2] =2=>2—-1+2<2
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— false. We continue search because 3 > /CBC].

Vertex skipping check: 2- 1 + 1< 2 =2 < 2 -true,
Call CanBeSkipped(2) function. th=2 - (2 -1) = 1.
bnd = 1, since Ca(8) = 1 and b/Ca(8)] < 1.
CanBeSkipped returns true because there are no
adjacent vertices to currently expanding vertex 2 with
index lower or equal to bnd. Skip this vertex it will not

give bigger clique.

d=2 | &={8,6,2} Take the next vertex to expand.
Cb/1]={8, 2} Bounding rule check: Ca(6)=2 =2<3 - true.
Check the second condition b[2] =2=>2—-1+2<2
Chb/2]={6
/2] =10} — false. We continue search because 3 > /CBC].
Vertex skipping check: 2-1+4+2 <2 =3 <2 -
false. We continue search because 3 > /CBC(].
N(6) = {8}.
d=3 | G={8} cn = 1. Check if number of color classes can possibly
give a larger clique: 3-1+1 <2 =3 <2 We
Cb/1]= {8}

continue search because 3 > /CBC].

Bounding rule check: Ca(8)=1 =>1<3 - true.
Check the second condition b[1]=1=23-1+1<2

— false. We continue search because 3 > /CBC].

Vertex skipping check: 3-14+1<1=3<2 -

false. We continue search because 3 > /CBC(].

Search current vertex neighbors and construct new
depth. N(8) = @.
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Save current clique if it is larger than /CBC/. Current
clique = {10, 6, 8}. 3> 2 —true. /CBC/ ={10, 6, 8}.

Complete iteration. b/3/= 3.

Since there are no more color classes, we stop. The maximum clique is {10, 6, 8} and

its size is three.
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5. Results

In this chapter, we are going to compare the new algorithm to all the previously
described ones. The following algorithms take part in testing: Carraghan and Pardalos,
Ostergard, VColor-u, VColor-BT-u, MCQ, MCR, MCS, MCS Improved and VRecolor-BT-u.

All algorithms were implemented on C# language using Visual Studio 2013
Professional (.NET Framework 4.5).

The first part of this chapter consists of randomly generated graphs. These random
tests give a general overview of algorithms performance and therefore whether a new
algorithm is worth to be used for clique finding. All test cases are divided by graphs density
and for each density different algorithms are being tested. Note that algorithms that perform
much worse compared to others are removed from test results figures to show behavior of the
best algorithms.

The second part contains analysis of algorithm results of DIMACS instances. Each
DIMACS graph has a special structure with response to some specific real problem. Four
algorithms were tested with this benchmark: MCS, MCSI, VColor-BT-u and VVRecolor-BT-u.

5.1 Generated test results

All algorithms were tested on randomly generated graphs. Randomness was generated
using Random class from .NET Framework 4.5 which represents a pseudo-random number
generator. Figure 5.1 demonstrates a function used for generation random graphs, where
Graph is an object containing adjacency matrix inside Values array. Generation function takes
number of vertices and density of a graph as parameters and returns a generated graph object.

public static Graph GenerateGraph(int nodes, double density)

{
int numberOfEdges = Convert.ToInt32 (Math.Round(nodes *
(nodes - 1) *
density / 2, 0));
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var graph = new Graph

{

Values = new bool[nodes, nodes],
Edges = numberOfEdges
}i
var random = new Random() ;
Thread.Sleep(40);

var random?2 = new Random() ;

int x, y;

for (int 1 = 0; i < numberOfEdges; i++)
{
do
{
X = random.Next (0, nodes);
y = random?2.Next (0, nodes);

} while (x == vy || graph.Values[x, v]):;
graph.Values[x, y] = true;
graph.Values[y, x] = true;

}

return graph;

Figure 5.1 Random graph generation code. (C# language)

Figures from 5.2 to 5.5 demonstrate that VRecolor-BT-u consumes the least amount of
time than the fastest of the rest algorithms on sparse graphs where density is lower than 40%.
On graphs where density is very low (about 10%) basic algorithms (Carraghan and Pardalos,
Ostergard) show really good results as they does not perform any additional operations like
coloring, searching for initial solution, reordering and so on. Basic pruning formulas are really
effective on such small density. Although VRecolor-BT-u outperforms them proving that
skipping technique gives overall positive impact, even with a fact that algorithm needs to
spend time for coloring and proving that a vertex can be skipped. On densities from 20% to
40%, the closest to VRecolor-BT-u are results of MCQ and MCR but the new algorithm
performs about 20-25% faster. On all the figures from 5.2 to 5.10 y-axis shows time (in

milliseconds) consumed by tested algorithms to find the maximum clique.
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Figure 5.2 Randomly generated graphs test. Density 10%.
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Figure 5.3 Randomly generated graphs test. Density 20%.
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Figure 5.4 Randomly generated graphs test. Density 30%.
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Figure 5.5 Randomly generated graphs test. Density 40%.
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At first sight, there might be a strange behavior visible on a figure 5.6. VRecolor-BT-u
time consumption is growing faster than MCQ and MCR have. Initially the new algorithm
performs better (about 10%) when number of vertices is low (less than 440). It is clearly seen
that already when number of vertices reaches 500 VRecolor-BT-u falls behind MCQ and
MCR. This behavior can be explained by special constant, which determines what coloring
algorithm is chosen for recoloring. When graphs density is 0.5 (which is our case), there is
still a greedy coloring with swaps used for in-depth coloring, but after 0.55 density we switch
to greedy coloring without swaps and this improvement gives significant impact on overall
performance. If we move to figures 5.7 and 5.8 which demonstrate results on random graphs
with 60% and 70% density you will see that VRecolor-BT-u shows stable best result from all
the algorithms (about 5-10% faster).
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Figure 5.6 Randomly generated graphs test. Density 50%.

72



60%

13000

11000

9000

Time (ms)

7000

5000

3000
300 310 320 330 340 350

Number of vertices

Mcq Mcr Mcs Mcsi VRecolorBtu

Figure 5.7 Randomly generated graphs test. Density 60%.
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Figure 5.8 Randomly generated graphs test. Density 70%.



It is easy to see from figures 5.9 and 5.10 that VRecolor-BT-u algorithm’s
performance is not the best on dense graph. MCS and MCS Improved (MCSI) algorithms
were specially designed for dense graphs and their techniques as in-depth vertex reordering or
initial solution analysis result in lower time consumption. Although the new algorithm still
demonstrates acceptable results and is able to find maximum clique on dense graphs where

most other algorithms cannot.
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Figure 5.9 Randomly generated graphs test. Density 80%.
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Figure 5.10 Randomly generated graphs test. Density 90%.

Based on randomly generated graph results we can conclude with the following
statements:

e Graphs with densities lower than 50% are best solved using VRecolor-BT-u algorithm
e When graphs density is about 50%, there are three algorithms MCQ, MCR and

VRecolor-BT-u that are the fastest but time consumption fluctuates a bit compared to

each other

e If density of graph lies between 55% and 75%, then VRecolor-BT-u algorithm is a
best choice

e For dense graphs with density more than 75%, MCS Improved is fastest algorithm.

5.2 DIMACS test results
In this subchapter, four algorithms are tested on DIMACS graph instances. These

algorithms are MCS, MCSI, VColor-BT-u and VRecolor-BT-u. MCS and MCSI were chosen
for testing because they demonstrated the best results on DIMACS instances of all modern
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algorithms. VColor-BT-u is a predecessor of VRecolor-BT-u and is the best candidate to be
compared with a new algorithm. With these tests, we are adding a new important
characteristic as number of traversed branches. This parameter helps to understand how many
branches each algorithm is analyzing and, of course, the better pruning formulas work the less
branches are created. All considered algorithms are “branch and bound” which means the 1ess
branches analyzed the faster algorithm works. Number of branches demonstrates why one
algorithm works faster than another, but time consumption and number of branches are not in
a linear dependence. There are many factors that influence time consumption and branches
number is only one of them.

Table 5.1 demonstrates that VVRecolor-BT-u algorithm works faster compared to MCS
and MCSI on almost all graphs where density is lower than 0.75. When VColor-BT-u and
VRecolor-BT-u are compared, it is clearly seen that the new algorithm consumes less time for
each test except “hamming” instances and “johnson16-2-4”. This behavior can be explained
simply if we move to table 6-2 and check number of branches created by these two
algorithms. VVRecolor-BT-u creates less branches on all the DIMACS instances taken into
testing compared to VColor-BT-u, which means that on “hamming” instances improvements
from additional skipping formula and recoloring are not giving positive effect on overall
performance. On these specific graph types vertex skipping is almost useless as branch
number reduction is insignificant.

It should be noted that on table 5.2 number of branches between MCS, MCSI and
VColor-BT-u, VRecolor-BT-u pairs vary dramatically, this is a result of two diametrically
different approaches. The first pair is based on Carraghan and Pardalos approach where
initially all the vertices are taken into account and later analyzed graph size is decreasing, on
the other hand Ostergéard’s approach state that we start with the only vertex (the only color
class in VColor-BT-u and VRecolor-BT-u) and later on graph size is growing. This means
that branches by themselves differ a lot (and so number of branches as well) between these
two different approaches.

One more detail about number of branches on table 5.2. There are quite a lot of
instances where MCSI branch number is equal to zero. This algorithm is taking initial clique
size from heuristic algorithm that is, of course, done at the very beginning. When heuristic
solution is equal to the best possible clique size this results in a situation, when it is not

needed to create any branches at all.
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In general, DIMACS instances test proves results gained from randomly generated
graphs testing. VRecolor-BT-u algorithm works better on densities lower than 75%.

Table 5.1 DIMACS graphs results. Time consumption (ms).

Graph Size Density Time (ms)
MCS McCsl VColor- VRecolor-
BT-u BT-u
c-fat500-1.clq 500 0,04 44 229 6 2
c-fat500-10.clq 500 0,37 190 175 18 136
c-fat500-2.clq 500 0,07 27 112 4 1
c-fat500-5.clq 500 0,19 62 100 6 11
gen200_p0.9_44.clq 200 0,9 3867 2103 140082 21045
gen200_p0.9_55.clq 200 0,9 8988 98 3650 2276
hamming10-2.clq 1024 0,99 496 50636 1290 61271
hamming6-2.clg 64 0,9 0 1 0 1
hamming6-4.clg 64 0,35 0 1 0 0
hamming8-2.clg 256 0,97 10 38 22 245
hamming8-4.clg 256 0,64 633 654 3 14
johnson16-2-4.clq 120 0,76 702 800 244 581
johnson8-2-4.clq 28 0,56 0 0 1 0
johnson8-4-4.clq 70 0,77 1 3 0 0
keller4.clq 171 0,65 85 97 133 73
MANN_a27.clq 378 0,99 7201 291385 68105 10231
MANN_a9.clq 45 0,93 0 2 0 0
p_hat1000-1.clq 1000 0,24 2592 2788 3540 2046
p_hat300-1.clq 300 0,24 35 78 15 12
p_hat300-2.clq 300 0,49 108 109 464 238
p_hat300-3.clq 300 0,74 17796 9200 161323 16421
p_hat500-1.clq 500 0,25 110 198 139 91
p_hat500-2.clq 500 0,5 4816 2613 24391 8539
p_hat700-1.clq 700 0,25 386 453 239 236
san1000.clq 1000 0,5 7270 4989 410 945
san200_0.7_1.clq 200 0,7 18 39 889338 1819
san200_0.7_2.clq 200 0,7 16 45 3 5
san200_0.9_1.clq 200 0,9 2166 38 250 51
san200_0.9_2.clq 200 0,9 265 35 2828 1402
san400_0.5_1.clq 400 0,5 57 341 42 29
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Table 5.2 DIMACS graphs results. Number of branches.

Graph Size Density Branches
MCS Mmcsli VColor-BT-u  VRecolor-
BT-u
c-fat500-1.clq 500 0,04 486 0 105 105
c-fat500-10.clq 500 0,37 374 0 8001 8001
c-fat500-2.clq 500 0,07 474 0 351 351
c-fat500-5.clq 500 0,19 436 0 2080 2080
gen200_p0.9_44.clq 200 0,9 38520 16605 72627446 932250
gen200_p0.9_55.clq 200 0,9 124975 544 1629229 97769
hamming10-2.clq 1024 0,99 512 136714 140033 131328
hamming6-2.clg 64 0,9 32 0 569 528
hamming6-4.clg 64 0,35 82 80 138 70
hamming8-2.clg 256 0,97 128 0 8849 8256
hamming8-4.clg 256 0,64 31794 31782 1524 788
johnson16-2-4.clq 120 0,76 237952 256098 489432 323070
johnson8-2-4.clq 28 0,56 26 22 74 44
johnson8-4-4.clq 70 0,77 126 114 692 252
keller4.clq 171 0,65 6978 7317 203053 11236
MANN_a27.clg 378 0,99 9091 1893248 7528324 55389
MANN_a9.clq 45 0,93 43 149 375 189
p_hat1000-1.clq 1000 0,24 120465 116675 5457636 357619
p_hat300-1.clq 300 0,24 1519 964 16737 2538
p_hat300-2.clq 300 0,49 2027 1368 272364 24826
p_hat300-3.clq 300 0,74 228931 121147 88917523 664515
p_hat500-1.clq 500 0,25 7953 7374 213594 19821
p_hat500-2.clq 500 0,5 63031 28547 11620047 584983
p_hat700-1.clq 700 0,25 22447 13656 304679 45157
san1000.clqg 1000 0,5 83831 0 57284 13356
san200_0.7_1.clq 200 0,7 403 0 2241214630 547738
san200_0.7_2.clq 200 0,7 768 0 1490 398
san200_0.9_1.clq 200 0,9 31555 0 97985 3350
san200_0.9_2.clq 200 0,9 2063 0 1502178 87250
san400_0.5_1.clq 400 0,5 1562 0 16340 1241
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6. Conclusion

The main topic of this study was to develop a new improved algorithm for maximum
clique finding. Only undirected, unweighted graphs were researched. Importance of the
problem was stated in subchapter 1.3. Clique finding problem belongs to the NP-complete
class, which means that finding a better algorithm for this kind of problems allows improving
all the problems transformed to it. That is why better understanding of the clique problem
provides us with a better solution for almost any other NP problem. As currently described
problem belongs to NP-compete, all the existing algorithms complexity (for this problem) can
be described with exponential functions, which means that even a small increase in the size of
the problem can result in additional days or weeks of work time. Therefore, development of a
better algorithm even for some specific graph groups can save this working time and can

seriously influence different areas of real life.

6.1 Summary

With this resume, we are going to summarize all the work done to reach the goals
stated in the chapter 1.4. They all are successfully completed and described in the current
work. Although, there is enough space for further improvements, that will be presented in the
next subchapter.

The two basic algorithms for finding maximum clique are studied in chapter 2 giving
introduction to branch and bound algorithms. There are two general approaches of traversing
a graph. The first one is Carraghan and Pardalos algorithm [Carraghan, Pardalos 1990], which
starts considering all the vertices of a graph. On the other hand, the second approach is
demonstrated by Ostergard’s algorithm that uses reversed search, taking into account only one
vertex initially and constantly adds vertices one by one. In addition, other basic coloring,

independent set and vertex cover finding heuristic algorithms are reviewed.
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Chapter 3 contains description of the most efficient modern algorithms nowadays.
Studying these algorithms allows understanding what are the main properties and upgrades,
which influence algorithms performance the most. VColor-u and VColor-BT-u algorithms
published by D. Kumlander [Kumlander 2005] demonstrate a high positive impact of heuristic
coloring on exact algorithms performance. What is more D. Kumlander applied coloring to
both basic approaches of finding maximum clique. Such algorithms as MCQ [Tomita, Seki
2003], MCR [Tomita, Kameda 2007] and MCS [Tomita, Sutani, Higashi, Takahashi,
Wakatsuki 2010] show that initial vertex ordering does matter and needs to be chosen
properly. Moreover, in-depth heuristic coloring proved its efficiency and confirmed the fact
that only initial coloring is not enough as the deeper search goes the more diffused initial
color classes become. MCS algorithm introduced a notion of color number threshold and
demonstrated how it can be successfully used to reduce the amount of expanded vertices,
therefore lowering unnecessary branch creation. Finally, MCS Improved algorithm [Batsyn,
Goldengorin, Maslov, Pardalos 2014] showed that initial clique value obtained using good
heuristic combined with in-depth clique vertices analysis can sometimes reduce the number of
produced branches dramatically. As can be clearly seen from all the modern algorithm
heuristic has a great positive overall impact on the clique finding exact algorithms.

The new maximum clique algorithm called VRecolor-BT-u is demonstrated in chapter
4. This algorithm is a successor of VColor-BT-u and is constructed based on reversed search
by color classes. The main idea of the new algorithm is quite simple: we need to apply
coloring on each depth to preserve the most up-to-date color classes and combine updated
vertex colors with the reversed search approach. At the first sight, the idea of in-depth
recoloring might be unclear as reversed search is built around initial color classes, but
introduction of a new skipping technique instead of pruning allows avoiding this conflict.
Furthermore, there are two different greedy coloring algorithms (with swaps and without
swaps) used for initial and in-depth coloring. Experimentally gained constants, which depend
on graph density, determine which coloring is applied (subchapter 4.2). The algorithm is
described as a step-by-step operation set in subchapter 4.3. The previous experience with
different algorithms realization shows that it is very easy to miss or distort the meaning of
some inaccurately described details. Each small mistake in implementation might lead to
extreme performance drops or result in improper solutions. To prevent such cases there are

two examples in subchapters 4.4 and 4.5 which demonstrate VRecolor-BT-u workflow in
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details. Moreover, the implementation of the new algorithm, written in C# language, is
attached in the appendix 1. These subchapters make it easy to understand and implement the
new algorithm and the exact implementation on a real programming language allows
excluding all the possible misunderstandings.

One of the most important things to do with a new algorithm is a proper testing. All
the implemented algorithms were compared using two types of tests in chapter 5. The first
one is randomly generated graphs tests. Generated tests allow obtaining comparative diagrams
that graphically demonstrate time consumption of different algorithms. The new algorithm
shows the best results on the graphs with low or average densities and loses only on dense
graphs to MCS and MCSI algorithms specially designed for high densities. The second type
of testing is DIMACS benchmark instances. Firstly, these instances already contain the best
solution, so small DIMACS graph are very convenient to use as the smoke tests for a new
algorithm. Secondly, these test instances allows testing the algorithm on close to real life
problems as they are constructed based on real tasks. Moreover, in addition to time
consumption comparison there are branch number results. Number of branches is not the
primary characteristic but allows explaining why one algorithm works faster or slower than
the other does. VRecolor-BT-u produces less branches that its predecessor for all the
DIMACS instances. However, there are some cases where the new algorithm consumes more
time. Decreasing branch number resulting in performance degradation might be misleading at
a glance, but can be described with a simple fact that on some special cases additional in-
depth recoloring consumes a lot of time while skipping technique is practically not working.
As a result, we have a slightly lower branch number but increased time consumption.

Finally, it was noted that each graph should be solved by a different algorithm with
response to graphs density. On low to mid densities, it is advised to use VRecolor-BT-u

algorithm while the best option for dense graphs is MCS Improved algorithm.

6.2 Future studies

In this subchapter, we are going to introduce some ideas for further studies. First of

all, there are multiple possible improvements for VRecolor-BT-u algorithm:
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e Improved initial coloring. Only greedy coloring is currently applied, but the less color
classes we have the less iterations will be performed. Moreover, initial coloring is
applied only once before branching starts, which means that there might be more
complex and time-consuming coloring applied. That time spend on initial coloring
should be compensated due to reduction of iterations number.

e Improved in-depth coloring. As long as recoloring is used each time a new branch is
created, it is not acceptable to apply any time consuming in-depth coloring algorithm.
There should be a balanced solution found between the “good” coloring and time
consumption. What is more, “good” recoloring does not mean the least number of
color classes; the main goal is to assign as much vertices as possible to color numbers
that are lower or equal to the threshold value. Well optimized for these specific needs
coloring algorithm might be a key to imposing performance improvements.

e Overall subgraph analysis on each new iteration. With each iteration, we are adding a
new color class into consideration. As we know this might increase current clique
value by one at maximum. The easiest way of analysis is to check whether any vertex
of a new color class can be added to the already existing clique. If yes, then the whole
iteration can be skipped. There might be the more complex ways of analysis
introduced such as obtaining maximum clique of a new subgraph by heuristic
algorithm. If heuristically gained value is bigger than current clique, then iteration is
skipped.

As rough computational results show, when using Carraghan and Pardalos searching
approach (without reversed search), largest clique is found at 30% of total time consumed.
The rest 70% algorithm is trying to prove that current clique is the largest one. The situation
can be even worse on dense graph with a lot of parallel cliques with the same size. Incomplete
solution and excessive expectations are two interesting topics to be studied that might
improve this field. Incomplete solution studies how fast the maximum clique is found. Using
this data, we might predict at what point we have already obtained solution. After that point
there should be a way, other that analyzing all the rest vertices, to prove that current clique is
the largest one. Excessive expectation is a proposal of searching a clique with initial clique
value n larger than expected. If an excessive clique is not found this means that value n is an
upper bound for the maximum clique. Combination of these two approaches might fasten

already existing algorithms even more.

82



Kokkuvotte

Selle uurimistd6 pohiteemaks on valja tootada uus taiustatud algoritm suurima Kkliki
leidmiseks. Uuuritud on ainult orienteerimata ja kaalumata graafe. Probleemi olulisus on vélja
toodud alapeatiikis 1.3. Klikileidmise problem kuulub NP-téielik-klassi, mis tdhendab, et
sedalaadi probleemide lahendamiseks parema algoritmi leidmine vGimaldab lahendada kdiki
probleeme, mis on selliseks Umber muudetud. Seet6ttu klikiprobleemi parem mdistmine
pakub meie jaoks paremat lahendust peaagu igale muule NP probleemile. Kuna praegu
Kirjeldatud probleem kuulub NP-taieliku hulka, siis ko&igi olemasolevate algoritmide
keerukust (selle probleemi jaoks) saab kirjeldada eksponentfunktsiooni abil, mis tdhendab, et
pisimgi probleemi suuruse tdus voib kaasa tuua lisatoopaevi voi isegi nadalaid. See tahendab,
et parema algoritmi valjatddtamine kas v6i mone spetsiifilise graafirihma jaoks s&astab

tooaega ning avaldab olulist mdju erinevatele reaalelu valdkondadele.

Tehtud t66

Selle resuimeega vdtame kokku kogu t60, mis on tehtud selleks, et saavutada peattkis
1.4 kirjeldatud eesmérke. K&ik on edukalt 18pule viidud ja kirjeldatud kdesolevas t66s. Ehkki
muidugi oleks ruumi veel edasisekski taiustamiseks, mida kirjeldatakse jargmises alapeatiikis.

Kahte p6hialgoritmi maksimaalse kliki leidmiseks kasitletakse 2. peatukis, kus on ka
sissejuhatus harude-tdkete algoritmidele. On kaks peamist |&henemisviisi graafist ule
liikumiseks. Kiireim on Carraghani and Pardalos algoritm [Carraghan, Pardalos 1990], mis
hakkab arvestama graafi k&iki tippe. Teisest kiljest, teistsugust lahenemisviisi tutvustab
Ostergardi algoritm, mis kasutab pddrdotsingut, vottes alguses arvesse ainult (iht tippu,
seejarel lisab Ukshaaval tippe juurde. Lisaks vaadeldakse muid pdhivarve, s6ltumatut hulka ja
tipu katet, mis aitavad leida heuristilisi algoritme.

3. peatiikis on ténapdeva kdige tbhusamate ja moodsamate algoritmide kirjeldus.
Nende algoritmide uurimine aitab aru saada nende pohilistest omadustest ja uuendustest, mis

algoritmide suutlikkust kdige rohkem mojutavad. D. Kumlanderi poolt avaldatud VVColor-u ja
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VColor-BT-u algoritmid [Kumlander 2005] demonstreerivad heuristilise varvimise korget
positiivset mdju algoritmi t&psele soorituskiirusele. Veelgi enam, D. Kumlander rakendas
varvimist mélema pdhildhenemisviisi puhul suurima Kliki leidmiseks. Sellised algoritmid
nagu MCQ [Tomita, Seki 2003], MCR [Tomita, Kameda 2007] ja MCS [Tomita, Sutani,
Higashi, Takahashi, Wakatsuki 2010] nditavad, et algne tippude jarjestus on oluline ja seda
tuleb hoolikalt valida. Veelgi enam, sugavuti heuristiline varvimine tdestas oma tdhusust ja
kinnitas fakti, et esialgne varvimine ei ole piisav, ja mida pdhjalikum on uurimine, seda
laialivalguvamaks muutuvad algsed varviliigid. MCS algoritm vottis kasutusele varvinumbrite
mdiste ning demonstreeris, kuidas on v@imalik véhendada avardatud tippude arvu, mis
omakorda vadhendab tarbetut harude loomist. LOpuks MCS téiustatud algoritm Batsyn,
Goldengorin, Maslov, Pardalos 2013] naitas, et esialgne klikivéaartus, mis saavutati kasutades
head heuristikat kombinatsioonis sligavuti teostatud klikitippude analtlsiga vdib mdnikord
dramaatiliselt vdhendada toodetud harude arvu. On selge, et moodsate algoritmide puhul on
heuristikal tohutu positiivne moju tépsete algoritmide klikileidmisele.

Uut suurima kliki mehhanismi nimega VRecolor-BT-u’d kirjeldatakase 4. peatiikis.
See algoritm on VColor-BT-u jareltulija ning on Kkonstrueeritud varviliikide poolt
poordotsingu pdhjal. Uue algoritmi idee on sna lihtne: kanname vérvi peale igal stigavusel,
et séilitada kdige uuemaid vérviliike ja kombineerida uusimaid tipuvarve poordotsingu abil.
Esmapilgul vdib idee sugavuti Ulevarvimisest tunduda ebareaalsena, kuna pdérdotsing
pdhineb algsetel varviliikidel, kuid uus vahelejatmistehnika kérpimise asemel vdimaldab
sellise konflikti valtimist.

Lisaks on kaks erinevat ahnet varvivat algoritmi (vérvivahetusega ja ilma), mida
kasutatakse nii esialgseks kui stigavuti varvimiseks. Katse tulemusena saadud konstandid, mis
olenevad graafi tihedusest, maaravad ara, millist varvi kasutada (alapeatiikk 4.2). Algoritmi
kui samm-sammult teostatavat tegevuste jada kirjeldatakse alapeatikis 4.3. Eelnevad
kogemused erinevate algoritmide teostamisel néitavad, et on véga lihtne tdhelepanuta jatta voi
moonutada moningaid ebatdpselt kirjeldatud (ksikasjade t&hendusi. lga pisemgi viga
algoritmi rakendamisel vdib tuua kaasa soorituse halvenemise voi ebabige lahenduse. Selliste
juhtumite drahoidmiseks on alapeatiikkides 4.4 ja 4.5 toodud kaks ndidet, mis
demonstreerivad (ksikasjalikult VVRecolor-BT-u tooprotsessi. Lisaks sellele on C# keeles

Kirjutatud uue algoritmi rakendusjuhend manusena Lisas 1. Need alapeatiikid muudavad uue
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algoritmi  mdistmise  ja  rakendamise lihtsamaks. Tédpne rakendamine  péris
programmeerimiskeeles aitab vélistada kdikvoimalikke arusaamatusi.

Uks véga oluline asi uue algoritmi puhul on korralik testimine. Kdiki rakendatavaid
algoritme vorreldi kaht liiki testide abil peatikis 5. Esimene neist on juhuslikult genereeritud
graafitest. Genereeritud testid vdimaldavad saada vordlevaid diagramme, mis néitavad
graafiliselt erinevate algoritmide tarbimist. Uus algoritm néitab parimaid tulemusi madala voi
keskmise tihedusega graafil, jaddes alla ainult tihedatele graafidele MCS ja MCSI algoritmide
jaoks, mis ongi spetsiaalselt disainitud kdrgete tiheduste jaoks. Teine testimisliik on DIMACS
vOrdlused. Esiteks, need ndited sisaldavad juba iseenesest parimat lahendust, nii et vaikesed
DIMACS graafid on viga sobilikud kasutamiseks ”suitsutestidena” uue algoritmi jaoks.
Teiseks, sel viisil saab testida algoritme reaalse elu probleemide jaoks, kuna nende
valjatodtamine pbhineb reaalelu Ulesannetel. Veelgi enam, ajakulu vordluse kdrval naitavad
nad ka harude arvu tulemusi. Harude arv pole kill kdige olulisem karakteristik, kuid annab
selgust selles, miks (ks algoritm toimib kiiremini kui teine. K8ik DIMACS juhtumid
naitavad, et VRecolor-BT-u toodab védhem harusid kui tema eelkéija. Ometi on juhtumeid, kus
uus algoritm vajab rohkem aega. Vahenev harude arv, mille tulemuseks on jéudluse
ndrgenemine, voib olla esmapilgul eksitav, aga seda seletab lihtne fakt, et teatud juhtudel
stigavuti Ulevarvimine votab palju aega, samal ajal kui vahelejatutehnika prakiliselt ei toimi.
Tulemuseks on véiksem harude arv, aga suurem ajakulu. Lopuks téheldati, et iga graaf tuleks
lahendada erineva algoritmi abil, mis vastab graafi tihedusele. Madala ja keskmise tiheduse
puhul on soovitav kasutada VVRecolor-BT-u algoritmi, suurema tihedusega graafide puhul on

parim variant MCS Improved (taiustatud) algoritm.

Tulevased uuringud

Selles alapeatlkis tutvustame mdnigaid ideid edasisteks uurimusteks. Kdigepealt on
mitmeid vdimalikke taiustusi VRecolor-BT-u algoritmi jaoks:

e Taiustatud esialgne varvimine. Momendil on saada ainult ahnet vérvimist, kuid mida
vahem varviliike me kasutame, seda vahem iteratsioone toimub. Veelgi enam, esialgne
varvimine tehakse ainult Uks kord, enne kui harude moodustamine algab, mis
tdhendab, et vOib ette tulla keerulisemat ja rohkem aegandudvat varvimist. Aeg, mis
kulutatakse esialgsele varvimisele, peaks saama Kkorvatud iteratsioonide arvu

vahendamisega.
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e Tdiustatud stigavuti varvimine. Nii kaua kui iga uue haru loomise puhul viiakse l&bi
ulevarvimine, ei ole vastuvdetav, et kohaldatakse mistahes aegandudvat slgavuti
véarvimise algoritmi. Tuleks leida tasakaalustatud lahendus /ea” varvimise ja vastava
ajakulu vahel. Edasi, "hea” Ulevarvimine ei tdhenda voimalikult vaheseid varviliike,
pdhieesmargiks on vastavusse seada nii palju tippe kui voimalik, nii et see oleks
madalam kui piirvaértus voi sellega vordne. Kui nende spetsiifiliste vajadustega
optimaalselt Gmber kéia, vGib véarvimise algoritm olla voti joudluse tdstmise jaoks.

e Uldine alamgraafi analtilis iga uue iteratsiooni puhul. lga iteratsiooni puhul vdtame
kaalumisele uue varviliigi. Nagu teame, see vOib tdsta praegust klikivaartust
maksimaalselt 1 vdrra. Lihtsaim viis analliusi teha on kontrollida, kas thtegi uut
varviliiki saab lisada olemasolevale klikile. Kui saab, siis v8ib kogu iteratsiooni dra
jatta. On olemas kindlasti ka keerulisemaid viise analliiside tutvustamiseks, nagu
naiteks saavutada uue alamgraafi suurim klikk, kasutates heuristilist algoritmi. Kui
heuristilisel teel saadud vaartus on suurem, kui kaesolev Klikk, siis iteratsioon jéetakse
vahele. Olles nende spetsiifiliste vajaduste jaoks hasti optimeeritud, v6ib varviv
algoritm olla vdtmeks sooritusjéudluse parandamisel.

Nagu todtlemata arvutuslikud tulemused néitvad, kasutades Carraghani ja Pardalose
otsivat lahenemisviisi (jattes vélja poordotsingu), siis suurim leitud klikk oli 30% kogu
kulutatud ajast. Ulejaanud 70% algoritm (iritab tdestada, et kaesolev klikk on suurim. Olukord
vOib olla hullem tiheda graafi puhul, millel on palju Ghesuguse suurusega paralleelklikke.
Puudulik lahendus ja liigne ootus on kaks huvitavat teemat, mille uurimine voOiks seda
valdkonda paremaks muuta. Puudulik lahendus uurib, kui kiiresti on vdimlik leida kiireimat
klikki. Seda andmebaasi kasutades vOime ennustada, mis hetkel lahenduseni jéutakse.
Seejarel tuleb leida viis, mdni muu kui kdigi ulejaanud tippude analulsimine, tdestamaks et
just see klikk on kdige suurem. Liigne ootus on sellise kliki otsimine, mille esialgne vééartus n
on oodatust kdrgem. Kui liigset klikki ei leita, tdhendab see, et vdartus n on suurima kliki
jaoks ulempiir. Nende kahe l&henemisviisi hendamine vOib juba olemasolevaid algoritme

veelgi enam kiirendada.

86



References

Andrade DV, Resende MGC, Werneck RF (2012) Fast local search for the maximum
independent set problem. J Heuristics 18(4), pp 525-547

Batsyn M., Goldengorin B., Maslov E., Panos M. Pardalos (2014) Improvements to MCS
algorithm for the maximum clique problem. Journal of Combinatorial Optimization 27(2), pp
397-416

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Op.
Research Letters 9, pp 375-382

Chartrand G (1985) The Konigsberg Bridge Problem: An Introduction to Eulerian Graphs,
Introductory Graph Theory. New York: Dover 3(1), pp 51-60

Clarkson K. (1983) A modification to the greedy algorithm for vertex cover problem,

Information Processing Letters 16(1), pp 23-25

Cook SA (1971) The complexity of theorem proving procedures, Proceedings of the 3™
Annual ACM Symposium on Theory of Computing, pp 151-158

Garey MR, Johnson DS (2003) Computers and Intractability: A Guide to the Theory of NP-

completeness, Freeman, New-York
Kumlander D. (2005) Some Practical Algorithms to Solve The Maximum Clique Problem

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. J Global Optim 37(1), pp 95-111

Tomita E, Seki T (2003) An efficient branch-and-bound algorithm for finding a maximum
clique. In: Proceedings of the 4th international conference on discrete mathematics and

theoretical computer science, DMTCS’03. Springer-Verlag, Berlin, Heidelberg, pp 278-289

87



Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A simple and faster
branch-and-bound algorithm for finding a maximum clique. In: Proceedings of the 4th
international conference on algorithms and computation, WALCOM’10. Springer-Verlag,
Berlin, Heidelberg, pp 191-203

Ostergard PRJ (2002) A fast algorithm for the maximum clique problem, Discrete Applied
Mathematics 120, pp 197-207

Clique Benchmark Instances ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

The  Microsoft  Developer  Network  (MSDN)  https://msdn.microsoft.com/en-
us/library/system.random(v=vs.110).aspx

88



Appendix 1

Base class Algorithm

using System.Diagnostics;
using MaximumClique.Base;

namespace MaximumClique.NewAlgorithms

{
public abstract class Algorithm

{

protected readonly Stopwatch stopwatch = new
Stopwatch() ;

private bool solved;

protected Graph Graph;

protected Algorithm(Graph graph)

{
Graph = graph;
SolutionFoundElapsed = 1;
}

#region Properties

public bool IsSolved

{
get

{

return solved;

}
}

public double Elapsed

{
get { return stopwatch.ElapsedMilliseconds; }

}

protected long branches;
public long Branches

{

get { return branches; }

}
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public double SolutionFoundElapsed { get; protected

set; }
private int nodesNumber = -1;
protected int NodesNumber
{
get
{
return nodesNumber == -1 ? ( nodesNumber =
Graph.Values.GetLength(0)) : nodesNumber;

}
}

public abstract int Result { get; }
#endregion //Properties
protected abstract void Solution();

public void Start()

{
_stopwatch.Start () ;
Solution() ;
_stopwatch.Stop() ;
_solved = true;

VRecolor-BT-u algorithm

using System.Ling;
using MaximumClique.Base;

namespace MaximumClique.NewAlgorithms

{
public class VRecolorBtu : Algorithm

{
private int maxCliqueSize;
private int[,] levelNodes;
private int initialColorsNumber;
private int[][] initialColorClasses;
private int[] initialNodesNumInColorClass;
private int[] initialColors;
private int[,] inDepthColors;
private int[] numberOfNodesArr;
private int[] inDepthElementIndex;
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private int[,] skippedNodes;
private int[] skippedNodesNumber;
private int[] cache;

public VRecolorBtu(Graph graph)
base (graph)
{
levelNodes = new int[NodesNumber, NodesNumber];
initialColorClasses = new int[NodesNumber][]:

initialNodesNumInColorClass = new
int [NodesNumber];
initialColors = new int[NodesNumber];

inDepthColors = new int[NodesNumber, NodesNumber];
numberOfNodesArr = new int[NodesNumber + 1];
inDepthElementIndex = new int[NodesNumber + 1];

skippedNodes = new int[NodesNumber, NodesNumber]:;
skippedNodesNumber = new int[NodesNumber + 1];
cache = new int[NodesNumber];

}

public override int Result

{

get { return maxCliqueSize; }

}

protected override void Solution()
{
if (Graph.Density < )
InitialColoringWithSwaps() ;
else
InitialColoring() ;

var inDepthDegree = new int[NodesNumber]:;
for (int ¢ = 0; ¢ < initialColorsNumber; c++)
{
skippedNodesNumber[0] = O;
int depth = 0;
numberOfNodesArr[depth] = 0;
inDepthDegree[depth] = 0O;
for (int i = 0; i <= c; i++)
{
for (int j = 0; 7 <
initialNodesNumInColorClass[i]; J++)
{
levelNodes[depth,
numberOfNodesArr[depth]] = initialColorClasses[i][]]:
numberOfNodesArr[depth]++;

}
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}
inDepthElementIndex[depth] =

numberOfNodesArr [depth] - 1;
while (depth >= 0)
{
int inDepthIndex =
inDepthElementIndex[depth];
if (inDepthIndex == -1)
{
depth--;
continue;

}
int p = levelNodes[depth, inDepthIndex];

var color = initialColors[p - 11;
if (color < c + && depth + cache[color -
] <= maxCliqueSize)
{
depth--;
continue;

}
if ((depth + inDepthColors[depth, p - 1]

<= maxCliqueSize) &&
CanBeSkipped(inDepthIndex, depth, c + 1))

{
skippedNodes[depth,

skippedNodesNumber [depth]l] = p;
skippedNodesNumber [depth]++;
inDepthElementIndex[depth]--;
continue;

}

branches++;

int prevDepth = depth;

depth++;
numberOfNodesArr[depth] = 0;
inDepthElementIndex[depth] = 0O;

for (int 1 = 0; i < inDepthIndex; i++)
{
if (Graph.Values[levelNodes[prevDepth,

inDepthIndex] - 1, levelNodes[prevDepth, i] - 11])

{
levelNodes[depth,

numberOfNodesArr[depth]] = levelNodes[prevDepth, i]l;
numberOfNodesArr [depth]++;
}

}
for (int i = skippedNodesNumber [prevDepth]

- 1; 1>=0; i--)

{
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if (Graph.Values[levelNodes[prevDepth,
inDepthIndex] - 1, skippedNodes|[prevDepth, i] - 11)
{
levelNodes[depth,
numberOfNodesArr[depth]] = skippedNodes|[prevDepth, il;
numberOfNodesArr [depth]++;

}

inDepthElementIndex[depth] =
numberOfNodesArr[depth] - 1;

if (numberOfNodesArr[depth] > 0)
{
int colNum = Graph.Density < ?
RecolorWithSwaps (depth) : Recolor (depth);

if (depth + colNum <= maxCliqueSize)
depth--;
}
else
{
if (depth > maxCliqueSize)
{
maxCliqueSize = depth;
break;
}
depth--;
}
inDepthElementIndex[prevDepth]--;

}

cache[c] = maxCliqueSize;

}

private bool CanBeSkipped(int vertIndex, int depth,
int currentColor)
{
int threshold = maxCliqueSize - depth;
int vert = levelNodes[depth, vertIndex];

// on current depth on what vertex index we will
cut??

// if (color < ¢ + 1 && depth + cachel[color - 1]
<= maxCliqueSize){ depth--; }

int initialColorThresholdIndex = -1;

for (int i = vertIndex - 1; i >= 0; i--)

{
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int vert2 = levelNodes[depth, i];
if (initialColorThresholdIndex == =1)
{
int color = initialColors[vert2 - 1];
if (color < currentColor && cache[color -
] <= threshold)
{
initialColorThresholdIndex = i;
break;

}

// if we want to skip a vertex, we have to check
if current vertex

// 1s adjacent to any vertex INSIDE vertices that
will be CUT!! (from initialColorThresholdIndex to zero) on
this depth

// with color higher than threshold

for (int i = initialColorThresholdIndex; i >= 0;
i--)

{
int vert2 = levelNodes[depth, i];
if (Graph.Values[vert - 1, vert2 - 1])
{
if (inDepthColors[depth, vert2 - 1] >
threshold)
return false;
}
}
return true;
}

public int FindNumberOfColorClasses (int depth, int
numberOfNodes)
{

int nPrevColor = 0;

int numberOfColorClasses = 0;
for (int 1 = 0; i < numberOfNodes; i++)
{
int currentColor =
initialColors[levelNodes[depth, 1] - 11;
if (currentColor !'= nPrevColor)
{
numberOfColorClasses++; nPrevColor =
currentColor;

}
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return numberOfColorClasses;

}

private void InitialColoring()

{
var verticesWithDegrees = new int[NodesNumber][]:;
// count degrees of vertices

for (int 1 = 0; i < NodesNumber; i++)
{
verticesWithDegrees[i] = new int[2];
verticesWithDegrees[i][0] = 1 + 1;
}
for (int i1 = 0; i < NodesNumber; i++)
for (int Jj = 1i + 1; j < NodesNumber; j++)
if (Graph.Values[i, J1)
{

verticesWithDegrees[i] [1]++;
verticesWithDegrees[j][1]++;
}

// order vertices by degree
var orderedVertices =
verticesWithDegrees.OrderByDescending (i => i[1]) .ToArray (),

// color vertices, find color classes
for (int i = 0; i < NodesNumber,; i++)
{
int vert = orderedVertices[i][O0];
bool isAdded = false;

for (int j = 0; J < initialColorsNumber; j++)
{
bool connected = false;
for (int k = 0; k <
initialNodesNumInColorClass[j]; k++)
{
if (Graph.values[vert - 1,
initialColorClasses[j][k] - 11)
{
connected = true;
break;
}
}
if ('connected)
{
initialColorClasses[Jj] [initialNodesNumInColorClass[j]] = vert;
initialColors[vert = 1] = J + 1;
inDepthColors[0, vert = 1] = 3 + 1;

95



initialNodesNumInColorClass[]j]++;
isAdded = true;

break;
}
}
if ('isAdded)
{

initialColorClasses[initialColorsNumber] =
new int[NodesNumber];

initialColorClasses[initialColorsNumber] [initialNodesNumInColo
rClass[initialColorsNumber]] = vert;

initialNodesNumInColorClass[initialColorsNumber]++;
initialColorsNumber++;

initialColors[vert = 1] =
initialColorsNumber;
inDepthColors[0, vert - 1] =
initialColorsNumber;
}
}
}
private void InitialColoringWithSwaps ()
{
var array = new int[NodesNumber];
for (int i = 0; i1 < NodesNumber; i++)
arrayl[i]l =1 + 1;

int colored = 0;
initialColorsNumber = 0;
while (true)

{

initialColorClasses[initialColorsNumber] = new
int [NodesNumber] ;

initialColorClasses[initialColorsNumber] [initialNodesNumInColo
rClass[initialColorsNumber]] = array[colored];

initialNodesNumInColorClass[initialColorsNumber]++;
initialColorsNumber++;
initialColors[array[colored] - 1] =
initialColorsNumber;

inDepthColors[0, array[colored] - 1] =
initialColorsNumber;

colored++;
int lowerBound = colored -

.
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array[j]

for (int i = colored; i < NodesNumber; i++)
{
bool canBeColored = true;
for (int j = lowerBound; Jj < colored; j++)
if (Graph.valuesl[array[i] - 1,
- 11)
{
canBeColored = false;
break;
}
if (canBeColored)
{
if (i '= colored)
{
var node = arrayl[i];
array[i] = array[colored];
arrayl[colored] = node;

}

inDepthColors[0, array[colored] - 1] =

initialColorsNumber;

initialColors[array[colored] - 1] =

initialColorsNumber;

initialColorClasses[initialColorsNumber -
][initialNodesNumInColorClass[initialColorsNumber - 1]] =
arrayl[colored];

initialNodesNumInColorClass[initialColorsNumber - 1]++;
colored++;

}

}

if (colored == NodesNumber)
break;

}
}

private int Recolor (int depth)
{
int colorsNumber = 0;
var colorClasses = new int[NodesNumber][]:;
var nodesNumInColorClass = new int[NodesNumber];
skippedNodesNumber [depth] = 0;
// color vertices, find color classes
for (int i = 0; i < numberOfNodesArr[depth]; i++)
{
int vert = levelNodes[depth, i];
bool isAdded = false;

for (int j = 0; 7 < colorsNumber; Jj++)
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bool connected = false;
for (int k = 0; k <
nodesNumInColorClass[j]; k++)
{
if (Graph.Values[vert - 1,
colorClasses[jl[k] - 11)
{
connected = true;
break;
}
}
if ('connected)
{
colorClasses[j] [nodesNumInColorClass[j]] = vert;
inDepthColors[depth, vert - 1] = j +
nodesNumInColorClass[j]++;
isAdded = true;
break;
}

}
if (!isAdded)

{

colorClasses[colorsNumber] = new
int [NodesNumber] ;

colorClasses[colorsNumber] [nodesNumInColorClass[colorsNumber]]

= vert;
nodesNumInColorClass[colorsNumber]++;
colorsNumber++;
inDepthColors[depth, vert - 1] =

colorsNumber;
}
}

return colorsNumber;

}

private int RecolorWithSwaps(int depth)
{
int colorsNumber = 0;
int length = numberOfNodesArr|[depth];
skippedNodesNumber [depth] = 0;
int colored = 0;
var array = new int[length];
for (int i = 0; i < length; i++)
{
array[i] = levelNodes[depth, i];
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}

while (true)

{

colorsNumber++;
inDepthColors[depth,
colorsNumber;
colored++;
int lowerBound = colored -
for (int i = colored;
{
bool canBeColored
for (int j = lowerBound;
if (Graph.Values[array[i]
array[j]l - 11)
{
canBeColored = false;
break;
}
if (canBeColored)
{
if (i '= colored)
{
var node =
array[i]
arrayl[colored]
}
inDepthColors[depth,
] = colorsNumber;
colored++;
}
}
if (colored == length)
break;

}

return colorsNumber;
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