
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Computer Science

Timo Loomets 211539IAPM

MOTION AND PATH PLANNING FOR A DIFFERENTIAL

DRIVE ROBOT IN MAPPED SIDEWALK ENVIRONMENTS

USING A CUSTOM TREE SEARCH TO FIND SMOOTH,
SAFE AND ECONOMIC TRAJECTORIES

Master’s thesis

Supervisors
Thomas Schildhauer

MSc
Asko Ristolainen

PhD

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Informaatika

Timo Loomets 211539IAPM

LIIKUMISE JA TEEKONNA PLANEERIMINE

DIFFERENTSIAAL KONTROLLIGA ROBOTILE

KAARDISTATUD KÕNNITEE KESKKONNAS KASUTADES

PUUOTSINGUT, ET LEIDA SUJUVAT, OHUTUT JA

SÄÄSTLIKKU TRAJEKTOORI
magistritöö

Juhendaja
Thomas Schildhauer

MSc
Asko Ristolainen

PhD

Tallinn 2023

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt
varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised
seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

Autor: Timo Loomets

05.05.2023

3

Abstract

MOTION AND PATH PLANNING FOR A DIFFERENTIAL
DRIVE ROBOT IN MAPPED SIDEWALK ENVIRONMENTS

USING A CUSTOM TREE SEARCH TO FIND SMOOTH, SAFE
AND ECONOMIC TRAJECTORIES

The purpose of this thesis is to analyze existing ideas in motion and path planning
and develop a solution for online planning that can be run locally on a robot. Several
requirements such as speed, smoothness and safety of the path by the proposed solution
were validated from a pedestrian’s and the robot’s perspective. The thesis was written in
collaboration with Starship Technologies.

The thesis contains a comparison of the current solution used by Starship Technologies and
the proposed solution based on various simulated test cases. CPU load is also measured
and compared on a real robot for realistic results. The complexity and capabilities of the
proposed solution are also compared to A*, RRT and costmap solutions.

The thesis shows how the proposed solution has advantages in terms of time and space
complexity. It also notes that the proposed solution has exponential complexity related to
the explored distance which makes it acceptable for local path planning but suboptimal for
global path planning.

This thesis is written in English and is 44 pages long, including 5 chapters, 10 figures, and
2 tables.

4

Annotatsioon

Selle lõputöö eesmärk on analüüsida olemasolevaid ideid teekonnaplaneerimisel ja töötada
välja reaalajas planeerimise lahendus, mida saab robotil lokaalselt kasutada. See lahendus
peab arvestama mitme kriteeriumiga, nagu kiirus, sujuvus ja teekonna ohutus. Need on
vajalikud, sest robotid peavad keerulises kõnniteekeskkonnas liikudes inimestega läbi
saama. Töö on kirjutatud koostöös firmaga Starship Technologies.

Lõputöö sisaldab võrdlust Starship Technologies poolt praegu kasutatava lahendusega ja
arendatud lahenduse käitumise võrdlust. Need võrdlused sooritatakse simuleeritud testidel.
Reaalsete tulemuste saamiseks mõõdetakse ja võrreldakse ka protsessori koormust päris
robotil. Ka pakutud lahenduse keerukust ja võimalusi võrreldakse A*, RRT ja costmap
lahendustega.

Lõputöö näitab, kuidas pakutud lahendusel on eelised aja ja ruumi keerukuses. Samuti
kirjeldatakse välja pakutud lahenduse eksponentsiaalset keerukust teekonna pikkusega,
mistõttu on see kohaliku tee planeerimise jaoks vastuvõetav, kuid globaalse tee
planeerimise jaoks ebaoptimaalne.

Lõputöö on kirjutatud ingliskeeles ning sisaldab teksti 44 leheküljel, 5 peatükki, 10 joonist,
2 tabelit.

5

Abbreviations and terms

A* A-star

CPU Central Processing Unit

MPC Model Predictive Controller

RRT Rapidly exploring Random Tree

6

Contents

List of Figures 9

List of Tables 10

1 Introduction 11

2 Background 13
2.1 Path planning classification . 13
2.2 Challenges and limitations . 14

2.2.1 Environmental challenges . 14
2.2.2 Platform limitations . 16

2.3 Relevant algorithms . 16
2.3.1 A* . 16
2.3.2 RRT and RRT* . 17
2.3.3 Model Predictive Controller . 17
2.3.4 Layered Costmap . 18
2.3.5 Suitability of public algorithms 18

3 Development 19
3.1 Analysis of requirements . 19
3.2 Development process . 21

3.2.1 Cost function development . 21
3.2.2 Core functionality development 25
3.2.3 Refinement and additional features 27

3.3 Proposed solution . 29
3.3.1 Path generation . 30
3.3.2 Cost functions . 32

4 Result analysis 34
4.1 Evaluation criteria . 34
4.2 Comparison to Starship’s current solution 35

4.2.1 Test case performance comparison 35
4.2.2 CPU load comparison . 38

4.3 Comparison to public algorithms . 39
4.3.1 Requirements and effects of discretization 40
4.3.2 Complexity . 41

7

4.3.3 Extendability and support for features 43
4.3.4 Conclusion on proposed solution 44

5 Summary 45

References 46

Appendices 48

Appendix 1 - Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele
kättesaadavaks tegemiseks 48

Appendix 2 - Case 1 sidewalk structure 49

Appendix 3 - Case 2 sidewalk structure 50

Appendix 2 - Case 1 sidewalk structure 51

Appendix 5 - Case 4 sidewalk structure 52

Appendix 6 - Case 5 sidewalk structure 53

Appendix 7 - Case 1 performance 54

Appendix 8 - Case 2 performance 56

Appendix 9 - Case 3 performance 58

Appendix 10 - Case 4 performance 60

Appendix 11 - Case 5 performance 62

8

List of Figures

1 Self driving delivery robots from Starship[4] (from Starship Technologies
internal resources) . 11

2 Sidewalk width frequency based on the map of Tallinn by Starship
Technologies. 15

3 Strategy exploitation selection groups marked with a dashed line. Layer-
based exploitation on the left and new path exploitation on the right. . . . 28

4 Path (green) and road rule (cyan) without road rule cost (left) and with
road rule cost (right). 29

5 Proposed solution predicted motion trees for 90 degree turn (top) and
approaching road rule (bottom). The predicted tree is colored blue to red
based on the predicted cost with blue being the minimum cost and red
maximum. The best found path is colored magenta. The final taken path is
colored green. Road rules are colored yellow. 29

6 Tree generation flow with the setup as green, generation as orange and best
path selection as red. 30

7 Case 1 fraction of max speed along the path with the existing solution with
squares along the path and the proposed solution with triangles. 35

8 Case 1 cost along the path with the existing solution in red and proposed
solution in blue . 36

9 Case 2 fraction of max speed along the path with the existing solution with
squares along the path and the proposed solution with triangles. 37

10 CPU load % with different configurations of created node counts each
cycle. Long dashed lines mark the median and short dashed lines mark the
quarters. 39

9

List of Tables

1 Discretization overview of different algorithms. 40
2 Complexity overview of different algorithms in regards to explorable area

A, distance to goal D, number of features F and branching factor b. 42

10

1. Introduction

Several companies in the world aim to provide last-mile transportation services using
robots that drive on sidewalks. Some of the most well known among them are: Amazon[1],
Kiwibot[2], Clevon[3] and Starship[4] (figure 1). Since the profit margins in the last
mile delivery business are small, it is important to reduce costs where possible. Also,
robots must get along with people while navigating the complex sidewalk environment.
Therefore, robots must move quickly and economically on the sidewalk without disturbing
or endangering fellow pedestrians.

Figure 1. Self driving delivery robots from Starship[4] (from Starship Technologies internal
resources)

To solve these problems a key component is path planning which takes into account all
these different factors. This falls into the category of local path planning which creates a
path starting from the robot’s current pose and should be an actionable sequence not an

11

idealized version. This thesis was created in collaboration with Starship Technologies and
therefore designed based on their current platform (figure 1). This sets additional limits
on the solution as it needs to work on a differential drive robot. These requirements set
limitations and challenges that not all existing solutions can meet.

The goal of the thesis is to find a path generation and a path evaluation algorithm with good
runtime complexity (O(length) for path evaluation). Path generation should be versatile
and adaptive enough to be able to solve situations with complicated sidewalk geometry.
Path evaluation should be able to take into consideration speed, safety and smoothness
of the path. The proposed solution being able to solve situations that previously required
remote help is desirable as that is always more cost-effective.

To achieve this goal a heuristic search algorithm with tree structure and mathematical
model-based movement predictions between nodes is proposed. The proposed solution’s
performance is implemented and compared to Starship’s current solution. The CPU load
of the proposed solution is benchmarked by running on a physical robot in the background
while driving outdoors. The theoretical limitations and capabilities of the proposed solution
are also compared to some of the better known path planning algorithms.

12

2. Background

2.1 Path planning classification

To better understand decisions that need to be made when choosing or creating a path
planning algorithm it is useful to know some ways these types of algorithms can be
classified. Different classification methods are usually centered around different challenges
when describing path planning methods.

One way to classify algorithms is based on the path representations. Usually, a path
describes a sequence of poses that can either be represented as nodes or as continuous
functions. Most often continuous functions are in the form of splines and made of smaller
continuous functions [5]. This allows for a more accurate description of a pose at any point
along the path. The use of nodes allows for a simpler computation as a discrete sequence
is easier to iterate upon. This approach often uses linear or circular arc shaped connections
between the nodes. Some solutions such as Model Predictive Control (MPC) store the path
as sequences of poses where every state has only one previous and one following state
[6]. The alternative to that is a tree-like storage used in Rapidly exploring Random Tree
(RRT) and A-star (A*). Tree-like storage takes advantage of the fact that the early parts of
different paths may overlap to reduce the computation and storage cost [7] [8].

A different way of classification is by the planning step of the algorithm. While the path
representations are similar to each other, the planning strategies can be very different
based on their use cases. For example, genetic algorithms improve on a random set of
paths by combining the best parts and slowly mutating the generated paths towards an
optimal solution [9]. This requires a fixed-length path as the parts of the path are more
interchangeable. Another common type of planning strategies are the heuristic approaches,
similar to A*, that use generalizations about the searchable world to guide the search [10].
Different from both of these methods is the costmap approach which describes the cost of
all the areas in the world and then finds a path as a connected sequence in that world.

A third distinguishing characteristic is the time at which the solution is available. For
example, A* can be considered an offline solution as it requires to be run to completion to
get the result, but provides an optimal path once it finishes [10]. Solutions such as genetic

13

algorithms or heuristic searches can be considered any-time as they always have a solution
but given more time will generally improve upon it.

In the context of this thesis the real-time solutions that can provide a path within a given
short amount of time that could be used on an autonomous robot are most relevant. This
means it either has to have a very short search time to completion or be an any-time
solution.

2.2 Challenges and limitations

Before choosing or developing a solution it is important to first understand the challenges
that need to be overcome. Challenges can be classified by their origin as internal and
external challenges. The former is something that comes from the agent that is trying
to achieve the goal. In the case of this thesis that would be the differential drive robot
navigating the given space. The latter are the environment and other agents. The external
category can be further divided into static and dynamic members. Something that is
expected to remain constant throughout the execution of the task may be considered static.
Things that change in a way that may require different behaviour from the agent would
be considered dynamic. For example, road features can be expected to stay in the same
location and form over the course of the task and are therefore static members. On the other
hand, a pedestrian that may or may not move is a dynamic member of the environment.

2.2.1 Environmental challenges

The most important feature of the environment is the surface on which the robot navigates.
It has the important property of texture and may have special features or shapes. The
main features of the texture are friction and firmness. These affect the linear and angular
acceleration as well as the maximum speed of the robot. It should also be noted that a more
slippery surface will decrease the capabilities for braking and pose a safety risk. In the
case of a sidewalk we can consider a couple of different surfaces: asphalt, sidewalk tiles,
gravel and grass. The first three are common materials for roads while the last can often be
found on the side of sidewalks. Both asphalt and sidewalk tiles have good friction while
being smooth enough to move on with minimal unevenness. Gravel has more unevenness
and can also have less predictable surface friction. Grass can be more slippery and softer
making turning harder. This makes roads made of asphalt and tiles more desirable than
gravel or grass while all are still viable surfaces.

There are also features on the navigable surface that affect performance and behaviour.

14

These can be purposeful such as slopes and curbs or coincidental such as holes or puddles.
Based on the size of these features they may be considered: too small to affect behaviour
and insignificant for navigation, small and affecting performance, medium and requiring
special behaviour to be navigable, big and unnavigable even with specialized behaviour.

Figure 2. Sidewalk width frequency based on the map of Tallinn by Starship Technologies.

The surfaces describeda above form paths to be travelled to achieve a goal. Sidewalks
can usually be represented as shapes of long stretches with more length than width. Most
sidewalks in maps used by Starship Technologies are between 1.5 and 2 meters wide
(Figure 2). With 94% of sidewalks being between 1 and 3 meters wide this should be
considered the common case. There are also outliers with widths less than a meter wide
or more than 3 meters wide that should be taken into account. On the side of a sidewalk
robots may encounter a car road, greenery or obstacles. These may be same or different
height. There are also different regulations about where a robot is allowed to drive.

These features affect the navigability of a surface. With these effects on navigability we can
divide the areas into the following categories: well navigable, navigable with difficulties,
and unnavigable.

There are also different objects in the environment. These objects may be considered
obstacles when it comes to the robot’s movement as they hinder or stop both movement
and perception. Besides the movement of the obstacles there are also properties of
permeability and consequences of making contact with the obstacle. An obstacle is
considered permeable if it allows the robot to drive through. Permeable obstacles affect
perception but not movement. One example of such obstacles is foliage. There can also
be different consequences of making contact with obstacles. These consequences may be
either negative or neutral.

15

2.2.2 Platform limitations

It is also important to consider the physical platform of the agent that is performing the
actions in this environment. Platform dictates which actions can be taken and what kind
of information is available. The former of those affects the action space while the latter
affects the evaluation criteria.

Depending on the kinematics of the robot it can have different non-holonomic constraints.
These are constraints that depend on the path taken and not just the current position. These
limitations on the robot’s movement constrain the space of future poses. Most common
forms are often described as bicycle and unicycle models [11]. The main difference
between the different kinematics models is that unicycle can turn in place while bicycle
model requires linear movement to turn. Neither is able to move side to side without
turning. The robot used in this thesis uses unicycle model.

Another limiting factor is the sensing capabilities of the platform. In the case of Starship
robots this comes from more sensors being directed in the forward direction. Therefore
any movement made in reverse is more dangerous. There can also be limitations on speed
from the rate and delay of the sensors. Driving at higher speeds is more dangerous due to
sensors being unable to warn of dangers in time. Another factor to be considered is the
precision of the sensors. The precision of the sensors detecting obstacles and the robot’s
location defines the closest distance to obstacles and sidewalk edge.

Any algorithm is also limited by the hardware that it is running on. This defines the
computation speed, parallel processing capabilities as well as amount of available memory.
There is also a related limitation from battery as doinf more processing requires more
energy and therefore drains the battery faster. Parallelization of an algorithm should be
considered as some processors have better single core performance while others excell
at running multithreaded programs. Some algorithms also allow dynamic scaling of
computation load to reduce battery drain when necessary.

2.3 Relevant algorithms

2.3.1 A*

A* is one of the most well known path planning algorithms that is often used as a benchmark
or inspiration [8]. Its most notable feature is combining the already existing Dijkstra
algorithm [12] with an additional heuristic function to speed up the search. This is a way

16

of adding information about the search space’s intrinsic properties. This allows searching
in ways that incorporate human intuition and reduce unnecessary exploration.

The main requirement for using A* is for the searchable space to be in the form of a graph.
The search is performed around a central point which is usually either the start or the goal.
The heuristic function tries to estimate the summed cost to nodes not yet explored. With a
perfect heuristic function the search can find the best path in O(N) time. For A* to work
correctly the heuristic function must never overestimate the cost. This guarantees that the
search can be stopped when all predicted costs are higher than the already found path’s
cost.

2.3.2 RRT and RRT*

Rapidly exploring Random Tree (RRT) is a tree-based search algorithm [7]. It uses a
node-based random tree generation to find paths from the origin point. This search is
performed in continuous space and is capable of traversing around obstacles through a
non-linear path. It searches the space by creating nodes in random directions connected to
the already existing tree. The nodes are created randomly and connected to form a tree
structure. It is also possible to use bias towards the goal to guide the direction of generated
vertices. Once a generated node is sufficiently close to the goal the path to that node is
considered the solution.

There exists also a well known improvement of RRT known as RRT* [13]. This is an
advanced version of RRT that improves the found solution by reconnecting nodes when a
new node is created. Reconnecting nodes optimizes the path, making the final path shorter.
Having this improvement greatly enhances the usefulness of the found path at the cost of
increased computational complexity.

2.3.3 Model Predictive Controller

Model Predictive Controller (MPC) is a mathematical model based control solution [14].
It is designed to make control decisions to optimize a limited time horizon. It stands out in
its versatility for optimization targets as well as flexibility for being applied to any system
that can be mathematically simulated. The weakness of the model predictive controller lies
in the limitations on simulation. As the complexity of the system increases more advanced
solutions are required for optimizing the time horizon.

Since MPC is a controller and not a path planner then for this thesis the path predicted by

17

a model predictive controller is considered the solution path. This means MPC is not used
as just a controller for selecting the next action but as a method of generating a proposed
path that consists of multiple actions.

2.3.4 Layered Costmap

Costmaps are a way of describing space traversal cost in a way that focuses on describing
the environment first and then finding solutions using that description [15]. Most often
this is achieved by dividing the space into cells that then get evaluated. This process has
been further optimized by dividing the costmap into layers that can be edited separately.
Allowing for updating the costmap in areas that changed and not regenerating the entire
map. The main limitation of costmaps is the granularity and complexity that comes from
describing large areas of space and keeping it in memory.

2.3.5 Suitability of public algorithms

A*, RRT, RRT* and costmap are able to provide a path consisting of poses. These however
lack the motion dimensions of velocity and acceleration. Since a system capable of
considering velocity and acceleration limitations is required these solutions were rejected.
MPC produces a result according to movement constraints, but it has a limited horizon
with limited capabilities at further future.

The robot driving system requires path planning, simulating the driveability of the path and
evaluating the path. A*, RRT, RRT* and costmap only do the path planning and evaluation.
MPC does simulation and evaluation. Therefore these require additional systems that
would perform the missing task. A custom solution that can perform both planning and
simulation simultaniously is optimal as it doesn’t require an additional system. There is
also the requirement to integrate the solution with the existing system used by Starship
Technologies. For this a solution capable of coming up with a path as well as producing
movement speeds is needed. Therefore a custom solution is considered necessary.

18

3. Development

The development process for the proposed solution can be divided into three parts. The
first part is the analysis of requirements that consists of logical reasoning defining the
limitations. The second part is the core functionality development that involves the
creation of the main process flow and its required components. This is done while keeping
in mind the limitations set by the previous step. The third part is the improvement of core
functionalities to enhance the performance and improve the results.

The proposed solution itself consists of cost functions, generation processes and simulation
processes. Cost functions and simulation processes are used internally by the generation
process.

3.1 Analysis of requirements

A key element in the proposed solution is the cost function which is composed of sub-cost
functions. This can be compared to the distance function in RRT* or A* as it defines which
solutions are preferred. Since it contains much more than just the distance it is called a
cost function.

Cost function has two main properties: robustness and sensitivity. Robustness describes
how well it describes the actual desired behaviour. Sensitivity describes how responsive it
is to small changes. Both of these must be considered when designing a cost function to
describe a desired property. For example, we can look at a cost function for the property of
driving to reaching the goal in as short time as possible.

The maximum robustness would be just the value of time spent to reach the goal. This
however means that any point before reaching the goal would be without a value since these
have not yet reached a goal and the final time is unknown. To increase the sensitivity we
can look at the current speed instead of total time. This assumes that a faster speed reduces
the total time to the goal on average. However such approach reduces the robustness as in
situations which require sharp turns high speed might prove counterproductive.

There are also important functional and mathematical properties for the cost function.

19

Firstly the cost function should not depend on the number of segments the path is divided
into. That is necessary so that reducing the time step size would add extra precision
without having undesirable effects on exploration choices. Thherefore any cost should be
calculated along the path before the node. To achieve this the cost function for a single
point in path needs to be integrated over the path between nodes. The cost functions also
need to be summable over path in a way that the sizes of these segments do not change
the final sum. This means that applying any non-linear function to the cost has to happen
before the integration.

For path generation the driving constraint is limitation on computation. This limits the
tree-based path planning solutions on the number of nodes that can be created. With the
computational and memory complexity of creating a tree proportional to the number of
nodes in the tree. The number of nodes in a tree can be expressed in the form of O(bd)

where b is the average branching factor and d is the depth. The branching factor is the
average number of child nodes that a node has. For a desired prediction future around 1
to 5 seconds and time step size between 0.01 and 0.25 seconds, the needed depth is 4 to
500 layers. Depending on the rate of running and time cost of a single node generation
the number of maximum nodes may vary. A reasonable frequency for a driving robot is
usually between 10 and 50 Hz. This gives 20 to 100 ms for creating the nodes. The exact
time for creating a single node depends a lot on the implementation as well as the platform
the code is running on. Assuming desire of creating 1000 to 5000 nodes then the target
average node creation time is 20 µs.

Given the range for depth value as well as maximum node count we can estimate the
branching factor range using the formula

N = bd (3.1)

where N is the number of nodes, b is the branching factor and d is the depth of the tree.
From this we can algebraically derive the function

b = eln(N)/d (3.2)

where e is Euler’s number and ln is natural logarithm. Using this equation 3.2 we can get
the approximate range of branching factor

eln(1000)/500 ≈ 1.014 (3.3)

eln(5000)/4 ≈ 8.409 (3.4)

20

from 1.014 to 8.409. A branching factor of 1 would mean that the tree is a sequence of
nodes without any alternative choices. Therefore a branching factor higher than that is
preferred to guarantee exploration of different options. Using a branching factor below the
range will result in more depth at the cost of exploring lower depth options less. Branching
factor above the range will result in better exploration of earlier steps, but will lack the
desired depth.

3.2 Development process

The creation process can be divided into several periods. The first of these was focused on
developing the cost functions. This was necessary to get the understanding of what are the
necessary criteria and resources for choosing a good path. Using information from this the
initial structure was created in the second development period. This consisted of creating
initial structures for data storage as well as the core generation loop. Implementation of
generation with the initial evaluation using the previously created cost functions allowed to
start creating paths. The third period consisted of iterative improvements of these processes
as well as adding new features beyond the minimum viable product.

3.2.1 Cost function development

Based on the idea of dividing cost into economic, predictability and safety we can come
up with ideas what to measure for the cost. Starting with economy it is fairly logical to
assume that shorter distances are better. In addition to this we can assume that the longer it
takes for the robot to reach it’s goal the higher the opportunity cost from having the robot
occupied. These two metrics are in different units and therefore need to be converted to a
common unit to be comparable. For the proposed solution the unit of currency in the form
of USD was chosen. This was chosen for ease of use for economy calculations, but there
is no other clear benefit from this.

Coming back to the question of creating the cost functions for distance we can start by
estimating the wear of the robot from driving. With a constant describing robot cost and
distance it takes for parts to break down, it is possible to describe the distance cost as
follows:

Cd = s ∗ cr/sr (3.5)

where Cd is the cost of distance, s is the distance travelled in meters, cr is the cost of a
repair in USD and sr is the distance between repairs in meters.

To describe the cost of time in dollars over a given path it is necessary to first get the

21

time. It is useful to calculate this through distance and speed since that gives a function for
evaluating cost from speed which is directly controlled by the chosen commands. To do
this time can be derived from the formula for speed v = s/t as such t = s/v where v is
speed, s is distance and t is time. Using inverse of speed which is also known as pace we
can write the function as a multiplication:

Ct = s ∗ p ∗ co (3.6)

where Ct is cost of time, s is distance in meters, p is pace in seconds per meter and co is
the cost of robot being occupied in USD per second.

It is important to note that since pace is p = 1/v then in cases where robot is standing still
pace starts approaching infinity. To avoid infinite cost in those cases it is good to limit the
maximum value of pace. One way to apply a maximum limit to the value while keeping
the function mostly linear, continuous and differentiable is to use a reversed softplus (a
function derived algebraically from softplus [16]) function:

y = l − ln(1 + ea−bx) (3.7)

a = ln(el − 1) (3.8)

b =
2

l
(a− ln(e

l
2 − 1)) (3.9)

where l is the desired limit, x is the input value and y is the limited value.

For the predictablity the cost needs to capture actions that make the robot’s actions hard
to predict for pedestrians. First thing that can be captured in this is the following of a
road rule which shows how well the robot stays on the correct side of the sidewalk. To
measure the undesirability of a path we can measure the distance to the road rule. For
integration of this there are two main candidates: distance and time. The better option
here is integrating over time, since that gives advantage to paths with faster velocity. For
simpler integration between nodes we can use the assumption that the distance to the road
rule changes linearly. It is also important to use unsigned integral to avoid the danger of a
negative integral resulting in smaller than correct cost. Therefore the cost function can be
written as follows:

Crr = crr ∗
∫ ∆t

0

|D(t)| dt = crr ∗
D(∆t) ∗ |D(∆t)| −D(0) ∗ |D(0)|

2 ∗ (D(∆t)−D(0))
∗∆t (3.10)

where Crr is the cost of being away from road rule, crr is the constant multiplier for cost

22

to road rule in USD per meters times seconds, ∆t is the time step in seconds and D is the
function for distance to road rule in meters at the given time.

Another predictability metric that was investigated was acceleration and jerk of the robot.
For a differential drive robot this can be measured in two dimension, one in longitude and
the other in angular. Due to the difference in range and volatility of these values it is useful
to pass the values through a function that cuts off low level noise while limiting the values
above a threshold. A useful function for this is the sigmoid function [17]:

y =
1

1 + ea−b|x|
(3.11)

where a and b are the tuning values for the slope and place of the threshold. It is also useful
to pass the input through an absolute so that both negative and positive values give the
same cost.

For safety cost we want to capture actions that highly undesirable due to danger. For this
purpose the event of driving outside of mapped sidewalks was chosen. Since the event
itself does not occur, it is necessary to find a way to estimate the danger of driving off
sidewalks. This estimate can be based on the predicted time until driving off sidewalk. The
time itself can be predicted from the speed and distance to the sidewalk edge. To calculate
the distance to the sidewalk edge it is useful to use a circular arc movement assumption as
that takes into account possibility of turning before reaching the edge. The radius of the
arc can be calculated from the current linear and angular velocity of the robot using the
following formula:

r = v/ω (3.12)

where r is the radius of the arc in meters, v is the linear velocity of the robot in meters
per second and ω is the angular velocity of the robot in radians per second. Using the arc
distance to intersection with sidewalk edge as the distance the time can be predicted as
follows:

t = s/v (3.13)

where t is the predicted time in seconds, s is the calculated arc distance in meters and v
is the linear velocity of the robot in meters per second. The predicted time needs to be
then converted to estimated probability of driving outside of the sidewalk. A greater time
means that the robot has more time to react therefore the time needs to be passed through a
decreasing function. Since the probability of an event at a given moment is always between
0 and 1 the outputted value needs to be normalized to that range. It is also useful to have
the rate of output be non-linear as the chance of being able to react becomes insignificantly
small at small time values while big time values mean future without any certainty of

23

prediction and therefore insignificant danger. For the proposed solution a sigmoid function
with the input multiplied by -1 was chosen as it fulfills all the previously mentioned criteria.
Therefore the probability of driving outside of sidewalk can be represented as such:

p =
1

1 + ea(t)−b (3.14)

a = ln((
0.99

0.01
)2)/tp1 (3.15)

b = −ln(
0.01

0.99
) (3.16)

where p is the probability of driving outside of sidewalk, e is the Euler’s number, ln() is
the natural logarithm, tp1 is the time at which the probability is estimated to be 1 percent
and t is predicted time until driving outside of sidewalks in seconds. For the ease of
integration assumption of close to linear change between probabilities at small time steps
was used. That allowed calculating the probability at discrete points in time and estimating
the integrated probability by linear function integration between these values. This resulted
with the following cost function:

Co = co ∗
p0 + p1

2
∗ t (3.17)

where Co is the cost of danger of driving outside of sidewalk in USD, co is the cost of a
single event of driving outside of sidewalk in USD per seconds, p0 is the probability of
driving outside of sidewalk at a previous moment, p1 is the probability of driving outside
of sidewalk at the current moment and t is the time between the moments in seconds.

To create and tune the cost functions it is useful to have driven paths to evaluate. The easiest
way to get those is through simulation and recording the driving. From the previously
mentioned cost functions (3.5), (3.6), (3.10), (3.17) we can see that most of the costs can
be calculated using the pose and velocity time series. For the simulation a number of test
cases are necessary. These should be of situations that have suboptimal behaviour with the
current system. For this thesis the following situations were chosen:

1. turn of 90 degrees (Appendix 2),
2. turn over 90 degrees (Appendix 3),
3. short and high angled connection between straight segments (Appendix 4),
4. wide sidewalk to narrow sidewalk transition (Appendix 5),
5. smooth large radius curve (Appendix 6).

The main reason for these cases was the necessity of combining different priorities in these

24

cases. The first case of turning 90 degrees while the road rule is inside the curve poses a
challenge due to high angle of the turn. This means the speed of completing such a path
has to be balanced with the predictability to avoid going too close to the opposite edge of
sidewalk and blocking the corner for all other pedestrians.

The second case of over 90 degrees turn is more speed oriented as the robot needs to
change movement direction to the reverse of what it was at start. There is also a significant
safety concern with such a case as cutting the corner can lead to ending up outside of
mapped sidewalk on the inside of acute-agnled corner.

The third case of a high angled connection between straight sidewalk segments is common
in case of sidewalk misalignment and proposes a challenge in predictability and economy.
Overreaction to sidewalk heading and road rule change can lead to unintuitive movements
for humans as well as loss of speed.

Fourth case of transitioning from wide sidewalk to a narrower one proposes a challenge
in all three categories. The predictability criteria needs to account for the change in road
rule smoothly. The safety needs to avoid driving outside of sidewalks by accounting
for the sudden end of sidewalk along some of the wide segment. The economy cost of
the situation requires the robot to be able to drive this segment at reasonable speed and
preferably without stops.

In the fifth case a curve with a large radius may seem simple at first, but it challenges the
safety and economy of the robot. Throughout this sidewalk feature the robot’s heading
is consistently close to the sidewalk edge while the economic completion of this is still
feasible thanks to continuous turning. Predictability also plays a role in this situation as
people would expect the robot to follow path similar in shape to the sidewalk and avoid
inconsistent turns. There is also possible variations of this case where the road rule can
either be on the inside or the outside of the curve.

3.2.2 Core functionality development

The core functionality of the proposed solution is consists of tree generation and storage
and choosing the best path. For basic tree generation using only economic costs is sufficient
as it incentivizes the algorithm to move efficiently towards the goal.

The tree has some properties that need to be considered when choosing the storage format.
Firstly the number of subsequent nodes may vary significantly and a well generated tree
should not be balanced. For creating and pruning the tree it needs connections from root

25

node towards the nodes further in predicted future so that nodes could be easily added or
pruned. For constructing a single path from the tree it also needs reverse connections from
the leaves towards the root. This implies that the most efficient way to store the tree is in a
linked manner where nodes themselves contain references to nodes after them as well as
their parent.

The main path generation loop consists of three parts. Firstly the setup that takes the
robot’s current state and either constructs a new root node from it or finds a node best
suited to take the place of a root node from the already existing tree. The construction of
a new root just requires copying of input values. To move the root to an already existing
node requires a comparison function that finds the node most similar in robot state that
is also below some constant threshold. It is useful to apply an optimization through
assumption that search beginning from the old root is close to the global optimum due to
the change being relatively small compared to the entire tree. From that a distance function
for comparing similarities between bot states can be applied. The search can be concluded
once the distances start increasing again as the assumption requires us to only find the local
minimum. In case of root node movement the branches lying outside of the new root can
be discarded as they have become unreachable.

Secondly part adds the given number of nodes to the existing tree. For the core functionality
here it is necessary to have a comparison of nodes that allows choosing the one with most
potential for low cost. Using a good heuristic function is the main requirement for that.
The proposed solution estimates the average recent cost as well as the distance covered
by it. From there an estimate of the distance to the goal along sidewalk with a penalty
for being angled to the side or backwards on the sidewalk is used to get an estimated
distance until goal. Multiplication of average recent cost per distance with the remaining
distance to goal is used for heuristic cost estimate. Since the cost until the goal can be
disproportionately large compared to the prediction distance it is useful to apply a clamp
on the distance.

The third part of the core functionality is choosing the optimal path. This starts with
comparing all of the generated nodes to find the best final node. Due to the goal of
choosing a good path and not just a good next action this should be comparison of the leaf
nodes of the tree. This avoids choosing nodes that have all suboptimal child nodes as it
would indicate that in the long run this sequence of actions is not viable. In addition to
this it is useful to only account for the calculated cost and not the heuristic cost in this
stage since the heuristic is less accurate due to estimation of both cost and distance. After
choosing the optimal final state to reach the optimal path can be created by selecting the
sequence between the root of the tree and the chosen final node. From this path the actions

26

that were used to predict the robot states can then be used for robot control.

This development created all of the necessary components for the core functionalities of the
proposed solution that could then be expanded upon according to observed shortcomings.
It was able to complete the main goals of a path planning algorithm by making predictions
and evaluations and select a path according to economic criteria.

3.2.3 Refinement and additional features

After the creation of the core functionalities the iterative improvements started. The first
observed problem was regarding the exploration and exploitation tradeoff. In the context
of this proposed solution exploitation is used to describe the process of choosing to expand
the tree from a node with the lowest cost. A complementary feature to exploitation is
exploration that describes the process of discovering new ideas that may be outside the
optimum in the selection. In other terms exploitation can be described as approaching
the local minimum while exploration is about crossing ridges to find areas with different
minima.

The combination of real cost and heuristic cost is susceptible to being overly optimistic or
pessimistic about predictions. This can lead to search creating shapes of fans which start
expanding either from the root or the leaves depending on which category the function
currently lands in. Neither of these is optimal, since they are likely to fall into a local
minimum and create unnecessary amount of nodes in that minimum instead of exploring
more distinct paths. To solve this problem two new exploitation strategies were added.
Both of these work by only exploiting a subset of existing nodes.

Firstly the depth based exploitation was added to allow for balanced exploitation. In this
strategy each of the existing depths of the tree was exploited separate to each other (figure
3). This guarantees creation of new nodes at each depth which allows for exploitation of
nodes that were close to the most optimal node, but might have better options further in the
future. The second strategy involved depth first exploitation into a completely new path.
This strategy is used from as early node as possible and creates longer separate branches
that often lead to discovery of new minima instead of further exploiting already existing
ones (figure 3). This adds significant variety to the option pool and can discover paths that
require multiple nodes deep exploration before becoming comparable in global optimality.
By adding these two strategies the necessary number of nodes could be reduced by an
order of magnitude since the solution no longer depended on saturating a minimum.

27

Node

Node Node Node

Node NodeNode NodeNode

NodeNode

Node

Node Node Node

Node NodeNode NodeNode

NodeNode

Figure 3. Strategy exploitation selection groups marked with a dashed line. Layer-based
exploitation on the left and new path exploitation on the right.

The second challenge to be tackled is the lack of certain cost considerations. First of
these is the safety as it has significant effect on avoiding options with high risk. The
chosen safety metric is probability of driving outside of sidewalk and it is measured by the
predicted time until driving outside. If the time to predicted driving outside of sidewalk
is smaller it is less probable that the robot will be able to take the necessary actions to
avoid it. Using the integrated time the risk of driven segments is estimated and added to
the existing cost. This had the positive effect of requiring the path to either turn or slow
down when getting closer to edge. This also affected positively the smoothness of driving
in curves as in smooth continuous change of sidewalk edge the cost is also gently guided
towards the correct direction.

Second cost to be added is related to predictability and is related to road rule. This is
necessary to make the results more comparable to the existing solutions as a road rule
can make a path significantly more challenging. This is due to the easiest path to follow
often being close to the center of sidewalk while this makes it harder to navigate for other
pedestrians. Without road rule cost the optimal path is to stay on the outside after turn
while with respect to road rule the robot returns to the side of sidewalk (figure 4). As
described previously this is implemented using an integral of time and distance away from
the road rule.

28

Figure 4. Path (green) and road rule (cyan) without road rule cost (left) and with road rule
cost (right).

3.3 Proposed solution

For finding the possible paths a tree search is used (figure 5). This allows reusing steps
closer to the root and explore more in further depths. To select the best path a cost function
is used where better paths have lower cost.

Figure 5. Proposed solution predicted motion trees for 90 degree turn (top) and approaching
road rule (bottom). The predicted tree is colored blue to red based on the predicted cost
with blue being the minimum cost and red maximum. The best found path is colored
magenta. The final taken path is colored green. Road rules are colored yellow.

29

3.3.1 Path generation

The path generation starts with a root node located in robot’s current pose (6). Each node
consists of robot’s pose and current velocity. From there further nodes are created at
discrete time steps based on selected commands. A command consists of desired linear and
angular velocity. Using the selected command and the previous state a O(1) complexity
computation is possible to find the new state achieved after the given time step.

Start

Set closest node
as root

Yes

No
Are any of the
existing nodes
close enough
to be root?

No

Yes

Is the tree
not too large?

Create new root at
robot’s current state

No

Yes

Have enough
close nodes been

generated? Create new nodes
using exploitation

on each layer

Create new nodes
using exploration

of new path

No

Yes

Were any
new nodes
created?

No

Yes

Have enough
far nodes been

generated?

Create new nodes
using exploitation

on each layer

Create new nodes
using exploration

of new path

Yes

No

Were any
new nodes
created?

Find best final node Find path
to best final node End

Figure 6. Tree generation flow with the setup as green, generation as orange and best path
selection as red.

30

There is the challenge of exponential growth in number of nodes as the depth increases.
This can be described as O(bD) where b is the branching factor and D is the depth. If
branching factor is left unchecked it can lead to inability to look further away due to
exploration close to the root will take up all of the time. With a reduced branching factor
the depth can be greater before a limiting amount of node count is reached.

Another factor is that the depth D is present in the exploration distance function of
t = D ∗ ∆t. The exploration distance in time dimension is important to make choices
that are beneficial in the longer run. This can be affected by increasing either of the two
factors of depth D or time step ∆t. From this we can also deduce that a larger time step
is a relatively easy way to increase deep exploration capabilities. With larger time steps
the algorithm starts losing granularity and decisions can become suboptimal if the optimal
motion requires fidelity.

To limit the branching factor an future predicting exploration methodology is used. This is
a further development of ideas from A* of using a combination of calculated and predicted
cost. The summed cost of actual and heuristic cost is used to choose nodes with the best
potential for good paths. A* has a strict requirement on the heuristic function to never
overshoot the real cost. Since the proposed solution’s stopping criteria does not expect to
find the global optimum this constraint can be violated. An optimistic heuristic function
will result in more of a breadth first search while a more pessimistic heuristic will lead to a
more depth heavy search. This effect can be used to tune the search pattern.

The other key part of search algorithm are the different search sub-strategies making up
the overall search strategy. These are methods of limiting from which nodes the optimal
nodes are chosen. The purpose of these is to solve the problem of exploration versus
exploitation. As an example the basic A* method of choosing the node with globally
best potential is fully exploitative as it improves the best path found so far towards the
local minimum. The problem from a fully exploitative approach is the danger of getting
stuck in a local minimum. For A* this is usually acceptable since the graph is discrete and
number of nodes is sufficiently limited to allow for saturation of local minimum. With the
proposed solution and exponential increase in number of possible nodes saturation within
any feasible time limit is not possible. Therefore two additional strategies are proposed
to limit the exploitation to a local group of nodes and therefore increase exploration of
possible new minima.

Firstly there is the strategy of layer-based exploitation. This goes through the tree from
root to a given depth exploiting each layer once. This forces the search to look into depth
and stops it from having to saturate earlier layers before getting any information about the

31

further layers. Through this method the minima of early layers can create new minima
for later layers that would then be explored further if they are better than the currently
existing minima of a later layer. The second strategy is a constrained depth first search.
This exploits a node as early in the tree as possible and then continues exploiting the child
nodes created layer by layer while ignoring the other nodes at same layer that were created
previously. The benefit of this approach is that it allows the search to ignore the existing
minima and explore paths that require a certain depth before becoming competitive with
other previously created nodes. These two strategies are then used alternately to get the
benefit of each of these and create a varied pool of samples to choose from for the final
solution.

3.3.2 Cost functions

As mentioned previously the proposed solution depends on a cost function for determining
which path is better and which is worse. The proposed solution divides the cost into
three components based on type: economy, predictability and safety. The purpose of this
categorization is to enable prioritization based on the situation. For example, in dangerous
locations or situations the weight of safety cost can be increased to achieve safer paths.

In the proposed solution the category of economy contains two components: pace and
distance. This is chosen because it increases as the robot drives more slowly and since the
desired behaviour is faster speed then pace and therefore cost increase with slower speed.
The faster speed is economically beneficial as it allows the robot to reach more locations in
the same time period. The other component of distance is chosen to work in combination
with pace to incentivize shorter paths. Longer paths would mean more ware on robot’s
moving components as they would be doing more work. This however means that these
components would have to be replaced and would therefore have a cost. At higher speeds
the robot will have to travel greater distances during cornering. Therefore the distance and
pace costs will work in opposite directions and choose a compromise between the two. It
is also important to note that since the pace includes division by distance then in case of
turning in place the result would be infinite pace. Making the cost infinite in a behaviour
that might be desirable in certain situations is clearly suboptimal. To solve this we can use
a normalizing function that limits the maximum value while preserving the linear nature
of the function. In case we want to use any differential dependent approach the function
should also be fully differentiable. In this solution an inverted softplus function is used.

The second category of predictability contains costs related to behaviour that would look
predictable for other pedestrians. The main reason for separation from economy is the
abstract nature of this metric. Predictability can be estimated with varied priority with very

32

different size relative to economy which can be measured and estimated based on statistics.
Therefore it allows for better relative tuning of different cost types without requiring other
multipliers of economy costs to distance from the real world data based values. Currently
this category only contains distance from the road rule. For example, in most of Europe
and USA it is common to navigate on the right side of the sidewalk to allow pedestrians
from the opposite direction to pass. At the same time in United Kingdom it is customary
to navigate on the left side. Therefore it is desired to have cost that would increase with
the distance from the desired road rule. As stated in the requirements for the cost functions
this should be evaluated along the entire path taken and not just the node. In the proposed
solution the distance is integrated along the time. This means the algorithm will choose
the solution that approaches the road rule the quickest. This is better than the alternative of
integrating along the distance as it will benefit the faster solutions.

The third and final category of safety represents cost from dangers of performing actions
that may result in highly undesirable behaviour. For the proposed solution driving outside
of the sidewalk is highly dangerous and therefore considered a safety problem. To add a
related cost to this the danger needs to be measured and evaluated. For the measurement
unit predicted time to driving outside of sidewalk is used. This adds the necessary
robustness as the path can be amended by changing either the speed or trajectory. To
measure this the given pose and velocity were compared to the mapped edges of sidewalks.
From there simple geometric prediction with assumption of constant speed is used to
predict the time to driving out of sidewalk at a given node. This time is passed through
a reversed sigmoid function to get a cost that decreases as the time increases. Then the
cost at the last node and the current node are used with the assumption of linear change
between them to integrate it over the time between the nodes. This results in cost to outside
of sidewalk integrated over time to estimate the danger.

The cost evaluation is performed for each node with O(1) complexity as all the equations
are in form on algebraic expressions without loops or recursion. The cost at a given node
is equal to the cost of previous node plus the cost of the segment between the two nodes.
Therefore to evaluate any node only the nodes before it have to be evaluated. Since the
number of nodes is proportional to time taken which in turn is on average proportional to
distance the solution can be considered O(length) in relation to the path length.

33

4. Result analysis

4.1 Evaluation criteria

For comparison of solutions the metrics of economy and safety were chosen. This choice
was made to cover variety of different possible scenarios. These categories also represent
different interest groups. Economy represents the business interests regarding the robot
which involves optimisation of driving that has significant effects at larger scale or over
longer distances. Predictability represents the interests of other pedestrians who’s main
concern is being able to move alongside the robot. Safety represents the interests of the
community and involves the well-being of the environment and people not navigating on
the sidewalk but also the owner of the robot as it may result in damages.

For economy evaluation the main affecting factors are pace and distance driven. These
are constrained to a predefined range to avoid extreme values according to previously
mentioned methods. Since it is an economic consideration it can be calculated in currency,
time or some other relevant resource. It is also good to use real world constants to get an
accurate prioritization between pace and distance.

For predictability comparison the acceleration and jerk of the robot are used. Linear
acceleration peaks describe rapid starts or brakes and are a sign of insufficient planning
ahead. Therefore acceleration and braking values closer to zero are preferred. It should be
noted that below certain threshold the effects for pedestrians become trivial and therefore
the cost is non-linear. The main dangers here arise when pedestrians try to predict robot’s
future speed and position while navigating close to the robot. The jerk is a derivative
of acceleration and describes the indecisiveness of the robot or inconsistent path. Most
commonly this value peaks in cases of quick corrections in opposite directions of either
speed or turning. These indicate instability of the system and make the robot’s next actions
harder to predict for a bystander.

For safety comparison the metric of closeness to the sidewalk edge was chosen. This
describes the danger of the robot ending up outside of designated driving area and
potentially disturbing vehicles on a nearby road. As it is not something that happens
in a planned path the danger is estimated based on robot’s current velocity and pose relative

34

to the closest sidewalk edge.

4.2 Comparison to Starship’s current solution

The developed solution is compared to the existing solution by Starship Technologies in a
black box style. To do this both were executed in the same simulated environment and then
compared according to evaluation criteria. In addition to this both were run on a Starship
robot to measure and compare the CPU load.

4.2.1 Test case performance comparison

In the first case the existing solution stops at the corner of the 90 degree turn. This increases
the time it takes to drive and can also surprise pedestrians as it requires stopping and sharp
turning as seen in figure 7. The proposed solution’s path takes a smoother turn located on
the following sidewalk. The deviation from the sidewalk edge can be considered minimal
as the difference in position is less than half a meter. Comparing the costs of the two
solutions it is visible that the current solution has a peak at the corner and higher peak cost
than the proposed solution (figure 8).

Figure 7. Case 1 fraction of max speed along the path with the existing solution with
squares along the path and the proposed solution with triangles.

35

1616 1818 2020 2222 2424
distance travelled (m)distance travelled (m)

0.050.05

0.10.1

0.150.15

0.20.2

0.250.25

0.30.3

0.350.35
fr

ac
tio

n
of

ba
se

lin
e

co
st

fr
ac

tio
n

of
ba

se
lin

e
co

st

CostCost

Figure 8. Case 1 cost along the path with the existing solution in red and proposed solution
in blue

In the second case the existing solution’s behaviour has similar patterns as in the first one
where the robot stops at the corner (figure 9) which results in the similar pattern of cost
visualized in appendix 8. The cost is also delayed with the proposed solution as it performs
the motion over a longer distance. One clear difference from the first case is that due to the
steeper angle the proposed solution moves closer to the opposing sidewalk edge before
returning to the designated side. By reaching the middle of the sidewalk this may propose
a difficulty to other pedestrians trying to pass the robot at the same time (either from the
same or opposing direction). In the third case with the existing solution robot turns sharply
near the end of the connecting segment (appendix 9) creating problems regarding both
smoothness and economy (appendix 9). The proposed solution can utilize the edge of the
sidewalk for a transition with a smoother pace. The existing solutions cost peak with the
slopes before and after from the acceleration and decceleration create a bigger area of cost
per meters compared to the proposed solution.

36

Figure 9. Case 2 fraction of max speed along the path with the existing solution with
squares along the path and the proposed solution with triangles.

In the fourth case the existing solution can perform well in regards to economy (appendix
10) but the movement involves multiple lateral oscillating movements after the turn which
reduces the predictability of the robot as can be seen in appendix 10. The proposed solution
over prioritizes driving to the road edge creating an angle in the path taken. This makes
the average cost of the proposed solution higher than the existing cost.

For the fifth case the existing solution takes a path closer to the center of the sidewalk with
both inside and outside road rule as seen on appendix 11 while the proposed solution has
more circular path. In the fifth case the existing solutions both inside and outside road
rule of the sidewalk are relatively good speed but have multiple oscillations of speed and
turning which can be seen in the uneven cost as well as fluctuations in cost in appendix

37

11. The average cost of proposed solution is slightly higher than the average cost of the
existing solution. The proposed solution has more even cost with less spikes.

Overall the proposed solution shows more stability in speed which leads to more stable
cost. In some cases the cost spikes of the existing solution reach higher than the average
cost of the proposed solution. The proposed solution shows most potential in reducing cost
by removing the spikes and with further development to lower the average it could provide
consistent benefit.

4.2.2 CPU load comparison

To assess the feasibility of the proposed solution it is important to consider the added load
on the CPU. This is important because if the computational cost becomes too great then
it limits the selection of hardware and platforms that can use it. An important factor to
consider when evaluating the computational cost is that there are many different platforms
with different performance. Therefore not all platforms may be able to support the load
required.

To evaluate the CPU load in a realistic environment the solution was run passively in
background on a Starship robot in real world testing environment. The proposed solution
was evaluated at different node count configurations. To give a more comprehensive
overview of CPU load is measured as difference from the average percentage of core used.
This shows how many percentage points more CPU core was used compared to the existing
Starship solution without the proposed solution in the background. The measurements
were taken while driving on sidewalk.

38

Figure 10. CPU load % with different configurations of created node counts each cycle.
Long dashed lines mark the median and short dashed lines mark the quarters.

As seen in figure 10 the configuration with 600 nodes used about 25% of a core and the
configuration with 3000 nodes uses about 51% of a core. This shows that running this
solution is feasible in cases where at least 30% of a core is available. It should be noted
that if hardware has multiple cores and the solution is implemented to use multiple threads
then it is possible to use more than 100% of a core. The bigger node count also comes
with a wider spread in the measured CPU loads as there is a higher possibility of reaching
different trees with different average computation costs. These differences in average
computation costs also get magnified by the increased node count.

4.3 Comparison to public algorithms

The solution logic was compared to A*, RRT* and costmap based solutions. The solutions
were compared in following criteria: discretization on solutions, computation complexity
and dependence of different conditions, extendability and support for variety of cost. The
purpose of this comparison was to find the limitations as well as the reasons behind these
limitations to avoid these in the proposed solution.

39

4.3.1 Requirements and effects of discretization

Discretization is a method of turning infinitely many continuous values into a countable
set of values. The usual purpose of this is to enable approaches that require the available
options to be covered through a brute force methodology. The main real numbered
dimensions in path planning are the X and Y coordinate and the heading of the robot pose.
In addition to this the velocity and time add additional real valued parameters to possible
states acquired by the robot.

The A* depends on a graph which is a discretized representation of the world. Because of
this possible poses are limited to the vertices in the graph. This creates significant reliance
on the method of generation for the graph. This method needs to create a graph that would
follow the movement constraints set by the platform.

RRT and RRT* use randomly generated points in the space and the poses are therefore not
limited to a discrete set of values. However the step sizes in the tree are discrete values
which means there is discretization of time. Therefore branching can only happen at certain
intervals.

A generic costmap described by a combined function of cost has no discretization present
for neither the pose nor the time. However if this costmap is represented by cells then these
cells create discretization of space. Each of the values used as dimensions for the costmap
will be discretized if cell representation is used.

In the proposed solution the vertices in the tree are in continuous space and therefore the
poses are not discretized. However the step lengths between poses are limited to the given
options and are therefore discrete.

Table 1. Discretization overview of different algorithms.

Algorithm Pose discretization Time discretization
A* Yes No
RRT & RRT* No Yes
Costmap with functions No No
Costmap with cells Yes No
Proposed solution No Yes

As visible in table 1 the least constraining solution for discretization is a costmap that
uses functions to store the cost. A* and costmap with cells can be categorized as pose

40

discretizing which limit the achievable poses, but not the moments at which actions can
be taken. RRT* and proposed solution can be categorized as time discretizing which
limit the moments at which actions can be taken, but not the achievable poses. Due to
space being already significantly constrained by the sidewalk we should consider further
discretization of poses as a negative drawback as it may exclude all valid solution with too
broad discretization. Since most control algorithms for robots already work with a given
frequency we may consider the time already externally discretized and therefore as long as
the solution’s discretization aligns with the external discretization this should not limit the
available options.

4.3.2 Complexity

Computation complexity describes the rate at which the required work increases as the
given parameters increase. Space complexity describes the rate at which required memory
increases as the given parameters increase. The complexity can be considered in a single
path generation as well as continuously. The main parameters for the complexity are the
distance to goal as well as environment features. Some of the most important features in
the environment are the area to be explored as well as number of obstacles.

For A* the computational and memory complexity is O(bd) where b is the branching factor
and d is the depth to goal. This means that it has exponential complexity towards distance
to goal. The heuristic function is the main tool here to reduce the effective branching
factor.

Complexity of RRT is at worst O(N2) where N is the number of vertices created. This can
be improved by using a boxing method where vertices are grouped into grid cells based on
location to reduce the number of vertices that need to be checked to connect the new vertex
to the tree. The number of vertices depends on the distance between consecutive vertices
as well as the distance to the goal. For the space complexity it depends on the number of
vertices created and if left unlimited will keep on growing.[18] Due to the randomness
of the generation of the vertices and the possibility to add bias towards the goal exact
complexity can be hard to define in regards to environment parameters. However the
approximate average number of vertices can be defined as linearly related to the required
area to be explored.

The complexity of the costmap comes from the gradient descent. In case of a costmap
defined by a grid the gradient descent direction will have to be determined by sampling.
This makes the time complexity O(knd) where k is number of iterations, n is number
of samples and d is number of dimensions. In addition to this comes the complexity of

41

generating the grid from which the samples are taken. This is most likely to have a linear
complexity to the area considered as well as number of affecting features such as obstacles.
With a costmap defined by a differentiable function the time complexity comes from
differentiation. This makes the final complexity O(ktd) where k is number of iterations, t
is number of differentiable functions and d is number of dimensions. Expressed in this
way number of iterations is linearly proportional to distance to the goal. The number of
differentiable functions is most likely to have at least linear complexity towards number
of features in the obstacles. The number of dimensions stays constant throughout the
implementation and can therefore be disregarded in the O notation when considering
changes in the environment and not the implementation. With this consideration we can get
the time complexity O(knf) for the grid based approach and O(kf) for the differentiation
based where k is the number of iterations, n is the number of samples and f is the number of
features. For the space complexity the grid based approach has linear complexity towards
navigable area as that defines the number of grid cells that need to be stored. For the
differentiation based approach we need to store the functions which gives linear complexity
towards number of features, but in most cases should remain at values where it can be
considered negligible.

Since the proposed solution uses a tree-based structure and iterative generation the space
and time complexities are O(bd) where b is the branching factor and d is the depth of the
tree. The depth of the tree can be considered linear with regard to distance to the goal. The
branching factor depends on the quality of the chosen cost functions, but will always be
greater than or equal to 1.

Table 2. Complexity overview of different algorithms in regards to explorable area A,
distance to goal D, number of features F and branching factor b.

Algorithm Time complexity Space complexity
A* O(F ∗ (bD)) O(A)
RRT & RRT* O(F ∗min(A,D2)2) O(min(A,D2)2)
Costmap with functions O(DF) O(F)
Costmap with cells O(AF +D) O(A)
Proposed solution O(F ∗ (bD)) O(bD)

To compare the different solutions to each other we need to estimate their complexities
relative to common parameters (table 2). When comparing the different algorithms the first
thing we can notice is that all of them have linear dependence on the number of features.
However that number is multiplied by different functions depending on the solution. The
number of vertices for RRT and RRT* depends on the explored area which is limited by
the smallest of either the explorable area or area surrounded by points at same distance

42

to the start as the goal. RRT, RRT* and costmap with cells depend on the area for time
complexity. This can be considered a significant drawback since for an intelligent and
adaptive solution we want to be able to give it as much area to use as possible. Being
able to provide most freedom to the system and not having to worry about performance
drops is a great indicator that a system has potential for longetivity before limit of best
possible performance is reached. Such solution uses the given freedom efficiently instead
of exhaustively searching the space. Comparing the space complexities of the algorithms
we can see that A* can avoid dependence on area in runtime only thanks to having the cost
of area in the graph construction and therefore memory. It is also worth noting that both
A* and the proposed solution have exponential time cost relative to the distance to the goal
which means that they become unfeasible with too long distance to the goal. In terms of
memory the costmap with functions performs the best since it only depends on the number
of features.

4.3.3 Extendability and support for features

When comparing solutions we should also consider whether it supports taking into
consideration certain preferences. We should also consider what is the expected added time
and space complexity of such features. For current problem of navigating on a sidewalk
we shall consider the following features: preferred sidewalk side, static obstacles, dynamic
obstacles, non-holonomic movement constraints.

Having a preferred sidewalk side for path planning means better predictability for other
pedestrians. This is due to people being used to walking on right or left side of the sidewalk
so pedestrians moving in the opposite direction or passing others would have more space.
This can be translated to preference of pose which may or may not depend on the movement
direction. For all of the previously mentioned solutions adding preference based on the
pose does not great significant increase in complexity.

Supporting obstacles can be one of the most complexity increasing features since there are
usually many things in the detection range of the robot. For A* this can be accomplished
through overlap based increase in edges. For RRT and RRT* obstacles can be handled
similarly to unnavigable area as something that stops the generation and connection of
vertices. However adding cost inducing but not blocking obstacles may require some
creativity in implementation. Both costmap solutions would just need a cost function for
the obstacles, however the cost needs to be independent of robot’s pose as the costmap
solution only looks at the features. For the proposed solution support for obstacles could be
added by adding a cost function for these. That cost function could also contain dependence
on robot’s pose as that is existing information in each vertex where this would need to be

43

evaluated.

Non-holonomic movement constraints are something that limits the available next
movements depending on the path taken so far. These constraints could be soft constraints
that indicate preference or hard constraints which indicate inability to perform certain
actions. Since A* only looks at the shortest path to each vertex it does not possess any
support for non-holonomic constraints. It is possible to add support for non-holonomic
constraints to RRT by using motion primitives instead of straight lines, but that is not
possible for RRT* since that also requires reconnecting of vertices. The only way to have
some knowledge about past movements in costmap is by adding time and orientation as
dimensions to the map. Adding new dimensions to the costmap significantly increases the
time it takes to compute since the derivative needs to be calculated in each dimension. It
is also important to note that non-holonomic constraints mean that there are some areas
of the costmap that would be undifferentiable making only the sampling based solution
viable. For the proposed solution the non-holonomic constraints are already built into the
simulation part of the step prediction which makes these constraints inherently followed.

4.3.4 Conclusion on proposed solution

In conclusion the proposed solution stands out in terms of time and space complexity
by being independent of navigable area while still supporting non-holonomic movement
constraints. Although not implemented as a part of this thesis it has the necessary structure
for adding obstacles as features. The main downside is the exponential complexity towards
distance which makes planning for very long distances difficult. It also doesn’t require
discretization of poses which allows for smoother and more free movement in the space. It
does however require discretization of time into segments which reduces the smoothness
of actions and requires tuning of discretization parameters.

44

5. Summary

The purpose of this thesis was to develop a path planning solution that can be used online
in a system with limited compute to generate a local path for movement. To achieve
this a tree-based path generation algorithm was developed. To evaluate the result a black
box comparison with Starship Technologie’s current solution was performed on a set of
constructed test cases in a simulation environment. In addition to this, comparison of logic
and limitations was performed with common path planning algorithms: A*, RRT* and
costmap.

During the simulations the pose and the velocity of the robot was used to gauge performance
and calculate the cost of completing the task. Solutions with lower cost were considered to
be better.

For the analytical comparison of limitations and capabilities the following challenges were
considered: effects of discretization on solutions, computation complexity and dependence
of different conditions, extendability and support for variety of cost. These properties were
compared in worst and average case scenarios.

The proposed solution was superior in terms of support for continuous space and reusability
of generated paths. The weakness of the proposed solution’s lies within the selection of
step lengths which has significant effect on computation complexity as well as quality
of found results. Considering these pros and cons it can be concluded that the proposed
solution is good for local path planning, but suboptimal for global path planning.

45

References

[1] Amazon. 2023. URL: http://amazon.com/scout.

[2] Kiwibot. 2023. URL: https://www.kiwibot.com.

[3] Clevon. 2023. URL: https://clevon.com.

[4] Starship Technologies OÜ. 2023. URL: https://www.starship.xyz.

[5] H. Eren, Chun Che Fung, and J. Evans. “Implementation of the spline method
for mobile robot path control”. In: IMTC/99. Proceedings of the 16th IEEE

Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).
Vol. 2. 1999, 739–744 vol.2. DOI: 10.1109/IMTC.1999.776966.

[6] M. Mahdi Ghazaei Ardakani et al. “Real-time trajectory generation using model
predictive control”. In: 2015 IEEE International Conference on Automation Science

and Engineering (CASE). 2015, pp. 942–948. DOI: 10.1109/CoASE.2015.
7294220.

[7] Steven M. LaValle. “Rapidly-exploring random trees : a new tool for path planning”.
In: The annual research report (1998).

[8] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems

Science and Cybernetics 4.2 (1968), pp. 100–107. DOI: 10.1109/TSSC.1968.
300136.

[9] Chaymaa Lamini, Said Benhlima, and Ali Elbekri. “Genetic Algorithm Based
Approach for Autonomous Mobile Robot Path Planning”. In: Procedia Computer

Science 127 (2018). PROCEEDINGS OF THE FIRST INTERNATIONAL
CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES,
ICDS2017, pp. 180–189. ISSN: 1877-0509. DOI: https://doi.org/10.
1016/j.procs.2018.01.113. URL: https://www.sciencedirect.
com/science/article/pii/S187705091830125X.

[10] Naim Rastgoo et al. “A critical evaluation of literature on robot path planning
in Dynamic environment”. In: Journal of Theoretical and Applied Information

Technology 1070 (Jan. 2015).

46

http://amazon.com/scout
https://www.kiwibot.com
https://clevon.com
https://www.starship.xyz
https://doi.org/10.1109/IMTC.1999.776966
https://doi.org/10.1109/CoASE.2015.7294220
https://doi.org/10.1109/CoASE.2015.7294220
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/https://doi.org/10.1016/j.procs.2018.01.113
https://doi.org/https://doi.org/10.1016/j.procs.2018.01.113
https://www.sciencedirect.com/science/article/pii/S187705091830125X
https://www.sciencedirect.com/science/article/pii/S187705091830125X

[11] Alonzo Kelly and Neal Seegmiller. “A Vector Algebra Formulation of Mobile Robot
Velocity Kinematics”. In: Springer Tracts in Advanced Robotics 92 (Dec. 2014),
pp. 613–627. DOI: 10.1007/978-3-642-40686-7_41.

[12] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[13] Sertac Karaman and Emilio Frazzoli. “Sampling-based Algorithms for Optimal
Motion Planning”. In: CoRR abs/1105.1186 (2011). arXiv: 1105.1186. URL:
http://arxiv.org/abs/1105.1186.

[14] Samir Bouzoualegh, Elhadi Guechi, and Ridha Kelaiaia. “Model Predictive Control
of a Differential-Drive Mobile Robot”. In: Acta Universitatis Sapientiae Electrical

and Mechanical Engineering 10 (Dec. 2018), pp. 20–41. DOI: 10.2478/auseme-
2018-0002.

[15] David V. Lu, Dave Hershberger, and William D. Smart. “Layered costmaps for
context-sensitive navigation”. In: 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems. 2014, pp. 709–715. DOI: 10.1109/IROS.2014.
6942636.

[16] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav
Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, Nov. 2011, pp. 315–323. URL: https://proceedings.mlr.
press/v15/glorot11a.html.

[17] P.F. Verhulst. “Recherches mathématiques sur la loi d’accroissement de la
population.” In: Nouveaux mémoires de l’Académie Royale des Sciences et Belles-

Lettres de Bruxelles 18 (1845), pp. 14–54. URL: http://eudml.org/doc/
182533.

[18] Mikael Svenstrup, Thomas Bak, and Hans Andersen. “Minimising computational
complexity of the RRT algorithm a practical approach”. In: May 2011, pp. 5602–
5607. DOI: 10.1109/ICRA.2011.5979540.

47

https://doi.org/10.1007/978-3-642-40686-7_41
https://arxiv.org/abs/1105.1186
http://arxiv.org/abs/1105.1186
https://doi.org/10.2478/auseme-2018-0002
https://doi.org/10.2478/auseme-2018-0002
https://doi.org/10.1109/IROS.2014.6942636
https://doi.org/10.1109/IROS.2014.6942636
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
http://eudml.org/doc/182533
http://eudml.org/doc/182533
https://doi.org/10.1109/ICRA.2011.5979540

Appendices

Appendix
1 - Lihtlitsents lõputöö reprodutseerimiseks ja
lõputöö üldsusele kättesaadavaks tegemiseks

Mina, Timo Loomets

1. Annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose
"Liikumise ja teekonna planeerimine differentsiaal kontrolliga robotile kaardistatud
kõnnitee keskkonnas kasutades puuotsingut, et leida sujuvat, ohutut ja säästlikku
trajektoori", mille juhendajad on Thomas Schildhauerja Asko Ristolainen
1.1. reprodutseerimiseks lõputöö säilitamise ja elektroonse avaldamise eesmärgil,

sh Tallinna Tehnikaülikooli raamatukogu digikogusse lisamise eesmärgil kuni
autoriõiguse kehtivuse tähtaja lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna
kaudu, sealhulgas Tallinna Tehnikaülikooli raamatukogu digikogu kaudu kuni
autoriõiguse kehtivuse tähtaja lõppemiseni.

2. Olen teadlik, et käesoleva lihtlitsentsi punktis 1 nimetatud õigused jäävad alles ka
autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega
isikuandmete kaitse seadust ning muudest õigusaktidest tulenevaid õigusi.

05.05.2023

48

Appendix 2 - Case 1 sidewalk structure

0 5 10 15 20
x (m)

–15

–10

–5

0

y
(m

)

Path

49

Appendix 3 - Case 2 sidewalk structure

0 5 10 15 20
x (m)

–15

–10

–5

0

5

y
(m

)

Path

50

Appendix 4 - Case 3 sidewalk structure

0 5 10 15 20 25 30
x (m)

–15

–10

–5

0

5

10

15

y
(m

)

Path

51

Appendix 5 - Case 4 sidewalk structure

0 5 10 15 20 25 30
x (m)

–15

–10

–5

0

5

10

15

y
(m

)

Path

52

Appendix 6 - Case 5 sidewalk structure

0 5 10 15 20
x (m)

–15

–10

–5

0

y
(m

)

Path

53

Appendix 7 - Case 1 performance

54

1616 1818 2020 2222 2424
distance travelled (m)distance travelled (m)

0.050.05

0.10.1

0.150.15

0.20.2

0.250.25

0.30.3

0.350.35
fr

ac
tio

n
of

ba
se

lin
e

co
st

fr
ac

tio
n

of
ba

se
lin

e
co

st

CostCost

55

Appendix 8 - Case 2 performance

56

1616 1818 2020 2222 2424
distance travelled (m)distance travelled (m)

0.050.05

0.10.1

0.150.15

0.20.2

0.250.25

0.30.3

0.350.35
fr

ac
tio

n
of

ba
se

lin
e

co
st

fr
ac

tio
n

of
ba

se
lin

e
co

st

CostCost

57

Appendix 9 - Case 3 performance

58

1010 1212 1414 1616 1818 2020
distance travelled (m)distance travelled (m)

0.050.05

0.10.1

0.150.15

0.20.2

0.250.25

0.30.3

0.350.35
fr

ac
tio

n
of

ba
se

lin
e

co
st

fr
ac

tio
n

of
ba

se
lin

e
co

st

CostCost

59

Appendix 10 - Case 4 performance

60

1010 1212 1414 1616 1818 2020
distance travelled (m)distance travelled (m)

0.0230.023

0.0240.024

0.0250.025

0.0260.026

0.0270.027

0.0280.028

0.0290.029
fr

ac
tio

n
of

ba
se

lin
e

co
st

fr
ac

tio
n

of
ba

se
lin

e
co

st

CostCost

61

Appendix 11 - Case 5 performance

62

55 1010 1515 2020 2525 3030 3535
distance travelled (m)distance travelled (m)

0.0250.025

0.030.03

0.0350.035

fr
ac

tio
n

of
ba

se
lin

e
co

st
fr

ac
tio

n
of

ba
se

lin
e

co
st

CostCost

1010 1515 2020 2525 3030 3535 4040
distance travelled (m)distance travelled (m)

0.0250.025

0.030.03

0.0350.035

fr
ac

tio
n

of
ba

se
lin

e
co

st
fr

ac
tio

n
of

ba
se

lin
e

co
st

CostCost

63

	List of Figures
	List of Tables
	Introduction
	Background
	Path planning classification
	Challenges and limitations
	Environmental challenges
	Platform limitations

	Relevant algorithms
	A*
	RRT and RRT*
	Model Predictive Controller
	Layered Costmap
	Suitability of public algorithms

	Development
	Analysis of requirements
	Development process
	Cost function development
	Core functionality development
	Refinement and additional features

	Proposed solution
	Path generation
	Cost functions

	Result analysis
	Evaluation criteria
	Comparison to Starship's current solution
	Test case performance comparison
	CPU load comparison

	Comparison to public algorithms
	Requirements and effects of discretization
	Complexity
	Extendability and support for features
	Conclusion on proposed solution

	Summary
	References
	Appendices
	Appendix 1 - Lihtlitsents lõputöö reprodutseerimiseks ja lõputöö üldsusele kättesaadavaks tegemiseks
	Appendix 2 - Case 1 sidewalk structure
	Appendix 3 - Case 2 sidewalk structure
	Appendix 2 - Case 1 sidewalk structure
	Appendix 5 - Case 4 sidewalk structure
	Appendix 6 - Case 5 sidewalk structure
	Appendix 7 - Case 1 performance
	Appendix 8 - Case 2 performance
	Appendix 9 - Case 3 performance
	Appendix 10 - Case 4 performance
	Appendix 11 - Case 5 performance

