
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology

Cyber Security Engineering

Ahmed Ruhul Quddos Joyon 184059IVSB

Intrusion Detection in Self-Driving Cars Using
Honeypots
Bachelor Thesis

Supervisor
Kaido Kikkas

PhD
Hayretdin Bahsi

PhD

Tallinn 2022



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Ahmed Ruhul Quddos Joyon ......................................
(signature)

Date: January 06, 2022

i



Annotatsioon

Viimasel ajal on autonoomsete või isejuhtivate autode valdkonnas tehtud palju arendusi.
Uuringud näitavad, et seda tüüpi nutikad autod on haavatavad erinevat tüüpi turvaohtude ja
nullpäeva-rünnakute suhtes. Erinevate "asjade Interneti" ja isejuhtivate autode uurimuste
põhjal selgus, et enamik neist on kas Telneti või SSH rünnakud, mille abil ründaja üritab
süsteemi üle kontrolli saavutada. Selle lõputöö eesmärk on näidata, et seda tüüpi sõidukite
jaoks on võimalik välja töötada kõrge interaktsioonitasemega meepott. Selleks sõnastatakse
töös nõuded meepoti väljatöötamiseks, mis simuleerib isesõitvat autot. Pärast seda luuakse
Duckieboti abil meepoti prototüüp, mida turvatestitakse sõltumatu kasutaja poolt.

Lõputöö on inglise keeles ja sisaldab 33 lehekülge teksti, 5 peatükki ja 27 joonist.

ii



Abstract

In recent times a lot of development has been done in the field of autonomous or self-
driving cars. Research shows that this type of car is vulnerable to different types of security
threats and zero-day attacks. From different research honeypots for IoT and self-driving
cars showed that most of this are either telnet or SSH attacks by which attacker tries to
take control of the system. This thesis aims to show that it is possible to develop a high
interaction production honeypot as a deception technique for self-driving cars. For this
author will set up requirements to develop a honeypot that will simulate as self driving
car. After that author designed a prototype honeypot using Duckiebot.This honeypot was
then evaluated by common pen testing technique. Feedback from this evaluation and some
recommendation had been provided.Future research direction on this topic was discussed.

The thesis is in English and contains 33 pages of text, 5 chapters and 27 figures.

iii



List of abbreviations and terms

HIH High Interaction Honeypot
IOT Internet Of Things
MQTT MQ Telemetry Transport
ROS Robot Operating System
SDC Self Driving Car
UAV Unmanned Aerial Vehicle
TLS Transport Layer Security

iv



Table of Contents

List of Figures vii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Self-Driving Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Working Principle and Components . . . . . . . . . . . . . . . . 4
2.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Security Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 MITRE ATT&CK . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Cyber Deception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Log Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Rsyslog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 ELK Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Proposed Solution 17
3.1 Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Honeypot Requirement . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Open source Honeypot . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Duckiebot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 SSH and Telnet Configuration . . . . . . . . . . . . . . . . . . . 22
3.2.5 File system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.6 MQTT simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.7 Malware detection . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.8 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.9 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.10 Backup and restore . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Evaluation 28
4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Summary 33

Bibliography 34

Appendices 37

Appendix 1 - Non-exclusive licence for reproduction and publication of a grad-
uation thesis 37

Appendix 2 - TalTech IseAuto Hardware Architecture 38

vi



List of Figures

1 DSR methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Computer Vision on SDC . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 3D modeling using LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Different modules of self-driving car . . . . . . . . . . . . . . . . . . . . 6
5 Communication between two nodes . . . . . . . . . . . . . . . . . . . . 6
6 Kill Chain vs Cyber deception . . . . . . . . . . . . . . . . . . . . . . . 9
7 Attack flow in LIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9 Rsyslog features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10 ELK architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
11 Functional Architecture for SDC . . . . . . . . . . . . . . . . . . . . . . 14

12 Overview of all parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
13 Duckibot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
14 dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
15 Duckiebot architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
16 SSH and telnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
17 Backup image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

18 Active scanning of network-1 . . . . . . . . . . . . . . . . . . . . . . . . 28
19 Active scanning of network-2 . . . . . . . . . . . . . . . . . . . . . . . . 29
20 Brute Force attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
21 Successful SSH login . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
22 ROS file system visible to attacker . . . . . . . . . . . . . . . . . . . . . 30
23 Malware file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
24 Log file-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
25 Log file-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
26 Alert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

27 Hardware components of Taltech’s SDC . . . . . . . . . . . . . . . . . . 38

vii



1. Introduction

Vehicles are one of the important aspects of our society. We use these to carry people and
goods from one place to another. With digitalization, old mechanical cars became faster,
reliable and user friendly. Although it has a lot of necessity, it is also can create hazards
to our society in terms of traffic accidents. Usually, these accidents are caused by human
errors or faulty mechanical parts in the car. For that,the development of self-driving cars
has been the main focus in this decade. A lot of big name companies such as Google, Tesla,
GM are continuously working to improve their cars to hand over more control to machines
. This autonomy of car is becoming a reality due to the advancement of positioning and
sensors technology. All self-driving cars use different sensors that feed data to a central
processing unit that by using artificial intelligence move the car move safely on the road.
These cars also has a remote monitoring system that can control or monitor its operation
from a remote location.

Also, most of these modern cars are connected to the internet to receive and send different
information.These cars are not only getting connected to the internet they also communi-
cate with other vehicles to gather different information such as traffic lights, pedestrian
movement,etc. Globally 30 million connected cars are sold in 2020[1]. This technology
also solves the problem of long-haul trucking as Tesla demonstrated in their autonomous
truck. Before we make this vehicle used by the mass public all different communities
has to make sure that these types of vehicles are safe to use. One of them is the security
research community, who will have to identify possible security threats in self-driving cars
and propose possible remediation to these threats.

1.1 Problem Statement

Self-driving cars rely on different sensors, software and hardware to run their operation.
As these new additions of different components made driving easier , they also increase
the attack surface and threat scenario for the car. A vulnerable self-driving car is not
only harmful to itself but can also be used as a launchpad for attacking other self-driving
car connected to it using vehicle to vehicle communication. Because of this different
architecture of self-driving and its communication protocol inside and outside the network,
it is always a possibility that an intruder can create a backdoor to the main network of the

1



car and take control of its component to create harm full and dangerous circumstances.
Rather than being on the defense because of these attacks it is smarter to act in offense
and detect the intruder. One of the main offensive security measure is intrusion detection.
Detecting a attack early without compromising the car can save not only our property but
also a lot of lives. Chris Sanders, in his book "Intrusion Detection Honeypot", describes
a detection process through deception[2]. Using deception techniques we can detect,
slow down, respond, analyze and alert intruder attacks. Honeypot is one of the deception
techniques that’s being used as a part of deception mechanism. All though there are lot
research honeypots are created to understand different attack scenario on IoT devices
and autonomous vehicles, there is currently no approach to actually develop a production
honeypot for self-driving car as an intrusion detection system. For these reasons following
research questions are formulated:

1. What kind of design requirements are needed to develop a honeypot for a self-driving
car?

2. Will this honeypot can be used as detection mechanism for a self-driving car?

1.2 Objective

The main objectives of this thesis are given below:

1. Develop requirements for high interaction honeypot for self-driving cars.
2. Design a prototype honeypot based on those requirement.
3. Evaluate and test the honeypot as a detection tool for self-driving cars.

1.3 Methodology

The author will design the thesis based on design science research framework[3]. Following
diagram shows us processes author will follow in this thesis:

Figure 1. DSR methodology[3]

2



To create requirements and design an actual honeypot author will keep four things in mind:

1. Deceptive
2. Discoverable
3. Interactive
4. Monitored

In chapter two author discusses how to achieve these steps based on frame work provided by
Attivo networks. To evaluate and test the proposed honeypot author will use the framework
provided by MITRE ATT&CK.The following steps will be used to check validation of
honeypot.

1. Initial Access
2. Execution
3. Persistence
4. Privilege Escalation
5. Defense Evasion
6. Credential Access
7. Discovery

All this section has different subsections or techniques. Author will discuss which technique
will be used in detail in Chapter 2.

1.4 Thesis Outline

This thesis contains the following chapters.

1. Background: Provides background information for this study and discusses works
already conducted for security in self-driving cars, different honeypots that are
developed as part of security measures in self-driving cars and IoT devices.

2. Proposed Solution: This chapter analysis different component required for a success-
ful high interaction honeypot, propose a feasible design.

3. Evaluation: This chapter discusses the evaluation experiment conducted , its result
and feedback.

4. Summary: This chapter summarises our thesis, its outcome and future research
direction.

3



2. Background

In this chapter author will discuss self-driving car and there network architecture, honeypot
and, different attacks that can happen. The author will also discusses related works done in
this field.

2.1 Self-Driving Car

A self-driving car is a vehicle that by using sensors to understand the surrounding environ-
ment operates without human involvement. At any point in time, this car does not require a
human driver or passenger. It acts like any traditional car and can go to any road a normal
car can go. Currently, there is six levels of autonomy in self-driving cars .

1. Level 0: No automation. All driving related works are done by the driver.
2. Level 1: Driver Assistance. The driver completes all driving related tasks with help

of some safety features.
3. Level 2: Partial Automation. The driver remains alert and monitors the environment.

One or two tasks are done by the driver simultaneously.
4. Level 3: Conditional Automation. All environments are monitored by car but the

driver must be ready to take over at any point in time.
5. Level 4: High automation. The car performs all tasks but the driver needs to present

in the car.
6. Level 5: Full automation. Driver not required. The car performs all tasks.

2.1.1 Working Principle and Components

To build and understand how SDC car works we have to understand five components[4].

1. Vision
2. Sensor
3. Location
4. Route
5. Control

4



Vision is how SDC sees its surrounding. It is done by placing cameras around the car.
These images are then processed by a different machine learning algorithm to identify
objects.

Figure 2. Computer Vision on SDC[5]

One of the main parts of driving on the road is to always be aware of the surrounding
environment. SDC comes with a lot of sensors that feed data and using technologies like
LiDAR creates a 3D representation of the surrounding environment.

Figure 3. 3D modeling using LiDAR[6]

Next component is locator . This component is used to locate where the car is in the real
world so that Route planning can be done. Using locator components such as GPS and
some complex algorithm self-driving cars decides the most optimal path to go from point
A to point B. After getting all necessary information using AI cars to travel from point A
to B. Author showed a figure of hardware component self-driving car in appendix 1. This
figure shows all the components described above. It also includes a network switch that
connects all the component together and a logging system for monitoring purposes.

2.1.2 Software

Autoware

Autoware is an open source all in one software for self-driving vehicle. It has a rich set of
modules for self-driving car such as:

� Sensing
� Computing
� Actuation capability

5



Details regarding these modules are described in below picture:

Figure 4. Different modules of self-driving car[4]

Robot Operating System

ROS is a unix based open-source light operating system to control robotic functions. It
works like a regular operating system and also provide frameworks tools and libraries for
obtaining, building, writing, and running code across multiple computers. ROS file-system
level contains following packages:

1. Packages: These are the main units of organizing software in ROS. It contains nodes,
library , data sets, configuration files.

2. Metapackages: these are special packages that represent a group of related packages.
3. Package manifests: It contains metadata regarding different packages.

ROS uses different nodes to process data together. These nodes communicate with each
other by passing messages. These messages are routed via topics using publish/subscribe
model[7].

Figure 5. Communication between two nodes[7]

6



2.1.3 Security Vulnerability

As per the above discussion, it is seen that SDC uses a lot of IoT components. This
components interact with each other and other cars over the internet. A lot of these
components are vulnerable to attacks that are very easy to execute even for a novice
attacker. Using some known method already out in the open one can remotely take control
of a vehicle just using very simple equipment. Rather than that it is very clear based on
some research that these cars are also vulnerable to zero-day attacks. The reason behind
these security issues are mainly manufacturer does not design there product having security
threats in mind. To prevent this kind of threats our paper mainly focuses on intrusion
attacks.

Intrusion attacks

Intrusion attacks refer to illegal activity in a digital environment. This kind of attack usually
overwhelms network infrastructure, steals confidential data and use it as a launchpad for
cyber attack in connected networks. There are different techniques of intrusion attacks.
Such as:

1. Multi-routing
2. Buffer Overwriting
3. Covert scripts
4. Brute-force attack
5. Malware
6. Worms

MQTT attack

One of the important security vulnerability present in current self-driving cars are in
MQTT communication.there are several security breaches that can happen while using this
protocol[8].

1. Brute Force Authentication
2. Denial Of Service Attack
3. Distributed Denial Of Service Attack

In DoS attack, an attacker tries to deliver malicious packets using MQTT protocol that
results in interruption in receiving actual massages from legitimate broker. In this type of
attack , it is possible to exhaust resources and provide false information. In DDoS service
attack it is also possible to send these packets from a distributed source which means it

7



will be much more harder to mitigate.

2.1.4 MITRE ATT&CK

The MITRE ATT&CK[9] is a global knowledge base consisting of tactics and techniques
used by hackers. This knowledge base is created based on real-life observation. Anybody
can use this matrix to develop threat models and methodology. Currently, this matrix
is used in the private sector, government and security product development community.
ATT&CK Matrix:

1. Reconnaissance: Active Scanning, Gather victim host information, identity informa-
tion etc.

2. Resource development: Acquire infrastructure, Compromised accounts, develop
capability, etc.

3. Initial Access: External remote service, valid accounts, exploit public facing applica-
tions etc.

4. Execution: User execution, system execution etc.
5. Persistence: Create accounts, create and modify system processes, etc.
6. Privilege Escalation: Abuse Elevation Control mechanism, valid accounts, scheduled

tasks and jobs, etc.
7. Defense Evasion: Deploy container, hide artifact, etc.
8. Credential access: Brute force, password stores, etc.
9. Discovery: File and directory services, remote system discovery, etc.

10. Lateral movement: Exploitation of remote services, session hijacking, etc.
11. Collection: Archive data collection, data from local file system, etc.
12. Command and Control: Data encoding, protocol tunnelling, etc.
13. Exfiltration: Automated exfiltration, scheduled transfer, etc.
14. Impact: Data destruction, data manipulation, etc.

2.2 Cyber Deception

Cyber deception is a technique to deceive attacker into a false and pre-planned trap
inside a network to control, monitor his every movement and then take action against
them. Cyber deception creates uncertainty in attackers mind, wastes his time and advi-
sory gets to understand attackers kill chain and prevent them in real life. Advantages
of cyber deception is that it puts advisory in driving sit as they know exactly what at-
tackers are doing inside there network. Using cyber deception advisories can prevent
cyber kill chain by planning a deception strategy for every stage of kill chain.Figure

8



6 shows how cyber deception technique can be used to counteract kill chain[10].
Although cyber deception sounds like honeypot but actually it is just one important

Figure 6. Kill Chain vs Cyber deception[10]

part of deception technique.

Honeypot

A honeypot is a trap to lure an attacker into seemingly working network infrastructure,
which is created to attract and study attacker’s behavior. Honeypot is the first step to
have an operational intrusion detection and prevention system. It is always created very
realistically and also contains tools to monitor and analyze intruder’s behavior[11].

Characteristics

All honeypots usually has four characteristics.

1. Deceptive: Honeypots present some form of deception by representing false truth.
They might appear as a real system or service but it does not represent a real system
and does not have a business value. There are two ways one can achieve deception
in our honeypot. Either by hiding it in the background of real services or by showing
which means that it is showing something especially to lure them in.

2. Discoverable: Honeypots has to be discoverable to accessible within the proper

9



context. The placement of honeypot defines its purposes.
3. Interactive: As honeypot are not what it appears to be but it should be as interactive

as possible as a real network.
4. Monitored: To connect all of this together honeypot needs to be properly monitored.

Based on levels of interaction required in a honeypot, it can be classified into three groups:

� Low-Interaction Honeypots (LIHP)
� Medium-Interaction Honeypots (MIHP)
� High-Interaction Honeypots (HIHP)

Low-Interaction Honeypots

This kind of honeypot emulates a limited range of services for the attacker to use. This
kind of honeypot does not require many resources and can be maintained very easily.
It’s implementation only requires set up of a hypervisor which will emulate an operating
system and also set up a monitoring system while the actual system remains untouched.
Using this kind of honeypot one can easily detect paths and origin of an attack but it can
not be used to understand the method of attacker. The above figure shows the attack path

Figure 7. Attack flow in LIH[12]

available to a attacker when targeting a LIH.

High-Interaction Honeypot

Opposite of LIH , HIH offers a full range of systems for the attacker to interact with. It
does not emulate any services but has real system and services an organization might
have. This way attacker can compromise the whole system and can take control. Bu using
this kind of honeypot we can have a better understanding of attack methods and tactics.
Although HIH can be very useful it come with some disadvantages also. As it is necessary
to connect this honeypot to a real network, there is a chance that the attacker might get
access to real network via honeypot. It is also very complicated to configure in the long run.
Figure 8a shows the the attack path available for attacker. Here the attacker has access to
full range of operating system and its resources. Also, OS has access to near by machines
in the network. VMware software can work as a HIH by creating different virtual hosts

10



(a) Attack flow in HIH[12]

connected to each other. Even an unpatched windows personal computer can work as a
HIH.

Medium-Interaction Honeypots

In MIH there is also no operating system present but it is more interactive than LIH. It also
emulates OS, resources and services and can interact with the an attacker and can answer
commands from attacker. Emualted services are more complex than what LIH have but it
is also very safe as seen in LIH. This kind of honeypot is used as a specific and controllable
option to detect specific kind of attacks. MIH has the best from both side of the honeypot
and can be very scalable and low maintenance.

Based on what purpose it serves honeypot can be separated into two categories.

1. Production Honeypot: This type of honeypot are used to collect data security related
information from an actual production network.

2. Research Honeypot: A research honeypot are used to understand the attack methods
and tactics of an attacker. This type of honeypot is used by government or security
researchers.

Honey token

Security is always more about data than computer resources. The three pillar of cybersecu-
rity is availability, integrity and confidentiality of data. One of the way we can simulate
data is by using honeytokens. Honeytokens are security resources that simulates actual
data. There are multiple ways we can use honeytokens.

1. Honeydocs: This is an office document that contains a honeytoken named webbug.
If an attacker opens this file a external URL will be referenced. By monitoring that
web server it will be known who and when these documents were opened.

2. Honey Files: Honeyfiles can be any file that is paired with logging to detect intruder.

11



2.3 Log Management

Log Management is a service to gather, store, process and analyze data coming from one
or more applications. Log is a computer generated file that captures all or specific activities
within an operating system , applications, or in our prospective honeypot. These files
automatically generates documents specified by the administrator.[13] Log management
usually has six categories[13].

1. Collection
2. Monitoring
3. Analysis
4. Retention
5. Indexing
6. Reporting

2.3.1 Rsyslog

Rsyslog is an open source and fast system for log processing[14]. Advantages:

1. High performance
2. Security features and modular design
3. Can accept information from an wide range of services process them and send output

to diverse destinations.

2.3.2 ELK Stack

ELK Stack is all in one log management tool that contains E for elastic search, L for
Logstash and K for Kibana[15].

1. ElasticSearch ; Stores log
2. LogStash: ships, process and stores log
3. Kibana: Visualization tool hosted in Nginx or Apache.

Simple architecture of ELK stack :

2.4 Previous work

This section will look into previous works in four parts.

12



Figure 9. Rsyslog features[14]

1. Attack surface analysis
2. Current security process and practices
3. Cyber deception
4. Research honeypot for IoT devices
5. Production honeypot for UAV and IoT devices

There is currently a lot of works done to identify threats in self-driving cars . But the
problem with these researches is that it did not take into account the wide range of
component present in self-driving cars. To understand the attack surface of a self-driving
car it is needed to take into account three major components. Communication, sensors
and data [16]. S.Behere and M.Torngren proposed a functional component of autonomous
vehicle in to three categories[17].

1. Perception
2. Decision
3. Vehicle platform manipulation.

The following diagram from[17] shows us a reference architecture for self-driving car:

13



Figure 10. ELK architecture[15]

Figure 11. Functional Architecture for SDC[17]

Self-driving vehicles consist of a lot of hardware and software. These include but are not
limited to operating systems, computational hardware, middleware and a codebase. Choi
in his paper investigated different vulnerabilities that are present in ROS middleware.The
main vulnerabilitiy discovered in ROS is a lack of authentication. This kind of platform
performs lot of tasks simultaneously to achieve a single task. To manage these processes
ROS works as an central management unit. This paper showed a variety of exploits that
exist in ROS[18].

1. ROS master spoofing
2. Intercepting and replaying ROS log files
3. Insertion of malicious processes

Another security issue is ransomware dedicated to the automotive vehicles as presented by
Weiss. This research presented us with different automotive ransomware properties[19].

1. Data encryption

14



2. Infection of automotive component
3. Vehicle process interruption
4. Download
5. Payment request

Another vulnerable component of a self-driving car is there major communication protocol
between ROS and different sensors. This massaging protocol is based on subscribe/pub-
lish scheme. Ivan Vaccari developed a DoS attack that are targeted to MQTT protocol.
This attack instantiates high number of connections to the server to seize all available
connection[20].In an article published by Avast showed that 49000 exposed MQTT
server were accessible from internet. Among them 32000 had no password protection.
Researchers were able to get access to all kinds of exposed data[21].This is currently one
of the major security concern over MQTT communication, zero or weak authentication .
In 2016, ISO and SAE jointly published a cyber security standard for road safety
vehicle called ISO/SAE DIS 21434. This publication set out an minimum security
criteria for cybersecurity Engineering[22]. Based on this standards a lot of researches
had been conducted. In 2021 IEEE 93rd Vehicular Technology Conference , a re-
search paper described a security testing process for automotive technology. They
explained the process of creating System Under Test based on attack surface anal-
ysis , generating different type of test scenario and proper reporting[23]. Another
group of researcher proposed digital twin based security testing for automotive car[24].

Although these testing approaches can provide information regarding components that
is vulnerable to existing vulnerability, they will not provide any threat intelligence for
zero-day vulnerability. Upstream security conducted a survey in 2018 that found 92 percent
of black hat attacks are conducted via long distance wireless attacks. Karamba security[25]
in 2018 developed a virtual ECU honeypot that was attacked by 300000 times by 3500
attacks. Although those attacks are not targeted for ECU, major attack target was telnet,
SSH and HTTPS services.In 2018, IoT honeypots developed by Kaspersky researchers
showed 75percent IoT attacks are targeted towards telnet and 12 percent for SSH[26].
In Metongnon, they found out some attackers are already looking for UpnP or MQTT
protocol. A lot of research has been put in place for understanding attack methods on
IoT devices through honeypot. Based on these researches Maria Schmitz proposed the
following assumption[27]:

1. Cyberattacks on connected cars are increasing
2. Majority of these attacks target Telnet or SSH.
3. Dictionary and brute force attacks are the most common method.

15



To prevent this kind zero-day attack one of the technique is to have a deception mechanism
placed in the network. Ferar and Bahsi in their paper[28], created deception mechanism
including some known vulnerability and honeypots and tested this with red team . Their
paper concluded that attackers often got confused to identify resources and services , they
somewhat did not think that those were honeypots and could not finish the mission due to
lack of time. To create a cyber deception operation Attivo networks proposed the following
steps[10]:

1. Planning
2. Preparing
3. Monitoring
4. Measuring

One of the examples of a production honeypot for UAV was developed in 2020 by re-
searcher in Technische Universitat Darmstadt. They proposed a novel medium interaction
honeypot that can provides a medium interaction honeypot for UAV devices, record and
analyze attack and guide attackers away from UAV and delay them [29]. They designed a
portable honeypot that based on Rasberry pi supporting SSH/telnet, emulates MAVLink
that is virtually indistinguishable from actual drone[29]. The difference between UAV and
AV is in there communication protocol . UAV usually uses MAVlink to communicate with
its control center where self-driving cars are mostly uses 4G or 5G router to communicate
with control center[29].

16



3. Proposed Solution

3.1 Requirement

3.1.1 Honeypot Requirement

The primary goal of a honeypot is to deceive an attacker into thinking that they are in an ac-
tual target environment . As the author is planning to set up a production honeypot for self-
driving cars it has to be as realistic as an actual self-driving car. As the author wants to detect
attacker activity inside honeypot, low interaction honeypot can not hold an attacker inside
much longer as they lack the functionality to keep attacker occupied for longer period of
time. For these reasons it is important to develop a high interaction honeypot. For the design
author is simulating an operating system and hardware that hosts the middleware i.e ROS.
It is also connected to different sensors and executes several functions to perform a task.

Currently, there are different OS’s used in self-driving cars. The most common OS are
Linux based operating system i.e Ubuntu. Other than this famous automakers use following
OS in there cars.

1. QNX Neutrino
2. WindRiver VxWorks
3. NVIDIA DRIVE™ OS

Autonomous vehicles have a lot of ECU’s that needs to be communicated to and managed
as a single entity. Big automakers like GM, ford uses ROS on there cars. For honeypot
it will be essential to install a ROS in main OS .But presence of ROS does not make it a
self-driving car. for that we also have to simulate messages generated from different ECU
and sensors.

Next thing needed to be done is to give attacker a sense that it is working as a MQTT server.
MQTT is an Internet Of Thing connectivity protocol. It is often used to communicate
between IoT devices, also to push data from cloud to device.Automotive industries are
using this protocol to communicate between sensors and other data point. After setting

17



up MQTT server it is important to simulate different sensors that can be communicated
through this protocol. This sensors and raw data coming from it will make attacker think
that they are actually inside a self-driving cars HMI that is connected and controlling
different sensors.To make attacker slow author needs to set up processes that interact with
various commands from the attacker.

Now that a list of services required to run in honeypot it is necessary to make the proposed
honeypot attractive to an attacker. One of the first steps of a cyber attack is to Reconnais-
sance. In this step attacker tries to gather information they can use . One of the technique
for reconnaissance is to do active scanning. In this technique, an attacker might scan ip
blocks to gather information to be used to target a victim. Usually, attackers gathers public
ip’s that are allocated to a specific organization or they do sequential ip address scan. For
the proposed honeypot author needs to have an open SSH port that will be open and are
vulnerable to brute force or dictionary attack or simply having a week authentication set
up for attacker to get access to the system. In addition to having SSH open author can also
add an open telnet port for the attacker to use.

It is also needed to enable remote logging in the proposed honeypot to send logging data to
a remote rsyslog relay for further investigation and analysis. It needs to send authentication
logs, command executed logs, downloaded file information to rsyslog relay.

After understanding basic requirement for self-driving car, author has to decide on hardware.
The most important thing have to keep in mind is that for this honeypot it is not possible to
use high performance computers as those are not cheap and quite often not very portable.
For the proposed honeypot author needs something portable and cheap but has manageable
RAM and storage.

1. Operating system : Ubuntu
2. Services: ROS
3. Vulnerable port: SSH , Telnet
4. Remote logging: Rsyslog
5. Hardware: Portable, cheap with manageable RAM and storage.

3.1.2 Open source Honeypot

Currently, there are lots of low to high interaction honeypots present in the market. Most
of them are open source and free to use. To trap attacker’s SSH activity there is Cowrie a
low interaction ssh/telnet honeypot. Conpot is a high interaction SCADA honeypot that
can mimic IoT devices such as power plants. But the problem with conpot is its templates

18



are limited and impossible to simulate a self-driving cars environment. Glastopf works as
web application honeypot to catch malware’s and cross-site scripting in web applications.
T-pot honeypot is a multipurpose honeypot that contains more then 10 docarized honeypot
that all have there own instances. Now, for our self-driving car honeypot author can use
above mentioned honeypots but the problem with those honeypots are if a attacker does
a targeted attack on a self-driving, honeypots will be very easily exposed as it does not
contain enough proof or footprint of a self-driving car. Thus either attacker will leave the
system or try to destroy or break through the system. For this reason, we need to develop
our own honeypot that will simulate as much services of AV to fool attackers.

3.2 Design

In this section author will design our honeypot based on the requirement described above.

3.2.1 Duckiebot

For the proposed honeypot hardware author will use Duckiebot. Duckiebots are cheap,
small size self-driving car that can be built using off-the-shelf parts. The Duckiebot is a
minimal anatomy platform that allows to investigate complex behavior and do research on
autonomous vehicle[30].

This bot contains following parts:

1. Computation: JN2GB
2. Sensing: Camera, Wheel Encoders, ToF, IMU
3. Actuator: 2xDC motors , 4xRGB LED, Screen
4. Memory: 64GB
5. Power: Battery

3.2.2 Hardware setup

Duckiebot comes in a box with all its components. Following picture gives an overview of
all components: Below steps are followed based on Duckiebot documentation to assemble
the robot.

1. Step 1: Unboxing
2. Step 2: Drive train
3. Step 3: Battery pack installation

19



Figure 12. Overview of all parts[30]

4. Step 4: Computational Unit and Rear Assembly
5. Step 5: Cable management
6. Step 6: Front assembly
7. Step 7: Top plate assembly
8. Step 8: Charging

The following figure shows the complete car after assembly.

Figure 13. Duckibot

3.2.3 Software setup

Duckietown software setup requires native Ubuntu 20.04 installed. It will also work in
a virtual machine with Ubuntu installed. It can also be installed using windows or mac
OS but for the experiment Ubuntu 20.04 LTS will be installed in personal laptop. Before
moving forward with software setup the author needs to make sure that all necessary
packages are installed such as: pip3, git, git-lfs, curl , docker and docker-compose. Now
using pip3 Duckietown shell was installed using following commands:

20



pip3 install --no-cache-dir --user --upgrade duckietown-shell

dts --set-version daffy

The author needs to create a account in Duckibot website to acquire a token which will be
needed in the later stage. before moving on to flashing the sd card token was validated in
Duckitown shell. Following commands in dts shell was used to initialize SD card:

dts init_sd_card --hostname Car --type duckiebot \

--configuration DB21M

After sometimes it will give a confirmation massage that SD card is ready , it can then
be removed and place it in the SD card holder in Duckiebot. To check that Duckibot is
ready we can go to http://Car.local to visit its dashboard. After initializing Duckiebot

Figure 14. dashboard

understanding of its Hardware architecture is required.Figure 17 shows the hardware
diagram of Duckiebot:

21



Figure 15. Duckiebot architecture[30]

3.2.4 SSH and Telnet Configuration

After successfully booting the car for the first time author can SSH to it from lab environ-
ment . Initially default SSH username and password were used. After successfully logged
into the car author changed password. Then to enable weaker SSH authentication author
created a user "Admin" and give it a password "admin123". respectively several different
users such as "root1" , "systemAdmin" etc was created with different password that will be
easily breakable using dictionary attacks or brute force attack. Following steps are taken to
create this process:

# usermod -aG sudo admin

For SSH author is using default port 22. Author also installed telnet and enabled it to listen
to in port 23. So, now it has two ports 22 and 23 listening to SSH and telnet connections.

Figure 16. SSH and telnet

3.2.5 File system

Duckiebot comes with standard Ubuntu file system .After logged in to the machine user
will land in regular Ubuntu user home directory.

$pwd

$/home/admin

By changing directory to /data ROS directory can be accessed. in this directory there are
six additional sub directory.

22



$ cd /data

$ ls

autoboot bags config logs proc stats

config directory contains Duckibot configuration and calibration files. It also contains
hardware information.

$ cd /data/config

$ ls

calibration permissions robot_hardware robot_configuration

In the configuration files, it is possible to add malicious ROS codes to change robot
configuration. Calibration folder contains different calibrations done for the self-driving
car. It will be possible for the attacker to change those calibrations to make the car
misbehave. All flight logs of the bot is saved in logs files in the same directory. In this
logs attacker can check previous log data of the car, analyze it and even send it to a remote
location for further analysis. For privilege escalation attacker can view user information
and change passwords for different user to get root privilege. With this privilege attacker
can encrypt data to act as a ransomware.

3.2.6 MQTT simulation

Most of modern day cars use MQTT protocol to communicate with different sensors. But
Duckiebot does not have this functionality, rather it works using different docker images to
control its camera and kinetics. For that author needs to simulate MQTT client environment
in Duckiebot. For this part Mosqutto broker is used to implement MQTT protocols. For
this part author will need a broker and client will be Duckiebot. Author installed mosquitto
in personal computer and installed client in Duckiebot.

$ sudo apt-get install mosquitto

$ sudo apt-get install mosquitto-clients

Now it is needed to publish sensor data in the broker. For that author first decided on four
sensor data we will simulate.

1. Mass airflow sensor

23



2. Engine Speed Sensor
3. Voltage sensor
4. Vehicle Speed Sensor

Now from broker author publish messages for all four topics listed above. Below is
published message on four topics :

$ mosquitto_pub -t /Car/sensors/MAS -m " 18g/s"

$ mosquitto_pub -t /Car/sensors/ESS -m " 700 rpm"

$ mosquitto_pub -t /Car/sensors/VS -m " 20V"

$ mosquitto_pub -t /Car/sensors/VSS -m " 65m/s"

For a constant massage publishing cronjob was added that will publish this message with
10s interval with slightly changed data. Now we need to subscribe to this topic from
our Duckiebot. Following commands are used to subscribe to the massages published by
broker.

$ mosquitto_sub -t /Car/sensors/MAS

$ mosquitto_sub -t /Car/sensors/ESS

$ mosquitto_sub -t /Car/sensors/VS

$ mosquitto_sub -t /Car/sensors/VSS

A cronjob was also added in the Duckiebot to receive published message from the broker.

3.2.7 Malware detection

Author also wants to detect if any attacker downloaded malware or virus in our system
. For that author needs to set up malware detection in honeypot. For that clamAV was
installed in Duckiebot. This will detect and analyze files that are downloaded for any
kind of malware or virus. A cron job is added in /etc/crontab to run a scan every night
and infected file will be quarantined in a specific folder. For experiment author will use
/home/duckie/clanav to move infected files. With this tool if attacker downloads any virus
or malware in to our honeypot , it will be detected and all files will be stored in a specific
location. Following crontab was added to run daily at 12 am.

* */12 * * * clamscan -r --move=/ /home/duckie/clanav

>/dev/null 2>&1

24



3.2.8 Logging

One of the important design part is to implement remote logging of our honeypot. For that
author installed and updated rsyslog in Duckiebot. It will work as a rsyslog client and will
send its log to a remote server for further analysis. For that author set up a rsyslog relay
server in home computer. It will listen in port 6514 . Communication between client and
server will be done over TLS to prevent any man in the middle attacks. To enable TLS
author created own self signed certificates in server side and copy the chain.pem file to
client. After TLS connection is established client rsyslog configuration file is modified so
that following files are sent to remote server. Author also set up a UDP connection on port
514 for troubleshooting .

1. auth*
2. commands.log
3. scan.txt

Here , commands.log contains all commands done by a user in one SSH session. As
Ubuntu does not provide any built in service to log this info, we added a script in bashrc
file to save all commands as a local6 facility and the in rsyslog.conf author instructed it to
save it to /var/log/command.log. auth log contains all information related to users SSH
activity. It can be either successful or unsuccessful attempts, ip address and time. In syslog
relay author configured it to send all log files to logstash. Author then configured grafana
to visualize and send alert.

3.2.9 Restriction

The author also needed to restrict attacker for reading and writing certain folders and files
such as our log files, log configuration etc . For that author implemented SSH restriction
to individual users except primary user. Author did this by creating a new group called
"restrictions" and then put following configurations lines in /etc/ssh/sshd :

Match Group restrictions

ForceCommand internal-sftp

ChrootDirectory /var/log/

# Disable tunneling, authentication agent, TCP and X11 forwarding.

PermitTunnel no

AllowAgentForwarding no

AllowTcpForwarding no

25



X11Forwarding no

Author created similar rule for /etc/rsyslog.conf and /var/spool/cron .

3.2.10 Backup and restore

After setting up all services in Duckiebot it is needed to create a backup of the whole
system. As it is known, Duckiebot uses Jetson nano developer kit, which uses SD card
rather then standard HDD or SSD , tools like clonezilla will not work here. Opensource
debian based snapshot tool such as backintime is a GUI based application so it also will
also not work in this case. Another commonly used tool is timeshift, but its package does
not exit for arm64/aarch64/ARMv8-a architecture. To use this tool author have to compile
the package from source code. For these reasons author will resort to dd tool found in
linux to create a backup image of SD card. For this author will save image in a central
repository so that it can be cloned to a new SD card at any moment of time. Following
command is used to create a backup of SD card.

$ sudo dd if=/dev/sda conv=sync,noerror bs=64K

| gzip -c > ~/backup_image.img.gz

here /dev/sda is device name. Following figure shows our newly created backup image.

Figure 17. Backup image

It is now possible to the restore image to a fresh SD card using following command.

$ gunzip -c ~/backup_image.img.gz

| dd of=/dev/sdc bs=64K

26



3.3 Implementation

As the proposed honeypot is a high interaction it is not safe to place it inside cars architec-
ture. Rather it can be connected to the outside network where data center, remote monitor
server are placed as these services are primarily more attractive to attacker. If some one
gets access to those services rather then letting the attacker get access to the car we can
deceive them to access our Duckiebot instead. While attacker gets inside our honeypot an
alert system will be triggered to protect our actual car infrastructure.

3.4 Discussion

In this chapter, author developed a list of requirement to develop a high interaction honey-
pot. It was seen that to develop a HIH, it is not very feasible to use current honeypot tools
that are currently being used as honeypots in different network infrastructure services.Due
to self-driving cars have different complex services we developed a prototype honeypot
that can be used as a honeypot. Author also developed remote monitoring and alerting for
this honeypot. In case an intruder take control of the honeypot a alert will be triggered
in email and discord. This shows that honeypot can be used as a detection honeypot for
self-driving car.

3.5 Future Work

In future work, it will be beneficial to add additional services to our honeypot so that
attacker can interact with ROS and simulate an environment so that the car can be controlled
from the honeypot. As author used Duckiebot as honeypot it can be also a important
research to do it in a conventional micro-controller i.e Rasberry pi and try to simulate
additional services such as CAN and embedded component.

27



4. Evaluation

4.1 Experiment

In this section, author will evaluate the proposed honeypot. For this experiment it is
assumed that attacker is on the same network as our car. This experiment will be conducted
using a Kali Linux virtual machine. According to MITTRE ATT&CK matrix, first step
of a successful attack is to do a active scanning. A nmap scanning with host range was
conducted.Following figure 19 and 20 shows us nmap scanning and its result.

Figure 18. Active scanning of network-1

28



Figure 19. Active scanning of network-2

From these it is visible that only one host 192.168.0.69 has open SSH and telnet port open.
For next step , a brute force login attempt on port 22 was conducted using hydra.For this a
list of usernames and passwords were used. Figure 21 shows hydra found username and
password for host 192.168.0.69. Username is admin and password admin123. Now using

Figure 20. Brute Force attempt

this username and password successful SSH connection was established to the host. After

Figure 21. Successful SSH login

successful login going to the /data folder all important file system of ROS is visible. Here,
bags subscribed to different ROS topics and store massage data. From here it is possible
to insert fake data in the bag, encrypt or even delete the data . This operation will make
the car behave according to the attackers data or even shut down or misbehave suddenly.

29



Figure 22. ROS file system visible to attacker

Due to lack of resource this part of the experiment was not conducted but theoretically in a
running duckiebot all this tasks can be possible by the attacker. For next step, a malware
was downloaded in the file-system . For safety purpose, rather then downloading a actual
malware , a fake malware eicar.com was downloaded from eicar.org and saved in the /data
folder. As this user does not have superuser privileges , any kind of privilege escalation

Figure 23. Malware file

was not possible.From the car any kind of scanning was also not possible .

4.2 Result

Above experiment shows us that our honeypot is working as intended, user can interact
with it and everything is logged in remote syslog server.Following figure shows the logging
data from our syslog relay: The user can also download files over http using wget. But

Figure 24. Log file-1

user was prevented from actually executing anything as a non root user. After pen testing
is completed tells us that attacker will not think it is a honeypot as he can do a lot of things
inside it as non root user which will not be possible in a honeypot. It is also possible that it
is running some kind of ROS as /data shows some configuration and log files .Attacker can

30



Figure 25. Log file-2

modify this ros files to take control over the ROS. Any kind scanning inside the system
and to use wireshark to detect any network activity as a non root user was prevented, so
it was not possible achieve that. User initially used nmap to scan open ssh and telnet
connection inside the network. After that he used Hydra package in Kali Linux to brute
force our ssh password, it took hydra using basic user:password combination txt file several
attempts to get a matching username and password. As our user could not do much as a
not root user we can add these user to sudo group to give them chance to use wide range
of services inside our honeypot such as wireshark, burpsuit or nmap to see and exploit
network information we simulated such as MQTT. When attacker successfully connected
to the car , a alert was sent to our discord server. Author created this alert system using
grafana and discord webhook.

31



Figure 26. Alert

4.3 Analysis

In this chapter author tested the proposed honeypot on a controlled environment.It was
assumed that attacker is already inside the self driving car network and rather than letting
him get inside actual self driving car operating system, attacker was lured inside the
honeypot. It responded properly with attackers commands. Everything attacker did were
recorded and sent to remote server. Depending on the log and alert was also generated and
sent to email and discord channel.

4.4 Limitation

Although some of proposed requirements are meet in proposed prototype honeypot ,
due to lack of permission attacker can not do much interaction with the device. It was
also clearly visible that attacker does not get proper control of ROS feature of the Duck-
iebot.To successfully archive those it is necessary to run the Duckiebot in a controlled lab
environment.

32



5. Summary

This thesis sought to develop a high interaction honeypot as an intrusion detection system
for self-driving car. During this research, author presented a list of requirements needed
to create a honeypot for self-driving car.In this thesis author designed a honeypot as an
intrusion detection system and evaluated it to analyze its services. During research it was
discovered that using a conventional honeypot in a self-driving car is not very feasible as
those honeypots do not have necessary services to simulate operating services running in
SDC. Rather than installing those services we used Duckiebot to develop it as a honeypot.
Author then evaluated it using MITRE ATT&CK matrix and generated logs and created
alert to detect intruder activity inside proposed honeypot. Proposed honeypot worked as an
intrusion detection system inside self-driving car network.While analyzing those data it
shows some limitation, such as this honeypot is working as it is intended but it lacks some
feature to actually understand attacker strategy for a targeted attack. This honeypot can be
used as an intrusion detection system but more work needed to be done to make it actually
worthwhile to implement it inside a self-driving car network.

33



Bibliography

[1] Charlotte Kosche. How many connected cars are sold worldwide? URL: https:
//smartcar.com/blog/connected-cars-worldwide/. (accessed:
19.10.2021).

[2] Chris Sanders. Intrusion Detection Honeypot: Detection Through Deception. 2020.

[3] Jan vom Brocke and Alan Henver. “Intruduction to Design Science Research”.
In: (2020). URL: https://www.researchgate.net/publication/
345430098.

[4] William Law. An Introduction to Autonomous Vehicles. URL: https : / /

towardsdatascience.com/an-introduction-to-autonomous-

vehicles-91d61ff81a40. (accessed: 19.10.2021).

[5] Perception Projects from the Self-Driving Car Nanodegree Program. URL: https:
/ / medium . com / udacity / perception - projects - from - the -

self - driving - car - nanodegree - program - 51fb88a38ff9. (ac-
cessed: 19.12.2021).

[6] Stuff reporter. More Efficient Lidar Sensing for Self-Driving Cars. URL: https:
//www.shunlongwei.com/more-efficient-lidar-sensing-for-

self-driving-cars/. (accessed: 19.10.2021).

[7] ROS documentation. URL: https://towardsdatascience.com/an-
introduction - to - autonomous - vehicles - 91d61ff81a40. (ac-
cessed: 19.12.2021).

[8] Yara Ahmed. “Preventing Vulnerabilities and Mitigating Attacks on the MQTT
Protocol”. In: (2020). DOI: https://www.diva-portal.org/smash/
get/diva2:1540107/FULLTEXT01.pdf.

[9] URL: https://attack.mitre.org/. (accessed: 30.11.2021).

[10] Geoff Hancock. “Cyber Deception: How To Build A Program”. In: (). URL: https:
//www.attivonetworks.com/documentation/Attivo_Networks-

Cyber_Deception_GH.pdf.

34

https://smartcar.com/blog/connected-cars-worldwide/
https://smartcar.com/blog/connected-cars-worldwide/
https://www.researchgate.net/publication/345430098
https://www.researchgate.net/publication/345430098
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://medium.com/udacity/perception-projects-from-the-self-driving-car-nanodegree-program-51fb88a38ff9
https://medium.com/udacity/perception-projects-from-the-self-driving-car-nanodegree-program-51fb88a38ff9
https://medium.com/udacity/perception-projects-from-the-self-driving-car-nanodegree-program-51fb88a38ff9
https://www.shunlongwei.com/more-efficient-lidar-sensing-for-self-driving-cars/
https://www.shunlongwei.com/more-efficient-lidar-sensing-for-self-driving-cars/
https://www.shunlongwei.com/more-efficient-lidar-sensing-for-self-driving-cars/
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://towardsdatascience.com/an-introduction-to-autonomous-vehicles-91d61ff81a40
https://doi.org/https://www.diva-portal.org/smash/get/diva2:1540107/FULLTEXT01.pdf
https://doi.org/https://www.diva-portal.org/smash/get/diva2:1540107/FULLTEXT01.pdf
https://attack.mitre.org/
https://www.attivonetworks.com/documentation/Attivo_Networks-Cyber_Deception_GH.pdf
https://www.attivonetworks.com/documentation/Attivo_Networks-Cyber_Deception_GH.pdf
https://www.attivonetworks.com/documentation/Attivo_Networks-Cyber_Deception_GH.pdf


[11] Savita Paliwal. “Honeypot: A Trap for Attackers”. In: International Journal of

Advanced Research in Computer and Communication Engineering 6 (2017). DOI:
https://ijarcce.com/upload/2017/march-17/IJARCCE%20197.

pdf.

[12] Dandy Kalma Rahmatullah, Suiya Michrandi Nasution, and Fairuz Azmi. “Im-
plementation of low interaction web server honeypot using cubieboard”. In: 2016

International Conference on Control, Electronics, Renewable Energy and Commu-

nications (ICCEREC) (2016).

[13] Humio Glossary. What is Log Management? URL: https://www.humio.com/
glossary/log-management/. (accessed: 19.10.2021).

[14] URL: https://www.rsyslog.com/. (accessed: 19.10.2021).

[15] URL: https://www.elastic.co/what-is/elk-stack. (accessed:
19.10.2021).

[16] Carsten Maple and Anh Tuan le. “A Connected and Autonomous Vehicle Reference
Architecture for Attack Surface Analysis”. In: (2019).

[17] Sagar Behere and Martin Torngren. “A functional reference architecture for au-
tonomous drivingA functional reference architecture for autonomous driving”. In:
(2015). DOI: https://reader.elsevier.com/reader/sd/pii/.

[18] Se-Yeon Jeong and Yeong-Jin Kim. “A study on ros vulnerabilities and countermea-
sure”. In: (2017).

[19] Se-Yeon Jeong and Yeong-Jin Kim. “On threat analysis and risk estimation of
automotive ransomware”. In: (2019).

[20] Ivan Vaccari and Maurizio Aiello. “SlowITe, a Novel Denial of Service Attack
Affecting MQTT”. In: (2020).

[21] Martin Hron. Are smart homes vulnerable to hacking? URL: https://blog.
avast.com/mqtt-vulnerabilities-hacking-smart-homes. (ac-
cessed: 30.10.2021).

[22] Georg Macher and Omar Veleder. “ISO/SAE DIS 21434 Automotive Cybersecurity
Standard - In a Nutshell”. In: (2020). DOI: https://www.researchgate.
net/publication/343790924_ISOSAE_DIS_21434_Automotive_

Cybersecurity_Standard_-_In_a_Nutshell.

[23] Stefan Marksteiner, Nadja Marko, and Andre Smulders. “A Process to Facilitate
Automated Automotive Cybersecurity Testing”. In: (2021).

[24] Stefan Marksteiner, Slava Bronfman, and Eddie Lazebnik. “Using Cyber Digital
Twins for Automated Automotive Cybersecurity Testing”. In: (2021).

35

https://doi.org/https://ijarcce.com/upload/2017/march-17/IJARCCE%20197.pdf
https://doi.org/https://ijarcce.com/upload/2017/march-17/IJARCCE%20197.pdf
https://www.humio.com/glossary/log-management/
https://www.humio.com/glossary/log-management/
https://www.rsyslog.com/
https://www.elastic.co/what-is/elk-stack
https://doi.org/https://reader.elsevier.com/reader/sd/pii/
https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes
https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes
https://doi.org/https://www.researchgate.net/publication/343790924_ISOSAE_DIS_21434_Automotive_Cybersecurity_Standard_-_In_a_Nutshell
https://doi.org/https://www.researchgate.net/publication/343790924_ISOSAE_DIS_21434_Automotive_Cybersecurity_Standard_-_In_a_Nutshell
https://doi.org/https://www.researchgate.net/publication/343790924_ISOSAE_DIS_21434_Automotive_Cybersecurity_Standard_-_In_a_Nutshell


[25] Karamba Security. “Karamba Security introduces ThreatHive solution for ex-

pedited detection of automotive cybersecurity vulnerabilities, URL: https :
/ / karambasecurity . com / static / pdf / Karamba - Security -

ThreatHive-Announcement.pdf. (accessed: 30.10.2021).

[26] Y.Shemblev M.Kuzin and V.Kuskov. New trends in the world of IoT threats. URL:
https://securelist.com/new-trends-in-the-world-of-iot-

threats/87991/. (accessed: 30.10.2021).

[27] Maria Schmitz. “A Strategy for Vehicular Honeypot”. In: (2019).

[28] Alexandria Farar and Hayretdin Bahsi. “A Case Study About the Use and Evaluation
of Cyber Deceptive Methods Against Highly Targeted Attacks”. In: (). URL: https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

8054640.

[29] Emmanouil Vasilomanolakis and Jorg Daubert. “Don’t Steal my Drone: Catching
Attackers with an Unmanned Aerial Vehicle Honeypot”. In: (2018).

[30] URL: https://www.duckietown.org/guides. (accessed: 30.10.2021).

36

https://karambasecurity.com/static/pdf/Karamba-Security-ThreatHive-Announcement.pdf
https://karambasecurity.com/static/pdf/Karamba-Security-ThreatHive-Announcement.pdf
https://karambasecurity.com/static/pdf/Karamba-Security-ThreatHive-Announcement.pdf
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8054640
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8054640
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8054640
https://www.duckietown.org/guides


Appendices

Appendix 1 - Non-exclusive licence for reproduc-
tion and publication of a graduation thesis

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation
thesis.

I Ahmed Ruhul Quddos Joyon (author’s name) 1. grant Tallinn University of Technology
free licence (non-exclusive licence) for my thesis INTRUSION DETECTION IN SELF-
DRIVING CARS USING HONEYPOTS (title of the graduation thesis)

supervised by Kaido Kikkas and Hayretdin Bahsi (supervisor’s name)

1.1 to be reproduced for the purposes of preservation and electronic publication of the
graduation thesis, incl. to be entered in the digital collection of the library of Tallinn
University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be entered in
the digital collection of the library of Tallinn University of Technology until expiry of the
term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the nonexclusive
license.

3. I confirm that granting the non-exclusive license does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act or
rights arising from other legislation.

37



Appendix 2 - TalTech IseAuto Hardware Archi-
tecture

Figure 27. Hardware components of Taltech’s SDC

38


	List of Figures
	Introduction
	Problem Statement
	Objective
	Methodology
	Thesis Outline

	Background
	Self-Driving Car
	Working Principle and Components
	Software
	Security Vulnerability
	MITRE ATT&CK

	Cyber Deception
	Log Management
	Rsyslog
	ELK Stack

	Previous work

	Proposed Solution
	Requirement
	Honeypot Requirement
	Open source Honeypot

	Design
	Duckiebot
	Hardware setup
	Software setup
	SSH and Telnet Configuration
	File system
	MQTT simulation
	Malware detection
	Logging
	Restriction
	Backup and restore

	Implementation
	Discussion
	Future Work

	Evaluation
	Experiment
	Result
	Analysis
	Limitation

	Summary
	Bibliography
	Appendices
	Appendix 1 - Non-exclusive licence for reproduction and publication of a graduation thesis 
	Appendix 2 - TalTech IseAuto Hardware Architecture

