
Tallinn 2025 

TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

 

 

Magnus Jakob Epkin 205858IAAB 

Automating the Network Device 

Configuration Process for the Health and 

Welfare Information Systems Centre 
Bachelor's thesis 

Supervisor: Mohammad Tariq 

Meeran 

 PhD 

  

  



Tallinn 2025 

TALLINNA TEHNIKAÜLIKOOL 

Infotehnoloogia teaduskond 

 

 

Magnus Jakob Epkin 205858IAAB 

Võrguseadmete konfigureerimise protsessi 

automatiseerimine Tervise ja Heaolu 

Infosüsteemide Keskuses 

Bakalaureusetöö 

Juhendaja: Mohammad Tariq 

Meeran 

 PhD 

  



3 

Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Magnus Jakob Epkin  

06.01.2025 

 



4 

Abstract 

This thesis aims to create an automated process to configure network switches for branch 

offices serviced by the Health and Welfare Information Systems Center. This is achieved 

by creating a process that utilizes the Zero Touch Provisioning capabilities that exist on 

the switches. 

The author provides a comparative overview of manual and automated network 

configuration methods along with their benefits and drawbacks. Then the author provides 

an overview of the methodology used for selecting the tools to be used in an experimental 

setup to test the Zero Touch Provisioning process.  

The thesis is concluded by the authors analysis of results from the experimental setup, 

bringing out future possibilities to expand on the work that was done. 

This thesis is written in English and is 44 pages long, including 6 chapters and 5 figures. 

 



5 

Annotatsioon 

Võrguseadmete konfigureerimise protsessi automatiseerimine 

Tervise ja Heaolu Infosüsteemide Keskuses 

Antud lõputöö eesmärk on luua automaatne protsess, mille käigus on võimalik 

automaatselt seadistada võrgulüliteid kasutuseks Tervise ja Heaolu Infosüsteemide 

Keskuse poolt teenindatavates asutustes. 

Töö käigus võrdleb autor manuaalset ja automaatset võrguseadistust, tuues välja mõlema 

meetodi eeliseid ja puudujääke. Seejärel toob autor esile metoodika mille põhjal valida 

töö eesmärgi täitmiseks kasutatavad töövahendid. 

Peale töövahendite valimist seadistab autor prototüübi, mille eesmärk on automaatne 

võrgulülitite seadistamine eelnevalt teadaolevate parameetrite järgi. Prototüübi töö 

efektiivsuse mõõtmiseks mõõdab autor ajakulu vahet manuaalselt ja automaatselt 

seadistamise puhul. 

Töö lõpus analüüsib autor prototüübi valideerimise käigus saadud tulemusi ning toob 

esile võimalusi juba tehtud töö edasisteks arendamiseks ja parandamiseks. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 6 peatükki, 5 

joonist. 

 



6 

List of abbreviations and terms 

API Application Programming Interface 

DHCP Dynamic Host Configuration Protocol 

IP Internet Protocol 

IPSec Internet Protocol Security 

IPv4 Internet Protocol Version 4 

IT Information technology 

JunOS JunOS 

Network Switch 
A network device that connects devices on a computer network 

by utilizing packet switching to receive and forward data 

OS Operating System 

OTP One Touch Provisioning 

SDN Software Defined Networking 

SFP Small Form-Factor Pluggable 

SNMP Simple Network Management Protocol 

TEHIK 
Health and Welfare Information Systems Centre (Tervise ja 

Heaolu Infosüsteemide Keskus) 

VLAN Virtual Local Area Network 

VM Virtual Machine 

YAML YAML Ain’t Markup Language 

ZTP Zero Touch Provisioning 

 



7 

Table of contents 

1 Introduction ................................................................................................................. 10 
1.1 Problem Statement ................................................................................................ 10 

1.2 Research goals and scope ..................................................................................... 10 

1.3 Research questions ............................................................................................... 11 

2 Background .................................................................................................................. 12 
2.1 Overview of network configuration methods ....................................................... 12 

2.2 Automation in network management ................................................................... 13 

2.2.1 Software Defined Networking ....................................................................... 13 

2.2.2 Configuration management tools................................................................... 14 

2.2.3 Zero and One Touch Provisioning................................................................. 15 

2.3 Comparative studies ............................................................................................. 16 

3 Method ......................................................................................................................... 17 
3.1 Review process ..................................................................................................... 17 

3.2 Experimental setup ............................................................................................... 17 

3.3 Data collection and analysis ................................................................................. 19 

4 Experimental design .................................................................................................... 20 
4.1 Equipment and tools ............................................................................................. 20 

4.2 Experimental procedure ........................................................................................ 22 

4.3 Evaluation metrics ................................................................................................ 23 

5 Results and discussion ................................................................................................. 24 
5.1 Results .................................................................................................................. 24 

5.2 Analysis ................................................................................................................ 24 

5.3 Answers to research questions .............................................................................. 25 

5.3.1 What are the challenges of manual configuration and how can automation 

help in addressing the challenges?.......................................................................... 26 

5.3.2 What are the limitations of automating configuration tasks? ........................ 26 

5.3.3 What type of skills and knowledge are required by administrators in a ZTP 

environment? .......................................................................................................... 26 

5.4 Practical implications ........................................................................................... 26 

6 Summary / Conclusions ............................................................................................... 28 
References ...................................................................................................................... 29 



8 

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation 

thesis ............................................................................................................................... 31 
Appendix 2 – Ansible playbook ..................................................................................... 32 
Appendix 3 – main.j2 template file ................................................................................ 34 
Appendix 4 – common.j2 template file .......................................................................... 37 
Appendix 5 – Switch variable file .................................................................................. 41 
Appendix 6 – Switch console output .............................................................................. 43 



9 

List of figures 

Figure 1. SDN architecture [6] ....................................................................................... 14 

Figure 2. Topology of the experimental setup ................................................................ 18 

Figure 3. SRX300 DHCP address assignment pool configuration ................................. 21 

Figure 4. ZTP workflow ................................................................................................. 22 

Figure 5. Comparison of time taken to configure new switches .................................... 25 

 

  



10 

1 Introduction 

In many organizations, manual configuration of network equipment remains the standard 

practice. While this approach generally works well at smaller scales, it can become 

problematic in larger environments, where speed and consistency are important. But at 

any scale, manual configuration is more prone to errors and inconsistency, often due to 

differing approaches among network administrators. 

Automation has become increasingly instrumental in managing IT infrastructure, 

enabling streamlining various tasks and reducing human error across deployments. One 

of the processes used in infrastructure automation is ZTP (Zero-Touch Provisioning). 

ZTP allows for new devices to be configured with minimal manual intervention. 

This thesis aims to automate much of the processes used for configuring network 

equipment by using the ZTP process to configure network equipment that are to be 

deployed in branch offices serviced by TEHIK (Health and Welfare Information Systems 

Centre). 

1.1 Problem Statement 

The current practice of manually configuring network equipment at TEHIK can be prone 

to errors in configuration tasks that take extra time to troubleshoot if not caught before 

the devices are sent out for deployment. This manual approach can also cause problems 

with administrators using different approaches when configuring devices, leading to more 

inconsistencies as time goes on. 

1.2 Research goals and scope 

The goal of the thesis is to design and implement a solution to configure network 

equipment with minimal manual intervention, thus reducing chances for human error, 

increasing consistency across device configurations, and saving time for network 

administrators, who can then focus more on other tasks. 

The scope of the thesis covers automatic configuration of Juniper Networks EX2300 

series network switches, while branch office environments also include configuring 

firewalls, those fall out of scope due to their increased complexity. 



11 

1.3 Research questions 

The following research questions have been formulated to guide this research. 

• What are the challenges of manual configuration and how can automation help in 

addressing the challenges? 

• What are the limitations of automating configuration tasks? 

• What type of skills and knowledge are required by administrators in a ZTP 

environment? 

 



12 

2 Background 

This chapter presents an overview of the differences between manual and automated 

configuration, their benefits and drawbacks. Additionally, it examines the role of 

automation in network configuration and reviews comparative studies on its 

effectiveness. 

2.1 Overview of network configuration methods 

This chapter gives an overview of the advantages and drawbacks of manual and 

automated configuration.  

While still widely used in smaller environments, the classic way of configuring network 

devices using a physical console port on the device can become troublesome in larger 

environments, where separately configuring devices will end up taking too much time to 

be sustainable. [1], [2] 

Manual configuration is still widely used for testing and troubleshooting devices, 

however for production deployments it can be time-consuming, more prone to errors in 

configuration, and more open to different approaches from administrators, which in turn 

can lead to problems when an organization is transitioning to a more automated approach 

to network management. [2] 

Automated configuration aims to provide a solution to problems found with manual 

configuration by providing a way to effectively standardize configurations across 

deployments, reduce errors, and save time needed by administrators to do their work. 

However, this comes with the need to train administrators on new tools and assumes at 

least basic knowledge of programming languages. [3] 



13 

2.2 Automation in network management 

This chapter covers the most common capabilities used to enable automation in network 

management with a closer look at SDN (Software Defined Networking), Configuration 

Management Tools, and ZTP along with OTP (One Touch Provisioning) 

2.2.1 Software Defined Networking 

SDN allows for network management from a centralized application. With SDN, 

administrators can consistently manage the network devices. While network architecture 

consists of three planes: Data, Management, and Control planes. In traditional network 

design all the planes are on the device itself. SDN works by separating the networks’ 

control and data planes to create software-programmable infrastructure. This allows for 

network administrators to use APIs (Application Programming Interfaces) 

to programmatically provision and manage remotely connected devices. Figure 1 shows 

how SDN architecture differs from a traditional architecture. [4], [5] 



14 

 

Figure 1. SDN architecture [6] 

2.2.2 Configuration management tools 

This section covers some of the most popular tools used for configuration management 

in networks with a focus on open-source tools. 

Ansible is an open-source suite of command-line tools written in Python and developed 

by Red Hat Inc. Some of the main factors supporting the adoption of Ansible are its 

agentless architecture running in a “push” model, meaning that no extra software is 

required on managed machines for Ansible to do its work. Ansible performs its operations 

using Playbooks written in YAML that contain a series of Plays to complete, each play 

being one to multiple tasks to complete on any number of hosts that are defined in a 

separate file. Each task is a call to an Ansible module that is made for a specific task. 



15 

Playbooks can further be split into reusable groups called roles that can be reused 

wherever needed. Tasks are all executed in order on all hosts. [7], [8] 

Another tool used for configuration management is Puppet, while Puppet is originally an 

agent-based tool, meaning that an agent is required to be installed on a managed host. 

However, an agentless addition to Puppet, called Puppet Bolt exists, to improve 

compatibility with network devices. Just like Ansible, Puppet needs two files to be 

configured for operation, a target file, which contains hosts that are changed, and a file 

that contains configuration changes to be applied. Puppet change files can be written in 

YAML or a custom Puppet language, which are then executed one after the other on a 

managed host. [8] 

The final automation tool this thesis will investigate is Chef. Contrary to Ansible and 

Puppet Bolt, Chef uses an agent-based architecture, where a Chef agent must be installed 

on a managed host. Chef uses Cookbooks and Recipes to apply changes to targeted hosts. 

Chef is written in Ruby and Erlang [9]. 

2.2.3 Zero and One Touch Provisioning 

ZTP is a process that is used to provision devices with minimal manual intervention from 

administrators. ZTP is often used in larger enterprise environments where it is not 

reasonable to manually configure a new device whenever one is needed. 

ZTP works by using a DHCP (Dynamic Host Configuration Protocol) request to acquire 

information on where to go for its configuration and software. The response from a DHCP 

server to a device being provisioned contains the location of the boot server, the locations 

of the configuration file and if necessary, an OS (Operating System) image to update to. 

Extra parameters can also be sent, such as DNS (Domain Name System) server address, 

the transfer protocol to be used, an address for a NTP (Network Time Protocol) server, 

and a Syslog server address. [10] 

OTP utilizes a similar workflow to ZTP but differs in that OTP requires a point of contact 

from an administrator outside a device simply being connected to a network. “OTP is 

often used in situations where ZTP would need additional configuration, such as for 

VLAN (Virtual Local Area Network) or static IPv4 addresses configuration … It is 



16 

important to note that not all ZTP implementations are truly zero touch, and some devices 

may require minimal touch or one touch provisioning.” [11]. 

2.3 Comparative studies 

Studies show that implementing a more automated approach can provide a reduction in 

time to deploy hardware while reducing human-error in configuration and providing more 

consistency across devices in different environments. [1], [2], [3], [12] 

When it comes to configuration management, it is generally agreed, that Ansible, due to 

the use of Python, has a simpler learning curve when compared to other tools with a 

similar purpose. Furthermore, an agentless design means that devices do not need to 

install any extra software to be configured further. [7], [8], [9] 

ZTP and OTP enable higher efficiency when there is a need to provision devices in bulk, 

while reducing need for administrator input and helping in error reduction due to the 

possibility of creating a validated base from which future configurations are made from. 

[10], [11]



17 

3 Method 

This chapter covers the methodology used to design, implement, and test the tools used 

for the automatic provisioning of the Juniper Networks EX2300 network switches. An 

experimental approach was chosen as it aligns with the goal of the thesis to design and 

implement a solution to configure network devices with minimal manual intervention. 

3.1 Review process 

This section covers the review process and criteria used for selecting the tools used for 

the experimental setup. For selecting the tools to be used, the following requirements 

were observed: 

▪ Compatibility with Juniper networks devices. As the goal of the project revolves 

around Juniper EX2300 series of network switches, it was vital that any tools used 

were also supported by the switches. 

▪ Future expandability. Should the scale of the deployment increase, it is vital to 

have the ability to do so with minimal changes to the experimental setup that was 

created. For this, the DHCP server capability of the Juniper devices was selected 

as it enables to quickly add capacity for DHCP clients should the need arise. 

▪ Ease of troubleshooting. In case of any network problems, the paths used by the 

ZTP process should be easily traced to simplify any troubleshooting. 

▪ Ease of management. The setup should be easily understood and managed. Due 

to this, Ansible, with its YAML-based playbooks and Jinja2 templates was 

selected, as it simplifies adding new capabilities to the device configuration when 

needed. 

3.2 Experimental setup 

A Linux-based VM (Virtual Machine) was deployed with a Nginx web server to host any 

necessary OS and configuration files. 



18 

The experimental setup consists of zeroized Juniper EX 2300 series network switches to 

act as the devices to be provisioned. The switches are running a version of JunOS (Juniper 

OS) that supports ZTP. The switches come with 12, 24, or 48 ports that operate at up to 

1 gigabit speeds and between two and four SFP (Small Form-Factor Pluggable) ports that 

can operate at up to 10 gigabit speeds, all switches also include a management port [13] 

[14]. The switches support the ZTP process on any bound interface other than the console 

port. 

A Juniper SRX300 firewall was selected as the DHCP server, as it has the capabilities 

needed, furthermore, this reduced the time needed for troubleshooting network problems, 

would any occur. The SRX300 was connected to the VM hosting the configuration files 

via an IPSec tunnel, this was chosen to reduce troubleshooting time in case of any network 

problems. Figure 2 shows the network topology used for testing. The firewall has 6 ports 

that operate at 1 gigabit speeds and 2 SFP ports that can operate at up to 10 gigabit speeds 

[15].  

 

Figure 2. Topology of the experimental setup 

The DHCP server configuration passes the following parameters to a connected host via 

set options: an IP address, a router address, the IP of the configuration server and location 

of the configuration file on it, the location of an OS file on the configuration server, and 

the address of an NTP server. Providing an NTP server address is vital due to JunOS 

packages being signed by Juniper, if a device being provisioned has a time that is set to 

before the signature date on the OS image, the upgrade will fail due to an invalid 



19 

signature. Furthermore, each port configuration was specifically for an EX2300 switch, 

as the DHCP options could provide one OS image filename. If a device that does not 

support the provided image is connected, the ZTP process will be stuck until the problem 

is noticed and corrected. 

Ansible was selected as the tool to create the device configurations. This was done as 

Juniper devices had active support for automation with Ansible and Ansible was already 

used to manage configurations at TEHIK, additionally the author had the most familiarity 

with Ansible at the time. As Ansible works based off YAML files containing the variables 

needed to build the configuration, the variables provided would be used by Jinja2 

template files to assemble the device configuration, which would then be uploaded to the 

VM that were provided to the zeroized devices during the ZTP process. 

3.3 Data collection and analysis 

For a better overview of efficiency improvements, time taken to configure 1 and multiple 

switches following the same setup criteria were measured. When measuring time taken 

for multiple switches, setup was performed under the assumption, that the switches would 

be deployed at the same site, meaning that less changes would have to be applied to the 

variable files used for building the switch configurations. 

  



20 

4 Experimental design 

This chapter covers the tools and procedures used to test the ZTP process for provisioning 

network switches. 

4.1 Equipment and tools 

Juniper EX2300 series network switches were selected to be used in the experimental 

setup as they are most common on a branch office environment. 

A Juniper Networks SRX300 firewall was selected to function as a DHCP server to 

provide an IP address and ZTP parameters to use for the network switches. The SRX 

connects to the virtual machine used to host the configuration files via an IPSec tunnel. 

On the SRX, 1 port was reserved as an uplink, while 3 ports were configured to provide 

the DHCP information to any connected devices. Figure 3 shows the DHCP lease 

configuration used on the SRX300. 



21 

access { 

    address-assignment { 

        pool ZTP-DHCP-SW-1 { 

            family inet { 

                network 10.20.200.0/29; 

                range ZTP-DHCP-SW-1-RANGE { 

                    low 10.20.200.3; 

                    high 10.20.200.6; 

                } 

                dhcp-attributes { 

                    maximum-lease-time 3600; 

                    router { 

                        10.20.200.2; 

                    } 

                    boot-file https://*ZTP VM 
IP*/config/sw1/sw.config; 

                    boot-server *ZTP VM IP*; 

                    option 42 ip-address *NTP server IP*; 

                    option 43 hex-string 
001F6F732F6A756E6F732D61726D2D33322D32312E3452332D53372E362E74677A0114
636F6E6669672F7377312F73772E636F6E66696703056874747073; 

                } 

            } 

        } 

    } 

} 

Figure 3. SRX300 DHCP address assignment pool configuration 

An Ansible playbook and Jinja2 template were created to build configuration files and 

upload them to the VM that the DHCP configuration pointed towards. The playbook 

included basic checking to help ensure an invalid configuration file was not uploaded to 

the ZTP VM. This checking made sure that any VLANs used by interfaces and were 

declared and in cases where any separate interfaces were added to ranges, the ranges were 

checked to also exist. 

A Jinja2 template was built using a variety of “for loops” for any part of the configuration 

that might have multiple instances such as interface ranges and VLANs. For sections of 

the configuration that might not always be needed were added in when statements for 

them existed in the variable files (see appendix 3).  

A second Jinja2 template was made that contained any common configuration 

information such as NTP server addresses, local user accounts, and authentication servers. 

A second template was made to ease adding new device types to provisioning, such as 



22 

firewalls, as the name implies, the common portion generally is common across devices 

(see appendix 4). 

Variable files were created following a common naming scheme, where the name of the 

file matched the to-be IP of the device to be provisioned. The variables included the future 

management IP address of the device, the switch hostname, the SNMP (Simple Network 

Management Protocol) location, definitions of port ranges and their modes, the ability to 

add separate interfaces to a range, configurations ability for unique interfaces such as 

uplinks, a layer three address for in-band management, and VLAN definitions (see 

appendix 5). 

4.2 Experimental procedure 

The switches used for testing were selected randomly from cold storage and checked to 

be zeroized and ensured they were running a version of JunOS that supports ZTP. For the 

ZTP process, parameters were selected that would mimic the needs of a branch office 

environment, this included access ports for end-users, Wi-Fi access points, and printers. 

In the ZTP workflow, the requirements for device configurations were made to mimic a 

common branch office environment. Figure 4 shows the workflow to be used with the 

ZTP process. 

 

Figure 4. ZTP workflow 

For the switch configuration experiments, switches taken from storage were powered on 

and checked via console access to be zeroized and running JunOS release 12.2 or later as 

only releases after 12.2 support ZTP [10].  

The ZTP process is automatically started on a switch that is running on a factory-default 

configuration once it detects a bound interface and receives at least the minimal data 

needed for ZTP from a DHCP server [10]. 



23 

Precise time measurements were deemed unnecessary, and time measurements were done 

by observing the time at the start and end of any measured actions, such as creating 

templates or manually configuring a switch. 

Once the ZTP process on the device was finished, the configuration was checked to be 

in accordance with the template that was provisioned earlier. 

4.3 Evaluation metrics 

The metrics used for evaluation of the ZTP solution consisted of time needed to set up 

the DHCP server, time taken from filling the provisioning template to system readiness, 

and comparisons to manual configuration following similar criteria. Furthermore, 

evaluation considered the time where an administrator was actively engaged with the 

configuration process. 

 

 

 

 

 

 

 

 

  



24 

5 Results and discussion 

This chapter covers the results of the experimental setup and provides an analysis, 

bringing out practical implications, the author also aims to answer the research questions 

that were formulated in the beginning of the thesis. 

5.1 Results 

For setting up the DHCP service on the SRX300 firewall, being a one-time operation, 

took roughly 1 hour, mainly due to the OS file path DHCP option needing to be written 

in hexadecimal form, which was unfamiliar to the author at the time. 

The time taken for manual configuration of one switch was measured to be consistently 

around 10 minutes, however, the ZTP process took around five to six minutes to prepare 

and upload the configuration file depending on the number of parameters provided.  

In cases where multiple switches were required, changing only a couple of necessary 

variables meant that each extra switch that had to be provisioned added roughly 2 minutes 

to the time where an administrator had to actively provide inputs to the process. For 

gathering data about multiple switches, three switches were used to simulate a larger 

branch office deployment. 

After a brief introduction to formatting and the workflow of the ZTP process, an 

experienced network administrator needed more time to make ready a switch compared 

to the author, who created the components used, mainly due to the unfamiliar nature of 

the process, however, this can be overcome as familiarity and confidence in the process 

grows. 

5.2 Analysis 

From the time measurements taken by the author, it was seen that compared to manual 

configuration, a templated approach achieved a 40% - 50% improvement in time taken 

for an administrator to ensure a switch would be ready. The improvement was more 

increasingly more evident when multiple switches were provisioned. When readying 3 

switches manually was measured to take around 25 minutes, the ZTP process took around 



25 

10 minutes of attention from administrators. These results were recorded without the need 

to perform an OS update. Figure 5 shows the comparison of time taken to ready new 

switches. 

When an OS update was also needed, the manual approach took longer to perform since 

the switch would also have to be manually updated, adding around five minutes to the 

time taken. Due to how the ZTP process is set up, an OS image is always downloaded 

from the VM hosting the configuration files and checked against the currently running 

version. While this approach means that in cases where an OS update was not necessary, 

the process took longer to finish compared to a manual approach, however, it was deemed 

to be acceptable as it would be unreasonable to keep all stored devices constantly updated. 

 

Figure 5. Comparison of time taken to configure new switches 

Another benefit of the ZTP-based approach was the lack of need for administrators to 

manually be in contact with the switches. In cases where no network administrators were 

present to plug new switches into the firewall that was hosting the DHCP server, other 

employees with access to storage rooms could easily be guided to perform the necessary 

tasks.  

5.3 Answers to research questions 

In the opening chapter of the thesis, three research questions were formulated. In this 

section the author aims to answer them based on the results obtained from the 

experimental setup used to test the ZTP process. 

0 5 10 15 20 25 30

1

2

3

Time taken in minutes

D
ev

ic
e 

co
u

n
t

ZTP Manual



26 

5.3.1 What are the challenges of manual configuration and how can automation 

help in addressing the challenges? 

Manual configuration was found to be time consuming and more open to personal input 

from administrators than an automated approach. Due to the small sample size used for 

testing, a change in errors made during manual configuration and in the automated 

process was difficult to establish. However, the author believes that using a templated 

approach can still lead to a reduction in errors as all templates used for configuration can 

be validated to work and are unlikely to change from one device to another. More 

validation steps could be added when checking the validity of variable files before 

building a configuration file from them. 

5.3.2 What are the limitations of automating configuration tasks? 

Limitations in the process could arise if a wide variety of devices need to be able to be 

configured with the ZTP process as the DHCP configuration on the SRX300 can provide 

only one OS image as part of the set DHCP options. If a device that uses a different JunOS 

image is connected to the wrong port, the ZTP process will be stuck as the device reboots 

but is unable to boot into the OS, requiring manual intervention to start the device from a 

recovery snapshot.  

5.3.3 What type of skills and knowledge are required by administrators in a ZTP 

environment? 

The skills needed by administrators were seen to align with the requirement for easy 

management as the naming used in making the variable files was intuitive enough to grasp 

by someone who had only recently been introduced to the tools used. For management, 

basic knowledge of Ansible, Python, Jinja2, and intermediate knowledge of the Juniper 

Command Line Interface was enough to manage and improve on the previously built 

system. 

5.4 Practical implications 

The result of the experiment shows a noticeable decrease in time taken to prepare devices 

that are destined to be deployed in a branch office environment. The results also show an 

increased capacity to respond to a sudden need for new devices when network 



27 

administrators are unable to physically move and connect to-be provisioned devices by 

making the connection process simple for non-technical personnel. 

Moreover, the existence of the setup enables to use backed up configuration files more 

effectively in cases of hardware failure on already deployed hardware by simply 

uploading backed up configuration files to the ZTP VM, speeding up any restoration 

process. This would however necessitate the expansion of ports with different DHCP 

configurations for new device models to ensure that replacement systems are up to date 

when deployed. 

Further consistency improvements could be achieved by making groups that define every 

parameter for each client and then use the groups instead of having freedom to edit 

variable names in the files that are used to build device templates. 

 

  



28 

6 Summary / Conclusions 

This thesis explored the implementation of ZTP at TEHIK. With research identifying 

challenges of manual configuration compared to an automated approach, with a focus on 

reducing time consumption and increasing consistency across device configurations. 

During the experimental phase, an improvement of around 50% was measured in time 

taken to ready a switch, with more switches needing to be configured, the improvement 

was even more so noticeable. 

It was also seen, that the ZTP setup, other than provisioning switches for new 

environments, could also be used to quickly restore configurations for replacement 

switches in cases of hardware failure. The deployment was also seen to be useful for 

situations where technical personnel was not available to start the provisioning process 

on new devices, non-technical personnel were easily guided to perform any necessary 

tasks. 

The thesis also brings out some ways to improve the solution to provide better consistency 

in configuration and reduce error rates by reducing the amount variables that might need 

to be edited. Due to the small sample size, a rate for errors was not possible to properly 

establish. 

Future work could expand on readying devices for branch environments, such as 

provisioning firewalls. Another possibility for future work could cover implementation 

of the solution in a branch environment, simplifying addition of new devices, should the 

need arise, or provisioning an entire branch office deployment at the branch. Furthermore, 

the author believes that the work done in this thesis could be changed and built upon to 

build a ZTP system in other organizations similar in size to TEHIK. 

 

 

 

 

 



29 

References 

 

[1] M. Aruoja, "Tallinn University of Technology Digital Library," Tallinn University of 

Technology, 2020. [Online]. Available: https://digikogu.taltech.ee/et/Item/7e3d98e3-20ac- 

4f75-887b-d562eb9f7429. [Accessed 3 November 2024]. 

[2] F. S. Bruschetti, J. Guevara, M. C. Abeledo and D. A. Priano, "An Empirical Evaluation of 

Automated Configuration Tools for Software-Defined Networking: A Usability and 

Performance Perspective," Ingénierie des Systèmes d’Information, 31 October 2023. 

[Online]. Available: https://iieta.org/journals/isi/paper/10.18280/isi.280502. [Accessed 2 

November 2024]. 

[3] A. Whaley, "Q&A with DevNet Creator Award Winner – Joel King," Cisco Blogs, 18 

August 2020. [Online]. Available: https://blogs.cisco.com/developer/qa-with-joel-king. 

[Accessed 2 November 2024]. 

[4] Juniper Networks, "What is SDN?," [Online]. Available: 

https://www.juniper.net/us/en/research-topics/what-is-sdn.html. [Accessed 14 November 

2024]. 

[5] F. Bannour, S. Souihi and A. Mellouk, "Distributed SDN Control: Survey, Taxonomy, and 

Challenges," IEEE, 12 December 2017. [Online]. Available: 

https://ieeexplore.ieee.org/abstract/document/8187644. [Accessed 15 November 2024]. 

[6] H. Ashtari, "What Is Software-Defined Networking (SDN)? Definition, Architecture, and 

Applications," 10 February 2022. [Online]. Available: 

https://www.spiceworks.com/tech/networking/articles/what-is-sdn/. [Accessed 27 

November 2024]. 

[7] Red Hat, "Ansible in depth," 2017. [Online]. Available: 

https://cdn2.hubspot.net/hub/330046/file-480366556-

pdf/pdf_content/Ansible_in_Depth.pdf?t=1390852822000. [Accessed 16 November 2024]. 

[8] S. Wågbrant and V. D. Radic, "AUTOMATED NETWORK CONFIGURATION," 6 June 

2022. [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:1667034/FULLTEXT01.pdf. [Accessed 16 November 2024]. 

[9] J. Johansson, "A COMPARISON OF RESOURCE UTILIZATION AND DEPLOYMENT 

TIME FOR OPEN-SOURCE SOFTWARE DEPLOYMENT TOOLS," 2017. [Online]. 

Available: https://www.diva-portal.org/smash/get/diva2:1117279/FULLTEXT01.pdf. 

[Accessed 17 November 2024]. 

[10] Juniper Networks, "Zero Touch Provisioning," [Online]. Available: 

https://www.juniper.net/documentation/us/en/software/junos/junos-install-

upgrade/topics/topic-map/zero-touch-provision.html. [Accessed 10 November 2024]. 

[11] Palo Alto Networks, "What Is Zero Touch Provisioning (ZTP)?," [Online]. Available: 

https://www.paloaltonetworks.com/cyberpedia/what-is-zero-touch-provisioning-ZTP. 

[Accessed 12 November 2024]. 



30 

[12] F. Compare, "Network Configuration Manual vs Automated," Flare Compare, 28 

October 2021. [Online]. Available: 

https://flarecompare.com/Networking/Network%20configuration%20%20manual%20vs%

20automated/. [Accessed 3 November 2024]. 

[13] Juniper Networks, "EX2300 Ethernet Switch Datasheet," [Online]. Available: 

https://www.juniper.net/us/en/products/switches/ex-series/ex2300-ethernet-switch-

datasheet.html. [Accessed 14 November 2024]. 

[14] Juniper Networks, "EX2300-C Compact Ethernet Switch Datasheet," [Online]. 

Available: https://www.juniper.net/us/en/products/switches/ex-series/ex2300-c-compact-

ethernet-switch-datasheet.html. [Accessed 14 November 2024]. 

[15] Juniper Networks, "SRX300 Line of Firewalls for the Branch Datasheet," [Online]. 

Available: https://www.juniper.net/us/en/products/security/srx-series/srx300-line-firewalls-

branch-datasheet.html. [Accessed 14 November 2024]. 

 

 

 



31 

Appendix 1 – Non-exclusive licence for reproduction and 

publication of a graduation thesis1 

I, Magnus Jakob Epkin 

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my 

thesis “Automating the Network Device Configuration Process for the Health and 

Welfare Information Systems Center“ supervised by Mohammad Tariq Meeran 

1.1. to be reproduced for the purposes of preservation and electronic publication of 

the graduation thesis, incl. to be entered in the digital collection of the library of 

Tallinn University of Technology until expiry of the term of copyright; 

1.2. to be published via the web of Tallinn University of Technology, incl. to be 

entered in the digital collection of the library of Tallinn University of Technology 

until expiry of the term of copyright. 

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence. 

3. I confirm that granting the non-exclusive licence does not infringe other persons' 

intellectual property rights, the rights arising from the Personal Data Protection Act 

or rights arising from other legislation. 

06.01.2025 

 

 

 

 

 

 

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation 

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis 

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her 

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive 

license shall not be valid for the period. 



32 

Appendix 2 – Ansible playbook 

- name: testconf generation 

  hosts: ZTP_VM 

  gather_facts: yes 

  vars_files: 

    - "all_vars/common.yml" 

    - "host_vars/{{ device_ip }}.yml" #"host_vars/tst-sw.yml"  

  vars: 

    # Specifies which file to use, as all variable files are named 
after their IP 

    device_ip: 10.20.30.2 

    # Specify target directory 

    target_dir: sw1 

    conf_target: ZTP_VM 

     

  tasks: 

 

    # Valitation 

    - name: Validate all VLANs in ranges are declared 

      assert: 

        that: 

          - "'{{ item.value.vlan }}' in switch.vlans" 

        fail_msg: "VLAN '{{ item.value.vlan }}' is referenced in range 
'{{ item.key }}' but not declared under vlans." 

      loop: "{{ switch.ranges | dict2items }}" 

      loop_control: 

        label: "{{ item.key }}" 

 

    - name: Validate that each range_member key exists in ranges 

      assert: 

        that: 

          - item.key in switch.ranges 

        fail_msg: "Range member '{{ item.key }}' is not defined in 
ranges." 

      loop: "{{ switch.range_members | dict2items }}" 

      loop_control: 

        label: "{{ item.key }}" 

 

    - name: Validate VLANs for each separate interface entry 

      assert: 

        that: 

          # Check if the port VLAN is 'all' or contains VLANs that are 
declared 

          - item.value.vlan == 'all' or  



33 

            (item.value.vlan | regex_replace('[\\[\\]]', '') | split(' 
') | difference(switch.vlans) | length == 0) 

        fail_msg: "VLAN(s) '{{ item.value.vlan }}' in 
separate_interfaces '{{ item.key }}' are not declared in the vlans 
list." 

      loop: "{{ switch.separate_interfaces | dict2items }}" 

      loop_control: 

        label: "{{ item.key }}" 

 

    # Rendering 

    - name: Render ex template 

      template: 

        src: roles/ex/templates/main.conf.j2 

        dest: /var/www/templates/rendered_main.conf.part 

 

    - name: Render common template 

      template: 

        src: roles/common/templates/common.conf.j2 

        dest: /var/www/templates/rendered_common.conf.part 

 

    - name: Assemble configuration 

      assemble: 

        src: /var/www/templates/ 

        dest: /var/www/templates/assembled.config 

        remote_src: true 

        regexp: '^rendered_' 

     

    - name: Upload the rendered file to the target server 

      become: yes 

      copy: 

        src: /var/www/templates/assembled.config 

        dest: /var/www/config/{{ target_dir }}/sw.config 

        mode: '0777' 

        remote_src: true 

      # On success, notify that conf was sent 

      notify:  

        - SentHandler 

 

  handlers: 

    - name: SentHandler 

      debug: 

        msg: "Configuration sent." 

 



34 

Appendix 3 – main.j2 template file 

system { 

    host-name {{ switch.hostname }}; 

} 

interfaces { 

{% for range_name, range_data in switch.ranges.items() %} 

    interface-range {{ range_name }} { 

        member-range {{ range_data.start }} to {{ range_data.end }}; 

{% if switch.range_members is defined and range_name in 
switch.range_members %} 

{% for member_interface in switch.range_members[range_name] %} 

        member {{ member_interface }}; 

{% endfor %}{% endif %} 

        unit 0 { 

            family ethernet-switching { 

                interface-mode {{ range_data.mode }}; 

                vlan { 

                    members {{ range_data.vlan }}; 

                } 

            } 

        }   

    } 

{% endfor %} 

{% for iface_name, iface_data in switch.separate_interfaces.items() %} 

    {{ iface_data.port }} { 

        unit 0 { 

            family ethernet-switching { 

                interface-mode {{ iface_data.mode }}; 

                vlan { 

                    members {{ iface_data.vlan }}; 

                } 

            } 

        } 

    } 

{% endfor %} 

    irb { 

{% for unit, unit_data in switch.irb.items() %} 

        {{ unit }} { 

            family inet { 

                address {{ unit_data.address }}; 

            } 

        } 

{% endfor %} 

    } 

} 



35 

{% set ip_parts = device.mgmt.ip.split('.') %} 

routing-options { 

    static { 

        route 0.0.0.0/0 next-hop 10.20.{{ ip_parts[2] }}.1; 

    } 

} 

protocols { 

    dot1x { 

        authenticator { 

            authentication-profile-name aruba-clearpass; 

            interface { 

{% for range_name, range_data in switch.ranges.items() %} 

{% if range_data.dot1x == 'y' %} 

                {{ range_name }} { 

                    supplicant multiple; 

                    transmit-period 2; 

                    mac-radius; 

                    server-fail permit; 

                } 

{% endif %}{% endfor %} 

{% if switch.dot1x_disable is defined and switch.dot1x_disable %} 

{% for interface in switch.dot1x_disable %} 

            {{ interface }} { 

                    disable; 

                } 

{% endfor %} 

{% endif %} 

            } 

        } 

    } 

    lldp { 

        management-address {{ device.mgmt.ip }}; 

        interface all; 

    } 

    rstp { 

        interface all; 

    } 

} 

{% if 'VOIP' in switch %} 

switch-options { 

{% set voip_interface = switch.VOIP.interface %} 

{% if voip_interface %} 

    voip { 

        interface {{ switch.VOIP.interface }} { 

            vlan VOIP; 

            forwarding-class assured-forwarding; 

        } 



36 

    } 

{% endif %} 

} 

{% endif %} 

vlans { 

{% for vlan_name, vlan_data in switch.vlans.items() %} 

    {{ vlan_name }} { 

    {% if 'description' in vlan_data %} 

    description "{{ vlan_data.description }}"; 

    {% endif %} 

    vlan-id {{ vlan_data.id }}; 

    {% if 'irb' in vlan_data %} 

    l3-interface irb.{{ vlan_data.irb }}; 

    {% endif %} 

} 

{% endfor %} 

} 

 



37 

Appendix 4 – common.j2 template file 

system { 

    root-authentication { 

        {{ common.root.key }}; ## SECRET-DATA 

    } 

    login { 

        class restoration { 

            permissions [ access admin firewall flow-tap interface 
network routing secret security snmp storage system trace view view-
configuration ]; 

        } 

        class ssh-timeout { 

            idle-timeout 120; 

            permissions all; 

        } 

        user backup { 

            uid 2020; 

            class super-user; 

            authentication { 

                {{ common.users.hadaline.key }}; ## SECRET-DATA 

            } 

        } 

        user restore_user { 

            uid 2002; 

            class restoration; 

            authentication { 

                {{ common.users.rancid.key }} 

            } 

        } 

        user remote { 

            uid 2010; 

            class super-user; 

        } 

    } 

    services { 

        ssh { 

            root-login deny; 

            protocol-version v2; 

            max-sessions-per-connection 32; 

            sftp-server; 

        } 

        netconf { 

            ssh; 

        } 

    } 



38 

    auto-snapshot; 

    time-zone Europe/Tallinn; 

    authentication-order [ radius password ]; 

    ports { 

        console log-out-on-disconnect; 

    } 

    radius-server { 

        {{ common.radius.server }} { 

            secret "{{ common.radius.secret }}"; ## SECRET-DATA 

        } 

    } 

    radius-options { 

        password-protocol mschap-v2; 

    } 

    accounting { 

        events [ login change-log interactive-commands ]; 

        destination { 

            radius { 

                server { 

                    {{ common.accounting.server }} { 

                        secret "{{ common.accounting.secret }}"; ## 
SECRET-DATA 

                        source-address {{ device.mgmt.ip }}; 

                    } 

                } 

            } 

        } 

    } 

    syslog { 

        user * { 

            any emergency; 

        } 

        host {{ common.syslog}} { 

            authorization any; 

            security any; 

            change-log any; 

            source-address {{ device.mgmt.ip }};  

            explicit-priority; 

        } 

    } 

    ntp { 

{% for ntp in common.ntp %} 

        server {{ ntp }}; 

{% endfor %} 

        source-address {{ device.mgmt.ip }}; 

    } 

} 



39 

chassis { 

    alarm { 

        management-ethernet { 

            link-down ignore; 

        } 

    } 

} 

snmp { 

    location "{{ switch.snmp.location }}"; 

    v3 { 

        usm { 

            local-engine { 

                user TEHIKV3 { 

                    authentication-sha { 

                        authentication-password {{ common.snmp.auth 
}}; ## SECRET-DATA 

                    } 

                    privacy-aes128 { 

                        privacy-password {{ common.snmp.privacy }}; ## 
SECRET-DATA 

                    } 

                } 

            } 

        } 

        vacm { 

            security-to-group { 

                security-model usm { 

                    security-name SNMP-GROUP-NAME { 

                        group SNMPV3GROUP; 

                    } 

                } 

            } 

            access { 

                group SNMPV3GROUP { 

                    default-context-prefix { 

                        security-model usm { 

                            security-level privacy { 

                                read-view SNMPVIEW; 

                            } 

                        } 

                    }                    

                } 

            } 

        } 

    } 

    view SNMPVIEW { 

        oid .1 include; 



40 

    } 

} 

access { 

    radius-server { 

        {{ common.radius.server }} { 

            secret "{{ common.radius.secret }}"; ## SECRET-DATA 

            source-address {{ device.mgmt.ip }}; 

        } 

    } 

    profile aruba-clearpass { 

        authentication-order radius; 

        radius { 

            authentication-server {{ common.accounting.server }}; 

            accounting-server {{ common.accounting.server }};; 

            options { 

                nas-identifier {{ device.mgmt.ip }}; 

            } 

        } 

    } 

} 

 



41 

Appendix 5 – Switch variable file 

device: 

  mgmt: 

    ip: 10.20.30.2 

 

switch: 

  hostname: "ZTP-TST-EX2300" 

 

  snmp: 

    location: "TEHIK" 

 

  ranges: 

    CLIENT-A-ACCESS: 

      start: ge-0/0/0 

      end: ge-0/0/4 

      vlan: Client-A 

      mode: access 

      dot1x: y 

    CLIENT-B-ACCESS: 

      start: ge-0/0/5 

      end: ge-0/0/6 

      vlan: Client-B 

      mode: access 

      dot1x: y 

    WIFI: 

      start: ge-0/0/7 

      end: ge-0/0/9 

      vlan: WIFI 

      mode: access 

      dot1x: n 

 

  range_members: 

    CLIENT-A-ACCESS:  

      - ge-0/0/11 

 

  separate_interfaces: 

    Uplink: 

      port: xe-0/1/0 

      vlan: all 

      mode: trunk 

    SW-2: 

      port: ge-0/1/1 

      vlan: '[Client-A MGMT]' 

      mode: trunk 

    PRINTER: 



42 

      port: ge-0/0/10 

      vlan: PRINTER 

      mode: access 

 

  irb: 

    unit 50: 

      address: "{{ device.mgmt.ip }}/24" 

 

  vlans: 

    Client-A: 

      id: 100 

    Client-B: 

      id: 101 

    MGMT: 

      description: MGMT 

      id: 50 

      irb: 50 

    WIFI: 

      id: 300 

    PRINTER: 

      id: 301 

    VOIP: 

      id: 302 

 



43 

Appendix 6 – Switch console output 

Auto Image Upgrade: DHCP INET Options for client interface irb.0 
BootFile:      

https://10.121.1.11/config/sw1/sw.config ConfigFile: 
config/sw1/sw.config      

 ImageFile: os/junos-arm-32-21.4R3-S7.6.tgz Gateway: 10.20.200.2 DHCP 
Server: 

                                                                                

10.20.200.2 File Server: 10.121.1.11 Options state: All options set                                                                                

                                                                                

Auto Image Upgrade: DHCP INET Client Bound interfaces : irb.0                                                                                 

                                                                                

Auto Image Upgrade: DHCP INET Client Unbound interfaces : vme.0                                                                                 

                                                                                

Auto Image Upgrade: DHCP INET6 Client Bound interfaces :                                                                                 

                                                                                

Auto Image Upgrade: DHCP INET6 Client Unbound interfaces : irb.0 vme.0                                                                                 

                                                                                                                                                              

Auto Image Upgrade: Active on INET client interface : irb.0     

 

Auto Image Upgrade: Interface::   "irb"                                         

 

Auto Image Upgrade: Server::      "10.121.1.11"                                 

 

Auto Image Upgrade: Image File::  "junos-arm-32-21.4R3-S7.6.tgz"                

 

Auto Image Upgrade: Config File:: "sw.config"                                   

 

Auto Image Upgrade: Gateway::     "10.20.200.2"                                

 

Auto Image Upgrade: Protocol::    "https"                                       

                                                                                                                                                       

Auto Image Upgrade: Start fetching sw.config file from server 
10.121.1.11 through irb using https                                                              

                                                                                                                                                          

Auto Image Upgrade: File sw.config fetched from server 10.121.1.11 
through irb                                                                                

                                                                                

Auto Image Upgrade: Start fetching junos-arm-32-21.4R3-S7.6.tgz file 
from server 10.121.1.11 through irb using https        

 

Auto Image Upgrade: File junos-arm-32-21.4R3-S7.6.tgz fetched from 
server 10.121.1.11 through irb                                                              

                                                                                                                                                            

Auto Image Upgrade: Aborting image installation of junos-arm-32-
21.4R3-S7.6.tgz 



44 

 received from 10.121.1.11 through irb: Installed and fetched image 
version same                                                                                                                                                          

                                                                                

Auto Image Upgrade: Applying sw.config file configuration fetched from 
server 10.121.1.11 through irb   

 


	Author’s declaration of originality
	Abstract
	Annotatsioon Võrguseadmete konfigureerimise protsessi automatiseerimine Tervise ja Heaolu Infosüsteemide Keskuses
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	1.1 Problem Statement
	1.2 Research goals and scope
	1.3 Research questions

	2 Background
	2.1 Overview of network configuration methods
	2.2 Automation in network management
	2.2.1 Software Defined Networking
	2.2.2 Configuration management tools
	2.2.3 Zero and One Touch Provisioning

	2.3 Comparative studies

	3 Method
	3.1 Review process
	3.2 Experimental setup
	3.3 Data collection and analysis

	4 Experimental design
	4.1 Equipment and tools
	4.2 Experimental procedure
	4.3 Evaluation metrics

	5 Results and discussion
	5.1 Results
	5.2 Analysis
	5.3 Answers to research questions
	5.3.1 What are the challenges of manual configuration and how can automation help in addressing the challenges?
	5.3.2 What are the limitations of automating configuration tasks?
	5.3.3 What type of skills and knowledge are required by administrators in a ZTP environment?

	5.4 Practical implications

	6 Summary / Conclusions
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Ansible playbook
	Appendix 3 – main.j2 template file
	Appendix 4 – common.j2 template file
	Appendix 5 – Switch variable file
	Appendix 6 – Switch console output

