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Chapter 1

Introduction

The whole is more than the sum
of the parts.

Aristotle

Fractional-order calculus offers a novel modeling approach for systems
with extraordinary dynamical properties by introducing the notion of a deriva-
tive of noninteger (fractional) order. During the last 300 years fractional-
order calculus has been the subject of moderately active discussion [23]. The
related mathematical theory is well established [51, 69, 87, 96, 101] and pro-
vides additional modeling possibilities [93].

In terms of applications, fractional calculus found its way into complex
mathematical and physical problems [46, 85]. Heat conduction through a
semi-infinite solid [12, 36] and infinite lossy transmission lines [143] are par-
ticular examples of fractional systems. Specifically, taking fractional calculus
dynamics into account may be useful in modeling any system that possesses
memory and/or hereditary properties [101]. Moreover, since fractional calcu-
lus is a generalization of conventional calculus, it is expected that fractional
models will generally provide a more accurate description of the system dy-
namics than those based on classical differential equations [72]. Thus, frac-
tional calculus may be conveniently used in many industrial and research
fields, e.g., in the study of electrical circuits [43], signal processing [138],
chemical processes [85], bioengineering [48] and economic processes [58].
Fractional calculus has been found especially useful in system theory and
automatic control, where fractional differential equations are used to obtain
more accurate models of dynamic systems, develop new control strategies
and enhance the characteristics of control loops. Of significant interest in
this regard is industrial process control, and, specifically, the application of
fractional process models and fractional-order PID controllers [99], including
implementation of automatic tuning thereof. The use of fractional models
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and controllers is expected to lead to a significant overall improvement of
industrial control loop quality thus providing an increase in control system
precision, performance, and energy efficiency [23].

The present thesis is devoted to study of fractional-order calculus based
modeling and control of dynamic systems with process control applications.
In particular, methods for time and frequency domain identification of frac-
tional order models are proposed and discussed. These methods largely form
the basis for model based control design, which constitutes the next part
of the thesis, where new methods dealing with optimization of fractional
controllers as well as stabilization of unstable systems are presented. Imple-
mentation of fractional-order systems and controllers is also investigated, as
it is especially important in real-time control applications. All the methods
discussed are then presented in the context of a fractional-order modeling
and control framework developed for the MATLAB/Simulink environment.
Finally, the tools developed in this thesis are applied to real-life control prob-
lems. Experiments with laboratory models of real industrial objects are con-
ducted, and the obtained results are analyzed.

1.1 State of the Art

The concept of the differentiation operator D = d/dx is a well-known funda-
mental tool of modern calculus. For a suitable function f the nth derivative
is defined as Dnf(x) = dnf(x)/dxn, where n is a positive integer. However,
what happens if this concept is extended to a situation, when the order of
differentiation is arbitrary, for example, n = 1/2? That was the very same
question L’Hôpital addressed to Leibniz in a letter in 1695. Since then the
concept of fractional calculus has drawn the attention of many famous math-
ematicians, including Euler, Laplace, Fourier, Liouville, Riemann, Abel, and
Laurent. But it was not until 1884 that the theory of generalized operators
reached a satisfactory level of development for the point of departure for the
modern mathematician [69].

The first application of fractional calculus was made by Abel, who in
1823 discovered that the solution of the integral equation for the tautochrone
problem could be obtained by means of an integral in the form of a derivative
of order 1/2. Later in the 19th century applications of fractional calculus were
stimulated by the development of certain mathematical tools by, e.g., Boole
and Heaviside. In the 20th century, further contributions in terms of theory
and applications have been made by, e.g., Weyl and Hardy, Riesz, Oldham
and Spanier [72].

During the last decades of the 20th century, an interest emerged towards
the application of fractional calculus in system theory and feedback con-
trol. Specifically, the French research group CRONE (“Commande Robuste
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d’Ordre Non Entier”1) led by Oustaloup [91] developed a set of tools for
identification and control of fractional dynamic systems. In particular, the
CRONE group is notable for developing time domain identification meth-
ods for fractional systems. In [88] a method was proposed to estimate the
coefficients of a fractional differential equation based on the Grünwald frac-
tional derivative using a least-squares method. In [128] an identification
algorithm for fractional dynamic systems was proposed based on the approx-
imation of a fractional integrator by a rational model. State variable filters
and instrumental variable methods were extended for fractional-order system
identification in [24]. Recently, optimal instrumental variable methods were
extended for fractional systems in [136]. The CRONE research group also
developed several generations of CRONE controllers, mostly based on fre-
quency domain analysis of the control system [89,91]. This is also where the
well established Oustaloup approximation method for fractional operators
originated.

In terms of frequency domain identification methods, a method based on
continuous order distributions was proposed in [44], and more recently Levy’s
identification method was extended to fractional-order systems in [129]. In
case of frequency domain identification methods for automatic tuning appli-
cations results have been reported in [71,72], where a modified relay feedback-
based tuning approach was used for identification of the plant frequency do-
main characteristics and thereby also for the design of a suitable fractional
controller. However, no specific method for recovering a fractional process
model was provided.

The fractional-order PID (FOPID) controller was introduced by Pod-
lubny in [98, 99]. It was confirmed that FOPID controllers offer superior
performance compared to conventional PID controllers in, e.g., [71,135,147].
A review of tuning methods for FOPID controllers is provided in [131]. These
methods can be categorized into analytic, rule-based, and numerical, depend-
ing on the approach to the tuning problem. General analytic methods are
scarce. Some rule-based methods, partially based on conventional tuning
rules were proposed in, e.g., [72, 130]. Numerical methods, on the other
hand, have been successfully applied to a number of FOPID controller tun-
ing problems [72]. Global optimization based numerical tuning methods were
considered in, e.g., [20, 148].

Since first-order plus dead time (FOPDT) models are frequently used in
industrial control design applications [4, 5, 6, 83, 149], the fractional FOPDT
(FFOPDT) model and corresponding controller design methods are of signifi-
cant interest, and have been studied in, e.g., [32,42,61,92,93,105]. Automatic
tuning of fractional controllers has not been well developed, however, com-
pared to the case of conventional PID control loops [3].

1Noninteger order robust control
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Due to the complexity of analytic solutions, or even numerical solutions
to fractional differential equations—a recursive process which, in theory, re-
quires an infinite amount of memory—approximations based on the so-called
short memory principle are often used. A good overview of existing continu-
ous and discrete time approximations of fractional operators is given in [137].
More recently, methods for analog implementation of fractional-order systems
and controllers were proposed in [27, 28, 29]. Digital approximations of frac-
tional operators usually rely on, e.g., power series expansion or continued
fraction expansion of corresponding generating functions [23]; other methods
based on discretization have been proposed as well [60]. Resulting digital
realizations are commonly expressed as finite impulse response (FIR) or infi-
nite impulse response (IIR) filters. Based on this, hardware implementation
of fractional-order controllers was discussed in, e.g., [95, 97]. It was noted
that since most IIR filter implementations rely on floating-point arithmetic
care must be taken to ensure computational stability [23].

Several personal computer software packages were developed to facilitate
the task of fractional system identification and controller design. Since the
MATLAB/Simulink environment [67] has a wide variety of tools related to
optimization, identification and control system analysis and design, authors
of existing fractional system modeling and control packages regularly use it
as a supporting platform. Among notable packages are CRONE toolbox [90],
Ninteger toolbox [132], and FOTF toolbox [23,72,146]. The latter served as
basis for the FOMCON toolbox [112, 113, 120], developed by the author of
this work.

1.2 Motivation and Problem Statement

Based on the state of the art and relevant discussion, the following problems
may be formulated and constitute the motivation for the work presented in
this thesis.

Fractional calculus allows alleviating the limitations of conventional dif-
ferential equations where only integer operator powers are used. This gives
rise to models of dynamic systems that take into account phenomena such
as self-similarity and system state history dependence. Contemporary in-
dustrial control systems are of considerable complexity [149], therefore such
systems are likely to exhibit such phenomena [72]. Moreover, fractional dy-
namics have been observed in time domain responses of relatively simple
systems [121, 126]. Hence, the application of fractional-order identification
and control methods to real industrial control problems is expected to have
a positive impact on the particular industrial process in terms of improved
performance, efficiency and cost reduction.

It is thus of interest to study control processes with respect to fractional
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dynamics. If a process exhibits such dynamics, the model based control de-
sign procedure could be carried out using the corresponding tools. This gives
rise to the problem of fractional model identification which is related to sev-
eral issues. These include the choice of an efficient simulation method of the
identified fractional model (including process models); choosing the parame-
ters of the model to identify and limiting the number thereof to improve the
conditioning of the corresponding optimization problem; the choice of a suit-
able optimization algorithm for estimating the parameters of the model. To
ensure practical usability of the obtained model, methods for its validation
with respect to experimental data should be implemented.

Once a valid model of a process is established, one may proceed with
model based control design. Fractional dynamics are best compensated with
fractional controllers [23, 97]. However, the tuning thereof is more involved
compared to conventional controllers. Numerical optimization methods are
frequently used to tackle this issue. Due to the complexity of fractional
models, the optimization problem must be properly set up.

Due to additional tuning flexibility FOPID controllers are typically capa-
ble of outperforming their conventional counterparts, since more design spec-
ifications may be fulfilled. Thus, developing a general method for FOPID
controller tuning is very desirable [72]. Such a method should be flexible
enough to overcome issues with simulating fractional or integer-order models
of the control plant in the time domain, and at the same time take into con-
sideration design specifications imposed in the frequency domain to maintain
robustness of the controller.

A favorable quality of (FO)PID-type controllers is the realization of ro-
bustness criteria that guarantee stability and performance of the control loop
under reasonable operating conditions. Modern nonlinear control methods
based only on time domain evaluation of system dynamics generally lack this
quality due to the complexity of developing a unified robustness concept for
a wide enough class of nonlinear systems.

To apply the developed FO control algorithms to specific control problems
the corresponding controllers have to be implemented. Two types of realiza-
tion of such controllers can be proposed: digital implementation and ana-
log implementation. Direct realizations based on mathematical definitions of
fractional operators have certain limitations for real-time control [146], which
is why approximations of fractional operators are frequently used instead.
Several issues may be outlined in connection to this. Namely, computational
stability of the signal processing algorithm must be ensured in case of digital
implementation, and a feasible set of discrete electronic components must be
chosen for the analog implementation of fractance circuits.

As stated above, of particular importance is the use of fractional models
and controllers in industrial applications. Studies show that a huge portion of
industrial control loops—about 90%—are of PI/PID type; moreover, it was
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found that about 80% of these existing control loops are poorly tuned [83].
Since FOPID controllers offer more tuning freedom and stabilizing abilities,
it is expected that industrial integration of these controllers will result in
considerable benefit. Therefore, a further set of specific research goals may
be proposed: to study fractional process models and to provide means for
implementation of automatic controller tuning; to develop a gain and or-
der scheduling approach for obtaining a set of FOPID controllers working
seamlessly across several operating points; to provide means for stabilizing
an unstable fractional or integer-order plants; to investigate the possibilities
for incorporation of newly designed fractional controllers, offering superior
performance, into existing conventional PI/PID control loops thereby reduc-
ing process downtime and related costs; to develop a hardware controller
prototype based on developed controller design and synthesis methods.

1.3 Author’s Contributions

The main contribution of the author of the thesis is the development of model
based control design methods for systems described by fractional dynamic
models. This contribution comprises three consecutive parts:

• Modeling : Development of methods for time- and frequency domain
identification of systems by fractional models [113, 117]. The novelty
lies in the implementation of the methods which focus on the model
structure to improve the performance and accuracy of the identification
algorithm. This is achieved through careful selection of model parame-
ters. The accuracy of the obtained model is assessed by means of statis-
tical methods. Closed-loop identification methods are also proposed to
tackle industrial control design problems. A particular algorithm is de-
veloped for identifying a process model for automatic FOPID controller
tuning applications [122,123].

• Control : Based on the identified model, a general, optimization based
novel FOPID controller design method is proposed that uses the Nelder-
Mead simplex method to minimize a cost function comprising specifi-
cations in both time- and frequency domains [112, 113, 114, 126]. The
method can handle both linear and nonlinear system models, and is
later used to solve gain and order scheduling [121], stabilization [125],
and control loop retuning problems [40,125]. To the best knowledge of
the author, this particular approach has not been used in prior art. In
addition, the author has developed FFOPDT model analysis methods
and FOPID controller design for automatic tuning applications with
focus on embedded device implementation [122, 123]. This part of the
contribution extends the results in [71, 72] and presents an alternative
approach to solving the automatic FOPID controller tuning problem.
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• Software and hardware implementation: For practical implementation
of the contributions given above a set of methods is developed that
either enhance existing methods or leverage their favorable qualities to
achieve the desired result. Both analog and digital fractional system
realization methods are considered. The most important contribution
in this context is the development of a FOPID controller prototype
that is used for the implementation and verification of the above men-
tioned results. The closest known solutions are proposed in [95,97], but
do not take into account the specific steps of the digital implementa-
tion method proposed in the present contribution. All the main results
of this work are also included in a computer-aided control system de-
sign software solution—FOMCON toolbox for the MATLAB/Simulink
environment—contributed by the author of the thesis [120].

Finally, the proposed FO model based control design methods are verified on
a variety of real-life hardware laboratory models of industrial plants.

1.4 Thesis Outline

Each chapter begins with a summary of the research problems discussed
therein. Relevant examples are provided where appropriate, including those
that span across multiple chapters to illustrate developing ideas. Each chap-
ter of the thesis ends with a section containing concluding remarks pertaining
to theoretical and practical results reported in the corresponding chapter.
Finally, the last chapter comprises general concluding comments, as well as
items for prospective research. In what follows, a summary of each chapter
is provided.

Chapter 2

In this chapter the reader is introduced to core concepts of fractional calculus
used in dynamic system modeling and control. In addition, an overview of
optimization methods used in this work is provided with relevant comments.

Chapter 3

This chapter is devoted to identification of dynamic systems by fractional-
order models. Both time- and frequency domain identification methods are
considered, and more attention is given to the former case, whereas in the
latter case special attention is given to identification of a particular type of
process model, as it forms a basis for automatic tuning applications. Open-
loop and closed-loop identification methods are also discussed; the latter is
based on parametric identification of a fractional model.
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Chapter 4

The topic of this chapter is fractional-order control. Specifically, methods for
FOPID controller design are discussed, including the following: optimization
based tuning subject to specifications in both time- and frequency domains;
the gain and order scheduling approach; conventional PID control loop re-
tuning; and stabilization of unstable plants using a randomized method with
subsequent optimization. A method for control loop analysis and controller
design, considering a particular type of fractional process model, is proposed,
with focus on automatic tuning applications.

Chapter 5

In this chapter, analog and digital implementation methods for fractional
models and controllers are discussed. Particular attention is given to the
digital implementation of the FOPID controller, since the proposed method
is used in the developed hardware prototype. In addition, a hardware and
software platform used for real-time verification of control algorithms is pre-
sented in this chapter.

Chapter 6

This chapter is dedicated to the FOMCON (“Fractional-order Modeling and
Control”) toolbox for the MATLAB/Simulink environment, which encom-
passes the majority of the results presented in earlier chapters. The toolbox
has a modular structure. The chapter is divided into sections such that each
section covers the functions of a particular module. Illustrative examples are
provided.

Chapter 7

In this chapter, particular applications of fractional control are provided.
Real-life industrial system models are studied. Results presented in Chap-
ters 3 through 5 are applied to the following real-life problems: Fluid level
control in a coupled [126] and multiple tank systems [121]; Position control
of an unstable plant—a sphere levitating due to an electromagnetic field in
a magnetic levitation system [125]; Position control of an ion polymer-metal
composite (IPMC) actuator.

Moreover, nonlinear models of the systems under consideration (except
for the ion-polymer composite actuator) are obtained, verified, and used
for control design purposes. All presented results related to the identifica-
tion, control, and implementation of fractional systems and controllers are
achieved by means of FOMCON toolbox for MATLAB/Simulink described
in Chapter 6.
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Chapter 2

Preliminaries

In the following chapter the reader is introduced to core concepts and al-
gorithms used in the thesis. The chapter begins with an introduction to
fractional calculus tools, including fractional operator definitions and prop-
erties. Next, tools related to modeling and analysis of dynamic systems are
discussed. Then, fractional-order controllers are introduced. Finally, a brief
overview of numerical optimization methods used in this work is provided.
Particular attention is given to the treatment of bounded and constrained
optimization problems.

2.1 Mathematical Basis

Fractional calculus is a generalization of integration and differentiation to
non-integer order operator aDα

t , where a and t denote the limits of the op-
eration and α denotes the fractional order such that

aD
α
t =





dα

dtα <(α) > 0,

1 <(α) = 0,
´ t
a (dτ)−α <(α) < 0,

(2.1)

where generally it is assumed that α ∈ R, but it may also be a complex
number [23]. In this work we consider only the former case.

There exist multiple definitions of the fractional operator [72]. We con-
sider the Grünwald-Letnikov definition, which is used throughout this work
for the purpose of numerical solutions to fractional-order differential equa-
tions.

Definition 2.1 (Grünwald-Letnikov)

aD
α
t f (t) = lim

h→0

1

hα

[ t−ah ]∑

k=0

(−1)k
(
α

k

)
f (t− kh) , (2.2)
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where [·] means the integer part, h is the step size.

Fractional-order differentiation has the following properties [72], [101]:

1. If f(t) is an analytic function, then the fractional-order differentiation
0Dα

t f(t) is also analytic with respect to t.

2. If α = n and n ∈ Z+, then the operator 0Dα
t can be understood as the

usual operator dn/dtn.

3. Operator of order α = 0 is the identity operator: 0D0
t f(t) = f(t).

4. Fractional-order differentiation is linear; if a, b are constants, then

0D
α
t [af(t) + bg(t)] = a 0D

α
t f(t) + b 0D

α
t g(t). (2.3)

5. For the fractional-order operators with <(α) > 0,<(β) > 0, and under
reasonable constraints on the function f(t) it holds the additive law of
exponents:

0D
α
t

[
0D

β
t f(t)

]
= 0D

β
t [0D

α
t f(t)] = 0D

α+β
t f(t) (2.4)

6. The fractional-order derivative commutes with integer-order derivative

dn

dtn
(aD

α
t f(t)) = aD

α
t

(
dnf(t)

dtn

)
= aD

α+n
t f(t), (2.5)

under the condition t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).

The Laplace integral transform in an essential tool in dynamic system and
control engineering. A function F (s) of the complex variable s is called the
Laplace transform of the original function f(t) and defined as

F (s) = L [f(t)] =

ˆ ∞

0
e−stf(t)dt (2.6)

The original function f(t) can be recovered from the Laplace transform
F (s) by applying the reverse Laplace transform defined as

f(t) = L −1 [F (s)] =
1

j2π

ˆ c+j∞

c−j∞
estF (s)ds, (2.7)

where c is greater than the real part of all the poles of function F (s) [72].
Assuming zero initial conditions, the Laplace transform of (2.2) is defined

as follows.

Definition 2.2 (Laplace transform of the Grünwald-Letnikov fractional op-
erator)

L [Dαf(t)] = sαF (s). (2.8)
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2.2 Fractional-order Models

A fractional-order continuous-time dynamic system can be expressed by a
fractional differential equation of the following form [72]:

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) = (2.9)

bmDβmu(t) + bm−1D
βm−1u(t) + · · ·+ b0D

β0u(t),

where (ai, bj) ∈ R2 and (αi, βj) ∈ R2
+. The system is said to be of com-

mensurate-order if in (2.9) all the orders of derivation are integer multiples
of a base order q such that αk, βk = kq, q ∈ R+. The system can then be
expressed as

n∑

k=0

akD
kqy(t) =

m∑

k=0

bkD
kqu(t). (2.10)

If in (2.10) the order is q = 1/r, r ∈ Z+, the system will be of rational
order. The diagram with linear time-invariant (LTI) system classification is
given in Figure 2.1.

LTI Systems

Noninteger Integer

Non-commensurateCommensurate

IrrationalRational

Figure 2.1: Classification of LTI systems

Applying the Laplace transform to (2.9) with zero initial conditions the
input-output representation of the fractional-order system can be obtained
in the form of a transfer function.

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (2.11)

We shall call the number of fractional poles in (2.11) the pseudo-order of
the system. In the case of a system with commensurate order q, we may take
σ = sq and consider the continuous-time pseudo-rational transfer function

H(λ) =

m∑
k=0

bkσ
k

n∑
k=0

akσk
. (2.12)
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2.2.1 Process Models

In the context of this work we deal with problems of process control. The
fractional-order transfer function representation of a process model consists
of (2.11) and an input delay term given in the time domain as u(t) = ud(t−L).
The general form is thus

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
e−Ls, (2.13)

where it is usual to take β0 = α0 = 0 so that the static gain of the system is
given by K = b0/a0,and L ∈ R+.

One particular model of this type is the fractional-order first-order plus
delay time model [42,61,92]:

Gdt(s) =
K

1 + Tsα
e−Ls, (2.14)

where K is the static gain, L > 0 is the delay, T > 0 is the time constant, and
α ∈ (0, 2) is the fractional power of the operator. Its conventional counterpart
with α = 1 has become the basis for numerous tuning rules [83]. Since the
generalized version of the process model allows to capture the dynamics of
the process under study more accurately, it is expected to be useful in the
design of fractional-order controllers [93].

2.2.2 Stability Analysis

In order to determine stability of a fractional system given by (2.10) we
consider the following theorem [23,66].

Theorem 2.1 (Matignon’s stability theorem) The fractional transfer func-
tion G(s) = Z(s)/P (s) is stable if and only if the following condition is
satisfied in σ-plane:

|arg(σ)| > q
π

2
, ∀σ ∈ C, P (σ) = 0, (2.15)

where 0 < q < 2 and σ := sq. When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of pole location in
the complex plane: no pole is in the closed right plane of the first Riemann
sheet.

The algorithm for checking the stability of the system in (2.11) can be
summarized as follows:

1. Find the commensurate order q of P (s), find a1, a2, . . . an in (2.12);

2. Solve for σ the equation
∑n

k=0 akσ
k = 0.
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π
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Figure 2.2: LTI fractional-order system stability region for 0 < q < 1

3. If all obtained roots satisfy the condition (2.1), the system is stable.

Stability regions of a fractional-order system are shown in Figure 2.2.
Note that there are currently no polynomial techniques, either Routh or

Jury type, to analyze the stability of fractional-order systems [72].

2.2.3 Time Domain Analysis

Another solution involves numerical computation of fractional-order deriva-
tives which is carried out by means of a revised Grünwald-Letnikov definition
(2.2) rewritten as

aD
α
t f(t) = lim

h→0

1

hα

[ t−ah ]∑

j=0

w
(α)
j f(t− jh), (2.16)

where h is the computation step-size and w(α)
j = (−1)j

(
α
j

)
can be evalu-

ated recursively from

w
(α)
0 = 1, w

(α)
j =

(
1− α+ 1

j

)
w

(α)
j−1, j = 1, 2, · · · . (2.17)

To obtain a numerical solution for the equation in (2.9) the signal û(t)
should be obtained first, using the algorithm in (2.16), where

û(t) = bmDβmu(t) + bm−1D
βm−1u(t) + · · ·+ b0D

β0u(t). (2.18)
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The time response of the system can then be obtained using the following
equation:

y(t) =
1

n∑
i=0

ai
hαi


u(t)−

n∑

i=0

ai
hαi

[ t−ah ]∑

j=1

w
(α)
j y(t− jh)


 . (2.19)

The presented method is a fixed step method. The accuracy of simulation
therefore may depend on the step size [23,72,146].

If the system (2.13) has a input-output delay L, the resulting delayed
response yd(t) with yd(0) = 0 is obtained such that

yd(t) =

{
y(t− L), t > L

0, otherwise.
(2.20)

2.2.4 Frequency Domain Analysis

Frequency domain response may be obtained by substituting s = jω in (2.13).
The complex response for a frequency ω ∈ (0; ∞) can then be computed as
follows:

R(jω) =
bm(jω)βm + bm−1(jω)βm−1 + · · ·+ b0(jω)β0

an(jω)αn + an−1(jω)αn−1 + · · ·+ a0(jω)α0
e−L(jω), (2.21)

where j is the imaginary unit.
In addition, consider the following useful relation for the noninteger power

α ∈ R of the imaginary unit

jα = cos
(
απ
2

)
+ j sin

(
απ
2

)
. (2.22)

2.3 Approximation of Fractional-order Operators

The Oustaloup recursive filter, proposed in [89] and discussed in [72, 137],
gives a very good approximation of fractional operators in a specified fre-
quency range. It is a well-established method and is often used for practical
implementation of fractional-order systems and controllers. It is summarized
next.

In order to approximate a fractional differentiator of order α or a frac-
tional integrator of order (−α) by a conventional transfer function one may
compute the zeros and poles of the latter using the following equations:

sα ≈ K
N∏

k=1

s+ ω′k
s+ ωk

, (2.23)
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where

ω′k = ωb · ω(2k−1−α)/N
u , (2.24)

ωk = ωb · ω(2k−1+α)/N
u , (2.25)

K = ωαh , ωu =
√
ωh/ωb, (2.26)

and N is the order of approximation in the valid frequency range (ωb;ωh).
Due to property in (2.5) for fractional orders α ≥ 1 it holds

sα = snsγ , (2.27)

where n = α − γ denotes the integer part of α and sγ is obtained by the
Oustaloup approximation by using (2.23). Thus, every operator in (2.13)
may be approximated using (2.27) and substituted by the obtained approx-
imation, yielding a conventional integer-order transfer function. For digi-
tal implementations, the obtained approximation may be converted to its
discrete-time equivalent using a suitable method.

2.4 Fractional-order Controllers

The notion of a fractional PID controller was introduced by Podlubny in
[98,99]. This generalized controller is called the PIλDµ controller, and has an
integrator with an order λ and a differentiator of order µ. Podlubny demon-
strated that the fractional-order controller offers superior performance com-
pared to an integer-order one when used in a control loop with a fractional-
order plant. In more recent researches [59, 135] it has been confirmed that
the fractional controller outperforms the integer-order PID controller.

In the Laplace domain the parallel form of the FOPID controller is given
by

CFOPID(s) = Kp +Kis
−λ +Kds

µ. (2.28)

Obviously, when taking λ = µ = 1 the result is the classical integer-order
PID controller.

Since we are dealing with band-limited approximations throughout this
work, it is important to implement the fractional-order integrator component
in (2.28) as

GI(s) =
1

sλ
=
s1−λ

s
(2.29)

for λ < 1 since this ensures the effect of an integer-order integrator at low
frequencies thereby resulting in faster convergence of the controlled output
to its final value [72].

The fractional lead-lag compensator has the general form [70,71,72]

CLLC(s) = K

(
1 + bs

1 + as

)ν
, (2.30)
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where K, b, a, and ν are design parameters. Assuming a < b, for ν > 0
a lead compensator is obtained, otherwise for ν < 0 a lag compensator is
obtained.

In this work we also consider fractional-order inversion model based con-
trol (FOINVM). In particular, for a system described by (2.14) with a lag
L = 0 we consider the following compensator:

CINVM (s) =
1 + Tsα

K(1 + Tfs)
, (2.31)

where parameters K, T , and α correspond to those in the FFOPDT model,
and Tf is a time constant of a low-pass filter. The latter makes the controller
realizable.

Throughout this work we typically assume that the control system is
represented by a negative unity feedback of the form

Gc(s) =
C(s)Gp(s)

1 + C(s)Gp(s)
, (2.32)

where C(s) is the controller and Gp(s) is the plant under control.
Further we briefly summarize the effects of extending the integral and

derivative control actions to the fractional case [72]. The effects of fractional-
order integrator and differentiator are shown in Figures 2.3a and 2.3b under
square and trapezoidal input signals, respectively.
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Figure 2.3: Control actions in the time domain corresponding to sγ

The following can be achieved in the frequency domain by varying the
power γ ∈ [−1, 1]:

• A constant change in the slope of the magnitude curve that varies
between −20 dB/dec and 20 dB/dec.
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• A constant delay in the phase plot that varies between −π/2 rad and
π/2 rad.

Consider a comparison between a classical PID controller with unity gains
and a fractional one with unity gains and with fractional powers λ = µ = 0.5
in the frequency domain given in Figure 2.4.
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Figure 2.4: Bode diagram of a frequency response of a classical PID controller with Kp =
Ki = Kd = 1 and a fractional PID controller with Kp = Ki = Kd = 1, λ = µ = 0.5.

It can be seen that introducing fractional powers for the integral and
differential components of a suitable controller has clear benefits due to ad-
ditional flexibility in tuning of such controllers to meet particular design
specifications.

2.5 Optimization Methods

Application of numerical optimization methods form an important part of
the present work. Therefore, we provide here the methods employed. The
reason for the choice of particular methods is partially based on the reviews
in [53,81] and is detailed in relevant chapters of the present thesis.

2.5.1 Newton-Raphson Method

The Newton-Raphson method is an iterative process which belongs to a class
of numerical methods for solving nonlinear equations [7,45,49]. We consider
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the problem in the form
F (x) = 0, (2.33)

where F : Rn → Rn. Starting from some initial estimate x0 the next estimate
x+ is obtained by means of

x+ = x+ ∆x, (2.34)

where ∆x is the solution of
J∆x = −F, (2.35)

and J = dF/dx is the Jacobian matrix. In case of an univariate function
f(x) this process collapses to the well-known iterative formula

x+ = x− f(x)

f ′(x)
. (2.36)

The Newton-Raphson method is also used for solving subproblems in more
sophisticated optimization algorithms.

2.5.2 Nonlinear Least-Squares Estimation Methods

The problem is to obtain a model of a certain system by means of minimiza-
tion of the sum of squares (residual norm)

F =
n∑

i=1

ε2
i = ‖ε‖22 , (2.37)

where εi = yi − ŷi is the residual (simulation error), yi is the true system
output and ŷi is the predicted output for collected samples i = 1, 2, . . . , N .

First, we consider a Trust Region Reflective method for handling large-
scale bounded problems [25,73]. Given a trust region ∆k at every kth itera-
tion the following steps are carried out [15]:

1. Compute Fk, gk (gradient of Fk), Dk (positive diagonal matrix), Hk

and Ck (scaling matrices), define the quadratic model

ψk(s) = gT
k s+

1

2
sT(Hk + Ck)s. (2.38)

2. Compute a step sk, with xk + sk ∈ int(F ), where F is the feasible
region for search variable values, by solving the subproblem

min
s
{ψk(s) : ‖Dks‖ < ∆k, s ∈ Sk} , (2.39)

where Sk is a small-dimensional subspace in Rn.
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3. If F (xk + sk) < F (xk), then xk+1 = xk + sk, otherwise xk remains
unchanged for the next iteration.

4. Adjust the trust region ∆k.

In case of the least-squares problem the subspace Sk may be determined by
taking into account

min
s

{
‖Js+ F‖22

}
, (2.40)

where J is the Jacobian of F .
Second, we consider the Levenberg-Marquardt algorithm [64, 74]. The

search direction pk of the Levenberg-Marquardt method is defined by the
solution of equations at iteration step k

(JT
k Jk + λkI)pk = −JT

k Fk, (2.41)

where Jk is the Jacobian matrix, λk is a non-negative scalar, and I is the
identify matrix [38].

2.5.3 Nelder-Mead Method

The Nelder-Mead simplex method is used for solving unconstrained opti-
mization problems of the form

min
x
F (x), x ∈ Rn. (2.42)

It is a direct search method, and is therefore well-suited to optimize a function
whose derivatives are unknown or non-existent [144]. In the following, we
summarize the method described in [53].

First, an initial simplex is constructed by determining n + 1 vertices
along with corresponding values of F . The kth iteration then consists of the
following steps:

1. Order. Order the n + 1 vertices, so that F (x1) 6 F (x2) 6 · · · 6
F (xn+1) is satisfied. Apply tie-breaking rules when necessary.

2. Reflect. Compute the reflection point

xr = x̄+ ρ(x̄− xn+1), (2.43)

where

x̄ =
n∑

i=1

xi/n (2.44)

is the centroid of the n best vertices. Evaluate Fr = F (xr). If F1 6
Fr < Fn, set xn+1 = xr and terminate the iteration.
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3. Expand. If Fr < F1, calculate the expansion point

xe = x̄+ χ(xr − x̄), (2.45)

and evaluate Fe = F (xe). If Fe < Fr, set xn+1 = xe and terminate the
iteration. Otherwise, set xn+1 = xr and terminate the iteration.

4. Contract. If Fr > Fn, perform a contraction between x̄ and the better
of xn+1 and xr:

(a) Contract outside. If Fn 6 Fr < Fn+1, calculate

xc = x̄+ γ(xr − x̄) (2.46)

and evaluate Fc = F (xc). If Fc 6 Fr, set xn+1 = xc and terminate
the operation. Otherwise, go to Step 5 (perform a shrink).

(b) Contract inside. If Fr > Fn+1, perform an inside contraction:
calculate

x′c = x̄− γ(x̄− xn+1) (2.47)

and evaluate F ′c = F (x′c). If F ′c<Fn+1 set xn+1 = x′c and terminate
the iteration. Otherwise, go to Step 5 (perform a shrink).

5. Shrink. Define n new vertices from

xi = x1 + σ(xi − x1), i = 2, . . . , n+ 1, (2.48)

and evaluate F at these points.

In the algorithm described above four scalar coefficients are used, i.e., the
coefficients of reflection, expansion, contraction, and shrinkage, denoted by
ρ, χ, γ, and σ, respectively. According to the original paper [80], these
coefficients should satisfy

ρ > 0, χ > 1, 0 < γ < 1, 0 < σ < 1. (2.49)

2.5.4 Optimization Problems with Bounds and Constraints

While certain optimization algorithms, such as the Levenberg-Marquardt
and Nelder-Mead methods, are designed to solve unconstrained problems
unbounded in the search space, it is possible to introduce both variable search
space bounds and constraints [38] in terms of coordinate transformations and
penalty functions.

Let x denote the vector of search variables of size N × 1. For bound
constraints, a coordinate transformation may be applied to each individual
search variable. Let xLi and xUi denote the lower bound and upper bound
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on the ith search parameter, respectively, and denote by z the new search
variable vector. Let ϕ : R→ R denote a coordinate transformation function,
such that x = ϕ(z) and z = ϕ−1(x).

In this work, we consider quadratic and trigonometric transformations.
For problems with lower bounds we have

xi = xLi + z2
i , (2.50)

from which it follows that xi > xLi , since z
2
i > 0. Initial estimates zi,0 are

obtained from original initial estimates xi,0 > xLi as

zi,0 =
√
xi,0 − xLi . (2.51)

For problems with upper bounds we have

xi = xUi − z2
i , (2.52)

from which it follows that xi 6 xUi , since −z2
i 6 0. Initial estimates zi,0 are

obtained from original initial estimates xi,0 6 xUi as

zi,0 =
√
xUi − xi,0. (2.53)

Finally, if the problem has both lower and upper bounds, we have

xi = xLi + (xUi − xLi )
sin(zi) + 1

2
, (2.54)

from which it follows that xLi 6 xi 6 xUi , since the values of the function
f(zi) = (sin(zi)+1)/2 are always inside of the interval [0, 1] and xi is therefore
bounded by f(zi) = 0 ⇒ xi = xLi , f(zi) = 1 ⇒ xi = xUi . Initial estimates
zi,0 are obtained from original initial estimates xLi 6 xi,0 6 xUi as

zi,0 = <
(

arcsin

(−2xi,0 + xLi + xUi
xLi − xUi

))
, (2.55)

where <(·) denotes the real part.
Next, we consider constrained problems. To introduce constraints, a

modification of the cost function

κ(·) = κ∗,

where κ∗ denotes the cost for the original optimization problem, is necessary.
Let us define a function fnz : R→ R+ such that

fnz(x) :=

{
x, x > 0

0, x 6 0.
(2.56)
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Let us also define a penalty function ρ : R→ R such that

ρ(x) :=

{
eγ − 1 + x, x > γ

ex − 1, x 6 γ,
(2.57)

where γ > 0 is some predefined constant.
First, for general nonlinear inequality constraints of the form cni(·) 6 0,

where cni : Rq×r → RNni×Mni , we define the following penalty function
κni : RNni×Mni → R as

κni(cni(·)) := ρ(cniΣ (·)), (2.58)

where

cniΣ (·) =

Nni∑

i=1

Mni∑

k=1

fnz(c
ni
i,k(·)). (2.59)

Next, for general nonlinear equality constraints of the form cne(·) 6 0, where
cne : Rq×r → RNne×Mne , we define the penalty function κne : RNne×Mne → R
as

κne(cne(·)) := ρ(cneΣ (·)), (2.60)

where

cneΣ (·) =

Nne∑

i=1

Mne∑

k=1

fnz(|cnei,k(·)|), (2.61)

where | · | denotes the absolute value.
The complete cost function κ for the constrained optimization problem

thereby has the form
κ = κ∗ + κni + κne. (2.62)
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Chapter 3

Identification of
Fractional-order Models

In the following chapter methods for identification of fractional-order mod-
els in transfer function form in time and frequency domains are presented
and discussed. The chapter is organized as follows. First, system identifica-
tion fundamentals are presented in Section 3.1. In Section 3.2 the methods
proposed for time domain identification of fractional-order models are dis-
cussed. In Section 3.3 closed-loop identification methods in the time domain
are described. Finally, conclusions are drawn in Section 3.5.

3.1 System Identification Fundamentals

In this work we mostly consider the black box modeling approach [57].
Strictly speaking, no assumptions are made on the internal physical struc-
ture of the studied system. The goal of system identification in this case is
to infer a dynamic system model based upon experimentally collected data.
For a black box model it is necessary to obtain a relationship between sys-
tem inputs and outputs under external stimuli (input signals, disturbances)
in order to determine and predict the system behavior. A general form of a
single input-single output system with disturbances is given in Figure 3.1.

u

d

y

w

Figure 3.1: A general system with input u, output y, measured disturbance d and unmea-
sured disturbance w

35



The general procedure of system identification is summarized in Fig-
ure 3.2 and consists of the following stages.

1. Design the experiment. For dynamic systems it is usual to collect
transient response data in the time domain by applying a set of prede-
termined input signals, or frequency response (magnitude and phase)
in the frequency domain (e.g. by doing a frequency sweep).

2. Record the dataset based on an experiment. The collected data must
be as informative as possible subject to potential constraints.

3. Choose a set of models and/or the model structure and the criterion
to fit.

4. Calculate the model using a suitable algorithm.

5. Validate the obtained model. It is desirable to use two different datasets
for identification and validation.

6. If the model is satisfactory, use it for the desired purpose. Otherwise,
revise modeling/identification strategy and repeat the above steps.

A critical step in the identification process is the determination of the amount
of contribution of noise and disturbances to the collected data.

In what follows, we investigate methods for system identification by a
fractional-order model based on time domain and frequency domain experi-
ments.

3.2 Open-loop Identification in the Time Domain

Suppose that experimental data is collected from a general single input, sin-
gle output nonlinear system Ψ : I → O, where (I ,O) ⊂ R2 denote the
measured input and output signals, respectively, such that

z(t) = Ψ(v(t)) + N, (3.1)

where z(t) denotes the system output, and v(t) denotes the system input,
and N denotes measurement noise, and is represented by a data set holding
the samples from the system input uk = v(kts) and output yk = z(kts) + N
under a uniform sample rate ts = tk+1 − tk ≡ const:

ZN = {u0, y0, u1, y1, . . . , uN , yN , ts}, (3.2)

where k = 0, 1, . . . , N . Since zero initial conditions are assumed, then if
z(0) = y0 6= 0, then the offset is removed from each of the collected output
samples by means of

yk = yk − y0, k = 0, 1, . . . , N. (3.3)
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Figure 3.2: Typical system identification procedure

In case of fractional-order systems the key issue is the evaluation of the
response of the model [24, 50]. For the purpose of time domain simulation
two methods are considered:

1. Grünwald-Letnikov definition based numerical solver described in Sec-
tion 2.2.3. Since the whole history of differentiation is preserved, this
method is considered the most accurate. The amount of necessary com-
putations grows exponentially with N , since the method considers the
whole history of computation; therefore, the identification process may
become slow.

2. Oustaloup recursive filter approximation described in Section 2.3 and
conventional time domain simulation methods. The amount of neces-
sary computations grows linearly with N , since only a limited history
of the process is considered.

The identification method is based on the minimization of model output error
in the least-square sense. The corresponding problem is stated as

min
θ
ε2, (3.4)
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where ε = yk − ŷk and ŷk = Ψ̂(uk, θ) denotes the response of the estimated
system model Ψ̂ under the input signal uk, k = 0, . . . , N , and θ denotes the
estimated parameters of the model.

In this thesis, the problem of identification of transfer function system
models is investigated. The proposed identification parameter selection ap-
proach combines the ideas in [50, 62, 63]. In addition, we include estimation
of the input-output delay. Recall the model from (2.13)

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
e−Ls. (3.5)

The identification problem is hereinafter stated as a problem of estimating a
set of parameters θ =

[
θm L

]
of the model in (3.5), where θm is formed

by

ap = [ an an−1 · · · a0 ], αp = [ αn αn−1 · · · α0 ],

bz = [ bm bm−1 · · · b0 ], βz = [ βn βn−1 · · · β0 ],
(3.6)

ap and bz denote pole and zero polynomial differential operator coefficients,
αp and βz denote the corresponding exponents (orders of differentiation),
respectively; if α0 = β0 = 0, then the system static gain is identified as
K = b0/a0; and for θm there exists 9 possible parameter sets depending on
the chosen identification method.

• Full model parameter identification, θm = [ ap αp bz βz ];

• Fix orders, identify coefficients, θm = [ ap bz ];

• Fix coefficients, identify orders, θm = [ αp βz ].

With pole polynomial fixed:

• Identify zero polynomial coefficients and orders, θm = [ bp βz ],

• Fix orders, identify zero polynomial coefficients, θm = bz,

• Fix coefficients, identify zero polynomial orders, θm = βz.

With zero polynomial fixed:

• Identify pole polynomial coefficients and orders, θm = [ ap αz ],

• Fix orders, identify pole polynomial coefficients, θm = az,

• Fix coefficients, identify pole polynomial orders, θm = αz.

The choice of the particular set θm depends on the following.
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• If the system under investigation is of commensurate order 0 < γ < 2,
an initial guess model should be generated

αp = [ γn γ(n− 1) · · · 0 ] (3.7)

and
βz = [ γm γ(m− 1) · · · 0 ], (3.8)

such that {
(n,m) ∈ Z2

+ : n > m
}
, (3.9)

where n determines the pseudo-order of the system; the orders should
be fixed and only model coefficients are estimated; A commensurate
initial model may also be used for identification of all parameters;

• If either zero or pole polynomials are known, they may be fixed;

• In general, if there is a considerable amount of parameters to identify,
the identification process may be slow—fixing parameters at particular
values allows reducing the amount of necessary computations.

The following two algorithms, discussed in Subsection 2.5.2, are used for
nonlinear least-squares estimation of model parameters θ:

1. Trust Region Reflective algorithm—this method handles search vari-
able bounds and is intended for solving large-scale problems [15]. Bounds
are given for parameter sets as θb = {θmin, θmax}.

2. Levenberg-Marquardt algorithm—the method is quite robust and is
commonly used for black-box model identification [26, 150]. However,
the conventional implementation does not handle bound constraints.
Therefore, to correctly identify model orders αp > 0 and βz > 0 and
the delay L > 0 a coordinate transform is required, as discussed in Sub-
section 2.5.4. In the new coordinates zj the corresponding parameters
are given as

θj = z2
j , j = 0, 1, 2, 3 . . . . (3.10)

In what follows, only continuous-time system identification is employed.
However, real systems are sampled with a finite sample rate ts. Accord-
ing to the Nyquist-Shannon sampling theorem [57], the information about
frequencies fΨ, such that

fΨ >
fs
2

=
1

2ts
, (3.11)

where fs is the sampling frequency, is lost. This should be taken into ac-
count when studying the behavior of the identified model and, consequently,
in model based control design applications. Moreover, high-frequency com-
ponents in the experimental signal may result in unwanted effects, such as
aliasing. To prevent this, filtering of the collected signal data is necessary,
and is usually accomplished by means of a stationary low-pass filter [63].
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3.2.1 Parametric Identification

A separate model parameter estimation problem is the so-called parametric
identification. In the context of this thesis, we consider the following model
structure

G(s) =
Z(p, q)

P (p, q)
D(p), (3.12)

where Z(p, q) is the zero polynomial, P (p, q) is the pole polynomial, and
D(p) is the delay term, parametrized such that

θ = {p1, p2, . . . , q1, q2, . . . }, (3.13)

where some of the parameters are known a priori. Parametric identification is
thus very useful if the structure of the model is precisely known, e.g., in case
of a closed control loop. This will be further discussed in Section 3.3. The
procedure for parameter estimation is the same as discussed in the previous
section.

3.2.2 Residual Analysis

The following discussion is related to the assessment of the quality of the
identified model.

Denote by yr the experimental plant output, and by ym the identified
model output. We consider the SISO case, so both yr and ym should be
vectors of size N × 1. In the following, we address the problem of statisti-
cal analysis of modeling residuals. Analysis is partially due to Ljung [57].
Residuals are given by a vector containing the model output error

ε = yr − ym. (3.14)

The percentage fit may be expressed as

Fit =

(
1− ‖ε‖
‖yr − ȳr‖

)
· 100%, (3.15)

where ‖·‖ is the Euclidean norm, and ȳr denotes the mean value of yr.
Basic statistical data may be computed first, such as maximum absolute

error
εmax = max

k
|ε(k)|, (3.16)

and mean squared error

εMSE =
1

N

N∑

k=1

ε2
k =
‖ε‖22
N

. (3.17)
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Additional useful information is given by an estimate for autocorrelation
of residuals for lag τ = 1, 2, . . . , τmax < N , which may be computed by means
of

Rε(τ) =
1

(N − τ)

N−τ∑

k=1

ε(k)ε(k + τ). (3.18)

The vector rε =
[
Rε(0) Rε(1) · · · Rε(τmax)

]
is constructed and is nor-

malized such that rε,norm = rε/Rε(0). Assuming normal distribution of
residuals the confidence band η̂ is then approximated for a confidence per-
centage pconf ∈ (0, 1] around zero mean as an interval

η̂ =

[
0− Φ−1(cp)√

N
,
0 + Φ−1(cp)√

N

]
, (3.19)

where cp = 1− 0.5(1− pconf ) and Φ−1(x) =
√

2 erf−1(2x− 1) is the quantile
function.

Based on these data, the following conclusions may be made about the
quality of the model:

• Maximum absolute error εmax shows the maximum deviation from the
expected behavior of the model over the examined time interval, how-
ever, it may be misleading in case of disturbances or strong noise;

• The mean squared error εMSE may serve as a general measure of model
quality. The lower it is, the more likely the model represents an ade-
quate description of the studied process;

• If the residual samples represent an uncorrelated white noise process,
then the following condition should ideally hold:

rε,normi ∈ η̂ ∀i = 1, 2, . . . , τmax. (3.20)

Consider now an illustrative example.

Example 3.1 Identification data is collected from a system

Ψ = ΨG + N, (3.21)

where ΨG is given by a continuous-time fractional-order transfer function of
the form

ΨG(s) =
1.5

0.11s1.93 + 0.79s0.31 + 1
, (3.22)

and the noise term has an amplitude of N = ±0.05. A pseudo-random binary
sequence is used as the excitation signal for obtaining the transient response
with a sample time of 0.01s. The corresponding experimental dataset ZG is
depicted in Figure 3.3.
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Figure 3.3: Example system identification dataset

The parameter estimation methods are applied to the problem, where the
initial model is generated with various commensurate orders γ = {0.5, 1.0, 1.5}
and a pseudo-order n = 2, and has the form

G0(s) =
1

s2γ + sγ + 1
. (3.23)

Assuming we have no knowledge of the system other than its pseudo-order,
we choose to identify all of the parameters of the model. The identifica-
tion is carried out using Trust Region Reflective and Levenberg-Marquardt
algorithms, the latter initialized with λ = 0.01. In both cases, the prob-
lem is unbounded in search variables. The systems are simulated using the
Grünwald-Letnikov definition based solver. The algorithms are implemented
in MATLAB computer software as detailed in Chapter 6. The results of iden-
tification are presented in Table 3.1. In three cases the algorithms converged
yielding the same result

Ψ̂G(s) =
1.5016

0.11027s1.9271 + 0.78844s0.30846 + 1
. (3.24)

Overall, the LM algorithm appears to be more robust in this case. It only
failed to converge once, while the TRR method failed to converge twice.

Comparative residual analysis for cases γ = 1.0 is presented in Figure 3.4.
It can be seen that if residuals are formed by the noise term N, the autocor-
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Figure 3.4: Residual analysis for the system identified using nonlinear least squares esti-
mation algorithms with γ = 1.0
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Table 3.1: Comparison of the nonlinear least squares estimation algorithms

Algorithm γ %Fit εMSE NoIter FunEval τ , min

TRR 0.5 80.42 9.98 · 10−3 18 114 01:34

LM 0.5 80.42 9.98 · 10−3 15 105 01:26

TRR† 1.0 55.48 51.62 · 10−3 83 504 06:55

LM 1.0 80.42 9.98 · 10−3 11 79 01:05

TRR‡ 1.5 8.94 0.21598 78 474 06:33

LM∗ 1.5 − 0.627 2 18 00:16

Notes
† failed to converge in 500 function evaluations
‡ convergence to a local minimum
∗ failed to converge, identified system unstable

relation coefficients under different lags generally fall inside of the confidence
interval.

Further examples are provided in Chapters 6 and 7.

3.3 Closed-loop Identification in the Time Domain

In this work, we consider the closed-loop plant model identification problem
[117]. The structure of the control system is depicted in Figure 3.5. We
investigate two identification approaches:

• The indirect approach. The controller is assumed to be known. The
identification data set is given by

ZiN = {r0, y0, r1, y1, . . . , rN , rN , ts}, (3.25)

where rk and yk denote the reference signal (set point) and plant out-
put, respectively, collected at points r and y in Figure 3.5. In this work,
we investigate the problem of identification of a closed-loop model in
(2.32), where the parameters of C(s) are known. The model structure
of the plant G(s) can be easily reconstructed, once the parameters of
the closed-loop system are obtained.

• The direct approach. The feedback is ignored and open-loop identifi-
cation is employed. The experimental data set used for identification
is given by

ZdN = {u0, y0, u1, y1, . . . , uN , yN , ts}, (3.26)
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where uk and yk denote the plant input and output signal samples
collected at points u and y in Figure 3.5, and k = 1, 2, . . . , N . The
structure of the model to be identified is explicitly given by (3.5).

If one were to assume that the controller in Figure 3.5 is linear, time-invariant
and noise free, then the two methods are equivalent [34]. However, in indus-
trial practice, such a controller is rarely realizable due to, e.g., actuator sat-
uration and measurement noise. Therefore, the selection of the identification
approach depends on the availability of necessary measurements.

Controller

Plant
++

+−

Input

Set point

u

y

r

Noise

Output

Figure 3.5: Closed-loop control system structure

To carry out the identification in case of known parameters we use the
parametric identification method. Consider an example, which illustrates the
parametrization approach.

Example 3.2 Let us assume that a closed-loop control system of the form
(2.32) is studied and only information about the reference and output values
is available. Then, the indirect identification approach must be used. Also,
the plant is known to have the structure

Gp(s) =
K

a2sα2 + a1sα1 + a0
. (3.27)

The closed-loop transfer function with a controller of the form (2.28) is given
by

Gcl(s) =
KGpid(s)

s(a2sα2 + a1sα1 + a0) +KGpid(s)
, (3.28)

whereGpid(s) =
(
Kps+Kis

1−λ +Kds
1+µ
)
and the parameters of the FOPID

controller are assumed to be known. Then, the model in (3.28) may be
parametrized as

Gcl(s) =
p1Gpid(s)

s(p2sq1 + p3sq2 + p4) + p1Gpid(s)
, (3.29)

and the identification parameter set is given by

θ = {p1, p2, p3, p4, q1, q2} . (3.30)

A particular example is provided in Chapter 6.
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3.4 Frequency domain Identification in Automatic
Tuning Applications for Process Control

In this section we investigate the problem of online identification of a dynam-
ical model of a process, given by (2.14), and assuming that the process under
investigation exhibits low-order dynamics and is not of integrating type [149].
Recall that the this model is given by

G(s) =
K

1 + Tsα
e−Ls, (3.31)

where K is the static gain, L is the delay, T is the time constant, and α is
the fractional operator order, whereby the essential dynamics of the model
are governed by the two latter parameters.

Parameter estimation for autotuning applications is often done by means
of frequency domain methods. In particular, relay feedback based experi-
ments are often considered [4, 6, 149]. The controlled system output is in
steady state and will only deviate from it slightly. This allows to use relay
feedback to tune the controller without significantly changing the set point of
the working industrial system thereby preventing possible production losses.
In this work, we consider an updated relay feedback approach [72], which is
illustrated in Figure 3.6. According to [149], relay feedback based identifi-
cation is more efficient than step response methods for when the normalized
dead time τn = L/T is such that

τn < 0.28 (3.32)

with temperature and composition control loops in process industries gener-
ally satisfying this condition. Note that this applies to conventional FOPDT
systems, so in this work we treat this condition as an approximation.

The relay feedback is summarized next for the case, when the relay delay
is d = 0. First, the static gain of the model K in (3.31) can be obtained by
means of

K =
∆y

∆u
, (3.33)

where ∆y is the observed change in system output due to change in input
∆u; the lag L is determined from

L = tu − tr, (3.34)

where tu is the time instance, when a new control input is applied to the
system, and tr is the time instance, when a corresponding change in system
output is observed.

Next, let
δ = {(1− γ)us, (1 + γ)us}, (3.35)
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where us is the current steady-state control law, and γ ∈ (0, 1), and apply a
periodic control signal to the plant input, such that u(t) = ±δ. The switching
properties are such that when the relay feedback system senses a change in
the direction of change of the process output, the input switches such that
u(t) ← −u(t). After several periods a limit cycle oscillation occurs in most
processes. It is then possible to measure the ultimate period Tu and compute
the ultimate frequency ωu and ultimate gain Au as follows

ωu =
2π

Tu
, Au =

4δ

πa
, (3.36)

where δ is the relay amplitude and a is the process amplitude. This infor-
mation is enough to estimate a conventional FOPDT model, where α = 1 in
(3.31).

Relay

FOPID
u yr +

−
Plant

e-ds

Figure 3.6: PID control with relay test for model parameter estimation

For identification of a FFOPDT model at least two points are required
to determine the slope of the magnitude curve. By changing the delay of
the relay d it is possible to identify more points. To determine the value of
d for a particular frequency of interest ωd, the following approximation may
be used:

d ≈ 2π − ωdT
4ωd

, (3.37)

assuming an estimation of the time constant T is available. The frequency re-
sponse points may be distributed logarithmically, so Nf frequencies at which
the response is sought may be computed using

ωk+1 = φkωk, ω0 = ωu, k = 0, 1, . . . , Nf , (3.38)

where 0 < φ < 1 is some suitable factor. Once several points are collected,
identification is done on the basis of the following discussion.

The gain A(jω) of (3.31) at a particular frequency ω may be precisely
computed as

A(jω) = |G(jω)| = |K|√
1 + 2 cos(απ/2)ωαT + ω2αT 2

. (3.39)
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Solving this equation for T , assuming ω > 0, T > 0 and 0 < α 6 1 yields

T =

√
K2 − sin2

(
απ
2

)
A2 −A cos

(
απ
2

)

Aωα
∀ω, (3.40)

where ω and A correspond to a point on the frequency response curve; for
1 < α < 2 the solution is given by

T =





−
√
K2 − sin2

(
απ
2

)
A2 −A cos

(
απ
2

)

Aωα
if ω 6 ωp,

√
K2 − sin2

(
απ
2

)
A2 −A cos

(
απ
2

)

Aωα
if ω > ωp,

(3.41)

where

ωp =

(
cos
(
π − απ

2

)

T

) 1
α

. (3.42)

Based on this information we can now propose a simple search method to
estimate both parameters α and T . Note that this method is tailored to the
particular problem. A more general approach may be considered for more
complex models [44,129].

The optimization problem is formulated as

min
α
J(α), (3.43)

where J(α) is a cost function computed for a particular value of α as follows

J(α) =
M∑

k=1

(
A(jωk)− Ãk

)2
, (3.44)

where (ωk, Ãk) is an identified frequency response point. An average T̄ of
the time constant is computed using all Tk, each computed for the identified
point. Essentially, this is a least-squares optimization problem. The following
proposition establishes the conditions on choosing the points on the frequency
response curve.

Proposition 3.1 Denote by

(ω?, A?) ∈ R2
+ (3.45)

a pair of points such that A? = |G(jω?)|, where G(·) is the model in (3.31)
with a static gain K. If there holds

A? 6 |K|, (3.46)

then T may be uniquely determined by (3.40).
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Proof: From (3.40), (3.41), and (3.42) it follows that T may be computed
using (3.40) in the following cases

• for 0 < α 6 1 for any ω > 0,

• for 1 < α < 2, if the following condition holds:

ω >

(
cos
(
π − απ

2

)

T

) 1
α

. (3.47)

Next, we solve
|G(jω)| 6 |K| (3.48)

for ω and obtain

ω >
(

2 cos
(
π − απ

2

)

T

) 1
α

, (3.49)

which holds for 1 < α < 2. Combining the above results it is found that for
the complete interval α ∈ (0, 2) if it holds

(
cos
(
π − απ

2

)

T

) 1
α

<

(
2 cos

(
π − απ

2

)

T

) 1
α

, (3.50)

then also
A? 6 |K| (3.51)

and T may be uniquely determined using (3.40). �
The above proposition allows us to choose only such points subject to a

condition based on known information, since initially we do not know neither
α nor T . In the following, the estimation algorithm based on a direct search
method is summarized.

1. Given frequency response points (ω,A) ∈ Ωfr ⊂ R2
+ with cardinality

|Ωfr| = M , choose a set Ωh ∈ R+ with cardinality |Ωh| = N with
search step sizes such that ∀hi ∈ Ωh : hi < hi+1, i = 1, 2, . . . N ;

2. Start with α = 1 and i = 1. Find the direction of change in the cost
function that is determine the minimum

min{J(α− hi); J(α); J(α+ hi)}, (3.52)

where J(α) is computed using (3.44) using all available values in Ωfr.
If J(α) is the minimal value, stop the estimation process, return α =
1 and compute the average T̄ using (3.40) from all entries in Ωfr.
Otherwise, determine the sign σ as follows and proceed to the next
step.
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(a) If J(α− h1) 6 J(α+ h1), then σ = −1;

(b) If J(α− h1) > J(α+ h1), then σ = 1.

3. Update α such that α ← α + σkhi, k = 1, 2, . . . ,
⌊

1−hi
hi

⌋
, where b·c is

the floor function, until a condition J(α + σ(k − 1)hi) < J(α + σkhi)
is detected; when the condition occurs:

(a) If i > 1, then re-center α such that α← α− σ(hi−1 + hi);

(b) Set i← i+ 1.

(c) Repeat step 3, while i 6 N . Otherwise, proceed to step 4.

4. Return the minimizer α. Compute T̄ using (3.40) from all values of
Ωfr.

If the algorithm fails to converge, then it is possible that the model cannot
be determined from the collected frequency response points. In such a case it
is either necessary to collect more points, or to use a different identification
approach.

In this work we use the following particular step sizes Ωh = {0.25, 0.1, 0.01}.
Consider an example that verifies the validity of the above algorithm.

Example 3.3 Consider several FFOPDT systems in (3.31) with nominal lag
L = 1 s and described by the following sets of parameters. The gains are
given by

K = {−5.00, 0.75, 10}, (3.53)

the time constants by

T = {5.00, 25.00, 120.00}, (3.54)

and operator orders by

α = {0.19, 0.81, 1.00, 1.57}. (3.55)

The chosen parameters should provide sufficient coverage for the purpose of
initial validation the proposed identification algorithm.

The magnitude response of these models is studied: the first point col-
lected corresponds to ultimate frequency and gain (ωu, Au) and further points
are collected for frequencies computed as

ωk+1 = φrωk, ω0 = ωu, k = 0, 1, 2, . . . 6, (3.56)

where φr = 0.5. The computed magnitude Ak has an uncertainty of ±20%,
simulating this way real-life measurements. True values of system gain K
and lag L are assumed to be known and are used in the computations. In
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addition, if Ak > K, it is discarded from the identification dataset. The
points are then plugged into the estimation algorithm. The fit to the original
model is computed using (3.15), where the residual vector ε is formed using
100 points of magnitude response of the original and identified models. The
results can be seen in Tables 3.2 through 3.5. In the tables, α̃ and T̃ denote
the estimated values of α and T , respectively. In addition, the number of
frequency response points considered for the estimation procedure, as well as
the number of algorithm steps necessary to obtain the solution, are given.

The obtained results indicate the validity of the algorithm, since in most
cases the essential dynamics of the model are recovered under a relatively
large measurement uncertainty, and the resulting models may be used for
control design. It was found that the results of parameter estimation depend
on the choice of φr such that φr ∝ α. The algorithm behaves less reliably
with α > 1. On four occasions with α = 1.57 the estimation algorithm failed
to converge completely. This can be remedied for that particular value of α
by choosing φr = 0.8.

As expected, under 0% uncertainty the algorithm converges to ideal solu-
tions in all studied cases indicating the validity of the identification algorithm.

3.5 Conclusions

In this chapter, problems related to identification of single input, single out-
put fractional-order transfer function models were discussed. In particular,
methods were proposed for time domain identification of both commensurate
and incommensurate fractional-order systems; parametric identification for
estimating unknown parameters, including closed-loop identification prob-
lems, where the parameters of the control system are partially known; fre-
quency domain identification of FFOPDT plants for automatic tuning appli-
cations. The differences with respect to the state of the art are as follows.
The time domain identification procedure focuses on parametric identifica-
tion, which allows expanding it to solving a wide set of problems, e.g., closed-
loop identification. The particular implementation thereof of it is different
from alternative solutions, in that it is more flexible in forming the search
variable space. The described identification algorithms form an essential part
of a bigger framework [112]. The proposed frequency domain identification
method also belongs to larger set of tools aimed at implementing automatic
tuning of industrial FOPID controllers. The advantages of this method is
that it is based on direct search, so it is computationally more stable than
gradient-based methods. There is also no need to solve matrix equations
as in the case of least-squares based frequency domain identification meth-
ods. The proposed method can be conveniently implemented and used in
embedded applications.
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Table 3.2: Frequency domain identification algorithm validation for the FFOPDT plant
with α = 0.19

K T ωu Au α̃ T̃ %Fit Points Steps

-5.00 5.00 2.885 0.7065 0.23 5.03 71.53 6 15

0.75 5.00 2.885 0.106 0.14 5.01 63.17 6 15

10.00 5.00 21.72 1.007 0.17 5.07 89.08 6 21

-5.00 25.00 2.852 0.1589 0.20 25.09 93.61 6 18

0.75 25.00 2.852 0.02383 0.21 26.09 84.84 6 17

10.00 25.00 2.852 0.3178 0.20 24.29 78.16 6 18

-5.00 120.00 2.845 0.03394 0.14 124.10 50.24 6 15

0.75 120.00 2.845 0.005091 0.13 121.26 52.71 6 16

10.00 120.00 2.845 0.06788 0.15 114.72 79.06 6 14

Table 3.3: Frequency domain identification algorithm validation for the FFOPDT plant
with α = 0.81

K T ωu Au α̃ T̃ %Fit Points Steps

-5.00 5.00 1.975 0.5541 0.69 4.62 73.34 6 17

0.75 5.00 1.975 0.08312 0.74 5.01 79.21 6 12

10.00 5.00 1.975 1.108 0.77 4.56 94.36 6 18

-5.00 25.00 1.892 0.1185 0.86 26.98 90.44 6 18

0.75 25.00 1.892 0.01777 0.82 27.52 89.49 6 13

10.00 25.00 1.892 0.2369 0.86 26.37 87.33 6 18

-5.00 120.00 1.874 0.02502 0.76 112.28 90.91 6 19

0.75 120.00 1.874 0.003752 0.88 126.99 80.24 6 16

10.00 120.00 1.874 0.05003 0.75 111.72 88.12 6 11
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Table 3.4: Frequency domain identification algorithm validation for the FFOPDT plant
with α = 1.00

K T ωu Au α̃ T̃ %Fit Points Steps

-5.00 5.00 1.689 0.5881 0.89 4.56 79.48 5 17

0.75 5.00 1.689 0.08821 0.92 4.43 88.06 6 11

10.00 5.00 1.689 1.176 0.90 4.50 82.65 5 18

-5.00 25.00 1.596 0.1253 0.96 25.71 82.25 6 15

0.75 25.00 1.596 0.01879 0.97 24.52 91.00 6 16

10.00 25.00 1.596 0.2506 0.96 22.87 94.39 6 15

-5.00 120.00 1.576 0.02644 1.03 125.22 93.74 6 13

0.75 120.00 1.576 0.003966 0.94 114.50 83.79 6 13

10.00 120.00 1.576 0.05288 0.94 117.18 80.95 6 13

Table 3.5: Frequency domain identification algorithm validation for the FFOPDT plant
with α = 1.57

K T ωu Au α̃ T̃ %Fit Points Steps

-5.00 5.00 0.8673 1.525 1.03 3.74 - 3 13

0.75 5.00 0.8673 0.2288 0.67 2.92 - 2 19

10.00 5.00 0.8673 3.050 0.83 3.20 - 2 12

-5.00 25.00 0.7196 0.3534 1.68 26.11 56.71 2 15

0.75 25.00 0.7196 0.05301 0.93 15.11 - 3 12

10.00 25.00 0.7196 0.7068 1.44 21.04 69.99 3 15

-5.00 120.00 0.685 0.07637 1.51 113.32 82.40 4 13

0.75 120.00 0.685 0.01145 1.52 118.46 82.86 4 14

10.00 120.00 0.685 0.1527 1.57 115.11 96.48 4 19
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In this chapter, some particular issues were identified:

• Example 3.1 clearly shows the importance of choosing a suitable initial
model (i.e., initialization) for identification in case of a relatively sim-
ple FO system. In this case, forming bounds on the parameter search
space can be beneficial, but makes the optimization procedure less effi-
cient. However, the variable transform method may be used in case of
unbounded optimization by means of, e.g., the Levenberg-Marquardt
algorithm.

• Closed-loop parametric identification depends on characteristics on the
actuating device; linear approximations will only usually work in prac-
tice in narrow operating regions making the indirect identification ap-
proach less useful, see, e.g., Example 6.2 from Chapter 6 for an illus-
tration; several linear approximations are usually required. A more
detailed discussion related to control methods may be found later in
this work in Chapter 4.

• The presented frequency domain identification method is based on
magnitude analysis of the system. Using the proposed relay feedback
approach allows identifying frequency response points for frequencies
lower than the ultimate one. However, the condition in (3.46) limits the
number of points that may be used for identification. The frequencies,
where the magnitude response is measured, must be properly spaced.
These issues, as well as the effect of the value of the lag L , must be
further investigated. Furthermore, the method is to be verified with
real-life systems.

Examples including real-life applications and relevant discussion are provided
in the Chapters 6 and 7.
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Chapter 4

Fractional-order PID
Controller Design

In this chapter, the problem of FOPID controller design is investigated. The
treated problems include controller design for nonlinear and unstable sys-
tems. In addition, a retuning method is proposed, which allows introducing
fractional-order dynamics into existing industrial PID control loops thereby
increasing control performance without modifying the internal closed-loop
control system. Finally, a method for plant analysis and controller design
for automatic tuning applications is provided. The chapter has the following
structure. The general optimization method based on the Nelder-Mead al-
gorithm is described in Section 4.1. The proposed gain and order scheduling
method is given in Section 4.2. An approach for stabilization of unstable
plants using the FOPID controller is provided in Section 4.3. The exist-
ing control loop retuning method is summarized in Section 4.4. Finally, the
methods proposed for FOPID controller automatic tuning applications are
given in Section 4.5. Conclusions are drawn in Section 4.6.

4.1 Optimization based Controller Design

There are several aspects to the problem of designing a fractional PID con-
troller by means of optimization:

• The type of plant to be controlled;

• Optimization criteria;

• FOPID design specifications;

• Parameters to optimize;

• Selection of initial parameters in the search space.
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A general approach is desired for optimizing performance of a FOPID con-
trol loop regardless of the plant type. However, there is a vast array of
well-established tuning techniques for common model types [83]. So if a
fractional-order model can be approximated by a simple model to a certain
degree of validity, it may be used to obtain initial conventional PID controller
parameters. These parameters can then be further optimized to achieve bet-
ter performance.

We consider a general dynamic system of the form

ẋ(t) = f(x(t), u(t)), y = h(x(t)), (4.1)

where x(t) ∈ Rn, u(t) ∈ R, f(x, u) ∈ Rn × R → Rn, and h : Rn → R, and a
FOPID controller of the form

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t),

which corresponds to the parallel form of the FOPID controller in (2.28),
and e(t) = r(t)− y(t) is the error signal, and r(t) is the desired control ref-
erence. The improvement of control system performance in the time domain
is equivalent to the problem of minimizing e(t). Several performance metrics
may be considered [6]:

• Integral square error

ISE =

ˆ t

0
e2(t)dt; (4.2)

• Integral absolute error

IAE =

ˆ t

0
|e(t)|dt; (4.3)

• Integral time-square error

ITSE =

ˆ t

0
te(t)2dt; (4.4)

• Integral time-absolute error

ITAE =

ˆ t

0
t |e(t)| dt. (4.5)

To ensure the stability and robustness of the control system one may in-
troduce frequency domain specifications. Suppose that there exists a FO
linear approximation of the system in (4.1) for a working point (u0, y0),
which describes dynamics of the system reasonably well, and is given by a
transfer function Gp(s) of the form (2.13). Then, the following specifica-
tions may be imposed based on analysis of the open-loop frequency response
F (jω) = C(jω)Gp(jω), where C(jω) is the FOPID controller [72]:
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• Gain margin Am, where

Am = 1− |F (jωg)| , arg(F (jωg)) = −π. (4.6)

• Phase margin ϕm and gain crossover (critical) frequency ωc, where

arg(F (jωc)) = −π + ϕm, |F (jωc)| = 1. (4.7)

• Robustness to gain variations of the plant:

d arg(F (jω))

dω

∣∣∣∣
ω=ωc

= 0. (4.8)

• High-frequency noise rejection with noise attenuation of A dB for the
complementary sensitivity function

∣∣∣∣T (jω) =
F (jω)

1 + F (jω)

∣∣∣∣
dB

6 AdB, (4.9)

for all frequencies ω > ωt rad/s.

• Disturbance rejection with a constraint B dB on the sensitivity function
∣∣∣∣S(jω) =

1

1 + F (jω)

∣∣∣∣
dB

6 B dB, (4.10)

for all frequencies ω 6 ωs rad/s.

The optimization problem can thus be formulated as

min
θc

Jc(·), (4.11)

where θc is the FOPID parameter set

θc =
[
Kp Ki Kd λ µ

]
, (4.12)

and Jc(·) is a joint cost function that includes the specifications in both time
and frequency domains. Additional optimization problems may be formu-
lated by fixing some of the parameters in (4.12), e.g., controller gains.

In addition, in practical problems constraints on the control law u(t) may
be imposed in the form

u(t) ∈ [umin;umax]. (4.13)

In this work we consider the Nelder-Mead simplex optimization method
described in Section 2.5.3. The reasons for using this method are as fol-
lows [53]:
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• The Nelder-Mead method typically produces significant improvement
of a performance measure in industrial control applications within the
first few iterations;

• Cost function evaluation is computationally expensive;

• Relatively simple implementation, including embedded device applica-
tions.

The conventional design of the method is unbounded in search variables
and does not handle constraints. However, following our discussion in Sec-
tion 2.5.4 bounds are handled by search variable transformation, and con-
straints are added to the cost by means of penalty functions. In particular,
the joint cost function has the form

Jc = Jm + Jp, (4.14)

where Jm is computed using one of the equations (4.2) through (4.5), and
Jp is the nonlinear constraints joint penalty function, formed by a weighted
sum of deviations of design specifications in the frequency domain from their
prescribed values. Generally, due to the design of the joint cost function
Jc, a point in the search space is located, such that satisfies the constraints.
Then, the control error e(t) is minimized. This behavior can be controlled by
choosing appropriate weights for the performance metric or penalty functions.

Time domain simulation may be carried out using either the Grünwald-
Letnikov based solver, described in Section 2.2.3, or using an approximation.
In this work we consider only the Oustaloup approximation method in Sec-
tion 2.3.

One of the known problems of the Nelder-Mead algorithm is the possi-
bility of the following situation [144]:

• The iterates enter a local minimum of the cost;

• Very little progress is made in terms of improving performance over the
next iterations.

This makes it difficult to define a general enough stopping criterion for the
algorithm. Therefore, a limit on the maximum number of iterations should
be introduced.

Consider now a motivating example, where an improvement in perfor-
mance is achieved by optimizing only the orders of the FOPID controller,
whereas the gains correspond to those obtained by means of a conventional
tuning formula.

Example 4.1 Consider a fractional-order system of a heating furnace [99,
114,151]. The normalized model has the form

G =
0.59172

8576.3s1.31 + 3555.9s0.97 + 1
. (4.15)
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We shall design a fractional-order controller for this plant using the method
described above. First, a conventional FOPDT model approximation is given
by

GFOPDT (s) =
0.58813

1 + 4766.83s
e−25.1528s.

Using the Ziegler-Nichols PID tuning formula, the integer-order PID pa-
rameters are then obtained as Kp = 386.676,Ki = 50.3056,Kd = 12.5764.
These gains are fixed and orders λ and µ are used as search parameters for
the optimization algorithm. The refined Oustaloup filter [72, 146] was used
for approximation with ω = [0.0001, 10000] rad/s, and order N = 5. The
specification was set for the phase margin, such that ϕm = 75◦. Also, the
control signal value was limited to range ulim = [0; 750]. A maximum of 100
iterations was considered. The results of controller parameter optimizations
using different performance metrics can be found in Table 4.1. Here, Niter

denotes the number of iterations until optimization termination, ϕm denotes
the phase margin, τ denotes the settling time and σ denotes the overshoot.

Table 4.1: FOPID controller order optimization results for the heating furnace model for
different performance metrics

Index λ µ N ϕm, ◦ τ , s ϑ, %

ISE 0.18751 0.43779 36 76.00 1203 12.3

IAE 0.10399 0.45757 50 77.86 1079 10.4

ITSE 0.01000 0.35526 45 79.32 1003 9.1

ITAE 0.11860 0.01071 100 77.36 1118 11.0

The best results were obtained with the ITSE index and the correspond-
ing control system step response and open-loop frequency characteristics can
be observed in Figure 4.1 and Figure 4.2, respectively. It is evident that a
PDµ controller is ultimately obtained. It can be observed that by tuning
only the orders of the FOPID controller integrating and differentiating com-
ponents, a better result was achieved compared to the integer-order tuning.

Further examples are provided in Chapter 7.

4.2 Gain and Order Scheduling

In general, linear controllers will work well with real-life nonlinear systems in
a particular working point. If robust control across the full admissible control
range is desired, a gain and order scheduling technique may be applied. In
the following we provide a summary of the proposed method. Suppose that
a nonlinear system is modeled by (4.1). Suppose in addition that a linear
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fractional-order approximations of the form (2.13) may be obtained for a
set of working points {(uk; yk), k = 1, 2, . . . , n}, across the system operating
range. Denote by

Ψ = {G1, G2, . . . , Gn} (4.16)

the set of such linear fractional-order approximations. Then, for each Gi ∈ Ψ
design a controller of the form (2.28) that would locally satisfy a set of
performance specifications provided in Section 4.1 thereby forming another
set denoted by

Ω = {C1, C2, . . . , Cn} . (4.17)

Now, consider the composite control law

Υ(x, s) =
n∑

k=1

βk(x)Ck(s), (4.18)

where βk(x) is a weighting function depending on the scheduled state x(t)
and Ck(s) ∈ Ω.

The choice of n in (4.18) depends on the operating range of the system
in (4.1). In the following, we consider the case n = 2. Then,

Υ(x, s) = β1(x)C1(s) + β2(x)C2(s). (4.19)

We choose the state x(t) to be the scheduled variable, denote by xmax the
maximum value, such that x(t) ∈ [0, xmax], and define

β1(x) :=
(1− γ(x))

2
, β2(x) :=

γ(x)

2
, γ(x) :=

x(t)

xmax
. (4.20)

It is obvious that since each entry in (4.17) was designed for a particular
linear approximation, the composite control law in (4.18) must be verified
across the whole range of linearized models, that is, stability must be ensured
for all entries in (4.16). In this work, we consider a heuristic method. Since
we employ the negative unity feedback loop, we may compose a set

Λ = {Γ1,Γ2, . . . ,Γνn} , (4.21)

where

Γk =
Zk(s)

Pk(s)
=

Υj(x, s)Gk(s)

1 + Υj(x, s)Gk(s)
(4.22)

and j = 1, 2, . . . , ν is the number of state values considered for the test and
Υj is a particular control law. For each entry in (4.21) take the characteristic
polynomial Pk(s), find the commensurate order q > qmin and use Matignon’s
theorem from Section 2.2.2.
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Remark 4.1 For the case n = 2 in (4.18) using controllers C1(s) and C2(s)
given by their parameter sets (Kp1,Ki1, λ1,Kd1, µ1) and (Kp2,Ki2, λ2,Kd2, µ2)
we obtain the characteristic polynomial P (s) which depends on the particular
parameter set (K,T, α) of the models of the form (2.14) in Ψ with L = 0, and
on the function γ(x) of the scheduled state x. The characteristic polynomial
has the following form

P (s) = a6s
α+λ1+λ2 + a5s

λ1+λ2+µ2 + a4s
λ1+λ2+µ1

+ a3s
λ1+λ2 + a2s

λ1 + a1s
λ2 , (4.23)

where a6 = 2T , a5 = K · Kd2γ(x), a4 = K · Kd1 (1− γ(x)), a3 = 2 + K ·
Kp1 (1− γ(x)) +K ·Kp2γ(x), a2 = K ·Ki2γ(x), and a1 = K ·Ki1 (1− γ(x)).
The stability test works with commensurate-order systems. When the result-
ing fractional-order system is not of commensurate order, the stability test
produces approximate results [23].

Remark 4.2 It is important to stress that the controllers in Ω have static pa-
rameters and operate simultaneously, while the scheduling, that is the choice
of the control action, is done by means of blending functions. Using a static
description of the controllers should improve reliability of embedded control
implementations [115]. Online gain and order scheduling is possible.

4.3 Stabilization of Unstable Plants

In this section, we propose a method for stabilizing unstable plants Gu(s) of
the form (2.13). The task is to make the closed loop system

Gcl(s) =
C(s)Gu(s)

1 + C(s)Gu(s)
=
W (s)

Q(s)
(4.24)

stable by a proper choice of parameters of the FOPID controller C(s) of the
form (2.28).

To determine stabilizing controllers a randomized method may be used,
where FOPID controller parameters are randomly selected from intervals
such that Kp ∈ [K l

p,K
u
p ], Ki ∈ [K l

i ,K
u
i ], Kd ∈ [K l

d,K
u
d ], λ ∈ [λl, λu], µ ∈

[µl, µu]. Note that the choice of λ and µ should lead to a commensurate-order
system, since only then the results of the stability test are reliable. One can
also choose a minimum commensurate order q = 0.01.

Once a stable point is found, the following procedure is carried out.

1. Two of the controller parameters are parametrized as (p1, p2), all other
parameters are fixed.
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2. A limited number of steps N is selected and a sweep with step sizes
∆p1 and ∆p2 is done from the initial stable point. Four directions are
considered. The main idea is illustrated in Figure 4.3:

(a) Each time only a single parameter is changed.

(b) If, at any step, an unstable control loop is obtained, then the pre-
vious parameter value shall determine the approximate stability
boundary for the corresponding direction.

(c) Otherwise, all points will be tested within the range ∆p1 ·N and
∆p2 ·N . Testing is done by means of the characteristic polynomial
Q(s) of the closed loop system in (4.24) and Matignon’s theorem
in Section 2.2.2.

3. The stability region will not always have a rectangular shape. To de-
termine the shape every point within the approximate rectangular sta-
bility boundary may be tested.

This is a heuristic method similar to [55] and [82].

Approximate rectangular stability boundary

Figure 4.3: Rectangular stability boundaries for stabilization of G(s) using a FOPID
controller

Once the procedure is complete, stable parameter ranges are obtained
for all controller parameter pairs and may be used in FOPID controller opti-
mization as lower and upper bounds for corresponding controller parameters.
Optimizing only two parameters at a time can be beneficial from the per-
spective of conditioning the problem, albeit in this case it will not be possible
to satisfy several design constraints. Optimization may be done using the
method described in Section 4.1.
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Consider an example, which illustrates the procedure for the determina-
tion of stability regions for closed loop control system of an unstable plant.

Example 4.2 Consider an unstable plant given by a fractional-order model

G(s) =
s0.34 + 0.79

−2.7s1.37 + 0.35s0.19 + 1
. (4.25)

Using the method above, 10 sets of FOPID controller parameters are ran-
domly chosen such that the parameters fall inside of the following inter-
vals Kp ∈ [−10, 10], Ki ∈ [−10, 10], Kd ∈ [−10, 10], and λ ∈ [0.2, 1.0],
µ ∈ [0.5, 1.0]. A single set is found to produce a stable control system, and
the corresponding controller is given by

C(s) = −7.17− 1.56s−0.9 − 3.0702s0.71. (4.26)

The parameters of this controller form the initial point for the rectangular
stability boundary sweep. The sweep is carried out with different param-
eters for the gain and order step sizes. For the orders, a step of ∆pg1 =
∆pg2 = 0.5 is considered with a maximum number of steps hgmax = 20 in
each search direction. For the orders, the following parameters are used
∆po1 = ∆po2 = 0.05 and homax = 10. Four pairs of parameter sets are consid-
ered: (Kp,Ki), (Kp,Kd), (Ki,Kd), and (λ, µ). The results of the rectangular
stability boundary estimation for each set are given in Figures 4.4a through
4.4d. It can be seen that for (Kp,Ki) and (Kp,Kd) the found stability bound-
ary will not be of rectangular shape, which must be taken into account during
the controller optimization process. Also note that only a limited number
of points is considered, the stability zone may extend beyond the located
boundaries.

The located zones may be used for pairwise optimization of FOPID con-
troller parameters. For an illustration, see Chapter 7.

4.4 Retuning FOPID Control for Existing PID Con-
trol Loops

Consider a controller represented by C(s) which could either be a classical
PI of the form

CPI(s) = Kp +Kis
−1, (4.27)

or PID of the form

CPID(s) = Kp +Kis
−1 +Kds, (4.28)

where Kp,Ki,Kd > 0 are also assumed within a unity-feedback system

Gc(s) =
C(s)P (s)

1 + C(s)P (s)
. (4.29)
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This feedback control system follows the rules of integer-order differential
equations. The objective is to plug in an external fractional-order controller
CR(s) of the form (2.28) into the existing control system in such a way that
the dynamics of the overall system follows the rules governed by fractional-
order differential equations. The control architecture with an external con-
troller incorporated into an existing feedback control system is shown in Fig-
ure 4.5. The method is based on results in [108], where a retuning method for
a conventional integer-order PI/PID was studied. The external fractional-
order controller CR(s) captures the input and output signals of the original
feedback control system and feeds a corrective signal in addition to the input
signal into the feedback control system [29, 40]. The effect of a double feed-
back configuration in Figure 4.5 is equivalent to a simple unity-gain feedback
control system with the controller

C∗(s) = (CR(s) + 1)C(s) (4.30)

as shown in Figure 4.6.

+
+

+

+

C(s) P(s)
−

−

CR(s)

R(s) u

Original PID control loop
E(s)

Y(s)

Figure 4.5: The retuning architecture

+
−

C(s) P(s)CR(s)+1
R(s)

New Controller

E(s)
Y(s)

Figure 4.6: Equivalent architecture of the retuning connection

In what follows, several propositions related to the suggested control sys-
tem retuning architecture are provided.

Proposition 4.1 (From PI to PIλ) Consider the original integer-order PI
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controller in (4.27). Let CR1(s) be a controller of the form

CR1 (s) =
K1s

α + (K0 −Kp) s−Ki

Kps+Ki
, (4.31)

where the coefficients are Kp,Ki,K1,K0 > 0 and the order is −1 < α < 1.
The resulting PIλ controller from a classical PI controller with parameters
Kp,Ki > 0 has the following coefficients:

K∗p = K0, K∗i = K1. (4.32)

The order of fractional-order integration is

λ = 1− α. (4.33)

Proposition 4.2 (From PI to PIλDµ) Consider the original integer-order
PI controller in (4.27). Let CR2(s) be a controller of the form

CR2 (s) =
K2s

β +K1s
α + (K0 −Kp) s−Ki

Kps+Ki
, (4.34)

where the coefficients are Kp,Ki,K2,K1,K0 > 0, and the orders are −1 <
α < 1 and 1 < β < 2. The resulting PIλDµ controller from a classical PI
controller with parameters Kp,Ki > 0 has the following coefficients:

K∗p = K0, K∗i = K1, K∗d = K2. (4.35)

The orders of fractional-order integration and differentiation are

λ = 1− α, µ = β − 1. (4.36)

Proposition 4.3 (From PID to PIλDµ) Consider the original integer-order
PID controller in (4.28). Let CR3(s) be a controller of the form

CR3(s) =
K2s

β +K1s
α −Kds

2 + (K0 −Kp) s−Ki

Kds2 +Kps+Ki
, (4.37)

where the coefficients are Kp,Ki,Kd,K2,K1,K0 > 0, and the orders are
−1 < α < 1 and 1 < β < 2. The resulting PIλDµ controller from a classical
PID controller with parameters Kp,Ki,Kd > 0 has the following coefficients:

K∗p = K0, K∗i = K1, K∗d = K2. (4.38)

The orders of fractional-order integration and differentiation are

λ = 1− α, µ = β − 1. (4.39)
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Proof: In the general case we show that

C∗(s) = (CR(s) + 1)C(s) = K∗p +K∗i s
−λ +K∗ds

µ (4.40)

by substituting the expressions for CRn(s), n = 1, 2, 3 into (4.30), from which
(4.40) follows. �

The summary of the retuning algorithm is provided next.

1. Identify the type of fractional-order controller to be used, i.e., PIλ

or PIλDµ, based on the desired control requirements. The choice of
whether a PIλ or PIλDµ controller shall be used depends on the number
and types of criteria to be satisfied and the model of the plant.

2. Solve for the coefficients of the overall controller C∗(s) = K∗p+K∗i s
−λ+

K∗ds
µ using any method based on the plant model and robustness cri-

teria to be satisfied.

3. Calculate the parameters of CR(s).

An application of the retuning method is provided in Chapter 7.

4.5 Control Loop Analysis and Controller Design in
the Frequency Domain for Automatic Tuning
Applications in Process Control

In this section two problems are investigated. First, a control system, com-
prising a FFOPDT-type plant and FOPID controller, is studied, and system
frequency domain characteristics are investigated. Second, a method for lo-
cating FOPID controller gains corresponding to particular design specifica-
tions is proposed. Since algebraic solutions of equations involved in the com-
putations necessary for achieving the above mentioned goals are not available,
numerical methods, based on the Newton-Raphson algorithm, are provided.
The proposed numerical algorithms are tailored for each particular problem.

4.5.1 Computation of Control System Characteristics

In what follows, the results related to determining the performance criteria
of the control system are provided. The types of specifications considered
include those discussed in Section 4.1.

Reconsider the FFOPDT model (2.14) in the complex argument jω given
by

G(jω) =
Ke−Ljω

T (jω)α + 1
, (4.41)
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where it is assumed that K > 0, T > 0, L > 0, and α ∈ (0, 2). We begin the
analysis by deriving the equations to obtain the magnitude and phase angle
of G(jω):

|G(jω)| = |K|√
1 + T 2ω2α + 2Tωα cos

(
απ
2

) (4.42)

and

arg (G(jω)) = −Lω − tan−1

(
T sin

(
απ
2

)

ω−α + T cos
(
απ
2

)
)
. (4.43)

In what follows, we derive open-loop characteristics of the plant, based
on the magnitude and phase response analysis of (4.41). In essence, this is
done by employing (2.22), and isolating the real and complex parts of the
resulting expression. The characteristics are then derived from solutions of
particular equations. We begin by obtaining the gain crossover frequency,
for which it holds |G(jωc)| = 1. Solving this equation yields

ωc =

(√
Θ(K,α)− cos

(
απ
2

)

T

)1/α

, (4.44)

where Θ(K,α) = K2 + cos2
(
απ
2

)
− 1. For ωc ∈ R+ to exist the following

conditions must hold:

Θ(K,α) > 0,
√

Θ(K,α)− cos
(
απ
2

)
> 0. (4.45)

The phase margin ϕm of the system can then be determined from

ϕm = π − arg (G(jωc)) + 2πn, n > 0. (4.46)

It is more difficult to derive a formula to find the phase crossover frequency,
also referred to as the ultimate frequency of the system ωu, since we need to
solve a transcendental equation

− Lωu − tan−1

(
T sin

(
απ
2

)

ω−αu + T cos
(
απ
2

)
)

= −π − 2πn, (4.47)

where n is determined by the requirement to obtain a minimum gain mar-
gin 1/ |G(jωu)| closest to unity. While ωu is usually obtained during relay
autotuning [6], if it is not given, then the following method may be used to
compute it from the FFOPDT model parameters.

Consider the problem of finding a root ω∗ of a general nonlinear equation
f(ω) = 0 under the constraints ω > 0 and ω ∈ (ωb, ωh). To tackle the
problem one may employ the Newton-Raphson method [49] which usually
provides quadratic convergence to the solution. The process of locating the
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root starts at an initial guess ω0 and is given by the following iterative formula
ωk+1 = ωk − f(ω) (f ′(ω))−1 . Once a prescribed iteration limit ν is reached,
or the necessary tolerance ε is achieved under the condition f(ωk) < ε, the
algorithm shall stop returning the root ω∗. However, there is a drawback
of this algorithm such that local minima of f(ω) may lead to the change of
sign of f ′(ω) and a violation of the condition ωm > 0 may occur at iteration
step m = k + 1. To rectify this, the locally obtained solution at step n may
be replaced such that ωn = γcωk, where γc 6= 1 is some predefined positive
factor. If as a result of this modification ωm no longer belongs to the interval
(ωb, ωh), the process shall fail returning ω∗ = 0 thereby indicating that it
could not find a solution. The full algorithm is provided in Figure 4.7.

procedure LocateCharacteristic(ω0, γc, ωb, ωh, f, f
′)

ε← Tolerance, ν ← MaxIterations
k ← 0; ωk ← ω0

while k < ν and f(ω) > ε do
ωk+1 ← ωk − f(ωk)(f

′(ωk))−1

if ωk+1 < 0 then
ωk+1 ← γc · ωk

end if
if ωk+1 < ωb or ωk+1 > ωh then

return 0
end if
k ← k + 1

end while
return ωk

end procedure

Figure 4.7: The modified Newton-Raphson method

Next, we introduce a function

υ(ω) = arg (G(jω)) + π + 2πn (4.48)

and compute its derivative dυ(ω)/dω. After simplification we arrive at

υ′(ω) = −L− αT sin
(
απ
2

)

ω
(
2T cos

(
απ
2

)
+ ω−α + T 2ωα

) . (4.49)

We may now use the modified Newton’s method in Figure 4.7 to find ωu. Note
that to locate the minimum stability margin we need to introduce a modifica-
tion to the search algorithm, whereby instead of terminating upon obtaining
a solution ω∗u the gain margin 1/ |G(jω)| at this frequency is checked. If
it is found to be less than unity, the iterative process is repeated assigning
ωg ← ω∗u, ω0 ← ω∗u, and n ← n + 1. This means that the search direction
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must be positive. The gain margin and corresponding crossover frequency
are then determined by means of

Kc = min (|1− 1/G(jωg)| , |1− 1/G(jωu)|) . (4.50)

The following proposition can be put forth providing the sufficient con-
ditions to ensure convergence of the iterative process in this case.

Proposition 4.4 A solution ω∗u of (4.47) exists if the following conditions
are satisfied on the interval (ωb, ωh)

arg (G(jωb)) > −π, arg (G(jωh)) < −π. (4.51)

Proof: The proof follows from the Intermediate Value Theorem [14]. We
have farg : R+ → R, such that farg(ω) = arg (G(jω)) is continuous with
ω ∈ (ωb, ωh). Then, given (4.51), the theorem states that there exists ω∗ ∈
(ωb, ωh) such that farg(ω∗) = −π. �

Remark 4.3 It is assumed that the interval (ωb, ωh) is correctly chosen for
modeling and control purposes.

Once ωu is computed, the gain margin of the system Kc, also referred to
as the ultimate gain, can be obtained as

Kc = 1/ |G(jωu)| . (4.52)

Thus, we obtain the relative stability criteria. These provide insight into
the closed-loop behavior of the plant and, in addition, will serve as decision
variables for conventional PI/PID controller design.

Reconsider the controller C(jω) in (2.28)

C(jω) = Kp +Ki(jω)−λ +Kd (jω)µ . (4.53)

We proceed to derive the frequency domain characteristics of this controller:

|C(jω)| =
√
C2
R(ω) + C2

I (ω), (4.54)

where
CR(ω) = Kp + ω−λKi cos

(
λπ
2

)
+ ωµKd cos

(µπ
2

)
(4.55)

and
CI(ω) = −ω−λKi sin

(
λπ
2

)
+ ωµKd sin

(µπ
2

)
(4.56)

and for the phase angle as

arg (C(jω)) = tan−1

(
CN (ω)

CD(ω)

)
, (4.57)

71



where
CN (ω) = ωλ+µKd sin

(µπ
2

)
−Ki sin

(
λπ
2

)
(4.58)

and
CD(ω) = Ki cos

(
λπ
2

)
+ ωλ

(
ωµKd cos

(µπ
2

)
+Kp

)
. (4.59)

We now derive the equations to compute the critical frequencies and
corresponding stability margins of the open-loop control system given by
Gol(jω) = C(jω)G(jω). A function ψpm(ω) for the phase margin is defined
as

ψpm(ω) := |C(jω)| · |G(jω)| − 1 (4.60)

and the derivative thereof is computed yielding

ψ′pm(ω) = A′1(ω) |G(jω)|+ |C(jω)|A′2(ω), (4.61)

where
A′1(ω) = A11(ω)/ |C(jω)| (4.62)

with

A11(ω) = ω−1−2λ

(
µω2(λ+µ)K2

d − λKi

(
Ki + ωλKp cos

(
λπ
2

))

+ ωλ+µKd

(
(λ− µ)Ki sin

(
(λ+µ−1)π

2

)

+ µωλKp cos
(µπ

2

)))
(4.63)

and

A′2(ω) = −
(
Tαωα−1

(
Tωα + cos

(
απ
2

)))
|G(jω)|

P (ω)
, (4.64)

where
P (ω) = 1 + T 2ω2α + 2Tωα cos

(
απ
2

)
. (4.65)

We can now use the modified Newton method in Figure 4.7 to solve the
equation ψpm(ωc) = 0. We suggest to use ω0 = ωb as the initial estimate,
and a factor γc > 1.

Proposition 4.5 A solution ω∗c of ψpm(ωc) = 0 exists if the following con-
ditions hold on the interval ω ∈ (ωb, ωh)

|C(jωb)| · |G(jωb)| > 1 (4.66)

and
|C(jωh)| · |G(jωh)| < 1. (4.67)

72



Proof is done along the same lines as for Proposition 4.4.
When ω∗c is obtained, the phase margin is determined in the usual way.

Remark 4.4 The failure of conditions in (4.66) and (4.67) or lack of solu-
tion ω∗c may indicate unacceptable performance or instability of the closed-
loop system.

Next, we define a function for the gain margin as

ψgm(ω) = arg (C(jω)) + arg (G(jω)) + π + 2πn. (4.68)

Its derivative is given by

ψ′gm(ω) = B′1(ω) + υ′(ω), (4.69)

where B1(ω) = arg (C(jω)) and the expression for computing υ′(ω) has
already been provided in (4.49). Therefore, we only need to evaluate B′1(ω).
The following result is obtained after simplification:

B′1(ω) = B10/B20, (4.70)

where
B10 = λKpKi sin

(
λπ
2

)
+ ωµKdB11 (4.71)

with
B11 = (λ+ µ)Ki cos

(
(λ+µ−1)π

2

)
+ µωλKp sin

(µπ
2

)
(4.72)

and

B20 = ω

(
ωλ+2µK2

d + ω−λK2
i + 2KpKi cos

(
λπ
2

)
+ ωλK2

p (4.73)

−2ωµKd

(
Ki sin

(
(λ+µ−1)π

2

)
− ωλKp cos

(µπ
2

)))
.

We may now use the modified Newton method to solve the equation
ψgm(ωu) = 0. If one wishes to establish the minimum gain margin according
to the earlier discussion, then it is necessary to choose ω0 = ωb as the initial
estimate, and a factor γc > 1.

Proposition 4.6 A solution ω∗u of ψgm(ωu) = 0 exists if the following con-
ditions hold on the interval (ωb, ωh)

arg (C(jωb)) + arg (G(jωb)) > −π (4.74)

and
arg (C(jωh)) + arg (G(jωh)) < −π. (4.75)
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Proof is done along the same lines as for Proposition 4.4.

Remark 4.5 If at ωh the argument of C(jω)G(jω) is greater than −π, then
gain margin may be sufficiently large. This may happen when the time delay
L of the system in (4.41) is negligible.

Remark 4.6 Failure of condition in (4.67) to hold indicates that the closed-
loop system is most likely unstable, therefore computation of gain margin may
not hold any merit.

The robustness to gain variations specification is given as
(

d argC(jω)G(jω)

dω

)

ω=ωc

= 0. (4.76)

Note that the derivative in (4.76) may be computed using the expression in
(4.69) taking ω = ωc, so no further derivations are required.

Finally, constraints on the sensitivity functions allow to account for out-
put disturbance rejection and high-frequency noise rejection of the control
system and are important robustness criteria. Therefore, deriving the equa-
tions to compute the magnitudes of these functions at particular frequencies
is important. We first consider the sensitivity function S(jω) which is given
by

S(jω) =
1

Q(jω)
, (4.77)

where Q(jω) = 1+C(jω)G(jω) is the characteristic polynomial. We proceed
as follows

|Q(jω)| =

√
Q2
R(ω) +Q2

I(ω)
√
P (ω)

, (4.78)

where

QR(ω) = cos
(
λπ
2

)
− Tωα sin

(
(λ+α−1)π

2

)

+ ωλKKd cos
(
Lω − (λ+µ)π

2

)

+KKiω
−λ cos(Lω) +KKp cos

(
Lω − λπ

2

)
(4.79)

and

QI(ω) = Tωα cos
(

(λ+α−1)π
2

)
+ sin

(
λπ
2

)

−KKdω
µ sin

(
Lω − (λ+µ)π

2

)

−KKiω
−λ sin(Lω)−KKp sin

(
Lω − λπ

2

)
(4.80)
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and P (ω) is obtained by means of (4.65). Therefore, the magnitude of the
sensitivity function at a particular frequency ω may be determined from

|S(jω)| = 1

|Q(jω)| . (4.81)

For the complementary sensitivity function T (jω) it holds that

|T (jω)| = |C(jω)| |G(jω)|
|Q(jω)| . (4.82)

By using (4.81) and (4.82) we may evaluate the magnitude response in
the range of interest, usually in the interval given by (ωb, ωh) and further con-
strain the optimization problem by including disturbance and noise rejection
specifications.

In the following, a tuning method based on the above computations is
proposed. Our reasoning here is along the lines of [111]. Here is the summary
of the method.

1. Consider the parameters ωu and Kc of the FFOPDT model in (2.14). If
they are not known, compute them using the method described above;

2. Compute the parameter set θG = {Kp,Ki,Kd} of a conventional PID-
type controller;

3. Design a cost function J(·) based on desired system performance ac-
cording to frequency domain specifications;

4. Do a sweep of parameters in the set θP = {λ, µ} within a predefined
region, computing the chosen design specifications;

5. Choose the best controller according to min J(·).

This method is justified because in case of a model (2.14) we have a fractional
plant to control. Therefore, optimizing the orders of the controller may lead
to the improvement of performance and robustness of the control system as
it was shown in Example 4.1. The method is much less computationally
intensive than general nonlinear optimization. However, it also essentially
complements said optimization process by shifting the initial points (λ, µ)
the parameter search space and thereby moving away from a potential local
minimum of the cost function [126]. Therefore, the fractional power sweep
procedure may be used as the first step in the optimization sequence. In
such a case it is sufficient to choose a relatively large sweep step size, e.g.,
∆γ = 0.1.
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4.5.2 FOPID Controller Design

The parameters of the FFOPDT plant in (4.41) are assumed to be obtained
by means of a relay autotuning algorithm considered in Section 3.4. As we
have seen, by properly identifying several points (ωk, Ak) in the frequency
domain it is possible to determine not only the classical FOPDT model, but
also the fractional order α of the FFOPDT model. In case of the conven-
tional model, parameters, such as plant gain Kc and lag Lc may be deter-
mined experimentally and will coincide with corresponding parameters of
the FFOPDT model. The time constant Tc may be computed, when the
frequency ωu, corresponding to the ultimate gain of the system, is found, by
means of

Tc =
tan(π − Lcωu)

ωu
. (4.83)

Once all of the conventional FOPDT model parameters are obtained, we
can use the F-MIGO rule proposed in [72] for FOPI controllers to determine
the appropriate integrator order λ of the controller in (2.28) by considering
basic plant dynamics through the relative dead time parameter τc:

τc =
Lc

Lc + Tc
. (4.84)

The following approximate rule is then employed:

λ =





1.1, τc > 0.6,

1.0, 0.4 6 τc < 0.6,

0.9, 0.1 6 τc < 0.4,

0.7, τc < 0.1.

(4.85)

This holds under the assumption that conventional plant dynamics are de-
scribed by Tc with reasonable accuracy. Regardless of the situation, this is
an approximation, therefore one may apply this rule to find an initial value
of λ, which may be additionally tuned.

For deciding the differentiator order µ knowledge of the FFOPDT plant
order α is necessary. The following relation should hold:

µ 6 α. (4.86)

The particular value of µ may be chosen according to the design spec-
ifications imposed on the control system. In what follows, we consider the
following particular specifications, discussed in more detail in Section 4.1:

• Exact phase margin ϕm and corresponding crossover frequency ωc;
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• Robustness to gain variations, that is there exists a requirement such
that

ψ′g(ωc) = 0, (4.87)

where
ψg(ω) = arg (C(jω)) + arg (G(jω)) + π + 2πn, (4.88)

the equations to compute (4.87) are provided in [123].

• Minimal gain margin Gm.

Based on these specifications, the following functions may be defined:

κ1(Kp,Ki,Kd) = |C(jω)| · |G(jω)| − 1, (4.89)
κ2(Kp,Ki,Kd) = arg (C(jω)) + arg (G(jω)) + π − ϕm − 2πn, (4.90)
κ3(Kp,Ki,Kd) = ψ′gm(ω), (4.91)

where ω = ωc. Note that this does not include the gain margin specification.
However, the solution is only considered feasible, if the minimal gain margin
is satisfied.

To find the gains g =
[
Kp Ki Kd

]T of the FOPID controller ac-
cording to the specifications given above it is necessary to solve a system of
nonlinear equations comprised of the design specification functions

Fs =
[
κ1(·) κ2(·) κ3(·)

]T
= 0. (4.92)

To this end, Newton’s method in several dimensions may be employed. Be-
ginning from the initial estimate g0 the iterative process begins, until a par-
ticular stop condition is satisfied. On every step, a linear system

J∆g = −Fs (4.93)

must be solved. Then the new controller gain vector g+ is computed as

g+ = g + ∆g. (4.94)

In the following, we provide all of the elements of the Jacobian matrix J com-
prised of the partial derivatives such that Jn,1 = ∂κn/∂Kp, Jn,2 = ∂κn/∂Ki,
and Jn,3 = ∂κn/∂Kd, for n = 1, 2, 3:

J1,1 =
AGACR
AC

, J1,2 =
AGA12

AC
, J1,3 =

AGA13

AC
, (4.95)

where AG = |G(jω)| in (4.42), ACR = CR(ω) in (4.55), and AC = |C(jω)|
in (4.54),

A12 = ω−2λ
(
−ωλ+µ sin

(
(λ+µ−1)π

2

)
Kd +Ki + ωλ cos

(
λπ
2

)
Kp

)
, (4.96)

77



A13 = ω−λ+µ
(
ωλ+µKd − sin

(
(λ+µ−1)π

2

)
Ki + ωλ cos

(µπ
2

)
Kp

)
. (4.97)

Then,

J2,1 =
A21

A2
, J2,2 = −A22

A2
, J2,3 =

A23

A2
, (4.98)

where
A21 = ωλ

(
−ωλ+µ sin

(µπ
2

)
Kd + sin

(
λπ
2

)
Ki

)
, (4.99)

A22 = ωλ
(
ωµ cos

(
(λ+µ−1)π

2

)
Kd + sin

(
λπ
2

)
Kp

)
, (4.100)

A23 = ωλ+µ
(

cos
(

(λ+µ−1)π
2

)
Ki + ωλ sin

(µπ
2

)
Kp

)
, (4.101)

and

A2 = ω2(λ+µ)K2
d +K2

i + 2ωλ cos
(
λπ
2

)
KiKp + ω2λK2

p

+ 2ωλ+µKd

(
− sin

(
(λ+µ−1)π

2

)
Ki + ωλ cos

(µπ
2

)
Kp

)
. (4.102)

Finally,

J3,1 =
A31

A3
, J3,2 =

A32

A3
, J3,3 =

A33

A3
, (4.103)

where

A31 = ωλ−1
(
µω3(λ+µ) sin

(µπ
2

)
K3
d − ω2(λ+µ)

(
2µ sin

(
λπ
2

)

+ λ sin
(

(λ+2µ)π
2

))
K2
dKi + λ sin

(
λπ
2

)
Ki

(
K2
i − ω2λK2

p

)

− ωλ+µKd

((
2λ sin

(µπ
2

)
+ µ sin

(
(2λ+µ)π

2

))
K2
i

+ 2(λ+ µ)ωλ cos
(

(λ+µ−1)π
2

)
KiKp + µω2λ sin

(µπ
2

)
K2
p

))
, (4.104)

A32 = ωλ−1
(

(λ+ µ)ω2λ+3µ cos
(

(λ+µ−1)π
2

)
K3
d

+ ω2(λ+µ)
(

2(λ+ µ) sin
(
λπ
2

)
+ λ sin

(
(λ+2µ)π

2

))
K2
dKp

+ λ sin
(
λπ
2

)
Kp(−K2

i + ω2λK2
p)

+ ωµKd

(
−(λ+ µ) cos

(
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(
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(
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(
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(
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2
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, (4.106)

and

A3 = A2
2. (4.107)

We can define a stopping criterion for the iterative process as a condition
on the square norm of (4.92):

‖Fs(·)‖2 < ε. (4.108)

There is no feasible way to determine whether a solution to (4.92) exists.
However, by virtue of the Inverse Value Theorem [76] it is possible to claim
that if the Jacobian does not vanish at g0, a local minimum of ‖Fs(·)‖2 will
be found around g0. It is up to the user to check, whether the obtained set
of controller parameters is feasible or not. If no feasible solution is obtained
during optimization, a new initial estimate should be selected.

The complete optimization algorithm is presented in Figure 4.8. The
meaning of procedure return codes is provided in Table 4.2.

Table 4.2: Meaning of optimization procedure return codes

Code Description

−2 Additional condition not satisfied—the gain margin G∗m
computed for the control system is less than the value given in
Gm.

−1 Singular Jacobian matrix—local minimum possible.

0 Maximum number of algorithm iterations reached.

1 All conditions satisfied, successful termination.

Consider now two examples, which illustrate the use of the methods dis-
cussed above.
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procedure FOPIDDesign(g0, ωc, ϕm, Gm)
ε← Tolerance, εm ← MachineTolerance
g ← g0, k ← 0, ν ← MaxIterations
while k < ν do

if det J < εm then return {−1, g}
end if
if G∗m < Gm then return {−2, g}
end if
if ‖Fs‖2 < ε then return {1, g}
end if
g ← g − J−1Fs
k ← k + 1

end while
return {0, g}

end procedure

Figure 4.8: Determination of FOPID controller gains

Example 4.3 We consider here a FFOPDT model of a heating process
from [61]. It is given by the following FO transfer function:

G(s) =
66.16

12.72s0.5 + 1
e−1.93s. (4.109)

We use the tuning method from Section 4.5.1, choosing three different sets of
conventional PI tuning rules. Namely, the classical Ziegler-Nichols method
[152], the Cohen-Coon method [146] and the AMIGO method [6]. To com-
pute the controller gains we need to recover the ultimate frequency ωu and
gain margin Kc of the model in (4.109). The weighted cost function is given
by

J = w1 |ϕm − ϕ̃m|+ w2

∣∣(d arg (C(jω)G(jω)) /dω)ω=ωc

∣∣ ,
where w1 = 100/π, w2 = 10. The range of the integrator order sweep is
selected as λ ∈ [0.5, 1.5] with a step size of ∆λ = 0.05. The desired phase
margin is ϕm = 75◦. In addition, any λ that yields a control system with a
gain margin such that Gm < 2.5 will be discarded. The results of controller
design are presented in Table 4.3.

As it can be seen, it was not possible to stabilize the control system in
case of the Ziegler-Nichols tuning rules. However, in case of the AMIGO
and Cohen-Coon tuning an suboptimal λ subject to given frequency domain
specifications, that is, the phase margin specification, was found.

Example 4.4 Reconsider the model in (4.109). In this example, the design
specifications are chosen as ωc = 0.1, ϕm = 60◦, Gm > 10dB, and the
robustness to gain variations criterion must also be fulfilled.
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Table 4.3: Controller design by testing fractional integrator powers

Method Kp Ki λ∗ ϕm Gm

Ziegler-Nichols 0.4059 2.2021 Cannot stabilize

AMIGO 0.0024 0.0036 0.80 73.9◦ 30.7 dB

Cohen-Coon 0.0129 0.0375 0.55 74.7◦ 12.0 dB

Suppose that an autotuning procedure is employed. For the plant (4.109)
we found the ultimate frequency ωu to be approximately equal to 7.85rad/s.
Using (4.83) the time constant of the conventional FOPDT plant would be
computed as Tc = 0.0794s, which obviously provides the wrong description
of the plant dynamics. Therefore, using the F-MIGO rule does not hold
any merit. Using a more sophisticated approach for computing Tc involving
identification of several points on the Nyquist curve, however, yields a value
T̃c ≈ 12, therefore we have λ = 0.9. The differentiator order is then chosen
as µ = 0.5. The initial gains for optimization are selected such that g0 =[

1/K 1/K 1/K
]
. The optimization procedure is then employed. In 4

iterations the norm condition ε = 10−4 is satisfied, and the gains of the
resulting controller are obtained:

Kp = −0.002934, Ki = 0.01030, Kd = 0.05335. (4.110)

The Bode diagram depicting the open-loop frequency response of the control
system is given in Figure 4.9. It may be seen that the specifications are
fulfilled, with Gm = 11.5 > 10dB.

These examples are further extended in Chapter 5, namely by Examples
5.6 and 5.7, where the results of time domain simulations of the designed
control systems are provided.

4.6 Conclusions

In this chapter, several methods for FOPID controller design were proposed.
In particular, a general Nelder-Mead simplex optimization algorithm based
method was described, which takes into account specifications in both time
and frequency domains. This is a novel FOPID controller optimization ap-
proach that does not require computation of the gradient, and is therefore
capable of handling nonsmooth problems, which may be encountered when
tuning FOPID controllers for nonlinear systems. Several other methods that
are frequently used to solve industrial control problems were also studied
in the context of FOPID control: gain and order scheduling, stabilization,
and control loop retuning—all of which leverage the proposed optimization
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Figure 4.9: Controller design results: Bode diagram of the open-loop control system

algorithm. The combination of these methods leads to a unified approach for
designing FO controllers for industrial control applications. This approach
is similar to [90], but the important difference is that the methods revolve
around a FO extension to conventional PID control, thus potentially facili-
tating industrial integration of the results of this work.

The use of Nelder-Mead direct search method is well justified by the fact
that time domain evaluation of FO control systems is relatively expensive.
The method is also easy to implement on embedded hardware. It appears
to be quite robust in handling the FOPID controller design problem. A
more important issue is the selection of appropriate design specifications.
This leads to the problem of determining the existence of a feasible and
(sub)optimal solution for a control design task subject to a particular set of
specifications. Results from, e.g., [56] may be adopted to tackle this issue.

It was shown that it is possible to combine conventional PID tuning rules
with the flexibility of FOPID controllers to achieve performance improvement
of the control loop for a plant which has fractional dynamics as seen from
Example 4.1. Generally, FOPID controllers offer more tuning flexibility for
conventional, integer-order plants as well. However, in order to leverage these
favorable qualities high-order models of these plants should be considered,
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i.e., models, that take into account more complex dynamics. In addition,
one may consider applying FO control to stabilization problems, since FO
systems have a larger stability zone. This is illustrated in Example 4.2.

Several other issues were identified and include the following:

• A more general stability analysis scheme is required for the proposed
gain and order scheduled approach; this is also true for the problem of
determining the stability zone in case of the random stabilizing FOPID
controller point search method;

• The retuning method is based on linear system analysis, which may
lead to problems with various nonlinear phenomena appearing in real-
life nonlinear systems;

In addition, several tuning methods for plants described by FFOPDT models
were proposed, including a general method for evaluating the design spec-
ifications of such control systems, and a Newton method based approach
for locating the gains of the FOPID controller subject to particular design
specifications. The latter may be used as a part of a more general tuning
algorithm, since it works very well in the vicinity of a solution. However,
the tuning algorithm from Section 4.5 needs to be updated to include proper
selection of the controller orders λ and µ, which currently relies on approxi-
mations.

The mentioned issues require further investigation. Practical applications
of the proposed methods are presented in Chapter 7.
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Chapter 5

Implementation of
Fractional-order Models and
Controllers

In this chapter, methods for hardware implementation of fractional-order
models are discussed. Both analog and digital realizations are considered.
The structure of the chapter is as follows. First, the updated Carlson’s
method for first-order implicit FO transfer function approximation by means
of a modified Newton’s method is discussed in Section 5.1. The framework
for efficient analog implementation of fractional-order systems is presented
in Section 5.2. The proposed digital controller implementation method is
described in Section 5.3. The hardware platform used for real-time control
experiments is presented in Section 5.4. The development of a FOPID con-
troller prototype based on this method is discussed in Section 5.5. Finally,
in Section 5.6 conclusions are drawn.

5.1 An Update to Carlson’s Approximation Method
for Analog Implementations

In this section, we propose a method, which may be used to obtain analog
approximations of fractional-order operators in a similar way to Oustaloup’s
method in Section 2.3. The developed method is particularly useful in ap-
proximation of FO lead-lag compensators.

The initial fractional capacitor approximation algorithm developed by
Carlson in [19] relies on a a modified Newton method is proposed in [127,
142]. The method offers convergence of the sequence {xk} that is more
rapid than that resulting from using Newton’s update formula in (2.36).
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The corresponding formula is called Halley’s formula:

x+ = x− f(x)

f ′(x)− f(x)f ′′(x)
2f ′(x)

. (5.1)

Consider now a problem of finding an nth root of a real number. The cor-
responding function is f(x) = xn−A and using (5.1) the following particular
iteration formula is obtained:

x+ = x · (n− 1)(x)n + (n+ 1)A

(n+ 1)(x)n + (n− 1)A
. (5.2)

In his paper, Carlson has shown that this formula holds for both even n =
2m and odd n = 2m+1 roots. The method can be applied to approximation
of fractional capacitors of the form (1/s)1/n in the following way:

G+(s) = G(s)
(n− 1) (Gn(s)) + (n+ 1) (H(s))

(n+ 1) (Gn(s)) + (n− 1) (H(s))
, (5.3)

H(s) =
1

s
, G0(s) = 1.

This method was more recently considered in [100,132,137]. Since in this
case the real variable A is replaced by the transfer functionH(s), convergence
and rate of convergence cannot be evaluated in the same way as in the case
of a real-valued function. Consider now an example.

Example 5.1 Using equation (5.3) we shall obtain an approximation of a
fractional capacitor 5

√
1/s. With two iterations the following transfer func-

tions are obtained:

G0(s) = 1, (5.4)

G1(s) =
0.66667s(s+ 1.5)

s(s+ 0.6667)
, (5.5)

G2(s) =
G21(s)

G22(s)
, (5.6)

where

G21(s) = 0.4444s7 + 9.062s6 + 39.47s5 + 77.81s4 (5.7)
+ 82.5s3 + 47.75s2 + 13.23s+ 1,

G22(s) = s7 + 13.23s6 + 47.75s5 + 82.5s4 (5.8)
+ 77.81s3 + 39.47s2 + 9.063s+ 0.4444.

In Figure 5.1 the frequency response of the obtained approximation is
shown. The response of the corresponding ideal fractional capacitor is also
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Figure 5.1: Frequency response of Carlson’s approximation of the fractional capacitor
5
√

1/s

given for comparison. It can be seen that the frequency range where the
approximation is valid is quite narrow. It is possible to improve this result
by increasing the number of formula iterations. However, in this case the
order of the obtained rational transfer function may be very high.

This example illustrates that the method may not be very effective for
approximating fractional differentiators and integrators on a wide frequency
range. However, the method may be used for frequency-bounded implicit
fractional transfer function approximation. In this work, we treat the case
of a first-order fractional transfer function.

In general, a frequency-bounded non-integer differentiator/integrator may
be represented by a first-order implicit fractional transfer function of the form

G(s) =

(
bs+ 1

as+ 1

)α
, (5.9)

where 0 < α < 1. The frequency of the zero is in this case ωz = 1/b and the
frequency of the pole is ωp = 1/a, when α > 0. Following the terminology
in [21] and since in this case the transfer function has a single fractional
power zero and a single fractional power pole, we also refer to this form as a
Fractional Power Zero-Pole (FPZP) pair. Recall that this model corresponds
to a FO lead-lag compensator in (2.30).

We now describe the algorithm, which can be used to obtain accurate
approximations in form of zero-pole distributions for the fractional transfer
function in (5.9).

87



Based on the discussion above, several problems of the original algorithm
in [19] may be outlined:

• The initial estimate for approximation problem is not addressed;

• The method only allows to obtain approximations for transfer functions
of order 1/n;

• Resulting approximations can be of a very high order;

• The limited frequency range where the approximation is valid.

The specific application of Carlson’s method could be different. In fact,
when applied to the problem of approximating the transfer function in (5.9)
for a limited frequency range, the algorithm provides very accurate results.
Further, we describe the refined algorithm, which aims to solve the afore-
mentioned problems.

First, we consider the initial estimate problem. Using the iteration for-
mula (5.3) results in a recursive distribution of zeros and poles around a
central frequency. In case of the fractional power zero-pole pair transfer
function, this frequency is the geometric mean computed from the zero and
pole frequencies such that

ωm =
√
ωzωp =

1√
ab
. (5.10)

It relates to the initial estimate choice through the magnitude of the
fractional transfer function obtained at this frequency:

G0(ω) = |G(jωm)| =
∣∣∣∣
jbωm + 1

jaωm + 1

∣∣∣∣
α

. (5.11)

When selecting the initial estimate according to (5.11) the resulting zero-
pole distribution is then centered around ωm ensuring that way the validity
of the approximation around this frequency. When the ratio a/b is small,
only two iterations are usually required to achieve a good result in the full
frequency range.

The problem of approximating transfer functions of arbitrary real order
using this method is much more difficult to solve. Here, we must choose a
balance between accuracy and efficiency, since in case of order 1/n each iter-
ation step involves computing the nth power of a transfer function obtained
in the previous step. The order of the approximation grows rapidly. Thus,
until a different, more efficient iteration formula is developed, we limit the
resolution to 1/10. This allows to obtain approximations of orders accurate
to at least one decimal place. However, there is no reason why a class of
arbitrary orders could not be considered as well.
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The problem of using the method to obtain an approximation for an
arbitrary real α falls under the Egyptian fraction decomposition class of
problems, i.e. an order α is decomposed into k simple fractions 1/mk:

α =
1

m1
+

1

m2
+ · · ·+ 1

mk
, (5.12)

where mk ∈ N. The order decomposition algorithm is depicted in Figure 5.2
and is discussed below.

Figure 5.2: Order α decomposition algorithm

The optimized decomposition is conducted using fractions 1/2 (most ef-
ficient), 1/5 and 1/10 (accuracy consideration). The decimal fractions are
then decomposed as follows:

0.1 = 1
10 , 0.2 = 1

5 , 0.3 = 1
5 + 1

10 ,

0.4 = 2 · 1
5 , 0.5 = 1

2 , 0.6 = 3 · 1
5 ,

0.7 = 1
2 + 1

5 , 0.8 = 4 · 1
5 , 0.9 = 4 · 1

5 + 1
10 .

The fractional transfer function is then approximated as

Gα(s) =
k∏

j=1

G
1
mj

base(s), (5.13)

where
Gbase(s) =

bs+ 1

as+ 1
. (5.14)
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Note that the initial estimate is computed for every approximation of
G

1/mj
base (s).
The general decomposition algorithm is given in Figure 5.3. In our case

M = 10 and thus for 0 < α < 1 a decomposition will always be found, since

10∑

k=2

(
1

k

)
> 1. (5.15)

For α > 1 the general commutative property of a fractional operator is
considered, so the approximation is found such that

Gα(s) = Gn(s) ·Gγ(s), (5.16)

where n = α − γ denotes the integer part of α and Gγ(s) is obtained using
(5.13). For the case when α < 0, the approximation is

G−α(s) =

(
1

G(s)

)α
. (5.17)

procedure ModelDecomposition(G,α,M)
for P = 2 to M do

if α > (1/P ) then
G← G ·G1/P

α← α− (1/P )
end if

end for
end procedure

Figure 5.3: General decomposition algorithm

Finally, we address the problem of approximation order. We propose two
possibilities for order reduction:

1. Reduction of matching zeros and poles;

2. Applying a balancing reduction technique, e.g., [134].

The first method may be invoked on each step of iteration when the order α
is small to improve performance. The second method can be applied to the
resulting approximation.

We conclude this section by noting the similarities in the approaches to
realization of the fractional transfer function in (5.9) found in this work and
in [21,89]. Also, a similar implementation can be found in [132].
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Therefore, it is possible to obtain the fractional differentiator/integrator
approximations in the desired frequency range ω = [ωz; ωp] by selecting
b = 1

ωz
, a = 1

ωp
and using the following equation:

sα ≈ aαG(s), (5.18)

where α > 0 corresponds to a fractional-order differentiator, α < 0 corre-
sponds to a fractional-order integrator and G(s) is the approximation ob-
tained using the above algorithm.

Consider now two examples illustrating the potential use of the described
method.

Example 5.2 We shall obtain an approximation for the following implicit
transfer function:

G1(s) =

(
0.137s+ 1

15.294s+ 1

)−1.115

. (5.19)

After two iterations, the approximation is obtained. The minimal real-
ization thereof is given by

G̃1(s) = 187.95
G̃1z(s)

G̃1p(s)
, (5.20)

where

G̃1z(s) = (s+ 0.5746)(s+ 0.1175)(s+ 0.06539)(s+ 3.504) (5.21)
(s2 + 1.384s+ 0.4795)(s2 + 1.378s+ 0.4802)

(s2 + 1.355s+ 0.4829)(s2 + 1.205s+ 0.502),

and

G̃1p(s) = (s+ 7.299)(s+ 4.062)(s+ 0.8307)(s+ 0.1362) (5.22)
(s2 + 1.378s+ 0.475)(s2 + 1.369s+ 0.4743)

(s2 + 1.339s+ 0.4717)(s2 + 1.146s+ 0.4538).

The order error is ε = 0.0039. The comparison of the ideal response and the
response of the obtained approximation is given in Figure 5.4.

Example 5.3 In this example we shall implement a fractional lead compen-
sator, discussed in [72]. Consider a transfer function that describes a position
servo:

G2(s) =
1.4

s(0.7s+ 1)
e−0.05s. (5.23)

Based on some performance specifications (phase margin ϕm = 80◦ and gain
crossover frequency ωc = 2.2 rad/s), the controller was proposed such that

C2(s) =

(
2.0161s+ 1

0.0015s+ 1

)0.702

. (5.24)
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Figure 5.4: G̃1(s) approximation frequency response vs. G1(s) ideal frequency response

The order of the model approximated in 3 iterations is 328. Using the bal-
anced realization technique with the target order model 5 results in a suitable
approximation of the fractional transfer function given by

C̃2 = 154.65
C̃2z

C̃2p

, (5.25)

where

C̃2z = (s+ 292.4)(s+ 76.33)(s+ 17.01)(s+ 3.141)(s+ 0.6064), (5.26)

and

C̃2p = (s+ 590.9)(s+ 199.6)(s+ 49.45)(s+ 10.48)(s+ 1.829). (5.27)

The resulting control system open-loop frequency response C̃2(jω)G2(jω) is
shown in Figure 5.5. It can be seen that the design specifications are correctly
fulfilled.

5.2 Efficient Analog Implementation of Fractional-
order Models and Controllers

In this section we provide an overview of fractance circuit approximation
methods. Then, the unified approach to generation and application of such
circuits is described.
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Figure 5.5: Control system open-loop frequency response

5.2.1 Approximation Methods

In the following, we provide a summary of network structures and corre-
sponding synthesis methods used in this work with relevant comments.

Over the years, several methods involving use of Cauer and Foster canon-
ical network forms were proposed [100]. Two of these structures will be used
in this work. The Cauer I form RC circuit, presented in Figure 5.6, has the
following impedance, obtained by applying continued fraction expansion [22]:

ZRC(s) = R1 +
1

C2s+
1

R3 +
1

C4s+ · · ·

. (5.28)

The Foster II form RC circuit is given in Figure 5.7. The corresponding
admittance can be expressed by means of partial fraction expansion in the
following way:

YRC(s) =
1

ZRC(s)
=

1

Rp
+ Cps+

n∑

i=1

Kis

s+ σi
, (5.29)

where Ki = 1/Ri and σi = Ki/Ci.
In general, in order to obtain the fractance network component values

there are several choices:

93



Figure 5.6: Cauer I form canonical RC network

Figure 5.7: Foster II form canonical RC network

• Use a suitable approximation technique to obtain the impedance in
form Z(s) and develop it into a suitable expansion, thus obtaining the
R, C, or L component values. The values of the components are not
well-scaled and negative values may be obtained, in which case one
would need to use negative impedance converters [100].

• Use constrained optimization to identify the network.

• Apply a method to derive the required component values directly in a
much more controlled manner.

In [75], a RC driving-point immitance approach, applied to a Foster II canon-
ical form RC network, was proposed to achieve a constant phase angle ϕ over
a designated frequency range. Useful relations were highlighted to determine
the values of the R and C subsequent components. A similar approach was
used in [60] and later in [27,28,133]. In what follows, we briefly describe this
method and provide its application to fractional-order system and controller
implementation.

Given generation parameters α (fractional operator order), ∆ϕ (phase
ripple), R1 and C1 (base resistor and capacitor values, which are chosen
according to the frequency range of interest). According to these values, the
following parameters are calculated:

η ≈ 0.24

1 + ∆ϕ
, a = 10α log(η), b =

η

a
, (5.30)

where 0 < a < 1 and 0 < b < 1. The values of m resistors and m capaci-
tors, comprising the network, are then obtained by using the following set of
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synthesis formulae:

Rk = R1a
k−1, Ck = C1b

k−1, k = 1, 2, . . . ,m. (5.31)

The values of Rp and Cp are obtained using

Rp = R1
1− a
a

, Cp = C1
bm

1− b . (5.32)

Finally, we need to take into account the correction gain K. If the ap-
proximated operator of order α is given by an integer-order transfer function
G(α, s) and the approximation yields an admittance Y (jω) in (5.29), then
at a frequency

ωm =

√
a

R1C1ηbm/2c−1
, (5.33)

where b·c denote the floor function, the gain is computed as

K =
|G(α, jωm)|
|Z(jωm)| , (5.34)

where Z(jωm) is the impedance of the obtained approximation.
This method can be effectively applied to implement a FOPID controller.

We may use the synthesis procedure in (5.30)–(5.34) separately for the frac-
tional integrator and fractional differentiator to arrive at two fractance net-
works, which will form the controller in a general active filter configuration
as illustrated in Figure 5.8. Z1(s) and Z2(s) should be chosen accordingly
and reduced to a trivial resistance if need be.

Figure 5.8: Analog approximation of a fractional-order operator

We conclude this section by summarizing the steps required to implement
a fractional lead-lag compensator. The same synthesis formulae can be used,
however:

• The frequency range of approximation, determined by τ = R1C1, must
be correctly chosen;
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• The gain of the differential or integral component must be corrected
by a factor 1/ωαz such that

Gc(α, s) = ω−αz G(α, s), (5.35)

where ωz is the zero frequency in (2.30), Gc(α, s) and G(α, s) are
integer-order transfer functions, approximating the fractional lead-lag
compensator and the corresponding fractional-order operator, respec-
tively.

5.2.2 Unified Approach to Fractance Network Generation

It is our goal to obtain a general enough approach to systematization of ex-
isting network topologies and their generation. The general framework for
fractance network synthesis may be implemented programmatically using a
personal computer. The network generation and analysis may be handled
by means of a central component—an object in an object-oriented program-
ming language, containing complete circuit information. The object contains
references to

• Particular network structures, however complex, which return com-
puted network transfer functions (impedance values);

• Corresponding implementations.

The idea is that a single structure can have several different implementations,
including, e.g., optimization based ones. The relations are illustrated in
Figure 5.9, so that the best one may be chosen for a particular application.

This way one can implement, e.g., a FOPID controller, and store it in a
single object. For generality, we also consider the possibility of using induc-
tive components in network structures.

Fractance is implemented by means of a class frac_rcl(), which is shown
in an UML diagram in Figure 5.10 and has following properties:

• model — a model of the fractional-order system (fotf object);

• structure — network structure (Cauer, Foster, etc.);

• implementation — function that carries out the actual computation of
the network component values;

• ω — frequency points used for model validation;

• params — parameters used for implementation and/or in the structure;

• K — network gain compensation factor(s);
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Fractance
circuit

Structure Implementation

Figure 5.9: Fractance, network structure, and implementation relations

frac_rcl

model(:(Object
structure(:(String
implementation(:(String
w(:(Array[]
params(:(Struct[]
K(:(Array[]
R(:(Array[][]
C(:(Array[][]
L(:(Array[][]
results(:(Struct

tf()(:(Object
zpk()(:(Object
prefnum(series(:(Array[])(:(Object
zscale(gains(:(Array[])(:(Object

fotf

a:(Array[]
na:(Array[]
b:(Array[]
nb:(Array[]
ioDelay:(double

Figure 5.10: UML diagram of the frac_rcl class in relation to the fotf class

• R,C,L — cell array with component value vectors, the size of the
array is determined by the number of substructures within the main
structure;

• results — implementation/validation results.

The first five parameters are used to create the frac_rcl() object. The
following particular methods may be implemented:

• tf(), zpk() — return the impedance Z(s) in transfer function or zero-
pole-gain format, corresponding to the fractance circuit, for network
analysis. This can be used to automate, e.g. frequency response anal-
ysis.

• prefnum() — locates closest component values according to the pre-
ferred series and replaces network components accordingly. It is also
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possible to provide custom values of components so that the algorithm
will choose the closest matches among a custom set of values. This can
be necessary to analyze the changes of the system frequency character-
istics due to variation of component values.

• zscale() — implementation of impedance scaling used to shift the
values of discrete electronic components into the feasible domain.

Abstraction of fractance into a class has obvious benefits. The user has
an option of writing implementations for existing structures, or using the
provided ones, while still using a single universal object to encompass the
network. Some specific function naming schemes and coding conventions
need to be followed by the programmer. Also, the programmer is responsible
for documenting new, custom structures.

Relevant examples are provided in Chapter 6, where a MATLAB envi-
ronment implementation of the proposed framework is available as part of
the FOMCON toolbox.

5.3 Digital Implementation of Fractional-order Con-
trollers

In the following, the description of the method used for digital implementa-
tion of the FO controllers is provided. Realizations of FOPID controller and
FO lead-lag compensator are discussed.

5.3.1 Discrete-time Oustaloup Filter Approximation for Em-
bedded Applications

Recall the Oustaloup approximation method from Section 2.3. Given the
approximation frequency range [ωb, ωh] rad/s, order of approximation ν ∈ Z+

and fractional power α ∈ [−1, 1] ⊂ R, we proceed to compute (2ν + 1) zeros
and (2ν + 1) poles of the filter as

ω′k = ωbθ
(k+ν+0.5−0.5α)

2ν+1 , ωk = ωbθ
(k+ν+0.5+0.5α)

2ν+1 , (5.36)

where k = {−ν,−ν + 1, . . . , 0, . . . , ν − 1, ν} and θ = ωh/ωb. Thus the con-
tinuous recursive Oustaloup filter transfer function is obtained in the form

Ĝ(s) = ωαh
(s− ω′−ν)(s− ω′−ν+1) · · · (s− ω′ν)

(s− ω−ν)(s− ω−ν+1) · · · (s− ων)
. (5.37)

The filter approximates a fractional-order operator

sα ≈ Ĝ(s) (5.38)
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in the chosen frequency range. The amount of ripple in the phase response
of this filter can also be determined [89]. In the following, we describe the
discretization method which, when employed, can serve as a basis for discrete-
time Oustaloup filter generation and may be implemented on an embedded
device.

Suppose that we are given a sampling interval Ts ∈ R+. Then we may set
the higher frequency bound of approximation in (5.36) to ωh = 2/Ts. Next,
consider the zero-pole matching equivalents method for obtaining a discrete-
time equivalent of a continuous time transfer function [35]. The following
mapping is used for both zeros and poles:

z = esTs , (5.39)

where s denotes a particular zero or pole. Therefore, for each k in (5.36) we
take

σ′k = e−Tsω
′
k , σk = e−Tsωk (5.40)

thus mapping continuous zeros and poles to their discrete-time equivalents
directly. We notice that once the mapping is done, we need to compute
the gain of the resulting discrete-time system at the central frequency ωu =√
ωbωh. This can be done by first finding the gain of the resulting discrete-

time system by taking
Ku =

∣∣H(ejωuTs)
∣∣ . (5.41)

We also know the correct gain at this frequency

Ks = ωαu . (5.42)

So, finally we obtain the gain of the system as

Kc = Ks/Ku. (5.43)

The discrete-time system is thus described by a transfer function of the
form

H(z) = Kc
(z − σ′−ν)(z − σ′−ν+1) · · · (z − σ′ν)

(z − σ−ν)(z − σ−ν+1) · · · (z − σν)
. (5.44)

Due to the fact that the order of the approximated operator is α ∈ R+ the
transfer function in (5.37) is stable [89] and the corresponding discrete-time
equivalent (5.44) is also stable.

Next we address the problems associated with implementing the gener-
ation scheme described above on an embedded device, such as a microcon-
troller. We have to take the following into consideration:

• Performance limitations;

• Limited computational abilities;
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• Potential memory size limitations.

The first item completely depends on the type of microprocessor (and poten-
tially additional computational hardware units) used in the implementation.

We notice that (5.41) involves computations with complex numbers. How-
ever, we can compute a particular factor (z − σ) in (5.44) at the frequency
ωu as follows
∣∣ejωuTs − σ

∣∣ = |cos(ωuTs) + j sin(ωuTs)− σ| =
=
√

1− 2σ cos(ωuTs) + σ2 (5.45)

due to Euler’s formula. Therefore, the gain of the system specified by
discrete-time zeros and poles in (5.40) may be computed as

Ku =

ν∏

k=−ν

(
1− σ′kθ + (σ′k)

2
)0.5

ν∏

k=−ν

(
1− σkθ + σ2

k

)0.5
, (5.46)

where θ = 2 · cos(ωuTs) is constant at the given frequency ωu and sampling
interval Ts which needs to be computed only once. After computing this gain
one arrives at the final gain Kc of the discrete-time approximation by using
equation (5.43).

This system can be implemented as an IIR filter. The next step is to
transform this representation into second-order section form to improve com-
putational stability. Consider the set of discrete-time zeros (poles) that we
have obtained earlier

z = {σ−ν , σ−ν+1, . . . , σ0, . . . σν , σν−1, σν} . (5.47)

Due to the generation method (5.36) the set in (5.47) is an ordered set. In
order to arrive at the second-order section form for the zero (pole) polynomial
we proceed as follows. We have 2ν+1 zeros (poles), so there are ν+1 second-
order sections (including a single first-order section). Therefore, we have the
polynomial

h(z) = (1− σνz−1) ·
ν−1∏

k=0

ζ(z) (5.48)

in the variable z, where ζ(z) = 1+(ck + dk) z
−1+(ck · dk) z−2, ck = −σ−ν+2k

and dk = −σ−ν+2k+1. So finally we arrive at the form

H(z) = Kc

ν∏

k=1

1 + b0kz
−1 + b1kz

−2

1 + a0kz−1 + a1kz−2
, (5.49)
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which can be effectively used as an IIR filter in control applications.
We now turn to the issue of storing the aforementioned coefficients on

an embedded system with dynamic memory. Additionally we consider the
necessary memory size for digital signal processing related computations.

While it is usually possible to use dynamic memory allocation for both
zero/pole generation and SOS coefficient arrays, on embedded systems with
limited memory size it is safer to use a static memory allocation architec-
ture to circumvent potential run-time problems arising from, e.g., memory
fragmentation. Therefore, care must be taken to choose a sufficient maximal
approximation order νmax and preallocate the necessary array memory space
beforehand. Suppose that a floating-point data type with a size of ψ bytes is
available in a particular implementation. In the following, we provide some
computations related to minimal memory requirements. First, to store arrays
of values for discrete zero/pole calculation:

Memory for zero/pole arrays = 2ψ(2νmax + 1) bytes. (5.50)

Now we provide the memory requirements for second-order section coef-
ficient storage. Note that in (5.49) we only need to store coefficients b1, b2, a1

and a2. Then for both arrays we have

Memory for SOS arrays = 4ψχ(νmax + 1) bytes, (5.51)

where χ is the number of approximated operators. Finally, we will need
memory elements for the digital signal processing application:

Memory for DSP = 2ψχ(νmax + 1) bytes. (5.52)

The total amount of memory required for the arrays is thus

Total memory = 2ψ ((3χ+ 2)νmax + 3χ+ 1) bytes. (5.53)

Example 5.4 Consider the Atmel AVR ATmega8 microcontroller, which we
use as the basis for the implementation of a digital filter approximating a
fractional-order operator with an order α such that 0 < α < 1. Suppose
that a single precision floating-point data type is available. Then ψ = 4 and
χ = 1 and for νmax = 10 we need to preallocate

2 · 4 ((3 · 1 + 2) · 10 + 3 · 1 + 1) = 432 bytes,

which takes up 42.18% out of 1024 bytes of SRAM memory of this particular
microcontroller.

We remark that it is possible to reuse some static memory blocks during
the generation of the coefficients thus reducing the necessary memory size
requirements.
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5.3.2 FOPID Controller Implementation

Digital implementation of the fractional-order PID controller may be ob-
tained as

HPIλDµ(z) = Kp +KiH
−λ
I (z) +KdH

µ
D(z−1), (5.54)

where Kp, Ki, and Kd are gains of the parallel form of the controller as in
(2.28), Hλ

I (z) corresponds to a discrete-time approximation of a fractional-
order integrator of order λ and Hµ

D(z) corresponds to a discrete-time approx-
imation of a fractional-order differentiator of order µ, such that λ, µ ∈ [0, 1].

Next, we address the issue of implementing the fractional-order integra-
tor. Recall the discussion in Section 2.4. Due to (2.29) we should implement
the integrator as

HI(z) = H1−λ(z) ·HI(z), (5.55)

where H1−λ(z) is computed using the method presented above, and

HI(z) =
Ts

(1− z−1)
(5.56)

is the discrete-time integrator.

5.3.3 FO Lead-Lag Compensator Implementation

Recall the fractional-order lead-lag compensator from (2.30) rewritten as

CL(s) = KL

(
bLs+ 1

aLs+ 1

)αL
. (5.57)

To implement this controller one must choose the appropriate approximation
frequency bounds ωb and ωh in (5.36) such that

ωb = 1/bL, ωh = 1/aL. (5.58)

In addition, a correction gain Kc = bαL must be applied to the Oustaloup
filter approximation. The approximation is then given by

ĈL(s) = KLKcĜ(s), (5.59)

where Ĝ(s) is computed in (5.37). It can be easily deduced that a fractional
lag compensator corresponds to a Iλ controller with

Ki = KLKc, λ = αL (5.60)

and a fractional lead compensator corresponds to a Dµ controller with

Kd = KLKc, µ = αL (5.61)

with the parameters ωb and ωh chosen according to the parameters bL and
aL. It should be noted that this method, as well as the choice of appropriate
frequency bounds in (5.58), works only in case of the original Oustaloup filter
in (5.36), not in case of the modified filter discussed in [72,146].
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5.3.4 Controller Reset Logic

It is also necessary to address the state reset logic for the IIR filters that are
used to implement the fractional-order controllers. Denote by e(k) the kth
sample of the error signal e(·). We propose the following basic filter memory
reset logic based on the notion of a maximal error change rate margin ρ. The
reset condition is expressed as follows

|e(k)− e(k − 1)| > ρ. (5.62)

Thus if the controller detects a sudden change in the error signal, IIR filter
and integer-order integrator memory will be cleared, yielding zero initial con-
ditions for the whole fractional-order PID controller or lead-lag compensator.
It is important to select the value of the change rate margin ρ well above
measurement noise or potential disturbance level.

Particular examples of digital controller implementation are provided in
the next section.

5.4 Experimental Platform for Real-Time Closed-
Loop Simulations of Control Systems

In the following, a platform for real-time hardware-in-the-loop control exper-
iments is described.

In terms of hardware, we use two different data acquisition devices:

• ATDaqV2 data acquisition device developed in Alpha Control Labo-
ratory [119]. It is connected to a personal computer through either
RS232 or USB interfaces and is based on a serial protocol. It offers the
following features [124]:

– Analog channels: single-ended, 2 inputs and 2 outputs;

– Sample resolution on all channels: 12 bit;

– Sample rate: up to 10kSPS in single channel, half-duplex mode
(input or output); up to 2.5kSPS in dual channel, full-duplex mode
(suitable for closed-loop simulations) with single-sample delays;

– Input/output type and range: voltage, 0...5V;

– Reference voltage: on-board.

• RT-DAC/USB2 data acquisition device offered by INTECO—a mul-
tifunction analog and digital I/O board dedicated to real-time data
acquisition and control in the Windows operating system environment
and offering the following features in the analog signal section [47]:
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– Analog channels: single-ended, 16 inputs, and 4 outputs;

– Sample resolution: 12 bit for input channels (with programmable
gain); 12 or 14 bit on output channels;

– Conversion time for analog channels: 5.4µs;

– Settling time for output channels: 10µs;

– Input/output type and range: voltage, ±10V on input and output
channels, or ±5V on output channels with enhanced resolution;

– Reference voltage: on-board.

The use of the ATDaqV2 device is preferred with the basic version of the con-
troller prototype, while the more advanced RT-DAC is used in experiments
with a more sophisticated controller prototype, both of which are described
in Section 5.5.

The general schematic depicting the hardware connection between the
devices considered in the experiments is given in Figure 5.11. The real-
life controller prototype is interfaced with the personal computer via a data
acquisition (DAQ) board, which can be one of the above.

PC connection

DAQ board
DAC

DAC

RS232
or USB

Analog outputsAnalog inputs
Ch0

Ch1

Controller prototype

DAC

ADC

ADC

Ch0

Ch1

ADCμController

Figure 5.11: Real-time hardware-in-the-loop platform for control experiments

In terms of software, we use the MATLAB/Simulink environment with
Real-Time Windows Target toolbox [65]. In this work we consider exper-
iments, where the controller prototype is externally connected to a MAT-
LAB/Simulink based simulation running in real time on a personal computer
through an analog interface. This allows to verify and evaluate the perfor-
mance of the prototype in case of arbitrary complex models of control objects.
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In addition, we consider experiments, where the MATLAB/Simulink envi-
ronment serves only as an additional interface between the controller and the
controlled object.

5.5 Development of a Hardware FOPID Controller
Prototype

For the purposes of verification of the developed FOPID control and design
algorithms, a hardware implementation of FOPID controller is necessary. In
this work, microcontroller based realizations are considered. The firmware is
written in C language which makes the resulting code easily portable across
different microcontroller families.

Hereinafter, we consider 8-bit Atmel AVR [8] and 32-bit STMicroelectron-
ics STM32F407 [109] microcontroller families for the digital implementation
of the FOPID controller prototype.

5.5.1 Atmel AVR Microcontroller Family based Implemen-
tation

The choice of using Atmel AVR 8-bit microcontroller family for the imple-
mentation of the FOPID controller is due to the following highlights of the
Atmel AVR line [11].

• Outstanding flash memory technology;

• Single-cycle instruction execution;

• Wide variety of operating voltages;

• Architecture designed for the C language;

• One set of development tools for the entire AVR line;

• In-system programming, debugging, and verification capability;

• World-wide interest in the AVR microcontroller line.

The last item is seen to be of fairly high importance, since the availability of
FOPID control code for AVR microcontrollers may potentially influence the
growing spread of FO technology in both academia and industry.

The developed prototype has the structure depicted in Figure 5.12. The
prototype consists of a controller board, an input-output board, and a power
supply. The I/O board is plugged onto the controller board. Internally the
ADC and DAC devices communicate with the microcontroller using the inter-
integrated circuit (I2C) interface. The particular tested microcontrollers in-
clude ATmega8A and ATmega324, whereby the choice of controller depends
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on the application—for basic FOPID control the former is sufficient, for more
advanced tasks, such as controller tuning, the latter must be used to meet the
flash and dynamic memory requirements. The I/O board has the following
features:

• Analog channel: single-ended, 1 input and 1 output;

• Sample resolution: 12 bit;

• Sample rate: up to 10kSPS;

• Input/output type and range: voltage, 0...5V;

• Reference voltage: on-board.

The described prototype may be used in particular embedded applications,
e.g., temperature control. However, due to performance limitations in terms
of floating-point computations only a single-precision data type is available.
For practical FOPID control this will suffice, following the discussion in Sec-
tion 5.3.

ATmegannnADC

DAC

Power supply0.
..5

V

0.
..5

V

ControllerI/O board

I2C

Figure 5.12: Structure schematic of the developed FOPID controller prototype based on
Atmel AVR ATmegannn microcontroller

In what follows, several examples related to FOPID controller approxi-
mation and tuning are provided.

Example 5.5 Consider the problem of obtaining a digital approximation of
a FOPID controller with the parameters

Kp = k1, Ki = k2, Kd = k3, λ = q1, µ = q2. (5.63)

The microcontroller board in Figure 5.12 is based on ATmega8A microcon-
troller clocked at 16MHz. Suppose that the suitable frequency range for an
Oustaloup filter of order ν = 5 is ω = [0.0001, 10] rad/s with νmax = 10.
The sampling interval is Ts = 0.2s. Denote by τg and τs the time interval
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that is required for controller generation and sample computation, respec-
tively, under the conditions above. We have the following per the report of
AVR Simulator: τg = 27.6224 ms, τs = 1.8904 ms. Obviously, the controller
must compute the next output sample faster than the specified sampling
rate. Thus, sampling rates up to fs ≈ 500 Hz are possible in this case. Note,
however, that it takes much longer to compute the coefficients of the con-
troller. This should be considered when the controller is running in a closed
loop and, consequently, in autotuning applications. In Table 5.1 a summary
of time requirements for controller generation and sample computation for
ν = 6, 7, . . . , 10 is given.

Table 5.1: Time requirements for controller generation and sample computation for differ-
ent Oustaloup filter orders

ν τg [ms] τs [ms] Max.applicable fs [Hz]

6 32.2914 1.9868 480

7 37.1326 2.0832 450

8 42.2011 2.1796 425

9 46.8712 2.2759 400

10 51.5617 2.3723 400

Example 5.6 In this example we illustrate the use of the fractional order
sweep method from Section 4.5 on embedded hardware. For the purposes
of implementing the FOPI controller, the Atmel AVR ATmega8A microcon-
troller is used. The equations and the power sweep method from Section
4.5 are implemented in C language and compiled using AVR-GCC. The fol-
lowing is a continuation of Example 4.3. The λ parameter sweep was done
for the AMIGO PI controller. In terms of performance, our current software
implementation requires approximately 34.6 million clock cycles to arrive at
the solution λ? = 0.8, that is, around 4.3s with the microcontroller clocked
at 8MHz. This does not include the time necessary to compute the gain mar-
gin, as it is not used in the cost function. Once λ is computed, the controller
is generated. It is then verified using a real-time prototyping platform from
Section 5.4.

The process model (4.109) is running in Simulink, while the controller
prototype is connected to it externally via the DAQ board. The comparison
of step responses of closed-loop control systems with the AMIGO PI and the
achieved FOPI is given in Figure 5.13. A noticeable improvement in control
quality can be observed.
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Figure 5.13: AMIGO PI vs. designed FOPI

Example 5.7 For this example, the algorithm in Example 4.4 is verified on
the hardware prototype. This time the Atmel ATmega324P microcontroller
is considered for the implementation of the FOPID controller. In the follow-
ing, some initial benchmarking results are provided. The C code is compiled
using AVR-GCC with optimization option “-O1”. The same gains as in Ex-
ample 4.4 were obtained in 4 algorithm iterations in approximately 1.66M
clock cycles, or 83.37ms with the microcontroller clocked at 20MHz.

The resulting controller is also verified by means of pure software and
hardware-in-the-loop (HIL) real-time simulations. Pure software simulations
are done in MATLAB/Simulink environment. For the HIL part, the proto-
typing platform from Section 5.4 is used, where the process model (4.109) is
running in Simulink, while the controller prototype is connected to it exter-
nally via the DAQ board.

The results of real-time simulations are shown in Figures 5.14 and 5.15.
The gain of the plant is varying in the range ±25%. The following observa-
tions can be made. First, as expected, the overshoot value does not change
significantly between experiments, where the plant gain is different. This
shows that the iso-damping property in (4.76) is indeed satisfied. Second,
the corresponding results of pure software and HIL simulations are very close,
which points to the adequate implementation of the controller prototype.
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Figure 5.14: Pure software simulations of the FOPID control system with varying gain
(K̃ = {0.75K, 1.00K, 1.25K})
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Figure 5.15: Hardware-in-the-loop simulations of the FOPID control system with varying
gain (K̃ = {0.75K, 1.00K, 1.25K})
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5.5.2 STMicroelectronics STM32F407 Microcontroller Fam-
ily based Implementation

The STM32F407nn family of microcontrollers are based on the high perfor-
mance ARM Cortex-M4 32-bit RISC core operating at a frequency up to
168MHz. The core has a dedicated floating-point unit (FPU) and imple-
ments a full set of DSP instructions. Therefore, these microcontrollers are
natural candidates for complex digital signal processing applications.

In this work, the STM32F407VG microcontroller is used for the digital
implementation of a FOPID controller. The developed hardware prototype
has a modular structure depicted in Figure 5.16.

The controller module features the STM32F407VGmicrocontroller, which
takes care of all necessary computations related to digital control, as well as
drives the graphic display (resolution: 84x48 pixels) and the the input/output
board through the serial peripheral interface (SPI). Manual controls allow to
configure the controller prototype as needed.

The I/O board comprises analog-to-digital and digital-to-analog convert-
ers, as well as the Maxim Integrated MAX31855 chip providing a K-type
thermocouple input [68] and the necessary signal conditioning circuits. The
board has the following features:

• Analog channel: 2 inputs and 2 outputs:

– Thermocouple input, supporting type K thermocouples;

– Voltage input, range: ±10 V;

– Current loop output: 0(4) . . . 20 mA;

– Voltage output: range ±10 V;

• Sample resolution: 12 bit on alanog channels; 14 bit resolution of the
thermocouple converter;

• Sample rate: up to 10kSPS;

• Reference voltage: precision; on-board.

The fully assembled prototype is shown in Figure 5.17. Both the controller
and I/O board are mounted on a DIN rail. The prototype is designed mainly
for laboratory experiments. For industrial use, a suitable form-factor and a
suitable choice of components (e.g., manual controls and display) is necessary
to meet industrial standards.

The examples from Section 5.5.1 are also applicable in case of this pro-
totype, since the code is ported directly. However, the performance figures
are obviously different. An example illustrating the use of this prototype is
provided in Section 7.3.
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Figure 5.16: Structure schematic of the developed FOPID controller prototype based on
STMicroelectronics STM32F407VG microcontroller

5.6 Conclusions

In this chapter, implementation methods for FO models and controllers were
discussed, including both analog and digital realizations. An update to Carl-
son’s method to FO capacitor approximation was proposed, which was found
especially useful in generating FO lead-lag compensator type controller ap-
proximations. The method offers a sufficient rate of convergence and is based
on a classical numerical method. A unified framework for analog realization
of FO models and controllers was provided leveraging the object-oriented
programming paradigm. The framework allows facilitating the choice of a
particular network structure and approximation method for fractance circuit
generation.

A digital implementation method based on the Oustaloup recursive filter
approximation was proposed; the realization targets embedded device imple-
mentation. The proposed realization has several advantages. First, the filter
implementation is always stable given that the corresponding floating-point
computations are also stable. The chosen IIR filter structure allows to further
tackle the problem of ensuring computational stability. A hardware imple-
mentation of a FOPID controller based on the previous results was presented
and successfully verified in a number of real-time control experiments.

The most important issue encountered in the physical and computer-
based realizations of fractional systems and controllers through use of ap-
proximations is the appropriate choice of either analog electrical component
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Figure 5.17: Assembled FOPID controller prototype and input/output board

values or coefficients of digital filters. In the former case, certain approxima-
tions may be unrealizable or infeasible due to high order or wide frequency
band thereof since the obtained component values may become too large
or too small. In case of digital filters, the difference in the magnitude of
coefficient values may lead to loss of computational stability, especially in
case of floating-point computations. One of the aims of this thesis was to
facilitate the design of appropriate circuits and digital filters by providing
means to tackle this issue. The obtained results indicate that this goal was
practically achieved. However, there still exist certain limitations, e.g., while
digital filter approximations of FOPID controllers run and maintain long-
term stability on relatively low-end hardware, more complicated FO control
algorithms necessitate the use of high-end hardware to run efficiently and
perform correctly.

Some other issues were also found.

• The updated Carlson’s method has certain limitations in that a con-
siderable computational effort is needed to obtain the approximations,
which, as a result, is of high order. This limits the use of the method
compared to, e.g., Oustaloup’s method.

• Optimization based analog realization of FO models and controllers
following the discussion in Section 5.2 is not yet available. The proper
formulation of the optimization problem in this case may allow obtain-
ing approximations of complex fractance structures. It is expected,
that global optimization algorithms will be very useful for solving this
problem.

• The hardware prototype of the FOPID controller may benefit from the
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use of the recently developed variable-order fractional operator meth-
ods [110].

The solution to these issues is the subject of future research.
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Chapter 6

FOMCON: Fractional-order
Modeling and Control Toolbox

In the following chapter, FOMCON toolbox for MATLAB/Simulink is de-
scribed. The chapter has the following structure. First, an overview of the
toolbox is provided in Section 6.1. Next, the identification, control, and im-
plementation modules comprising the toolbox are described in Sections 6.2,
6.3, and 6.4, respectively. Illustrative examples are provided for the most
important tools available in each module. Finally, in Section 6.5 conclusions
are drawn.

6.1 Overview of the Toolbox

The FOMCON toolbox for MATLAB is a fractional-order calculus based
toolbox for system modeling and control design. The core of the toolbox
is derived from an existing toolbox FOTF (“Fractional-order Transfer Func-
tions”), the source code for which is provided in literature. Consequently, the
main object of analysis in FOMCON is a fractional-order transfer function
of the form (2.11):

G(s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (6.1)

FOMCON is related to other existing fractional-order calculus oriented
MATLAB toolboxes, such as CRONE [90] and Ninteger [132] through either
system model conversion features or shared code, and this relation is depicted
in Figure 6.1.

The initial motivation for developing FOMCON was the desire to obtain a
set of useful and convenient tools to facilitate the research of fractional-order
systems. This involved writing convenience functions, e.g. the polynomial
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FOMCON

Figure 6.1: Relation of FOMCON toolbox for MATLAB/Simulink to similar packages

string parser, building graphical user interfaces to improve the general work-
flow. However, a full suite of tools was also desired due to certain limitations
in existing toolboxes. The basic functionality of the toolbox was then ex-
tended with advanced features, such as fractional-order system identification
and FOPID controller design.

With all previous considerations, the motivations for developing the tool-
box can now be established.

• It is a product suitable for both beginners and more demanding users to
to availability of graphical user interfaces and advanced functionality;

• It focuses on extending conventional control schemes (PID and lead-lag
compensator loops) with concepts of fractional calculus;

• Tools for implementing fractional-order systems and controllers are
available;

• With the Simulink blockset the toolbox aims at a more sophisticated
modeling approach. Real-time control application support is provided
through, e.g., Real-Time Windows Target toolbox for MATLAB/Simu-
link [65];

• It can be viewed as a “missing link” between CRONE and Ninteger;

• Due to availability of the source code the toolbox can be ported to other
computational platforms such as Scilab or Octave (some limitations
and/or restrictions may apply).
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Most of the research results discussed in this thesis are implemented in
FOMCON toolbox. Toolbox documentation is available on the official web-
site [120].

Structure of the Toolbox

The toolbox has a modular structure depicted in Figure 6.2 and currently
consists of the following modules:

• Main module (core—fractional system analysis);

• Identification module (system identification in both time and frequency
domains);

• Control module (FOPID controller design, tuning and optimization
tools, as well as some additional features);

• Implementation module (continuous and discrete time approximations,
implementation of corresponding analog and digital filters).

All the modules are interconnected. Most features are supported by graphical
user interfaces.

Identification

Time domain

Frequency domain

Control design

Integer-order

Fractional-order

Implementation

Continuous
approximations

Fractional-order systems analysis
(time domain, frequency domain)

Analog filters

Digital filters

Discrete
approximations

Figure 6.2: Modular structure of the FOMCON toolbox

A Simulink blockset is also provided in the toolbox allowing more complex
modeling tasks to be carried out. General approach to block construction
was used where applicable. The following blocks are currently realized:

• General fractional-order operators: fractional integrator and differen-
tiator;
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• Continuous and discrete time fractional transfer function;

• Continuous and discrete time FOPID controller.

Several variants of these blocks are provided for convenience.

Dependencies

The toolbox relies on the following MATLAB products:

• Control System toolbox—required for most features;

• Optimization toolbox—required for time domain identification and con-
ventional PID tuning, and also partially for fractional-order PID tun-
ing.

Several other tools are used directly (without or with minor changes) per the
BSD license:

• Nelder-Mead algorithm based function for nonlinear optimization sub-
ject to bounds and constraints [84];

• Ninteger toolbox frequency domain identification functions [132].

It is also possible to export fractional-order systems to the CRONE toolbox
format [90]. This feature requires the object-oriented CRONE toolbox to be
installed.

6.2 Identification Module

The module provides the following main features:

• Time domain identification:

– Commensurate and noncommensurate order system identification;

– Parametric identification, which is applicable to closed-loop iden-
tification problems;

– Approximation of fractional systems by conventional process mod-
els.

• Frequency domain identification:

– Commensurate transfer function identification based on algorithms
by Hartley, Levy and Vinagre [132];

– Best fit algorithm for choosing an optimal commensurate order
and pseudo-orders of the fractional transfer function [118].

118



In addition, functions for manipulating the obtained model are provided,
including truncation, rounding and normalization of coefficients and orders,
as well as functions for validating the models and carry out residual analysis.

Example 6.1 In this example we illustrate the use of the fid function of
FOMCON toolbox. The task is to identify a system from an experimental
signal to verify the identification algorithm. This is similar to Example 3.1,
however, in this case the output of the system is not corrupted by noise. The
system under study is described by

G(s) =
−1.3333s0.63 + 2.6667

1.3333s3.501 + 2.5333s2.42 + 1.7333s1.798 + 1.6667s1.31 + 1
. (6.2)

An excitation signal—a PRBS7 sequence with amplitude of 1 applied for 30
seconds and immediately followed by a sine wave with an amplitude of 1 cen-
tered around zero with frequency of 20 Hz lasting 30 seconds—is applied to
the input of this system and output samples are collected with a sample rate
of 200 Hz. Assuming the variables y, u, and t hold the experimental output,
input, and sample time vector, respectively, the initial model structure and
parameters are chosen as

Gi(s) =
s+ 1

s3 + s2.5 + s1.5 + s+ 1
, (6.3)

the coefficients are bounded such that c ∈ [−100, 1000] and orders are bounded
such that q ∈ [10−9, 5], and Oustaloup recursive filter approximations are
used to simulate the model of the system with ω ∈ [0.0001, 10000], N = 5,
the following code may be used to identify this system using the fid function
and the Trust-Region-Reflective optimization algorithm:

% Setup: Create the fractional identification dataset
id1 = fidata(y, u, t);

% Initial model structure and parameters
g_i = fotf('s+1', 's^3+s^2.5+s^1.5+s+1');

% Use Oustaloup approximation for system simulation
fsp = fsparam(g_i, 'oust', [0.0001 10000], 5);

% Model is assumed to have a static gain
gp = {1, []};

% Optimization algorithm: Trust−region−reflective
op.IdentificationAlgorithm = 'trr';
lim = {[−100; 1000], [1e−9 5]}; % Bounds

% Run the identification: G_id1 is the identified model
[~,~,~,~,~,G_id1] = fid(fsp, gp, id1, [], [], [], lim, op);
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Table 6.1: Identification of a complex fractional system: results for different estimation
algorithms

Algorithm %Fit εMSE NoIter FunEval τ , min

TRR 99.98 1.50 · 10−8 84 1020 02:26

LM 99.07 4.24 · 10−5 97 1227 02:50

For invoking the Levenberg-Marquardt algorithm the following commands
may be used:

% Optimization algorithm: Levenberg−Marquardt
op.IdentificationAlgorithm = 'lm'; op.Lambda = 100;

% Run the identification: G_id2 is the identified model
[~,~,~,~,~,G_id2] = fid(fsp, gp, id1, [], [], [], [], op);

A summary of the achieved results is provided in Table 6.1. In addition,
frequency domain characteristics of obtained models are compared to those
of the original model by means of a Bode diagram in Figure 6.3. The following
models are obtained with the powers truncated:

Gid1(s) =
−1.281s0.656 + 2.657

1.396s3.495 + 2.145s2.471 + 2.736s1.817 + 1.199s1.176 + 1
(6.4)

and

Gid2(s) =
0.014s4.617 + 2.627

0.899s4.922 + 5.003s3.409 + 6.519s2.059 + 1.71s0.962 + 1
. (6.5)

Clearly, using the Trust-Region-Reflective estimation algorithm leads to
a more accurate result in this particular case. While the time domain fit
is very good in both cases, the comparison of frequency domain response
clearly shows the difference in the models.

Example 6.2 This example shows the application of the parametric iden-
tification function pfid of FOMCON toolbox to the problem of closed-loop
identification of fractional models using both the indirect and direct ap-
proaches from Section 3.3.

For the purpose of testing the identification algorithms for closed-loop
systems, we consider the real-time prototyping platform discussed in Sec-
tion 5.4. A linear fractional-order system, which is given by a nominal model
of the form

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
(6.6)

is running on the host computer in real-time Simulink software with the
admissible control u ∈ [0, 1], while a FOPID of the form

C(s) = 0.01 +
0.53795s0.1

s
+ 0.84749s0.75 (6.7)
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Figure 6.3: Identification of a complex fractional system: frequency domain response of
the identified models and the original model

is implemented on the prototype from Section 5.5.1. Note that the fractional-
order integrator is implemented as suggested in [72]. A constant reference
signal r(k) = 0.5 is chosen, and experimental data forming the sets in (3.25)
and (3.26) is collected. In the following, we supply this data to the identifica-
tion algorithm with the aim of reconstructing the nominal transfer function
in (6.6) thereby verifying the identification algorithm. Since we are dealing
with a fractional-order system, available identification methods for linear,
time-invariant systems, cannot be applied directly.

Suppose that the structure of a fractional-order model to be identified is
known and may be parametrized as

Gp(s) =
p1

p2sq1 + p3sq2 + p4
. (6.8)

The closed-loop transfer function in (2.32) used in the identification proce-
dure is then given by

Gcl(s) =
p1Gpid(s)

s (p2sq1 + p3sq2 + p4) + p1Gpid(s)
, (6.9)

whereGpid(s) =
(
Kps+Kis

1−λ +Kds
1+µ
)
and the parameters of the FOPID

controller are assumed to be known and correspond to those in (6.7). Assum-
ing that the fid_ind object holds the experimentally collected data, iden-
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tification may be accomplished by means of the following MATLAB code,
based on the discussion above:

% Linear controller parameters
m.Kp = 0.01; m.Ki = 0.53795; m.Kd = 0.84749;
m.Lambda = 0.9; m.Mu = 0.75;

% Closed−loop system
g_cl = ['(p1*(Kp*s+Ki*s^(1−Lambda)+Kd*s^(1+Mu)))/'...

'(s*(p2*s^q1+p3*s^q2+p4)+' ...
'(p1*(Kp*s+Ki*s^(1−Lambda)+Kd*s^(1+Mu))))'];

% Run the identification procedure
[prms, G] = pfid(fid_ind, g_cl, [], m);

% Restore the model
s = fotf('s');
Gid = prms.p1 / ...

(prms.p2*s^prms.q1+prms.p3*s^prms.q2+prms.p4);

The following model is recovered:

G1(s) =
0.980

0.886s2.550 + 1.328s1.254 + 1.000
. (6.10)

The results of system identification are presented in Figure 6.4. A frequency
response of the original model is compared to that of the identified model in
Figure 6.5. We can observe that there are noticeable differences between the
two models. The achieved error norm is ξ = 4.675 · 10−2 and a fit of 95.35%
to the experimental data. In this case, the critical factor is the simulated
actuator saturation nonlinearity. Nevertheless, the model can still be used
in controller design applications.

We now verify the direct approach. The model structure is once again
assumed to be known and of the form (6.8). Assuming that the fid_dir
object holds the experimentally collected data for this case, identification
may be accomplished using

% Open−loop system
g_ol = ['p1/' ...

'(p2*s^q1+p3*s^q2+p4)'];

% Run the identification procedure
[prms, G] = pfid(fid_dir, g_ol, [], m);

The model is recovered from the parameters in the same way as above.
The resulting model is given by

G2(s) =
0.999

0.779s2.218 + 0.465s0.916 + 1.000
, (6.11)
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Figure 6.4: Indirect method: time domain validation
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which is very close to the original nominal model with the error norm ξ =
1.8374 · 10−4 and a fit of 99.71% is achieved. The result has improved com-
pared to the one obtained using the indirect approach. Slight discrepancies
in the model parameters can be observed, however, they are in no way es-
sential in terms of capturing the dynamics of the system under study. The
results are also illustrated in Figures 6.6 and 6.7.

6.3 Control Module

The module provides the following main features:

• (FO)PID controller design:

– Optimization based tuning following the discussion in Section 4.1,
including support for controller design for linear and nonlinear
plants;

– Integer-order PID controller design by approximating fractional-
order systems by conventional process models.

• Locating the stability boundaries for stabilizing controllers based on
the method from Section 4.3;

• Implementation of retuning controllers discussed in Section 4.4 suitable
for real-time experiments;

• Basic support for fractional lead-lag compensators and TID control-
lers [145].

In what follows, an example of tuning a FOPID controller for a process is
provided.

Example 6.3 In this example we illustrate the use of the fpid_optimize
function. Reconsider the plant in (6.2), where, in addition, there exists an
actuator nonlinearity, such that admissible input values are in the range
u ∈ [−1, 1]. The goal is to obtain a suboptimal FOPID controller for the
control of this plant subject to the following specifications:

• Minimal gain margin Gm = 10dB, minimal phase margin ϕm = 60◦;

• Robustness to gain variations property must be fulfilled in (4.8), i.e.,
the phase response of the open loop must be flat at a particular crossover
frequency ωc;

• The performance index considered is IAE in (4.3).
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For simulation of the control system, as well as for computation of frequency
domain characteristics, the Oustaloup filter is used with the same parameters
as in Example 6.1. The initial FOPID controller parameters are selected as

Kp = Ki = Kd = 1/Kdc, λ = 0.9, µ = 0.7, (6.12)

where Kdc = 8/3 is the static gain of the plant in (6.2). Optimization
based tuning is carried out in two stages, each consisting of 20 Nelder-Mead
algorithm iterations. This is done because if all specifications are imposed at
the same time while the search variables are located too far from a solution,
the use of penalty functions will lead to the saturation of the cost function,
making further solution of the optimization problem difficult.

First, the gain and phase margin specifications are imposed, as well as
the IAE performance metric. Then, a crossover frequency ωc is recovered,
and the robustness to gain variations requirement is imposed. After 20 more
iterations of the optimizer, the suboptimal FOPID controller parameters are
returned. The following MATLAB code may be used to achieve the set of
tasks described above.

% Plant to be controlled
Gp = fotf('−2s^{0.63}+4', ...

'2s^{3.501}+3.8s^{2.42}+2.6s^{1.798}+2.5s^{1.31}+1.5');

% Use Oustaloup approximation for system simulation
fsp = fsparam(Gp, 'oust', [0.0001 10000], 5);

% Initial parameters
Kdc=dcgain(Gp); pin = [1/Kdc 1/Kdc 1/Kdc 0.9 0.7];

% Optimization options: load default values and set specifications
fpo = fpopt; fpo.p = pin; fpo.metric='iae';
fpo.pmax = [100 100 100 1 0.9]; fpo.pmin = [0 0 0 0.01 0.01];
fpo.margins=[10, 0; 60, 0]; fpo.ulim = [−1; 1]; fpo.sens = [];
fpo.gainvar = []; fpo.optop = optimset('maxiter', 20);

% Simulation time
fpo.simtime = [0.01 0.5 200];

%% First stage
[Kp, Ki, Kd, lam, mu] = fpid_optimize(fsp, fpo, ...

[], 'fpid_optimize_model');

%% Second stage: get and use wcg
[~,~,~,wcg] = margin(fracpid(Kp, Ki, lam, Kd, mu)*Gp);
fpo.p = [Kp Ki Kd lam mu]; fpo.gainvar = [wcg; wcg];
[Kp, Ki, Kd, lam, mu] = fpid_optimize(fsp, fpo, ...

[], 'fpid_optimize_model');
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After the second stage, FOPID controller parameters are found as

Kp = 0.013989, Ki = 0.045454, Kd = 0.22067,

λ = 0.90128, µ = 0.68677. (6.13)

Intermediate result comparison can be seen in Figures 6.8 through 6.11. Ini-
tial parameters result in an unstable control system, but in the process of
optimization the control system is stabilized. In the second stage, the robust-
ness to gain variations specification is fulfilled, which also results in improve-
ment in the transient response. Thus, the given control task was successfully
achieved.

6.4 Implementation Module

The module provides the following main features:

• Implementation of continuous-time approximation methods discussed
throughout this thesis, e.g., Oustaloup approximation from Section 2.3
and the fractional zero-pole pair method proposed in Section 5.1;

• Implementation of the class proposed and described in Section 5.2 for
fractance network generation in the form of analog filters;

• Discrete-time approximations are based on continuous to discrete time
conversion methods, several convenience functions are available in FOM-
CON to facilitate this task, including a GUI for obtaining an approxi-
mation of a FOPID controller;

In what follows, two relevant examples are provided.

Example 6.4 In this example, our goal is to obtain an analog implementa-
tion a fractional controller for a model of a position servo

G(s) =
1.4

s(0.7s+ 1)
e−0.05s (6.14)

identified in [72]. The design specifications are as follows: phase margin
ϕ = 80◦, gain crossover frequency ωcg = 2.2 rad/s. In the same reference
paper, a controller design was proposed, based on robustness considerations
derived from the desired frequency domain characteristics of the plant, in the
form of a fractional lead compensator:

C(s) =

(
2.0161s+ 1

0.0015s+ 1

)0.7020

. (6.15)

We implement this controller using the method from Section 5.2. We
choose R1 = 200kΩ and C1 = 1µF. The basic structure is the Foster II form
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Figure 6.8: FOPID controller optimization example: from initial to suboptimal controller
settings; time domain simulation
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Figure 6.10: FOPID controller optimization example: robustness to gain variations speci-
fication fulfilled; time domain simulation
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RC network and the implementation is done by means of the described al-
gorithm. To obtain the differentiator, we use the property Zd(s) = 1/Zi(s),
where Zd(s) and Zi(s) correspond to impedances of a differentiator and an
integrator, respectively. This is done by setting the impedances in Figure 5.8
such that Z1(s) = Zi(s) and Z2(s) = Rk, where Rk serves as a gain correc-
tion resistor. To obtain the network approximation, the following MATLAB
commands are executed:

% Parameters of the controller
b = 2.0161; wz = 1/b;
alpha = 0.702;
Gc = fotf('s')^alpha / wz^alpha;

% Specific fractance parameters
params = struct; params.R1 = 200e3;
params.C1 = 1e−6; params.N = 4;
params.varphi = 0.01;

% Obtain implementation
imp2 = frac_rcl(1/Gc, ...

'frac_struct_rc_foster2', ...
'frac_imp_rc_foster2_abgen', ...
logspace(−2,3,1000), ...
params);

Note that the transfer function approximation, corresponding to the con-
troller, has to be obtained from the resulting circuit object by using

C = 1/zpk(imp2);

Following the successful generation of the network, the prefnum command
is issued, which requests setting the resistor values to the preferred series with
5% tolerance, and the capacitor values substituted for closest components out
of the 10%-series. This is done as follows:

imp2 = imp2.prefnum('5%','10%',[],'5%');

Finally, the user may wish to display the bill of materials by using the
function engnum. For example, for the list of resistors one can use the com-
mand:

[vals, str] = engnum(imp2.R);

The variable str will contain string constants with the values of the
resistors in the network:

'360 k' '200 k' '75 k' '27 k' '9.1 k'
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The same could be applied to the gain setting resistor Rk, which in our
case has the preferred value of 390kΩ. The resulting network is depicted in
Figure 6.12. The schematic is simplified for simulation in LTSpice IV.

In Figure 6.13 a comparison of frequency responses of the ideal lead com-
pensator, corresponding fractional-order differentiator and the resulting net-
work approximation can be seen. As in the previous example, the frequency
characteristics of the network were obtained from SPICE simulation and im-
ported into MATLAB.

The open-loop frequency response of the control system is given in Fig-
ure 6.14. A shift in the design specifications can be observed. Corrections
may need to be made to particular component values or the overall network
structure must be enhanced. A real-life implementation was also considered,
where the fractance network was physically assembled and tested. Several
frequency response points were obtained to validate the realized network.
The result of frequency domain identification can be seen in Figure 6.15.
The resulting controller was also tested with the simulated plant using the
prototyping platform from Section 5.4. The result of a real-time experiment
versus a simulated experiment is presented in Figure 6.16. It can be seen
that the resulting dynamics do not diverge in any significant way.

Example 6.5 In this example we obtain an IIR filter implementation of a
PDµ controller from [116]. The controller is given by

Kp = 0.055979, Kd = 0.025189, µ = 0.88717. (6.16)

The same method which is used in Section 5.3, that is, the zero-pole matching
equivalents conversion is used. Finally, the second-order section form of the
IIR filter is obtained in terms of coefficient arrays and the static gain in the
form (5.49), which may be used directly in an algorithm developed in, e.g.,
C language. The following commands are executed in FOMCON:

% Obtain Oustaloup approximation of a PD^mu controller
Gc = zpk(oustapid(0.055979, 0, 0, 0.025189, 0.88717, ...

0.0001, 10000, 5, 'oust'));

% Convert to discrete−time with Ts = 0.01
Ts = 0.01;
Zc = c2d(Gc, Ts, 'matched');

% Display SOS arrays corresponding to
% the discrete−time approximation
d2sos(Zc);

and the following is displayed:

−−−−− Coefficient arrays −−−−−
{+1.0000000000, −0.9647855878, +0.0000000000},
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Figure 6.12: Fractional lead-lag compensator realization schematic in LTSpice IV
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Bode Diagram
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{+1.0000000000, −0.0209224276, +0.0000000000},
{+1.0000000000, −1.3493207288, +0.4180066451},
{+1.0000000000, −1.9807306143, +0.9807890156},
{+1.0000000000, −1.9991305017, +0.9991306026},
{+1.0000000000, −1.9999692428, +0.9999692429}

{+1.0000000000, −0.0000000000, +0.0000000000},
{+1.0000000000, −0.0409802515, +0.0000000016},
{+1.0000000000, −1.4434599048, +0.4912545169},
{+1.0000000000, −1.9752697983, +0.9753515564},
{+1.0000000000, −1.9991239831, +0.9991240851},
{+1.0000000000, −1.9999692318, +0.9999692319}

−−−−− System DC gain −−−−−
1.5336084022

The comparison of frequency response in case of the ideal PDµ controller
and the obtained approximation is given in Figure 6.17. The corresponding
controller was implemented and successfully tested in [116].

6.5 Conclusions

In this chapter, FOMCON toolbox for MATLAB/Simulink was presented.
The main focus was on MATLAB based features. The application of the
tools available in the toolbox to solving identification, control, and analog
and digital implementation problems for fractional systems was shown by
means of a variety of examples conveying ideas from Chapters 3 through
5, including real-life application examples. The difference to closest known
solutions [90, 132] is the focus on FOPID controllers and development of
controller implementation methods for industrial applications.

The features of the toolbox completely cover the presented ideas, and
its modular structure facilitates parallel development of these features and
the object-oriented programming approach has additional benefits in this
regard. Each major feature is accompanied with a graphical user interface
thus making workflow more efficient.

The particular result is a complete software framework supporting FO
model based control design and implementation of the obtained controllers.

It is expected that further development of the toolbox will lead to the fol-
lowing: Implementation of more specific identification algorithms, including
those, that deal with identification of nonlinear fractional systems; Devel-
opment of general, possibly global optimization based design algorithms for
FOPID controllers, such that would also automate and facilitate the pro-
cess of selection of particular design specifications; Realization and design
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of more types of fractional controllers and control strategies (e.g., fractional
sliding mode control); Development of analog filter design algorithms, based
on fractance network approximations and global optimization algorithms.

In terms of development, MATLAB has been found to be a very suitable
platform for the implementation of the toolbox. The most important reasons
are as follows: MATLAB is popular and widely used in control system de-
sign; An abundance of high-level language features and functionality allows
to significantly reduce the time it takes to implement and verify a particular
algorithm; Real-time control experiments are possible by means of a special-
ized toolbox and the Simulink environment; Open source alternatives such
as Octave [30] exist with compatible language syntax. This makes it pos-
sible to easily port the developed toolbox to allow the open source control
community to benefit from it.

Regarding the features of the toolbox, other development directions are
considered as well, such as identification and control of fractional-order MIMO
systems. This, however, requires further research.
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Chapter 7

Applications of
Fractional-order Control

In this chapter, several real-life applications of fractional control are pre-
sented. The control objects used in this chapter include hardware laboratory
models of industrial plants and an electromechanical actuator. The motiva-
tion for this chapter can be seen in the following. Suppose that model based
control design is carried out using computer based simulations of dynamic
systems of interest. Then, before the developed methods may be considered
for control of real industrial plants, where a design mistake may result in
production losses, it is important to evaluate the performance of the con-
trollers using real-life models of the corresponding objects. The chapter has
the following structure. In Section 7.1 the problem of level control in two dif-
ferent laboratory objects representing models of industrial multitank systems
is investigated. In the latter case, the gain and order scheduling approach
is used. In Section 7.2 a method for position control in a magnetic levita-
tion system is presented—a controller design procedure comprising several
steps is carried out. In Section 7.3 a particular ion-polymer metal compos-
ite actuator is studied and two types of controllers are designed for it. The
advanced hardware prototype of the FOPID controller is used in a real-time
experiment. Finally, conclusions are drawn in Section 7.4.

7.1 Fluid Level Control in a Multi Tank System

The multi tank systems considered in this section model a wide range of
industrial processes [13], such as those found in chemical engineering [31,
33], food processing, and irrigation systems, as well as in nuclear power
plants [37], and other branches of the industry, where the quality of the
product depends on control loop performance. In these applications level
control is mainly achieved by means of PID controllers, whereas in this work
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we investigate the application of FOPID control. Two types of models are
considered:

• The coupled tanks system comprises two interconnected tanks [41]. In
case of this system we are concerned with controlling the level in the
first tank, while the level in the second tank is considered a disturbance.
An interesting observation can be made regarding the obtained linear
fractional approximations of the process;

• The Multi-Tank system [47] comprises three tanks placed in a vertical
configuration. We consider the problem of level control in the first
two tanks (the top tank and the middle tank). The gain and order
scheduling approach to FOPID controller design is applied to control
of the level in the top tank.

In what follows, we describe the systems, provide the details pertaining to
the controller design procedure, and discuss the obtained results.

7.1.1 Coupled Tanks System

In the continuous-time domain the model of the coupled tanks system con-
sidered in this work (Figure 7.1) can be described by the following differential
equations

ẋ1 =
1

A
u1 − d12 − w1C1

√
x1, (7.1)

ẋ2 =
1

A
u2 + d12 − w2C2

√
x2,

where
d12 = w12 · C12·sign(x1 − x2)

√
|x1 − x2|, (7.2)

x1 and x2 are levels of fluid in the tanks, A is the cross section of both
tanks, C1, C2, and C12 are flow coefficients, u1 and u2 are pump powers.
The coupled tank system has three valves. Each of them can be either fully
opened or fully closed. This is governed in the model by factors w1, w2, and
w12 with wk ∈ {0, 1}.

The laboratory plant used in this work is a coupled fluid tank system
shown in Figure 7.2. The plant is connected to the PC via USB for data
transfer. A Simulink library for real-time control of the plant is available.

The flow coefficients for this particular plant were identified experimen-
tally and are as follows: C1 = 0.0292, C2 = 0.0259, and C12 = 0.0267. The
cross-section A of both tanks is 10.18 · 10−4m2 and maximal pump power uh
for both pumps is 5.9174 · 10−5m3/s. The height of both tanks is 0.29 m.

Three types of experiments are considered:
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Figure 7.1: Coupled tanks system model

Figure 7.2: The coupled tanks system laboratory plant

1. Simulation of the fluid tank system model in MATLAB/Simulink used
to optimize the controller parameters;

2. Control of the real plant from Simulink, the plant is connected to the
computer via USB, no additional equipment is used;

3. Control of the sampled model in (7.1) running in Simulink in the con-
figuration discussed in Section 5.4.

Note that the validation of the controller prototype is only done by using the
plant model. The closed-loop behavior of the digital fractional PID controller
prototype and the laboratory plant is yet to be investigated.

Single Tank Configuration

In this experiment, our goal is to control the level in a single tank, that is,
the valve connecting the two tanks is closed, i.e. in the model (7.1) we have
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w12 = 0. Next, we describe the procedure of tuning the PIλDµ controller to
control the real plant.

First, a fractional-order LTI model is identified from the step experiment.
The identification data is recorded from the real plant and is transformed
such that both input and output signals are in range u, y ∈ [0, 1]. The model
obtained by means of the fractional system time domain identification tool
of the FOMCON toolbox is as follows

G1(s) =
1

5.3538s1.0109 + 0.4126
e−s. (7.3)

It can be seen that this model tends to an integer-order FOPDT model. The
latter can be approximated using iopid_tune tool in FOMCON as

Ĝ1(s) =
2.43567

1 + 12.5914s
e−1.0779s (7.4)

and integer-order PID controller gains can be obtained using the Ziegler-
Nichols method as Kp = 5.75515, Ki = 2.66962, Kd = 3.10175.

The next step is to use the FOPID controller optimization tool of FOM-
CON toolbox using the obtained integer-order gains as initial values. The
model (7.3) is approximated by a refined Oustaloup filter of order N = 5
within ω = [0.0001, 10000] rad/s. The chosen performance metric is inte-
gral absolute error (IAE). Simulink is used for system simulation and control
effort saturation is considered. Gain and phase margins are specified as
Gm = 15 dB and ϕm = 90◦, respectively. Optimization set point is 0.5. Fi-
nally, the gains and orders of the controller are limited to the following ranges:
Kp = [0.1, 10],Ki = [0.001, 10], λ = 1,Kd = [0.1, 10], µ = [0.5, 0.9]. The se-
lection of ranges is derived from considering the behavior of the fractional-
order control actions in the time domain. After 100 iterations the following
results are obtained:

Kp = 1.1434, Ki = 0.079556, Kd = 0.89839,

λ = 1, µ = 0.80468. (7.5)

Upon implementing this discrete controller in MATLAB with sampling time
Ts = 0.1s and testing the control loop in real time with the laboratory plant,
these parameters resulted in a significant overshoot of the controlled level.
After manually shifting the points K ′p = 2Kp and K ′d = 2Kd and further
optimization, the following PIDµ controller was designed:

Kp = 2.6282, Ki = 0.097128, Kd = 1.26, λ = 1, µ = 0.78894. (7.6)

In Figure 7.3 the response of the control system in presence of random
measurement errors caused by physical interference can be observed. It can
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be seen, that the system easily recovers from such disturbance. The set point
is y = 0.2m.

Next, we consider reference tracking. In this case, we also test the con-
troller prototype using the obtained parameters. The set point changes from
0.2m to 0.15m at the 40th second of the simulation. The obtained results are
given in Figure 7.4. It can be seen that the response of the control loop with
the real plant is different from those, where a model was used. Therefore,
the model should be revised accordingly.

The controller prototype implemented using the method described in Sec-
tion 5.3 performs as expected. The corresponding control system response
closely matches the simulated one. However, the control law produced by the
physical controller suffers from limit cycles. This is because in case of the
experiments with controller implementation for the coupled tanks system the
sample resolution of both the DAQ board and the controller prototype was
limited to 8 bits, thus reducing the dynamic range of control. This, in turn,
results in quantization [52, 86]. It is possible to eliminate the oscillations by
increasing the sample resolution.

Coupled Tanks Configuration

This time the task is to control the level of the first tank in a system of
coupled tanks, when in (7.1) we have w1 = w12 = 1, and the last valve
w2, which can open at any time, is seen as disturbance. In [41] a nonlinear
control design approach was used, but in this work we use a linear PIλDµ

controller.
We obtain a linear fractional approximation of the real plant by means

of the identification tool as in the previous case from a step experiment with
w1 = w12 = 1, w2 = 0. The resulting fractional-order model is described by
a transfer function

G2 =
1

7.3986s0.9455 + 0.4095
e−0.1s. (7.7)

We notice that this model no longer tends to exhibit integer-order dynamics
as in case of (7.3).

Due to the value of the delay term the basic tuning formulae for integer-
order PID tuning do not provide feasible results. However, it is possible
to select some starting point manually and run optimization several times.
However, it is important to choose the correct frequency domain specifica-
tions to ensure control system stability. In our case the goal is to minimize
the impact of disturbance, so constraints on the sensitivity functions could
be imposed. Our choice is such that |T (jω)| ≤ −20 dB, ∀ω ≥ 10 rad/s and
|S(jω)| ≤ −20 dB, ∀ω ≤ 0.1 rad/s. The gain and phase margins are set to
Gm = 10 dB and ϕ = 60◦, respectively. Additionally, due to the same prob-
lem as in the previous experiment, in order to limit the overshoot, the upper
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Figure 7.3: Level control with measurement noise
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Figure 7.4: Level control with set point change
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bound of control signal saturation was lowered from 100% to 60%. Using the
IAE performance metric we finally arrive at the following PIλDµ controller
parameters by optimizing the response of the nonlinear system in Simulink:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, µ = 0.29915. (7.8)

Next, the discrete approximation is obtained. Note that in case of this
controller it is very important to choose the proper frequency range of ap-
proximation. The suitable range for a refined Oustaloup filter of order 5 was
found such that ω = [0.0001, 100] rad/s. The sampling time is Ts = 0.2s. The
responses of the three control systems in different configurations are depicted
in Figure 7.5. The set point is once again fixed at y = 0.2 m. Additional
disturbance is such that the second pump is switched on at full capacity at
t = 76.4 s and is turned off at t = 80.6 s. Once again we observe that the
behavior of the real plant differs from the simulated one while the responses
of the discrete controller in Simulink and the digital controller are virtually
identical. The control law oscillations of the digital controller are of smaller
amplitude than in the previous experiment with the single tank. The ob-
tained control system is capable of maintaining the set level with a tolerance
of 5% in the presence of disturbances discussed above.

7.1.2 Multi-Tank System

First, we describe the particular configuration of the multi-tank system [47]
and state the control problem.

The multi-tank system consists of three distinctly shaped tanks with level
sensors and mechanical and automatic valves, a water reservoir, and a pump,
that connects the reservoir and the upper tank. In this work we consider level
control in the first two tanks, that is, in the upper one and the middle one.
An illustration is provided in Figure 7.6.

This system can be described by the following differential equations:

ẋ1 =
1

η1(x1)
(up(v)− C1x

α1
1 − ζ1(v1)xαv11 ) , (7.9)

ẋ2 =
1

η2(x2)
(q + r − C2x

α2
2 − ζ2(v2)xαv22 ) ,

where x1 and x2 are levels in the upper tank and middle tank, respectively,
η1(x1) = A = aw is the constant cross-sectional area of the upper tank,
η2(x2) = cw + x2bw/x2max is the variable cross-sectional area of the middle
tank, up(v) is the pump capacity that depends on the normalized control
input v(t) ∈ [0, 1], ζ1(v1) and ζ2(v2) are variable flow coefficients of the
automatic valves controlled by normalized input signals v1(t), v2(t) ∈ [0, 1],
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Figure 7.5: Level control in a system of coupled tanks
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Figure 7.6: Configuration of the multi-tank system

q = C1x
α1
1 and r = ζ1(v1)xαv11 . Fluid levels are taken as outputs of the

system, i.e. y1 = x1, y2 = x2. A list of parameters of the model with
their respective physical meaning is provided in Table 7.1. Note that for
this system we have chosen to use a different approach to modeling the
nonlinearity in the level dynamics due to pressure than in case of the coupled
tanks system. The reason is that this model is more complicated due to the
addition of the automatic valves, and to improve modeling accuracy, the
states x1 and x2 in (7.9) are raised to powers α1 and α2.

Table 7.1: Parameters of the two-tank system

Parameter Physical description

w width of both tanks

a length of the upper tank

b, c lengths of the top and bottom part of the middle tank

x2max maximum attainable fluid level in the middle tank

Ci resistance of the output orifice of the ith tank

αi, αvi state exponents describing the flow of the ith valve

The multi-tank system may be controlled by means of a personal com-
puter running MATLAB and Simulink software packages. The identification
of parameters above is done by means of a series of experiments using non-
linear model estimation technique based on the Nelder-Mead optimization
algorithm. The validation of the model in (7.9) was carried out under a va-
riety of excitation signals. It can be seen from Figure 7.7 that a sufficiently
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accurate model is obtained.
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Figure 7.7: Model validation results

The control task is to design a controller for the upper tank such that
would keep the level of fluid within reasonable bounds at the desired set
point in the presence of disturbances caused by the controlled output valve.
Also it is required to design a controller for the middle tank, such that would
keep the level of fluid at the desired set point using controlled valves of the
upper tank and also its own valve. To this end, we will now define a unified
control input for controlling the level in the second tank vc(t) ∈ [−1, 1] such
that the control inputs of the automatic valves are given by the following set
of rules

v1 =

{
0, if vc 6 0,

0.3vc + vd, if vc > 0,
(7.10)

and

v2 =

{
0, if vc > 0,

−0.3vc + vd, if vc < 0.
(7.11)

The value vd = 0.7 corresponds to the deadzone of the control in both cases,
that is, the fluid does not flow through the automatic valves when v1 6 vd
or v2 6 vd. The constructed control law allows to regulate the fluid level in
the middle tank. The tanks are, in fact, coupled, in the sense that only a
limited range of fluid level values is achievable in the middle tank and it is
related to the level in the upper tank. The outflow of liquid from the upper
tank through the automatic valve forms part of the control for the middle
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tank and is considered a disturbance from the perspective of level control in
the upper tank.

One significant problem with the current implementation of the multi-
tank system is the amount of noise present in level measurements. Since the
ends of the submerged sensor tubes are placed very close to the output valves
in all three tanks, the switching of the automatic valves creates additional
noise which cannot be easily dealt with using linear filtering methods alone.
Therefore, it was decided to employ an extended Kalman filter [107] to tackle
this problem. Details may be found in [121].

Experimental Results

We now illustrate the use of the method proposed in Section 4.2 to the
problem of level control in the two tanks. Numerical analysis is done by
means of the FOMCON toolbox for MATLAB. The real-life system used in
the experiments is depicted in Figure 7.8.

Figure 7.8: Laboratory model of a multi-tank system

First, linear approximations of the form (2.14) are obtained from the
nonlinear model by means of time domain identification at system working
points (0.7029, 0.1) and (0.7879, 0.2). The identification tool from Section
(6.2) is used. The following models are found:

G1(s) =
0.14464

18.728s0.91746 + 1
(7.12)

and
G2(s) =

0.25881

27.859s0.9115 + 1
. (7.13)
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During our study we have found that the fractional exponent α in the models
above frequently arises during the identification process, and more impor-
tantly, these fractional models offer superior precision than classical ones in
terms of describing the transient. With variation of certain model parameters
we have identified a range that the exponent α can take to be approximately
α ∈ (0.88, 0.94). This result may, in fact, be related to the one, appearing
in case of the coupled tanks system. However, no clear relation has been
identified between the fractional exponents of the process models and those
in the states of the nonlinear model in (7.9).

Next, controllers are designed for level control in the upper tank using the
FOPID optimization tool of FOMCON toolbox described in Section (6.3).
For this a nonlinear model of the system is used for simulations in the time
domain, the set value corresponds to the particular operating point. Lin-
ear fractional-order approximations corresponding to the working points are
used to constrain the optimization process by employing frequency domain
specifications.

In particular, in case of the first controller, a phase margin is set to
ϕm > 60◦, sensitivity and complementary sensitivity function constraints
are set such that ωt = 0.02 and ωs = 0.1 with A = B = −20 dB. Robust-
ness to gain variations specification is also used with the critical frequency
ωc = 0.1. For the second controller, the phase margin specification is changed
to ϕm = 85◦ and the bandwidth limitation specified by ωc is removed. Due
to the flexibility of the tuning tool, it is possible to retune the controllers
by considering the composite control law in (4.19) during the controller op-
timization process.

Finally, two FOPID controllers are obtained:

C1(s) = 6.1467 +
1.0712

s0.9528
+ 0.8497s0.8936

and
C2(s) = 5.1524 +

0.3227

s1.0554
+ 2.4827s0.010722.

The composite control law

C(s) =
(1− γ(x1))C1(s) + γ(x1)C2(s)

2

is then verified with both models G1(s) and G2(s) using (4.23) with step size
of γ(x1) = 0.01 and minimum commensurate order qmin = 0.01. The result
of the test is that the closed-loop systems are stable in case of both fractional
models.

Once the gain and order scheduled composite controller is designed, it is
plugged into the control system, and a FOPID controller is designed for the
control of the level in the second tank using the same optimization tool of the
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FOMCON toolbox. Here we need to consider the following. First, frequency
domain specifications are not applicable, since we do not have a linear model
of this process. In addition, the application of the Dµ component is not very
desirable in this case, because of the relatively large dead-zone in control
of the outflow and therefore any noise amplified due to the differentiator
component will lead to rapid switching of the automatic valves.

Therefore we design a FOPI controller based only on optimization of the
transient response of the control system in the time domain. The following
controller is obtained:

C3(s) = 5.0000 +
0.06081

s0.1029

which is essentially a proportional controller with a weak fractional-order
integrator.

Finally, the performance of the whole control system is evaluated with the
real-life plant. All controllers are implemented by means of the Oustaloup
filter approximation from Section 2.3. A low-pass filter is added to the level
control loop of the second tank. This introduces a phase lag that reduces
switching of the automatic valves. Set-points changes are presented in Ta-
ble 7.2. The result of the performance evaluation is presented in Figure 7.9.

Table 7.2: Reference signal changes considered for the real-time control experiment with
the Multi-Tank system

Time instance [s] Upper tank reference [m] Middle tank reference [m]

0 0.1 0.1

100 0.15 0.1

150 0.15 0.2

250 0.2 0.2

The levels in the first and second tanks are kept within reasonable error
bounds of approximately 5% of the set point. The control task put forth
previously is thereby accomplished. Notice that the noise does not propagate
into the control law of the pump. The control law of the valves is, for the most
part, bang-bang due to the large deadzone in the control of the automatic
valves. However, the switching frequency is acceptable.

7.2 Retuning Control of a Magnetic Levitation Sys-
tem

The Magnetic Levitation System (MLS) is a nonlinear, open-loop unstable,
and time-varying system [47]. Therefore, designing a stabilizing controller
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Figure 7.9: Control system evaluation results with the real-life plant
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for it is a challenging problem. Yet it is also of significant importance, since
MLS has a considerable range of real-life applications—it is used in, e.g.,
high-speed magnetic levitation passenger trains and vibration isolation of
sensitive machinery [39]. Corresponding nonlinear control design methods
were proposed in, e.g., [2, 9, 106]. However, few research papers deal with
control design for unstable systems [77], and, in particular, for the MLS,
which forms the motivation for our present research effort. Since FOPID
controllers offer more possibilities to stabilize a plant under control than
their conventional counterparts, the use of the former is favorable in case of
control of the MLS.

Model of the MLS

The MLS considered in this work consists of an electromagnet, a light source
and sensor to measure the position of the levitated sphere, and a sphere rest,
the height of which is variable and determines the initial position xmax of
the sphere in control experiments. The position of the sphere is determined
relative to the electromagnet and has an effective range of x ∈ [0, xmax] mm.
A schematic drawing depicting this configuration is given in Figure 7.10. The
basic principle of MLS operation is to apply voltage to the electromagnet to
keep the sphere levitated [47].

Electromagnet

Sphere

Sphere rest

Li
gh

t s
ou
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x

0

Figure 7.10: Physical model of the MLS

In [39] and [77] the following dynamical model for the MLS is used:

mẍ = mg − ci2(u)

x2
, (7.14)

where m is the mass of the sphere, x is the position of the sphere, g is
gravitational acceleration, i(u) is a function of voltage corresponding to the
electrical current running through the coil of the electromagnet under input
u, and c is some constant. However, the following practical observations can
be made:
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• It is essential to model the dynamics of the electrical current running
through the coil;

• The parameter c is, in fact, not constant and depends on the position
of the sphere x.

Therefore, we use the model description provided by INTECO, which takes
into account the dynamics of the coil current. In addition, we model the
parameter c by a polynomial c(x). The following model is finally established:

ẋ1 = x2,

ẋ2 = −c(x1)

m

x2
3

x2
1

+ g, (7.15)

ẋ3 =
fip2
fip1

i(u)− x3

e−x1/fip2
,

where x1 is the position of the sphere, x2 is the velocity of the sphere, and
x3 is the coil current, fip1 and fip2 are constants. By means of a series of
experiments we have found that it is sufficient to model c(x1) as a 4th order
polynomial of the form

c(x1) = c4x
4
1 + c3x

3
1 + c2x

2
1 + c1x1 + c0, (7.16)

and i(u) as a 2nd order polynomial of the form

i(u) = k2u
2 + k1u+ k0. (7.17)

Note that the voltage control signal is normalized and has the range u ∈ [0, 1]
corresponding to the pulse-width modulation duty cycle 0 . . . 100%.

We will analyze the stability of linear approximation around a working
point (u0, x10). We linearize the model in (7.15) and obtain the following
transfer function of the MLS:

GM (s) =
b3a23

s3 − a33s2 − a21s+ a21a33
, (7.18)

where

a21 =
(−2c4x

4
10 − c3x

3
10 + c1x10 + 2c0)x2

30

mx3
10

, (7.19)

a23 = −2c(x10)x30

mx2
10

, a33 =
i(u0)− x30

fip1
ex10/fip2 , (7.20)

b3 =
fip2
fip1

(k1 + 2k2u0)ex10/fip2 . (7.21)
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Summary of the Control Design Method

In the following, we summarize the method that shall be used to design
FOPID controllers for the MLS.

1. Choose an operating point (u0, x10) and obtain a linear approximation
of the form (7.18);

2. Use the method from Section 4.3 to locate a stabilizing FOPID con-
troller;

3. Optimize the resulting FOPID controller using the feasible parameter
ranges obtained in the previous step.

It poses great difficulty to impose feasible robustness specifications in case
of optimization based FOPID controller design for the MLS. Thus, subop-
timal controllers may be designed. The performance of the system will be
evaluated experimentally, settling time τs, percent overshoot θ, and percent
maximum deviation from reference due to disturbance θd are used as per-
formance measures. In essence, we consider time domain simulations of the
nonlinear model in (7.15) and minimize a cost defined by the ISE perfor-
mance metric in (4.2). The choice of this particular performance index is
dictated by the necessity to minimize the overshoot [39]. The optimization
procedure is carried out by means of the method described in Section 4.1.

To analyze the stability of the closed-loop fractional-order control system
in (2.32) we shall use Matignon’s theorem. The characteristic polynomial is
given by

Q(s) = s3+λ − a33s
2+λ − a21s+ (b3a23Kp + a21a33)sλ (7.22)

+b3a23Kds
λ+µ + b3a23Ki.

Thus, a point of the form (Kp,Ki,Kd, λ, µ) in the PIλDµ parameter space
can be selected and the stability of the closed-loop control system can be
verified.

For the purpose of validating our control design approach we use a real-life
MLS provided by INTECO [47] and depicted in Figure 7.11. It is connected
to a computer running MATLAB/Simulink thereby allowing to conduct real-
time experiments. The specific parameters of the model in (7.15) are as
follows: m = 0.0585 kg, xmax = 0.0155 m, g = 9.81 m/s2. Other param-
eters need to be identified. The corresponding procedure is detailed in the
following subsection.

7.2.1 Identification of the Nonlinear Model of the MLS

Our task is to identify two functions i(u) and c(x), as well as parameters fip1
and fip2 of the nonlinear model in (7.15).
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Figure 7.11: Real-life laboratory model of the MLS

Identification of i(u) is relatively simple and straightforward is done with
the sphere removed from the MLS, since only the coil current is measured.
We obtain the following polynomial:

i(u) = −0.3u2 + 2.6u− 0.047. (7.23)

In addition, the deadzone in control is found to be udz = [0, 0.0182].
Determination of c(x1) and parameters fip1 and fip2, on the other hand,

is more involved. Because MLS is open-loop unstable, only closed-loop iden-
tification is applicable. Our approach is to use the existing PID control loop
with

KP = −39, KI = −10, KD = −2.05 (7.24)

provided by INTECO. It should be noted that a constant input uc = 0.38 is
added to the control law uPID(t) in (7.24), that is, the full control law u(t)
is such that

u(t) = uPID(t) + uc. (7.25)

In order to determine the values of the parameters, we employ time do-
main simulations and minimize the model output error by means of the
least-squares method. The results are as follows:

c(x1) = 3.9996x4
1 + 3.9248x3

1 − 0.34183x2
1

+ 0.007058x1 + 2.9682 · 10−5 (7.26)

and
fip1 = 1.1165 · 10−3m/s, fip2 = 26.841 · 10−3m. (7.27)
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The results of the identification are presented in Figure 7.12. It can be
seen that a close fit to the response of the original response of the system is
achieved.
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Figure 7.12: Results of nonlinear model parameters identification

7.2.2 FOPID Controller Design for the MLS

We first obtain a linear approximation. We choose a working point u0 =
0.3726, x10 = 9.84 · 10−3 and obtain

GM (s) = − 1788

s3 + 34.69s2 − 1737s− 60240
. (7.28)

Then, we randomly generate FOPID controllers using the ranges Kp ∈
[−100, 0], Ki ∈ [−50, 0], Kd ∈ [−25, 0], λ ∈ [0.8, 1.2], µ ∈ [0.5, 1.0]. On
the average, about 20 out of 100 tested controllers are found to produce a
stable closed-loop system. After inspection, three of them are selected for
the optimization phase:

C1(s) = −42.8642− 18.5653

s1.06
− 3.0559s0.94, (7.29)

C2(s) = −54.3649− 47.6078

s0.82
− 6.5436s0.98, (7.30)

C3(s) = −45.3118− 4.24932

s0.86
− 3.51115s0.98. (7.31)

For each controller in this set, we find stability boundaries in different pa-
rameter planes, that is, in (Kp,Ki), (Kp,Kd), and (Ki,Kd), so that we can
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obtain a wider set of results. Using the stability boundary determination
method with a step of ∆p = 1 and choosing a maximum of N = 20 steps we
locate the following bounds:

KC1
p ∈ [−62,−34], KC1

i ∈ [−38,−1], (7.32)

KC2
p ∈ [−74,−35], KC2

d ∈ [−26,−3], (7.33)

KC3
i ∈ [−24,−1], KC3

d ∈ [−23,−2]. (7.34)

We then proceed directly to the optimization procedure. The FOMCON
toolbox FOPID optimization tool is used. We set the bounds of controller
gains as in (7.32)–(7.34) for each controller and optimize only the correspond-
ing gains. The number of iterations is, in general, limited to Niter = 5. After
optimization, the following controllers are obtained:

C∗1 (s) = −45.839− 18.504

s1.06
− 3.0559s0.94, (7.35)

C∗2 (s) = −54.444− 47.6078

s0.82
− 3.7773s0.98, (7.36)

C∗3 (s) = −45.3118− 4.916

s0.86
− 2.9074s0.98. (7.37)

7.2.3 Experimental Results

In the following, we provide the results of performance evaluation of both
the randomly generated FOPID controllers, and the suboptimal ones. The
controllers are evaluated in a two-cascade closed control loop as detailed
in Section 4.4. The parameters of the retuning controllers are computed
by means of (4.38) and (4.39). The performance of FOPID controllers is
compared to the performance of the original PID control loop, where the
parameters of the PID controller are equal to those in (7.24). The reference
set point is xr = 0.010m, and a disturbance impulse is considered, appearing
for 200ms on the 10th second of the simulation. With the conventional PID
controller the following results are achieved:

τs = 3.34 s, θ = 66.0%, θd = 60.6%.

In Table 7.3 the performance evaluation of the FOPID controllers working
in the retuning control loop is presented. It can be seen, that the best
performance is achieved when controller C∗2 (s) is used. The result of real-
time simulation of this controller versus the original PID control loop is
provided in Figure 7.13. It can be seen that a significant improvement in
control system response is obtained. The controller C3(s) outperforms the
original PID only in terms of overshoot, while C∗3 (s) offers similar settling
time with a much smaller overshoot.
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In addition, we consider a reference tracking experiment to illustrate the
ability of the controllers to provide appropriate regulation across a wider
operating range. The comparison of the performance of the C∗2 (s) controller
and the original control loop is presented in Figure 7.14. Once again, im-
provements in the control loop performance can be observed.

Table 7.3: Comparison of FOPID controller performance

FOPID τs[s] θ[%] θd[%] FOPID∗ τs[s] θ[%] θd[%]

C1(s) 1.85 24.0 60.3 C∗1 (s) 1.68 14.8 56.4

C2(s) 1.39 19.4 37.5 C∗2 (s) 0.86 11.6 34.6

C3(s) 4.68 14.6 55.7 C∗3 (s) 3.84 15.0 58.3

7.3 Control of Ion-Polymer Metal Composite Actu-
ator

Ionic polymer-metal composite (IPMC) actuators are electroactive polymer
(EAP) materials that change their shape or size in response to electrical ex-
citation [10]. The same material may be used as a sensor, since external de-
formations of the laminate result in the generation of current [102]. Potential
applications of IPMC actuators include soft robotics [78], biomedicine [104],
and space [103].

In general, long-term low-frequency characteristics of IPMC actuators
exhibit nonlinear effects, such as back-relaxation [10]. Several approaches
were considered for the task of controlling the IPMC actuator, e.g., [139,140].
In this work we are concerned only with the dominating dynamics. The
problem of compensating back-relaxation in non-ideal conditions falls outside
of the scope of this thesis.

The displacement of the conventional water-based IPMC actuator under
a voltage signal apparently exhibits FO dynamics [16, 17, 18]. Some initial
results on FO control of IPMC actuators were reported in [54]. Therefore,
it appears that FO identification and control of our novel IPMC actuator
with nanoporous carbon-based electrodes is natural and favorable, since FO
calculus provides a more accurate description for materials, which are known
to possess memory-like phenomena. In this work, we verify the benefits of
FO calculus-based modeling and control approach on carbon-based IPMC
actuator by achieving displacement control without feedback.
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Figure 7.13: MLS control system step experiment: Original PID control vs. Retuning
FOPID controller
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Figure 7.14: MLS control system reference tracking: Original PID control vs. Retuning
FOPID controller
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IPMC Actuator Description

The IPMC actuator demonstrated in this study was manufactured in Intelli-
gent Materials and Systems laboratory in University of Tartu. It comprises
5 symmetrically aligned layers—a Nafion ion-polymer membrane, which is
covered from both sides with porous carbon electrodes further covered with
gold (see Figure 7.15). The gold foil increases the originally moderate elec-
trode conductivity and allows electric current to reach outermost parts along
the actuator. As a result, the actuator bends almost uniformly all over the
sample. The electrodes are spray-painted using direct assembly process first
introduced in [1]. Details about the manufacturing process are given in [94].
Initially, the composite is manufactured in 50 x 50 mm2 patches, from which a
5 x 20 mm2 sample with total thickness of ∼300 µm was cut for experiments.

Nafion membrane

CDC electrode

Gold foil

Figure 7.15: Scanning electron microscope (SEM) image of cross-section of carbon-based
IPMC actuator

Experimental Setup

The experimental setup, located in the Intelligent Materials and Systems
laboratory in University of Tartu, allows one to remotely connect to the host
computer via a secure connection and to perform the necessary experiments
for identification and control of the system under investigation. The experi-
mental schematic is provided in Figure 7.16. The IPMC actuator is operated
from MATLAB/Simulink environment through National Instrument data ac-
quisition devices (PCI-6034E, PCI-6703). The OPA548 operational amplifier
in combination with the 20 Ω shunt resistor takes care of supplying enough
electrical current to the actuator and is also used for current monitoring pur-
poses. The performance of the actuator is determined through a BANNER
LG10A65PU laser sensor, which is set to register the transverse displacement
at 15 mm away from the input clamps.
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Figure 7.16: Experimental schematic

It has been shown that IPMC actuators may be highly sensitive to hu-
midity fluctuations [79]. In this work we are not concerned with the impact
of humidity on the actuator. Therefore, it was placed into a clean, nitrogen-
filled environment, from which traces of H2O and O2 were almost completely
removed (0.01 ppm and 0.2 ppm, respectively). Due to the capacitive nature
of IPMC actuators, one could easily damage the actuator by overheating it
by supplying a high voltage signal or by rapid signal switching. Thus, in all
experiments the voltage signal is limited to the range uV = (−1.5, 1.5) V,
which, based on prior experiments, is assumed to be safe for relatively long-
term experiments. Additionally, one can place a low-pass filter at the output
of the controller for limiting high-frequency switching and noise.

7.3.1 Identification of the Actuator Model

During our experiments the IPMC actuator achieved steady state under a
constant voltage signal with a relatively small back-relaxation effect, which
allows to use time domain identification to capture the essential dynamics
of the actuator, and to design a suitable compensator to control it. Once
the identification data is collected (Figure 7.17) from the IPMC plant it
becomes evident that the dynamical properties of the system resemble that
of a classic, first-order process model. In order to verify this, identification
process is carried out, where the structure of the linear model is

GIO(s) =
K

Ts+ 1
. (7.38)

However, one may also note that the output of the system is converging
to the final state slowly. This points to the possibility of fractional-order
dynamics. Thus, a model of the form (2.14) is also identified. Note that the
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initial state—the displacement distance of the material measured by the laser
sensor—is considered to be an offset, and is removed from the identification
data and is subtracted from the output during real-time control experiments.
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Figure 7.17: Identification dataset

The following models are obtained using the time domain identification
tool of FOMCON toolbox:

G1(s) =
2.0688

7.5959s+ 1
(7.39)

and
G2(s) =

2.2993

4.8317s0.7797 + 1
. (7.40)

The comparison of the quality of the models in replicating the behavior
of the system in the time domain is given in Figure 7.18. For measuring the
quality of the model we use the residual error norm:

ξ =
n∑

i=1

ε2
i = ‖ε‖22 , (7.41)

It can be clearly seen that the FO model provides a better description of the
process in the whole operating range with an error norm of ξ = 533.8086 and
a fit of 94.01% to experimental data, while the IO model has an error norm
of ξ = 1227.9659 and a fit of 90.91%. One can also note that the system
appears to be adequately described by linear models.

We consider two types of controllers for PC based control. First, we
consider using a FOPID controller. Second, the use of fractional inversion
model based control is investigated.
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(a) Integer-order model of the IPMC actua-
tor
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Figure 7.18: IPMC actuator: Identification results

7.3.2 FOPID Control

Since feedback from the object will likely not be available in a real-life ap-
plication, a reference model is used for control. The control configuration is
given in Figure 7.19.

Figure 7.19: FOPID control via reference model

In this work, the following control system design specifications are con-
sidered. In the time domain, the IAE performance index in (4.3) is chosen,
while in the frequency domain we consider the following specifications

• Phase margin ϕm and the corresponding crossover frequency ωc;

• Robustness to gain variations requirement in (4.8).

The model in (7.40) is used for both control design and as the reference
model. By varying the phase margin and critical frequency it is possible to

163



achieve a quality balance between robustness of the control system to exter-
nal disturbances and the amount of overshoot/undershoot during setpoint
transitions. We choose ϕm = 100◦ and ωc = 1.25. Initial analysis revealed
that under current conditions using a PIλ controller is sufficient, so three
design parameters, i.e., {Kp,Ki, λ} are tuned using the FOPID optimization
tool from FOMCON toolbox. The following controller was designed subject
to the specifications given above

C(s) = 1.7887 + 1.3617s−0.51513. (7.42)

The results of real-time control experiments with the IPMC actuator are
given in Figures 7.20a and 7.20b for piecewise constant reference and for
sinusoidal reference signals, respectively.
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(a) Piecewise constant reference
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(b) Sine wave tracking

Figure 7.20: Personal Computer-based FOPI control of the IPMC actuator

A relatively large overshoot is observed in case of a piecewise constant
tracking. The performance indices for piecewise constant tracking and sine
wave tracking are IAEpc = 18.3471 and IAEsine = 5.7663, respectively.

7.3.3 FOINVM based Control

The controller of the form (2.31) is due to (7.40) and is given by the FO
transfer function

C(s) =
1 + 4.8317s0.7797

2.2993(1 + 0.1s)
. (7.43)

The results of real-time control experiments are given in Figures 7.21a and
7.21b for piecewise constant reference and for sinusoidal reference signals,
respectively.

The performance indices for piecewise constant tracking and sine wave
tracking are IAEpc = 23.3436 and IAEsine = 8.3605, respectively.
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(b) Sine wave tracking

Figure 7.21: Personal Computer-based fractional inversion model based control of the
IPMC actuator

Since the FOPI controller exhibits better performance in terms of over-
all control quality based on the IAE measure, it is used in the following
experiments for the hardware implementation of the controller.

7.3.4 Hardware Implementation of the Controller

In the following, hardware implementation of the designed FOPI controller
is discussed. The experimental platform from Section 5.4 is used with the
advanced hardware prototype of the FOPID controller from Section 5.5.2.
The older prototype based on the Atmel AVR ATmega8A/324 controller
was initially considered. However, it does not have enough computational
accuracy/performance to be efficiently used as a FOPID controller with an
integrated reference model.

Two types of experiments are carried out:

• Simulation only—the performance FOPID controller prototype with
internal reference model is verified;

• Experiment with the real object—the reference signal and the corre-
sponding control law due to the open-loop controller are sent to the
laboratory in Tartu via a secure connection.

The schematic diagram for the latter experiment is given in Figure 7.22.
The admissible control range of IPMC actuator displacement is chosen to be
ya = [−5, 5] mm and all the analog signals are scaled accordingly.

The software implementation of the FOPID controller is as follows. A
digital filter approximation of the reference model in (7.40) is obtained in
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Figure 7.22: Open-loop control of IPMC actuator over the network using the HIL prototype

IIR SOS form with the following coefficients

b = {−0.0000000000,+0.0000000000} , (7.44)
{−0.0292603776,+0.0000001205} ,
{−1.1166551079,+0.2746400665} ,
{−1.8986853766,+0.9004848473} ,
{−1.9915211928,+0.9915336126} ,
{−1.9993104973,+0.9993105794} ,

a = {−0.0000000785,+0.0000000000} , (7.45)
{−0.2734226971,+0.0024889370} ,
{−1.5774636716,+0.6108120894} ,
{−1.9555485172,+0.9559265941} ,
{−1.9936348081,+0.9936426878} ,
{−1.9993309003,+0.9993309786} ,

and

b0 = 0.0454022102. (7.46)

The reference model is hard-coded in terms of static IIR SOS coefficient
arrays given in Equations (7.44), (7.44), and (7.46), whereas the IIR filters
in SOS form for the controller itself are generated in real time using the
method from Section 5.3.

The behavior of the IPMC actuator is investigated in an inert environ-
ment as before. The results of the experiments are given in Figures 7.23a and
7.23b for local simulation, and in Figures 7.24a and 7.24b for the network
control experiment with the real IPMC actuator. Control error arising in
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the case of piecewise constant signal is provided in Figure 7.25. As it can be
seen, the controller prototype is successfully experimentally validated, which
means that the computed reference model is long-term stable, and open loop
control in case of the real object is sufficiently accurate. The performance in-
dices for the inert environment are IAEgbpc = 85.3902 and IAEgbsine = 9.6365.
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Figure 7.23: FOPI control: HIL controller with simulated system
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Figure 7.24: FOPI control: HIL controller with real system

7.4 Conclusions

The following general conclusions can be made based on the results given in
this chapter.

• Fractional dynamics were observed in process control applications. Thus,
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Figure 7.25: FOPI control error: HIL controller with real system, piecewise constant set
point

one may conclude that using FOPID controllers instead of PID con-
trollers will lead to improvement of control loop performance in studied
cases, since only such controllers are capable of compensating for FO
dynamics.

• The flexibility of FOPID controllers was illustrated by the ability to
fulfill more design specifications and by the larger stability zone for
stabilizing unstable plants.

• The two-point gain and order scheduling and control loop retuning
methods were successfully verified, showing their applicability to real-
life control problems;

• The advanced hardware prototype of the FOPID controller was vali-
dated in real-time experiments. It showed expected performance and
maintained long-term stability, from which it can be concluded that
the implementation was successful.

Specific comments pertaining to each control object discussed in the chapter
are given next.

Multi Tank System

In case of the coupled tanks system, we have obtained results comparable to
those achieved by nonlinear control in [41,141] with the important difference
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that FOPID controllers ensure control system robustness in the presence of
disturbances. However, the difference in the model and the real plant is quite
evident and should be eliminated. A more thorough parameter identification
procedure may be needed. Once a more accurate model is obtained, the
results of controller design via simulation based optimization should also
improve.

In case of the Multi Tank system from INTECO, an efficient control
method involving a composite control law comprised of FOPID controllers
was successfully applied to the control problem. The proposed method is
quite simple, requires only static description of the FOPID controllers and
therefore may be employed in, e.g., automatic tuning for efficient control of
nonlinear systems with across a large operating range. However, we perform
only heuristic linear stability analysis of the resulting composite control sys-
tem, but it would be more beneficial to consider stability analysis of the
nonlinear system. In addition, further work may be carried out to design
a more efficient controller for the middle tank, such that would minimize
the switching of automatic valves. Finally, due to considerable measurement
noise an extended Kalman filter was designed since linear filters did not pro-
vide acceptable performance.

The prospective use of FOPID controllers lies in the industrial domain,
where the majority of control loops are based on PI and PID controllers [6,83],
including those dedicated to fluid level control. It can be concluded that ap-
plication of FOPID controllers to the problem of level control is justified,
since such controllers offer more tuning flexibility and allow taking into ac-
count more robustness criteria. In case of disturbances, measurement noise,
effects of fractional dynamics as well as other unmodeled dynamics of real in-
dustrial systems, even small gains in performance arising from using FOPID
controllers in place of conventional PID controllers will lead to an overall
improvement, since typical industrial applications comprise many control
loops [149].

Magnetic Levitation System

In this application, an unstable plant, namely the MLS system was con-
sidered. A nonlinear model of this plant was identified from a closed-loop
experiment. Linear analysis methods were employed to determine stabilizing
FOPID controllers and stability boundaries in two-dimensional parameter
planes thereof. The controllers were then evaluated, and those with the best
performance were optimized. In all cases, the optimization procedure en-
hanced the performance of the control loop. Virtually all retuning controllers
offer superior performance compared to the original control loop thereby es-
tablishing the validity of the proposed approach, which can also be applied
to other nonlinear systems.
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These results illustrate the benefits of using a FO controller to stabilize
an unstable plant. Unfortunately, a serious limitation was found, that is
the difficulty to impose robustness specifications in case of FOPID control of
MLS. While there are more opportunities to stabilize the plant, it is difficult
to guarantee noise immunity and disturbance rejection of the designed control
loop. Towards that end, the adoption of results from [82] and [56] may lead
to the solution of this problem.

IPMC Actuator

In what follows, conclusions are drawn based upon the conducted series of
experiments. The first batch of experiments was carried out using MAT-
LAB/Simulink for identification and control, while the second was done using
a HIL approach with a FOPID controller prototype.

First, based upon experimental evidence gathered thus far, it appears
that the IPMC with carbon-based electrodes may be adequately modeled by
FO differential equations, hence it is natural to use FO controllers for control
thereof. Earlier results also indicate this [16, 18].

In this work, we were concerned with the principal dynamics of the sys-
tem. In an inert environment the relaxation effect was minimal and was not
taken into consideration. Relaxation dynamics appear to be of fractional
nature, hence a more complicated model may be used to account for this ef-
fect [18]. This is also one of the reasons to apply fractional control methods
and not those based on nonlinear control system analysis.

Two types of controllers were considered: FOPID controller and FOINVM
controller. The following comments pertain to the achieved control perfor-
mance in the first series of experiments.

• FOPI controller exhibits superior performance than the FOINVM con-
troller;

• Both controllers rely on the quality of the reference model, however:

– In case of the FOPID controller, some robustness criteria are con-
sidered, which means that it should perform better than FOINVM
under disturbances and noise, if feedback of some form is present.
If IPMC actuators are to be used in a macro-object, feedback may
be available, albeit in a different form, e.g., as the displacement
of the macro-object, the latter set to perform a particular task;

– To improve overall control quality it may be necessary to consider
gain scheduling, that is, design a number of controllers for different
working points of the system.
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The following comments are related to the second series of experiments,
where a hardware implementation of a FOPI controller was used due a pro-
totype assembled in Alpha Control Laboratory.

• Relatively accurate control of the process was observed during the
network-based experiments. Because no feedback is used in control,
the communication delay may be neglected.

• The internal reference model is currently hard-coded into the proto-
type. This means the only direct means to update it is through chang-
ing its static gain. For changing the dynamics, a more intricate proce-
dure is needed.

• The FOPID prototype used in these experiments is relatively large,
since it is meant for industrial-grade experiments. In terms of integra-
tion, it is possible to make the microcontroller-based FOPI prototype
PC board much smaller (about the size of a 2€ coin). Also, other im-
plementation methods exist and may be used, e.g., analog modeling of
FOPID controllers considered in which allow for a much smaller scale.

By conducting a series of experiments over a course of several weeks, we
have found that the experiments in the inert environment are repeatable and
model parameter variations are reasonably small. All considered controllers
use reference model-generated feedback, which means the quality of control
strongly depends on the quality of the reference model. In a real-life en-
vironment the model must be updated in real time to reflect the changing
conditions, such as humidity, temperature, etc. This requires further inves-
tigation.
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Conclusions

Every great and deep difficulty
bears in itself its own solution. It
forces us to change our thinking in
order to find it.

Niels Bohr

The scientific man does not aim at
an immediate result. He does not
expect that his advanced ideas
will be readily taken up. His work
is like that of the planter—for the
future. His duty is to lay the
foundation for those who are to
come, and point the way.

Nikola Tesla

We now formulate concluding remarks pertaining to the results presented
in this thesis. Accordance thereof to the problems stated at the beginning of
the dissertation is established.

First, the problem of identification of systems by fractional models was
considered. Primary focus was on time domain identification methods. Sev-
eral optimization algorithms were used to identify the parameters of frac-
tional models of dynamic systems based on nonlinear least-squares parameter
estimation. In addition, some methods for the analysis of the resulting mod-
els were discussed. Several solutions to the general problem of efficient iden-
tification of fractional models—estimation of commensurate order models—
were proposed, mostly based on choosing different subsets of parameters to
estimate, including parametric identification, which is also useful in solving
closed-loop identification problems. The algorithms were verified by consid-
ering several exemplary fractional systems. The optimization methods were
shown to be effective in solutions of specific problems. Another important
issue encountered is the selection of the identified model structure, that is,
the initialization of the identification problem and must be further studied.
It may be necessary to introduce changes to the optimization algorithms to
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tackle this issue.
The choice of the identification algorithm depends on the available data.

A carefully chosen excitation signal in case of time domain identification is
key to obtaining an accurate model of the system under study. However,
conducting such experiments is rarely possible in case of industrial systems,
since they are associated with considerable costs. This is why frequency
domain methods are of great practical value—especially the available re-
lay feedback based methods—as the output of the industrial system will
only slightly deviate from the set point during the identification experiment.
Another possibility is to employ closed-loop identification. Since industrial
processes are generally complex, they may exhibit phenomena such as long-
range dependence and self-similarity. The proposed methods are designed
for fractional-order systems and can therefore be applied to modeling such
phenomena in the industrial context to obtain more accurate models.

Next, FOPID controller design methods were discussed. A general Nelder-
Mead simplex method based optimization algorithm was proposed subject
to control system design specifications in both time- and frequency domains.
Since the conventional version of this optimization algorithm can only solve
unbounded and unconstrained problems, a modification of the method is
considered, where frequency domain specifications are formulated as penalty
functions for the cost function. Different subsets of FOPID controller param-
eters may be considered for optimization. The effectiveness of this approach
was shown in a motivating example, where controller gains were chosen us-
ing a classical PID controller tuning rule [152], while the proper selection
of orders of the controller integral and differential components achieved by
means of optimization thereof resulted in a significant improvement of control
loop performance. Then, the gain and order scheduling approach was dis-
cussed. A particular case, when it is sufficient to choose two operating points
to effectively control the system under study in the full control range, was
investigated. A method for analyzing the stability of the resulting FOPID
control system in the linear sense was proposed. This method shared the
main idea with the one proposed next in the same chapter, where stabil-
ity boundaries were heuristically located for a closed-loop control system
comprising a FOPID controller and an unstable plant. Since the method is
heuristic, efficiency of involved computations cannot be guaranteed. Finally,
a conventional PID controller control loop retuning method was presented,
such that allows incorporating fractional-order dynamics into existing control
loops without internal modifications.

An important conclusion is that since FOPID controllers are technically
extensions of conventional PID controllers, existing tuning algorithms for
the latter may be adopted for FO control, if necessary. Thus, an engineer
may select the best performing controller for a particular industrial control
task. If system dynamics are modeled reasonably well with classical FOPDT
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models, it is expected that using PID controllers is sufficient.
Final parts of the first two chapters also include two particular methods

for identification and control of dynamic systems described by a FFOPDT
model. These methods are applicable in process control. First, a frequency
domain identification method was proposed using a relay feedback test to
determine several frequency response points and to estimate a FFOPDT
model based on that information. Conditions under which this is possible
were derived. The estimation algorithm was successfully verified on a set of
FFOPDT models. However, only a nominal delay value of the model was
considered. Further, all frequency domain characteristics of the FFOPDT
model were derived, using a Newton-Raphson method specifically tailored
for the task. Then, all frequency domain characteristics of a control sys-
tem comprising a FOPID controller and a FFOPDT model were derived. A
FOPID controller gain optimization method based on design specifications
in the frequency domain was proposed based on the Newton’s method in
several dimensions. The effectiveness of this method was demonstrated on
an exemplary system.

From the evidence presented in this thesis—specifically in Chapter 7—we
may conclude that the proposed method may indeed be of use in an industrial
setting, since it takes into account fractional dynamics of a process under
study. In addition, the obtained results may be used in automatic control of
heating, ventilating, and air conditioning systems in Smart Houses.

In the chapter devoted to implementation of fractional systems and con-
trollers several problems were discussed. First, an updated Carlson method
for approximation of fractional capacitors was proposed. It appears to be
especially useful in approximating FOLLC controllers. However, it does re-
quire a sufficient amount of computational accuracy and resources. Next, a
unified approach to design of fractance networks in terms of analog filters
comprising passive (resistors, capacitors, and inductors) and active (opera-
tional amplifiers) was proposed. The approach relies on the implementation
of a programming paradigm—the fractance network has an abstract object
class, which incorporates all the necessary properties and methods to work
with the class and to obtain the network approximations. Finally, a method
for efficient digital implementation of FOPID and FOLLC controllers was
described. For verification of the results in this chapter, a real-time proto-
typing platform was used, based on available hardware and software. The
hardware FOPID controller prototypes were built, programmed, and success-
fully tested by means of this platform.

The main issue with the implementation of fractional models—the differ-
ence in magnitude of the parameters of the resulting approximations—was
solved for both analog and digital realizations. However, the solution requires
either a complicated analog circuit manufacturing process, or relatively high-
end hardware for the digital implementation. Therefore, this issue must be
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investigated further.
Most of the results described in Chapters 3 through 5 are incorporated

into FOMCON toolbox for MATLAB/Simulink. In the corresponding chap-
ter, the features of the toolbox were presented and a variety of illustrative
examples, some of which extend the ideas developed in previous chapters,
were given.

Finally, a chapter devoted to practical application of fractional control
deals with three models of industrial control objects (two types of fluid tank
systems and a magnetic levitation system), as well as with the problem of
control of a novel IPMC actuator. The identification, control, and control
system implementation methods discussed in previous chapters were suc-
cessfully applied, showing the benefits arising from the extended modeling
and control flexibility offered by fractional models. Moreover, the advanced
FOPID controller hardware prototype was successfully verified during the
experiments with the IPMC actuator.

These results demonstrate the applicability of FO control to real-life prob-
lems. The decision to use FOPID controllers is dictated by universal use of
PID controllers in the industry. Comparable nonlinear control methods are
available, but offer less general means for efficient control [149], whereas
FOPID controllers are more flexible, provide more opportunities for sta-
bilizing unstable plants, and can work in conjunction or in parallel with
conventional PID control loops, which generally leads to improvement of
performance of the overall system.

Future Research

During the thesis work, some issues were identified. These issues form the
basis for future research. A more specific summary is provided next.

One of the main obstacles for successful application of the extended sta-
bilization possibilities of fractional controllers is the absence of general re-
sults related to stability analysis. This leads to the development of heuristic
methods, some of which were presented in this work, which are not computa-
tionally efficient. It is thus of significant interest to investigate and develop
efficient general methods for analyzing the stability of fractional systems. To-
wards that end, it may be possible to extend the results in, e.g., [82] or [56].
Such results may be further applied in model based control design.

In this work, mostly SISO control problems were considered. However,
real-life industrial control problems usually comprise multiple loops. There-
fore, a more sophisticated and generalized retuning approach for existing
PI/PID control loops should be developed. Also, the automatic tuning pro-
cedure for multiple control loops should be appropriately treated [149].

In addition, a general scheme for embedded implementation of fractional
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systems should be investigated. In this work we have covered FOPID and
FOLLC controller generation. However, the reference model was not gen-
erated on the prototype, but rather the SOS coefficients of IIR filters were
hard-coded into it. In addition, variable-order operators may be employed
in the implementation of FOPID controllers. This will open up even further
opportunities for the realization of efficient and accurate automatic tuning
algorithms.

The algorithms for system identification and controller design developed
for process control applications must be verified using the advanced hard-
ware FOPID controller prototype across a sufficient number of industrial
plant models and real-life objects to ensure industry-grade performance and
reliability.

It is the firm belief of the author that using generalized fractional mod-
els in system theory is a natural step towards more accurate modeling and
developing efficient control systems, which the results of this thesis seem to
indicate. Therefore, using fractional models and controllers is expected to
become part of standard practice in the coming years.
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Kokkuvõte

Käesolev väitekiri on pühendatud murruliste tuletiste rakenduste uurimise-
le dünaamiliste süsteemide identifitseerimisel ja automaatjuhtimissüsteemide
disainil. Peamised doktoritöö tulemused on esitatud peatükkides 3–7. Mur-
ruliste süsteemide identifitseerimise meetod ajavallas on välja pakutud ning
selle abil saadud mudeli analüüs on samuti toodud. Välja pakutud murru-
lise PID regulaatori disaini meetod põhineb Nelder-Mead simpleksmeetodil
ning selle abil saab nõuda kvaliteedinäitajaid nii aja- kui ka sagedusvallas.
Võimenduse ja järgu programmeerimismeetod on toodud FOPID reguleeri-
misahelate jaoks. Stabiliseerimismeetod mittestabiilsete objektide jaoks on
kirjeldatud. Klassikaliste PID reguleerimisahelate ümberhäälestamise mee-
tod on välja pakutud, mis võimaldab integreerida murrulist dünaamikat ole-
masolevasse juhtimisahelasse ilma sisemiste muutusteta. Uuendatud murru-
liste kondensaatorite aproksimeerimismeetod on kirjeldatud. Efektiivsed ana-
loogfiltrite baasil realiseerimismeetodid on käsitletud. Digitaalfiltrite baasil
regulaatorite aproksimeerimismeetod on samuti välja pakutud. Selle põh-
jal on konstrueeritud reaalne FOPID regulaatori prototüüp, mis on edu-
kalt verifitseeritud reaalaja prototüüpimisplatvormi abil. Peatüki 6 sisuks
on FOMCON-i — MATLAB/Simulink keskkonna rakenduspaketi — kirjel-
damisele. Meetodid, mis hõlmavad protsessijuhtimise rakendusi, on toodud
peatükkide 3 ja 4 lõpus. FFOPDT koos FOPID regulaatoriga juhtimissüs-
teemi identifitseerimise meetod on välja pakutud, selle süsteemi analüüs on
toodud ning FOPID regulaatori häälestamismeetod on kirjeldatud. Peatükis
7 on toodud murruliste regulaatorite reaalsed rakendused. Saadud tulemu-
sed näitavad välja pakutavate meetodite efektiivsust, ning demonstreerivad
murruliste tuletiste rakenduste eelised.
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Abstract

The present thesis is devoted to the research of fractional-order calculus
based identification and control of dynamic systems. The main results of the
thesis are presented in Chapters 3 through 7. A time domain identification
method for fractional-order models is proposed, and the analysis of the qual-
ity of the obtained model is provided. Proposed controller design methods
include Nelder-Mead simplex method based FOPID controller design subject
to specifications in time- and frequency domains. A gain and order scheduling
approach is proposed for FOPID control loops. A method for stabilizing un-
stable plants is proposed leveraging the larger stability zone achieved through
use of fractional operators. A conventional PID control loop retuning method
is introduced, such that allows incorporating fractional-order dynamics into
the existing control loops without internal changes. In the implementation
chapter, an updated method for approximating fractional capacitors is in-
troduced, an efficient approach to fractance network generation is proposed,
and a digital implementation of FOPID and FOLLC controllers is described.
On the basis of this, a hardware FOPID controller prototype is developed
and tested using a real-time prototyping platform. Chapter 6 focuses on
FOMCON—a software package for the MATLAB/Simulink environment in
which most of the results from previous chapters are implemented. Methods
applicable to fractional-order process control are found at the end of Chap-
ters 3 and 4, and deal with frequency domain identification of a FFOPDT
model based on a relay feedback experiment. The proposed method is veri-
fied across a set of FFOPDT models. Complete frequency domain analysis
of a control system comprising a FOPID controller and a FFOPDT plant is
also provided, and a method is proposed for tuning the FOPID controller.
An illustrative example indicates the effectiveness of the method. Finally,
applications of fractional-order control are investigated in Chapter 7. The
obtained results indicate the effectiveness of the proposed methods, as well as
illustrate the benefits that are achieved through the use of fractional calculus
based tools.
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Abstract

FOMCON is a new fractional-order modeling and control toolbox for MAT-
LAB. It offers a set of tools for researchers in the field of fractional-order
control. In this paper, we present an overview of the toolbox, motivation
for its development and relation to other toolboxes devoted to fractional cal-
culus. We discuss all of the major modules of the FOMCON toolbox as
well as relevant mathematical concepts. Three modules are presented. The
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fractional lead-lag compensators and TID controllers. Finally, a Simulink
blockset is presented. It allows more sophisticated modeling tasks to be
carried out.





FOMCON: a MATLAB Toolbox for
Fractional-order System Identification and Control

Aleksei Tepljakov, Eduard Petlenkov, and Juri Belikov

Abstract—FOMCON is a new fractional-order modeling and
control toolbox for MATLAB. It offers a set of tools for re-
searchers in the field of fractional-order control. In this paper, we
present an overview of the toolbox, motivation for its development
and relation to other toolboxes devoted to fractional calculus. We
discuss all of the major modules of the FOMCON toolbox as well
as relevant mathematical concepts. Three modules are presented.
The main module is used for fractional-order system analysis.
The identification module allows identifying a fractional system
from either time or frequency domain data. The control module
focuses on fractional-order PID controller design, tuning and
optimization, but also has basic support for design of fractional
lead-lag compensators and TID controllers. Finally, a Simulink
blockset is presented. It allows more sophisticated modeling tasks
to be carried out.

Index Terms—fractional calculus, matlab toolbox, automatic
control, pid controller, identification, control system design

I. INTRODUCTION

In recent years fractional-order calculus has gained a lot
of attention, especially in the field of system theory and
control systems design due to more accurate modeling and
control enhancement possibilities [1], [2]. Several tools have
been developed for fractional order system analysis, modeling
and controller synthesis. Among these tools are MATLAB
toolboxes CRONE [3], developed by the CRONE team, and
NINTEGER [4], developed by Duarte Valério.

The FOMCON toolbox for MATLAB [5] is an extension
to the mini toolbox introduced in [6], [7], [8], providing
graphical user interfaces (GUIs), convenience functions, means
of model identification in both time and frequency domains
and fractional PID controller design and optimization and a
Simulink block set. The goal of the toolbox is to provide an
easy-to-use, convenient and useful toolset for a wide range of
users. It is especially suitable for beginners in fractional order
control because of the availability of GUIs, encompassing
nearly every toolbox feature, applied workflow considerations
and the ability to get practical results quickly.

This work was supported by the Estonian Doctoral School in Information
and Communication Technology under interdisciplinary project FOMCON,
the Governmental funding project no. SF0140113As08 and the Estonian
Science Foundation Grant no. 8738.

A. Tepljakov is with Department of Computer Control, Tallinn Univer-
sity of Technology Ehitajate tee 5, 19086, Tallinn, Estonia (e-mail: alek-
sei.tepljakov@dcc.ttu.ee)

E. Petlenkov is with Department of Computer Control, Tallinn Univer-
sity of Technology Ehitajate tee 5, 19086, Tallinn, Estonia (e-mail: ed-
uard.petlenkov@dcc.ttu.ee)

J. Belikov is with Institute of Cybernetics, Tallinn University of Tech-
nology, Akadeemia tee 21, 12618, Tallinn, Estonia, e-mail: (e-mail: jbe-
likov@cc.ioc.ee)

In this paper we present an overview of the FOMCON
toolbox and its functions with a summary of used theoretical
aspects as well as illustrative examples. The paper is organized
as follows. In Section II the reader is introduced to some
basic concepts of fractional-order calculus used in control.
In Section III an overview of FOMCON toolbox and its
features is presented. In Section IV the main module and
main GUI facility used for fractional-order system analysis are
introduced. Then, the fractional-order identification toolset is
presented and discussed in Section V. An overview of the
fractional controllers follows in Section VI with particular
focus on the PIλDμ control design and optimization. Section
VII is devoted to an overview of the provided Simulink
blockset which can be used for more sophisticated fractional-
order system modeling. In Section VIII some of the current
limitations of the toolbox are outlined. Finally, in Section IX
conclusions are drawn.

II. AN INTRODUCTION TO FRACTIONAL CALCULUS

Fractional calculus is a generalization of integration and
differentiation to non-integer order operator aDα

t , where a and
t denote the limits of the operation and α denotes the fractional
order such that

aD
α
t =

⎧
⎪⎪⎨
⎪⎪⎩

dα

dtα �(α) > 0,
1 �(α) = 0,∫ t
a
(dt)−α �(α) < 0,

(1)

where generally it is assumed, that α ∈ R, but it may also be
a complex number [7]. There exist multiple definitions of the
fractional differintegral. The Riemann-Liouville differintegral
is a commonly used definition [8]

aD
α
t f (t) =

1

Γ (m− α)

(
d

d t

)m
t∫

a

f (τ)

(t− τ)
α−m+1 dτ (2)

for m− 1 < α < m, m ∈ N, where Γ(·) is Euler’s gamma
function. Consider also the Grünwald-Letnikov definition

aD
α
t f (t) = lim

h→0
1

hα

[ t−a
h ]∑

j=0

(−1)j
(
α

j

)
f (t− jh) , (3)

where [·] denotes the integer part.
The Laplace transform of an α-th derivative with α ∈ R+ of

a signal x(t) relaxed at t = 0 (assuming zero initial conditions)
is given by

L
{
Dαx (t)

}
= sαX (s) . (4)
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Thus, a fractional-order differential equation

anDαny(t) + an−1D
αn−1y(t) + · · ·+ a0D

α0y(t) =

bmDβmu(t) + bm−1D
βm−1u(t) + · · ·+ b0D

β0u(t), (5)

where ak, bk ∈ R can be expressed as a fractional-order
transfer function in form

G (s) =
bms

βm + bm−1sβm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (6)

A system given by (6) is said to be of commensurate order if
all the orders of the fractional operator s are integer multiples
of a base order q such that αk, βk = kq, q ∈ R+, 0 < q < 1.
The continuous-time transfer function can be expressed as a
pseudo-rational function H(λ), where λ = sq:

H (λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk
. (7)

Based on this concept, a fractional-order linear time-
invariant system can also be represented by a state-space
model

Dqx (t) = Ax (t) +Bu (t) (8)
y (t) = Cx (t) +Du (t) .

For more information on fractional-order calculus the inter-
ested reader is referred to the books [8], [9], [10], [11].

III. OVERVIEW OF THE FOMCON TOOLBOX

A. Motivation for Development

FOMCON stands for “Fractional-Order Modeling and Con-
trol”. The basic motivation for developing it was the desire
to obtain a set of useful and convenient tools to facilitate the
research of fractional-order systems in application to control
system design. This involved writing convenience functions,
e.g. the polynomial string parser, and building graphical user
interfaces to improve the general workflow. However, a full
suite of tools was also desired due to certain limitations
in existing toolboxes, which mostly focus on novel control
strategies (such as the CRONE control). FOMCON presently
aims at extending classical control schemes with concepts of
fractional-order calculus. The relation of FOMCON to other
MATLAB fractional calculus toolboxes is depicted in Fig. 1.

Further the relation is explained. FOMCON was built upon
an existing mini toolbox FOTF. It also uses several functions
from NINTEGER toolbox for system identification and if the
CRONE toolbox is available, it is also possible to export ob-
jects into the CRONE format for further processing. FOMCON
also incorporates the optimize() function [12]. The latter
and the NINTEGER functions are included with respect to the
two-clause BSD license.

With all previous considerations, the motivations for devel-
oping FOMCON are as follows:
• It is a product suitable for both beginners and more

demanding users due to availability of graphical user
interfaces and advanced functionality;

Fig. 1. MATLAB fractional-order calculus toolbox relations to FOMCON

• It focuses on extending classical control schemes with
concepts of fractional-order calculus;

• It can be viewed as a “missing link” between CRONE
and NINTEGER;

• With the Simulink blockset the toolbox aims at a more
sophisticated modeling approach;

• The toolbox can be ported to other platforms, such as
Scilab or Octave (some limitations may apply).

Further we present an overview of the toolbox and its features.

B. Toolbox Features

In FOMCON the main object of analysis is the fractional-
order transfer function given by (6). The toolbox focuses
on the SISO (single input-single output), LTI (linear time-
invariant) systems.

The toolbox is comprised of the following modules:

• Main module (fractional system analysis);
• Identification module (system identification in time and

frequency domains);
• Control module (fractional PID controller design, tuning

and optimization tools as well as some additional fea-
tures).

All the modules are interconnected and can be accessed from
the main module GUI as depicted in Fig. 2.

A Simulink blockset is also provided in the toolbox allowing
complex modeling tasks to be carried out. General approach
to block construction is used where applicable.

The FOMCON toolbox relies on the following MATLAB
products:

• Control System toolbox, required for most features;
• Optimization toolbox, required for time-domain identifi-

cation and integer-order PID tuning for common process
model approximation.

It is also possible to export fractional-order systems to the
CRONE toolbox format (this feature requires the object-
oriented CRONE toolbox to be installed).

Further we present an overview of each FOMCON module,
providing some theoretical background for the features as well
as illustrative examples.
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Fig. 2. FOMCON module relations (name of corresponding function to open
the GUI is given in parentheses)

IV. FRACTIONAL-ORDER SYSTEM ANALYSIS

FOMCON provides time-domain and frequency-domain
fractional-order system analysis, as well as verifying system
stability. In the toolbox fractional-order systems are given by
fractional-order transfer function (FOTF) objects in the form
(6). These objects are generalizations of the rational transfer
functions to the fractional order. To get started one could enter
the following into the MATLAB command line

fotf_gui

The main toolbox GUI called FOTF Viewer is then dis-
played (see Fig. 3). It is divided into two panels:
• The left panel entitled Fractional order transfer func-

tions is used to input, edit, delete and convert FOTF
objects. The tool is directly working with MATLAB base
workspace variables;

• The right panel entitled System analysis contains means
for fractional-order system analysis in the time domain
and in the frequency domain.

The Tools menu contains links to the time-domain and
frequency-domain identification tools and the fractional PID
design tool.

Fractional-order transfer functions may be created in the
workspace by pressing the Add ... button in the GUI. A dialog
is shown allowing to enter the zero/pole fractional polynomials
of the system (a simple string parser is provided). The system
can then be analyzed using the tools in the right panel. Further
we discuss the algorithms used to carry out the analysis.

Stability of a fractional-order LTI system (8) can be deter-
mined from the following relation

∣∣∣arg
(
eig (A)

)∣∣∣ > γ
π

2
, (9)

where 0 < γ < 1 is the commensurate order of a fractional
state-space system and eig(A) represents the eigenvalues of
the associated matrix A. If condition (9) is satisfied, then the
system is stable [13]. During the stability test a figure is drawn
and populated by the corresponding rational-order system (7)
poles. This is an illustration to condition (9): if any of the

Fig. 3. Main GUI window

poles are inside the shaded area of the figure the system is not
stable.

Time-domain analysis of the fractional systems, i.e. sim-
ulation of the system response to an arbitrary input signal,
is carried out using a revised Grünwald-Letnikov definition in
(3). The closed-form numerical solution to the fractional-order
differential equation is obtained in [7] as

yt =
1

n∑
i=0

ai
hαi

⎡
⎢⎣ut −

n∑

i=0

ai
hαi

t−a
h∑

j=1

w
(αj)
j yt−jh

⎤
⎥⎦ , (10)

where h is the step-size in computation and w
(α)
j can be

computed recursively from

w
(α)
0 = 1, w

(α)
j =

(
1− α+ 1

j

)
w
(α)
j−1, j = 1, 2, . . . . (11)

The signal û (t) is calculated by using (3) substituting
(−1)α

(
α
j

)
= w

(α)
j and finally the time response under the

signal u (t) is obtained. Due to the fixed-step computation the
accuracy of the simulation may depend on the chosen step-
size h. Thus it is suggested to validate the results by gradually
decreasing h until there is no variation in simulation results.
Simulation of a large number of points may take a lot of time.
A progress bar option is provided to allow keeping track of
simulation progress in such cases.

The frequency-domain analysis is done by substituting
s = jω. All the required system frequency characteristics
are then obtained using Control System toolbox by supplying
the complex frequency response of the plant to the frequency
response data object frd and then using the standard toolbox
frequency response analysis functions bode(), nyquist(),
nichols().

The export facility in the main GUI allows converting FOTF
systems into objects of the following type
• Oustaloup filter zpk;
• Oustaloup refined filter zpk;
• Fractional-order state-space foss;
• CRONE frac_tf;
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Fig. 4. FOTF entry dialog

• CRONE frac_ss.
The last two options are specific to the Object-Oriented
CRONE toolbox and require it to be installed.

The Oustaloup filters give a very good approximation of
the fractional operators [14] in a specified frequency range
(ωb, ωh) and of order N . Oustaloup’s recursive filter for sγ

for 0 < γ < 1 is given by

Gf (s) = K

N∏

k=−N

s+ ω′k
s+ ωk

, (12)

where ω′k, ωk and K are obtained from

ω′k = ωb

(
ωh
ωb

) k+N+1
2
(1−γ)

2N+1

, (13)

ωk = ωb

(
ωh
ωb

) k+N+1
2
(1+γ)

2N+1

, K = ωγh.

A refined Oustaloup filter has been proposed in [6]. It is
given by

sα ≈
(
dωh
b

)α
(

ds2 + bωhs

d (1− α) s2 + bωhs+ dα

)
Gp, (14)

where Gp, ωk and ω′k can be computed from

Gp =
N∏

k=−N

s+ ω′k
s+ ωk

, (15)

ωk =

(
bωh
d

) α+2k
2N+1

, ω′k =

(
dωb
b

) α−2k
2N+1

.

It is expected that a good approximation using (14) is
obtained with b = 10, d = 9.

Fractional-order systems are converted to Oustaloup filter
zpk objects by approximating fractional orders α ≥ 1 by
sα = snsγ , where n denotes the integer part of α and sγ

is obtained by the Oustaloup approximation. Objects exported
this way can be analyzed using regular Control System toolbox
means. There is also an option to automatically launch the LTI
Viewer tool upon a successful export.

Example 1. Consider a system given in [7] by

G (s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

To supply this system as “G3” one would enter the following
in the Add ... dialog (see Fig. 4).

(a) Stability
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Fig. 5. G3 system analysis
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Fig. 6. G3 step response using different calculation methods

Suppose we need to check this system for stability, obtain
a Bode diagram and a step response.

The stability analysis illustration is given in Fig. 5a. It can
be seen from the zoomed plot that there are no poles inside
the shaded region. Therefore, the condition (9) is satisfied and
the system is stable. The Bode diagram is shown in Fig. 5b.

A step response in time range t = [0; 30] with a step of
h = 0.01 is obtained using the Grünwald-Letnikov method
(10). The results are given in Fig. 6.

Example 2. Consider a dynamic model of a heating furnace
discussed in [15], [16] given by a differential equation

a2D
αy(t) + a1D

βy(t) + a0y(t) = u(t), (16)

with α = 1.31, β = 0.97, a2 = 14994, a1 = 6009.5, a0 =
1.69. In the Laplace domain, assuming zero initial conditions,
the system is described by a fractional-order transfer function

G1(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
.

We shall examine Oustaloup filter approximations of this
fractional system. Let us create two filters, an Oustaloup
filter Z1 and a refined Oustaloup filter Z2 with the default
parameters (ω = [10−4; 104], N = 5) and compare the
resulting system step response (at t = [0; 35000] with dt =
0.5) and frequency response characteristics (Fig. 7a and 7b
respectively).

From this example it can be clearly seen that only the refined
Oustaloup filter proposed in [6] provides a valid approximation
of the fractional-order system than the Oustaloup filter with the
same approximation parameters. However, it is also possible to
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Fig. 7. Oustaloup and refined Oustaloup filter approximations of system G1

Fig. 8. FOTF Time-domain Identification Tool user interface

obtain a better approximation for this particular system with
the Oustaloup filter by shifting the frequency range to ω =
[10−6; 102].

V. IDENTIFICATION BY FRACTIONAL-ORDER MODEL

A. Time-domain Identification

The time-domain identification tool can be accessed from
the main GUI via menu Tools→Identification→Time do-
main... or by typing the following into the MATLAB com-
mand line:

fotfid

The corresponding GUI will be launched (depicted in Fig.
8). The tool allows to identify a system by a continuous-time
fractional-order model in the form (6).

This is done by fitting an initial model using the least-
squares approach minimizing the error norm

∥∥e (t)
∥∥2
2
, where

e (t) = y (t)− yid (t) , (17)

by searching for a set of parameters θ of model (6), where

θ = [ ap αp bz βz ] (18)

and

ap = [ an an−1 · · · a0 ], (19)
αp = [ αn αn−1 · · · α0 ],

bz = [ bm bm−1 · · · b0 ],

βz = [ βn βn−1 · · · β0 ].

The given parameter set can be further reduced allowing
different identification strategies to be applied. The initial
model can also be generated form a given commensurate
order and the highest order of the model. This is useful
when identification is carried out using methods discussed in
[17]. The initial guess model can also be imported from the
MATLAB workspace.

There is a number of possibilities to fix either fractional-
order polynomials, polynomial term coefficients or exponents.
Thus a generalized identification tool is obtained, capable of
identifying fractional-order systems as well as integer-order
systems. There is a possibility to limit the value ranges of the
identified parameters. Since it is possible to reduce the number
of identified parameters, the identification for complex systems
is better conditioned for the underlying optimization task.

A special data structure is used to store the identification
data. It can be constructed from the command-line in the
following manner:

id1 = fidata(y, u, t);

where id1 is the data structure used for identification, y
is the experimental output signal, u is the experimental input
signal and t is the time vector. The identification tool only
works with this type of data structure.

Example 3. Suppose a fractional-order system is given by

G2 (s) =
1

0.8s2.2 + 0.5s0.9 + 1
.

In order to generate identification test data, the following
MATLAB commands can be used:

t = (0:0.01:20)’;
u = zeros(length(t),1);
u(1:200) = ones(200,1);
u(1000:1500) = ones(501,1);
y = lsim(G2,u,t)’;
iddata1 = fidata(y,u,t);

If nothing but experimental data is known the only way
to identify the system is by experimenting with different
commensurate orders and orders of the initial model. Also the
term coefficients and differentiation orders can be adjusted
manually. In this case, if a fractional pole polynomial is
selected such, that it is generated with commensurate order
q = 1.2 and order N = 2, the zero polynomial is fixed at zp =
1, free identification is used with term coefficients limited to
clim = [−20; 20] and exponents limited to elim = [1·10−8; 3]
then the system is identified as

Ĝ(s) =
1

0.8s2.2 + 0.5s0.90001 + s9.7153·10−7 .
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Fig. 9. Experiment schematic diagram

It can be seen that the last term has an order α = 9.7153 ·
10−7 → 0 and thus the original model is successfully recov-
ered and can be obtained by typing round(Gid, 1e-4,
1e-4) in MATLAB. In order to validate the data, one could
also type validate(iddata1, Gid). A figure will be
drawn showing the comparison of the sampled and identified
system responses to the experimental input data as well as the
output error.

Example 4. Consider now an example, where a real system is
identified. Experimental data is collected from a real thermal
object. The schematic diagram corresponding to the experi-
ment is depicted in Fig. 9.

The temperature is measured using a type K thermocouple
with a DC output of 0...10 mV, amplified with a gain of 30
and fed into a Velleman PCS100 oscilloscope, which is used
to register both the temperature obtained from the amplified
thermocouple signal and the voltage source signal. Data was
collected from three consecutive experiments. Different volt-
age set values were used. Due to some limitations of used soft-
ware and hardware, a total of 1700 points were recorded with
a sampling interval of Ts = 2 seconds. The obtained system
output vector was then filtered ensuring zero phase distortion
using a low-pass filter by means of MATLAB filtfilt()
function, and a transformation was applied so that the output
signal vector would contain real temperature values in ◦C. To
account for zero initial conditions requirement the temperature
output signal was also shifted such that t = 0→ y(t) = 0. A
transformation was applied such that û(t) = 0.01 · u2(t) —
the obtained input signal is thus a rough approximation of the
final temperature value.

The identification was then carried out using the fotfid
tool. From previous experience it is known that in case of
an integer-order model this system can be approximated by a
second order model. Thus, it is possible to obtain the initial
guess model by generating a fractional pole polynomial with
q = 1, n = 2 and fixing the zero polynomial at “1” so that a
classical, integer order model is initially obtained in the form

Ginit(s) =
1

s2 + s+ 1
.

The free identification method was used with coefficient
limits clim = [0; 3000] and exponent limits elim = [10−9; 3].
The following model was obtained:

Ĝ(s) =
1

2012.409s1.8063 + 107.2882s0.93529 + 1.0305
.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

A
m

pl
itu

de

Initial data
Identified model

0 500 1000 1500 2000 2500 3000 3500
−10

−5

0

5

10

Time [s]

E
rr

or

Fig. 10. Thermal system fractional model validation

TABLE I
PROCESS MODEL IDENTIFICATION COMPARISON

IDENTIFIED MODEL SQUARE ERROR
NORM

Ĝ1(s) = 1
2012.409s1.8063+107.2882s0.93529+1.0305

71.7702

Ĝ2(s) = 0.96039
2655.4725s2+151.626s+1

e−1.1844s 72.3396

Ĝ3(s) = 0.96035
2835.2438s2+152.593s+1

81.8971

Validation is carried out with the same dataset as for
identification. The corresponding plot is given in Fig. 10.

Two integer-order models were obtained from the same
experimental dataset by using the MATLAB Identification
toolbox for comparison. Results are provided in Table I.

Taking the square error norm as a measure of model
precision, one could say that the fractional-order model Ĝ1 is
more accurate than the integer-order models Ĝ2 and Ĝ3. This
is to be expected due to the properties of fractional operators
and the extra degrees of modeling freedom and allows for an
improvement in control system characteristics. However, in
order to claim this explicitly one would need to use hardware
and software methods with a more strict precision requirement.

B. Frequency-domain Identification

The time-domain identification tool can be launched from
FOTF Viewer via menu Tools→Identification→Frequency
domain... or by typing the following into the MATLAB
command line:

fotfrid

The frequency-domain identification tool GUI will then be
displayed. The tool allows to identify a fractional-order model
either in the form

G(s) =
1

cnsnγ + cn−1s(n−1)γ + · · ·+ c1sγ + c0
(20)

or in the form

G(s) =
bms

mγ + bm−1s(m−1)γ + · · ·+ b1s
γ + b0

ansnγ + an−1s(n−1)γ + · · ·+ a1sγ + 1
, (21)
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where γ is the fractional-order transfer function commensu-
rate order and n, m are the corresponding polynomial orders.
Further we discuss the identification methods used by the tool.

Three algorithms for system identification in the frequency
domain are available [18], [19]. The Hartley method allows
to obtain the model (20) parameters c0, c1, . . . , cn from
the experimentally collected complex frequency response by
solving the following equation

⎡
⎢⎢⎢⎢⎣

1
G(jω1)
1

G(jω2)

...
1

G(jωm)

⎤
⎥⎥⎥⎥⎦
= (22)

⎡
⎢⎢⎢⎢⎣

1 (jω1)
γ (jω1)

2γ · · · (jω1)
nγ

1 (jω2)
γ (jω2)

2γ · · · (jω2)
nγ

...
...

...
. . .

...
1 (jωm)

γ (jωm)
2γ · · · (jωm)

nγ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
...
cn

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ω1, ω2, . . . , ωn are the sampling frequencies. When
using this algorithm, the user must supply the commensurate
order γ as well as model order n.

The Levy and Vinagre identification methods allow to
identify a fractional-order model in the form (21). The un-
derlying algorithm for both methods is the same. It finds the
parameters for an experimental frequency response given by
G(jω) = �(ω) + j�(ω) by solving the following equation

[
A B
C D

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...
bm
a1
...
an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
e
g

]
, (23)

where b0, . . . bm and a1, . . . an are the identified model
parameters and A, B, C, D and e, g are constructed from the
experimental data. Please see [19] for detailed explanation of
these parameters.

During identification using Levy’s method the following
square norm is minimized:

ε = G(jω)
[
an(jω)

nγ + · · ·+ a1(jω)
γ + 1

]
(24)

−
[
bm(jω)

mγ + · · ·+ b1(jω)
γ + b0

]
.

The Vinagre method adds weights to the norm in order
to improve the approximation at low frequencies such that
ε′ = w · ε, where weights w are frequency dependent and for
frequencies ωi, i = 1, ..., f they are given by

w =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ω2−ω1
2ω21

, i = 1,
ωi+1−ωi−1

2ω2i
, 1 < i < f,

ωf−ωf−1

2ω2f
, i = f.

In order to use these methods, the user needs to supply the
commensurate order, as well as fractional polynomial orders n
and m. This allows for an additional optimization problem to

be stated for a set of parameters θ =
[
γ n m

]
. An objective

function to minimize is given by a performance index in the
form

J =
1

nω

nω∑

i=1

∣∣∣G(jω)− Ĝ(jω)
∣∣∣
2

,

where nω is the number of frequencies in ω, G is the
original plant, from which the response was obtained, and Ĝ
is the identified plant. The error index is also used to evaluate
the identification result in general.

As with the time-domain identification, a special data struc-
ture ffidata is used to hold the experimental frequency
response. It can be constructed from the MATLAB command-
line as follows:

id1 = ffidata(mag, ph, w);

or

id1 = ffidata(r, w);

where mag is the observed frequency response magnitude
in dB, ph is the observed frequency response phase angle in
degrees and w is the vector containing frequencies in rad/s,
where the response is known. Alternatively, it is possible
to create the identification data structure using the complex
response r.

Example 5. In this example we will illustrate the use of the
frequency-domain identification tool. Consider a plant given
by

G(s) =
s0.32 + 5

100s1.92 + 20s0.96 − 5s0.64 + 1 .

Let us generate an identification dataset fid1 with 50
logarithmically spaced frequency sample points in the range
ω = [10−4; 104]. This can be done by writing the following
into the MATLAB command line:

G = newfotf(’s^0.32+5’, ...
’100s^1.92+20s^0.96-5s^0.64+1’);

w = logspace(-4, 4, 50);
fid1 = ffidata(freqresp(G, w), w);

We will now identify the fractional model by means of the
fotfrid tool.

As with the time-domain identification, if no information
about the model is given, the only way to identify it is
by trial and error. The good news is that frequency-domain
identification is fast. In this case, one could use the Vinagre
method and choose a commensurate order q = 0.2, leaving
the polynomial orders at their default value n = m = 5, and
also apply the best fit identification by going to Tools→Best
fit and setting the maximum model orders to N = 6 in the
optimization settings dialog. With these settings applied the
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following model is obtained:

Ĝ(s) =
b̂(s)

â(s)
,

b̂(s) = 2.6322 · 10−15s1.92 − 1.4416 · 10−13s1.6
+ 3.2699 · 10−12s1.28 − 3.7288 · 10−11s0.96
+ 2.1969 · 10−10s0.64 + s0.32 + 5,

â(s) = 100s1.92 + 1.6987 · 10−8s1.6
− 1.0219 · 10−8s1.28 + 20s0.96 − 5s0.64
− 1.5758 · 10−10s0.32 + 1.

The initial system can be obtained using the following:

G = trunc(Gid, 1e-5, 1e-5)

Obviously, the system used in this example was relatively
easy to identify. In practical cases, one should carefully
consider the choice of the commensurate order. The identified
system polynomials may be of a very high order, in which case
the Best fit tool will be less useful due to large computational
efforts involved.

For a practical example of frequency-domain identification
see the fractional lead-lag compensator realization in Example
7.

VI. FRACTIONAL-ORDER CONTROL

In this section we discuss the fractional-order controllers
used in the FOMCON toolbox, namely the fractional PID con-
troller, fractional lead-lag compensator and the TID controller.
Our main focus will be on the fractional PID controller, due
to its importance in the industry [7].

A. PIλDμ Controller Design, Tuning and Optimization

The fractional-order PID controller was first introduced by
Podlubny in [1]. This generalized controller is called the
PIλDμ controller (notation PIλDδ is also used in literature)
and has an integrator with an order λ and a differentiator of
order μ. Recent researches show that the fractional-order PID
outperforms the classical PID [20], [21].

The fractional PID controller transfer function has the
following form

Gc(s) = Kp +
Ki

sλ
+Kds

μ. (25)

Obviously, when taking λ = μ = 1 the result is the classical
integer-order PID controller. With more freedom in tuning the
controller, the four-point PID diagram can now be seen as a
PID controller plane, which is conveyed in Fig. 11.

The fractional-order PID design tool can be accessed from
the main GUI by Tools→Fractional PID design or by the
fpid command. It allows to design a PIλDμ controller for a
typical negative feedback unity system shown in Fig. 12.

There are several approaches for fractional PID design
which depend on the plant to be controlled. If the plant is given
by an integer-order model, then classical tuning procedures
could be employed to obtain integer-order PID parameters.

Fig. 11. The PIλDμ controller plane

Fig. 12. Feedback control system with fractional PID controller

Fractional PID orders can then be tuned to achieve enhanced
performance. A tool is provided which permits identifying the
process (which could also be fractional-order) by well-known
models (FOPDT, IPDT, FOIPDT) and computing integer-order
PID gains using classical tuning strategies such as Ziegler-
Nichols, Åström-Hägglund etc. [6]. This tool can be accessed
from the menu Tuning→Integer-order PID or by typing
iopid_tune. For fractional-order PID tuning consider meth-
ods proposed in [8], [22].

Another case is when the plant is of fractional-order. No
special tuning method is currently provided. However, a tuning
method for a class of plants can be found in [16].

The optimization tool, provided in FOMCON, can in prac-
tice be used for fractional PID tuning due to its flexibility.
The tool can be accessed from the PID design tool menu
Tuning→Optimize (or by typing fpid_optim). The tool is
shown in Fig. 13. Here is a summary of the options provided:
• Plant model and fractional PID approximation type. Only

Oustaloup filter type simulations are used mainly due to
processing speed.

• Possibility to tune all parameters, fix gains or fix frac-
tional exponents.

• Possibility to constrain every tuned parameter, except for
the lower bound of the exponents which is fixed.

• Optimization to several performance metrics (ISE, IAE,
ITSE, ITAE).

• Some control over control system performance specifica-
tions (gain and phase margin).

• User-defined number of optimization iterations.
The optimization tool uses the optimize function [12] in
order to tune the fractional PID parameters by minimizing the
function given by the corresponding performance index. These
are as follows:
• Integral square error ISE =

∫ t
0
e2(t) dt,

• Integral absolute error IAE =
∫ t
0

∣∣e(t)
∣∣ dt,

• Integral time-square error ITSE =
∫ t
0
te(t)2 dt,
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Fig. 13. Fractional PID optimize tool

• Integral time-absolute error ITAE =
∫ t
0
t
∣∣e(t)

∣∣ dt,
where e(t) = 1 − y(t), y(t) is the tuned fractional control
system step response.

Example 6. Consider the model of a thermal object we
obtained through identification in Example 4:

G =
1

2012.4087s1.8063 + 107.2882s0.93529 + 1.0305
.

We will now design a PIλDμ controller for this plant using
the optimization tool.

Initially the PID parameters are set to Kp = Ki =
Kd = 100, λ = μ = 1. The exponents are fixed so that an
integer-order PID could be designed. Search limits are set to
K = [−500; 500] for gains and γ = [0.01; 2]. For simulation,
the refined Oustaloup filter approximation is used with default
parameters (ω = [0.0001; 10000], N = 10). Specifications are
as follows. Gain margin is set to 10 dB, while phase margin
to 45 degrees (non-strict). Performance metric is IAE.

Optimization with these settings leads to the follow-
ing integer-order PID controller parameter set: Kp =
457.8607, Ki = 0.97807, Kd = 408.3947. Obtained open-
loop phase margin is ϕm = 45.01◦. Next the gains are fixed
and integrator and differentiator orders are set to λ = μ = 0.5.
The strict option is enabled. The optimization is then contin-
ued. As a result, the orders are found such that λ = 0.24726
and μ = 0.7528.

A comparison of simulation of the designed control systems
with a set value SV = 150 is shown in Fig. 14. It can be seen,
that by tuning only the orders of the controller a better result
is achieved. It is important to note, however, that this result is
obtained with an unconstrained control effort value, which is
always limited in practical situations. Thus it may be required
to review the controller settings according to these limitations
for practical use.

B. Fractional Lead-Lag Compensator
Lead-lag compensators are a well-known type of feedback

controller widely used in practice. Extending it with ideas from
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Fig. 14. Control system for thermal object comparison

fractional calculus can lead to a more robust controller.
A fractional-order lead-lag compensator has the following

transfer function:

Gc(s) = k′
(
λs+ 1

xλs+ 1

)α

, (26)

where α is the fractional order of the controller, λ and x
are parameters such that 1

λ = ωz is the zero frequency and
1
xλ = ωp is the pole frequency and k′ = Kcx

α. When α >
0 the controller (26) corresponds to a fractional-order lead
compensator and when α < 0 it corresponds to a fractional
lag compensator.

The contribution of parameter α is such, that the lower
its value, the longer the distance between the zero and pole
and vice versa so that the contribution of phase at a certain
frequency stands still. This makes the controller more flexible
and allows a more robust approach to the design. Tuning and
auto-tuning techniques are discussed in [8].

No specialized tool is yet available in FOMCON for frac-
tional lead-lag controller tuning. However, tools are proposed
for the analysis of this controller. Since the controller is given
in implicit form, to obtain a transfer function the following
can be done:
• Obtain a complex frequency response of the controller,

a special function frlc() is available in FOMCON for
this task;

• Identify the controller using an appropriate tool.
Further we illustrate this procedure.

Example 7. Consider an integer-order plant given by a model

G(s) =
2

s(0.5s+ 1)
.

In this example, we will realize a fractional lead-lag com-
pensator for this plant discussed in [8]. The gain crossover
frequency is chosen such that ωcg = 10 rad/sec. At this
frequency the plant has a magnitude of −28.1291 dB and
a phase of −168.69◦. To achieve a magnitude of 0 dB at
the gain crossover frequency and a phase margin ϕm = 50◦

the fractional lead compensator is designed with parameters
k′ = 10, x = 0.005, λ = 0.6404, α = 0.5 and thus has the
following implicit fractional-order transfer function

Gc(s) = 10

(
0.6404s+ 1

0.0032s+ 1

)0.5
.
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Fig. 15. Fractional lead compensator realization
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Fig. 16. Control system with fractional lead compensator step response

In order to implement this controller, the frequency response
data is obtained using the frlc() function in the range ω =
[10−5; 105] and a frequency-domain identification dataset is
created by typing the following in MATLAB:

w = logspace(-5,5,1000);
r = frlc(10,0.005,0.6404,0.5,w);
flc = ffidata(r,w);

Next, the fotfrid tool is used to obtain a fractional-order
approximation of the compensator. With q = 0.492, setting
both polynomial orders to 4 and using the Vinagre method, the
following fractional-order transfer function is obtained with an
error J = 0.014867:

Ĝc(s) =
b̂(s)

â(s)
,

b̂(s) = 0.031325s1.968 + 0.30643s1.476

+ 4.6284s0.984 + 4.0234s0.492 + 10.0005,

â(s) = 0.0002215s1.968 + 0.0021625s1.476

+ 0.061928s0.984 + 0.41302s0.492 + 1.

The frequency fitting result is also shown in Fig. 15a. The
open-loop control system frequency response is given in Fig.
15b. It can be seen, that the desired crossover frequency
ωcg = 9.94 and phase margin ϕm = 51.6◦ are very close
to specification.

Finally, the step response of the designed control system is
given in Fig. 16.

Fig. 17. Bode plots for PID controlled plant and the ideal loop response

C. TID Controller

The TID (tilt-integral-derivative) controller was first pro-
posed in [23]. The structure of the TID controller is given by
the following transfer function

Gc(s) =
Kt

s
1
n

+
Ki

s
+Kds, (27)

where Kt/s
1
n is the Tilt type compensator and n ∈ R, n >

0, preferably n ∈ [2; 3]. It can be seen, that the TID controller
corresponds to a conventional PID controller with proportional
gain replaced by the compensator component. The motivation
for this type of controller is from the consideration of Bode’s
theoretically optimal loop response (see Fig. 17). A possible
tuning strategy according to this consideration is given in [23],
[24].

In order to obtain a fractional transfer function in FOM-
CON, one could use the following:

Gc = tid(Kt, n, Ki, Kd);

where parameters Kt, n, Ki, Kd correspond to those in
(27).

VII. MODELING IN SIMULINK

The FOMCON Simulink block library currently consists of
eight blocks and is shown in Fig. 18.

The library is based on Oustaloup filter approximation by
means of the oustapp() function. The discrete blocks use
the Control System toolbox function c2d() to obtain the
discrete model from the Oustaloup filter LTI system. General
block structure is used where applicable.

The difference between the Fractional operator and Frac-
tional derivative blocks is that the order α of the former is
limited to 0 < α < 1.

In order to ensure efficient and accurate simulation, the
model built with these blocks may be made up of stiff systems
and an appropriate solver should be used in Simulink in such
a case (ode15s or ode23tb).

Example 8. Consider a model of a dynamic system and the
corresponding fractional-order controller discussed in [6] and
given by the following transfer functions:

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1
,

Gc(s) = 233.4234 +
22.3972

s0.1
+ 18.5274 · s1.15.
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Fig. 18. FOMCON Simulink library

Fig. 19. System model in Simulink

Let us build the corresponding model in Simulink, using
the above blockset. The resulting model is given in Fig. 19.
A saturation block is added, limiting the control signal within
an interval Ulim = [−100; 100] and adding a band-limited
white noise block for simulating disturbance in the system
with power of P = 10−9, sample time of T = 0.01 and seed
value of 23341. System simulation result is given in Fig. 20.

VIII. DISCUSSION

The FOMCON toolbox was developed and tested in MAT-
LAB v. 7.7. However, most of the features are backwards-
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Fig. 20. Fractional-order control system simulation result

compatible and were tested with earlier releases of MAT-
LAB (versions 7.4-7.6). FOMCON requires System Control
toolbox for general functionality and Optimization toolbox for
model identification in the time domain.

Further, we discuss some of the current limitations of the
FOMCON toolbox.
• The PID optimization tool lacks complete control over

control system gain and phase margins. The algorithm
can only guarantee that the minimum given specifications
are met by evaluating the open-loop control system
at every optimization step when the Strict option is
checked. However, the initial fractional PID parameters
should strictly satisfy the minimum specifications or else
optimization will not be carried out and an error will be
issued.

• More design specifications settings are required for PID
tuning, including minimum and maximum allowed value
settings for the control effort.

• Both the identification and optimization tools work with
numbers at a fixed accuracy of four decimal places.

• Time domain identification tool does not yet identify the
system lag parameter.

• There are no automatic tuning algorithms implemented
for the fractional lead-lag compensator and TID con-
troller.

• While the order of the fractional derivative block in
Simulink can have an order α > 1, the accuracy of the
simulation will be reduced with higher orders.

The current limitations of the FOMCON toolbox will be
the subject of further development and will be gradually
eliminated in future releases.

IX. CONCLUSIONS

In this paper, we presented a MATLAB toolbox containing
the necessary tools to work with a class of fractional-order
models in control. Theoretical aspects behind the tools were
also covered with illustrative examples. A set of graphical
user interfaces was introduced with relevant comments. We
have discussed fractional-order system analysis, identification
in both time and frequency domains and a set of fractional-
order controllers, focusing on tuning and optimization of the
fractional PID controller. The performance of the latter was
found to be superior to an integer-order PID obtained during
the same tuning procedure. A Simulink blockset was also
presented in the paper.
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Design and Implementation of Fractional-order PID Controllers
for a Fluid Tank System

Aleksei Tepljakov1, Eduard Petlenkov1, Juri Belikov2, and Miroslav Halás3

Abstract— In this paper, we investigate the practical problems
of design and digital implementation of fractional-order PID
controllers used for fluid level control in a system of coupled
tanks. We present a method for obtaining the PIλDµ controller
parameters and describe the steps necessary to obtain a digital
implementation of the controller. A real laboratory plant is
used for the experiments, and a hardware realization of the
controller fit for use in embedded applications is proposed and
studied. The majority of tasks is carried out by means of the
FOMCON (“Fractional-order Modeling and Control”) toolbox
running in the MATLAB computing environment.

I. INTRODUCTION

Today, fractional-order calculus is an actively researched
topic. The number of applications where it is used rapidly
grows [1], [2]. The reason for this is the possibility to obtain
accurate mathematical models of real objects, especially if
those objects exhibit memory, hereditary, or self-similarity
properties. Our interest in fractional-order calculus lies in
the field of control system design. With enhanced modeling
opportunities it is possible to develop novel robust control
techniques. One notable example is CRONE control [3], [4].
It is also possible to harness the power of fractional operators
to update the classical controllers, such as the PID controller
and lead-lag compensator. The fractional-order counterparts
of these controllers, namely the PIλDµ controller and frac-
tional lead-lag compensator, were presented in [5]–[7]. These
fractional-order controllers allow to significantly improve
control loop performance. Some efficient design techniques
have been proposed over the years and are summarized in
[2], [8].

However, the benefits of using accurate models and robust
controllers come at the expense of complicated computations.
The MATLAB software suite is a very good choice for
working with complicated mathematical models and it is
widely used in control engineering. There exist several
toolboxes, specifically devoted to fractional calculus based
control [3], [9].

In this work, we will use the FOMCON toolbox [10],
[11] to design fractional PID controllers for a fluid tank
system. This system has deep roots in the industry. It is also
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a valuable laboratory tool for teaching control engineering.
Additionally, we will explore the possibilities of using the
obtained fractional PID controllers in embedded applications.

The paper is organized as follows. In Section II a brief
introduction to fractional control is provided. In Section III
we describe the plant and corresponding model used in our
controller design experiments. In Section IV a fractional
PID controller design method is outlined. Then, in Section
V we provide the description of the fractional PID digi-
tal implementation and present the experimental platform.
Experimental results follow in Section VI. Section VII is
devoted to discussion. Finally, in Section VIII conclusions
are outlined.

II. BRIEF INTRODUCTION TO FRACTIONAL CONTROL

Fractional calculus is a generalization of differential and
integral operators to a non-integer order fundamental opera-
tor aD

α
t , where α is the operator order and a, t denote the

limits of the operation. The continuous integro-differential
operator of order α ∈ R is defined in the following way

aD
α
t =











dα/dtα α > 0,

1 α = 0,
´ t

a
(dτ)−α α < 0.

(1)

Several definitions of the fractional integro-differential
operator exist. We, however, restrict our attention to one
particular definition, since it is used throughout this work for
evaluating fractional-order systems. This is the Grünwald-
Letnikov definition [2] and it is as follows

aD
α
t f(t) = lim

h→0

1

hα

k
∑

j=0

(−1)j
(

α

j

)

f(t− jh), (2)

where a = 0, t = kh, k is the number of steps, and h is
the step size. Assuming zero initial conditions, the Laplace
transform of the fractional derivative with α ∈ R

+ is given
by

ˆ

∞

0

e−st
0D

α
t f(t)dt = sαF (s), (3)

where s = jω is the Laplace transform variable. Thus a
fractional-order differential equation can be expressed in
transfer function form in the Laplace domain as follows

G (s) =
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0

. (4)

The control law of the PIλDµ controller, where the integral
component is of order λ and the derivative component is of
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order µ, has the following form in the time domain

u(t) = Kp · e(t) +Ki · I λ
t e(t) +Kd · Dµ

t e(t), (5)

where e(t) is the error signal and the fractional-order integral
is defined as I α

t x(t) = D
−α
t x(t). In the Laplace domain,

the transfer function corresponding to the parallel form of
the fractional-order PID controller is the following

C(s) = Kp +
Ki

sλ
+Kd · sµ. (6)

It can be easily seen, that in the frequency domain this
controller has obvious advantages over the classical one. By
definition, sα = (jω)α and thus more freedom in changing
the shape of the response is achieved. This is a very important
controller design method that is frequently used.

Finally, it should be mentioned that in practice fractional-
order operator approximations are often used. This allows
to overcome the problem of the infinite memory require-
ment that the fractional-order systems possess. A very good
approximation technique, whereby the fractional derivatives
are approximated by integer-order ones, is the Oustaloup
recursive filter method [4] and its modification [2], [12].
Once a continuous-time approximation is obtained, it is
possible to compute the corresponding discrete-time model
using a suitable method. A good summary of these methods
is provided in [1], [13].

III. DESCRIPTION OF THE COUPLED TANK SYSTEM

The laboratory plant used in this work is a coupled fluid
tank system shown in Fig. 1. The plant is conveniently
connected to the PC via USB for data transfer. A Simulink
library for real-time control of the plant is available.

Fig. 1. The laboratory plant

In the continuous-time domain the plant model can be
described by the following differential equations

ẋ1 =
1

A
u1 − d12 − w1c1

√
x1, (7)

ẋ2 =
1

A
u2 + d12 − w2c2

√
x2,

where x1 and x2 are levels of fluid in the tanks, A is the cross
section of both tanks, c1, c2, and c12 are flow coefficients,
u1 and u2 are pump powers, and

d12 = w12 · c12·sign(x1 − x2)
√

|x1 − x2|.

The coupled tank system has three valves. Each of them can
be either fully opened or fully closed. This is governed in
the model by factors w1, w2, and w12 with w ∈ {0, 1}.

Fig. 2. Coupled tanks model

We now provide the discrete-time model of this system.
Following the notation in [14] for x(t + T ) we shall write
x+, where T is the sampling period. The model is as follows

x+
1 = x1 +

T

A
u1 − d12 − w1c1T

√
x1, (8)

x+
2 = x2 +

T

A
u2 + d12 − w2c2T

√
x2,

where

d12 = T · w12 · c12·sign(x1 − x2)
√

|x1 − x2|.

The flow coefficients for this particular plant were iden-
tified experimentally and are as follows: c1 = 0.0292,
c2 = 0.0259, and c12 = 0.0267. The cross-section A of
both tanks is 10.18 · 10−4m2 and maximal pump power uh

for both pumps is 5.9174 · 10−5m3/s. The height of both
tanks is 0.29m.

IV. DESIGN OF FRACTIONAL-ORDER PID CONTROLLERS

Further, an outline of the fractional PID controller design
method is provided. It is assumed that the plant can be
modeled by a low order process model. Then, the process
of obtaining the fractional PID controller parameters, i.e.
component gains and integral/derivative orders, can comprise
the following steps:

1) Approximate or identify the process by a simple
process model, e.g. by a first-order plus dead time
(FOPDT) model and obtain the initial PID parameters
Kp, Ki, and Kd by using an established tuning for-
mula, e.g. by using the Ziegler-Nichols method [15];

2) Use the obtained controller component gains as starting
points for controller parameter optimization, based
on particular design specifications and control loop
performance criteria;

3) Evaluate the result and apply corrections to the con-
troller parameters, if necessary.

In the FOMCON toolbox for MATLAB several tools exist
to fulfill this task. It is possible to obtain a fractional-order
model in form (4) from time-domain identification data using
the time-domain identification tool fotfid, and it is also
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possible to approximate fractional-order systems by process
models and compute controller gains with the iopid_tune
tool.

Once the initial parameters are obtained, it is possible
to use the optimization tool fpid_optim to improve the
robustness of the control loop by introducing the fractional
orders λ and µ of the PIλDµ controller and using numerical
optimization. The cost function is computed by using one of
the four performance indices (integral square error, integral
absolute error, integral time square error, and integral time
absolute error) from the simulated control loop response.
Design specifications are set in the frequency domain [2].
A detailed description of specifications used in the tool is
provided in [16] with relevant comments. The graphical user
interface of the fractional-order PID controller optimization
tool is shown in Fig. 3.

Fig. 3. Graphical user interface for fractional PID optimization tool

The tool allows to use Simulink for system simulation
which allows to work with nonlinear systems. In this case the
linear, time invariant system could still be used for computing
the frequency-domain parameters of the open loop in order
to assess the control system performance.

V. CONTROLLER IMPLEMENTATION AND EXPERIMENTAL

PLATFORM

In this work we consider fractional-order system approx-
imation to obtain the digital implementation of fractional-
order PID controllers. Some previous implementation ex-
periments are described in [17], [18]. It is important to
take into account the limitations of target hardware, because
fractional-order systems approximations are usually of high
order. In this case we use the Atmel AVR 8-bit microcon-
troller ATmega8A for implementing the PIλDµ controller.
Several performance constraints should be considered:

• There is no specialized floating-point unit on this de-
vice, apart from a hardware multiplier, all calculations
are done in software;

• Only single precision floating-point number format is
available.

Therefore, the effects stemming from limited resolution
floating-point computations will impair the controller realiza-
tion. In [1], [18] it is suggested to implement the fractional
controller by an IIR filter in canonical form

H(z) =





N
∑

j=0

bj · z−j





(

1 +

M
∑

i=1

ai · z−i

)−1

, (9)

where N = M is the order of the filter.
However, in case of hardware with limited capabilities

this may not be the best solution, since the stability of
computation will be significantly reduced. One possibility
is to use an IIR filter comprised of second-order sections
[19], which has the following form:

H(z) = b0

N
∏

k=1

1 + b1kz
−1 + b2kz

−2

1 + a1kz−1 + a2kz−2
. (10)

Such a realization is less sensitive to parameter variation
due to coefficient quantization [20]. In canonical form this
filter will require two memory elements per section for the
delay terms which works favorably in case when memory is
limited.

Let us now summarize the suggested implementation
procedure:

1) Obtain a continuous-time approximation of the
fractional-order PID controller by using the Oustaloup
recursive filter method in a suitable frequency range,
observing the resulting controller frequency-domain
characteristics and comparing them to the ideal re-
sponse;

2) Use a discretization method to obtain the filter discrete
representation in the z-domain, check the frequency-
domain characteristics;

3) Factor the coefficients of the resulting filter to obtain
the second-order sections form, in case of poor coef-
ficient scaling, try different approximation parameters
in step 1.

In FOMCON, it is possible to use an experimental tool
impid for this task. The MATLAB command zp2sos()

can convert the zero-pole-gain representation, which is pre-
ferred due to enhanced accuracy, into second-order section
form. For discretization purposes the c2d() command can
be used with ’matched’ method [21].

Once the implementation is obtained, it should be trans-
ferred to the microcontroller. In this work the filter is hard-
coded into the microcontroller firmware.

Next, let us describe the prototyping platform used in the
controller implementation experiments [22]. The schematic
diagram of the control loop is given in Fig. 4. The data
acquisition board is connected to the computer via RS232
and in this configuration is capable of 5kSPS data rates with
8 bit sample resolution. On the computer, real-time control
loop simulation is done by means of the Real-Time Windows
Target toolbox for MATLAB. The resolution of analog-
to-digital and digital-to-analog converters of the controller
prototype is fixed at 8 bit.
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Fig. 4. Hardware loop connection diagram used in controller implemen-
tation experiments

VI. EXPERIMENTAL RESULTS

Three types of experiments are considered:
1) Simulation of the fluid tank system model in MAT-

LAB/Simulink used to optimize the controller param-
eters;

2) Control of the real plant from Simulink, the plant
is connected to the computer via USB, no additional
equipment is used;

3) Control of the model in (8) running in Simulink in the
configuration depicted in Fig. 4.

Note, that the validation of the controller prototype is only
done by using the plant model. The closed-loop behavior
of the digital fractional PID controller prototype and the
laboratory plant is yet to be investigated.

A. Single Tank

In this experiment, our goal is to control the level in a
single tank, that is the valve connecting the two tanks is
closed, i.e. in models (7) and (8) we have w12 = 0. Next,
we describe the procedure of tuning the PIλDµ controller to
control the real plant.

First, a fractional-order LTI model is identified from the
step experiment. The identification data is recorded from the
real plant and is transformed such that both input and output
signals are in range u, y ∈ [0, 1]. The obtained model is as
follows

G1(s) =
1

5.3538s1.0109 + 0.4126
e−1s. (11)

It can be seen, that this model tends to an integer-
order FOPDT model. The latter can be approximated using
iopid_tune tool in FOMCON as

Ĝ1(s) =
2.43567

1 + 12.5914s
e−1.0779s (12)

and integer-order PID controller gains can be obtained using
the Ziegler-Nichols method as Kp = 5.75515, Ki =
2.66962, Kd = 3.10175.

The next step is to use the fractional-order PID con-
troller optimization tool using the obtained integer-order
gains as initial values. The model (4) is approximated by
a refined Oustaloup filter of order N = 5 within ω =

[0.0001, 10000] rad/s. The chosen performance metric is
integral absolute error (IAE). Simulink is used for system
simulation and control effort saturation is considered. Gain
and phase margins are specified as Gm = 15dB and ϕm =
90◦, respectively. Optimization set point is 0.5. Finally, the
gains and orders λ, µ are limited to the following ranges:
Kp = [0.1, 10],Ki = [0.001, 10], λ = 1,Kd = [0.1, 10], µ =
[0.5, 0.9]. The selection of ranges is derived from considering
the behavior of the fractional-order control actions in the
time domain. After a 100 iterations the following results are
obtained:

Kp = 1.1434, Ki = 0.079556, Kd = 0.89839,

λ = 1, µ = 0.80468.

Upon implementing this discrete controller in MATLAB
with sampling time Ts = 0.1s and testing the control loop
in real time with the laboratory plant, these parameters
resulted in a significant overshoot of the controlled level.
After manually shifting the points K ′

p = 2Kp and K ′

d = 2Kd

and further optimization, the following PIDµ controller was
designed:

Kp = 2.6282, Ki = 0.097128, Kd = 1.26,

λ = 1, µ = 0.78894. (13)

In Fig. 6 the response of the control system in presence of
random measurement errors caused by physical interference
can be observed. It can be seen, that the system easily
recovers from such disturbance. The set point is y = 0.2m.
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Fig. 5. Level control with measurement noise

Next, we consider reference tracking. In this case, we also
test the controller prototype using the obtained parameters.
The set point changes from 0.2m to 0.15m at the 40th second
of the simulation. The results obtained are given in Fig. 6.

It can be seen, that the response of the control loop with
the real plant is different from those, where a model was
used. Therefore, the model should be revised accordingly.
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Fig. 6. Level control with set point change

The controller prototype implemented using the method
described in Section V performs as expected. The corre-
sponding control system response closely matches the simu-
lated one. However, the control law produced by the physical
controller suffers from limit cycles. This is due to the
relatively low sample resolution which results in quantization
[19], [20]. It is possible to eliminate the oscillations by
increasing the sample resolution.

B. Coupled Tanks

This time the task is to control a level of the first tank
in a system of coupled tanks, when in (7) and (8) we have
w1 = w12 = 1, and the last valve w2, which can open at
any time, is seen as disturbance. In [14] a nonlinear control
design approach was used, in this work we use a linear
PIλDµ controller.

We identify the real plant from a step experiment with
w1 = w12 = 1, w2 = 0. The resulting fractional-order model
is described by a transfer function

G2 =
1

7.3986s0.9455 + 0.4095
e−0.1s. (14)

We notice, that this model no longer tends to exhibit
integer-order dynamics as in case of (11).

Due to the value of the delay term the basic tuning
formulae for integer-order PID tuning do not provide feasible
results. However, it is possible to select some starting point
manually and run optimization several times. However, it is
important to choose the correct frequency domain specifi-
cations to ensure control system stability. In our case the
goal is to minimize the impact of disturbance, so constraints
on the sensitivity functions could be imposed. Our choice is
such that |T (jω)| ≤ −20 dB, ∀ω ≥ 10 rad/s and |S(jω)| ≤
−20 dB, ∀ω ≤ 0.1 rad/s. The gain and phase margins are
set to Gm = 10dB and ϕ = 60◦, respectively. Additionally,
due to the same problem as in the previous experiment, in
order to limit the overshoot, the upper bound of control
signal saturation was lowered from 100% to 60%. Using the
IAE performance metric we finally arrive at the following

PIλDµ controller parameters by optimizing the response of
the nonlinear system in Simulink:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, µ = 0.29915. (15)

Next, the discrete approximation is obtained. Note, that
in case of this controller it is very important to choose
the proper frequency range of approximation. The suitable
range for a refined Oustaloup filter of order 5 was found
such that ω = [0.0001, 100] rad/s. The sampling time is
Ts = 0.2s. The responses of the three control systems in
different configurations are depicted in Fig. 7. The set point
is once again fixed at y = 0.2m. Additional disturbance is
such that the second pump is switched on at full capacity at
t = 76.4 s and is turned off at t = 80.6 s.

Once again we observe that the behavior of the real plant
differs from the simulated one while the responses of the
discrete controller in Simulink and the digital controller are
virtually identical. The control law oscillations of the digital
controller are of smaller amplitude than in the previous
experiment with the single tank.

The obtained control system is capable of maintaining
the set level with a tolerance of 5% in the presence of
disturbances discussed above.
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Fig. 7. Level control in a system of coupled tanks

Finally, we present some comments related to the com-
putational capacity of the Atmel AVR ATmega8A based
controller prototype. Table I contains information about the
time required to compute a single output sample. It can be
seen, for example, that using an IIR filter with 7 sections
allows the sample time to be as low as 600 µs.
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TABLE I

ATMEGA8A OUTPUT SAMPLE COMPUTATION

No. of IIR
second-order sections

Clock cycles required
per sample

computation

Sample
computation time

at 16 MHz

7 9057 566.07 µs

14 18208 1.138 ms

VII. DISCUSSION

During our work we have run into several problems briefly
outlined next.

• The difference in the model and the real plant is quite
evident and should be eliminated. A more thorough
parameter identification procedure may be needed. Once
a more accurate model is obtained, the results of con-
troller design via simulation based optimization should
also improve.

• The limited sample resolution of the controller proto-
type introduces limit cycles of a substantial amplitude
into the control signal due to quantization. The results
of further simulations of these effects suggest that
increasing the sample resolution to 10 bit significantly
reduces the oscillations.

• Difficulties may arise in discrete-time approximation of
a fractional-order controller. Careful choice of approx-
imation parameters may resolve the issue.

While optimization based tuning can provide feasible results,
efforts should be devoted into developing analytical tuning
rules for the fractional-order PID controller. Implementation
of efficient auto-tuning is also highly desired.

VIII. CONCLUSIONS

In this paper we presented a method for fractional-order
PID controller design in the MATLAB/Simulink environment
using the FOMCON toolbox. We have also provided a
description of a procedure that can be used to obtain digital
implementations of fractional-order controllers and discussed
the associated issues. Illustrative examples were provided
to support these methods. The proposed tuning method is
quite general and is thus suitable for a wide variety of
plants. In this work, we have obtained results comparable to
those achieved by nonlinear control designed for the coupled
tank system in [14], [23]. Further work will be devoted to
improving the obtained results.
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Abstract

Fractional-order calculus is a very useful tool which extends classical, integer-
order calculus and is used in contemporary modeling and control applications.
It allows to describe dynamical systems more accurately, as well as gain
valuable insight into some specific, memory, hereditary, and self-similarity
properties of such systems. Fractional-order controllers, e.g. the PIλDµ con-
troller and fractional lead-lag compensator, based on the added flexibility
of fractional-order operators, are capable of superior performance compared
to their integer-order counterparts. However, there exist multiple issues as-
sociated with the implementation of these fractional-order systems. In this
work we consider the problem of efficient analog realization of fractional-
order controllers. We investigate the possibilities of network generation from
fractional-order controller approximations derived using different methods
proposed over the years. We consider the problem of practical feasibility of
the resulting network as well as the preservation of controller performance
specifications. Suitable tools, developed for the MATLAB environment in the
context of the FOMCON (“Fractional-order Modeling and Control”) toolbox,
are presented and discussed. Results of relevant experiments, encompassing
the simulation of the designed circuit are provided.
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Abstract—Fractional-order calculus is a very useful tool which
extends classical, integer-order calculus and is used in contem-
porary modeling and control applications. It allows to describe
dynamical systems more accurately, as well as gain valuable
insight into some specific, memory, hereditary, and self-similarity
properties of such systems. Fractional-order controllers, e.g. the
PIλDµ controller and fractional lead-lag compensator, based on
the added flexibility of fractional-order operators, are capable
of superior performance compared to their integer-order coun-
terparts. However, there exist multiple issues associated with the
implementation of these fractional-order systems. In this work we
consider the problem of efficient analog realization of fractional-
order controllers. We investigate the possibilities of network gen-
eration from fractional-order controller approximations derived
using different methods proposed over the years. We consider
the problem of practical feasibility of the resulting network as
well as the preservation of controller performance specifications.
Suitable tools, developed for the MATLAB environment in the
context of the FOMCON (“Fractional-order Modeling and Con-
trol”) toolbox, are presented and discussed. Results of relevant
experiments, encompassing the simulation of the designed circuit
are provided.
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I. INTRODUCTION

Fractional-order calculus is a mathematical concept and
formalism, which allows to accurately model real-life phenom-
ena, especially such that exhibit memory and hereditary prop-
erties [1], [2]. Naturally, fractional-order calculus has found
its way into contemporary control applications. Conventional
industrial controller models, such as the PID controller and
lead-lag compensator, were generalized to benefit from the
non-integer modeling approach [3], [4], [5], [6].

Due to the inherent complexity of fractional-order compu-
tational models, efficient analog implementation of fractional-
order systems and controllers may be difficult. While specific
discrete electronic components are being actively developed
and tested [7], [8], electrical network based approximations
of fractional-order elements, called fractances [9], can be
effectively used. Apart from control applications, fractance
elements can also be used in simulations of complex processes.

The foundations for some of the modern analog realizations
of fractance circuits were laid in [10], [11], [12]. One of the

most important developments in this field is perhaps the work
of Alain Oustaloup and the CRONE research group [13], [1].
More recently the problem of analog realization of fractance
elements has been investigated in [14], [15], [16], [17], [18].

In this paper, we consider the problem of efficient network
generation for fractance circuits derived from earlier works
and based on frequency domain analysis. Our main motivation
is to develop a systematic approach to facilitate research and
development of fractional-order signal processing and control
applications involving fractance component approximations.
The required efficiency is achieved by integrating this knowl-
edge into a fully-featured software solution thereby allowing
to quickly obtain fractance circuit realizations. We focus on
the realizability of the resulting network and the preservation
of control loop performance specifications. The results of this
work can be applied in manufacturing of fractance circuits,
including discrete component based active filter realizations.
The main contribution is a MATLAB toolset designed for
working with fractance networks in application to analog
realization of fractional-order system models and controls.

The paper is organized as follows. In Section II a brief
introduction to fractional-order control theory is given. In
Section III we present an overview of fractance circuit network
synthesis for fractional-order controller implementation. We
cover several approximation schemes and network structures.
In Section IV we present our approach to systematization of
currently available methods and describe the particular real-
ization in MATLAB software in the context of the FOMCON
toolbox [19], [20]. Illustrative examples follow in Section V.
Some topics for discussion are provided in Section VI. Finally,
conclusions are drawn in the last section.

II. BRIEF INTRODUCTION TO FRACTIONAL CONTROL

Fractional calculus is a generalization of differential and
integral operators to a non-integer order operator aDα

t , where
α is the order of the operator, a and t denote the limits of the
operation. The operator is defined in the following way

aDα
t =





dα/dtα α > 0,

1 α = 0,
´ t

a
(dτ)−α α < 0.

(1)
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Assuming zero initial conditions, the Laplace transform of
the fractional derivative with α ∈ R+ is given by

ˆ ∞

0

e−st
0D

α
t f(t)dt = sαF (s), (2)

where s = jω is the Laplace transform variable. Thus
a fractional-order differential equation can be expressed in
transfer function form in the Laplace domain as follows

G (s) =
bmsβm + bm−1s

βm−1 + · · · + b0s
β0

ansαn + an−1sαn−1 + · · · + a0sα0
. (3)

The fractional PIλDµ controller [3], where λ and µ denote
the orders of the integral and differential components, respec-
tively, is represented as follows:

C(s) = Kp +
Ki

sλ
+ Kd · sµ. (4)

It can be seen, that this controller has advantages over the
classical one since there is more freedom in shaping the
response. In the frequency domain by varying the order γ of
a fractional-order integrator (differentiator) one can achieve a
constant decrement (increment) in the slope of the magnitude
curve that equals 20γ dB/dec and a constant delay in the phase
plot πγ/2 rad, where the values depend on the sign of γ.

The transfer function, corresponding to the fractional lead-
lag compensator of order α, has the following form, involving
an implicit expression:

CL(s) = K

(
1 + bs

1 + as

)α

. (5)

When α > 0 we have the fractional zero and pole frequen-
cies ωz = 1/b, ωh = 1/a and the transfer function in (5)
corresponds to a fractional lead compensator. For α < 0, a
fractional lag compensator is obtained. This type of controller
has received a considerable amount of attention and is useful
in a number of control applications [21], [22], [23].

III. ELECTRONIC REALIZATION OF FRACTIONAL-ORDER
CONTROLLERS

In the following, we provide a summary of the network
structures and corresponding synthesis methods used in this
work with relevant comments.

Over the years, several methods involving use of Cauer and
Foster canonical network forms were proposed [9]. Two of
these structures will be used in this work. The Cauer I form
RC circuit, presented in Fig. 1, has the following impedance,
obtained by applying continued fraction expansion[24]:

ZRC(s) = R1 +
1

C2s +
1

R3 +
1

C4s + · · ·

. (6)

The Foster II form RC circuit is given in Fig. 2. The
corresponding admittance can be expressed by means of partial
fraction expansion in the following way:

YRC(s) =
1

ZRC(s)
=

1

Rp
+ Cps +

n∑

i=1

Kis

s + σi
, (7)

Fig. 1. Cauer I form canonical RC network

where Ki = 1/Ri and σi = Ki/Ci.

Fig. 2. Foster II form canonical RC network

In general, in order to obtain the fractance network compo-
nent values there are several choices:

• Use a suitable approximation technique to obtain the
impedance in form Z(s) and develop it into a suitable
expansion, thus obtaining the R, C, or L component
values. The values of the components are not well-scaled
and negative values may be obtained, in which case one
would need to use negative impedance converters [9].

• Use constrained optimization to identify the network.
• Apply a method to derive the required component values

directly in a much more controlled manner.
In [10], a RC driving-point immitance approach, applied to a
Foster II canonical form RC network, was proposed to achieve
a constant phase angle ϕ over a designated frequency range.
Useful relations were highlighted to determine the values of
the R and C subsequent components. A similar approach was
used in [25] and later in [16], [17], [18]. In what follows,
we briefly describe this method and provide its application to
fractional-order system and controller implementation.

Given generation parameters α (fractional operator order),
∆ϕ (phase ripple), R1 and C1 (base resistor and capacitor
values, which are chosen according to the frequency range of
interest). According to these values, the following parameters
are calculated:

η ≈ 0.24

1 + ∆ϕ
, a = 10α log(η), b =

η

a
, (8)

where 0 < a < 1 and 0 < b < 1. The values of m resistors
and m capacitors, comprising the network, are then obtained
by using the following set of synthesis formulae:

Rk = R1a
k−1, Ck = C1b

k−1, k = 1, 2, . . . , m. (9)

The values of Rp and Cp are obtained using

Rp = R1
1 − a

a
, Cp = C1

bm

1 − b
. (10)
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Fig. 3. Analog approximation of a fractional-order operator

Finally, we need to take into account the correction gain
K. If the approximated operator of order α is given by an
integer-order transfer function G(α, s) and the approximation
yields an admittance Y (jω) in (7), then at a frequency

ωm =

√
a

R1C1η#m/2$−1
, (11)

where %·& denote the floor function, the gain is computed as

K =
|G(α, jωm)|
|Z(jωm)| , (12)

where Z(jωm) is the impedance of the obtained approxima-
tion.

This method can be effectively applied to implement the
fractional PID controller. We may use the synthesis procedure
in (8)–(12) separately for the fractional integrator and frac-
tional differentiator to arrive at two fractance networks, which
will form the controller in a general active filter configuration
as illustrated in Fig. 3. Z1(s) and Z2(s) should be chosen
accordingly and reduced to a trivial resistance if need be.

We conclude this section by summarizing the steps required
to implement a fractional lead-lag compensator. The same
synthesis formulae can be used, however:

• The frequency range of approximation, determined by
τ = R1C1, must be correctly chosen;

• The gain of the differential or integral component must
be corrected by a factor 1/ωα

z such that

Gc(α, s) = ω−α
z G(α, s), (13)

where ωz is the zero frequency in (5), Gc(α, s) and
G(α, s) are integer-order transfer functions, approximat-
ing the fractional lead-lag compensator and the corre-
sponding fractional-order operator, respectively.

IV. IMPLEMENTATION IN MATLAB

Our goal was to obtain a general enough approach to
systematization of existing network topologies and their gener-
ation. In FOMCON, fractance network synthesis and analysis
is handled by means of a central component—an object,
containing complete circuit information. The object contains
references to

• particular network structures (MATLAB functions), how-
ever complex, which return computed network transfer
functions (impedance values),

• corresponding implementations (also MATLAB func-
tions).

The idea is that a single structure can have several different
implementations, including, e.g., optimization based ones. The
relations are illustrated in Fig. 4.

Fig. 4. Fractance, network structure, and implementation relations

This way one can implement a fractional PID controller and
store it in a single object. For generality, we also consider
the possibility of using inductive components in network
structures.

Fractance is implemented by means of a class
frac_rcl(), which has following properties:

• model — a model of the fractional-order system (fotf
object);

• structure — network structure (Cauer, Foster, etc.);
• implementation — function that carries out the actual

computation of the network component values;
• ω — frequency points used for model validation;
• params — parameters used for implementation and/or in

the structure;
• K — network gain compensation factor(s);
• R, C, L — cell array with component value vectors,

the size of the array is determined by the number of
substructures within the main structure;

• results — implementation/validation results.
The first five parameters are used to create the frac_rcl()
object. The following particular methods are implemented:

• tf(), zpk() — return the impedance Z(s) in transfer
function or zero-pole-gain format, corresponding to the
fractance circuit, for network analysis. This can be used
to automate, e.g. frequency response analysis.

• prefnum() — locates closest component values ac-
cording to the preferred series and replaces network com-
ponents accordingly. It is also possible to provide custom
values of components so that the algorithm will choose
the closest matches among a custom set of values. This
can be necessary to analyze the changes of the system
frequency characteristics due to variation of component
values.

• zscale() — implementation of impedance scaling
used to shift the values of discrete electronic components
into the feasible domain.

Abstraction of fractance into a class has obvious benefits. The
user has an option of writing implementations for existing
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structures, or using the provided ones, while still using a single
universal object to encompass the network. Some specific
function naming schemes and coding conventions need to
be followed by the programmer. Also, the programmer is
responsible for documenting new, custom structures.

In the following, we illustrate the use of our approach.

V. FRACTANCE NETWORK GENERATION EXAMPLES

A. Fractional-order Low-pass Filter

In this example, we define a structure for a fractional low-
pass filter

G(s) =
1

1 + 7s0.35

and provide the steps of the implementation procedure. Note,
that this corresponds to the fundamental linear fractional-
order differential equation and there are different means of
implementation [14]. However, our goal here is to illustrate
how structures can be broken down into substructures. We
proceed as follows:

• Choose an initial value for the resistor R in RCs0.35 as
15kΩ;

• Consider implementing the operator s0.35 by means of
the Oustaloup recursive filter;

• Use continued fraction expansion to arrive at a Cauer I
type RC network;

• Use impedance scaling.
With this in mind, we build a custom MATLAB
structure function frac_struct_rc_lowpass_c1(),
which, in turn, uses a structure function
frac_struct_rc_cauer1() and the corresponding
implementation frac_imp_rc_lowpass_oc1(). Then,
we use the following set of commands:

G1 = fotf(’1’,’1+7s^0.35’);

params = struct;
params.R1 = 15e3;
params.N = 5;

w = logspace(-5,2,200);

imp1 = frac_rcl(G1, ...
’frac_struct_rc_lowpass_c1’, ...
’frac_imp_rc_lowpass_oc1’, ...
w, ...
params);

An object is returned, where R and C properties are cell
arrays, the first one contains the chosen resistor R, and the
second one has the R and C values of the fractional capacitor
approximation. The values need to be scaled, so the following
command is issued:

imp1 = imp1.zscale({[], 0.001});

Finally, we obtain a passive circuit, corresponding to the
fractional-order low-pass filter, depicted in Fig. 5. The compo-
nent values are within a more or less feasible region, although
the implementation of this system may be difficult and require
careful considerations to be made. The comparison of the

ideal frequency response of the fractional-order low-pass filter
versus the network approximation is given in Fig. 6. The
frequency response for the network was obtained by simulating
the network in LTSpice IV and imported into MATLAB for
plotting. As it can be seen, the approximation is valid within
the approximate range ω = (10−3; 10) rad/s.

Fig. 5. Fractional low-pass filter schematic in LTSpice IV
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Fig. 6. Fractional low-pass filter frequency response: ideal vs. approximated

B. Fractional Lead-Lag Compensator

In this example, our goal is to obtain an analog implemen-
tation a fractional controller for a model of a position servo

G(s) =
1.4

s(0.7s + 1)
e−0.05s (14)

identified in [23]. The design specifications are as follows:
phase margin ϕ = 80◦, gain crossover frequency ωcg = 2.2
rad/s. In the same reference paper, a controller design was
proposed, based on robustness considerations derived from the
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desired frequency domain characteristics of the plant, in the
form of a fractional lead compensator:

C(s) =

(
2.0161s + 1

0.0015s + 1

)0.7020

.

We implement this controller using the method from Section
III. We choose R1 = 200kΩ and C1 = 1µF. The basic struc-
ture is the Foster II form RC network and the implementation
is done by means of the described algorithm. To obtain the
differentiator, we use the property Zd(s) = 1/Zi(s), where
Zd(s) and Zi(s) correspond to impedances of a differentiator
and an integrator, respectively. This is done by setting the
impedances in Fig. 3 such that Z1(s) = Zi(s) and Z2(s) =
Rk, where Rk serves as a gain correction resistor. To obtain the
network approximation, the following MATLAB commands
are executed:

b = 2.0161; wz = 1/b;
alpha = 0.702;
Gc = fotf(’s’)^alpha / wz^alpha;

params = struct; params.R1 = 200e3;
params.C1 = 1e-6; params.N = 4;
params.varphi = 0.01;

imp2 = frac_rcl(1/Gc, ...
’frac_struct_rc_foster2’, ...
’frac_imp_rc_foster2_abgen’, ...
logspace(-2,3,1000), ...
params);

Note, that the transfer function approximation, correspond-
ing to the controller, has to be obtained from the resulting
circuit object by using

C = 1/zpk(imp2);

Following the successful generation of the network, the
prefnum() command is issued, which requests setting the
resistor values to the preferred series with 5% tolerance, and
the capacitor values substituted for closest components out of
the 10%-series. This is done as follows:

imp2 = imp2.prefnum(’5%’,’10%’,[],’5%’);

Finally, the user may wish to display the bill of materials by
using the function engnum(). For example, for the list of
resistors one can use the command:

[vals, str] = engnum(imp2.R);

The variable str will contain string constants with the
values of the resistors in the network:

’360 k’ ’200 k’ ’75 k’ ’27 k’ ’9.1 k’

The same could be applied to the gain setting resistor Rk,
which in our case has the preferred value of 390kΩ. The
resulting network is depicted in Fig. 7. The schematic is
simplified for simulation in LTSpice IV.

In Fig. 8 a comparison of frequency responses of the
ideal lead compensator, the corresponding fractional-order
differentiator and the resulting network approximation can be

Fig. 7. Fractional lead-lag compensator realization schematic in LTSpice IV
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observed. As in the previous example, the frequency charac-
teristics of the network were obtained from SPICE simulation
and imported into MATLAB.

The open-loop frequency response of the control system
is given in Fig. 9. A shift in the design specifications can
be observed. Corrections may need to be made to particular
component values or the overall network structure must be
enhanced.

VI. DISCUSSION

A necessary further step is to use the obtained network
approximation to manufacture a hardware implementation of
specific fractional-order systems and controllers. Then, means
of improving the tool can be deduced from the practical
perspective. Additionally, some issues discussed in this paper
must also be addressed:
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• Selection of a network structure for a particular applica-
tion;

• The tool must ensure the validity of the resulting network
in the frequency range of interest.

One way to tackle the aforementioned problems is by means
of carefully devised constrained optimization. This approach
will be investigated in the future.

VII. CONCLUSIONS

In this paper, we have presented an approach to electrical
network generation, suitable for implementing fractances in
application to system modeling and control. A particular
MATLAB realization, integrated into the FOMCON toolbox,
was proposed. The presented solution offers means to gener-
alize different network structures and implementations into a
single object, which can be further manipulated to achieve a
particular engineering goal. Further research in this area will
take the following directions:

• Creation of a more diverse set of structures and imple-
mentations;

• Network structure enhancements for particular modeling
and control tasks;

• Automation of identification of such an electrical network
that corresponds to a set of given performance criteria;

• Implement automatic SPICE model generation;
• Creation of a more user friendly experience for using the

proposed tool.
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Abstract

Gain scheduling is widely regarded as an effective nonlinear control tech-
nique, and its extension to fractional-order control is a natural step. In this
paper, we investigate a particular method based on a gain and order schedul-
ing approach for fractional-order PID controllers. The method is applied to
the control of a real-life laboratory model of an industrial multi-tank system.
Gain and order scheduling is realized by means of a control law comprising
two static PID controllers and an appropriate control blending rule provid-
ing this way means for stability analysis of the control system. The design
of controllers for level control in the first tank is carried out by considering
linear fractional-order approximations of the nonlinear model of the process
with locally applicable frequency-domain robustness specifications. The con-
troller for the second tank is obtained using time-domain optimization of the
transient response. In addition, an extended Kalman filter is designed to
reduce measurement noise propagation into the control law thereby enhanc-
ing the performance of the pump. The majority of necessary computations,
including those related to controller design, are performed numerically in the
FOMCON toolbox for MATLAB.
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Abstract—Gain scheduling is widely regarded as an effective
nonlinear control technique, and its extension to fractional-order
control is a natural step. In this paper, we investigate a particular
method based on a gain and order scheduling approach for
fractional-order PID controllers. The method is applied to the
control of a real-life laboratory model of an industrial multi-
tank system. Gain and order scheduling is realized by means
of a control law comprising two static PID controllers and an
appropriate control blending rule providing this way means for
stability analysis of the control system. The design of controllers
for level control in the first tank is carried out by considering
linear fractional-order approximations of the nonlinear model of
the process with locally applicable frequency-domain robustness
specifications. The controller for the second tank is obtained using
time-domain optimization of the transient response. In addition,
an extended Kalman filter is designed to reduce measurement
noise propagation into the control law thereby enhancing the
performance of the pump. The majority of necessary computa-
tions, including those related to controller design, are performed
numerically in the FOMCON toolbox for MATLAB.

I. INTRODUCTION

The gain scheduling approach is a very popular nonlinear
control design method successfully applied in numerous appli-
cations [1]. In this paper, we show a way to extend the ideas
of gain scheduling by leveraging tools found in fractional-
order calculus. The latter has seen a significant increase in
interest from the control engineering community [2]. Indeed,
having additional flexibility in the form of noninteger operator
powers allows to achieve robust controller tuning with respect
to a more strict set of specifications [3]. Notable contributions
in fractional-order control are described in [4], [5], [6], [7].
Several recent papers also deal with the problem of gain and
order scheduling in relation to fractional-order PID (FOPID)
controllers, e.g., [8], which is also the main focus of this work.

Fractional-order control is readily applicable in the industry
[9]. However, before carrying the designed methods over to
the control of real industrial plants, where a design mistake
may result in production losses, it is important to evaluate
the performance of the controller using a real-life model of
the plant of interest. In this paper, we investigate the problem
of fluid level control using a laboratory model of a multi-
tank system, which can be configured in a variety of ways.
This system serves as a model for a wide range of industrial
processes [10], such as those found in chemical engineering,
food processing, and irrigation systems.

We now outline the particular contribution of the present
paper. First, we propose a method for the gain and order
scheduling based on the design of a family of FOPID con-
trollers for the control of a given nonlinear system. We then
formulate a particular control law comprising two static FOPID
controllers. The proposed structure, on one hand, allows to
carry out stability analysis of the resulting control system, and
on the other hand simplifies its implementation on embedded
systems. Next, we study the multi-tank system and identify the
parameters of the corresponding nonlinear model. In addition,
we implement a nonlinear Kalman filter to tackle the problem
of strong measurement noise. We then turn to the issue of
level control in the first tank, and with that goal in mind
linear fractional-order approximations are identified at two
working points of the system, and fractional-order controllers
are designed by means of constrained optimization given local
robustness criteria derived from frequency-domain analysis.
Once the controllers are obtained, stability analysis is done for
the composite control law with every linear approximation. A
fluid level control strategy is then proposed for the second tank,
and a FOPI controller is designed based on the optimization
of the transient response of the control system with the gain
and order scheduled controller running simultaneously in the
simulated loop.

The paper is organized as follows. In Section II we provide
an overview of the mathematical tools and methods derived
from fractional-order calculus that are used in this work. In
Section III the gain and order scheduling method for FOPID
controllers is proposed and studied. In Section IV the model
of the multi-tank system is presented, results of parameter
identification are given, and the application of the extended
Kalman filter is described and its impact on the robustness of
the system is analyzed. At this point we also put forth the con-
trol problem based on a particular configuration of the multi-
tank system. Experimental results follow in Section V. Items
for discussion are proposed in Section VI and conclusions and
future perspectives are drawn in Section VII.

II. OVERVIEW OF EMPLOYED FRACTIONAL-ORDER
CALCULUS TOOLS

In this work, we use the Grünwald-Letnikov definition
of the fractional operator for the purposes of identifying
fractional-order linear approximations. In particular, we use
a time-domain simulation method described in [2], [7], [11].
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The definition has the form

aDα
t f(t) = lim

h→0

1

hα

k∑

j=0

(−1)j

(
α

j

)
f(t− jh), (1)

where a = 0 , t = kh, k is the number of computation steps
and h is step size. For implementing real-time control we use
the well-established Oustaloup filter method [4] summarized
next. For a frequency range (ωb, ωh) and of approximation
order N the filter of order 2N + 1 for an operator sγ , 0 <
γ < 1, is given by

sγ ≈ K
N∏

k=−N

s + ω′k
s + ωk

, K = ωγ
h, ωr =

ωh

ωb
, (2)

ω′k = ωb(ωr)
k+N+ 1

2
(1−γ)

2N+1 , ωk = ωb(ωr)
k+N+ 1

2
(1+γ)

2N+1 .

To identify a linear fractional-order model we employ an
output error minimization method, fitting the transient response
of a fractional-order transfer function to that of the original
system under a prescribed excitation signal. That is, the
objective function is given by an output error norm ‖e (t)‖22,
where e(t) = y(t)− ỹ(t). The general form of the fractional-
order transfer function may be taken as

G(s) =
bmsβm + bm−1s

βm−1 + · · ·+ b0s
β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
e−Ls, (3)

where, in general, it is assumed that α0 = β0 = 0, which
implies a static gain K = b0/a0, and L is the input-output
delay. Identification is accomplished by means of searching
for a suitable parameter set θ = [ ap αp bz βz L ],
comprised of factors and exponents of terms in the pole
and zero polynomials, respectively, and of the input-output
delay parameter. In this work we use the fractional first-order
plus dead time model (FO-FOPDT). A model of this type
was previously considered and successfully applied to process
control problems in, e.g., [12] and in our earlier works [13],
[14]. It has the form

G(s) =
K

1 + Tsα
e−Ls. (4)

Assuming that the delay L of the system can be neglected, we
can reduce the set of search parameters to θ = [ K T α ].

Stability analysis for a general fractional-order system
given by a transfer function is carried out by means of
Matignon’s theorem [2], [15], which is provided here for
convenience.

Theorem 1: (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if
the following condition is satisfied in σ-plane:

|arg(σ)| > q
π

2
, ∀σ ∈ C, P (σ) = 0, (5)

where σ := sq . When σ = 0 is a single root of P (s), the
system cannot be stable. For q = 1, this is the classical theorem
of pole location in the complex plane: no pole is in the closed
right plane of the first Riemann sheet.

For control purposes we consider the parallel form of the
fractional-order PIλDμ controller given by the transfer function

C(s) = Kp +
Ki

sλ
+ Kds

μ (6)

and a standard negative unity feedback loop.

The tuning of the FOPI and FOPID controllers is done
by means of minimizing a suitable performance index. In this
work we consider the integral time-absolute error index

ITAE =

ˆ τ

0

t |e(t)| dt.

To ensure robustness of the control system we employ the
following specifications in the frequency-domain [7]:

• Gain margin Gm and phase margin ϕm specifications;

• Complementary sensitivity function T (jω) constraint,
providing A dB of noise attenuation for frequencies
ω > ωt rad/s;

• Sensitivity function S(jω) constraint for output dis-
turbance rejection, providing a sensitivity function of
B dB for frequencies ω < ωs rad/s;

• Robustness to plant gain variations: a flat phase of the
system is desired within a region of the system critical
frequency ωcg .

Finally, since we are working with a real-life model, it makes
sense to set control law u(t) saturation values such that u(t) ∈
[umin, umax].

III. THE PROPOSED GAIN AND ORDER SCHEDULING
METHOD FOR FRACTIONAL-ORDER PID CONTROLLERS

In the following we provide a summary of the proposed
method. Suppose that a nonlinear system is modeled by

ẋ = f(x, u), y = h(x). (7)

Suppose in addition, that a linear fractional-order approxima-
tions of the form (3) may be obtained for a set of working
points {(uk; yk), k = 1, 2, . . . , n}, across the system operating
range. Denote by

Ψ = {G1, G2, . . . , Gn} (8)

the set of such linear fractional-order approximations. Then,
for each Gi ∈ Ψ design a controller of the form (6), that would
locally satisfy a set of performance specifications, provided in
Section II thereby forming another set, denoted by

Ω = {C1, C2, . . . , Cn} . (9)

Now, consider the composite control law

Υ(x, s) =
n∑

k=1

βk(x)Ck(s), (10)

where βk(x) is a weighting function depending on the sched-
uled state x(t) and Ck(s) ∈ Ω.

The choice of n in (10) depends on the operating range of
the system in (7). In the following we consider the case n = 2.
Then,

Υ(x, s) = β1(x)C1(s) + β2(x)C2(s) (11)



and since we are dealing with level control, we may choose
the state x(t) to be the level, xmax the maximum level, and
define

β1(x) :=
(1− γ(x))

2
, β2(x) :=

γ(x)

2
, γ(x) :=

x(t)

xmax
. (12)

It is obvious, that since each entry in (9) was designed for
a particular linear approximation, the composite control law
in (10) must be verified across the whole range of linearized
models, that is, stability must be ensured for all entries in (8).
In this work, we consider a heuristic method. Since we employ
the negative unity feedback loop, we may compose a set

Λ = {Γ1, Γ2, . . . , Γνn} (13)

where

Γk =
Zk(s)

Pk(s)
=

Υj(x, s)Gk(s)

1 + Υj(x, s)Gk(s)
(14)

and j = 1, 2, . . . , ν is the number of state values considered
for the test and Υj is a particular control law. For each
entry in (13) take the characteristic polynomial Pk(s), find the
commensurate order q � qmin and use Matignon’s theorem.

Remark 1: For the case n = 2 in (10) using con-
trollers C1(s) and C2(s) given by their parameter sets
(Kp1, Ki1, λ1, Kd1, μ1) and (Kp2, Ki2, λ2, Kd2, μ2) we ob-
tain the characteristic polynomial P (s) which depends on the
particular parameter set (K, T, α) of the models of the form
(4) in Ψ with L = 0, and on the function γ(x) of the scheduled
state x. The characteristic polynomial has the following form

P (s) = a6s
α+λ1+λ2 + a5s

λ1+λ2+μ2 + a4s
λ1+λ2+μ1

+ a3s
λ1+λ2 + a2s

λ1 + a1s
λ2 , (15)

where a6 = 2T , a5 = K ·Kd2γ(x), a4 = K ·Kd1 (1− γ(x)),
a3 = 2+K ·Kp1 (1− γ(x))+K ·Kp2γ(x), a2 = K ·Ki2γ(x),
and a1 = K · Ki1 (1− γ(x)). The stability test works with
commensurate-order systems. When the resulting fractional-
order system is not of commensurate order, the stability test
produces approximate results [2].

Remark 2: It is important to stress, that the controllers in
Ω have static parameters and operate simultaneously, while
the scheduling, that is the choice of the control action, is done
by means of blending functions. Using a static description of
the controllers should improve reliability of embedded control
implementations [16]. Online gain and order scheduling is
possible.

IV. MODEL OF THE MULTI-TANK SYSTEM

In this section we describe the particular configuration of
the multi-tank system [17] and state the control problem.

A. General Description

The multi-tank system consists of three distinctly shaped
tanks with level sensors and mechanical and automatic valves,
a water reservoir, and a pump, that connects the reservoir and
the upper tank. In this work we consider level control in the
first two tanks, that is in the upper one and the middle one.
An illustration is provided in Fig. 1.

Fig. 1. Configuration of the multi-tank system

This system can be described by the following differential
equations:

ẋ1 =
1

η1(x1)
(up(v)− C1x

α1
1 − ζ1(v1)x

αv1
1 ) , (16)

ẋ2 =
1

η2(x2)
(q + r − C2x

α2
2 − ζ2(v2)x

αv2
2 ) ,

where x1 and x2 are levels in the upper tank and middle tank,
respectively, η1(x1) = A = aw is the constant cross-sectional
area of the upper tank, η2(x2) = cw + x2bw/x2max is the
variable cross-sectional area of the middle tank, up(v) is the
pump capacity that depends on the normalized control input
v(t) ∈ [0, 1], ζ1(v1) and ζ2(v2) are variable flow coefficients
of the automatic valves controlled by normalized input signals
v1(t), v2(t) ∈ [0, 1], q = C1x

α1
1 and r = ζ1(v1)x

αv1
1 . Fluid

levels are taken as outputs of the system, i.e. y1 = x1, y2 = x2.
A list of parameters of the model with their respective physical
meaning is provided in Table I.

TABLE I. PARAMETERS OF THE TWO-TANK SYSTEM

Parameter Physical description

w width of both tanks

a length of the upper tank

b, c lengths of the top and bottom part of the middle tank

x2max maximum attainable fluid level in the middle tank

Ci resistance of the output orifice of the ith tank

αi, αvi state exponents describing the flow of the ith valve

The multi-tank system may be controlled by means of a
personal computer running MATLAB and Simulink software
packages. The identification of parameters above is done by
means of a series of experiments. The validation of the model
in (16) was carried out under a variety of excitation signals. It
can be seen from Fig. 2 that a sufficiently accurate model is
obtained.

B. Statement of the Control Problem

The task is to design a controller for the upper tank such
that would keep the level of fluid within reasonable bounds
at the desired set point in the presense of disturbances caused
by the controlled output valve. Also it is required to design a
controller for the middle tank, such that would keep the level



0 10 20 30 40 50 60
−0.02

0

0.02

0.04

0.06

0.08

0.1

T
a
n
k
 1

: 
x 1

 [
m

]

 

 

Identified model

Original response

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

T
a
n
k
 2

: 
x 2

 [
m

]

Time [s]

 

 

Identified model

Original response

Fig. 2. Model validation results

of fluid at the desired set point using controlled valves of the
upper tank and also its own valve. To this end, we will now
define a unified control input for controlling the level in the
second tank vc(t) ∈ [−1, 1] such, that the control inputs of the
automatic valves are given by the following set of rules

v1 =

{
0, if vc � 0,

0.3vc + vd, if vc > 0,
(17)

and

v2 =

{
0, if vc � 0,

−0.3vc + vd, if vc < 0.
(18)

The value vd = 0.7 corresponds to the deadzone of the control
in both cases, that is, the fluid does not flow through the
automatic valves when v1 � vd or v2 � vd. The constructed
control law allows to regulate the fluid level in the middle
tank. The tanks are, in fact, coupled, so only a limited range
of fluid level values is achievable in the middle tank and it is
related to the level in the upper tank. The outflow of liquid
from the upper tank through the automatic valve forms part of
the control for the middle tank and is considered a disturbance
from the perspective of level control in the upper tank.

C. Derivation of the Extended Kalman Filter

One significant problem with the present implementation
of the multi-tank system is the amount of noise present in level
measurements. Since the ends of the submerged sensor tubes
are placed very close to the output valves in all three tanks,
the switching of the automatic valves creates additional noise
which cannot be easily dealt with using linear filtering meth-
ods alone. Therefore, it was decided to employ an extended
Kalman filter [18] to tackle this problem. To conserve space
we provide here only the final equations with a brief summary.

In essence, the purpose of the extended Kalman filter
is to estimate unmeasured states and actual process outputs
using statistical methods. This is done in two major steps: the
predictor step, and the corrector step. We can construct an
individual Kalman filter for each of the tanks in the system.
This allows us to operate with scalar values in the filter
equations and hence computations are considerably simplified.
We use a discrete-time nonlinear model of a single tank

obtained by the Euler method

xk = xk−1 +
Ts

η(x)
uk−1 −

CTs

η(x)
xα

k−1 (19)

yk = xk,

where η(x) is the cross-sectional area which depends on the
level x in the tank, T is the sampling interval, C and α together
form the outflow characteristic, and u is the inflow, k is the
discrete sample index. Then, we construct the equations for the
discrete-time extended Kalman filter based on the nonlinear
model of the process and formed by the predictor step

x̂−k = x̂k−1 +

(
Ts

η(x̂)

)
uk −

(
CTs

η(x̂)

)
x̂α

k−1, (20)

P−k = Pk−1

(
1−

(
CTs

η(x̂)

)
αx̂

(α−1)
k−1

)2

+ Q, (21)

and the corrector step

Kk =
P−k

P−k + R
(22)

x̂k = x̂−k + Kk

(
ỹk − x̂−k

)
(23)

Pk = (1−Kk) P−k , (24)

where Q and R are the filter design variables representing input
and measurement noise covariances, respectively. We have
found that Q = 10−5 and R = 10−2 provide the necessary
performance.

Note, that we neglect the automatic valve in this model.
In Fig. 3 we provide the estimation error for the upper tank
only. At time t = 20s the automatic valve leading from the
upper tank to the middle one is fully opened. It is possible to
observe the shift of the estimation mean, which is drawn over
the noisy error signal for reference. The estimation error mean
ē reaches the maximum value of ēmax = 0.0012m which is
within the control error bounds.

0 5 10 15 20 25 30 35 40
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time [s]

E
s
ti
m

a
ti
o

n
 e

rr
o

r 
[m

]

 

 

Estimation error

Estimation error mean

Fig. 3. EKF estimation error for the upper tank

V. EXPERIMENTAL RESULTS

We now illustrate the use of the method proposed in
Section III to the problem of level control in the two tanks.
Numerical analysis is done by means of the FOMCON toolbox
for MATLAB [19], [20]. The real-life system used in the
experiments is depicted in Fig. 4.

First, linear approximations of the form (4) are obtained
from the nonlinear model by means of time-domain identifica-
tion at system working points (0.7029, 0.1) and (0.7879, 0.2).



Fig. 4. Real-life multi-tank system

The identification procedure is detailed in [20]. The following
models are found:

G1(s) =
0.14464

18.728s0.91746 + 1

and

G2(s) =
0.25881

27.859s0.9115 + 1
.

During our study we have found that the fractional exponent α
in the models above frequently arises during the identification
process, and more importantly, these fractional models offer
superior precision than classical ones. With variation of certain
model parameters we have identified a range that the exponent
α can take to be approximately α ∈ (0.88, 0.94). This result
may, in fact, be related to the one in [13]. However, no clear
relation has been identified between the fractional exponents
of the process models and those in the states of the nonlinear
model in (16).

Next, controllers are designed for level control in the
upper tank using the FOPID optimization tool of FOMCON
toolbox. For this a nonlinear model of the system is used
for simulations in the time domain, the set value corresponds
to the particular operating point. Linear fractional-order ap-
proximations corresponding to the working points are used to
constrain the optimization process by employing frequency-
domain specifications [3].

In particular, in case of the first controller, a phase margin
is set to ϕm � 60◦, sensitivity and complementary sensitivity
function constraints are set such that ωt = 0.02 and ωs =
0.1 with A = B = −20 dB. Robustness to gain variations
specification is also used with the critical frequency ωc = 0.1.
For the second controller, the phase margin specification is
changed to ϕm = 85◦ and the bandwidth limitation specified
by ωc is removed. Due to the flexibility of the tuning tool, it is
possible to retune the controllers by considering the composite
control law in (11) during the controller optimization process.

Finally, two FOPID controllers are obtained:

C1(s) = 6.1467 +
1.0712

s0.9528
+ 0.8497s0.8936

and

C2(s) = 5.1524 +
0.3227

s1.0554
+ 2.4827s0.010722.

The composite control law

C(s) =
(1− γ(x1)) C1(s) + γ(x1)C2(s)

2

is then verified with both models G1(s) and G2(s) using (15)
with step size of γ(x1) = 0.01 and minimum commensurate
order qmin = 0.01. The result of the test is that the closed-loop
systems are stable in case of both fractional models.

Once the gain and order scheduled composite controller
is designed, it is plugged into the control system, and a
FOPID controller is designed for the control of the level
in the second tank using the same optimization tool of the
FOMCON toolbox. Here we need to consider the following.
First, frequency-domain specifications are not applicable, since
we do not have a linear model of this process. In addition,
the application of the Dμ component is not very desirable in
this case, because of the relatively large dead-zone in control
of the outflow and therefore any noise amplified due to the
differentiator component will lead to rapid switching of the
automatic valves.

Therefore we design a FOPI controller based only on
optimization of the transient response of the control system
in the time domain. The following controller is obtained:

C3(s) = 5.0000 +
0.06081

s0.1029

which is essentially a proportional controller with a weak
fractional-order integrator.

Finally, the performance of the whole control system is
evaluated with the real-life plant. All controllers are imple-
mented by means of (2). A Simulink model is used, which is
given in Fig. 5. A low-pass filter is added to the level control
loop of the second tank. This introduces a phase lag that
reduces switching of the automatic valves. Set-points changes
are presented in Table II. The result of the performance
evaluation is presented in Fig. 6.

Fig. 5. Simulink diagram used for the real-time control experiment

The levels in the first and second tanks are kept within
reasonable error bounds of approximately 5% of the set
point. The control task put forth in Section IV is thereby
accomplished. Notice, that the noise does not propagate into
the control law of the pump. The control law of the valves
is, for the most part, bang-bang due to the large deadzone in
the control of the automatic valves. However, the switching
frequency is acceptable.



TABLE II. REFERNCE SIGNAL CHANGES CONSIDERED FOR THE
REAL-TIME CONTROL EXPERIMENT

Time instance [s] Upper tank reference [m] Middle tank reference [m]

0 0.1 0.1

100 0.15 0.1

150 0.15 0.2

250 0.2 0.2
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Fig. 6. Control system evaluation results with the real-life plant

VI. DISCUSSION

In the paper, we have presented a flexible gain scheduling
method applied to design of control systems comprised of
FOPID controllers. Several discussion items are outlined next.

In this work we perform only heuristic linear stability
analysis of the resulting composite control system, but it
would be more beneficial to consider stability analysis of the
nonlinear system. In addition, further work may be carried out
to design a more efficient controller for the middle tank, such
that would minimize the switching of automatic valves.

The proposed method is quite simple, requires only static
description of the FOPID controllers and therefore may be
employed in, e.g., automatic tuning for efficient control of
nonlinear systems with across a large operating range. This
also serves as a good foundation for developing embedded
control hardware, which also forms an important part of our
future work.

VII. CONCLUSIONS

In this paper, we have presented initial results in relation to
an efficient control method involving a composite control law
comprised of fractional-order PID controllers applied to the
problem of level control in a multi-tank system. The proposed
method was successfully applied to the control problem, and
relevant results were presented and analyzed.
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Abstract

Fractional-order calculus presents a novel modeling approach for systems
with extraordinary dynamical properties by introducing the notions of deriva-
tives and integrals of noninteger order. In system theory this gives rise to
extensions to linear, time invariant systems to enhance the description of
complex phenomena involving memory or hereditary properties of systems.
Standard industrial controllers, such as the PID controller and lead-lag com-
pensator, have also been updated to benefit from the effects of noninteger
integration and differentiation, and have advantages over classical controllers
in case of both conventional and fractional-order process control. However,
given the definitions of fractional operators, accurate digital implementa-
tion of fractional-order systems and controllers is difficult because it requires
infinite memory. In this work we study the digital implementation of a
fractional-order PID controller based on an infinite impulse response (IIR)
filter structure obtained by applying the Oustaloup recursive filter genera-
tion technique. Software for generating digital fractional-order is developed
and tested on an Atmel AVR microcontroller. The results are verified using
a MATLAB/Simulink based real-time prototyping platform.
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Abstract—Fractional-order calculus presents a novel modeling
approach for systems with extraordinary dynamical properties by
introducing the notions of derivatives and integrals of noninteger
order. In system theory this gives rise to extensions to linear,
time invariant systems to enhance the description of complex
phenomena involving memory or hereditary properties of sys-
tems. Standard industrial controllers, such as the PID controller
and lead-lag compensator, have also been updated to benefit
from the effects of noninteger integration and differentiation,
and have advantages over classical controllers in case of both
conventional and fractional-order process control. However, given
the definitions of fractional operators, accurate digital imple-
mentation of fractional-order systems and controllers is difficult
because it requires infinite memory. In this work we study
the specific implementation of a fractional-order PID controller
and fractional-order lead-lag compensator based on an infinite
impulse response (IIR) filter structure obtained by applying
the Oustaloup recursive filter synthesis technique. Software for
generating digital fractional-order is developed and tested on
an Atmel AVR microcontroller. The results are verified using a
MATLAB/Simulink based real-time prototyping platform.

Index Terms—fractional-order calculus, fractional-order pid
control, digital control, embedded system

I. INTRODUCTION

DURING the last 300 years fractional-order calculus has
been the subject of moderately active discussion [1].

While the related mathematical theory still has some issues,
it is already possible to benefit from additional modeling
possibilities, offered by fractional calculus, in terms of appli-
cations. Fractional-order control is a notable example, where
fractional-order calculus offers numerous opportunities for en-
hancing the characteristics and performance of control loops.

In the vast field of process control PID controllers stand
out as the most popular choice for control loop design. An
abundance of tuning rules and techniques has been developed
for these truly ubiquitous controllers. Fractional-order PID
controllers, introduced in [2], are a natural extension to their
conventional counterparts and have superior characteristics due
to the added flexibility of the noninteger operators involved
in the computation of the control law. If properly tuned,
FOPID controllers are capable of outperforming conventional
PID controllers in case of both integer-order and fractional-
order processes [3], and in particular, in case of servo system
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control [4], [5], [6]. The implementation of these controllers,
however, is not as trivial as in case of classical PID controllers
and requires careful consideration, especially when embedded
system realizations are concerned.

In this work we treat the case of digital filter synthesis for
embedded control applications. The particular contribution of
this paper is as follows. We use the well-established Oustaloup
filter [7] as basis for obtaining continuous-time zeros and
poles, and then apply a discrete-time transformation yield-
ing the digital filter. Further, the zero-pole representation is
converted to the second-order section form to ensure computa-
tional stability of the resulting filter. While all these operations
are easily carried out in MATLAB, specific considerations
need to be taken into account when dealing with embedded re-
alization of the digital filter. In particular, we provide equations
that may be used to carry out the necessary computations and
seek to establish some timing and memory constraints related
to the digital implementation of a FOPID controller. To make
the method more widely applicable we choose relatively low-
end hardware as basis for implementation. We develop the
fractional-order PID controller software for the Atmel AVR
ATmega8A microcontroller, and test it by means of a MAT-
LAB/Simulink based real-time simulation platform [8]. To
validate the resulting embedded control system a coupled tank
plant model is used in Simulink for which a fractional-order
controller was designed in our earlier work [9]. In addition,
we use a model of a position servo from [10] to validate the
performance of a fractional lead compensator. In both cases,
the modeled plant is connected to the controller prototype by
means of a data acquisition board thereby simulating a real-
life physical process. Further, this work complements earlier
studies [11] and our work [12], [13], [14], where we used
FOMCON toolbox for MATLAB [15] to generate the digital
filter coefficients and hard-coded them into the microcontroller
firmware. The results of this work can be applied to industrial
process control.

The paper is organized as follows. In Section II the reader is
introduced to the core concepts of fractional-order calculus in
modeling and control. In Section III the proposed synthesis
method is described. In Section IV the method is carried
over to an embedded system realization. The specifics of the
implementation are provided. Dynamic memory requirements
for the computing device, e.g. a microcontroller, are also
analyzed. In Section V the realization of a digital fractional-
order PID controller and a digital fractional-order lead-lag
compensator is discussed. Real-time simulation results follow
in Section VI. Finally, in Section VII conclusions are drawn.
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II. OVERVIEW OF FRACTIONAL-ORDER CALCULUS
APPLICATIONS TO MODELING AND CONTROL

The cornerstone of fractional-order modeling is the gener-
alized non-integer order fundamental operator

aDα
t =

⎧
⎪⎨
⎪⎩

dα/dtα α > 0,

1 α = 0,
´ t

a
(dτ)−α α < 0,

(1)

where a and t denote the limits of the operation. There
exist several definitions of the integro-differential operator. We
consider the Grünwald-Letnikov definition [1], [10] due to its
immediate applicability to numeric evaluation of fractional-
order derivatives. The definition is as follows:

aDα
t f(t) = lim

h→0

1

hα

k∑

j=0

(−1)j

(
α

j

)
f(t− jh), (2)

where a = 0, t = kh, k is the number of computation
steps and h is step size. We notice, that this definition is not
directly suitable for real-time signal processing applications,
since infinite sample memory is required [1], [16].
If zero initial conditions are assumed, the Laplace transform

of the fractional α-order derivative is given by
ˆ ∞

0

e−st
0D

α
t f(t)dt = sαF (s), (3)

where α ∈ R+ and s is the usual Laplace transform variable.
The parallel form of the fractional PID controller, called the
PIλDμ controller with λ and μ being the fractional orders
of the integral and differential components has the following
transfer function:

C(s) = Kp +
Ki

sλ
+Kd · sμ. (4)

It can be seen, that in the frequency domain this controller
offers more tuning flexibility since more freedom in changing
the shape of the response is achieved. Because we are dealing
with band-limited approximations throughout this work, it is
important to implement the fractional-order integrator compo-
nent in (4) as

GI(s) =
1

sλ
=
s1−λ

s
(5)

for λ < 1 since this ensures the effect of an integer-
order integrator at low frequencies thereby resulting in faster
convergence of the controlled output to its final value [10].

Consider also a particular type of fractional controller,
namely, the fractional lead-lag compensator. It has the fol-
lowing form:

Gc(s) = Kcx
α

(
λs+ 1

xλs+ 1

)α

, 0 < x < 1, (6)

where α is the fractional order of the controller, 1/λ = ωz is
the zero frequency and 1/(xλ) = ωp is the pole frequency
when α > 0. Parameters Kc, x, α and λ are the design
parameters.

III. THE DISCRETE-TIME OUSTALOUP FILTER
GENERATION METHOD

Let us first summarize the original Oustaloup method [7].
Given the approximation frequency range [ωb, ωh] rad/s, order
of approximation ν ∈ Z+ and fractional power α ∈ [−1, 1] ⊂
R, we proceed to compute (2ν + 1) zeros and (2ν + 1) poles
of the filter as

ω′k = ωbθ
(k+ν+0.5−0.5α)

2ν+1 , ωk = ωbθ
(k+ν+0.5+0.5α)

2ν+1 , (7)

where k = {−ν,−ν + 1, . . . , 0, . . . , ν − 1, ν} and θ =
ωh/ωb. Thus the continuous recursive Oustaloup filter transfer
function is obtained in the form

Ĝ(s) = ωα
h

(s− ω′−ν)(s− ω′−ν+1) · · · (s− ω′ν)

(s− ω−ν)(s− ω−ν+1) · · · (s− ων)
. (8)

The filter approximates a fractional-order operator

sα ≈ Ĝ(s) (9)

in the chosen frequency range. The amount of ripple in the
phase response of this filter can also be determined. In the
following, we describe the discretization method which, when
employed, can serve as a basis for discrete-time Oustaloup
filter generation and may be implemented on an embedded
device.

Suppose that we are given a sampling interval Ts ∈ R+.
Then we may set the higher frequency bound of approximation
in (7) to ωh = 2/Ts. Next, consider the zero-pole matching
equivalents method for obtaining a discrete-time equivalent
of a continuous time transfer function [17]. The following
mapping is used for both zeros and poles:

z = esTs , (10)

where s denotes a particular zero or pole. Therefore, for each
k in (7) we take

σ′k = e−Tsω′k , σk = e−Tsωk (11)

thus mapping continuous zeros and poles to their discrete-
time equivalents directly. We notice, that once the mapping is
done, we need to compute the gain of the resulting discrete-
time system at the central frequency ωu =

√
ωbωh. This can

be done by first finding the gain of the resulting discrete-time
system by taking

Ku =
∣∣H(ejωuTs)

∣∣ . (12)

We also know the correct gain at this frequency

Ks = ωα
u . (13)

So, finally we obtain the gain of the system as

Kc = Ks/Ku. (14)

The discrete-time system is thus described by a transfer
function of the form

H(z) = Kc
(z − σ′−ν)(z − σ′−ν+1) · · · (z − σ′ν)

(z − σ−ν)(z − σ−ν+1) · · · (z − σν)
. (15)

Due to the fact that the order of the approximated operator
is α ∈ R+ the transfer function in (8) is stable [7] and the
corresponding discrete-time equivalent (15) is also stable.
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IV. CONSIDERATIONS FOR EMBEDDED DEVICE
IMPLEMENTATION

In this section we would like to address the problems
associated with implementing the generation scheme described
above on an embedded device, such as a microcontroller. We
have to take the following into consideration:
• Performance limitations;
• Limited computational abilities;
• Potential memory size limitations.

The first item completely depends on the type of microproces-
sor (and potentially additional hardware computational units)
used in the implementation.

We notice, that (12) involves computations with complex
numbers. However, we can compute a particular factor (z−σ)
in (15) at the frequency ωu as follows

∣∣ejωuTs − σ
∣∣ = |cos(ωuTs) + j sin(ωuTs)− σ| =

=
√

1− 2σ cos(ωuTs) + σ2 (16)

due to Euler’s formula. Therefore, the gain of the system
specified by discrete-time zeros and poles in (11) may be
computed as

Ku =

ν∏

k=−ν

(
1− σ′kθ + (σ′k)2

)0.5

ν∏

k=−ν

(1− σkθ + σ2
k)

0.5

, (17)

where θ = 2 ·cos(ωuTs) is constant at the given frequency ωu

and sampling interval Ts which needs to be computed only
once. After computing this gain one arrives at the final gain
Kc of the discrete-time approximation by using equation (14).

This system can be implemented as an IIR filter. The
next step is to transform this representation into second-order
section form to improve computational stability. Consider the
set of discrete-time zeros (poles), that we have obtained earlier

z = {σ−ν , σ−ν+1, . . . , σ0, . . . σν , σν−1, σν} . (18)

Due to the generation method (7) the set in (18) is an ordered
set. In order to arrive at the second-order section form for
the zero (pole) polynomial we proceed as follows. We have
2ν + 1 zeros (poles), so there are ν + 1 second-order sections
(including a single first-order section). Therefore, we have the
polynomial

h(z) = (1− σνz
−1) ·

ν−1∏

k=0

ζ(z) (19)

in the variable z, where ζ(z) = 1 + (ck + dk) z−1 +
(ck · dk) z−2, ck = −σ−ν+2k and dk = −σ−ν+2k+1. So
finally we arrive at the form

H(z) = Kc

ν∏

k=1

1 + b0kz
−1 + b1kz

−2

1 + a0kz−1 + a1kz−2
, (20)

which can be effectively used as an IIR filter in control
applications.

We now turn to the issue of storing the aforementioned
coefficients on an embedded system with dynamic memory.

Additionally we consider the necessary memory size for digital
signal processing related computations.

While it is usually possible to use dynamic memory al-
location for both zero/pole generation and SOS coefficient
arrays, on embedded systems with limited memory size it is
safer to use a static memory allocation architecture to circum-
vent potential run-time problems arising from, e.g., memory
fragmentation. Therefore, care must be taken to choose a
sufficient maximal approximation order νmax and preallocate
the necessary array memory space beforehand. Suppose that a
floating-point data type with a size of ψ bytes is available in a
particular implementation. In the following, we provide some
computations related to minimal memory requirements. First,
to store arrays of values for discrete zero/pole calculation:

Memory for zero/pole arrays = 2ψ(2νmax + 1) bytes. (21)

Now we provide the memory requirements for second-order
section coefficient storage. Note, that in (20) we only need to
store coefficients b1, b2, a1 and a2. Then for both arrays we
have

Memory for SOS arrays = 4ψχ(νmax + 1) bytes, (22)

where χ is the number of approximated operators. Finally, we
will need memory elements for the digital signal processing
application:

Memory for DSP = 2ψχ(νmax + 1) bytes.

The total amount of memory required for the arrays is thus

Total memory = 2ψ ((3χ+ 2)νmax + 3χ+ 1) bytes. (23)

Consider, for example, the Atmel AVR ATmega8 microcon-
troller, which we use as the basis for the implementation of a
digital filter approximating a fractional-order operator with an
order α such that 0 < α < 1. Suppose that a single precision
floating-point data type is available. Then ψ = 4 and χ = 1
and for νmax = 10 we need to preallocate

2 · 4 ((3 · 1 + 2) · 10 + 3 · 1 + 1) = 432 bytes,

which takes up 42.18% out of 1024 bytes of SRAM memory
of this particular microcontroller.

We remark, that it is possible to reuse some static memory
blocks during the generation of the coefficients thus reducing
the necessary memory size requirements.

V. DIGITAL REALIZATION OF FRACTIONAL-ORDER
CONTROLLERS

In the following section we summarize the process of digital
implementation of a fractional-order PIλDμ controller and a
fractional lead-lag compensator.

A. Fractional-order PID Controller

We may digitally implement the fractional-order PID con-
troller as

HPIλDμ(z) = Kp +KiH
−λ
I (z) +KdH

μ
D(z−1), (24)
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where Kp, Ki, and Kd are gains of the parallel form of
the controller as in (4), Hλ

I (z) corresponds to a discrete-
time approximation of a fractional-order integrator of order
λ and Hμ

D(z) corresponds to a discrete-time approximation of
a fractional-order differentiator of order μ, such that λ, μ ∈
[0, 1].

Next, we address the issue of implementing the fractional-
order integrator. Recall the discussion in Section II. Due to
(5) we should implement the integrator as

HI(z) = H1−λ(z) ·HI(z), (25)

where H1−λ(z) is computed using the method presented
above, and

HI(z) =
Ts

(1− z−1)
(26)

is the discrete-time integrator.

B. Fractional-order Lead-Lag Compensator

A fractional lead-lag compensator in (6) has the following
simplified form:

CL(s) = KL

(
bLs+ 1

aLs+ 1

)αL

, (27)

where KL, bL, aL, and αL are design parameters. To imple-
ment this controller one must choose the appropriate approx-
imation frequency bounds ωb and ωh in (7) such that

ωb = 1/bL, ωh = 1/aL. (28)

In addition, a correction gain Kc = bαL must be applied to
the Oustaloup filter approximation. The approximation is then
given by

ĈL(s) = KLKcĜ(s), (29)

where Ĝ(s) is computed in (8). It can be easily deduced, that
a fractional lag compensator corresponds to a Iλ controller
with

Ki = KLKc, λ = αL (30)

and a fractional lead compensator corresponds to a Dμ con-
troller with

Kd = KLKc, μ = αL (31)

with the parameters ωb and ωh chosen according to the
parameters bL and aL. It should be noted, that this method,
as well as the choice of appropriate frequency bounds in (28),
works only in case of the original Oustaloup filter in (7), not
in case of the modified filter discussed in [10], [16].

C. Controller Reset Logic

Finally, we address the state reset logic for the IIR filters that
implement the fractional-order controllers. Denote by e(k) the
kth sample of the error signal e(·). We propose the following
filter memory reset logic based on the notion of a maximal
error change rate margin ρ. The reset condition is expressed
as follows

|e(k)− e(k − 1)| > ρ. (32)

Thus if the controller detects a sudden change in the error
signal, IIR filter and integer-order integrator memory will
be cleared, yielding zero initial conditions for the whole
fractional-order PID controller or lead-lag compensator. It is
important to select the value of the change rate margin ρ well
above measurement noise or potential disturbance level.

VI. HARDWARE IMPLEMENTATION AND REAL-TIME
SIMULATION RESULTS

We use an Atmel AVR ATmega8A microcontroller to im-
plement the results of this work. This choice is dictated by
the relative popularity of this 8-bit microcontroller family and
this microcontroller in particular. The chip is inexpensive and
is widely used in industrial applications. We study the per-
formance of this microcontroller for the fractional-order PID
controller generation as well as DSP functions. Additionally,
we employ external A/D and D/A converters in our FOPID
controller prototype to bypass some DAQ hardware limitations
of the microcontroller yielding a system with 12 bit sample
resolution. The hardware configuration used in the real-time
experiments is shown in Fig. 1.
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Fig. 1. Schematic diagram of the hardware used in real-time control
experiments

The platform implements a hardware-in-the-loop scheme
suited for verifying embedded hardware. Next, we provide a
brief description of the platform:
• Simulink is used to model the plant under control. The

Real-Time Windows Target toolbox is used to achieve
real-time communication between the Simulink model
and external controller prototype. This is done via the
DAQ board controlled in real time from Simulink by
means of a serial communication protocol. The maximum
achievable sample rate is 10kSPS shared between 2 input
and 2 output channels. Therefore, in case of a single input
and a single output the sample rate is limited to 5kSPS
in Direct Port Access mode. The current implementation
allows for at most single-sample delays.

• The controller prototype is implemented on embedded
hardware based on the ATmega8A microcontroller. The
microcontroller is clocked at 16MHz and is running
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firmware written in C-language and compiled with AVR-
GCC with optimization level “O1”. The prototype acts
upon reception of analog signals from the DAQ board
and generates a corresponding control law which is fed
back to the Simulink model via the DAQ board. The
input/output voltage signal range is 0 . . . 5V.

In what follows, we provide performance evaluation figures
based on the time it takes for the microcontroller to compute
a particular FOPID approximation and to do a single sample
computation.

A. Example of Fractional-order PID Controller Implementa-
tion

In this experiment, a model of a laboratory plant—coupled
fluid tanks—is running in Simulink and it is our task to control
this plant by means of our external controller prototype using
a DAQ board. Details about the plant and earlier results are
provided in [9].

We generate a FOPID with the following parameters:

Kp = 6.9514, Ki = 0.13522, Kd = −0.99874,

λ = 0.93187, μ = 0.29915. (33)

The suitable frequency range for an Oustaloup filter of order
ν = 5 is ω = [0.0001, 10] rad/s with νmax = 10. The
sampling interval is Ts = 0.2s. Denote by τg and τs the
time interval that is required for controller generation and
sample computation, respectively, under the conditions above.
We have the following per the report of AVR Simulator:
τg = 27.6224 ms, τs = 1.8904 ms. Obviously, the controller
must compute the next output sample faster than the specified
sampling rate. Thus, sampling rates up to fs ≈ 500 Hz are
possible in this case. Note, however, that it takes much longer
to compute the coefficients of the controller. This should be
considered when the controller is running in a closed loop
and, consequently, in autotuning applications. In Table I a
summary of time requirements for controller generation and
sample computation for ν = 6, 7, . . . , 10 is given.

TABLE I
TIME REQUIREMENTS FOR CONTROLLER GENERATION AND SAMPLE

COMPUTATION FOR DIFFERENT OUSTALOUP FILTER ORDERS

ν τg [ms] τs [ms] Max.applicable fs [Hz]

6 32.2914 1.9868 480

7 37.1326 2.0832 450

8 42.2011 2.1796 425

9 46.8712 2.2759 400

10 51.5617 2.3723 400

Finally, the results of real-time controller evaluation are
presented in Fig. 2. The graphs of two experiments are super-
imposed. The controller has been simulated and implemented
on the external prototype. It can be seen, that the results are
very close.
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Fig. 2. Closed-loop control system response comparison: External FOPID
vs. Simulated FOPID

B. Example of Fractional-order Lead Compensator Implemen-
tation

In this example, we implement a lead compensator using
the method described in Sec. V-B. In the real-time experiment
we consider a model of a position servo given in [10] which
is represented by the following transfer function

G(s) =
2

s(0.5s+ 1)
. (34)

A fractional lead compensator was designed in [10] such that

bL = 0.6404, aL = 0.0032, αL = 0.5 (35)

with the design specifications crossover frequency ωc =
10rad/s and a phase margin of ϕm = 50◦. An equivalent
FOPID controller can be formulated such that

Kp = 0, Ki = 0, λ = 0,

Kd = 8.0025, μ = 0.5 (36)

and an approximation is obtained with the following parame-
ters:

ωb = 1.5615, ωh = 312.50, ν = 5. (37)

This approximation provides the following open-loop
frequency-domain specifications of the control system:
ωc = 9.99rad/s and ϕm = 51◦. The corresponding Bode
diagram is presented in Fig. 3.

The results of the real-time experiment with the digitally
implemented fractional lead compensator are presented in
Fig. 4. Once again, the graphs of two experiments, covering
the evaluation of the hardware controller and the simulated one
are superimposed. It can be seen, that the results are virtually
identical.

VII. CONCLUSIONS

In this paper, we have discussed the important topic of
digital approximations of fractional-order differential and inte-
gral operators. A discrete-time implementation method, based
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Fig. 3. Open-loop frequency-domain response of the obtained fractional lead
compensator
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Fig. 4. Closed-loop control system response comparison: External FO lead
compensator vs. Simulated FO lead compensator

on the Oustaloup recursive filter, was developed for embed-
ded applications. A fractional-order PID controller generation
scheme was also realized. Digital controller approximations of
a fractional-order PID controller and a fractional-order lead-
lag compensator were successfully verified on an Atmel AVR
ATmega8A microcontroller. The proposed solution may be
used in industrial control applications.

Since the controller and samples of the control law are
computed using floating-point arithmetic, it is essential to
carefully evaluate the methods involved in the computations
to ensure numerical stability of the control algorithm. This
is especially important when dealing with relatively low-end
microprocessor systems.

Further research should cover automatic fractional-order
PID controller tuning opportunities and implementation on
other microcontroller families and other digital signal process-
ing devices.
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[3] M. Čech and M. Schlegel, “The fractional-order PID controller outper-
forms the classical one,” in Process control 2006. Pardubice Technical
University, 2006, pp. 1–6.

[4] D. Xue, C. Zhao, and Y. Q. Chen, “Fractional order PID control of
a DC-motor with elastic shaft: a case study,” in Proc. 2006 American
Control Conference (ACC), 2006.

[5] Y. Luo and Y. Chen, “Fractional-order [proportional derivative] con-
troller for robust motion control: Tuning procedure and validation,” in
Proc. ACC ’09. American Control Conference, 2009, pp. 1412–1417.

[6] Y. Luo, Y. Q. Chen, H.-S. Ahn, and Y. Pi, “Fractional order robust
control for cogging effect compensation in PMSM position servo sys-
tems: Stability analysis and experiments,” Control Engineering Practice,
vol. 18, no. 9, pp. 1022–1036, 2010.

[7] A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band
complex noninteger differentiator: characterization and synthesis,” IEEE
Trans. Circuits Syst. I, vol. 47, no. 1, pp. 25–39, 2000.

[8] A. Tepljakov, E. Petlenkov, and J. Belikov, “Implementation and real-
time simulation of a fractional-order controller using a MATLAB
based prototyping platform,” in Proc. 13th Biennial Baltic Electronics
Conference, 2012, pp. 145–148.

[9] A. Tepljakov, E. Petlenkov, J. Belikov, and M. Halás, “Design and imple-
mentation of fractional-order PID controllers for a fluid tank system,”
in Proc. 2013 American Control Conference (ACC), Washington DC,
USA, June 2013, pp. 1780–1785.

[10] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu,
Fractional-order Systems and Controls: Fundamentals and Applications,
ser. Advances in Industrial Control. Springer Verlag, 2010.
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Abstract—In this paper, we study the problem of fractional-
order PID controller design for an unstable plant—a laboratory
model of a magnetic levitation system. To this end, we apply
model based control design. A model of the magnetic levitation
system is obtained by means of a closed-loop experiment. Several
stable fractional-order controllers are identified and optimized
by considering isolated stability regions. Finally, a nonintrusive
controller retuning method is used to incorporate fractional-order
dynamics into the existing control loop, thereby enhancing its
performance. Experimental results confirm the effectiveness of
the proposed approach. Control design methods offered in this
paper are general enough to be applicable to a variety of control
problems.

Index Terms—fractional-order calculus, PID control, unstable
plant, stability analysis

I. INTRODUCTION

Fractional-order calculus offers novel mathematical tools
applicable to dynamical system modeling and control. This
allows to achieve more accurate process models and more
flexible controllers, thereby enhancing the quality of control
loops. Since the majority of industrial control loops are of
PI/PID type [1], it is of significant interest to study the problem
of enhancing conventional PID controllers by introducing
additional dynamical properties arising from making use of
fractional-order integrators and differentiators. A controller of
this type, called the fractional-order PIλDμ controller (FOPID),
was proposed by Podlubny in [2] and has since been a topic
of active discussion in the control community [3]. Indeed, the
additional freedom in tuning the controller allows to consider
multiple robustness criteria. Therefore, a set of controller
parameters can be obtained such, that fulfills several design
specifications, which cannot be achieved by using a conven-
tional PID controller [4]. More importantly, however, using
fractional controllers grants the ability to obtain a wider set of
stabilizing controller parameters, which is critical in case of
unstable plants.

The Magnetic Levitation System (MLS) is a nonlinear,
open-loop unstable, and time-varying system [5]. Therefore,
designing a stabilizing controller for it is a challenging prob-
lem. Yet it is also of significant importance, since MLS has a
considerable range of real-life applications—it is used in, e.g.,
high-speed magnetic levitation passenger trains and vibration

isolation of sensitive machinery [6]. Corresponding nonlinear
control design methods were proposed in, e.g., [7], [8], [9].
However, few research papers deal with control design for
unstable systems [10], and, in particular, for the MLS, which
forms the motivation for our present research effort.

We now summarize the contribution of this paper. First, a
nonlinear model of the MLS is proposed, which is constructed
based on several modeling approaches offered in literature [5],
[10]. It is used in a model based control design method, which
includes linear analysis around a working point, selecting
random stabilizing FOPID controllers, heuristically detecting
rectangular-shaped stability regions for pairs of controller
gains, and obtaining suboptimal FOPID controller settings. The
FOPID controller is then integrated into the control loop in
a nonintrusive way, following the retuning method in [11].
Controller settings are verified on the real-life laboratory model
of the MLS.

The paper is organized as follows. In Section II the reader
is introduced to the mathematical tools of fractional-order
calculus used throughout this paper. In Section III the nonlinear
model of the MLS is presented. In Section IV the control
design method, forming the main contribution of this paper, is
described. Experimental results that verify the proposed control
design approach follow in Section V. Finally, in Section VI
conclusions are drawn.

II. MATHEMATICAL TOOLS

First, we consider fractional-order modeling. Fractional-
order calculus is a generalization of integration and differenti-
ation operations to the non-integer order operator aDα

t , where
a and t are the lower and upper terminals of the operation,
and α is the fractional order, such that

aDα
t =

⎧
⎪⎨
⎪⎩

dα

dtα �(α) > 0,

1 �(α) = 0,
´ t

a
(dt)−α �(α) < 0,

(1)

where α ∈ R+. The Laplace transform of Dα of a signal x(t)
with zero initial conditions is given by

L {Dαx(t)} = sαX(s). (2)

1345

Fr25.32014 13th International Conference on Control, Automation, Robotics & Vision
Marina Bay Sands, Singapore, 10-12th December 2014 (ICARCV 2014)

978-1-4799-5199-4/14/$31.00 ©2014 IEEE



A transfer function representation of a fractional dynamical
model may be given by

G(s) =
bmsβm + bm−1s

βm−1 + · · · + b0s
β0

ansαn + an−1sαn−1 + · · · + a0sα0
, (3)

where usually β0 = α0 = 0. The system in (3) has a
commensurate order γ, such that λ = sγ , if it can be
represented in the following way:

H (λ) =

m∑
k=0

bkλk

n∑
k=0

akλk

, (4)

where n is called the pseudo-order of the system. The form
(4) can also be used to determine the stability of the system by
means of, e.g., Matignon’s theorem [12], which is given next.

Theorem 1. (Matignon’s stability theorem) The fractional
transfer function G(s) = Z(s)/P (s) is stable if and only if
the following condition is satisfied in σ-plane:

|arg(σ)| > q
π

2
, ∀σ ∈ C, P (σ) = 0, (5)

where σ := sq . When σ = 0 is a single root of P (s), the system
cannot be stable. For q = 1, this is the classical theorem of
pole location in the complex plane: no pole is in the closed
right plane of the first Riemann sheet.

It can be seen, that fractional-order systems offer a larger
region of stability than conventional linear systems—roots of
the characteristic polynomial P (σ) may be located in the right
half of the complex plane, as long as the condition (5) is
satisfied. This theorem works for commensurate-order systems,
where the commensurate order is given by q.

We now turn to fractional-order control. The parallel form
of the PIλDμ controller is given by

C(s) = Kp + Kis
−λ + Kds

μ. (6)

In this work, we consider the negative unity feedback closed
loop system of the form

W (s) =
C(s)G(s)

1 + C(s)G(s)
, (7)

where C(s) is the PIλDμ controller, and G(s) is the plant
under control.

Finally, in terms of implementation of fractional-order
controllers we consider Oustaloup’s approximation method,
described in [13], which allows to obtain a band-limited
approximation of a fractional-order operator in the form sα ≈
H(s), where α ∈ (−1, 1) ⊂ R and H(s) is a conventional
linear, time-invariant system.

III. MODEL OF THE MAGNETIC LEVITATION SYSTEM

The MLS consists of an electromagnet, a light source and
sensor to measure the position of the levitated sphere, and a
sphere rest, the height of which is variable and determines
the initial position xmax of the sphere in control experiments.

Electromagnet

Sphere

Sphere rest
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h
t 
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u
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L
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x

0

Fig. 1. Physical model of the MLS

The position of the sphere is deremined relative to the elec-
tromagnet and has an effective range of x ∈ [0, xmax] mm.
A schematic drawing depicting this configuration is given in
Fig. 1. The basic principle of MLS operation is to apply voltage
to the electromagnet to keep the sphere levitated [5].

In [6] and [10] the following dynamical model for the MLS
is used:

mẍ = mg − ci2(u)

x2
, (8)

where m is the mass of the sphere, x is the position of the
sphere, g is gravitational acceleration, i(u) is a function of
voltage corresponding to the electrical current running through
the coil of the electromagnet under input u, and c is some
constant. However, the following practical observations can be
made:

• It is essential to model the dynamics of the electrical
current running through the coil;

• The parameter c is, in fact, not constant and depends on
the position of the sphere x.

Therefore, we use the model description provided by INTECO,
which takes into account the dynamics of the coil current. In
addition, we model the parameter c by a polynomial c(x). The
following model is finally established:

ẋ1 = x2,

ẋ2 = −c(x1)

m

x2
3

x2
1

+ g, (9)

ẋ3 =
fip2

fip1

i(u) − x3

e−x1/fip2
,

where x1 is the position of the sphere, x2 is the velocity of the
sphere, and x3 is the coil current, fip1 and fip2 are constants.
By means of a series of experiments, we have found, that it
is sufficient to model c(x1) as a 4th order polynomial of the
form

c(x1) = c4x
4
1 + c3x

3
1 + c2x

2
1 + c1x1 + c0, (10)

and i(u) as a 2nd order polynomial of the form

i(u) = k2u
2 + k1u + k0. (11)

Note, that the voltage control signal is normalized and has the
range u ∈ [0, 1] corresponding to the pulse-width modulation
duty cycle 0 . . . 100%.
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Fig. 2. Retuning method for existing closed-loop control systems

IV. DESIGN AND IMPLEMENTATION OF SUBOPTIMAL
STABILIZING FRACTIONAL-ORDER PID CONTROLLERS

In the following, we summarize the method, that shall be
used to design FOPID controllers for the MLS.

A. Model Linearization and Stability Analysis

We will analyze the stability of linear approximation around
a working point (u0, x10). We linearize the model in (9) and
obtain the following transfer function of the MLS:

GM (s) =
b3a23

s3 − a33s2 − a21s + a21a33
, (12)

where

a21 =
(−2c4x

4
10 − c3x

3
10 + c1x10 + 2c0)x

2
30

mx3
10

, (13)

a23 = −2c(x10)x30

mx2
10

, a33 =
i(u0) − x30

fip1
ex10/fip2 , (14)

b3 =
fip2

fip1
(k1 + 2k2u0)e

x10/fip2 . (15)

To analyze the stability of the closed-loop fractional-order
control system in (7) we shall use Matignon’s theorem. The
characteristic polynomial is given by

Q(s) = s3+λ − a33s
2+λ − a21s (16)

+(b3a23Kp + a21a33)s
λ

+b3a23Kds
λ+μ + b3a23Ki.

Thus, a point of the form (Kp, Ki, Kd, λ, μ) in the PIλDμ

parameter space can be selected and the stability of the closed-
loop control system can be verified.

B. PID Controller Retuning Method

The main idea of the retuning method is illustrated in Fig. 2.
The method allows to incorporate fractional-order dynamics
into a conventional PID control loop without making changes
to the loop itself, but rather adding a second loop with the re-
tuning FOPID controller. The following proposition establishes
the relations between the parameters of the controllers [11].

Proposition 2. Consider the original integer-order PID con-
troller of the form

CPID(s) = KP + KIs
−1 + KDs. (17)

Let CR(s) be a controller of the form

CR(s) =
K2s

β + K1s
α − KDs2 + (K0 − KP )s − KI

KDs2 + KP s + KI
,

(18)

where the orders α and β are such, that −1 < α < 1 and
1 < β < 2. The PIλDμ controller resulting from a classical
PID controller will have the following coefficients

K�
P = K0, K�

I = K1, K�
D = K2, (19)

and the orders will be

λ = 1 − α, μ = β − 1. (20)

It can be shown, that the structure in Fig. 2 may be replaced
by a feedback of the form (7), where

C(s) = (CR(s) + 1) · CPID(s) (21)

and G(s) corresponds to the plant. Therefore, the parameters
of the retuning controller CR(s) in (18) may be computed from
those of the FOPID controller C(s).

The application of the retuning method to the problem
of control of the MLS is motivated by that we shall make
use of closed-loop identification which may lead to a model
that is sensitive to changes in parameters of the original PID
controller. With the retuning method, a suitable controller is
added into an external loop, and its control law is regulating
the reference signal. Therefore, the underlying closed-loop
system continues to operate as before, but the dynamics
introduced to the reference signal allow to potentially enhance
its performance.

C. Determination and Optimization of Stabilizing FOPID
Controllers

To determine stabilizing controllers a randomized method
may be used, where FOPID controller parameters are randomly
selected from Kp ∈ [Kl

p, K
u
p ], Ki ∈ [Kl

i , K
u
i ], Kd ∈

[Kl
d, K

u
d ], λ ∈ [λl, λu], μ ∈ [μl, μu]. Note, that the choice

of λ and μ must lead to a commensurate-order system, since
only then the results of the stability test are reliable, otherwise
they are only approximate [14]. For example, one can choose
a minimum commensurate order q = 0.01.

Once a stable point is found, the following procedure is
carried out. Two of the controller parameters are parametrized
as (p1, p2), all other parameters are fixed. A limited number
of steps N is selected and a sweep with step sizes Δp1 and
Δp2 is done from the initial stable point. Four directions are
considered. The main idea is illustrated in Fig. 3. Each time
only a single parameter is changed. If, at any step, an unstable
control loop is obtained, then the previous parameter value
shall determine the approximate stability boundary for the
corresponding direction. Otherwise, all points will be tested
within the range Δp1 · N and Δp2 · N . Testing is done by
means of the characteristic polynomial in (16) and Matignon’s
theorem. Finally, the stability region will not always have
a rectangular shape. Thus, it is possible to determine the
shape by testing every point within the approximate rectangular
stability boundary. This is a heuristic method similar to [15]
and [16].

Once the procedure is complete, stable parameter ranges are
obtained for all controller parameter pairs and may be used
in FOPID controller optimization as lower and upper bounds
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Approximate rectangular stability boundary

Fig. 3. Determination of the approximate rectangular stability boundary in the
(p1, p2) plane

for corresponding controller parameters. Optimizing only two
parameters at a time can be beneficial from the perspective
of conditioning the problem, albeit in this case it will not be
possible to satisfy several design constraints. Yet it poses great
difficulty to impose feasible robustness specifications in case of
the MLS. Thus, suboptimal controllers may be designed. The
performance of the system will be evaluated experimentally,
settling time τs, percent overshoot θ, and percent maximum
deviation from reference due to disturbance θd are used as
performance measures. In essence, we consider time-domain
simulations of the nonlinear model in (9) and minimize a cost
defined by

ISE =

ˆ t

0

|e(τ)|dτ, (22)

where e(τ) is the error signal. The choice of this particular
performance index is dictated by the necessity to minimize
the overshoot [6]. The optimization procedure is carried out
by means of the method described in [17], [18].

In what follows, we illustrate the proposed method on the
basis of experimental results.

V. EXPERIMENTAL RESULTS

For the purpose of validating our control design approach
we use a real-life MLS provided by INTECO [5] and de-
picted in Fig. 4. It is connected to a computer running
MATLAB/Simulink thereby allowing to conduct real-time ex-
periments. The specific parameters of the model in (9) are as
follows: m = 0.0585kg, xmax = 0.0155m, g = 9.81m/s2.
Other parameters need to be identified. The corresponding
procedure is detailed in the following subsection.

A. Identification of the Nonlinear Model

Our task is to identify two functions i(u) and c(x), as well
as parameters fip1 and fip2 of the nonlinear model in (9).

Identification of i(u) is relatively simple and straightfor-
ward is done with the sphere removed from the MLS, since
only the coil current is measured. We obtain the following
polynomial:

i(u) = −0.3u2 + 2.6u − 0.047. (23)

In addition, the deadzone in control is found to be udz =
[0, 0.0182].

Fig. 4. Real-life laboratory model of the MLS
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Fig. 5. Results of nonlinear model parameters identification

Determination of c(x1) and parameters fip1 and fip2, on
the other hand, is more involved. Because MLS is open-
loop unstable, only closed-loop identification is applicable. Our
approach is to use the existing PID control loop with

KP = −39, KI = −10, KD = −2.05 (24)

provided by INTECO. It should be noted, that a constant input
uc = 0.38 is added to the control law uPID(t) in (24), that is
the full control law u(t) is such that

u(t) = uPID(t) + uc. (25)

In order to determine the values of the parameters, we
employ time-domain simulations and minimize the model
output error by means of the least-squares method. The results
are as follows:

c(x1) = 3.9996x4
1 + 3.9248x3

1 − 0.34183x2
1

+ 0.007058x1 + 2.9682 · 10−5 (26)

and

fip1 = 1.1165 · 10−3m/s, fip2 = 26.841 · 10−3m. (27)

The results of the identification are presented in Fig. 5. It can
be seen, that a close fit to the response of the original response
of the system is achieved.

1348



B. Design of FOPID Controllers

We first obtain a linear model as discussed in Section IV-A.
We choose a working point u0 = 0.3726, x10 = 9.84 · 10−3

and obtain

GM (s) = − 1788

s3 + 34.69s2 − 1737s − 60240
. (28)

Next, we apply the method detailed in Section IV-C. First,
we randomly generate FOPID controllers using the ranges
Kp ∈ [−100, 0], Ki ∈ [−50, 0], Kd ∈ [−25, 0], λ ∈ [0.8, 1.2],
μ ∈ [0.5, 1.0]. On the average, about 20 out of 100 tested
controllers are found to produce a stable closed-loop system.
After inspection, three of them are selected for the optimization
phase:

C1(s) = −42.8642 − 18.5653

s1.06
− 3.0559s0.94, (29)

C2(s) = −54.3649 − 47.6078

s0.82
− 6.5436s0.98, (30)

C3(s) = −45.3118 − 4.24932

s0.86
− 3.51115s0.98. (31)

For each controller in this set, we find stability boundaries
in different parameter planes, that is in (Kp, Ki), (Kp, Kd),
and (Ki, Kd), so that we can obtain a wider set of results.
Using the method in Section IV-C, with a step of Δp = 1
and considering a maximum of N = 20 steps we locate the
following bounds:

KC1
p ∈ [−62, −34], KC1

i ∈ [−38, −1], (32)

KC2
p ∈ [−74, −35], KC2

d ∈ [−26, −3], (33)

KC3
i ∈ [−24, −1], KC3

d ∈ [−23, −2]. (34)

We then proceed directly to the optimization procedure.
The FOMCON toolbox FOPID optimization tool is used [17],
[19]. We set the bounds of controller gains as in (32)–(34)
for each controller and optimize only the corresponding gains.
The number of iterations is, in general, limited to Niter = 5.
After optimization, the following controllers are obtained:

C∗
1 (s) = −45.839 − 18.504

s1.06
− 3.0559s0.94, (35)

C∗
2 (s) = −54.444 − 47.6078

s0.82
− 3.7773s0.98, (36)

C∗
3 (s) = −45.3118 − 4.916

s0.86
− 2.9074s0.98. (37)

In the following, we provide the results of performance evalu-
ation of both the randomly generated FOPID controllers, and
the suboptimal ones. The controllers are evaluated in a two-
cascade closed control loop as detailed in Section IV-B. The
parameters of the retuning controllers are computed by means
of (19) and (20). The performance of FOPID controllers is
compared to the performance of the original PID control loop,
where the parameters of the PID controller are equal to those in
(24). The reference set point is xr = 0.010m, and a disturbance
impulse is considered, appearing for 200ms on the 10th second

Table I. Comparison of FOPID controller performance

FOPID τs[s] θ[%] θd[%] FOPID∗ τs[s] θ[%] θd[%]

C1(s) 1.85 24.0 60.3 C∗
1 (s) 1.68 14.8 56.4

C2(s) 1.39 19.4 37.5 C∗
2 (s) 0.86 11.6 34.6

C3(s) 4.68 14.6 55.7 C∗
3 (s) 3.84 15.0 58.3
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Fig. 6. Step experiment: Original PID control vs. Retuning FOPID controller

of the simulation. With the conventional PID controller the
following results are achieved:

τs = 3.34 s, θ = 66.0%, θd = 60.6%.

In Table I the performance evaluation of the FOPID con-
trollers working in the retuning control loop is presented. It can
be seen, that the best performance is achieved, when controller
C∗

2 (s) is used. The result of real-time simulation of this
controller versus the original PID control loop is provided in
Fig. 6. It can be seen that a significant improvement in control
system response is obtained. The controller C3(s) outperforms
the original PID only in terms of overshoot, while C∗

3 (s) offers
similar settling time with a much smaller overshoot.

In addition, we consider a reference tracking experiment to
illustrate the ability of the controllers to provide appropriate
regulation across a wider operating range. The comparison
of the performance of the C∗

2 (s) controller and the original
control loop is presented in Fig. 7. Once again, improvements
in the control loop performance can be observed.

VI. CONCLUSIONS

In this paper, we have presented a method for FOPID
controller design that allows incorporating fractional-order
dynamics into existing PID control loops. An unstable plant,
namely the MLS system was considered. A nonlinear model of
this plant was identified from a closed-loop experiment. Lin-
ear analysis methods were employed to determine stabilizing
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Fig. 7. Reference tracking: Original PID control vs. Retuning FOPID controller

FOPID controllers and stability boundaries in two-dimensional
parameter planes thereof. The controllers were then evaluated,
and those with best performance were optimized. In all cases,
the optimization procedure enhanced the performance of the
control loop. Virtually all retuning controllers offer superior
performance compared to the original control loop, thereby
establishing the validity of the proposed approach.
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FOPID Controller Tuning for Fractional FOPDT Plants subject to
Design Specifications in the Frequency Domain

Aleksei Tepljakov1, Eduard Petlenkov1, and Juri Belikov2

Abstract— In this paper, the problem of fractional-order
proportional-integral-derivative (FOPID) controller tuning for
fractional-order first-order plus dead time plants (FFOPDT) is
considered. The designed controller must fulfill the prescribed
specifications in the frequency domain. To this end, the frac-
tional orders of the integrator and differentiator components
are selected using a set of rules based on the observation
of essential plant dynamics, while a numerical optimization
algorithm is employed for obtaining the gains of the controller
based on three dimensional Newton’s method. All the necessary
equations for computing the elements of the Jacobian matrix
are provided. The proposed algorithm is detailed. It is also
implemented and verified on an embedded device. The pro-
posed solution may be useful in developing automatic tuning
algorithms for FOPID controllers.

I. INTRODUCTION

PID-type controllers are widely used in industrial process
control loops [1], [2]. However, it is a known fact that only
a part of the existing PI/PID loops are adequately tuned
ensuring the best possible performance [3]. Therefore, it is
reasonable to invest proper attention to the tuning process
by, e.g., applying an automatic tuning procedure to achieve
improvement of control quality.

In process control it is common to use low-order models
of the plant to be controlled, e.g., a first-order plus dead time
(FOPDT) model, which captures essential process dynamics
and allows one to design a suitable controller based on
a set of particular tuning rules. However, it may not be
sufficient, in general, to consider only classical dynamics,
since conventional tuning rules may not lead to satisfactory
control loop performance, or even fail. The recent emergence
of fractional-order calculus has made it possible to make the
transition from classical process models and PID controllers
to those of noninteger order, allowing for better modeling
and control design opportunities [4].

In terms of modeling, using fractional differential equa-
tions allows one to capture certain phenomena related to
memory- and hereditary properties of the process [5]. Thus,
a FFOPDT model was introduced and studied in, e.g.,
[6], [7]. Using fractional-order FOPID controllers intro-
duced in [8] generally provides more tuning freedom. It
has been confirmed that FOPID controllers offer superior
performance than classical PID controllers [9], [10]. FOPID

1Aleksei Tepljakov and Eduard Petlenkov are with the Department
of Computer Control, Tallinn University of Technology, Tallinn, 19086,
Estonia, {aleksei.tepljakov, eduard.petlenkov} at
dcc.ttu.ee.

2Juri Belikov is with the Institute of Cybernetics, Tallinn University of
Technology, Akadeemia tee 21, 12618, Tallinn, Estonia, jbelikov at
cc.ioc.ee.

controller tuning has been discussed in, e.g., [11], [12], [13],
[14]. Recently, FOPI controller design based on analysis
of frequency-domain characteristics of the control system
was proposed in [15]. In our earlier works we considered
numerical optimization based FOPID controller design [16],
[17]. In this paper we consider a particular class of fractional
systems described by the FFOPDT model. We propose a
particular FOPID controller design method based on exact
control loop frequency-domain specifications.

In the following, we outline the main contribution of
this paper. First, a set of rules for selecting the orders of
the integrator and differentiator of the FOPID controller is
proposed. Then, a system of three nonlinear equations in
three unknowns is constructed. The solution of this system
grants the gains of the FOPID controller. Since the system
cannot be solved algebraically, the Newton method in mul-
tiple dimensions is adopted to the particular problem and a
corresponding algorithm is outlined. The algorithm is verified
on an embedded device. Finally, an example is provided,
which illustrates the use of the method.

The paper is organized as follows. First, the reader is
briefly introduced to the main concepts of fractional calculus
regarding modeling and control in Section II. In Section III
the necessary equations for control system analysis in the
frequency domain are provided. The proposed controller
design method is detailed in Section IV. An illustrative
example follows in Section V. Items for discussion are
provided in Section VI. Finally, conclusions are drawn in
Section VII.

II. INTRODUCTION TO FRACTIONAL-ORDER MODELING
AND CONTROL

Fractional calculus is a generalization of differential and
integral operators to a noninteger order operator aDα

t , where
α is the operator order and a, t denote operation limits [4].
The continuous integro-differential operator of order α ∈ R
is defined in the following way

aD
α
t =


dα/dtα α > 0,

1 α = 0,´ t
a
(dτ)−α α < 0.

(1)

Assuming zero initial conditions, the Laplace transform of
the fractional derivative with α ∈ R+ is given by

ˆ ∞
0

e−st0D
α
t f(t)dt = sαF (s). (2)
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A fractional-order transfer function with a delay may be
considered in the s-domain such that

G (s) =
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
e−Ls, (3)

where usually α0 = β0 = 0, and in this case we denote by
Kg = b0/a0 the static gain of the system. The frequency-
domain characteristics of this transfer function may be ob-
tained by substituting s = jω. We shall make use of this,
additionally employing the relation

jγ = cos
(
γπ
2

)
+ j sin

(
γπ
2

)
. (4)

In this work we consider a particular version of the
model (3), called by convention the FFOPDT model, with
m = 0, n = 1, α0 = β0 = 0, K = b0/a0 > 0, T = a1 > 0,
L > 0, and α = α1 ∈ (0, 2], and which is thereby given by
the following transfer function

Gp(s) =
Ke−Ls

Tsα + 1
. (5)

Note, that with α = 1 this reduces to the conventional
FOPDT model. We shall maintain the notation for the
parameters of this model throughout the paper.

The parallel form of the fractional-order PIλDµ controller
given is by

C(s) = Kp +Kis
−λ +Kd · sµ, (6)

where λ, µ ∈ (0, 2]. It can be seen, that by varying the non-
integer order γ of a fractional-order operator sγ a constant
decrement or increment in the slope of the magnitude curve
that equals 20γ dB/dec can be achieved, as well as a constant
delay in the phase plot πγ/2 rad. In this paper, we study the
usual negative unity feedback control system

Gc(s) =
C(s)Gp(s)

1 + C(s)Gp(s)
, (7)

where C(s) is the controller in (6) and Gp(s) denotes the
plant transfer function.

III. FREQUENCY-DOMAIN ANALYSIS OF THE CONTROL
LOOP

Open-loop characteristics of the control system may be
obtained by considering the magnitude and phase responses
of the plant and controller. This is done by replacing s = jω,
employing (4), and isolating the real and complex parts of
the resulting expression as z = a + jb. The absolute value
and the angle are then obtained in the usual manner.

We begin by providing the expressions for computation of
the magnitude and phase responses of the plant G(jω):

|G(jω)| = |K|√
1 + T 2ω2α + 2Tωα cos

(
απ
2

) (8)

and

arg (G(jω)) = −Lω − tan−1

(
T sin

(
απ
2

)
ω−α + T cos

(
απ
2

)) . (9)

In the same way we derive the equations for the FOPID
controller C(jω) in (6):

|C(jω)| =
√
C2
R(ω) + C2

I (ω), (10)

where

CR(ω) = Kp + ω−λKi cos
(
λπ
2

)
+ ωµKd cos

(
µπ
2

)
(11)

and

CI(ω) = −ω−λKi sin
(
λπ
2

)
+ ωµKd sin

(
µπ
2

)
(12)

and for the phase angle as

arg (C(jω)) = tan−1
(
CN (ω)

CD(ω)

)
, (13)

where

CN (ω) = ωλ+µKd sin
(
µπ
2

)
−Ki sin

(
λπ
2

)
(14)

and

CD(ω) = Ki cos
(
λπ
2

)
+ ωλ

(
ωµKd cos

(
µπ
2

)
+Kp

)
. (15)

Using the equations provided above it is possible to com-
pletely describe the frequency-domain characteristics of the
control system. We now proceed to the proposed controller
design method based on design specifications derived from
these characteristics.

IV. PROPOSED CONTROLLER DESIGN METHOD

We begin this section by outlining the setting. The pa-
rameters of the FFOPDT plant in (5) are assumed to be ob-
tained by means of a relay autotuning algorithm considered
in [12]. By properly identifying several points (ωk, rk) in
the frequency domain it is possible to determine not only the
classical FOPDT model, but also the fractional order α of the
FFOPDT model. In case of the conventional model, where
α = 1 in (5), plant gain Kc and lag Lc may be determined
experimentally [18] and will coincide with corresponding
parameters of the FFOPDT model. The time constant Tc
may be computed, when the frequency ωg , corresponding to
the ultimate gain of the system, is found, by means of

Tc =
tan(π − Lcωg)

ωg
. (16)

Once all of the conventional FOPDT model parameters
are obtained, we can use the F-MIGO rule proposed in [4]
for FOPI controllers to determine the appropriate integrator
order λ of the controller in (6) by considering basic plant
dynamics through the relative dead time parameter τc:

τc =
Lc

Lc + Tc
. (17)

The following approximate rule is then employed:

λ =


1.1, τc > 0.6,

1.0, 0.4 6 τc < 0.6,

0.9, 0.1 6 τc < 0.4,

0.7, τc < 0.1.

(18)
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This holds under the assumption that conventional plant
dynamics are described by Tc with reasonable accuracy. Re-
gardless of the situation, this is an approximation, therefore
one may apply this rule to find an initial value of λ, which
may be additionally tuned.

For deciding the differentiator order µ knowledge of the
FFOPDT plant order α is necessary. The following relation
should hold:

µ 6 α. (19)

The particular value of µ may be chosen according to the
design specifications imposed on the control system.

In this work, we consider the following specifications:
• Exact phase margin ϕm and corresponding crossover

frequency ωc, also referred to as critical frequency
in [4];

• Robustness to gain variations, that is there exists a
requirement such that

ψ′g(ωc) = 0, (20)

where

ψg(ω) = arg (C(jω)) + arg (G(jω)) +π+ 2πn, (21)

the equations to compute (20) are provided in [19].
• Minimal gain margin Gm.

Based on these specifications, the following functions may
be defined:

κ1(Kp,Ki,Kd) = |C(jω)| · |G(jω)| − 1, (22)
κ2(Kp,Ki,Kd) = arg (C(jω)) + arg (G(jω)) (23)

+ π − ϕm − 2πn,

κ3(Kp,Ki,Kd) = ψ′gm(ω), (24)

where ω = ωc. Note, that this does not include the gain mar-
gin specification. However, the solution is only considered
feasible, if the minimal gain margin is satisfied.

To find the gains g =
[
Kp Ki Kd

]T
of the FOPID

controller according to the specifications given above it is
necessary to solve a system of nonlinear equations comprised
of the design specification functions

Fs =
[
κ1(·) κ2(·) κ3(·)

]T
= 0. (25)

To this end, Newton’s method in several dimensions may be
employed. Beginning from the initial estimate g0 the iterative
process begins, until a particular stop condition is satisfied.
On every step, a linear system

J∆g = −Fs (26)

must be solved. Then the new controller gain vector g+ is
computed as

g+ = g + ∆g. (27)

In the following, we provide all of the elements of the
Jacobian matrix J comprised of the partial derivatives such

that Jn,1 = ∂κn/∂Kp, Jn,2 = ∂κn/∂Ki, and Jn,3 =
∂κn/∂Kd, for n = 1, 2, 3:

J1,1 =
AGACR
AC

, J1,2 =
AGA12

AC
, J1,3 =

AGA13

AC
, (28)

where AG = |G(jω)| in (8), ACR = CR(ω) in (11), and
AC = |C(jω)| in (10),

A12 = ω−2λ
(
−ωλ+µ sin

(
(λ+µ−1)π

2

)
Kd

+Ki + ωλ cos
(
λπ
2

)
Kp

)
, (29)

A13 = ω−λ+µ
(
ωλ+µKd − sin

(
(λ+µ−1)π

2

)
Ki

+ ωλ cos
(
µπ
2

)
Kp

)
. (30)

Then,

J2,1 =
A21

A2
, J2,2 = −A22

A2
, J2,3 =

A23

A2
, (31)

where

A21 = ωλ
(
−ωλ+µ sin

(
µπ
2

)
Kd + sin

(
λπ
2

)
Ki

)
, (32)

A22 = ωλ
(
ωµ cos

(
(λ+µ−1)π

2

)
Kd

+ sin
(
λπ
2

)
Kp

)
, (33)

A23 = ωλ+µ
(

cos
(

(λ+µ−1)π
2

)
Ki

+ ωλ sin
(
µπ
2

)
Kp

)
, (34)

and

A2 = ω2(λ+µ)K2
d +K2

i + 2ωλ cos
(
λπ
2

)
KiKp

+ ω2λK2
p + 2ωλ+µKd

(
− sin

(
(λ+µ−1)π

2

)
Ki

+ ωλ cos
(
µπ
2

)
Kp

)
. (35)

Finally,

J3,1 =
A31

A3
, J3,2 =

A32

A3
, J3,3 =

A33

A3
, (36)

where

A31 = ωλ−1
(
µω3(λ+µ) sin

(
µπ
2

)
K3
d

− ω2(λ+µ)
(

2µ sin
(
λπ
2

)
+ λ sin

(
(λ+2µ)π

2

))
K2
dKi

+ λ sin
(
λπ
2

)
Ki

(
K2
i − ω2λK2

p

)
− ωλ+µKd

((
2λ sin

(
µπ
2

)
+ µ sin

(
(2λ+µ)π

2

))
K2
i

+ 2(λ+ µ)ωλ cos
(

(λ+µ−1)π
2

)
KiKp

+ µω2λ sin
(
µπ
2

)
K2
p

))
, (37)
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A32 = ωλ−1
(

(λ+ µ)ω2λ+3µ cos
(

(λ+µ−1)π
2

)
K3
d

+ ω2(λ+µ)
(

2(λ+ µ) sin
(
λπ
2

)
+ λ sin

(
(λ+2µ)π

2

))
K2
dKp

+ λ sin
(
λπ
2

)
Kp(−K2

i + ω2λK2
p)

+ ωµKd

(
−(λ+ µ) cos

(
(λ+µ−1)π

2

)
K2
i

− 2µωλ sin
(
µπ
2

)
KiKp

+ ω2λ
(

2λ cos
(

(λ+µ−1)π
2

)
+ (λ+ µ) sin

(
(λ−µ)π

2

))
K2
p

))
, (38)

A33 = ωλ+µ−1
(

(λ+ µ) cos
(

(λ+µ−1)π
2

)
K3
i

− 2λω2λ+µ sin
(
λπ
2

)
KpKiKd

+ ωλ
(

2(λ+ µ) sin
(
µπ
2

)
+ µ sin

(
(2λ+µ)π

2

))
K2
iKp

+ ω2λ
(

2µ cos
(

(λ+µ−1)π
2

)
− (λ+ µ) sin

(
(λ−µ)π

2

))
KiK

2
p + µω3λ sin

(
µπ
2

)
K3
p

− ω2(λ+µ)K2
d

(
(λ+ µ) cos

(
(λ+µ−1)π

2

)
Ki

+ µωλ sin
(
µπ
2

)
Kp

))
, (39)

and

A3 = A2
2. (40)

We can define a stopping criterion for the iterative process
as a condition on the square norm of (25):

‖Fs(·)‖2 < ε. (41)

There is no feasible way to determine whether a solution
to (25) exists in general or not. However, by virtue of the
Inverse Value Theorem it is possible to claim, that if the
Jacobian does not vanish at g0, a local minimum of ‖Fs(·)‖2
will be found around g0. It is up to the user to check, whether
the obtained set of controller parameters is feasible or not. If
no feasible solution is obtained during optimization, a new
initial estimate should be selected.

The complete optimization algorithm is presented in
Fig. 1. The meaning of procedure return codes is provided
in Table I.

V. ILLUSTRATIVE EXAMPLE

As an example we consider a heating process described in
[6]. It is given by the following FFOPDT transfer function:

G(s) =
66.16e−1.93s

12.72s0.5 + 1
. (42)

The design specifications are as follows: ωc = 0.1, ϕm =
60◦, Gm > 10dB, and the robustness to gain variations
criterion must also be fulfilled.

procedure FOPIDDESIGN(g0, ωc, ϕm, Gm)
ε← Tolerance, εm ← MachineTolerance
g ← g0, k ← 0, ν ← MaxIterations
while k < ν do

if det J < εm then return {−1, g}
end if
if G∗m < Gm then return {−2, g}
end if
if ‖Fs‖2 < ε then return {1, g}
end if
g ← g − J−1Fs
k ← k + 1

end while
return {0, g}

end procedure

Fig. 1. Determination of FOPID controller gains

TABLE I
MEANING OF OPTIMIZATION PROCEDURE RETURN CODES

Code Description

−2 Additional condition not satisfied—the gain margin G∗m
computed for the control system is less than the value
given in Gm.

−1 Singular Jacobian matrix—local minimum possible.

0 Maximum number of algorithm iterations reached.

1 All conditions satisfied, successful termination.

Suppose that an autotuning procedure is employed. For
the plant (42) we found the ultimate frequency ωg to be
approximately equal to 7.85rad/s. Using (16) the time con-
stant of the conventional FOPDT plant would be computed
as Tc = 0.0794s, which obviously provides the wrong
description of the plant dynamics. Therefore, using the F-
MIGO rule provided in Section IV does not hold any
merit. Using a more sophisticated approach for computing
Tc involving identification of several points on the Nyquist
curve, however, yields a value T̃c ≈ 12, therefore we have
λ = 0.9. The differentiator order is then chosen as µ = 0.5.
The initial gains for optimization are selected such that
g0 =

[
1/K 1/K 1/K

]
. The optimization procedure is

then employed. In 4 iterations the norm condition ε = 10−4

is satisfied, and the gains of the resulting controller are
obtained:

Kp = −0.002934, Ki = 0.01030, Kd = 0.05335. (43)

The Bode diagram depicting the open-loop frequency re-
sponse of the control system is given in Fig. 3. It may be
seen, that the specifications are fulfilled, with Gm = 11.5 >
10dB.

The described algorithm was also implemented on an
Atmel ATmega324P microcontroller based FOPID controller
prototype device. In the following, some initial benchmark-
ing results are provided. The C code is compiled using
AVR-GCC with optimization option “-O1”. In the example
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Fig. 3. Controller design results: Bode diagram of the open-loop control
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problem above, the very same gains were obtained in 4
algorithm iterations in approximately 1.66M clock cycles,
or 83.37ms with the microcontroller clocked at 20MHz.

The resulting controller was also verified by means
of pure software and hardware-in-the-loop (HIL) real-time
simulations. Pure software simulations are done in MAT-
LAB/Simulink environment. For the HIL part, a prototyping
platform was used which is depicted in Fig. 2. In this
configuration, the process model (42) is running in MAT-
LAB/Simulink environment, while the controller prototype
is connected to it externally via a DAQ board.

The results of real-time simulations are shown in Figs.
4 and 5. The gain of the system in (42) is varying in
the range ±25%. The following observations can be made.
First, as expected, the overshoot value does not change
significantly between experiments, where the plant gain is
different. This shows, that the iso-damping property in (20)
is indeed satisfied. Second, the corresponding results of pure
software and HIL simulations are very close, which points
to the adequate implementation of the controller prototype.
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Fig. 5. Hardware-in-the-loop simulations of the FOPID control system
with varying gain (K̃ = {0.75K, 1.00K, 1.25K})

VI. DISCUSSION

In the following, several items for discussion are given.
These mostly concern the improvement of selection rules
for FOPID controller parameters λ and µ.

• The use of F-MIGO rule needs to be tailored to the
case of the FFOPDT model. Currently this rule can
only provide approximate results, since a conventional
FOPDT model is used to obtain the parameter λ;

• A more sophisticated method for choosing the order of
the differentiator µ should also be sought.

It is possible to consider more design specifications in the
tuning process described in this paper. However, this makes
it necessary to include parameters λ and µ as unknowns
into the nonlinear equations. Partial derivatives involving
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these parameters are nontrivial and tedious. Our current
research shows, that employing numerical approximations
of the Jacobian does not yield satisfactory results with this
method.

VII. CONCLUSION

In this paper, we have presented a method for designing
FOPID controllers for FFOPDT plants based on available
autotuning data. The tuning method was validated on a model
of a heating process and successfully implemented on an
embedded device. Experimental results involving real-time
hardware-in-the-loop simulations confirm the validity of the
proposed approach.

A problem with conventional tuning approach was found,
where the time constant of the system was not correctly
identified. A more sophisticated tuning approach, which falls
outside of the scope of this paper, may be used to tackle the
issue. This problem forms an important part of our further
research of FOPID controller autotuning methods.

In addition, research efforts should also be dedicated to
developing a set of rules for selecting the orders of the
FOPID controller integrator and differentiator components.
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