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Introduction

Mental health disorders are widespread and impose a substantial societal burden.
Recent assessments estimate that more than a billion individuals are affected globally,
with anxiety and depressive disorders among the most prevalent conditions, and
with additional increases linked to the COVID-19 pandemic (Ettman et al., 2025;
WHO, 2025). Diagnosis and follow-up still rely primarily on clinical interviews and
self-report questionnaires, which generate variable outcomes and can contribute to
misclassification and treatment gaps in routine care (Patel et al., 2018). These realities
motivate the use of measures derived from electroencephalographic signals, providing
an objective complement to traditional clinical evaluations.

Electroencephalography (EEG) offers an objective window into brain dynamics,
characterized by high temporal resolution, relatively low cost, and portability. EEG is
an electrophysiological technique that records the brain’s electrical activity using
electrodes placed on the scalp (Buzsdki, 2006). Small but substantial alterations in
resting-state EEG have been linked at the group level to several psychiatric conditions,
e.g., major depressive disorder (MDD), generalized anxiety disorder (GAD), attention-
deficit/hyperactivity disorder (ADHD), schizophrenia, and stress-related disorders
(Hinrikus et al., 2009; Ahmadlou et al., 2012; Arns et al., 2013; Bachmann et al., 2013,
2018; Mumtaz et al., 2015; Kesi¢ & Spasi¢, 2016; Moran et al., 2019; Newson &
Thiagarajan, 2019; Wang et al., 2025). Despite success in research settings, EEG measures
have not transitioned into routine clinical practice for detecting or monitoring common
psychiatric disorders because the evidence base is limited to group-level findings (and
not always fully consistent across studies).

Two practical obstacles hinder transition. First, the wide selection of EEG measures is
unorganized: diverse measures are selected and parameterized in ad hoc ways, such that
similar clinical questions are addressed with different feature sets that yield variable
results. The mutual relationships between these measures—how much complementary
versus overlapping information they express—are unknown, which compromises
comparability of findings, complicates interpretation, and slows clinical transition.
To ensure consistent findings across studies and to enable progress toward clinical
implementation, complementary, cross-site, and comparable measures are required.
Although multimeasure combinations have been demonstrated to improve classification
(Hosseinifard et al., 2013; Bachmann et al., 2018; Cuki¢, Stoki¢, Simi¢, et al.,
2020), a systematic assessment of inter-measure correlations—and, by extension,
the informational independence across measures—has not been previously performed.

As a second obstacle, there is dispersion across individuals, characterized by
substantial inter-individual (between-person) differences in EEG measure values that can
overshadow intra-individual (within-person) changes. Crucially, strong group-level
effects do not automatically yield individual-level utility; a measure can successfully
separate clinical and healthy groups yet fail to assign an individual to either the clinical
or control group with sufficient accuracy because of individual-level differences in EEG
(Lopez et al., 2023). However, this dispersion has rarely been examined directly; instead,
most available evidence comes from test—retest reliability studies of specific measures.
Prior literature emphasizes the group-level reliability of EEG band powers (Gasser et al.,
1985; Kondacs & Szabd, 1999; Ip et al., 2018; Tenke et al., 2018) and provides mixed
evidence for nonlinear measures (Gudmundsson et al., 2007; P&ld et al., 2021). Higher
reliability is evidenced when an individual’s test-retest measurements are more similar
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to their own subsequent recordings than to those of others, indicating inter-individual
differentiation alongside temporal stability. Although many factors are known to affect
EEG (Hoffman & Polich, 1998; Brétzner et al., 2014; Héller et al., 2022), the extent of its
individual-level stability remains unclear, as the temporal stability of EEG measures at
the individual level has been scarcely examined (Pdld et al., 2023). It is therefore essential
to quantify intra-individual EEG stability by characterizing the expected fluctuation
ranges of EEG measures through a dedicated longitudinal design, which enables
individualized, baseline-referenced decisions.

As the temporal stability of EEG measures at the individual level (normative intra-
individual range) and their inter-measure relationships (e.g., correlation structure) have
not been systematically characterized, the baseline variability against which to judge
individual change and the degree of overlap or complementarity among measures
remain unknown. For individualized monitoring, measures must be stable under steady
conditions yet responsive to clinically meaningful physiological perturbations across time
scales. Although numerous group-level studies demonstrate case—control differences in
EEG under altered brain states, there is little and, to date, no systematic evidence
assessing whether a single individual’s state changes register as deviations from that
person’s own baseline. This motivates the search for EEG-based brain-state measures
that are stable over time, sensitive to clinically relevant change, and robust in practical
deployment for individualized monitoring. Accordingly, the central goal of this thesis is
to guide the selection of EEG measures for individualized monitoring.

The thesis is based on four publications, which together support the thesis goal.
Publication | addresses the diversity of measures by systematically mapping inter-
relationships among widely used measures in healthy adults to assess overlap and guide
the selection of complementary measures. More broadly, commonly used EEG measures
in psychiatric research primarily index spectral power, generic nonlinear complexity,
or connectivity, and thus do not directly capture the temporal self-similarity of waveform
patterns. Yet converging evidence suggests that psychiatric disorders are characterized
by abnormalities in neural synchrony and the temporal organization of oscillatory
activity, particularly in alpha and gamma bands (Uhlhaas & Singer, 2006; Basar &
Glintekin, 2013; Tsai et al., 2023; Han et al., 2025), indicating that the stability of ongoing
rhythms may be clinically relevant. Therefore, Publication Il introduces the in-phase
matrix profile (pMP) as such a temporal self-similarity measure with reduced amplitude
dependence and benchmarks it against a widely used nonlinear measure in MDD to test
whether waveform stability better captures case—control differences than generic
complexity. Publication Ill evaluates temporal stability at the individual level over one
year by quantifying intra-individual variability in linear and nonlinear single-channel
measures, while providing insight into inter-individual dispersion by describing personal
baselines. Publication IV demonstrates intra-individual sensitivity to a controlled
perturbation using a dense single-participant design around mRNA vaccination to test
whether selected measures register transient deviations against a well-characterized
personal baseline. This provides an explicit stress-test of sensitivity, grounded in prior
evidence that stressors modulate EEG rhythms (Al-Shargie et al., 2016; Minguillon et al.,
2016; Schlink et al., 2017; Pold et al., 2018).
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Aim of the Thesis

The overall aim of this thesis is to guide the selection of EEG measures for individualized
longitudinal monitoring. This overall aim is pursued through four specific aims:

1. Describe interrelationships among common resting-state EEG measures to
assess complementarity and guide compact, informative measure selection
(Publication I).

2. Develop and evaluate a new single-channel EEG measure of waveform stability
and compare its performance with an established reference measure in
distinguishing depression-related differences (Publication Il).

3. Characterize long-term intra-individual temporal variability and inter-individual
differences in single-channel EEG measures, to determine whether they can
provide stable baselines for monitoring (Publication Ill).

4. Verify whether EEG measures are sensitive to controlled perturbations in brain
physiology within an individual, thereby testing their suitability for detecting
meaningful intra-individual neurophysiological changes captured by EEG
measures over time (Publication IV).
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Abbreviations

Explanations of abbreviations used in the thesis.

ABP
ADHD
BBP
cl
DFA
DP

E

EC
EEG
EST-Q
GAD
GBP
HAM-D
HFD
ImC
ICC
LzC
LB
MDD
Ml
MP
MSC
OCD
pMP
PTSD
rDif
REST
SASI
SL
TBP

alpha band power
attention-deficit/hyperactivity disorder
beta band power

confidence interval

detrended fluctuation analysis
distance profile

effectiveness index

eyes closed (recording condition)
electroencephalography

Emotional State Questionnaire
generalized anxiety disorder

gamma band power

Hamilton Depression Rating Scale
Higuchi’s fractal dimension

imaginary coherence

intraclass correlation coefficient
Lempel-Ziv complexity

lower bound (of Cl)

major depressive disorder

mutual information

matrix profile

magnitude-squared coherence
obsessive-compulsive disorder
in-phase matrix profile

post-traumatic stress disorder
maximum relative difference from annual mean
reference electrode standardization technique
spectral asymmetry index
synchronization likelihood

theta band power
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1 Toward Robust, Stable, and Sensitive Individualized
Measures of Resting-State EEG

A mental disorder is a clinically significant disturbance in cognition, emotion regulation,
or behavior that causes distress or impairs daily functioning. Mental disorders are highly
prevalent and socially consequential: in 2021, an estimated 1.1 billion people worldwide,
about one in seven, were living with a mental disorder, with anxiety and depressive
disorders most common (WHO, 2025). During 2020, COVID-19 pandemic modeling
indicated global increases of 28% in major depressive disorder and 26% in anxiety
disorders (Santomauro et al., 2021; WHO, 2022). These conditions are leading causes of
disability, accounting for 14.6% of all years lived with disability worldwide in 2019
(Ferrari et al., 2022). People with severe mental disorders also face substantial
premature mortality, dying on average 10-20 years earlier than the general population
(Walker et al., 2015). Beyond health, the societal burden is large and sustained:
depression and anxiety alone are associated with 12 billion lost workdays annually,
costing the global economy about USS$1 trillion each year (WHO, 2024). Major treatment
gaps persist, particularly in low-resource settings, with national surveys from India and
China showing that over 80% of people with any mental or substance use disorder did
not seek care, and with minimally adequate treatment for depression reaching about
one in five in high-income countries but only one in 27 in low- and middle-income
countries, aggravating impacts on education, employment, families, and community
participation (Patel et al., 2018; WHO, 2025).

Key challenges persist in mental healthcare: limited availability of specialists and
persistent social stigma, and the inherently subjective nature of diagnosis and treatment
planning, which rely primarily on clinician judgment and self-report questionnaires.
There is a need for objective, scalable methods that complement clinical evaluation by
supporting the assessment of mental health status, identifying the need for intervention,
and quantifying treatment effectiveness. Against this backdrop, electrophysiological
methods that directly capture neuronal field activity are prospective tools for
objective assessment and monitoring. Among these, EEG is often the most practical
option for ongoing monitoring because it couples very high temporal resolution with
affordability, portability, and feasibility for repeated, longitudinal assessments in clinics,
research facilities, and naturalistic settings (Buzsaki et al., 2012). Compared with
magnetoencephalography (MEG), which shares exquisite temporal resolution but
requires costly, shielded environments, EEG is substantially easier to deploy (Baillet,
2017); invasive intracranial EEG offers exceptional spatiotemporal precision but is
reserved for narrow clinical indications (Parvizi & Kastner, 2018).

Historically, EEG has been central to the study of human brain function for nearly a
century, beginning with Hans Berger’s recordings in the 1920s that revealed the alpha
rhythm, an oscillation around 10 Hz prominent during relaxed wakefulness with eyes
closed (Berger, 1929). Early EEG interpretation relied on visual inspection, with alpha
suppression upon eye opening (alpha blocking) recognized as one of neuroscience’s first
robust physiological observations (Niedermeyer & Lopes da Silva, 2005). Since then,
alpha activity has served both as a hallmark of typical brain function and as a clinical
research target. However, several EEG measures have been introduced to date, each
characterizing EEG from a different perspective.
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1.1 Linear Measures

Traditional EEG analysis relies on spectral band power measures, which provide essential
insights into brain dynamics by quantifying neural oscillations across different frequency
bands. EEG frequency bands are linked to distinct cognitive and physiological processes,
with delta (<4 Hz) associated with deep sleep, theta (4-8 Hz) with memory and
drowsiness, alpha (8-13 Hz) with relaxation and attentional control, beta (13—-30 Hz)
with active thinking and motor planning, and gamma (>30 Hz) with higher-order
cognitive functions such as perception and consciousness (Sérnmo & Laguna, 2005;
Buzsaki, 2006).

Band power differences are frequently reported in psychiatric disorders. The review
of 184 studies has demonstrated that differences in EEG frequency band powers are
evident for many psychiatric disorders, including MDD, ADHD, autism, addiction,
bipolar disorder, anxiety, panic disorder, post-traumatic stress disorder (PTSD),
obsessive-compulsive disorder (OCD), and schizophrenia (Newson & Thiagarajan, 2019).
Generally, a dominant pattern in MDD and alcohol addiction is an increase in absolute
theta (TBP) and beta band power (BBP) (Knott et al., 2001; Newson & Thiagarajan, 2019)
and a decrease in the alpha band power (ABP) in MDD (Wolff et al., 2019).
In schizophrenia, OCD, and ADHD, a common finding is a slowing of the EEG: increased
power in slow waves (delta, theta), accompanied by reduced power in the faster alpha
band (Newson & Thiagarajan, 2019). In GAD, heightened beta band activity has been
reported (Wang et al., 2025). As can be seen, power changes within specific frequency
bands are not unique to one disorder but show overlap across disorders as well as
variability within disorders, highlighting that spectral power shifts are a sensitive but not
highly specific measure of psychopathology (Newson & Thiagarajan, 2019).

The alpha band is arguably the most intensively studied frequency band, owing to
its prominent resting-state amplitude, ease of detection, and long research history.
Beyond power, alpha has been examined for power-independent characteristics,
most notably individual alpha peak frequency and spatial topography. Earlier reports
supported the diagnostic value of frontal alpha asymmetry for depression (Knott et al.,
2001; Thibodeau et al.,, 2006); however, its robustness has since been questioned
by meta-analyses (van der Vinne et al., 2017; Kaiser et al., 2018). Earlier work reported
a higher overall oscillatory frequency in depression, whereas peak frequency in a
specific frequency band did not yield consistent group differences (Knott et al.,
2001). More recent evidence indicates the opposite trend for the alpha band:
Wolff et al. (2019) reported lower peak frequency in MDD. Taken together, the alpha
band carries important information, but results have been somewhat contradictory,
likely due to differences in methodological choices and analytic approaches across
studies.

Combining band powers into ratios can sharpen group differences; for example,
children with ADHD often show an elevated theta/beta power ratio; however,
meta-analyses indicate only a moderate effect with substantial between-study
heterogeneity and strong age dependence (Arns et al., 2013; Newson & Thiagarajan,
2019). An additional combining method is the spectral asymmetry index (SASI),
which captures the balance between higher- and lower-frequency power excluding
the alpha band. SASI has differentiated patients with MDD from controls (Hinrikus et al.,
2009; Bachmann et al., 2013, 2018) and has been sensitive to diverse stressors (Suhhova
et al., 2011; Saifudinova et al., 2015; P&ld et al., 2018).
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Given the limited specificity of linear measures, especially band powers, they are
rarely sufficient for diagnosing or monitoring mental health on their own. Demonstrated
group effects often coexist with cross-disorder overlap and pipeline sensitivity; therefore,
linear measures are best used in conjunction with complementary measures, rather than
as standalone decision variables.

1.2 Nonlinear Measures

EEG signals are complex, stochastic, nonstationary, and nonlinear; accordingly, the wide
variety of measures for studying brain activity is diverse and extends well beyond
linear spectral measures. Consequently, many nonlinear measures from dynamical
systems, information theory, and fractal analysis have been adopted in EEG research.
Complexity-oriented, nonlinear measures quantify self-similarity, irregularity, and
long-range temporal dependencies, capturing aspects of EEG dynamics that linear
approaches miss. Such measures often reveal subtler differences between healthy and
psychiatric groups, providing complementary diagnostic information. These characteristics
make nonlinear measures promising for sensitivity, but their translational value hinges
on robustness to analysis choices.

Fractal dimension quantifies the scale-dependent irregularity (fractal complexity) of
an EEG signal. Higuchi’s fractal dimension (HFD) is among the most widely used
estimators because it operates directly on the time series and is computationally efficient
(Higuchi, 1988). In addition, across several psychiatric disorders, including MDD,
schizophrenia, and autism spectrum disorder, HFD has demonstrated moderate
discrimination between groups (Ahmadlou et al., 2012; Hosseinifard et al., 2013; Kesi¢ &
Spasié, 2016; Bachmann et al., 2018). In MDD, HFD is often elevated relative to healthy
controls (Bachmann et al., 2013; Akar et al., 2015a; Cuki¢, Stoki¢, Radenkovi¢, et al.,
2020). In schizophrenia, effects are regionally specific, with increases in HFD reported
over temporal and occipital regions and reductions over frontal regions, and age- and
symptom-nature-dependent (Fernandez et al., 2013; Kesi¢ & Spasi¢, 2016). While widely
applied and promising for psychiatric evaluation, HFD is sensitive to noise and thus
benefits from careful preprocessing (Accardo et al., 1997). This noise susceptibility raises
the risk that preprocessing choices confound longitudinal comparisons, which must be
controlled for individualized monitoring.

Detrended fluctuation analysis (DFA) is a nonlinear method for quantifying long-range
temporal correlations in time series data. Initially developed for DNA sequences and
heart-rate dynamics (Peng et al., 1994, 1995), DFA is now also used in neuroscience,
especially in EEG, to estimate a scaling exponent (a) that indexes fractal-like temporal
structure. DFA has shown successful discrimination between MDD and controls (Mumtaz
et al., 2015; Bachmann et al., 2018) while showing higher a for MDD and a linear
correlation with the severity (Lee et al., 2007). DFA has also distinguished individuals with
schizophrenia from healthy controls in the beta band (Moran et al., 2019). However,
choices such as scale ranges and detrending order introduce analyst degrees of freedom
that complicate reproducibility and cross-site synthesis.

Lempel-Ziv complexity (LZC) quantifies the emergence of new patterns in a sequence
(Lempel & Ziv, 1976). In EEG, LZC is now a staple complexity measure; it has been
reported to decrease during mental arithmetic relative to rest and to be elevated in
psychiatric cohorts, including MDD and schizophrenia (Y. Li et al., 2008). In MDD, higher
LZC is observed particularly in frontal and parietal regions and can increase during music
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listening, whereas in the healthy cohort, LZC tends to decline from baseline during music
exposure, consistent with relaxation (Akar et al., 2015b). Binarization rules substantially
affect LZC estimates, emphasizing the need for standardized pipelines when comparing
individuals over time.

Collectively, nonlinear measures can provide complementary information and
sometimes stronger group-level effects than linear measures, and show somewhat
topographical specificity in some studies, depending on the measure. However, many
nonlinear measures require user-set analysis choices (e.g., windowing, scales) that can
influence results and complicate reproducibility and cross-site comparability. Though
nonlinear measures enrich sensitivity, typical parameter dependence is a liability for
robust deployment. This motivates the development of an easily deployable measure
that does not require user-defined parameter tuning, enhancing reproducibility through
robustness.

1.3 Connectivity Measures

Connectivity measures quantify coordinated activity across brain regions by estimating
dependencies between channels (Fingelkurts et al., 2007; Leuchter et al., 2012; Olbrich
et al.,, 2014; Y. Li et al., 2016). Within the functional connectivity family, different
measures emphasize complementary facets: magnitude-squared coherence (MSC)
summarizes linear frequency-specific coupling but can be inflated by zero-lag effects and
reference choices (Srinivasan et al., 2007); imaginary coherence (ImC) retains only
nonzero-phase-lag interactions, reducing volume conduction artifacts (Nolte et al.,
2004); synchronization likelihood (SL) captures generalized (linear + nonlinear)
synchronization (Stam & van Dijk, 2002); and mutual information (Ml) indexes shared
information irrespective of linearity, with symbolic/weighted variants improving
robustness (Imperatori et al., 2019). These measures extend beyond local activity to
capture network-level coordination implicated in psychopathology.

In MDD, many studies report altered connectivity, often increased alpha/theta
coherence (Fingelkurts et al., 2007; Leuchter et al., 2012; Y. Li et al., 2016), while others
show decreases in graph-level organization (Chen et al., 2024)—illustrating directional
heterogeneity across pipelines and measures. Phase-sensitive/lagged measures (e.g.,
ImC, SL) demonstrate discriminative value and treatment sensitivity (Olbrich et al., 2014;
Sun et al., 2019). Beyond MDD, convergent dysconnectivity has also been observed in
schizophrenia (Na et al., 2002; Kam et al., 2013; A. Ibafiez-Molina et al., 2024; Domingos
et al., 2025), bipolar disorder (Kam et al., 2013; Kim et al., 2013), ADHD (Furlong et al.,
2021), anxiety disorders (Liu et al., 2024), OCD (Perera et al., 2024), and PTSD (Q. Li et al.,
2022). However, the direction and locations vary by band and measure. Such heterogeneity
indicates that connectivity effects are sensitive to band selection, referencing, and
graph-building choices, thereby hindering reproducibility.

Crucially, choices of reference, montage, windowing, filtering, and artifact handling
can shift estimates, with consequences for comparability across sites and settings (Bonita
et al., 2014). Connectivity measures complement single-channel measures by indexing
large-scale coordination. Still, their pipeline sensitivity suggests the need for careful
complementarity mapping and prioritizing robust, tuning-minimal measures when aiming
for individual-level monitoring.

The mixed and measure-dependent picture raises a key question: how do strong
group-level results translate into decisions about individual cases? Beyond understanding
which EEG measures can discriminate between clinical groups, it is equally important to
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examine how consistent these measures remain within individuals over time and how
sensitively they reflect dynamic brain-state changes. These aspects—stability and
sensitivity—are reviewed in the following sections.

1.4 From Strong Group-Level Effects to Individual Decisions

Despite the wide range of EEG measures introduced above, only one measure has been
approved for routine clinical use to detect or monitor a psychiatric disorder. The
theta/beta power ratio was approved regionally in 2013 by the US Food and Drug
Administration to be used as a complementary method to aid in diagnosing ADHD in
children (U.S. FDA, 2013), but has received critical feedback for not adding value to
clinical evaluation (Gloss et al., 2016). This narrow clinical uptake highlights a
translational gap between promising research and measures that are robust and
sensitive enough to meet reproducibility and clinical-utility demands.

At the group level, however, several feature sets differentiate patients from controls
with high accuracy. For example, a combination of nonlinear measures—HFD, DFA,
correlation dimension, and the Lyapunov exponent—achieved 90% accuracy for MDD,
exceeding the 76.6% reported for linear band-power measures (Hosseinifard et al.,
2013). Likewise, different combinations of linear (SASI, alpha power variability, relative
gamma power) and nonlinear (HFD, DFA, LZC) measures yielded closely similar accuracies
(88% for linear vs 85% for nonlinear) in another study (Bachmann et al., 2018). More
broadly, band power, HFD, LZC, SASI, and related measures have delivered comparable
performance in evaluating MDD (Hosseinifard et al.,, 2013; Bachmann et al., 2018;
Mahato & Paul, 2019). Two interpretations follow. First, the disorder may induce
multiple physiological alterations that are differentially captured by distinct EEG
measures, such that each measure probes a partially unique facet of brain dynamics.
Second, several measures may index largely the same underlying deviations in neural
function, yielding convergent or overfitting performance. However, reported accuracies
can be inflated by feature selection choices, cross-validation leakage, and site effects;
thus, notable outcomes can overestimate real-world utility.

These considerations argue for deliberate, hypothesis-driven measure selection to
maximize complementary information. In practice, classification accuracy tends to
depend more on the choice of features than on the specific learning algorithm applied
(Cuki¢, Stoki¢, Simi¢, et al., 2020). The chosen measures serve as input data that govern
classification performance. Yet only a few studies have directly examined how combining
different EEG measures affects classification accuracy (Hosseinifard et al., 2013;
Bachmann et al., 2018; Cukié, Stoki¢, Simi¢, et al., 2020).

Crucially, strong group-level separation does not imply reliable individual-level
discrimination: EEG exhibits substantial inter-individual variability (Zhang et al., 2021;
Lopez et al., 2023; Tatar, 2023), many measures are not disorder-specific, and patient—
control distributions often overlap. Consequently, promising group averages can fail to
identify where a particular person lies within the relevant distribution, limiting clinical
decision-making. To bridge this gap, reliability and temporal stability must be established
explicitly—especially within individuals over time.
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1.5 Reliability and Temporal Stability

While the previous section outlined why strong group-level effects may not translate to
individual decisions, this section reviews quantitative evidence on the reliability and
temporal stability of EEG measures over time.

For EEG measures to be clinically useful, they must be reliable and temporally stable.
Reliability is commonly quantified with the intraclass correlation coefficient (ICC), which
expresses the proportion of total variance attributable to inter-individual differences
relative to intra-individual variability (and residual error) in a given measurement design
(Shrout & Fleiss, 1979; McGraw & Wong, 1996; Koo & Li, 2016). Values approaching 1
indicate high consistency across raters or sessions, whereas values near 0 indicate poor
reliability. According to Koo & Li (2016), reliability should be evaluated from the 95%
confidence interval (Cl) of the ICC estimate, not the point estimate alone. As a general
guideline, a Cl lower bound (LB) < 0.50 indicates poor reliability, 0.50-0.75 moderate,
0.75-0.90 good, and > 0.90 excellent reliability. Because EEG is sensitive to day-to-day
influences (e.g., nutrition, time of day, seasonality, hormonal cycles), some variability
is expected even in healthy individuals (Hoffman & Polich, 1998; Brotzner et al.,
2014; Holler et al., 2022). Critically, reliability is not equivalent to temporal stability
(intra-individual consistency) required for longitudinal monitoring.

At the group level, ICC quantifies the proportion of total variance attributable to stable
inter-individual differences. A high ICC, therefore, indicates that inter-individual variance
substantially exceeds intra-individual variance: individuals are distinguishable from one
another, and the measure separates people well, but this does not by itself demonstrate
strong temporal stability within any given individual. Conversely, a low ICC implies that
intra-individual variability (and/or measurement error) is large relative to inter-individual
differences, or that individuals differ little, yielding weak discrimination at the group
level. In short, group-level ICCs conflate intra-individual stability with the magnitude of
between-person differences and should not be interpreted as a pure index of individual
test—retest stability.

The reliability of linear EEG measures, especially spectral power in classical frequency
bands, has been documented extensively. Early studies reported that band powers show
test—retest reliability (Gasser et al., 1985; Salinsky et al., 1991; Kondacs & Szabd, 1999),
and subsequent work confirmed and extended these findings to additional linear
parameters (Cannon et al., 2012; Gevins et al., 2012; Ip et al., 2018; Tenke et al., 2018).
By contrast, the reliability of nonlinear measures has been less frequently examined, with
only a handful of studies including them (Dunki et al., 2000; Gudmundsson et al., 2007;
Pold et al., 2021; Lord & Allen, 2023). This scarcity represents a key evidence gap for
nonlinear measures intended for longitudinal use.

Across studies, mid-spectrum bands (theta, alpha, beta) tend to exhibit higher
reliability than delta or gamma band power (GBP) (Gudmundsson et al., 2007; Ip et al.,
2018; Pold et al., 2021). Nonlinear measures show mixed results, ranging from somewhat
lower (Gudmundsson et al.,, 2007) to comparable reliability relative to band power
measures (Pold et al., 2021). Developmental factors also play a role: the reliability of
linear measures is generally stronger in adults than in children or adolescents, likely
reflecting maturational changes, whereas sex differences in reliability appear minimal
(Tenke et al., 2018). These patterns suggest prioritizing mid-band measures for stable
baselines while cautiously interpreting delta/gamma unless temporal stability is
demonstrated within the intended pipeline.
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Temporal stability has been far less studied than reliability. At the group level,
temporal stability is typically assessed as the relative difference between group means
across recording sessions. In a three-year test—retest study with 17 participants (two
sessions per person), spectral band powers showed the smallest group-level change in
the alpha band (0.72%) and the largest in the gamma band (2.28%) (P4ld et al., 2021).
Among single-channel linear measures, SASI exhibited the greatest change (11.89%),
whereas interhemispheric asymmetry showed very poor stability over three years
(236%). By contrast, nonlinear measures demonstrated higher temporal stability at the
group level than linear measures, with HFD and DFA changing by only 0.18% and 0.49%,
respectively. This suggests that, in nonlinear measures, individuals may show less
difference in baselines and possibly higher intra-individual stability than in linear
measures.

In a follow-up study (P3ld et al., 2023), both linear and nonlinear measures showed
strong between-session correlations (Pearson r > 0.88). Nevertheless, average individual
relative changes were larger for linear measures (21%—36%) than for nonlinear measures
(3%—10%). By comparison, depression questionnaire scores for the Hamilton Depression
Rating Scale (HAM-D) (Hamilton, 1960) and Emotional State Questionnaire (EST-Q) (Aluoja
et al., 1999) were much less temporally stable (52.8%—69.3%; r = 0.52 and r = 0.61),
indicating the subjective nature of not only self-report questionnaires (EST-Q) but also
questionnaires filled in by a health specialist (HAM-D). The comparative instability of
guestionnaires underscores the value of objective measures; however, individual-level
change thresholds must still be predefined to avoid post hoc interpretation errors.

However, small group-mean changes can conceal substantial individual-level
fluctuations, cautioning against overreliance on generalized statistics. Even under tightly
controlled recording conditions in healthy individuals, distinct EEG profiles can be
observed. Aggregating to means or medians smooths extreme values, making the group
appear more stable than most individuals. To evaluate whether an EEG measure can be
clinically useful for longitudinal monitoring, temporal stability must therefore be
demonstrated at the individual level, not only at the group level. Accordingly, stability
should be formalized as individualized reference intervals with explicit exceedance
criteria. With baselines in place, the remaining question is whether candidate measures
show adequate intra-individual sensitivity when the brain state truly changes.

1.6 Individual-Level Sensitivity

Having selected complementary, less redundant measures and established not only their
reliability but also their temporal stability at the individual level, the next task is to
determine whether they are also sensitive at the individual level. As discussed previously,
numerous EEG measures, especially when combined, differentiate healthy controls from
cohorts with psychiatric disorders in group studies; however, because EEG is highly
person-specific, such group-level evidence offers limited insight into whether the same
individual would show detectable change when moving from a healthy state to the onset
of a psychiatric condition. Accordingly, beyond choosing stable, information-rich measures,
it is essential to assess their individual-level sensitivity: given a well-characterized personal
normative range for each measure across relevant conditions, do deviations beyond that
range emerge when brain function becomes perturbed?

Taken together, the reviewed evidence suggests that EEG measures vary in both their
temporal stability and their responsiveness to brain-state changes. Measures showing
high stability may reflect trait-like properties of brain function, whereas those with
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greater variability may index state-dependent processes. The optimal biomarker for
individualized monitoring should therefore balance stability and sensitivity—remaining
relatively stable under comparable conditions yet responsive to meaningful
neurophysiological change. The current thesis addresses this balance by systematically
quantifying both aspects in multiple EEG measure families.
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2 Methods

2.1 Subjects and Prerecording Conditions

In Publication 1, 80 neurologically and psychiatrically healthy volunteers (38 women,
42 men; age mean +SD 37 £ 15, range 19-75 years) were recruited for the cross-sectional
study. In Publication I, 66 right-handed participants formed two groups: 33 medication-
free outpatients with MDD (12 men, 21 women) and 33 age- and sex-matched healthy
controls. Mean age was 34.5 t+ 14.9 years in the MDD group and 34.7 + 15.0 years in
controls (overall range 1875 years). In Publication Ill, nine healthy, right-handed male
participants (mean age 37.2 * 8.1 years; range 26—49) each completed twelve monthly
recordings. Publication IV followed a single healthy, right-handed male aged 49 years,
with twelve monthly reference recordings and two post-stressor recordings.

In Publications I, lll, and IV, all participants self-reported as healthy and denied a history
of concussions with loss of consciousness, epilepsy, brain injury, use of narcotic or
psychotropic substances, or other neurological or psychiatric conditions. In Publication I,
MDD was confirmed during a clinical interview, and participants were diagnosed with
MDD by a psychiatrist according to ICD-10 criteria. Participants in the control group were
enrolled if they scored below the EST-Q thresholds referring to probable depressive or
anxiety disorder.

Pre-recording conditions were standardized across studies: in Publications I-lI,
participants were instructed to avoid alcohol for 24 h and caffeine for at least 2 h;
in Publications llI-1V, they maintained their usual routines and abstained from both
alcohol and caffeinated beverages for 24 h before each EEG session. Additionally,
in the longitudinal protocols (Publications IlI-1V), the weekday and time of the recording
were held constant within participants across sessions to minimize confounding influences.

All studies were conducted in accordance with the Declaration of Helsinki and were
approved by the Tallinn Medical Research Ethics Committee and/or the Estonian
Institute for Health Development Human Research Ethics Committee. Written informed
consent was obtained from every participant before enrolment.

2.2 EEG Recordings and Preprocessing

EEG was acquired with a Neuroscan Synamps2 amplifier and 32-channel cap (QuikCap)
(Compumedics, NC, USA). The EEG data were obtained in 30 channels and the electrodes
were positioned according to the extended international 10-20 system at positions Fp1,
Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TPS,
P7, P3, Pz, P4, P8, 01, Oz, and 02 (Figure 1) referenced to linked mastoids.
Electrooculograms (horizontal and vertical) were recorded concurrently in two channels
to monitor eye movements. The impedance of EEG electrodes was kept below ten kQ to
achieve good conductivity between the skin and the electrode.
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Figure 1. Locations of the 30 EEG electrodes corresponding to the channels used in this thesis,
positioned according to the extended international 10-20 system.

Eyes-closed (EC) resting-state EEG was recorded in a dimly lit shielded room for 6 min
in Publication | and for 10 min in Publications II-IV; in the longitudinal protocols
(Publications 111-1V), the EC block was followed by a 5-minute eyes-open period, which
was not analyzed in this thesis. Pre-processing was performed in MATLAB (MathWorks,
MA, USA). Initially, EC EEG recordings were segmented into 20.48-s epochs, and
artifact-containing epochs were visually identified and flagged. The EC EEG data were
re-referenced with the reference electrode standardization technique (REST). REST
approximates a neutral “infinite” reference to minimize dependence on the original
reference, making EEG more physiologically interpretable and comparable across
recordings (Yao, 2001; Hu et al., 2018; Yao et al., 2019). Digital filtering was applied to
remove baseline drift and high-frequency noise, leaving 1-45 Hz band in Publication | and
2-47 Hz band in Publications II-IV. All data were acquired at 1000 Hz; data were
down-sampled to 200 Hz in Publications I-ll and, in Publications IlI-1V, for nonlinear
measures (power band measures were computed at the original rate). EC EEG recordings
were segmented into 20.48-s epochs again, and 10 visually clean epochs per subject were
retained in Publications I-ll, 12 segments in Publication Ill, and the first 9 segments in
Publication IV.

2.3 Calculated Measures and Statistics

The thesis employs a broad range of quantitative EEG measures, all of which are collated
in Table 1.
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Table 1. EEG measures used in the thesis.

Measure Abbreviation | Usage in Quantifies
publications
Theta band power | TBP I, 11, 1V Absolute power in the
theta band
Alpha band power | ABP 1,1, 1V Absolute power in the
alpha band
¢ Beta band power BBP 1, I, 1V Absolute power in the
é beta band
S | Gamma band GBP I, I, IV Absolute power in the
E power gamma band
g Spectral SASI I, IV Balance between higher
= | asymmetry index and lower band powers
Magnitude- MSC Inter-channel coupling
squared coherence
Imaginary ImC Phase-lagged inter-
coherence channel coupling
Mutual M Inter-channel
information dependence
Synchronization SL Inter-channel
§ likelihood synchronization
5 Higuchi’s fractal HFD LY Fractal complexity
g dimension
§ Detrended DFA [, 1 Long-range correlations
£ | fluctuation analysis
é Lempel-Ziv LZC I, 1 Sequence complexity
complexity
in-phase matrix pMP I, 1 Waveform stability
profile

2.3.1 Publication |
Publication | extracted 12 EEG measures—band powers in the theta, alpha, beta, and
gamma ranges; four single-channel dynamics measures (HFD, DFA, LZC, SASI); and four
functional connectivity measures (SL, MI, MSC, ImC). Power was computed within the
bands TBP (4—7 Hz), ABP (8-12 Hz), BBP (13-30 Hz), and GBP (31-45 Hz). HFD was
computed according to the original algorithm (Higuchi, 1988), with kmax = 8, as in
Bachmann et al. (2018) and Paeske et al. (2018). DFA followed Peng et al. (1995) with the
EEG adaptation of Bachmann et al. (2018). LZC was calculated as in Lempel & Ziv (1976)
with the adjustment in Bachmann et al. (2018). SASI summarized lower versus higher
EEG-band power while excluding the central alpha band (Hinrikus et al., 2009). SL was
implemented as described by Stam & van Dijk (2002), with parameters set as in Pdeske
et al. (2018) to capture time—frequency structure. Ml was estimated with the Fraser &
Swinney (1986) algorithm, following the EEG procedure of A. J. Ibafiez-Molina et al.
(2020). MSC and ImC were computed in the frequency domain as in Paeske et al. (2020).
Band power and dynamics measures were computed for each of the 30 channels, and
connectivity measures were computed for every channel pair (30x29/2 = 435) within
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each EEG segment; segment-wise values were first averaged within channel/pair and
then averaged across channels/pairs to obtain the subject-level value. Pairwise
differences among the 12 measures ((12x12-12)/2 = 66 comparisons) were tested with
the Wilcoxon rank-sum test (Bonferroni-corrected to a = 0.00076). Correlations between
measures were quantified with Spearman coefficients; at n = 80, |r| > 0.37 met the same
corrected significance level via t-testing (o = 0.00076).

Publication I introduced an effectiveness index E that reflects both the reach and the
strength of a measure’s associations with others. For measure i, the effectiveness E; was
defined as

Ei = Ni X Ri, (1)
where N;is the number of measures significantly correlated with i and R;is the average
of those correlation coefficients. This quantitative index helps assess how broadly a

measure reflects EEG patterns and, in turn, its potential to reveal the varied symptom
profiles seen in mental disorders.

2.3.2 Publication Il

A parameter-independent, time-domain measure of EEG waveform stability was
introduced in Publication Il. The proposed pMP builds on the classic matrix profile (MP)
(Yeh et al., 2016), a threshold-free data-mining algorithm for large-scale time series to
identify motifs and discords. MP has been used modestly on physiological signals and can
perform well on quasi-periodic data, where recurring motifs enable anomaly detection
(Wankhedkar & Jain, 2021; Seoni et al., 2022). Resting-state EEG lacks stable motifs—
eyes-closed alpha rhythm shows apparent periodicity without true recurrence;
therefore, classic MP, which targets changes in motif, misses subtle global alterations
(e.g., in MDD) and is better suited to pronounced temporal shifts such as seizures or
blinks. The pMP method thereby indexes the consistency of waveform shape across
short, phase-aligned segments. The signal is scanned with 1-s windows (Figure 2);
for each window (query with the length m), the algorithm compares its z-normalized
waveform to all other same-length z-normalized windows of the segment (with the
length n) by calculating Euclidean distance between them, producing a distance profile
(DP) using the MASS V2 algorithm (Mueen et al.,, 2022; Zhong & Mueen, 2024).
The acquired DP plummets whenever the query is aligned in phase with the comparable
window (Figure 3).
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Figure 2. Example EEG signal segment (channel FCz, 20.48 s; 4096 samples). The red segment marks
the first 1-s query used to compute the distance profile (Publication I1).

Each possible window of the signal is treated as a query in a sliding window manner.
For each query g;, pMP retains only the local minimum values of the DP (the in-phase
matches marked with red circles in Figure 3) and computes the median across these local
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minimums, M(q;), for the query. The M(qg;) values corresponding to each query are
averaged to yield a single score, as in

PMP = —— x XL M(q), (2)

Because each comparison is z-normalized, the measure is largely insensitive to

absolute amplitude. Instead, it reflects the timing regularity of rhythms: lower pMP

indicates more regular, phase-aligned recurrence, whereas higher pMP indicates more

irregular timing. It is thus a parameter-independent, single-channel measure of in-phase
self-similarity.
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Figure 3. Distance profile for the query in Figure 2. Local minimums (circled) correspond to
subsegments most in phase with the query. These minimums form the inputs to pMP (Publication ).

The reference measure, HFD, was calculated as in Publication I. Per subject, HFD and
pMP were computed for 10 segments at each of 30 channels, and segment-level values
were summarized per channel using the median. Group differences were tested with the
Mann-Whitney U test (nonparametric test of median differences) (a = 0.05), and p values
were adjusted with a modified Bonferroni correction for multiple comparisons.
Classification performance was then assessed using a support vector machine with
leave-one-out cross-validation on single-channel features.

2.3.3 Publication Il
Absolute powers were calculated for the theta (4—8 Hz), alpha (8—13 Hz), beta (13—-30 Hz),
and gamma (30-47 Hz) frequency bands. HFD, LZC, DFA, and pMP were calculated for
the whole band as in Publications | and Il. For each monthly recording, measures were
computed for each channel across 12 clean segments, and the segment-level values were
summarized using the median, yielding one value per channel, per subject, per month.
With 12 monthly sessions per participant (n = 9), ICC was used to assess the reliability
of repeated EEG measurements. A two-way mixed-effects model (average measures,
absolute agreement (McGraw & Wong, 1996; Koo & Li, 2016) for all 30 channels was
employed. Reliability was considered excellent when ICC 95% CI LB > 0.9.
Inter-individual differences in channel P3 were analyzed with the global Kruskal-Wallis
test (a = 0.05) (Kruskal & Wallis, 1952), a nonparametric ANOVA alternative for multiple

26



groups that does not assume normality and is relatively insensitive to unequal variances.
If a significant difference is detected in the global test, a post hoc test can be conducted
to identify which subjects differ. In this study, the Dunn test (a = 0.05) was employed to
determine how many subject pairs differed statistically (Dunn, 1964). Given nine
subjects, 9(9 - 1)/2 = 36 unique pairwise comparisons were performed, and p values
were adjusted using the Sidak correction (Sidak, 1967).

For each participant, the annual mean and standard deviation for each measure were
calculated in channel P3, as well as the maximum relative difference (rDif, intra-individual
stability), which indicates the largest deviation from the annual mean, as in

rDif = x 100, (3)

where 1,4, is the most extreme monthly measurement across the year for a given
subject, and v is that subject’s annual mean.

Ymax—V

2.3.4 Publication IV

Two BNT162b2 (an mRNA vaccine encoding the SARS-CoV-2 spike protein marketed
under the name Comirnaty, Pfizer—-BioNTech) doses were administered to the participant
three weeks apart. After the first dose, adverse effects were limited to pain at the
injection site and in the ipsilateral upper limb for several days; after the second dose,
adverse effects included ipsilateral upper-limb pain, headache, myalgia, fatigue, fever,
and fogginess (fogginess lasted up to one week; the others resolved by day 4).
In Publication IV, 12 monthly baseline EEG recordings served as references (r1-r12). Two
post-vaccination sessions (p1, p2) were acquired 5 and 12 days after the second dose,
scheduled on the same weekday and at the same start time as the reference recordings.
Because the first dose preceded the next EEG session by 19 days and no recordings were
obtained immediately afterward, that session (r7) was treated as a reference, and
first-dose effects were not analyzed.

Absolute power in the theta (4—8 Hz), alpha (8—12 Hz), beta (12—30 Hz), and gamma
(30-47 Hz) bands, as well as SASI and HFD, were computed as in Publication | from the
Fz channel signal. For each recording, each measure was calculated for nine segments,
and the segment-level values were summarized by their median.

A two-sample t-test (a = 0.05) was used to test if post-vaccination EEG measures
differed from reference recordings. Because six measures were analyzed, p values were
adjusted for multiple testing using a modified Bonferroni correction.
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3 Results

3.1 Interrelationship Between EEG Measures (Publication I)

Publication | investigated the interrelationships between 12 EEG measures in healthy
participants to assess their complementarity. Of 66 pairwise comparisons, 37 (56%) were
statistically significantly correlated according to Spearman’s correlation after Bonferroni
correction. The pairwise Spearman’s correlations among the EEG measures are shown in
the heatmap in Figure 4.
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* *
HFD } 064 052
*
DFA | 0.64 0.23 0.75
*
LZC| 052 0.23 028 029 039 -0.02 010 [-021 038 042 034
o 10.50
SASIF 059 006 028
TBP 0.29 10.25
=
&3 )
ABP [ .39 '%
10.00 E
BBP} 0.02 3
o
0
GBPf 011 -035 o01l0 1-0.25
* *
MSC}-035 -023 -0.21 -0.06 011 023 012 -0.25 0.64 057 028
* * * * * o 4-0.50
ImC}-042 -038 -0.38 -0.05| 024 039 018 -0.04

0.64 0.41

* *

0.19 | 057 0.77 —0.75
* *

028 041 [

R @) @) v

-1.00

QO & L s R
Qi‘d(\j’c,@’\q’

$ & S
Figure 4. Spearman’s correlation matrix across 12 EEG measures (n = 80). Each cell displays the
correlation coefficient r, with an asterisk (*) indicating correlations that remain significant after the
Bonferroni correction (p < 0.00076; [r| > 0.37). Significant positive correlations are shaded green
and negative correlations blue. Gray denotes nonsignificant correlations, and blue separators
delineate the three measure families (dynamics, band power, connectivity). Adapted from
Publication I.

Band power measures. According to the Wilcoxon test, the calculated values of
different band power measures were mutually significantly different (p < 0.00076) in all
combinations except TBP and BBP (p = 0.03). Spearman’s correlation revealed that
four of six (66.7%) pairings were significant (|r| > 0.37). Correlations were highest
between adjacent bands: TBP and ABP (r = 0.87), ABP and BBP (r = 0.80), but also
between TBP and BBP (r = 0.75). Pairs involving the GBP had lower (GBP and BBP,
r = 0.55) or insignificant correlations after correction (ABP and GBP, r = 0.34; TBP and
GBP, r =0.30).
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Dynamics measures. The Wilcoxon test showed that all dynamics measures differed
significantly in all combinations (p < 0.00076). Three of six (50%) correlations were
significant: HFD and DFA (r = 0.64), HFD and SASI (r = 0.59), and HFD and LZC (r = 0.52);
the remaining pairs among DFA, LZC, and SASI were not significant.

Functional connectivity measures. The Wilcoxon test indicated significant differences
among connectivity measures in all pairings except SL and Ml (p = 0.297). Spearman’s
analysis showed five of six (83.3%) significant correlations: SL and Ml (r = 0.77), SL and
ImC (r = 0.70), MSC and ImC (r = 0.64), SL and MSC (r = 0.57), and ImC and Ml (r = 0.41).

Across categories. The strongest observed association was between ABP and Ml
(r = 0.97). The weakest significant associations included LZC and ImC, and GBP and SASI
(r=0.38). By the number of significant links (degree), the counts were: HFD 9, SL 9, MI 8,
ABP 8, BBP 7, TBP 7, ImC 7, DFA 6, SASI 4, LZC 4, MSC 2, and GBP 2. Figure 5 summarizes
the effectiveness (E) of these measures.
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Figure 5. Effectiveness E for each EEG measure, indicating the reach and strength of its associations
with other measures. E = NR, where N is the number of measures correlated with the indicated
measure, and R is the average value of the corresponding correlation coefficients (Publication ).

3.2 Waveform Stability Measure to Detect MDD (Publication 1)

Publication Il introduced a waveform stability measure, pMP, and compared it with HFD
for distinguishing patients with MDD from healthy controls. Across 66 subjects, both pMP
and HFD values were higher in the MDD group than in controls. Group means and
topographies for pMP and HFD, as well as the MDD and control group differences, are
shown in Figure 6. For both measures, values were lowest in the occipital region and
higher over lateral and prefrontal areas.
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Figure 6. Topographies of group means for pMP (top) and HFD (bottom) across 30 EEG channels in
controls and MDD (n = 66). The rightmost column shows group differences (MDD — Control); large
black dots mark channels significant after Mann—Whitney U test with a modified Bonferroni
adjustment to p values (a = 0.05) (Publication I1).

control group

Channel-wise testing (Mann—Whitney U test with modified Bonferroni correction)
showed that pMP distinguished the MDD group from the control group in all 30 EEG
channels (p < 0.05). In contrast, HFD was significant in 13 of 30 channels (43%).
The significant channels in HFD were mainly central (CP4, C4, CP3, CPz, Cz, C3, FCz, Fz,
FC3) with a few posterior sites (02, P7, P8, P3). In pMP, the largest between-group
difference appeared in the occipital region. Classification with support vector machines
yielded the highest accuracy of 73% for pMP and 67% for HFD.

3.3 Intra-Individual Stability and Inter-Individual Differences
(Publication Ill)

Across twelve monthly recordings in nine participants, band powers and nonlinear
measures showed generally excellent long-term reliability (ICCs) in Publication IIl. TBP
and ABP showed excellent reliability in all 30 channels (Table 2). BBP and GBP also
demonstrated excellent reliability, but BBP showed slightly reduced reliability in three
temporal channels (TP7, T8, TP8), with the lowest ICC in TP8 (0.908, 95% Cl [0.786,
0.975]), which is still indicative of good reliability. GBP remained excellent centrally but
fell below the excellent threshold in 13 peripheral (mostly prefrontal/frontal/temporal)
channels, with the lowest ICC at FT8 (0.756, 95% CI [0.424, 0.935]). All nonlinear
measures (HFD, LZC, DFA, pMP) exhibited excellent reliability across all channels.

Figure 7 shows the monthly values for all eight measures for each of the nine
participants, illustrating distinct participant-specific ranges within which the monthly
values fall. Across measures, participants showed clear inter-individual differentiation
(Dunn test): for each measure, 14-16 of the 36 subject pair comparisons differed
significantly (Table 2). Band powers exhibited comparable separation (TBP: 15 pairs; ABP:
16; BBP and GBP: 14), and nonlinear measures showed similarly strong differentiation
(HFD and LZC: 14; DFA and pMP: 15).
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Intra-individual temporal stability (rDif in the parietal channel P3) indicated substantially
greater month-to-month fluctuation for band powers than for nonlinear measures.
Mean annual deviations across participants were 66% (TBP), 64% (ABP), 32% (BBP), and
30% (GBP), compared with 23% (DFA), 10% (LZC), 6% (pMP), and 4% (HFD) (Table 2).
Marked inter-individual heterogeneity was also apparent: across measures, participant-
specific variability ranged from 17% to 53%.
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Figure 7. Inter-individual and intra-individual variability in EEG measures across one year for each
subject 1-9 and the group G (n = 9). Blue dots represent twelve individual monthly values; black
dashes show subject-specific annual means. Error bars for subjects 1-9 represent intra-individual
standard deviations. For group G, the yellow dots represent the annual mean of each subject, the
black dash indicates the group-level mean, and the error bars represent the standard deviation
(Publication Ill).
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Table 2. Reliability and temporal stability of EEG band power and nonlinear measures across 12
monthly recordings (n = 9). The table presents mean intraclass correlation coefficients (ICC) across
30 channels, the lowest ICC 95% confidence interval lower bound (Cl LB) value across channels and
corresponding channel, the count of significantly different subject pairs out of 36 pairwise
comparisons according to Dunn test, and the mean value across subjects and the range of maximal
relative difference from annual average across subjects in channel P3.

Measure Mean ICC Lowest ICC Dif. subject pairs Intra-individual deviation
95% CI LB (of 36) mean and range (%)

TBP 0.991 0.952 (P4) 15 66 (24-163)

ABP 0.984 0.917 (02) 16 64 (27-152)

BBP 0.978 0.786 (TP8) 14 32 (11-53)

GBP 0.935 0.424 (FT8) 14 30 (12-57)

HFD 0.993 0.949 (T7) 14 4 (2-8)

LzC 0.985 0.922 (T7) 14 10 (4-22)

DFA 0.992 0.967 (02) 15 23 (5-54)

pMP 0.977 0.908 (0z) 15 6 (<1-19)

3.4 Sensitivity to Controlled Physiological Perturbation (Publication 1V)

Publication IV assessed whether resting-state EEG exhibits short-term changes after
a second dose of Comirnaty vaccine. The reference distribution and the two
post-vaccination values in channel Fz are presented in Figure 8. Relative to this baseline,
Publication IV showed that on day 5 after the second vaccine dose, the values of three
measures lay outside the subject’s usual fluctuation range after modified Bonferroni
correction of the p values: GBP (10.81x10% uVv? p = 0.008), SASI (0.214; p = 0.013),
and HFD (1.288; p = 0.01). TBP and ABP were more than one standard deviation below
the reference mean but were not significantly different after the correction, and BBP
showed no change from the baseline. By day 12, no measure differed significantly from
the reference distribution, and all values fell within the normal range.
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Figure 8. One-year longitudinal time courses of the powers in the theta, alpha, beta, and gamma
frequency bands, and single-channel dynamics (SASI, HFD) showing the effect of a controlled
physiological perturbation (Comirnaty vaccination) on these measures (n = 1). Asterisks indicate
reference recordings (r1-r12) that were acquired four weeks apart regularly. The dots (p1, p2) show
the values on the fifth and twelfth day after the vaccination. Straight and dashed lines represent
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the mean and standard deviation values of the twelve reference recordings (Publication V).
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4 Discussion

The overarching motivation of this thesis was the persistent gap between promising
research findings and limited clinical uptake of resting-state EEG measures for common
psychiatric disorders. Despite numerous reports of group-level EEG differences between
clinical and control samples, these effects have not translated into robust tools for
detecting or monitoring psychiatric health, as they have not been validated for
individual-level use. In the Introduction, knowledge gaps in two main areas were
highlighted that hinder the clinical adoption of EEG measures in evaluating psychiatric
health: (1) the wide selection of diverse, unorganized EEG measures, whose mutual
relationships and overlap are not well understood; and (2) substantial dispersion across
individuals, which can obscure intra-individual change and limit individual-level
interpretability.

To address these obstacles, the overall aim was to guide the selection of EEG measures
for individualized monitoring. This aim was pursued in four steps: organizing the measure
space (Publication 1), introducing and testing a waveform stability measure in MDD
(Publication 1), characterizing long-term individual stability (Publication I1ll), and
demonstrating intra-individual sensitivity to a controlled perturbation (Publication 1V).
Across four studies aligned with the overall and specific aims of the thesis, converging
evidence was obtained that common resting-state EEG measures share substantial
information, that the new time-domain waveform stability measure provides added
value for group separability in MDD, that selected nonlinear single-channel measures are
temporally stable within individuals over one year, and that selected EEG measures
remain sensitive to controlled physiological perturbation in brain physiology. Together,
these findings guide the selection of EEG measures for individualized monitoring.

4.1 Complementarity in Resting-State EEG Measures (Publication 1)

The first aim was to describe interrelationships among common resting-state EEG
measures to assess complementarity and guide compact, informative measure selection.
Publication | found that more than half of the pairwise relationships were significantly
correlated, indicating substantial overlap in the information they capture and suggesting
that several ostensibly distinct EEG measures capture partly the same information.

From a clinical perspective, this redundancy has clear implications. Combining many
highly correlated measures can inflate apparent classifier performance in small samples
without adding genuinely independent information, while increasing the risk of
overfitting and hindering interpretability (Hosseinifard et al., 2013; Bachmann et al.,
2018; Cuki¢, Stoki¢, Simi¢, et al., 2020; Wen et al., 2025). Therefore, the goal should be
small but complementary panels rather than maximal feature sets.

Mental disorders can produce diverse EEG alterations across individuals; thus,
clinically practical measures should be able to pick up a wide range of possible
alterations. To compare measures on this criterion, the effectiveness index E was
introduced in Publication |, which summarized the extent to which each measure was
correlated with others (Figure 5). HFD, SL, MI, and ABP formed a high-effectiveness group
that covered a wide range of other measures; GBP, MSC, LZC, and SASI contributed
narrower, more specific information. Choosing one broad-coverage measure together
with one or a few weakly correlated, more specific measures is a principled way to
construct compact panels.
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HFD emerged as an efficient core measure showing the highest effectiveness among
all those compared. This aligns with numerous studies showing that HFD is a broadly
sensitive measure of brain physiology, detecting subtle EEG changes related to
depression (Ahmadlou et al., 2012; Bachmann et al., 2013, 2018; Hosseinifard et al.,
2013; Akar et al., 2015b, 2015a; Cuki¢, Stoki¢, Radenkovié, et al., 2020; Greco et al., 2021)
anxiety (Kawe et al., 2019), epilepsy (Khoa et al., 2012), sleep stages (Olejarczyk et al.,
2022) and even gaming addiction (Hosseini et al., 2021). Its central position in the
correlation structure makes it a strong reference against which to benchmark new
measures.

At the same time, measures such as GBP and LZC, which demonstrated narrower
specificity (lower effectiveness), carry relatively more independent information and can
improve classification when paired with complementary features (Bachmann et al.,,
2018). GBP’s low effectiveness largely reflects the small absolute contribution of gamma
to the total EEG power spectrum, yet gamma-related changes have been linked to stress
and cognitive demands (Minguillon et al., 2016; Schlink et al., 2017).

Overall, Publication I provides the first systematic map of inter-measure relationships
in resting-state EEG and demonstrates that many widely used measures are mutually
correlated rather than fully independent. This directly addresses the first obstacle
identified in the Introduction—the wide selection of diverse, unorganized EEG measures,
in which features are selected and parameterized ad hoc for similar clinical questions,
yielding inconsistent results—and supports moving from large, redundant feature sets
toward small, complementary panels.

4.2 Waveform Stability as a Measure to Detect MDD (Publication Il)

The second aim was to develop and evaluate a new single-channel EEG measure of
waveform stability and to test whether waveform stability carries clinically relevant
information in MDD. Converging evidence indicates that psychiatric disorders, including
MDD and schizophrenia, are characterized by abnormalities in neural synchrony and the
temporal organization of oscillatory activity, particularly in alpha and gamma bands
(Uhlhaas & Singer, 2006; Basar & Giintekin, 2013; Moran et al., 2019; Tsai et al., 2023;
Han et al., 2025). In MDD, atypical alpha dynamics and altered rest—stimulus interactions
have been reported (Fingelkurts et al., 2007; Newson & Thiagarajan, 2019; Wolff et al.,
2019). These findings suggest that the stability and organization of ongoing rhythms are
diagnostically relevant.

Existing single-channel measures, such as LZC, HFD, and DFA index sequence diversity,
fractal complexity, or long-range correlations (Lempel & Ziv, 1976; Higuchi, 1988; Peng
et al., 1995), but none explicitly quantify the temporal similarity of recurring waveform
motifs. Publication Il introduced the pMP method specifically to fill this gap by
quantifying waveform-level temporal similarity (stability) independent of amplitude.
Elevated pMP and HFD in the 66-subject resting-state sample showed increased
waveform-level temporal irregularity and fractal complexity in MDD, aligning with prior
reports of higher EEG complexity in depression (Lee et al., 2007; Y. Li et al., 2008;
Bachmann et al., 2013, 2018; Akar et al., 2015b; Cuki¢, Stoki¢, Radenkovi¢, et al., 2020).
For both measures, minima were observed over occipital sites (Figure 6), consistent with
the strong, relatively regular alpha rhythm in eyes-closed rest. The fact that pMP was
lowest where alpha is strongest and most stable supports its interpretation as a measure
of timing regularity of oscillatory activity: more stable alpha frequency yields more
frequent in-phase matches and lower pMP values. The higher pMP in MDD is compatible
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with reports of greater variability in alpha peak frequency in depression (Wolff et al.,
2019), suggesting more irregular timing of oscillatory bursts.

Regarding spatial extent, pMP showed broader group separation than HFD: pMP
distinguished MDD from controls in all 30 channels, whereas HFD reached significance in
13 channels (43%), primarily in central and posterior regions. At the same time, HFD
remains a strong benchmark, as prior work has reported considerable group-level
discrimination in MDD (AhmadIlou et al., 2012; Bachmann et al., 2013, 2018; Hosseinifard
et al., 2013; Akar et al., 2015b; Kesi¢ & Spasi¢, 2016; Cuki¢, Stoki¢, Radenkovi¢, et al.,
2020), and Publication I further showed its effectiveness in capturing a broad spectrum
of disturbances in the brain. Additionally, single-channel classification accuracy reached
73% for pMP versus 67% for HFD in this sample—modest but notable given that HFD is a
strong reference measure and that earlier work reporting slightly higher accuracies often
used smaller cohorts and different classifiers (Hosseinifard et al., 2013; Bachmann et al.,
2018; Greco et al., 2021).

Furthermore, the widespread and methodologically diverse selection of measures in
EEG analysis is coupled with analyst-specified parameterization, which reduces
comparability across sites and settings and complicates interpretability for practical use.
In this regard, a key advantage of pMP is that it is parameter-independent in routine use:
it does not require user-defined parameter tuning. It can be applied in a standardized
form, thereby reducing analysts’ degrees of freedom and improving cross-study and
cross-site comparability.

Taken together, these findings support three conclusions. First, waveform stability,
as quantified by pMP, is altered in resting state MDD and captures increased
amplitude-invariant waveform instability and heightened dynamical lability, which
are not fully reflected in power or generic complexity measures. Second, pMP offers a
parameter-independent alternative to traditional complexity measures, reducing analysts’
degrees of freedom and supporting cross-site comparability. Third, because pMP is
z-normalized at the short segment level, it is less sensitive to absolute amplitude
differences (e.g., skull thickness, electrode impedance) and also attenuates the influence
of strong individual alpha amplitude, thereby reducing a key confound in cross-individual
comparisons in psychiatric EEG. Thus, Publication Il not only introduces a mechanistically
motivated measure but also demonstrates that waveform stability provides added value
over a widely used complexity measure, thereby directly addressing the second aim.

4.3 Temporal Stability and Person-Specific Baselines (Publication I1l1)

For EEG measures to support individualized monitoring, they must show predictable
intra-individual behaviour over time under stable conditions, enabling applicable
baselines against which meaningful deviations can be detected. Accordingly, the third aim
was to characterize long-term intra-individual temporal variability and inter-individual
differences in single-channel EEG measures, to determine whether they can provide stable
baselines for monitoring. In this context, Publication lll supports baseline-referenced
monitoring by demonstrating the long-term stability of several EEG measures, while also
highlighting pronounced inter-individual differences that necessitate individualized
baselines rather than group-derived norms.

The obtained ICCs indicate that commonly used band power and nonlinear measures
can provide highly stable group-level estimates, while reliability can be somewhat
reduced at peripheral temporal and frontotemporal sites, explained by residual tonic
electromyographic (EMG) activity in muscle-prone regions (Whitham et al., 2007;
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Uriglien & Garcia-Zapirain, 2015). This pattern is consistent with previous literature,
which has also stated that the most reliable frequency bands are theta and alpha
(Gudmundsson et al., 2007; Ip et al., 2018; P3ld et al., 2021). However, ICCs reflect the
combination of inter-individual and intra-individual variance and do not directly describe
individual stability (Shrout & Fleiss, 1979; McGraw & Wong, 1996; Koo & Li, 2016).
Therefore, Publication Ill complemented ICCs with inter-individual differentiation and
intra-individual temporal stability. First, the pronounced inter-individual differentiation
supports a central conclusion for individualized monitoring: even when a measure is
generally stable, its baseline level can differ markedly across individuals. In practical
terms, this means that group-level reference ranges are unlikely to be sufficiently
specific for longitudinal interpretation at the individual level. Instead, the results support
a personalized approach in which each person’s EEG is treated as a distinct operating
point, and deviations are evaluated relative to that person’s own baseline rather than to
population norms. This perspective also clarifies why measures can show excellent
group-level reliability yet remain difficult to translate into universal decision thresholds,
and it is consistent with the notion of EEG as a biometric-like fingerprint (Zhang et al.,
2021; Lopez et al., 2023; Tatar, 2023). For deployment, this implies that monitoring
pipelines must distinguish trait-like differences (inter-individual offsets) from state-like
changes (intra-individual shifts). Without that separation, cross-sectional comparisons
risk conflating normal individuality with clinically meaningful deviation.

Second, the analysis of intra-individual fluctuation ranges points to another requirement
for individualized monitoring: a measure must not only have a person-specific baseline,
but also a sufficiently predictable envelope of normal variation to support thresholding.
From this perspective, stability is best understood as an individual tolerance range
around the baseline—wide ranges reduce sensitivity to subtle change. In contrast,
narrow, well-bounded ranges make deviations easier to interpret. Publication Il
highlights that these tolerance ranges differ substantially not only across measures but
also across individuals, implying that a single, universal change criterion is unlikely to be
appropriate. Instead, clinically usable alerting rules will need to be calibrated to each
individual’s expected fluctuation range. In practical terms, band-power measures—
particularly TBP and ABP—are probably more responsive to clinically insignificant
influences (e.g., arousal regulation, vigilance), leading to broader normal variability.

In contrast, several nonlinear measures appear to operate within narrower
intra-individual ranges and may therefore be better suited as baseline-referenced
indicators of change. This interpretation is compatible with prior work reporting
comparatively greater long-term group-level stability for nonlinear measures than for
band powers (PSld et al., 2021, 2023). In P3ld et al. (2023), the relative changes for
nonlinear measures were of similar magnitude to those observed here, whereas band
power changes were larger in the present study, especially for TBP and ABP. Notably,
PGld et al. (2023)directly contrasted two sessions three years apart, whereas the present
analysis quantified the directly contrasted two sessions three years apart, whereas the
present analysis quantified the maximal relative deviation from a participant’s annual
mean; in principle, such deviation-from-mean values should be smaller than two-point
contrasts. However, with only two observations, the available information is too limited
to characterize true intra-individual variability. By sampling monthly over a year, the
current design captures a more realistic range of intra-individual fluctuations.

As previous literature has only scarcely described temporal stability and even then
only at the group level, there was no knowledge of how stable EEG measures are at the
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individual level. The results from Publication Il highlighted inter-individual heterogeneity:
substantial differences in absolute values and in individual ranges. However, most
participants showed only modest oscillations around their personal mean, especially
for the nonlinear measures, whereas their band-power values (especially in the
lower-frequency bands) could vary more widely from month to month. A few individuals
nevertheless exhibited year-scale fluctuation magnitudes in certain measures that
matched or even exceeded the group’s cross-sectional distribution (Figure 7), an effect
more pronounced for band-power measures. This suggests that band power might be
more susceptible to day-to-day physiological or psychological fluctuations, whereas
nonlinear dynamics capture more invariant traits of the brain.

Even with careful control of recording conditions and electrode placement, intrinsic
physiology and lifestyle still introduce variance: individual differences in hormones,
neuroanatomy, and brain physiology, as well as sleep, diet, and activity, can modulate
EEG stability over time (Hoffman & Polich, 1998). In this light, the wide ranges observed
for subject 4, despite being healthy by self-report, may reflect transient mental-state
fluctuations or prodromal changes not yet consciously perceived, as psychological states
and disorders are known to alter EEG patterns, as demonstrated in prior group studies
(Accardo et al., 1997; Hinrikus et al., 2009; Ahmadlou et al., 2012; Bachmann et al., 2013,
2018; Mumtaz et al., 2015; Newson & Thiagarajan, 2019). To clarify this, additional
contextual data for subject 4 (e.g., sleep, stress, medication, and health status) should
be analyzed to rule out or support reasonable explanations for the unusually high
variability. Accordingly, identifying whether variability arises from intrinsic traits,
temporary states, or early pathological processes is essential for tailoring analysis
strategies and setting person-specific baselines.

Because EEG is highly individual, the ability to predict each person’s normal variability
range is essential. Establishing such ranges through numerous recordings at the population
scale would be prohibitively costly and time-consuming. Although the wider adoption of
wearable devices may soon provide suitable baseline data, interim approaches are
needed to estimate the expected variability for EEG measures. This requires identifying
the individual-level key factors that influence variability in the healthy state and using
them to construct person-specific variability profiles that separate disorder-related
change from normal neuropsychological fluctuation. Practical heuristics could be
developed to flag high variability profiles without prolonged tracking, thereby improving
efficiency.

Taken together, Publication Il supports three key points. First, nonlinear resting-state
EEG measures exhibit high trait-like stability, making them suitable to establish person-
specific baselines. Second, nonlinear measures, particularly HFD and pMP, exhibit higher
intra-individual temporal stability than band powers, reinforcing their suitability as
anchors for longitudinal monitoring. Third, even when measures are stable on average,
global thresholds are problematic because both baseline magnitudes and natural
fluctuation ranges vary substantially between individuals; therefore, person-specific
reference ranges are required. Notably, pMP combines strong intra-individual stability
(Publication Ill) with demonstrated group-level sensitivity (Publication Il), supporting
its potential to be informative for individualized, baseline-referenced monitoring.
The outcome of Publication Il directly addresses the second obstacle identified in the
Introduction—dispersion across individuals—by showing that, when quantified
appropriately, intra-individual stability is robust enough to support baseline-referenced
interpretation.
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4.4 Sensitivity to Controlled Physiological Perturbation (Publication 1V)

Temporal stability alone is not sufficient for a practical monitoring measure; it must also
be sensitive to clinically meaningful change in brain state. Therefore, the fourth aim was
to verify whether EEG measures are sensitive to controlled perturbations in brain
physiology within an individual. The findings from Publication IV indicate that EEG
measures that are stable under typical conditions can nevertheless show clear,
intra-individual deviations when physiology is transiently perturbed by a mild systemic
stressor, supporting their potential utility for individualized, baseline-referenced
monitoring.

Importantly, most self-reported side effects had resolved by day 5, suggesting that at
this stage the EEG deviations likely reflected physiological processes associated with
the immune response rather than discomfort or fatigue due solely to side effects.
The normalization of the EEG by day 12 further indicates that these changes were
transient, physiologically meaningful perturbations, not random fluctuations. Consistent
with Publication I, in which HFD demonstrated the capability to capture a wide range of
disturbances in brain function, HFD also proved sensitive to immune response—related
changes in this setting. The pattern—modestly reduced TBP and ABP, significantly
increased higher-frequency content (GBP) and elevated complexity (HFD)—is consistent
with earlier reports that acute stress and cognitive load are associated with suppressed
low-frequency power and enhanced beta and gamma activity (Al-Shargie et al., 2016;
Minguillon et al., 2016; Schlink et al., 2017), as well as increased complexity (Ahmadlou
et al., 2012; Bachmann et al., 2013; Akar et al., 2015b; Kawe et al., 2019; Cuki¢, Stoki¢,
Radenkovi¢, et al., 2020). Although SASI and GBP had narrower reach in terms of
effectiveness, prior work indicates that theta, beta, and gamma band activity, which is
combined in SASI, can be sensitive to various stressors (Suhhova et al., 2011; Saifudinova
et al., 2015; PGld et al., 2018), supporting SASI and GBP as complementary measures for
detecting stress-related spectral shifts toward higher frequencies. Within this
framework, increased complexity and a shift toward higher frequencies constitute
complementary signatures of a transiently perturbed state that normalizes as the
immune response abates.

Therefore, the finding in Publication IV provides proof of principle that the same
measures that are stable over long periods can detect short-lived, physiologically
relevant changes in a single individual. It also illustrates the importance of contextual
information: without knowledge of recent vaccination, such deviations could be
misinterpreted as a clinically concerning change. Any clinical deployment will need to
integrate EEG-derived measures with details about recent stressors, illnesses, sleep
patterns, and medication use.

4.5 From Measure Selection to Baseline-Referenced Monitoring

Across the four aims, this thesis guides the selection of EEG measures for individualized
monitoring. The first aim showed that commonly used measures are strongly
interrelated and partly redundant, but that this structure can be exploited. By mapping
correlations and defining an effectiveness index, it became possible to identify broadly
informative anchor measures and more specific, weakly correlated measures that can be
combined into small, complementary, easy-to-interpret panels instead of large, ad hoc
feature sets that might be prone to overfitting.
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The second aim added a mechanistically motivated measure (pMP), which quantifies
waveform self-similarity with reduced dependence on amplitude. Benchmarking against
HFD in MDD indicated that pMP can modestly exceed a well-established nonlinear
reference and yield more spatially uniform group separation, and support the clinical
relevance of waveform stability as an additional aspect of resting-state EEG alteration.

The third aim demonstrated that nonlinear single-channel measures—especially HFD
and pMP—are highly stable within individuals over one year, while both measure values
and fluctuation ranges differ substantially between individuals, supporting their use as
anchors for person-specific baselines.

The fourth aim showed that selected measures remain sensitive to a controlled
physiological perturbation (vaccination) and return to baseline thereafter, indicating that
stability under steady conditions can coexist with responsiveness to meaningful change.

Taken together, these steps show how resting-state EEG measures can be organized,
enriched, and characterized, enabling a small set of complementary measures to support
individualized, baseline-referenced monitoring. Potential applications include early
detection of change, tracking progression or recovery, and evaluating treatment effects
at the individual level. Further research and validation in clinical populations are needed,
but the principles and empirical findings laid out here provide a strong foundation for
the continued development of personalized EEG biomarkers.

4.6 Limitations

Some limitations should be noted. First, sample sizes and designs constrain
generalizability. The cross-sectional studies (n = 80 and n = 66) are adequate for mapping
inter-measure relationships and demonstrating MDD-control differences, but do not
support robust stratification by age or sex. The longitudinal study of nine healthy men
illustrates overall stability trends but does not allow characterization of the population
distribution of EEG stability profiles or analysis by age and sex. The controlled
perturbation study examined a short-term perturbation after vaccination, suggesting
possible sensitivity to change. Still, as a single-subject case study, it cannot establish how
broadly sensitive these measures are.

Second, the set of EEG measures was limited and not fully consistent across the
thesis. Only a subset of potentially informative measures was examined; therefore,
the conclusions do not span the whole EEG feature space and may be biased toward the
selected features. In addition, pMP was validated later in the project and is therefore
absent from the inter-measure correlation and effectiveness mapping in healthy adults,
as well as from the vaccination case study. Consequently, the position of pMP within the
broader measure network—including its reach, complementarity, and sensitivity to
controlled perturbations in brain physiology at the individual level—remains unresolved.
Future work should therefore employ larger and more diverse samples spanning age
(He et al., 2021) and sex (Langrova et al., 2012), explicitly model demographic effects,
and include pMP. Longitudinal designs with controlled perturbations in larger cohorts
will be needed to jointly characterize long-term stability in health and the generalizable
sensitivity of these measures to meaningful change.
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Conclusions

This thesis demonstrates that resting-state EEG can support individualized brain-state
monitoring when measures are chosen for stability, complementarity, and sensitivity.
It also develops and validates a parameter-independent waveform similarity measure
that is reproducible through robustness and sensitive to MDD.

The main findings of the thesis are:

Common resting-state EEG measures are strongly interrelated and partly
redundant. Mapping correlations among measures showed substantial
informational overlap, but also revealed a structure that allows the construction
of small, complementary panels rather than large, redundant feature sets.
Nonlinear single-channel measures, especially HFD and pMP, are strong core
candidates for monitoring clinically relevant changes in brain physiology. HFD
emerged as a broadly informative backbone measure, while the newly
introduced pMP modestly exceeded HFD in MDD—control discrimination and
provided more spatially uniform effects across the scalp.

Nonlinear measures can anchor individualized EEG profiles, showing strong
long-term intra-individual stability; however, both stability (fluctuation range)
and baseline magnitude vary substantially across individuals, reinforcing the
need for person-specific baselines and reference ranges rather than global
thresholds.

Measures that are stable under steady conditions can still be sensitive to
changes in neurophysiology, showing transient, physiologically meaningful
deviations in response to a controlled systemic stressor (vaccination) and a
subsequent return toward baseline—supporting the principle of stable in
health, responsive to perturbation.

Together, these findings outline a practical pathway to individual-level EEG
monitoring: build small complementary feature sets that include robust, stable, and
sensitive measures; establish person-specific baselines and interpret subsequent
EEG measure values relative to the individual, not population averages.
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Abstract

Sensitivity and Individual Temporal Stability of
Electroencephalography-Based Measures

Mental health disorders affect over a billion people, yet routine care still lacks objective
tools to monitor brain dynamics. Electroencephalography (EEG) is attractive for
longitudinal monitoring because it is low-cost, noninvasive, and offers high temporal
resolution. Despite extensive research, EEG measures have not been adopted in routine
psychiatric practice, largely because reported effects are demonstrated at the group
level and are not validated for individual-level tracking. Two practical obstacles stand
out: the wide variety of EEG measures remains unorganized, with diverse ad hoc feature
sets and limited clarity on how measures overlap or complement each other; and there
is substantial dispersion across individuals, while the normative intra-individual range of
EEG measures remains uncharacterized.

The thesis evaluates resting-state EEG measures to guide selection for individualized
monitoring. It (1) maps interrelationships across commonly used EEG measures to
support compact, interpretable sets; (2) introduces a mechanistically motivated
single-channel measure of waveform stability, the in-phase matrix profile (pMP),
implementable without user-tuned parameters; (3) quantifies long-term intra-individual
stability, and (4) tests whether stable measures are sensitive to a controlled physiological
perturbation.

Across a broad comparison of twelve widely used measures in healthy resting-state
EEG data (n = 80), substantial overlap was observed, with 56% of pairwise relationships
showing significant correlation. This structure revealed clear differences in reach:
Higuchi’s fractal dimension (HFD) acted as a broad-coverage descriptor, strongly
connected to many other measures and thus suggested as a general-purpose indicator
of diverse EEG alterations, whereas measures such as the spectral asymmetry index
(SASI) and gamma band power (GBP) provided narrower, more specific information
consistent with condition- or stressor-related spectral shifts. These insights motivate
compact, interpretable panels that combine a broadly informative backbone measure
with targeted, weakly correlated measures rather than maximal ad hoc feature sets.

To capture a dimension not directly quantified by standard measures, the thesis
introduces pMP as a measure of waveform self-similarity after removing amplitude
differences. In major depressive disorder (MDD; n = 66), both pMP and HFD
differentiated patients from matched controls, but pMP yielded more spatially uniform
group separation (significant across all channels after correction) and slightly higher
single-channel classification accuracy than HFD, supporting the clinical relevance of
altered waveform stability in resting-state MDD. Longitudinal monthly recordings
over one year (n = 9) further showed that nonlinear single-channel measures, especially
HFD and pMP, exhibit high intra-individual temporal stability. In contrast, baseline
magnitudes and natural fluctuation ranges differ markedly between individuals, making
global thresholds unreliable and motivating the use of individualized reference ranges.
Finally, comparison of an individual’s year-long baseline to measure values acquired after
a controlled systemic stressor (mMRNA vaccination; n = 1) demonstrated transient
deviations in a subset of measures (HFD, SASI, and GBP) followed by return toward
baseline, illustrating that long-term stability can coexist with responsiveness to
physiologically meaningful perturbation.
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Taken together, these findings outline a practical path toward individualized EEG
monitoring: organize measures into compact panels that combine broad-coverage
measures (e.g., HFD) with narrow-coverage, condition-sensitive measures (e.g., SASI and
GBP), and anchor interpretation to person-specific baselines. Although pMP’s
relationships to the broader EEG measure selection and its responsiveness to immune-
related perturbation were not examined here, its combination of group-level sensitivity
in MDD and strong intra-individual stability provides a clear rationale to evaluate pMP
further as a measure of individual-level deviation.
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Lihikokkuvote

Elektroentsefalograafial pohinevate moodikute tundlikkus ja
individuaalne ajaline stabiilsus

Enam kui miljard inimest kannatab vaimse tervise hdire all, samas on aju tervise
jalgimiseks jatkuvalt vdhe objektiivseid moddikuid. Elektroentsefalograafia (EEG) on
selleks sobiv vahend olles suhteliselt odav, mitteinvasiivne ja hea ajalise lahutusvéimega.
Hoolimata senisest mahukast teadustdost, ei ole EEG m6ddikud psiihhiaatriliste haiguste
hindamisel rutiinsesse kliinilisse kasutusse jéudnud. Peamiseks pdhjuseks on enamasti
ainult grupitasandil saadud tulemused, mis ei ole valideeritud individuaalseks jalgimiseks.
Indiviiditasandil jalgimise rakendamisel on kaks olulist takistust. Esiteks, lai valik
organiseerimata EEG moddikuid, millest kombineeritakse juhuslikke komplekte
omamata teadmisi, kuidas moodikud Uksteist informatsiooniliselt tadiendavad voi
katavad. Teiseks, inimeste vahel on markimisvdaarne erinevus ning puudub teadmine, mis
vahemikus on EEG mdddikute oodatav tavapadrane kdikumine ning mil maéaral need
vahemikud indiviiditi erinevad.

Vaitekiri hindab puhkeoleku-EEG mdddikuid, suunamaks tegema sobivaid méddikute
valikuid individuaalseks jalgimiseks. Selleks (1) kaardistatakse tavaparaselt kasutatavate
EEG m0oddikute omavahelisi seoseid toetamaks kompaktsete ja kergemini
tolgendatavate méddikukomplektide koostamist; (2) arendatakse tihe kanali andmetel
rakendatav lainekuju stabiilsuse moddik, in-phase matrix profile (pMP), mis ei eelda
kasutajapoolset parameetrite haalestamist; (3) kirjeldatakse moddikute pikaajalist
stabiilsust indiviidi tasandil ning (4) testitakse, kas stabiilsed md&d&dikud reageerivad
kontrollitud fusioloogilisele hairingule.

Vorreldes 12 laialdaselt kasutatavat EEG moddikut, mida rakendati tervete inimeste
puhkeolekusignaalidel (n = 80), tuvastati markimisvdarne informatsiooni tlekattuvus:
56% paarikaupa tehtud vordlustest olid statistiliselt oluliselt korrelatsioonis. Selline
struktuur tdi selgelt esile erinevused méddikute voimekuses piilida laiemat voi kitsamat
hulka informatsiooni. Higuchi fraktaaldimensioon (HFD) kaitus laia katvusega
mdoddikuna, olles tugevalt seotud paljude teistega ning sobides seetottu mitmesuguste
EEG signaalis asetleidvate muutuste Ulldiseks indikaatoriks. Seevastu naiteks spektraalne
aslimmeetriaindeks (SASI) ja gamma sagedusriba vGimsus (GBP) kirjeldasid kitsamat ja
spetsiifilisemat infot, mis on kooskdlas kindlate seisundite vGi stressoritega seotud
spektraalsete nihetega. Need leiud toetavad kompaktsete ja kergemini tdlgendatavate
moddikupaneelide kasutamist, kombineerides laiahaardelisi p6himdddikuid spetsiifiliste,
vahese informatsioonilise llekattega moddikutega.

Kasitlemaks vaatenurka, mida tavaparased EEG moddikud ei vdoimalda, tutvustab
vaitekiri pMP-d kui lainekuju ajalise stabiilsuse m6ddikut, kus amplituudierinevuste mdju
on minimeeritud. Kliinilise depressiooni (MDD; n = 66) korral eristasid nii pMP kui ka HFD
kliinilist gruppi samasuguse vanuselise ja soolise koosseisuga kontrollgrupist. Samas pMP
puhul oli grupieristus statistiliselt oluline kdigis EEG kanalites (HFD-l 43% kanalitest) ning
veidi kdrgem klassifitseerimistapsus vorreldes HFD-ga. Saadud tulemused toetavad
lainekuju stabiilsuse kliinilist olulisust puhkeoleku EEG signaalis MDD puhul. Uhe aasta
jooksul igakuiselt kogutud korduvsalvestused (n = 9) naitasid lisaks, et mittelineaarsed
Uhe kanali mdddikud, eriti HFD ja pMP, on indiviidide I5ikes ajas tugevalt stabiilsed.
Samas tulid esile markimisvaarsed erinevused inimeste vahel nii moddikute baasvaartuste
suurusjarkudes kui ka loomulike kdikumisvahemike ulatustes, muutes globaalsed lavendid
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ebausaldusvaarseks ja suunates kasutama individuaalseid referentsvahemikke. Olulise
tdiendusena nditas Uhe isiku aastase baasvaartuste (referentsvahemik) vérdlus
salvestustega parast kontrollitud sliisteemset stressorit (MRNA-vaktsineerimine; n = 1),
et osa moddikuid (HFD, SASI ja GBP) kaldusid ajutiselt referentsvahemikust kdrvale, kuid
naasid hiljem ootusparasesse vahemikku tagasi. Saadud tulemused nditavad, et
mdddikud vdivad olla lGiheaegselt pikaajaliselt stabiilsed ning tundlikud fisioloogiliselt
tahenduslike hdiringute suhtes.

Kokkuvéttes viitavad tulemused, et individuaalne EEG jalgimine on saavutatav
jargnevalt: moddikud tuleks koondada kompaktsetesse paneelidesse, mis kombineerivad
laia katvusega moddikuid (nditeks HFD) kitsama katvusega, seisunditundlike m&&dikutega
(naiteks SASI ja GBP), ning saadud tulemusi tuleks tdlgendamisel siduda isikupGhiste
referentsvahemikega. Kuigi pMP seoseid teiste EEG mdddikutega ja selle tundlikkust
immuunreaktsioonist tingitud hairingule kdesolevas t66s ei hinnatud, annab pMP
grupitaseme tundlikkus MDD puhul ja tugev individuaalne ajaline stabiilsus selge ajendi
pMP edasiseks hindamiseks indiviiditasandi kdrvalekallete méddikuna.
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Correlation
between electroencephalographic
markers in the healthy brain

Laura Paeske, Tuuli Uudeberg, Hiie Hinrikus™, Jaanus Lass & Maie Bachmann

Mental disorders have an increasing tendency and represent the main burden of disease to society
today. A wide variety of electroencephalographic (EEG) markers have been successfully used to
assess different symptoms of mental disorders. Different EEG markers have demonstrated similar
classification accuracy, raising a question of their independence. The current study is aimed to
investigate the hypotheses that different EEG markers reveal partly the same EEG features reflecting
brain functioning and therefore provide overlapping information. The assessment of the correlations
between EEG signal frequency band power, dynamics, and functional connectivity markers
demonstrates that a statistically significant correlation is evident in 37 of 66 (56%) comparisons
performed between 12 markers of different natures. A significant correlation between the majority
of the markers supports the similarity of information in the markers. The results of the performed
study confirm the hypotheses that different EEG markers reflect partly the same features in brain
functioning. Higuchi’s fractal dimension has demonstrated a significant correlation with the 82% of
other markers and is suggested to reveal a wide spectrum of various brain disorders. This marker is
preferable in the early detection of symptoms of mental disorders.

Mental disorders have an increasing tendency and represent the main burden of disease to society today. Accord-
ing to WHO’s recent report', nearly 15% of the world’s working population is estimated to experience a mental
disorder. There is a high demand for effective methods and markers for the early detection and treatment moni-
toring of mental disorders.

Electroencephalography (EEG) is a method for the registration of brain electrical activity using scalp elec-
trodes. The EEG signal is complex, containing information about physiological, emotional, cognitive, and other
processes occurring simultaneously in a person. The EEG has proved to be an effective tool in neurophysiology
used in clinical practice’. EEG markers describe the physiological state of the brain and can reflect the changes
in brain electrical activity related to mental disorders. EEG markers can detect the objective symptoms of mental
disorders and contribute significantly to the assessment of stress, depression, anxiety, and others. EEG is a non-
invasive, patient-friendly, and easy-to-apply method that can be implemented in portable and wearable devices
for regular personal use.

Mental disorders cause only mild alterations in EEG which are difficult to detect. Therefore, parallel to the
traditional quantitative EEG based on the comparison of powers in different frequency bands of the EEG spec-
trum, different advanced methods have been developed for EEG analyses to detect mental disorders.

EEG signal is complex, stochastic, nonstationary, and nonlinear. This is the reason why the field of possible
EEG markers used in the detection of mental disorders is so diverse. Different EEG markers can describe vari-
ous features of the signal®*. All EEG markers can be divided into three categories depending on the phenomena
they describe: the traditional EEG frequency band power, the dynamic pattern of the signal in a single-channel
EEG, or the brain functional connectivity in a multichannel EEG.

The changes caused by mental disorders have been detected by traditional EEG markers based on the powers
of EEG frequency bands®®. The resting state EEG alpha and beta powers increase in depression groups®~. The
EEG alpha power is suggested associated with depression severity’. In addition to increased band powers, the
altered inter-hemispheric alpha power asymmetry>® and reduced coherence® have been discovered in the same
depression groups. The review of 184 studies has demonstrated that differences in EEG frequency bands powers
are evident for many psychiatric disorders including depression, attention deficit-hyperactivity disorder, autism,
addiction, bipolar disorder, anxiety, panic disorder, post-traumatic stress disorder, obsessive compulsive disorder
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and schizophrenia®. The power changes within specific frequency bands are not unique to one disorder but show
overlap across disorders as well as variability within disorders®.

The various nonlinear and dynamic features of the signal in depression and other disorders can be described
using more advanced EEG markers such as fractality, complexity, and frequency balance’~"°. Detrended fluctua-
tion analysis (DFA) shows higher values for depressed patients’ and also improves the diagnostic accuracy of
Alzheimer’s disease'’. The Lempel-Ziv complexity (LZC) has indicated higher scores in both, schizophrenia and
depression'. Higuchi’s fractal dimension (HFD) has demonstrated good differentiation between the groups of
depressive and healthy subjects'?"'*. The spectral asymmetry index (SASI) increases in the depressive group'*'®
and is correlated with Hamilton Depressive Rating Scale for indoor patients'®. The combination of nonlinear
markers HFD, DFA, correlation dimension, and Lyapunov exponent markers provides a classification accuracy
of depression of 90% which is higher than the classification accuracy for the linear EEG band powers markers
76.6%". Different combinations of EEG linear (SASI, alpha power variability, relative gamma power) and non-
linear markers (HFD, DFA, LZC) have demonstrated rather close accuracies of classification for both, 0.88% for
linear and 0.85% for nonlinear markers'*.

The functionality of the brain, the coordination of neuronal activity in different brain areas, can be described
by analyzing the connectivity between signals in different EEG channels'®-*’. Brain functional connectivity and
EEG coherence increase in major depression'®"'®. The phase-sensitive markers, the imaginary part of coherence
and synchronization, significantly contribute to the discrimination of depression'*?".

Despite reflecting various features in brain physiology, different EEG markers have indicated similar results
in detecting mental disorders. EEG band power, Higuchi’s fractal dimension, Lempel-Ziv complexity, spectral
asymmetry, and others have indicated quite a close accuracy in the evaluation of depression'*'**!. Based on these
findings, two possible explanations can be proposed. First, the disorder causes different physiological changes
reflected by the different features of the EEG signal and each marker detects a specific EEG feature. Second, the
different EEG markers reveal the same EEG features and similar declinations in brain functioning.

Whereas the mild alterations in the EEG signal caused by mental disorders are hidden in the natural vari-
ability of the signal, the selection of appropriate markers revealing mental disorders is highly important. The
selected EEG markers serve as the input data for classification algorithms. The classification accuracy depends
strongly on the selection of the appropriate markers and not so much on the applied classification algorithms?»*.
Therefore, the reasonable selection of EEG markers is especially important.

Only a few publications have been aimed to compare the effectiveness of different EEG markers'*'*?. The
correlation between the EEG signals in different channels has been investigated”**. To the best of our knowledge,
the evaluation of the correlation between the markers and the independence between the information achieved
from different markers has not been performed.

The current study is aimed to investigate the hypothesis that different EEG markers reveal partly the same
EEG features and so provide overlapping information about the state of the brain.

To assess the hypothesis, the correlation between different EEG markers indicating various features of the
signal is investigated. Some most frequently used EEG markers from band power, dynamics, and functional
connectivity categories are selected for investigation, four from each category.

The band power markers describe the power of the signal inside the fixed EEG frequency bands and are not
sensitive to the pattern of the signal. Theta band power (TBP), alpha band power (ABP), beta band power (BBP),
and gamma band power (GBP) are selected for analyses in the first category.

The dynamics markers describe the pattern and the complexity of the signal. The four selected single-channel
EEG dynamics markers describe various aspects of the complexity of the EEG signal. Higuchi’s fractal dimen-
sion (HFD) describes the self-similarity of the signal®. Detrended fluctuations analysis (DFA) describes the
self-correlation of the signal and determines the self-affinity of the EEG signal®’, while Lempel-Ziv complexity*’
(LZC) describes the randomness of the signal. The spectral asymmetry index'* (SASI) describes the balance of
low-frequency and high-frequency oscillations in the signal.

Functional connectivity markers describe the connectivity between different brain areas using multichan-
nel data. Magnitude-squared coherence®® (MSC) describes the intensity of coherence between two signals. The
imaginary part of coherency” (ImC) characterizes phase relationships in the coherence between two complex
signals®. Synchronization likelihood*” (SL) describes dynamical interdependencies between two signals. Mutual
information®' (MI) describes the coherence of the information between two signals and can be considered a
spatial analog of entropy.

The selection of markers considers linear (TBP, ABP, BBP, GBP, SASI, MSC, ImC) and nonlinear (HFD,
DFA, LZC, SL, MI) EEG properties. The markers calculated in the time domain (HFD, DFA, LZC, SL, MI) and
frequency domain (TBP, ABP, BBP, GBP, SASI, MSC, ImC) are included. The selection of functional connectiv-
ity markers is balanced between the phase-sensitive (ImC, SL) and phase-insensitive (MSC and MI) markers.

The study is planned in a way to minimize the impact of external factors and possible inter-subject variability
due to the individual responses to a disorder on the EEG signals. The resting state eyes closed EEG of healthy
people is analyzed in the study.

Methods

Subjects. The group of 80 volunteers, 38 (47.5%) female, and 42 (52.5%) male was selected for investigation.
Their age varied from 19 to 75 years, with a mean age of 37+ 15 years. They declared no mental or psychiatric
disorders, epilepsy, brain injuries, or usage of narcotics or psychotropic medications. All the selected subjects
were considered as healthy. The subjects were asked to abstain from alcohol for 24 h and from coffee two hours
before the EEG recordings.
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The study was conducted following the Declaration of Helsinki and was approved by the Tallinn Medical
Research Ethics Committee. Before participating in the study, each subject signed informed consent.

EEG recordings. The Neuroscan Synamps2 acquisition system (Compumedics, NC, United States) was
used for EEG recordings. Electrodes were placed according to the extended international 10-20 system. The
signals were recorded from 30 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FI7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4,
T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2) using linked mastoids as reference. During record-
ings, eye movements were monitored using horizontal and vertical electrooculograms. Electrodes impedances
were lower than 10 kQ.

All EEG recordings were performed in the morning before noon. The resting state eyes closed EEG was
recorded for 6 min. During recordings, the subjects were in lying positions in a shielded and dimly lit room.
Earplugs were used to minimize external sounds.

The raw EEG was recorded in the frequency band 0.5-200 Hz at the sampling frequency of 1000 Hz.

EEG preprocessing. The raw EEG signals were filtered into frequency band 1-45 Hz using a Butterworth
filter.

To reduce the computing time, the signals were down-sampled to 200 Hz and recalculated to REST reference
as preferable in EEG analyses®>*. The signals were divided into 20.48-s (4096 sample) segments. An experienced
EEG specialist carefully inspected all segments and removed the segments with artifacts (ocular, muscular, or
others). The first 10 artifact-free segments were used for further analysis. The signals were preprocessed using
MATLAB (The Mathworks, Inc.).

EEG analyses. Calculation of band power markers.  First, the power spectral density (PSD) of the recorded
EEG signal was calculated using the Welsh’s averaged periodogram method. The signal was divided into 50%
overlapping sections and windowed by the Hanning window. Second, the markers were calculated as the mean
of PSD over the frequencies within the fixed frequency bands TBP 4-7 Hz, ABP 8-12 Hz, BBP 13-30 Hz, and
GBP 31-45 Hz.

Calculation of dynamics markers. The nonlinear dynamics markers (HFD, DFA, and LZC) were calculated in
the time domain. Calculations were performed for ten 20.48-s segments. A nonlinear marker was determined
as the mean value of the calculations’ results over ten segments. The HFD was calculated according to Higuchi’s
original algorithm® at kmax==8'"*'. DFA was calculated according to the published by Peng et al. algorithms*
applying the adaptation to EEG described by Bachmann et al.'. The calculation of LZC was performed based on
the principles and algorithms published by Lempel and Ziv?” and Zhang et al.*” using the adjustment performed
by Bachmann et al.'*. SASI was calculated in the frequency domain summarizing PSD over the lower and higher
EEG frequency bands and excluding the central alpha band from calculations'’.

Calculation of functional connectivity markers. SL was calculated in the time domain following the detailed
explanation of the method by the authors Stam and Van Dijk*, while the parameters were set as in Pieske et al.*,
as such parameters ensure that the time-frequency characteristics of the signals are fully considered. MI was
calculated using the algorithm derived by Frazer and Swinney®' following the method of the calculation for EEG
signals published by Ibafiez-Molina and others™. MSC and ImC were calculated in the frequency domain, the
algorithms were applied as described by Pieske et al.*.

The calculations of markers were done in MATLAB (The Mathworks, Inc.).

Statistics. All EEG band power and dynamic markers were calculated for all EEG channels for each subject.
All functional connectivity markers were calculated between 30 channels, in total 435 combinations were per-
formed per marker for a subject. The averaged over all EEG channels values for a subject were used for statistical
evaluation.

The null hypothesis for the difference between the values of markers was tested using the Wilkinson test. In
total, (12x 12-12)/2 =66 comparisons between the pairs of 12 markers were performed on the same EEG data-
base. The adjustment to multiple comparisons was done using Bonferroni correction. The corrected confidence
level p<0.05/66=0.00076 was considered statistically significant.

The correlation between different EEG markers was assessed using the Spearman correlation coefficients. The
null hypothesis for correlation coefficients was tested using t-test. The probability that the correlation between
markers of two different categories is zero, decreases with the increase in the number of pairs n and the value
of the correlation coefficient r. At the fixed number of pairs n=80, the p score reaches the level of statistical
significance p <0.00076 at the value of the correlation coefficient |r|>0.37.

Results
The nature of the EEG markers differs in different categories. Therefore, the results are presented separately in
each of the markers’ categories followed by inter-categories correlations results.

Band power markers.  Wilkinson's test indicated that the calculated values of different band power markers
are mutually statistically significant (p < 0.00076) in all combinations except TBP and BBP (p=0.03).

The graphs in Fig. 1 present the correlations between the EEG band power markers. The calculated Spear-
man correlation coefficients and t-test p-values are indicated. The correlation is statistically significant between
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Figure 1. Correlation between various band power markers: TBP and ABP, TBP and BBP, TBP and GBP, ABP
and BBP, ABP and GBP, BBP and GBP. The calculated Spearman correlation coefficients r between the markers
and corresponding p-values are indicated (n=_80). The p <0.00076 (|r|>0.37) indicates statistical significance.

the markers of closer frequency bands TBP and ABP (r=0.87), ABP and BBP (r=0.80), whereas the correlation
is somewhat less between TBP and BBP (r=0.75) and insignificant between ABP and GBP (r=0.34) as well as
between TBP and GBP (r=0.3). This finding may be related to the overlapping physiological processes in close
frequency bands.

Four of six (66.7%) combinations between the band power markers indicate statistically significant
correlations.

Dynamics markers. Wilkinson’s test shows that the calculated values of all dynamics markers differ signifi-
cantly in all combinations (p <0.00076).
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Figure 2 presents correlations between different dynamics markers. The calculated Spearman correlation
coefficients and t-test p-values are indicated. HFD has a significant correlation with all other markers, maximal
with DFA (r=0.64), a little lower with SASI (r=0.59), and with LZC (r=0.52). The correlations between the
other markers DFA, LZC, and SASI are not statistically significant. This finding supports the idea that HFD can
incorporate partly the same EEG features as the DFA, LCZ, and SASI do. The other markers DFA, LZC, and SASI
do not reveal mutually similar EEG features.

Three of six (50%) combinations between the dynamic markers indicate statistically significant correlations.

Functional connectivity markers. Wilkinson’s test indicated that the calculated values of functional con-
nectivity markers are statistically significant (p < 0.00076) in all combinations except SL and MI (p=0. 297).
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Figure 2. Correlation between various dynamics markers: HFD and DFA, HFD and LZC, HFD and SASI,
DFA and LCZ, DFA and SASI, LZC and SASI. The calculated Spearman correlation coefficients r between
the markers and corresponding p-values are indicated (n=80). The p <0.00076 (|r|>0.37) indicates statistical
significance.
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Figure 3 presents the correlations between functional connectivity markers. The calculated Spearman cor-
relation coefficients and t-test p-values are indicated. SL has a significant correlation with all other markers, the
correlation coefficient between SL and Ml is 0.77, between SL and ImC 0.7, and between SL and MSC 0.57. The
expected correlation is between MSC and ImC (r=0.64). Weaker but still significant is the correlation between
ImC and MI (r=0.41). This finding suggests that the various brain functional connectivity behaviors are mutu-

ally correlated and corresponding EEG features can be revealed by different markers.

Five of six (83.3%) combinations between the functional connectivity markers indicate a statistically signifi-

cant correlation.
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Figure 3. Correlation between various functional connectivity markers: MSC and ImC, MSC and SL, MSC
and MI, ImC and SL, ImC and M, SL and MI. The calculated Spearman correlation coefficients r between
the markers and corresponding p-values are indicated (n=80). The p <0.00076 (|r|>0.37) indicates statistical

significance.
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Markers of different categories. Table 1 presents the calculated Spearman correlation coefficients
between the EEG band power markers, dynamic markers, and functional connectivity markers and correspond-
ing t-test p-values. The data in the table show that the correlation between the markers of different categories is
not weaker than between the markers of the same category. The dynamic markers are negatively correlated with
the band power markers (except GBP) and functional connectivity markers.

The assessment of the correlations between EEG signal frequency band power, dynamics, and functional con-
nectivity markers demonstrates that a statistically significant correlation is evident in 37 of 66 (56%) comparisons
performed between 12 markers. HED and SL are correlated with 9, MI and ABP with 8, TBP, BBP, and ImC with
7, DFA with 6, LZC and SASI with 4, and GBP and MSC only with 2 other markers. The level of correlation varies
from 0.97 (between ABP and MI) to 0.38 (between LCZ and ImC, and GBP and SASI).

Discussion
The results of the performed study support the hypotheses that different EEG markers reveal partly the same
EEG features. The assessment of the correlations between band power, dynamics, and functional connectivity
markers demonstrates that despite the values of the markers being statistically different, a statistically significant
correlation is evident in 56%, (in 37 from 66) of the combinations between 12 markers.

Mental disorders can cause very different unpredictable alterations in the EEG signal varying in individu-
als. For early detection of mental disorders, a marker is required to be able to reveal a wide scale of possible

Marker HFD DFA LZC SASI TBP ABP BBP GBP MSC ImC SL MI

HFD

r 0.64 0.52 0.59 -0.77 -0.85 -0.52 0.11 -0.35 —-0.42 —-0.68 -0.85

P 0.00E+00 1.10E-06 1.18E-08 0.00E+00 0.00E+00 1.10E-06 3.20E-01 1.77E-03 1.17E-04 0.00E+00 0.00E+00
DFA

r 0.64 0.23 0.06 -0.72 -0.83 -0.77 -0.35 -0.23 -0.38 -0.67 -0.82

P 0.00E+00 3.81E-02 5.84E-01 0.00E+00 0.00E+00 0.00E+00 1.44E-03 4.42E-02 5.83E-04 0.00E+00 0.00E+00
LzCc

r 0.52 0.23 ‘ 0.28 -0.29 -0.39 -0.02 0.10 =021 -0.38 —-0.42 -0.34

P 1.10E-06 3.81E-02 ‘ 1.33E-02 9.11E-03 4.58E-04 8.93E-01 3.63E-01 5.96E-02 5.97E-04 1.42E-04 2.25E-03
SASI

r 0.59 0.06 0.28 -0.51 -0.29 -0.08 0.38 —-0.06 -0.05 —-0.09 -0.36

P 1.18E-08 5.84E-01 1.33E-02 2.33E-06 9.08E-03 5.05E-01 5.86E-04 6.00E-01 6.83E-01 4.05E-01 1.02E-03
TBP

r -0.77 -0.72 -0.29 -0.51 0.87 0.75 0.30 0.11 0.24 0.56 0.91

P 0.00E+00 0.00E+00 9.11E-03 2.33E-06 0.00E+00 0.00E+00 7.37E-03 3.24E-01 2.90E-02 1.21E-07 0.00E+00
ABP

r -0.85 -0.83 -0.39 -0.29 0.87 0.80 0.34 0.23 0.39 0.75 0.97

P 0.00E+00 0.00E+00 4.58E-04 9.08E-03 0.00E+00 0.00E+00 2.15E-03 3.85E-02 4.05E-04 0.00E+00 0.00E+00
BBP

r -0.52 -0.77 -0.02 -0.06 0.75 0.80 0.55 0.12 0.18 0.49 0.81

P 1.10E-06 0.00E+00 8.93E-01 5.05E-01 0.00E+00 0.00E+00 1.96E-07 2.90E-01 1.07E-01 4.74E-06 0.00E+00
GBP

r 0.11 -0.35 0.10 0.38 0.30 0.34 0.55 -0.25 -0.04 0.19 0.30

P 3.20E-01 1.44E-03 3.63E-01 5.86E-04 7.37E-03 2.15E-03 1.96E-07 2.42E-02 7.18E-01 9.82E-02 7.83E-03
MSC

r -0.35 =023 -0.21 ‘ -0.06 0.11 0.23 0.12 -0.25 0.64 0.57 0.28

P 1.77E-03 4.42E-02 5.96E-02 ‘ 6.00E-01 3.24E-01 3.85E-02 2.90E-01 2.42E-02 0.00E+00 8.13E-08 1.15E-02
ImC

r -0.42 -0.38 -0.38 -0.05 0.24 0.39 0.18 —-0.04 0.64 0.70 0.41

P 1.17E-04 5.83E-04 5.97E-04 6.83E-01 2.90E-02 4.05E-04 1.07E-01 7.18E-01 0.00E+00 0.00E+00 1.50E-04
SL

r —-0.68 -0.67 -0.42 -0.09 0.56 0.75 0.49 0.19 0.57 0.70 0.77

P 0.00E+00 0.00E+00 1.42E-04 4.05E-01 1.21E-07 0.00E+00 4.74E-06 9.82E-02 8.13E-08 0.00E+00 0.00E+00
MI

r -0.85 -0.82 -0.34 ‘ -0.36 0.91 0.97 0.81 0.30 0.28 0.41 0.77

P 0.00E+00 0.00E+00 2.25E-03 ‘ 1.02E-03 0.00E+00 0.00E+00 0.00E+00 7.83E-03 1.15E-02 1.50E-04 0.00E+00

Table 1. The calculated Spearman correlation coefficients r between the pairs (n=_80) of different markers and
corresponding p-values estimated by t-test. The p < 0.00076 (|r|>0.37) indicates statistical significance.
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symptoms. The ability of a marker to reveal disorders is based on both, the wide scale of EEG features incor-
porated by the markers determined by the number of correlated markers and the strengths of the correlations.
A quantitative evaluation of different markers can be useful to compare their potential to reveal a wide scale
of symptoms characteristic of various mental disorders. Therefore, an indicator describing the effectiveness of
markers is used. The effectiveness of a marker E; can be estimated as the product of the number of markers N;
correlated with marker i and the average value of the corresponding correlation coefficients R;.

Figure 4 presents the effectiveness of each discussed in the current study markers. According to the graphs,
the markers can be divided into three groups. The first group, HFD, SL, MI, and ABP, contains the markers
expected to incorporate a wide scale of EEG features. The second group of markers DFA, TBP, BBP, and ImC
covers a more specific part of EEG features. The markers GBP, MSC, LZC, and SASI from the third group can be
useful for the detection of only a specific EEG feature. All the groups contain markers from all categories, band
power, dynamics, and functional connectivity.

To provide a high-quality classification, the reasonable selection is an EEG marker from the first group cor-
related with many others and so incorporating very different features of the signal. The dynamic marker HFD
is the marker of the highest effectiveness and is expected to incorporate a maximal part of the information
from the EEG signal. This conclusion is supported by many studies where HFD has been successfully used for
the detection of small alterations in EEG related to different factors such as depression, anxiety, or microwave
radiation?»¥-*". The traditional EEG band power marker ABP is the most commonly used band power marker
which has shown good sensitivity in various applications>*®7.

Two functional connectivity markers in the first group SL and MI demonstrate that both, phase relations and
power are important in brain functional connectivity.

The marker from the second group DFA has demonstrated high classification accuracy for depression
DFA combined with alpha band improved the classification accuracy of Alzheimer’s disease'’. The combination
of ImC and cluster-span threshold has been reported optimal in graph theory analyses of depression®.

In addition, a second marker from the third group uncorrelated with the first one (e.g. GBP or LZC) can be
useful, containing information about the features not incorporated in the first marker. This suggestion is sup-
ported by the analyses of depression EEG where the combinations of HFD and less correlated LZC lead to better
classification accuracy compared to the combination of HFD and more correlated DFA'°.

The effectiveness of GBP is low due to a very low level of gamma-band power in the EEG signal (less than 4%
of total EEG power according to the scales in Fig. 1). Gamma-band power is not able to affect much the main
features of the signal and the other markers. However, the information in GBP is independent of that in other
markers and can add a noticeable contribution to the quality of classification in combination with other markers
when used as an additional marker in classification'®.

Table 1 shows that the correlation between the markers of different categories and different nature is not lower
than the correlation between markers of the same category and similar nature. The correlation similar level of
inter- and intra-categories correlations shows that the impact of the signal properties in the correlation between
markers is not lower than the impact of the nature of the markers.

Today, no sufficient knowledge about brain functioning is available to explain the result of the study. Only
some interesting trends in the relationships between the markers can be outlined.

There is a possibility that a high correlation of ABP with many other markers can be related to the higher
power in the alpha band compared to other bands. The strength of the correlation of MI with band power markers
follows the level of the power: 0.97 with ABP, 0.91 with TBP, 0.81 with BBP, and 0.30 with GBP. The strength of
the correlation between SL and band powers shows the same trend. Such a trend agrees with the low effective-
ness and correlation of GBP due to the low level of gamma band power. Despite that, gamma oscillations contain
useful information and have been shown as a promising biomarker of depression*’.

Interestingly, the correlation between the real and imaginal parts of coherence MSC and ImC 0.64 is lower
than the correlation between two phase-sensitive markers ImC and SL 0.7. Such a trend supports the idea that the
markers of similar signal property, phase, are more strongly correlated than the markers of different properties,
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Figure 4. The effectiveness E of the EEG markers in detecting a wide spectrum of different EEG features.
E=NR, where N is the number of markers correlated with the indicated marker and R is the average value of the
corresponding correlation coefficients.
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phase and power. However, no specific general trends between linear or nonlinear markers calculated in fre-
quency or time domain become evident.

The dynamic markers indicate a negative correlation with all band power markers (except GBP) and all func-
tional connectivity markers. Fractal dimensions and other dynamic markers are scale-invariant and, in principle,
independent of signal level. Their correlation with band power markers should be explained by processes other
than dependence on the level of the signal. The decreasing of dynamics with an increase in connectivity is pos-
sible, but the mechanisms behind that are unknown.

The presented in Figs. 1, 2 and 3 and Table 1 results demonstrate that the two-channel functional connectivity
markers are more strongly correlated than the single-channel band power or dynamics markers. The stronger
correlation between the two-channel markers is a rather unforeseen result because the possible chaotic instabili-
ties in two channels are stronger than in one. For example, the temporal stability of two-channel markers has
been reported lower compared to single-channel markers*.

The results of the current study suggest that the HFD incorporating many various features of the signal is the
best choice for EEG analysis to reveal signal features characteristic of early-stage mental disorders. The reported
result may have a more general significance because the same markers can be used for signals other than EEG
in several other applications.

The current study proves for the first time the correlation between different EEG markers. The difficulties in
interpretation of the characteristic trends in the correlation between the markers underline the need for further
investigations on the topic to get new knowledge about brain functioning and the relationship with EEG.

Limitations of the study
There are several limitations in the study. The limitations are partly related to the concentration of the study on
the evaluation of raised hypotheses,

The number of participants is limited due to the limitations in the volume of the study. The number is suf-
ficient to provide the reliability of statistical evaluation for the whole. But this is insufficient for splitting subjects
into smaller subgroups (male-female, old-young, etc.) because statistical comparisons become unreliable.

The results can be affected by factors other than the mental state of the brain. The possible impacts of
gender and age are not considered. The possible dependencies of correlation on gender and age need further
investigation.

The possible variations of the correlation in different brain areas and EEG channels are not discussed. Depres-
sion, and most likely other mental disorders, affect EEG signal in all brain areas®**. Despite that, the correlation
between markers can differ in different brain areas and channels. This problem needs future investigations.

Not all markers used by various researchers for the detection of symptoms of mental disorders have been
discussed in the study. The selection of markers has been limited by the volume of the study. The interpretable
makers describing different features of the brain activity used in more than one study have been preferred. Addi-
tional investigations on the correlation for the markers of interest can be performed in the future.
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Background and Objective: Major depressive disorder (MDD) is the leading cause of disability worldwide. Reliable
detection of MDD is the basis for early and successful intervention in treating the disorder and preventing
disability. We introduce a novel feature extraction method, the in-phase matrix profile (pMP), which is specif-
ically adapted for electroencephalographic (EEG) signals. Methods: The pMP characterizes general self-similarity
of an EEG signal. The method extracts overlapping one-second-long subsegments from an EEG signal segment,
calculates Euclidean distances between all possible subsegment pairs, and subsequently uses the distance values,
where subsegments are most in phase, to calculate pMP. The method was applied to the resting-state eyes-closed
EEG data of an MDD group and age- and gender-matched healthy controls (66 subjects). Higuchi’s fractal
dimension (HFD) values were calculated for the same groups for comparison. Results: Both pMP and HFD values
were higher in MDD. The pMP successfully distinguished MDD and control group in all 30 EEG channels. In
contrast, HFD resulted in statistically significant group distinguishability in 13 (43%) channels located mainly in
the central region of the head. The highest classification accuracy for pMP was 73% and for HFD 67%.
Conclusion: The present article shows that pMP outperforms HFD in detecting MDD and is a promising method
for future MDD studies. Significance: The pMP is a sensitive parameter-free method for detecting MDD that can

be used in future studies and is a potential method to reach clinical use for diagnosing MDD.

1. Introduction

Depression is a common disease that, depending on its severity, can
strongly affect a person’s daily ability to cope and even lead to suicide.
Approximately 280 million people worldwide suffer from major
depressive disorder (MDD, also referred to as clinical or unipolar
depression), which makes it the leading cause of disability in the world
[1], and the number has constantly been rising. Preliminary evidence
indicates that the recent severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), which caused the COVID-19 pandemic, has also
significantly increased the number of people suffering from MDD [2]
and the extent of the full impact of the pandemic on mental health is yet
to be seen.

There are different medications and treatment therapies available for
MDD. However, many people do not get the help they need, especially in
less developed countries [3]. Treatment availability is limited due to
several factors, such as the small number of healthcare professionals,
misdiagnosis, and the continuing social stigma associated with mental

health problems. At present, MDD diagnosis and treatment monitoring
are based on clinical interviews and questionnaires, which depend on
the health professionals’ experience and the answers given by the
examinee. Therefore, the health assessment is based on subjective
symptoms, and the conclusions may not be objective. No method, which
provides an evaluation based on objective symptoms, is yet in use in
clinical practice.

Neuronal activity in the brain is related to all physiological and
emotional processes in a human. The brain’s bioelectrical signals
describe the state of the brain [4], and electroencephalography (EEG)
can detect changes in the brain’s bioelectric activity. In the case of
mental disorders, including MDD, changes in the brain’s electric activity
occur [5-7], and EEG is a method suitable for detecting bioelectric
changes related to mental disorders [7]. The alterations in EEG may
appear even before the changes in well-being do, and the EEG features
can be the input for an objective tool for assessing the state of the brain.
EEG is also appropriate due to its portability and relatively low cost.

The EEG method has long been used to detect various mental
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disorders in research studies [4,7]. Several authors have used different
linear EEG methods to detect various brain states/disorders [7-11]. Still,
due to the complex nonlinear nature of the EEG signal [12], different
nonlinear methods have been engaged to provide more information
about mental health. In MDD studies, much attention has been paid to
the alpha rhythm, and attempts have been made to find a possible in-
dicator of MDD using only the alpha frequency. Initially, frontal alpha
asymmetry [13] was promising, but today it has yielded unreliable re-
sults [10,14]. It has also been found that MDD can lower the alpha peak
frequency, increase the coefficient of variation [15], and functional
connectivity in the alpha frequency band [16].

Nonlinear methods such as fractal dimensions, detrended fluctuation
analysis, and correlation dimensions are used to calculate EEG signal
complexity measures that have been shown to be indicative of epilepsy
[17,18], schizophrenia [19], Alzheimer’s [20], and MDD [21-25]. It has
been found that the values of features characterizing the complexity of
EEG signals are higher in MDD, including fractal dimension estimate
called Higuchi's fractal dimension (HFD). HFD is one of the most used
nonlinear methods to study MDD and has shown some promising results
in distinguishing between MDD and control subjects [9,23,24,26-28].
Although previous research has provided information in which direction
EEG features’ values in MDD typically change, the distinctiveness of
independent groups has been insufficient. The results have not been
consistent enough to reach clinical use. Therefore, there is a continuing
need to find an even more sensitive method or combination of methods
for evaluating the presence or the severity of MDD.

In this paper, we continue this line of research and propose a novel
method to characterize the brain’s state and help identify MDD. The
hypothesis is that a method using a novel approach for considering the
temporal complexity of the EEG signal can provide higher sensitivity in
the detection of MDD than the previously used methods. We developed
the method primarily for resting-state EEG signals, and it describes the
complexity of EEG signals via general self-similarity. The proposed in-
phase matrix profile (pMP) is a simple-to-use parameter-free method
calculated directly in the time domain. The method is based on the
Matrix Profile (MP) idea introduced by Yeh et al. [29], which divides a
time signal into subsegments and compares the similarity between those
subsegments, searching for the best matching subsegments. Unlike in
the classic MP, in our method, the length of the subsegments is fixed, and
all EEG subsegments that are in phase with each other are used in the
calculations of pMP. We compare the proposed novel pMP with the
widely used approach based on Higuchi’s fractal dimension (HFD) [28].

The remainder of the paper is organized as follows: Section II in-
troduces the classical methods and terminology on which pMP is based
and explains the need to modify these methods for resting-state EEG
signals. Section III describes the EEG data collection procedure, data
preprocessing and explains the calculation procedure of our proposed
method according to the preprocessed data. Section IV presents the MDD
and control group results for pMP and HFD. Section V explains the na-
ture and limitations of the results obtained and suggests the direction of
future research. Finally, Section VI draws the conclusion.

2. Background and related work
2.1. Data mining

As the overall volume of data around us snowballs, different data
mining algorithms are evolving in the same way. An essential part of
data mining is similarity search, where large amounts of data are
searched for patterns or trends in the data set. Popular methods include
the distance range query (finds all elements in a data set where the
distance from the query to set members is less than a given threshold)
and the k-nearest neighbor query (retrieves k elements from a dataset
with the lowest distances to query). Those methods have been used in
many fields, such as marketing analysis [30], text and document mining
[31], and multimedia analysis [32]. The input (query) can be an image,
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a word, a sound, a traffic sign, sales data, electricity consumption, etc.,
and the algorithm searches for a match that meets the specified re-
quirements for that query in a given database.

The EEG signal can be viewed as a large amount of data, and thus
data mining algorithms can also be used for EEG signals. Mining EEG
signals have been used when working with evoked potentials or looking
for a specific pattern, such as blinking [33], exploring the brain’s
pathways (synchronization likelihood) [34,35], or in sleep studies [36].

2.2. Matrix profile and its limitations in EEG data

In 2016, Yeh et al. [29] presented a new fast similarity search al-
gorithm for data mining, Matrix Profile (MP), which can quickly find
from a tremendous amount of data, e.g., electricity consumption over
the years, accurate matches where consumption has been most similar
or has changed from usual. The advantage of this method is that it is
unnecessary to set a threshold below which comparable elements can be
considered a match. That allows the MP to be used for time series
without fear that some information might go unnoticed due to an un-
suitable threshold set. MP is an effective way to find similarities and
differences in time signals with a quasi-periodic pattern. The method
detects a previously unknown (or known) repeating pattern, a motif,
from the time signal. Recently, MP has been used to analyze physio-
logical signals, e.g., electrocardiographic signals (ECG) [37]. In the case
of ECG, the motif is a cardiac cycle, and the MP will be able to find
anomalies, i.e., a discrepancy from the usual motif pattern, thereby
detecting a change in the normal functioning of the heart. The key
component for calculating similarity in MP is Mueen’s Algorithm for
Similarity Seach (MASS) [38].

The EEG is inherently a very periodic signal, being a combination of
brain waves of different frequencies. In the eyes-closed relaxed state, the
most outstanding frequency is the posteriorly dominant alpha rhythm.
Thus, on the one hand, there are no repetitive-looking patterns in an
average resting-state EEG signal. Still, on the other hand, it can become
visibly very periodic with the dominance of the alpha wave. Therefore,
EEG differs significantly from quasi-periodic physiological signals, such
as an ECG signal, so the MP method described above cannot detect
changes in EEG unless the EEG changes considerably over time, such as
in epilepsy; there is no such pattern change in EEG for MDD. In the case
of resting-state EEG, looking at signals’ general self-similarity is more
effective, which is what our new method does.

2.3. Definitions and notations

Here we define the principal terms and ideas common in related
research and our proposed method. As our method is based on distance
profiles, we explain how they can be calculated and the essence of dis-
tance profiles.

Segment is a time series S = sy, S, ..., S, of length n.

Subsegment set S, is a continuous subset of subsegments extracted
from S of the length m starting from position i, where 1 <i < n-m + 1.
Sism = S1ims S2m+1> -++> SnmtLine

Query q is one specific subsegment from the set S;,, from which the
(Euclidean) distances to all subsegments in S; , are calculated.

Euclidean distance (ED). Both MP and pMP are based on the idea of
ED, which in this article shows the distance between two subsegments
selected from S;, in Euclidean space. The smaller the value for ED, the
more similar the two subsegments are. By taking any two subsegments
from S;, (query g and a random subsegment s), the Euclidean distance
between them can be calculated as in

(€8]

For every ED calculation, the query and the subsegment are first z-
normalized. The z-normalization is done as follows: the mean is
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subtracted and divided by the standard deviation to get the zero mean
and standard deviation of one for each subsegment.

Distance profile (DP). By taking the i-th subsegment from the set S;
as a query ¢; and calculating the distances between ¢; and all sub-
segments in S;,, we get an array of distance values, e.g., the distance
profile DP; corresponding to the i-th subsegment [29] as in

DP; = ED(g;, $1n), ED(i,52m11) 5 +-s ED(Gi, Sumi10) )

As S;, contains n-m + 1 subsegments, the same number of DP-s can
be calculated. Fig. 1 illustrates graphically how the subsegments are
selected between which the ED is calculated and how they form the DP-
s.

The DP calculation using the conventional multilevel Euclidean
distance calculation (also called the naive method) described above (2)
is computationally expensive. Another way to compute DP-s is like in MP
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Fig. 1. Extraction and selection of subsegments for calculating distance profiles
(DP-s) for an EEG signal segment S = sq, o, ..., Sp. First, n-m + 1 subsegments
(S1:m> S2:m+1s ---»> Sn-me1:n) With the length m are extracted from S. Each sub-
segment is then used as query g, and Euclidean distances (ED-s) are calculated
from each q to all subsegments extracted from S. By calculating the distance
from a single query to all subsegments, we get the DP corresponding to that
particular query. After all possible subsegments have been used as queries, n-m
+ 1 DP-s are obtained.
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using the MASS algorithm (and other versions, e.g., MASS_V2) [38] to
speed up the calculation but still get the same DP-s as using the naive
method. The MASS_V2 uses z-normalized Euclidean distance as a sub-
routine, exploiting the overlap between subsegments using the fast
Fourier transform (FFT) algorithm to calculate dot products to retrieve
all distances from a query to all subsegments in S; ,, extracted from the
time signal S. In that way, it is possible to get a full DP corresponding to
one query significantly faster than with the naive method, which is
generally not used for large amounts of data due to time constraints. The
code for MASS_V2 is presented in [39].

In the case of classic MP, only the minimum value of each DP is used,
excluding trivial matches. The DP minimum value indicates how similar
the query and the best matching subsegment from the rest of the
segment are. The minimum values from each DP form a sequence called
the MP. In our proposed method, we use several values from each DP. In
the next chapter, we describe the EEG data on which we applied our
proposed method and the specificity of our method.

3. Method
3.1. Subjects

We recorded EEG data from medication-free outpatients diagnosed
with MDD and age- and gender-matched healthy controls. Both groups
comprised 33 right-handed subjects (12 males and 21 females). The
mean age and standard deviation for the control and MDD group were
34.7 + 15.0 and 34.5 + 14.9, respectively, and the age ranged from 18
to 75 years. All MDD group subjects underwent a clinical interview and
were diagnosed with MDD by a psychiatrist based on ICD-10 criteria.
Healthy controls completed the official Estonian self-report question-
naire (Emotional State Questionnaire — EST-Q) [40] for depressive dis-
order and anxiety, and the subjects without indication of these mental
disorders were selected. The subjects were instructed to abstain from
alcohol for 24 h and coffee for two hours before recording.

The study was conducted following the Declaration of Helsinki and
was formally approved by the Tallinn Medical Research Ethics Com-
mittee. Participation in the study was voluntary, and all subjects signed
written informed consent.

3.2. EEG data collection

All the recordings were conducted between 9 am and 12 pm using a
Neuroscan Synamps2 acquisition system and a 32-channel Quick-Cap
(Compumedics, NC, USA). The Quick-Cap employs electrode posi-
tioning according to the extended international 10/20 system. During
the recording procedure, participants were lying in a relaxed supine
position in a dimly lit laboratory room. Ten minutes of eyes-closed EEG
data were acquired in 30 channels and electrooculograms in two
channels (vertical and horizontal) to monitor eye movements. To ach-
ieve good conductivity between the skin and the electrode, the imped-
ance of EEG electrodes was kept below 10 kQ. The EEG data were
recorded with a frequency band of 0.3 — 200 Hz at a sampling rate of
1000 Hz.

3.3. EEG data preprocessing

The data were processed using MATLAB software (The Mathworks,
Inc.). EEG data were re-referenced using the reference electrode stan-
dardization technique (REST) [41]. REST relies on the idea that the EEG
recordings are the brain activities generated by the neural current
sources, which are attenuated and mixed due to volume conduction. It is
a virtual reference that uses an equivalent source model to approxi-
mately re-reference EEG signals to a spatial location for a reference point
at infinity to achieve roughly zero potential at the reference point,
reflecting bioelectrical activity considerably only under the active
electrode. Previous studies have shown that the REST reference is
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suitable for low-density EEG montage and is a good reference technique
for comparing the results across laboratories [42,43].

Parks-McClellan low and high-pass forward-backward filters were
applied to the EEG signals to remove baseline fluctuations and high-
frequency noise; a frequency bandwidth of 2 to 47 Hz remained for
further processing. The calculations did not assume a high sampling
rate, therefore, the EEG data were downsampled to 200 Hz. The first 6
min from each recording were used for the following processing and
were divided into seventeen 20.48-second (4096 samples) long seg-
ments. EEG segments were visually inspected, and segments with mus-
cle, ocular, or other artifacts were manually removed; each subject’s
first ten clean segments were used for further analysis (Fig. 2).

3.4. In-phase matrix profile

The proposed method, in-phase matrix profile (pMP), is specially
adapted for EEG signals and considers the periodicity of alpha waves.
The main idea is to calculate Euclidean distances between short sub-
segments extracted from an EEG signal segment and to use only those
distance values where the subsegments are as well as possible in phase
with each other and discard the distances where the subsegments are
offset from each other.

First, we calculated DP-s using MASS_V2 for all queries in an EEG
segment as in [39]. As DP calculation uses individually z-normalized
subsections, it minimizes the effect of EEG electrode impedance varia-
tion during the EEG recording. Also, without z-normalization, EEG
signal subsegments with higher absolute amplitude would have longer
distances between them than lower amplitude signal subsegments even
when more similar and z-normalization helps to reduce the chance of
obtaining long distances incorrectly due to various amplitude effects.
Our study used EEG signal segments of length 20.48 s (n = 4096 sam-
ples) as shown in Fig. 2 and subsegments of length one second (m = 200
samples). The graph in Fig. 3 illustrates one such EEG signal segment (S)
and the red part represents the first query (q;) extracted for DP; calcu-
lation. The DP of length n-m + 1 corresponding to the EEG signal
segment and the extracted query presented in Fig. 3 is shown in Fig. 4.
The DP in Fig. 4 has a sinusoidal appearance. When the query and
comparable subsegments are more in phase, the distances are shorter
and longer when the query and subsegments are out of phase.

Second, the ED values, where the query was most in phase with the
EEG segment, were extracted from DP. Those ED values are seen as
negative peaks marked with red circles (pneg) in Fig. 4. As the method
aims to find the similarity between EEG subsegments, ED values calcu-
lated between out-of-phase subsegments will be left aside.

Third, the median of the extracted ED values DPyedi (Pneg) Was
calculated for each DP forming a pMP vector (pMPy..). As we pulled n-m
+ 1 different queries from S for the set S;,, we got n-m + 1 DP-s and
consequently a pMPye. with the length of n-m + 1.

Last, the mean of pMPy. gave us the pMP value for the EEG segment.
The calculation for this was as in

Electroencephalographic signal
six minutes divided into 17 segments of length 20.48 s (4096 samples)
1

segment 1 | segment2 | segment3 segment 4 segment 17
noisy clean clean noisy clean
segment 1 ‘ segment 2 |segment 3 | segment 4 ‘ ‘ segment 10

L J

1
For the following calculations remain ten separate artifact-free segments

Fig. 2. EEG signal segments used for further calculations. Six minutes of
recorded eyes-closed EEG signal was divided into 17 segments of length 20.48 s
(4096 samples). After visually inspecting, the segments with muscular, ocular,
or other artifacts were discarded. Ten separate clean segments remained for
further calculations.
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n—m+1

pMP = pMPo = — 3

—_— * DPneq, (Pnes ) ®

i=1
where DPpedi (Pneg) is the median value of all DP negative peaks pneg
for query i.

3.5. Higuchi’s fractal dimension

Fractal dimensions are sensitive nonlinear methods to analyze
waveform complexity of physiological signals and have been around for
decades. Higuchi’s fractal dimension [44] is one of the most used fractal
dimension estimates considering EEG signals and is calculated in the
time domain.

HFD is based on a measure of length (k) of the curve that represents
the considered time series, whereas using a segment of k samples as a
unit if L(k) scales like L(k) ~ k'™°. The curve shows the fractal dimension
(FD) and FD measures the complexity of the curve. In this study, the
value of FD with a parameter kp.x = 8 was calculated according to the
algorithm described by Higuchi [44].

3.6. Statistics and classification

The present study aimed to examine the capability of the proposed
new pMP parameter to differentiate between the MDD and the control
group compared to HFD. The pMP and HFD values were calculated for
all 30 EEG channels for all 66 subjects. Since we had ten signal segments
for each subject’s each channel, we used the median pMP and HFD
values over these ten segments.

We used the Mann-Whitney U (MWU) test to compare the group
differences. MWU test controls the hypothesis that two independent
samples come from distributions with equal medians. Due to multiple
comparisons, the modified Bonferroni correction was applied to the p
values obtained from the MWU test, and the corrected p values ppons
were calculated as in

PBont; = Psorea;* (£ 41 = ) Q)]

where pgorteq are the p values obtained from the MWU test sorted in
ascending order, t is the total number of tests performed (t = 30), andj is
the index in descending order j = ¢, t-1, t-2, ..., 1. Channels up to the first
PBonf Value exceeding the significance level o = 0.05 were considered
statistically significant.

Support vector machine (SVM) with leave-one-out cross-validation
was selected as a classifier. The classification accuracy was calculated
for pMP and HFD separately using single-channel input.

4. Results

First, in this study, we used a novel pMP method to calculate EEG
signals’ complexity and examined how pMP distinguished between
MDD and control group. Second, this study examined how well HFD
differentiated between the two groups. Last, we compared the results
obtained with both methods with each other. The group mean values for
pMP and HFD in the healthy and MDD groups are presented in Table 1
and Fig. 5.

For both pMP and HFD, the mean values for the MDD group were
higher than those for the control group. Both methods resulted in lower
values in the occipital area and had higher values on the sides and
prefrontal region. The differences in mean values between MDD and
control group are shown in the last column of Fig. 5. The dots represent
locations of the EEG channels, while extra-large dots represent channels,
where the difference between the two groups was statistically significant
based on the MWU test after modified Bonferroni correction (p < 0.05).
The pMP method shows a statistically significant difference between the
MDD and control group in all 30 EEG channels. In contrast, a statistically
significant difference for HFD between the two groups was revealed in
less than half of the channels (43%). Those channels are mainly located
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Fig. 3. EEG signal segment in channel FCz with the length of 20.48 s (4096 samples), red part represents the first query q; with the length of 1 s (200 samples)

extracted from the EEG signal segment.
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Fig. 4. An example of a Distance Profile (DP) corresponding to an EEG signal segment recorded in channel FCz of length 20.48 s (4096 samples) and a query of length
1 s (200 samples) extracted from the segment. The particular query and the segment are presented in Fig. 3. Red circles correspond to the distances, where the query

is most in phase with the segment.

Table.1

The pMP and HFD mean values. Columns represent in-phase matrix profile
(pMP) and Higuchi’s fractal dimension (HFD) mean values across control and
major depressive disorder (MDD) group; pgons Values are p values obtained from
Mann-Whitney U Test with modified Bonferroni correction.

Channel pMP HFD
Control MDD PBonf Control MDD PBonf

02 16.098 17.166 0.039 1.263 1.310 0.047
o1 16.319 17.404 0.039 1.267 1.327 0.055
oz 16.477 17.322 0.032 1.268 1.325 0.077
PZ 17.051 17.729 0.038 1.278 1.336 0.051
P4 16.929 17.697 0.041 1.280 1.340 0.058
CP4 17.631 18.247 0.031 1.323 1.386 0.030
P8 16.968 17.811 0.038 1.299 1.355 0.034
C4 17.700 18.400 0.013 1.340 1.408 0.009
TP8 18.075 18.636 0.036 1.377 1.438 0.051
T8 18.419 18.852 0.036 1.437 1.509 0.103
P7 17.336 18.291 0.021 1.318 1.388 0.016
P3 16.969 17.889 0.036 1.284 1.352 0.026
CP3 17.552 18.332 0.011 1.321 1.393 0.005
CPZ 17.409 18.212 0.019 1.302 1.373 0.010
Ccz 17.496 18.329 0.008 1.325 1.398 0.015
FC4 17.477 18.200 0.036 1.332 1.398 0.052
FT8 18.079 18.624 0.032 1.393 1.457 0.093
TP7 18.274 18.772 0.034 1.400 1.453 0.085
Cc3 17.614 18.329 0.005 1.337 1.407 0.007
FCZ 17.322 18.150 0.012 1.307 1.376 0.025
FZ 17.123 17.975 0.017 1.291 1.358 0.036
F4 17.447 18.126 0.026 1.339 1.392 0.078
F8 17.950 18.611 0.034 1.384 1.466 0.077
T7 18.379 18.717 0.031 1.444 1.465 0.146
FT7 18.042 18.549 0.032 1.410 1.440 0.158
FC3 17.356 18.172 0.015 1.327 1.393 0.035
F3 17.300 18.093 0.034 1.326 1.393 0.071
FP2 18.064 18.611 0.029 1.429 1.489 0.155
F7 17.925 18.555 0.035 1.392 1.450 0.094
FP1 17.951 18.592 0.033 1.412 1.503 0.099

in the central region of the head (CP4, C4, P3, CP3, CPz, Cz, C3, FCz, Fz,
FC3) and a few in the posterior region (02, P7, P8).

The pMP appears to have greater symmetry in obtained values be-
tween the hemispheres, which is best illustrated by the difference

between the MDD and control group in the third column of Fig. 5. In
HFD, some asymmetry can be seen between the hemispheres while
looking at the topoplot presenting the difference between the MDD and
control group. Considering the channel locations indicating the statis-
tically significant differences, the distinctiveness of the groups is
somewhat better on the left side of the head. In pMP, the largest dif-
ference was observed in the occipital region, while in the case of HFD,
the difference was smaller. Although HFD also provided a statistically
significant distinction between the control and MDD group in 13 chan-
nels in the present study, the pMP result was considerably better, with
significant group distinction in every channel.

We used SVM analysis to validate the obtained results. The highest
classification accuracy using SVM was 73% in the case of pMP and 67%
in the case of HFD.

5. Discussion

The results of the present study, which show higher HFD values for
the MDD group compared to the control group, were expected. The re-
sults are consistent with previous studies [9,24,26,27], where the re-
ported fractal dimension values were higher in the MDD group
compared to the control group. In the present study, the lowest HFD
values were in the occipital region regardless of the group. In contrast,
HFD values obtained in [9], where the authors presented HFD values in
eight channels, showed higher HFD values in the occipital area (O1, 02)
and lower values in the prefrontal region (FP1, FP2) with the best MDD
and control group distinguishability in parieto-occipital channels. The
reason might be that in [9], the Cz channel was used as a reference,
while in the current study, we used REST reference. The study by Zap-
pasodi et al. [45] that also used REST reference like in this study, pre-
sented lower HFD values in the parieto-occipital area compared to
fronto-central and side regions for the healthy control group, which is
consistent with our results.

The pMP results have many similarities to those of HFD. Although
pMP does not characterize fractality but is still a dimension of
complexity, and similarly, the lower values are in the parieto-occipital
region. Complexity measures, in general, tend to have higher values in
MDD [9,24-27]. Therefore, pMP was also expected to have higher MDD
values than the control group.
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MDD — control

MDD — control

Fig. 5. Control and major depressive disorder (MDD) group mean values for in-phase matrix profile (pMP) in the first row and Higuchi’s fractal dimension (HFD) in
the second row for 30 EEG channels represented by dots. The MDD and control group differences (MDD - control) are shown in the last column. Extra-large dots
represent channels where p < 0.05 according to the MWU test with modified Bonferroni correction.

Still, while looking at the pMP values for MDD and control subjects,
both have lower values at the occipital region than other regions. The
alpha frequency band dominates the occipital region, especially in eyes-
closed conditions. This raises the question of whether pMP is strongly
influenced by alpha frequencies. Fig. 4 presents a distance profile cor-
responding to an EEG signal subsegment and a query extracted from the
segment for a random subject in the control group for channel FCz. This
channel is located in the fronto-central region, so it has a relatively low
alpha load. While looking at the negative peaks in Fig. 4, the mean in-
terval between those peaks is 20 samples. Given that the sampling fre-
quency is 200 Hz, this interval, 0.1 s, corresponds to a typical alpha
wave duration illustrating that pMP is primarily influenced by the alpha
rhythm even in the EEG channel FCz.

Considering that while calculating pMP, each one-second subseg-
ment is individually z-normalized before calculating the ED, the effect of
the amplitude of the EEG signal is minimized. Therefore, the pMP value
is mainly affected not by the alpha amplitude but by the frequency
fluctuations of the alpha frequency. In case the length of the alpha wave
changes, the subsegments are no longer so well in phase with each other,
resulting in a longer distance between the subsegments, which gives
higher values for the DP negative peaks (Fig. 4). Wolff et al. [15] have
demonstrated that the alpha peak frequency coefficient of variation is
higher for MDD than controls. If the alpha rhythm’s frequency vari-
ability is higher in the MDD group than in the control group, the higher
pMP values for MDD subjects are justified. At the same time, as the most
significant results do not appear in occipital channels - channels with the
highest load of alpha frequency - other frequencies have a considerable
impact, too. Still, the lowest pMP values at the occipital region can be
explained by the high load of alpha frequencies, which are seemingly
quite consistent in terms of frequency in the occipital region. The alpha
frequency alone has been studied extensively in the assessment of MDD,
and different levels of associations have been found [14-16], so it is
plausible that the alpha frequency contains information about the
presence of MDD.

It has been presented previously that the maximum classification
accuracy for HFD was 77% when classifying depressive and control
subjects in a single EEG channel [46]. At the same time, in the current

study, it was 67%. Apart from different classification method, one has to
take into account that in the previous study, the age range of subjects
was more narrow and the number of subjects considerably smaller.
Considering the results of the current study, pMP indicated somewhat
better single-channel accuracy (73%) compared to HFD (67%).

There were some limitations to this study. First, the relatively small
number of participants (n = 66) does not allow the results to be
generalized. In the case of a small group, it is also not appropriate to
divide it into subgroups based on gender, age, etc., and analyze the re-
sults of narrower groups separately, because there would be too few
subjects in each group. Therefore, the method needs to be tested in
larger groups. Second, the groups had large age variability. Still, at the
same time, the subjects in MDD and control group were age- and gender-
matched, which increases the comparability of the groups. However,
with age, neurological changes occur in the human brain [47] and thus
also changes in the bioelectrical signals measured using EEG. Therefore,
it would be important to conduct a similar study to gain better knowl-
edge, dividing the subjects into narrower age groups. It has been found
that gender also significantly impacts EEG, and genders should also be
analyzed separately [48]. Although the calculation of pMP using the
MASS_V2 algorithm is very fast compared to the naive method, the
calculation of pMP is still more computationally intensive compared to
HFD and therefore requires more resources. In the present study, we did
not investigate the effect of noise on either method. Still, HFD has been
shown to be sensitive to noise [49]. Low sensitivity to noise would be a
relevant advantage of the measure used to assess MDD. However, as the
effect of noise on pMP value and sensitivity has not been studied in the
present work, it would be essential to perform a corresponding study.
Since pMP values seem to be largely affected by alpha frequency fluc-
tuations, it should be researched if the necessary information for MDD
detection is hidden in the alpha frequency band alone. In addition, it
could be investigated whether the method can also characterize the
severity of MDD.

6. Conclusions

This article introduces a novel EEG-based nonlinear method, in-
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phase matrix profile (pMP), for studying MDD. The pMP distinguished
the MDD and control group in all 30 EEG channels studied, while HFD
distinguished the two groups in 13 channels. As with other complexity
measures, pMP values were higher for MDD. The method expresses the
complexity of EEG signals and seems to be influenced by EEG alpha
frequency. The peculiarity of the method is that it is not significantly
affected by the amplitude of the signal.
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The clinical applicability of electroencephalography (EEG) relies on the reliability and temporal
stability of its measures. While the reliability of linear EEG measures is well established, the long-

term stability of both linear and nonlinear measures at the individual level, as well as interindividual
variability, remains underexplored. This study evaluated the one-year stability of EEG absolute

band powers (theta, alpha, beta, and gamma) and nonlinear measures (Higuchi’s fractal dimension,
Lempel-Ziv complexity, detrended fluctuation analysis, and in-phase Matrix Profile) across 12 monthly
EEG recordings in nine healthy males aged 26-49. Intraclass correlation coefficients (ICCs) indicated
excellent reliability across all measures, although beta power showed slightly reduced ICCs in temporal
regions and gamma power demonstrated lower reliability in peripheral sites. At the individual level,
nonlinear measures showed greater temporal stability than EEG band powers. Although a few
individuals, particularly in band power measures, exhibited annval fluctuations comparable to or
exceeding interindividual variability, most participants demonstrated consistent EEG profiles over
time. These findings support the use of nonlinear EEG measures in longitudinal research and indicate
their potential for developing personalized EEG-based neural biomarkers. They also highlight the
importance of estimating expected individual variability when designing individualized monitoring
approaches, as high reliability at the group level does not preclude substantial within-subject
variability in some cases.

Mental health disorders affect nearly one billion individuals worldwide, with anxiety and unipolar depression
being among the most prevalent conditions, impacting approximately 580 million people!. Mental health
conditions constitute a leading cause of disability, and the COVID-19 pandemic further exacerbated their global
burden, leading to a 25% increase in anxiety and depression cases due to social isolation, financial distress, and
health-related concerns'. Despite their prevalence, mental disorders remain significantly undertreated, with 75%
of individuals in low- and middle-income countries receiving no treatment due to resource limitations, stigma,
and systemic barriers. Furthermore, the diagnosis and treatment of mental health disorders remain largely
subjective, relying on clinical interviews and self-report questionnaires. These methods introduce variability
due to the respondents’ willingness and ability to comprehend and answer questions, clinicians” expertise, and
sociocultural factors, resulting in frequent misdiagnosis and inadequate treatment access®.

Changes in mental health are reflected in alterations in brain activity. Electroencephalography (EEG) is an
effective complementary method to traditional clinical assessments for evaluating mental health, offering an
objective and cost-effective tool for capturing electrical activity generated by cortical neurons near the scalp.
EEG provides quantifiable measures that can aid in early diagnosis, track disease progression, and evaluate
treatment efficacy’. EEG’s affordability, high temporal resolution, and non-invasive nature make it a valuable
tool for investigating brain dynamics in both clinical and healthy populations. Over the decades, EEG has been
widely utilized, leading to the development and adoption of various methods to compute different EEG measures
for studying cognitive functions and neurological disorders*~'.

EEG linear and nonlinear measures

Traditional EEG analysis relies on spectral band power measures, which provide essential insights into brain
dynamics by quantifying neural oscillations across different frequency bands. EEG frequency bands are linked to
distinct cognitive and physiological processes, with delta (0.5-4 Hz) associated with deep sleep, theta (4-8 Hz)
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with memory and drowsiness, alpha (8-13 Hz) with relaxation and attentional control, beta (13-30 Hz) with
active thinking and motor planning, and gamma (>30 Hz) with higher-order cognitive functions such as
perception and consciousness®. While band power and other linear measures have been extensively studied, they
do not fully account for the dynamic and complex nature of neural activity’. As the brain operates as a nonlinear
system, nonlinear EEG measures have been developed or adapted from other domains to capture its self-
organizing dynamics better. These methods provide additional information to linear measures by quantifying
irregularity, complexity, and long-range temporal dependencies in neural signals. Probably the most used
complexity measures are fractal dimensions. Higuchi’s fractal dimension (HFD) estimates the self-similarity
of EEG signals, reflecting neural complexity, and has been applied to many different areas of neurological and
mental health research®*12-1¢, Detrended fluctuation analysis (DFA) measures long-range temporal correlations
(LRTC)'”!® and has also been successfully applied in EEG studies®”'* as well as Lempel-Ziv complexity (LZC)
that measures the number of new patterns in a time series'”?’. A more recent method, the in-phase Matrix
Profile (pMP), has been introduced to identify repeating patterns in EEG signals'?. The in-phase Matrix Profile
adapts the fast Matrix Profile similarity-search algorithm?! to EEG by comparing fixed-length, phase-aligned
subsegments by calculating Euclidean distances, yielding a parameter-free index of segment-to-segment self-
similarity in the time domain. Its first EEG application outperformed HFD in distinguishing patients with
major depressive disorder from healthy controls, underscoring the method’s diagnostic potential'2. Bachmann
et al.® demonstrated that combining linear and nonlinear EEG measures improves classification accuracy when
distinguishing depressed individuals from healthy controls, reinforcing the potential utility of these measures
in clinical applications. Although some nonlinear EEG methods have been used for decades, their potential
still remains underexplored compared to traditional spectral approaches. Given that nonlinear methods align
more closely with the brain’s intrinsic dynamics, richer information about neural function and dysfunction is
expected.

For the present single-channel resting-state design, we restricted the nonlinear feature set to four time-domain
measures (HFD, DFA, LZC, and pMP) because together they span scale-free complexity, long-range temporal
correlations, algorithmic irregularity, and segment-to-segment in-phase self-similarity while requiring little or
no parameter tuning. Entropy-based alternatives (e.g., sample or permutation entropy) were not included, as
their reliability depends strongly on embedding and tolerance parameters and on longer stationary epochs,

which can hamper longitudinal comparability?>~>,

Reliability of EEG measures

For EEG measures to be effectively utilized in clinical and research applications, they must demonstrate high
reliability and temporal stability. Establishing temporal stability in EEG measures is essential to distinguish
genuine brain-state-related neural changes from intrinsic EEG variability. Stable EEG measures enhance the
validity and interpretability of findings, thereby improving clinical decision-making and advancing scientific
understanding of brain function and disorders.

The reliability of linear EEG measures, particularly power in standard frequency bands, has been well
studied, with early studies confirming the reliability and stability of power across different frequency bands?>~%.
More recent investigations have expanded on these findings by examining the reliability of additional linear
measures**~*!. However, considerably less research has focused on the reliability and stability of nonlinear EEG
measures. Only a few studies have included them in their analyses'>!%3>33, The available evidence suggests that
nonlinear measures exhibit either lower reliability than traditional EEG band power measures*>* or a level of
reliability comparable to linear measures'®, indicating that these measures may capture aspects of EEG dynamics
not reflected in the power of traditional frequency bands.

Gudmundsson et al.*® investigated the stability of quantitative EEG measures in 15 healthy elderly
individuals over two months (19 EEG recordings per participant). Their findings indicated that band power
measures demonstrated the highest reliability, with mean ICCs of 0.77 for absolute power and 0.80 for relative
power across eight channels and all frequency bands. Complexity-based measures such as LZC exhibited lower
reliability (ICC=0.70), while coherence measures were the least stable, with their reliability strongly dependent
on channel location.

Pold et al.'® conducted a three-year test-retest study on 17 healthy participants, reporting that relative power
measures exhibited reliability comparable to nonlinear measures such as HFD and DFA. The highest reliability
was observed for relative alpha power (mean ICC=0.87 across 18 channels). Although ICCs for EEG frequency
bands and nonlinear measures were comparable, the nonlinear measures demonstrated greater temporal stability
at the group level, as reflected by smaller relative differences between the two recordings. Lord & Allen'® studied
306 subjects, including controls and individuals with a history or current episode of depression, and found
high internal consistency for HFD and sample entropy within single sessions, as well as high reliability across
multiple days (ICCs for HFD ranging between 0.64 and 0.86 across different channels in eight recording sessions
conducted over four days within two weeks).

Despite these contributions, existing studies provide limited understanding of EEG temporal stability
at the individual level. Many studies employ test-retest designs with only a few EEG recordings per
participant!>26-28:30-32 while others cover short observation periods of up to two months'®**. While these studies
offer valuable insights into EEG stability, they do not consider the characteristics of individual participants.

Person-specific EEG patterns

Numerous studies have successfully distinguished between a control group and a group with mental disorders
using both linear and nonlinear EEG measures®~'2. However, although these group-level results are promising,
a measure that separates diagnostic groups may still reveal little about within-person EEG variability and thus
may not capture clinically meaningful deviations in an individual over time.
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Brain activity patterns are expected to exhibit strong individual specificity’, and EEG signals have been
suggested to function as a unique neural fingerprint*>*°, However, for EEG measures to be effective in detecting
neural changes within individuals, it is essential first to establish their normal variability in a healthy state,
as this variability is expected to differ from individual to individual. Without a clear understanding of this
baseline variability, it remains difficult to determine whether a new measurement reflects normal fluctuations
or a deviation indicative of altered brain function. Detecting such deviations assumes that EEG measures
remain relatively stable within an individual under normal conditions. At the same time, excessive fluctuations
may either lead to misinterpreting normal variability as pathological or cause true pathological changes to go
unnoticed, thereby undermining the applicability of an EEG measure.

Although interest in individualized EEG analysis is increasing, longitudinal studies examining EEG stability
at the individual level over extended periods remain limited. Previously, we conducted a single-participant
case study evaluating EEG-based individual measures over 15 sessions spanning 14 months*’. While this
study provided valuable insights into the long-term stability of linear and nonlinear measures, inter-individual
differences cannot be assessed based on a single subject. More extensive studies are needed to establish individual
variability in the healthy state by determining the extent to which EEG measures remain stable within individuals
over months or years.

The lack of longitudinal research at the individual level is a significant barrier to the clinical application
of EEG. While EEG measures may exhibit high test-retest reliability and temporal stability, their long-term
stability at the individual level remains largely unexamined. A dependable clinical measure should achieve an
optimal balance between long-term stability, ensuring consistency across repeated measurements under similar
conditions, and sensitivity to meaningful physiological changes over time. Understanding these dynamics of
EEG variability is critical for both clinical and research applications, ensuring that EEG-based measures are
applicable, interpretable, and reliable for individual-level diagnostics and monitoring.

Study objectives
The aim of this study is to examine the temporal stability of single-channel EEG measures at the individual
level over one year, based on repeated monthly recordings. While previous research has primarily addressed
short-term test-retest reliability or group-level comparisons, this study focuses on individual consistency and
variation over time in healthy adults. We assess both linear EEG measures (absolute power in theta, alpha, beta,
and gamma frequency bands) and nonlinear measures (HFD, LZC, DFA, and pMP), evaluating their person-
specific variability. Based on this framework, we formulate two hypotheses: (1) Although EEG measures differ
between individuals, they remain temporally stable within the same person over one year. (2) Nonlinear EEG
measures exhibit greater temporal stability at the individual level compared to absolute band powers.

By characterizing stable, person-specific EEG patterns and describing the typical range of variation observed
for each individual, this study aims to support the development of individualized EEG biomarkers and contribute
to future personalized monitoring approaches in mental health research.

Methods

Subjects

Nine healthy male subjects participated in the study. We restricted the sample to males to avoid menstrual-
cycle-related variability, as resting-state neural oscillations have been shown to fluctuate across cycle phases
in EEG®® and magnetoencephalography™. At the time of the first recording, participants had a mean age of
37.2+8.1 years, with an age range of 26 to 49 years. All participants self-reported as right-handed, nonsmokers,
and free of any history of concussions involving loss of consciousness, narcotic or psychotropic substance use,
alcohol abuse, or mental or psychiatric disorders.

To ensure consistency, participants were instructed to maintain their usual daily routines and refrain from
consuming alcohol or caffeinated beverages for 24 h before each recording. The study was conducted following
the Declaration of Helsinki and received formal approval from the Tallinn Medical Research Ethics Committee
and the Estonian Institute for Health Development’s Human Research Ethics Committee. All participants signed
written informed consent before the study.

Collection of EEG data

For each participant, EEG recordings were scheduled every four weeks (with flexibility for five to six weeks
in exceptional cases, such as illness or travel), resulting in a total of 12 recordings over the course of one year.
Recordings were conducted on a consistent day of the week and at the same time of day, ensuring homogeneity.
To minimize dietary influences on EEG activity, all recordings took place in the morning, with participants
instructed to abstain from eating or drinking (except water) beforehand*’.

EEG data were collected using the Neuroscan Synamps2 acquisition system and a 32-channel (30 EEG +2
EOG) Quick-Cap (Compumedics, NC, USA). Electrodes were positioned according to the extended international
10/20 system, with linked mastoids as reference. The placement of the 30 EEG electrodes is shown in Fig. 1.

During recordings, participants were lying in a relaxed supine position in a dimly lit laboratory room.
EEG was recorded for 10 min with eyes closed and 5 min with eyes open across 30 EEG channels. Electrode
impedance was maintained below 10 kQ). EEG data were recorded at a sampling rate of 1 kHz, within a frequency
range of 0.3-200 Hz.

EEG data preprocessing

All calculations were performed using MATLAB software (The MathWorks, Inc.). Initially, the eyes-closed
EEG recordings were divided into 20.48-second segments, and segments with apparent artifacts were identified
through visual inspection. Next, the full eyes closed EEG data were re-referenced using the Reference Electrode
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Fig. 1. Locations of the 30 EEG electrodes corresponding to the channels used in this study, positioned
according to the extended international 10/20 system.

Standardization Technique (REST), which is a reliable method for low-density EEG montages and facilitates
comparability across laboratories*!~*3. To remove baseline fluctuations and high-frequency noise, Parks-
McClellan forward-backward filters were applied, yielding a frequency bandwidth of 2-47 Hz for further
analysis. Absolute power in each frequency band was computed using the original sampling rate of 1 kHz, while
EEG data were downsampled to 200 Hz for nonlinear measure calculations. After filtering (and downsampling),
the EEG signals were divided into 20.48-second non-overlapping segments again, with segment lengths defined
as 20,480 samples (for absolute power calculations) and 4096 samples (for nonlinear measures). The first 12
clean segments were selected for the computation of the following EEG measures, resulting in 12 values for each
measure per subject and per recording session.

Calculation of EEG measures

Absolute power of EEG frequency bands

The absolute power P for each frequency band was calculated directly from a filtered EEG signal using a time-
domain approach. Each frequency band was first extracted using a Parks-McClellan forward-backward bandpass
filter. In this study, the absolute powers of the traditional theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (30-47 Hz) frequency bands were calculated for each subject according to
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P=L13 220, M

n
where x(i) was the filtered EEG signal segment with the length 7 (20,480 samples) at sample i.

Higuchi’s fractal dimension

HFD is used to quantify the complexity of EEG signals, providing a measure of scale invariance or self-similarity
across multiple temporal scales. The method, originally proposed by Higuchi'*, estimates the fractal dimension
within the interval [1,2] of a time series by analyzing its length at different scales. A higher HFD value indicates
greater signal complexity, while a lower value reflects more regular and predictable neural activity. The HFD was
calculated with the parameter k= 8 according to the algorithm presented in'“. For the calculation of HFD for
an EEG signal segment with the'l length n (4096 samples), a time series X" is formed for each scale factor k as in

X' =A{ax(m), x(m+k),z(m+2k), ...}, m=1,2, ..., k, 2)

where k represents the step size and m is the starting index of each subseries. The length of each subseries L, (1)
is calculated as in

Lemy = 130
The Ln nLJ term ﬁ normalizes the subseries length and ensures that the length Ly (m) is expressed

by the average number of points in the subseries and therefore comparable across all scale factors k (see* for a
step-by-step illustration). Ly (m) The mean length for each k is obtained by averaging across all subseries as in

n—m

n—1
ﬁ (©)
k

J|I (m+ik) —x(m+ (i —1)k|-

L (k)= % Z K —1Li (m). (4)

The fractal dimension is estimated by fitting a linear regression line to the logarithmic plot of L (k) versus 1/k,
where the slope of this resulting log-log line corresponds to Higuchi’s fractal dimension.

Lempel-Ziv complexity

LZC is a measure of sequence complexity, quantifying the rate at which new patterns emerge as a sequence
progresses'?. It is used to assess signal randomness and complexity, with higher LZC values indicating more
irregular and complex signals, while lower values suggest more repetitive or structured patterns. To calculate
LZG, first, EEG signal segment x(i) of length 4096 samples is binarized into B; using threshold T, which in this
study was the median of the EEG signal segment to minimize the impact of outliers. Samples below the median
get a new value of zero, others one as in

B = { 6, ’ff% S )

Second, the binary sequence is scanned from left to right to find new patterns. A new pattern is detected whenever
a substring is encountered that has not appeared previously in the sequence during left-to-right parsing. The
complexity counter C'(n) increases each time a new pattern is encountered. Finally, LZC is normalized to avoid
variations due to segment length as in

C (n)

LZCrorm = w——,
Crmaa (”) '

(6

where Cinaz (n) is the theoretical maximum complexity for a completely random sequence of length n,
approximated as n/log, (n). This normalization ensures that LZC values range between 0 (completely regular
signal) and 1 (maximally complex, random signal).

Detrended fluctuation analysis

DFA was calculated according to the method described by Peng et al.!”'%, First, the cumulative sum of the mean-
centered EEG signal segment x(i), with the length of N (4096 samples) was calculated to generate an integrated
time series as in

y(k) =D iy fa(i) -, Y]

where k gets a value from 1 to Nand Z is the arithmetic mean of the signal segment x(i). Second, the integrated
signal y(k) is divided into n equal nonoverlapping windows of a length ranging from 4 to 200 samples. In each
window #, the local trend is estimated using a least-squares linear fit ., (k), which fits the data y(k), and the
local trend is subtracted from the data. Average fluctuations are given by
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Here, K is the number of nonoverlapping windows of length n. These average fluctuations are calculated for
all window lengths. A log-log plot of F(n) versus n, reveals a linear scaling, characterized by the slope of the
line, which represents the scaling exponent a. This exponent reflects the presence and strength of long-range
temporal correlations in the signal: & = 0.5 indicates white noise (no correlation), while a > 0.5 suggests persistent
correlations.

In-phase matrix profile

The pMP method captures the self-similarity of the EEG signal by considering only the in-phase subsegments,
making it sensitive to the periodicity of alpha waves and other frequency fluctuations in the EEG signal. First,
a one-second subsegment (200 samples) was extracted from a 4096-sample EEG segment, and its Euclidean
distance to all other subsegments within the same segment was calculated, generating a distance profile (DP).
This process was then repeated for the next subsegment, continuing in a sliding window manner until a DP was
obtained for each subsegment.

From each DP, the smallest Euclidean distances corresponding to the most in-phase subsegments were
extracted. In-phase subsegments are defined as those with minimal phase shift and the highest waveform
similarity to the reference window, based on time-domain Euclidean distance. The median of these in-phase
distance values was then calculated for each DP, forming a pMP vector (pMPvec). The median was used to
ensure robustness against outliers in the signal.

Finally, the mean of the pMPvec is computed to obtain the overall pMP value for the EEG segment. This
value reflects the degree of temporal regularity and self-similarity in the signal, where lower values indicate more
consistent recurring patterns. The calculation process is explained in detail in'2.

Statistical analysis
Since we calculated 12 values for each measure for every EEG channel in each recording of each participant, we
subsequently used the median of these 12 values.

With 12 monthly recordings for nine subjects, we utilized the intraclass correlation coefficient (ICC)*** to
assess the reliability of repeated EEG measurements. ICC quantifies the proportion of total variance attributable
to differences between subjects, providing a measure of the stability and consistency of EEG measures over
time. When applied to datasets with multiple measurements per subject, ICC evaluates the degree of agreement
among repeated observations within individuals relative to overall variability. A high ICC indicates that an EEG
measure is relatively consistent within individuals across repeated sessions and shows greater variability between
individuals than within individuals. We employed a two-way mixed-effects model (average measures, absolute
agreement)*>"’ for all 30 channels, ensuring that both systematic subject differences and measurement error
were accounted for in assessing temporal stability.

ICC was calculated as in

MSr— MSg
co = MSn+ Mo MSg )
n

where MS, is the mean square for subjects (i.e., between-subject variance), MS_. is the mean square for repeated
measurements (i.e., between-measurement variance), MS,, is the mean square error, and # is the number of
subjects.

We employed the Kruskal-Wallis test (a=0.05) for data analysis*®. The Kruskal-Wallis test is a nonparametric
alternative to ANOVA to determine whether there are significant differences between three or more groups (in
this case, subjects). Unlike ANOVA, the Kruskal-Wallis test does not assume a normal distribution of the data
and is not sensitive to unequal variances. If a significant difference is detected between any of the subjects, a
post-hoc test can be conducted to determine which subjects are different from each other. In this study, we
employed the Dunn test (a=0.05) to determine how many subject pairs were statistically different from each
other®. As with 9 subjects, we had 9(9 - 1)/2 =36 unique pairwise comparisons, we used the Sidék correction®
of the probability (p) values as in

pr=1-(1-p", (10)

where m is the number of comparisons and p” is the corrected p-value.
For each participant, we calculated the annual mean and standard deviation for each measure, as well as the
maximum relative difference (D1 f), which indicates the largest deviation from the annual mean as in

rDif = |Ymes = U 00, (11)

where Va0 is the most extreme monthly measurement across the year for a given subject, and © is that subject’s
annual average.
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Results

Intraclass correlation coefficients for EEG measures

Figure 2 presents the intraclass correlation coefficients (ICCs) for EEG band powers and nonlinear measures,
while detailed ICCs for all EEG measures across all 30 channels are provided in Supplementary Table S1. Based
on the classification proposed by Koo and Li*’, we considered ICCs to indicate excellent reliability when the
lower bound (LB) of the 95% confidence interval (CI) exceeded 0.9.

Band power measures

The data in Fig. 2 demonstrate that lower-frequency EEG bands, theta and alpha, exhibited reliability classified
as excellent over one year across all 30 EEG channels. The lowest ICCs were 0.979, 95% CI [0.952, 0.994] in
P4 for theta power and 0.964, 95% CI [0.917, 0.990] in O2 for alpha power, indicating high reliability over
time. Beta power demonstrated excellent ICCs across 27 channels, with slightly lower values in three temporal
channels (TP7, T8, TP8). The lowest ICC was observed at TP8 (0.908, 95% CI [0.786, 0.975]), still indicative of
good reliability. For gamma power, ICCs were excellent in 17 channels in the center of the head but lower in 13
peripheral channels, including the prefrontal area, with the lowest ICC at FT8 (0.756, 95% CI [0.424, 0.935]).

A slight reduction in ICCs observed in a few temporal channels in the beta band, and more notably lower ICCs
across several peripheral channels in the gamma band, may be influenced by the presence of electromyographic
(EMG) activity. EMG signals, resulting from muscle contractions, are commonly associated with movements
such as swallowing, chewing, or speaking, but can also be present at a low level during resting state without overt
motion®!. Although relaxation can help minimize such activity, the spectral overlap between EMG and the beta
and gamma frequency bands complicates the effective removal of these artifacts. EMG activity typically spans
the 15-300 Hz range, with most power concentrated at the lower end®>**.

In this study, muscle artifacts related to conscious movement were excluded from the EEG recordings.
However, some low-level muscle tension, which is difficult to detect through visual inspection, may have
remained in channels positioned over the temporalis and frontalis muscles. Tonic muscle activity, referring to the
continuous low-level contraction of muscles even in a relaxed state, can contribute to subtle EEG interference.
Unlike phasic muscle activity, which is associated with voluntary movements, tonic muscle activity persists at
a baseline level and can be influenced by factors such as posture, alertness, and individual muscle tone®’. In
EEG recordings, this may appear as low-amplitude, high-frequency activity, particularly in frontal and temporal
regions where muscles like the frontalis and temporalis are located.

Nonlinear measures

All nonlinear EEG measures (HFD, LZC, DFA, and pMP) exhibited excellent reliability (ICC 95% CI LB >
0.9) across all EEG channels (Fig. 2). The lowest ICC among these measures was observed for pMP, with a
value of 0.960, 95% CI [0.908, 0.989] in the occipital channel Oz. LZC demonstrated a slightly higher ICC of
0.967, 95% CI [0.922, 0.991] in T7, while DFA and HFD showed the highest reliability with the lowest ICC of
0.986, 95% CI [0.967, 0.996] in O2 and 0.978, 95% CI [0.949, 0.994] in T7, respectively. Although pMP had
slightly lower ICCs in the occipital region, they remained within the excellent reliability range. Given that pMP
is influenced by alpha oscillations'? and alpha power is strongest in occipital areas, variability in alpha activity
may have contributed to this observation.

While beta power showed slightly reduced ICCs in only a few temporal channels, gamma power exhibited
more widespread reductions (ICC 95% CI LBs < 0.9 in 13 channels), particularly in peripheral temporal,
frontotemporal, and prefrontal areas. These reductions may, at least in part, reflect the potential influence of
residual EMG activity. Nevertheless, given the overall excellent reliability across measures, any channel may
be used for further analysis, while it may be advisable to avoid regions that are more prone to muscle-related
influences.

Individual variability of EEG measures

To investigate person-specific EEG dynamics over time, we examined the individual temporal variability of EEG
measures across one year, as presented in Fig. 3; Tables 1 and 2. The figure displays the EEG measure values
recorded throughout the year, along with the annual mean and standard deviation for the parietal channel P3.
This channel was selected as an example due to its consistent reliability in resting-state EEG, low susceptibility
to muscle artifacts, and its well-established role in reflecting stable, individual differences in neural activity,
particularly within parietal regions involved in cognitive processing®*°.

As illustrated in Fig. 3, EEG measure values for each subject fluctuate around a distinct annual mean, with
variability ranges that are specific to the individual. These subject-specific patterns give rise to clearly separable
clusters in the data, with the extent of variability differing across individuals. A Kruskal-Wallis test confirmed
that at least one of the clusters was statistically different from the others for each measure (p<1.1x107%).

Statistically significant differences were observed between 14 and 16 subject pairs out of 36 pairwise
comparisons, depending on the measure, using Dunn’s test with Sidék p-value correction. There was no
considerable difference in statistical significance between EEG band power and nonlinear measures. Specifically,
theta power differed significantly in 15 pairs, alpha power in 16 pairs, and beta and gamma power in 14 pairs.
Among nonlinear measures, significant differences were observed in 14 pairs for HFD and LZC, and in 15
pairs for DFA and pMP, out of 36 comparisons. These results indicate that, regardless of the type of measure,
individual EEG profiles are characterized by distinct annual means and specific fluctuation ranges, supporting
the idea of temporally stable neural individuality.

Compared to EEG frequency band powers, nonlinear EEG measures show relatively higher temporal stability
on the individual scale (Tables 1 and 2). Among the band power measures, theta power shows the greatest
individual fluctuation, with a single recording maximally differing from the annual mean by an average across
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Fig. 2. Intraclass correlation coefficients for EEG measures across all 30 EEG channels (1 =9), including theta,
alpha, beta, and gamma absolute powers, as well as nonlinear measures: Higuchi’s fractal dimension (HFD),
Lempel-Ziv complexity (LZC), detrended fluctuation analysis (DFA), and in-phase Matrix Profile (pMP).
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Fig. 3. Interindividual and intraindividual variability in EEG measures across one year for each subject 1-9
and the group G (n=9). Blue dots represent 12 individual monthly values; black dashes show subject-specific
annual means. Error bars for subjects 1-9 represent within-subject standard deviations. For group G, yellow
dots represent the annual mean of each subject, the black dash shows the group-level mean, and error bars
indicate the standard deviation.

all subjects of 66% (ranging from 24 to 163%, depending on the subject). This is followed by alpha power, which
maximally fluctuates by an average of 64%, with individual variation ranging from 27 to 152%. Beta and gamma
power exhibit lower variability, with average maximal deviations of 32% and 30%, respectively. Individual
maximal fluctuations range from 11 to 53% for beta power and 12-57% for gamma power.

Among nonlinear measures, DFA and LZC show the largest individual fluctuations, with average maximal
deviations of 23% and 10%, respectively (ranging from 5 to 54% for DFA and 4-22% for LZC, depending on
the subject). HFD and pMP exhibit the lowest variability, with average maximal deviations of 4% and 6%,
respectively. Individual maximal variation ranges from 2 to 8% for HFD and 0-19% for pMP.
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Theta Alpha Beta Gamma

Mean® | SD* rDif | Mean®* | SD* rDif | Mean® | SD* | rDif | Mean® | SD* | rDif
Subject 1 | 46.93 |9.48 48 55.73 9.19 27 68.97 |6.48 |20 8.69 1.18 |31
Subject 2 | 643.66 | 201.24 | 88 912.09 |196.03 |35 115.89 | 12.61 |21 8.91 0.76 | 19
Subject 3 | 62.10 25.90 120 | 110.14 | 26.05 58 61.86 10.15 | 39 5.98 0.35 | 12
Subject 4 | 396.86 |228.87 | 163 |2119.96 | 1015.02 | 98 194.81 | 45.43 | 42 10.05 1.41 |27
Subject 5 | 34.29 | 4.90 24 80.81 18.97 50 89.63 |6.07 |11 10.00 |1.39 |37
Subject 6 | 58.90 16.73 50 945.82 395.22 72 85.79 20.80 |52 12.54 2.87 | 57
Subject 7 | 88.54 |16.45 |30 517.02 | 124.77 |43 180.43 | 20.73 | 20 21.92 226 |20
Subject 8 | 44.60 | 8.49 43 245.04 | 189.06 |152 |102.30 |28.56 |53 1036 | 1.19 |18

Subject 9 | 16.96 | 2.94 27 11.26 2.41 43 2192 |4.16 |32 14.03 299 |49
Group 154.76 | 217.10 | 316 |555.32 |688.71 |282 |102.40 |55.33 |90 1139 | 4.56 |92

Table 1. Annual mean values, standard deviations, and relative maximal differences from the annual mean
(rDif, %) of theta, alpha, beta, and gamma absolute power calculated for nine subjects in channel P3 and for
the group (n=9). * Values must be multiplied by 10°® to obtain the correct magnitude in uV?.

HFD LZC DFA pMP
Mean | SD | rDif | Mean | SD | rDif | Mean | SD | rDif | Mean | SD | rDif
Subject 1 | 1.43 0.01 0.58 0.01 |4 0.71 0.02 |5 18.93 | 0.08 |1
0.43 0.01 |8 0.40 0.04 | 16 1695 | 0.38 |6
0.53 0.02 | 12 0.65 0.06 | 15 18.52 | 0.22 |2
0.43 0.05 | 19 0.23 0.05 | 52 1528 | 1.56 |19
0.62 0.02 | 4 0.60 0.03 |9 18.77 10.13 |2
0.49 0.05 | 22 0.31 0.07 | 54 16.44 | 0.86 |9
0.55 0.02 |7 0.36 0.04 | 22 17.31 | 0.69 |9
7
0

Subject2 | 1.18 | 0.01
Subject3 | 1.34 | 0.02
Subject4 | 1.18 | 0.03

Subject5 | 1.45 | 0.02
Subject 6 | 1.24 | 0.04
Subject 7 | 1.34 | 0.03

Subject 8 | 1.37 | 0.06 057 10.03 |9 0.52 | 0.10 | 30 18.37 | 0.65
Subject9 | 1.65 | 0.03 0.65 0.03 | 11 0.85 0.04 |7 19.36 | 0.05
Group 1.35 0.15 | 22 0.54 |0.08 |21 0.51 0.20 | 65 17.77 | 1.35 | 14

wmlN|alo|w|lo|a|w|n

Table 2. Annual mean values, standard deviations, and relative maximal differences from the annual mean
(rDif, %) of Higuchi’s fractal dimension (HFD), Lempel-Ziv complexity (LZC), detrended fluctuation analysis
(DFA), and in-phase matrix profile (pMP) calculated for nine subjects in channel P3 and for the group (n=9).

When examining individual subjects separately, it is evident that subject S4 shows significantly greater
variability, with an average maximal fluctuation of 53% across all measures. In contrast, subjects S1 and S5
exhibit considerably lower variability, with an average maximal fluctuation of 17%. This further emphasizes the
strong individuality in EEG measures.

As shown in Fig. 3; Tables 1 and 2, intra-individual annual variation is generally smaller than inter-individual
variation, apart from a few exceptions. Notably, in the theta frequency band, subjects S2 and S4 exhibit annual
variability comparable in magnitude to that observed between individuals. In subject S4, the variability within
the alpha band markedly exceeds inter-individual differences, while in the beta band, it is again of comparable
magnitude. For most nonlinear measures (HFD, LZC, DFA), intra-individual variation remains lower than the
variation across subjects, with no exceptions. However, in the case of pMP, subject S4 again exhibits greater
variability than the group.

Discussion

In this study, we tested whether EEG measures, while differing between individuals, remain temporally stable
within the same person across one year, and if nonlinear measures are temporally more stable at the individual
level compared to absolute band powers. For this, we investigated the reliability and long-term temporal stability
of EEG band powers and nonlinear EEG measures across 12 months in healthy individuals. Our findings largely
support the hypothesis of individual temporal stability, though some nuances remain.

A key finding of this study is the strong individual specificity of EEG measures, with each subject’s values
remaining tightly grouped within their own subject-specific range. This largely supports the concept that EEG
measures may serve as neural fingerprints — remaining principally stable within individuals while differing
significantly between them®'-3° — although some individuals exhibited fluctuations that challenge the
assumption of consistent intra-individual stability.

Regarding the reliability of EEG measures, our findings align with previous research!>3, showing that lower-
frequency bands (theta and alpha) are the most reliable across sessions. Beta power shows only slightly reduced
ICCs in a few temporal channels. Gamma power, in turn, shows a more pronounced decrease in reliability in
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several channels. Nevertheless, reliability remained high overall, with our lowest observed mean ICC being
0.935 (in the gamma band), which is substantially higher than the ICC of 0.77 for absolute power reported by
Gudmundsson et al.**. P8ld et al.'® similarly reported ICCs of 0.80 for gamma and 0.87 for alpha relative power,
which is consistent with our results. The reduced reliability in the peripheral channels in gamma and beta bands
may be explained by low-level tonic EMG activity that spectrally overlaps with these frequency ranges and is
not fully removed by standard preprocessing®'~>*. Although we aimed to obtain EEG recordings free of visible
artefacts, the potential influence of subtle tonic EMG activity, particularly in high-frequency bands, was not
directly investigated in this study. Nevertheless, it should be kept in mind when interpreting gamma and beta
activity in longitudinal analyses, especially in muscle-prone regions.

For nonlinear measures, our results also indicate higher reliability than previously reported. Gudmundsson
et al.** found an ICC of 0.70 for LZC, and P6ld et al.'® reported ICCs of 0.81 for HFD and 0.84 for DFA. In
contrast, we observed consistently excellent ICCs above 0.96 (95% CI LBs = 0.908) across all EEG channels for all
nonlinear measures. Notably, these measures showed minimal differences between channels, suggesting reduced
sensitivity to possible slight EMG input and highlighting their robustness across the spatial domain. Although
the study by Pold et al.'” assessed long-term stability over three years, the use of only two recordings per subject
may have contributed to slightly lower ICCs. Gudmundsson et al.** included 19 recordings over two months,
but the older age of participants could have increased intra-individual variability. Our study, using monthly
recordings over one year in a younger cohort, showed that nonlinear measures remained highly reliable across
all sessions, reinforcing their potential for individualized longitudinal monitoring.

While all EEG measures demonstrated excellent test-retest reliability in all or most channels, high reliability
does not necessarily equate to high temporal stability. Therefore, we separately quantified intra-individual
variation by calculating the maximum relative differences from each subject’s mean across 12 monthly recordings.
This allowed us to directly assess how much a person’s EEG measure fluctuated over time, regardless of between-
subject differences. These analyses revealed that although many participants demonstrated stable EEG patterns,
a few (most notably participant S4) exhibited fluctuations over time that were comparable to or greater than the
variability observed between individuals. Thus, EEG measures cannot universally be assumed to be temporally
stable at the individual level, even if group-level reliability appears excellent.

While methodological aspects, such as recording conditions and electrode placement, were carefully
controlled, intrinsic physiological factors still contribute to variability. Individual differences in hormonal
levels, neuroanatomy, and overall brain physiology may result in varying degrees of natural fluctuation in EEG
measures. Additionally, lifestyle factors such as sleep patterns, diet, and physical activity can subtly modulate
EEG signals, affecting their stability over time™’.

Although subject S4 was considered healthy by self-report at the time of the study, such variability may still
reflect transient changes in mental state or the early signs of psychological shifts that were not yet subjectively
perceived. Psychological states and mental health conditions are known to affect EEG patterns, as shown in
previous group studies’~'*. High levels of stress, anxiety, depression, and other mental states or psychiatric
disorders are known to alter brain activity patterns, potentially leading to deviations from typical EEG
signatures. Identifying the sources of EEG variability — whether due to intrinsic traits, temporary states, or early
pathological changes — will be critical for tailoring analysis strategies.

Equally important is the ability to estimate, in advance, the expected range of normal variability for a given
individual. Achieving this requires identifying the key individual factors that contribute to greater variability in
EEG measures in the healthy state. Such person-specific variability profiles could help distinguish between brain
disorder-related fluctuations and those indicative of normal neuropsychological changes. In future applications,
developing heuristics to detect high-variability profiles without the need for long-term tracking will enhance
efficiency and individualization. In high variability cases, alternative EEG measures or a combination of measures
for individualized baseline approaches may be required.

The second hypothesis proposed that nonlinear EEG measures would exhibit better intra-individual temporal
stability than traditional band power measures. Our results strongly support this hypothesis.

While all EEG measures demonstrated excellent test-retest reliability in channel P3, intra-individual
temporal stability in the same channel, assessed as maximum relative difference from the individual’s mean, was
substantially smaller for nonlinear measures. For instance, mean deviations across subjects for theta and alpha
power were 66% and 64%, respectively, compared to only 4% for HFD and 6% pMP.

These results are further supported by findings from P5ld et al.'®, who observed very low relative changes in
nonlinear measures at a group level in a test-retest study over three years: 0.18% for HFD and 0.49% for DFA. In
comparison, their relative band power measures showed relative changes from 0.72% up to 2.28%. The fact that
nonlinear measures in our study showed such small variability even across 12 sessions strengthens the conclusion
that they are temporally more stable than traditional band power measures. Pold et al.'® demonstrated that
nonlinear measures are not only reliable but also temporally more stable at the group level. The present study
confirms that these measures are likewise both reliable and highly temporally stable at the individual level. In
contrast, band power measures appear more vulnerable to transient fluctuations and may not provide reliable
baselines for individual monitoring.

Currentfindings highlight theimportance ofan individualized approach to EEG interpretation, moving beyond
reliance on fixed population-level norms. Rather than comparing individuals to group averages, establishing
person-specific baselines under stable conditions allows for more accurate identification of meaningful neural
changes versus natural fluctuations®®. Our results emphasize that such individualized baselining is essential for
reliable longitudinal monitoring. Notably, nonlinear EEG measures provide a particularly strong foundation for
this approach, as they exhibit greater resistance to temporal variability than traditional band power measures.
This stability makes them promising candidates for biomarkers intended to track brain function over extended
periods.
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Despite the strong temporal stability observed, the small sample size (nine male participants) limits the
generalizability of our findings. Future studies should validate these results in larger, more diverse populations
and assess how EEG stability is affected by factors such as age, sex, and individual differences in cognitive
functioning. Additionally, a clinically applicable EEG measure must balance long-term stability with sensitivity
to dynamic physiological states. Future research should explore this balance to determine which EEG measures
are most suitable for clinical applications. Since various biological and lifestyle-related factors can influence
natural variability in EEG measures, it is essential to account for individual-specific differences, even in the
absence of overt psychological stress or neurological conditions. Deviations from a healthy psychological
state and overall mental well-being are precisely the types of changes that are intended to be detected through
the establishment of a baseline for EEG variability. Even when working with self-reported healthy subjects,
future protocols should include a clinician-led screening to confirm the absence of neurological or psychiatric
conditions. Future work should also establish how segment length influences stability and sensitivity of single-
channel EEG measures. Varying window sizes will clarify the minimum duration that still yields stable resting-
state estimates, and whether longer windows narrow or widen the normative range. Finally, as all recordings
were conducted in controlled laboratory conditions, it remains unclear how real-world factors (e.g., time of
day, environmental stressors, or diet) influence EEG stability. Future studies should assess EEG reliability in
naturalistic settings to improve its applicability for longitudinal monitoring.

Conclusion

This study confirmed that EEG band power measures are highly reliable over long-term recordings and that
nonlinear measures demonstrate comparable levels of reliability. However, nonlinear measures showed greater
temporal stability across sessions, making them potentially more suitable for assessing brain state over time,
provided they also demonstrate sufficient sensitivity to meaningful neural changes. These findings support
the use of nonlinear EEG measures in individualized, longitudinal monitoring frameworks. Furthermore,
establishing personalized baselines, rather than relying on normative population averages, appears essential for
accurate interpretation of EEG data. Given the overall high reliability across EEG channels, researchers have
flexibility in channel selection, although peripheral channels may be best avoided to minimize the influence of
artifacts.

Data availability

The raw EEG data generated and analyzed during the current study are not publicly available due to data protec-
tion and ethical restrictions. However, derived data supporting the findings of this study (including computed
measures) are available from the corresponding author upon reasonable request.
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Abstract:— The current study is aimed to evaluate the effect
of COVID-19 vaccine on human EEG and the persistence of the
effect. Within a one-year-long resting EEG study period, the
healthy male subject was administered two Comirnaty doses
three weeks apart to prevent COVID-19. Fourteen recordings
were acquired from the subject in one year: twelve reference and
two post-vaccination recordings after administrating the second
dose of Comirnaty. The changes in absolute powers of EEG
frequency bands, EEG spectral asymmetry index (SASI), and
Higuchi’s fractal dimension (HFD) were analyzed. The results
indicated a statistically significant increase in absolute gamma
power, SASI and HFD values on the fifth day after the
vaccination, while the EEG had restored its normal character on
the twelfth day after vaccination. These measures seem to have
higher sensitivity for the detection of the effects of the vaccine

Clinical Relevance — This is the first study evaluating COVID-
19 vaccine effect on healthy human EEG. The study indicated
that the vaccine disturbs EEG, but the impact is not long-lasting.

1. INTRODUCTION

COVID-19, caused by a severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has become a worldwide
pandemic illness. In addition to respiratory system disorders,
a significant part (36.4%) of COVID-19 patients had acute
neurological expressions [1]. Acute neurological syndromes
can be caused by a viral infection of the brain or by disease-
related hypoxia and inflammation.

Today, the potential effects of COVID-19 on the central
nervous system are put forward, but we do not have the
information if and how COVID-19 vaccines affect the brain.
Some studies have been conducted to analyze neurological
complications by COVID-19 vaccines [2], [3]. However, the
complications are rare and not always directly associated with
vaccination. Still, to the best of our knowledge, the before-and-
after study of the effects of COVID-19 vaccines on the healthy
brain has not been performed.

Vaccines introduce antigens to our immune system,
followed by our body’s immune response that later helps to
identify the pathogens when infected and counteract the
invaders more effectively. COVID-19 vaccines have mild side
effects similar to those seen with COVID-19, including
neurological symptoms such as headaches and fatigue [1], [4],
[5]. On the other hand, the brain can also be affected by stress
caused by the vaccines’ side effects. Stress can also affect the
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Information Technologies, Tallinn University of Technology, Ehitajate Road
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central nervous system and cause alterations in the brain's
physiology.

Brain bioelectrical activity can be measured by
electroencephalography (EEG) — a non-invasive and cost-
effective method used to detect changes in brain function.
Several EEG measures have shown changes during stressful
situations. Studies using different tests of stress, theta and
alpha band power indicated a decrease [6], [7], while in higher
frequency rhythms, like beta and gamma, an increase was
detected [7], [8]. The spectral asymmetry index (SASI),
characterizing the balance between EEG higher and lower
band powers, has been shown effective to detect the effect of
different stressors: a physical stressor, microwave radiation
[9], a chemical stressor, coffee intake [10], and occupational
stress [8]. In addition, SASI distinguished between major
depressive disorder and healthy groups [11], [12]. Still, not all
information can be collected by linear methods; the nonlinear
Higuchi’s fractal dimension (HFD) describes the EEG signal's
self-similarity and characterizes the signal’s complexity. It has
been shown that the complexity of the EEG signal raises in the
case of depression and under stress conditions [8], [11].

Although the EEG measures can be considered as stable
markers [13], [14], each EEG measure has a normal variability
which is in turn individual [15] and usually unknown. We
hypothesize that in the conditions of the impact by vaccine or
increased stress due to the immunization, the EEG will be
disturbed compared to the normal state. Thus, to evaluate the
effects of a stressor, we need to know the subject’s normal
variability of the EEG measures of interest. The EEG and the
sensitivity to vaccination are individual; therefore, a more
detailed study on a single subject would provide clearer
preliminary results on the effects of the vaccine.

The present study aims to investigate the effects of the
COVID-19 vaccine on the central nervous system and the
durability of the effect. For this purpose, the normal variability
of the EEG measures, including spectral band power, SASI,
and HFD, for a selected subject were evaluated over a year.
The alterations in the measures after administration of
Comirnaty (BioNTech Manufacturing GmbH) second dose
were compared to the average levels of variability of the
measures in normal conditions.
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II. METHODS

A. Subject

The EEG data were repeatedly recorded from a healthy
right-handed 49(50)-year-old male. The subject had no history
of mental disorders or head traumas. He was a nonsmoker, did
not consume narcotic or psychotropic substances. The study
was conducted following the Declaration of Helsinki and was
formally approved by the Research Ethics Committee of the
National Institute for Health Development. Participation in the
study was voluntary and the subject signed written informed
consent.

B. Comirnaty Administration and Side Effects

During the one-year-long study period, the subject got two
Comirnaty injections three weeks apart. Comirnaty contains a
molecule called messenger RNA (mRNA) with instructions
for producing a spike protein from SARS-CoV-2, the virus
that causes COVID-19. After the first Comirnaty injection,
the side effects were limited to pain at the injection site and
left upper limb where the injection was administered and
lasted for a few days. After the second injection, the side
effects were pain in the left upper limb, headache, muscle
aches, tiredness, fever, and fogginess. Fogginess lasted for
about a week, with other side effects resolved by the fourth
day after vaccination.

C. Collection of EEG Data

Fourteen recordings were acquired from the subject in one
year: twelve reference (rl-rl12) and two post-vaccination
recordings after the second Comirnaty administration (p1, p2).
The intervals between recordings were usually four weeks,
except for post-vaccination recordings (5 and 12 days after
vaccination), which were deliberately shorter. The interval
between the first dose of vaccine and the subsequent EEG
recording was 19 days. Due to the extensive time interval, we
treated the corresponding recording (r7) as a reference
recording.

To minimize the impact of the environment and the impact
of the subject's activities on the EEG data, we used a routine
where all recordings were acquired on the same day of the
week and at the same time (Wednesday 7:30). The subject was
instructed to abstain from alcohol and simulating drinks
(coffee, tea, energy drinks, etc.) 24 hours before recording.
The subject came to the recording without eating or drinking
(excluding water) to avoid the effect of different breakfasts on
the EEG. After arriving at the research laboratory, the subject
completed the health data form and mental health
questionnaires before each recording. The EEG data were
recorded using Neuroscan Synamps2 acquisition system and a
32 channel Quick-Cap (Compumedics, NC, USA) with a
sampling rate of 1000 Hz. EEG electrodes were positioned
according to the extended international 10/20 system with
linked mastoids as reference. The subject was lying in a
relaxed supine position in a dimly lit laboratory room during
the recording procedure. Ten minutes of eyes-closed and five
minutes of eyes-open EEG data were acquired in 30 channels
and vertical and horizontal electrooculograms to monitor eye
movements in two channels. The impedance of EEG
electrodes was kept below ten kQ to achieve good
conductivity between the skin and the electrode.

D. EEG Data Preprocessing

The data were processed using MATLAB software (The
Mathworks, Inc.). EEG data were re-referenced using the
reference electrode standardization technique (REST) [16].
Previous studies have shown that the REST reference is
suitable for low-density EEG montage and is a good reference
technique for comparing the results across laboratories [17],
[18]. Parks-McClellan low and high-pass forward-backward
filters were applied to the EEG signals to remove baseline
fluctuations and high-frequency noise; frequency bandwidth
of 2 to 47 Hz remained for further processing. The first 3
minutes from each recording were used for the following
processing and were divided into nine nonoverlapping 20.48-
second long segments. According to [19], stress affects the
brain's (pre)frontal region the most; therefore, channel Fz was
chosen for further processing and analysis. Next, theta, alpha,
beta, gamma frequency band powers, SASI, and HFD values
were calculated for all nine segments and a median value over
those segments was found.

E. Frequency Band Power

We decomposed EEG data into classical frequency bands,
such as theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and
gamma (30-47 Hz) frequency bands. Each frequency band was
first obtained using high and low pass Parks-McClellan
forward-backward filter. The bandwidth power P for the
filtered signal S with the length N was calculated as in

P = XL S (O]
F. Spectral Asymmetry Index

First, power spectrum density was estimated by means of
Welch's averaged periodogram method (Hanning window
with the length of 1024 samples, 50% overlap). Next, powers
for predefined lower frequency band Piow (4 to 7 Hz) and
higher Phign frequency band (14 to 38 Hz) were calculated as
described in [11], [12] and SASI was calculated as in

SASI = Phigh = Plow @)

Phigh + Plow’
G. Higuchi’s Fractal Dimension

Fractal dimension is a very sensitive nonlinear method for
finding information about the physiological signal. Fractal
dimension estimate HFD is a fast method calculated in the
time domain, which does not need long signal segments. HFD
is based on a measure of length (k) of the curve that represents
the considered time series while using a segment of k£ samples
as a unit if L(k) scales like L(k) ~ k™. To calculate HFD, the
EEG data were first downsampled to 200 Hz and the value of
fractal dimension FD with a parameter k,.,=8 was calculated
according to the algorithm presented by Higuchi [20].

H. Statistics

We used two-sample t-test to control the hypothesis that
EEG measures’ values from post-vaccination recordings
come from the same distribution as the reference recordings.
The initial significance level was chosen a = 0.05. As we had
six different measures, we conducted statistical tests multiple
times (6), therefore p-values were adjusted applying modified
Bonferroni correction.



III. RESULTS

The main results of this study are presented in Fig. 1 and
Table I. Theta, alpha, beta, and gamma frequency band
absolute powers, SASI, and HFD values for each recording in
channel Fz are presented in Fig.1. The mean and standard
deviation values over 12 reference recordings, i.e., regular
variation, are presented in Table I and shown with straight and
dashed lines, respectively, in Fig.1. There is more or less
change in all frequency bands except beta in the first post-
vaccine recording. The absolute power in the theta and alpha
frequency band are somewhat lower after vaccination, being
more noticeable in the alpha band. After vaccination, a
statistically significant change can be seen in the gamma band
power (Bonferroni corrected p<0.0084). SASI measure value
also reveals a statistically significant change after vaccination
being noticeably higher than in reference recordings
(Bonferroni corrected p<0.0125). HFD also shows a
statistically significant increase in complexity (Bonferroni
corrected p<0.01). Five days after vaccination, there is a
significant change in spectral power/ power asymmetry
(gamma band, SASI) and in the signal complexity. However,
it can be seen that a week later, on the twelfth day after
vaccination, there is no longer any significant deviation in the
bands’ powers, asymmetry, or fractal dimension, and the
values are again in the normal range.

IV. DISCUSSION

Deviation of EEG measure values outside the usual range
could characterize an effect of a prominent stressor. After the
vaccination, the subject in this study experienced mild but still
disturbing side effects from Comirnaty, such as fever,
headache, and fogginess. Although fogginess had almost
entirely resolved by day five, the changes in EEG measures
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TABLE L SUBJECT'S USUAL EEG MEASURE VALUES AND VALUES
AFTER ADMINISTRATING COMIRNATY (BIONTECH MANUFACTURING
GMBH) VACCINE IN CHANNEL Fz

Measure Mean* SD . ;:;:’_V ‘im ll,i;tifl‘:‘;s .
Theta power® (10°) 3.03 0,86 1.63 3.79
Alpha power (10°) 1.00 0.20 . 0.47 1.14
Beta power (10°) 1.38 0.15 1.32 1.29
Gamma power (10%) | 7.32 0.75 10.81* 6.27
SASI 0.034 0.055 0.214* 0.041
HFD 1.194 0.027 . 1.288%* 1.170
a. Mean and standard deviation are calculaled‘ovgr 12 F.I%G ref»ere:\ce recorr;l?ngs,
b Power za]uc\; are pr::mcd inpVv2.

* Statistically significant difference after applying modified Bonferroni correction

were still strongly evident. Therefore, the alterations in EEG
were related rather to the effect of vaccine than to the stress
related to side effects.

The subject had somewhat decreased theta and alpha
rhythm powers, which is consistent with the results of [6], [7],
where responses to acute stress had a similar effect. However,
the difference was not statistically significant after Bonferroni
correction. There was no change from the usual absolute
power deviation in the beta band. Still, it is possible that if
lower and higher frequency beta bands had been used
separately, a significant change would have been revealed. The
relative power of the gamma band is often used to assess stress
[8], an increase in the absolute gamma power is also evident
in this study. SASI, combining besides beta and theta, also a
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Figure 1. Results of the absolute powers of the EEG theta, alpha, beta, gamma frequency band, spectral asymmetry index, and Higuchi’s fractal
dimension during one year for one subject. Asterisks indicate reference recordings (r1-r12) that were acquired four weeks apart on regular basis.
The dots (pl, p2) show the values on the fifth and twelfth days after vaccination with Comirnaty COVID-19 vaccine. Straight and dashed lines
represent the mean and standard deviation values of the twelve reference recordings.



part of gamma band, noteworthy highlighted the increase in its
value. In the previous studies, SASI has been shown to be able
to highlight the effects of different stressors [8], [9], [10], [11],
[12]. The current results are consistent with the results reported
in the studies cited above. Therefore, vaccines might be
considered a biological stressor to the central nervous system.

Twelve days after vaccination, all EEG measure values
have returned to their normal range, indicating a temporary
effect. Unfortunately, this study does not answer whether the
impact on the EEG is directly due to the reaction caused by the
vaccine or the discomfort caused by the symptoms.

The present study illustrates that EEG absolute gamma
power, SASI, and HFD are the methods of sufficient
sensitivity to detect the changes in brain physiology related to
vaccination.

Although the study presents changes in only one person,
those are consistent with the results of previous studies on
stress and stressors. Thus, temporary abnormalities in EEG
signals after vaccination may occur to a greater or lesser extent
also in other persons.

V. CONCLUSION

The results of this preliminary study performed on a single
subject indicated clearly that the COVID-19 vaccine caused a
response in the brain detectable by the EEG measures. The
statistically significant increases in the EEG absolute gamma
power, spectral asymmetry index, and Higuchi’s fractal
dimension illustrated the high sensitivity of these measures to
detect the effects caused by the vaccine. The impact of the
vaccine was short-term; by the twelfth day after the
vaccination, the brain had restored normal activity and the
EEG measures were back to their normal levels. Further
investigation on larger numbers of subjects is needed to
support the conclusions.
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