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Introduction 
Mental health disorders are widespread and impose a substantial societal burden. 
Recent assessments estimate that more than a billion individuals are affected globally, 
with anxiety and depressive disorders among the most prevalent conditions, and 
with additional increases linked to the COVID-19 pandemic (Ettman et al., 2025; 
WHO, 2025). Diagnosis and follow-up still rely primarily on clinical interviews and 
self-report questionnaires, which generate variable outcomes and can contribute to 
misclassification and treatment gaps in routine care (Patel et al., 2018). These realities 
motivate the use of measures derived from electroencephalographic signals, providing 
an objective complement to traditional clinical evaluations. 

Electroencephalography (EEG) offers an objective window into brain dynamics, 
characterized by high temporal resolution, relatively low cost, and portability. EEG is 
an electrophysiological technique that records the brain’s electrical activity using 
electrodes placed on the scalp (Buzsáki, 2006). Small but substantial alterations in 
resting-state EEG have been linked at the group level to several psychiatric conditions, 
e.g., major depressive disorder (MDD), generalized anxiety disorder (GAD), attention-
deficit/hyperactivity disorder (ADHD), schizophrenia, and stress-related disorders
(Hinrikus et al., 2009; Ahmadlou et al., 2012; Arns et al., 2013; Bachmann et al., 2013,
2018; Mumtaz et al., 2015; Kesić & Spasić, 2016; Moran et al., 2019; Newson &
Thiagarajan, 2019; Wang et al., 2025). Despite success in research settings, EEG measures
have not transitioned into routine clinical practice for detecting or monitoring common
psychiatric disorders because the evidence base is limited to group-level findings (and
not always fully consistent across studies).

Two practical obstacles hinder transition. First, the wide selection of EEG measures is 
unorganized: diverse measures are selected and parameterized in ad hoc ways, such that 
similar clinical questions are addressed with different feature sets that yield variable 
results. The mutual relationships between these measures—how much complementary 
versus overlapping information they express—are unknown, which compromises 
comparability of findings, complicates interpretation, and slows clinical transition. 
To ensure consistent findings across studies and to enable progress toward clinical 
implementation, complementary, cross-site, and comparable measures are required. 
Although multimeasure combinations have been demonstrated to improve classification 
(Hosseinifard et al., 2013; Bachmann et al., 2018; Čukić, Stokić, Simić, et al., 
2020), a systematic assessment of inter-measure correlations—and, by extension, 
the informational independence across measures—has not been previously performed.  

As a second obstacle, there is dispersion across individuals, characterized by 
substantial inter-individual (between-person) differences in EEG measure values that can 
overshadow intra-individual (within-person) changes. Crucially, strong group-level 
effects do not automatically yield individual-level utility; a measure can successfully 
separate clinical and healthy groups yet fail to assign an individual to either the clinical 
or control group with sufficient accuracy because of individual-level differences in EEG 
(Lopez et al., 2023). However, this dispersion has rarely been examined directly; instead, 
most available evidence comes from test–retest reliability studies of specific measures. 
Prior literature emphasizes the group-level reliability of EEG band powers (Gasser et al., 
1985; Kondacs & Szabó, 1999; Ip et al., 2018; Tenke et al., 2018) and provides mixed 
evidence for nonlinear measures (Gudmundsson et al., 2007; Põld et al., 2021). Higher 
reliability is evidenced when an individual’s test–retest measurements are more similar 
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to their own subsequent recordings than to those of others, indicating inter-individual 
differentiation alongside temporal stability. Although many factors are known to affect 
EEG (Hoffman & Polich, 1998; Brötzner et al., 2014; Höller et al., 2022), the extent of its 
individual-level stability remains unclear, as the temporal stability of EEG measures at 
the individual level has been scarcely examined (Põld et al., 2023). It is therefore essential 
to quantify intra-individual EEG stability by characterizing the expected fluctuation 
ranges of EEG measures through a dedicated longitudinal design, which enables 
individualized, baseline-referenced decisions.   

As the temporal stability of EEG measures at the individual level (normative intra-
individual range) and their inter-measure relationships (e.g., correlation structure) have 
not been systematically characterized, the baseline variability against which to judge 
individual change and the degree of overlap or complementarity among measures 
remain unknown. For individualized monitoring, measures must be stable under steady 
conditions yet responsive to clinically meaningful physiological perturbations across time 
scales. Although numerous group-level studies demonstrate case–control differences in 
EEG under altered brain states, there is little and, to date, no systematic evidence 
assessing whether a single individual’s state changes register as deviations from that 
person’s own baseline. This motivates the search for EEG-based brain-state measures 
that are stable over time, sensitive to clinically relevant change, and robust in practical 
deployment for individualized monitoring. Accordingly, the central goal of this thesis is 
to guide the selection of EEG measures for individualized monitoring. 

The thesis is based on four publications, which together support the thesis goal. 
Publication I addresses the diversity of measures by systematically mapping inter-
relationships among widely used measures in healthy adults to assess overlap and guide 
the selection of complementary measures. More broadly, commonly used EEG measures 
in psychiatric research primarily index spectral power, generic nonlinear complexity, 
or connectivity, and thus do not directly capture the temporal self-similarity of waveform 
patterns. Yet converging evidence suggests that psychiatric disorders are characterized 
by abnormalities in neural synchrony and the temporal organization of oscillatory 
activity, particularly in alpha and gamma bands (Uhlhaas & Singer, 2006; Başar & 
Güntekin, 2013; Tsai et al., 2023; Han et al., 2025), indicating that the stability of ongoing 
rhythms may be clinically relevant. Therefore, Publication II introduces the in-phase 
matrix profile (pMP) as such a temporal self-similarity measure with reduced amplitude 
dependence and benchmarks it against a widely used nonlinear measure in MDD to test 
whether waveform stability better captures case–control differences than generic 
complexity. Publication III evaluates temporal stability at the individual level over one 
year by quantifying intra-individual variability in linear and nonlinear single-channel 
measures, while providing insight into inter-individual dispersion by describing personal 
baselines. Publication IV demonstrates intra-individual sensitivity to a controlled 
perturbation using a dense single-participant design around mRNA vaccination to test 
whether selected measures register transient deviations against a well-characterized 
personal baseline. This provides an explicit stress-test of sensitivity, grounded in prior 
evidence that stressors modulate EEG rhythms (Al-Shargie et al., 2016; Minguillon et al., 
2016; Schlink et al., 2017; Põld et al., 2018). 
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Aim of the Thesis 
The overall aim of this thesis is to guide the selection of EEG measures for individualized 
longitudinal monitoring. This overall aim is pursued through four specific aims: 

1. Describe interrelationships among common resting-state EEG measures to
assess complementarity and guide compact, informative measure selection
(Publication I).

2. Develop and evaluate a new single-channel EEG measure of waveform stability
and compare its performance with an established reference measure in
distinguishing depression-related differences (Publication II).

3. Characterize long-term intra-individual temporal variability and inter-individual
differences in single-channel EEG measures, to determine whether they can
provide stable baselines for monitoring (Publication III).

4. Verify whether EEG measures are sensitive to controlled perturbations in brain
physiology within an individual, thereby testing their suitability for detecting
meaningful intra-individual neurophysiological changes captured by EEG
measures over time (Publication IV).
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Abbreviations 
Explanations of abbreviations used in the thesis. 

ABP alpha band power 
ADHD attention-deficit/hyperactivity disorder 
BBP beta band power 
CI confidence interval 
DFA detrended fluctuation analysis 
DP distance profile 
E effectiveness index 
EC eyes closed (recording condition) 
EEG electroencephalography 
EST-Q Emotional State Questionnaire 
GAD generalized anxiety disorder 
GBP gamma band power 
HAM-D Hamilton Depression Rating Scale 
HFD Higuchi’s fractal dimension 
ImC imaginary coherence 
ICC intraclass correlation coefficient 
LZC Lempel-Ziv complexity 
LB lower bound (of CI) 
MDD major depressive disorder 
MI mutual information 
MP matrix profile 
MSC magnitude-squared coherence 
OCD obsessive-compulsive disorder 
pMP in-phase matrix profile 
PTSD post-traumatic stress disorder 
rDif maximum relative difference from annual mean 
REST reference electrode standardization technique 
SASI spectral asymmetry index 
SL synchronization likelihood 
TBP theta band power 
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1 Toward Robust, Stable, and Sensitive Individualized 
Measures of Resting-State EEG 
A mental disorder is a clinically significant disturbance in cognition, emotion regulation, 
or behavior that causes distress or impairs daily functioning. Mental disorders are highly 
prevalent and socially consequential: in 2021, an estimated 1.1 billion people worldwide, 
about one in seven, were living with a mental disorder, with anxiety and depressive 
disorders most common (WHO, 2025). During 2020, COVID-19 pandemic modeling 
indicated global increases of 28% in major depressive disorder and 26% in anxiety 
disorders (Santomauro et al., 2021; WHO, 2022). These conditions are leading causes of 
disability, accounting for 14.6% of all years lived with disability worldwide in 2019 
(Ferrari et al., 2022). People with severe mental disorders also face substantial 
premature mortality, dying on average 10–20 years earlier than the general population 
(Walker et al., 2015). Beyond health, the societal burden is large and sustained: 
depression and anxiety alone are associated with 12 billion lost workdays annually, 
costing the global economy about US$1 trillion each year (WHO, 2024). Major treatment 
gaps persist, particularly in low-resource settings, with national surveys from India and 
China showing that over 80% of people with any mental or substance use disorder did 
not seek care, and with minimally adequate treatment for depression reaching about 
one in five in high-income countries but only one in 27 in low- and middle-income 
countries, aggravating impacts on education, employment, families, and community 
participation (Patel et al., 2018; WHO, 2025). 

Key challenges persist in mental healthcare: limited availability of specialists and 
persistent social stigma, and the inherently subjective nature of diagnosis and treatment 
planning, which rely primarily on clinician judgment and self-report questionnaires. 
There is a need for objective, scalable methods that complement clinical evaluation by 
supporting the assessment of mental health status, identifying the need for intervention, 
and quantifying treatment effectiveness. Against this backdrop, electrophysiological 
methods that directly capture neuronal field activity are prospective tools for 
objective assessment and monitoring. Among these, EEG is often the most practical 
option for ongoing monitoring because it couples very high temporal resolution with 
affordability, portability, and feasibility for repeated, longitudinal assessments in clinics, 
research facilities, and naturalistic settings (Buzsáki et al., 2012). Compared with 
magnetoencephalography (MEG), which shares exquisite temporal resolution but 
requires costly, shielded environments, EEG is substantially easier to deploy (Baillet, 
2017); invasive intracranial EEG offers exceptional spatiotemporal precision but is 
reserved for narrow clinical indications (Parvizi & Kastner, 2018). 

Historically, EEG has been central to the study of human brain function for nearly a 
century, beginning with Hans Berger’s recordings in the 1920s that revealed the alpha 
rhythm, an oscillation around 10 Hz prominent during relaxed wakefulness with eyes 
closed (Berger, 1929). Early EEG interpretation relied on visual inspection, with alpha 
suppression upon eye opening (alpha blocking) recognized as one of neuroscience’s first 
robust physiological observations (Niedermeyer & Lopes da Silva, 2005). Since then, 
alpha activity has served both as a hallmark of typical brain function and as a clinical 
research target. However, several EEG measures have been introduced to date, each 
characterizing EEG from a different perspective. 
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1.1 Linear Measures 
Traditional EEG analysis relies on spectral band power measures, which provide essential 
insights into brain dynamics by quantifying neural oscillations across different frequency 
bands. EEG frequency bands are linked to distinct cognitive and physiological processes, 
with delta (<4 Hz) associated with deep sleep, theta (4–8 Hz) with memory and 
drowsiness, alpha (8–13 Hz) with relaxation and attentional control, beta (13–30 Hz) 
with active thinking and motor planning, and gamma (>30 Hz) with higher-order 
cognitive functions such as perception and consciousness (Sörnmo & Laguna, 2005; 
Buzsáki, 2006).  

Band power differences are frequently reported in psychiatric disorders.  The review 
of 184 studies has demonstrated that differences in EEG frequency band powers are 
evident for many psychiatric disorders, including MDD, ADHD, autism, addiction, 
bipolar disorder, anxiety, panic disorder, post-traumatic stress disorder (PTSD), 
obsessive-compulsive disorder (OCD), and schizophrenia (Newson & Thiagarajan, 2019). 
Generally, a dominant pattern in MDD and alcohol addiction is an increase in absolute 
theta (TBP) and beta band power (BBP) (Knott et al., 2001; Newson & Thiagarajan, 2019) 
and a decrease in the alpha band power (ABP) in MDD (Wolff et al., 2019). 
In schizophrenia, OCD, and ADHD, a common finding is a slowing of the EEG: increased 
power in slow waves (delta, theta), accompanied by reduced power in the faster alpha 
band (Newson & Thiagarajan, 2019). In GAD, heightened beta band activity has been 
reported (Wang et al., 2025). As can be seen, power changes within specific frequency 
bands are not unique to one disorder but show overlap across disorders as well as 
variability within disorders, highlighting that spectral power shifts are a sensitive but not 
highly specific measure of psychopathology (Newson & Thiagarajan, 2019).  

The alpha band is arguably the most intensively studied frequency band, owing to 
its prominent resting-state amplitude, ease of detection, and long research history. 
Beyond power, alpha has been examined for power-independent characteristics, 
most notably individual alpha peak frequency and spatial topography. Earlier reports 
supported the diagnostic value of frontal alpha asymmetry for depression (Knott et al., 
2001; Thibodeau et al., 2006); however, its robustness has since been questioned 
by meta-analyses (van der Vinne et al., 2017; Kaiser et al., 2018). Earlier work reported 
a higher overall oscillatory frequency in depression, whereas peak frequency in a 
specific frequency band did not yield consistent group differences (Knott et al., 
2001). More recent evidence indicates the opposite trend for the alpha band: 
Wolff et al. (2019) reported lower peak frequency in MDD. Taken together, the alpha 
band carries important information, but results have been somewhat contradictory, 
likely due to differences in methodological choices and analytic approaches across 
studies.  

Combining band powers into ratios can sharpen group differences; for example, 
children with ADHD often show an elevated theta/beta power ratio; however, 
meta-analyses indicate only a moderate effect with substantial between-study 
heterogeneity and strong age dependence (Arns et al., 2013; Newson & Thiagarajan, 
2019). An additional combining method is the spectral asymmetry index (SASI), 
which captures the balance between higher- and lower-frequency power excluding 
the alpha band. SASI has differentiated patients with MDD from controls (Hinrikus et al., 
2009; Bachmann et al., 2013, 2018) and has been sensitive to diverse stressors (Suhhova 
et al., 2011; Saifudinova et al., 2015; Põld et al., 2018).  
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Given the limited specificity of linear measures, especially band powers, they are 
rarely sufficient for diagnosing or monitoring mental health on their own. Demonstrated 
group effects often coexist with cross-disorder overlap and pipeline sensitivity; therefore, 
linear measures are best used in conjunction with complementary measures, rather than 
as standalone decision variables.  

1.2 Nonlinear Measures 
EEG signals are complex, stochastic, nonstationary, and nonlinear; accordingly, the wide 
variety of measures for studying brain activity is diverse and extends well beyond 
linear spectral measures. Consequently, many nonlinear measures from dynamical 
systems, information theory, and fractal analysis have been adopted in EEG research. 
Complexity-oriented, nonlinear measures quantify self-similarity, irregularity, and 
long-range temporal dependencies, capturing aspects of EEG dynamics that linear 
approaches miss. Such measures often reveal subtler differences between healthy and 
psychiatric groups, providing complementary diagnostic information. These characteristics 
make nonlinear measures promising for sensitivity, but their translational value hinges 
on robustness to analysis choices. 

Fractal dimension quantifies the scale-dependent irregularity (fractal complexity) of 
an EEG signal. Higuchi’s fractal dimension (HFD) is among the most widely used 
estimators because it operates directly on the time series and is computationally efficient 
(Higuchi, 1988). In addition, across several psychiatric disorders, including MDD, 
schizophrenia, and autism spectrum disorder, HFD has demonstrated moderate 
discrimination between groups (Ahmadlou et al., 2012; Hosseinifard et al., 2013; Kesić & 
Spasić, 2016; Bachmann et al., 2018). In MDD, HFD is often elevated relative to healthy 
controls (Bachmann et al., 2013; Akar et al., 2015a; Čukić, Stokić, Radenković, et al., 
2020). In schizophrenia, effects are regionally specific, with increases in HFD reported 
over temporal and occipital regions and reductions over frontal regions, and age- and 
symptom-nature-dependent (Fernández et al., 2013; Kesić & Spasić, 2016). While widely 
applied and promising for psychiatric evaluation, HFD is sensitive to noise and thus 
benefits from careful preprocessing (Accardo et al., 1997). This noise susceptibility raises 
the risk that preprocessing choices confound longitudinal comparisons, which must be 
controlled for individualized monitoring. 

Detrended fluctuation analysis (DFA) is a nonlinear method for quantifying long-range 
temporal correlations in time series data. Initially developed for DNA sequences and 
heart-rate dynamics (Peng et al., 1994, 1995), DFA is now also used in neuroscience, 
especially in EEG, to estimate a scaling exponent (α) that indexes fractal-like temporal 
structure. DFA has shown successful discrimination between MDD and controls (Mumtaz 
et al., 2015; Bachmann et al., 2018) while showing higher α for MDD and a linear 
correlation with the severity (Lee et al., 2007). DFA has also distinguished individuals with 
schizophrenia from healthy controls in the beta band (Moran et al., 2019). However, 
choices such as scale ranges and detrending order introduce analyst degrees of freedom 
that complicate reproducibility and cross-site synthesis. 

Lempel-Ziv complexity (LZC) quantifies the emergence of new patterns in a sequence 
(Lempel & Ziv, 1976). In EEG, LZC is now a staple complexity measure; it has been 
reported to decrease during mental arithmetic relative to rest and to be elevated in 
psychiatric cohorts, including MDD and schizophrenia (Y. Li et al., 2008). In MDD, higher 
LZC is observed particularly in frontal and parietal regions and can increase during music 
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listening, whereas in the healthy cohort, LZC tends to decline from baseline during music 
exposure, consistent with relaxation (Akar et al., 2015b). Binarization rules substantially 
affect LZC estimates, emphasizing the need for standardized pipelines when comparing 
individuals over time. 

Collectively, nonlinear measures can provide complementary information and 
sometimes stronger group-level effects than linear measures, and show somewhat 
topographical specificity in some studies, depending on the measure. However, many 
nonlinear measures require user-set analysis choices (e.g., windowing, scales) that can 
influence results and complicate reproducibility and cross-site comparability. Though 
nonlinear measures enrich sensitivity, typical parameter dependence is a liability for 
robust deployment. This motivates the development of an easily deployable measure 
that does not require user-defined parameter tuning, enhancing reproducibility through 
robustness.  

1.3 Connectivity Measures 
Connectivity measures quantify coordinated activity across brain regions by estimating 
dependencies between channels (Fingelkurts et al., 2007; Leuchter et al., 2012; Olbrich 
et al., 2014; Y. Li et al., 2016). Within the functional connectivity family, different 
measures emphasize complementary facets: magnitude-squared coherence (MSC) 
summarizes linear frequency-specific coupling but can be inflated by zero-lag effects and 
reference choices (Srinivasan et al., 2007); imaginary coherence (ImC) retains only 
nonzero-phase-lag interactions, reducing volume conduction artifacts (Nolte et al., 
2004); synchronization likelihood (SL) captures generalized (linear + nonlinear) 
synchronization (Stam & van Dijk, 2002); and mutual information (MI) indexes shared 
information irrespective of linearity, with symbolic/weighted variants improving 
robustness (Imperatori et al., 2019). These measures extend beyond local activity to 
capture network-level coordination implicated in psychopathology. 

In MDD, many studies report altered connectivity, often increased alpha/theta 
coherence (Fingelkurts et al., 2007; Leuchter et al., 2012; Y. Li et al., 2016), while others 
show decreases in graph-level organization (Chen et al., 2024)—illustrating directional 
heterogeneity across pipelines and measures. Phase-sensitive/lagged measures (e.g., 
ImC, SL) demonstrate discriminative value and treatment sensitivity (Olbrich et al., 2014; 
Sun et al., 2019). Beyond MDD, convergent dysconnectivity has also been observed in 
schizophrenia (Na et al., 2002; Kam et al., 2013; A. Ibáñez-Molina et al., 2024; Domingos 
et al., 2025), bipolar disorder (Kam et al., 2013; Kim et al., 2013), ADHD (Furlong et al., 
2021), anxiety disorders (Liu et al., 2024), OCD (Perera et al., 2024), and PTSD (Q. Li et al., 
2022). However, the direction and locations vary by band and measure. Such heterogeneity 
indicates that connectivity effects are sensitive to band selection, referencing, and 
graph-building choices, thereby hindering reproducibility. 

Crucially, choices of reference, montage, windowing, filtering, and artifact handling 
can shift estimates, with consequences for comparability across sites and settings (Bonita 
et al., 2014). Connectivity measures complement single-channel measures by indexing 
large-scale coordination. Still, their pipeline sensitivity suggests the need for careful 
complementarity mapping and prioritizing robust, tuning-minimal measures when aiming 
for individual-level monitoring.  

The mixed and measure-dependent picture raises a key question: how do strong 
group-level results translate into decisions about individual cases? Beyond understanding 
which EEG measures can discriminate between clinical groups, it is equally important to 
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examine how consistent these measures remain within individuals over time and how 
sensitively they reflect dynamic brain-state changes. These aspects—stability and 
sensitivity—are reviewed in the following sections. 

1.4 From Strong Group-Level Effects to Individual Decisions 
Despite the wide range of EEG measures introduced above, only one measure has been 
approved for routine clinical use to detect or monitor a psychiatric disorder. The 
theta/beta power ratio was approved regionally in 2013 by the US Food and Drug 
Administration to be used as a complementary method to aid in diagnosing ADHD in 
children (U.S. FDA, 2013), but has received critical feedback for not adding value to 
clinical evaluation (Gloss et al., 2016). This narrow clinical uptake highlights a 
translational gap between promising research and measures that are robust and 
sensitive enough to meet reproducibility and clinical-utility demands. 

At the group level, however, several feature sets differentiate patients from controls 
with high accuracy. For example, a combination of nonlinear measures—HFD, DFA, 
correlation dimension, and the Lyapunov exponent—achieved 90% accuracy for MDD, 
exceeding the 76.6% reported for linear band-power measures (Hosseinifard et al., 
2013). Likewise, different combinations of linear (SASI, alpha power variability, relative 
gamma power) and nonlinear (HFD, DFA, LZC) measures yielded closely similar accuracies 
(88% for linear vs 85% for nonlinear) in another study (Bachmann et al., 2018). More 
broadly, band power, HFD, LZC, SASI, and related measures have delivered comparable 
performance in evaluating MDD (Hosseinifard et al., 2013; Bachmann et al., 2018; 
Mahato & Paul, 2019). Two interpretations follow. First, the disorder may induce 
multiple physiological alterations that are differentially captured by distinct EEG 
measures, such that each measure probes a partially unique facet of brain dynamics. 
Second, several measures may index largely the same underlying deviations in neural 
function, yielding convergent or overfitting performance. However, reported accuracies 
can be inflated by feature selection choices, cross-validation leakage, and site effects; 
thus, notable outcomes can overestimate real-world utility.  

These considerations argue for deliberate, hypothesis-driven measure selection to 
maximize complementary information. In practice, classification accuracy tends to 
depend more on the choice of features than on the specific learning algorithm applied 
(Čukić, Stokić, Simić, et al., 2020). The chosen measures serve as input data that govern 
classification performance. Yet only a few studies have directly examined how combining 
different EEG measures affects classification accuracy (Hosseinifard et al., 2013; 
Bachmann et al., 2018; Čukić, Stokić, Simić, et al., 2020).  

Crucially, strong group-level separation does not imply reliable individual-level 
discrimination: EEG exhibits substantial inter-individual variability (Zhang et al., 2021; 
Lopez et al., 2023; Tatar, 2023), many measures are not disorder-specific, and patient–
control distributions often overlap. Consequently, promising group averages can fail to 
identify where a particular person lies within the relevant distribution, limiting clinical 
decision-making. To bridge this gap, reliability and temporal stability must be established 
explicitly—especially within individuals over time. 
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1.5 Reliability and Temporal Stability 
While the previous section outlined why strong group-level effects may not translate to 
individual decisions, this section reviews quantitative evidence on the reliability and 
temporal stability of EEG measures over time. 

For EEG measures to be clinically useful, they must be reliable and temporally stable. 
Reliability is commonly quantified with the intraclass correlation coefficient (ICC), which 
expresses the proportion of total variance attributable to inter-individual differences 
relative to intra-individual variability (and residual error) in a given measurement design 
(Shrout & Fleiss, 1979; McGraw & Wong, 1996; Koo & Li, 2016). Values approaching 1 
indicate high consistency across raters or sessions, whereas values near 0 indicate poor 
reliability. According to Koo & Li (2016), reliability should be evaluated from the 95% 
confidence interval (CI) of the ICC estimate, not the point estimate alone. As a general 
guideline, a CI lower bound (LB) < 0.50 indicates poor reliability, 0.50–0.75 moderate, 
0.75–0.90 good, and > 0.90 excellent reliability. Because EEG is sensitive to day-to-day 
influences (e.g., nutrition, time of day, seasonality, hormonal cycles), some variability 
is expected even in healthy individuals (Hoffman & Polich, 1998; Brötzner et al., 
2014; Höller et al., 2022). Critically, reliability is not equivalent to temporal stability 
(intra-individual consistency) required for longitudinal monitoring. 

At the group level, ICC quantifies the proportion of total variance attributable to stable 
inter-individual differences. A high ICC, therefore, indicates that inter-individual variance 
substantially exceeds intra-individual variance: individuals are distinguishable from one 
another, and the measure separates people well, but this does not by itself demonstrate 
strong temporal stability within any given individual. Conversely, a low ICC implies that 
intra-individual variability (and/or measurement error) is large relative to inter-individual 
differences, or that individuals differ little, yielding weak discrimination at the group 
level. In short, group-level ICCs conflate intra-individual stability with the magnitude of 
between-person differences and should not be interpreted as a pure index of individual 
test–retest stability. 

The reliability of linear EEG measures, especially spectral power in classical frequency 
bands, has been documented extensively. Early studies reported that band powers show 
test–retest reliability (Gasser et al., 1985; Salinsky et al., 1991; Kondacs & Szabó, 1999), 
and subsequent work confirmed and extended these findings to additional linear 
parameters (Cannon et al., 2012; Gevins et al., 2012; Ip et al., 2018; Tenke et al., 2018). 
By contrast, the reliability of nonlinear measures has been less frequently examined, with 
only a handful of studies including them (Dünki et al., 2000; Gudmundsson et al., 2007; 
Põld et al., 2021; Lord & Allen, 2023). This scarcity represents a key evidence gap for 
nonlinear measures intended for longitudinal use. 

Across studies, mid-spectrum bands (theta, alpha, beta) tend to exhibit higher 
reliability than delta or gamma band power (GBP) (Gudmundsson et al., 2007; Ip et al., 
2018; Põld et al., 2021). Nonlinear measures show mixed results, ranging from somewhat 
lower (Gudmundsson et al., 2007) to comparable reliability relative to band power 
measures (Põld et al., 2021). Developmental factors also play a role: the reliability of 
linear measures is generally stronger in adults than in children or adolescents, likely 
reflecting maturational changes, whereas sex differences in reliability appear minimal 
(Tenke et al., 2018). These patterns suggest prioritizing mid-band measures for stable 
baselines while cautiously interpreting delta/gamma unless temporal stability is 
demonstrated within the intended pipeline. 
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Temporal stability has been far less studied than reliability. At the group level, 
temporal stability is typically assessed as the relative difference between group means 
across recording sessions. In a three-year test–retest study with 17 participants (two 
sessions per person), spectral band powers showed the smallest group-level change in 
the alpha band (0.72%) and the largest in the gamma band (2.28%) (Põld et al., 2021). 
Among single-channel linear measures, SASI exhibited the greatest change (11.89%), 
whereas interhemispheric asymmetry showed very poor stability over three years 
(236%). By contrast, nonlinear measures demonstrated higher temporal stability at the 
group level than linear measures, with HFD and DFA changing by only 0.18% and 0.49%, 
respectively. This suggests that, in nonlinear measures, individuals may show less 
difference in baselines and possibly higher intra-individual stability than in linear 
measures.  

In a follow-up study (Põld et al., 2023), both linear and nonlinear measures showed 
strong between-session correlations (Pearson r ≥ 0.88). Nevertheless, average individual 
relative changes were larger for linear measures (21%–36%) than for nonlinear measures 
(3%–10%). By comparison, depression questionnaire scores for the Hamilton Depression 
Rating Scale (HAM-D) (Hamilton, 1960) and Emotional State Questionnaire (EST-Q) (Aluoja 
et al., 1999) were much less temporally stable (52.8%–69.3%; r = 0.52 and r = 0.61), 
indicating the subjective nature of not only self-report questionnaires (EST-Q) but also 
questionnaires filled in by a health specialist (HAM-D). The comparative instability of 
questionnaires underscores the value of objective measures; however, individual-level 
change thresholds must still be predefined to avoid post hoc interpretation errors. 

However, small group-mean changes can conceal substantial individual-level 
fluctuations, cautioning against overreliance on generalized statistics. Even under tightly 
controlled recording conditions in healthy individuals, distinct EEG profiles can be 
observed. Aggregating to means or medians smooths extreme values, making the group 
appear more stable than most individuals. To evaluate whether an EEG measure can be 
clinically useful for longitudinal monitoring, temporal stability must therefore be 
demonstrated at the individual level, not only at the group level. Accordingly, stability 
should be formalized as individualized reference intervals with explicit exceedance 
criteria. With baselines in place, the remaining question is whether candidate measures 
show adequate intra-individual sensitivity when the brain state truly changes. 

1.6 Individual-Level Sensitivity 
Having selected complementary, less redundant measures and established not only their 
reliability but also their temporal stability at the individual level, the next task is to 
determine whether they are also sensitive at the individual level. As discussed previously, 
numerous EEG measures, especially when combined, differentiate healthy controls from 
cohorts with psychiatric disorders in group studies; however, because EEG is highly 
person-specific, such group-level evidence offers limited insight into whether the same 
individual would show detectable change when moving from a healthy state to the onset 
of a psychiatric condition. Accordingly, beyond choosing stable, information-rich measures, 
it is essential to assess their individual-level sensitivity: given a well-characterized personal 
normative range for each measure across relevant conditions, do deviations beyond that 
range emerge when brain function becomes perturbed?  

Taken together, the reviewed evidence suggests that EEG measures vary in both their 
temporal stability and their responsiveness to brain-state changes. Measures showing 
high stability may reflect trait-like properties of brain function, whereas those with 
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greater variability may index state-dependent processes. The optimal biomarker for 
individualized monitoring should therefore balance stability and sensitivity—remaining 
relatively stable under comparable conditions yet responsive to meaningful 
neurophysiological change. The current thesis addresses this balance by systematically 
quantifying both aspects in multiple EEG measure families. 
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2 Methods 

2.1 Subjects and Prerecording Conditions 
In Publication I, 80 neurologically and psychiatrically healthy volunteers (38 women, 
42 men; age mean ± SD 37 ± 15, range 19–75 years) were recruited for the cross-sectional 
study. In Publication II, 66 right-handed participants formed two groups: 33 medication-
free outpatients with MDD (12 men, 21 women) and 33 age- and sex-matched healthy 
controls. Mean age was 34.5 ± 14.9 years in the MDD group and 34.7 ± 15.0 years in 
controls (overall range 18–75 years). In Publication III, nine healthy, right-handed male 
participants (mean age 37.2 ± 8.1 years; range 26–49) each completed twelve monthly 
recordings. Publication IV followed a single healthy, right-handed male aged 49 years, 
with twelve monthly reference recordings and two post-stressor recordings.  

In Publications I, III, and IV, all participants self-reported as healthy and denied a history 
of concussions with loss of consciousness, epilepsy, brain injury, use of narcotic or 
psychotropic substances, or other neurological or psychiatric conditions. In Publication II, 
MDD was confirmed during a clinical interview, and participants were diagnosed with 
MDD by a psychiatrist according to ICD-10 criteria. Participants in the control group were 
enrolled if they scored below the EST-Q thresholds referring to probable depressive or 
anxiety disorder.  

Pre-recording conditions were standardized across studies: in Publications I–II, 
participants were instructed to avoid alcohol for 24 h and caffeine for at least 2 h; 
in Publications III–IV, they maintained their usual routines and abstained from both 
alcohol and caffeinated beverages for 24 h before each EEG session. Additionally, 
in the longitudinal protocols (Publications III–IV), the weekday and time of the recording 
were held constant within participants across sessions to minimize confounding influences. 

All studies were conducted in accordance with the Declaration of Helsinki and were 
approved by the Tallinn Medical Research Ethics Committee and/or the Estonian 
Institute for Health Development Human Research Ethics Committee. Written informed 
consent was obtained from every participant before enrolment. 

2.2 EEG Recordings and Preprocessing 
EEG was acquired with a Neuroscan Synamps2 amplifier and 32-channel cap (QuikCap) 
(Compumedics, NC, USA). The EEG data were obtained in 30 channels and the electrodes 
were positioned according to the extended international 10–20 system at positions Fp1, 
Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, 
P7, P3, Pz, P4, P8, O1, Oz, and O2 (Figure 1) referenced to linked mastoids. 
Electrooculograms (horizontal and vertical) were recorded concurrently in two channels 
to monitor eye movements. The impedance of EEG electrodes was kept below ten kΩ to 
achieve good conductivity between the skin and the electrode. 
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Eyes-closed (EC) resting-state EEG was recorded in a dimly lit shielded room for 6 min 
in Publication I and for 10 min in Publications II–IV; in the longitudinal protocols 
(Publications III–IV), the EC block was followed by a 5-minute eyes-open period, which 
was not analyzed in this thesis. Pre-processing was performed in MATLAB (MathWorks, 
MA, USA). Initially, EC EEG recordings were segmented into 20.48-s epochs, and 
artifact-containing epochs were visually identified and flagged. The EC EEG data were 
re-referenced with the reference electrode standardization technique (REST). REST 
approximates a neutral “infinite” reference to minimize dependence on the original 
reference, making EEG more physiologically interpretable and comparable across 
recordings (Yao, 2001; Hu et al., 2018; Yao et al., 2019). Digital filtering was applied to 
remove baseline drift and high-frequency noise, leaving 1-45 Hz band in Publication I and 
2-47 Hz band in Publications II–IV. All data were acquired at 1000 Hz; data were
down-sampled to 200 Hz in Publications I–II and, in Publications III–IV, for nonlinear
measures (power band measures were computed at the original rate). EC EEG recordings 
were segmented into 20.48-s epochs again, and 10 visually clean epochs per subject were 
retained in Publications I–II, 12 segments in Publication III, and the first 9 segments in
Publication IV.

2.3 Calculated Measures and Statistics 
The thesis employs a broad range of quantitative EEG measures, all of which are collated 
in Table 1. 

Figure 1. Locations of the 30 EEG electrodes corresponding to the channels used in this thesis, 
positioned according to the extended international 10–20 system. 
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Table 1. EEG measures used in the thesis. 

Measure Abbreviation Usage in 
publications 

Quantifies 
Li

ne
ar

 m
ea

su
re

s 

Theta band power TBP I, III, IV Absolute power in the 
theta band 

Alpha band power ABP I, III, IV Absolute power in the 
alpha band 

Beta band power BBP I, III, IV Absolute power in the 
beta band 

Gamma band 
power 

GBP I, III, IV Absolute power in the 
gamma band 

Spectral 
asymmetry index 

SASI I, IV Balance between higher 
and lower band powers 

Magnitude-
squared coherence 

MSC I Inter-channel coupling 

Imaginary 
coherence 

ImC I Phase-lagged inter-
channel coupling 

N
on

lin
ea

r m
ea

su
re

s 

Mutual 
information 

MI I Inter-channel 
dependence 

Synchronization 
likelihood 

SL I Inter-channel 
synchronization 

Higuchi’s fractal 
dimension 

HFD I, II, III, IV Fractal complexity 

Detrended 
fluctuation analysis 

DFA I, III Long-range correlations 

Lempel-Ziv 
complexity 

LZC I, III Sequence complexity 

in-phase matrix 
profile 

pMP II, III Waveform stability 

2.3.1 Publication I 
Publication I extracted 12 EEG measures—band powers in the theta, alpha, beta, and 
gamma ranges; four single-channel dynamics measures (HFD, DFA, LZC, SASI); and four 
functional connectivity measures (SL, MI, MSC, ImC). Power was computed within the 
bands TBP (4–7 Hz), ABP (8–12 Hz), BBP (13–30 Hz), and GBP (31–45 Hz). HFD was 
computed according to the original algorithm (Higuchi, 1988), with kmax = 8, as in 
Bachmann et al. (2018) and Päeske et al. (2018). DFA followed Peng et al. (1995) with the 
EEG adaptation of Bachmann et al. (2018). LZC was calculated as in Lempel & Ziv (1976) 
with the adjustment in Bachmann et al. (2018). SASI summarized lower versus higher 
EEG-band power while excluding the central alpha band (Hinrikus et al., 2009). SL was 
implemented as described by Stam & van Dijk (2002), with parameters set as in Päeske 
et al. (2018) to capture time–frequency structure. MI was estimated with the Fraser & 
Swinney (1986) algorithm, following the EEG procedure of A. J. Ibáñez-Molina et al. 
(2020). MSC and ImC were computed in the frequency domain as in Päeske et al. (2020). 

Band power and dynamics measures were computed for each of the 30 channels, and 
connectivity measures were computed for every channel pair (30×29/2 = 435) within 
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each EEG segment; segment-wise values were first averaged within channel/pair and 
then averaged across channels/pairs to obtain the subject-level value. Pairwise 
differences among the 12 measures ((12×12–12)/2 = 66 comparisons) were tested with 
the Wilcoxon rank-sum test (Bonferroni-corrected to α = 0.00076). Correlations between 
measures were quantified with Spearman coefficients; at n = 80, |r| > 0.37 met the same 
corrected significance level via t-testing (α = 0.00076).  

Publication I introduced an effectiveness index E that reflects both the reach and the 
strength of a measure’s associations with others. For measure i, the effectiveness Ei was 
defined as  

𝐸𝐸𝑖𝑖 =  𝑁𝑁𝑖𝑖 ×  𝑅𝑅𝑖𝑖,                                                                  (1) 
where Ni is the number of measures significantly correlated with i and Ri is the average 

of those correlation coefficients. This quantitative index helps assess how broadly a 
measure reflects EEG patterns and, in turn, its potential to reveal the varied symptom 
profiles seen in mental disorders. 

2.3.2 Publication II 
A parameter-independent, time-domain measure of EEG waveform stability was 
introduced in Publication II. The proposed pMP builds on the classic matrix profile (MP) 
(Yeh et al., 2016), a threshold-free data-mining algorithm for large-scale time series to 
identify motifs and discords. MP has been used modestly on physiological signals and can 
perform well on quasi-periodic data, where recurring motifs enable anomaly detection 
(Wankhedkar & Jain, 2021; Seoni et al., 2022). Resting-state EEG lacks stable motifs—
eyes-closed alpha rhythm shows apparent periodicity without true recurrence; 
therefore, classic MP, which targets changes in motif, misses subtle global alterations 
(e.g., in MDD) and is better suited to pronounced temporal shifts such as seizures or 
blinks. The pMP method thereby indexes the consistency of waveform shape across 
short, phase-aligned segments. The signal is scanned with 1-s windows (Figure 2); 
for each window (query with the length m), the algorithm compares its z-normalized 
waveform to all other same-length z-normalized windows of the segment (with the 
length n) by calculating Euclidean distance between them, producing a distance profile 
(DP) using the MASS_V2 algorithm (Mueen et al., 2022; Zhong & Mueen, 2024). 
The acquired DP plummets whenever the query is aligned in phase with the comparable 
window (Figure 3).  

Figure 2. Example EEG signal segment (channel FCz, 20.48 s; 4096 samples). The red segment marks 
the first 1-s query used to compute the distance profile (Publication II). 

Each possible window of the signal is treated as a query in a sliding window manner. 
For each query qi, pMP retains only the local minimum values of the DP (the in-phase 
matches marked with red circles in Figure 3) and computes the median across these local 
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minimums, M(qi), for the query. The M(qi) values corresponding to each query are 
averaged to yield a single score, as in 

𝑝𝑝𝑝𝑝𝑝𝑝 =  1
𝑛𝑛−𝑚𝑚+1

 ×  ∑ 𝑀𝑀(𝑞𝑞𝑖𝑖)𝑛𝑛−𝑚𝑚+1
𝑖𝑖=1 ,   (2) 

Because each comparison is z-normalized, the measure is largely insensitive to 
absolute amplitude. Instead, it reflects the timing regularity of rhythms: lower pMP 
indicates more regular, phase-aligned recurrence, whereas higher pMP indicates more 
irregular timing. It is thus a parameter-independent, single-channel measure of in-phase 
self-similarity. 

Figure 3. Distance profile for the query in Figure 2. Local minimums (circled) correspond to 
subsegments most in phase with the query. These minimums form the inputs to pMP (Publication II). 

The reference measure, HFD, was calculated as in Publication I. Per subject, HFD and 
pMP were computed for 10 segments at each of 30 channels, and segment-level values 
were summarized per channel using the median. Group differences were tested with the 
Mann–Whitney U test (nonparametric test of median differences) (α = 0.05), and p values 
were adjusted with a modified Bonferroni correction for multiple comparisons. 
Classification performance was then assessed using a support vector machine with 
leave-one-out cross-validation on single-channel features. 

2.3.3 Publication III 
Absolute powers were calculated for the theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), 
and gamma (30–47 Hz) frequency bands. HFD, LZC, DFA, and pMP were calculated for 
the whole band as in Publications I and II. For each monthly recording, measures were 
computed for each channel across 12 clean segments, and the segment-level values were 
summarized using the median, yielding one value per channel, per subject, per month. 

With 12 monthly sessions per participant (n = 9), ICC was used to assess the reliability 
of repeated EEG measurements. A two-way mixed-effects model (average measures, 
absolute agreement (McGraw & Wong, 1996; Koo & Li, 2016) for all 30 channels was 
employed. Reliability was considered excellent when ICC 95% CI LB > 0.9. 

Inter-individual differences in channel P3 were analyzed with the global Kruskal–Wallis 
test (α = 0.05) (Kruskal & Wallis, 1952), a nonparametric ANOVA alternative for multiple 
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groups that does not assume normality and is relatively insensitive to unequal variances. 
If a significant difference is detected in the global test, a post hoc test can be conducted 
to identify which subjects differ. In this study, the Dunn test (α = 0.05) was employed to 
determine how many subject pairs differed statistically (Dunn, 1964). Given nine 
subjects, 9(9 − 1)/2 = 36 unique pairwise comparisons were performed, and p values 
were adjusted using the Šidák correction (Šidák, 1967). 

For each participant, the annual mean and standard deviation for each measure were 
calculated in channel P3, as well as the maximum relative difference (rDif, intra-individual 
stability), which indicates the largest deviation from the annual mean, as in 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  �𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚− 𝑣𝑣�
𝑣𝑣�

� × 100,  (3) 

where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the most extreme monthly measurement across the year for a given 
subject, and 𝑣𝑣 is that subject’s annual mean. 

2.3.4 Publication IV 
Two BNT162b2 (an mRNA vaccine encoding the SARS-CoV-2 spike protein marketed 
under the name Comirnaty, Pfizer–BioNTech) doses were administered to the participant 
three weeks apart. After the first dose, adverse effects were limited to pain at the 
injection site and in the ipsilateral upper limb for several days; after the second dose, 
adverse effects included ipsilateral upper-limb pain, headache, myalgia, fatigue, fever, 
and fogginess (fogginess lasted up to one week; the others resolved by day 4). 
In Publication IV, 12 monthly baseline EEG recordings served as references (r1–r12). Two 
post-vaccination sessions (p1, p2) were acquired 5 and 12 days after the second dose, 
scheduled on the same weekday and at the same start time as the reference recordings. 
Because the first dose preceded the next EEG session by 19 days and no recordings were 
obtained immediately afterward, that session (r7) was treated as a reference, and 
first-dose effects were not analyzed. 

Absolute power in the theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma 
(30–47 Hz) bands, as well as SASI and HFD, were computed as in Publication I from the 
Fz channel signal. For each recording, each measure was calculated for nine segments, 
and the segment-level values were summarized by their median. 

A two-sample t-test (α = 0.05) was used to test if post-vaccination EEG measures 
differed from reference recordings. Because six measures were analyzed, p values were 
adjusted for multiple testing using a modified Bonferroni correction. 
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3 Results 

3.1 Interrelationship Between EEG Measures (Publication I) 
Publication I investigated the interrelationships between 12 EEG measures in healthy 
participants to assess their complementarity. Of 66 pairwise comparisons, 37 (56%) were 
statistically significantly correlated according to Spearman’s correlation after Bonferroni 
correction. The pairwise Spearman’s correlations among the EEG measures are shown in 
the heatmap in Figure 4. 

Band power measures. According to the Wilcoxon test, the calculated values of 
different band power measures were mutually significantly different (p < 0.00076) in all 
combinations except TBP and BBP (p = 0.03). Spearman’s correlation revealed that 
four of six (66.7%) pairings were significant (|r| > 0.37). Correlations were highest 
between adjacent bands: TBP and ABP (r = 0.87), ABP and BBP (r = 0.80), but also 
between TBP and BBP (r = 0.75). Pairs involving the GBP had lower (GBP and BBP, 
r = 0.55) or insignificant correlations after correction (ABP and GBP, r = 0.34; TBP and 
GBP, r = 0.30). 

Figure 4. Spearman’s correlation matrix across 12 EEG measures (n = 80). Each cell displays the 
correlation coefficient r, with an asterisk (*) indicating correlations that remain significant after the 
Bonferroni correction (p < 0.00076; |r| ≥ 0.37). Significant positive correlations are shaded green 
and negative correlations blue. Gray denotes nonsignificant correlations, and blue separators 
delineate the three measure families (dynamics, band power, connectivity). Adapted from 
Publication I. 
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Dynamics measures. The Wilcoxon test showed that all dynamics measures differed 
significantly in all combinations (p < 0.00076). Three of six (50%) correlations were 
significant: HFD and DFA (r = 0.64), HFD and SASI (r = 0.59), and HFD and LZC (r = 0.52); 
the remaining pairs among DFA, LZC, and SASI were not significant. 

Functional connectivity measures. The Wilcoxon test indicated significant differences 
among connectivity measures in all pairings except SL and MI (p = 0.297). Spearman’s 
analysis showed five of six (83.3%) significant correlations: SL and MI (r = 0.77), SL and 
ImC (r = 0.70), MSC and ImC (r = 0.64), SL and MSC (r = 0.57), and ImC and MI (r = 0.41). 

Across categories. The strongest observed association was between ABP and MI 
(r = 0.97). The weakest significant associations included LZC and ImC, and GBP and SASI 
(r = 0.38). By the number of significant links (degree), the counts were: HFD 9, SL 9, MI 8, 
ABP 8, BBP 7, TBP 7, ImC 7, DFA 6, SASI 4, LZC 4, MSC 2, and GBP 2. Figure 5 summarizes 
the effectiveness (E) of these measures. 

Figure 5. Effectiveness E for each EEG measure, indicating the reach and strength of its associations 
with other measures. E = NR, where N is the number of measures correlated with the indicated 
measure, and R is the average value of the corresponding correlation coefficients (Publication I). 

3.2 Waveform Stability Measure to Detect MDD (Publication II) 
Publication II introduced a waveform stability measure, pMP, and compared it with HFD 
for distinguishing patients with MDD from healthy controls. Across 66 subjects, both pMP 
and HFD values were higher in the MDD group than in controls. Group means and 
topographies for pMP and HFD, as well as the MDD and control group differences, are 
shown in Figure 6. For both measures, values were lowest in the occipital region and 
higher over lateral and prefrontal areas. 
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Figure 6. Topographies of group means for pMP (top) and HFD (bottom) across 30 EEG channels in 
controls and MDD (n = 66). The rightmost column shows group differences (MDD – Control); large 
black dots mark channels significant after Mann–Whitney U test with a modified Bonferroni 
adjustment to p values (α = 0.05) (Publication II). 

Channel-wise testing (Mann–Whitney U test with modified Bonferroni correction) 
showed that pMP distinguished the MDD group from the control group in all 30 EEG 
channels (p < 0.05). In contrast, HFD was significant in 13 of 30 channels (43%). 
The significant channels in HFD were mainly central (CP4, C4, CP3, CPz, Cz, C3, FCz, Fz, 
FC3) with a few posterior sites (O2, P7, P8, P3). In pMP, the largest between-group 
difference appeared in the occipital region. Classification with support vector machines 
yielded the highest accuracy of 73% for pMP and 67% for HFD. 

3.3 Intra-Individual Stability and Inter-Individual Differences 
(Publication III) 
Across twelve monthly recordings in nine participants, band powers and nonlinear 
measures showed generally excellent long-term reliability (ICCs) in Publication III. TBP 
and ABP showed excellent reliability in all 30 channels (Table 2). BBP and GBP also 
demonstrated excellent reliability, but BBP showed slightly reduced reliability in three 
temporal channels (TP7, T8, TP8), with the lowest ICC in TP8 (0.908, 95% CI [0.786, 
0.975]), which is still indicative of good reliability. GBP remained excellent centrally but 
fell below the excellent threshold in 13 peripheral (mostly prefrontal/frontal/temporal) 
channels, with the lowest ICC at FT8 (0.756, 95% CI [0.424, 0.935]). All nonlinear 
measures (HFD, LZC, DFA, pMP) exhibited excellent reliability across all channels. 

Figure 7 shows the monthly values for all eight measures for each of the nine 
participants, illustrating distinct participant-specific ranges within which the monthly 
values fall. Across measures, participants showed clear inter-individual differentiation 
(Dunn test): for each measure, 14–16 of the 36 subject pair comparisons differed 
significantly (Table 2). Band powers exhibited comparable separation (TBP: 15 pairs; ABP: 
16; BBP and GBP: 14), and nonlinear measures showed similarly strong differentiation 
(HFD and LZC: 14; DFA and pMP: 15). 
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Intra-individual temporal stability (rDif in the parietal channel P3) indicated substantially 
greater month-to-month fluctuation for band powers than for nonlinear measures. 
Mean annual deviations across participants were 66% (TBP), 64% (ABP), 32% (BBP), and 
30% (GBP), compared with 23% (DFA), 10% (LZC), 6% (pMP), and 4% (HFD) (Table 2). 
Marked inter-individual heterogeneity was also apparent: across measures, participant-
specific variability ranged from 17% to 53%. 

Figure 7. Inter-individual and intra-individual variability in EEG measures across one year for each 
subject 1–9 and the group G (n = 9). Blue dots represent twelve individual monthly values; black 
dashes show subject-specific annual means. Error bars for subjects 1–9 represent intra-individual 
standard deviations. For group G, the yellow dots represent the annual mean of each subject, the 
black dash indicates the group-level mean, and the error bars represent the standard deviation 
(Publication III). 
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Table 2. Reliability and temporal stability of EEG band power and nonlinear measures across 12 
monthly recordings (n = 9). The table presents mean intraclass correlation coefficients (ICC) across 
30 channels, the lowest ICC 95% confidence interval lower bound (CI LB) value across channels and 
corresponding channel, the count of significantly different subject pairs out of 36 pairwise 
comparisons according to Dunn test, and the mean value across subjects and the range of maximal 
relative difference from annual average across subjects in channel P3. 

Measure Mean ICC  Lowest ICC 
95% CI LB 

Dif. subject pairs 
(of 36) 

Intra-individual deviation 
mean and range (%) 

TBP 0.991 0.952 (P4) 15 66 (24–163) 

ABP 0.984 0.917 (O2) 16 64 (27–152) 

BBP 0.978 0.786 (TP8) 14 32 (11–53) 

GBP 0.935 0.424 (FT8) 14 30 (12–57) 

HFD 0.993 0.949 (T7) 14 4 (2–8) 

LZC 0.985 0.922 (T7) 14 10 (4–22) 

DFA 0.992 0.967 (O2) 15 23 (5–54) 

pMP 0.977 0.908 (Oz) 15 6 (<1–19) 

3.4 Sensitivity to Controlled Physiological Perturbation (Publication IV) 
Publication IV assessed whether resting-state EEG exhibits short-term changes after 
a second dose of Comirnaty vaccine. The reference distribution and the two 
post-vaccination values in channel Fz are presented in Figure 8. Relative to this baseline, 
Publication IV showed that on day 5 after the second vaccine dose, the values of three 
measures lay outside the subject’s usual fluctuation range after modified Bonferroni 
correction of the p values: GBP (10.81×10³ µV²; p = 0.008), SASI (0.214; p = 0.013), 
and HFD (1.288; p = 0.01). TBP and ABP were more than one standard deviation below 
the reference mean but were not significantly different after the correction, and BBP 
showed no change from the baseline. By day 12, no measure differed significantly from 
the reference distribution, and all values fell within the normal range. 
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Figure 8. One-year longitudinal time courses of the powers in the theta, alpha, beta, and gamma 
frequency bands, and single-channel dynamics (SASI, HFD) showing the effect of a controlled 
physiological perturbation (Comirnaty vaccination) on these measures (n = 1). Asterisks indicate 
reference recordings (r1–r12) that were acquired four weeks apart regularly. The dots (p1, p2) show 
the values on the fifth and twelfth day after the vaccination. Straight and dashed lines represent 
the mean and standard deviation values of the twelve reference recordings (Publication IV). 
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4 Discussion 
The overarching motivation of this thesis was the persistent gap between promising 
research findings and limited clinical uptake of resting-state EEG measures for common 
psychiatric disorders. Despite numerous reports of group-level EEG differences between 
clinical and control samples, these effects have not translated into robust tools for 
detecting or monitoring psychiatric health, as they have not been validated for 
individual-level use. In the Introduction, knowledge gaps in two main areas were 
highlighted that hinder the clinical adoption of EEG measures in evaluating psychiatric 
health: (1) the wide selection of diverse, unorganized EEG measures, whose mutual 
relationships and overlap are not well understood; and (2) substantial dispersion across 
individuals, which can obscure intra-individual change and limit individual-level 
interpretability. 

To address these obstacles, the overall aim was to guide the selection of EEG measures 
for individualized monitoring. This aim was pursued in four steps: organizing the measure 
space (Publication I), introducing and testing a waveform stability measure in MDD 
(Publication II), characterizing long-term individual stability (Publication III), and 
demonstrating intra-individual sensitivity to a controlled perturbation (Publication IV). 
Across four studies aligned with the overall and specific aims of the thesis, converging 
evidence was obtained that common resting-state EEG measures share substantial 
information, that the new time-domain waveform stability measure provides added 
value for group separability in MDD, that selected nonlinear single-channel measures are 
temporally stable within individuals over one year, and that selected EEG measures 
remain sensitive to controlled physiological perturbation in brain physiology. Together, 
these findings guide the selection of EEG measures for individualized monitoring. 

4.1 Complementarity in Resting-State EEG Measures (Publication I) 
The first aim was to describe interrelationships among common resting-state EEG 
measures to assess complementarity and guide compact, informative measure selection. 
Publication I found that more than half of the pairwise relationships were significantly 
correlated, indicating substantial overlap in the information they capture and suggesting 
that several ostensibly distinct EEG measures capture partly the same information. 

From a clinical perspective, this redundancy has clear implications. Combining many 
highly correlated measures can inflate apparent classifier performance in small samples 
without adding genuinely independent information, while increasing the risk of 
overfitting and hindering interpretability (Hosseinifard et al., 2013; Bachmann et al., 
2018; Čukić, Stokić, Simić, et al., 2020; Wen et al., 2025). Therefore, the goal should be 
small but complementary panels rather than maximal feature sets.  

Mental disorders can produce diverse EEG alterations across individuals; thus, 
clinically practical measures should be able to pick up a wide range of possible 
alterations. To compare measures on this criterion, the effectiveness index 𝐸𝐸 was 
introduced in Publication I, which summarized the extent to which each measure was 
correlated with others (Figure 5). HFD, SL, MI, and ABP formed a high-effectiveness group 
that covered a wide range of other measures; GBP, MSC, LZC, and SASI contributed 
narrower, more specific information. Choosing one broad-coverage measure together 
with one or a few weakly correlated, more specific measures is a principled way to 
construct compact panels. 
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HFD emerged as an efficient core measure showing the highest effectiveness among 
all those compared. This aligns with numerous studies showing that HFD is a broadly 
sensitive measure of brain physiology, detecting subtle EEG changes related to 
depression (Ahmadlou et al., 2012; Bachmann et al., 2013, 2018; Hosseinifard et al., 
2013; Akar et al., 2015b, 2015a; Čukić, Stokić, Radenković, et al., 2020; Greco et al., 2021) 
anxiety (Kawe et al., 2019), epilepsy (Khoa et al., 2012), sleep stages (Olejarczyk et al., 
2022) and even gaming addiction (Hosseini et al., 2021). Its central position in the 
correlation structure makes it a strong reference against which to benchmark new 
measures. 

At the same time, measures such as GBP and LZC, which demonstrated narrower 
specificity (lower effectiveness), carry relatively more independent information and can 
improve classification when paired with complementary features (Bachmann et al., 
2018). GBP’s low effectiveness largely reflects the small absolute contribution of gamma 
to the total EEG power spectrum, yet gamma-related changes have been linked to stress 
and cognitive demands (Minguillon et al., 2016; Schlink et al., 2017). 

Overall, Publication I provides the first systematic map of inter-measure relationships 
in resting-state EEG and demonstrates that many widely used measures are mutually 
correlated rather than fully independent. This directly addresses the first obstacle 
identified in the Introduction—the wide selection of diverse, unorganized EEG measures, 
in which features are selected and parameterized ad hoc for similar clinical questions, 
yielding inconsistent results—and supports moving from large, redundant feature sets 
toward small, complementary panels. 

4.2 Waveform Stability as a Measure to Detect MDD (Publication II) 
The second aim was to develop and evaluate a new single-channel EEG measure of 
waveform stability and to test whether waveform stability carries clinically relevant 
information in MDD. Converging evidence indicates that psychiatric disorders, including 
MDD and schizophrenia, are characterized by abnormalities in neural synchrony and the 
temporal organization of oscillatory activity, particularly in alpha and gamma bands 
(Uhlhaas & Singer, 2006; Başar & Güntekin, 2013; Moran et al., 2019; Tsai et al., 2023; 
Han et al., 2025). In MDD, atypical alpha dynamics and altered rest–stimulus interactions 
have been reported (Fingelkurts et al., 2007; Newson & Thiagarajan, 2019; Wolff et al., 
2019). These findings suggest that the stability and organization of ongoing rhythms are 
diagnostically relevant. 

Existing single-channel measures, such as LZC, HFD, and DFA index sequence diversity, 
fractal complexity, or long-range correlations (Lempel & Ziv, 1976; Higuchi, 1988; Peng 
et al., 1995), but none explicitly quantify the temporal similarity of recurring waveform 
motifs. Publication II introduced the pMP method specifically to fill this gap by 
quantifying waveform-level temporal similarity (stability) independent of amplitude. 
Elevated pMP and HFD in the 66-subject resting-state sample showed increased 
waveform-level temporal irregularity and fractal complexity in MDD, aligning with prior 
reports of higher EEG complexity in depression (Lee et al., 2007; Y. Li et al., 2008; 
Bachmann et al., 2013, 2018; Akar et al., 2015b; Čukić, Stokić, Radenković, et al., 2020). 
For both measures, minima were observed over occipital sites (Figure 6), consistent with 
the strong, relatively regular alpha rhythm in eyes-closed rest. The fact that pMP was 
lowest where alpha is strongest and most stable supports its interpretation as a measure 
of timing regularity of oscillatory activity: more stable alpha frequency yields more 
frequent in-phase matches and lower pMP values. The higher pMP in MDD is compatible 
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with reports of greater variability in alpha peak frequency in depression (Wolff et al., 
2019), suggesting more irregular timing of oscillatory bursts.  

Regarding spatial extent, pMP showed broader group separation than HFD: pMP 
distinguished MDD from controls in all 30 channels, whereas HFD reached significance in 
13 channels (43%), primarily in central and posterior regions. At the same time, HFD 
remains a strong benchmark, as prior work has reported considerable group-level 
discrimination in MDD (Ahmadlou et al., 2012; Bachmann et al., 2013, 2018; Hosseinifard 
et al., 2013; Akar et al., 2015b; Kesić & Spasić, 2016; Čukić, Stokić, Radenković, et al., 
2020), and Publication I further showed its effectiveness in capturing a broad spectrum 
of disturbances in the brain. Additionally, single-channel classification accuracy reached 
73% for pMP versus 67% for HFD in this sample—modest but notable given that HFD is a 
strong reference measure and that earlier work reporting slightly higher accuracies often 
used smaller cohorts and different classifiers (Hosseinifard et al., 2013; Bachmann et al., 
2018; Greco et al., 2021). 

Furthermore, the widespread and methodologically diverse selection of measures in 
EEG analysis is coupled with analyst-specified parameterization, which reduces 
comparability across sites and settings and complicates interpretability for practical use. 
In this regard, a key advantage of pMP is that it is parameter-independent in routine use: 
it does not require user-defined parameter tuning. It can be applied in a standardized 
form, thereby reducing analysts’ degrees of freedom and improving cross-study and 
cross-site comparability. 

Taken together, these findings support three conclusions. First, waveform stability, 
as quantified by pMP, is altered in resting state MDD and captures increased 
amplitude-invariant waveform instability and heightened dynamical lability, which 
are not fully reflected in power or generic complexity measures. Second, pMP offers a 
parameter-independent alternative to traditional complexity measures, reducing analysts’ 
degrees of freedom and supporting cross-site comparability. Third, because pMP is 
z-normalized at the short segment level, it is less sensitive to absolute amplitude
differences (e.g., skull thickness, electrode impedance) and also attenuates the influence
of strong individual alpha amplitude, thereby reducing a key confound in cross-individual
comparisons in psychiatric EEG. Thus, Publication II not only introduces a mechanistically 
motivated measure but also demonstrates that waveform stability provides added value
over a widely used complexity measure, thereby directly addressing the second aim.

4.3 Temporal Stability and Person-Specific Baselines (Publication III) 
For EEG measures to support individualized monitoring, they must show predictable 
intra-individual behaviour over time under stable conditions, enabling applicable 
baselines against which meaningful deviations can be detected. Accordingly, the third aim 
was to characterize long-term intra-individual temporal variability and inter-individual 
differences in single-channel EEG measures, to determine whether they can provide stable 
baselines for monitoring. In this context, Publication III supports baseline-referenced 
monitoring by demonstrating the long-term stability of several EEG measures, while also 
highlighting pronounced inter-individual differences that necessitate individualized 
baselines rather than group-derived norms. 

The obtained ICCs indicate that commonly used band power and nonlinear measures 
can provide highly stable group-level estimates, while reliability can be somewhat 
reduced at peripheral temporal and frontotemporal sites, explained by residual tonic 
electromyographic (EMG) activity in muscle-prone regions (Whitham et al., 2007; 
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Urigüen & Garcia-Zapirain, 2015). This pattern is consistent with previous literature, 
which has also stated that the most reliable frequency bands are theta and alpha 
(Gudmundsson et al., 2007; Ip et al., 2018; Põld et al., 2021). However, ICCs reflect the 
combination of inter-individual and intra-individual variance and do not directly describe 
individual stability (Shrout & Fleiss, 1979; McGraw & Wong, 1996; Koo & Li, 2016). 
Therefore, Publication III complemented ICCs with inter-individual differentiation and 
intra-individual temporal stability. First, the pronounced inter-individual differentiation 
supports a central conclusion for individualized monitoring: even when a measure is 
generally stable, its baseline level can differ markedly across individuals. In practical 
terms, this means that group-level reference ranges are unlikely to be sufficiently  
specific for longitudinal interpretation at the individual level. Instead, the results support 
a personalized approach in which each person’s EEG is treated as a distinct operating 
point, and deviations are evaluated relative to that person’s own baseline rather than to 
population norms. This perspective also clarifies why measures can show excellent 
group-level reliability yet remain difficult to translate into universal decision thresholds, 
and it is consistent with the notion of EEG as a biometric-like fingerprint (Zhang et al., 
2021; Lopez et al., 2023; Tatar, 2023). For deployment, this implies that monitoring 
pipelines must distinguish trait-like differences (inter-individual offsets) from state-like 
changes (intra-individual shifts). Without that separation, cross-sectional comparisons 
risk conflating normal individuality with clinically meaningful deviation. 

Second, the analysis of intra-individual fluctuation ranges points to another requirement 
for individualized monitoring: a measure must not only have a person-specific baseline, 
but also a sufficiently predictable envelope of normal variation to support thresholding. 
From this perspective, stability is best understood as an individual tolerance range 
around the baseline—wide ranges reduce sensitivity to subtle change. In contrast, 
narrow, well-bounded ranges make deviations easier to interpret. Publication III 
highlights that these tolerance ranges differ substantially not only across measures but 
also across individuals, implying that a single, universal change criterion is unlikely to be 
appropriate. Instead, clinically usable alerting rules will need to be calibrated to each 
individual’s expected fluctuation range. In practical terms, band-power measures—
particularly TBP and ABP—are probably more responsive to clinically insignificant 
influences (e.g., arousal regulation, vigilance), leading to broader normal variability. 

In contrast, several nonlinear measures appear to operate within narrower  
intra-individual ranges and may therefore be better suited as baseline-referenced 
indicators of change. This interpretation is compatible with prior work reporting 
comparatively greater long-term group-level stability for nonlinear measures than for 
band powers (Põld et al., 2021, 2023). In Põld et al. (2023), the relative changes for 
nonlinear measures were of similar magnitude to those observed here, whereas band 
power changes were larger in the present study, especially for TBP and ABP. Notably, 
Põld et al. (2023)directly contrasted two sessions three years apart, whereas the present 
analysis quantified the directly contrasted two sessions three years apart, whereas the 
present analysis quantified the maximal relative deviation from a participant’s annual 
mean; in principle, such deviation-from-mean values should be smaller than two-point 
contrasts. However, with only two observations, the available information is too limited 
to characterize true intra-individual variability. By sampling monthly over a year, the 
current design captures a more realistic range of intra-individual fluctuations. 

As previous literature has only scarcely described temporal stability and even then 
only at the group level, there was no knowledge of how stable EEG measures are at the 
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individual level. The results from Publication III highlighted inter-individual heterogeneity: 
substantial differences in absolute values and in individual ranges. However, most 
participants showed only modest oscillations around their personal mean, especially 
for the nonlinear measures, whereas their band-power values (especially in the 
lower-frequency bands) could vary more widely from month to month. A few individuals 
nevertheless exhibited year-scale fluctuation magnitudes in certain measures that 
matched or even exceeded the group’s cross-sectional distribution (Figure 7), an effect 
more pronounced for band-power measures. This suggests that band power might be 
more susceptible to day-to-day physiological or psychological fluctuations, whereas 
nonlinear dynamics capture more invariant traits of the brain. 

Even with careful control of recording conditions and electrode placement, intrinsic 
physiology and lifestyle still introduce variance: individual differences in hormones, 
neuroanatomy, and brain physiology, as well as sleep, diet, and activity, can modulate 
EEG stability over time (Hoffman & Polich, 1998). In this light, the wide ranges observed 
for subject 4, despite being healthy by self-report, may reflect transient mental-state 
fluctuations or prodromal changes not yet consciously perceived, as psychological states 
and disorders are known to alter EEG patterns, as demonstrated in prior group studies 
(Accardo et al., 1997; Hinrikus et al., 2009; Ahmadlou et al., 2012; Bachmann et al., 2013, 
2018; Mumtaz et al., 2015; Newson & Thiagarajan, 2019). To clarify this, additional 
contextual data for subject 4 (e.g., sleep, stress, medication, and health status) should 
be analyzed to rule out or support reasonable explanations for the unusually high 
variability. Accordingly, identifying whether variability arises from intrinsic traits, 
temporary states, or early pathological processes is essential for tailoring analysis 
strategies and setting person-specific baselines. 

Because EEG is highly individual, the ability to predict each person’s normal variability 
range is essential. Establishing such ranges through numerous recordings at the population 
scale would be prohibitively costly and time-consuming. Although the wider adoption of 
wearable devices may soon provide suitable baseline data, interim approaches are 
needed to estimate the expected variability for EEG measures. This requires identifying 
the individual-level key factors that influence variability in the healthy state and using 
them to construct person-specific variability profiles that separate disorder-related 
change from normal neuropsychological fluctuation. Practical heuristics could be 
developed to flag high variability profiles without prolonged tracking, thereby improving 
efficiency. 

Taken together, Publication III supports three key points. First, nonlinear resting-state 
EEG measures exhibit high trait-like stability, making them suitable to establish person-
specific baselines. Second, nonlinear measures, particularly HFD and pMP, exhibit higher 
intra-individual temporal stability than band powers, reinforcing their suitability as 
anchors for longitudinal monitoring. Third, even when measures are stable on average, 
global thresholds are problematic because both baseline magnitudes and natural 
fluctuation ranges vary substantially between individuals; therefore, person-specific 
reference ranges are required. Notably, pMP combines strong intra-individual stability 
(Publication III) with demonstrated group-level sensitivity (Publication II), supporting 
its potential to be informative for individualized, baseline-referenced monitoring. 
The outcome of Publication III directly addresses the second obstacle identified in the 
Introduction—dispersion across individuals—by showing that, when quantified 
appropriately, intra-individual stability is robust enough to support baseline-referenced 
interpretation. 
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4.4 Sensitivity to Controlled Physiological Perturbation (Publication IV) 
Temporal stability alone is not sufficient for a practical monitoring measure; it must also 
be sensitive to clinically meaningful change in brain state. Therefore, the fourth aim was 
to verify whether EEG measures are sensitive to controlled perturbations in brain 
physiology within an individual. The findings from Publication IV indicate that EEG 
measures that are stable under typical conditions can nevertheless show clear, 
intra-individual deviations when physiology is transiently perturbed by a mild systemic 
stressor, supporting their potential utility for individualized, baseline-referenced 
monitoring. 

Importantly, most self-reported side effects had resolved by day 5, suggesting that at 
this stage the EEG deviations likely reflected physiological processes associated with 
the immune response rather than discomfort or fatigue due solely to side effects. 
The normalization of the EEG by day 12 further indicates that these changes were 
transient, physiologically meaningful perturbations, not random fluctuations. Consistent 
with Publication I, in which HFD demonstrated the capability to capture a wide range of 
disturbances in brain function, HFD also proved sensitive to immune response–related 
changes in this setting. The pattern—modestly reduced TBP and ABP, significantly 
increased higher-frequency content (GBP) and elevated complexity (HFD)—is consistent 
with earlier reports that acute stress and cognitive load are associated with suppressed 
low-frequency power and enhanced beta and gamma activity (Al-Shargie et al., 2016; 
Minguillon et al., 2016; Schlink et al., 2017), as well as increased complexity (Ahmadlou 
et al., 2012; Bachmann et al., 2013; Akar et al., 2015b; Kawe et al., 2019; Čukić, Stokić, 
Radenković, et al., 2020). Although SASI and GBP had narrower reach in terms of 
effectiveness, prior work indicates that theta, beta, and gamma band activity, which is 
combined in SASI, can be sensitive to various stressors (Suhhova et al., 2011; Saifudinova 
et al., 2015; Põld et al., 2018), supporting SASI and GBP as complementary measures for 
detecting stress-related spectral shifts toward higher frequencies. Within this 
framework, increased complexity and a shift toward higher frequencies constitute 
complementary signatures of a transiently perturbed state that normalizes as the 
immune response abates. 

Therefore, the finding in Publication IV provides proof of principle that the same 
measures that are stable over long periods can detect short-lived, physiologically 
relevant changes in a single individual. It also illustrates the importance of contextual 
information: without knowledge of recent vaccination, such deviations could be 
misinterpreted as a clinically concerning change. Any clinical deployment will need to 
integrate EEG-derived measures with details about recent stressors, illnesses, sleep 
patterns, and medication use. 

4.5 From Measure Selection to Baseline-Referenced Monitoring 
Across the four aims, this thesis guides the selection of EEG measures for individualized 
monitoring. The first aim showed that commonly used measures are strongly 
interrelated and partly redundant, but that this structure can be exploited. By mapping 
correlations and defining an effectiveness index, it became possible to identify broadly 
informative anchor measures and more specific, weakly correlated measures that can be 
combined into small, complementary, easy-to-interpret panels instead of large, ad hoc 
feature sets that might be prone to overfitting. 
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The second aim added a mechanistically motivated measure (pMP), which quantifies 
waveform self-similarity with reduced dependence on amplitude. Benchmarking against 
HFD in MDD indicated that pMP can modestly exceed a well-established nonlinear 
reference and yield more spatially uniform group separation, and support the clinical 
relevance of waveform stability as an additional aspect of resting-state EEG alteration. 

The third aim demonstrated that nonlinear single-channel measures—especially HFD 
and pMP—are highly stable within individuals over one year, while both measure values 
and fluctuation ranges differ substantially between individuals, supporting their use as 
anchors for person-specific baselines.  

The fourth aim showed that selected measures remain sensitive to a controlled 
physiological perturbation (vaccination) and return to baseline thereafter, indicating that 
stability under steady conditions can coexist with responsiveness to meaningful change. 

Taken together, these steps show how resting-state EEG measures can be organized, 
enriched, and characterized, enabling a small set of complementary measures to support 
individualized, baseline-referenced monitoring. Potential applications include early 
detection of change, tracking progression or recovery, and evaluating treatment effects 
at the individual level. Further research and validation in clinical populations are needed, 
but the principles and empirical findings laid out here provide a strong foundation for 
the continued development of personalized EEG biomarkers. 

4.6 Limitations 
Some limitations should be noted. First, sample sizes and designs constrain 
generalizability. The cross-sectional studies (n = 80 and n = 66) are adequate for mapping 
inter-measure relationships and demonstrating MDD–control differences, but do not 
support robust stratification by age or sex. The longitudinal study of nine healthy men 
illustrates overall stability trends but does not allow characterization of the population 
distribution of EEG stability profiles or analysis by age and sex. The controlled 
perturbation study examined a short-term perturbation after vaccination, suggesting 
possible sensitivity to change. Still, as a single-subject case study, it cannot establish how 
broadly sensitive these measures are. 

Second, the set of EEG measures was limited and not fully consistent across the  
thesis. Only a subset of potentially informative measures was examined; therefore,  
the conclusions do not span the whole EEG feature space and may be biased toward the 
selected features. In addition, pMP was validated later in the project and is therefore 
absent from the inter-measure correlation and effectiveness mapping in healthy adults, 
as well as from the vaccination case study. Consequently, the position of pMP within the 
broader measure network—including its reach, complementarity, and sensitivity to 
controlled perturbations in brain physiology at the individual level—remains unresolved. 
Future work should therefore employ larger and more diverse samples spanning age  
(He et al., 2021) and sex (Langrová et al., 2012), explicitly model demographic effects, 
and include pMP. Longitudinal designs with controlled perturbations in larger cohorts 
will be needed to jointly characterize long-term stability in health and the generalizable 
sensitivity of these measures to meaningful change. 
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Conclusions 
This thesis demonstrates that resting-state EEG can support individualized brain-state 
monitoring when measures are chosen for stability, complementarity, and sensitivity. 
It also develops and validates a parameter-independent waveform similarity measure 
that is reproducible through robustness and sensitive to MDD.  

The main findings of the thesis are: 

• Common resting-state EEG measures are strongly interrelated and partly
redundant. Mapping correlations among measures showed substantial
informational overlap, but also revealed a structure that allows the construction
of small, complementary panels rather than large, redundant feature sets.

• Nonlinear single-channel measures, especially HFD and pMP, are strong core
candidates for monitoring clinically relevant changes in brain physiology. HFD
emerged as a broadly informative backbone measure, while the newly
introduced pMP modestly exceeded HFD in MDD–control discrimination and
provided more spatially uniform effects across the scalp.

• Nonlinear measures can anchor individualized EEG profiles, showing strong
long-term intra-individual stability; however, both stability (fluctuation range)
and baseline magnitude vary substantially across individuals, reinforcing the
need for person-specific baselines and reference ranges rather than global
thresholds.

• Measures that are stable under steady conditions can still be sensitive to
changes in neurophysiology, showing transient, physiologically meaningful
deviations in response to a controlled systemic stressor (vaccination) and a
subsequent return toward baseline—supporting the principle of stable in
health, responsive to perturbation.

Together, these findings outline a practical pathway to individual-level EEG 
monitoring: build small complementary feature sets that include robust, stable, and 
sensitive measures; establish person-specific baselines and interpret subsequent 
EEG measure values relative to the individual, not population averages. 
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Abstract 
Sensitivity and Individual Temporal Stability of 
Electroencephalography-Based Measures 
Mental health disorders affect over a billion people, yet routine care still lacks objective 
tools to monitor brain dynamics. Electroencephalography (EEG) is attractive for 
longitudinal monitoring because it is low-cost, noninvasive, and offers high temporal 
resolution. Despite extensive research, EEG measures have not been adopted in routine 
psychiatric practice, largely because reported effects are demonstrated at the group 
level and are not validated for individual-level tracking. Two practical obstacles stand 
out: the wide variety of EEG measures remains unorganized, with diverse ad hoc feature 
sets and limited clarity on how measures overlap or complement each other; and there 
is substantial dispersion across individuals, while the normative intra-individual range of 
EEG measures remains uncharacterized. 

The thesis evaluates resting-state EEG measures to guide selection for individualized 
monitoring. It (1) maps interrelationships across commonly used EEG measures to 
support compact, interpretable sets; (2) introduces a mechanistically motivated  
single-channel measure of waveform stability, the in-phase matrix profile (pMP), 
implementable without user-tuned parameters; (3) quantifies long-term intra-individual 
stability, and (4) tests whether stable measures are sensitive to a controlled physiological 
perturbation.  

Across a broad comparison of twelve widely used measures in healthy resting-state 
EEG data (n = 80), substantial overlap was observed, with 56% of pairwise relationships 
showing significant correlation. This structure revealed clear differences in reach: 
Higuchi’s fractal dimension (HFD) acted as a broad-coverage descriptor, strongly 
connected to many other measures and thus suggested as a general-purpose indicator 
of diverse EEG alterations, whereas measures such as the spectral asymmetry index 
(SASI) and gamma band power (GBP) provided narrower, more specific information 
consistent with condition- or stressor-related spectral shifts. These insights motivate 
compact, interpretable panels that combine a broadly informative backbone measure 
with targeted, weakly correlated measures rather than maximal ad hoc feature sets.  

To capture a dimension not directly quantified by standard measures, the thesis 
introduces pMP as a measure of waveform self-similarity after removing amplitude 
differences. In major depressive disorder (MDD; n = 66), both pMP and HFD 
differentiated patients from matched controls, but pMP yielded more spatially uniform 
group separation (significant across all channels after correction) and slightly higher 
single-channel classification accuracy than HFD, supporting the clinical relevance of 
altered waveform stability in resting-state MDD. Longitudinal monthly recordings  
over one year (n = 9) further showed that nonlinear single-channel measures, especially 
HFD and pMP, exhibit high intra-individual temporal stability. In contrast, baseline 
magnitudes and natural fluctuation ranges differ markedly between individuals, making 
global thresholds unreliable and motivating the use of individualized reference ranges. 
Finally, comparison of an individual’s year-long baseline to measure values acquired after 
a controlled systemic stressor (mRNA vaccination; n = 1) demonstrated transient 
deviations in a subset of measures (HFD, SASI, and GBP) followed by return toward 
baseline, illustrating that long-term stability can coexist with responsiveness to 
physiologically meaningful perturbation. 
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Taken together, these findings outline a practical path toward individualized EEG 
monitoring: organize measures into compact panels that combine broad-coverage 
measures (e.g., HFD) with narrow-coverage, condition-sensitive measures (e.g., SASI and 
GBP), and anchor interpretation to person-specific baselines. Although pMP’s 
relationships to the broader EEG measure selection and its responsiveness to immune-
related perturbation were not examined here, its combination of group-level sensitivity 
in MDD and strong intra-individual stability provides a clear rationale to evaluate pMP 
further as a measure of individual-level deviation. 
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Lühikokkuvõte 
Elektroentsefalograafial põhinevate mõõdikute tundlikkus ja 
individuaalne ajaline stabiilsus 
Enam kui miljard inimest kannatab vaimse tervise häire all, samas on aju tervise 
jälgimiseks jätkuvalt vähe objektiivseid mõõdikuid. Elektroentsefalograafia (EEG) on 
selleks sobiv vahend olles suhteliselt odav, mitteinvasiivne ja hea ajalise lahutusvõimega. 
Hoolimata senisest mahukast teadustööst, ei ole EEG mõõdikud psühhiaatriliste haiguste 
hindamisel rutiinsesse kliinilisse kasutusse jõudnud. Peamiseks põhjuseks on enamasti 
ainult grupitasandil saadud tulemused, mis ei ole valideeritud individuaalseks jälgimiseks. 
Indiviiditasandil jälgimise rakendamisel on kaks olulist takistust. Esiteks, lai valik 
organiseerimata EEG mõõdikuid, millest kombineeritakse juhuslikke komplekte 
omamata teadmisi, kuidas mõõdikud üksteist informatsiooniliselt täiendavad või 
katavad. Teiseks, inimeste vahel on märkimisväärne erinevus ning puudub teadmine, mis 
vahemikus on EEG mõõdikute oodatav tavapärane kõikumine ning mil määral need 
vahemikud indiviiditi erinevad. 

Väitekiri hindab puhkeoleku-EEG mõõdikuid, suunamaks tegema sobivaid mõõdikute 
valikuid individuaalseks jälgimiseks. Selleks (1) kaardistatakse tavapäraselt kasutatavate 
EEG mõõdikute omavahelisi seoseid toetamaks kompaktsete ja kergemini 
tõlgendatavate mõõdikukomplektide koostamist; (2) arendatakse ühe kanali andmetel 
rakendatav lainekuju stabiilsuse mõõdik, in-phase matrix profile (pMP), mis ei eelda 
kasutajapoolset parameetrite häälestamist; (3) kirjeldatakse mõõdikute pikaajalist 
stabiilsust indiviidi tasandil ning (4) testitakse, kas stabiilsed mõõdikud reageerivad 
kontrollitud füsioloogilisele häiringule. 

Võrreldes 12 laialdaselt kasutatavat EEG mõõdikut, mida rakendati tervete inimeste 
puhkeolekusignaalidel (n = 80), tuvastati märkimisväärne informatsiooni ülekattuvus: 
56% paarikaupa tehtud võrdlustest olid statistiliselt oluliselt korrelatsioonis. Selline 
struktuur tõi selgelt esile erinevused mõõdikute võimekuses püüda laiemat või kitsamat 
hulka informatsiooni. Higuchi fraktaaldimensioon (HFD) käitus laia katvusega 
mõõdikuna, olles tugevalt seotud paljude teistega ning sobides seetõttu mitmesuguste 
EEG signaalis asetleidvate muutuste üldiseks indikaatoriks. Seevastu näiteks spektraalne 
asümmeetriaindeks (SASI) ja gamma sagedusriba võimsus (GBP) kirjeldasid kitsamat ja 
spetsiifilisemat infot, mis on kooskõlas kindlate seisundite või stressoritega seotud 
spektraalsete nihetega. Need leiud toetavad kompaktsete ja kergemini tõlgendatavate 
mõõdikupaneelide kasutamist, kombineerides laiahaardelisi põhimõõdikuid spetsiifiliste, 
vähese informatsioonilise ülekattega mõõdikutega. 

Käsitlemaks vaatenurka, mida tavapärased EEG mõõdikud ei võimalda, tutvustab 
väitekiri pMP-d kui lainekuju ajalise stabiilsuse mõõdikut, kus amplituudierinevuste mõju 
on minimeeritud. Kliinilise depressiooni (MDD; n = 66) korral eristasid nii pMP kui ka HFD 
kliinilist gruppi samasuguse vanuselise ja soolise koosseisuga kontrollgrupist. Samas pMP 
puhul oli grupieristus statistiliselt oluline kõigis EEG kanalites (HFD-l 43% kanalitest) ning 
veidi kõrgem klassifitseerimistäpsus võrreldes HFD-ga. Saadud tulemused toetavad 
lainekuju stabiilsuse kliinilist olulisust puhkeoleku EEG signaalis MDD puhul. Ühe aasta 
jooksul igakuiselt kogutud korduvsalvestused (n = 9) näitasid lisaks, et mittelineaarsed 
ühe kanali mõõdikud, eriti HFD ja pMP, on indiviidide lõikes ajas tugevalt stabiilsed. 
Samas tulid esile märkimisväärsed erinevused inimeste vahel nii mõõdikute baasväärtuste 
suurusjärkudes kui ka loomulike kõikumisvahemike ulatustes, muutes globaalsed lävendid 



56 

ebausaldusväärseks ja suunates kasutama individuaalseid referentsvahemikke. Olulise 
täiendusena näitas ühe isiku aastase baasväärtuste (referentsvahemik) võrdlus 
salvestustega pärast kontrollitud süsteemset stressorit (mRNA-vaktsineerimine; n = 1), 
et osa mõõdikuid (HFD, SASI ja GBP) kaldusid ajutiselt referentsvahemikust kõrvale, kuid 
naasid hiljem ootuspärasesse vahemikku tagasi. Saadud tulemused näitavad, et 
mõõdikud võivad olla üheaegselt pikaajaliselt stabiilsed ning tundlikud füsioloogiliselt 
tähenduslike häiringute suhtes. 

Kokkuvõttes viitavad tulemused, et individuaalne EEG jälgimine on saavutatav 
järgnevalt: mõõdikud tuleks koondada kompaktsetesse paneelidesse, mis kombineerivad 
laia katvusega mõõdikuid (näiteks HFD) kitsama katvusega, seisunditundlike mõõdikutega 
(näiteks SASI ja GBP), ning saadud tulemusi tuleks tõlgendamisel siduda isikupõhiste 
referentsvahemikega. Kuigi pMP seoseid teiste EEG mõõdikutega ja selle tundlikkust 
immuunreaktsioonist tingitud häiringule käesolevas töös ei hinnatud, annab pMP 
grupitaseme tundlikkus MDD puhul ja tugev individuaalne ajaline stabiilsus selge ajendi 
pMP edasiseks hindamiseks indiviiditasandi kõrvalekallete mõõdikuna. 
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Publication I 
Päeske, L., Uudeberg, T., Hinrikus, H., Lass, J., & Bachmann, M. (2023). Correlation 
between electroencephalographic markers in the healthy brain. Scientific Reports, 13, 
6307. https://doi.org/10.1038/s41598-023-33364-z 
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*

Mental disorders have an increasing tendency and represent the main burden of disease to society today. Accord-
ing to WHO’s recent  report1, nearly 15% of the world’s working population is estimated to experience a mental 
disorder. There is a high demand for effective methods and markers for the early detection and treatment moni-
toring of mental disorders.

Electroencephalography (EEG) is a method for the registration of brain electrical activity using scalp elec-
trodes. The EEG signal is complex, containing information about physiological, emotional, cognitive, and other 
processes occurring simultaneously in a person. The EEG has proved to be an effective tool in neurophysiology 
used in clinical  practice2. EEG markers describe the physiological state of the brain and can reflect the changes 
in brain electrical activity related to mental disorders. EEG markers can detect the objective symptoms of mental 
disorders and contribute significantly to the assessment of stress, depression, anxiety, and others. EEG is a non-
invasive, patient-friendly, and easy-to-apply method that can be implemented in portable and wearable devices 
for regular personal use.

Mental disorders cause only mild alterations in EEG which are difficult to detect. Therefore, parallel to the 
traditional quantitative EEG based on the comparison of powers in different frequency bands of the EEG spec-
trum, different advanced methods have been developed for EEG analyses to detect mental disorders.

EEG signal is complex, stochastic, nonstationary, and nonlinear. This is the reason why the field of possible 
EEG markers used in the detection of mental disorders is so diverse. Different EEG markers can describe vari-
ous features of the  signal3,4. All EEG markers can be divided into three categories depending on the phenomena 
they describe: the traditional EEG frequency band power, the dynamic pattern of the signal in a single-channel 
EEG, or the brain functional connectivity in a multichannel EEG.

The changes caused by mental disorders have been detected by traditional EEG markers based on the powers 
of EEG frequency  bands5–8. The resting state EEG alpha and beta powers increase in depression  groups5–7. The 
EEG alpha power is suggested associated with depression  severity7. In addition to increased band powers, the 
altered inter-hemispheric alpha power  asymmetry5,6 and reduced  coherence5 have been discovered in the same 
depression groups. The review of 184 studies has demonstrated that differences in EEG frequency bands powers 
are evident for many psychiatric disorders including depression, attention deficit-hyperactivity disorder, autism, 
addiction, bipolar disorder, anxiety, panic disorder, post-traumatic stress disorder, obsessive compulsive disorder 
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and  schizophrenia8. The power changes within specific frequency bands are not unique to one disorder but show 
overlap across disorders as well as variability within  disorders8.

The various nonlinear and dynamic features of the signal in depression and other disorders can be described 
using more advanced EEG markers such as fractality, complexity, and frequency  balance9–15. Detrended fluctua-
tion analysis (DFA) shows higher values for depressed  patients9 and also improves the diagnostic accuracy of 
Alzheimer’s  disease10. The Lempel–Ziv complexity (LZC) has indicated higher scores in both, schizophrenia and 
 depression11. Higuchi’s fractal dimension (HFD) has demonstrated good differentiation between the groups of 
depressive and healthy  subjects12–14. The spectral asymmetry index (SASI) increases in the depressive  group14,15 
and is correlated with Hamilton Depressive Rating Scale for indoor  patients15. The combination of nonlinear 
markers HFD, DFA, correlation dimension, and Lyapunov exponent markers provides a classification accuracy 
of depression of 90% which is higher than the classification accuracy for the linear EEG band powers markers 
76.6%13. Different combinations of EEG linear (SASI, alpha power variability, relative gamma power) and non-
linear markers (HFD, DFA, LZC) have demonstrated rather close accuracies of classification for both, 0.88% for 
linear and 0.85% for nonlinear  markers14.

The functionality of the brain, the coordination of neuronal activity in different brain areas, can be described 
by analyzing the connectivity between signals in different EEG  channels16–20. Brain functional connectivity and 
EEG coherence increase in major  depression16–18. The phase-sensitive markers, the imaginary part of coherence 
and synchronization, significantly contribute to the discrimination of  depression19,20.

Despite reflecting various features in brain physiology, different EEG markers have indicated similar results 
in detecting mental disorders. EEG band power, Higuchi’s fractal dimension, Lempel–Ziv complexity, spectral 
asymmetry, and others have indicated quite a close accuracy in the evaluation of  depression13,14,21. Based on these 
findings, two possible explanations can be proposed. First, the disorder causes different physiological changes 
reflected by the different features of the EEG signal and each marker detects a specific EEG feature. Second, the 
different EEG markers reveal the same EEG features and similar declinations in brain functioning.

Whereas the mild alterations in the EEG signal caused by mental disorders are hidden in the natural vari-
ability of the signal, the selection of appropriate markers revealing mental disorders is highly important. The 
selected EEG markers serve as the input data for classification algorithms. The classification accuracy depends 
strongly on the selection of the appropriate markers and not so much on the applied classification  algorithms22,23. 
Therefore, the reasonable selection of EEG markers is especially important.

Only a few publications have been aimed to compare the effectiveness of different EEG  markers13,14,22. The 
correlation between the EEG signals in different channels has been  investigated23,24. To the best of our knowledge, 
the evaluation of the correlation between the markers and the independence between the information achieved 
from different markers has not been performed.

The current study is aimed to investigate the hypothesis that different EEG markers reveal partly the same 
EEG features and so provide overlapping information about the state of the brain.

To assess the hypothesis, the correlation between different EEG markers indicating various features of the 
signal is investigated. Some most frequently used EEG markers from band power, dynamics, and functional 
connectivity categories are selected for investigation, four from each category.

The band power markers describe the power of the signal inside the fixed EEG frequency bands and are not 
sensitive to the pattern of the signal. Theta band power (TBP), alpha band power (ABP), beta band power (BBP), 
and gamma band power (GBP) are selected for analyses in the first category.

The dynamics markers describe the pattern and the complexity of the signal. The four selected single-channel 
EEG dynamics markers describe various aspects of the complexity of the EEG signal. Higuchi’s fractal dimen-
sion (HFD) describes the self-similarity of the  signal25. Detrended fluctuations analysis (DFA) describes the 
self-correlation of the signal and determines the self-affinity of the EEG  signal26, while Lempel–Ziv  complexity27 
(LZC) describes the randomness of the signal. The spectral asymmetry  index12 (SASI) describes the balance of 
low-frequency and high-frequency oscillations in the signal.

Functional connectivity markers describe the connectivity between different brain areas using multichan-
nel data. Magnitude-squared  coherence28 (MSC) describes the intensity of coherence between two signals. The 
imaginary part of  coherency29 (ImC) characterizes phase relationships in the coherence between two complex 
 signals29. Synchronization  likelihood30 (SL) describes dynamical interdependencies between two signals. Mutual 
 information31 (MI) describes the coherence of the information between two signals and can be considered a 
spatial analog of entropy.

The selection of markers considers linear (TBP, ABP, BBP, GBP, SASI, MSC, ImC) and nonlinear (HFD, 
DFA, LZC, SL, MI) EEG properties. The markers calculated in the time domain (HFD, DFA, LZC, SL, MI) and 
frequency domain (TBP, ABP, BBP, GBP, SASI, MSC, ImC) are included. The selection of functional connectiv-
ity markers is balanced between the phase-sensitive (ImC, SL) and phase-insensitive (MSC and MI) markers.

The study is planned in a way to minimize the impact of external factors and possible inter-subject variability 
due to the individual responses to a disorder on the EEG signals. The resting state eyes closed EEG of healthy 
people is analyzed in the study.

The group of 80 volunteers, 38 (47.5%) female, and 42 (52.5%) male was selected for investigation. 
Their age varied from 19 to 75 years, with a mean age of 37 ± 15 years. They declared no mental or psychiatric 
disorders, epilepsy, brain injuries, or usage of narcotics or psychotropic medications. All the selected subjects 
were considered as healthy. The subjects were asked to abstain from alcohol for 24 h and from coffee two hours 
before the EEG recordings.
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The study was conducted following the Declaration of Helsinki and was approved by the Tallinn Medical 
Research Ethics Committee. Before participating in the study, each subject signed informed consent.

The Neuroscan Synamps2 acquisition system (Compumedics, NC, United States) was 
used for EEG recordings. Electrodes were placed according to the extended international 10–20 system. The 
signals were recorded from 30 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, 
T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2) using linked mastoids as reference. During record-
ings, eye movements were monitored using horizontal and vertical electrooculograms. Electrodes impedances 
were lower than 10 kΩ.

All EEG recordings were performed in the morning before noon. The resting state eyes closed EEG was 
recorded for 6 min. During recordings, the subjects were in lying positions in a shielded and dimly lit room. 
Earplugs were used to minimize external sounds.

The raw EEG was recorded in the frequency band 0.5–200 Hz at the sampling frequency of 1000 Hz.

The raw EEG signals were filtered into frequency band 1–45 Hz using a Butterworth 
filter.

To reduce the computing time, the signals were down-sampled to 200 Hz and recalculated to REST reference 
as preferable in EEG  analyses32,33. The signals were divided into 20.48-s (4096 sample) segments. An experienced 
EEG specialist carefully inspected all segments and removed the segments with artifacts (ocular, muscular, or 
others). The first 10 artifact-free segments were used for further analysis. The signals were preprocessed using 
MATLAB (The Mathworks, Inc.).

Calculation of band power markers. First, the power spectral density (PSD) of the recorded 
EEG signal was calculated using the Welsh’s averaged periodogram method. The signal was divided into 50% 
overlapping sections and windowed by the Hanning window. Second, the markers were calculated as the mean 
of PSD over the frequencies within the fixed frequency bands TBP 4–7 Hz, ABP 8–12 Hz, BBP 13–30 Hz, and 
GBP 31–45 Hz.

Calculation of dynamics markers. The nonlinear dynamics markers (HFD, DFA, and LZC) were calculated in 
the time domain. Calculations were performed for ten 20.48-s segments. A nonlinear marker was determined 
as the mean value of the calculations’ results over ten segments. The HFD was calculated according to Higuchi’s 
original  algorithm25 at kmax =  814,34. DFA was calculated according to the published by Peng et al.  algorithms26 
applying the adaptation to EEG described by Bachmann et al.14. The calculation of LZC was performed based on 
the principles and algorithms published by Lempel and  Ziv27 and Zhang et al.29 using the adjustment performed 
by Bachmann et al.14. SASI was calculated in the frequency domain summarizing PSD over the lower and higher 
EEG frequency bands and excluding the central alpha band from  calculations15.

Calculation of functional connectivity markers. SL was calculated in the time domain following the detailed 
explanation of the method by the authors Stam and Van  Dijk30, while the parameters were set as in Päeske et al.34, 
as such parameters ensure that the time–frequency characteristics of the signals are fully considered. MI was 
calculated using the algorithm derived by Frazer and  Swinney31 following the method of the calculation for EEG 
signals published by Ibáñez-Molina and  others35. MSC and ImC were calculated in the frequency domain, the 
algorithms were applied as described by Päeske et al.36.

The calculations of markers were done in MATLAB (The Mathworks, Inc.).

All EEG band power and dynamic markers were calculated for all EEG channels for each subject. 
All functional connectivity markers were calculated between 30 channels, in total 435 combinations were per-
formed per marker for a subject. The averaged over all EEG channels values for a subject were used for statistical 
evaluation.

The null hypothesis for the difference between the values of markers was tested using the Wilkinson test. In 
total, (12 × 12–12)/2 = 66 comparisons between the pairs of 12 markers were performed on the same EEG data-
base. The adjustment to multiple comparisons was done using Bonferroni correction. The corrected confidence 
level p < 0.05/66 = 0.00076 was considered statistically significant.

The correlation between different EEG markers was assessed using the Spearman correlation coefficients. The 
null hypothesis for correlation coefficients was tested using t-test. The probability that the correlation between 
markers of two different categories is zero, decreases with the increase in the number of pairs n and the value 
of the correlation coefficient r. At the fixed number of pairs n = 80, the p score reaches the level of statistical 
significance p < 0.00076 at the value of the correlation coefficient |r|> 0.37.

The nature of the EEG markers differs in different categories. Therefore, the results are presented separately in 
each of the markers’ categories followed by inter-categories correlations results.

Wilkinson’s test indicated that the calculated values of different band power markers 
are mutually statistically significant (p < 0.00076) in all combinations except TBP and BBP (p = 0.03).

The graphs in Fig. 1 present the correlations between the EEG band power markers. The calculated Spear-
man correlation coefficients and t-test p-values are indicated. The correlation is statistically significant between 
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the markers of closer frequency bands TBP and ABP (r = 0.87), ABP and BBP (r = 0.80), whereas the correlation 
is somewhat less between TBP and BBP (r = 0.75) and insignificant between ABP and GBP (r = 0.34) as well as 
between TBP and GBP (r = 0.3). This finding may be related to the overlapping physiological processes in close 
frequency bands.

Four of six (66.7%) combinations between the band power markers indicate statistically significant 
correlations.

Wilkinson’s test shows that the calculated values of all dynamics markers differ signifi-
cantly in all combinations (p < 0.00076).

Figure 1.  Correlation between various band power markers: TBP and ABP, TBP and BBP, TBP and GBP, ABP 
and BBP, ABP and GBP, BBP and GBP. The calculated Spearman correlation coefficients r between the markers 
and corresponding p-values are indicated (n = 80). The p < 0.00076 (|r|> 0.37) indicates statistical significance.
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Figure 2 presents correlations between different dynamics markers. The calculated Spearman correlation 
coefficients and t-test p-values are indicated. HFD has a significant correlation with all other markers, maximal 
with DFA (r = 0.64), a little lower with SASI (r = 0.59), and with LZC (r = 0.52). The correlations between the 
other markers DFA, LZC, and SASI are not statistically significant. This finding supports the idea that HFD can 
incorporate partly the same EEG features as the DFA, LCZ, and SASI do. The other markers DFA, LZC, and SASI 
do not reveal mutually similar EEG features.

Three of six (50%) combinations between the dynamic markers indicate statistically significant correlations.

Wilkinson’s test indicated that the calculated values of functional con-
nectivity markers are statistically significant (p < 0.00076) in all combinations except SL and MI (p = 0. 297).

Figure 2.  Correlation between various dynamics markers: HFD and DFA, HFD and LZC, HFD and SASI, 
DFA and LCZ, DFA and SASI, LZC and SASI. The calculated Spearman correlation coefficients r between 
the markers and corresponding p-values are indicated (n = 80). The p < 0.00076 (|r|> 0.37) indicates statistical 
significance.
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Figure 3 presents the correlations between functional connectivity markers. The calculated Spearman cor-
relation coefficients and t-test p-values are indicated. SL has a significant correlation with all other markers, the 
correlation coefficient between SL and MI is 0.77, between SL and ImC 0.7, and between SL and MSC 0.57. The 
expected correlation is between MSC and ImC (r = 0.64). Weaker but still significant is the correlation between 
ImC and MI (r = 0.41). This finding suggests that the various brain functional connectivity behaviors are mutu-
ally correlated and corresponding EEG features can be revealed by different markers.

Five of six (83.3%) combinations between the functional connectivity markers indicate a statistically signifi-
cant correlation.

Figure 3.  Correlation between various functional connectivity markers: MSC and ImC, MSC and SL, MSC 
and MI, ImC and SL, ImC and MI, SL and MI. The calculated Spearman correlation coefficients r between 
the markers and corresponding p-values are indicated (n = 80). The p < 0.00076 (|r|> 0.37) indicates statistical 
significance.
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Table  1 presents the calculated Spearman correlation coefficients 
between the EEG band power markers, dynamic markers, and functional connectivity markers and correspond-
ing t-test p-values. The data in the table show that the correlation between the markers of different categories is 
not weaker than between the markers of the same category. The dynamic markers are negatively correlated with 
the band power markers (except GBP) and functional connectivity markers.

The assessment of the correlations between EEG signal frequency band power, dynamics, and functional con-
nectivity markers demonstrates that a statistically significant correlation is evident in 37 of 66 (56%) comparisons 
performed between 12 markers. HFD and SL are correlated with 9, MI and ABP with 8, TBP, BBP, and ImC with 
7, DFA with 6, LZC and SASI with 4, and GBP and MSC only with 2 other markers. The level of correlation varies 
from 0.97 (between ABP and MI) to 0.38 (between LCZ and ImC, and GBP and SASI).

The results of the performed study support the hypotheses that different EEG markers reveal partly the same 
EEG features. The assessment of the correlations between band power, dynamics, and functional connectivity 
markers demonstrates that despite the values of the markers being statistically different, a statistically significant 
correlation is evident in 56%, (in 37 from 66) of the combinations between 12 markers.

Mental disorders can cause very different unpredictable alterations in the EEG signal varying in individu-
als. For early detection of mental disorders, a marker is required to be able to reveal a wide scale of possible 

Table 1.  The calculated Spearman correlation coefficients r between the pairs (n = 80) of different markers and 
corresponding p-values estimated by t-test. The p < 0.00076 (|r|> 0.37) indicates statistical significance.

Marker HFD DFA LZC SASI TBP ABP BBP GBP MSC ImC SL MI
HFD
 r 0.64 0.52 0.59 − 0.77 − 0.85 − 0.52 0.11 − 0.35 − 0.42 − 0.68 − 0.85
 p 0.00E+00 1.10E-06 1.18E-08 0.00E+00 0.00E+00 1.10E-06 3.20E-01 1.77E-03 1.17E-04 0.00E+00 0.00E+00
DFA
  r 0.64 0.23 0.06 − 0.72 -0.83 − 0.77 − 0.35 − 0.23 − 0.38 − 0.67 − 0.82
 p 0.00E+00 3.81E-02 5.84E-01 0.00E+00 0.00E+00 0.00E+00 1.44E-03 4.42E-02 5.83E-04 0.00E+00 0.00E+00
LZC
 r 0.52 0.23 0.28 − 0.29 − 0.39 − 0.02 0.10 − 0.21 − 0.38 − 0.42 − 0.34
 p 1.10E-06 3.81E-02 1.33E-02 9.11E-03 4.58E-04 8.93E-01 3.63E-01 5.96E-02 5.97E-04 1.42E-04 2.25E-03
SASI
 r 0.59 0.06 0.28 − 0.51 − 0.29 − 0.08 0.38 − 0.06 − 0.05 − 0.09 − 0.36
 p 1.18E-08 5.84E-01 1.33E-02 2.33E-06 9.08E-03 5.05E-01 5.86E-04 6.00E-01 6.83E-01 4.05E-01 1.02E-03
TBP
 r − 0.77 − 0.72 -0.29 -0.51 0.87 0.75 0.30 0.11 0.24 0.56 0.91
 p 0.00E+00 0.00E+00 9.11E-03 2.33E-06 0.00E+00 0.00E+00 7.37E-03 3.24E-01 2.90E-02 1.21E-07 0.00E+00
ABP
 r − 0.85 − 0.83 -0.39 -0.29 0.87 0.80 0.34 0.23 0.39 0.75 0.97
 p 0.00E+00 0.00E+00 4.58E-04 9.08E-03 0.00E+00 0.00E+00 2.15E-03 3.85E-02 4.05E-04 0.00E+00 0.00E+00
BBP
 r − 0.52 − 0.77 -0.02 -0.06 0.75 0.80 0.55 0.12 0.18 0.49 0.81
 p 1.10E-06 0.00E+00 8.93E-01 5.05E-01 0.00E+00 0.00E+00 1.96E-07 2.90E-01 1.07E-01 4.74E-06 0.00E+00
GBP
 r 0.11 − 0.35 0.10 0.38 0.30 0.34 0.55 -0.25 -0.04 0.19 0.30
 p 3.20E-01 1.44E-03 3.63E-01 5.86E-04 7.37E-03 2.15E-03 1.96E-07 2.42E-02 7.18E-01 9.82E-02 7.83E-03
MSC
 r − 0.35 − 0.23 − 0.21 − 0.06 0.11 0.23 0.12 − 0.25 0.64 0.57 0.28
 p 1.77E-03 4.42E-02 5.96E-02 6.00E-01 3.24E-01 3.85E-02 2.90E-01 2.42E-02 0.00E+00 8.13E-08 1.15E-02
ImC
 r − 0.42 -0.38 − 0.38 − 0.05 0.24 0.39 0.18 − 0.04 0.64 0.70 0.41
 p 1.17E-04 5.83E-04 5.97E-04 6.83E-01 2.90E-02 4.05E-04 1.07E-01 7.18E-01 0.00E+00 0.00E+00 1.50E-04
SL
 r − 0.68 − 0.67 − 0.42 − 0.09 0.56 0.75 0.49 0.19 0.57 0.70 0.77
 p 0.00E+00 0.00E+00 1.42E-04 4.05E-01 1.21E-07 0.00E+00 4.74E-06 9.82E-02 8.13E-08 0.00E+00 0.00E+00
MI
 r − 0.85 − 0.82 -0.34 − 0.36 0.91 0.97 0.81 0.30 0.28 0.41 0.77
 p 0.00E+00 0.00E+00 2.25E-03 1.02E-03 0.00E+00 0.00E+00 0.00E+00 7.83E-03 1.15E-02 1.50E-04 0.00E+00
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symptoms. The ability of a marker to reveal disorders is based on both, the wide scale of EEG features incor-
porated by the markers determined by the number of correlated markers and the strengths of the correlations. 
A quantitative evaluation of different markers can be useful to compare their potential to reveal a wide scale 
of symptoms characteristic of various mental disorders. Therefore, an indicator describing the effectiveness of 
markers is used. The effectiveness of a marker Ei can be estimated as the product of the number of markers Ni 
correlated with marker i and the average value of the corresponding correlation coefficients Ri.

Figure 4 presents the effectiveness of each discussed in the current study markers. According to the graphs, 
the markers can be divided into three groups. The first group, HFD, SL, MI, and ABP, contains the markers 
expected to incorporate a wide scale of EEG features. The second group of markers DFA, TBP, BBP, and ImC 
covers a more specific part of EEG features. The markers GBP, MSC, LZC, and SASI from the third group can be 
useful for the detection of only a specific EEG feature. All the groups contain markers from all categories, band 
power, dynamics, and functional connectivity.

To provide a high-quality classification, the reasonable selection is an EEG marker from the first group cor-
related with many others and so incorporating very different features of the signal. The dynamic marker HFD 
is the marker of the highest effectiveness and is expected to incorporate a maximal part of the information 
from the EEG signal. This conclusion is supported by many studies where HFD has been successfully used for 
the detection of small alterations in EEG related to different factors such as depression, anxiety, or microwave 
 radiation22,37–40. The traditional EEG band power marker ABP is the most commonly used band power marker 
which has shown good sensitivity in various  applications2,4,6,7.

Two functional connectivity markers in the first group SL and MI demonstrate that both, phase relations and 
power are important in brain functional connectivity.

The marker from the second group DFA has demonstrated high classification accuracy for  depression13,14. 
DFA combined with alpha band improved the classification accuracy of Alzheimer’s  disease10. The combination 
of ImC and cluster-span threshold has been reported optimal in graph theory analyses of  depression20.

In addition, a second marker from the third group uncorrelated with the first one (e.g. GBP or LZC) can be 
useful, containing information about the features not incorporated in the first marker. This suggestion is sup-
ported by the analyses of depression EEG where the combinations of HFD and less correlated LZC lead to better 
classification accuracy compared to the combination of HFD and more correlated  DFA15.

The effectiveness of GBP is low due to a very low level of gamma-band power in the EEG signal (less than 4% 
of total EEG power according to the scales in Fig. 1). Gamma-band power is not able to affect much the main 
features of the signal and the other markers. However, the information in GBP is independent of that in other 
markers and can add a noticeable contribution to the quality of classification in combination with other markers 
when used as an additional marker in  classification15.

Table 1 shows that the correlation between the markers of different categories and different nature is not lower 
than the correlation between markers of the same category and similar nature. The correlation similar level of 
inter- and intra-categories correlations shows that the impact of the signal properties in the correlation between 
markers is not lower than the impact of the nature of the markers.

Today, no sufficient knowledge about brain functioning is available to explain the result of the study. Only 
some interesting trends in the relationships between the markers can be outlined.

There is a possibility that a high correlation of ABP with many other markers can be related to the higher 
power in the alpha band compared to other bands. The strength of the correlation of MI with band power markers 
follows the level of the power: 0.97 with ABP, 0.91 with TBP, 0.81 with BBP, and 0.30 with GBP. The strength of 
the correlation between SL and band powers shows the same trend. Such a trend agrees with the low effective-
ness and correlation of GBP due to the low level of gamma band power. Despite that, gamma oscillations contain 
useful information and have been shown as a promising biomarker of  depression41.

Interestingly, the correlation between the real and imaginal parts of coherence MSC and ImC 0.64 is lower 
than the correlation between two phase-sensitive markers ImC and SL 0.7. Such a trend supports the idea that the 
markers of similar signal property, phase, are more strongly correlated than the markers of different properties, 

Figure 4.  The effectiveness E of the EEG markers in detecting a wide spectrum of different EEG features. 
E = NR, where N is the number of markers correlated with the indicated marker and R is the average value of the 
corresponding correlation coefficients.
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phase and power. However, no specific general trends between linear or nonlinear markers calculated in fre-
quency or time domain become evident.

The dynamic markers indicate a negative correlation with all band power markers (except GBP) and all func-
tional connectivity markers. Fractal dimensions and other dynamic markers are scale-invariant and, in principle, 
independent of signal level. Their correlation with band power markers should be explained by processes other 
than dependence on the level of the signal. The decreasing of dynamics with an increase in connectivity is pos-
sible, but the mechanisms behind that are unknown.

The presented in Figs. 1, 2 and 3 and Table 1 results demonstrate that the two-channel functional connectivity 
markers are more strongly correlated than the single-channel band power or dynamics markers. The stronger 
correlation between the two-channel markers is a rather unforeseen result because the possible chaotic instabili-
ties in two channels are stronger than in one. For example, the temporal stability of two-channel markers has 
been reported lower compared to single-channel  markers42.

The results of the current study suggest that the HFD incorporating many various features of the signal is the 
best choice for EEG analysis to reveal signal features characteristic of early-stage mental disorders. The reported 
result may have a more general significance because the same markers can be used for signals other than EEG 
in several other applications.

The current study proves for the first time the correlation between different EEG markers. The difficulties in 
interpretation of the characteristic trends in the correlation between the markers underline the need for further 
investigations on the topic to get new knowledge about brain functioning and the relationship with EEG.

There are several limitations in the study. The limitations are partly related to the concentration of the study on 
the evaluation of raised hypotheses,

The number of participants is limited due to the limitations in the volume of the study. The number is suf-
ficient to provide the reliability of statistical evaluation for the whole. But this is insufficient for splitting subjects 
into smaller subgroups (male–female, old-young, etc.) because statistical comparisons become unreliable.

The results can be affected by factors other than the mental state of the brain. The possible impacts of 
gender and age are not considered. The possible dependencies of correlation on gender and age need further 
investigation.

The possible variations of the correlation in different brain areas and EEG channels are not discussed. Depres-
sion, and most likely other mental disorders, affect EEG signal in all brain  areas9,43. Despite that, the correlation 
between markers can differ in different brain areas and channels. This problem needs future investigations.

Not all markers used by various researchers for the detection of symptoms of mental disorders have been 
discussed in the study. The selection of markers has been limited by the volume of the study. The interpretable 
makers describing different features of the brain activity used in more than one study have been preferred. Addi-
tional investigations on the correlation for the markers of interest can be performed in the future.

Data are available upon request from the corresponding author.
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Individual stability of single-
channel EEG measures over one 
year in healthy adults
Tuuli Uudeberg , Laura Päeske , Hiie Hinrikus , Jaanus Lass , Toomas Põld  & 
Maie Bachmann

The clinical applicability of electroencephalography (EEG) relies on the reliability and temporal 
stability of its measures. While the reliability of linear EEG measures is well established, the long-
term stability of both linear and nonlinear measures at the individual level, as well as interindividual 
variability, remains underexplored. This study evaluated the one-year stability of EEG absolute 
band powers (theta, alpha, beta, and gamma) and nonlinear measures (Higuchi’s fractal dimension, 

regions and gamma power demonstrated lower reliability in peripheral sites. At the individual level, 
nonlinear measures showed greater temporal stability than EEG band powers. Although a few 

their potential for developing personalized EEG-based neural biomarkers. They also highlight the 
importance of estimating expected individual variability when designing individualized monitoring 
approaches, as high reliability at the group level does not preclude substantial within-subject 
variability in some cases.

Mental health disorders affect nearly one billion individuals worldwide, with anxiety and unipolar depression 
being among the most prevalent conditions, impacting approximately 580  million people1. Mental health 
conditions constitute a leading cause of disability, and the COVID-19 pandemic further exacerbated their global 
burden, leading to a 25% increase in anxiety and depression cases due to social isolation, financial distress, and 
health-related concerns1. Despite their prevalence, mental disorders remain significantly undertreated, with 75% 
of individuals in low- and middle-income countries receiving no treatment due to resource limitations, stigma, 
and systemic barriers1,2. Furthermore, the diagnosis and treatment of mental health disorders remain largely 
subjective, relying on clinical interviews and self-report questionnaires. These methods introduce variability 
due to the respondents’ willingness and ability to comprehend and answer questions, clinicians’ expertise, and 
sociocultural factors, resulting in frequent misdiagnosis and inadequate treatment access2.

Changes in mental health are reflected in alterations in brain activity. Electroencephalography (EEG) is an 
effective complementary method to traditional clinical assessments for evaluating mental health, offering an 
objective and cost-effective tool for capturing electrical activity generated by cortical neurons near the scalp. 
EEG provides quantifiable measures that can aid in early diagnosis, track disease progression, and evaluate 
treatment efficacy3. EEG’s affordability, high temporal resolution, and non-invasive nature make it a valuable 
tool for investigating brain dynamics in both clinical and healthy populations. Over the decades, EEG has been 
widely utilized, leading to the development and adoption of various methods to compute different EEG measures 
for studying cognitive functions and neurological disorders4–12.

EEG linear and nonlinear measures
Traditional EEG analysis relies on spectral band power measures, which provide essential insights into brain 
dynamics by quantifying neural oscillations across different frequency bands. EEG frequency bands are linked to 
distinct cognitive and physiological processes, with delta (0.5–4 Hz) associated with deep sleep, theta (4–8 Hz) 
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with memory and drowsiness, alpha (8–13 Hz) with relaxation and attentional control, beta (13–30 Hz) with 
active thinking and motor planning, and gamma (> 30  Hz) with higher-order cognitive functions such as 
perception and consciousness3. While band power and other linear measures have been extensively studied, they 
do not fully account for the dynamic and complex nature of neural activity3. As the brain operates as a nonlinear 
system, nonlinear EEG measures have been developed or adapted from other domains to capture its self-
organizing dynamics better. These methods provide additional information to linear measures by quantifying 
irregularity, complexity, and long-range temporal dependencies in neural signals. Probably the most used 
complexity measures are fractal dimensions. Higuchi’s fractal dimension (HFD) estimates the self-similarity 
of EEG signals, reflecting neural complexity, and has been applied to many different areas of neurological and 
mental health research6,8,12–16. Detrended fluctuation analysis (DFA) measures long-range temporal correlations 
(LRTC)17,18 and has also been successfully applied in EEG studies4,7,10 as well as Lempel–Ziv complexity (LZC) 
that measures the number of new patterns in a time series19,20. A more recent method, the in-phase Matrix 
Profile (pMP), has been introduced to identify repeating patterns in EEG signals12. The in-phase Matrix Profile 
adapts the fast Matrix Profile similarity-search algorithm21 to EEG by comparing fixed-length, phase-aligned 
subsegments by calculating Euclidean distances, yielding a parameter-free index of segment-to-segment self-
similarity in the time domain. Its first EEG application outperformed HFD in distinguishing patients with 
major depressive disorder from healthy controls, underscoring the method’s diagnostic potential12. Bachmann 
et al.8 demonstrated that combining linear and nonlinear EEG measures improves classification accuracy when 
distinguishing depressed individuals from healthy controls, reinforcing the potential utility of these measures 
in clinical applications. Although some nonlinear EEG methods have been used for decades, their potential 
still remains underexplored compared to traditional spectral approaches. Given that nonlinear methods align 
more closely with the brain’s intrinsic dynamics, richer information about neural function and dysfunction is 
expected.

For the present single-channel resting-state design, we restricted the nonlinear feature set to four time-domain 
measures (HFD, DFA, LZC, and pMP) because together they span scale-free complexity, long-range temporal 
correlations, algorithmic irregularity, and segment-to-segment in-phase self-similarity while requiring little or 
no parameter tuning. Entropy-based alternatives (e.g., sample or permutation entropy) were not included, as 
their reliability depends strongly on embedding and tolerance parameters and on longer stationary epochs, 
which can hamper longitudinal comparability22–24.

For EEG measures to be effectively utilized in clinical and research applications, they must demonstrate high 
reliability and temporal stability. Establishing temporal stability in EEG measures is essential to distinguish 
genuine brain-state-related neural changes from intrinsic EEG variability. Stable EEG measures enhance the 
validity and interpretability of findings, thereby improving clinical decision-making and advancing scientific 
understanding of brain function and disorders.

The reliability of linear EEG measures, particularly power in standard frequency bands, has been well 
studied, with early studies confirming the reliability and stability of power across different frequency bands25–27. 
More recent investigations have expanded on these findings by examining the reliability of additional linear 
measures28–31. However, considerably less research has focused on the reliability and stability of nonlinear EEG 
measures. Only a few studies have included them in their analyses15,16,32,33. The available evidence suggests that 
nonlinear measures exhibit either lower reliability than traditional EEG band power measures32,33 or a level of 
reliability comparable to linear measures15, indicating that these measures may capture aspects of EEG dynamics 
not reflected in the power of traditional frequency bands.

Gudmundsson et al.33 investigated the stability of quantitative EEG measures in 15 healthy elderly 
individuals over two months (19 EEG recordings per participant). Their findings indicated that band power 
measures demonstrated the highest reliability, with mean ICCs of 0.77 for absolute power and 0.80 for relative 
power across eight channels and all frequency bands. Complexity-based measures such as LZC exhibited lower 
reliability (ICC = 0.70), while coherence measures were the least stable, with their reliability strongly dependent 
on channel location.

Põld et al.15 conducted a three-year test–retest study on 17 healthy participants, reporting that relative power 
measures exhibited reliability comparable to nonlinear measures such as HFD and DFA. The highest reliability 
was observed for relative alpha power (mean ICC = 0.87 across 18 channels). Although ICCs for EEG frequency 
bands and nonlinear measures were comparable, the nonlinear measures demonstrated greater temporal stability 
at the group level, as reflected by smaller relative differences between the two recordings. Lord & Allen16 studied 
306 subjects, including controls and individuals with a history or current episode of depression, and found 
high internal consistency for HFD and sample entropy within single sessions, as well as high reliability across 
multiple days (ICCs for HFD ranging between 0.64 and 0.86 across different channels in eight recording sessions 
conducted over four days within two weeks).

Despite these contributions, existing studies provide limited understanding of EEG temporal stability 
at the individual level. Many studies employ test–retest designs with only a few EEG recordings per 
participant15,26–28,30–32, while others cover short observation periods of up to two months16,33. While these studies 
offer valuable insights into EEG stability, they do not consider the characteristics of individual participants.

Numerous studies have successfully distinguished between a control group and a group with mental disorders 
using both linear and nonlinear EEG measures8–12. However, although these group-level results are promising, 
a measure that separates diagnostic groups may still reveal little about within-person EEG variability and thus 
may not capture clinically meaningful deviations in an individual over time.
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Brain activity patterns are expected to exhibit strong individual specificity34, and EEG signals have been 
suggested to function as a unique neural fingerprint35,36. However, for EEG measures to be effective in detecting 
neural changes within individuals, it is essential first to establish their normal variability in a healthy state, 
as this variability is expected to differ from individual to individual. Without a clear understanding of this 
baseline variability, it remains difficult to determine whether a new measurement reflects normal fluctuations 
or a deviation indicative of altered brain function. Detecting such deviations assumes that EEG measures 
remain relatively stable within an individual under normal conditions. At the same time, excessive fluctuations 
may either lead to misinterpreting normal variability as pathological or cause true pathological changes to go 
unnoticed, thereby undermining the applicability of an EEG measure.

Although interest in individualized EEG analysis is increasing, longitudinal studies examining EEG stability 
at the individual level over extended periods remain limited. Previously, we conducted a single-participant 
case study evaluating EEG-based individual measures over 15 sessions spanning 14 months37. While this 
study provided valuable insights into the long-term stability of linear and nonlinear measures, inter-individual 
differences cannot be assessed based on a single subject. More extensive studies are needed to establish individual 
variability in the healthy state by determining the extent to which EEG measures remain stable within individuals 
over months or years.

The lack of longitudinal research at the individual level is a significant barrier to the clinical application 
of EEG. While EEG measures may exhibit high test–retest reliability and temporal stability, their long-term 
stability at the individual level remains largely unexamined. A dependable clinical measure should achieve an 
optimal balance between long-term stability, ensuring consistency across repeated measurements under similar 
conditions, and sensitivity to meaningful physiological changes over time. Understanding these dynamics of 
EEG variability is critical for both clinical and research applications, ensuring that EEG-based measures are 
applicable, interpretable, and reliable for individual-level diagnostics and monitoring.

Study objectives
The aim of this study is to examine the temporal stability of single-channel EEG measures at the individual 
level over one year, based on repeated monthly recordings. While previous research has primarily addressed 
short-term test–retest reliability or group-level comparisons, this study focuses on individual consistency and 
variation over time in healthy adults. We assess both linear EEG measures (absolute power in theta, alpha, beta, 
and gamma frequency bands) and nonlinear measures (HFD, LZC, DFA, and pMP), evaluating their person-
specific variability. Based on this framework, we formulate two hypotheses: (1) Although EEG measures differ 
between individuals, they remain temporally stable within the same person over one year. (2) Nonlinear EEG 
measures exhibit greater temporal stability at the individual level compared to absolute band powers.

By characterizing stable, person-specific EEG patterns and describing the typical range of variation observed 
for each individual, this study aims to support the development of individualized EEG biomarkers and contribute 
to future personalized monitoring approaches in mental health research.

Methods
Subjects
Nine healthy male subjects participated in the study. We restricted the sample to males to avoid menstrual-
cycle–related variability, as resting-state neural oscillations have been shown to fluctuate across cycle phases 
in EEG38 and magnetoencephalography39. At the time of the first recording, participants had a mean age of 
37.2 ± 8.1 years, with an age range of 26 to 49 years. All participants self-reported as right-handed, nonsmokers, 
and free of any history of concussions involving loss of consciousness, narcotic or psychotropic substance use, 
alcohol abuse, or mental or psychiatric disorders.

To ensure consistency, participants were instructed to maintain their usual daily routines and refrain from 
consuming alcohol or caffeinated beverages for 24 h before each recording. The study was conducted following 
the Declaration of Helsinki and received formal approval from the Tallinn Medical Research Ethics Committee 
and the Estonian Institute for Health Development’s Human Research Ethics Committee. All participants signed 
written informed consent before the study.

For each participant, EEG recordings were scheduled every four weeks (with flexibility for five to six weeks 
in exceptional cases, such as illness or travel), resulting in a total of 12 recordings over the course of one year. 
Recordings were conducted on a consistent day of the week and at the same time of day, ensuring homogeneity. 
To minimize dietary influences on EEG activity, all recordings took place in the morning, with participants 
instructed to abstain from eating or drinking (except water) beforehand40.

EEG data were collected using the Neuroscan Synamps2 acquisition system and a 32-channel (30 EEG + 2 
EOG) Quick-Cap (Compumedics, NC, USA). Electrodes were positioned according to the extended international 
10/20 system, with linked mastoids as reference. The placement of the 30 EEG electrodes is shown in Fig. 1.

During recordings, participants were lying in a relaxed supine position in a dimly lit laboratory room. 
EEG was recorded for 10 min with eyes closed and 5 min with eyes open across 30 EEG channels. Electrode 
impedance was maintained below 10 kΩ. EEG data were recorded at a sampling rate of 1 kHz, within a frequency 
range of 0.3–200 Hz.

EEG data preprocessing
All calculations were performed using MATLAB software (The MathWorks, Inc.). Initially, the eyes-closed 
EEG recordings were divided into 20.48-second segments, and segments with apparent artifacts were identified 
through visual inspection. Next, the full eyes closed EEG data were re-referenced using the Reference Electrode 
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Standardization Technique (REST), which is a reliable method for low-density EEG montages and facilitates 
comparability across laboratories41–43. To remove baseline fluctuations and high-frequency noise, Parks–
McClellan forward-backward filters were applied, yielding a frequency bandwidth of 2–47  Hz for further 
analysis. Absolute power in each frequency band was computed using the original sampling rate of 1 kHz, while 
EEG data were downsampled to 200 Hz for nonlinear measure calculations. After filtering (and downsampling), 
the EEG signals were divided into 20.48-second non-overlapping segments again, with segment lengths defined 
as 20,480 samples (for absolute power calculations) and 4096 samples (for nonlinear measures). The first 12 
clean segments were selected for the computation of the following EEG measures, resulting in 12 values for each 
measure per subject and per recording session.

Absolute power of EEG frequency bands
The absolute power P for each frequency band was calculated directly from a filtered EEG signal using a time-
domain approach. Each frequency band was first extracted using a Parks–McClellan forward-backward bandpass 
filter. In this study, the absolute powers of the traditional theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–47 Hz) frequency bands were calculated for each subject according to

Fig. 1. Locations of the 30 EEG electrodes corresponding to the channels used in this study, positioned 
according to the extended international 10/20 system.
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P = 1

n

∑
n
i=1x2 (i) , (1)

where x(i) was the filtered EEG signal segment with the length n (20,480 samples) at sample i.

Higuchi’s fractal dimension
HFD is used to quantify the complexity of EEG signals, providing a measure of scale invariance or self-similarity 
across multiple temporal scales. The method, originally proposed by Higuchi14, estimates the fractal dimension 
within the interval [1,2] of a time series by analyzing its length at different scales. A higher HFD value indicates 
greater signal complexity, while a lower value reflects more regular and predictable neural activity. The HFD was 
calculated with the parameter kmax = 8 according to the algorithm presented in14. For the calculation of HFD for 
an EEG signal segment with the length n (4096 samples), a time series Xm

k  is formed for each scale factor k as in

 Xm
k = {x (m) , x (m + k) , x (m + 2k) , . . . } , m = 1, 2, . . . , k, (2)

where k represents the step size and m is the starting index of each subseries. The length of each subseries Lk(m) 
is calculated as in

 
Lk (m) = 1

k

∑ � n−m
k �

i=1 |x (m + ik) − x(m + (i − 1) k| · n − 1
k

⌊
n−m

k

⌋ , (3)

The
⌊

n−m
k

⌋
 term n−1

k � n−m
k �  normalizes the subseries length and ensures that the length Lk (m) is expressed 

by the average number of points in the subseries and therefore comparable across all scale factors k (see44 for a 
step-by-step illustration). Lk (m) The mean length for each k is obtained by averaging across all subseries as in

 
L (k) = 1

k

∑
k
m=1Lk (m) . (4)

The fractal dimension is estimated by fitting a linear regression line to the logarithmic plot of L (k) versus 1/k, 
where the slope of this resulting log–log line corresponds to Higuchi’s fractal dimension.

Lempel–Ziv complexity
LZC is a measure of sequence complexity, quantifying the rate at which new patterns emerge as a sequence 
progresses19. It is used to assess signal randomness and complexity, with higher LZC values indicating more 
irregular and complex signals, while lower values suggest more repetitive or structured patterns. To calculate 
LZC, first, EEG signal segment x(i) of length 4096 samples is binarized into Bi using threshold T, which in this 
study was the median of the EEG signal segment to minimize the impact of outliers. Samples below the median 
get a new value of zero, others one as in

 
Bi =

{ 1, if Si ≥ T
0, if Si < T . (5)

Second, the binary sequence is scanned from left to right to find new patterns. A new pattern is detected whenever 
a substring is encountered that has not appeared previously in the sequence during left-to-right parsing. The 
complexity counter C (n) increases each time a new pattern is encountered. Finally, LZC is normalized to avoid 
variations due to segment length as in

 
LZCnorm = C (n)

Cmax (n) , (6)

where Cmax (n) is the theoretical maximum complexity for a completely random sequence of length n, 
approximated as n/log2 (n). This normalization ensures that LZC values range between 0 (completely regular 
signal) and 1 (maximally complex, random signal).

Detrended fluctuation analysis
DFA was calculated according to the method described by Peng et al.17,18. First, the cumulative sum of the mean-
centered EEG signal segment x(i), with the length of N (4096 samples) was calculated to generate an integrated 
time series as in

 y (k) =
∑

k
i=1 [x( i) − x̄], (7)

where k gets a value from 1 to N and x̄ is the arithmetic mean of the signal segment x(i). Second, the integrated 
signal y(k) is divided into n equal nonoverlapping windows of a length ranging from 4 to 200 samples. In each 
window n, the local trend is estimated using a least-squares linear fit ŷn (k), which fits the data y(k), and the 
local trend is subtracted from the data. Average fluctuations are given by
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F (n) =

√
1
K

∑
K
k=1[y (k) − ŷn (k)]2. (8)

Here, K is the number of nonoverlapping windows of length n. These average fluctuations are calculated for 
all window lengths. A log-log plot of F(n) versus n, reveals a linear scaling, characterized by the slope of the 
line, which represents the scaling exponent α. This exponent reflects the presence and strength of long-range 
temporal correlations in the signal: α = 0.5 indicates white noise (no correlation), while α > 0.5 suggests persistent 
correlations.

In-phase matrix profile
The pMP method captures the self-similarity of the EEG signal by considering only the in-phase subsegments, 
making it sensitive to the periodicity of alpha waves and other frequency fluctuations in the EEG signal. First, 
a one-second subsegment (200 samples) was extracted from a 4096-sample EEG segment, and its Euclidean 
distance to all other subsegments within the same segment was calculated, generating a distance profile (DP). 
This process was then repeated for the next subsegment, continuing in a sliding window manner until a DP was 
obtained for each subsegment.

From each DP, the smallest Euclidean distances corresponding to the most in-phase subsegments were 
extracted. In-phase subsegments are defined as those with minimal phase shift and the highest waveform 
similarity to the reference window, based on time-domain Euclidean distance. The median of these in-phase 
distance values was then calculated for each DP, forming a pMP vector (pMPvec). The median was used to 
ensure robustness against outliers in the signal.

Finally, the mean of the pMPvec is computed to obtain the overall pMP value for the EEG segment. This 
value reflects the degree of temporal regularity and self-similarity in the signal, where lower values indicate more 
consistent recurring patterns.  The calculation process is explained in detail in12.

Statistical analysis
Since we calculated 12 values for each measure for every EEG channel in each recording of each participant, we 
subsequently used the median of these 12 values.

With 12 monthly recordings for nine subjects, we utilized the intraclass correlation coefficient (ICC)45,46 to 
assess the reliability of repeated EEG measurements. ICC quantifies the proportion of total variance attributable 
to differences between subjects, providing a measure of the stability and consistency of EEG measures over 
time. When applied to datasets with multiple measurements per subject, ICC evaluates the degree of agreement 
among repeated observations within individuals relative to overall variability. A high ICC indicates that an EEG 
measure is relatively consistent within individuals across repeated sessions and shows greater variability between 
individuals than within individuals. We employed a two-way mixed-effects model (average measures, absolute 
agreement)45,47 for all 30 channels, ensuring that both systematic subject differences and measurement error 
were accounted for in assessing temporal stability.

ICC was calculated as in

 
ICC = MSR − MSE

MSR + MSC − MSE
n

, (9)

where MSR is the mean square for subjects (i.e., between-subject variance), MSC is the mean square for repeated 
measurements (i.e., between-measurement variance), MSE is the mean square error, and n is the number of 
subjects.

We employed the Kruskal–Wallis test (α = 0.05) for data analysis48. The Kruskal–Wallis test is a nonparametric 
alternative to ANOVA to determine whether there are significant differences between three or more groups (in 
this case, subjects). Unlike ANOVA, the Kruskal–Wallis test does not assume a normal distribution of the data 
and is not sensitive to unequal variances. If a significant difference is detected between any of the subjects, a 
post-hoc test can be conducted to determine which subjects are different from each other. In this study, we 
employed the Dunn test (α = 0.05) to determine how many subject pairs were statistically different from each 
other49. As with 9 subjects, we had 9(9 − 1)/2 = 36 unique pairwise comparisons, we used the Šidák correction50 
of the probability (p) values as in

 p∗ = 1 − (1 − p)m, (10)

where m is the number of comparisons and p∗ is the corrected p-value.
For each participant, we calculated the annual mean and standard deviation for each measure, as well as the 

maximum relative difference ( rDif ), which indicates the largest deviation from the annual mean as in

 
rDif =

∣∣∣vmax − v̄

v̄

∣∣∣ ∗ 100, (11)

where vmax is the most extreme monthly measurement across the year for a given subject, and v̄ is that subject’s 
annual average.
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Figure 2 presents the intraclass correlation coefficients (ICCs) for EEG band powers and nonlinear measures, 
while detailed ICCs for all EEG measures across all 30 channels are provided in Supplementary Table S1. Based 
on the classification proposed by Koo and Li47, we considered ICCs to indicate excellent reliability when the 
lower bound (LB) of the 95% confidence interval (CI) exceeded 0.9.

Band power measures
The data in Fig. 2 demonstrate that lower-frequency EEG bands, theta and alpha, exhibited reliability classified 
as excellent over one year across all 30 EEG channels. The lowest ICCs were 0.979, 95% CI [0.952, 0.994] in 
P4 for theta power and 0.964, 95% CI [0.917, 0.990] in O2 for alpha power, indicating high reliability over 
time. Beta power demonstrated excellent ICCs across 27 channels, with slightly lower values in three temporal 
channels (TP7, T8, TP8). The lowest ICC was observed at TP8 (0.908, 95% CI [0.786, 0.975]), still indicative of 
good reliability. For gamma power, ICCs were excellent in 17 channels in the center of the head but lower in 13 
peripheral channels, including the prefrontal area, with the lowest ICC at FT8 (0.756, 95% CI [0.424, 0.935]).

A slight reduction in ICCs observed in a few temporal channels in the beta band, and more notably lower ICCs 
across several peripheral channels in the gamma band, may be influenced by the presence of electromyographic 
(EMG) activity. EMG signals, resulting from muscle contractions, are commonly associated with movements 
such as swallowing, chewing, or speaking, but can also be present at a low level during resting state without overt 
motion51. Although relaxation can help minimize such activity, the spectral overlap between EMG and the beta 
and gamma frequency bands complicates the effective removal of these artifacts. EMG activity typically spans 
the 15–300 Hz range, with most power concentrated at the lower end52,53.

In this study, muscle artifacts related to conscious movement were excluded from the EEG recordings. 
However, some low-level muscle tension, which is difficult to detect through visual inspection, may have 
remained in channels positioned over the temporalis and frontalis muscles. Tonic muscle activity, referring to the 
continuous low-level contraction of muscles even in a relaxed state, can contribute to subtle EEG interference. 
Unlike phasic muscle activity, which is associated with voluntary movements, tonic muscle activity persists at 
a baseline level and can be influenced by factors such as posture, alertness, and individual muscle tone51. In 
EEG recordings, this may appear as low-amplitude, high-frequency activity, particularly in frontal and temporal 
regions where muscles like the frontalis and temporalis are located.

Nonlinear measures
All nonlinear EEG measures (HFD, LZC, DFA, and pMP) exhibited excellent reliability (ICC  95% CI LB > 
0.9)  across all EEG channels (Fig.  2). The lowest ICC among these measures was observed for pMP, with a 
value of 0.960, 95% CI [0.908, 0.989] in the occipital channel Oz. LZC demonstrated a slightly higher ICC of 
0.967, 95% CI [0.922, 0.991] in T7, while DFA and HFD showed the highest reliability with the lowest ICC of 
0.986, 95% CI [0.967, 0.996] in O2 and 0.978, 95% CI [0.949, 0.994] in T7, respectively. Although pMP had 
slightly lower ICCs in the occipital region, they remained within the excellent reliability range. Given that pMP 
is influenced by alpha oscillations12 and alpha power is strongest in occipital areas, variability in alpha activity 
may have contributed to this observation.

While beta power showed slightly reduced ICCs in only a few temporal channels, gamma power exhibited 
more widespread reductions (ICC  95% CI LBs  ≤  0.9  in 13 channels), particularly in peripheral temporal, 
frontotemporal, and prefrontal areas. These reductions may, at least in part, reflect the potential influence of 
residual EMG activity. Nevertheless, given the overall excellent reliability across measures, any channel may 
be used for further analysis, while it may be advisable to avoid regions that are more prone to muscle-related 
influences.

Individual variability of EEG measures
To investigate person-specific EEG dynamics over time, we examined the individual temporal variability of EEG 
measures across one year, as presented in Fig. 3; Tables 1 and 2. The figure displays the EEG measure values 
recorded throughout the year, along with the annual mean and standard deviation for the parietal channel P3. 
This channel was selected as an example due to its consistent reliability in resting-state EEG, low susceptibility 
to muscle artifacts, and its well-established role in reflecting stable, individual differences in neural activity, 
particularly within parietal regions involved in cognitive processing54,55.

As illustrated in Fig. 3, EEG measure values for each subject fluctuate around a distinct annual mean, with 
variability ranges that are specific to the individual. These subject-specific patterns give rise to clearly separable 
clusters in the data, with the extent of variability differing across individuals. A Kruskal–Wallis test confirmed 
that at least one of the clusters was statistically different from the others for each measure (p ≤ 1.1 × 10–15).

Statistically significant differences were observed between 14 and 16 subject pairs out of 36 pairwise 
comparisons, depending on the measure, using Dunn’s test with Šidák p-value correction. There was no 
considerable difference in statistical significance between EEG band power and nonlinear measures. Specifically, 
theta power differed significantly in 15 pairs, alpha power in 16 pairs, and beta and gamma power in 14 pairs. 
Among nonlinear measures, significant differences were observed in 14 pairs for HFD and LZC, and in 15 
pairs for DFA and pMP, out of 36 comparisons. These results indicate that, regardless of the type of measure, 
individual EEG profiles are characterized by distinct annual means and specific fluctuation ranges, supporting 
the idea of temporally stable neural individuality.

Compared to EEG frequency band powers, nonlinear EEG measures show relatively higher temporal stability 
on the individual scale (Tables  1 and 2). Among the band power measures, theta power shows the greatest 
individual fluctuation, with a single recording maximally differing from the annual mean by an average across 
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Fig. 2. Intraclass correlation coefficients for EEG measures across all 30 EEG channels (n = 9), including theta, 
alpha, beta, and gamma absolute powers, as well as nonlinear measures: Higuchi’s fractal dimension (HFD), 
Lempel–Ziv complexity (LZC), detrended fluctuation analysis (DFA), and in-phase Matrix Profile (pMP).
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all subjects of 66% (ranging from 24 to 163%, depending on the subject). This is followed by alpha power, which 
maximally fluctuates by an average of 64%, with individual variation ranging from 27 to 152%. Beta and gamma 
power exhibit lower variability, with average maximal deviations of 32% and 30%, respectively. Individual 
maximal fluctuations range from 11 to 53% for beta power and 12–57% for gamma power.

Among nonlinear measures, DFA and LZC show the largest individual fluctuations, with average maximal 
deviations of 23% and 10%, respectively (ranging from 5 to 54% for DFA and 4–22% for LZC, depending on 
the subject). HFD and pMP exhibit the lowest variability, with average maximal deviations of 4% and 6%, 
respectively. Individual maximal variation ranges from 2 to 8% for HFD and 0–19% for pMP.

Fig. 3. Interindividual and intraindividual variability in EEG measures across one year for each subject 1–9 
and the group G (n = 9). Blue dots represent 12 individual monthly values; black dashes show subject-specific 
annual means. Error bars for subjects 1–9 represent within-subject standard deviations. For group G, yellow 
dots represent the annual mean of each subject, the black dash shows the group-level mean, and error bars 
indicate the standard deviation.
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When examining individual subjects separately, it is evident that subject S4 shows significantly greater 
variability, with an average maximal fluctuation of 53% across all measures. In contrast, subjects S1 and S5 
exhibit considerably lower variability, with an average maximal fluctuation of 17%. This further emphasizes the 
strong individuality in EEG measures.

As shown in Fig. 3; Tables 1 and 2, intra-individual annual variation is generally smaller than inter-individual 
variation, apart from a few exceptions. Notably, in the theta frequency band, subjects S2 and S4 exhibit annual 
variability comparable in magnitude to that observed between individuals. In subject S4, the variability within 
the alpha band markedly exceeds inter-individual differences, while in the beta band, it is again of comparable 
magnitude. For most nonlinear measures (HFD, LZC, DFA), intra-individual variation remains lower than the 
variation across subjects, with no exceptions. However, in the case of pMP, subject S4 again exhibits greater 
variability than the group.

Discussion
In this study, we tested whether EEG measures, while differing between individuals, remain temporally stable 
within the same person across one year, and if nonlinear measures are temporally more stable at the individual 
level compared to absolute band powers. For this, we investigated the reliability and long-term temporal stability 
of EEG band powers and nonlinear EEG measures across 12 months in healthy individuals. Our findings largely 
support the hypothesis of individual temporal stability, though some nuances remain.

A key finding of this study is the strong individual specificity of EEG measures, with each subject’s values 
remaining tightly grouped within their own subject-specific range. This largely supports the concept that EEG 
measures may serve as neural fingerprints — remaining principally stable within individuals while differing 
significantly between them34–36 — although some individuals exhibited fluctuations that challenge the 
assumption of consistent intra-individual stability.

Regarding the reliability of EEG measures, our findings align with previous research15,33, showing that lower-
frequency bands (theta and alpha) are the most reliable across sessions. Beta power shows only slightly reduced 
ICCs in a few temporal channels. Gamma power, in turn, shows a more pronounced decrease in reliability in 

HFD LZC DFA pMP
Mean SD rDif Mean SD rDif Mean SD rDif Mean SD rDif

Subject 1 1.43 0.01 2 0.58 0.01 4 0.71 0.02 5 18.93 0.08 1

Subject 2 1.18 0.01 3 0.43 0.01 8 0.40 0.04 16 16.95 0.38 6

Subject 3 1.34 0.02 4 0.53 0.02 12 0.65 0.06 15 18.52 0.22 2

Subject 4 1.18 0.03 6 0.43 0.05 19 0.23 0.05 52 15.28 1.56 19

Subject 5 1.45 0.02 3 0.62 0.02 4 0.60 0.03 9 18.77 0.13 2

Subject 6 1.24 0.04 8 0.49 0.05 22 0.31 0.07 54 16.44 0.86 9

Subject 7 1.34 0.03 4 0.55 0.02 7 0.36 0.04 22 17.31 0.69 9

Subject 8 1.37 0.06 7 0.57 0.03 9 0.52 0.10 30 18.37 0.65 7

Subject 9 1.65 0.03 4 0.65 0.03 11 0.85 0.04 7 19.36 0.05 0
Group 1.35 0.15 22 0.54 0.08 21 0.51 0.20 65 17.77 1.35 14

Table 2. Annual mean values, standard deviations, and relative maximal differences from the annual mean 
(rDif, %) of Higuchi’s fractal dimension (HFD), Lempel–Ziv complexity (LZC), detrended fluctuation analysis 
(DFA), and in-phase matrix profile (pMP) calculated for nine subjects in channel P3 and for the group (n = 9).

 

Theta Alpha Beta Gamma
Meana SDa rDif Meana SDa rDif Meana SDa rDif Meana SDa rDif

Subject 1 46.93 9.48 48 55.73 9.19 27 68.97 6.48 20 8.69 1.18 31

Subject 2 643.66 201.24 88 912.09 196.03 35 115.89 12.61 21 8.91 0.76 19

Subject 3 62.10 25.90 120 110.14 26.05 58 61.86 10.15 39 5.98 0.35 12

Subject 4 396.86 228.87 163 2119.96 1015.02 98 194.81 45.43 42 10.05 1.41 27

Subject 5 34.29 4.90 24 80.81 18.97 50 89.63 6.07 11 10.00 1.39 37

Subject 6 58.90 16.73 50 945.82 395.22 72 85.79 20.80 52 12.54 2.87 57

Subject 7 88.54 16.45 30 517.02 124.77 43 180.43 20.73 20 21.92 2.26 20

Subject 8 44.60 8.49 43 245.04 189.06 152 102.30 28.56 53 10.36 1.19 18

Subject 9 16.96 2.94 27 11.26 2.41 43 21.92 4.16 32 14.03 2.99 49
Group 154.76 217.10 316 555.32 688.71 282 102.40 55.33 90 11.39 4.56 92

Table 1. Annual mean values, standard deviations, and relative maximal differences from the annual mean 
(rDif, %) of theta, alpha, beta, and gamma absolute power calculated for nine subjects in channel P3 and for 
the group (n = 9). a Values must be multiplied by 103 to obtain the correct magnitude in μV2.
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several channels. Nevertheless, reliability remained high overall, with our lowest observed mean ICC being 
0.935 (in the gamma band), which is substantially higher than the ICC of 0.77 for absolute power reported by 
Gudmundsson et al.33. Põld et al.15 similarly reported ICCs of 0.80 for gamma and 0.87 for alpha relative power, 
which is consistent with our results. The reduced reliability in the peripheral channels in gamma and beta bands 
may be explained by low-level tonic EMG activity that spectrally overlaps with these frequency ranges and is 
not fully removed by standard preprocessing51–53. Although we aimed to obtain EEG recordings free of visible 
artefacts, the potential influence of subtle tonic EMG activity, particularly in high-frequency bands, was not 
directly investigated in this study. Nevertheless, it should be kept in mind when interpreting gamma and beta 
activity in longitudinal analyses, especially in muscle-prone regions.

For nonlinear measures, our results also indicate higher reliability than previously reported. Gudmundsson 
et al.33 found an ICC of 0.70 for LZC, and Põld et al.15 reported ICCs of 0.81 for HFD and 0.84 for DFA. In 
contrast, we observed consistently excellent ICCs above 0.96 (95% CI LBs ≥ 0.908) across all EEG channels for all 
nonlinear measures. Notably, these measures showed minimal differences between channels, suggesting reduced 
sensitivity to possible slight EMG input and highlighting their robustness across the spatial domain. Although 
the study by Põld et al.15 assessed long-term stability over three years, the use of only two recordings per subject 
may have contributed to slightly lower ICCs. Gudmundsson et al.33 included 19 recordings over two months, 
but the older age of participants could have increased intra-individual variability. Our study, using monthly 
recordings over one year in a younger cohort, showed that nonlinear measures remained highly reliable across 
all sessions, reinforcing their potential for individualized longitudinal monitoring.

While all EEG measures demonstrated excellent test–retest reliability in all or most channels, high reliability 
does not necessarily equate to high temporal stability. Therefore, we separately quantified intra-individual 
variation by calculating the maximum relative differences from each subject’s mean across 12 monthly recordings. 
This allowed us to directly assess how much a person’s EEG measure fluctuated over time, regardless of between-
subject differences. These analyses revealed that although many participants demonstrated stable EEG patterns, 
a few (most notably participant S4) exhibited fluctuations over time that were comparable to or greater than the 
variability observed between individuals. Thus, EEG measures cannot universally be assumed to be temporally 
stable at the individual level, even if group-level reliability appears excellent.

While methodological aspects, such as recording conditions and electrode placement, were carefully 
controlled, intrinsic physiological factors still contribute to variability. Individual differences in hormonal 
levels, neuroanatomy, and overall brain physiology may result in varying degrees of natural fluctuation in EEG 
measures. Additionally, lifestyle factors such as sleep patterns, diet, and physical activity can subtly modulate 
EEG signals, affecting their stability over time40.

Although subject S4 was considered healthy by self-report at the time of the study, such variability may still 
reflect transient changes in mental state or the early signs of psychological shifts that were not yet subjectively 
perceived. Psychological states and mental health conditions are known to affect EEG patterns, as shown in 
previous group studies4–13. High levels of stress, anxiety, depression, and other mental states or psychiatric 
disorders are known to alter brain activity patterns, potentially leading to deviations from typical EEG 
signatures. Identifying the sources of EEG variability — whether due to intrinsic traits, temporary states, or early 
pathological changes — will be critical for tailoring analysis strategies.

Equally important is the ability to estimate, in advance, the expected range of normal variability for a given 
individual. Achieving this requires identifying the key individual factors that contribute to greater variability in 
EEG measures in the healthy state. Such person-specific variability profiles could help distinguish between brain 
disorder-related fluctuations and those indicative of normal neuropsychological changes. In future applications, 
developing heuristics to detect high-variability profiles without the need for long-term tracking will enhance 
efficiency and individualization. In high variability cases, alternative EEG measures or a combination of measures 
for individualized baseline approaches may be required.

The second hypothesis proposed that nonlinear EEG measures would exhibit better intra-individual temporal 
stability than traditional band power measures. Our results strongly support this hypothesis.

While all EEG measures demonstrated excellent test–retest reliability in channel P3, intra-individual 
temporal stability in the same channel, assessed as maximum relative difference from the individual’s mean, was 
substantially smaller for nonlinear measures. For instance, mean deviations across subjects for theta and alpha 
power were 66% and 64%, respectively, compared to only 4% for HFD and 6% pMP.

These results are further supported by findings from Põld et al.15, who observed very low relative changes in 
nonlinear measures at a group level in a test-retest study over three years: 0.18% for HFD and 0.49% for DFA. In 
comparison, their relative band power measures showed relative changes from 0.72% up to 2.28%. The fact that 
nonlinear measures in our study showed such small variability even across 12 sessions strengthens the conclusion 
that they are temporally more stable than traditional band power measures. Põld et al.15 demonstrated that 
nonlinear measures are not only reliable but also temporally more stable at the group level. The present study 
confirms that these measures are likewise both reliable and highly temporally stable at the individual level. In 
contrast, band power measures appear more vulnerable to transient fluctuations and may not provide reliable 
baselines for individual monitoring.

Current findings highlight the importance of an individualized approach to EEG interpretation, moving beyond 
reliance on fixed population-level norms. Rather than comparing individuals to group averages, establishing 
person-specific baselines under stable conditions allows for more accurate identification of meaningful neural 
changes versus natural fluctuations56. Our results emphasize that such individualized baselining is essential for 
reliable longitudinal monitoring. Notably, nonlinear EEG measures provide a particularly strong foundation for 
this approach, as they exhibit greater resistance to temporal variability than traditional band power measures. 
This stability makes them promising candidates for biomarkers intended to track brain function over extended 
periods.
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Despite the strong temporal stability observed, the small sample size (nine male participants) limits the 
generalizability of our findings. Future studies should validate these results in larger, more diverse populations 
and assess how EEG stability is affected by factors such as age, sex, and individual differences in cognitive 
functioning. Additionally, a clinically applicable EEG measure must balance long-term stability with sensitivity 
to dynamic physiological states. Future research should explore this balance to determine which EEG measures 
are most suitable for clinical applications. Since various biological and lifestyle-related factors can influence 
natural variability in EEG measures, it is essential to account for individual-specific differences, even in the 
absence of overt psychological stress or neurological conditions. Deviations from a healthy psychological 
state and overall mental well-being are precisely the types of changes that are intended to be detected through 
the establishment of a baseline for EEG variability. Even when working with self-reported healthy subjects, 
future protocols should include a clinician-led screening to confirm the absence of neurological or psychiatric 
conditions. Future work should also establish how segment length influences stability and sensitivity of single-
channel EEG measures. Varying window sizes will clarify the minimum duration that still yields stable resting-
state estimates, and whether longer windows narrow or widen the normative range. Finally, as all recordings 
were conducted in controlled laboratory conditions, it remains unclear how real-world factors (e.g., time of 
day, environmental stressors, or diet) influence EEG stability. Future studies should assess EEG reliability in 
naturalistic settings to improve its applicability for longitudinal monitoring.

This study confirmed that EEG band power measures are highly reliable over long-term recordings and that 
nonlinear measures demonstrate comparable levels of reliability. However, nonlinear measures showed greater 
temporal stability across sessions, making them potentially more suitable for assessing brain state over time, 
provided they also demonstrate sufficient sensitivity to meaningful neural changes. These findings support 
the use of nonlinear EEG measures in individualized, longitudinal monitoring frameworks. Furthermore, 
establishing personalized baselines, rather than relying on normative population averages, appears essential for 
accurate interpretation of EEG data. Given the overall high reliability across EEG channels, researchers have 
flexibility in channel selection, although peripheral channels may be best avoided to minimize the influence of 
artifacts.

Data availability
The raw EEG data generated and analyzed during the current study are not publicly available due to data protec-
tion and ethical restrictions. However, derived data supporting the findings of this study (including computed 
measures) are available from the corresponding author upon reasonable request.
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Abstract:— The current study is aimed to evaluate the effect 
of COVID-19 vaccine on human EEG and the persistence of the 
effect. Within a one-year-long resting EEG study period, the 
healthy male subject was administered two Comirnaty doses 
three weeks apart to prevent COVID-19. Fourteen recordings 
were acquired from the subject in one year: twelve reference and 
two post-vaccination recordings after administrating the second 
dose of Comirnaty. The changes in absolute powers of EEG 
frequency bands, EEG spectral asymmetry index (SASI), and 
Higuchi’s fractal dimension (HFD) were analyzed. The results 
indicated a statistically significant increase in absolute gamma 
power, SASI and HFD values on the fifth day after the 
vaccination, while the EEG had restored its normal character on 
the twelfth day after vaccination.  These measures seem to have 
higher sensitivity for the detection of the effects of the vaccine 

Clinical Relevance – This is the first study evaluating COVID-
19 vaccine effect on healthy human EEG. The study indicated 
that the vaccine disturbs EEG, but the impact is not long-lasting. 

I. INTRODUCTION 

COVID-19, caused by a severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), has become a worldwide 
pandemic illness. In addition to respiratory system disorders, 
a significant part (36.4%) of COVID-19 patients had acute 
neurological expressions [1]. Acute neurological syndromes 
can be caused by a viral infection of the brain or by disease-
related hypoxia and inflammation.  

Today, the potential effects of COVID-19 on the central 
nervous system are put forward, but we do not have the 
information if and how COVID-19 vaccines affect the brain. 
Some studies have been conducted to analyze neurological 
complications by COVID-19 vaccines [2], [3]. However, the 
complications are rare and not always directly associated with 
vaccination. Still, to the best of our knowledge, the before-and-
after study of the effects of COVID-19 vaccines on the healthy 
brain has not been performed.  

Vaccines introduce antigens to our immune system, 
followed by our body’s immune response that later helps to 
identify the pathogens when infected and counteract the 
invaders more effectively. COVID-19 vaccines have mild side 
effects similar to those seen with COVID-19, including 
neurological symptoms such as headaches and fatigue [1], [4], 
[5]. On the other hand, the brain can also be affected by stress 
caused by the vaccines’ side effects. Stress can also affect the 
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central nervous system and cause alterations in the brain's 
physiology. 

Brain bioelectrical activity can be measured by 
electroencephalography (EEG) – a non-invasive and cost-
effective method used to detect changes in brain function. 
Several EEG measures have shown changes during stressful 
situations. Studies using different tests of stress, theta and 
alpha band power indicated a decrease [6], [7], while in higher 
frequency rhythms, like beta and gamma, an increase was 
detected [7], [8]. The spectral asymmetry index (SASI), 
characterizing the balance between EEG higher and lower 
band powers, has been shown effective to detect the effect of 
different stressors: a physical stressor, microwave radiation 
[9], a chemical stressor, coffee intake [10], and occupational 
stress [8]. In addition, SASI distinguished between major 
depressive disorder and healthy groups [11], [12]. Still, not all 
information can be collected by linear methods; the nonlinear 
Higuchi’s fractal dimension (HFD) describes the EEG signal's 
self-similarity and characterizes the signal’s complexity. It has 
been shown that the complexity of the EEG signal raises in the 
case of depression and under stress conditions [8], [11]. 

Although the EEG measures can be considered as stable 
markers [13], [14], each EEG measure has a normal variability 
which is in turn individual [15] and usually unknown. We 
hypothesize that in the conditions of the impact by vaccine or 
increased stress due to the immunization, the EEG will be 
disturbed compared to the normal state. Thus, to evaluate the 
effects of a stressor, we need to know the subject’s normal 
variability of the EEG measures of interest. The EEG and the 
sensitivity to vaccination are individual; therefore, a more 
detailed study on a single subject would provide clearer 
preliminary results on the effects of the vaccine. 

The present study aims to investigate the effects of the 
COVID-19 vaccine on the central nervous system and the 
durability of the effect. For this purpose, the normal variability 
of the EEG measures, including spectral band power, SASI, 
and HFD, for a selected subject were evaluated over a year. 
The alterations in the measures after administration of 
Comirnaty (BioNTech Manufacturing GmbH) second dose 
were compared to the average levels of variability of the 
measures in normal conditions. 
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II. METHODS 

A. Subject 
The EEG data were repeatedly recorded from a healthy 

right-handed 49(50)-year-old male. The subject had no history 
of mental disorders or head traumas. He was a nonsmoker, did 
not consume narcotic or psychotropic substances. The study 
was conducted following the Declaration of Helsinki and was 
formally approved by the Research Ethics Committee of the 
National Institute for Health Development. Participation in the 
study was voluntary and the subject signed written informed 
consent. 

B. Comirnaty Administration and Side Effects 
During the one-year-long study period, the subject got two 

Comirnaty injections three weeks apart. Comirnaty contains a 
molecule called messenger RNA (mRNA) with instructions 
for producing a spike protein from SARS-CoV-2, the virus 
that causes COVID-19. After the first Comirnaty injection, 
the side effects were limited to pain at the injection site and 
left upper limb where the injection was administered and 
lasted for a few days. After the second injection, the side 
effects were pain in the left upper limb, headache, muscle 
aches, tiredness, fever, and fogginess. Fogginess lasted for 
about a week, with other side effects resolved by the fourth 
day after vaccination. 

C. Collection of EEG Data  
Fourteen recordings were acquired from the subject in one 

year: twelve reference (r1-r12) and two post-vaccination 
recordings after the second Comirnaty administration (p1, p2). 
The intervals between recordings were usually four weeks, 
except for post-vaccination recordings (5 and 12 days after 
vaccination), which were deliberately shorter. The interval 
between the first dose of vaccine and the subsequent EEG 
recording was 19 days. Due to the extensive time interval, we 
treated the corresponding recording (r7) as a reference 
recording.  

To minimize the impact of the environment and the impact 
of the subject's activities on the EEG data, we used a routine 
where all recordings were acquired on the same day of the 
week and at the same time (Wednesday 7:30). The subject was 
instructed to abstain from alcohol and simulating drinks 
(coffee, tea, energy drinks, etc.) 24 hours before recording. 
The subject came to the recording without eating or drinking 
(excluding water) to avoid the effect of different breakfasts on 
the EEG. After arriving at the research laboratory, the subject 
completed the health data form and mental health 
questionnaires before each recording. The EEG data were 
recorded using Neuroscan Synamps2 acquisition system and a 
32 channel Quick-Cap (Compumedics, NC, USA) with a 
sampling rate of 1000 Hz. EEG electrodes were positioned 
according to the extended international 10/20 system with 
linked mastoids as reference. The subject was lying in a 
relaxed supine position in a dimly lit laboratory room during 
the recording procedure. Ten minutes of eyes-closed and five 
minutes of eyes-open EEG data were acquired in 30 channels 
and vertical and horizontal electrooculograms to monitor eye 
movements in two channels. The impedance of EEG 
electrodes was kept below ten kΩ to achieve good 
conductivity between the skin and the electrode.  

D. EEG Data Preprocessing 
The data were processed using MATLAB software (The 

Mathworks, Inc.). EEG data were re-referenced using the 
reference electrode standardization technique (REST) [16]. 
Previous studies have shown that the REST reference is 
suitable for low-density EEG montage and is a good reference 
technique for comparing the results across laboratories [17], 
[18]. Parks-McClellan low and high-pass forward-backward 
filters were applied to the EEG signals to remove baseline 
fluctuations and high-frequency noise; frequency bandwidth 
of 2 to 47 Hz remained for further processing. The first 3 
minutes from each recording were used for the following 
processing and were divided into nine nonoverlapping 20.48-
second long segments. According to [19], stress affects the 
brain's (pre)frontal region the most; therefore, channel Fz was 
chosen for further processing and analysis. Next, theta, alpha, 
beta, gamma frequency band powers, SASI, and HFD values 
were calculated for all nine segments and a median value over 
those segments was found. 

E. Frequency Band Power 
We decomposed EEG data into classical frequency bands, 

such as theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and 
gamma (30-47 Hz) frequency bands. Each frequency band was 
first obtained using high and low pass Parks-McClellan 
forward-backward filter. The bandwidth power P for the 
filtered signal S with the length N was calculated as in 

F. Spectral Asymmetry Index 
First, power spectrum density was estimated by means of 

Welch's averaged periodogram method (Hanning window 
with the length of 1024 samples, 50% overlap). Next, powers 
for predefined lower frequency band Plow (4 to 7 Hz) and 
higher Phigh frequency band (14 to 38 Hz) were calculated as 
described in [11], [12] and SASI was calculated as in 

G. Higuchi’s Fractal Dimension 
Fractal dimension is a very sensitive nonlinear method for 

finding information about the physiological signal. Fractal 
dimension estimate HFD is a fast method calculated in the 
time domain, which does not need long signal segments. HFD 
is based on a measure of length (k) of the curve that represents 
the considered time series while using a segment of k samples 
as a unit if L(k) scales like L(k) ~ k-FD. To calculate HFD, the 
EEG data were first downsampled to 200 Hz and the value of 
fractal dimension FD with a parameter kmax=8 was calculated 
according to the algorithm presented by Higuchi [20]. 

H. Statistics 
We used two-sample t-test to control the hypothesis that 

EEG measures’ values from post-vaccination recordings 
come from the same distribution as the reference recordings. 
The initial significance level was chosen α = 0.05. As we had 
six different measures, we conducted statistical tests multiple 
times (6), therefore p-values were adjusted applying modified 
Bonferroni correction. 



III. RESULTS

The main results of this study are presented in Fig. 1 and 
Table I. Theta, alpha, beta, and gamma frequency band 
absolute powers, SASI, and HFD values for each recording in 
channel Fz are presented in Fig.1. The mean and standard 
deviation values over 12 reference recordings, i.e., regular
variation, are presented in Table I and shown with straight and 
dashed lines, respectively, in Fig.1. There is more or less
change in all frequency bands except beta in the first post-
vaccine recording. The absolute power in the theta and alpha 
frequency band are somewhat lower after vaccination, being
more noticeable in the alpha band. After vaccination, a 
statistically significant change can be seen in the gamma band 
power (Bonferroni corrected p<0.0084). SASI measure value
also reveals a statistically significant change after vaccination 
being noticeably higher than in reference recordings
(Bonferroni corrected p<0.0125). HFD also shows a 
statistically significant increase in complexity (Bonferroni 
corrected p<0.01). Five days after vaccination, there is a 
significant change in spectral power/ power asymmetry 
(gamma band, SASI) and in the signal complexity. However, 
it can be seen that a week later, on the twelfth day after 
vaccination, there is no longer any significant deviation in the 
bands’ powers, asymmetry, or fractal dimension, and the 
values are again in the normal range.

IV. DISCUSSION

Deviation of EEG measure values outside the usual range 
could characterize an effect of a prominent stressor. After the 
vaccination, the subject in this study experienced mild but still 
disturbing side effects from Comirnaty, such as fever, 
headache, and fogginess. Although fogginess had almost
entirely resolved by day five, the changes in EEG measures 

TABLE I. SUBJECT'S USUAL EEG MEASURE VALUES AND VALUES 
AFTER ADMINISTRATING COMIRNATY (BIONTECH MANUFACTURING 

GMBH) VACCINE IN CHANNEL FZ

Measure Meana SD 5 days 
post-vac.

12 days 
post-vac.

Theta powerb (105) 3.03 0,86 1.63 3.79

Alpha power (106) 1.00 0.20 0.47 1.14

Beta power (105) 1.38 0.15 1.32 1.29

Gamma power (103) 7.32 0.75 10.81* 6.27

SASI 0.034 0.055 0.214* 0.041

HFD 1.194 0.027 1.288* 1.170

a. Mean and standard deviation are calculated over 12 EEG reference recordings, 
excluding post-vaccination recordings.

b. Power values are presented in μV2. 
* Statistically significant difference after applying modified Bonferroni correction

were still strongly evident. Therefore, the alterations in EEG 
were related rather to the effect of vaccine than to the stress 
related to side effects.

The subject had somewhat decreased theta and alpha
rhythm powers, which is consistent with the results of [6], [7], 
where responses to acute stress had a similar effect. However,
the difference was not statistically significant after Bonferroni 
correction. There was no change from the usual absolute 
power deviation in the beta band. Still, it is possible that if
lower and higher frequency beta bands had been used
separately, a significant change would have been revealed. The 
relative power of the gamma band is often used to assess stress
[8], an increase in the absolute gamma power is also evident
in this study. SASI, combining besides beta and theta, also a 

Figure 1. Results of the absolute powers of the EEG theta, alpha, beta, gamma frequency band, spectral asymmetry index, and Higuchi’s fractal 
dimension during one year for one subject. Asterisks indicate reference recordings (r1-r12) that were acquired four weeks apart on regular basis. 
The dots (p1, p2) show the values on the fifth and twelfth days after vaccination with Comirnaty COVID-19 vaccine. Straight and dashed lines 
represent the mean and standard deviation values of the twelve reference recordings.



  

part of gamma band, noteworthy highlighted the increase in its 
value. In the previous studies, SASI has been shown to be able 
to highlight the effects of different stressors [8], [9], [10], [11], 
[12]. The current results are consistent with the results reported 
in the studies cited above. Therefore, vaccines might be 
considered a biological stressor to the central nervous system. 

Twelve days after vaccination, all EEG measure values 
have returned to their normal range, indicating a temporary 
effect. Unfortunately, this study does not answer whether the 
impact on the EEG is directly due to the reaction caused by the 
vaccine or the discomfort caused by the symptoms.  

The present study illustrates that EEG absolute gamma 
power, SASI, and HFD are the methods of sufficient 
sensitivity to detect the changes in brain physiology related to 
vaccination. 

Although the study presents changes in only one person, 
those are consistent with the results of previous studies on 
stress and stressors. Thus, temporary abnormalities in EEG 
signals after vaccination may occur to a greater or lesser extent 
also in other persons. 

V. CONCLUSION 
The results of this preliminary study performed on a single 

subject indicated clearly that the COVID-19 vaccine caused a 
response in the brain detectable by the EEG measures. The 
statistically significant increases in the EEG absolute gamma 
power, spectral asymmetry index, and Higuchi’s fractal 
dimension illustrated the high sensitivity of these measures to 
detect the effects caused by the vaccine. The impact of the 
vaccine was short-term; by the twelfth day after the 
vaccination, the brain had restored normal activity and the 
EEG measures were back to their normal levels. Further 
investigation on larger numbers of subjects is needed to 
support the conclusions. 
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