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Annotatsioon

Peenmotoorsed testid, mille hulgast võib leida Luria vahelduvate seeriate testi, on neu-
roloogiliste tõvede diagnoosimiseks kasutusel mitmeid kümnendeid. Traditsiooniline
testide läbiviimine paberkandja ja pliiatsiga on tehnoloogia arengu tulemusel viiakse läbi
palju uurimusi, et asendada need tahvelarvutite ja digitaalsete pliiatsitega. Selline aren-
gusuund võimaldab arvutada lisaparameetreid, milleks antud töös on kinemaatilised ja
surve parameetrid. Nende abil on võimalik andmete analüüs masinõppe mudelite alusel.

Sarnased uurimustööd on antud võimalusi kasutades viinud läbi mitmeid uuringuid, kuid
ei ole fokusseeritud testide patarei koostamisele. Testide patarei uurimiseks võrreldi
antud töös peenmotoorsete testide patareis olevaid seoseid nende parameetrite alusel.
Lisaks treeniti lähtuvalt kogutud andmetest erinevaid masinõppe mudeleid, et teostada
peenmotoorseid teste teinud inimese testitulemuste analüüs üksikisiku tasandil.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 41 leheküljel, 6 peatükki, 10
joonist ja 9 tabelit.
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Abstract

Fine motor tests, such as Luria’s alternating series tests, have been in use for the diagnostics
of neurodegenerative disorders, like Parkinson’s disease, for several decades. Traditionally
conducted by pen and paper, the evolution of electronics has introduced the digitisation
of these tests. Using tablet computer with digital pencil gives the opportunity to analyze
additional kinematic and pressure parameters that enlarge the scale of application of
machine learning models.

Even though researches have been conducted to apply these methods, no focus on the
possible optimisation of the test battery has been studied. In this thesis, the relations
between parameters describing the fine motor test battery is investigated along with the
analysis of individual subject who has carried out fine motor test belonging to the test
battery examined in the thesis.

The thesis is in English and contains 41 pages of text, 6 chapters, 10 figures and 9 tables.
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List of abbreviations and terms

AST Alternating Series Test
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HC Healthy control
JSON JavaScript Object Notation
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1. Introduction

In the course of recent years, the advancements of data digitisation have led to multiple new
possibilities in the assessment of cognitive and motor functions. Replacing the traditional
setting of paper and pencil with touch screen tablet technology offers the opportunity to
acquire additional precise information, allowing the computation of kinematic and pressure
parameters.

One of the world’s most spread neurodegenerative disorders Parkinson’s disease (PD)
affects fine motor skills, mainly initiation and execution of voluntary movements [1].
While applications containing digitised versions of tests used to diagnose PD based on
these symptoms have been developed, the analysis, if conducted, has been done by specific
test, alternating between researches [2, 3].

The aim of this thesis is to use attained parameters to train machine learning models and
apply them in the analysis of each test on an individual result. For that purpose, an assisting
application is developed, which provides extraction of kinematic and pressure parameters
from raw data provided by files in JavaScript Object Notation (JSON) format and analyzes
received data.

Such method relieves doctors and medical workers from having to subjectively assess the
probability of PD and compare individual subject data to the metrics of both PD diagnosed
patients and healthy controls (HC). To differentiate these two groups, it is relevant to draw
boundaries between them.

Along with the problem of growth in parameters, the high number of conducted tests
raises serious problems that when possible, could be reduced through optimisation. When
subjects, who possibly suffer from PD have to endure filling out several tests, which in
essence correlate with one another, that time and energy could be conserved, without
compromising the integrity and accuracy of results.

Furthermore, the thesis aims to compare machine learning models trained by test types to
the models trained by test battery. This type of assessment, to the knowledge of the author
has not been previously conducted.
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2. Background and problem statement

2.1 Parkinson’s disease

Most commonly diagnosed among the age of 60 and above and independently among
males, PD is one of the world’s most spread neurodegenerative disorders, second only to
Alzheimer’s disease. The incidence of PD in average is around 0.1%. As it raises according
to age, for the population over the age of 65, incidence reaches 1-2% [1].

As the causes of PD remain largely unknown, the diagnosis and detection relies solely on
the occurring symptoms of a subject. PD most prominent symptoms that can be grouped
by an acronym TRAP, include: Tremor at rest, Rigidity, Akinesia (or bradykinesia) i.e
poverty of movement and Posture disturbance [4]. All of which have impacts on subject’s
fine motor skills.

Non-motor symptoms, such as emotional and behavioral, occur only in 40% of subjects
and in the event of PD aggravation, one of five subjects will have diagnosis of dementia
[1]. Without treatment, PD symptoms have mayor progressive deterioration, gait freezing
and subjects experience frequent falls [1]. Thus the early diagnosis and treatment of PD is
of utmost relevance.

Contrary to most of the neurodegenerative disorders, through right treatments, mitigation
of symptoms is possible [5]. Several medications and therapies can improve subject’s daily
activities and in association subjects often reach near-normal life expectancy. In cases of
early disease discovery, the efficiency of these remedies prove to be higher [1].

Although diagnosing PD in it’s classical presentation is straightforward, separating it from
other forms of parkinsonism proves to be difficult, as the early stages of the disease show
symptoms that overlap with other syndromes. Assessment of patients is done by clinical
criteria and without the existence of a definitive test. The clinical criteria is a combination
of cardinal motor features used to determine PD. Possible diagnosis is defined by at least
two of the four symptoms characteristic to PD and probable diagnosis requires at least
three features. Throughout years, the only definite criterion standard has been pathological
conformation on autopsy [4].
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The absence of standardised and trustworthy test paired with the notion of medical workers
subjective conclusions regarding the clinical criterias used to determine PD, aid to the
objective of integrating statistics and machine learning for the purpose of supporting the
diagnostics.

2.2 Luria’s Alternating Series Test

Alexander Romanovich Luria, often recognised as the father of modern neuropsychological
assessment, published a simple clinical battery, containing several techniques which
investigated motor functions as well as hand movements. One of those tasks are Luria’s
Alternating Series Test (AST). It is a graphic task where subject is asked to draw a pattern
consisting of alternating shapes, most commonly squares and triangles. It’s universality and
simplicity makes it a popular procedure among researchers and neurologists. Furthermore,
as it engages cognitive processing, motor activity and inhibitory control, it may be used at
various stages of diagnostics of many neurodegenerative diseases [6].

Alternating series test is used to assess the state of planning and execution of fine motor
motions. Initially, three kinds of series were advised to detect instabilities in the compre-
hension, planning and implementation of tasks followed by the subjects. As completing
an AST requires constant effort, it engages both physical side, needing the stable work of
muscles and hand motions and mental side, involving thought processes, which for healthy
individuals may seem regular as opposed to subjects with neurodegenerative disorders
affecting also fine motor skills. Continuing the pattern of the aforementioned test targets
the assessment of the state of planning function, tracing the pattern is used to assess the
state of implementation function and ability to switch task can be assessed by asking the
patient to copy a sequence of shapes [7].

As Luria’s AST has shown to be of valuable use, it has since then evolved by being
digitised. The digitisation, as has been demonstrated in various researches, has allowed
the distinction between groups of PD patients and healthy controls (HC) by using some of
the kinematic and pressure parameters. These parameters are used to perform an analysis
using segments of data, calculated features, their selection and classification algorithms
[2].

2.3 Data acquisition

Dataset used within the scope of present thesis was acquired from using specially developed
digital data recording application for touch screen tablet device and accompanying digital
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pencil. This application records data about attained parameters with the approximate
frequence of 200 points per second [2].

The digital Luria’s AST were carried out by providing the subject with touch screen tablet.
Subject was seated to better support the hand that was used to grip the digital pencil used
to draw on the tablet and to complete chosen tests. Depending on the type of shown
test, subject was asked to either continue, trace or copy the pattern shown on screen. On
completing first test from the battery, another chosen one was relieved automatically until
the completion of all.

Parameters were saved by point and included x and y, indicating the horizontal and
vertical axes coordinates where pen was in contact with tablet surface measured in pixels,
t denoting timestamp in seconds since Mac OS X epoch i.e the amount of seconds since
midnight, January 1, 2001, a and l i.e altitude and longitude, denoting tilt angles between
pen and tablet surface and p, the amount of exerted pressure on the pen amidst drawing.
Per test taken by a subject, a file containing mentioned data in the JSON format is exported
[2]. Parameters used in computations relevant to thesis, four from the set of the parameters:
x, y, t and p were accounted for.

All recorded datasets were divided into movements, marking the separation of continuous
movement, that means in the time of subject conducting a test, the subject’s hand and with
that the digital pencil left the surface of the tablet. In the time of such event, no further
information was recorded until the returning of pencil connection with the surface.

From the application’s possible choices of test battery, the following, as variations of
digital Luria’s ASTs, were chosen for examination: plcontinue, pltrace, plcopy, pcontinue,
ptrace, pcopy. On Figure 1, the line marking the alternating series which were shown on
the tablet screen is of the color blue and the line marking the pattern which was drawn by
the subject is of yellow color.
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(a) pcontinue (b) plcontinue

(c) ptrace (d) pltrace

(e) pcopy (f) plcopy

Figure 1. Example of digital Luria’s alternating series tests in examined test battery

After extracting the provided data by application developed for the purposes of this thesis,
first basic parameters describing kinematics and geometry of the motions were computed.
After that, derived data, which describes a set of values being mathematically derived i.e
calculated from the set of initial parameters was also computed. In addition the set of
integral mass parameters referred to as motion mass is computed. Dataset used in thesis
includes in total 52 subjects, containing samples of subjects diagnosed with PD and HC
individuals of approximately the same age (mean age of 65) and equal gender proportions.

2.4 Problem statement

The main goals targeted by the thesis are following:

1. Investigate the existence of linear relations between examined features collected in
battery

2. Compare classificators trained within the scope of each individual test versus classi-
ficators trained in the scope of examined battery

3. Develop a program to choose a trained classification model and use it to analyze on
the basis of an individual, including the segmentation between PD and HC groups

To reach these goals, the use of several statistical and algorithmic computations was
needed. Inclusively, the calculation of correlations, feature selection and validation of
trained classifiers.
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3. Method

3.1 Scaling and Normalization

In the raw format, data may have several inconsistencies, missing values or errors. The
application of preparation to the management of raw data and it’s analysis has been used in
such situations. Therefore, when wanting to use data in effective way and draw conclusions
that correspond to requirements, a step, called data preparation phase is needed [8].

As the input data with which present thesis worked, was deemed, in examined scope,
suitable in most parts, the other forms of data preparations, except for data scaling and
normalization, were omitted.

As the name suggests, scaling and normalization refers to the scenario, where different
features constitute different scales and may accordingly not be comparable to one another.
For example, many machine learning classifiers calculate the distance between two points
by the Euclidean distance and in the event of omitting preparations for data, will be directed
by feature with broader range of values.

To diffuse this problem, an approach of data standardization was used, as it is a common
requirement for machine learning estimators. At the time of the creation of current thesis,
two most common ways were looked at: standard scaling and min-max scaler, resulting
in the choice of min-max scaler. Although this approach is not effective in the event
of extreme value outliers, caused by mistakes in data collection, it was noted that such
mistakes had not occurred and as such would be in more understandable format, for the
reason that min-max scaling will normalize the majority of values in the range [0,1]. In the
other hand, standard scaling results in values that lie in the range [-3,3] [8].

Min-max scaling used to transform features to the default range [0,1], is given by the
formula presented below [8]:

yji =
xji −minj

maxj −minj

. (3.1)

where minj and maxj represent the minimum and maximum values of attribute j.
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3.2 Fisher’s score

Fisher score is used to order features by the discriminating power and thus decide the
best features for a given class through supervised feature selection. Feature selection is of
relevance because of the curse of dimensionality, that occurs during classification when
the input data is of high dimensions. The curse of dimensionality refers to the over-fitting
of learning methods which leads to less interpretable results.

In this thesis, to overcome these problems, a generalized Fisher score is used. The cause
being it’s popularity and usage among similar research papers [2]. The main idea of Fisher
score is to find a subset of the features represented by two classes and in doing so, separate
each data point in such way that the distances between data points in the same class are as
minuscule as possible and between different classes as large as possible [9].

The formula for calculating Fisher’s score is the following [8]:

F =

∑k
j=1 Pj(µj − µ)2∑k

j Pjσ2
j

. (3.2)

where k denotes the count of classes, Pj the amount of samples belonging to the class j,
µj is the mean of of features across attribute j, µ denotes the mean of all classes and σ2

j is
the variance of the class j.

As the count of classes examined consists of only two: PD and HC, the calculation can
simplified to the following state:

F =
Ppd(µpd − µ)2 + Phc(µhc − µ)2

Ppdσ2
pd + Phcσ2

hc

. (3.3)

3.3 Pearson’s correlation coefficient

To execute the measure of association between test battery examined in current thesis, an
algorithm of statistical coefficient of correlation was exerted. Between a pair of items, a
commonly used statistical measure of correlation is the Pearson coefficient. It can be used
to summarize the strength of linear proportions between two data samples. The Pearson
coefficient between two variables X and Y is defined by following equation [8]:

ρ =
E[X · Y ]− E[X] · E[Y ]

σ(X) · σ(Y )
. (3.4)
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The coefficient of correlation is defined by range of [-1,1]. Positive correlation is indicated
by the maximum value i.e 1 and the value of -1 indicates negative correlation. Values
nearing 0 indicate weak or nonexistent correlation between variables [8].

To validate the existence or absence of correlations between examined battery of tests,
Pearson coefficient of correlation was computed for Luria’s ASTs. The following groups
of datasets were compared: ptrace pltrace, pcontinue plcontinue, pcopy plcopy. Results
were exported to Excel file and coefficients alongside p-values and graphics were recorded.

Highest recorded positive correlation value reached the amount of 0.43 and negative
reached -0.15.

3.4 Classifier models

3.4.1 Decision Tree

Decision Trees (DTs) are a supervised learning method used for classification and regres-
sion purposes. DTs are considered to be one of the most efficient classification methods,
exceeding expectations over numerous other types. Also, the tree is constantly natural and
easily understood, as it forms a tree-like structure comprising of three basic segments: root
node, few hidden nodes and terminal nodes, also known as leaves or child nodes [10].

The model created to predict the target value of a target variable is created by following
simple guidelines, consisting of a set of if-then-else decision rules. With the raise of
steepness, the decision rules get more complex and the model gets more fit [10].

DT used in thesis learned to partition data on the basis of the attribute value. The tree
was partitioned in a recursive manner, called recursive partitioning, to handle each node
containing best attribute and make that a decision node, which in turn breaks the dataset
into smaller subsets that would be as accurate as possible within the data used for training.

3.4.2 Random Forest

Random Forest (RF) classifier or random decision forest, is comprised of DTs. RF creates
decision trees on data samples that are selected at random, thereupon RF attains prediction
from each tree and the best prediction is selected by getting the vote of each tree, where
the class with most in favor will be chosen [10].
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It is considered highly accurate and robust method, as it contains a number of DTs partici-
pating in the process. Furthermore, another advantage is that the problem of overfitting
the dataset will render redundant, as taking the average of all predictions cancels out the
biases [10].

3.4.3 K-Nearest Neighbours

K-Nearest Neighbours (KNN) algorithm is a supervised learning algorithm that assumes
the proximity of similar data points, by calculating the distance between those points for
each example in the data and classifying the sample to the class most frequently occurring
amongst the considered amount of k nearest neighbours [11].

Despite that KNN rule for classification is considered as the most simple method among
supervised classification approaches, KNN has proven to often outperform more sophis-
ticated methods and has a sound theoretical basis in non-parametric density estimation
[11].

3.4.4 Logistic Regression

Logistic Regression (LR) is a linear model for classification. It is also known as logit
regression, maximum-entropy classification (MaxEnt) and log-linear classifier. It is often
the first go-to method for binary i.e with two class values classification problems as it uses
logistic function [12].

LR predicts the probabilities of the default class. In other words, comparing two arbitrary
classes A and B, then the first class being A and the logistic regression model could be
interpreted as the probability that an input X belongs to the default class A [12].

In that sense, LR could be seen as a model of probability, as opposed to model of classifi-
cation. It must be noted, that the probability prediction will be transformed into binary
values - either 0 or 1.

3.4.5 Support Vector Machine

The Support Vector Machine (SVM) algorithm is in essence an extension to KNN classifi-
cation approach, also determining neighborhood of data points. However, SVM uses extra
steps, by dividing learning data into partitions, using hyper planes i.e lines composed of
more than three dimensions, which are created, using vectors of each predictor variable.

19



For that, hyper plane with biggest classification is used to conclude the nearest training
data point of any class [13].

The generalization error of the SVM classifier is dependant on the size of this nearest data
point, or functional margin, as it is mainly known [13].

3.5 Model features

From every stroke of the subject made on digital tablet, four parameters: x, y, p and t
were used to calculate parameters referred to as derived data. This means features, which
can be calculated from the set of initial parameters. It included parameters as difference
between points, distance, velocity, acceleration, jerk, to name few, totaling around the size
of 25 features. Features were selected based on similar researches conducted, studying
fine motor tests being part of Luria’s ASTs: [2, 14].

For the next step, aggregate data was also calculated. Additionally to derived features
means, medians, maximum, minimum values, standard deviations and so on, a set of
variables used to describe movement, known as motion mass parameters were computed.
In total, 288 features per subject, test type pair were provided.

The first parameter in motion mass is the actual distance of the drawn trajectory of each
interest point, summed. In short, it describes the amount of movements performed. Denoted
by LT and computed by following equation [14]:

LT =
N∑
i=1

li. (3.5)

where li is the distance between point i and i-1.

Total length calculations are used for several features. LTx denotes the length calculation
for horizontal i.e x axis length. Similarly LTy is based on vertical i.e the length of y axis.

Variable LTe is based on the Euclidean distance (
√
lxi

2 + lyi
2 ) between data points i.e

length.

The sum of absolute velocities computed at the ith observation point is referred to as
velocity mass (3.6).
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VT =
N∑
i=1

|vi|. (3.6)

Where vi is the velocity at the ith observation point.

Acceleration mass describes the smoothness of the motions in the course of taking the
test. The lower values indicating smoother motions. To calculate Acceleration mass, the
absolute values of all the acceleration values at each data point must be summed (3.7).

AT =
N∑
i=1

|ai|. (3.7)

Where ai is the acceleration calculated at the ith observation point.

Jerk mass is defined by equivalent equation (3.8).

JT =
N∑
i=1

|ji|. (3.8)

Where ji is the jerk i.e mathematical derivative of velocity at the ith observation point.

Pressure mass follows the changes in applied pressure to the tablet screen in total (3.9).

PT =
N∑
i=1

|pi|. (3.9)

Where pi is the pressure p calculated at the point i of the interval T .

To conclude, the sum of angle directions between each group of two vectors, also referred
to as angular mass, is computed (3.10).

DT =
N∑
i=1

|di|. (3.10)
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Where di is the angle between the directional vector and x axis of the screen at the ith
observation point.

Therefore, the parameters can be defined as a tuple of motion mass features:

MT = {LT , VT , AT , JT , PT , DT}. (3.11)

As like in other conducted researches [15], occasionally additional parameters are added
to this tuple. The features explored in this thesis can be seen in Table 9. Additionally, the
same features were divided by strokes count and therefore computed for a stroke as well.

3.6 Feature selection

To remove redundant parameters and choose those of real and higher value, and also to
avoid the curse of dimensionality the feature selection technique, as was described in the
Section 3.2, established feature selection of highest values. The five best features used in
thesis to train classifiers can be seen in Table 1.

Table 1. The best five features by Fisher score

n feature Fisher score
1 angular mass 0.76
2 yaw angle mass 0.67
3 median yaw angle 0.62
4 angular acceleration mass 0.61
5 minimal angle to x axis 0.59

3.7 Classifier validation

When planning to use the parameters that the prediction classifier was trained with to test
the predictions, mistakes would arise. A model would simply repeat every decision made
and thus be really efficient, unless it encounters new, unseen data. In that case, the model
could be rendered useless. This situation is often referred to as overfitting.

To avoid the case of overfitting, the method of splitting the data to classes as test set and
train set is used. Test set, as name suggests, is used to test the model and train set in the
phase of training the model. As the data sets used in thesis of both PD and HC were
rather small in size, k-fold cross-validation, that allows the use of test data for both phases:
training and testing, was used [16]. The value of k in thesis was chosen to be 5 in relation
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to the size of data samples.

K-fold cross-validation is a procedure, in which the training set is split into number of
smaller sets, each containing k folds. For each of the small set, the model is trained using
k − 1 of the folds and then the trained model will be validated with the remaining part
of the data that is different for every set. The resulting accuracy will be conducted as the
average of accuracy of each iteration [16].

Every trained model, within both method scopes, was subjected to the computation of
model accuracy, precision, recall and f1 score, which accordingly mean the fraction of
correct predictions in the total number of predictions, the proportion of positive predictions
being correct, the proportion of actual positive values being correctly identified and function
of precision and recall.

For better understanding of these computations, the following formulas will better accentu-
ate described measures.

Accuracy =
Number of correct predictions

Total number of predictions
. (3.12)

Even though outside the machine learning community accuracy is one of the most sought
after measure, as the equation suggests, accuracy computation does not delve on the mis-
classification of false negative and positive values. On contrary, there are other measures
which do that:

Precision =
True Positive

True Positive+ False Positive
=

True Positive

Total Predicted Positive
.

(3.13)

Precision is a good way of measure in the cases when False Positives are detrimental.

Recall =
True Positive

True Positive+ False Negative
=

True Positive

Total Actual Positive
. (3.14)

Recall has advantages in the cases where False Negative has severe consequences. For
instance, sick patient detection.
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F1 = 2 · Precision ·Recall
Precision+Recall

. (3.15)

F1 score is often used as a balance between Precision and Recall and when the class
distribution is uneven.

3.8 Classifier training

Due to the small sample of data, the deep learning models were substituted with a classical
collection of models, including DT, RF, KNN, LR and SVM, that were trained according
to parameters chosen by feature selection, each one of them with a varying number of
features.

In current thesis the training of two types of classifiers was made to explore one of the
stated problems. The classifiers were trained with data on the basis of every individual
test type and as well as on the basis of the entire examined test battery. It was done so to
compare the accuracy of predictions in one method versus the other and explore something,
that to the knowledge of the author has not yet been done.

First, the dataset was scaled as discussed in Section 3.1. Two arrays were given as input:
an array of size [n_samples, n_features] containing training samples obtained as discussed
previously and an array of size [n_samples], holding class labels for the training samples.
In current thesis class labels were conducted as follows: 0 denoting HC and 1 denoting PD.

The data classes were therefore fitted to the five brought out classifiers, which would
therefore predict the class of a given input accordingly. The number of features selected
to train the classifiers with highest scores, was found through the computation of all the
measures discussed in Section 3.7. As the classification problem has sensitivity to false
negative predictions, models were firstly ordered by recall that is in detail discussed in
Section 3.7.

Followingly, the evaluation of classification results by test type are presented. The missing
values are due to the unreliable results provided being omitted.
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Table 2. Classifier Recall for plcontinue

Classifier n of parameters Recall
DT - -
RF 3 0.970
KNN 2 0.802
LR 5 0.682
SVM 5 0.773

Table 3. Classifier Recall for pcontinue

Classifier n of parameters Recall
DT - -
RF 3 0.971
KNN 5 0.727
LR 5 0.592
SVM 5 0.774

Table 4. Classifier Recall for test plcopy

Classifier n of parameters Recall
DT 2 0.954
RF 2 0.921
KNN 5 0.670
LR 5 0.524
SVM 4 0.670

Table 5. Classifier Recall for pcopy

Classifier n of parameters Recall
DT - -
RF 2 0.983
KNN 4 0.664
LR 4 0.571
SVM 3 0.636

Table 6. Classifier Recall for test pltrace

Classifier n of parameters Recall
DT - -
RF 2 0.970
KNN 3 0.731
LR 4 0.731
SVM 2 0.747

Table 7. Classifier Recall for ptrace

Classifier n of parameters Recall
DT 2 0.950
RF 2 0.950
KNN 2 0.703
LR 4 0.701
SVM 5 0.712

Evaluations to the extent of data from the battery examined is shown in Table 8.

Table 8. Classifier Recall for test battery

Classifier n of parameters Recall
DT 2 0.950
RF 2 0.950
KNN 2 0.703
LR 4 0.701
SVM 5 0.712

As it seems, collating the Recall of individual tests to test battery, the values do not
differentiate extensively. Additionally, in some cases the values of test battery classifier
exceed the ones of an individual test.

3.9 Developed application

As part of the thesis, implementation of developed software was required to use the trained
classification models for the prediction of HC or PD and to explore the visual side of those
two classes, by demonstrating line charts, two dimensional and three dimensional graphs,
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depending on the number of the trained model parameters. It was done with the purpose in
mind that present analysis could be extended in the future.

In this section the functionalities analysis, used technologies, tools and user interface is
discussed.

3.9.1 Functionalities

It should be noted, that as a point of start, the only certain knowledge was that as an input,
the program requires files in JSON format.Reason being, the files that contain subject
results are saved in such format.

As such, the application had to:

� Load data from a JSON file
� Allow the selection of trained machine learning models according to test type
� Predict the classification of subject (PD or HC)
� Visualize the position of subject data point in comparison to other PD and HC cases

3.9.2 Implementation

Firstly, the creation of a database was deemed necessary as the trained models and data used
to train said models had to be stored. Initially the structure of database was different, but
during the course of development it had to be modified several times to suit the additional
requirements decided on during the discussions with the supervisor.

For the database implementation, MySQL database was chosen. The reasons being
previous experience through the usage in university courses, quick and easy setup and the
capability to use phpMyAdmin software to more easily handle the administration of the
database.

Current state of database structure:
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Figure 2. Structure of created database

Two directions of application development were considered for the realisation of set
functionality requirements. At first, a desktop application seemed sufficient to provide all
the needed functionality, but on the other hand, the advantages of web application and it’s
scalability were the key values toward choosing that type of architecture.

As the author decided to develop a web application, several frameworks were considered.
The most prominent one being Django. While the author had not used Django in any
previous projects, the notions of other developers and enthusiasts were acquainted along
with the documentation. Taking into account that learning the Django framework is
considered tedious for beginners and contains a lot of overhead, the search for similar, yet
lighter and more flexible framework was done [17, 18].

The resulting framework to meet such requirements is known as Flask. By design, Flask
includes more flexibility as compared to Django and is meant to be extended. It is a great
tool to learn web development best practices and fundamentals. The rise of microservices
also accounts in favor of Flask framework. As stated in Flask documentation, it is "a
microframework for Python based on Werkzeug, Jinja 2 and good intentions." [19].

Werkzeug is a Web Server Gateway Interface library. Jinja 2 is a template engine for
Python, inspired by Django, but extended [19].

Rendered pages of the application, named templates, were written in Hypertext Markup
Language. Charts of the application were done using Highcharts library, as a common and
popular tool for creating interactable JavaScript charts for a web page [20]. As Flask does
not support forms by default, the Flask-WTF library with WTForms was used.
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3.9.3 User Interface

The main page of the developed application can be seen on Figure 3. In that view, user can
easily and quickly select a file from the device and in the event of clicking on the primarised
button "Load & Analyze" will be redirected to the second view of the application. The
second view is presented on Figure 4 and contains a drop-down list of the selection
of trained models, ordered by accuracy and including assigned descriptions about the
classifier.

Figure 3. Main page of developed application

Figure 4. Web page of developed application containing trained model selection

After the selection of classifier model, a prediction about the data provided in the input
file will be shown. In addition, a one, two or three dimensional graph will be shown,
according to the amount of parameters with which the model was trained. An example of
one dimensional graphs are presented in Figure 5.
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Figure 5. Data visualization with one dimensional graph

To better demonstrate the classification results made by trained machine learning models,
data point of subject along with the scatter plot with training parameters and drawn decision
boundary was presented.

To understand the meaning of decision boundary, one must first familiarize with decision
regions. Decision region is used to name an area of classified data that corresponds to
one specific output class, in current thesis either PD or HC. Within the dataset, there can
be multiple decision regions. Decision boundary is the crossing point of two different
decision region [21].

Decision boundary implementation was done similarly to research [22]. Firstly, a step
was chosen and for the entire plane of data points, an abstract grid of lines after each step
was placed along horizontal and vertical direction. From every appearing cell, the trained
model was used to predict the class value inside. Then, the search of border points was
conducted. For that, a three by three matrix was placed along both directions of the grid,
recursively scanning through the predicted values and when the matrix contained at least
one element from other class, it was marked as a border point. Decision boundary was the
unification of all border points.

Examples of two and three dimensional graphics are presented in Figure 6 and Figure 7
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accordingly.

Figure 6. Data visualization with two dimensional graph

Figure 7. Data visualization with three dimensional graph

As it can be seen on Figure 7 the decision boundary is not in one linear format. Thus,
the boundary points are scattered and warp into various shapes. During the development
of the application, the author tried to modify the implementation of decision boundary
visualisation through using polygon plot provided by Highcharts [20], but was unable to
do so, for the reason that all of the boundary points were not always in the same groups
and the connection of polygon series resulted in visual anomalies.
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Additional drawback was that the step in the creation of the decision boundary for the three
dimensional graph had to be rather big. When small step for boundary points creation was
used, the resulting huge amount of points made the graph unresponsive.
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4. Results

In this study Fisher’s score, from Section 3.2 is used to ensure the best feature selection of
training parameters for machine learning models. The selected features and their Fisher’s
scores are presented in Table 1.

In current thesis, the relation between test groups in the examined battery was also explored.
For that, Pearson’s correlation coefficient, discussed in Section 3.3 was used. As it was
there stated, the maximum positive and negative correlation coefficients were rather low
and did not have any significant effect. Obtained results are further presented in the Figures
8 - 10, confirming these claims. Therefore no vital linear correlations between examined
battery of tests were detected.

(a) Pearson’s correlation coefficients (b) P-values

Figure 8. pcontinue and plcontinue

(a) Pearson’s correlation coefficients (b) P-values

Figure 9. ptrace and pltrace
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(a) Pearson’s correlation coefficients (b) P-values

Figure 10. pcopy and plcopy

Finally, an application was developed that allows the analyzation of subject’s fine motor
test data and according to trained machine learning models, predict the class of said data.
Two segmentation classes were explored: PD and HC. A visual demonstration consisting
of data points used in model training, subject data and decision boundary was presented for
better analysis of the prediction results. For that purpose one, two and three dimensional
graphs were implemented.
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5. Discussion

The Pearson’s correlation coefficient has provided various interesting results. However, the
analyzation could be extended to examine the relations between permutations of the test
battery and in the feature include other fine motor tests that were not included in current
thesis.

Although in the comparison of machine learning models trained by each individual test
data and by test battery, the analysis parameters showed, in some cases, the superiority
of model trained on test battery, the analysis was concluded with small sample size. In
further developments, results with bigger sample sizes would be recommendable.

Finally, the realisation of decision boundaries could be modified to suit bigger sample sizes
and to visually appear more distinguishable.

34



6. Conclusions

The first goal of the thesis was to investigate the relations between the tests in examined
battery. The purpose being the optimisation of battery by omitting the correlating tests that
overlap with one another. By the methods used on the provided data, the thesis found no
linear correlations and therefore the optimisation of the battery including the tests explored,
could not be done.

In the case of sample range within the size boundary included in this thesis, classificators
trained in the scope of examined battery proved to even exceed some of the classifiers
trained in the scope of each individual test. The results could not be directly applied to
larger test samples. For that, further research must be carried out.

For the purpose of this research, an application was developed. The application allows the
analization of performed fine motor test data and the visualization of machine learning
model predictions along with the parameters of PD diagnosed patients and HCs. In
future developments, the application could be used with other types of machine learning
algorithms in addition to the ones already used.
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Appendix 1 - Computed features

Table 9. Explored features

Feature Description
LT Total length of the drawn line

LTx Total length of the drawn line for x axis

LTy Total length of the drawn line for y axis

VT Velocity mass

VTav Average velocity

VTmed Median velocity

VTmax Maximal velocity

VTmin Minimal velocity

VTstd Standard deviation of velocity

VTx Horizontal velocity mass

VTavx Average horizontal velocity

VTmedx Median horizontal velocity

VTmaxx Maximal horizontal velocity

VTminx Minimal horizontal velocity

VTstdx Standard deviation of horizontal velocity

VTy Vertical velocity mass

VTavy Average vertical velocity

VTmedy Median vertical velocity

VTmaxy Maximal vertical velocity

VTminy Minimal vertical velocity

VTstdy Standard deviation of vertical velocity

AT Acceleration mass

ATav Average acceleration

ATmed Median acceleration

ATmax Maximal acceleration

ATmin Minimal acceleration

ATstd Standard deviation of acceleration

ATx Horizontal acceleration mass

ATavx Average horizontal acceleration
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ATmedx Median horizontal acceleration

ATmaxx Maximal horizontal acceleration

ATminx Minimal horizontal acceleration

ATstdx Standard deviation of horizontal acceleration

ATy Vertical acceleration mass

ATavy Average vertical acceleration

ATmedy Median vertical acceleration

ATmaxy Maximal vertical acceleration

ATminy Minimal vertical acceleration

ATstdy Standard deviation of vertical acceleration

JT Jerk mass

JTav Average jerk

JTmed Median jerk

JTmax Maximal jerk

JTmin Minimal jerk

JTstd Standard deviation of jerk

JTx Horizontal jerk mass

JTavx Average horizontal jerk

JTmedx Median horizontal jerk

JTmaxx Maximal horizontal jerk

JTminx Minimal horizontal jerk

JTstdx Standard deviation of horizontal jerk

JTy Vertical jerk mass

JTavy Average vertical jerk

JTmedy Median vertical jerk

JTmaxy Maximal vertical jerk

JTminy Minimal vertical jerk

JTstdy Standard deviation of vertical jerk

MT Slopes mass

MTav Average slopes

MTmed Median slopes

MTmax Maximal slopes

MTmin Minimal slopes

MTstd Standard deviation of slopes

θT Angular mass

ψTav Average yaw angle

ψTmed Median yaw angle
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ψTmax Maximal yaw angle

ψTmin Minimal yaw angle

ψTstd Standard deviation of yaw angle

ωT Angular velocity mass

ωTav Average angular velocity

ωTmed Median angular velocity

ωTmax Maximal angular velocity

ωTmin Minimal angular velocity

ωTstd Standard deviation of angular velocity

αT Angular acceleration mass

αTav Average angular acceleration

αTmed Median angular acceleration

αTmax Maximal angular acceleration

αTmin Minimal angular acceleration

αTstd Standard deviation of angular acceleration

ζT Angular jerk mass

ζTav Average angular jerk

ζTmed Median angular jerk

ζTmax Maximal angular jerk

ζTmin Minimal angular jerk

ζTstd Standard deviation of angular jerk

PT Pressure mass

t duration

∆PT Change of pressure mass

∆PTav Average pressure change

∆PTmed Median pressure change

∆PTmax Maximal pressure change

∆PTmin Minimal pressure change

∆PTstd Standard deviation of pressure change

∆PvT Pressure change velocity mass

∆PvTav Average pressure change velocity

∆PvTmed Median pressure change velocity

∆PvTmax Maximal pressure change velocity

∆PvTmin Minimal pressure change velocity

∆PvTstd Standard deviation of pressure change velocity

∆PaT Pressure change acceleration mass

∆PaTav Average pressure change acceleration
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∆PaTmed Median pressure change acceleration

∆PaTmax Maximal pressure change acceleration

∆PaTmin Minimal pressure change acceleration

∆PaTstd Standard deviation of pressure change acceleration

∆PaT Pressure change jerk mass

∆PaTav Average pressure change jerk

∆PaTmed Median pressure change jerk

∆PaTmax Maximal pressure change jerk

∆PaTmin Minimal pressure change jerk

∆PaTstd Standard deviation of pressure change jerk
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