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Introduction
The most successful theory of particle physics is the Standard Model (SM). It describes allknown fundamental particles and the forces between them — all except for the gravitywhich is instead explained by the theory of general relativity. In 2012 the last missinglink of SM, the Higgs boson, was discovered by the Compact Muon Solenoid (CMS) and AToroidal LHC Apparatus (ATLAS) collaborations [6, 7] at the LHC experiment [8], markingthemomentwhen all the particles predicted by the SMhave been found. However, duringthe next more than a decade, no new discoveries have been made.While SMmanages to describe amajority of physics phenomena, several astrophysicalobservations fall beyond it’s reach, therebymotivating theories explaining newphysics be-yond the SM. These astrophysical phenomena include for example the offset of the centerof the total mass from the center of the baryonic mass in case of the Bullet Cluster [9] andthe discrepancies between the predicted and measured galactic rotational curves [10].Both of these phenomena indicate the existence of a new type of matter referred to asdark matter [11], which seems to interact with SM particles only via gravitational force.As dark matter has never been directly observed, a scrutinous testing of the SM pre-dictions is necessary. Being that the newly discovered Higgs boson interacts only withmassive particles, it can be anticipated that also massive particles beyond SM would in-teract with the Higgs field, thereby motivating the study of the Higgs boson and the as ofyet unmeasured properties of it. Higgs boson self-coupling (λ ) represents one of thesequantities and can be directly accessed via the Higgs boson pair (HH) production. How-ever, measuring this process constitutes a major challenge—with a production cross sec-tion of 31 fb at the center-of-mass energy of 13 TeV, producing HH is O(1000) times rarerthan single Higgs. A significant mismatch of the observed values and SM prediction wouldsuggest new physics beyond SM.One possible scenario for the excess of HH signal eventsmay originate from the decaysof unknown new heavy particles, which are postulated by various theoretical models pre-dicting new physics. These models include for example two-Higgs-doublet models [12],Higgs portal models [13], composite-Higgs models [14] or even models inspired by extradimensions [15]. The latter class of the listed theoretical models features new heavy par-ticles having a spin 0 (radion-like) or spin 2 (graviton-like), which are two of physics casesof studied in the current thesis.Also, the fact that besides the Higgs boson no new particles have been found at theLHC, motivates theories featuring new heavy particles that are too heavy to be producedat the energies the LHC is operating on. Still, these heavy particles can be detected in-derectly by considering loop contribution to given Feynman diagrams. As the amountof theories featuring such heavy particles decaying into two Higgs bosons is essentiallyinfinite, the contributions of such heavy particles could be approximated as contact inter-actions with the Higgs boson. This approach is referred to as Effective Field Theory (EFT)and is used for the physics searches in the HH → multilepton analysis in this thesis.The HH analysis studied in the context of this thesis targets the decay channels, wherethe two Higgs bosons decay into either only vector bosons (VVVV), vector bosons and τleptons (VVττ), or only τ leptons (ττττ) in the final states featuring multiple electrons,muons and hadronically decaying τ leptons. Major contributions in this analysis have beenmade to two analysis channels targeting the ττττ decay mode — 0ℓ+4τh and 1ℓ+3τh ,
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where the symbol τh denotes hadronically decaying taus. As ττττ decay channel has avery small branching ratio, it features very few signal events. Therefore, since the mainbackground in both 0ℓ+4τh and 1ℓ+3τh channels originates from electrons and jets thatare incorrectly identified as τh, a sizable gain in sensitivity to the HH signal can be at-tained with better τ reconstruction and identification. Various novel machine learning(ML) methods for τ reconstruction and identification were studied in this thesis. Dataused for the HH → multilepton analysis corresponds to the proton-proton collisions hap-pening at the LHC at the center-of-momentum (c.o.m) energy of 13 TeV every 25 ns. Thedata was recorded by the CMS detector in the years 2016-2018.In order to discriminate HH signal from background processes, special analysis andmachine learning techniques were employed. The present document focuses primarilyon the machine learning aspect of the HH → multilepton analysis. In addition to choos-ing a a suitable algorithm and preparing the data for the training, one needs to specifyalgorithm-inherent parameters, referred to as hyperparameters. The choice of these pa-rameters significantly influences the performance of the trained model. Hence, varioushyperparameter optimizationg algorithms were explored, including the suitability of evo-lutionary algorithms for this task.This thesis is structured as follows: In Chapter 2 an overview of the most importantaspects of the SM is given; Chapter 3 briefly describes the CMS detector, as well as par-ticle reconstruction and identification methods; Chapter 4 covers the basic principles ofmachine learning; Chapter 5 gives an overview of the HH → multilepton analysis and pro-vides further details on the 0ℓ+4τh , 1ℓ+3τh analysis channels.
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1 Standard Model
SM of particle physics is a theory describing fundamental particles in the nature and theforces between them, namely the interactions via gauge bosons and Higgs interactions.It describes three out of the four known forces — the electromagnetic, weak and strongforce. The only known force it does not cover is the graviational force which is insteaddescribed by general theory of relativity.SM is consistentwithmost of observations, with the recent precision tests establishingits validity up to the electroweak scale.This chapter aims to describe the general details of the SMof particle physics in Sec. 1.1,while giving a more in depth view of the role of Higgs boson within the model in Sec. 1.2.An overview of the Higgs boson pair production process is given in Sec. 1.2.2.

1.1 Overview of the Standard Model

Standard Model consists of several theoretical ideas that are combined in a way thatwould reproduce the experimental data. The different ingredients describe different as-pects of the theory— fermions are described by theDirac equation of relativistic quantummechanics, the fundamental description of the particles and their interactions are givenby quantum field theory (QFT), the exact nature of the interactions is determined by thelocal gauge principle, and finally the masses for the particles are created by the Higgsmechanism by breaking the electroweak symmetry.In total there are 26 free parameters in the SM, 14 ofwhich are related to theHiggs field(12 Yukawa couplings of fermions to the Higgs field, the vacuum expectation value of theHiggs potential and the mass of the Higgs boson), 8 with the flavor sector (The mixing an-gles of the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) andCabibbo–Kobayashi–Maskawa(CKM) matrices. Additional (26th) degree of freedom that is often taken to be 0 is the CPviolating phase θCP.) and 3 related to the gauge interactions.SM is based on the local gauge group SU(3)c ×SU(2)L ×U(1)Y, where the SU(3)cand SU(2)L ×U(1)Y represent the gauge groups for strong interactions and electroweakinteractions respectively. Each gauge group prescribes how the corresponding quantumfield (spin-0 scalar field or spin-1 vector field) transforms (space rotations and Lorentzboosts) without affecting the equations of motion, thereby leading to conservation ofcharge as per Noether’s theorem.However, in order for these transformations to be local, one needs to introduce vec-tor fields (i.e., gauge fields), the excitations of which correspond to the force-mediatingparticles and therefore to the generators of the symmetry group. The interaction strengthdepends on the charge corresponding to the associated gauge boson - in case of the elec-tromagnetic force this charge corresponds to the electric charge. In case of weak interac-tion and strong force the corresponding charges are weak isospin and the color charge,respectively. In the SM the four spin-1 particles, also known as vector bosons, are the Z,
W± for the weak force, photon (γ) for the electromagnetic force and gluon (g) for thestrong force.All the fundamental particles in SM are shown in Fig. 1.1. The quarks and the gluonare the only color charged particles and are thus participating in strong interactions. Due
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to color-confinement [16] color charged particles cannot exist freely in the nature — theyform composite particles called baryons, which include both mesons (formed from quarkand anti-quark) and hadrons (consisting of three quarks or anti-quarks). Attempting toseparate colored particles requires so much energy, that it becomes energetically morefavorable to produce new hadrons.Matter consists of spin- 1
2 fermions, which includes both quarks and leptons. Fermionscome in three generations with each subsequent one being more massive than the previ-ous one. All fermionswith the exception of neutrinos are electrically charged andwill thusinteract electromagnetically by exchanging a photon. Additionally, all leptons interact viathe weak force — by the exchange ofW± or a Z boson. Incidentally, neutrinos participateonly in weak interactions. Electrons together with up and down quarks form the stablematter surrounding us.Unlike the vector bosons, that all have spin 1, Higgs boson is the only known (scalar)boson with a spin equal to 0. For Higgs interactions the interaction strength depends onthe mass of the particle and the vacuum expectation value (VEV) of the Higgs field. Higgsboson and its properties will further be discussed in the following sections.SM is consistent with almost all experimental observations. Still, despite being themost successful theory for it’s purposes, there are several things it does not predict. Theseinclude:

• Neutrino oscillations and neutrino masses: Proton-proton chain is one of the twomain fusion reactions in the Sun. In this process only electron neutrinos are cre-ated. When measuring the neutrino flavor composition of these solar neutrinos,one would also expect it to consists of only electron neutrinos. However, this is notthe case, as the interaction eigenstates (i.e., the flavor eigenstates) differ from themass eigenstates that are the ones that traverse the space giving rise to flavor mix-ing [17]. However, according to the SM neutrinos are masseless, since introducingmasses would require the presence of both left- and right-handed neutrinos andso far no evidence of right-handed neutrinos has been found. Although the massdifferences (∆m12, ∆m23, ∆m13) of the lepton generations have beenmeasured, themasses (and the mass-hierarchy) of the neutrinos are unknown, while being esti-mated to be≤ 1eV.
• Existence of dark matter: From astronomical observations we see that the rota-tional speeds of galaxies do not match with what one would expect from visiblematter [18]. This and several other observations motivate studies of new hypothet-ical particles such as weakly interacting massive particles (WIMPs) [19] and exten-sions to the SM where for example heavy resonance decays into a pair of Higgsbosons [20].
• Matter antimatter asymmetry:Matter and antimatter is produced and annihilatedin pairs. However, we see matter in much bigger quantities around us than anti-matter, suggesting there is an asymmetry. This asymmetry is not explained by theSM [21].

16



Figure 1.1: Fundamental particles in SM. Multicolored frame indicates that the particle interacts via
strong force. Numbers given in red and blue denote the electric and weak isospin charges respec-
tively [22].

1.2 Higgs boson

In this section a brief overview of the role of the Higgs boson in the SM is given and ismostly based on Ref. [23]. A more detailed discussion can be found in Refs. [23, 24].The principle of local gauge invariance is supported by high-precision electroweakmeasurements. However, local gauge invariance can only be satisfied if the gauge bosonof an interaction is massless, as introducing masses for the gauge boson would spoil thelocal gauge invariance. Indeed, for quantum electrodynamics (QED) and quantum chro-modynamics (QCD) this criterium is fulfilled as their gauge bosons are massless - but weknow thatW± and Z are not massless.In order to generatemasses for gauge bosons, one needs to break theU(1)Y ×SU(2)Llocal gauge symmetry— this is achieved via theHiggsmechanism. The idea is to introducea scalar field φ that gives rise to the mass terms.In the simplest Higgs model, there are four degrees of freedom stemming from thetwo complex scalar fields that are placed in a weak isospin dublet:

φ =

φ+

φ 0

=
1√
2

φ1 + iφ2

φ3 + iφ4

 (1.1)
where the scalar potential of the field is:
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V (φ) = µ
2
φ

†
φ +λ (φ †

φ)2 (1.2)
Having µ2 > 0 results in theminimumof the potential to be at φ = 0. However, choos-

ing µ2 < 0, an infinite set of degenerate minima will satisfy φ †φ = − µ2

2λ
, resulting in apotential in a shape of aMexican hat as depicted on Fig. 1.2:

Figure 1.2: The Mexican hat shaped Higgs potential [25].

As the photon needs to remain massless after symmetry breaking, the minimum ofthe Higgs potential must have a non-zero VEV only for the neutral scalar field φ 0 in Eq. 1.1.

⟨0|φ |0⟩= 1√
2

0

v

 (1.3)
The field φ can be expanded around this minimum, resulting in 3 massless Goldstonebosons, g1,g2 and g4, giving us the longitudinal degrees of freedom corresponding to the

W+ W− and Z that are associated to the SU(2)L, and a massive scalar boson h(x):

φ(x) =
1√
2

 g1(x)+ ig2(x)

v+h(x)+ ig4(x)

 unitary gauge
=======⇒ 1√

2

 0

v+h(x)

 (1.4)
In SM the mass of the Higgs boson is a free parameter and is given by mH = 2λv2,where v= 246GeV is theVEVof theHiggs field that sets themass scale for the electroweak(EW) and Higgs bosons. The EW gauge boson masses are given by mW = mZ cos(θW ) =

1
2 gW v, where gW denotes the weak coupling constant, and θW the weak mixing angle.The coupling gHVV of the Higgs boson to the vector bosons (V) is proportional to theirmass mV , and is given by: gHVV = gV mV .In addition to creating masses for the gauge bosons, Higgs mechanism is responsiblefor generating the masses of the fermions. The strength of the Higgs coupling to fermions
g f (i.e., the Yukawa coupling) is proportional to the fermions’mass and are given by Eq.1.5:

g f =
√

2
m f

v
, (1.5)

where m f denotes the mass of the fermion and v the vacuum expectation value of theHiggs field.
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1.2.1 Single Higgs boson production
In the context of proton-proton (pp) colliders there exist four dominant mechanisms forproducing a single Higgs boson. These processes, also depicted on Fig. 1.3 include:
(a) Higgs boson production via gluon gluon fusion (GGF) through a massive fermionloop;
(b) Higgs boson production via vector boson fusion (VBF);
(c) Higgs boson production in association with a gauge boson (Higgs strahlung);
(d) Higgs boson production in association with top quarks (ttH).

g

g

t

tW, Z

W, Z
q

q

g

g

q

q

q

q
(a) (b)

(c) (d)

H

HH

H

Figure 1.3: Feynman diagrams for (a) Higgs boson production via GGF through a top loop; (b) Higgs
boson production via VBF; (c) Higgs boson production in association with a gauge boson (Higgs
strahlung); (d) Higgs boson production in association with top quarks (ttH) [26].

Both the single Higgs boson production via GGF and Higgs production in associationwith top quarks as shown in Fig. 1.3 (a) and (d) respectively feature top Yukawa coupling(yt ), while the diagrams (b) and (c) on Fig. 1.3, the Higgs boson production via vector bo-son fusion and the Higgs strahlung, feature Higgs boson couplings to gauge bosons, thecoupling strength of which is referred to as cV . The most dominant single Higgs bosonproduction channel at the LHC happens via GGF (depicted in Fig. 1.3(a)). The fermion loopdepicted in Fig. 1.3(a) is needed, since Higgs does not couple to the massless gluons di-rectly and as Higgs boson couples preferentially to themostmassive particles, the fermionloop is preferentially features virtual top quarks.Second most dominant single Higgs boson production channel is the VBF as depictedon Fig. 1.3(b). Despite having an order of magnitude smaller cross section (see Fig. 1.4), itis easier to identify as this production channel features only the Higgs decay products andtwo forward jets originating from the breaking up of the colliding protons.The Higgs coupling strength to other particles is proportional to their mass and there-fore it decays preferentially to themostmassive particles that are kinematically accessible.This means that Higgs can decay via H → f f̄ only if mH > 2m f and in order for a Higgsboson decay intoW+W− or ZZ, one of the vector bosons in the decay needs to be virtual.Decays into massless particles, such as photons can only proceeds through a massive bo-son or fermion loop. As a consequence of the Higgs coupling strength being proportional
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Figure 1.4: Cross section for producing a SM Higgs with a mass of 125 GeV for different production
modes [28].

to themass of the particle, the decays intomoremassive particles have also larger branch-ing ratio (BR)— as Higgs boson decay into a pair of top quarks is kinematically not allowedthe largest BR of a SM Higgs boson of a mass of mH = 125.09± 0.21(stat.)+ 0.11(syst.)GeV [27] is into bb̄ as depicted on Fig. 1.5.
1.2.2 Higgs boson pair production
Although Higgs boson was discovered at the LHC already in 2012 by the CMS and ATLAScollaborations, there are still open questions regarding the nature of this particle.Most of the Higgs boson properties have been established with a precision of 10% orbetter [29], such as the Higgs boson mass for which the precision of the mass measure-ment is on the level of permille [30]. One of the properties of the Higgs boson that has notbeen well constrained as of yet is the Higgs boson trilinear self-coupling (λ ) which directlymodifies the shape of the Higgs potential (see Sec. 1.2).Although the Higgs trilinear self-coupling could be measured indirectly in single Higgsprocesses by themeans of next-to-leading-order (NLO) contributions, themodifications of
λ will introduce only minor deviations to the Higgs boson production and decay rates [31].Stronger bounds on λ can be obtained by the means of measuring the Higgs boson pair(commonly referred to as di-Higgs or HH) production cross section. However, the produc-tion rate of di-Higgs is relatively small in comparison to the single Higgs boson productionrate, having a SM cross section of a mere 31 fb [32], being a factor O(1000) smaller thanthe production cross section of single Higgs boson.The dominant Higgs boson pair production mechanisms in the LHC are GGF-like andVBF-like production, double Higgs strahlung emitted by vector boson and double Higgsstrahlung emitted by top quark. Leading order diagrams for the di-Higgs production are
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Figure 1.5: Higgs boson branching ratio vs. Higgs boson mass, where the vertical red line indicates
themeasured Higgs bosonmass, which decaysmost often to a pair of b quarks followed by the decay
intoW+W− [28].

given on Fig. 1.6.The diagrams where Higgs is emitted from top quark are affected by the top Yukawacoupling strength parameter yt and are shown on Figs. 1.6 (a) and on diagrams on thebottom row of Fig. 1.6 (c) as indicated by the magenta dot. The diagrams where a Higgsboson is emitted by a vector boson are affected by the Higgs boson coupling strength tovector boson, cV , parameter as shown on diagrams on Fig. 1.6 (b) and on diagrams on thetop row of Fig. 1.6 (c). The cV is highlighted by the orange dot.The Higgs boson pair production via VBF productionmode is also affected by the Higgscoupling strength to two vector bosons, c2V as depicted on the Fig. 1.7 and indicated by thegreen dot. Similarly to Higgs self-coupling λ , c2V does not affect the single Higgs produc-tion directly, but does contribute to the Higgs boson production cross section via higherorder diagrams. Higgs self-coupling λ affects all the double Higgs production channelsand is denoted as a red dot on the Figs. 1.6 in the right hand side column.

Figure 1.7: Higgs boson pair production via VBF is affected by the Higgs boson coupling strength to
two vector bosons. The green dot indicates Higgs boson coupling to two vector bosons, c2V [34].
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Figure 1.6: Feynman diagrams for (a) di-Higgs production via gluon-gluon fusion; (b) di-Higgs pro-
duction vector-boson fusion; (c) di-Higgs production fromdouble Higgs boson strahlung; (d) di-Higgs
production from double Higgs strahlung emitted by top quarks. The red dots on the diagrams denote
the Higgs self-coupling λ , orange dots the Higgs boson coupling to vector bosons cV and magenta
dots the Higgs boson coupling to top quarks yt [33].
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As can be seen from Fig. 1.8, the most dominant Higgs boson pair production modeis again the GGF, having a cross section of 31.05 fb at c.o.m energy of 13 TeV, followed byVBF that is a factor∼ 18 times less abundant and having a cross section of 1.73fb. The twomain contributions for the GGF process are depicted on Fig. 1.6 (a1) and Fig. 1.6 (a2) andare referred to as the box (□) and triangle (△) diagrams. The □ diagram is sensitive thetop Yukawa coupling y2
t , while the △ one depends on the Higgs self coupling parameterboth on the yt and λ .HH production cross section via GGF production mode is dominated by the □ dia-gram, but is reduced due to the destructive interference between the□ and△ diagrams,meaning that higher values of λ do not necessarily cause a bigger production cross sec-tion. While the events from△ diagrammostly contribute to the lower values of the mHHspectrum, starting from the kinematic threshold of 2mH , events from the □ diagram re-side mostly near the medium values of mHH . These thresholds come from the fact that inorder to produce Higgs boson pair via the △ diagram, the virtual Higgs needs to exceedthe kinematic threshold of∼ 250 GeV only barely, while in case of the□ diagram the twoHiggs bosons are created independently, meaning that not only is the production crosssection affected, but also the kinematic properties of the Higgs bosons. The peak of the

□ as well as interference term peak around the virtual tt̄ threshold of 2mt , which is evenfurther enhanced for negative values of κλ , as the sign of the interference term will flip.Maximum interference is achieved at κλ = 2.45 [35].

Figure 1.8: Cross section of various double Higgs production modes for a a range of center-of-mass
values. The most dominant double Higgs production mode is the GGF [36].

In the next sections two methods for producing a Higgs boson pair beyond the SM aredescribed.
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Resonant di-Higgs productionA pair of Higgs bosons is not necessarily produced physics within the SM. Extensions ofthe SM, called Beyond Standard Model (BSM) physics, also allow two Higgs bosons to beproduced via a heavy resonance χ as depicted on Fig. 1.9. The decay of this new particle χinto a pair of Higgs bosons is referred to as resonantHHproduction. This kind of newheavyparticle is postulated by various theoretical models for new physics, including two-Higgs-doublet models [12], Higgs portal models [13], composite-Higgs models [14] and modelsinspired by extra dimensions [15]. In this thesis, we are looking at the latter model, whereheavy resonances corresponding to heavy spin-0 (radion-like) and spin-2 (graviton-like)particles with masses ranging from 250 GeV to 1 TeV.The resonant HH production here is not model specific and the resonance is assumedto have a narrow width in mHH relative to the experimental resolution.

Figure 1.9: Higgs boson pair production via a heavy resonance χ [2].

Non-resonant di-Higgs productionAfter the discorvery of the Higgs boson in 2012 no new particles have been found at theLHC The reason for no evidence of these new particles might be due to the high massof the(se) new particle(s), which is beyong the energies the LHC offers. However, thesenew heavy particles would still contribute indirectly via loops, thereby providing a handlefor their discovery. When studying such BSM physics, the amount of possible theoreticalmodels for producing two Higgs bosons when considering loop contributions from suchnew particles is essentially limitless. Therefore, it makes sense to group a set of physicsmodels together and look only at the contact interactions or the effective coupling behav-ior with the Higgs boson using the EFT approach. In the context of this thesis 5 couplingsfor the EFT approach are used. These include couplings such as c2, c2g, cg (depicted onFig. 1.10), describing the interactions between Higgs bosons and tt̄. The EFT representa-tion used in this thesis is Higgs Effective Field Theory (HEFT) which is one of two mostcommonly used formalisms found in the literature [37].In this thesis EFT scenarios are studied in 5D parameter space consisting of the threeEFT couplings, c2, c2g, cg, and possibly modified values for the λ and yt , which are con-densed into a set of EFT scenarios, trying to cover the different kinematic scenarios. Inthe context of this thesis, two sets of EFT scenarios, JHEP03 and JHEP04, are tested. Theparameter values for these can be found in Ref. [38] and Ref. [35] respectively.
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Figure 1.10: BSM non-resonant Higgs boson pair production with the effective couplings cg, c2g and
c2 [2].
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2 The CMS experiment at LHC
CMS [6] and ATLAS [7] are the two multipurpose detectors operating at the 26.7 km longsuperconducting proton-proton collider named LHC [8, 39] (shown in Fig. 2.1).CMS, the detector by which the data for the purposes in this thesis is collected, hasa cylindrical design that is centered around the interaction point which features a 4 Tsolenoid magnet surrounded by a massive iron yoke housing the muon system. This su-perconductingmagnet in the CMS experiment spans 12.5meters and is the central featureof CMS, that with a free bore radius of 3.15m, it is large enough to fit the tracker and bothelectromagnetic calorimeter (ECAL) and hadronic calorimeter (HCAL). This detector layoutminimizes the amount of material and energy loss in front of the calorimeters, which isbeneficial for the Particle Flow (PF) reconstruction [40], which is described later in Sec. 2.7.The CMS detector is 21.6 m in length, has a diameter of 14.6 m and weighs 12 500 tons.Even with these kinds of dimensions the layout is very compact when considering the ca-pabilities and comparing to the design of ATLAS as the tracking and calorimeter systemsare encapsulated in the solenoid volume.In the following sections the supporting apparatus and the subsystems of the CMS de-tector are described: In Sec. 2.1 the accelerator responsible for accelerating and collidingparticles is described, followed by a brief description of the coordinate system used by theCMS experiment in Sec.2.2. In Sec.2.3 an overview of the tracker is given. Both calorime-ter systems are described in Sec.2.4, while Sec.2.5 gives an outline of the workings of themuon system. Finally in Sec.2.7 introduction to the reconstruction methods featuring thePF algorithm are presented.

2.1 Accelerator

The 26.7 km long LHC was built into the tunnels previously used by the Large ElectronPositron Collider (LEP) [41] and was designed to study SM in energy range where newphenomena could be seen - this included the validation of the Higgs mechanism (Sec.1.2), supersymmetry (SUSY) and charge and parity symmetry (CP) violation.As the tunnels have a diameter of only 3.8 meters, the installation of two separaterings for particle beams is not feasible, meaning that both rings are integrated into a sin-gle magnetic structure that includes two sets of coils housed within a common yoke andcryostat, allowing for the utilization of the limited space.In order to reach the designed luminosity of 1034 cm−2s−1 for proton-proton collisionsat the center-of-mass energy of 13 TeV a series of pre-accelerators (depicted in Fig. 2.2)are required.In the first stage particles are extracted from a source, such as hydrogen gas, and thenaccelerated using a linear accelerator (LINAC), followed by proton synchrotron booster(PSB), proton synchrotron (PS) and Super Proton Synchrotron (SPS). After the last stage ofpre-acceleration with the SPS, the beams are injected to LHC at an energy of 450 GeV.However, in order to be able to bend particle at those energies, the LHC magnets arecooled with pressurized superfluid helium to a temperature of 1.9 K.Each detector is located in one of the interaction points, where two proton beams(also heavy ions such as Pb) collide.

26



Figure 2.1: Layout of the LHC experiment [8].
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Figure 2.2: Schematic view of the acceleration steps undergone at the LHC [39].
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The number of events per second generated by beam-beam collisions is given by N =
L ·σ , where σ and L denote the cross-section of a process and the luminosity respec-tively.For a Gaussian beam profile luminosity L is given by:

L =
N2

b ·n · fr · γ
4 ·π · εn ·β ∗ ,

whereNb denotes the number of particles in a bunch, n the number of bunches per beam,
fr the frequency of revolution, γ the Lorentz factor, εn the normalized transverse emit-tance and β ∗ the β function at the collision point [8].However, as in order to avoid unwanted effects caused by the very nonlinear forcesin the beam-beam interaction, one has to reduce the crossing angle of the two collidingbeams. Small crossing angles between two beams are highly preferred as can be seen inthe definition of the geometrical luminosity reduction factor F in Eq. 2.1:

F =

(
1+

θc ·σz

2 ·σ∗

)− 1
2
. (2.1)

Here θc denotes the crossing angle at the interaction point (IP), σz the root meansquare (RMS) of the bunch length and σ∗ the transverse RMS beam size at the crossingpoint
2.1.1 Phenomenology of LHC
Circular pp colliders provide high interaction rates together with a high center of massenergy, thereby accommodating excellent potential for new physics discoveries at highenergy scales.The protons that are collided are bound states of two up-quarks and a down quark,referred to as valence quarks, that are held together by gluons. However, depending onthe energy the proton is probed at, also the apparent structure will change— for exampleit is possible to resolve the three valence quarks and the gluon exchanges therein at highenergies.Still, gluons can also be virtual, meaning they can split into quark and anti-quark pairs,thereby giving rise to a multitude of virtual particles called sea quarks that thereafter cancombine again. This means that in addition to the valence quarks, also sea quarks andgluons can initiate a hard scattering process by randomly coming in and out of existance.The proton constituents initiating a hard process are known as partons.However, at the energy scales LHC is operating, the hard scattering process is morelikely to be initiated by gluons than valence quarks as only a fraction of the energy carriedby the proton (given by the Bjorken variable x) is needed to initiate the process. There-fore, in order to determine the kinematics of a given process in pp colliders, one needs inaddition to the matrix element calculation also information regarding the probability fora given particle type to carry a fraction of the protons energy (referred to as the partondensity function (PDF)). The NNLO proton PDFs at energy scales 10GeV2 and 104 GeV2

are given on left and right side of Fig. 2.3 respectively. On the right side plot we see thatat the center-of-mass energy of√s = 13TeV that the LHC is operating on the gluon scat-tering is the dominant process, especially on the low x. As most of the collisions at theLHC are happening also at low x, then it makes the LHC effectively a gluon collider. How-ever, there does not exist a way to calculate PDFs from the theory and they need to bemeasured experimentally by fitting phenomenological models to the data.
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Finally, in addition to the hard scattering process pp interactions give rise also to othertypes of hadronic activity called underlying event, which together with the presence ofmultiple simultaneous pp interactions, referred to as pile-up, adding another level of dif-ficulty to event reconstruction.

Figure 2.3: The NNLO proton PDFs at squared energy scales 10GeV2 (left) and 104 GeV2 (right) [42].

2.2 Coordinate system and detector layout

The CMS experiment uses the coordinate system depicted in Fig.2.4, where the z-axispoints in the direction of the counter-clockwise proton beam when looking from above,y-axis points vertically upwards and x-axis points in the direction of the center of the LHC.The nominal collision point is the center point of the coordinate system.The azimuthal angle φ is the angle on the x-y plane and is measured with respect tothe x-axis. The radial component on this plane is denoted with r, while the polar angle θis the angle between the particle’s momentum and the positive direction of the z-axis. Acommonly used Lorentz invariant quantity in high energy physics (HEP) that describes theangle of the particle relative to the positive direction of the z-axis is pseudorapidity η asdefinedbyη =− ln tan
(

θ

2

). When themass of the particlewith respect to themomentum
is negligible it converges to rapidity y = 1

2 ln
(

E+pL
E−pL

), but is more convenient to use as it
only depends on the polar angle θ with high |η | values correspond to the forward/endcapdirection, while small |η | values correspond to barrel region.

Angular distances in this coordinate system are given by ∆R =
√

∆η2 +∆φ 2.
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Figure 2.4: CMS coordinate system [43].

2.3 Tracking system

Efficient and precise reconstruction of the trajectories of charged particles with trans-verse momentum above 1 GeV in the pseudorapidity range |η |< 2.5 is a part of the LHCphysics program. However, at the designed LHC luminosity of 1034cm−2s−1 there will beon average 1000 particles from 23-32 overlapping proton-proton interactions traversingthe tracker at each bunch crossing happening every 25 ns. Therefore, in addition to theintense particle flux that could cause severe radiation damage to the tracking system, thetracker should offer high granularity and fast response in order to reliably identify trajec-tories and attribute these to the correct bunch crossing.The CMS tracking system depicted in Fig. 2.5 has a cylindrical volume with a length of5.8 meters and a diameter of 2.6 meters and has 10 layers of silicon microstrip detectors.Additionally 3 layers of silicon pixel detectors, which make up the innermost subdetector,are placed close to the interaction region which improves themeasurement of impact pa-rameters of tracks, i.e., the the charged particles, and the position of secondary vertices,corresponding to the position where a particle decayed. Inner tracking system provides aprecise and efficient measurement of high number of tracks that are associated with eachcollision.
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Figure 2.5: Schematic of the CMS tracker cross section. Each singular line corresponds to a detector
module and a double line indicates back-to-back modules that deliver stereo hits. Figure taken from
Ref. [6]

Good vertex finding is necessary for pileup rejection as it allows us to infer the primaryvertex more accurately and gives us better track reconstruction ability, thereby allowingus to reconstruct tracks and identify particles more accurately with a better momentumresolution.Furthermore, a precise measurement of secondary vertices and impact parameters isnecessary for the efficient identification of heavy flavors (such a b-quarks) which are pro-duced inmany of the interesting physics channels. Also, the reconstruction of hadronicallydecaying τ leptons, as described in more details in Sec. 2.7.4, benefit from the precise as-sessment of the secondary vertices as they are a signature in several discovery channelsand need to be reconstructed in one-prong and three-prong decay topologies.This fine-grained tracker together with the ECAL and muon system allows to identifyelectrons and muon and provides a pure and efficient track reconstruction in jets with pTup to∼ 1 TeV.Tracking information is heavily used in high level trigger in CMS,which allows to reducethe event rate from 40 MHz to 100 Hz.
2.3.1 Pixel detector
In order to deal with the harsher conditions such as higher instantaneous luminosity andpileup that more than doubled in comparison to the design values, the CMS Phase-1 pixeldetector was replaced with an improved pixel system [44] in the year-end technical stopof the LHC in 2016-2017.With the upgrade, the new pixel detector consists of three disks at each end and fourbarrel layers, with the very first one being brought closer to the interaction point as thebeampipewas replacedwith a thinner one. The hit coverage is up to pseudorapidity rangeof |η | < 2.5 and the total pixel detector silicon area was increased more than 70%. Thecomparison of the old and new configuration is given in Fig. 2.6.
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As a consequence and better tracking performance (due to added redundancy to avoidhit losses, and therefore a better track and pattern recognition) was achieved togetherwith more robust tracking and improved radiation tolerance while allowing higher rates.These significantly higher data rates are now possible because of the new readout chipdesign and the increased bandwidth of the digital data transmission via optical links.The upgraded pixel detector is designed to last until the end of Run-3 (2023-2025)after which yet another upgrade is needed in order to facilitate the High-Luminosity LHC(HL-LHC) run.

2.4 Calorimeters

2.4.1 Electromagnetic calorimeter
ECAL is meant to measure the energies of particles that are interacting mainly via theelectromagnetic force such as electrons, positrons and muons. The key criteria in thedesign of the ECALwas the ability to detect the decay of theHiggs boson into two photons.In order to do thesemeasurements ECAL system consisting out of lead tungstate (PbWO4)crystals that have a coverage in pseuodirapidity of |η |< 3.0 is placed within the solenoidvolume.The measurements are done using scintillation light produced in the crystals is de-tected by silicon avalanche photodiodes (APDs) in the ECAL barrel region (EB) region (|η |<
1.479) and by vacuum phototriodes (VPTs) in the ECAL endcap region (EE) (1.479 < |η |<
3.0) region. The thickness of ECAL in radiation lengths is bigger than 25.8X0

1
Additionally, in order to resolve the photons from π0 decays so as to discriminate themfrom prompt (i.e., produced close to the beamline) photons, a preshower system is in-stalled in front of the EE. This is much finer-grained detector that consists of two layers,each comprising a lead radiator followed by a plane of silicon strip sensors which can indi-
1X0 denotes the radiation length, so the distance a particle needs to travel to decrease it’s energyby a factor of 1/e.
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cate the presence of a photon or an electron in the ECAL by requiring an associated signalin the preshower.This design of combining active detector with passively absorbing material facilitatesa very precise energy resolution of:
σ

E[GeV]
=

√
2.8%√
E[GeV]

2
+

12%
E[GeV]

2
+0.3%2 (2.2)

2.4.2 Hadronic calorimeter
The idea of HCAL is tomeasure the energies of particles that mainly interact via the strongnuclear force. Thismeans that HCAL system is particularly important for themeasurementof hadron jets and neutrinos or exotic particles resulting in apparent missing transverseenergy.Both ECAL and the brass/scintillator sampling HCAL have a coverage in pseudorapidityof |η |< 3.0. In CMS HCAL depicted on Fig. 2.7 consists of several layers of brass absorbersand plastic scintillator tiles. Scintillation light is converted by wavelength shifting (WLS)fibers embedded into the scintillator tiles and thereafter channeled via clear cables tophotodedtectors2 where they are detected.The central part of HCAL is complemented by the hadron outer calorimeter (HO) calledthe a tail-catcher that resides in the barrel region and is placed outside of the solenoid.With this addition hadronic showers are ensured to be sampled with nearly 11 λI

3.The forward iron/quartz-fibre calorimeters ensure coverage up to |η | < 5.2 for themeasurement of transverse energy ET in the event, with the thickness of HCAL is in therange of 7-11 λI (10-15 λI with HO included) depending on η .By using high density crystals a design of a calorimeter that fulfills all important char-acteristics (being fast, having fine granularity and being radiation resistant) in the LHCenvironment were made possible.The energy resolution of the ECAL and HCAL in the barrel region according to Ref. [45]is measured to be:
σ

E[GeV]
=

84.7%√
E

+7.4% . (2.3)

2.5 Muon system

The outermost subdetector is the muon system depicted in Fig. 2.8. It consists of severallayers of aluminum drift tubes in the barrel region and cathode strip chambers in theendcap part.Outside the solenoid coil, the magnetic flux is returned through a yoke consisting ofthree layers of steel interleavedwith fourmuon detector planes. Drift tube (DT) chambersand cathode strip chambers (CSC) detect muons in the regions |η |< 1.2 and 0.9 < |η |<
2.4, respectively, and are complemented by a system of resistive plate chambers (RPC)covering the range |η |< 1.6.

2These hybrid photodiodes (HPDs) provide gain and operate in high axial magnetic fields.3λI denotes the hadronic interaction length, meaning the distance that a particle travels beforeit undergoes inelastic collision
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Figure 2.7: Cross section of the HCAL system with its subsystems - hadron barrel calorimeter (HB),
hadron endcap calorimeter (HE), HO and hadron forward calorimeter (HF) [6].

Precise and robust measurements of muons has been one of the goals of CMS designfrom the start. Detecting muons plays an important role in CMS as it provides a powerfultool to recognize signatures of interesting processes evenwith very high background rates.The three main purposes the muon system serves are muon identification, measuringthemomentumand triggering. A goodmuonmomentum resolution and trigger capabilityare enabled by the solenoidalmagnet and its flux-return yoke, which acting as an absorberprevents the hadronic showers from reaching the muon system.As the CMS muon system is designed to have the capability of reconstructing the mo-mentum and charge of muons over the the entire kinematic range of the LHC.In addition to themuon system, tracker provides independentmuonmomentummea-surements, which are mostly used for particles with a transverse momentum of pT <
200GeV. This is coming from the fact the calorimeters and the solenoid coil represent alarge amount of material (> 16λI) before the muon system, which consequently inducesmultiple scattering.

2.6 Triggers

The peak instantaneous luminosity of 2× 1034 cm−2s−1 and an average pileup of ∼ 30means having thousands of particles crossing the CMS detector in each bunch crossing,happening every 25 ns. Unfortunately saving this amount of data is not within the currentsystem capabilities - one single event in the AOD takes 500 kb of disk space, meaning onewould need to write 500kB · 1
25ns = 20 TB

s to the disk.In order to satisfy the system limitations one can save events with a maximum eventrate of 1 kHz while keeping as much of interesting events as possible for the offline anal-ysis. This is achieved by the two-level trigger, where the first, the Level-1 Trigger (L1T),is firmware based and reduces the event rate from 40 MHz to 100 kHz [46]. The L1T isbased on the information from ECAL, HCAL and muon chambers. With this information it
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Figure 2.8: Cross section of the muon chamber layout [6].
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Figure 2.9: A slice of the CMS detector [40].

is possible to perform complex selections and high-level quantity computations (such asinvariant mass of a pair of objects) in the last stage of the L1T trigger, the global trigger.The second trigger, software-based High Level Trigger (HLT), reduces the rate furtherto the target value of 1 kHz. In principle HLT is just a trimmed down version of the of-fline reconstruction software that runs on a computer farm. The HLT menu is composedof more than 400 different HLT paths4 For the reconstruction purposes PF algorithm asdescribed in Sec. 2.7 is employed, improving the energy resolution of the trigger objects.Consequently the online reconstruction and selection is much closer to the one in theanalyses.

2.7 Particle reconstruction

A cross-section of the CMS detector together with all detector elements described in theprevious sections is shown on Fig.2.9.All the information from various subdetectors is taken as an input by the PF [40] al-gorithm that reconstructs the measured particles and determines their properties. Thisis done by combining corresponding measurements from the basic elements (tracks5 andclusters6) from all detector layers to identify the final-state particle. Different species ofneutral and charged hadrons will not be separated in the PF reconstruction algorithm.The first subdetector the resulting particles from the collision enter is the tracker inwhich tracks and vertices from hits in the sensitive layers are reconstructed. The mea-
4sequence of reconstruction and filtering modules.5formed from hits in the tracker6energy deposits in a calorimeter
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surement of the momenta and the electric charge of the charged particles in the trackeris made possible by the magnetic field that bends the trajectories of the said charged par-ticles. Track reconstruction, based on Kalman Filter (KF), is done in three distinct steps. Inthe first step an initial seed is generated such that few hits from a charged-particle trajec-tory would be compatible with it. Next, the trajectory is built by gathering hits from all thetracker layers along the trajectory of the charged-particle that is used for final fitting todetermine the properties of the charged particle in the third step. The properties includemeasures such as the origin, direction and transverse momentum.In the next subdetector, ECAL, electrons and photons are absorbed. The clusters ofenergy recorded in the neighboring cells resulting from the electromagnetic showers areused to infer the energy and the direction of the particles. The hadronic showers thatmight be initiated already in the ECAL by the charged and neutral hadrons are then fullyabsorbed in the HCAL, where again the created clusters are used to estimate the directionand the energy of the particle. However, if a charged hadron is missed by the trackingalgorithm and is detected in the calorimeters, then it will be identified as a neutral hadron.This measurement will be with a reduced efficiency and very degraded energy resolutionbecause of the biased direction caused by the bent trajectory in the magnetic field.The two particles that leave the calorimeters with little to no interaction are muonsand neutrinos, the latter of which escape undetected. Muons however do produce hitsin the muon system, which together with the inner tracking assist in identifying muonsdetermining their properties.In order to reconstruct decaying particles, basic particles, such as electrons, photons,muons, and charged and neutral hadrons need to be reconstructed by the PF first.In the following sections a brief overview of the reconstruction of electrons (Sec. 2.7.1),muons (Sec. 2.7.2), jets (Sec. 2.7.3) and taus (Sec. 2.7.4) is given.
2.7.1 Electron reconstruction
Electrons are reconstructed using the track information from the tracker and the clusterproperties from the ECAL, with a requirement that the momentum-energy ratio is com-patible with unity7 while not being connected to a HCAL cluster.There are two distinct electron seeding approaches: ECAL-based approach and trackerbased approach.The ECAL-based approach considers ECAL clusters with ET > 4 GeV and uses the clus-ter energy and position to infer the locations of hits in the tracker layers. Due to thethickness of the tracker, most of the electrons will lose a large fraction of their energybefore ECAL via bremsstrahlung. This, means that in order to get good reconstructionperformance, one needs to include the bremsstrahlung photons in the electron recon-struction. This is done by collecting additional ECAL energy in a window that is narrowin η and wide in φ around the electron direction in order to account for the bend in theelectron trajectory.However, this approach is not straight forward for electrons in jets due to overlappingcontributions for other particle deposits in the supercluster8 leading to large inefficien-cies. Also, as the backward propagation from the supercluster is not that accurate, it islikely to include many hits from other particles in the inner tracker layers, which causeslarge misreconstruction rates. Furthermore, the tracks of electrons with small pT are sig-

7This means, that the energy from the ECAL should not be bigger than the amount inferred fromthe track.8Cluster of clusters with a spread in the φ direction
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nificantly bent in the magnetic field such that the supercluster region cannot include alldeposits.In the tracker based approach tracks with their pT exceeding 2 GeV are used as poten-tial seeds and allows to reconstruct also electrons with a pT < 4 GeV, thereby effectivelyselecting electrons and positrons also from conversions in the tracker material. When theelectron radiates only small amounts of energy, the track can be reconstructed across thewhole tracker propagated to the ECAL surface and then be matched with the closest ECALcluster. Even if there is some soft photon emission, most of the hits along the electrontrajectory will still be collected with pattern recognition.Based on the χ2 and the number of hits of a track, a preselection is applied. Thetracks passing the preselection are refitted with a Gaussian-sum filter (GSF). Finally, a finalselection based on the score of a boosted decision tree (BDT) that takes as input the χ2,the number of hits of a track, the energy lost along the GSF track, the distance betweenthe extrapolation of the track to the ECAL inner surface and the closest ECAL cluster, andthe ratio of GSF and KF track fits, is done.After reconstructing the electron candidate, various selection criteria are applied fordifferent working points (WPs). These include for example contraints on the electron kine-matics, track criteria, multivariate analysis (MVA) cuts (as defined by EGamma and JetMETphysics object groups (POGs)), which are given in Table. 2.1.
2.7.2 Muon reconstruction
Based on the track forming method, there are three different types of muons that com-pose thefinalmuon collection: standalonemuons, globalmuons and trackermuons. Stan-dalonemuons are seeded by the DT and CSC hits when forming a track. Trackermuons areformed by the inner tracks9 that have a pT larger 0.5 GeV and a total momentum biggerthan 2.5 GeV. A tracker muon track is formed if any of the muon segment is compatiblewith the extrapolation of that track. Global muons are formed by the standalone muonsthat are matched to the inner tracksAs the inner track and muon segment reconstruction are done with a high degree ofefficiency,∼ 99% of themuons producedwithin themuon system’s acceptance are recon-structed as a global muon, tracker muon or even both. This efficiency can be attributed tothe precise measurements by the inner tracker and to the high purity of the calorimetersthat are absorbing all other particles10 before they might reach the muon system.Standalone muons are rarely used by themselves as they are often mixed with cosmicmuons and have worse momentum resolution.Similarly to the electron reconstruction, also for muons selection criteria are appliedfor different WPs. A summary table of muon selection criteria is given in Table. 2.2.
2.7.3 Jet reconstruction
Cascades of charged and neutral particles are referred to as jets. They are formed dueto hadronization as according to color confinement, particles with a color charge cannotexist freely in the wild.In CMS, jets are clustered from PF candidates by a jet clustering algorithm such as theanti-kT algorithm, such that jets with a cone size of ∆R =

√
∆η2 +∆φ 2 = 0.4 are usedas standard jets. These standard jets are also known as "AK4". Jets with a cone size of

∆R = 0.8 are referred to as "AK8" jets and are used for cases where the two subjets are
9Track in the inner tracker10with the exception of neutrinos
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Table 2.1: Loose, fakeable and tight selection criteria for electrons. A hyphen (−) indicates selection
criteria that are not applied.

Electrons
Observable Loose Fakeable Tight
Cone-pT > 7 GeV > 10 GeV > 10 GeV
|η | < 2.5 < 2.5 < 2.5

|dxy| < 0.05 cm < 0.05 cm < 0.05 cm
|dz| < 0.1 cm < 0.1 cm < 0.1 cm
d/σd < 8 < 8 < 8

Ie < 0.4× pT < 0.4× pT < 0.4× pT

σiη iη − < { 0.011 / 0.030 }1 < { 0.011 / 0.030 }1
H/E − < 0.10 < 0.10

1/E - 1/p − >−0.04 >−0.04

Conversion rejection − ✓ ✓
Missing hits ≤ 1 = 0 = 0

EGamma POG MVA >WP-loose2 >WP-90 (>WP-loose)2,† >WP-loose2

Deep Jet of nearby jet − <WP-tight3 (<WP-medium3) <WP-medium3

Jet relative isolation4 − < 0.7 (−) † −
Prompt-eMVA − < 0.30 (> 0.30) > 0.30

1 Barrel / endcaps.
2 WPs as defined by EGamma POG.
3 WPs as defined by JetMET POG.
4 Defined as 1/pratio

T -1 if the electron is matched to a jet within ∆R < 0.4 or as the PF relativeisolation with ∆R=0.4 otherwise.
† Fails (passes) the requirement prompt-eMVA> 0.30.

more difficult to separate. The examples of "AK8" jets could include for example jets forW boson decays.The energy or jets consist of only hadrons and photons, can be measured by only thecalorimeters such that individual jet particles are not needed to be separated. These jetscan therefore be reconstructed without any contribution from the tracker and the muondetectors [40].As reconstructed jets originate from various sources, such as b-quark hadronization, adeep neural network (DNN) named DeepJet [47] is used in order to discriminate betweenjets stemming from b-quarks, c-quarks, gluons and light-quarks11.
2.7.4 Tau reconstruction
Tau leptons is the heaviest particle in the SM theory that is a key component in multiplemeasurements like electroweak interactions, lepton flavor universality, production and CPproperties of the Higgs boson via its Yukawa coupling to fermions as well as several BSMmodels.

11u,d,s quarks
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Table 2.2: Loose, fakeable and tight selection criteria for muons. A hyphen (−) indicates selection
criteria that are not applied.

Muons
Observable Loose Fakeable Tight
pT > 5 GeV > 10 GeV > 10 GeV
|η | < 2.4 < 2.4 < 2.4

|dxy| < 0.05 cm < 0.05 cm < 0.05 cm
|dz| < 0.1 cm < 0.1 cm < 0.1 cm
d/σd < 8 < 8 < 8

Iµ < 0.4× pT < 0.4× pT < 0.4× pT

PF muon >WP-loose1 >WP-loose1 >WP-medium1

Deep Jet of nearby jet − <WP-interp. (<WP-medium)2 <WP-medium2

Jet relative isolation3 − <0.8 (−) † −
Prompt-µ MVA − < 0.5 (> 0.5) > 0.5

1 WPs as defined by Muon POG.
2 Upper cut on the Deep Jet score defined with a linear interpolation from Deep Jet WP-medium atcone-pT 20 GeV to Deep Jet WP-loose at cone-pT 45 GeV, taking the Deep Jet WPs as defined byJetMET POG.
3 Defined as 1/jetPtRatio-1 if the muon is matched to a jet within ∆R < 0.4 or as the PF relativeisolation with ∆R=0.4 otherwise.
† Fails (passes) the requirement prompt-µ MVA> 0.5.

Tau lepton has a mass of mτ = (1776.86±0.12)MeV and is thus the heaviest knownlepton, which can decay both leptonically and hadronically. Average lifetime of tau leptonis tτ = (2.903± 0.005) · 10−13 s, which for a 30 GeV tau lepton corresponds to a decaylength of:

λτ = c · tτ · γβ = (3 ·1011mm/s)∗ (2.9 ·10−13s) · (30GeV/1.78GeV)≈ 1.5mm ,

with c as the speed of light and γβ = p/m, with momentum p and rest mass m writtenin natural units. Since the innermost layer of the silicon tracker in CMS is at a distance of
∼ 3 cm from beamline, then the fraction of prompt τ leptons that decay after reachingthe innermost layer of the detector is negligible.Tau decays always involve at least one charged particle, referred to as prong. Leptonicdecays are classified as 1-prong decays, while hadronic decays are mostly mediated bymesonic resonances leading to final states with 1-, 3- or 5-prong decays, though the latteramounts only about 0.1% of the total decays.As shown of Fig. 2.10, τ± decays feature either a charged lepton (e± or µ±) and cor-responding 2 neutrinos or a few hadrons and one neutrino. Hadronic τ decays, denotedby τh can be separated from quark and gluon jets by considering the multiplicity of theparticles contained within the jet and the jet radius.
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Figure 2.10: Tau decaymodes. Two thirds of tau lepton decay hadronically

Reconstruction of hadronically decaying tau lepton As τ leptons that are decaying lep-tonically are already reconstructed as electrons and muons, then in the context of HEPonly hadronically decaying tau leptons τh are considered.In CMS τh are reconstructed using hadron-plus-strips (HPS) algorithm [48] that takes PFcandidates as input. As can be seen from Fig.2.10 τh always has a odd number of chargedhadrons (prongs) and can include 0 or more π0. The strip in the name refers to π0 decayproducts, so the electrons and muions that are confined within a dynamically definedphasespace in the ∆η ×∆φ plane. The strips are seeded by the highest pT electron orphoton that isn’t yet included in a strip. Next, any photon (electron) that is within the stripand particle pT dependent area will be merged with the strip and the new weighed pTof the strip is calculated. This process continues until there are no electrons and photonsincluded in a strip.In order for a charged hadron to be considered in the τh reconstruction, it needs tohave a pT > 0.5 GeV and originate from a location near to the primary vertex. From τtravel distance calculated earlier, this distance is set to dxy < 0.1 cm.The initial τh identification was done based on the isolation of the τh reconstructedby the HPS. However, this approach was superseded by a multivariate convolutional deepneural network named DeepTau [49] in order to increase efficiency. This approach dividesthe CMS detector into a grid of cells with ∆η ×∆φ = 0.02× 0.02 within the signal coneof size ∆R = 0.1 around the τh axis. Within the isolation cone of size ∆R = 0.5 the grid isdivided into cells of size ∆η ×∆φ = 0.02×0.02.For each PF candidate that falls into one of the two grid, up to 37 variables are in addi-tion to the reconstructed τh properties are used by the network. This approach increasesthe identification efficiency for τh by approximately 20%With the ongoing Run3 and the upcoming HL-LHC, most probably the currently usedDeepTau algorithm needs to be revisited. For the purposes of tau reconstruction alreadysome novel approaches have been proposed, such as graph-based tau reconstruction [50]or even transformers like ParticleTransformer [51] that initially was proposed for jet tag-ging. The performance of various approaches for tau reconstruction and identificationwas studied in the context of this thesis also in [4].
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Table 2.3: The DeepTau discriminant WPs. Summary table based on Ref. [49] is taken from Ref. [52].

VVTight VTight Tight Medium Loose VLoose VVLoose VVVLoose
Dτh

jet efficiency (%) 40 50 60 70 80 90 95 98
misidentification rate (%) 0.2−0.5 0.4−0.8 0.6−1 1−2 2−4 4−9 7−10 10−20

Dτh
e efficiency (%) 60 70 80 90 95 98 99 99.5

misidentification rate (%) 0.01 0.03 0.07 0.2 0.5 1 3 7

Dτh
µ efficiency (%)

✗ ✗
99.5 99.8 99.9 99.95

✗ ✗misidentification rate (%) 0.03 0.04 0.06 0.2
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3 Machine learning
With the ever increasing amount of data produced in the LHC and the number of eventshappening each second, the task of analyzing all the data and simulating events has be-come a difficult task to solve. Writing a program in the traditional way, giving it someconditions to filter out events, is not feasible as being able to cover all the different casesis improbable and maintaining this long list of complex rules would be hard to maintain.This is exactly where various machine learning teachniques shine — finding rare signal inhuge amounts of data, dealing with fluctuating environments, speeding up simulationsand reconstructing objects via pattern recognition are only some areas ML are known tosolve well.In general, machine learning algorithms can divided into categories based on how theylearn — what kind of supervision the system receives during training, can it learn incre-mentally on the fly and does the model compare the similarity between known instancesor does it create a model based on the instances and make predictions based on thatmodel.Based on the amount of supervision the system receives, one categorizes theML algo-rithms as supervised, semisupervised, unsupervised or as using reinforcement learning.In case of supervised learning one provides labels of all the instances to the model, whilein cases of semisupervised (unsupervised) training labels are provided only for a subset ofsamples (are not provided for any sample). Similarly to unsupervised learning, also rein-forcement learning does not use any labeled data— instead it acts based on the feedbackit received from the environment after taking a given action. The feedback from the en-vironment can be interpreted as a reward that the agent tries to maximize.Training a model incrementally, possibly in a live environment, is referred to as onlinelearning, while training on the full dataset all in one go is called batch learning. Furthercategorization can be done whether the predictions the trained model makes are basedon the similarities between the know instances or based on the model created on theknown instances.Many ideas introduced in this chapter can be found in most of classic ML textbookssuch as Ref. [53].In the context of the HH → multilepton analysis as described in Sec. 4, we used su-pervised training with the trained BDT discriminators being given the full training datasetwith labels all in one go. Consequently, only supervised learning techniques, out of thesecategories will be discussed in more details.
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3.1 Supervised learning

In supervised learning (SL) the desired target values for all training instances, i.e labels, areprovided to the training algorithm. Therefore, for each given input object in xi ∈ X , thereis a corresponding target value yi ∈ Y that the machine learning model tries to predictusing a mapping φ :
φ : X 7→ Y , (3.1)

where the symbol X refers to the set of input vectors and Y the corresponding labels.Using these labels one mostly aims to solve either regression, classification or rankingtasks.In order to let the model know how far off is its prediction from the desired one, anobjective function (OF) needs to be defined. A typical OF (denoted as Ω) consists out oftwo parts - the loss function (LF) denoted as Λ and a regularization term denoted as ρ :
Ω(θ) = Λ(θ)+ρ (3.2)

The goal of training loss is to measure how predictive our model is with respect tothe data we are training on, whereas regularization control the amount of complexity ofour model. The value of the training loss is usually a function of the predicted values (ŷ)and the target values y. Common loss functions include for example mean-squared-error(MSE) for regression and cross-entropy loss for classification tasks. A complex model, i.e.,model with a large amount of training parameters, is prone to overfit1, thus not makinggood predictions on the new instances.Generally a simple and predictive model is preferred. The trade-off of a model beingpredictive and simple is referred to as the bias-variance trade-off [54] inmachine learning.Most notable SL algorithms employed in HEP analyses are neural networks and deci-sion trees that will be discussed in the following sections in context of supervised learning.

3.2 Neural networks

Neural network (NN) is a wide class of ML algorithms used for supervised, unsupervised,semisupervised and reinforcement learning. They frequently outperform other ML tech-niques on very large and complex problems. However owing to their complex structure,they generally work best if millions of training samples are available as if only a few train-ing samples are available per feature, the neural net is prone to overfit the data.The complexity of the NN means also that they feature a lot of hyperparameters (seeSec. 3.5.2), which means that it is very difficult to find the optimal configuration for thetraining.A depiction of a NN is shown in Fig. 3.1. This NN takes three features as input andpredicts two values. The layer consisting out of the input neurons is referred to as the input
layer and is highlighted by a dashed green box in the Fig. 3.1, while the layer consistingout of the output neurons (i.e., the predictions) is referred to as the output layer andis highlighted by a dashed red box. The layers between the input and output layer arecalled hidden layers, of which there are three in the example NN shown in Fig. 3.1 and

1Instead of approximate the underlying function, the models starts to fit the statistical fluctu-ations in the training dataset, which, however, might not be present in the validation and testingdatasets (see Sec. 3.5.3.
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Figure 3.1: A possible layout of a neural network that takes three features as inputs and predicts
two values. The input nodes are highlighted in a dashed green box, while the output nodes are in
a dashed red box. The three hidden layers are shown in orange boxes. Each black dot represents a
node and each black line represents a weight.

that are highlighted by a dashed orange box. All the hidden layers in this example are fully
connected aka. dense, meaning that all neurons in a given layer are connected to everyneuron in the previous layer (i.e., its input neurons).The training of a neural network done using a process called backpropagation [55],where the differences between target values and predictions made in a forward pass arecomputed and the error gradient2 is propagated from the output layer to the input layer.In other words, backpropagation is the process of updating the weights of the network inorder to reduce the error of its prediction. The error gradient is a function of themodel pa-rameters (weights and biases) that the chosen optimizer will try to minimize. Commonlyused optimizers include gradient descent [56], Adam (Adaptive Moment Estimation) [57],LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) [58] or even evolutionary al-gorithms described in Sec. 3.5.2. In essence, backpropagation is just a way to determinethe error gradient in a non-analytical manner, with the connectionweights of the networkare tweaked using the computed error gradients.During the forward pass segment and in case of a fully connected layer the input valuefor each neuron is computed as:

hW,b(X) = φ(XW+b) (3.3)
The input features for a given layer is denoted by the vectorX. The weight matrixW has arow of weights corresponding to each neuron. The b denotes the bias vector that containsall the connection weights between the bias neuron and artificial neuron. In Eq. 3.3 the

2difference of predicted value and the expected value for all nodes at each layer.
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Figure 3.2: A decision tree starts with a root node, where based on a given feature a split is made.
These splits on feature values will be done until a maximum depth or target purity in a sample has
been achieved. Each line in the figure corresponds to an answer to a question - this is called a branch.
For each leaf node one can simply look at the predicted class.

function φ is the activation function that introduces non-linearity to the backpropagation,as chaining together two linear functions (XW+b) without the added non-linearity, onewould end up again with a linear function when using the chain rule.When using MLP for regression one shouldn’t use any activation functions in the out-put layer, making it then possible for these to output any range of values. This only forcases when the range is not set previously.

3.3 Decision trees

Decision trees are non-parametric3 algorithms mostly used for supervised learning, thatmake very few assumptions about the data. This means that unlike for example linearmodels, no assumption about the data (being linear) is made, thus making it possible tofit the data very closely. Additionally, very little data preparation is needed and no feature
scaling4 is required.Despite NNs being more flexible, by default decision trees perform well on structureddata (such as tabular data).An example decision tree is shown in Fig. 3.2.Owing to the fact of being simpler, decision trees can work well with relatively smallamounts of data. Still, they are powerful algorithms able to fit complex datasets and areable to perform classification and regression tasks both for single- andmulti-output cases.

3The number of parameters is not determined prior to training. This allows the model structureto be flexible to fit the data closely. A parametric model would be for example a linearmodel, wherethe bias and slope are the two parameters to be determined. However by limiting the degrees offreedom one reduces the risk of overfitting.4the process of normalizing the range of feature values in data
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The two most important downsides of decision trees are its that they are prone tocreating orthogonal decision boundaries, which makes them sensitive to rotations in thetraining set and that they are very sensitive to small variations in the training data. Theformer can be solved by employing principal component analysis (PCA) as it often will re-sult in better orientation of the training data, while the instability issues can be limited byusing for example ensemble methods [59] such as bootstrap aggregating (bagging) [60],
boosting [61] and stacking [62] that average over several trees.Two of themost widely used boostingmethods are Adaptive Boosting (AdaBoost) [63]and gradient boosting [64]. In essence, both of these represent the samemodel, with thedifference arising from the method they are trained. Both of these models are trainedsequentially, with each ensuing one trying to correct the mistakes of the previous one.However while in the case of AdaBoost the sample weights of misclassified events will beincreased for each new predictor, then in case of gradient boosting each new predictorwill be trained on the residual errors made by the previous predictor.As one might expect, using tree ensembles also comes with a downside - decisiontrees are called also white box models because in contrast to neural networks or tree en-
sembles, they are very intuitive and easy to interpret. In case of neural networks and treeensembles it is very difficult to say why a certain prediction, despite potentially very accu-rate, wasmade. Decision trees are fundamental components of random forests (RFs)5 andBDTs6, acting as theweak learners that are combined to create a strong predictive model.Despite being BDTs being considered as black boxes, they are still more transparent com-pared to DNNs as they are easier to explain and feature usually less hyperparameters.In order for an ensemble method to perform well, each predictor should be as inde-pendent from the others as possible. Aggregating different predictors can reduce bothbias and variance, though in general the resulting model will be with a similar bias butlower variance than a single predictor that was trained on the original training set.A flavor of BDTused extensively in this thesis is eXtremeGradient Boosting (XGBoost) [65](see Fig 3.3). As the training continues XGBoost becomes more precise as the errors arecorrected every time the enseble grows.

Figure 3.3: Two decision trees are trained sequentially, with the latter one aiming to correct the
errors of the first one by taking the difference on the prediction and the truth values as input [65].

5decision trees can be trained in parallel and are combined using bagging6decision trees are trained sequentially using boosting with their predictions are combined
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The training process starts by making an initial prediction that serves as the baselearner or the root of a given tree. If the base learner is too strong, learning can be neg-ligible in the following rounds, thus the gains will be minimal. This is why for examplea neural network can not be used as the "weak learner". Using the prediction by thefirst tree gradients and hessians with respect to these predicted values will be calculatedfor each instance of training data. Trees are added to the enseble sequentially such thateach new tree aims to correct the mistakes that were made by the previous trees. This isachieved by recursively partitioning the data based on the feature values such that theyminimize the loss function.Each subsequently added tree does not contribute to the overall prediction equally, aswith the shrinkage parameter (similar to learning rate in neural networks) the impact ofadditional trees will be scaled down, thus allowing the model to converge more graduallyand reducing the risk of overfitting.As one adds an additional split to the tree being constructed, a pruning score is calcu-lated that takes into account how much the objective function improved and how muchthe loss reduced. Additionally, the L1 (Ridge) and L2 (Lasso) regularization terms are addedin order to control the complexity of the model and to prevent overfitting. If the pruningscore is below a given threshold, thus showing that removal of the node does not result ina significant increase in the loss function, that given node (and thus the rest of the subtree)is removed. Performing pruning results in deeper trees that are also more optimized.This process continues until a given stopping criteria are met, after which a predictionis made by adding the predictions (adjusted by the shrinkage parameter) of all the treesin the enseble together. The stopping criterion can be a predefined number of trees, goodenough performance or detection of overfitting.Additionally, XGBoost incorporates other levers to combat overtraining7, such as col-umn subsampling (colsample-bytree) and row-subsampling (subsample), with the priorselects a subset of features to be used when creating a new tree and the latter the subsetof training data instances to be used when finding the split.As an aside, XGBoost handles missing values automatically and can deal with sparsedata and provides a way to measure the importance of the features

3.4 Data augmentation

In order to train a state-of-the-art BDT or a NN in HEP usually a huge amount of data isneeded. However, generating this data is often very time consuming and demands a lotof computing resources.This problem can be combated by either increasing the size of the dataset artificially byadding new instanceswithout the resource-heavy data generation process or by augment-ing the already existing datawith somemore descriptive variables. This kind of proceduresare known as data augmentation (DA) methods.The first method is done on the dataset level and can in general be divided into twocategories: real data augmentation (RDA) and synthetic data augmentation (SDA). In caseof RDA only minor changes are made to the real data before augmenting the data set.These minor changes could be among plethora of other methods rotations (in case ofrotational symmetry of the data) of an event or zooming [66].More traditional sampling methods like oversampling, undersampling [67] and morecomplex generative models like generative adversarial networks (GAN) [68] and varia-
7A scenario where during training the model starts fitting already the noise
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Figure 3.4: Augmenting data includes adding features and instances to the final dataset. Figure
taken from [73].

tional autoencoder (VAE) [69] that could also be used in fast simulation which is a notablebottleneck in HEP analysis workflows [70, 71] are examples of SDA and are described inmore detail in Sec. 3.4.1.The second method called feature engineering is described in a bit more detail inSec. 3.4.2.Introducing noise into data to form additional data points improves the learning abilityof several models which otherwise would perform relatively poorly [72], indicating thatusing DA one can create variations that the model might see also in the real world. Pre-processing data with DA usually results in superior training outcomes due to the face thatit acts as a regularizer by reducing overfitting during training.So in general employing DAmethods to ones ML workflows results in improvement ofmodel prediction precision as the data is not as scarce, thus enabling rare event predic-tion, reducing cost of data collection and labeling, overcoming class imbalance problems,improving overall model prediction precision and reduction of overfitting by creating datavariability and thus also generalizing the model.
3.4.1 Sampling
An event (such as the production of a Higgs boson) that represents less than 5% of thedataset is considered a rare event [74]. When using such an imbalanced dataset, it isdifficult to get a model that does accurate and meaningful predictions due to lack of in-formation of this rare event [67]. To overcome this issue, the class distributions of thedataset can be adjusted by the means of various sampling techniques described in thissection.The most common sampling strategies employed in the ML pipelines are over- andundersampling [67]. In case of oversampling minority class samples will be randomly du-plicated. However, this approach might lead to overfitting, as exact copies of the minoritysamples will be made.Also undersampling is often a good solution to this problem as it tries to alleviate theclass imbalance by discarding majority class samples by which potentially important ma-jority class samples might be lost.Oversampling and undersampling are in essence equivalent but opposite techniques.The advantage of both approaches is that they are straight-forward to implement.A more complex oversampling technique that makes use of the creation of artificialdata points is Synthetic Minority Over-sampling Technique (SMOTE) [75, 76]. The artificial
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data points for the minority class are created by a more involved oversampling. That is,synthetic samples8 are created along the line segments joining any or all of the k nearestneighbors in the minority class. Doing this causes the classifier to create decision regionsthat are larger and less specific, making the classifier to learn more general regions ratherthan being subsumed by the samples frommajority class around them. As a result by theuse of SMOTE the classifier learning bias is shifted towards the minority class, therebyallowing the model to generalize better.Yet another possibility is to use Adaptive Synthetic sampling (ADASYN) [76], with theidea being to use a weighted distribution for each minority class. The weight is depen-dent on the level of difficulty in learning that given class. This means more synthetic datawould be generated for harder to learn minority classes. ADASYN learns adaptively thetheweight distributions. Consequently, in addition to providing a balanced representationof the data distribution, the learning algorithm is forced to focus on learning difficult ex-amples more. As per Ref. [76] ADASYN improves accuracy for both minority and majorityclasses and does not sacrifice one class in preference for another.
3.4.2 Feature engineering
Feature engineering focuses on creating instance level input features that allow the algo-rithm to learn the patterns more easily. In the context of HEP analyses these features areoften physics inspired and derived from first principles.Feature engineering (FE) is one of the key concepts in ML workflows and is used tomake the training more effective. Although a sufficiently complex network can learn allpatterns in the data by solely utilizing "low level" variables like four-momenta, the uti-lization of "high level" variables can often result in more advanced models. Models usingboth low and high level variables have been shown to outperform models using only onetype of variable as shown in [77].An example from HEP for feature engineering is Lorentz Boost Network (LBN) [77]. Asillustrated on Fig. 3.5 LBN acts as the first stage in a two-level model by exploiting exclu-sively the four-momenta of the final-state particles by employing Lorentz transformations.This allows the network to exploit and uncover structures in particle collision events.The three LBN hyperparameters depicted on Fig.3.5 are the number of final-state par-ticles N, number of combinations M and features to be created F are to be chosen ap-propriately with regards to the research question (e.g the decay channel studied).

8artificially created samples that do not need to be physical
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Figure 3.5: Lorentz Boost Network taking final state particles four-vectors as input in order to create
new features by combining input particles and doing Lorentz transformations. Figure taken from
[77].

LBN combines particles in two different ways - creating composite particles and form-ing appropriate rest frames. These composite particles are boosted into these rest framesusing Lorentz transformations such that the properties of the parent particle could be in-ferred directly. Examples of these inferred properties could include for example massesor angles.Finally, this information derived by the LBN is propagated to the second network thatcan be replaced depending on the specific analysis task like signal classification or massregression.

3.5 Model optimization

Choosing an appropriate model and preparing data is only a part of the process of train-ing an optimally performing model. In order to optimize the performance of the modelone can for example choose to use only the most important features (Sec. 3.5.1) or dohyperparameter tuning (Sec. 3.5.2). After one has finished with model optimization across-validation (Sec. 3.5.3) needs to be done in order to ensure the model behaves asexpected. The latter of these was studied in more details in the context of this thesis.
3.5.1 Feature importance
As already indicated in the introduction to the model optimization, feature importanceplays an important role in both creating a robust model and by helping one to interpretthemodel. Features that do not help to distinguish between signal and background or thatmight be considered as noise make the model prone to overfitting, meaning the modelstarts to fit the noise. Additionally, including a plethora of features will increase the com-putational time it takes to train the model.There exist various methods of evaluating the importance of features. The permuta-
tion importance [78] can be considered as the most general one of these, as it is agnosticto the choice of the model. The idea behind permutation importance is to shuffle thefeature values or setting them to the mean value of the feature and then measuring dropin performance - the higher the drop the bigger the impact.
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For tree ensembles measuring the feature importance can be done also by looking atthe splits in the trees and how often a feature was used. A more frequent use of a featurein a split to reduce for example impurity or entropy would indicate a bigger importanceof a feature.Other examples of strategies for figuring out feature importances include for exampleSHapley Additive exPlanations (SHAP) [79–81], which could give more stable results byassigning each feature an importance value for a particular prediction.As features can be in some extent correlated, removing a feature can increase theimportance of another one. Removing features iteratively with a given step size can bedone using for example Recursive Feature Elimination (RFE) [78] algorithm.Having nowa smaller amount of features for themodel now allowes ourmodel to trainfaster and using the information from the feature importances gives us a further insightinto the data.
3.5.2 Hyperparameter optimization
In addition to finding the suitable observables (see Sec. 3.5.1) to the chosen ML algorithmto use as the input, as set of algorithm-specific parameters (called hyperparameters) needto be specified. The choice of the hyperparameters has significant impact on the per-formance of the model and thus they need to be chosen carefully. In contrast to theparameters that are autonomously learned during training, hyperparameters have to bespecified prior to the training. The choice of hyperparameters is not trivial and is oftendone manually. This, however, requires expert knowledge of both the data and the MLmethod, takes a lot of human time, and makes the experiment not repeatable. Even ifthe hyperparameters are tuned using a given algorithm, the choice of a well-performingoptimization algorithm is unclear.The hyperparameters to be optimized in case of a neural network (see Sec. 3.2) couldinclude for example the number of hidden layers, dropout rate, loss function and the num-ber of epochs as shown in Fig. 3.6 among plethora of other parameters.
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Figure 3.6: A set of hyperparameters that could be optimized could include for example the number
of hidden layers (n_hidden_layers), the dropout rate, batch size, loss function and number of epochs
(n_epochs).

During the hyperparameter optimization, machine learning model can be consideredas a black box that takes the hyperparameters as input and gives a fitness score9 corre-sponding this set as the output. This means that the hyperparameter optimization taskcan be expressed differently as a function minimization or maximization problem, wherea point h in the hyperparameter space H , corresponding to one possible solution to theoptimization problem, is mapped to a fitness or a score value s(h). Therefore this valuequantifies the performance of the ML algorithm using the parameters h for a given task.Casting non-floating type hyperparameters to a suitable encoding in the hyperparam-eter space H corresponds to the N-dimensional Eucledian space RN , where N denotesthe number of hyperparameters. Formally, the optimal hyperparameters found in contextof the optimization, denoted by the symbol ĥ, need to satisfy the condition:
ĥ = argmax

h∈H
s(h) , (3.4)

where s : H → R is the objective function that maps the point h in hyperparameterspace H to the score s(h). This formulation allows one to compare the performance ofthe task of hyperparameter optimization using different methods.
9A score describing how good a model is when trained using the hyperparameters given as theinput
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The three distinct hyperparameter optimization algorithm studied in the context ofthis thesis were the particle swarm optimization [82], genetic algorithm [83] and Bayesianoptimization [84–88]. Both the particle swarm optimization and Bayesian optimizationare inspired by nature - the former mimicing the movement of a swarm of particles or a
flock of birds and the latter aiming to imitate the evolution of genes. This is in contrastto the Bayesian optimization that makes use of the Bayesian statistics. A brief introduc-tion to all these algorithms are given in the following sections and are described in moredetails in the two papers written during the thesis - [1] and [3], the former of which stud-ies the performance of particle swarm optimization and genetic algorithm and comparesthese to two simpler models such as gradient descent (GD), random search (RS) and gridsearch (GS), while the latter compares the Bayesian optimizatio and the particle swarmoptimization algorithms.An alternative algorithm that was not studied in the context of this thesis is Asyn-chronous Successive Halving (ASHA) [89]. Still, this is a popular choice among the MLcommunity in HEP for optimizing hyperparameters.
Particle swarm optimizationParticle swarm optimization (PSO) [82] is a computational method for the purposes of op-timizing continuous nonlinear functions. As the name suggests, the functionmaximizationis done using a swarm of particles that traverses the hyperparameter space H . The po-sition of each particle in the swarm corresponds to a set of hyperparameters h. PSO isinherently a highly parallel algorithm as the multitude of particles in the swarm exploremultiple solutions simultaneously.The evolution of the swarm is an iterative process - the position, xk

i , and momentum,
pk

i , of every particle will be updated every iteration according to the equations Eq. 3.5 andEq. 3.6 respectively
xk+1

i = xk
i +w ·pk

i +Fk
i (3.5)

pk+1
i = xk+1

i −xk
i (3.6)

The Fk
i in Eq. 3.5 represents an attractive force causing the particles to move in thedirection of the previously discovered extremums10 and is defined as:

Fk
i = c1 · r1 · (x̂k

i −xk
i )+ c2 · r2 · ( ˆ̂xk −xk

i ) , (3.7)
where the coefficients c1 and c2 are referred to as the cognitive and the socialweights [90].The symbols r1 and r2 represent random numbers, which are drawn from an uniform dis-tribution in the interval [0,1]. ˆ̂xk and x̂k in Eq. 3.7 denote the global and the personal bestlocations visited respectively.Further details of the implementation of the PSO studied in the context of this thesiscan be found in [1] and [3].

Genetic algorithmGenetic algorithm (GA) is an evolutionary algorithm that draws inspiration from the natu-ral selection. It features a set of possible solutions to the optimization problem that evolveduring multiple generations in order to produce the optimal solution.
10The extremum of a subset of the swarm and the extremum a single particle has seen. Theinformation of the extremum found by a subset of the swarm (with a size of Nin f o) is exchanged bythe means of espionage.
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A possible solution is referred to as a chromosome and represents one point in thehyperparameter space H . As GA evolves multiple chromosomes simultaneously duringeach generation, it explores multiple possible solutions in parallel.Each chromosome consists out of genes with the number of genes in a chromosomecorresponding to the dimension of the hyperparameter space H . A graphical depictionof a chromosome can be seen on Fig. 3.7.
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Figure 3.7: Multiple genes make up a chromosome. The number of genes corresponds to the dimen-
sion of the hyperparameter space H . Figure taken from [1].

Similarly to PSO evolving towards the optimum is iterative and ends when a selectedstopping criteria are reached. The stopping criteria could include the number of genera-tions, not having improved the fitness in a given time or a acceptable performance of themodel. Each iteration (i.e., generation) is a multi-step process. The three distinct stages ina given iteration are the selection of parents, the crossover of the genes, and themutation.The choice of the parent can be done using various strategies, such as the tourna-
ment method [91–93] or roulette wheel selection [94]. The genes of the two selectedparents will spawn a offspring chromosome for the next generation by crossover [95, 96].Again, multiple choices for the crossover strategy exist. These include for example k-point
crossover and uniform crossover. Finally, the genes of the offspring will be mutated [83]in order to add some randomness or diversity to the population. This allowes the pop-ulation to explore parts of the hyperparameter space H that weren’t populated by theprevious generation. Additionally, this increases the chances of not getting stuck in thelocal minima.Further details of the exact implementation and strategy choices can be found in [1].
Bayesian optimizationBayesian optimization (BO) is an optimization algorithm designed to perform numericalapproximations of target functions (TFs) s(h) that are time consuming to evaluate and forwhich the analytical form and derivatives are not necessarily known. This ismade possibleby not performing themaximization directly on the TF, but on an approximation of it calledthe surrogate function (SF), which is chosen to be fast to evaluate, with known derivativesand analytic form.The numerical maximization of the TF is an iterative procedure. Each iteration can bedivided into twomain parts - choosing a point h in the hyperparameter spaceH onwhichto perform the time consuming TF evaluation, and updating the SF with the TF value at
h, thus improving the accuracy of the approximation. This update to the SF after each TFevaluation is the origin of the name for the BO - SF is the prior function before choosing
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the next point to evaluate and the posterior function after evaluation.A depiction of this process at iterations 7 and 8 is shown on the left and right sideplot of Fig. 3.8 respectively. At iteration 7 acquisition function (AF) returns the parameterset (shown as a yellow circle on the bottom part of Fig. 3.8) to be evaluated on the TF atiteration 8. Shaded blue area denotes the uncertainty around the predicted mean shownin dotted black line. Solid blue line denotes the TF that the AF aims to approximate.

Figure 3.8: SF resembles TF more accurately after evaluating the TF at h and updating the SF with
the returned value. Red markers on the upper part of each plot denote values already evaluated on
the TF and yellow circle on the bottom part of the plot the location where to probe the TF in the next
iteration. Shaded blue area denotes the uncertainty around the predicted mean shown in dotted
black line. Solid blue line denotes the TF that the AF aims to approximate. Figure taken from [3].

The point to evaluate on the TF in the first part of each iteration is found using an AF.The most popular choices for the AF include metrics such as expected improvement [97]and probability of improvement [98]. All these methods inherently offer a trade-off be-tween exploration11 and exploitation12.Further details regarding the choice of parameters and design choices of the imple-mentation details can be found in [3].
Choosing a suitable algorithmThe performance of all these algorithms was evaluated on two benchmark tasks - theRosenbrock function [99] and theATLASHiggs bosonmachine learning challenge (HBC) [100],with the former being a well known benchmark task used for the purposes of evaluatingthe performance function minimization algorithms. The latter one serves as a more real-istic case for hyperparameter optimization in the context of ML in HEP.As can be seen from Fig. 3.9 then both evolutionary algorithms, GA and PSO, performnoticeably better than more simpler methods like GS, GD and RS.

11Giving more emphasis on exploring the full parameter space.12Giving more emphasis on exploring near the minimum/maximum found so far during the opti-mization.
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Figure 3.9: Gradient descent (GD), grid search (GS), random search (RNG), particle swarm optimiza-
tion (PSO) and genetic algorithm (GA) were used to find the minimum of the Rosenbrock function
100 times. Both evolutionary algorithms, PSO and GA, perform steadily well.

BO on the other hand converges very quickly in the early stages, but is surpassed inperformance of the PSO after 1000 evaluations13 (Fig. 3.10). This is not surprising, as BO isaimed tominimize functions that are time consuming to evaluate, and is thus not expectedto run for such a many iterations.

Figure 3.10: Bayesian optimization converges quickly in the beginning, but is surpassed in perfor-
mance by particle swarm optimization after 10th iteration.

This means that based on the task to be optimized and computational resources avail-able, different algorithm might be best suited for the task. BO would be a great choicefor the purposes of tuning the hyperparameters of a ML model whose training takes days
13100 solutions are evaluated in parallel for 10 iterations.
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or even weeks, while if the model training takes less than an hour, PSO would give mostprobably better results.
3.5.3 Cross-validation
Despite a model performing well on a given subsample of the dataset, it is not enough tosay it will also perform on an independent subsample of the same set. For these purposesthe full dataset is divided usually into three distinct parts - training, validation and test
datasets. Each of these datasets serves a different purpose and should not be allowed tomix with others also known as data snooping [101].Training dataset is the one used exclusively for training, meaning fitting the parame-ters, of initial machine learning model. After each iteration the fitted model is evaluatedon the validation dataset, which will provide an unbiased evaluation of the model. Thisevaluation information is often used to calculate losses.When doing hyperparameter optimization, the training set is often the one that is splitinto yet another training (train-1) and validation dataset (val-2) as shown in Fig. 3.11. Thismeans that the original dataset is split into four subsets: train-1, val-1, val-2 and test. Thisis done in order to avoid tuning the hyperparameters only for a specific set of data, whichcauses us to overestimate the performance of the model.

train-1

val-2

val-1

test

Train

Val

Te
st

Figure 3.11: Splitting a dataset into training, validation and testing subsets. When doing hyper-
parameter optimization training dataset can be split into another smaller training and validation
dataset in order to avoid biases.

Finally, the test dataset, also know as the hold out set, is used to evaluate the finalperformance of the model.In order to get a more accurate reading of the model’s performance, cross-validationcan be done multiple times by the means of k-fold cross-validation [102]. This is done bydividing the full dataset into k subsets called folds. Then the model is trained, validatedand tested on different folds of the data each time, ensuring there is no data snooping forthe evaluations.
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4 HH→Multilepton analysis
The study of the Higgs boson pair production has only recently become feasible due toa very small production rate. Even with the integrated luminosity of ∼ 140 fb−1 by bothCMS and ATLAS detectors during the full Run-2, the amount of expected events relativeto the background barely enough to probe the SM sensitivity. In order to overcome thisobstacle, a multitude of HH decay modes are studied such that the sensitivity for the SMHH production could be maximized.The branching fractions for some HH decay channels are shown in Fig. 4.1. The HH de-cay channels included in already published CMS analyses include HH → bbττ [103, 104],
HH → bbbb [105, 106], HH → bbγγ [107, 108] and HH → bbZZ [109]. The combinationof these analyses [29] together with the HH → multilepton [2] analysis reaches already a95% confidence level (CL) upper limit on the cross section at 3.4 times the SMexpectation.This thesis focuses on the HH → multilepton analysis. It covers a composite HH fi-nal state of Higgs decays into τ leptons or vector bosons (V), with the final states being
HH → VVVV/VVττ/ττττ . Similar to the ttH → multilepton [110] analysis, also HH →
multilepton analysis focuses on the decay channels featuring≥ 2 leptons (e,µ) or hadron-ically decaying taus (τh) in the final states. In contrast to other HH analyses featuring atleast oneH → bb decay, theHH→multilepton analysismakes up for the lowBRwith a rel-atively clean and low background lepton signature. The reason for the low background isdue to the high number of final state objects and/or a signature not common for the back-ground processes for most of the analysis channels, thereby heavily reducing the amountof background indistinguishable from the signal (i.e., prompt background). Furthermore,the leptonic signature offers good sensitivity at low energies giving the analysis and edgein the low mass regime in resonant theory interpretations or low |κλ | scenarios in non-resonant interpretations Still, having such low background makes the contributions frombackgrounds stemming from misidentified leptons or jets (i.e., fake background) and lep-tons with misidentified charge (i.e., charge-flip background) more important.TheHH→multilepton analysis focuses on threedistinct decaymodes,HH → WWWW,
HH → WWττ and HH → ττττ , with smaller contributions from decay modes includ-ing Z boson: HH → ZZZZ and HH → ZZττ . The importance from HH → ZZZZ and
HH → ZZττ are suppressed as the BR of H → ZZ relative to the H →WW is an order ofmagnitude smaller and the and Z decays into 2 leptons are happening only ∼ 3% of thetime. Furthermore, in this analysis most of the analysis channels employ also a Z-veto and
H → ZZ-veto, causing the contributions from HH → ZZZZ and HH → ZZττ to be verysmall.
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Figure 4.1: Branching fractions for the most notable di-Higgs decay channels, with the decaymodes
included in the Nature combination being highlighted in black [22].

TheHH → multilepton analysis was into 7 sub-categories, referred to as analysis chan-
nels, basedon themultiplicity of leptons andhadronically decaying taus: 0ℓ+4τh , 1ℓ+3τh ,
4ℓ, 2ℓ(ss)+0/1τh

1, 2ℓ+2τh, 3ℓ+0τh, 3ℓ+1τh. In the context of this thesis the 0ℓ+4τh and
1ℓ+3τh channels were studied in more details and will therefore be covered in moredepth. These seven channels cover the majority of the leptonic final states for the de-cay modes HH → 4V, HH → 2V2τ and HH → 4τ .Three distinct physics scenarios are studied in the HH → multilepton analysis: reso-nant spin-0, resonant spin-2 andnon-resonantHiggs production. As described in Sec. 1.2.2,both resonant physics scenarios postulate the existence of a new heavier particle that de-cays into two Higgs bosons. As the kinematics are different for the hypothesized radionlike spin-0 and for a graviton like spin-2 particle then the analysis is optimized for thesetwo cases separately. Furthermore, the masses for these hypothezised particles are un-known, and are therefore scanned in the range 250 GeV to 1 TeV.The non-resonant physics scenario described in Sec. 1.2.2 is aimed at studying the ef-fects of non-resonant BSM phenomena as well as the SM Higgs boson pair production.As the number of theoretical BSM models is large, then the collection of these theoreti-cal models together with SM-like scenarios with modified SM couplings are tested by themeans of EFT. The idea behind EFT is to reduce the new physics to point-like interactionsthat are described by the effective coupling that modify the behavior of the Higgs boson,allowing the reduction of BSM scenarios to effective scenarios. Models with similar signa-tures are grouped together, making it possible to exclude (or find hints of) a generalizedsignature, which allows one to evaluate the legitimacy of variety of models simultane-ously. From hereon each such grouping is referred to as benchmark (BM).In order to ensure anoptimal performanceof the analysis, dedicatedBDTswere trainedfor eachof the physics scenarios in all 7 analysis channels such that theBDTs are parametrized

1Two same-signed (ss) leptons with zero or one hadronic taus
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according to the mass or the BM for resonant and non-resonant cases respectively. As apart of this thesis a major contribution was made to the development and implementa-tion of the ML routines, including for example data preparation, implementation of theoptimization algorithms and automation. An overview of the ML choices, techniques andimplementations for this analysis is given in Sec. 4.3.For the analysis the data recorded by the CMS experiment during the full LHC Run22was used amounting to a luminosity of 137.6 fb−1 at√s = 13 TeV for this period. For thepurposes of training BDTs as well as for the signal and background modeling and overalloptimization of the analysis events fromMonte Carlo (MC) simulation were used. Furtherdetails concerning the simulated samples can be found in Ref. [2].The chapter is structured as follows: in Sec. 4.1 the event selection criteria for the
0ℓ+4τh and 1ℓ+3τh channels; Sec. 4.2 describes the datasets used in the analysis; Sec. 4.3gives an overview of the ML methods used. The results of the analysis are described inthe Sec. 4.4.

4.1 Event selection

Each of the 7 channels in the HH → multilepton analysis has a different set of selectioncriteria for an event to be considered in the given channel. The channels are defined bythe multiplicity of Tight ID leptons (ℓ) and hadronically decaying tau leptons (τh), with allreconstructed objects being passed through filtering algorithms in order to reduce thenumber unwanted events that are influenced by effects such as detector noise or miscal-ibration. The working points for these objects are described in Tables. 2.1, 2.2 and 2.3respectively. Analysis channels featuring a small object multiplicity and thus a high ex-pected background rate while having a relatively small signal contribution are not used.With this choice of the 7 channels most of the leptonic W decay modes are covered.In order to ensure orthogonality with other di-Higgs analyses all channels featuredin the HH → multilepton analysis reject events that contain one or more b-tagged3 jets.Additionally, vetoing such events helps to reject background events that feature top quarkdecays.The two channels studied in more details in this thesis are the 0ℓ+4τh and 1ℓ+3τh .A more detailed description of the event selection for these two channels is given in thefollowing sections, while the details regarding the event selection of the remaining 5 chan-nels and two control regions used in the signal extraction are given in Ref. [2].
4.1.1 0ℓ+4τh

The 0ℓ+4τh is aimed at selecting HH signal events in the ττττ decay mode, where allof the four tau leptons decay hadronically. Such events are obtained by requiring zeroelectrons and zero muons that pass the tight object selection to be present. As shownin Table. 4.1 then for an event to be considered in the 0ℓ+4τh channel, all four taus arerequired to pass the Tight identification criteria and have a pT above 40/40/20/20 GeVfor leading/sub-leading/third/fourth τh respectively. Additionally, a total charge of 0 isrequired.
22016-20183b-tagging is done by the means of the DeepJet [47] algorithm. If the b-tagging score exceeds agiven threshold (at a given working point) a jet is referred to as a b-tagged jet.
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Table 4.1: Event selection criteria for the channels 0ℓ+4τh and 1ℓ+3τh .

Criterion 0ℓ+4τh 1ℓ+3τh

Tight ID leptons 0 1
Lepton pT − > 20(15) GeV for an electron (muon)
Tight ID τh ≥ 4 3
τh pT ≥ 40/40/20/20 GeV > 40/30/20 GeV
τh |η | veto + DeepTau vs. Ele WP-VLoose − |η | ≤ 1.460∨|η | ≥ 1.558if mZ −20 GeV< mOS

lτh
< mZ +10 GeV

Low mass resonance veto − −
Z mass veto − −
b-jet veto ✓ ✓

Charge sum ∑Q(τh) = 0 ∑Q(τh)+Q(ℓ) = 0

All the above listed criteria were used in order to maximize the expected sensitivity ofthis channel.Applying this event selection for the 0ℓ+4τh channel results in the background com-position shown in Fig. 4.2 showing that the background stemming from fake or misiden-tified τh makes up two thirds of the expected background, while background from ZZ andsingle Higgs processes contributed 21.2 % and 12.1 % respectively. Almost all HH signalevents originate from the H → ττττ decay mode.As fakes from jets make up the largest portion of the backgrounds, 0ℓ+4τh wouldbenefit the most from a better reconstruction and identification rather than from betterdiscriminating variables.

ZZ

21.2%

Fakes
66.7%

Single Higgs
12.1%

Figure 4.2: Background composition of the 0ℓ+4τh . As fakesmake up two thirds of the background,
better particle reconstruction and identification would benefit this channel greatly.
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4.1.2 1ℓ+3τh

Similarly to 0ℓ+4τh , the 1ℓ+3τh channel is aimed at selecting HH decays in the ττττdecay mode with the distinction that one of the taus decays leptonically.In order for an event to be considered in the 1ℓ+3τh channel it must have exactly onetight lepton within |η | < 2.1 with pT > 20 in case of an electron or pT > 15 in case of amuon. The three tau candidates required in this channel need to pass the tight criteriawhile passing pT > 40/30/20 GeV for the leading/sub-leading/third tau candidate. Thetotal charge sum of the three tau candidates is required to be ±1, while the charge sumof the taus candidates plus lepton is 0.Background rising from the events where a electron is identified as a τh, (fake τh) isnot modeled using the data driven background estimation nor is properly described inthe simulations. This is a source for mismatch between signal and background predictionat low τh energies for the channels 1ℓ+3τh and 3ℓ+1τh. For this additional requirementson the τh are placed in both these channels. For 3ℓ+1τh crack-veto4 is applied togetherwith tightening the DeepTau working point for discriminating against electrons.For the 1ℓ+3τh channel the main fake background arises from the Z → e+e− decays.However if one employ the crack veto and would tighten the DeepTau vs. electron WPcut, the signal efficiency would be noticeably reduced. This is avoided by applying thesecuts only is the invariant mass of the oppositely charged τh and lepton pair is near theZ-mass peak: mZ −20GeV < mOS
ℓτH

< mZ +10GeV.Using the event selection summarized in Table. 4.1 results in a background compos-tion shown in Fig. 4.3. Again, a the biggest contributor to the background is the fakebackground at 44.0%. The background rising from the ZZ is in the same ballpark at 38.0%followed by contributions from single Higgs and smaller backgrounds at 16.0% and 2.0%respectively. Roughly 80% of the HH signal events originate from the H → ττττ decaymode, and 20% from the H →WW ∗ττ .Similarly to the 0ℓ+4τh , also 1ℓ+3τh would benefit from a better particle reconstruc-tion and identification. However, as a big fraction of the expected background originatesfrom ZZ, then a smart selection of variables for signal-background separation would help.

4.2 Datasets

The analyzed dataset consists of 137.6 fb−1 of pp collisions, with an average of 33 pp col-lisions taking place at each bunch crossing. In order to select the targeted final states forthis analysis, a set of lepton triggers, tau triggers and lepton-tau cross-triggers was used.For the purposes of analysis optimization, signal-background modeling and the train-ing of the BDTs, MC event simulation was used. The MC event simulation comprises ofthe event generation, pile-up generation and the full detector simulation, with the latterusing GEometry ANd Tracking (Geant4) [111] for this purpose. In order to further increasethe agreement between the measured data and the MC simulation, a set of additionalMC corrections are applied in the analysis.Data for all of the three signal scenarios is produced using a looser event selection thanthe one used in the signal region (SR) of a given channel for the purposes of increasingselection efficiencywhile accepting a bigger fakerate. This is done by relaxing the DeepTaudiscriminator WP against jets (see Table. 2.3) to VVVLoose for all the channels that have
4Dead region i.e., crack is one of the reasons for an electron misidentified as a τh. If the τh iscompatible with the main crack in the ECAL is at 1.460 < |η |< 1.558, this τh is vetoed.
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Figure 4.3: Background composition of the 1ℓ+3τh channel using the selection criteria from Ta-
ble. 4.1.

τh in the final state and the lepton ID to Loose lepton definition (see Tabels 2.1 and 2.2)for all the channels that had a lepton in the final state.
4.2.1 Background samples
The background samples used in the analysis include single boson production (W, Z), di-boson production (WW, WZ, ZZ), triple-boson production (WWW, WWZ, WZZ, ZZZ, WZγ), pro-cesses with one or two top quarks (t, tt̄, tt̄W, tt̄Z, tt̄WW) and single Higgs boson pro-duction (ggH, qqH, tHq, tHW, tt̄H, ggH, WH, ZH), which are all modeled in simulation. Ad-ditionally, some backgrounds can arise from processes where lepton pairs emerge fromphoton conversions in the detector material. This set of backgrounds is modeled usinga combination of X+jets and X+ γ for single boson and top production. More detailsregarding the exact MC generators and tunes used in this analysis can be found in Ref. [2].
4.2.2 Non-resonant HH production
Non-resonant HH production samples were generated both at leading-order (LO) and NLOaccuracy in QCD. These samples cover the ggHH and qqHH production processes, wherethe Higgs bosons decay to either WW∗, ZZ∗ or ττ .NLO samples are used for extracting the HH signal from the data, while the LO samplesare used to train the ML classifier because of the bigger sample size.A total of 12 ggHH samples corresponding to the 12 BM scenarios in the HEFT approachand one corresponding to the SM values were simulated for training the BDT classifier. Welabel these scenarios as JHEP04 BM1-12 and SM, which is treated as BM0 here [35]. Thebenchmark JHEP04 BM8 is complemented by a modified version of it in Ref. [112] referredto as JHEP04 BM8a. Additionally, a total of 7 benchmark scenarios (JHEP03 BM1-7) fromRef. [38] were simulated only for the purposes of signal extraction.As mentioned in Sec. 1.2.2, all these aforementioned BM scenarios represent different
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combinations of κλ , κt , cg, c2g and c2 HEFT parameter values. The parameter values forall these combinations can be found in Table 3 of Ref. [2]. The choice parameter valuesin these combinations are chosen such that the 5-dimensional parameter space would beevenly populated.For the purposes of increasing the number of simulated events for a given kinematicconfiguration ormodelig configurations not explicitly generated (JHEP03BM1-7), the ggHHsamples are merged and the samples in this superset are reweighed according to the pro-cedure introduced in Ref. [113] such that themHH and |cosθ ∗|5 match the ones computedat NLO accuracy given in Ref. [112].
4.2.3 Resonant HH production
The resonant HH production was simulated at LO for both the spin-0 (radion) and spin-2(graviton) cases. A total of 18 different generator mX points were used, where mX hasvalues of 250, 260, 270, 280, 300, 350, 400, 350, 500, 550, 600, 650, 700, 750, 800, 850,900 and 1000 GeV.
4.2.4 Triggers
For the purposes of choosing the events for a given analysis channel a different set oftriggers was used. The dependence on the lepton multiplicity, pT threshold and otherquality criteria for each trigger used in this analysis is given in Table. 4.2. The triggers usedfor each analysis channel is given in Table. 4.3.
Table 4.2: The requirements on the electrons (e), muons (µ), and hadronically decaying tau leptons
(τh) for the given triggers used in the HH → multilepton analysis. A range of values is given for a
trigger if the value changed in time [2].

Trigger Selection requirements for objects
Single e pT (e)> 27−35 GeV
Single µ pT (µ)> 27−35 GeV
Double e pT (e)> 23,12 GeV
e+µ pT (e)> 23 GeV, pT (µ)> 8 GeV
µ +e pT (µ)> 23 GeV, pT (e)> 8−12 GeV
Double µ pT (e)> 17,8 GeV
e+ τh pT (e)> 24 GeV, pT (τh)> 20−30 GeV, |η(e,τh)< 2.1

µ + τh pT (µ)> 19−20 GeV, pT (τh)> 20−27 GeV, |η(µ,τh)< 2.1

Triple e pT (e)> 16,12,8 GeV
Two e+µ pT (e)> 12,12 GeV, pT (µ)> 8 GeV
Two µ +e pT (µ)> 9,9 GeV, pT (e)> 9 GeV
Triple µ pT (µ)> 12,10,5 GeV

5cosine of the polar angle of one Higgs boson with respect to the beam axis in the HH rest frame
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Table 4.3: Triggers used for different analysis channels [22].

Trigger 0ℓ+4τh 1ℓ+3τh 2ℓ(ss)+≤ 1τh 2ℓ+2τh 3ℓ+0τh 3ℓ+1τh 4ℓ

Double τh trigger ✓ ✓ ✗ ✗ ✗ ✗ ✗

Lepton + τh cross-trigger ✗ ✓ ✗ ✗ ✗ ✗ ✗

Single lepton trigger ✗ ✓ ✓ ✓ ✓ ✓ ✓

Double lepton trigger ✗ ✗ ✓ ✓ ✓ ✓ ✓

Triple lepton trigger ✗ ✗ ✗ ✗ ✓ ✓ ✓

4.3 Machine learning

Once the events have been selected for each of the channels, the signal and backgroundfor each physics scenario (spin-0 resonant HH production, spin-2 resonant HH production,non-resonant HH production) is separated using parametrized BDTs.For each scenario there are two dedicated BDTs trained - one where events with oddevent number are used for training and events with even eventNumber are used for test-ing and the other vice versa. This means that a total of 3 (physics scenarios) × 2 (datahalves)× 7 (analysis channels) = 42 BDT classifiers were trained in this analysis.The data used for the training and the data preparation procedures used were de-scribed in the Sec. 4.3.1. In Sec. 4.3.2 the choice of the model is motivated and the opti-mization of the model input parameters and variables is described.
4.3.1 Data preparation
Prior toML training, the following data preparation was done for all of the three HH signalscenario described above.In order to ensure that the background statistics is associated with all of the differentsignal scenarios, a modified version of the vanilla oversampling (see Sec.3.4.1) was used.With this modification, all backgrounds are duplicated for each signal sample, which incontrast to having background samples randomly assigned to the signal, results in a uni-form background distribution associated with all the signal samples. The procedure is dif-ferent for the resonant and non-resonant scenarios: in case of the resonant signal scenar-ios additional feature (column) is added to the samples that corresponds to themass point
mX of the associated signal sample. The features used for each event in the 0ℓ+4τh and
1ℓ+3τh channels are described in Sec. 4.3.3. For non-resonant signal samples, the pro-cedure entails one-hot-encoding the BM scenario: creating an additional 13-dimensionalvector, where all values corresponding to the different scenarios are set to 0 with the ex-ception of the active scenario, which is set to one. Again the background events with theadditional 13-dimensional feature vectors are duplicated for each signal scenario.For both of the resonant HH production scenarios, spin-0 and spin-2, the input trainingvariables are decorrelated from genmHH

6. This is done by fitting the mean of each featurevs the genmHH using a polynomial that is often of a high order. The feature values aresubsequently divided by the value of this function for a given mass for both signal andbackground samples. The effect of this procedure is shifting the signal distributions suchthat they overlay each other, while having no such effect on the background samples. This
6the generator (simulated) HH mass
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procedure is aimed at aiding the ML training in the low genmHH cases. A good illustrationof the results of this procedure can be found on Fig. 6.11 in Ref. [22].All background events are being reweighted according to their expected yields in thesignal region, thereby ensuring that their relative contributions remain the same. As a finaldata preparation step the sum of weights for both signal and background is normalized to
105 events, thereby giving the same importance to both of the classes in the training.
4.3.2 Model selection
For the task of classifying events into signal and background a parametrized BDT, namelyXGBoost [65], was used. A parametrized BDT was used in order to treat several mass hy-potheses for awide range ofmass values for the resonant case or amultiple sets of bench-mark points for the non-resonant HH production scenario. This was needed due to thefact that a model trained on a lowmass point has worse performance on high mass signaland vice versa. Although one could train a separate BDT for eachmass point or benchmarkscenario, the expected behavior is similar to training a single parametrized network thatlearns several scenarios at once. The latter case is slightly more preferable, as in additionto being simpler version, it uses the information from all the scenarios thereby learningthe more general featured shared between the scenarios. A BDT over NN was preferreddue to having only low statistics in the HH → multilepton analysis and thus allowing touse a more simple model without sacrificing performance.The set of input features from the available data that is chosen prior to training will bedescribed in Sec. 4.3.4, while the optimized set of hyperparameters used in the analyseswill be described in Sec. 4.3.5.During training the area under curve (AUC) of the receiver operating characteristic(ROC) curve was used as the objective function.In order to evaluate whether themodel will perform on the unseen "test" data, the in-put data used for training was split into two halves - "odd" and "even". The split was donebased on a unique identifier called event number such that the model that was trained onthe events with odd event numbers is validated on the events with even event numbersand vice versa.
4.3.3 Feature engineering
In order to increase the separation power of the BDTs, a custom set of features werecreated separately for each of the 7 analysis channels.A description of the features used in the 0ℓ+4τh and 1ℓ+3τh channels is given in thefollowing sections. The overview of the features used in the other 5 analysis channels canbe found in Ref. [52] and Ref. [22].The strategy for the choice of variables used for the final training of the model will begiven in Sec. 4.3.4.
0ℓ+4τhAs was shown in Fig. 4.2, the ZZ background constitutes the second largest contributorto the overall background, amounting to more than 20%. Therefore, a set of discriminat-ing variables targeting Z-decays was calculated for each event. When constructing thesevariables, oppositely charged taus are paired.For the first set of features the pair that has the invariant mass closest to the Z-masspeak is assigned to variables Zee_bestTauHPair_∗, where the star (*) indicates a quan-tity such asmassm, difference of azimuthal angle (∆φ ), rapidity-azimuthal (η−φ ) distance
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(∆R), transverse momentum (pT ) or the difference of pseudorapidities (∆η).Next, pair that has the smallest ∆R is associated to variables dr_bestTauHPair_∗,while the pair with the largest pT is associated to variables pt_bestTauHPair_∗. Againthe star (*) corresponds to the same set of quantities as before. For each of the variable
∗_bestTauHPair_∗ described above another set of features is created that correspondsto the respective quantities corresponding to the tau pair that was formed from the leftover oppositely charged taus and is referred to as ∗_secondTauHPair_∗.Futhermore, for each event additional variables such as HT7, STMET8, mht9, met_LD10,
met11, mTauTau12, pt_HH_recoil13, most_Zee_like14, m_tau∗_tau∗15,
max_pt_pair_pt16, min_dr_pair_dr17, diHiggsVisMass18 together with the quanti-ties such as pT and η for each tau were calculated.As mentioned in the Sec. 4 0ℓ+4τh is targeting the HH → ττττ decay modes, thenit only makes sense to use features that are aimed at reconstructing the H → ττ decaysaccurately. For these purposes the SVFIT [114] algorithm was used, that reconstructs theinvariant mass of the di-Higgs system referred to as diHiggsMass.
1ℓ+3τhFor the 1ℓ+3τh channel the ZZ background plays a major role, however no special effortto introduce variables to discriminate between ZZ and signal was made.Similarly to the 0ℓ+4τh the pT and η values for all leptons and τh were included, withthe exception to use conePt instead of pT in the case of the lepton.Again features such asmet, mht, met_LD, HT,STMET,diHiggsVisMass, diHiggsMassand pt_HH_recoilwere made use of together with the quantities such as ∆R, mass andtransverse momentum for different pairings of lepton and taus.Features specific for this channel include the minimum and maximum ∆φ of the pos-sible oppositely charged lepton-tau and tau-tau pairs19 and the minimal and maximal ∆φbetween particles in a pair20.

7Scalar sum of pT of all fakeable leptons, fakeable taus and selected jets in the event.8A "transverse mass” like variable constructed from fakeable leptons, jets and MET. STMET = HT+ MET.pt()9Vector sum of pT of all fakeable leptons, selected jets and fakeable had-taus in the event. Hasbetter stability against pileup but poor resolution.10a specific linear combination between MET and MHT designed as a compromise between ro-bustness against pileup as well as good enough resolution. met_LD = 0.6 MET.pt() + 0.4 MHT.pt()(coefficients obtained by fitting 2D distribution between MET and MHT)11missing transverse energy in the event12the mass of the tau pair if it is a valid solution for the SVFIT algorithm otherwise set to a defaultvalue of -1.13the transverse momenta of the four taus and the MET system14The mass difference of the Z mass and the mass of the tau pair that had mass closest to Z peak.15the invariant mass of tau pair constructed from different combinations of taus16The pT value of tau pair that has the biggest pT17The ∆R value of the tau pair that has the smallest ∆R18the mass of the visible part of the di-Higgs system, meaning the invariant mass of the four taus,without considering the contribution from MET.19dphi_[lep/tau]_tau_OS_pair_[max/min]20dphi_HHvis_[min/max]
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4.3.4 Training variable selection
Before tuning the hyperparameters a subset of input training features need to be selectedamong plethora of available ones. Having fewer input variables without offering perfor-mance makes the trained model more interpretable and simple, which as per Occam’srazor is highly preferred. As an additional bonus, having fewer variables should make thelearning algorithm faster and reduce overtraining.To choose a well performing subset of training variables an algorithm consisting outof two main steps was implemented. In the first step training variable from a pair of vari-ables that are correlated above a given threshold ζT H is removed from the list of trainingvariables. In our analysis we have chosen the threshold ζT H to be 0.8, meaning that ifa pair of variables has a correlation that is above 80%, the variable with smaller featureimportance will be discarded. The chosen BDT algorithm, XGBoost, as most other mod-ern machine learning methods, handles multicollinearity well and the performance itselfis not affected when having highly correlated input variables. Still, in case of a high de-gree of correlation between two variables, the feature importances will be affected. Asis the case in general in boosting, also XGBoost ignores one of the variables in the fullycorrelated pair.As one might expect the noise-dominated features will tend to be less correlated withother features than those that are correlated more with the target. Consequently theproportion of noise-dominated variables will increase after the first step.After the removal of the highly correlated variables, the algorithm proceeds to thesecond step, where the less important training variables are iteratively dropped. At everystep a new BDT is trained with the reduced list of input variables and the feature impor-tance of the reduced list of input variables calculated. In our implementation we use theso called "weight" feature importance from the XGBoost that corresponds to the numberof times a given variable was used to split the data across all trees. The "weight" metric isin principle just a simpler way to measure gain, which is a measure of howmuch improve-ment in accuracy is due to a given variable. At each step a given number ξdrop of leastimportant features will be dropped until a suitable number Ntrainvars of training variablesis reached.For both 0l_4tau and 1l_3tau ξdrop was chosen to be 5 and Ntrainvars to be 9 in caseof resonant spin-0 and spin-2 and 15 in case of nonresonant-HH production.
0ℓ+4τhFor the 0ℓ+4τh channel a different choice of discriminating variables to be used in theML training were used for each physics scenario. The features used for a given physicsscenario are given in Table. 4.4 and are denoted by ✓.The distributions for each variable used for the final BDT training for a given back-ground and different signal scenarios are shown in Figs. 4.4 - 4.22.
1ℓ+3τhIn case of the 1ℓ+3τh channel a the same set of discriminating variables for the BDT train-ing was used for both of the resonant physics scenarios, as the performance change wasnegligible. This was not the case for the nonresonant scenario, where a different choiceof the features to be used was made.The features used for a given physics scenario are given in Table. 4.5 and are denotedby ✓.The distributions for each variable used for the final BDT training for a given back-ground and different signal scenarios are shown in Figs. 4.23 - 4.39.
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Table 4.4: Discriminating variables used for the three physics scenarios in the 0ℓ+4τh channel.

spin-0 spin-2 non-resonant

STMET ✗ ✗ ✓

Zee_bestTauHPair_m ✗ ✗ ✓

Zee_secondTauHPair_m ✗ ✗ ✓

deltaEta_tau2_tau3 ✓ ✗ ✗

diHiggsMass ✓ ✓ ✓

diHiggsVisMass ✓ ✗ ✗

dr_bestTauHPair_dr ✗ ✓ ✓

dr_bestTauHPair_m ✓ ✓ ✓

dr_secondTauHPair_dr ✗ ✗ ✓

dr_secondTauHPair_m ✓ ✗ ✗

dr_tau1_tau3 ✗ ✓ ✗

dr_tau2_tau4 ✓ ✓ ✗

mTauTau ✗ ✗ ✓

m_tau2_tau3 ✗ ✗ ✓

met_LD ✓ ✗ ✓

pt_bestTauHPair_m ✗ ✓ ✗

tau1_eta ✗ ✗ ✓

tau1_pt ✗ ✓ ✓

tau4_pt ✗ ✗ ✓
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Figure 4.4: The distribution of STMET for the three physics scenarios.
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Figure 4.5: The distribution of Zee_bestTauHPair_m for the three physics scenarios.
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Figure 4.6: The distribution of Zee_secondTauHPair_m for the three physics scenarios.
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Figure 4.7: The distribution of deltaEta_tau2_tau3 for the three physics scenarios.
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Figure 4.8: The distribution of diHiggsMass for the three physics scenarios.
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Figure 4.9: The distribution of diHiggsVisMass for the three physics scenarios.
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Figure 4.10: The distribution of dr_bestTauHPair_dr for the three physics scenarios.
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Figure 4.11: The distribution of dr_bestTauHPair_m for the three physics scenarios.
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Figure 4.12: The distribution of dr_secondTauHPair_dr for the three physics scenarios.
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Figure 4.13: The distribution of dr_secondTauHPair_m for the three physics scenarios.
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Figure 4.14: The distribution of dr_tau1_tau3 for the three physics scenarios.
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Figure 4.15: The distribution of dr_tau2_tau4 for the three physics scenarios.
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Figure 4.16: The distribution of mTauTau for the three physics scenarios.
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Figure 4.17: The distribution of m_tau2_tau3 for the three physics scenarios.
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Figure 4.18: The distribution of met_LD for the three physics scenarios.
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Figure 4.19: The distribution of pt_bestTauHPair_m for the three physics scenarios.
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Figure 4.20: The distribution of tau1_eta for the three physics scenarios.
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Figure 4.21: The distribution of tau1_pt for the three physics scenarios.
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Figure 4.22: The distribution of tau4_pt for the three physics scenarios.
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Table 4.5: Discriminating variables used for the three physics scenarios in the 1ℓ+3τh channel.

spin-0 spin-2 non-resonant

diHiggsMass ✓ ✓ ✓

diHiggsVisMass ✓ ✓ ✓

dr_lep_tau1 ✓ ✓ ✗

dr_lep_tau2 ✓ ✓ ✓

dr_lep_tau3 ✓ ✓ ✓

dr_tau1_tau2 ✓ ✓ ✓

dr_tau1_tau3 ✓ ✓ ✓

dr_tau2_tau3 ✓ ✓ ✗

lep_eta ✗ ✗ ✓

lep_conePt ✗ ✗ ✓

mT_lep ✓ ✓ ✓

m_lep_tau1 ✗ ✗ ✓

met ✗ ✗ ✓

mht ✗ ✗ ✓

pt_HH_recoil ✗ ✗ ✓

tau1_pt ✗ ✗ ✓

tau2_pt ✗ ✗ ✓
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Figure 4.23: The distribution of diHiggsMass for the three physics scenarios.
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Figure 4.24: The distribution of diHiggsVisMass for the three physics scenarios.
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Figure 4.25: The distribution of dr_lep_tau1 for the three physics scenarios.
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Figure 4.26: The distribution of dr_lep_tau2 for the three physics scenarios.
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Figure 4.27: The distribution of dr_lep_tau3 for the three physics scenarios.
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Figure 4.28: The distribution of dr_tau1_tau2 for the three physics scenarios.
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Figure 4.29: The distribution of dr_tau1_tau3 for the three physics scenarios.

79



1 2 3 4 50.00

0.05

0.10

0.15

0.20
signal_300
signal_500
signal_800
qqZZ
DY
VH
WZ
ggZZ
TT

(a) spin-0

1 2 3 4 50.00

0.05

0.10

0.15

0.20

signal_300
signal_500
signal_800
qqZZ
DY
VH
WZ
ggZZ
TT

(b) spin-2

1 2 3 4 50.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
SM
BM4
BM7
qqZZ
DY
VH
WZ
ggZZ
TT

(c) nonres

Figure 4.30: The distribution of dr_tau2_tau3 for the three physics scenarios.
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Figure 4.31: The distribution of lep_eta for the three physics scenarios.
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Figure 4.32: The distribution of lep_pt for the three physics scenarios.
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Figure 4.33: The distribution of mT_lep for the three physics scenarios.
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Figure 4.34: The distribution of m_lep_tau1 for the three physics scenarios.
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Figure 4.35: The distribution of met for the three physics scenarios.
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Figure 4.36: The distribution of mht for the three physics scenarios.
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Figure 4.37: The distribution of pt_HH_recoil for the three physics scenarios.
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Figure 4.38: The distribution of tau1_pt for the three physics scenarios.
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Figure 4.39: The distribution of tau2_pt for the three physics scenarios.

4.3.5 Hyperparameter optimization
The analysis channels in the HH → multilepton analysis feature a small number of events(in comparison to the other analyses) and thus the time spent on the evaluation of theOF is relatively short, being only∼ O(30)minutes. As PSO is a great algorithm for exactlythese kinds of scenarios, it was chosen to be the hyperparameter optimization algorithmin this analysis.The metaparameters21 chosen for the PSO that are shared for every analysis channelare given in Table. 4.6In total 7 XGBoost algorithm hyperparameters that have the biggest impact on thetraining were chosen to be optimized. The bounds between which the hyperparameterswere optimized are given in Table. 4.7.

Table 4.6: Parameter settings for the PSO algorithm [1].

Parameter Value
Nin f o 10

c1 1.62

c2 1.62

wmin 0.4

wmax 0.8

Using PSO hyperparameter optimization algorithm resulted in models with a O(10%)better AUC score in comparison to themodels withmanually tuned hyperparameters. Thehyperparameter values for the 0ℓ+4τh and 1ℓ+3τh channels are given in Table. 4.8. Thehyperparameters for the other 5 analysis channels can be found in Ref. [52].
21parameters needed to be chosen prior to the hyperparameter optimization that are inherentto every hyperparameter optimization algorithm.
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Table 4.7: Minimumandmaximumvalues of the hyperparameters for theHBC. The hyperparameters
are detailed in Ref. [65].

Hyperparameter min max
n-estimators 1 500

learning-rate 10−5 1

max-depth 1 6

gamma 0 5

min-child-weight 0 500

subsample 0.8 1

colsample-bytree 0.3 1

Table 4.8: Minimumandmaximumvalues of the hyperparameters for theHBC. The hyperparameters
are detailed in Ref. [65].

Hyperparameter 0ℓ+4τh 1ℓ+3τh

spin-0 spin-2 non-resonant spin-0 spin-2 non-resonant
n-estimators 22 22 101 166 166 160

learning-rate 0.406 0.406 0.036 0.149 0.149 0.057

max-depth 4 4 4 4 4 4

gamma 1.75 1.75 5.75 3.35 3.35 2.91

min-child-weight 159 159 499 326 326 449

subsample 0.904 0.904 0.504 0.8 0.8 0.6

colsample-bytree 1.0 1.0 0.7 0.829 0.829 0.624

4.4 Results

In the following an overview of the HH → multilepton analysis results for both resonantas well as for the non-resonant physics scenarios is given, with the contributions by the
0ℓ+4τh and 1ℓ+3τh channels shown for every result.In Fig. 4.40 the nonRes BDT output distribution for the 0ℓ+4τh and 1ℓ+3τh channelsare shown. The postfit event yields corresponding to these can be found in Table. 4.9
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Figure 4.40: Distribution of the output of the BDT classifier trained for the non-resonant HH pro-
duction for the JHEP BM7 for the 0ℓ+4τh and 1ℓ+3τh channels. The cross section of the SM HH
signal is scaled up by a factor of 30. Shaded gray area denotes the sum of statistical and systematic
uncertainties on the background prediction.

Table 4.9: Number of expected and observed events in the channels 0ℓ+4τh and 1ℓ+3τh [2].

Process 0ℓ+4τh 1ℓ+3τh

SM HH→WW∗WW∗ (×30) 0.2±0.0 0.3±0.0

SM HH→WW∗ττ (×30) 0.6±0.1 0.1±0.0

SM HH→ ττττ (×30) 2.6±0.4 1.3±0.2

WZ < 0.1 < 0.1

ZZ 1.9±0.2 0.7±0.1

Misidentified ℓ and τh
22 2.2±2.1 2.2±1.6

Conversion electrons < 0.1 < 0.1

Single Higgs boson 0.8±0.4 0.4±0.3

Other background 0.1±0.1 < 0.1

Total expected background 5.0±2.2 3.4±1.6

Data 6 1

A potential HH signal event from the 1ℓ+3τh channel is shown in Fig. 4.41. This eventwas observed in 2018 and has the highest BDT score (0.755) of the 6 selected events.That event features two reconstructed hadronic taus, one anti-tau and an electron witha considerable amount of missing transverse energy (MET). Different pairings of the finalstate objects hints that it is either a single-Higgs (VH) or a di-Higgs event.The only candidate signal event from the 0ℓ+4τh category is shown in Fig. 4.42. Withthe BDT score of 0.125, this event is most likely not a HH signal event.
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Figure 4.41: Event with the highest BDT score of 0.755 by the BDT trained on the JHEP04BM7 among
the 6 selected HH signal candidates in the 1ℓ+3τh . This event is potentially either actual HH signal
event or a VH background event.

Figure 4.42: The only selected HH signal candidate found in the 0ℓ+4τh channel in 2018. With a
score of 0.125 given by the BDT trained on the JHEP04BM7, this event is most probably not signal.
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4.4.1 Systematic uncertainties
Signal extraction is affected by various experimental and theoretical effects that arise fromimprecisely known or simulated effects and are treated as nuisance parameters. Theseeffects, known as systematic uncertainties, are related to various kinematic properties,modifying the shape of the distributions in the discriminating observables as well as tothe overall yield of the HH signal and the background processes. Most experimental ef-fects correspond to data to MC corrections and data driven background estimations. Inthis section an overview of the systematic uncertainties affecting the HH → multileptonanalysis are listed, while a more detailed description of the systematic uncertainties af-fecting to the 0ℓ+4τh and 1ℓ+3τh channels is given.As both 0ℓ+4τh and 1ℓ+3τh have such low event yields, one of the biggest contibutorto the systematic uncertainties for these channels are related to the triggers. Namely, thedi-τ trigger (lepton + τh cross trigger) used in the 0ℓ+4τh (1ℓ+3τh ) channel is a sourcefor the uncertainties arising from the τh legs of the trigger. However, the uncertainty inthe efficiency of the lepton leg is neglected for the lepton + τh cross-trigger used in the
1ℓ+3τh channel. The size of the uncertainties is given by the TauPOG and depends onthe kinematics (pT , η , φ ) as well as the decay mode of the τ . These trigger uncertaintiesare considered uncorrelated among all the analysis channels and are presumed to affectonly the shape of the distribution of the discriminating variable.Next, as fakes constitute a major part of the background for both channels, also the
τh identification efficiency affects both channels considerably. Systematic uncertainty re-lated to the τh identification efficiency is provided by the TauPOG and depends on the pTand the decay mode of the τh. It is considered as a shape uncertainty and presumed tobe uncorrelated for each year. However, it is dominated by statistical effects.Another major contributor to the overall systematic uncertainty for the two channelsis the uncertainty corresponding to the energy scale of the τh and is treated as a uncorre-lated shape systematic for all the years.Additionally, other analysis channels are also affected by jet energy scale, lepton iden-tification and isolation, lepton trigger, jet energy resolution, b-tagging efficiency andmistagrate, signal and background rate, luminosity, pileup related uncertainties as well as by theL1 ECAL prefiring for the years 2016 and 2017.
4.4.2 Signal extraction
Signal extraction is done by performing a binned maximum likelihood fit using the BDToutput distributions of the seven search channels as well as the two control regions. This
is done by determining the signal strength r =

σ
f it

HH

σ
theory
HH

for each physics scenario with a
profile likelihood test statistic [115] that quantifies the probability of seeing the recordeddata given the background model with and without the contribution from signal. Herewe define the likelihood L in terms of the nuisance parameters θ that represent thesystematic uncertainties introduced in the previous section.Once the best fit signal strength r̂ has been found, the significance Σ of it is defined asthe ratio of it relative to the background only hypothesis, where the signal strength is setto r = 0:

Σ =−2ln

(
L (data|r = 0, θ̂)
L (data|r = r̂, θ̂0)

)
. (4.1)

Here the θ̂ and θ̂0 denote the nuicance parameters for the best fit signal strength and the
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background-only hypothesis respectively. Using this definition above, we can now placeupper limits on the signal strength by the means of asymptotic approximation [115] todefine a 95% confidence interval for the signal strength.However, if we would make decisions only based on the empirical data, we might in-troduce severe biases that could lead to a false discovery or rejection. For this reason wemake use of Asimov dataset that we construct by fixing the observed yields to be equalto the predicted yields. The results obtained using the Asimov dataset are referred toas expected, whereas the ones obtained from the real measurements are referred to as
observed.A more detailed discussion regarding signal extraction can be found in Ref. [52].
4.4.3 Upper limits
In this section, 95% CL upper limit scans on the HH production cross section for the cou-pling strength modifiers for Higgs boson self-coupling κλ , Higgs boson coupling to topquark κt , and effective couplings of top quark to two Higgs bosons (c2) and two Higgsbosons to two vector bosons (c2V ) for the channels 1ℓ+3τh , 0ℓ+4τh and their combina-tion are presented.Limit scans for the coupling parameters are performed using the physics model de-scribed in Ref. [116]. When setting the limits on the cross section, the uncertainties forthe theoretical cross section of HH production are frozen. For all limits one uses the non-resonant BDT using the JHEP04BM7 point as it focuses on currently important regions in
κλ in the coupling scans .On Fig. 4.43a we see the scan over possible values of the Higgs boson self couplingstrength modifier κλ . For the scan, all other Higgs boson couplings are set to the SMvalues. The intersection of the theory prediction and the observed (expected) gives thelower and upper limits of [-9.6, 15.25] ([-11.06, 17.21]) for the combination of these twochannels, while the limits for the fullHH→multilepton analysis are [-6.9, 11.1] ([-6.9, 11.7]).Scanover theHiggs boson - topquark coupling strengthmodifierκt is shown in Fig. 4.43b.The observed (expected) lower and upper 95% CL limit for the combination of the twochannels is [-2.64, 2.92] ([-2.82, 3.09]), while for the full HH → multilepton analysis theyare [-1.96, 2.39] ([-2.00, 2.54]).The limit scan for the EFT coupling parameter c2 (shownon Fig. 4.43c) results in the ob-served (expected) lower and upper 95% CL limit for the combination of the two channelsin being [-1.42, 1.86] ([-1.56, 1.98]) and for the full analysis [-1.05, 1.48] ([-0.96, 1.37]).The 95%CL limits on the coupling strengthmodifier for non-resonant qqHHproduction
c2v is shown on Fig. 4.43d. The observed (expected) lower and upper 95% CL limit forthe combination of the two channels in being [-4.69, 6.85] ([-4.75, 6.89]) and for the fullanalysis [-3.42, 5.56] ([-2.73, 4.83]).The contribution from the 0ℓ+4τh channel to the analysis is bigger for the expectedvalues of κλ , κt and c2V , while for the c2 the stronger expected limit is coming from the
1ℓ+3τh channel.

88



30− 20− 10− 0 10 20 30

λκ

1

2

3

4

5

6

7

8

 H
H

) 
(p

b)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

hτ0l + 4 Median expected

hτ 1l + 3 Observed          

combined          Theory prediction

SM prediction     

CMS Work in progress

(a) κλ

10− 8− 6− 4− 2− 0 2 4 6 8 10

tκ

2−10

1−10

1

10

210

310

410

 H
H

) 
(p

b)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

hτ0l + 4 Median expected

hτ 1l + 3 Observed          

combined          Theory prediction

SM prediction     

CMS Work in progress

(b) κt

5− 4− 3− 2− 1− 0 1 2 3 4 5

2C

500

1000

1500

2000

2500

3000

3500

 H
H

) 
(f

b)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

hτ0l + 4 Median expected

hτ 1l + 3 Observed          

combined          Theory prediction

SM prediction     

CMS Work in progress

(c)C2

10− 8− 6− 4− 2− 0 2 4 6 8 10

2Vκ

500

1000

1500

2000

2500

3000

3500

 H
H

) 
(f

b)
→

(p
p 

σ
95

%
 C

L 
lim

it 
on

 

hτ0l + 4 Median expected

hτ 1l + 3 Observed          

combined          Theory prediction

SM prediction     

CMS Work in progress

(d)C2V

Figure 4.43: Upper limits for the parameters κλ , κt ,C2,C2V .

The comparison of the expected and observed 95% CL upper limits of the 1ℓ+3τh and
0ℓ+4τh analysis channels, the combination of these these and for the fullHH→multileptonanalysis is shown in Table. 4.10. As both of these channels have very few events that passthe selection criteria, the contribution from these to the whole analysis is rather moder-ate.
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Table 4.10: Lower and upper limits for 0ℓ+4τh , 1ℓ+3τh , combination of these two channels and
for the full HH→multilepton analysis. There upper limits for the parameters κλ andC2 for the full
HH→multilepton analysis are taken from Ref. [2] and for κt from Ref. [22].

Parameter 0ℓ+4τh 1ℓ+3τh combined HH→multilepton

κλ

obs [-12.67, 18.84] [-12.96, 19.39] [-9.60, 15.25] [-6.9, 11.1]
exp [-12.85, 18.79] [-17.00, 24.52] [-11.06, 17.21] [-6.9, 11.7]

κt
obs [-3.14, 3.71] [-3.02, 3.57] [-2.64, 2.92] [-1.96, 2.39]
exp [-3.07, 3.61] [-3.91, 4.45] [-2.82, 3.09] [-2.00, 2.54]

C2
obs [-1.85, 2.29] [-1.85, 2.29] [-1.42, 1.86] [-1.05, 1.48]
exp [-2.35, 2.78] [-1.78, 2.20] [-1.56, 1.98] [-0.96, 1.37]

C2V
obs [-5.86, 7.99] [-6.42, 8.62] [-4.69, 6.85] [-3.42, 5.56]
exp [-5.35, 7.50] [-8.04, 10.00] [-4.75, 6.89] [-2.73, 4.83]

The observed and expected 95% CL upper limits on the SM HH production cross sec-tion for the two channels and their combination are shown on Fig. 4.44. The SM signalstrength measurement is performed using the output of the BDT classifier that has beentrained for SM non-resonant HH production. The observed (expected) upper limit for thecombination of the two channels is 31 (38) times the SM cross section value, while forthe full analysis the corresponding numbers are 21 and 19 for the observed and expectedrespectively.
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Figure 4.44: Observed and expected 95% CL upper limits on the SM HH production cross section.
The observed (expected) upper limit for the combination of the two channels is 31 (38), while for the
full HH→ multilepton analysis it is 21 (19) (corresponding to 651 (592) fb). The numbers for the full
analysis are taken from Ref. [2].

4.4.4 EFT Benchmarks
When setting the limits on the 20 benchmark scenarios, the one-hot-encoded value of theJHEP04 BM scenario or the kinematically closest JHEP03 BM scenario to a given JHEP04
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BM point will be given as the input to the BDT. This means, we look at the the differentialNLO HH cross section in mHH and calculate the difference between the combinations ofJHEP03 and JHEP04 BM scenarios. Then we assign for each JHEP03 scenario the JHEP04that has the smallest difference when minimizing the metric di f f (s1,s2):
di f f (s1,s2) =

bins

∑
i=0

∣∣∣∣Ns1
events(i)−Ns2

events(i)
Ns1

events(i)+Ns2
events(i)

∣∣∣∣ , (4.2)
where s1 and s2 denote the two scenarios for which the kinematic difference is calcu-lated, and Ns1

events(i) and Ns2
events(i) the number of events in a given bin in the mHH distri-bution.Figs. 4.45 and 4.46 show the twenty benchmark scenarios that span a range of valuesin the κλ , κt , cg, c2g values, each of which corresponds to a different kinematic distribu-tion, allowing us to measure the HH cross section at each point separately.
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Figure 4.45: Upper limits at 95% CL on the production cross section for the SM, 13 (JHEP04) and 7
(JHEP03) EFT BSM benchmark scenarios for the full HH → multilepton analysis (top) and for each
analysis channel separately (bottom) [2].
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(c) Combination of 1ℓ+3τh and 0ℓ+4τh .

Figure 4.46: Upper limits at 95% CL on the production cross section for the SM, 13 (JHEP04) and 7
(JHEP03) EFT BSM benchmark scenarios for the 1ℓ+3τh (top), 0ℓ+4τh (middle) and the combina-
tion of the two channels (bottom).

92



Comparing the 95% CL upper limit of the full HH → multilepton analysis shown inFig. 4.45a and the combination of the two analysis channels focused on in this thesis wecan see that the 95% CL upper limit of the full analysis given∼ 2−3 times stronger limits.
4.4.5 Resonant
The observed and expected limits on the resonant HH production cross section as a func-tion ofmX for the fullHH→multilepton analysis is shownon Figs. 4.47. TheHHproductioncross section is evaluated at the mass points listed in Sec. 4.2, where the resonance mass
mX is given as an input to the resonant BDT.As it is easier to distinguish signal from background for higher mX values due to theincreased acceptance, the limits are expected to be also more stricter at higher resonantmasses mX .Also, as the signal efficiency and the BDT output shapes differ for different masses andspin scenarios, we performed a separatemeasurement for eachmass and spin hypothesis.Depending on the spin and the mass hypothesis, the observed (expected) 95% CL upperlimit for the resonant HH production cross section ranges from 0.18 to 0.90 (0.08 to 1.06)pb [2].

4.5 Conclusions and outlook

The HH → multilepton analysis [2] presented in this thesis was included in the combi-nation of the Run2 CMS Higgs analyses in Ref. [29], which showed the existence of thequartic coupling VVHH (κ2V ̸= 0) with a significance of 6.6 standard deviations.Furthermore, the exclusion region for κλ was tightened, with the lower bound nowapproaching 0, meaning the evidence for trilinear Higgs self-coupling is not in a too dis-tant future. As the main strength of multilepton analysis is in constraining HH productionat low mHH region (corresponding to high κλ values), impact on the HH effort will beconsiderable.Still, there are several aspects that can be improved for the ongoing LHC Run323 andthe planned HL-LHC24 HH → multilepton analyses.The HH → multilepton analysis covered in this thesis is limited mostly by the availabledata and simulations. In addition to the fact that having more recorded and simulatedevents reduces the statistical uncertainties, then one would expect an increase in perfor-mance for background modeling and ML classifier training with more simulated events,thereby allowing a more refined analysis.The aspects in the analysis strategy that can be improved are the following: firstly, asshown in Ref. [117] considering VBF as a separate signal category improves the the limitson c2V by a factor 4. While the improvement might not be as pronounced in other anal-ysis channels and/or for other Higgs parameters, the addition of the VBF category offerspotentially a noticeable improvement to the analysis.Secondly, more sophisticatedMLmethods could be used. For example in the channelsthat are not as statistically constrained, one could make use of neural networks. Thisthen makes it possible to engineer new and meaningful features using LBN as describedin Sec. 3.4.2.
232022-2025. The total integrated luminosity is expected to be ∼ 300fb−1, which is more thantwice the recorded luminosity in Run224Planned start is in the beginning of 2029. The total integrated luminosity is expected to be

∼ 3000fb−1
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Figure 4.47: The observed and expected 95% CL upper limit on the production of new particles of
spin-0 (left) and spin-2 (right) decaying into a pair of Higgs bosons in mass range of 250-1000 GeV.
Plots on the top show the result of the combination of the seven channels, while the ones on the
middle and bottom show the limits for each channel separately [2].
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Next, in the current version of the analysis, the problem of imbalanced dataset is over-come by the means of oversampling. However, more sophisticated and performant sam-pling methods, as described Sec. 3.4.1, such as SMOTE or ADASYN could be employed. Al-ternatively, during training one could make use of focal loss [118], which has been shownto perform well with imbalanced datasets.Furthermore, the currently employedmethodof calculating feature importances basedon the number of times a featureswas used to split the datawould not be suitable for neu-ral networks. Also, this scoremight not be the best to describe the importance of features.For these purposes one could make use of metric such as SHAP, or even revisit the wholestrategy of dropping variables (see Ref. [78]).What’smore, further subcategorizing channels based on the objectmultiplicity and/orflavor could be considered. Namely, splitting the 2ℓss +0/1τh could be separate channelstaking to account the lepton flavor flavors or splitting the channel based on tau multiplic-ity: 2ℓ(ss)+0/1τh → 2ℓss +0τh and 2ℓss +1τh. Having a separate channel that considersthe two oppositely charged leptons 2ℓ(os) is another possibility, which however mostlikely is greatly affected by large backgrounds. Either way the feasibility of these additionshas to be studied further in a detailed manner.Finally, as of yet there doesn’t exist a multilepton analysis investigating the X→ YH25.As multilepton analysis is particularly sensitive to soft signatures, then the study of lightmass Y will benefit from this a lot.

25X and Y being some new massive scalar particles
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Abstract
Measurement ofHiggs BosonProperties in Leptonic Final States
using ML-methods

The final elementary particle predicted by the Standard Model (SM) was experimentallydiscovered in 2012: the Higgs boson. During the ten years since it’s discovery, a few prop-erties of the Higgs boson still remain unmeasured. These parameters include for examplethe Higgs self-coupling λ and the Yukawa coupling to the top quark, yt .The subject of this thesis is the study of Higgs boson pair (HH) production, which al-lows the measurement of the Higgs boson self-coupling. The production of HH is studiedin the decay channels to four vector bosons (VVVV), two vector bosons and two τ leptons(VVττ), and to four τ leptons (ττττ). The final states considered in the analysis featuremultiple electrons (e), muons (µ), and hadronically decaying τ leptons (τh). Although thebranching fractions for these decay channels are rather small, they have the advantage ofbeing almost free of backgrounds. In order to increase the efficiency for the rare HH sig-nal, the study includes seven complementary analysis channels defined by themultiplicityof e, µ , τh and their charge. The analyzed data has been recorded by the Compact MuonSolenoid (CMS) experiment located at the Large Hadron Collider (LHC) at the EuropeanOrganization for Nuclear Research (CERN). The data used in this analysis was collected in2016-2018 at a center-of-mass energy of 13 TeV and corresponds to an integrated lumi-nosity of 138 fb−1.The main focus of this thesis is on two of the seven analysis channels - 0ℓ+4τh and
1ℓ+3τh . Both of these channels target the Higgs boson pair decays to four τ leptons.As a significant fraction of the background in these two channels stems from misidenti-fied jets and electrons, the channels sensitivity can be increased by studying various τreconstruction and identification algorithms.The signal extraction in this analysis is done by the means of boosted desision tree(BDT) discriminator, namely XGBoost. In addition to the choice of the algorithm, a multi-tude of algorithm specific parameters, referred to as hyperparameters, needed to be spec-ified prior to training. As the choice of the hyperparameters influences the performanceof the algorithm in amajor way, an in depth study of various hyperparameter optimizationalgorithms and their use cases was made.The data recordedby CMS so far did not allow to observe aHH signal. Instead, an upperlimit was set on the signal cross section, which amounts to 21 times the SM prediction.These limitswere used to constrain newphysics contributions in the context of an effectivefield theory (EFT). Upper limits were also set on the contribution of new heavy particlesdecaying to Higgs boson pairs, which are predicted by varios theories beyond the SM:spin-0 and spin-2 particles in themass range of 250GeV to 1 TeV. No statistically significantexcess over the SM expectation was observed.
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Kokkuvõte
Higgsi bosoni omaduste mõõtmine leptoneid sisaldavates ka-
nalites kasutades masinõppe meetodeid

2012. aastal avastatud Higgsi boson oli viimane eksperimentaalselt tõestatud Standard-mudeli (SM) poolt ennustatud elementaarosake. Kuigi sellest avastusest on möödas ülekümne aasta, on endiselt osa Higgsi bosoni parameetreid mõõtmata. Nende parameet-rite hulka kuuluvad näiteks Higgsi eneseinteraktsiooni seoseparameeter λ ning Yukawaseoseparameeter, mis määratleb Higgsi bosoni interaktsiooni tugevuse top-kvargiga yt .Antud doktoritöö uurib Higgsi bosoni paaride (HH) teket, mille otsemõõtmiste abilsaab piiritleda Higgsi eneseinteraktsiooni seoseparameetrit vastava tekkeprotsessi rist-lõikest. HH protsessi uuritakse siin nelja vektor-bosoni (VVVV), kahe vektor-bosoni ja ka-he τ leptoniga (VVττ), ning nelja τ leptoniga (ττττ) lagukanalites, kus lõppolekutes esi-neb mitu elektroni (e), müüonit (µ) ja hadrooniliselt lagunenud tau leptonit (τh). Sellisedlõppolekud on harvad, kuid on see eest peaaegu vabad taustaprotsessidest. Signaali osa-tähtsuse suuredamiseks uuritaksemitmeleptoniliseid lõppolekuid seitsmes ortogonaalsesanalüüsikanalis, mis on defineeritud leptonite arvukuse ja elektrilaengu järgi. Mõõtmisteandmed pärinevad CompactMuon Solenoid (CMS)mis asub Suurel Hadroni Põrgutil (LHC)Euroopa Tuumauuringute Keskuses (CERN). Andmed koguti aastatel 2016-2018massikesk-me energiaga 13 TeV ning mis vastab integreeritud luminositeedile 138 fb−1.Antud doktoritöö fookus on kahel analüüsi kanalil, 0ℓ+4τh ja 1ℓ+3τh . Mõlemad ka-nalid uurivad peamiselt HH lagunemist neljaks τ leptoniks. Kuna suur osa taustaprotses-sidest on tingitud valesti identifitseeritud elektronidest ja osakeste jugadest, saab kana-li tundlikkust suurendada uurides erinevaid τ leptoni rekonstrueerimise ja identifitseeri-mise algoritme.Signaali ekstraheerimiseks kasutati XGBoost algoritmi, mis on üks võimendatud otsus-tuspuude (BDT) alaliikidest. Peale sobiva algoritmi valikut on vaja täpsustada enne treenin-gut suur hulk algoritmi spetsiifilisi parameetreid, samuti tuntud ka kui hüperparameetrid.Kuna hüperparameetrite valik mõjutab analüüsi tulemusi tugevalt, uuriti sügavuti hüper-parameetrite optimiseerimise algoritmide sooritusvõimet ning kasutusjuhtumeid.CMS eksperimendi poolt salvestatud andmete põhjal vajalikku tundlikkust HH signaalinägemiseks ei saavutatud. Seetõttu seati kasutatud andmete põhjal ülempiir maksimaal-sele signaali tugevusele, mis on võrdne 21 kordsele Standardmudeli poolt ennustatud tek-keristlõikele. Neid ülempiire kasutati piiritlemaks uue füüsika panust efektiivse väljateoo-ria (EFT) kontekstis. Ülempiirid seati ka uue massiivse osakese lagunemisele Higgsi bosonipaarideks, mida ennustavad erinevad Standardmudeli laiendused — spin-0 ja spin-2 osa-kestelemassivahemikus 250 GeV kuni 1 TeV. Antud analüüs ei leitud statistiliselt märkimis-väärseid ülejääke, jäädes seega vastavusse Standardmudeli ennustusega 95% usaldusni-vool.
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Abstract The analysis of vast amounts of data constitutes a
major challenge in modern high energy physics experiments.
Machine learning (ML) methods, typically trained on simu-
lated data, are often employed to facilitate this task. Several
choices need to be made by the user when training the ML
algorithm. In addition to deciding which ML algorithm to
use and choosing suitable observables as inputs, users typi-
cally need to choose among a plethora of algorithm-specific
parameters. We refer to parameters that need to be chosen by
the user as hyperparameters. These are to be distinguished
from parameters that the ML algorithm learns autonomously
during the training, without intervention by the user. The
choice of hyperparameters is conventionally done manually
by the user and often has a significant impact on the per-
formance of the ML algorithm. In this paper, we explore
two evolutionary algorithms: particle swarm optimization
and genetic algorithm, for the purposes of performing the
choice of optimal hyperparameter values in an autonomous
manner. Both of these algorithms will be tested on different
datasets and compared to alternative methods.

1 Introduction

Owing to the large amount of data recorded by contempo-
rary high energy physics (HEP) experiments, the analysis of
data relies on powerful computing facilities. Machine learn-
ing (ML) methods are used extensively to aid the data analy-
sis [1,2]. Boosted decision trees (BDTs) [3] and artificial neu-
ral networks (ANNs) [4] are commonly used in HEP experi-
ments. Even though these methods may aid the data analysis
task significantly, their usage in practical HEP applications
is not trivial. This is because, in order to achieve optimal

a e-mail: laurits.tani@cern.ch (corresponding author)
b e-mail: diana.rand@cern.ch
c e-mail: christian.veelken@cern.ch
d e-mail: mario.kadastik@cern.ch

results, a set of parameters, referred to as hyperparameters in
the literature [5], need to be chosen by the user, depending
on the given task and data.

The subject of this paper is to describe two evolutionary
algorithms [6], which allow to find a set of optimal hyperpa-
rameters in an autonomous manner. The evolutionary algo-
rithms studied in this paper are particle swarm optimization
(PSO) [7] and genetic algorithm (GA) [8].

The task of finding optimal hyperparameter values can be
recast as function maximization. One considers a mapping
from a point h in hyperparameter space H to a “score” value
s(h), which quantifies the performance of the ML algorithm
for a given task. Using a suitable encoding for hyperparame-
ters of non-floating-point type, the hyperparameter space H
can be taken to be the Euclidean space IRN, with N denoting
the number of hyperparameters. Formally, the optimal hyper-
parameters, denoted by the symbol ĥ, are those that satisfy
the condition:

ĥ = argmax
h∈H

s(h) , (1)

where s : H �→ IR refers to the objective function that maps
a point h in H to a score s(h). Recasting the hyperparameter
optimization task as a function maximization problem allows
to evaluate the performance of the PSO and GA on reference
problems on function maximization from literature, as well
as to compare their performance with alternative methods.

The paper is organized as follows: in Sects. 2 and 3, we
describe the PSO and GA, respectively. In Sect. 4, we apply
both evolutionary algorithms to a well-known function min-
imization problem from the literature, based on the Rosen-
brock function [9], as well as to a typical data analysis task
from the domain of HEP, the “ATLAS Higgs boson machine
learning challenge” [10]. We conclude the paper with a sum-
mary in Sect. 5.
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2 Particle swarm optimization

Particle swarm optimization (PSO) [7] represents a computa-
tional method for optimizing continuous nonlinear functions.
The method is effective for optimizing a wide range of func-
tions. In common with other evolutionary algorithms, such
as the GA, the PSO method is inspired by nature.

As the name of the method implies, the maximization of
the objective function by the PSO is performed by a swarm
of particles. The particles traverse the hyperparameter space
H, with the position of each particle representing one set
of hyperparameters h. Having a swarm of particles allows
the exploration of multiple points in the space H in parallel,
thereby allowing for a highly parallel implementation of the
PSO algorithm on a computer. The evolution of the particle
swarm proceeds in iterations denoted by the letter k. In each
iteration a new position xk+1

i is computed for each particle i
according to the relation:

xk+1
i = xki + w · pki + Fk

i (2)

where xki denotes the current position of the particle andpki its
momentum. The momentum term w · pki represents the iner-
tia for particles to change their direction when traversing the
space H. The symbolFk

i represents an attractive force, which
has the effect for particles to move towards previously dis-
covered extrema of the objective function. The momentum
term causes a tendency for the particles to continue moving
in their current direction, past the previously found extrema.
This behaviour increases the exploration of the hyperparam-
eter space H and is found to improve performance [7]. The
coefficient w is referred to as inertial weight in the litera-
ture [11], though the term damping weight might be actually
more descriptive as suggested in reference [12].

Our implementation of the PSO algorithm distinguishes
between the personal best location x̂ ki = {x ∈ H ∧ x̂ ki = xk

′
i

for k′ ≤ k ∧ s(xki ) ≤ s(x̂ ki )∀k′ ≤ k} and the best known

global extremum ˆ̂xk = argmax{x̂ ki }:

Fk
i = c1 · r1 · (x̂ki − xki ) + c2 · r2 · ( ˆ̂xk − xki ). (3)

The coefficients c1 and c2 are referred to as the cognitive
and the social weights in the literature [13], and the sym-
bols r1 and r2 represent random numbers, which are drawn
from an uniform distribution in the interval [0, 1]. The known
global extremum ˆ̂xk for each particle is updated at each iter-
ation by propagating the personal best location of a subset of
the population, referred to as info. The number of particles
in this subset is denoted by Nin f o. Restricting the computa-

tion of ˆ̂xk to a subset of particles helps to avoid premature
convergence of the swarm to a local minimum.

We choose the coefficients c1 and c2 to be equal to 2,
such that the particles move past their previously found tar-
get about half of the time if the inertial weight w would be
negligible [7].

After each iteration the momenta are updated according
to the rule:

pk+1
i = xk+1

i − xki (4)

The positions x0
i of all particles i are initialized randomly

within the hyperparameter space H, while all momenta p0
i

are randomly initialized within one quarter of the range of
each hyperparameter.

The relation between the inertial weight w and the size
of the coefficients c1 and c2 controls the influence of global
(wide-ranging) versus local (nearby) exploration abilities of
the particles. A larger inertial weightw allows the particles to
move into unexplored regions of the hyperparameter space
H, whereas a small value of w causes the particle to hone in
on local and global extrema found previously [11].

A suitable selection of w can provide a balance between
global and local exploration abilities and thus require fewer
iterations on average to find the optimum [11]. As discussed
in Ref. [12], one may expect the performance of the PSO
algorithm to be improved if one sets the inertial weight w
to a large value for the first iterations of the PSO algorithm
and gradually reduces w as the swarm evolves. Doing this
allows the particles to explore the hyperparameter space H as
fast as possible. By gradually reducing the value of w during
subsequent iterations, when the approximate location of the
extremum has been established, one switches smoothly from
the global exploration to a local exploration, thus improving
on the accuracy of the found extrema. The idea is analogous
to the gradual reduction of the temperature parameter in sim-
ulated annealing [12].

Each time the position of a particle would move outside
the bounds of the hyperparameter space H, the position of the
particle is set to the boundary value and its momentum is set to
zero, thereby reducing the probability that the same particle
moves against the boundary again in the next iteration.

3 Genetic algorithm

The second evolutionary algorithm considered in this paper,
the genetic algorithm (GA), is motivated by the concept of
natural selection [8]. The GA maintains a population of pos-
sible solutions to the optimization problem, which evolve
through multiple generations in order to produce the best
solution.

Each possible solution is referred to as a chromosome.
Each chromosome (see Fig. 1) represents one point in the
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Fig. 1 A chromosome
consisting of genes

hyperparameter space H. Having multiple chromosomes
allows the GA to explore multiple solutions in parallel.

The number of genes in a chromosome matches the dimen-
sion of the hyperparameter space H.

The evolution towards the best solution is iterative. Each
iteration corresponds to one generation in the evolution of all
chromosomes and consists of 3 distinct stages: the selection
of parents, the crossover of the genes, and the mutation.

The selection of parents is performed using the tourna-
ment method [14,15]. In each tournament a certain number
of chromosomes compete to be selected as a parent for the
next generation. The number of chromosomes participating
in each tournament is denoted by the symbol Ntour . The par-
ticipants are drawn from the population of chromosomes at
random and are ranked in order of decreasing score s(h). The
participant with the highest score is selected as a parent with
the probability Ptour . In case the chromosome with the high-
est score is not selected, the chromosome with the second
highest score gets selected, again with the probability Ptour ,
and so on. The tournament ends when two chromosomes are
selected in this way to be the parents.

A larger value of Ntour has the effect that the chromosome
with a low score s(h) has a smaller chance to be selected as
the parent for the next generation, because there is a high
probability that a chromosome with a better score partici-
pates in the same tournament. A smaller value of Ntour has
the opposite effect. New tournaments are started until a suf-
ficient number of pairs of parents are selected to produce the
chromosomes for the next generation.

The chromosomes of two parents produce one new chro-
mosome for the next generation by means of crossover
[16,17]. We use k-point crossover in which the chromosomes
of both parents are cut at k points (Ncross refers to the number
of points, to avoid using the same symbol as for the number
of iterations) and the chromosomes of the offspring are pro-
duced by randomly choosing chromosome segments from
either parent (see Fig. 2).

The chromosomes of the offspring that are obtained by the
crossover operation are subject to mutation [8], which aims
to increase the diversity of the population, thereby allowing

Fig. 2 Possible outcome of a 2-point crossover of two parents in case
of 6-dimensional hyperparameter space H, where h11 denotes the first
hyperparameter of the first parent, h12 the second hyperparameter of
the first parent, etc

to explore domains in the hyperparameter space H not popu-
lated by chromosomes from the parent generation. Mutation
also helps to avoid the population to get stuck in local min-
ima.

In our implementation of the GA, the mutation of chro-
mosomes is performed by adding a random number, drawn
from a normal distribution with a mean of zero and a given
width, to each gene. A high mutation rate has the effect of
turning the GA into a random search. We avoid this effect by
linearly decreasing the width of the normal distribution each
iteration, with the initial width corresponding to a quarter of
the maximum range of a given hyperparameter and the final
width corresponding to zero.

Our implementation of the GA uses the concept of elitism
[18]. Elitism means that the algorithm preserves a certain
number of the best performing chromosomes within the pop-
ulation and passing the parent chromosomes on to the next
generation together with their offspring. Elitism is found to
improve the convergence toward an optimal solution. The
number of parent chromosomes preserved in this manner is
denoted by the symbol Nelite.

The convergence is further enhanced by culling [19],
which means that we discard a certain number of chromo-
somes with the lowest score among the population before
selecting the parents for the next generation. The number
of parent chromosomes discarded in this way is referred to
using the symbol Ncull . For each chromosome discarded by
culling, we create a new chromosome with randomly initial-
ized hyperparameter values to replace the one discarded.

Our implementation of the GA further allows to evolve
groups of chromosomes in subpopulations [20]. The number
of subpopulations is denoted by the symbol Nsubpop. The
selection of parents is restricted to the chromosomes from
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Fig. 3 The Rosenbrock function in a region around its global mini-
mum, located at the position (x, y) = (1, 1)

the same subpopulation for the first Ngenerations
subpop iterations of

the algorithm. For the remaining iterations, the chromosomes
from different subpopulations are allowed to mix freely.

4 Performance

The performance of both evolutionary algorithms, PSO and
GA, is evaluated on two tasks: on the Rosenbrock function,
which provides an example for a difficult function minimiza-
tion problem, and on the ATLAS Higgs boson machine learn-
ing (ML) challenge, as a typical application of ML methods
in HEP.

4.1 Rosenbrock function

The Rosenbrock function [9,21] represents a well-known
trial function for evaluating the performance of function min-
imization algorithms. The function is defined as:

R(x, y) = (a − x)2 + b(y − x2)2, (5)

where the a and b are constants.
The Rosenbrock function has a global minimum at

(x, y) = (a, a2). We chose to study the Rosenbrock func-
tion for the case a = 1 and b = 100. For the chosen values
of a and b, the global minimum is located at the position
(x, y) = (1, 1), and the function value at the minimum is
R(1, 1) = 0.

The challenge in finding the global minimum of the Rosen-
brock function is that the function varies slowly along a
curved valley, while rising steeply in direction orthogonal
to the valley. Function minimization algorithms hence need
to closely track the location of the valley. Figure 3 illustrates
the Rosenbrock function in the region around the global min-
imum.

For the purpose of evaluating the performance of the PSO
and GA, we treat the minimization of R(x, y) as function
of x and y as a two dimensional hyperparameter optimiza-
tion problem, identifying x and y with the first and sec-
ond hyperparameter respectively. The position of particles
in case of the PSO algorithm and the value of the chromo-
somes in the case of GA are initialized within the range
[−500,+500] × [−500,+500] and are enforced to stay
within this range during the evolution of both algorithms.

4.1.1 Stopping criteria

In order to limit the computing time, we define a criterion
when to stop the training of the PSO and GA. We use two
criteria for this purpose and terminate the evolution when
either criterion is fulfilled. The first criterion is an upper limit
on the number of iterations, denoted by the symbol Nmax

iter .
Additionally, we terminate the evolution once the algorithm
has found a point (x, y) for which R(x, y) < 10−3.

4.1.2 Optimization methods

We compare the performance of the PSO and GA for finding
the minimum of the Rosenbrock function with three alterna-
tive methods, the gradient descent algorithm [22], and two
naive methods for choosing the hyperparameters, to which
we refer to as “grid search” and “random guessing”. The lat-
ter two serve as a cross-check. One would expect of course
that evolutionary algorithms such as the PSO and GA out-
perform the naive methods.

(Modified) gradient descent We have modified the gradient
descent (GD) algorithm in order to improve its performance
on the Rosenbrock function. The issue is that the unmodified
GD algorithm often ‘zig-zags’ from one side of the valley to
the other, causing the algorithm to progress very slowly in the
direction along the valley, towards the global minimum [23].
To prevent this ‘zig-zag’ behaviour and improve the conver-
gence of the algorithm, we have modified the GD algorithm in
the following way: at each iteration, the algorithm determines
the direction of the steepest descent by numerical evaluation
of the gradient at a given point hk . The new position hk+1 is
computed according to:

hk+1 = hk + δ · ∇hk

|∇hk | , (6)
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where the term ∇hk

|∇hk | represents the direction of the steepest
descent and the step size δ represents the parameter of the
algorithm.

Rather than moving immediately to the new position hk+1,
the modified GD algorithm computes the value of the objec-
tive function s at the new position s(hk+1).

It then compares the actual decrease of the objective func-
tion, s(hk+1) − s(hk), with the expected decrease, given

the expression δ · ∇hk

|∇hk | · ∇hk . In case s(hk+1) − s(hk) >

2 · δ · ∇hk

|∇hk | · ∇hk , we conclude that the step size δ is too
large and needs to be reduced in order to avoid this ’zig-zag’
behaviour.

In our implementation, we successively reduce the step
size by a factor of two until the condition is satisfied. The
algorithm then moves to the new position, the initial step
size is restored, and the algorithm recomputes the gradient at
the new position for the next iteration.

We choose the number of iterations for the GD algorithm
to be 106 and the initial step size δ to be 10−2.

Grid search This is a widely used hyperparameter optimiza-
tion method available for example in the package scikit-learn
[24]. This method is based on choosing Nd grid points in
each dimension d of the hyperparameter space H, evaluating
the objective function s for all

∏N
d=1 N

d
grid combinations of

grid points, and selecting the best performing combination.
The same number of evaluations of the objective function,∏N

d=1 N
d
grid , is chosen to be the same as for the other algo-

rithms, in order to compare all algorithms for the same time
usage of computing time. Here we assume that the evalua-
tion of the objective function consumes the majority of the
computing time and the computations internal to the PSO and
GA are negligible in comparison. We believe this assumption
represents a very good approximation for practical approxi-
mations of these methods in HEP, discussed in the introduc-
tion, where one evaluation of s corresponds to one training of
a ML algorithm. For the Rosenbrock function minimization
task, we choose N 1

grid = N 2
grid = 103 grid points for each of

the two dimensions, equidistantly within the interval [-500,
+500] in each dimension.

Random Guessing In the random guessing (RNG) method,
we draw a total of Np = 106 points in the hyperparameter
space H at random, sampling from a uniform distribution
within the range [−500,+500] × [−500,+500]. The point
corresponding to the minimum of the objective function s
over the set of these points is selected as the best-performing
point of the RNG method. The number of points Np is cho-
sen such that the function is evaluated the same number of
times for the RNG method as for the PSO, GA, GD and GS
methods.

Table 1 Parameters of the GA used for the Rosenbrock function min-
imization task

Parameter Value

Ntour 5

Ptour 0.4

Ncross 1

Pmutate 0.2

Ngenerations
subpop 90

Nsubpop 5

Ncull 50

Nelite 25

Particle swarm optimization The same maximal number of
106 evaluations of the objective function s were used for
the PSO, by setting the number of particles in the swarm
to 100 and the maximum number of iterations to 104. The
evaluation of the PSO was terminated before reaching the
maximum number of iterations in case the global minimum
s( ˆ̂xk) found by the PSO differed from the global minimum of
the Rosenbrock function by less than 10−3. The coefficients
c1 and c2 were chosen to be 2 and the inertial weight w was
chosen to linearly decrease from 0.8 to 0.4 as a function of
iteration k. The number of informants Nin f o was set to 7.

Genetic Algorithm The same maximum number of 106 eval-
uations of the objective function were used for the GA, for
which the number of chromosomes was chosen to be 104

and the maximum number of iterations to be 100. The same
threshold for early termination of 10−3 was chosen for the
GA, as for the PSO. The early termination triggers once
s(h) < 10−3 for the hyperparameter values h represented
by any chromosome . The values of other parameters of the
GA, used for the Rosenbrock function minimization task,
are given in Table 1. During the first iterations of the algo-
rithm, when subpopulations are used, the parameters Ncull

and Nelites amount to 10 and 5 respectively.

4.1.3 Procedure for comparing different methods

Owing to the fact that the minima found by the GD, GS and
RNG, PSO, GA methods depends on the values of random
numbers that are used to initialize and/or evolve each algo-
rithm, the performance of each method needs to be evaluated
for a set of different ’trials’, each trial using a different seed
to produce a different sequence of random numbers.

4.1.4 Results

The distribution in ˆ̂R = R(
ˆ̂h) at the minima ˆ̂h found in 100

different trials is shown in Fig. 4. Numerical values of the
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Fig. 4 Distribution in ˆ̂R = R(
ˆ̂h) of the Rosenbrock function at the

minimum ˆ̂h found in 100 different trials for the GD, GS, RNG, PSO
and GA

Table 2 Average value R̄ and standard deviation σR achieved by the
GD, GS, RNG, PSO, and GA methods in the Rosenbrock function
minimization task

Method R̄ σR

GD 85.85 143.7

GS 3.29 3.89

RNG 3.11 3.44

PSO 0.00057 0.00030

GA 0.0014 0.0021

average R̄ and of the width of the distribution, quantified by

the standard deviation σR =
√

1
99

∑
s, are shown in Table 2.

Discussion One can see in Fig. 4 that the GD method per-
forms extraordinarily well in about half of the trials, while
in the other half it fails to get close to the minimum of the
Rosenbrock function at all. The poor performance of the GD
method in the latter trials is due to the cases where the particle
moves so slowly along the valley of the Rosenbrock function
that the maximum number of 106 iterations is reached before
the algorithm reaches the global minimum of the position
(x, y) = (1, 1).

The PSO algorithm achieves the lowest value R̄, outper-
forming all other methods on the Rosenbrock function min-
imization task, followed by the GA. The PSO and GA also
exhibit the lowest standard deviation σR , which means that
their performance is robust against variations in the random
choice of starting positions across different trials.

We remark that the early termination limited the average
number of evaluations of the objective function to ∼ 7 · 103

for the PSO, while the early termination had little effect for
the GA (as well as for the GD, GS, and RNG methods), which

makes the performance of the PSO even more impressive. As
expected, both evolutionary algorithms outperform all other
methods.

4.2 The ATLAS Higgs boson machine learning challenge

The ATLAS Higgs boson machine learning challenge (HBC)
[10] represents a typical application of ML algorithms to the
field of HEP. The task of the HBC is to obtain an optimal
separation of the Standard Model (SM) Higgs boson → ττ

signal from the large SM background. The background con-
sist of Drell–Yan production of Z bosons, the production of
W bosons in association with jets, and top quark pair produc-
tion. Samples of signal and background events are generated
by Monte Carlo (MC) simulation. Events are selected in the
ττ → μν̄μντ τhν final state, where we use the symbol τh to
denote the hadronic decay of a τ lepton. Background contri-
butions arising from multijet production without associated
production of bosons or top quark are neglected.

In total 550,000 signal plus background events are pro-
vided by the organizers of the HBC, of which we use 80%
for training the ML algorithm and 20% for testing the perfor-
mance of the trained ML algorithm. We refer to the former
as the train samples and to the latter as the test sample.

We utilize a BDT to perform the separation of the Higgs
boson signal from backgrounds. For the BDT implementa-
tion, we chose the XGBoost package [25].

The objective function s for the hyperparameter optimiza-
tion represents an approximation for the sensitivity to dis-
cover the Higgs boson signal in a physics analysis at the
Large Hadron Collider (LHC). The function s was given by
the organizers of the HBC and is referred to as the ’approxi-
mate mean significance’ (AMS), which is defined by:

AMS(θcut ) =
√

2 · (s + b + br ) · ln
[

1 + s

b + br

]

− s ,

(7)

where b denotes the amount of background and s the amount
of signal that passes a cut on the BDT output. The term br is
introduced as a regularization in order to reduce the effect of
statistical fluctuations of b and s, resulting from limited MC
statistics (as discussed in Ref. [10]). The value ofbr was given
by the organizers of the HBC and amounts to br = 10. The
function AMS(θcut ), for θcut = 0.15, is used as objective
function for the BDT training.

Even with the addition of the br term, statistical fluctua-
tions of the number of signal and background events passing
the cut on the BDT output still causes a sizable difference
between the AMS scores computed on the test and on the
training sample. We find that the difference between test and
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Table 3 Parameters of the GA used for the ATLAS Higgs boson
machine learning challenge

Parameter Value

Ntour 5

Ptour 0.4

Ncross 1

Pmutate 0.2

Ngenerations
subpop 90

Nsubpop 5

Ncull 40

Nelite 7

training performance can be reduced and a higher AMS score
on the test sample can be achieved if we use a modified ver-
sion of Eq. (7) as the objective function for the BDT training.
We refer to the modified version of Eq. (7) as d-AMS. The
idea is to add a penalty term for the difference between the
AMS scores on the test compared to the training sample, so
that the BDT training (and the hyperparameter optimization)
reduces this difference:

d-AMS = AMStest

− κ · max(0, [AMStest − AMStrain]) (8)

where the coefficient κ controls the strength of the penalty
term. We find the choice κ = 1.5 to work well for a wide
range of different ML applications that we tried. After the
BDT training with a fixed θcut = 0.15 has finished, the
threshold θcut is optimized such that d-AMS attains its max-
imal value on the training sample.

The PSO was evolved for a maximum of 7000 evaluations
of the objective function, using a swarm of 70 particles and a
maximum number of 100 iterations. The coefficients c1 and
c2 were both chosen to be equal to 2 and the inertial weight
w was chosen to linearly decrease from 0.8 to 0.4 during the
evolution of the PSO algorithm.

For the GA, we used 70 chromosomes and a maximum
number of 100 iterations. The values of the other parameters
are given in Table 3.

The XGBoost hyperparameters chosen and the default val-
ues for these parameters are given in Table 4. The parame-
ter num-boost-round specifies the number of boosting itera-
tions, corresponding to the number of trees in the BDT. The
learning-rate parameter controls the effect that trees added
at a later stage of the boosted iterations have on the out-
put of the BDT relative to the effect of trees added at an
earlier stage. Small values of the learning-rate parameter
decrease the effect of trees added during the boosting itera-
tions, thereby reducing the effect of boosting on the BDT out-
put. The parameter max-depth specifies the maximum depth

Table 4 Default values of hyperparameters in the XGBoost package
[26]

Parameter Default value

Num-boost-round 10

Learning-rate 0.3

Max-depth 6

Gamma 0

Min-child-weight 1.0

Subsample 1.0

Colsample-bytree 1.0

of a tree. The parameter gamma represents a regularization
parameter, which aims to reduce overfitting. Large values of
this parameter prevent the splitting of leaf nodes before the
maximum depth of a tree is reached. The parameter min-
child-weight specifies the minimum number of events that is
required in each leaf node. The parameter subsample limits
the number of training events that are used to grow each tree to
a fraction of the full training sample. A value of this param-
eter smaller than one decreases overfitting. The parameter
colsample-bytree specifies the number of different features
that are used in a tree. A value of one means that all features
are considered for splitting leaf nodes, while a value smaller
than one restricts the number of features that are used in a
tree to a subset of all features. The purpose of this restriction
is to reduce overfitting. The number of features considered
for each tree are drawn at random, independently for each
boosting iteration.

The choice of all of these parameters typically represents
a trade-off. Large values of the parameters num-boost-round,
learning-rate, max-depth, subsample, and colsample-bytree
increase the complexity of the BDT, while large values of the
parametersgamma, andmin-child-weight have a regularizing
effect. BDTs with a higher complexity in general perform
better in separating signal from background on the training
sample, but typically are also more susceptible to overfitting.

The performance of the PSO and GA is assessed by com-
paring the AMS scores achieved on the test sample by a BDT
trained with the default hyperparameters and with hyperpa-
rameters obtained by the RNG method compared to the AMS
scores of BDTs trained with optimized hyperparameter val-
ues found by the PSO and GA.

Two criteria are used to stop the evolution of the PSO
and GA. The first criterion is the number of iterations Niter .
Additionally, we terminate the evolution once the variance
between the positions of the particles in the PSO or between
chromosomes in the GA is below a certain threshold. The
variance is quantified by the compactness (also known as the
mean coefficient of variance), which is defined as:
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Table 5 Hyperparameter values obtained by the RNG, PSO and the
GA for the ATLAS Higgs boson machine learning challenge

Parameter RNG PSO GA

Num-boost-round 295 153 451

Learning-rate 0.062 0.300 0.085

Max-depth 5 4 5

Gamma 0.98 3.86 2.99

Min-child-weight 173 323.6 442.2

Subsample 0.83 0.830 0.907

Colsample-bytree 0.7 1.0 0.3

Table 6 Performance of BDTs trained using the optimal values of
the hyperparameters obtained by the PSO and by the GA compared
to a BDT trained using the default values of hyperparameters in the
XGBoost package [25] and with hyperparameters obtained by RNG,
for the ATLAS Higgs boson machine learning challenge

Method θcut AMS score AMS score
Public leaderboard Private leaderboard

Default 0.175 3.170 3.200

RNG 0.152 3.620 3.608

PSO 0.134 3.628 3.655

GA 0.152 3.619 3.683

compactness = 1

N

N∑

j=1

σ j

x̄ j
(9)

with

σ j =
√
√
√
√ 1

n − 1

n∑

i=1

(x j
i − x̄ j )2,

where N denotes the number of hyperparameters, n the
number of particles or chromosomes, and x̄ j the mean value
of the j-th hyperparameter over the population of particles or
genes, respectively.

A low value of the compactness means that the hyperpa-
rameters of different particles or genes are very similar, indi-
cating that the PSO or GA has converged to a single point in
the hyperparameter space H.

4.3 Results

The optimal values of the hyperparameters obtained with
the RNG method, the PSO and the GA are given in Table
5. In Table 6 we compare the AMS scores obtained for
these hyperparameter values to the AMS scores obtained
with the default values of hyperparameters defined in the
XGBoost package. The performance is evaluated for two

samples of events, referred to as the public and private
leaderboard samples. Both samples are provided by the
organizers of the HBC and contain signal and background
events that overlap with neither the test nor the train sam-
ple.

The performance achieved by the PSO and GA are
very similar and about 12–13% higher than the perfor-
mance obtained using the default values of hyperparam-
eters. The results of the BDT trained using the hyperpa-
rameters obtained by the RNG method are similar to those
obtained by the PSO and GA. Comparing the PSO and GA
optimized hyperparameters, we find that all except num-
boost-round and learning-rate parameters have similar val-
ues. The value of the num-boost-round parameter optimized
by the GA is higher by about a factor of 2.9, while the
value of the learning-rate parameter is lower by a factor
of 3.5. The fact that the learning-rate parameter decreases
by a factor that is similar to the increase of the num-boost-
round parameter is not surprising: using a large number of
trees and a lower learning rate has about the same effect
as using a lower number of trees and a higher learning
rate. The product of the num-boost-round and learning-
rate parameters is more similar, differing only by a fac-
tor of 1.2 between the PSO and GA. The situation is dif-
ferent for the colsample-bytree parameter. It has a small
effect on the d-AMS and AMS scores and is hence only
loosely constrained during the hyperparameter optimiza-
tion.

The parameters obtained by the RNG method are more
different - only the max-depth parameter is very similar
to those found by PSO and GA. Having min-child-weight
roughly two times smaller than it was found for PSO and
GA means making the model more prone to overfitting.
However, this effect is overcome by having the product
of the anti-correlated pair, num-boost-round and learning-
rate, two times smaller from the ones obtained by PSO
and GA, thus the model less susceptible to overfitting.
Furthermore having three to four times smaller gamma
helps the model generalize even further. Again the effect of
colsample-bytree had negligible effect on the d-AMS and
AMS scores.

5 Summary

Two evolutionary algorithms, the particle swarm optimiza-
tion (PSO) and the genetic algorithm (GA), for choosing an
optimal set of hyperparameters in applications of machine
learning (ML) methods to data analyses in high energy
physics (HEP) have been presented. The performance of both
methods have been studied for a difficult function minimiza-
tion task (Rosenbrock function) and for a typical data anal-
ysis test in the field of HEP [Higgs boson machine learning
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challenge (HBC)]. In the latter case, a boosted decision tree
(BDT) has been used as ML algorithm. The PSO as well as
the GA demonstrate their ability to find the optimal param-
eter value in the function minimization task. Compared to
using the default values of hyperparameters, the optimiza-
tion of the hyperparameter values improves the sensitivity of
the data analysis, as quantified by the AMS score, by 12–
13%. This improvement demonstrates that the optimization
of hyperparameters is a worthwhile task for data analyses in
the field of HEP. Randomly probing different hyperparam-
eter sets and subsequently picking the best performing one
showed similar performance to both PSO and GA. This can
be attributed to the highly fluctuating hyperparameter space
of this particular example. For a highly structured hyperpa-
rameter space, the gain of using a more sophisticated method,
like PSO or GA, will be much higher, as was shown by the
Rosenbrock minimization problem. The optimization of the
hyperparameters by the PSO and GA is fully automated and
relieve the user from manual tuning of the hyperparame-
ters.
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1 Introduction

Since the discovery of the Higgs (H) boson [1–3], many of its properties have already
been measured with high precision [4–6]. One important property that remains largely
unknown is the H boson self-coupling. A precise measurement of this coupling is necessary
to determine the shape of the Higgs potential, and thus verify that the mechanism breaking
the electroweak gauge symmetry is indeed the Higgs mechanism [7–12] of the standard
model (SM) [13–15]. The SM predicts the existence of both trilinear and quartic H boson
self-couplings. Due to the very low predicted cross section for triple H boson production,
the SM quartic self-coupling will not be experimentally accessible at the CERN LHC, even
with the full integrated luminosity of 3000 fb−1 scheduled to be delivered after the high-
luminosity LHC upgrade [16, 17]. The strength of the trilinear self-coupling, however, can
be determined using measurements of H boson pair (HH) production.

In the SM, most HH pairs are produced in two types of processes. The Feynman
diagrams for the dominant “gluon fusion” (ggHH) process at leading order (LO) in pertur-
bative quantum chromodynamics (QCD) are shown in figure 1. The left “triangle” diagram
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Figure 1. Leading order Feynman diagrams for SM nonresonant HH production via gluon fusion,
including the “triangle” diagram (left) and the “box” diagram (right).

amplitude varies proportionally to the H boson self-coupling (λ) and the Yukawa coupling
of the top quark (yt), while the right “box” diagram amplitude is insensitive to λ and varies
as y2

t . The triangle and box diagrams interfere destructively, so the ggHH cross section
exhibits a strong dependence on both λ and yt . The ggHH cross section in the SM has
been computed to be 31.1+2.1

−7.2 fb at next-to-next-to-LO (NNLO) accuracy in QCD using
the FTapprox scheme, in which the true top quark mass is used for the real radiation matrix
elements, while the virtual part is computed using an infinite top quark mass [18]. The
predicted SM cross section for the subdominant “vector boson fusion” (qqHH) process is
1.73± 0.04 fb at next-to-NNLO accuracy in QCD [19].

Deviations of the coupling strength modifiers κλ = λ/λSM and κt = yt/y
SM
t from unity

would affect both the rate of HH production and kinematic distributions of the HH signal.
The HH invariant mass (mHH) is particularly sensitive to changes in κλ and κt , as these
couplings affect the triangle and box diagram amplitudes differently. Because SM ggHH
and qqHH production do not include a heavy resonant particle, and typically result in a
broad mHH distribution, they are referred to as “nonresonant”. Changes in κλ and κt also
influence the rate of single Higgs boson production and the Higgs boson decay branching
fractions [20, 21].

The presence of undiscovered particles or interactions, predicted by a variety of the-
oretical models beyond the SM, may alter the HH production rate as well as observable
kinematic distributions. Such particles could give rise to loop diagrams similar to the one
shown on the left of figure 1. These diagrams may significantly enhance the HH produc-
tion rate, as they occur at the same loop level as HH production in the SM. Since no
particles beyond those predicted by the SM have been observed so far, their mass may be
at the TeV scale or higher, well above the scale of electroweak symmetry breaking. Loop
contributions of such heavy particles can be approximated as contact interactions with the
H boson using an effective field theory (EFT) approach [22, 23]. Following ref. [24], the
contact interactions relevant for HH production are parametrized by the couplings cg , c2g ,
and c2, referring to the interactions between two gluons and one H boson, two gluons and
two H bosons, and two top quarks and two H bosons, respectively. The corresponding
Feynman diagrams for ggHH production are shown in figure 2. The LO diagrams for
qqHH production contain no gluons or top quarks, so the impacts of cg , c2g , and c2 are
only considered in the ggHH signal in this publication.
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Figure 2. Leading order Feynman diagrams for nonresonant HH production via gluon fusion in
an EFT approach, where loop-mediated contact interactions between (left) two gluons and one H
boson, (middle) two gluons and two H bosons, and (right) two top quarks and two H bosons are
parametrized by three effective couplings: cg , c2g , and c2.

X

g
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Figure 3. Leading order Feynman diagram for resonant HH production.

An excess of HH signal events may also result from decays of new heavy particles,
denoted as X, into pairs of H bosons. Various theoretical models of new physics postulate
such decays, in particular two-Higgs-doublet models [25, 26], composite-Higgs models [27,
28], Higgs portal models [29, 30], and models inspired by warped extra dimensions [31].
In the last class of models, the new heavy particles may have spin 0 (“radions”) or spin 2
(“gravitons”) [32]. In this paper, the resulting “resonant” HH production is sought for mass
values of X from 250 to 1000GeV, and the width of X is assumed to be negligible compared
to the experimental resolution in mHH . This would create a peak in the reconstructed mHH
distribution around the mass mX of the resonance. The Feynman diagram for this process
is shown in figure 3. For resonance masses above 1TeV the strongest constraints are given
by searches for HH production targeting H boson decays to bottom quarks [33–35], as
the selection and reconstruction efficiency for hadronic decays increases, in particular in
the trigger, and relevant backgrounds decrease with energy. For leptonic decay modes,
the selection and reconstruction efficiency in general is high and as such do not increase
notably for high masses above 1 TeV.

Phenomenological studies of the prospects for discovering HH signal in the WW∗WW∗

decay mode are documented in refs. [36–40], where the symbol ∗ denotes virtual particles.
The ATLAS Collaboration published results of a search for nonresonant and resonant
HH pairs decaying to WW∗WW∗ based on 36 fb−1 of proton-proton (pp) collision data
recorded at

√
s = 13TeV [41], placing an upper limit of 160 times the SM predicted cross

section for nonresonant HH production at 95% confidence level (CL). Searches for HH
production in pp collisions at

√
s = 7, 8, and 13TeV have previously been performed by

– 3 –
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the CMS and ATLAS Collaborations in the decay modes bbγγ [42, 43], bbbb [33, 44–
47], bbττ [35, 48, 49], bbWW∗ [34, 50–52], and WW∗

γγ [53]. Limits on HH production
obtained from a combination of some of these analyses have been published by the CMS
and ATLAS Collaborations [54, 55].

Searches targeting the bbττ [48], bbbb [45, 46], and bbγγ [42] final states in CMS,
and bbττ [35] and bbγγ [43] in ATLAS, provide the strongest constraints on nonresonant
HH production to date, with observed (expected) 95% CL upper limits ranging from 3.3
to 9.9 (3.9 to 7.8) times the SM predicted cross section. The corresponding lower bounds
on κλ vary from −1.5 to −3.3 (−2.4 to −5.0 expected), with upper bounds between 6.7
and 9.4 (7.7 to 12.0 expected). The ATLAS bbγγ analysis places a 95% CL upper limit
of 0.64 pb on resonant HH production with a mass around 250GeV (where 0.39 pb was
expected) [43], while the ATLAS resonant bbbb search constrains higher mass hypotheses
most strongly, with observed and expected limits around 0.01 pb at 1TeV [33]. The ATLAS
bbττ performs best for many mass points in between [35]. The only published HH search
using an EFT approach comes from CMS in the bbγγ final state, with 95% CL upper
limits on the HH production cross section ranging from 0.1 to 0.6 pb, depending on the
EFT scenario [42].

This paper presents the first search for H boson pairs decaying to WW∗WW∗,
WW∗

ττ, and ττττ. Both nonresonant and resonant HH production in final states with
multiple reconstructed leptons, i.e., electrons (e), muons (µ), or hadronically decaying tau
leptons (τh) are covered. The search is based on LHC pp collision data recorded by the
CMS experiment at a center-of-mass energy of 13TeV, corresponding to an integrated lu-
minosity of 138 fb−1. Signal candidate events are subdivided into seven mutually exclusive
“search categories” based on ` (e, µ) and τh multiplicity: two same-sign ` with fewer than
two τh (2`ss), three ` with no τh (3`), four ` (4`), three ` with one additional τh (3`+1τh),
two ` with two τh (2` + 2τh), one ` with three τh (1` + 3τh), or four τh with no ` (4τh).
In final states with a total of four ` and τh, the charge sum of all ` and τh candidates
is required to be zero. The seven search categories target HH signal events in which the
H boson pair decays into WW∗WW∗, WW∗

ττ, or ττττ. Multivariate analysis (MVA)
methods are used to distinguish the HH signal from backgrounds.

The paper is structured as follows. A brief overview of the CMS detector is given in
section 2. Section 3 lists the data sets and simulation samples used. The reconstruction
of e, µ, τh, and jets, along with various kinematic observables, is detailed in section 4.
This is followed by a description, in section 5, of the event selection criteria defining the
seven search categories. The multivariate methods used to distinguish the HH signal from
backgrounds are detailed in section 6. The estimation of these backgrounds is described
in section 7, followed by an outline of the relevant systematic uncertainties in section 8.
The statistical procedure used to extract limits on the HH production rate in the SM,
as well as constraints on SM coupling strengths, EFT benchmark scenarios, and resonant
HH production rates are presented in section 9. The paper concludes with a summary in
section 10.

– 4 –
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2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal
diameter, providing a magnetic field of 3.8T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of one barrel and two
endcap sections. The silicon tracker measures charged particles within the pseudorapidity
range |η| < 2.5 for data recorded in 2016, and within the range |η| < 3.0 for data recorded
in 2017 and 2018. The ECAL is a fine-grained hermetic calorimeter with quasi-projective
geometry, and is divided into a barrel region covering |η| < 1.5, and two endcaps that extend
to |η| = 3.0. The HCAL barrel and endcaps similarly cover the region |η| < 3.0. Forward
calorimeters extend beyond these endcaps to |η| = 5.0. Muons are detected within the
range |η| < 2.4 by gas-ionization detectors embedded in the steel flux-return yoke outside
the solenoid. Collision events of interest are selected using a two-tiered trigger system.
The level-1 trigger, composed of custom hardware processors, uses information from the
calorimeters and muon detectors to select less than 100 kHz of events from a 40MHz base
event rate, within a fixed latency of 4 µs [56]. The second tier, known as the high-level
trigger, is a processor farm which runs a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to around 1 kHz before data
storage [57]. A more detailed description of the CMS detector, together with a definition
of the coordinate system used and the most relevant kinematic variables, can be found in
ref. [58].

3 Data samples and Monte Carlo simulation

The analyzed pp collision data correspond to an integrated luminosity of 138 fb−1, collected
by the CMS detector over three years: 36 fb−1 in 2016, 42 fb−1 in 2017, and 60 fb−1 in
2018 [59–61]. This analysis uses triggers requiring one or more reconstructed e, µ, or τh
candidates to be associated with the same collision vertex. The exact triggers and their
thresholds varied slightly from year to year because of changes in luminosity and detector
conditions, as well as improvements to the trigger algorithms. The transverse momentum
(pT) thresholds imposed by the trigger on the “leading” (highest pT), “subleading” (second-
highest pT), and third e, µ, or τh, and the corresponding η requirements for each year are
shown in table 1. All triggers include identification and isolation requirements on the e, µ,
and τh candidates [57]. When combined, the triggers achieve an efficiency of 95–100% for
simulated SM HH signal events in each of the seven search categories.

Monte Carlo (MC) simulated samples are used to model HH signal events and a wide
range of SM background processes that produce final states with e, µ, or τh. Background
MC samples include processes producing a single W or Z boson, two bosons (WW, WZ,
ZZ, Wγ, and Zγ), three bosons (WWW, WWZ, WZZ, ZZZ, and WZγ), a single H boson
(via gluon fusion, vector boson fusion, or associated production with a W or Z boson), a
single top quark, a top quark-antiquark pair (tt), and top quarks associated with one or
more bosons (ttW, ttZ, ttH, tHq, and tHW). All MC samples were generated using either
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Trigger Selection requirements for reconstructed e, µ, and τh objects
Single e pT(e) > 27–35GeV
Single µ pT(µ) > 22–27GeV

Double e pT(e) > 23, 12GeV
e + µ pT(e) > 23GeV, pT(µ) > 8GeV
µ + e pT(µ) > 23GeV, pT(e) > 8–12GeV
Double µ pT(µ) > 17, 8GeV
e + τh pT(e) > 24GeV, pT(τh) > 20–30GeV, |η(e, τh)| < 2.1
µ + τh pT(µ) > 19–20GeV, pT(τh) > 20–27GeV, |η(µ, τh)| < 2.1
Double τh pT(τh) > 35–40GeV, |η(τh)| < 2.1

Triple e pT(e) > 16, 12, 8GeV
Two e + µ pT(e) > 12, 12GeV, pT(µ) > 8GeV
Two µ + e pT(µ) > 9, 9GeV, pT(e) > 9GeV
Triple µ pT(µ) > 12, 10, 5GeV

Table 1. Selection requirements on pT and η of reconstructed electrons (e), muons (µ), and
hadronically decaying tau leptons (τh) applied by the triggers used in this analysis. The trigger
pT thresholds for leading, subleading, and third e, µ, or τh are separated by commas. For trigger
thresholds that varied over time, the range of variation is indicated.

MadGraph5_amc@nlo v2 [62, 63], powheg v2 [64–66], mcfm v7 [67–69], or pythia
v8.2 [70]. All samples that include a H boson were produced for a H boson mass of 125GeV.
Specific details of the simulated processes are summarized in table 2.

The parton distribution functions (PDFs) of the proton are modeled using the
NNPDF3.0 and NNPDF3.1 PDF sets [85–89]. Parton shower, hadronization processes,
and τ decays are modeled by pythia, using the tunes CP5, CUETP8M1, CUETP8M2,
or CUETP8M2T4 [90–92], depending on the process and the data-taking period that is
being modeled. The matching of matrix elements to parton showers is performed using
the MLM scheme [93] for the LO samples and the FxFx scheme [94] for the NLO sam-
ples. The interactions of particles with the CMS detector material was simulated in detail
using Geant4 [95]. Simulated events were reconstructed using the same procedure as
in data. The response of the trigger is included in the simulation. Additional pp inter-
actions (pileup) were generated with pythia and overlaid on all MC events, with event
weights used to match the collision multiplicity to the distribution inferred from data.
Residual differences between data and simulation are rectified by applying corrections to
simulated events.

A variety of HH signal samples were generated at LO and NLO accuracy in QCD to
simulate nonresonant HH production, covering the ggHH and qqHH production processes,
with the H bosons decaying to either WW∗, ZZ∗, or ττ. The NLO samples are used to
extract the rate of the HH signal from the data, while LO samples with a larger number of
simulated events are used to train machine learning algorithms. Separate ggHH samples are
produced for SM HH production and for a total of twelve EFT benchmark (BM) scenarios
in the Higgs Effective Field Theory (HEFT) approach [24]. These benchmarks, along with

– 6 –



J
H
E
P
0
7
(
2
0
2
3
)
0
9
5

Process MC generator (order) Cross section order
ggHH MadGraph5_amc@nlo v2 (LO) [71, 72] NNLO FTapprox

powheg v2 (NLO) [73–75]
qqHH MadGraph5_amc@nlo v2 (LO) N3LO

Single H boson production
(via gluon fusion) powheg v2 (NLO) [76] N3LO QCD, NLO EW
(via vector boson fusion) powheg v2 (NLO) [77] NNLO QCD, NLO EW
(with a W or a Z boson) powheg v2 (NLO) [78] NNLO QCD, NLO EW
(with a pair of top quarks) MadGraph5_amc@nlo v2 (NLO) NLO QCD, NLO EW
(with a single top quark) MadGraph5_amc@nlo v2 (LO) NLO

W MadGraph5_amc@nlo v2 (LO) NNLO
Z MadGraph5_amc@nlo v2 (LO) NNLO QCD, NLO EW

WW (double-parton interaction) pythia v8.2 (LO) LO
(same-sign pair) MadGraph5_amc@nlo v2 (LO) LO
(opposite-sign pair) powheg v2 (NLO) [79, 80] NNLO

WZ MadGraph5_amc@nlo v2 (NLO) NNLO
ZZ (quark-initiated) powheg v2 (NLO) [79, 80] NNLO

(gluon-initiated) mcfm v7 (LO) [81] NLO

Wγ, Zγ, WZγ, tγ, ttγ MadGraph5_amc@nlo v2 (NLO ) NLO

WWW, WWZ, WZZ, ZZZ MadGraph5_amc@nlo v2 (NLO) NLO

Single top powheg v2 (NLO) [82] NLO
(with a W boson) powheg v2 (NLO) [83] NLO
(with a Z boson) MadGraph5_amc@nlo v2 (NLO) NLO

tt powheg v2 (NLO) [84] NNLO
tttt MadGraph5_amc@nlo v2 (NLO) NLO

ttW MadGraph5_amc@nlo v2 NLO QCD, NLO EW
(NLO QCD, NLO EW )

ttZ MadGraph5_amc@nlo v2 (NLO) NLO QCD, NLO EW
ttWW, ttWZ, ttZZ MadGraph5_amc@nlo v2 (LO) LO

Table 2. The MC generators that are used to simulate HH signal and background processes. The
order of MC simulation and cross section calculation both refer to the perturbative expansion in
QCD. Additional higher order electroweak (EW) corrections, if present, are indicated separately.

the seven benchmarks from ref. [96], represent different combinations of κλ, κt , cg , c2g ,
and c2 HEFT parameter values, and are chosen to probe distinct classes of HH kinematic
configurations. These benchmarks are referred to as JHEP04 BM1-12, and JHEP03 BM1-
7, respectively. The benchmark JHEP04 BM8 is complemented by a modified version of
this benchmark, published in ref. [97], denoted as JHEP04 BM8a. The parameter values
of these twenty BM scenarios are shown in table 3. The values of the cg and c2g couplings
published in ref. [96] have been scaled by factors of 1.5 and −3, respectively, to convert them
to the convention introduced for these couplings in ref. [24]. In order to increase the number
of simulated events and to model kinematic configurations not explicitly generated, such
as JHEP03 BM1-7, the ggHH samples are merged and the events in the merged samples
are reweighted, using the procedure documented in ref. [98], to match the distributions in
mHH and |cos θ∗| computed at NLO accuracy and published in ref. [97]. This procedure
is applied to the LO and NLO ggHH samples separately. The symbol cos θ∗ denotes the
cosine of the polar angle of one H with respect to the beam axis in the HH rest frame. The
qqHH samples are produced only for SM HH production.

– 7 –
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Benchmark κλ κt c2 cg c2g
JHEP04 BM1 7.5 1.0 −1.0 0.0 0.0
JHEP04 BM2 1.0 1.0 0.5 −0.8 0.6
JHEP04 BM3 1.0 1.0 −1.5 0.0 −0.8
JHEP04 BM4 −3.5 1.5 −3.0 0.0 0.0
JHEP04 BM5 1.0 1.0 0.0 0.8 −1.0
JHEP04 BM6 2.4 1.0 0.0 0.2 −0.2
JHEP04 BM7 5.0 1.0 0.0 0.2 −0.2
JHEP04 BM8 15.0 1.0 0.0 −1.0 1.0
JHEP04 BM8a 1.0 1.0 0.5 4/15 0.0
JHEP04 BM9 1.0 1.0 1.0 −0.6 0.6
JHEP04 BM10 10.0 1.5 −1.0 0.0 0.0
JHEP04 BM11 2.4 1.0 0.0 1.0 −1.0
JHEP04 BM12 15.0 1.0 1.0 0.0 0.0

JHEP03 BM1 3.94 0.94 −1/3 0.75 −1
JHEP03 BM2 6.84 0.61 1/3 0 1
JHEP03 BM3 2.21 1.05 −1/3 0.75 −1.5
JHEP03 BM4 2.79 0.61 1/3 −0.75 −0.5
JHEP03 BM5 3.95 1.17 −1/3 0.25 1.5
JHEP03 BM6 5.68 0.83 1/3 −0.75 −1
JHEP03 BM7 −0.10 0.94 1 0.25 0.5

SM 1.0 1.0 0.0 0.0 0.0

Table 3. Parameter values for κλ, κt , c2, cg , and c2g in MC samples modeling twenty benchmark
scenarios in the EFT approach, plus SM HH production.

Resonant HH production was simulated at LO for both spin-0 (radion) and spin-2
(graviton) scenarios with mX values of 250, 260, 270, 280, 300, 320, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 850, 900, and 1000GeV.

4 Event reconstruction

The CMS particle-flow (PF) algorithm [99] aims to reconstruct and identify each individ-
ual particle in an event, using an optimized combination of information from the various
elements of the CMS detector. The particles are subsequently classified into five mutually
exclusive types: electrons, muons, photons, and charged and neutral hadrons. These par-
ticles are then combined to reconstruct hadronic τ decays, jets, and the missing transverse
momentum in the event.

The candidate vertex with the largest value of summed physics-object p2
T is taken to

be the primary pp interaction vertex. The physics objects used for this determination are
the jets, clustered using the infrared and collinear safe anti-kT algorithm [100, 101], with
the tracks assigned to candidate vertices as inputs, and the associated missing transverse
momentum, taken as the negative vector sum of the pT of those jets.

Electrons are reconstructed within the geometric acceptance of the tracking detectors
(|η| < 2.5) by combining information from the tracker and the ECAL [102]. They are
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initially identified using an MVA classifier which distinguishes real electrons from hadrons,
along with requirements that the track be associated with the collision vertex, and limits
on hadronic energy deposits separated by ∆R < 0.4 from the electrons (their “isolation”).
The angular separation between two particles is defined as ∆R =

√
(η1 − η2)2 + (φ1 − φ2)2,

where the symbol φ refers to the azimuthal angle of the particle. Electrons passing this
initial selection are referred to as “loose”. In this analysis, events with electrons originating
from hadron decays (“nonprompt”), or with hadrons misidentified as electrons, constitute
the largest source of background. This motivates the use of an additional MVA classifier,
which is trained to select “prompt” electrons from W, Z, and τ lepton decays, and to
reject nonprompt or misidentified electrons. This MVA classifier was previously used for
measurements of ttH production in events with multiple leptons [103]. It combines ob-
servables comparing measurements of the electron energy and direction in the tracker and
the ECAL, the compactness of the electron cluster, the bremsstrahlung emitted along the
electron trajectory, and the electron isolation. Two levels of thresholds on the output of this
MVA classifier are used in the analysis, referred to as the “tight” and “medium” electron
selections for the more and less restrictive thresholds, respectively. The tight selection has
an average efficiency of 60% for electrons from SM HH decays. Only the electrons pass-
ing the tight selections are used to reconstruct signal candidate events, while data events
with electrons passing the medium selections and failing the tight selections are used to
estimate the contribution of misidentified- and nonprompt-electron backgrounds in each
search category. Compared to ref. [103], this analysis uses lower thresholds on the MVA
classifier output for the medium and tight electron selections, in order to increase the effi-
ciency in particular for low-pT electrons, which frequently appear in the HH signal events
studied in this analysis. Electrons from photon conversions in the tracker are suppressed
by requiring that the track is missing no hits in the innermost layers of the silicon tracker,
and is not matched to a reconstructed conversion vertex. In the 2`ss category, further
electron selection criteria are applied, which require agreement among three independent
measurements of the electron charge, including the Gaussian sum filter and Kalman filter
track curvatures, as well as the ECAL supercluster position [104]. The remaining charge
misidentification rate is measured to be less than 0.1% for |η| < 1.479, and under 0.4% for
|η| > 1.479. The charge quality requirement reduces the electron identification efficiency
by about 4%.

Muons are reconstructed by extrapolating tracks in the silicon tracker to hits in the gas-
ionization muon detectors embedded in the steel flux-return yoke outside the solenoid [105].
To pass the initial loose identification requirement for this analysis, muons must satisfy cri-
teria related to isolation and track proximity to the primary interaction vertex, as well as
track quality observables and matching between the tracker and muon chambers. Addi-
tional requirements on the prompt vs. nonprompt muon identification MVA classifier from
ref. [103] serve to select muons passing a tight selection for signal candidate events, and
a medium selection for nonprompt background estimation. Inputs to this MVA classifier
include energy deposits close to the muon in the ECAL and HCAL, the hits and track
segments reconstructed in the muon detectors located outside the solenoid, the quality of
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the spatial matching between the track segments reconstructed in the silicon tracker and in
the muon detectors, and the isolation of the muon with respect to other particles. Again,
lower selection thresholds on the MVA classifier output compared to ref. [103] bring higher
efficiency for the HH signal, amounting to 80% per muon in simulated SM HH events for
the tight selection. In the 2`ss channel, the uncertainty in the curvature of the muon track
is required to be less than 20% to ensure a high-quality charge measurement [103]. This
requirement reduces the muon identification efficiency by about 2%.

Hadronic decays of tau leptons are identified using the “hadrons-plus-strips” algo-
rithm [106]. This algorithm classifies individual hadronic decay modes of the τ by com-
bining charged hadrons from the PF reconstruction with neutral pions. The latter are
reconstructed by clustering electrons and photons into rectangular strips, which are nar-
row in η but wide in the φ direction. The spread in φ accounts for photons originating
from neutral pion decays that convert into electron-positron (e−e+) pairs while traversing
the silicon tracker. The e− and e+ are bent in opposite directions in φ by the magnetic
field, and may further emit bremsstrahlung photons before reaching the ECAL. The decay
modes considered in this analysis produce one charged pion or kaon plus up to two neutral
pions (collectively referred to as “one-prong” τh), or three charged pions or kaons plus
zero or one neutral pion (referred to as “three-prong” τh). The DeepTau algorithm [107]
distinguishes true τh objects from quark and gluon jets, electrons, and muons using a
convolutional artificial neural network (NN) [108] with 42 high-level observables as input,
together with low-level information obtained from the silicon tracker, ECAL, HCAL, and
the muon detectors. The former include the pT, η, φ, and mass of the τh candidate, the
reconstructed τh decay mode, its isolation with respect to charged and neutral particles,
and the estimated distance that the τ lepton traverses between its production and decay.
For three-prong τh candidates, this distance is determined by reconstructing the decay
vertex, while for one-prong τh candidates, the transverse impact parameter of the charged
pion track with respect to the primary pp interaction vertex is used as an estimate of the
distance. The low-level information quantifies the particle activity within two η × φ grids,
centered on the direction of the τh candidate: an inner grid of size 0.2 × 0.2, filled with
0.02 × 0.02 cells, and an outer grid of size 0.5 × 0.5 (partially overlapping with the inner
grid), with 0.05×0.05 cells. Selected τh candidates in this analysis must have pT > 20GeV
and |η| < 2.3, and are subjected to two levels of thresholds on the NN output that sep-
arates τh from quark and gluon jets, referred to as the tight and medium τh selections,
respectively.

Hadronic jets (j) are reconstructed with the anti-kT algorithm using the particles re-
constructed with the PF algorithm as input, and serve to identify H → WW∗ → jj`ν
decays in this analysis. Jets reconstructed with size parameters of 0.4 (“small-radius jets”)
and 0.8 (“large-radius jets”) are both used: two small-radius jets to reconstruct the two
quarks from low-pT W boson decays, or a single large-radius jet to reconstruct high-pT
W boson decays, where the quarks are collimated. Overlap between small-radius jets and
electrons, muons, and τh is resolved by discarding those small-radius jets that contain one
or more PF particles matched to an electron, a muon, or a constituent of a τh passing
the medium selection criteria. In case of large-radius jets, electrons and muons passing
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the loose selection are removed from the collection of PF particles used as input to the jet
reconstruction, so that leptons produced in H →WW∗ → jj`ν decays of Lorentz-boosted
H bosons are not clustered into those jets.

The effect of pileup on the reconstruction of large-radius jets is mitigated by apply-
ing the pileup per particle identification algorithm (PUPPI) [109, 110] to the collection
of particles used as input to the jet reconstruction. For small-radius jets, the effect of
pileup is reduced by removing charged particles identified with pileup vertices from the jet
reconstruction, and applying corrections to the jet energy to account for neutral particles
from pileup.

After calibration, the jet energy resolution at the central rapidities amounts to 15–
20% at 30GeV, 10% at 100GeV, and 5% at 1TeV [111]. This analysis only considers jets
reconstructed in the region |η| < 2.4. Small-radius jets must have pT > 25GeV, while
large-radius jets must have pT > 170GeV. Additional criteria requiring that each large-
radius jet contain exactly two identifiable, energetic subjets are applied to specifically select
those from boosted hadronic W boson decays [112].

Events containing small-radius jets identified with the hadronization of bottom quarks
(b jets) are vetoed in this analysis. The DeepJet algorithm [113] exploits observables
related to the long lifetime of b hadrons and the higher particle multiplicity and mass of b
jets compared to light quark and gluon jets. Both “loose” and “medium” b jet selections
on the DeepJet output are employed in this analysis, corresponding to b jet selection
efficiencies of 84 and 70%, while the misidentification rates for light-quark or gluon jets are
11 and 1.1%, respectively.

The missing transverse momentum vector ~pmiss
T is computed as the negative vector pT

sum of all the particles reconstructed by the PF algorithm in an event, and its magnitude is
denoted as pmiss

T [114]. The ~pmiss
T is modified to account for corrections to the energy scale of

the reconstructed jets in the event. A linear discriminant, denoted as pmiss,LD
T , is employed

to remove background events in which the reconstructed pmiss
T arises from resolution effects.

The discriminant is defined by the relation pmiss,LD
T = 0.6pmiss

T + 0.4Hmiss
T , where Hmiss

T
corresponds to the magnitude of the vector pT sum of e, µ, and τh passing the medium
selection criteria, and small-radius jets satisfying the criteria detailed above [115].

5 Event selection

Events are selected with the aim of maximizing the acceptance for HH decays to
WW∗WW∗, WW∗

ττ, and ττττ, while simultaneously rejecting the large backgrounds
from multijet production, single and pair production of W and Z bosons, and tt produc-
tion. To achieve this, each event must contain multiple reconstructed ` or τh associated
with the primary interaction vertex. The ` and τh may originate from the decay of a
W boson or a τ lepton. Seven mutually exclusive search categories, distinguished by the
number of reconstructed ` and τh candidates, are included in the analysis: 2`ss, 3`, 4`,
3` + 1τh, 2` + 2τh, 1` + 3τh, and 4τh. Here “ss” indicates a same-sign `` pair, with two
leptons of identical electric charge. The ` and τh candidates selected in any of the seven
search categories must pass the tight selection criteria described in section 4. In addition,
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they are required to pass category-specific pT thresholds motivated by the trigger selection.
Further requirements are placed on the sum of ` and τh charges, and, in two categories, on
the discriminant pmiss,LD

T and the multiplicity of jets.
The leading and subleading leptons in the 2`ss category must pass pT selection thresh-

olds of 25 and 15GeV, respectively. Events in this category are required to contain two or
more small-radius jets, or at least one large-radius jet, targeting hadronic W boson decays.
Dielectron events must have pmiss,LD

T > 30GeV and m(``) < 81GeV or m(``) > 101GeV,
in order to suppress charge-misidentified Z → ee background. If the event contains a τh,
the charge of the τh must be opposite to the charge of the leptons. After this selection, the
main backgrounds in the 2`ss category arise from WZ production, from Wγ events in which
the photon converts into an e−e+ pair and either the e− or the e+ is not reconstructed,
and from events in which one or both reconstructed leptons are due to a nonprompt ` or
a misidentified hadron, as shown in table 6. The “other” background given in the table is
dominated by same-sign W boson pairs and WWW production. The WW∗WW∗ decay
mode accounts for roughly 70% of SM HH signal events selected in the 2`ss category, with
WW∗

ττ events accounting for the other 30%.
In the 3` category, the leading, subleading, and third ` are required to have pT values

greater than 25, 15, and 10GeV, respectively, and the sum of their charges must be either
+1 or −1. At least one small- or large-radius jet must be present, and the pmiss,LD

T quantity
must be greater than 30GeV, or 45GeV if there is at least one same-flavor opposite-sign
(SFOS) `` pair in the event. Again, backgrounds are dominated by WZ production and
events with misidentified `. Notable contributions to the “other” background arise from
WWW and WWZ production. The signal composition is similar to the 2`ss category.

The 4` category has identical lepton selection criteria to the 3` category, except that
the third ` must have pT > 15GeV, and a fourth ` with pT > 10GeV is required, and the
sum of the four lepton charges is required to be equal to zero. In this category and all the
remaining categories, there are no selection requirements on jets or pmiss,LD

T . Almost 70%
of signal events come from the WW∗WW∗ decay mode, and about 30% from WW∗

ττ,
while ZZ production accounts for 85% of the background.

Events in the 3`+ 1τh category are required to satisfy the 3` criteria on the ` objects,
except that an additional τh with pT > 20GeV and charge opposite to the sum of the `
charges is required. Background events in which the reconstructed τh fails a loose selection
on the NN output of the DeepTau algorithm that separates τh from electrons, or falls
near the ECAL barrel-endcap transition region in 1.460 < |η| < 1.558 are removed. About
70% of signal events come from the WW∗

ττ decay mode, while ZZ production and events
with at least one misidentified ` or τh dominate the background.

In the 2`+2τh category, the leading and subleading ` are required to pass pT thresholds
of 25 and 15GeV, while the two τh must have pT > 20GeV. The sum of ` plus τh charges
is required to be zero. Signal contributions are mostly from the WW∗

ττ (60%) and ττττ
(40%) decay modes, while background contributions arise from ZZ production and events
with a misidentified ` or τh candidate.

In the 1` + 3τh category, the ` is required to satisfy the conditions |η| < 2.1 and
pT > 20 (15)GeV if it is an electron (muon). The leading, subleading, and third τh must
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have pT > 40, 30, and 20GeV, respectively, and the sum of τh and ` charges is required to
be zero. Background events containing a Z → ee decay where one electron is misidentified
as a τh are vetoed by discarding events containing an e-τh pair of opposite charge and
mass 71 < m(eτh) < 101GeV, and in which the τh either fails a loose selection on the
discriminant that separates τh from electrons, or falls into the region 1.460 < |η| < 1.558.
Around 80% of HH signal events selected in the 1`+ 3τh category are from ττττ and 20%
from the WW∗

ττ decay mode, while the majority of background events stem from ZZ
production or contain a misidentified ` or τh.

The 4τh category requires the leading and subleading τh to pass pT thresholds of
40 and 30GeV, respectively, and the third and fourth τh to have pT > 20GeV. Given
the extremely low backgrounds in this category, no charge sum criterion or Z → ee veto
is applied. Almost all signal events come from the ττττ decay mode, while 55% of the
background events contain at least one misidentified τh candidate, and the remainder arises
from ZZ (30%) and single Higgs boson (15%) production.

In all seven search categories, the background contamination from processes with top
quarks is reduced by discarding events with at least one selected small-radius jet passing
the medium b jet identification, or at least two passing the loose b jet identification.
Leptons originating from low-mass Drell–Yan production, decays of J/ψ and Υ mesons,
cascade decays of bottom quarks, and photon conversions are removed by vetoing events
containing any pair of loose ` with mass m(``) < 12GeV. To eliminate overlap with events
selected in the ongoing search for HH production in the bbZZ, ZZ → 4` decay mode, no
event in the 2`ss, 3`, and 4` categories may contain two SFOS loose `` pairs with a mass
of the four-` system of less than 140GeV. In addition, to reduce the Z → `` background,
these three categories along with 2` + 2τh and 3` + 1τh exclude events where any SFOS
loose `` pair has an invariant mass of 81–101GeV (Z boson veto).

A summary of the event selection criteria applied in the different categories is given in
table 4. Criteria that are common to all seven search categories are given in table 5.

Two control regions (CRs) are used to validate the modeling of the WZ and ZZ back-
grounds. These CRs match the signal regions of the 3` and 4` categories, but with the Z
boson veto inverted, and are referred to as the “3` WZ” CR and “4` ZZ” CR, respectively.

The number of events selected in the signal regions of each of the seven search categories
and in the 3` WZ and 4` ZZ CRs are given in table 6. The contribution expected from
nonresonant HH production with event kinematics as predicted by the SM, but 30 times
the SM cross section, is given separately for HH decays into WW∗WW∗, WW∗

ττ, and
ττττ in the upper three rows of each table. The event yields given in the rows labeled
WW∗WW∗ include a small contribution from HH decays into WW∗ZZ∗ and ZZ∗ZZ∗, and,
similarly, the numbers quoted in the rows labeled WW∗

ττ include a small contribution
from HH decays into ZZ∗

ττ.

6 Analysis strategy

The rate of the HH signal is extracted through a binned maximum likelihood (ML) fit to
the distributions in the output of boosted decision tree (BDT) classifiers [116], which are
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Category 2`ss 3` 4`
Targeted HH decays WW∗WW∗ WW∗WW∗ WW∗WW∗

Trigger Single- and Single-, double- Single-, double-
double-lepton and triple-lepton and triple-lepton

Lepton pT >25 / 15GeV >25 / 15 / 10GeV >25 / 15 / 15 / 10GeV
Lepton charge sum ±2, with charge quality ±1 0

requirements applied
Dilepton invariant mass |m`` −mZ | > 10GeV † |m`` −mZ | > 10GeV ‡ |m`` −mZ | > 10GeV ‡

Jets ≥2 small-radius jets or ≥1 small-radius jet or —
≥1 large-radius jet ≥1 large-radius jet

Missing pT pmiss,LD
T > 30GeV § pmiss,LD

T > 30GeV ‖ —

Category 3`+ 1τh 2`+ 2τh
Targeted HH decays WW∗

ττ WW∗
ττ, ττττ

Trigger Single-, double-, Single- and
and triple-lepton double-lepton

Lepton pT >25 / 15 / 10GeV >25 / 15GeV
τh pT >20GeV >20GeV
Lepton and τh charge ` and τh charges sum to 0 ` and τh charges sum to 0
Dilepton invariant mass |m`` −mZ | > 10GeV ‡ |m`` −mZ | > 10GeV ‡

Category 1`+ 3τh 4τh
Targeted HH decays ττττ ττττ

Trigger Single-lepton, lepton+τh Double-τh
and double-τh

Lepton η |η| < 2.1 —
Lepton pT >20GeV (e) or >15GeV (µ) —
τh pT >40 / 30 / 20GeV >40 / 30 / 20 / 20GeV
Lepton and τh charge ` and τh charges sum to 0 τh charges sum to 0

Z → ee veto |meτh
− 86GeV| > 15GeV ¶ —

† Applied to all SFOS `` pairs and electron pairs with the same charge.
‡ Applied to all SFOS `` pairs.
§ Only applied to events containing two electrons.
‖ Tightened to pmiss,LD

T > 45GeV if event contains a SFOS `` pair.
¶ For τh classified as electrons by the DeepTau algorithm or with 1.460 < |η| < 1.558.

Table 4. Event selection criteria applied in the seven search categories. The pT thresholds for
` and τh with the highest, second-, third-, and fourth-highest pT are separated by slashes. The
symbol “—” indicates that no requirement is applied.

Object and event properties Selection criteria
Lepton and τh pseudorapidity |η| < 2.5 for e, |η| < 2.4 for µ, |η| < 2.3 for τh
Dilepton invariant mass m`` > 12GeV (all `` pairs)
Four-lepton invariant mass m4` > 140GeV (any two SFOS `` pairs)
b jet veto 0 medium and ≤ 1 loose b-tagged small-radius jet

Table 5. Reconstructed object and event selection requirements in all seven search categories.
Electrons or muons in the `` pairs include any leptons passing the loose selection criteria.

trained to discriminate the HH signal from backgrounds, along with kinematic distributions
from the two CRs above. The data from each of the three years are fit separately. Three
classifiers are trained for each of the seven search categories using a mix of MC simulation
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Process 2`ss 3` 4`
SM HH →WW∗WW∗ (× 30) 73 ± 6 33 ± 3 2.2 ± 0.2
SM HH →WW∗

ττ (× 30) 31 ± 3 12 ± 1 0.9 ± 0.1
SM HH → ττττ (× 30) 3 ± 0 1 ± 0 0.1 ± 0.0

WZ 1999 ± 122 1318 ± 78 0.4 ± 0.1
ZZ 121 ± 3 109 ± 3 53.9 ± 3.1
Misidentified ` 4842 ± 1327 510 ± 94 2.2 ± 1.1
Conversion electrons 804 ± 174 117 ± 24 0.7 ± 0.3
Electron charge misid. 394 ± 61 — —
Single Higgs boson 214 ± 6 61 ± 1 2.4 ± 0.3
Other backgrounds 2740 ± 338 289 ± 29 4.0 ± 0.5

Total expected background 11 114 ± 1387 2404 ± 128 63.7 ± 3.3
Data 10 344 2621 62

Process 3`+ 1τh 2`+ 2τh 1`+ 3τh 4τh
SM HH →WW∗WW∗ (× 30) 0.9 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0
SM HH →WW∗

ττ (× 30) 4.1 ± 0.3 3.9 ± 0.4 0.6 ± 0.1 0.1 ± 0.0
SM HH → ττττ (× 30) 0.9 ± 0.1 2.3 ± 0.3 2.6 ± 0.4 1.3 ± 0.2

WZ 0.2 ± 0.0 <0.1 <0.1 <0.1
ZZ 24.1 ± 1.4 18.4 ± 1.3 1.9 ± 0.2 0.7 ± 0.1
Misidentified ` and τh 23.9 ± 6.6 31.9 ± 10.1 2.2 ± 2.1 2.2 ± 1.6
Conversion electrons 0.1 ± 0.0 0.1 ± 0.1 <0.1 <0.1
Single Higgs boson 3.8 ± 0.4 2.8 ± 0.7 0.8 ± 0.4 0.4 ± 0.3
Other backgrounds 2.8 ± 0.4 2.2 ± 0.8 0.1 ± 0.1 <0.1

Total expected background 54.9 ± 6.8 55.4 ± 10.3 5.0 ± 2.2 3.4 ± 1.6
Data 55 55 6 1

Process 3` WZ CR 4` ZZ CR
WZ 12 565 ± 705 <1
ZZ 765 ± 47 2000 ± 108
Misidentified ` 804 ± 211 13 ± 4
Conversion electrons 106 ± 21 2 ± 0
Other backgrounds 625 ± 76 60 ± 8

Total expected background 14 866 ± 742 2074 ± 108
Data 14 994 2096

Table 6. The number of expected and observed events in each of the seven search categories, and in
two CRs, which validate the modeling of the WZ and ZZ backgrounds. The symbol “—” indicates
that the background is not relevant for the category. The HH signal represents the sum of the ggHH
and qqHH production processes and is normalized to 30 times the event yield expected in the SM,
corresponding to a cross section of about 1 pb. The event yields are obtained by performing the
event selection and applying appropriate corrections to the simulated events. Quoted uncertainties
represent the sum of statistical and systematic components. Uncertainties that are smaller than
half the value of the least significant digit have been rounded to zero.
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from all three years, targeting nonresonant HH production and resonant HH production
from the decay of heavy particles of spin 0 and of spin 2. The binning is chosen with the
objective of maximizing the sensitivity for the HH signal, while maintaining sufficient back-
ground events in each bin to keep the statistical uncertainty in the background prediction
under control. In the two categories with high event yields (2`ss and 3`) the BDT output
binning is chosen such that each bin contains a similar number of expected HH signal
events. The four categories containing events with τh (3` + 1τh, 2` + 2τh, 1` + 3τh, and
4τh) have low event yields and sizable background contributions arising from the misiden-
tification of ` and τh candidates, which are determined from data and statistically limited.
For these categories, we choose the binning for each BDT output distribution such that a
similar number of expected background events is contained in each bin. In the 4` category,
the fact that the background is dominated by ZZ production, which is modeled by the MC
simulation with low statistical uncertainties, allows one to choose the binning in the same
way as for the 2`ss and 3` categories. The number of bins is determined by the condition
that the relative statistical uncertainty in the background prediction in each bin does not
exceed 15%. Higher bin numbers correspond to a higher BDT output value, and feature a
higher signal-to-background ratio. For the SM HH signal, the bins with the highest BDT
output values feature a signal-to-background ratio up to 10 times higher than the inclusive
ratio in each category.

The inputs to the BDT classifiers differ by search category and include the pT and η of
reconstructed ` and τh; the angular separation ∆R and invariant mass of ``, `τh, and τhτh
pairs; the ∆R and invariant mass between an ` or τh candidate and the nearest jet(s); the
number of jets in the event; the discriminant pmiss,LD

T ; the scalar pT sum of all reconstructed
e, µ, τh, and jets; the “visible” mass of the Higgs boson pair, given by the mass of the
system of reconstructed e, µ, τh, and jets; and where applicable, the “full” mass of the HH
system, including neutrinos, reconstructed using the algorithm from ref. [117] designed
for reconstructing Higgs pair decays into τ leptons. This algorithm targets HH signal
events decaying to ττττ and thus works best in the 4τh and 1` + 3τh search categories.
Distributions in some of the observables used as inputs to the BDT classifiers in the 2`ss
and 3` categories are shown in figure 4.

These observables are complemented by further inputs, which parametrize the BDT
as a function of the model parameters: the Higgs boson couplings λ, yt , cg , c2g , and c2
for nonresonant HH production, and the mass of the heavy particle X in resonant HH
production. When training the BDT that targets nonresonant HH production, the values
for the couplings are chosen according to the twelve EFT benchmark scenarios given in
ref. [24] and the SM, indicated by thirteen binary inputs to the BDT. The BDT classifiers
used for the analysis of resonant HH production are trained separately for spin-0 and spin-2
on the full set of resonance masses listed in section 3, and the resonance mass is used as
an input to the BDT. Each simulated background event is replicated multiple times in the
training sample, with different values assigned to the Higgs boson couplings and the mass
of the heavy particle X.

The training is performed using simulated samples of signal and background events.
The signal events used in the training consist of ggHH events in the HH decay modes
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3` categories: the scalar pT sum, denoted as HT, of the two reconstructed ` and all small-radius
jets in the 2`ss category (upper left); the angular separation ∆R between the two ` in the 2`ss
category (upper right); the angular separation between `3 and the nearest small-radius jet in the
3` category (lower left); and pmiss,LD

T in the 3` category (lower right). The `3 in the 3` category
is defined as the ` that is not part of the opposite-sign `` pair of lowest mass. The normalization
and shape of the distributions expected for the different background processes are shown for the
values of nuisance parameters obtained from an ML fit in which the HH signal is constrained to
be zero. The gray shaded area indicates the sum of statistical and systematic uncertainties on the
background prediction obtained from this ML fit.

WW∗WW∗, WW∗
ττ, and ττττ. Background contributions arising from the misidenti-

fication of ` and τh candidates and from the mismeasurement of the electron charge are
included in the simulation. The signal and background events used in the training are
required to pass the event selection criteria for the respective search category, described in
section 5. The number of training events is increased by applying the medium ` and τh
identification criteria instead of the tight ones. Weights are applied to background events
arising from different sources, such that the relative fractions of different types of back-
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grounds in the training match the fractions expected in the signal region of the analysis,
i.e. when the tight ` and τh identification criteria are applied. The MC samples used for
the BDT training overlap with the samples used to model signal and background con-
tributions in the analysis. To avoid potential biases, the training samples are split into
two samples of equal size, based on even and odd event numbers. The BDTs trained
on even events are evaluated on odd events, and vice versa, thereby ensuring that BDTs
are not trained and evaluated on the same events. The training is performed using the
XGBoost algorithm [118], interfaced to the Scikit-learn machine learning library [119].
The parameters of the BDT training (so-called “hyperparameters”) are optimized using
the particle swarm optimization algorithm described in ref. [120].

7 Background estimation

Background contributions are classified as either “reducible” or “irreducible”. In this anal-
ysis, three types of reducible backgrounds are considered, arising from misidentified ` or
τh, electron charge misidentification, and electrons from photon conversions. Background
events in which all selected ` and τh come from W, Z, or H boson decays, and are recon-
structed with the correct charge, are considered “irreducible”. The `/τh misidentification
and electron charge misidentification backgrounds are both determined from data, while
electron conversions and irreducible backgrounds are modeled using MC simulation.

The `/τh misidentification background (which includes nonprompt leptons) is the
largest reducible background in all search categories. Nonprompt ` are either electrons
or muons produced in bottom and charm quark decays, or muons that originate from
pion and kaon decays. Hadronic jets may also be misidentified as electrons or τh. The
`/τh misidentification background estimate is detailed in section 7.1. The electron charge
misidentification background is only relevant for the 2`ss search category, and is described
in section 7.2. The modeling of photon conversion events by the MC simulation has been
validated in data as described in refs. [103, 121].

The main contribution to the irreducible background arises from WZ production in the
2`ss and 3` categories, and ZZ production in the remaining five categories. The production
of pairs of bosons (γ, W, Z, or H) other than WZ, ZZ and HH, and production of bosons
with top quarks, including Wγ, Zγ, WH, ZH, tH, ttH, tW, ttW, tZ, ttZ, tγ, and ttγ,
constitute subdominant additional backgrounds. The tZ and ttZ backgrounds also include
contributions from off-shell ttγ∗ and tγ∗ production. Background processes which include
at least one top quark are suppressed by the b jet veto described in section 5, but are
still sizable compared to the expected HH signal. All irreducible backgrounds are modeled
using the MC simulation.

The modeling of the dominant irreducible WZ and ZZ backgrounds is validated us-
ing the “3` WZ” and “4` ZZ” CRs introduced in section 5. Distributions in kinematic
observables from these CRs (shown in figure 5) are included in the ML fit that is used to
extract the HH signal, described in section 9. This provides in-situ constraints on the WZ
and ZZ backgrounds and on systematic uncertainties related to lepton identification and
trigger efficiency. The transverse mass, mT =

√
2 p`T p

miss
T (1− cos ∆φ), in the 3` WZ CR

is computed using the ` that is not identified as originating from the Z boson decay. The
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Figure 5. Distributions in mT in the 3` WZ CR (left) and in m4` in the 4` ZZ CR (right).
The normalization and shape of the distributions expected for WZ, ZZ, and other background
processes are shown for the values of nuisance parameters obtained from the ML fit described in
section 9. The gray shaded area indicates the sum of statistical and systematic uncertainties on the
background prediction obtained from the ML fit.

symbol ∆φ refers to the angle in the transverse plane between the ` momentum and the
~pmiss
T . The observable m4` refers to the mass of the 4` system in the 4` ZZ CR.

The modeling of the reducible `/τh misidentification background is validated in two
further CRs, the “2`ss CR” and the “2` + 2τh CR”. They are based on the signal regions
(SRs) of the 2`ss and 2`+ 2τh categories. In the 2`ss CR, no b jet veto is applied, and at
least one small-radius jet passing the medium b jet identification is required. The 2`+ 2τh
CR differs from the SR of the 2` + 2τh category in that the sum of ` plus τh charges is
required to be non-zero, and no Z boson veto is applied. The 2`ss CR is dominated by
events with misidentified `, while the 2`+2τh CR is dominated by events with misidentified
τh. Distributions in the transverse mass mT in the 2`ss CR and in the mass of the HH
candidate in the 2` + 2τh CR, reconstructed by the algorithm described in ref. [117], are
shown in figure 6. The transverse mass in the 2`ss CR is computed using the leading `.
The data agree well with the background prediction in both CRs.

Simulated events are only considered as irreducible background if every selected e,
µ, and τh candidate matches a prompt MC generator-level counterpart. Events with at
least one selected electron from a photon conversion, and the remaining ` and τh candidates
matched to prompt leptons in MC simulation, are classified as conversion background. Elec-
trons that are misidentified as τh, and τh that are misidentified as e are also modeled using
the MC simulation. All other simulated events are discarded, as the `/τh misidentification
and charge misidentification backgrounds are estimated from data, as described below.

7.1 Lepton and τh misidentification background

The background from events with misidentified ` and τh candidates is estimated using the
“fake factor” or “FF” method from ref. [115]. An estimate of this background’s contribution
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Figure 6. Distributions in mT in the 2`ss CR (left) and in the mass of the HH candidate in the
2`+2τh CR (right). The normalization and shape of the distributions expected for the misidentified
`/τh background and other background processes are shown for the values of nuisance parameters
obtained from an ML fit in which the HH signal is constrained to be zero. The gray shaded area
indicates the sum of statistical and systematic uncertainties on the background prediction obtained
from this ML fit.

to the SR of each search category is obtained by selecting a sample of events that satisfy all
selection criteria of the SR for the respective search category, except that the e, µ, and τh
are required to pass the medium selections instead of the tight ones. The sample of events
thus obtained is referred to as the application region (AR) of the FF method. Events in
which every ` and τh satisfies the tight selections are excluded from the AR.

The prediction for misidentification backgrounds in the SR is obtained by applying
suitably chosen weights w to the events selected in the AR, where w is given by the
expression

w = (−1)n+1
n∏

i=1

fi(pT, η)
1− fi(pT, η) . (7.1)

The product extends over all e, µ, and τh that pass the medium, but fail the tight
selection criteria, and n refers to the total number of such ` and τh. The symbol fi(pT, η)
corresponds to the probability for a single e, µ, or τh that passes the medium selection
to also pass the tight selection. These probabilities are measured separately for e, µ, and
τh candidates, parametrized as a function of pT and η, and vary between 5 and 30%.
The contributions of irreducible backgrounds to the AR are subtracted based on the MC
expectation of such processes. The alternating sign in eq. (7.1) is necessary to avoid double-
counting arising from events with more than one misidentified ` or τh [115].

The probabilities fi(pT, η) for electrons and muons are measured in multijet events, as
described in ref. [103]. The fi(pT, η) for τh are measured using Z → µµ+jets events, where
the misidentified τh candidates arise from quark or gluon jets. These events are selected by
requiring a muon pair passing the tight selection, with opposite charge and invariant mass
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60 < mµµ < 120GeV, plus at least one τh candidate that passes the medium τh selection.
The leading and subleading muons must have pT > 25 and 15GeV, respectively. Events
must also pass the b jet veto described in section 5 to remove tt background.

7.2 Charge misidentification background
The electron charge misidentification background in the 2`ss category is estimated using the
method described in ref. [103]. A sample of dielectron events passing all selection criteria
of the SR of the 2`ss category, except that both electrons are required to have opposite-
instead of same-sign charge, is selected and assigned appropriately chosen weights. The
weights are computed by summing the probabilities for the charge of either electron to be
mismeasured. The probability for the mismeasurement of the electron charge is determined
using Z → ee events, and ranges from under 0.1% in the barrel up to 0.4% in the endcap.
The probability for mismeasuring the charge of muons is negligible [103].

8 Systematic uncertainties

Multiple sources of systematic uncertainty affect the predicted event yields, the distribu-
tions in the output of the BDT classifiers, or both. These uncertainties may be theoretical,
affecting the predicted cross section or decay kinematics of the collision process, or exper-
imental, accounting for differences in object reconstruction and calibration between data
and the MC simulation, or for uncertainties on the estimates of the `/τh misidentifica-
tion and electron charge misidentification background obtained from data. The systematic
uncertainties may be correlated or uncorrelated across the three data-taking years, and
among the various signal and background processes considered in the analysis.

The SM prediction for the ggHH production cross section at
√
s = 13TeV has a

relative uncertainty of +6.7%/−23.2% [122], while the qqHH cross section uncertainty is
±2.1% [19]. The predicted H boson decay branching fractions to WW∗, ττ, and ZZ∗ have
relative uncertainties of 1.54%, 1.65%, and 1.54%, respectively [123]. Correlations between
these uncertainties have a negligible effect. Alternate HH predictions are generated with
the renormalization and factorization scales varied up and down by a factor of 2. Variations
that increase the factorization scale and decrease the renormalization scale (and vice versa)
are excluded, following the recommendation of ref. [123]. All theoretical uncertainties in
the HH signal model are correlated across all three data-taking years and among the seven
search categories. The uncertainties in the H boson decay branching fractions and the effect
of renormalization and factorization scale uncertainties in the signal acceptance impact
the measurement of cross sections for both nonresonant and resonant HH production.
Conversely, the uncertainties in the SM prediction for the ggHH and qqHH cross sections
only affect the measurement of the HH production rate as a ratio to the SM prediction.

Theoretical uncertainties also affect the irreducible background prediction. The rela-
tive uncertainties in the cross sections of the dominant WZ and ZZ backgrounds are 2.1
and 6.3%, respectively [124–126]. The uncertainties in the cross sections for the subdom-
inant single H boson backgrounds range from 2 to 9% for ggHH, qqHH, WH, and ZH.
The cross sections for the production of W, Z, or H bosons with one or two top quarks are
known with uncertainties of 8–15%. The event yields of extremely rare backgrounds not

– 21 –



J
H
E
P
0
7
(
2
0
2
3
)
0
9
5

mentioned above (e.g., triple boson or four top quark production) are given a conservative
uncertainty of 50%, since the analysis has little sensitivity to these processes. Following
ref. [103], background contributions arising from photon conversions are assigned a 30%
yield uncertainty. The theoretical uncertainties affecting background cross sections are par-
tially correlated among different processes. Here, contributions arising from uncertainties
in the proton PDFs are correlated among processes with a similar initial state. Processes
involving single H boson production are an exception. These uncertainties are uncorre-
lated from other background processes but correlated among each other depending on the
initial state. Uncertainties arising from the choice of the renormalization and factorization
scales are correlated for processes with similar production modes, for example among all
processes involving diboson production (WW, WZ, ZZ, Wγ, and Zγ). Uncertainties in αs
are correlated among all background processes. The theoretical cross section uncertainties
for signal processes are uncorrelated with those of background processes, but otherwise
follow the same uncertainty scheme for proton PDF, scale, and αs contributions. All theo-
retical cross section uncertainties are treated as correlated across the different data-taking
years and among all seven search categories.

The rate of the misidentified `/τh background is assigned a 30% uncertainty in all
search categories, to account for variations in the misidentification rates between the ARs of
the FF method and the multijet (Z → µµ+jets) event samples used to measure the fi(pT, η)
for e and µ (τh). In the 3`+ 1τh and 1`+ 3τh categories, an additional uncertainty of 30%
(uncorrelated with the other 30% uncertainty) is assigned to the rate of the misidentified
`/τh background, to account for the extra uncertainty arising from the modified τh selection
criteria that suppress the misidentification of electrons as τh. The effect of statistical
uncertainties in the probabilities fi(pT, η) for electrons and muons is evaluated by varying
these probabilities in bins of pT and η and determining the resulting change in the shape of
the BDT classifier output distribution obtained for the misidentified `/τh background. For
τh, the effect of statistical uncertainties in fi(pT, η) is evaluated by fitting the probabilities
in bins of η with functions that are linear in pT, varying the slope of these functions up and
down within the uncertainties obtained from the fit, and determining the resulting change
in the shape of the BDT classifier output distribution.

An additional uncertainty in the BDT output shape in each category is evaluated for
events with a nonprompt or misidentified ` or τh as follows: Simulated events passing all
signal selection criteria are compared to those with at least one ` or τh candidate failing the
tight identification criteria, scaled according to the FF method described in section 7, but
with the probabilities fi(pT, η) taken from the MC simulation instead of from the data.
The ratio of these two shapes is fitted with a linear function, which is convoluted with
the misidentified `/τh background prediction from the data to serve as an uncertainty in
the BDT output shape for these events in the SR. The systematic uncertainties associated
with the misidentified `/τh background prediction and the uncertainty associated with
the electron charge misidentification rate are treated as uncorrelated among the different
data-taking years.

The rate of the electron charge misidentification background in the 2`ss category is as-
signed a 30% uncertainty. It covers the uncertainty on the electron charge misidentification
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rates measured in Z → ee events, including the effect of background contamination in these
samples, and accounts for differences observed in the following “closure” test: Simulated
events are required to pass all signal selection criteria of the 2`ss category, except that the
two leptons are required to have opposite-sign electric charges. The selected events are
scaled according to the electron charge misidentification probability in simulated events,
determined by applying the procedure detailed in section 7.2 to MC simulation. The result-
ing background estimate is compared to the one obtained by applying the nominal signal
selection criteria of the 2`ss category to simulated events.

Uncertainties in the modeling of the trigger and object reconstruction efficiency affect
all signal and background processes that are estimated using MC simulation. Trigger
efficiencies for events with at least two ` are compared between data and MC simulation
in control regions enriched in the tt , WZ, and ZZ background processes, as a function
of lepton flavor, pT, and η. This results in a small pT-dependent uncertainty correlated
between the 2`ss and 2` + 2τh categories, and a 1% normalization uncertainty, which is
correlated among the 3`, 3`+ 1τh, and 4` categories. The data-to-simulation agreement in
trigger efficiency for the 4τh and 1`+ 3τh categories is computed using an independent set
of data, as a function of the pT and η of the ` and all τh, and the reconstructed decay modes
of all τh. The trigger uncertainties for these two categories are treated as uncorrelated. All
systematic uncertainties related to trigger modeling are correlated across different physics
processes, but uncorrelated among the three data-taking years.

The uncertainties in the reconstruction and identification efficiencies for e, µ, and
τh candidates have been measured in Z boson enriched regions in data for each level of
identification criteria (tight, medium, and loose), and are applied to each event as a function
of pT and η for leptons and of pT and the reconstructed hadronic decay mode for τh. The
reconstructed τh energy has an uncertainty of around 1%, depending on the data-taking
year and reconstructed τh decay mode. These uncertainties affect the predicted rate and
BDT output shape for signal and background, and are correlated among the different
physics processes, but uncorrelated across different data-taking years.

The jet energy scale and resolution are determined using dijet control regions [111,
127]. The jet energy scale is evaluated using 11 separate components, accounting for
partial correlations between the data recorded in different years. The jet energy resolution
uncertainty is uncorrelated among the three data-taking years. Jet energy uncertainties
are also propagated to the pmiss

T calculation. An additional uncertainty in ~pmiss
T comes

from uncertainty in the energy of “unclustered” PF hadrons (PF hadrons not clustered
into either small- or large-radius jets), which is uncorrelated across different years. The
probability for true b jets to fail the multivariate b jet identification criteria, or for jets
from gluons or light flavored quarks to be misidentified as b jets, is compared in data
and MC simulation in event regions that are enriched in light-flavor quark or gluon, or
heavy-flavor jets. The resulting uncertainty in the data-to-simulation agreement affects the
yields and BDT output shapes of multiple physics processes. The statistical component of
this uncertainty is treated as uncorrelated across different data-taking years, while other
experimental sources are correlated.

The integrated luminosities for data collected in 2016, 2017, and 2018 have 1.2–2.5%
individual uncertainties [59–61], while the overall uncertainty for the 2016–2018 period is
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1.6%. The uncertainty in the measured cross section for inelastic pp collisions, amounting
to 5% [128], is taken into account by varying the number of pileup interactions in MC
simulation, which impacts the jet reconstruction and the isolation of ` and τh.

The sources of systematic uncertainty which create the largest uncertainties in the
measured ratio of the HH production cross section to its SM prediction are the theoretical
uncertainties in the HH production cross section and decay branching fractions (25%),
the uncertainties in the rate and shape of backgrounds from misidentified ` or τh (22%),
and in the rates of backgrounds modeled using MC simulation (13%). These uncertainties
in the signal measurement are determined by removing uncertainties that correspond to
a given systematic source from an ML fit to pseudodata, as described in section 9, and
subtracting the obtained uncertainty in the signal measurement in quadrature from the
total uncertainty. The impacts of systematic uncertainties are small compared to the effect
of the statistical uncertainty in the data (79%), and are comparable to the statistical
uncertainties in the distributions in the BDT classifier output for background processes
(33%). The latter includes the effect of statistical uncertainties in the MC simulation and
in the `/τh misidentification and electron charge misidentification backgrounds obtained
from data. All other sources of uncertainty have an impact of 5% or less.

9 Results

The data selected in the seven search categories are tested against multiple HH production
hypotheses: the SM prediction; variations of the SM coupling strength modifiers κλ, κt ,
κV , and κ2V ; the effective couplings cg , c2g , and c2 in the EFT approach; and resonant
production of H boson pairs originating from the decay of heavy particles with spins of
0 or 2 and masses mX ranging from 250 to 1000GeV. In each case, the data observed in
the seven search categories is fit simultaneously to a model composed of the background
prediction (with uncertainties) and the HH signal hypothesis under consideration. The
distributions in mT in the 3` WZ CR and in m4` in the 4` ZZ CR shown in figure 5 are
included in these fits, in order to obtain in-situ constraints on the systematic uncertainties
described in section 8. This in turn reduces the uncertainties in the signal and background
predictions.

The SM “signal strength” parameter µ is defined as the ratio of the measured HH
production cross section to its predicted value in the SM. This parameter modifies the
expected signal yield by the same proportion in each category. By contrast, variations in
the κ modifiers may affect the signal yields in each category differently, and also change
the BDT classifier output shape for HH events. The twenty benchmark scenarios span-
ning combinations of κλ, κt , cg , c2g , and c2 values in the coupling parameter space each
correspond to different kinematic distributions, so the HH production cross section for
each point is measured separately. Similarly, signal efficiency and BDT classifier output
shapes vary dramatically for different resonant masses, and thus a separate measurement
is performed for each mass and spin hypothesis. The SM signal strength measurement is
performed using the output of the BDT classifier that has been trained for SM nonresonant
HH production, while the κλ measurement uses the BDT trained for benchmark scenario
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JHEP04 BM7. In the scenario JHEP04 BM7, the mHH value tends to be close to the
lower limit of 250GeV, which matches the event kinematics for nonresonant HH produc-
tion in the κλ range of the expected limit. When setting limits on the twenty different
benchmark scenarios, the binary BDT inputs correspond to the given scenario, or in case
of the benchmarks from ref. [96] the kinematically closest scenario. In case of resonant HH
production, the BDT input for the resonance mass is set to the mX value for which the
limit is computed.

The SM signal strength is measured using a profile likelihood test statistic [129], with
systematic uncertainties treated as nuisance parameters θ in a frequentist approach [130].
The effect of variations in θ on the shape of the BDT classifier output distribution for the
HH signal and for background processes is incorporated into the ML fit using the technique
described in ref. [131]. Statistical uncertainties in these distributions are also taken into
account using the approach detailed in ref. [131]. The likelihood ratio qµ for a fixed “test”
signal strength value µ is

qµ = −2∆ lnL = −2 ln
L(data|µ, θ̂µ)
L(data|µ̂, θ̂)

,

where µ̂ and θ̂ are the signal strength and nuisance parameter values that give the max-
imum value of the likelihood function L for the given set of data (requiring µ̂ ≥ 0), and
θ̂µ is the set of θ values which maximize L for the fixed µ. The 95% confidence level
(CL) upper limit for µ is obtained using the CLs criterion [132, 133], with qµ set to 0
when µ < µ̂. The probabilities to observe a given value of the likelihood ratio qµ un-
der the signal-plus-background and background-only hypotheses are computed using the
asymptotic approximation from ref. [129]. The limits on µ obtained using the asymptotic
approximation, match the limits obtained with toy MC experiments [130] within 10%. The
SM coupling strength modifiers and the cross sections for the various HH production hy-
potheses are measured by scanning the likelihood ratio qµ as a function of µ. Theoretical
and experimental uncertainties affecting the signal and background yields or the shape of
the BDT classifier output distributions may be correlated or uncorrelated across different
years, search categories, and BDT output bins, as described in section 8.

For the case of nonresonant HH production with event kinematics as predicted by the
SM, the best-fit value of the HH production rate, obtained from the simultaneous fit of
all seven search categories, amounts to µ̂ = 2 ± 8 (stat.)±6 (syst.) times the SM expec-
tation. The measured value of the signal strength refers to the sum of ggHH and qqHH
production and is compatible with both the SM and background-only hypotheses, within
statistical and systematic uncertainties. Distributions in the output of the BDT classifier
for SM nonresonant HH production in the seven search categories are shown in figures 7
and 8, and the corresponding expected event yields are given in table 7. The data excess in
the rightmost bin of the BDT classifier output distribution for the 3` category is not sta-
tistically significant: 11 events are observed in this bin, while 5.2 ± 0.7 (stat.)±0.2 (syst.)
are expected from background processes, amounting to a local significance of about 1.7
standard deviations. The observed (expected) 95% CL upper limit on the cross section for
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evaluated for the benchmark scenario JHEP04 BM7 for the 2`ss (upper left), 3` (upper right),
and 4` (lower) categories. The SM HH signal is shown for a cross section amounting to 30 times
the value predicted in the SM. The normalization and shape of the distributions expected for the
background processes are shown for the values of nuisance parameters obtained from the ML fit
of the signal+background hypothesis to the data. The gray shaded area indicates the sum of
statistical and systematic uncertainties on the background prediction obtained from the ML fit.
No data events are observed in the three rightmost bins of the BDT output distribution in the 4`
category.

nonresonant HH production is 651 (592) fb. Taking into account the theoretical uncertain-
ties in the SM HH production cross section, this corresponds to an observed (expected)
limit on the nonresonant HH production rate of 21.3 (19.4) times the SM expectation.
These limits are shown in figure 9 for individual categories and for the combination of all
seven search categories, which is referred to as the “HH → multilepton” result. The 3`
and 1` + 3τh categories are the most sensitive to SM HH production, followed closely by
the other categories.
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Process 2`ss 3` 4`
SM HH →WW∗WW∗ (× 30) 73 ± 6 33 ± 3 2.2 ± 0.2
SM HH →WW∗

ττ (× 30) 31 ± 3 12 ± 1 0.9 ± 0.1
SM HH → ττττ (× 30) 3 ± 0 1 ± 0 0.1 ± 0.0

WZ 2003 ± 58 1321 ± 27 0.4 ± 0.1
ZZ 121 ± 2 109 ± 2 54.7 ± 1.8
Misidentified ` 3939 ± 267 670 ± 55 2.3 ± 1.0
Conversion electrons 1009 ± 170 146 ± 24 0.9 ± 0.4
Electron charge misid. 366 ± 52 — —
Single Higgs boson 216 ± 4 62 ± 1 2.4 ± 0.3
Other backgrounds 2690 ± 224 293 ± 20 4.1 ± 0.4

Total expected background 10 346 ± 396 2601 ± 68 64.8 ± 2.1
Data 10 344 2621 62

Process 3`+ 1τh 2`+ 2τh 1`+ 3τh 4τh
SM HH →WW∗WW∗ (× 30) 0.9 ± 0.1 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0
SM HH →WW∗

ττ (× 30) 4.1 ± 0.3 3.9 ± 0.4 0.6 ± 0.1 0.1 ± 0.0
SM HH → ττττ (× 30) 0.9 ± 0.1 2.3 ± 0.3 2.6 ± 0.4 1.3 ± 0.2

WZ 0.2 ± 0.0 <0.1 <0.1 <0.1
ZZ 24.3 ± 0.8 18.5 ± 1.0 1.9 ± 0.2 0.7 ± 0.1
Misidentified ` and τh 25.1 ± 4.4 33.5 ± 4.6 2.1 ± 1.7 1.5 ± 0.9
Conversion electrons 0.1 ± 0.0 0.1 ± 0.1 <0.1 <0.1
Single Higgs boson 3.8 ± 0.2 2.9 ± 0.5 0.8 ± 0.4 0.4 ± 0.1
Other backgrounds 2.7 ± 0.3 2.1 ± 0.4 0.1 ± 0.0 <0.1

Total expected background 56.2 ± 4.5 57.0 ± 4.8 4.9 ± 1.7 2.6 ± 0.9
Data 55 55 6 1

Process 3` WZ CR 4` ZZ CR
WZ 12 546 ± 148 <1
ZZ 799 ± 24 2032 ± 60
Misidentified ` 908 ± 122 13 ± 4
Conversion electrons 134 ± 22 3 ± 0
Other backgrounds 620 ± 54 59 ± 6

Total expected background 15 006 ± 202 2108 ± 60
Data 14 994 2096

Table 7. The number of expected and observed events in each of the seven search categories, and
in two CRs, which validate the modeling of the WZ and ZZ backgrounds. The `/τh misidentifi-
cation and electron charge misidentification backgrounds are determined from data, as described
in section 7, while the HH signal and all other backgrounds are modeled using MC simulation.
The symbol “—” indicates that the background is not relevant for the category. The HH signal
represents the sum of the ggHH and qqHH production processes and is normalized to 30 times
the event yield expected in the SM, corresponding to a cross section of about 1 pb. The expected
event yields are computed for the values of nuisance parameters obtained from the ML fit described
in section 9. Quoted uncertainties represent the sum of statistical and systematic components.
Uncertainties that are smaller than half the value of the least significant digit have been rounded
to zero.
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Figure 8. Distribution in the output of the BDT trained for nonresonant HH production and
evaluated for the benchmark scenario JHEP04 BM7 for the 3`+ 1τh (upper left), 2`+ 2τh (upper
right), 1`+3τh (lower left), and 4τh (lower right) categories. The SM HH signal is shown for a cross
section amounting to 30 times the value predicted in the SM. The normalization and shape of the
distributions expected for the background processes are shown for the values of nuisance parameters
obtained from the ML fit of the signal+background hypothesis to the data. The gray shaded area
indicates the sum of statistical and systematic uncertainties on the background prediction obtained
from the ML fit.

The observed (expected) 95% CL interval for the H boson trilinear self-coupling
strength modifier is measured to be −6.9 < κλ < 11.1 (−6.9 < κλ < 11.7). The up-
per limit on κλ is one of the strongest constraints on this fundamental SM parameter to
date, with only HH searches in the bbγγ [42, 43] and bbbb [45] decay modes providing
tighter bounds. The observed and expected upper limits on the HH production cross sec-
tion as a function of κλ, obtained from the simultaneous fit of all seven search categories,
are shown in figure 10, along with the limits obtained for each category individually.

The observed and expected limits on the ggHH production cross section for the twenty
benchmark scenarios are shown in figure 11 and summarized in table 8. Signal contribu-
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Figure 9. Observed and expected 95% CL upper limits on the SM HH production cross section,
obtained for both individual search categories and from a simultaneous fit of all seven categories
combined.
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Figure 10. Observed and expected 95% CL upper limits on the HH production cross section as
a function of the H boson self-coupling strength modifier κλ. All H boson couplings other than λ
are assumed to have the values predicted in the SM. The left plot shows the result obtained by
combining all seven search categories, while the right plot shows the limits obtained for each category
separately. The red curve in the left plot represents the SM prediction for the HH production cross
section as a function of κλ, and the red shaded band the theoretical uncertainty in this prediction.
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Figure 11. Observed and expected 95% CL upper limits on the HH production cross section for
the twelve benchmark scenarios from ref. [24], the additional benchmark scenario 8a from ref. [97],
the seven benchmark scenarios from ref. [96], and for the SM. The upper plot shows the result
obtained by combining all seven search categories, while the lower plot shows the limits obtained
for each category separately, and the combined limit.

tions from the qqHH process, at the rate expected in the SM, are about two orders of
magnitude lower than the limits that we set on the rate of the ggHH signal in these mea-
surements and are therefore neglected. The observed (expected) limits on nonresonant HH
production in the different benchmark scenarios range from 0.21 to 1.09 (0.16 to 1.16) pb,
depending on the scenario. These limits are a factor of 2–3 higher than those obtained
by the CMS measurement in the bbγγ final state [42]. The variation in expected limits
reflects differences in the mHH distribution among the benchmark scenarios, which in turn
affect the pT and angles between the particles produced in the H boson decays. As a
consequence, the signal acceptance can change, along with the separation of the HH signal
from backgrounds through the BDT classifiers described in section 6. The most and least
stringent limits on the cross section are expected for the benchmark scenarios JHEP04
BM2 and BM7, respectively. The former has a pronounced tail of the mHH distribution
extending to high values, while the latter is characterized by low mHH values, as seen in
figure 5 of ref. [24].

– 30 –



J
H
E
P
0
7
(
2
0
2
3
)
0
9
5

JHEP04 Observed (expected)
benchmark limit [fb]

BM1 469 (354)
BM2 205 (159)
BM3 563 (447)
BM4 677 (600)
BM5 439 (263)
BM6 739 (584)
BM7 1090 (1156)
BM8 495 (336)
BM9 541 (298)
BM10 988 (855)
BM11 795 (572)
BM12 897 (898)
BM8a 608 (353)
JHEP03 Observed (expected)

benchmark limit [fb]
BM1 888 (650)
BM2 828 (632)
BM3 538 (293)
BM4 559 (436)
BM5 556 (313)
BM6 660 (518)
BM7 525 (280)

Table 8. Observed (expected) 95% CL upper limits on the ggHH production cross section for the
twelve benchmark scenarios from ref. [24], the additional benchmark scenario 8a from ref. [97] and
the seven benchmark scenarios from ref. [96]. The corresponding observed (expected) upper limit
for the SM is 652 (583) fb. The limits correspond to the combination of all seven search categories.

Figure 12 shows the observed and expected upper limits on the HH production cross
section as a function of the coupling c2, and the region excluded in the κt– c2 plane. The
effects of variations in κλ and κt on the rate of the SM single H boson background [21]
and on the H boson decay branching fractions [20] are taken into account when computing
these limits and those shown in figure 10. The magnitude of these effects is typically 5
to 10% within the scanned range of κλ and κt . Assuming κt and κλ are both equal to 1,
the coupling c2 is observed (expected) to be constrained to the interval −1.05 < c2 < 1.48
(−0.96 < c2 < 1.37) at 95% CL.

Similar to the right part of figure 12, Figure 13 shows the observed and expected
regions excluded in the κt–κλ and κλ– c2 planes.

Figure 14 shows the observed and expected limits on the resonant HH production cross
section as a function of mX for a spin-0 or spin-2 particle X decaying to HH. The mass
points probed are listed in the fourth paragraph of section 3. The limits are expected to
become more stringent as mX increases, as the acceptance for the HH signal increases and
the signal can be more easily distinguished from backgrounds. The observed (expected)
95% CL upper limits on the resonant HH production cross section range from 0.18 to
0.90 (0.08 to 1.06) pb, depending on the mass and spin. Tabulated results are provided
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in the HEPData record for this analysis [134]. Only the ATLAS search in the bbγγ final
state achieves more stringent limits at low masses (close to 250GeV) [43], while the low-
mass limits from ATLAS in the bbττ decay mode are roughly the same [35]. Both these
analyses, along with the ATLAS search for bbbb decays [33], set much more stringent
limits at higher masses.

FormX & 600GeV, the observed limit is less stringent than the expected limit, due to a
small excess of events in the data that is concentrated near mX = 750GeV in the 2`ss and 3`
categories. The distributions in the output of the BDT classifier targeting resonances with
spin 2 and mass 750GeV in the 2`ss and 3` categories are shown in figure 15. A small excess
of events can be seen in the rightmost bin of both distributions. In the 2`ss (3`) category,
42 (17) events are observed in this bin in the data, while 27.3 ± 2.8 (stat.)±0.7 (syst.)
(8.0 ± 0.8 (stat.)±0.5 (syst.)) are expected from background processes, amounting to a
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Figure 14. Observed and expected 95% CL upper limits on the production of new particles X of
spin 0 (upper) and spin 2 (lower) and mass mX in the range 250–1000GeV, which decay to H boson
pairs. The plot on the left shows the result obtained by combining all seven search categories, while
the plot on the right shows the limits obtained for each category separately, and the combined limit.

local significance of about 2.1 (2.1) standard deviations. The excess affects the observed
limits in a broad mass range from 600 to 1000GeV. No measurement is made for masses
above 1000GeV, as limits on HH decays producing at least one bottom quark pair are
much more stringent in this phase space [33, 34]. The presence of multiple neutrinos in
HH signal events in these categories, coming from W boson or τ lepton decays, limits the
experimental resolution on mX and causes the BDT classifier output distributions to be
highly correlated for resonances of similar mass. No significant excess is observed in any
of the other five search categories. The significance for the combination of all seven search
categories at 750GeV amounts to 1.9 standard deviations, without accounting for the “look
elsewhere effect” [135].

10 Summary

The results of a search for nonresonant and resonant Higgs boson pair (HH) production
in final states with multiple reconstructed leptons, including electrons and muons (`) and
hadronically decaying tau leptons (τh), has been presented. The search targets the HH
decay modes WW∗WW∗, WW∗

ττ, and ττττ, using proton-proton collision data recorded
by the CMS experiment at a center-of-mass energy of 13TeV and corresponding to an
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Figure 15. Distribution in BDT classifier output for resonances of spin 2 and mass 750GeV
in the 2`ss (left) and 3` (right) categories. The resonant HH signal is shown for a cross section
amounting to 1 pb. The distributions expected for the background processes are shown for the
values of nuisance parameters obtained from the ML fit of the signal+background hypothesis to
the data.

integrated luminosity of 138 fb−1. Seven search categories, distinguished by ` and τh mul-
tiplicity, are included in the analysis: 2`ss, 3`, 4`, 3` + 1τh, 2` + 2τh, 1` + 3τh, and 4τh,
where “ss” indicates an `` pair with the same charge. No evidence for a signal is found
in the data. Upper limits on the cross sections for both nonresonant and resonant HH
production are set. The observed (expected) limits on the nonresonant HH production
cross section in twenty EFT benchmark scenarios range from 0.21 to 1.09 (0.16 to 1.16) pb
at 95% confidence level (CL), depending on the scenario. For nonresonant HH production
with event kinematics as predicted by the standard model (SM), the observed (expected)
95% CL upper limit on the HH production rate is 21.3 (19.4) times the rate expected
in the SM. The results of the search for nonresonant HH production are used to exclude
regions in the plane of the H boson coupling to the top quark, yt , and of the trilinear
Higgs boson self-coupling, λ. Assuming yt has the value expected in the SM, the observed
(expected) 95% CL interval for λ is between −6.9 and 11.1 (−6.9 and 11.7) times the value
expected in the SM. The resonant production of H boson pairs, resulting from decays of
new heavy particles X with mass mX, is probed within the mass range 250–1000GeV. The
corresponding observed (expected) 95% CL upper limits on the cross section for resonant
HH production range from 0.18 to 0.90 (0.08 to 1.06) pb, depending on the mass and spin
of the resonance.
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When using machine learning (ML) techniques, users typically need to choose a plethora of algorithm-specific

parameters, referred to as hyperparameters. In this paper, we compare the performance of two algorithms,

particle swarm optimisation (PSO) and Bayesian optimisation (BO), for the autonomous determination of these

hyperparameters in applications to different ML tasks typical for the field of high energy physics (HEP). Our

evaluation of the performance includes a comparison of the capability of the PSO and BO algorithms to make

efficient use of the highly parallel computing resources that are characteristic of contemporary HEP experiments.

1. Introduction

Machine learning (ML) methods often aid the analysis of the vast

amounts of data that are produced by contemporary high energy

physics (HEP) experiments. The ML algorithms often feature tunable

parameters, referred to as hyperparameters, which need to be chosen

by the user and often have a significant effect on the algorithm’s per-

formance. In a previous publication [1] we presented two different

algorithms, particle swarm optimisation (PSO) and the genetic algo-

rithm, for the autonomous determination of these hyperparameters. In
the present paper we compare the performance of the PSO algorithm,

the more promising of the two algorithms studied in our previous pub-

lication, to the performance of the Bayesian optimisation (BO) [2–6]

algorithm. The latter is widely used for the task of finding optimal

hyperparameter values in the context of ML applications since the pi-

oneering work of Refs. [7–9]. The “asynchronous successive halving

algorithm” (ASHA) [10] is an alternative algorithm for optimising the

values of hyperparameters, which is popular in the ML community out-

side the field of HEP.

As in our previous publication, we formulate the task of determining

the set of optimal hyperparameter values as a function maximisation

problem. More specifically, given an ML algorithm , we seek to find a 
point ℎ in the space  of hyperparameters, such that the performance 
of the ML algorithm  attains its maximum at this point:

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.

E-mail address: laurits.tani@cern.ch (L. Tani).

ℎ̂ = argmax
ℎ∈ 𝑠(ℎ) ,

where the objective (or “score”) function (OF) 𝑠(ℎ) quantifies the per-

formance of the ML algorithm , and the point ℎ at which 𝑠(ℎ) attains 
its maximum is denoted by the symbol ℎ̂. We compare the performance

of the PSO and BO algorithms on two benchmark tasks, the task of find-

ing the minimum of the Rosenbrock function [11], and on a typical

data analysis task in the field of HEP, the “ATLAS Higgs boson machine

learning challenge” [12].

An important aspect in applications of ML algorithms in the field

of HEP is an algorithm’s capability to make efficient use of massively

parallel computing facilities. A single training of an ML algorithm on a
single machine may take several hours, days, or, in extreme cases, even

weeks. In the context of the hyperparameter optimisation task, such a
single training corresponds to a single evaluation of the OF 𝑠(ℎ). In order 
for the hyperparameter optimisation task to finish within an acceptable

time, different evaluations of the OF, i.e. different ML trainings, need

to be executed in parallel. The computing facilities of contemporary

HEP experiments typically allow users concurrent access to hundreds,

sometimes even thousands, of machines. It is therefore of high prac-

tical relevance whether the PSO and BO algorithms can organise the

hyperparameter optimisation task such that hundreds of ML trainings

can be executed in parallel. We find that both algorithms fulfill this re-

quirement, but do exhibit some differences in performance compared

https://doi.org/10.1016/j.cpc.2023.108955
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to the case that all ML trainings are executed sequentially on a single

machine.

The manuscript is structured as follows: In Section 2, we present the

main concepts of the BO algorithm. The PSO algorithm is described in
Ref. [1]. In Section 3, we compare the performance of the PSO and BO

algorithms on the two benchmark tasks. The study of the parallelisation

capability of the two algorithms is presented in Section 4. We conclude

the paper with a summary in Section 5.

2. Bayesian optimisation

The BO algorithm is designed to facilitate the numerical maximisa-

tion of objective functions 𝑠(ℎ) which are time-consuming to evaluate 
and for which the analytical form is in general not known. The BO al-

gorithm further allows to solve the maximisation task without using

derivative information on 𝑠(ℎ).
This is achieved by performing the maximisation not on 𝑠(ℎ) di-

rectly, but on an approximation of 𝑠(ℎ), which is referred to as the 
“surrogate” function (SF). The SF is chosen such that it is fast to eval-

uate and its analytic form, including its derivative, is known. We use a
Gaussian process [13] with the Matérn kernel [14] for the SF in this pa-

per. For each point ℎ ∈ , the SF provides two values: an estimate for 
the value 𝑠(ℎ) of the OF and a confidence interval. The latter represents 
an estimate of the accuracy of the approximation of the OF by the SF at

this point.

The numerical maximisation of the OF is performed by an iterative

procedure. Each iteration consists of two steps: The first step consists

of finding the next point ℎ for which to perform the time-consuming 
evaluation of the OF. The task of finding this point is performed by an

“acquisition function” (AF). The inputs to the AF consist of the estimate

for the values 𝑠(ℎ) provided by the SF and the estimated accuracy of the 
approximation of the OF by the SF at this point. In the second step, the

SF is updated with the information of the value of the OF at the point ℎ, 
in order to improve the accuracy of the approximation. Each evaluation

of the OF thus serves two purposes: first, to find points ℎ where the OF 
attains a higher value 𝑠(ℎ) compared to previously found points and sec-

ond, to improve the accuracy of the approximation of the OF by the SF.

We use the expected improvement (EI) [15] for the AF in this paper. The

time-consuming evaluation of the OF is performed at the point where

the AF reaches its maximum. The search for the maximum of the AF is
performed numerically, using the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) [16–19] algorithm. The numeric search for the maximum takes

advantage of the fact that both the SF and the AF are fast to evaluate,

which allows multiple evaluations of the SF and AF to be made in order

to find the best point for which to make the time-consuming next eval-

uation of the OF. The EI acquisition function has a parameter, denoted

by the symbol 𝜉, that allows to regulate how much importance is given 
to finding points ℎ where the OF attains a high value (“exploitation”) 
versus finding points which improve the accuracy of the approximation

(“exploration”). The former are typically located in the neighbourhood

of previously found points, while the latter are typically located in pre-

viously unexplored regions of the space . Higher values of 𝜉 result 
in more exploration and lower values in more exploitation. The update

of the SF after each evaluation of the OF is the feature to which the

Bayesian optimisation algorithm owes its name. The SF is referred to as

“prior function” before evaluating the OF and as “posterior function”

afterwards.

The BO algorithm is started by evaluating the OF at an initial set of

points and fitting the SF to the values 𝑠(ℎ) of the OF at these points. 
This initial set of points is chosen with the objective of populating the

space  uniformly. We use the Latin hypercube [20] algorithm to ob-

tain this initial set of points. After fitting the SF to the values 𝑠(ℎ) of the 
OF at these points, the BO algorithm enters the iterative phase: Given

the SF, the BFGS algorithm is used to find the location where the AF at-

tains its maximum. The OF is then evaluated at this point and the SF

is updated. These steps are repeated until either the algorithm has con-

Fig. 1. Example for the operation of the BO algorithm: iteration 7. (For inter-

pretation of the colours in the figure(s), the reader is referred to the web version

of this article.)

Fig. 2. Example for the operation of the BO algorithm: iteration 8.

verged, indicated by changes in the value of the OF that fall below a
given threshold, or the computing resources are exhausted, i.e. a maxi-

mum number of iterations or a computing-time limit is reached.

The operation of the BO algorithm is illustrated by means of an ex-

ample in Figs. 1 and 2, which visualise the seventh and eighth iteration

of the BO algorithm, respectively. The OF is represented by the solid

blue line and the SF by the dashed black line in the upper part of each

figure. The red diamond-shaped markers indicate the points where the

OF has been evaluated previously (including 2 initial points, which were 
chosen randomly in this example). The shaded blue area represents the

confidence interval that quantifies the accuracy of the approximation

of the OF by the SF. The AF is represented by the solid red line in the

lower part of the figures. The yellow circle along the red line indicates

the maximum of the AF, i.e. the point ℎ where the next evaluation of 
the OF is performed.

The BO algorithm has been implemented as described above by the

authors. We have validated our implementation by comparing its per-

formance to the implementation of the BO algorithm included in the

scikit-optimize [21] package.

The BO algorithm that we described above allows to evaluate the

OF at one point ℎ per iteration of the algorithm. This is well suited for 
executing the BO algorithm sequentially on a single machine. For the

purpose of optimising the hyperparameters of ML algorithms the train-

ing of which is performed on massively parallel computing facilities,

the iterative phase of the BO algorithm needs to be extended to provide

multiple points ℎ per iteration of the BO algorithm. This extension of 
the BO algorithm is non-trivial and still a field of active research [22]. In
this paper, we follow the approach described in Ref. [23], referred to as

“multi-points expected improvement” (𝑞-EI), and use the implementa-

tion provided by Ref. [24] when running the hyperparameter parameter

optimisation on multiple machines in parallel.
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Table 1

Parameter settings for the BO algo-

rithm. The parameter 𝑁𝑝𝑜𝑖𝑛𝑡𝑠
𝑖𝑛𝑖𝑡 refers 

to the number of points, obtained 
from the Latin hypercube algo-

rithm, that are used to initialise the 
BO algorithm. The parameter 𝜉 reg-

ulates the relative importance of ex-

ploitation versus exploration of the 
EI acquisition function.

Parameter Value

𝑁𝑝𝑜𝑖𝑛𝑡𝑠
𝑖𝑛𝑖𝑡 100

𝜉 0.01

Table 2

Parameter settings for the PSO al-

gorithm. The parameters are de-

scribed in Ref. [1].

Parameter Value

𝑁𝑖𝑛𝑓𝑜 10
𝑐1 1.62
𝑐2 1.62
𝑤𝑚𝑖𝑛 0.4
𝑤𝑚𝑎𝑥 0.8

3. Performance

In this section, the performance of the PSO and BO algorithms is 
compared on the two benchmark tasks: the finding of the minimum of 
the Rosenbrock function and the ATLAS Higgs boson machine learning 
challenge.

3.1. Rosenbrock function

The Rosenbrock function [11] is a widely used trial function for 
evaluating the performance of function minimisation algorithms. It is 
defined as:

𝑅(𝑥, 𝑦) = (𝑎− 𝑥)2 + 𝑏(𝑦− 𝑥2)2 . (1)

Its domain is the x–y plane and it depends on two parameters 𝑎
and 𝑏. The global minimum of the Rosenbrock function is located at 
(𝑥, 𝑦) = (𝑎, 𝑎2). We choose the two parameters to be 𝑎 = 1 and 𝑏 = 10, re-

sulting in the minimum to be located at (𝑥, 𝑦) = (1, 1) and the value of 
the Rosenbrock function at the minimum to be 𝑅(1, 1) = 0. See Fig. 3 
in Ref. [1] for a visualisation of the Rosenbrock function around the 
minimum.

We treat the task of finding the minimum of the Rosenbrock func-

tion as a two dimensional hyperparameter optimisation problem. The 
optimal set of hyperparameters is scanned in the range of [−500, +500] ×
[−500, +500].

Both the BO and the PSO algorithms were executed for 30 iterations. 
During each iteration, 100 different hyperparameter sets were evaluated 
in parallel. The parameter settings for both algorithms are given in Ta-

bles 1 and 2. The minimisation of the Rosenbrock function was repeated 
for 1000 trials, using a different random number seed for each trial.

Performance We denote the location of the minimum found in each 
trial 𝑖 by the symbol ̂̂ℎ𝑖 and the value of the Rosenbrock function at 
these points by the symbol ̂̂𝑅𝑖 =𝑅( ̂̂ℎ𝑖). The average of these values over 
the 1000 trials, ⟨ ̂̂𝑅⟩ = 1

1000 ⋅
∑1000

𝑖=1
̂̂𝑅𝑖, is shown in Fig. 3. For the first 10

iterations, the BO algorithm converges faster to the minimum than the 
PSO algorithm, but improves less rapidly than the PSO algorithm for 
more than 10 iterations. This difference in the rate of convergence is 
expected, since the BO algorithm has been developed for applications 
where the number of evaluations of the OF is in the order of a few 
hundred to a thousand [22] (here it is 3000, given by the product of 30

Fig. 3. Minimum of the Rosenbrock function found by the BO and PSO algo-

rithms, as function of the number of iterations. The lines represent the average 
performance over 1000 trials and the shaded bands the variation (standard de-

viation) of the performance.

Table 3

Minimum and maximum values of 
the hyperparameters for the HBC. 
The hyperparameters are detailed 
in Ref. [12].

Hyperparameter min max

num-boost-round 1 500
learning-rate 10−5 1
max-depth 1 6
gamma 0 5
min-child-weight 0 500
subsample 0.8 1
colsample-bytree 0.3 1

iterations times 100 different hyperparameter sets that are evaluated in 
parallel per iteration). Neither the BO nor the PSO algorithm converges 
to the true minimum 𝑅 = 0 within 30 iterations. We have shown in 
Ref. [1] that the PSO algorithm converges to the true minimum after 104
iterations. The shaded band in Fig. 3 represents the standard deviation 
of the ̂̂𝑅𝑖 over the 1000 trials.

3.2. The ATLAS Higgs Boson machine learning challenge

The ATLAS Higgs Boson machine learning challenge (HBC) [12] consti-

tutes the second benchmark task for evaluating the performance of the 
BO and PSO algorithms. As in our previous publication [1], we choose a 
boosted decision tree (BDT), implemented in the XGBoost [25] package, 
for the ML algorithm. The hyperparameter optimisation is performed 
with respect to the 7 hyperparameters given in Table 3 of Ref. [1]. Dur-

ing the optimisation, each of the 7 hyperparameters is restricted to be 
within the range given in Table 3.

The optimisation of the hyperparameters by the BO and PSO algo-

rithms was run for 30 iterations. 70 BDTs, initialised with different ran-

dom number seeds, were trained in parallel per iteration. The parameter 
settings used for the BO and PSO algorithm are the same as for the task 
of finding the minimum of the Rosenbrock function and are given in 
Tables 1 and 2, except for the parameter 𝑁𝑖𝑛𝑓𝑜 of the PSO algorithm, 
which was set to 7 for the HBC task. The 550000 signal and background 
events provided by the organisers of the HBC are split into training and 
test sets as described in Ref. [1]. The “modified approximate mean sig-

nificance” (d-AMS) defined by Eq. (8) of Ref. [1] was used as objective 
function for the BDT training. The d-AMS scores were computed setting 
the coefficient 𝜅 that controls the penalty term against overtraining to 
0.3. The hyperparameter optimisation was repeated for 100 trials.
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Table 4

Average values (𝜇) of the hyperparameters found by the BO 
and PSO algorithms and their standard deviation (𝜎) for the 
HBC task.

Hyperparameter
BO PSO

𝜇 𝜎 𝜇 𝜎

num-boost-round 364.3 85.2 413.7 85.4
learning-rate 0.126 0.041 0.089 0.024
max-depth 3.9 0.7 4.5 0.7
gamma 1.78 2.00 2.81 1.47
min-child-weight 352.7 130.1 440.4 72.4
subsample 0.861 0.081 0.871 0.066
colsample-bytree 0.852 0.268 0.859 0.145

Fig. 4. Evolution of the AMS score as function of the number of iterations for

the HBC task. The lines represent the average performance over 100 trials.

3.2.1. Results

The average hyperparameter values found by the BO and PSO algo-

rithms over the 100 trials and the standard deviation of these values are 
reported in Table 4. The values found by both algorithms are similar.

The gamma hyperparameter has little effect on the d-AMS score and is
thus not well constrained by the optimisation.

The performance of BDTs is evaluated on two separate samples of

events, referred to as the public and private leaderboard samples [1,12].

Following Ref. [1], the performance is quantified by the “approximate

mean significance” (AMS) score. The latter is averaged over the 100 tri-

als. The motivation for using the d-AMS score as objective function for

the training, while the (final) performance is quantified using the AMS

score is detailed in Ref. [1]. The evolution of the average performance

as function of the number of iterations is shown in Fig. 4. The bottom

part of the figure shows the evolution of the d-AMS score, the objec-

tive function used for the BDT training. While the d-AMS score keeps

increasing monotonously with more iterations, the AMS scores on the

public and private leaderboard samples reach a plateau already after

5–10 iterations. In subsequent iterations, the AMS scores start to fluctu-

ate around the plateau. The magnitude of the fluctuations is of (10−2). 
The differences in performance between the public and private leader-

board samples are compatible with a statistical fluctuation of the signal

and background events contained in these samples [12]. The BO and

PSO algorithms achieve a similar performance on the HBC task.

4. Parallelisation capability

The capability of the BO and PSO algorithms to make efficient use

of parallel computing resources is studied on the task of finding the

minimum of the Rosenbrock function. We denote by 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 the num-

ber of points ℎ in hyperparameter space that are evaluated in parallel 
per iteration of the BO and PSO algorithms. The value of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 rep-

resents the number of ML trainings that are executed in parallel on

different machines. Ideally, the duration (“wall time”) of the hyper-

parameter optimisation task should decrease inversely proportional to
𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 , except for some (small) overhead imposed by the BO and PSO 
algorithms.

Bayesian optimisation Based on the literature [22], one expects the BO

algorithm to perform best when all ML trainings are performed sequen-

tially on a single machine, with one point ℎ in hyperparameter space 
evaluated per iteration. We have compared the performance, quanti-

fied by the values of ⟨ ̂̂𝑅⟩, obtained when executing our implementation 
of the BO algorithm (described in Section 2) sequentially on a single

machine (𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 1) with the performance obtained by the 𝑞-EI al-

gorithm from Ref. [24], with the latter running either 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 2, 5, 
10, 25, 50, 100, 250, 500 or 1000 ML trainings in parallel. We find that 
the values of ⟨ ̂̂𝑅⟩ are very similar in all cases and mainly depend on 
the total number of evaluations of the Rosenbrock function, given by

the product of the number of iterations times 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 . For 3000 evalu-

ations, the value of ⟨ ̂̂𝑅⟩ amounts to about 102 for all values of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
that we have tried.

The computing (CPU) time overhead imposed by the BO algorithm

for updating the SF and finding the maximum of the AF amounts to
about 50 CPU hours on a 2.30 GHz Intel® Xeon® E5-2695 v3 proces-

sor. The overhead does not vary much as function of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 . The task 
of updating the SF and finding the maximum of the AF needs to run

(as a “supervisor” task) on a single machine. The overhead is sizeable

compared to the computing time spent on performing 3000 evaluations 
of the Rosenbrock function, which only takes 0.06 CPU seconds, but 
becomes less important for “real” ML training applications: The total

computing time spent on the HPC task (with 30 iterations and 70 ML 
trainings running in parallel) amounts to about 500 CPU hours.

Particle swarm optimisation In contrast to the BO algorithm, the ca-

pability to make efficient use of parallel computing resources is an

intrinsic feature of the PSO algorithm. We find that the performance of

the PSO algorithm depends on the value of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 , which corresponds 
to the number of particles in the swarm, in a non-trivial manner. Both

too small and too large values of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 degrade the performance of 
the PSO algorithm compared to the optimal value. We find that the opti-

mal value of 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 amounts to about 2% times the total number (𝑁𝑡𝑜𝑡) 
of evaluations of the Rosenbrock function, i.e. the best performance of

the PSO algorithm is achieved when using 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 0.02 ⋅𝑁𝑡𝑜𝑡 particles 
in the swarm and a fixed number of 50 iterations (up to 10000 evalua-

tions of the Rosenbrock function that we have tried). We recommend to
set the parameter 𝑁𝑖𝑛𝑓𝑜 of the PSO algorithm to 10% times 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 .

We find that the CPU time overhead imposed by the PSO algorithm

(spent on updating the positions and momenta of the particles in the

swarm) is negligible for both benchmark tasks.

The CPU time overhead limits the “speedup” (reduction in wall

time) that one can achieve by increasing the number of points in hy-

perparameter space that are evaluated in parallel. The effect is referred

to as “Amdahl’s law” [26] in the literature and visualized in Fig. 5.

An ideal algorithm with negligible overhead would achieve a speedup

factor equal to 𝑁𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 in this figure. The speedup achieved by the 
PSO algorithm on both benchmark tasks is very close to the ideal case.

The CPU time overhead limits the speedup factor achievable by the

BO algorithm to about 3 for the task of finding of the minimum of the 
Rosenbrock function and to about 12 for the HBC task.

5. Summary

We have compared the performance of two autonomous algorithms

for the optimisation of hyperparameters, Bayesian optimisation (BO)
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Fig. 5. Amdahl’s law: Parallelisation properties of the BO and PSO algorithms

on the two benchmark tasks. The two curves for the PSO algorithm are very

close.

and particle swarm optimisation (PSO), on two benchmark tasks typi-

cal for ML applications in the field of high energy physics: the task of

finding the minimum of the Rosenbrock function and the ATLAS Higgs

boson machine learning challenge.

We find that the BO algorithm performs better than the PSO algo-

rithm when the total number of evaluations of the Rosenbrock function

(equivalent to the number of ML trainings) is of the order of a few hun-

dred to a few thousand. If the number of evaluations (ML trainings) is
large, the PSO algorithm outperforms the BO algorithm.

The capability of both algorithms to make efficient use of parallel

computing resources is good. In particular, we find that the “multi-

points expected improvement” of the BO algorithm provides similar

performance when running on parallel computing resources compared

to executing the BO algorithm sequentially on a single machine. In

the case of the PSO algorithm, we found that the best performance is
achieved by setting the number of particles in the swarm to 2% times 
the total number of function evaluations (ML trainings) and using a
fixed number of 50 iterations.

We found that the BO algorithm may add a significant compu-

tational overhead to the task of finding the optimal hyperparameter

values, while for the PSO algorithm the overhead is insignificant.
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Identifying and reconstructing hadronic 𝜏 decays (𝜏h) is an important task at current and future high-energy 
physics experiments, as 𝜏h represent an important tool to analyze the production of Higgs and electroweak 
bosons as well as to search for physics beyond the Standard Model. The identification of 𝜏h can be viewed as a 
generalization and extension of jet-flavour tagging, which has in the recent years undergone significant progress

due to the use of deep learning. Based on a granular simulation with realistic detector effects and a particle

flow-based event reconstruction, we show in this paper that deep learning-based jet-flavour-tagging algorithms

are powerful 𝜏h identifiers. Specifically, we show that jet-flavour-tagging algorithms such as LorentzNet and 
ParticleTransformer can be adapted in an end-to-end fashion for discriminating 𝜏h from quark and gluon jets. 
We find that the end-to-end transformer-based approach significantly outperforms contemporary state-of-the-art

𝜏h reconstruction and identification algorithms currently in use at the Large Hadron Collider.

1. Introduction

Jets constitute an important experimental signature at current and

future high-energy physics experiments. The task of identifying or “tag-

ging” the parton that originated the jet based on its constituent structure

has undergone remarkable progress in recent years, driven by super-

vised machine learning on open datasets, see e.g. Refs. [1,2] for a

review. In particular, the application of advanced deep-learning (DL)

techniques, originally developed for image, natural-language and point-

cloud processing, has enabled fine-grained and robust classification

based on the rich information available in the particle constituents of a
jet. Hadronic 𝜏 decays (𝜏h) can be regarded as a special type of highly-

collimated jets of low particle multiplicity. This motivated us to study

the prospects for applying the same techniques to the task of identify-

ing 𝜏h based on the particle content of the 𝜏h candidates. The results of 
this study are presented in this paper.

With a lifetime of 2.9 × 10−13 seconds, the 𝜏 lepton decays almost 
instantaneously. It can thus not be detected directly, but the particles

produced in the 𝜏 decay can. The reconstruction and identification of 𝜏
leptons is thus based on the reconstruction of the 𝜏 decay products. In 
about one-third of the cases the 𝜏 decays to an electron or muon plus 
two neutrinos. In the remaining two-thirds of the cases, the 𝜏 decays 

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.

E-mail address: laurits.tani@cern.ch (L. Tani).

into one neutrino plus a system of hadrons, consisting of typically either

one or three charged pions (𝜋±) or kaons (K±) and up to two neutral 
pions (𝜋0). The 𝜋0 mesons decay nearly instantly and almost exclusively 
to a pair of photons. Decays of 𝜏 leptons into five charged mesons are 
rare [3]. In the energy range of interest, the 𝜋± and K± produced in 
the 𝜏 decays are difficult to distinguish experimentally. We collectively 
refer to them using the symbol h±. We further introduce the symbol 
𝜏h to refer to the system of all hadrons produced in the 𝜏 decay. The 
decays of 𝜏+ and 𝜏− are related by charge conjugation invariance.

The 𝜏 lepton is instrumental for Standard Model (SM) precision mea-

surements as well as for searches for physics beyond the SM (BSM).

Measurements of the 𝜏 lepton’s properties, such as its lifetime, mass, 
and branching fractions allow to test the universality between lepton

generations of the charged-current coupling, while measurements of its
spin polarization allow to probe the neutral-current coupling of the 𝜏
lepton [4,5]. Measurements of hadronic 𝜏 decays allow to study per-

turbative and non-perturbative effects in quantum chromodynamics.

A variety of models for BSM physics predict new particles that pre-

dominantly decay to 𝜏 leptons, such as models with extended gauge 
symmetries that manifest themselves through heavy charged and neu-

tral gauge bosons [6–8], models of third generation lepto-quarks [9],

supersymmetric models [10–18], and models with an extended Higgs

https://doi.org/10.1016/j.cpc.2024.109095
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sector [19–23]. The 𝜏 lepton is also important for tests of lepton-flavour 
violation, which may reveal itself in 𝜏 decays [4,5] as well as in lepton-

flavour violating decays of Z [24,25] and Higgs (H) [26,27] bosons to
a 𝜏 lepton and an electron or muon. The sizable coupling of the 𝜏 lep-

ton to the H boson has been used to probe the H boson coupling to
fermions [28,29] and to study the Higgs potential [30,31].

In this paper, we focus on the identification of hadronic 𝜏 decays. 
The e and 𝜇 produced in 𝜏 decays can be reconstructed and identi-

fied using standard algorithms for electron and muon reconstruction.1

Our study is performed in electron–positron (e+e−) collisions at the

CLIC linear collider [34] at a centre-of-mass energy of 
√
𝑠 = 380 GeV. 

The motivation for performing the study in e+e− collisions is twofold: 
first, because a detailed simulation of the CLICdet detector [35] and

a performant event reconstruction based on the particle-flow (PF) ap-

proach [36–38] is publicly available. The PF approach combines infor-

mation provided by tracking detectors with calorimeter information.

Our experience at the Large Hadron Collider (LHC) is that the PF ap-

proach greatly benefits the identification of hadronic 𝜏 decays. Second, 
the literature on 𝜏h identification at future high-energy e+e− experi-

ments is sparse and often based on simple algorithms similar to those

used by the ATLAS and CMS collaborations during the start-up of the

LHC [39,40]. Relevant references are [41–43]. Refs. [44–46,4] focus on

distinguishing between individual hadronic decay modes of the 𝜏 lep-

ton, which is important in particular for measurements of its branching

fractions and for 𝜏 spin polarization measurements.

The main result of this paper is that the advancements in DL tech-

niques that drove the progress in jet-flavour tagging significantly im-

prove the identification of hadronic 𝜏 decays. We compare the per-

formance of two recently published algorithms for jet-flavour tagging,

LorentzNet [47] and ParticleTransformer [48], to state-of-the-art 𝜏h re-

construction and identification algorithms currently in use at the LHC,

the “hadrons-plus-strips” (HPS) [49,50] and DeepTau [51] algorithms.

The reconstruction and identification of 𝜏h by the latter algorithms pro-

ceeds in two steps: In the first step the 𝜏h are reconstructed by the HPS 
algorithm, and in the second step the reconstructed 𝜏h are identified by 
the DeepTau algorithm, where “identification” refers to discriminating

the 𝜏h from quark and gluon jets. The HPS algorithm has been devel-

oped by domain experts and does not employ machine-learning tech-

niques, while the DeepTau algorithm is based on a convolutional deep

neural network (DNN). We have retrained the DeepTau algorithm for

e+e− collisions, using the same event samples for its training as for the 
LorentzNet and ParticleTransformer algorithms. We use the combina-

tion of the HPS algorithm for 𝜏h reconstruction and DeepTau algorithm 
for 𝜏h identification as reference for state-of-the-art algorithms against 
which we compare the performance of the DL-based algorithms. The lat-

ter perform the tasks of 𝜏h reconstruction and identification in a single 
step, following an end-to-end approach. Our choice of the LorentzNet

and ParticleTransformer algorithms is based on Ref. [47], which re-

ported that the LorentzNet algorithm outperforms alternative DL-based

jet-flavour tagging algorithms such as the ResNeXt-50 [52], Particle-

FlowNetwork [53], and ParticleNet [54] algorithms on different jet

tagging tasks. The ParticleTransformer algorithm has been developed

by the same group of authors as the LorentzNet algorithm. It extends

the latter by using additional input variables, which we expect may in-

crease the 𝜏h identification performance. We believe this result to be 
applicable to future high-energy e+e− experiments such as CEPC [42], 

1 The small distance that a 𝜏 lepton typically travels between its production 
and decay, results in a finite impact parameter of the electron or muon track

with respect to the primary event vertex, which provides a handle to distin-

guish e and 𝜇 produced in the primary e+e− collision from those resulting from 
𝜏 decays. The neutrinos produced in leptonic 𝜏 decays provide another han-

dle to this end. Their momenta can be inferred from energy and momentum

conservation or computed, with improved resolution, by means of dedicated

algorithms [32,33].

CLIC [34], FCC-ee [55], and ILC [56] as well as to proton–proton (pp)

collisions at the LHC.

The paper is structured as follows: In Section 2, we detail the sim-

ulated samples of 𝜏h and of quark and gluon jets that we use to study 
the 𝜏h reconstruction and identification performance. The reconstruc-

tion of muons, electrons, photons, charged and neutral hadrons via the

PF method, which are used as input for the 𝜏h identification, is de-

scribed in the same section. In Section 3, we present the LorentzNet and

ParticleTransformer algorithms. The performance of these algorithms

is compared to the performance of the HPS and DeepTau algorithms

in Section 4. The HPS and DeepTau algorithms are described in the

appendix. Our motivation for documenting the HPS and DeepTau algo-

rithms in the appendix is to concisely summarize the relevant informa-

tion of Refs. [49–51] and to record the few adjustments that we have

made to adapt the algorithms to e+e− collisions. We conclude the paper 
with a summary and an outlook in Section 5.

2. Monte Carlo samples and event reconstruction

The optimization and subsequent performance evaluation of the 𝜏h

identification algorithms is based on a set of Monte Carlo (MC) event

samples. The samples are generated for e+e− collisions at a centre-of-

mass energy of 
√
𝑠 = 380 GeV, using the program PYTHIA8 [57]. We 

generate 1 million “signal” events of Z∕𝛾∗ → 𝜏𝜏 and ZH, H → 𝜏𝜏 each 
and 2 million “background” events of Z∕𝛾∗ → qq̄′. The ZH, H → 𝜏𝜏 sam-

ple is used to train the LorentzNet, ParticleTransformer, and DeepTau

algorithms and to evaluate their performance. The Z∕𝛾∗ → 𝜏𝜏 sample is 
used as a cross check when evaluating the algorithms’ performance, to
examine that the algorithms did not exploit differences in event kine-

matics between the ZH, H → 𝜏𝜏 signal and the Z∕𝛾∗ → qq̄′ background, 
as this would result in an overly optimistic assessment of the algorithms’

performance. To this end, suitable chosen weights are applied to the

samples of 𝜏h and jets used for the training of the DeepTau, LorentzNet, 
and ParticleTransformer algorithms. The weights are chosen such that

the distributions in polar angle 𝜃 and transverse momentum 𝑝T of the 
reconstructed jets become identical for the ZH, H → 𝜏𝜏 signal and the 
Z∕𝛾∗ → qq̄′ background. Since we expect the probability for a quark or 
gluon jet to be misidentified as 𝜏h to be in the order to 10−2 or below, it 
is particularly important to have sufficient background statistics. The 𝜏
decays are simulated using PYTHIA8, and the generator tune and other

settings are based on Ref. [58]. No 𝛾𝛾 → hadrons overlay background 
is included in our simulation. The study of this overlay is left to future

work.

The stable particles from PYTHIA8 are passed to a full GEANT4 [59]-

based detector simulation and subsequent reconstruction based on the

CLICdet detector [35] and the MARLIN reconstruction code [60], in-

terfaced in the KEY4HEP [61] software package. We use the CLICdet

detector (CLIC_o3_v14), as the detector design has been thoroughly

studied, and a rather complete implementation of tracker, calorimeter

and particle flow reconstruction is available. The CLICdet detector is
optimized for precision physics and is based on a silicon pixel detec-

tor and tracker, a Si-W electromagnetic calorimeter and a scintillating

hadronic calorimeter, encased in a 4T solenoid. More details about the

expected physics performance, including track and jet energy recon-

struction properties, is available in [62] and references therein. More-

over, the CLICdet detector is conceptually similar to the proposed CLD

detector for the FCC-ee [63], and thus a relevant benchmark model for

particle identification and reconstruction studies.

Based on the MARLIN reconstruction in KEY4HEP, the output of the

simulation and reconstruction chain is a set of PANDORA [36–38] par-

ticle flow candidates for each event, described by a four-momentum, a
charge and a particle identification label: electron (e), muon (𝜇), photon 
(𝛾), charged hadron (h±), and neutral hadron (h0). The PANDORA parti-

cle flow algorithm aggregates calorimeter hits to clusters and combines

tracks and calorimeter clusters to reconstruct stable particle candidates.
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The ParticleTransformer and DeepTau algorithms use the transverse

(𝑑xy) and longitudinal (𝑑z) impact parameters of tracks to improve the 
discrimination of 𝜏h and jets. In jets arising from the hadronization of 
light quarks and gluons, the 𝑑xy and 𝑑z of the tracks are expected to 
be compatible with zero within their respective uncertainties (𝜎𝑑xy and 
𝜎𝑑z), while non-zero impact parameters are expected for the charged 
particles produced in 𝜏 decays, reflecting the small distance that 𝜏 lep-

tons travel between their production and decay. The 𝑑xy and 𝑑z are 
not part of the KEY4HEP format used in PANDORA and thus need to be

computed for the work presented in this paper. As the distances that 𝜏
leptons travel between their production and decay are typically small

compared to the expected radius of curvature of the tracks originating

from the 𝜏 decay, we simplify the task of computing the 𝑑xy and 𝑑z by 
using a linear approximation to the equations of motion for a charged

particle in a magnetic field [64]. Details of this approximation are doc-

umented in the repository of the code [65].

The particle flow candidates are clustered to jets using the general-

ized 𝑘t algorithm for e+e− collisions (ee_genkt) [66] with 𝑝 = −1 and 
𝑅 = 0.4. All jets considered in this paper are required to satisfy the con-

ditions 10 < 𝜃 < 170◦ and 𝑝T > 20 GeV, where the symbol 𝜃 refers to 
the polar angle, with the 𝑧-axis taken to be the beam axis, and 𝑝T to the 
transverse momentum. The condition on 𝜃 selects jets within the geo-

metric acceptance of the tracking detector. Due to the Lorentz boost in
𝜏 direction, the particles produced in 𝜏 decays become more collimated 
in the detector as the energy of the 𝜏 lepton increases. The selection 
𝑝T > 20 GeV ensures that, in the signal samples, all particles produced 
in 𝜏 decays are within a narrow inner region of the jet.

The jets reconstructed in Z∕𝛾∗ → 𝜏𝜏 and ZH, H → 𝜏𝜏 signal events 
are required to be matched to generator-level 𝜏h within Δ𝑅 < 0.4, while 
those reconstructed in Z∕𝛾∗ → qq̄′ background events are required to be 
matched to either a quark or a gluon on generator level. The distance

Δ𝑅 between generator-level and reconstructed particles is computed as:

Δ𝑅 =
√

(𝜃𝑖 − 𝜃𝑗 )2 + (𝜙𝑖 − 𝜙𝑗 )2 , (1)

where the symbol 𝜙 denotes the azimuthal angle of the jet, the subscript 
𝑖 refers to the direction of the reconstructed jet, and the subscript 𝑗
to that of the generator-level 𝜏h, quark, or gluon. Reconstructed jets 
that are close to generator-level electrons or muons are removed from

the signal and background samples. This leaves us with approximately

1.2 and 0.9 million reconstructed jets in the Z∕𝛾∗ → 𝜏𝜏 and ZH, H →
𝜏𝜏 signal samples, respectively, and 3.5 million jets in the background 
sample.

For each jet, we store the associated particle-flow candidates as well

as the jet four momentum. The samples are shuffled and divided to

mutually exclusive train-validation-test samples with a 26 ∶ 9 ∶ 65%
split. The training dataset is used to optimize the parameters of the

LorentzNet, ParticleTransformer, and DeepTau algorithms, while the

validation dataset is used to monitor the training. The final performance

of the different algorithms is evaluated using the test dataset.

3. Tau identification algorithms

The discrimination between 𝜏h from jets takes advantage of the fact 
that 𝜏h are typically more collimated and contain fewer particles com-

pared to quark and gluon jets. Distributions of the jet radius and of the

number of particles in the jet are shown in Fig. 1 for illustration. The

jet radius ⟨𝑟⟩ is defined by:

⟨𝑟⟩ =

∑
𝑖

𝑝𝑖
T
Δ𝑅

∑
𝑖

𝑝𝑖
T

, (2)

where the sum extends over all particles 𝑖 within the jet and the distance 
Δ𝑅 between the direction of the jet 𝑗 and particle 𝑖 is given by Eq. (1). 
We also show the distribution in jet mass. Quark and gluon jets typically

have a higher mass than 𝜏h, reflecting the higher particle multiplicity 
and wider angular spread, while the mass of 𝜏h is bounded from above 
by the 𝜏 lepton mass of 1.777 GeV [3].

Each 𝜏h identification algorithm considered in this paper is seeded 
by the collection of jets described in Section 2 and uses the constituent

particles of these jets as input to the 𝜏h reconstruction. The output of 
each algorithm is a discriminant 𝜏 in the range 0 to 1, where a value 
of 1 means that the jet is identified as 𝜏h, while a value of 0 means that 
the jet is identified as originating from the hadronization of either a
quark or a gluon.

All constituents of the jet are considered in the 𝜏h reconstruction. 
No selection on 𝜃 and 𝑝T of the jet constituents is applied, because we 
observed that not applying such selection improves (by a small amount)

the 𝜏h identification performance. We remark that it may be necessary 
to apply a 𝑝T threshold on the jet constituents in order to reduce the 
effect of the 𝛾𝛾 → hadrons overlay background, which is not included 
in our simulation, or in case particles of low 𝑝T are not well modelled

by the MC simulation.

The performance of each algorithm is evaluated in terms of 𝜏h identi-

fication efficiency and of the misidentification rate for quark and gluon

jets. We denote the former by the symbol 𝜀𝜏 and the latter by 𝑃misid. The 
𝜏h identification efficiency corresponds to the probability for a genuine 
𝜏h in the Z∕𝛾∗ → 𝜏𝜏 and ZH, H → 𝜏𝜏 signal samples to pass a selection 
on the discriminant 𝜏 , while the misidentification rate refers to the 
probability for jets that originate from the hadronization of a quark or

gluon in the Z∕𝛾∗ → qq̄′ background sample to pass this selection. The 
probability is defined by:

 =
𝑝rec

T
> 20 GeV & 10 < 𝜃rec < 170◦ & 𝜏 > 
𝑝gen-X

T
> 20 GeV & 10 < 𝜃gen-X < 170◦

, (3)

where the symbols  and X refer to the efficiency 𝜀𝜏 (to the misidenti-

fication rate 𝑃misid) and to the system of charged hadrons and neutral 
pions produced in the 𝜏 decay (to the quark or gluon that initiated the 
jet) in case of signal (background). The symbols 𝑝rec

T
and 𝜃rec refer to 

the transverse momentum and polar angle of the jet that seeds the 𝜏h

reconstruction in case of the LorentzNet and ParticleTransformer algo-

rithms and to the 𝑝T and 𝜃 of the 𝜏h object reconstructed by the HPS 
algorithm in case of the DeepTau algorithm. The symbol “&” denotes 
conjunction and  refers to the threshold imposed on the discriminant 𝜏 . The acceptance criteria defined by the denominator are applied in 
the numerator also. The efficiency 𝜀𝜏 as well as the misidentification 
rate 𝑃misid depend on the threshold  and in general vary with 𝑝T and 
𝜃.

3.1. LorentzNet

The LorentzNet algorithm [47] employs a DNN architecture based

on the attention mechanism [67,68]. The algorithm uses as input the

four-momentum, type, and charge of the 𝑁 particles of highest 𝑝T

among the jet’s particle constituents, plus the two beam particles (the

colliding e+ and e−). In case the jet contains fewer than 𝑁 particles, 
the “missing” particles are represented by zeros. The number 𝑁 of in-

put particles constitutes a parameter of the algorithm, which needs to
be chosen by the user. Based on Fig. 1, we choose 𝑁 = 25. The parti-

cle type (e, 𝜇, 𝛾 , h±, h0) is passed in one-hot encoded format [69]. The 
architecture of the DNN is designed such that the output of the algo-

rithm is equivariant to proper orthochronous Lorentz transformations

(translations, rotations, and boosts) of the particles’ four-momenta and

is invariant to permutations of any pair of particles. The latter prop-

erty means that the LorentzNet algorithm is invariant to the ordering

in which the jet’s particle constituents are presented to the algorithm.

A function 𝜙 ∶ IRn → IRm is equivariant to actions of the Lorentz group 
𝐺 if the following relationship holds: 𝜙(𝑔(𝑥)) = 𝑔(𝜙(𝑥)), where 𝑥 ∈ IRn, 
𝜙(𝑥) ∈ IRm, and 𝑔 ∈ 𝐺. The Lorentz equivariance introduces an induc-

tive bias into the algorithm, with the aim of improving the algorithm’s
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Fig. 1. Distributions in the jet radius ⟨𝑟⟩ (upper left), the mass 𝑀jet of the jet (upper right), and in the number 𝑁 of charged (lower left) and neutral (lower 
right) particles in the jet. The distributions are plotted on generator level for jets originating from hadronic 𝜏 decays (“signal”) compared to quark and gluon jets 
(“background”). The rightmost bins of each distribution represent overflow bins.

capability for generalization. It is demonstrated in Refs. [70,47] that

this DNN architecture is flexible enough to approximate any Lorentz

equivariant function. The algorithm is implemented in PYTORCH [71].

All parameters of the LorentzNet algorithm, which need to be chosen by

the user, are set to the values given in Section 3.3 of Ref. [47], except

for the parameter 𝑁 , as explained above, and the parameter 𝑐, which 
we set to 𝑐 = 0.005.

The training is performed in batches of 128 jets and for a maximum 
of 100 epochs. The algorithm has 2.3 ⋅ 105 trainable parameters, which 
are updated after each epoch using the AdamW [72] optimizer, in order

to minimize the loss on the training dataset. The learning rate is varied

according to the one-cycle policy [73] during the training, with the

maximum learning rate set to 10−3. The focal loss from Ref. [74] with 
𝛾 = 2 is used for the loss function. We found that this choice of loss 
function improves the separation of 𝜏h from quark and gluon jets in 
particular for intermediate values of the DNN output, compared to using

binary cross-entropy loss. The loss on the validation dataset is computed

after each training epoch. The final DNN parameters are chosen to be

those that minimize the loss on the validation dataset.

Distributions in the discriminant 𝜏 for the training and test datasets 
are shown in Fig. 2. The distributions on the test sample are represented

by solid lines, while the dashed lines represent the distributions on the

training sample. A moderate amount of overtraining can be seen in the

figure. The main effect of the overtraining is that the tail of the back-

ground distribution in the region of high values of the discriminant 𝜏
is more pronounced for the test sample than for the training sample.

3.2. Particle transformer

The ParticleTransformer algorithm [48] is also based on the atten-

tion mechanism [67,68]. Its architecture has originally been developed

in the context of natural-language processing and is referred to as Trans-

former model in the literature [75,76]. The ParticleTransformer extends

the LorentzNet algorithm by using additional input variables, notably

the transverse and longitudinal impact parameters of charged particles,

plus four observables, which represent properties of particle pairs. The

algorithm is implemented in PYTORCH [71]. For the per-particle fea-

tures, we use the 17 observables given in Table 2 of Ref. [48]. The four 
pairwise features are the distance Δ𝑅 between the particles, given by 
Eq. (1), the mass of the particle pair, and the two observables:

𝑘t =min
(
𝑝𝑖

T
, 𝑝𝑗

T

)
Δ𝑅

𝑧 =min
(
𝑝𝑖

T
, 𝑝𝑗

T

)
∕
(
𝑝𝑖

T
+ 𝑝𝑗

T

)
, (4)

where the superscripts 𝑖 and 𝑗 refer to the first and second particle of 
the pair, respectively. The 25 particles of highest 𝑝T among the particle 
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Fig. 2. Distribution in the discriminant 𝜏 for the LorentzNet algorithm. The 
solid curves refer to the test dataset and the dashed curves to the training 
dataset. (For interpretation of the colours in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 3. Distribution in the discriminant 𝜏 for the ParticleTransformer algo-

rithm. The solid curves refer to the test dataset and the dashed curves to the 
training dataset.

constituents of the jet are considered when computing the per-particle 
and pairwise features.

The algorithm is trained in batches of 128 jets for a maximum of 
100 epochs. The 2.1 ⋅ 106 trainable parameters are updated after each 
epoch, using the AdamW [72] optimizer. The other training parameters 
are the same as for the LorentzNet algorithm. The final DNN parameters 
are taken to be those that minimize the loss on the validation dataset, 
which is computed after each epoch.

Distributions in the discriminant 𝜏 computed by the ParticleTrans-

former algorithm are shown in Fig. 3. A moderate amount of overtrain-

ing, similar in magnitude and shape effect to that of the LorentzNet 
algorithm, can be seen in the figure.

4. Results

The “receiver operating characteristic” (ROC) curves of the Lorentz-

Net and ParticleTransformer algorithms is compared to the one of the 

Fig. 4. Misidentification rate for quark and gluon jets as function of the 𝜏h

identification efficiency for the LorentzNet and ParticleTransformer algorithms, 
compared to the combination of the HPS + DeepTau algorithm.

DeepTau algorithm in Fig. 4. The ROC curves show the 𝜏h identifica-

tion efficiencies 𝜀𝜏 for the ZH, H → 𝜏𝜏 signal sample on the axis of 
abscissas and the misidentification rates 𝑃misid for the Z∕𝛾∗ → qq̄′ back-

ground sample on the ordinate. The curves are constructed by varying 
the threshold imposed on 𝜏 in 1000 steps within the range 0 to 1 and 
computing 𝜀𝜏 and 𝑃misid according to Eq. (3) for each such threshold. 
Points on the left side of the curve correspond to a tighter selection on 
the output 𝜏 of the 𝜏h identification algorithm, while points on the 
right side correspond to a looser selection. All three algorithms achieve 
misidentification rates on the level of a permille or below for 𝜏h iden-

tification efficiencies in the range 50-80%, the range we expect to be 
most relevant for physics analyses. Numerical values for 𝑃misid for 𝜀𝜏
values of 50, 60, 70, and 80% are given in Table 1.

The 𝜀𝜏 obtained for the Z∕𝛾∗ → 𝜏𝜏 signal sample agrees with the one 
obtained for the ZH, H → 𝜏𝜏 sample within 5-10%, depending on the 
threshold on 𝜏 , where the quoted values refer to relative differences. 
The differences between the signal samples are rather small, indicating 
that the reweighting described in Section 2 works as intended and the 
algorithms do not exploit differences in event kinematics.

The ParticleTransformer algorithm is seen to outperform the Lorentz-

Net algorithm as well as the DeepTau algorithm, achieving 𝑃misid of 
2.1 × 10−5 and 2.5 × 10−4 for 𝜀𝜏 of 50 and 80%, respectively. This 
performance demonstrates the potential of applying the advanced DL 
algorithms originally developed for jet-flavour tagging to the task of 𝜏h

identification.

We remark that the performance of the HPS + DeepTau algorithm 
in our study is significantly higher than the performance reported in 
Ref. [51]. The higher performance is reflected by the 𝑃misid values 
for the DeepTau algorithm shown in Fig. 4, which are about an order 
of magnitude lower compared to the misidentification rates shown in 
Fig. 4 of Ref. [51], for similar 𝜏h identification efficiencies. We believe 
the main reason for this difference to be the “cleaner” experimental 
environment of e+e− compared to pp collisions, which considerably 
simplifies the task of discriminating 𝜏h from quark and gluon jets. 
The ROC curve shown in Fig. 4 of Ref. [51] was made for typical ex-

perimental conditions during LHC Run 2, which, besides the general 
higher hadronic activity arising from the production of extra jets and 
the underlying event, also included about 50 minimum bias overlay 
interactions, referred to as “pileup” [77]. To illustrate this point, we 
show in Fig. 5 the distributions in the number of particles 𝑁iso in the 
isolation cone and in the observable 𝐼𝜏 = 𝐼ch5 + 𝐼𝛾5, where 𝐼ch5 and 
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Table 1

Average misidentification rates, computed according to Eq. (3), for average 𝜏h iden-

tification efficiencies ⟨𝜀𝜏⟩ of 50, 60, 70, and 80%. The numbers given in the table 
correspond to the inverse, 1∕⟨𝑃misid⟩, of the average misidentification rates, and 
to the statistical uncertainties on these values. Bold numbers highlight the best-

performing algorithm.

Algorithm ⟨𝜀𝜏 ⟩ = 50% ⟨𝜀𝜏 ⟩ = 60% ⟨𝜀𝜏 ⟩ = 70% ⟨𝜀𝜏 ⟩ = 80%

HPS + DeepTau 31034 ± 3849 11796 ± 902 3564 ± 150 1308 ± 33
LorentzNet 10137 ± 719 5634 ± 298 3006 ± 116 1450 ± 39
ParticleTransformer 𝟒𝟖𝟎𝟐𝟖± 𝟕𝟒𝟏𝟏 𝟐𝟒𝟗𝟎𝟒± 𝟐𝟕𝟔𝟕 𝟏𝟎𝟔𝟏𝟕± 𝟕𝟕𝟎 𝟒𝟎𝟒𝟐± 𝟏𝟖𝟏

Fig. 5. Distributions in the isolation 𝐼𝜏 of the 𝜏h and in the multiplicity 𝑁iso of particles in the isolation cone of the 𝜏h, for hadronic 𝜏 decays in ZH, H → 𝜏𝜏 signal 
events produced in pp (red) and in e+e− (blue) collisions.

𝐼𝛾5 are computed according to Eq. (A.1) in the appendix, for 𝜏h in 
ZH, H → 𝜏𝜏 events produced in pp collisions at 

√
𝑠 = 13 TeV with 50

pileup interactions and in ZH, H → 𝜏𝜏 events produced in e+e− colli-

sions at 
√
𝑠 = 380 GeV. Particles that are matched to 𝜏 decay products 

on generator-level are excluded from the computation of the observ-

ables 𝑁iso and 𝐼𝜏 . The observable 𝐼𝜏 represents one of the main handles 
to separate 𝜏h from quark and gluon jets and significantly benefits from 
the “cleaner” experimental environment.

5. Summary and outlook

The main result of this paper is that the advancements in modern

deep-learning techniques, which drove the recent progress in jet-flavour

tagging, can similarly be applied to the task of identifying hadronic

𝜏 decays. Of the two jet-flavour tagging algorithms that we studied, 
LorentzNet and ParticleTransformer, the ParticleTransformer algorithm

provides the superior performance. It achieves a misidentification rate

of 2.1 × 10−5 (2.5 × 10−4) for a 𝜏h identification efficiency of 50 (80%). 
A low misidentification rate is of particular importance for measure-

ments of 𝜏 lepton branching fractions via the “tag-and-probe” method, 
as discussed in Section 1 of Ref. [5]. Remarkably, the ParticleTrans-

former algorithm achieves this level of performance while performing

𝜏h reconstruction and identification in a single step without any manual 
tuning by domain experts. We believe this result, that algorithms orig-

inally developed for jet-flavour tagging and repurposed for the task of

𝜏h identification provide a performance that is as good as or better than 
state-of-the-art 𝜏h identification algorithms to be applicable to pp colli-

sions at the LHC also. We remark that the performance of the DL-based

algorithms is achieved in an end-to-end approach without manual tun-

ing by domain experts, while in particular the HPS algorithm benefitted

from substantial tuning by domain experts.

We believe the numerical values for 𝜀𝜏 and 𝑃misid given in Table 1

may be useful in the context of sensitivity studies of physics analy-

ses with 𝜏 leptons at future high-energy e+e− experiments, similar to 
how the parametrizations of particle reconstruction and identification

performances provided in the DELPHES [78] fast detector simulation

software by the ATLAS and CMS experiments for pp collisions at the

LHC have been used. We remark that 𝜀𝜏 and 𝑃misid depend on 𝑝T and 𝜃. 
This dependency is not reflected in the numbers given in Table 1, which

represent averages over the 𝑝T and 𝜃 spectrum of 𝜏h and jets in the sig-

nal and background samples. Values of 𝜀𝜏 and 𝑃misid as function of 𝑝T

and 𝜃 can be obtained from the authors upon request.

Owing to the “cleaner” experimental environment, the misidentifi-

cation rates are substantially lower in e+e− collisions compared to pp

collisions at the LHC, for similar 𝜏h identification efficiencies.

Future work includes to study in detail the effect of the 𝛾𝛾 → hadrons
overlay background on the 𝜏h identification performance and to extend 
the ParticleTransformer algorithm to reconstruct individual hadronic

𝜏 decay modes. The capability to distinguish individual hadronic 𝜏
decay modes is important for measurements of the 𝜏 spin polariza-

tion [44–46,4,79]. Furthermore, in analogy with jet-flavour tagging, it
may be important to study the robustness of the taggers to theoretical

and experimental systematic effects and to design ML models that are

robust against such effects. Another important aspect for future work is
hardware portability, latency and throughput, to ensure that ML-based

reconstruction models are resource-efficient and can be deployed at the

trigger level, if needed.
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Fig. 6. The DNN architecture of the DeepTau algorithm. The numbers of trainable parameters (TP) for different components of the network are given in the figure.
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Appendix A

A.1. HPS algorithm

The HPS algorithm is published in Refs. [49,50]. The algorithm

aims to reconstruct individual hadronic 𝜏 decay modes. The decay 
modes targeted by the HPS algorithm are 𝜏− → h−𝜈𝜏 , 𝜏− → h−𝜋0𝜈𝜏 ,

𝜏− → h−𝜋0𝜋0𝜈𝜏 , 𝜏− → h−h+h−𝜈𝜏 , 𝜏− → h−h+h−𝜋0𝜈𝜏 , and the charge

conjugates of these decays for 𝜏+.

The 𝜋0 mesons are reconstructed by clustering photons of 𝑝T >
1.0 GeV into “strips”. Electrons and positrons of 𝑝T > 0.5 GeV are in-

cluded in the clustering, assuming that they originate from photon

conversions within the tracking detector. The clustering proceeds via

an iterative procedure. The procedure is seeded by the 𝛾 or e of highest 
𝑝T that is not yet included in a strip, where we use the symbol e to re-

fer to e− and e+ irrespective of their electric charge. The 𝜃 and 𝜙 of the 
seed defines the initial location of the strip. The 𝛾 or e of next highest 
𝑝T, which is within an 𝜃 ×𝜙 window of size 0.05 ×0.20 around the strip 
location, is added to the strip. The strip momentum is recomputed as

the momentum sum of all particles in the strip and the position of the

window is updated accordingly. The energy of the strip is chosen such

that its mass matches the 𝜋0 meson mass. The clustering continues un-

til there are no more unclustered 𝛾 or e within the 𝜂 × 𝜙 window. The 
algorithm then proceeds by choosing a new seed and building the next

cluster. The reconstruction of 𝜋0 mesons ends when all jet constituents 
of type 𝛾 or e are clustered into strips.

The strips are combined with jet constituents of types h± in the 
next step of the HPS algorithm. Following the implementation of the

HPS algorithm in CMS, particles of type electron are also considered

as “charged hadrons” in this step. Potential double-counting of recon-

structed electrons is resolved at a later stage of the algorithm. The

motivation for considering reconstructed e as h± is that these e may 
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Table 2

Properties of particles used as input to the two subnetworks that process the inner 
and outer grids in the DeepTau algorithm. The variables Δ𝜃 and Δ𝜙 are defined as 
Δ𝜃 = 𝜃𝑖 − 𝜃𝜏 and Δ𝜙 = 𝜙𝑖 − 𝜙𝜏 , where the subscript 𝜏 refers to the direction of the 𝜏h

and 𝑖 to that of a particle in the inner or outer grid. The variables 𝑑xy, 𝜎𝑑xy, 𝑑z, and 𝜎𝑑z

are computed as described in Ref. [65]. They are set to zero if the particle is of type 𝛾
or h0.

Variable Description

𝑝𝑖
T
∕𝑝𝜏

T
𝑝T of particle 𝑖 in relation to 𝜏h

Δ𝜃, Δ𝜙 distance between particle 𝑖 and 𝜏h in polar and azimuthal direction

𝑀𝑖 mass of particle 𝑖

charge electric charge of particle 𝑖

𝑑xy, 𝜎𝑑xy transverse impact parameter and its uncertainty

𝑑z, 𝜎𝑑z longitudinal impact parameter and its uncertainty

e, 𝜇 , 𝛾 , ch, nh type of particle e, 𝜇, 𝛾 , h±, h0 in one-hot-encoded format

result from the overlap of a charged hadron of low energy with a high 
energetic 𝜋0 meson. The experimental signature of such an overlap is a 
track that spatially matches a cluster in the electromagnetic calorimeter 
(ECAL) whose energy is significantly higher than the track momentum 
and little energy in the hadronic calorimeter (HCAL). This case often 
gets reconstructed as one particle of type electron by the PF algorithm 
in CMS.

The combination of h± with strips proceeds via a combinatorial ap-

proach. A set of 𝜏h candidates corresponding to combinations of either 
one h± with up to two strips or three h± with up to one strip, repre-

senting the decay modes mentioned above, are constructed in parallel. 
In case there exist multiple possibilities for choosing the h± among the 
jet constituents or for choosing the strips among the set of strips recon-

structed in the previous step, the HPS algorithm constructs all possible 
combinations among the 6 highest 𝑝T h± and the 6 highest 𝑝T strips. 
The restriction to the 6 highest 𝑝T objects is imposed to reduce the 
computational complexity of the algorithm.

The constructed 𝜏h candidates are subject to preselection criteria, 
which demand the sum of h± charges to be equal to ±1, all h± and 
strips to be within a signal cone of radius Δ𝑅 = 3.0∕(𝑝T GeV−1) (limited 
to a minimum of 0.05 and a maximum of 0.10), and the mass of the 
𝜏h candidate to be within a certain mass window [49]. The signal cone 
is centred on the momentum vector of the 𝜏h candidate. The distance 
between the 𝜏h candidate and the h± or strip is computed according to 
Eq. (1).

The four-vector of the 𝜏h candidate is computed by summing the 
four-vectors of its constituent h± and strips. The energy of electrons 
and positrons that are considered as h± is adjusted such that their mass 
matches the 𝜋± meson mass when summing the four-vectors. In order 
to avoid double-counting of e in case they are considered as h± and 
have been clustered into strips, the e considered as h± are removed 
from the strips and the strip momentum is recomputed. In case there 
remains no particle in the strip after removing these e, the 𝜏h candidate 
is discarded.

In case multiple 𝜏h candidates pass the preselection criteria, the 𝜏h

candidate of highest 𝑝T is retained and all other 𝜏h candidates corre-

sponding to the same jet are discarded.

A.2. DeepTau

The DeepTau algorithm is published in Ref. [51]. The purpose of 
the algorithm is to identify the 𝜏h that are reconstructed by the HPS 
algorithm as described in the previous section.

The DNN architecture of the DeepTau algorithm is illustrated in 
Fig. 6. It is composed of three subnetworks. Two subnetworks process 
the information about individual particles near the 𝜏h, while the third 
subnetwork processes a set of high-level features of the 𝜏h.

The first and second subnetworks have similar structure. The infor-

mation about location, type, and other properties of the particles near 
the 𝜏h are discretised in two grids in the 𝜃–𝜙 plane, an inner grid of 
11 × 11 cells of size 0.02 × 0.02 and an outer grid of 21 × 21 cells of size 
0.05 ×0.05. The finer segmentation of the inner grid reflects the fact that 
the particles produced in hadronic 𝜏 decays are typically highly colli-

mated (cf. Fig. 1) and furthermore helps to resolve the dense core of 
high-energetic quark and gluon jets [51]. The inner and outer grids are 
centred on the direction of the 𝜏h. The grids are populated by iterating 
over all particles reconstructed in the event and computing their dis-

tance in 𝜃 and 𝜙 with respect to the 𝜏h direction. Particles falling into 
the same cell are sorted in the order of decreasing 𝑝T regardless of their 
type. The location, type, and other properties of the two particles of 
highest 𝑝T are concatenated to a vector of size 28. The particle proper-

ties used to build this vector are given in Table 2. We use 14 properties 
per particle. Cells in the outer grid that overlap with the inner grid are 
skipped when populating the grids, in order to avoid redundancy of 
information between the two grids.2 The features in each cell of the in-

ner and outer grids are preprocessed by four fully-connected layers of 
size 104, 88, 64. The preprocessed information is then passed through 
a stack of 5 convolutional layers for the inner grid and 10 for the outer 
grid. Each convolutional layer uses 64 filters and a kernel of size 3 × 3. 
Because the convolutional layers use no padding, the size of the grid 
decreases by two units in 𝜃 and two units in 𝜙 per convolutional layer. 
The output of the two subnetworks for the inner and outer grids are 
two single cells that each hold a vector of size 64, resulting from the 
application of the 64 filters.

2 The CMS implementation of the DeepTau algorithm uses a few more parti-

cle properties as inputs, which are not available in our simulation. The missing 
inputs concern mainly detector-level observables, which are used to improve 
the separation of 𝜏h from electrons and muons in CMS. We expect these ob-

servables to have little effect on the performance in separating 𝜏h from quark 
and gluon jets. Our implementation of the DeepTau algorithm differs from the 
implementation in CMS in three further aspects: First, we compute distances be-

tween particles in the 𝜃–𝜙 plane, while CMS computes the distances in the 𝜂–𝜙
plane, where the symbol 𝜂 = − ln

(
tan 𝜃

2

)
denotes the pseudo-rapidity. Second, 

CMS builds three separate inner grids and three separate outer grids for parti-

cles of types e∕𝛾 , 𝜇, and h±∕h0 and for each type considers only the particle 
of highest 𝑝T when building the vector of particle properties. We find that we 
get better performance if we use a single inner and a single outer grid for parti-

cles of any type and instead consider up to two particles (of highest 𝑝T) per cell. 
Third, CMS does not remove the overlap between the inner and outer grids. We 
find that, besides avoiding redundancy of information, removing this overlap 
also improves the performance (by a small amount). We have adjusted the size 
of subsequent layers in the network according to these differences.
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Table 3

High-level features used as input to the DeepTau algorithm.

Variable Description

𝑝𝜏
T
, 𝜃𝜏 , 𝜙𝜏 , 𝑀𝜏 𝑝T, 𝜃, 𝜙, and mass of 𝜏h

charge 𝜏h charge (equal to sum of h± charges)

𝐼ch5, 𝐼𝛾5, 𝐼nh5 isolation of the 𝜏h with respect to charged particles, 𝛾 , and h0, 
computed for an isolation cone of size Δ𝑅 = 0.5

𝐼ch3, 𝐼𝛾3, 𝐼nh3 isolation of the 𝜏h with respect to charged particles, 𝛾 , and h0, 
computed for an isolation cone of size Δ𝑅 = 0.3

𝑁ch, 𝑁𝛾 multiplicity of 𝜏h constituents of type h± and 𝛾

max(𝑝ch
T
) maximum 𝑝T among 𝜏h constituent of type h±

∑
𝑝𝛾

T
∕𝑝𝜏

T
𝑝T-sum of 𝜏h constituents of type 𝛾 , divided by 𝑝T of 𝜏h

𝑝𝛾,out

T
𝑝T-sum of 𝛾 , which are in strips, but outside signal cone

⟨𝑟𝛾 ⟩, ⟨𝑟𝛾𝜃⟩, ⟨𝑟𝛾𝜙⟩ 𝑝T-weighted distances in Δ𝑅, 𝜃, and 𝜙 between 𝜏h and 𝛾

⟨𝑟𝛾,out⟩ 𝑝T-weighted distance in Δ𝑅 between 𝜏h and 𝛾 , 
which are in strips, but outside signal cone

𝑁 i
e
, 𝑁 i

𝜇 , 𝑁 i
𝛾 , 𝑁

i
ch

, 𝑁 i
nh

number of particles of type e, 𝜇, 𝛾 , h±, h0 in inner grid

𝑁o
e
, 𝑁o

𝜇 , 𝑁o
𝛾 , 𝑁o

ch
, 𝑁o

nh
number of particles of type e, 𝜇, 𝛾 , h±, h0 in outer grid

The high-level features processed by third subnetwork are given in
Table 3. We use 30 high-level features in total. The variable 𝐼ch3 (𝐼ch5) 
refers to the isolation of the 𝜏h with respect to charged particles (e, 𝜇, 
h±), which are within an “isolation cone” of size Δ𝑅 = 0.3 (0.5) and 
were not used to build the 𝜏h object by the HPS algorithm:

𝐼ch =
∑

charged

𝑝T . (A.1)

The variables 𝐼𝛾3 and 𝐼𝛾5 (𝐼nh3 and 𝐼nh5) are computed similarly by 
summing the 𝑝T of all particles of type 𝛾 (h0) within the isolation cone. 
The variable ⟨𝑟𝛾⟩ is computed using Eq. (2), with the sum extending 
over all 𝜏h constituents of type 𝛾 and distance Δ𝑅 computed between 
the 𝜏h constituent and the direction of the 𝜏h. The variables ⟨𝑟𝛾𝜃⟩ and

⟨𝑟𝛾𝜙⟩ are computed analogously, but taking only differences in either 𝜃
or 𝜙 into account. The high-level features are processed by four fully-

connected layers, with a size of 100 for the first three layers and a size 
of 50 for the fourth layer.

The output of the fully-connected layers that processed the high-

level features is concatenated with the outputs of the two subnetworks

for the inner and outer grids. The resulting vector of size 178 is passed 
through three fully-connected layers of size 100. The discriminant 𝜏
of the network is computed by a layer of size 1. The softmax activation 
function [80] is used for this last layer, while all other fully-connected

layers and the convolutional layers use the PReLU activation func-

tion [81].

The network is implemented in PYTORCH [71]. It has 1.6 ⋅ 106 train-

able parameters, which are trained in batches of 500 jets for a maximum 
of 200 epochs, using the AdamW [72] optimizer. A fixed learning rate 
of 10−4 is used throughout the training. For the loss function, we use 
the focal loss [74], with a value 𝛾 = 2 for the focusing parameter 𝛾 . 
The robustness of the training is increased by applying layer normalisa-

tion [82] to the inputs of each fully-connected and convolutional layer.

The loss on the validation dataset is monitored throughout the training

and the model with the minimum validation loss is retained for further

study.

We show the distribution in the discriminant 𝜏 computed by 
the DeepTau algorithm in Fig. 7, separately for the training and test

datasets.

Fig. 7. Distribution in the discriminant 𝜏 for the DeepTau algorithm. The solid 
curves refer to the test dataset and the dashed curves to the training dataset.
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