
Simulations in Multi-Agent
Communication System

VADIM KIMLAYCHUK

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C77

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER CONTROL

TALLINN UNIVERSITY OF TECHNOLOGY

Dissertation was accepted for the defense of the degree of Doctor of Philosophy

in computer and system engineering on 30th of June 2012.

Supervisor:

Professor, DSc Leo Mõtus, Department of Computer Control,

Tallinn University of Technology

Opponents:

Professor Janis Grundspenkis, Head of the Department of Systems Theory

and Design, Director of the Institute of Applied Computer Systems,

Riga Technical University, Latvia

Professor Kuldar Taveter, Department of Informatics, Head of the Chair of

Sofware Engineering, Tallinn University of Technology, Estonia

Defence of the thesis: 15 august 2012 at 14-00, II-309

Declaration: Hereby I declare that this doctoral thesis, my original investigation and

achievement, submitted for the doctoral degree at Tallinn University of Technology has

not been submitted for any degree or examination.

/Vadim Kimlaychuk/

Copyright: Vadim Kimlaychuk 2012

ISSN 1406-4731

ISBN 978-9949-23-335-9 (publication)

ISBN 978-9949-23-336-6 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C77

Simulatsioonid
multiagentsüsteemis

VADIM KIMLAYCHUK

5

Contents

ABSTRACT 9

KOKKUVÕTE 11

LIST OF ABBREVIATIONS 12

1 INTRODUCTION 13

1.1 Novelty and original contribution of the thesis 17

2 APPLICATIONS FOR INTELLIGENT AGENTS 20

2.1 Agent definition and agent application area 20

2.2 Agent structure and agent types 22

2.3 Communication between agents 25

2.4 Information security as a part of social life 26

2.5 JADE simulation platform 27

3 ANT COLONY SIMULATION 30

3.1 Model structure 30

3.1.1 Internal goals 31

3.1.2 Foreign affairs 32

3.2 Agent approach 32

3.3 Distributed model of mobile agents 33

3.4 Ontology 34

3.5 Implementation in JADE agent development environment 36

3.5.1 Running system 36

3.5.2 Examples of GUI 37

3.6 Conclusion 39

6

4 OPTIMIZE SHARED RESOURCES. 5 HUNGRY PHILOSOPHERS

PROBLEM 40

4.1 Process modeling 40

4.2 Agent approach and ontology 41

4.3 Implementation in JADE 42

4.3.1 System 42

4.3.2 Agents 43

4.3.3 Ontology 45

4.3.4 Executive Environment 46

4.4 Results obtained from simulation in JADE 46

4.4.1 Time constraints 46

4.4.2 Homogeneous systems 47

4.4.3 Heterogeneous systems 48

5 COMMERCIAL OFF-THE-SHELF PRODUCT IMPROVEMENTS 49

5.1 SOA structure and main principles 49

5.2 Major integration problems 50

5.2.1 Addresses and names 51

5.2.2 Services are not intelligent 52

5.3 Intelligent agents as an improvement for services 52

5.3.1 Addresses and names 52

5.3.2 Intelligent services 53

5.4 JADE implementation 55

5.4.1 Web services and software agents 55

5.4.2 Making agents work 56

5.4.3 Conclusion and further work 59

6 DISTRIBUTED SENSOR AGENT NETWORKS 60

6.1 Overview of sensor networks 60

6.2 Security problems in WSN-s 61

6.3 Target implementation domain 63

7

6.3.1 Structure of MICA2/MICA2DOT motes 63

6.3.2 Conception of operation for DSN 63

6.3.3 General network structure 64

6.3.4 Non-symmetric cryptography 65

6.4 TLMK protocol 65

6.4.1 Key pre-deployment 66

6.4.2 Key update/revoke 67

6.4.3 Message exchange 68

6.5 Complex scenarios 69

6.5.1 Multi-hop network 69

6.5.2 Coalitions and group-level security 71

6.6 Simulation of TLMK protocol in MASE 71

6.6.1 Secure mote architecture for MASE 72

6.6.2 Special assumptions made for simulation and the result 73

6.7 TLMK implementation summary 74

7 ACCESS CONTROL BASED ON SHARED KNOWLEDGE 76

7.1 Problem background 76

7.2 Recent situation 77

7.3 Trust function 78

7.4 Requirements for authentication system 79

7.5 Difficulties to design such a system 79

7.6 Teaching agent structure and basic notions 81

7.6.1 Agents roles and properties 81

7.6.2 Agents ontology 82

7.6.3 Results in math study for student/teacher simulation in JADE 82

7.7 Conclusion and further work 84

CONCLUSION 85

BIBLIOGRAPHY 86

8

LIST OF PUBLICATIONS 93

ANNEX A. 95

ANNEX B 97

ANNEX C 99

9

Abstract
We observe crisis of computational systems that can calculate at very high

speed over large data sets, but cannot manage emergent situations that always

happen in real world. Today there are many attempts that try to overcome the

restrictive boundaries of Turing computational model and create basis for non-

classical computations. One of them is self-organized computational systems

composed of agents that act in some environment. Individual agents in such a

multi-agent systems (MAS) are usually simple entities, but system itself may

demonstrate complex behaviors. Interactions in such systems are established by

communication acts between agents and the way it happens is important for the

sake of functionality. That is why ontologies of agent languages are a large part

of this research.

This thesis is devoted to simulation of agent-based systems. We do

simulation on our models because we are not able to model emergent behavior

(i.e. to describe the emergency in terms of Turing computable functions) in order

to build complete system with emergent behavior.

We are studying the properties of multi-agent systems by simulation

according to the rules permitted by non-classical models of computation.

Five practical cases have been studied in this thesis. All of them apply multi-

agent paradigm to model different real world problems. Systems that comprise

entities by their nature were studied first. Simulation of ant colony is the first

experiment in applying MAS development principles. The agent-based model of

ant colony can further be elaborated, if necessary, to capture features that are

essential to model the operation of real-world ant colony.

The other cases have conventionally been resolved without applying agent-

based paradigm. We formulated a modified “dining philosophers” problem and

web-services management problem in an enterprise as multi-agent systems and

demonstrated by simulation the feasibility of this approach. Last two

experiments were dedicated to study of features present in any multi-agent

system – those related to security of communication. We have suggested and

studied by simulation a new security protocol for WSN networks. We have also

introduced a new, shared knowledge authentication based process, and have

simulated knowledge transfer between software agents. The design of an

intelligent agent that can adopt new ontology and perform new actions was

deduced from this experiment.

Most of the simulations have been implemented within JADE MAS

framework. The results of the simulations demonstrate that agent-oriented

10

approach gives better results than conventional software development paradigms

especially in the domain of the problems that natively can be resolved by using

communications between entities.

11

Kokkuvõte
Viimaste aastakümnete jooksul on püsinud kustumatu huvi

multiagentsüsteemide ja agent-orienteeritud süsteemide arenduse vastu. Selle

peamiseks põhjuseks, minu arvates, on selle oma nišš rakenduste domeenis.

Näiteks, tarkvara arenduses enamik paradigme, nagu funktsionaalne

programmeerimine või objekt-orienteeritud programmeerimine katavad ainult

täieliku Turingi algoritmi. Isegi paralleelse arvutamise, mis on teostamise mustri

järgi väga lähedane MAS-ile (kus iga agent töötab paralleelselt teiste

agentidega), eesmärgiks on lahendada samu täielikke Turingi algoritme.

MAS ulatub üle selle printsiibi ja selle ajal kui iga üksik agent võib kasutada

üht stuktuurse programmeerimise paradigmidest (tavaliselt sündmuse-põhist

metodoloogiat), terve süsteem võib käituda kui super-Turingi masin. See MAS-i

omadus ongi minu jaoks huvitav.

Selles väitekirjas tehakse rida katseid ehitada erinevaid MAS süsteeme ja

uurida nende käitumist tuginedes ilmneva printsiibile. Vaatamata sellele, et kõik

süsteemi sisendid olid simuleeritud ja ma ei saa väita, et arendatud süsteem

demonstreerib ilmneva käitumist, saab hinnata iga süsteemi potentsiaali

demonstreerida sellist käitumist reaalses keskkonnas. Iga simuleeritud süsteemi

võime demonstreerida ilmneva käitumist rangelt sõltub sisenditest.

Simulatsiooni on kasutatud selleks, et lihtsustada MAS-i arendusprotsessi ja

ennustada tulemusi eksperimendi varajases staadiumis. Veel enam igal katsel on

olnud kasulikud praktilised tulemused, mis on kasutatavad olemasolevate

probleemide lahendamisel erinevates rakenduste domeenides. Näiteks, TLMK

protokoll sensor sõlmede võrgu turvalisemaks tegemiseks ja SOA agendid web-

teenuste funktsionaalsuse laiendamiseks.

MAS süsteemide programmeerimisel katsete jaoks kasutades OO keeli nagu

JAVA ja C++ on täheldatud OOP paradigmi suundumus läheneda AOP-le.

Üks kõige huvitavamatest teemadest järgmiseks teadustööks on agentide

võime õppida uusi ontoloogiaid ja jagada neid teadmisi teistega. Väitekirji näitab

kuidas see teostatakse viimases peatükkis. Kuna õpetamise eesmärk on uued

käitumised aga mitte lihtsalt olemused ja nende tähendused, on suur täenäosus

ehitada tõeline ilmnev MAS, kui selle sisendid ei ole simuleeritud, vaid on

loetud sensoritest.

12

List of abbreviations

AI Artificial Intelligence

ACL Agent Communication Language

ACO Ant Colony Optimization

AMS Agent Management System

AOP Agent-Oriented Programming

API Application Programming Interface

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

COTS Commercially available Off-The-Shelf

FIPA Foundation for Intelligent Physical Agents

FSM Finite State Machine

GUI Graphical User Interface

JVM Java Virtual Machine

LAN Local Area Network

MAS Multi-agent System

OOP Object-Oriented Programming

RTJ Real Time for JAVA

SOA Service-Oriented Architecture

TLMK Time Limited Memory Keys (protocol)

TSP Travelling Salesman Problem

WSIG Web Services Integration Gateway

WSN Wireless Sensor Networks

13

Unless real AI will appear all the

attempts to create it are simulations
1
.

1 Introduction
Humans have always tried to find someone who is smart enough to help them

with every day work. They started from training animals that helped them to

hunt, pasture and farm, but the abilities of trained animals are very limited. Only

scientific progress gave humans a real hope to get something as intelligent as

they or even more intelligent.

Real explosion of interest to intelligent artificial creatures took place half a

century ago when computational theory and computers appeared. Together with

automation they gave us what we have now – thousands of electro-mechanical

devices that help humans everywhere. Nowadays a car (or an aircraft) has so

many sensory and processing systems that it can drive without a human driver.

Still their intelligence is not high enough to allow them act totally by

themselves, in spite of their computational power.

Simulation is very popular approach to develop, test, predict the behavior and

study any kind of physical or virtual reality, including AI. Simulation is used in

very many contexts and can be executed in different ways. In this work we will

focus on computer simulations applying the paradigm of intelligent software

agents. Agent-oriented techniques represent one of the new approaches to

analyzing, designing and building complex systems. This technology has strong

impact on software as the most flexible and versatile area for developers. In this

thesis I only consider software agents that operate in cyber space. Those agents

that act outside of the cyber space are beyond the scope of this thesis, but it does

not mean that principles described here cannot be applied to design other types

of agents.

Nowadays agents provide information services to their owners acting

successfully in complex heterogeneous networked environment with unstable

and unpredictable network configuration. They have potential to improve

significantly current practice in software engineering and can easily tackle the

1
 Not taking into account AI as a set of scientific disciplines that study reasoning,

knowledge representation, etc., but rather focusing on the entity that possibly can be

considered as intelligent being. Considering different philosophical approaches of what

AI is (or can be) Turing’s behavioral judgment of the machine intelligence is what we

are taking as a basement for AI identification. Ultimately – real AI is a machine that acts

as intelligently as human being. Dartmouth [McCarthy, et al., 1955] participants and

most AI researchers believe that such machine is possible.

14

extended range of applications. This potential is far from being fully realized and

the main reason is that agents are typically introduced too late in development

cycle of system of systems.

This thesis projects some real world problems onto the cyber space and

applies simulation to resolve some of those problems. I will show that agents can

help to solve not only mathematical (e.g. monitoring or decision-making)

problems, but also help to improve the existing COTS software products.

The main objective pursued in this thesis is to develop experience and new

methods, of how the multi-agent systems can be built and used to simulate the

properties and behavior of different real world processes and tasks.

Problems that are studied in this work have been taken from different

domains and are related to each other at least by ability to generate complex

(emergent) behaviors. These problems are simulated using agent-based

techniques.

This thesis focuses on 5 disparate cases listed in the order of their

presentation: “Ant colony simulation” (chapter 3, page 30), “five hungry

philosophers” (chapter 4, page 40), “Agents for COTS
2
” (chapter 5, page 49),

“Time limited memory keys (TLMK) protocol” (chapter 6, page 60) and

“Access control based on shared knowledge” (chapter 7, page 76).

We start from behavior simulation of an ant colony as asset of interacting

software agents (ants, map of the environment, resources, and nests). The ant

colony is described as multi-agent system (MAS). The importance of ontology

harmonization and agent communication language (ACL) is discussed. The

system is implemented in JADE platform [Bellifemine, et al., 2003]

[Bellifemine, et al., 2007]. The agents here are software programs written in

JAVA and running on a variety of hosts. Graphical user interface shows

simulation results: separately for each agent or for groups of agents. Agent

conversations can be controlled visually by Sniffer agent (a part of JADE

platform), or using plain text files generated by each agent. The system can be

used to solve such practical problems as routing, scheduling, capacity planning,

travel salesman problem (TSP), etc.

Next part of the thesis has less social orientation and shows how agent-based

approach helps to solve tasks of using resources and improving working capacity

of individual agents, by modifying a well-known setting of “five hungry

philosopher” originally formulated in 1965 by Edsger Dijkstra as a student exam

exercise. JADE agent platform and JAVA is again used for this simulation

2
 This is an acronym for Commercial Of-The-Shelf products. Particularly here we

mean the software that can be purchased on the market.

15

again. Main objective of this experiment is to apply methods of extreme

programming for building MAS and introduce time constraints for agents. The

system also has GUI to control “philosophers” and for visualization the inter-

agent conversations.

Another experiment is related to one of the complex areas of Telecom

industry – information systems integration. Many companies use web services

within SOA (service oriented architecture) architecture to support their business

[Bieberstein et al., 2005] [Marks et al., 2006]. In any enterprise business,

production, and logistics related information flows use many different data

stores that are distributed in space and are based on heterogeneous technologies.

I used JADE agents to improve the performance of SOA by introducing agents

to control services in the web, and into business processes that comprise

commercial product within a company. Agent’s proactive behavior supplies

web-services with service/client discovery, usage statistics, service version

control and connectivity capabilities that are currently missing. The main

objective of this experiment is to show that software agents, particularly JAVA-

based, can be integrated with commercial software. MAS is not a separately

standing technology, but can be integrated into (or cooperate with) any existing

application.

Finally an attempt to cross boundary between cyber space (of software

agents) and physical space (of the real world environment) has been made. Here

I took a quick look on ad-hoc wireless sensor networks (WSN) [Akyildiz et al.,

2002] and communication between its nodes. I started with wireless distributed

sensor network built on MICA2 motes [Bramwell, 2006]. A mote comprises

several small independent, but interacting devices, e.g. a set of sensors (for

instance, light, temperature, and sound- sensors), CPU, small flash memory,

battery, and radio to transmit and receive data. It works under TinyOS operating

system that allows user to write software. These restrictions together with multi-

hop message passing over open wireless communication channels make the task

of developing simple and reliable security protocol very complex. I underline

that authentication in such a system (without direct access to central node, or in

the absence of a central node) is not trivial thing as well. It requires secure

routing protocol that can be managed by nodes themselves. I have suggested

Time Limited Memory Keys (TLMK) protocol that solves some critical security

problems in distributed sensor networks at low cost in terms of resources.

Together with appropriate routing protocol the level of security in wireless ad-

hoc networks can be enhanced. The objective of this case was to find a security

protocol that enables secure communication between agents, in this case

16

between MICA2 motes sensors. TLMK protocol has low demands to hardware

resources in network nodes and provides appropriate
3
 level of security for WSN.

It is not possible, at the moment, to run JADE agents on MICA motes

although JADE exists for mobile devices built on Android, CDC and CLDC

configurations. The reason for that are insufficient HW resources to run JVM. .

Since almost every single CPU tact is valuable for these devices there have been

no serious efforts towards implementing any virtual execution environment on

MICA motes. That is why our simulations this time were made in special

simulation environment developed at Research Laboratory for Proactive

Technologies called “Multi-agent environment Simulator” [Tomson, 2009]. This

provides a Tiny OS simulated environment that allows the developer to run the

studied source code on real MICA2 sensor nodes without modification. This

gives us confidence that simulated agent is very close by all features to the real

one especially with respect to behavior and resource consumption. The code of

TLMK protocol has been tested in simulator to assess its performance and

resource consumption.

There is a drawback in all identity mechanisms [Magno, 1996] of modern

access control – they reveal no other properties of the identified object but

whether its identity token is recognized or not [Sasse, 2005]. This thesis tries to

overcome the problem by extending authentication process with history

awareness – e.g. by considering the use of shared knowledge. This assumes that

the communicating agents are intelligent enough to determine the level of trust

they can have to their partner by analyzing the knowledge shared between

partners in the previous communication acts (i.e. history of interactions).

Shared knowledge-based authentication assumes the ability to automatically

harmonize, or transform, the ontologies used by the group that wants to apply

shared knowledge-based authentication. The idea is illustrated by observing the

communication of two agents: “teacher” and “student” who exchange the

knowledge about a new concept. As a result of the communication act “student”

obtains new knowledge and becomes able to extend its ontology, simulating thus

the process of real learning where software does not need to be reloaded or

recompiled in order to capture new functionality.

We also define probabilistic trust-function that measures level of shared

knowledge and gives us level of trust towards the opponent as a rational number

between 0 and 1. To evaluate this function in simulation environment agent must

be able to work with ontology and study new concepts.

3
 Appropriate level of security is the level when the cost of network capture by

intruder is higher than the cost of the network

17

1.1 Novelty and original contribution of the thesis

Agent-oriented software development is not a new approach [Wooldridge,

1997] [Wooldridge et al., 1995] but despite advantages over object-oriented

programming (OOP) it can't get yet leading position on the market and support

from major compiler vendors.

AOP also lacks standards and every framework developer defines their own.

There is an attempt to unify the way agents communicate to each other and

propose standards for message exchange done by FIPA [FIPA, homepage].

However not all agent framework suppliers follow these standards. We believe

AOP engineering will stand for a long time as a separate framework for major

compilers and will not produce a new programming language in the nearest

future. For the agent developers it will matter which framework to choose rather

than programming language choice.

We used JADE to simulate most of our projects. When we started in 2003

JADE platform was very young but promising framework for agent development

and test. By now this framework is almost 10 years under continuous

development and new releases of the software are done on a regular basis. We

contributed to the JADE source code development [Kimlaychuk, 2010] and now

it is possible to serialize concepts, predicates and actions for bean ontology (and

not only for that type of ontology).

The other contributions are summarized below:

In “Ant colony simulation” project we simulated ants, nests and 2-D map

with a food sources. Real ants use special substance called pheromone. Ants

moving towards the food source and back deposit this substance on the ground

making pheromone trails that other ants can smell. The decision which way to

move every ant makes depending on trails density. The mathematical model

based on real ant behavior and researched in project “Ant colony optimization”

[Dorigo et al., 2007] (ACO) helps to find solutions for some practical tasks such

as routing, scheduling, travel salesman problem (TSP), etc. In our project we

map this mathematical model to software agents and run different simulation

tasks in JADE. Particularly we combine the power of distributed agent platform

with central web-server to control using GUI the TSP problem solving in a real

time. Software agents represent here ants, ant nests and map where ant

movements take place. Special ontology is developed for agent communication

using Protégé tool [Mussen, 2011]. Ontology is used for generating JAVA

classes agents can communicate with using FIPA language. There is an article

published in proceedings at EISTA2004 conference [Kimlaychuk, 2004]. The

novelty of this work is in making agent oriented design principles work for

simulation of real insects.

18

In “five hungry philosophers” project we simulated virtual entities –

philosophers, hospital, resources and resource managers. This works proves the

concept of AOP design for simulation once again. We used more sophisticated

ontology and the behavior of agents was less predictable (more emergent). This

happens because of real-time constraints we tried to implement in this project.

The novelty of this project is implementation of real-time for Java principles

(RTJ) [Bollella, et al., 2000] in AOP and simulation. The results were introduced

in electronic journal EXP [Kimlaychuk, 2003].

In “Agents for COTS” project we extended the functionality of industrial

product. Usually commercial products are supported by the manufacturer. There

are public APIs that allow some customization of the product. In many cases

academic world and the manufacturer of the commercial software tools live

separate lives. There is a long process of standardization and approval for agent-

oriented technology to be widely accepted as software production technology.

This project is a good example that shows how easily agent-oriented software

engineering methods can be fitted into existing programming paradigms. We use

JADE WSIG add-on as a basement for creating agent-based web-service search

engine and directory tree for Oracle SOA Suite. Project shows how web-services

(passive by their nature) can be organically combined with pro-active java

agents. There are 2 published articles for this theme [Kimlaychuk, 2008]

[Kimlaychuk SOA, 2008]. Major achievement in this project is integration

between two different software groups based on AOP principles.

In “TLMK protocol” project we developed new protocol for wireless sensor

networks that has very low demands for hardware and at the same time gave us

proper level of security. There are many methods, models, routing protocols and

standards that try to reduce the overhead in the WSN with still maintained some

level of security. Adding security to any application increases the overhead, but

for sensor networks that operate with limited memory and power resources this

overhead is especially important. TLMK is new protocol to secure agent

communications in WSN. It is based on Ottway-Rees protocol [Ottway et al.,

1987] where in addition to key and “salt” there is a key lifetime transferred to

the target node. There are also some specific implementation patterns that make

this protocol very attractive to be used as authentication and encryption protocol

for wireless sensor networks. Simulation of the protocol is done in MAS

simulator and agent's source code can be distributed to the target platform

without modification. Protocol is introduced at BMEI'2011 conference

[Kimlaychuk V., 2011]. TLMK protocol can be more valuable (secure) in

combination with secure routing protocol.

19

In “Access control based on shared knowledge” project we investigated

problem of user authentication described in [Toomim et al., 2008]. Authors

define the knowledge to share and build the database, users authenticate trough,

but this practical work lacks mathematical model definition for doing

appropriate conclusions about quality of access control. Recently only statistical

methods are used. We have introduced trust function and probabilistic

authentication function and made assumptions on how to evaluate them.

Statistical methods are used to make trust function more accurate. Practical part

accomplished within this project includes ontology development for simulated

agent’s learning process. There is a concept that one agent “knows” but the other

does not. During communication act the other agent gets this new concept and

can start to use it in its actions. We underline here that knowledge is not a data in

information technology but rather an execution block of code that can be

integrated into agent’s existing code. This execution block usually contains some

static data as well (like constants, parameter values, references). Agents are

programmed in JAVA using JADE platform. This project is still on-going.

However, we already developed a new method on how to expand ontology

dynamically. The results are published in paper [Kimlaychuk, V. 2012]

20

2 Applications for intelligent agents
Software engineering has already passed some milestones on the way of

technological improvements that come with every new CPU. We will not be

very scrupulous to argue about what was the first programming device, rather

count the time from the invention of the CPU and first programming paradigm –

imperative programming. Since then many different paradigms were used and

the most known at the moment is object-oriented programming. It became the

dominant programming methodology during the mid-1990s, largely due to the

influence of C++. Nowadays OOP is a major programming paradigm, but it does

not mean, that it can cover all engineering demands even in the field of classical

computations [Cardelli, 1996]. For the non-classical computations (or super-

Turing machines) this paradigm does not work at all [Stepney, et al., 2005].

If we take the original definition for agent oriented programming (AOP)

proposed by paradigm inventor [Shoham, 1993] and the modern state of being in

OOP we can see quite few differences. They all concern the notion of base entity

in both paradigms: class for OOP and agent for AOP. During the last decade

requirements for AOP has also being changed, but the gap between these two

paradigms constantly decreases. That is why recent agent programming is done

in powerful OOP languages – JAVA or C++/C# nevertheless some of the key

notions of AOP are not explicitly described in OOP.

For systems, that can be naturally modeled as societies of interacting

autonomous entities (interaction computations) [Motus, et al., 2005] the agent-

oriented paradigm suits better. Nevertheless objects, as they are defined in OOP,

have become a foundation for more complex entities – agents.

2.1 Agent definition and agent application area

There are many definitions of what is agent [Russel et al., 2003] [Wooldridge

et al., 1995]. I take one that describes the way I used them better: “an agent is an

encapsulated computer system that is situated in some environment, and that is

capable of flexible, autonomous action in that environment in order to meet its

design objectives” [Wooldridge, 1997]. This definition underlines the most

important properties of the software agent – it is a computer program and it

works autonomously (like daemon [Burk et al., 1998]) without interaction with

human. The full power of agent-oriented software engineering, however, appears

only in multi-agent systems [Weiss, 1999]. One agent (either software or

hardware) has not enough power to compete with large multipurpose systems,

but a set of different agents united together can give us missing functionality.

Under the meaning of “has not enough power” can be defined wide range of

artificial devices with different CPU/power outputs from “smart-dust” to

21

personal computers and servers standing along and, of course, pure software

agents running in real or virtual environment. Under virtual environment we

mean one created by human, i.e. artificial. Internet, for instance, is a good

example of virtual environment. There is a specific type of virtual environment

created for testing agents – simulation environment.

Very often the autonomous computer program (and hardware it runs) is

embedded into a natural system or into some autonomously functioning artifact

to enhance their behavior. The main advantage of an agent is ability to

communicate with the other agents in order to achieve its goals.

From this general description could be specified the primary properties of

agents:

• Autonomy – agents can operate without direct intervention of humans

or others, and have some control over their actions and internal states;

• Social ability – agents interact with other agents (and possibly humans)

via some kind of agent-communication language or set of actions;

• Reactivity – agents perceive their environment, (which may be the

physical world, a human (e.g. via a graphical user interface), a collection of

other agents, the cyberspace, or perhaps all of these combined), and respond in a

timely fashion to changes that occur in it;

• Pro-activeness – agents do not simply act in response to their

environment, they are able to exhibit goal-directed behavior by taking the

initiative

• Veracity – the ability of an agent to choose will it voluntarily

communicate false information or not;

• Mobility – the ability of an agent to move, or that an agent is residing on

a moving platform (that it may control or may not). For cyberspace this means

changing the host.

• Learning/adaptation – agents can improve their performance and

modify their functionality over time.

These are desired properties of an intelligent agent. Not all the agents possess

all the properties, but the more of those properties they possess – the better they

perform. All depends on the goals and application area the agents are applied to.

Some typical application areas of agents are:

• Military: monitoring friendly forces and adversary, battlefield

surveillance, biological attack detection, targeting, modeling and analyzing

systems of systems, etc.

• Ecological: fire detection, flood detection, pollution monitoring, etc.

22

• Health related: monitoring physiological data, medical data processing,

controlling medical equipment, etc.

• IT/WWW: customer tracking, customer profile generation, security,

information search, statistics collection, viruses, cyber defense

• Social applications: cooperative information exchange, individualized

traffic control, microclimate monitoring using personal mobile devices, grocery

shopping for consumers, etc.

• Miscellaneous: car theft detection, automatic car parking device,

inventory control, habitat monitoring, home applications, etc.

2.2 Agent structure and agent types

There are different approaches to build intelligent agents. Similar to every

living creature agent lives in some environment, senses it, acts upon the

information that it gets from the sensors and possibly has enough intelligence to

remember what it has done and what were the consequences so as to correct it’s

behavior.

As shown in Fig 1, agent may have several inputs and outputs. They can be

divided into 2 big groups: inputs/outputs to be used by the agent in real word

(e.g. sensors, actuators, etc.) and inputs/outputs to communicate with other

agents and entities that understand agent communication language.

Environment

Agent

actions

perception

past experience

prior knowledge

goals

Agent
neighbour knowledge/actions

Figure 1. Agent life cycle

Some of the properties mentioned above may be absent. For instance, sensor

has no ability to change the environment (pure observer). Usually it is not be

able to move on its own, and correspondingly never plans its movements.

The generic agent’s life cycle contains six important domains to operate with

(Fig 2) [Murray, 2002].

23

Main
loop

Motorium

Volition

Think

Security

Sensorium

Emotion

Figure 2. Structure of the agent

The functionality of those domains is:

• Security – Ensures that agent by its actions does not harm itself or other

parties and does not corrupt mission objectives.

• Sensorium – Sensors and other means of collecting input information.

• Emotion – Quasi-physiological influence upon reasoning.

• Think – Syntax and vocabulary of natural/artificial/agent languages,

formulating messages, goals, memory, learning.

• Volition – Contemplative or rational selection of motoric options.

• Motorium – Robotic activation and implementation of motoric

initiatives.

A generic agent has to spend a large share of its resources to motion planning

and executing. For our work this is really not important and lay behind our

goals. That is why such a big parts of the real agent body as sensors, motors and

their calibration are not considered in the simulation. Instead of the physical

sensors simulation uses input signals from a computer. The same is done with

movements. Agent may travel between different computers instead of moving in

a real area. We do not focus on the mechanics here. Instead we focus on agent’s

communication and behavior. Thus our target agent is simulated as pure

software agent.

Other agent architecture is proposed by M. d’Inverno, and M. Luck in

[d’Inverno et al., 2001]. This type of agent consists of four main parts: optional

sensor(s), information storage(s), controller(s) and actuator(s) (Fig 3).

Information flows from the sensor towards memory of the agent or directly to

controller which affects actuator. Actions of the agents can be proactive as well

when it affects actuator by the intention based on prior knowledge.

24

Info storage

Sensor Actuator

Controller

Figure 3. Structure of the SMART agent

By the type of agent’s actions they can be divided into three types: reactive

(reflex-based), rational and goal-oriented [Russel et al., 2003].

Agents can be very simple as well as very complex entities. Even reflex-

based agents can be designed with adaptation mechanisms. For software agents

it is very hard to evaluate their behavioral complexity. Assessing agent

behaviors one must consider the number of implemented behavior patterns and

complexity of each pattern. Correlating the complexity with the size of the agent

(program) seems to be inappropriate. Agent with simple behavior may consume

large data array whereas agent with complex behavior might use small data sets.

They both may occupy the same number of memory cells during operation.

According to FIPA specification agent life-cycle may have several states (Fig

4). The state before agent is created and after agent is destroyed is Unknown.

The rest of the states when implemented in JADE are:

• Initiated: the Agent is built, but hasn't registered itself yet with the AMS,

therefore it has neither name nor address and is not able to communicate with

other agents.

• Active: the Agent is registered with the AMS, has received legal name

and address, and it can access all the various JADE services.

• Suspended: the Agent is currently blocked from operating. Its internal

thread is suspended and its behavior is not being executed.

• Waiting: the Agent is conditionally blocked, waiting for some event to

occur. Its internal thread is sleeping on a Java monitor and it will wake up when

the condition is met (typically when a message arrives).

25

• Transit: a mobile agent enters this state while it is migrating to a new

location. The system continues to buffer messages that will be sent to its new

location after it resumes “active” state.

SuspendedWaiting

Active

Initiated Transit

 Create

Destroy

Quit

 In
vo

ke

 W
ake up S

us
pe

nd

 M
ove

Unknown
 R

es
um

e

 E
xecute

 W
ait

Figure 4. Agent life-cycle as defined by FIPA

2.3 Communication between agents

Communication between software agents is usually done in a specially

designed communication language. Most popular languages are based on XML.

One of the standard languages is FIPA ACL proposed by Foundation of

Intelligent Physical Agents [Odell, 2011]. This language describes the rules of

how agent can send queries to another agent and how to construe the answer.

The definitions of objects in the universe are given by ontology that the agent

uses.

Ontology is a formal representation of a set of concepts and actions within a

specific domain and the relationships between those concepts. It is used to

reason about the properties of that domain, and may be used to define the

domain. Typical mathematical domain will include definitions of mathematical

operations, numbers, sets, equation, etc. To make agents understand each other

they have to speak the same language and use the same ontology. Ontology is

part of agent's knowledge base that describes what kind of things the agent can

deal with and how those things are related to each other. Typically the ontology

is predefined for a specific domain. It is easier to generate a specific domain

with appropriate level of abstraction than to make agents smart enough to learn

26

new concepts. This approach is promising for designers who construct agents

that always execute the same computation but with different data sets. In section

7.6 we will demonstrate that such kind of agent can be created even at current

technological level.

Agent that achieves its goals through communication acts with other agents is

by all means – a social agent. Socialization is a powerful mechanism that solves

tasks by delegating specific tasks to specific types of agents instead of building a

universal agent. Dedicating agents to specific tasks makes agent development

less demanding.

Social approach, applicable to agents, is more reliable, versatile, agile and

distensible than OOP or component-based approach. Validity of this statement is

demonstrated by success of service-oriented programming. Services are not yet

intelligent but still very powerful entities that deliver simple functionality for

wide range of applications over the network. During the last 5 years the number

of services based on HTTP protocol (web services) has increased dramatically.

This is also stipulated by widely adopted SOA principles [Bell, 2008].

2.4 Information security as a part of social life

The information security cannot be considered separately of social aspects –

human being who often is end-user, or information holder, is always vulnerable

to different kind of manipulations [Mitnick et al., 2002]. Technically, the

existing mathematical algorithms and random number generators allow us to

encrypt data at a level of security that forceful decryption has NP-complexity

[Schneier, 1996]. Potential attacker circumvents encryption by exploiting either

software weaknesses or human’s nature [CVE, homepage]. This trend shifts

efforts in building information security systems to the weakest link – human-

being. Comparatively new problem in computer systems is to determine with

whom it interacts – with a human being or with another computer.

CAPTCHA
4
 is one of good examples how to determine human being. It

exploits human's ability to work with images and recognize damaged text

exposed as picture. CAPTCHA’s wide usage that has spread over internet

demonstrates that attention is moving from the reliability of software-hardware

systems to the most unreliable element – human being. To work efficiently with

human computer system must recognize human being and help him to do his

tasks efficiently. Such tools as fingerprint identification and voice assistance are

already part of our life.

4
 Completely Automated Public Turing test to tell Computers and Humans Apart

27

Computer tries to create a personal profile for the human user – determine the

way human types in words, analysis pattern of mistakes, preferred time to work,

favorite web-sites he visits, etc. This information can be used in security

protocols to authenticate the user. Combination of user name and password is

not sufficient to identify personality of the user. The system can identify the user

by his behavior that it previously has learned from the user. This knowledge can

be shared then between the computer systems or agents like is demonstrated in

this thesis.

2.5 JADE simulation platform

Most of the simulations in this thesis were done on JADE platform. Platform

is written in JAVA and distributed as a set of libraries to be used in agent

development, test and execution. General architecture of JADE platform refers

to FIPA standard and includes special agents that constitute the core of the

system: Agent Management System (AMS) and Directory Facilitator (DF) (Fig

5) [Bellifemine et al., 2010].

Figure 5. Reference architecture of a FIPA Agent Platform

Platform may be distributed across multiple hosts and JVM-s. There should

be one and only one Main container where AMS and DF agents live and the rest

of agents could spread over different containers that are connected to the main

container (Fig 6).

28

Figure 6. JADE Agent Platform distributed over several containers

There are also special-purpose JADE agents that help to develop and test

agents. They are:

• Remote Monitoring Agent (RMA) – allows controlling the life cycle of

the agent platform and of all the registered agents. The distributed architecture of

JADE allows also remote controlling, where the GUI is used to control the

execution of agents and their life cycle from a remote host.

• DummyAgent – allows users to interact with JADE agents in a

customary way. The GUI allows composing and sending ACL messages and

maintains a list of all ACL messages sent and received.

• Sniffer Agent – visualize messages sent between agents. When the user

decides to sniff an agent or a group of agents, every message directed to/from

that agent/agent group is tracked and displayed in the Sniffer Agent’s GUI.

• Introspector Agent – monitors and controls the life-cycle of a running

agent and its exchanged messages, both the queue of sent and received

messages. It allows also monitoring the queue of behaviors, including executing

them step-by-step

User agents are obliged to interact with AMS and DF in order to be tracked

by special agents and in order to utilize all platform features. Agents must

implement one or more behaviors from the patters below:

• SimpleBehaviour – models generic atomic behavior.

29

• OneShotBehaviour – models atomic behaviors that must be executed

only once and cannot be blocked.

• CyclicBehaviour – models atomic behaviors that must be executed

forever.

• CompositeBehaviour – this abstract behavior that are made up by

composing a number of other behaviors (children). This behavior must be

explicitly defined by sequential, parallel of FSM behavior.

• SequentialBehaviour – this is a CompositeBehaviour that executes its

sub-behaviors sequentially and terminates when all sub-behaviors are done.

• ParallelBehaviour – this is a CompositeBehaviour that executes its sub-

behaviors concurrently and terminates when a particular condition on its sub-

behaviors is met.

• FSMBehaviour – this is a CompositeBehaviour that executes its children

according to a Finite State Machine defined by the user. Each child represents

the activity to be performed within a state of the FSM and the user can define the

transitions between the states of the FSM.

• WakerBehaviour – one-shot task that must be executed once after given

timeout is elapsed.

• TickerBehaviour – cyclic task that is executed periodically.

30

3 Ant colony simulation
This project has started when I accidentally got the book [Bonabeau et al.,

1999] that describes the behavior of real ants and shows some practical

applications based on the research of their life. This conception was to build up

the system of intelligent agents (IA). From one side it supposes to simulate the

behavior of real ants and from the other it describes the process of building

software-based agents. Ant colony simulation suits for such a task almost

perfectly.

Project implements the model based on ant colony structure. Originally the

idea of ant colony optimization project is to use “pheromone's trails”

representation to find the solutions for some practical tasks such as routing,

scheduling, travel salesman problem (TSP), etc. In this project “trails” as defined

in the book are not used at all. Instead of the “trails” agent ability to exchange

messages directly is used. I have developed special “ant” language that is

represented by ontology.

My main area of interest is IA structure, different types of behaviors and

collaborations between agents with an ability to create social structures

(coalitions) according to the agent’s goals and beliefs. System uses the notion of

“time” [Mõtus, 2003] to be able to carry out all its functions. Thus more

complex model of inter-agent communication is used instead of “pheromone

trails” and also message security and real time issues have being taking into

account.

The system implements some mathematical algorithms for the particular

problem solving (like finding the shortest path between two points) or even

several at the same time for different agents/coalitions, but we will not be

focused on describing each of them in details, because they are well-known. It is

more interesting for me to obtain results using different types of interactions

between agents, implementing different types of agents, use coalitions and time

constraints.

3.1 Model structure

Here I define the internal structure of the whole system that implements the

desired functionality. UML approach has being used to build the system from

different top-level views. This diagram is analogue to Use Case Diagram in

UML notation [Booch et al., 1998] [Soley, 2003], where the users of the system

are agents themselves. There is a better approach now to represent the goal

hierarchy developed recently [Sterling et al., 2009], but at the time system was

designed this approach did not exist. The goal hierarchy looks like on the Fig 7.

31

Achieve stability over

captured territory

Explore the

Area

Collect the

food

Explore the Area

for opponents

workers, warriors

and nests

Create warrior

units and destroy

the opponent’s

units

Secure information

spreading between

companions

Find and explore

food source

War

Negotiate

Peace Coalition

Internal goals

Keep the

integrity

Set up the terms

of agreement,

conditions

Secure

Find the

neighbours

Foreign affairs

If

possible?

If

possible?

Figure 7. Goal hierarchy

The goal hierarchy tree has two main branches – “internal goals” (blue) and

“foreign affairs” (red). Agent’s behavior entirely depends on internal B-D-I

(beliefs, desires, and intentions) logic [Haddadi et al., 1996]. In complex

situations, besides agent’s BDI logic, agent may use more sophisticated

structures like different RRS (representation and reasoning systems) [Poole et

al., 1998]. The behavior of the agent also depends on which class agent belongs

to. We will consider several of them later on.

Top-level goal is to find the balance in the system with different (sometimes

opposite) agent’s desires or within population (growth, death, food income, etc.)

over certain period of time.

In a case of one population there is no need of warriors and system goal is to

find the food source and bring food to the nest. The tasks degenerate into finding

the shortest path between two points and avoid collisions. Generally this is a

goal of ACO project.

In a case of several populations much more problems arise. It depends on the

social life of such a structure. System top-level goal comes from this kind of

structure, but in the beginning I am going to implement the simplest one –

without social impact.

3.1.1 Internal goals

These goals determine what an agent should do for himself, then for his

relatives and social groups he belongs to. In our particular case the Ant belongs

to some Nest and all the ants that belong to the same nest organize the “family”

(or social group with non-contradictory goals). Within this group it may be the

other groups (subgroups) that are created by dividing the functions between

agents, i.e. workers, warriors, etc. They work together to achieve common goal.

Regarding Ant colony simulation the main tasks for the units are to explore

the area, collect the food and find the neighbors (if any). All information about

32

the food sources and foreign affairs should be secured inside trusted groups

within the colony or coalition.

3.1.2 Foreign affairs

All relations to ants that do not belong to the same nest are considered as

foreign inter communications. The most important part of it is Negotiation. The

result of the negotiation process is the decision about war, peace or coalition in

one of the area. Here I define peace as co-existence of two or more parties

whose interests are not in conflict. The war in this case is the conflict between

two or more parties that cannot be solved by coalition. Good example of such

situation is struggle for the shared resource. Coalition has a priority over other

two choices, because it brings mutual benefits for the participants either in war

or peace.

There are, certainly, more different types of possible interactions like

master/slave situation or long term cooperation that can bring no benefit (even

losses) in the beginning, but may have good output in the future. I do not

consider them here for a while in order not to make the system too complex to

build and analyze. This social part of the system remains open for future

investigation.

3.2 Agent approach

Basically the model consists of four types of agents: environment agents,

nests, workers and warrior agents and may be easily extended in the future by

adding other types of the agents (Food Agents, Obstacle Agents, etc.).

Here I define what abilities and actions each agent does:

Area Agent – represents the area where each other agent acts. This is a matrix

of cells. Each agent occupies one cell with its own coordinates on this area and

some of them can change their position by moving to another empty neighbor

cell. Cell could contain food source, obstacle, another agent or empty. This

information keeps and manages the Area Agent. It belongs to environment type

of the agents.

Nest Agent – represent the Nest for one ant colony. It is placed randomly on

the map and then produces Worker agents and Warrior agents to explore the

Area and find the food sources and neighbors. It has unchangeable coordinates

in the Area. Nest is characterized by number of issued workers and warriors and

by amount of collected food.

Worker Agent – searches through the Area for the food and then transfers the

food from the food-source to its Nest agent. It modifies the Area and changes the

33

information in Nest agent. The algorithm of food search and orientation is not

strictly defined and may be specified by external module.

Warrior Agent – searches through the Area for the other agents. Identifies the

opponent whether it belongs to the same Nest or not. For the friendly agents

warrior can be the messenger. For the unknown agents it determines the politics

of foreign affairs. It executes War and Peace strategies. Simple behavior is to

capture (kill) all unfriendly agents without analyzing consequences and

conditions.

3.3 Distributed model of mobile agents

From the beginning there was a demand to the system to be distributed over

the network. The system uses client-server model. Server runs the main-

container (JADE term) and Area Agent that generates and maintains the area

map. It also has HTTP-server to be able to serve requests from the clients. It

contains client applet. The structure is shown on Fig 8.

Figure 8. Distributed JADE platform

Any agent (i.e. nest, worker of warrior) can physically move from one

container to another and live there without being connected to the origin. This

resembles virus behavior, but this is not. The function of moving between

platforms is supported by JADE.

One of the main demands is that client doesn’t have to have JADE

installation on the local PC and also may not have real IP address. The only

required software for the client is JAVA virtual machine and web-browser.

Client initiates the connection to the server through HTTP (HTTPS) request,

downloads the applet with JADE libraries and creates JADE container on the

34

local PC. All the agents run within a container and communicate with the other

agents using JADE main-container. Agents have to implement special type of

map-queries to be able to explore the map more efficiently. The diagram is

shown on Fig 9.

JADE Client

Container-N

JADE Server

Main-container

X,Y

X,Y Query position

Available positions to

move

Visible positions

RMA, ams, df - standard

JADE agents

QRY (X,Y)

ANS [array]

Area Agent

Nest Agent (with GUI)

Worker Agent -1

Worker Agent -2

Worker Agent -K

http,https,IIOP

Warrior Agents

Figure 9. Map navigation messages

Every agent queries the Area Agent with (X, Y)-coordinates and has an

answer in reply as an array of Cells in a visible range. This range is different for

different type of agents and may change during agent’s life (experience). Agents

that have ability to move between cells can move only in a neighbor cell, despite

his visible range may be bigger. The Area Agent manages all these movements

as well.

3.4 Ontology

Each agent, involved in the project, communicates with the other agents

using FIPA ACL. Rather FIPA-SL [FIPA, SL] content language has being used

because it is supported by Protégé and JADE platforms. To be able to

communicate agents should define/use the ontology [Cranefield et al., 2001], i.e.

domain of terms and meanings agents operate with.

35

The ontology for “Ants” project was generated using Protégé-2000

development tool. It contains 7 concepts and 5 predicates. We use special add-

on, called “bean generator”
5
, to be able to generate the ontology for JADE

platform [Noy et al., 2001] automatically. Short description of used notions is

given in (Table 1).

Table 1. Ontology components

Type Subtype Slots Data type Description

Concept AID Name

Addresses

Resolvers

String

String, ∞

Class, ∞

Agent name

Address

AID

Concept AreaAgent maxX

maxY

Integer

Integer

Size (X coord.)

Size (Y coord.)

Concept NestAgent Vrange

NestCapacity

Neighbors

NestWorkers

NestWarriors

Cell

Integer

Integer

String, ∞

Integer

Integer

Class

visible range

food amount

neighbour agents

number of workers

number of warriors

occupied cell

Concept WorkerAgent Vrange

Neighbours

Prev_cell

Cell

Integer

String, ∞

Class

Class

Visible range

Neighbour agents

Previous location

Current location

Concept WarriorAgent N/A N/A N/A

Concept FoodAgent N/A N/A N/A

Concept ObstacleAgent N/A N/A N/A

Concept Cell coordX

coordY

cellOWNER

cellSTATUS

Integer

Integer

Class

Integer

X coordinate

Y coordinate

Cell content

Status (0 - empty)

Predicate Consists area

cell

Class

Class

Area Agent

Cell

Predicate AreaStatus area Class Area Agent

Predicate WorkerStatus worker Class Worker Agent

Predicate NestStatus nest Class Nest Agent

Predicate isSituated location

worker

Instance

Class

Cell

Worker Agent

The ontology is not universal enough to be able to communicate with the

agents of other type. Theoretically it is possible to teach agents other ontology

like Finnish SUO [Henriksson et al., 2008]. Practically within this project there

is no need of external ontologies. For this project I have developed stand-alone

5
 In the latest releases on JADE (since version 3.6.1) there is no need to use external

tools to generate ontologies. They can be developed using BeanOntology class.

36

ontology that, from one side, separates our agents from the other world, but from

the other side it is easier to start the project with custom ontology and not spend

much time adopting the external one.

3.5 Implementation in JADE agent development environment

Ant project is a template to investigate interactions between agents and

potential of JADE platform. Currently project doesn’t include Warrior Agents

and simulates the behavior of one isolated ant colony. It can be easily modified

to more complex research.

Main features of the Ant project are:

• The system has been entirely written in JAVA so it is platform

independent.

• JADE platform support distributed architecture and software implements

conceptions of parallel programming and (possibly) real time.

• JADE libraries are included in the client software.

• Configuration of the system is concentrated on the server. Clients are

configured automatically.

3.5.1 Running system

Area agent – generates the map as matrix X*Y where X and Y parameters

may be passed to him during start-up. The default values – 100*100. The area

map is two-dimensional. Each cell is an object that contains 4 fields (see Table

1). Each cell has a status field - an integer number that shows cell’s status

(empty, occupied or food).

The map is stored in a memory and text file. Text file contains only the initial

map (for a debugging) and map changes during system run can be seen on the

Area Agent Graphical User Interface (GUI).

Agent has 1 behavior: it listens for a message which in FIPA specification

called “query-ref” with coordinates “(X, Y)” in its body. Agent replies with

“inform-ref” message that contains an array of neighbor cells. Thus agent who

queries the cell will know whether the cell is empty, obstacle or contains the

food and what is situated in neighbor cells within his visible range.

Nest agent – searches for the Area Agent and gets its location over the

territory. It happens during the conversations between the Nest Agent and the

Area Agent. Coordinates of the nest location are assigned randomly. Typically

Nest is placed in the initialization phase and its coordinates does not change over

time. So there is no possibility for the ant colony to change the place of the nest

or to set up new Nest in addition to the initial one.

37

After Nest is placed on the map it generates workers. Workers begin to live

independently from the Nest, trying to achieve their goals.

Nest Agent software is downloaded from the server as JAVA applet and runs

on the client computer if server is accessed over HTTP. Nest has its own GUI –

copy of the area map with cells, visible by the agent, and all generated workers.

Worker agent – is placed on the Area by the Nest and starts searching for the

food source. When the food source is located Worker gets one piece of food and

returns to the Nest. The Agent can be in one of the 3 states: searching for the

food, getting food to the nest or returning back to the food source for the next

portion.

The movements are displayed on the Nest GUI.

3.5.2 Examples of GUI

Area map graphical representation is common for both client and server. The

only difference is that server has this map completely open, but client can see

only the part within certain range. See the examples below.

Each cell on a map may show different pictures. They are shown in Table 2.

Table 2. GUI cell icons description

Picture in

applet

Picture at server Description

the same Food source (with value)

the same Obstacle

the same Unexplored territory

the same Empty cell

the same Nest

Worker searches the food

Worker transfers the food to the NEST

N/A

Worker returns to the food source for the

next “portion”

Interactions between agents (i.e. messages and their context) user can trace

using JADE build-in agents: Sniffer and Dummy Agent (only for main-

container). Additionally they can be traced on the console (java console for the

applet). Example of server GUI (Area agent) with the area 20x15 cells is shown

on (Fig 10).

38

Figure 10. Area agent GU exampleI

Example of client’s applet GUI for the same area (visible range = 1 cell) is

shown on (Fig 11).

Figure 11. Nest GUI example

39

3.6 Conclusion

I have studied basic principles of building multi agent systems and tried

JADE framework to program software agents. Distributed MAS with more than

50 agents has being created as a result. Each agent has being started either by

local JVM thread or by remote container in JSP. Main JADE container was

launched from JSP within Apache Tomcat server [Apache, 2012] and locally.

JADE platform may be used by universities to study MAS development and

train students on agent programming. Nevertheless JADE has potential to be

used as production system for many application areas where real time constraint

is not strict.

Strong side of the platform is ability to use ontologies in messages

interactions. Despite the ontology for this particular project is not optimal I get

the way to make it better. In the latest versions of the JADE ontology support

has been drastically improved.

40

4 Optimize shared resources. 5 hungry philosophers

problem
The management of shared resources in the systems sensitive to time is tried

to be analyzed in multi-agent environment – JADE. As a model for that “dining

philosophers” problem (firstly formulated by Dijkstra) [Hoare, 1985] [Mõtus,

1990] was taken to be investigated. This project shows how this model can be

represented using agent conception and methods of Extreme Programming

[Knublauch, 2002]. The latter I used to simulate modeling in rapidly changed

environment while designing the system from “classical” definition to extended

one. Intermediate steps are not presented here for the sake of conciseness.

The main goal is to build up the system to be capable to investigate the

behavior of the agents under different conditions. Since the environment is

represented also by the agent it is possible to model not only static but also

highly dynamic environment. Basically agents are not capable to learn and don’t

have the memory of past events, but the system can be extended to do that in the

future.

Classical description of the “dining philosophers” problem assumes that there

are five philosophers who work and feel hungry from time to time. When a

philosopher feels hungry he goes to the table where there are 5 plates with rice

and only one stick between neighbor plates. One of the possible (worst) states of

such system is achieved when all 5 philosophers go to the table simultaneously,

take one stick each to eat rise and no one can eat (we also assume that to be able

to eat rise person needs 2 sticks).

There are many goals which could be achieved by solving this problem. How

to increase time the philosophers are working? How to avoid the worst situation

(when all philosophers die)? How to keep satisfaction of the philosopher at the

maximum level? And so on.

More parameters can be added to the system in order to simulate some real

object. For instance, the level of unconsciousness can be added to the

philosopher to represent the state when he is unable to go for the lunch by

himself and external help (like hospital) is needed. Some examples of more

sophisticated formulations of the problem can be found in [Chandy et al., 1988],

and [Mõtus et al., 1994].

4.1 Process modeling

As there is no need to be strictly followed by classical description, I have

slightly modified the task and refused from “sticks”. Instead there is a table with

41

maximum 3 simultaneously available free places for 5 philosophers. The model

of system with additional parameters is shown on Fig 12.

RESOURCE

Manager
(Monitor)

Incoming
queue

of
hungry

philosop.

Request
for lunch

H
O

SP
IT

A
L

Free
the place

Allow to go for a lunch
Philosophers

Occupied space

Free space
Le

av
e

th
e

p
la

ce

Take a
place

Ph

Philosopher

o Ls - level of satisfaction
o L - level of hungry
o Lo - level of

unconsciousness
o M - minimum needed

portion
o h = a - bt (hungry

function)
o HT_min - time needed to

obtain minimum portion

Figure 12. Functional diagram of the system

4.2 Agent approach and ontology

All the actions could be divided between four types of agents.

Philosopher:

• thinks and works

• keeps account of the consumed food (in a fixed period)

• becomes hungry (according to individual schedule) and applies for the

food

• falls ill and applies for hospital, unless he regularly receives sufficient

quantity of food in due time

Manager:

• monitors the status of philosophers (and other involved agents)

• attempts to influence the decisions of the table

• defines the functioning goal of the system – e.g. maximizes philosophers

working time, or minimizes hospital expenses, or minimizes the

consumed food, etc.

Table:

• controls the use of resources (simultaneously 3 of 5 is maximum usage)

• assigns the quantity of food to a customer

• selects customers from the queue according to its own rules

Hospital:

• cures philosophers suffering from being hungry too long

42

• takes care of the philosophers, gets extra food in a priority queue for

them

• if and when a philosopher’s health has improved, sends them back to

work

Different types of agents carry the role for the different activities in the

system, however basically the functions of the Hospital and Table were

implemented in the Manager agent.

This is done because all the interactions between the Philosopher and other

agents are done through the Manager. And for the Philosopher there is no

difference who issues the command because all of them are going through

manager.

The decision to refuse from 2 types of agents simplifies the process of design

and allows obtaining the results about system behavior more quickly.

4.3 Implementation in JADE

4.3.1 System

The source code was written in JAVA using custom developed ontology

which is also a part of the project. JADE environment was used to execute

agents and monitor their states. GUI interface of the Managers shows the state of

a particular agent with the precision depending from Agent local time period

(see section „ Time constraints Time constraints“).

The example of manager agent GUI is shown on Fig 13.

43

Figure 13. Screenshot of a working system

There are 3 windows on the picture:

• Manager status GUI

• JADE console

• JADE Remote Agent Management GUI

While “Manager status GUI” is only informational from JADE console

output information can be saved to the file. JADE RMA GUI is used to control

agents, i.e. add/delete, pause/continue, migrate, sniff, and send messages.

Parameters to the philosophers are passed through command prompt. If they are

not mentioned or their order or number is incorrect agent uses default settings

(see Table 4 for details).

4.3.2 Agents

All the agent’s functions in this project depend from time linearly though

there is no constraints do define the behavior as a non-linear time function.

4.3.2.1 Manager

Manager agent is really the core of the system. It receives the agent’s

requests and sends additional messages in order to “learn” the status of each

agent in the system. Its main characteristics are (see Time constraints

44

for how to calculate the maximum value of this parameter) and strategy to

implement. Strategy represents the goal for the system. It is the function:

 ,

which should be maximized (minimized) according to agent parameter(s) (the

number of which can be up to k – maximum number of parameters), during time

t over n agents. In our case the function:

 ,

In other words all our 5 philosophers should be able to work (without dying

case) and eat up to their maximum needs.

4.3.2.2 Philosopher

Philosopher is an active element of the system. It “lives” according to its

internal time, works and feels sometimes hungry (self-control). There is no

measure on the quality of his work since the productivity of philosophers is of

no interest in our current project. It may be done in the future.

Main parameters are represented in Table 3.

Table 3. Default parameters

Parameter Description Default

value

 Minimum time interval which philosopher can

sense

1

hunger function

 Current level of hungriness (amount of food,

energy philosopher has at the time being).

100

 Hungriness coefficient. Determines how fast the

philosopher becomes hungry.

1

 Limit of hunger. When this level is reached

philosopher feels hungry and sends request to

eat.

50

 Satisfaction level. The minimum level that

enables working of a philosopher after eating.

75

 Level after which a philosopher can’t take meal

by himself. Cure is needed. He submits request

to be taken to the hospital.

25

 Amount of food which philosopher consumes

during

1

 Minimum amount of time to get
 . Measures in philosopher’s time

units .

1

State Can have one from 4 values: 1-“working”, 2-

“eating”, 3-“sick”, 4-“dead”

1

45

4.3.2.3 Hospital

Not yet implemented as an agent. His function was divided between Manager

and Philosopher by representing “healing action” as a linear function of time:

 , h>0 where h – healing coefficient.

4.3.2.4 Table

Not yet implemented as an agent. His function was divided between Manager

and Philosopher by representing “eating action” as a linear function of time:

 , e>h>0 where e – eating coefficient

4.3.3 Ontology

The ontology for this project was created and generated using Protégé-2000

development tool with special bean generator plug-in which creates the structure

compatible to JADE.

The ontology consists of 7 predicates and 4 agent AIDs. They are specially

designed for this project only thus can hardly be reused (see Table 4).

Table 4. Philosophers ontology

Subtype Slots Data

type

Description

AID resolvers Class, ∞ AID in JADE

PhilosopherAgent resolvers

hungry_coefficient

L_hungry

L_current

Min_portion

State

T_min_portion

L_unconsciousness

L_satisfaction

Class

Float

Integer

Float

Integer

Integer

Integer

Integer

Integer

Subclass of AID

Hungry coefficient

Hungry level

Level of satisfaction

Minimum portion

Agent current state

Time to get portion

Unconsciousness level

Level of satisfaction

TableAgent resolvers

capacity

free_places

table_queue

Class

Integer

Integer

Class, ∞

Subclass of AID

Qty. of available

places

Qty. of free places

Queue of philosophers

ManagerAgent resolvers

N_philosophers

strategy

current_agent

Class

Integer

String

Class

Subclass of AID

Number of

philosophers

Goal of the system

Subclass of AID

HospitalAgent resolvers

disease_level

hospital_queue

Class

Integer

Class, ∞

Subclass of AID

Priority of agent

Queue of agents

46

sick_num Integer Sick philosophers qty.

PhStatus philosopher Class Philosopher agent

TableStatus table Class Table agent

HospitalStatus hospital Class Hospital agent

Go4Lunch philosopher Class Task for philosopher

Go2Work philosopher Class Task for philosopher

SetState state Integer Set state task

Go2Hospital philosopher Class Task for philosopher

4.3.4 Executive Environment

• JADE 2.61 (for the 3.0b small changes and recompilation is needed)

• JRE 1.3.1

• For the processor < PII-300 and RAM<64Mb recompilation with

appropriate timing parameters may be needed (see section 5.1)

• OS with GUI (tested on Windows 2000/XP and Linux Mandrake

8.2+KDE)

Since each agent synchronizes its actions with RTC (real-time clock) the

whole system is very sensitive to the working environment. Thus the

performance on the slowest computer can even be better than on the fastest one

depending from which services and programs are running simultaneously. This

can be stabilized by using real-time OS (like QNX) together with conceptions of

real-time programming in JAVA [Bollella et al., 2000].

4.4 Results obtained from simulation in JADE

4.4.1 Time constraints

Before assigning any specific value to the characteristics of a philosopher

(like hungriness level, level of satisfaction and so on) the time notion for each

agent should be defined because the system is time-sensitive see, for instance

Mõtus in [Selic et al., 2003]. It should be done in conjunction with the other

agents, especially Manager. Manager’s internal time interval value is calculated

by formula:

 ,

where – time interval for the philosopher, – number of philosophers,

 – time interval for the hospital, – number of hospitals, – time

interval for the table, – number of tables, – constant which depends on

the executive environment
6
 (the speed of the computer, operating system,

6
 This constant helps Manager to calculate maximum time interval for every

philosopher easily, but it is certainly not – the execution environment which consists of

47

version of JRE). For fast computers and agents number <10 it can be assigned to

“0”.

The above formula is valid in a case there is only 1 manager to control the

other agents. If there are at least 2, the task becomes more complicated. System

is facing with problems of parallel execution, which demands from the software

to focus on synchronization between managers.

4.4.2 Homogeneous systems

Homogeneous linear system in this case is the system where all agent

instances (all philosophers) have the same linear parameters and start their

execution at the same time (from the batch during the system start up)
7
.

Theoretical results:

In this type of system when agents start working with the same initial

parameters they feel hungry also simultaneously. So, the peak of requests starts

at the time

 and if during

 agent do not receive invitation to the table he

becomes “sick”. And Hospital agent can restore his ability to work. However

there is also a situation when hospital has no free spaces (if we limit the capacity

of hospital) to serve the sick philosopher and after

it will die.

Practical results:

Practical results with default initial values are shown on Fig 14.

SW and HW components cannot be constant. Environment parameters (like amount of

free RAM, swap size, frequency, etc.) can change eventually.
7
 There is no possibility to launch the agents “at the same time”, because JADE

launches agents sequentially one after the other. When there is we can say

that agents are executed at the same time. For our task this level of approximation is

acceptable.

48

Figure 14. Requests for eating over time

Homogeneous non-linear system in this case is the system where all agent

instances (all philosophers) have the same parameters and start their execution at

the same time (from the batch during the system start up). At least one parameter

of the agent is non-linear.

4.4.3 Heterogeneous systems

Heterogeneous linear system in this case is the system where at least 2 agents

are different from each other by parameters. All their parameters are linear.

Heterogeneous non-linear system in this case is the system where at least 2

agents are different from each other by parameters. At least one parameter of the

agent is non-linear.

Those two types of systems I did not simulate, because they just have another

mathematical function behind agent parameters and all the agents, their

interactions and environment remains the same. The goal of the project did not

have the requirement to get output for all types of the systems, but to build the

MAS that anyone can adjust to their particular needs.

Requests to eat dynamic

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

Time(s)

N
u

m
b

e
r

o
f

p
h

il
o

s
o

p
h

e
rs

Requesting

Eating

49

5 Commercial off-the-shelf product improvements
Large companies use a number of different software systems to support

and/or automate their work. Usually these software systems include

customer/partner management software surrounded by various service

applications and databases that help to keep finances, personnel, resources, etc.

These applications are often implemented on different platforms, created at

different time by using a wide range of technologies. In this situation a very

important task is to create homogeneous IS structure for the entire company – so

as to use all those systems at their maximum performance, and to have clear

control rules within the company. For many companies this problem is weighed

down by rapid market changes requiring to integrate new technologies fast, and

tendency to keep their own system open for integration of new (and changing)

partners/clients.

5.1 SOA structure and main principles

SOA (Service Oriented Architecture) as a method of integrating different

applications is not new. Many books and articles are written about SOA [Erl,

2005]. The related theory promises IT-professionals many benefits stemming

from SOA. The paper will not discuss the details of different implementation

patterns, nor will give definitions to SOA terms, but rather focus on the

implementation pitfalls and general weaknesses that we have found after some

practical experiments within our telecommunication company. These drawbacks

forced us to look for a way to improve SOA. The core components of SOA are

Enterprise Service Bus (ESB) and BPEL (Business Process Execution

Language). ESB is a pattern of middle ware that unifies and connects services,

applications and resources within a business [Chappell, 2004]. BPEL is a

language for the formal specification of business processes and business

interaction protocols. It is platform-independent and based on XML

[Khodabakchian et al., 2011]. We use BPEL to orchestrate services within our

company [Schittko, 2003]. BPEL is connected to ESB and is a part of entire

system. While ESB performs synchronously, BPEL by its logic allows both

synchronous and asynchronous operations. This creates a situation when not all

service calls produce response message for the customer. Process may wait until

certain criteria is met and then call back customer. It is important for our

intelligent agents that will check service availability.

I have created a model similar to classical ESB structure by slightly

modifying it by adding one extra layer – “Network names management” (see Fig

15).

50

Figure 15. ESB structure

Network names management layer has been introduced in order to manage

web-service external addresses in the unified way and separate end-point

location from its realization. Both external and internal customers call the same

WS address endpoint though internally address physically can be mapped to

different systems (production or development) and different versions of the

service. Security is also brought to a higher level by having external customers

that are working over HTTPS, while internal are working over HTTP.

5.2 Major integration problems

SOA integration requires tight cooperation between different departments

and partners/customers. Everybody must understand SOA architecture and

principles to be able to work as a team. Usually SOA team consists of architects,

IT and business analysts, designers, testers, network administrators,

development partners and customers. Analysts analyze business and system

requirements and propose service candidates. Architects control overall design

process and define company standards for WS development like namespaces,

BPEL domains, ESB structure and services registry. Designers create services,

test and publish them. Testers check that applications that use services are

working correctly and after that they are available for the customers/partners to

use. The complexity of information flow that must be followed each time new

service is created or old service is updated is shown at Fig 16.

As you can see there are still a lot of human-tasks around SOA integration

process. The process is hard to synchronize and plan, because all participants

belong to different departments and even companies.

51

Figure 16. Roles and activities of a SOA team

5.2.1 Addresses and names

One of the major problems that a customer/client faces is service discovery.

If a customer does not know the service address in advance he cannot use the

service. UDDI (Universal Description Discovery and Integration) is a platform-

independent, XML-based registry for businesses worldwide to list themselves on

the Internet. UDDI is an open industry initiative, enabling businesses to publish

service listings and discover each other and define how the services or software

applications interact over the Internet. Even UDDI is not sufficiently good

solution to manage the list of existing services, because this list must be created

manually. Service deployment already has all information about the service, but

it is hidden from the user and all the notifications about service list updates are

done manually by sending e-mails or calling ESB console and manually

checking service directory. From my experience company waste up to 20% of

uc SOA team roles

IT analyst

Business analyst

Architect

Designer

Partner

Tester

Customer

Serv ice

candidates

Business

requirements

System

requirements

Web serv ices

Network admin

create

change

use

change

analyse

analyse

manage

network names

system

support use

manage

propose

propose

coordinate

use

test

52

project time synchronizing addresses and names with all the involved parties

(same Fig 15).

Service discovery must be essential part of the SOA platform. Client looking

for a service should have a chance to specify and get extra information about

service version, uptime and functions that service offer.

5.2.2 Services are not intelligent

Services are entities that are independently deployed, assigned a version and

managed. Service management can be done by various monitors that are

available from the vendor, but they can only control the execution process of the

service (whether it passed or failed). This happens because a service is not able

to control itself – it does not have the minimal required autonomy. A service

instance exists only during service invocation. And during the rest of the time

the environment can be dramatically changed. Services cannot find other

services and connect to them depending on different conditions like version,

service type, response time, etc. This leads to enormous amount of time wasting

by designers/support to organize and keep track on existing services. Changing a

service in these conditions is even more difficult - all partners/customers must be

warned to update and re-deploy the service, because changes in WSDL file

(Web Services Description Language) cannot be automatically implemented.

This happens because service connection point is created during design and has

no “re-load” methods that can modify endpoint parameters during runtime. From

our experience this overhead can create a persistent flow of corrections that

“eats” service uptime. Overall service malfunction correction can take from 1

day to several weeks depending on how early we find the problem root cause

and how fast the changes will be implemented by our partners. During all this

time service is unavailable.

5.3 Intelligent agents as an improvement for services

Agent cannot replace human in the complex SOA implementation process.

They can help to reduce the amount of time SOA team spends to manage the

existing services.

5.3.1 Addresses and names

This problem can partly be solved by our Network names management layer

that we described before and showed on Fig 14. Services always have the same

naming rules for the partner/client. And their end point can always be connected

to the newest version of the service (unless WSDL is unchanged) or to the one

that is currently working (in case the main service fails). Nevertheless it is done

53

manually and requires extra work (and especially time) from our network

administrators to configure routing. With a number of services to grow this

solution becomes more and more complex to maintain. This must be automated

and one of the possible solutions is agent approach that solves both problems

mentioned above.

5.3.2 Intelligent services

Web services are usually intelligent, but not proactive [Huhns, 2002]. Agents,

by definition are proactive and intelligent. Some of them to a greater extent than

others, some of them are with very little intelligence, but the main point is - they

act. If every service has at least one intelligent function – self-control we will

identify system failure long before the customer rise trouble ticket.

Unfortunately SOA does not imply that its components are actively

collaborating with each other. All actions supposed to be initiated by external

systems (or humans) and SOA place is to route (manage) system

interconnections. In our experiments we took Oracle ESB that is a part of Oracle

SOA Suite 10g middleware. ESB is instance-based and only functionality that

API gives is instance control. It means that agent platform must be deployed

separately.

Related work has being done by number of persons [Cooney et al., 2003]

[Peters, 2005], but new to this paper is integration with industry accepted

technologies like ESB or BPEL and less strict limitation for agent’s mobility.

General idea of agent integration into SOA is represented on Figure 17.

ESB

UDDI registry
Agent

platform

service1Agent

service2Agent

serviceNAgent

UDDISearchAgent

Customers

client1Agent

client2Agent

clientMAgent

Agents

ESBSearchAgent

54

Figure 17. Agent platform integration with SOA

For the project structure it is not important whether agent will physically

move to customer platform or it will stay within home platform. Agent platform

itself is also not very important. It must support agents that know SOAP, XML,

HTTP/HTTS and WSDL. It seems easier to choose one that is based on JAVA

language, for instance – JADE.

SOA platform and UDDI part (if exists) remains unchanged. Agent platform

is set up between service provider and customer. Customer will get URL to

agent platform instead of direct link to the service.

There are 3 possible configurations:

1. With UDDI and without ESBSearch agent

2. Without UDDI and with ESBSearch agent

3. With UDDI and with ESBSearch agent

There are three major types of the agents – search agent, client agent and

service agent. If there is UDDI registry defined one more type is to appear –

UDDI search agent. As it is defined in specification for UDDIv3 – client can

subscribe to specific service. Subscription provides clients, known as

subscribers, with the ability to register their interest in receiving information

concerning changes made in a UDDI registry. The main problem is that

information to the registry is entered by human. That means service registry will

never be 100% up to date. Search agent type that is represented by ESBSearch

agent is created to fix this problem. It scans ESB for new services to appear and

communicates with existing service agents regarding services changes. If search

agent finds endpoint without service type agent (new service) assigned to it, it

initiates agent platform to create a new service type agent for this endpoint.

ServiceN agents are simple agents that keep track on the specific service (1

agent per service). They control service functionality and changes. If new

service is created Agent platform gets information from ESBSearch or

UDDISearch agents and creates new ServiceN+1 agent to control this end point.

ClientM agents are the ones to help customer to find and connect client to the

service he wants. This type of agent is created for every customer connected to

Agent platform. ClientM agent supplies the client with all information gathered

by all the agents. Such a structure gives us number of benefits and fixes the

major problems:

 Human should not maintain service list directory and track addresses

 Clients should not maintain their endpoint lists and request for

service updates

 Service list updates are not a manual work any more

55

The problem that cannot be solved by cooperation with agent platform is

service endpoint re-deployment. If connected service is changed customer must

update their connected adapter.

Practical implementation of this model is not trivial. If I take, for example,

Oracle ESB within Oracle SOA suite there is no API that supports creating such

an agent as ESBSearch agent. Customer can wait until Oracle publishes platform

API or do reverse engineering for oraesb.jar library that is responsible for

service registration within ESB.

5.4 JADE implementation

Implementing SOA is not easy. In practice, new architecture brings new

problems instead of old. And this is not because of bad implementation.

Principles that SOA is built on are rather old. ESB in general is big routing hub

where SOAP application requests are routed. Routing protocols are well-known

objects and principles they are built on could be used here as well. The result

will be much better than updating routing rules manually. Still this is not a good

solution. Using active components (like agents) that act autonomously and do

major low-level work will create much better results. With existing SOA

platform this is not possible. Either vendor will open API that enables platform

extensions or will build new system based on new approach. For large

companies it is suggested to consider agent-oriented service design as a next step

for IS integration.

5.4.1 Web services and software agents

The first bridge between web-services and JAVA agents was made by

Whitestein Technologies and their product WSIG [Greenwood, 2005] (Web-

Service Integration Gateway). They found many points of contact between these

two technologies and propose method how to integrate two worlds. Their model

is shown on the Fig. 18.

As a result – agents can exchange messages with web-services
8
. We use this

property to integrate agent platform with ESB and delegate some functions that

are performed by human to intelligent agents.

Joining agents and services gives intelligence for web services that is missing

for now.

8
 Web-services, due to their passive nature, can’t discover services published by

agents and dynamically use their functions.

56

Figure 18. Standard WSIG architectural model

5.4.2 Making agents work

In the next Fig. 19 I introduce the vision of how agent’s platform can help to

automate routine work. Many of the system parts are already up and running

while the others are our potential to grow.

5.4.2.1 Transform ESB metadata into agent ontology

Oracle ESB agent performs translation function between server metadata and

agent’s internal structure. It gets XML data from the server API, extracts and

maps oracle objects to agent’s ontology concepts and caches this information for

15 min after which an update has to come. Agent provides this information to

other agents upon the query. ESB agent implements 2 behaviors – one to update

its knowledge base and other – to reply for services list request. ESB agent is

core part of the system and its behaviors are cyclic opposite to applet agents that

work only in time period from client page open to browser close.

57

WSIG

JADE

agent platform

Oracle ESB agent

O
ra

c
le

 E
S

B
 (

e
n

te
rp

ri
s
e

 w
e

b
-s

e
rv

ic
e

s
)

A
g

e
n

t
E

S
B

 (
a

g
e

n
t
w

e
b

-s
e

rv
ic

e
s
)

Apache

Tomcat

Agent Applets

UDDI

C
lie

n
t
a

g
e

n
ts

WSIG proxy agent

W
S

 c
a

ll

A

B

C

DE

F

G

A
g

e
n

t
n

e
tw

o
rk

H

Figure 19. New enterprise service bus model

5.4.2.2 ESB service lists for development team

Data extracted from Oracle ESB server is already interesting for the

developers and customers. We created applets to display information in a

convenient way. User can search, sort and filter output using different

parameters and get extra information from WSDL <documentation> tags.

5.4.2.3 WSIG proxy agent

WSIG proxy agent translates SOAP message requests/responses into agent

ACL. It also maps WS schema with agent service description. Agent allows

calling agent functions as web-services and vice versa. If UDDI option is

activated agent registers services in UDDI register.

58

5.4.2.4 Agents as intelligent web services

Every Oracle ESB service can be represented by agent that publishes service

operations using WSIG proxy agent in WSDL format. This conversion from

service-to-service is needed to make service proactive and have more control

over client’s connections. Oracle ESB service control is far from being easy and

informative enough. Client’s statistics suffer from address and process data

absence.

5.4.2.5 Oracle WS call

Agent calls web service function after client calls service representation at

Agent ESB. For the customer there is no difference between calling Oracle ESB

directly and calling agent representation of the service at Agent ESB.

5.4.2.6 Agent's WS management

Since agent is situated in the middle between customer and web service it can

carry many useful functions like gathering client’s statistics, notifying client

about service updates or managing subscriptions. These functions can be

exposed as applets on application server. WSIG supports automatic SOAP

envelope request/response generation and WS invocation through server applet.

This is very useful for testing purposes when client needs to know if service is

alive without running special software like SoapUI. In fact this can also be

automated by agents. They can call web service and check if the reply is

reasonable (i.e. has no error in response) and set appropriate status for the

service. The problem here is services that perform insert/update operations in

databases.

Furthermore agents can store statistics into the database to be less dependent

on platform failures and amount of system memory (not shown on the picture).

5.4.2.7 UDDI service

UDDI is widely used standard. WSIG has ability to publish service in UDDI

registry. Here, again, agents can automate this manual work
9
.

For the described configuration of the system we recommend using either

jUDDI or UDDI4j (default for WSIG) software.

5.4.2.8 Open agent platform

JADE is an open agent platform that follows FIPA standards and can adopt

many different types of intelligent agents. JADE can also work in a cluster with

other JADE platforms. Company doesn’t use this ability like it doesn’t use

9
 Publishing operations are manual

59

UDDI at everyday work, but it can use this ability in the future to load balance

between client and server.

5.4.3 Conclusion and further work

I used agents to improve company’s everyday work with commercial off-the-

shelf product - Oracle SOA suite and particularly in its weakest part - Oracle

ESB.

Implementation of the system gave number of benefits compare to the

original system:

1. Lower down response time to the client

2. Ability to search services by name, domain, deployment time, etc.

3. Ability to read service and operation description (documentation) directly

from WSDL

4. Ability to share information about services availability between different

user groups (developers, partners, customers, analysts, etc.) without

getting access to the system

5. Ability to connect to the RPC-style services

6. Possibility to create "active" services like agents

The next step is to improve single services and bind them with WSIG. This

step requires database for statistics and applets for management. As the primary

goal was to prove concept of successful integration of web services with agents,

future work will either be outsourced to professional programmers or be marked

as internal company standard and developed inside.

60

6 Distributed sensor agent networks
Sensor networks are being used and developed for more than half a century.

High impact to their growth was initially stimulated by aerospace industry that

needs a lot of data about environment where aircraft is on. Automotive industry

is the next big area that uses a lot of sensors that communicate with CAN

protocol. All they are usually wired networks that are expensive and static. In

opposite to them wireless sensor networks (WSN) become more and more

attractive alternative thanks to technological progress. It makes the price, size

and computational power of embedded devices reasonable enough to implement

huge number of small independent devices. Here come the next problem – how

to organize them?

6.1 Overview of sensor networks

There is no strict classification of the sensor networks. They can be divided

in two big parts - wired and wireless. If it is no explicitly said in the text the

further concepts will cover wireless networks, as for wired the majority of the

problems do not exist. Notion "distributed" is hardly applicable for wired

networks as well, because usually wired sensor network is physically

constrained by the size of aircraft, car or building. Buildings are probably the

biggest wired sensor networks holders, though nowadays they start to use more

and more wireless devices. Wired networks also tend not to suffer from ad-hock

network structure because all the nodes usually have static position (address). In

general wired network is special case of wireless network where connections

between elements are fixed. Wireless networks allow designers to develop new

functions of the elements. They are:

1. sensors can change position (i.e. move)

2. sensors can be massively deployed

3. maintenance free sensors

Typically the node in WSN is sensor with CPU, battery, wireless

communication module and some flash memory on board. It is self-sufficient

element that can operate independently from other nodes or in cooperation with

them. Here I want to underline base similarity between sensor nodes and agents.

Nodes have all possibilities to play the role of intelligent agent.

Securing information in wireless ad-hoc networks [Carman et al., 2000] is a

non-trivial task due to the nature of their structure. Radio communication

between sensors requires encryption of the messages and physical

implementation of the sensor nodes in real environment requires from the node

to be tamper-protected. It is very hard to comply with these two demands,

because physical tamper-protection, in most cases, is unachievable. Encryption

61

is usually either non-symmetric or symmetric. The latter is very sensitive to key

revival. It is hard to distribute key securely and more - to keep it secret during

operating time. The further chapters describe Time Limited Memory Keys

(TLMK) protocol of key distribution/storage for the ad hoc sensor network

based on smart sensors with limited CPU power resources. Originally protocol is

designed to fulfill MICA2/MICA2DOT platform specification.

6.2 Security problems in WSN-s

There are much more security problems in ad-hoc sensor networks (see Table

5) [Bhargava et al., 2002] than in the others and the main reason for this is

power limitation. Each sensor can rely only on the battery it has being deployed

with and thus the operating time of the sensor network directly depends on the

node's ability to retrench battery power. There are sensor nodes that are able to

recharge accumulator from solar battery or other sources, but we consider them

as very rare type and still not having unlimited power source.

Distributed sensor networks (DSN) whose mission is very short in time or

information security is not the part of requirements specification may have

benefit from not using any protection at all. Some hardware allows IEEE

802.11i-2004 (WPA2) standardized protection. In other cases sensor network

security will reach higher level implementing TLMK protocol.

For the sensor networks that operate on batteries the importance to have

simple, reliable and secure protocol is very high. It is also important to set up

implementation domain, because there are different approaches to build

networks depending on the network size, topology, and sensor operation modes.

It is not possible to fit all various networks in one method.

Table 5. Security problems for different type of networks

Security problem Wired Wireless Ad-hoc

Accidental Attack yes yes yes

Passive Attack possible yes yes

Active Attack yes yes yes

Broadcast based communications possible yes yes

Highly distributed yes yes yes

Heterogeneity yes yes yes

Limited computational ability yes

Easy theft of nodes yes

Vulnerability to tempering yes

Battery power operation yes

Transient nature of service and devices yes

Physical Protection is not possible yes

Cooperative nature of nodes yes

62

Major active attacks on wireless sensor networks (WSN) are presented in

Table 6 [Lupu 2009] [Bojkovic et al., 2008]. We do not consider, of course, the

situation when strong electromagnetic field totally disallows communication

making entire network unavailable.

Table 6. Possible attacks in multi-hop WSN

Layer Name Type Description

Network Wormhole active Tunnel packets received on one part

of the network to another

Network Black hole passive Does not forward or replay

messages

Network Byzantine active Attacker gains access to the node

keys and compromise the network

from inside. This type of attack

includes such a malicious actions as

selective forwarding or false route

injection

Network Flooding active Generates messages to flood

network and cause DoS attack

Network Resource

consumption

(sleep

deprivation)

active An attacker or a compromised node

can attempt to consume battery life

by requesting excessive route

discovery, or by forwarding

unnecessary packets to the victim

node

Network ACK spoof active Convince that weak link is strong

or that dead node is alive

Network HELLO flood active Attacker can mess neighbor

discovery phase

Network Sinkhole active Attacker creates metaphorical

sinkhole by advertising for example

high quality route to a base station

(KDC)

Network Location

disclosure

active An attacker reveals information

regarding the location of nodes or

the structure of the network

Physical Jamming active Radio signals can be jammed or

interfered with, which causes the

message to be corrupted or lost

Physical Eavesdropping passive Eavesdropping is the intercepting

and reading of messages and

conversations by unintended

receivers

Multi- Replay active Replays message to simulate the

63

layer original sender

Multi-

layer

Man-in-the-

middle

passive An attacker sits between the sender

and the receiver and sniffs any

information being sent between two

ends

Multi-

layer

Impersonation active Use other node’s identity

Active attacks lead to routing loops, increased latency, decreased lifetime of

the network, low reliability, information capture, etc.

6.3 Target implementation domain

Here I will consider sensor network build on MICA2/ MICA2DOT nodes

and having single central node -‘Sink node’ with no power or processor (CPU)

limitations (uses fixed electrical network and fixed position). Typical

implementation area for this can be field/building monitoring. For smaller types

of sensor nodes – human body area network [Chen et al., 2010]. In this case

there may be multiple sink nodes that are synchronized with each other.

6.3.1 Structure of MICA2/MICA2DOT motes

The physical structure of MICA2/MICA2DOT mote includes CPU

(ATmega128L), external flash memory and radio see Fig 20. Usually developer

stores the program/data in internal (or external) Flash memory. This is not secure

because attacker can capture the node and read the contents of the memory

(tamper the node) and reveal the key material. Many of the researchers ignore

this issue or consider tamper-protection rather expensive and thus –

unacceptable [Karlof et al., 2003]. But I will show here that node’s high tamper

protection is not something very expensive, but just a matter of organizing key-

material storage.

Here I propose to save the keys in random-access memory (RAM) of the

device, i.e. keys will only be accessed during node operation mode. It will be

tremendously hard to read RAM of the running program from the outside.

Program reset will automatically erase contents of the memory and all sensitive

information. Functioning longer than lifetime of the key will also erase critical

key information.

6.3.2 Conception of operation for DSN

General life-cycle for the nodes in distributed sensor networks starts after

Manufacturing and Storage phase with Pre-deployment at Fig 21. During this

stage each node gets some specific data about the mission. Nodes may get

software, unique IDs and secret keys for exchange. Then it goes Deployment

64

phase when nodes are physically implemented into environment and Mission

itself.

Figure 20. Structure of MICA2/MICA2DOT motes

After mission is complete nodes may be taken out from the field and re-

initialized for the next mission. Notice, that in all these states, except pre-

deployment, we cannot guarantee nodes security because of the lack of control.

Deployment and Mission take place in hostile environment. Manufacturing and

storage can also be considered as hostile unless steps 1-3 are done by one

organization.

1. Manufacture

2. Storage

3. Pre-Deployment

6. Mission complete

4. Deployment

5. Mission

Figure 21. Concept of operation for DSN

6.3.3 General network structure

In sensor networks there are no reasons in general to keep information inside

the network. User collects information using nodes and transfers it to some fixed

location (central hub). This location is called ‘Sink node’ that may be

represented by PC with wireless interface to DSN. Such structure is shown on

Fig 22 [Radzevych et al., 2004].

65

Sink node is the target for any node to transfer information. It has unlimited

battery (power network connection) and high CPU speed in comparison with

sensor nodes. Physically there can be more than one sink node in the network,

but in general information should hit one place that plays role of central hub that

manages the network.

S

Sink node

Figure 22. Typical network structure

6.3.4 Non-symmetric cryptography

To provide the same secrecy with non-symmetric key its length must be at

least 10 times longer than symmetric one [Schneier, 1996]. Computational

energy behind it is also several times bigger because of the complexity [Fokine

2002] [Čapkun et al., 2003] and transmission energy spent exchanging keys

linearly depends on key size. Though network structure is suitable to implement

public key infrastructure (PKI) with sink node as key distribution center (KDC),

we will try to avoid using non-symmetric key cryptography because of high

energy and memory consumption.

6.4 TLMK protocol

TLMK is based on Otway-Rees protocol where in addition to key and "salt"

there is a key lifetime (L) transferred to the target node. Central node (sink node)

will provide key generation and management (like key updates, revocations).

Since the key will be stored in the RAM key pre-deployment should be

implemented just before node implementation. Mission program cycle of the

node will run only after it obtains the initial key for communication. To build the

66

network in specified domain with appropriate level of security
10

 we need to

define the protocol.

Key management goals:

 The protocol must establish a key between all sensor nodes that must

exchange data securely.

 Node addition / deletion should be supported

 Unauthorized nodes should not be allowed to establish communication

with network nodes

Key management constraints:

 battery power

 memory constraints

 transmission range

 tamper protection

 sleep pattern

 ad-hoc nature

 packet size

It also would be good to have reliable routing protocol [Hu et al., 2003]

[Zapata et al., 2002], but this is beyond the scope of this research. All

assumptions are made from the point of fixed routes in the table, like in DSDV

protocol [Tripathi et al., 2010].

6.4.1 Key pre-deployment

No one can trust the node’s hardware and software it’s running before and

after pre-deployment phase. That is why key pre-deployment must be taken

inside secure environment, i.e. shielded chamber that no one can listen to the

communication. Also we possibly re-flash the node’s software on this stage to be

sure that no nodes are operating with other algorithms. The sequence of key

transport in this case is shown on Fig 23.

10

 Appropriate level of security is the level when the cost of network capture by

intruder is more than the cost of the network

67

KDC A

secure

IDA || KA || L

IDKDC || EKA(IDA || L)

A

KDC

IDA

KA

L

EKA()

- Key distribution center

- Node A

- Node A unique ID

- Symmetric key belongs to A

- Key lifetime

- Encryption function, uses key A

secure

Figure 23. Key pre-deployment

Each node has unique ID to get initial key. The assumption to have secured

pre-deployment phase is not strict. Originally mutual authentication is not

necessary because we have secured pre-deploy phase where each node gets its

unique id and key. But if such a condition is not achieved we use original

Otway-Rees protocol authentication.

During pre-deployment communication act each node is initialized with the

first key. Optionally message may contain initial salt (furthermore nonce) if

KDC has good pseudo-random generator
11

.

6.4.2 Key update/revoke

This operation takes place in hostile environment so according to our base

rules any component of the message can be compromised. It is not necessary to

specify source address of the sender because all update/revoke messages will

always come from KDC and reply can always be verified by KDC trying all

known keys to search for valid nonce. To reduce unnecessary operations node

“A” sends its ID as unencrypted value. KDC, if verification succeeded used only

1 “comparison” operation and if not may search for valid sender and report

malicious action.

KDC A

Non-secure

IDA || EKAold(KAnew || L || NKDC)

IDKDC || IDA || EKAnew(NKDC)

NKDC - Nonce, generated by KDC

Non-secure

11

 Usually KDC has better hardware hence – better PRG. It is recommended to

initialize each node with salt. Figure 22 shows simplest communication act.

68

Figure 24. Key update/revoke

In the terms of time sensitive keys the revocation of the node is fairly simple

– just do not update the nodes key after time L. Node will be automatically

removed. To keep it inside the network node’s key must be regularly updated

within interval smaller that L at Fig 24.

6.4.3 Message exchange

Nodes in the network have to exchange the information between each other,

though most of the messages will be between node and KDC. At the moment

node secures the message content with symmetric key cryptography and the

routing of the message remains unsecured (i.e. open). This assumption came

from the fact that the simplest scenario is KDC with all the sensor nodes within

visible range (i.e. no routing is required). These interactions are shown on Figure

21. Here we describe native TLMK exchanging method and Kerberos V

modified for DSN for comparison. Both protocols use KDC as a third trusted

party. Simple scenario does not also include node partitioning/grouping that

requires additional group key management protocol to use.

6.4.3.1 Transparent message encryption

To exchange data securely between nodes we do transparent symmetric

message encryption through KDC at Fig 25.

KDC B

Non-secure

IDB

IDKDC || EKA(IDB || NA || MSG)

Non-secure

A

Non-secure

Non-secure

Non-secure

IDB || EKB(IDA || NA || MSG)

IDKDC || EKB(IDB || NA || IDA)

IDA || EKA(IDB || NA)

Figure 25. Transparent message encryption

This protocol provides mutual authentication and message delivery

acknowledgment. Due to its symmetrical nature both nodes have to accomplish

almost the same amount of computation/ communication tasks thus having the

same power consumption.

It is also easy to modify it for communication between node and KDC. Just

remove right hand communications from the diagram and IDB from the

message.

69

6.4.3.2 Kerberos V modified for DSN

This protocol [Menezes et al., 1996], developed by NAILabs has similar

structure. It also provides authentication for both parties and message

acknowledgment. Its structure is more robust due to the usage of extra session

key at Fig 26.

KDC B

Non-secure

IDB

IDKDC || IDA || IDB || NA

Non-secure

A

TicketB = EKb(Kpair || IDA || L)
AuthA = EKa(Kpair || IDB || NA || L)

Non-secure
IDA || TicketB || AuthA

ACKA = EKpair(IDB || TA)

Non-secure
IDB || ACKA || TicketB

Non-secure
IDA || Ekpair(TA)

Figure 26. Kerberos V for DSN

Session key has also time limit that can be different from the node’s secret

keys lifetime.

6.5 Complex scenarios

Next step for the protocol to be applied to is multi-hope network. Message

passing the network must be either routed or replayed. Since it is not possible to

explicitly transmit the message to specified destination like in fixed networks

(we don’t use directional antennas and signal spreads in all directions with the

same power) we may use only Dynamic Source Routing [Johnson, 1994]

[Johnson et al., 2007]. Thus the only critical parameter for routed WSN-s to

protect is source address. Rule for destination is computed by local node that

constructs local routing table. For the message replay strategy (no routing in fact

at all) developer only need to avoid situation when message can be re-send

infinitely (i.e. message loops).

6.5.1 Multi-hop network

The goal is still to have single KDC, but it is not visible for all the nodes

directly. Typically the part of multi-hop network can be described as on the

Figure 27.

Such network topology has all basic element connections: sequential (each

node has at least 1 and most 2 connections like, for example, nodes C, D, G or H

70

on the graph) and mixed connections (each node has more than 2 connections,

like nodes A, B, E, F).

KDC

A

B

C

E

H

F

D

G

Figure 27. Partitioning the network

1. Unsecured routing

TSMK protocol works the same way in networks with message replay

strategy like in peer to peer communication with KDC (Fig. 28). Having node(s)

in between the source node and KDC opens possibility for black hole attack but

this type of offense can’t be defended by encryption. Wormhole or sinkhole

attacks are not possible due to absence of routing table. Each node either replays

message or does not replay (like on the picture below). It may seem there is no

need for routing in WSN, but for large number of nodes and frequent message

exchange routing will prevent network from collapse. I estimate TSMK in multi-

hope network will be efficient for maximum at 100 nodes and 1 message/minute.

71

Figure 28. Unsecured message replay. No routing.

2. Secured routing

In general to be success at secure routing we need to protect source address

from being changed by anyone except the sender of the message. At the same

time we must assure that every node that forwards the message is able to read

source address and authenticate it. Here can be used Kerberos V modified for

DSNs, but that increases traffic in network and lowers down efficiency of

symmetric cryptography. The cost of extra message exchange may be too high

from the point of energy consumption and may overlap the cost of CPU time

used in non-symmetric key encryption. I estimate that TSMK may be efficient

for devices with limited CPU/RAM and the network size up to 50 nodes and

frequency of 1 message per minute. This is also subject of simulation.

6.5.2 Coalitions and group-level security

From the beginning the TSMK protocol does not support group management

and multiple KDCs. If typical tasks that must be accomplished within groups are

taken [Aurisch et al., 2008] it becomes clear that there is no exclusive central

point. Nodes within groups should have local autonomy and ability to choose

privileged nodes by themselves. They should also update local group

membership without KDC. I think that such a task cannot be efficiently achieved

without public-key cryptography implementation. And this is another protocol.

6.6 Simulation of TLMK protocol in MASE

Our research laboratory has developed a simulator [Tomson, 2009] for

TinyOS to make software agent development more productive. The primary goal

of simulation here was to check the size of the code deployed to each agent and

visualize sensor nodes communications. It is still hard to estimate energy

consumption especially in comparison to other media access control (MAC)

protocols [Gopalan et al., 2010]. We estimate it to be proportional to the key size

and cipher algorithm used in message encryption/decryption. In simulation I

used key size of 16 bytes and Rijndael [Daemen et al., 1998] encryption

algorithm. Altogether these are basic rules we follow in our simulation:

1. We trust any communication in open form only during pre-deployment

phase. All the nodes that participate in pre-deployment key distribution trusted

to have no malicious software and they strictly follow the protocol.

2. All the key material must be stored in RAM of the sensor node. For

KDC this rule does not apply assuming that it is protected from being physically

compromised.

72

3. We trust no communication unless it is verified by the receiver.

Verification is done using message content decryption with a shared key and

payload validation against the protocol.

4. There must be 1 and only 1 KDC for protocol operations.

5. KDC controls the expiration time of each key and updates it when

necessary.

For multi-hop network structure each node must have a message replay

protection procedure. Since every message in the network is unique there is

sufficient in the simplest case to have a cache of last replayed/sent messages and

check the new incoming messages against cached one. The size of the cache

depends on the number of member nodes and density of the messages coming

through the node. It has to be at least one to prevent echo-effect (when single

member node replays message back to the sender in order to transmit it further

on the network).

6.6.1 Secure mote architecture for MASE

SecureMote follows the typical MACE architecture, i.e. uses SecureMote.cpp

for agent definition and LUA script for environment configuration and

execution. As a template for SecureMote we used PhoneMote that was

developed among other applications in MACE simulator. We need to define the

special mote that will play role of the sink node and more specifically – key

distribution centre. Since every other node inherits the same code base – every

other node can play role of the KDC or sink-node. This is not a problem for

simulator that runs on PC and have “unlimited” resources from the embedded

devices point of view. In the real environment this code might be split into two

parts due to physical memory limitation.

SecureMote consists of:

• TSMK key structure (consists of key itself 128 bits, L – key lifetime

measured in seconds and salt or nonce for message uniqueness). Key lifetime is

relative because we can’t guarantee clock synchronization for the sensor nodes
12

.

• Function to generate new key (operates only in KDC mode)

• Function to pre-deploy keys (operates only in KDC mode)

• Function to update/revoke key (operates only in KDC mode)

• Functions to exchange messages (uses standard DataIn, DataOut

simulator structures)

12

 There is no need to control the key validity at the sensor node because we use

PUSH-like messages from the KDC to update the key. These update messages are send

long before the key becomes invalid.

73

6.6.2 Special assumptions made for simulation and the result

In the real world scenario some functions will be executed in the different

way from the one that was programmed in simulator. More specific they are:

 Key pre-deployment. In the real world it supposes to be mass-broadcast

from the KDC to all the motes within the range inside secured chamber.

Each mote is passed the clearance test not to have “evil” software on board

to log the keys that are distributed to neighbors and accepts only key that is

assigned to its ID. In simulator we use virtual “broadcast” function that in

fact peer-to-peer communication between environment and the node.

 There is no definition for symmetric encryption algorithm selected to

encrypt/decrypt messages. It is beyond the scope of this simulation which

one to use. Obviously cipher complexity, strength and speed should be

considered before real-world scenario implementation. At the moment

simulation uses Rijndael encryption
13

.

The example of simulation one can see on Fig 29. There is a "star" network

layout with KDC to execute key pre-deployment phase. The result of simulation

is very small agent code size, around 90kbytes in total.

Figure 29. TLMK protocol simulation in MASE Simulator

13

 This AES candidate is optimal for the trade-off between resistance, efficiency,

hardware demands (CPU cycles) and flexibility [Зенин et al., 2002]

74

6.7 TLMK implementation summary

TLMK protocol inherits Otway-Rees protocol properties and in addition puts

more constraints to key handling. Security strength totally depends from

encryption protocol being used (in our case it is AES). TLMK has many positive

sides to be implemented in sensor networks.

For the comparison 3 types of network configuration patters has being

considered: single-hope, multi-hope and routed multi-hop WSN. All of them

have sink node that plays role of KDC. In each column I put estimation how

high is the probability of certain type of attack for configuration without any

protection and with TSMK protection (column name "TSMK"). There are 3

major levels:

"N/A" – this type of attack is not applicable for the configuration

"-" – this type of attack is possible with a complexity equal to complexity of

breaking encryption algorithm used in TSMK. In our case it is AES. That is why

simple padding algorithms are strongly not recommended.

"+" – this type of attack is possible and have very low complexity. If "+" is in

both cells for selected type of the attack that means it cannot be defended with

encryption or by this protocol.

The summary is shown in Table 7

Table 7. TSMK protection level

Type of

attack

single

hop

TSMK multi-

hop

TSMK routed

multi-

hop

TSMK

Wormhole N/A N/A N/A N/A + +

Black hole N/A N/A + - + -

Byzantine + - + - + -

Flooding N/A N/A + + + +

Resource

consumption

+ - + - + -

ACK spoof N/A N/A N/A N/A + -

HELLO flood N/A N/A N/A N/A + -

Sinkhole N/A N/A + - + -

Location

disclosure

+ - + - + -

Jamming + + + + + +

Eavesdropping + - + - + -

Replay + - + - + -

Man-in-the-

middle

N/A N/A N/A N/A + -

Impersonation + - + - + -

Strong sides of the protocol are:

75

 simple, hardware demands are low

 keys are secure

 provides mutual authentication

 possible to use one time pads

 energy consumption is low and balanced

 easy to identify intruders (wrong ID, key)

Weak sides or constraints of the protocol:

 need to have secured KDC. Compromising KDC will compromise all the

network

 not suitable for large networks. Groups, coalitions can only be made by

dedicated KDCs that must have trusted relations between each other

through master KDC

 if KDC is blocked (separated) from all the nodes for time > L entire

network will be destroyed

Protocol is not vulnerable for Sinkhole/Sybil attacks. Others are still possible

due to unencrypted link layer. Developer must specify routing protocol to

eliminate the rest of the attacks. Passive attack may only reveal the number of

nodes in the network and their activity level.

Future work will focus on finding the best suitable routing protocol for

TLMK. Link layer in routing messages is not encrypted, thus such attacks as

wormholes are still possible.

It is also good to move from simulations to practical implementation for

some real project. Right now protocol lacks field tests. There we can investigate

how protocol can be used within groups, though major implementation domain

is still small to middle size networks with one sink node (KDC) at the beginning.

In general it would be good to decrease the responsibility of the central node

to make network more independent from the sink node [Buchegger et al., 2001].

In this case emergent sensor node behavior is also possible. The ultimate goal is

self-organized sensor networks with the same (or higher) security level.

76

7 Access control based on shared knowledge
The way to identify user in existing computer systems has for a long time

been very simple. It is enough to provide correct password and the majority of

the systems will “recognize” you as legal user of given user name. There is no

difference for such a system if there is one person behind this user name or

many. Authentication of the user for many years has been reduced to the

problem of the user name validation and is not answering question “Is the user

really who he/she represents himself to be?” This problem was identified from

the very beginning and there were many attempts to solve it, but without

success. General idea to overcome this mismatch is to know more about

personality of the user and ask more questions from the user about him. The key

concept here is shared information knowledge that must be unique and

recognized by both sides. In this article we show how intelligent agents can help

to improve user’s authentication in computer systems without user being asked

the questions.

7.1 Problem background

It is natural for the human to recognize other human by voice, appearance,

gait, gestures, etc. You probably never ask your mother to say password in order

to let her in. There can be mistakes to identify who is your opponent for instance

if we talk about twins who want to cheat teacher and appearance, voice and

gesture is not enough to be sure who is in front of you. Even though for the

mother and other close relatives this is usually not the case. The main reason for

this is the unique information that is shared between the parties during their life.

The more people communicate with each other, the more they share experience

from the common events the better and more precise they can identify each

other. We claim to say that for the human there is no problem to identify other

human he knows if it is possible to talk to the opponent personally.

Unfortunately in our modern life personal contacts become less frequent

because of wide range of communication services that are offered. People tend

to communicate through e-mails, messenger services, phones, etc. more often

than personal meetings. This contributes to the success of social engineering

[Long et al., 2008] techniques where intruder uses open information in order to

pretend to be some key person to get sensitive information.

For the computer systems situation is even worse. Computers cannot

recognize human face, voice and gestures as efficient as people do. There are

number of reliable systems with very high probability of identifying person by

fingerprint, pupil of the eye, voice and, of course password, but all these

properties nowadays can be easily copied and re-produced. That is why more

77

sophisticated systems check not only physical parameters of the user but also try

to be more intelligent to ask some specific questions. As I will show later –

asking the question from the user is only half a problem. The more difficult is to

get and construe answer from the user especially when we expect it in a form of

clear text input
14

.

In general all the systems that try to get more information about personality

of the user are built on 3 elephants: creating the question, asking the question,

parsing the answer. Each of these steps can be done in a numerous number of

ways and can be automated with different level of the success.

Here there is a major difference between systems – the success rate and its

measurement. The prevalent approach is deterministic. Either user knows

password (has key) or not and thus – authenticated or not. Overall result is

binary AND of authentication functions if they are many. The other approach is

probabilistic. System assumes that the user is who he pretends to be if he knows

shared secret with some probability. Overall result is the sum of series of

authentication functions with a limit = 1. Here system also assumes that some

number of iterations should be made in order to reach appropriate level of trust

towards the user, because single authentication function cannot give us

appropriate level of authentication.

The first type of the system is in fact special case of the second one. If system

rises up trust level for authentication function till 100% then it has binary answer

to the question if user is authenticated or not.

7.2 Recent situation

There are still only 3 ways to authenticate the user in modern computer

systems [Magno, 1996]. They are:

 knowledge-based authentication (passwords and pass phrases, PINs,

graphical passwords)

 token-based authentication (physical tokens such as smartcards or badges)

 biometric-based authentication (using users' physical characteristics such as

fingerprint, hand geometry, iris pattern or face)

Ultimate systems use all 3 at the same time to diminish risk of wrong person

to access valuable resource. Unfortunately, as we mentioned above, all 3 types

can be copied. That is why people continue to evaluate computer systems that

will be smart enough to identify human by something very personal that cannot

14

 One of the successful implementation of the human identification is CAPTCHA

[Yan et al., 2008]. It works quite well in their domain where there is a need to separate

human answer from the machine generated one. Unfortunately it is not a way to separate

one human from another.

78

be reproduced or guessed by someone else. There are number of papers

published in this area [Nosseir et al., 2005] [Nosseir et al., 2006] [Zviran et al.,

1990]. Probably the closest one to this article that can be found in the public

resources is "Access control by testing for shared knowledge" [Toomim et al.,

2008]. It underlines the problem of user's identification in social networks and

shows how private information can be used to increase the level of trust from the

system towards the user. Major problems for implementing shared knowledge

authentication are:

1. static set of pre-defined questions that needs to be maintained by human

2. problems identifying the correct answer (in case of direct user input)

3. intra-word deviations and spelling errors (like: behaviour vs. behavior)

4. alternative words (abbreviations, acronyms, and synonyms)

5. perception/feeling (violet/dark blue, dark/light, far/close)

6. extra or missing words (like "and", "or", "the", "a", etc.)

7. problems identifying user if the input is organized as a set of pre-defined

answers. High probability of "guesses"

8. extra-time for the user to answer and type-in text and as a result - low

satisfaction of such a system that asks questions not related to its main tasks

9. probabilistic user access control instead of deterministic

7.3 Trust function

Let me define the “trust function” – . Codomain of this function is between

0 and 1, where 1 means the user is authenticated and 0 – is not. For the

deterministic authentication we have very simple function as superposition of all

the single results for the authentication function (). If at least one of them

failed the result of the authentication is 0. It can be described with the formula:

 .

For probabilistic approach the result of summary for all authentication

functions lies between 0 and 1. Probability of that user is authenticated cannot be

negative and at the same time depending on the results of the authentication

functions it can be increased or decreased. It can be described with formula:

 .

Initial probability of the user to be authenticated () should also be defined.

Initial probability is a probability of the user to be authenticated without

applying any authentication function. In the simplest case it can be equal to

where is total number of users in the system. Probabilistic authentication

function () depends on the result of the previous step. Thus one single

79

authentication step may have different impact on the result depending on current

value of probability.

7.4 Requirements for authentication system

From all the points mentioned above there are certain demands for the system

that will allow identifying user in addition to username and password

combination.

First of all trust function should give us high probability of correct user

authentication. How high depends on the task carried by authentication system.

For example: if we are going to determine what group the user belongs to and

the follow up activity is connected to commercial proposal that is displayed to

the user then it will probably be enough to have trust function equal or greater

than 0.6. For access to the private information or bank account it will not be

enough to have trust function less than 0.99. All depends on system.

System should not ask questions. Thus problems number 2 to 6 and also 8 are

being eliminated.

System should observe user’s behavior and transform it into knowledge that

can be shared with other parts of the system and can be analyzed for the purpose

of getting user’s identity. This behavior can include and is not bounded to the

speed the user types in words, speed user clicks on the mouse button, URLs he is

visiting in Internet, items he is searching in search-engines, favorite software to

run, working time, etc. Everything depends on the sensors we have to observe

the user.

This knowledge we get cannot be reduced to the number of static parameters

– otherwise we cannot evolve our system and need to stick to specific data

structure. We see that efficient way of holding information is ontology.

Ontology can always be extended with new meanings, actions and behaviors.

7.5 Difficulties to design such a system

Possibility to study new ontological concepts allows us to teach agents that

operate in terms of this ontology like humans. That is why agents and multi-

agent systems (MAS) are recently the most suitable approach to fulfill the task.

Focus must be shift towards social-oriented MAS with certain rules similar to

human society. We cannot operate with different releases of the software

because it is hard from any point to measure version of the knowledge that may

grow on all the agents in parallel.

Observation of the user and its behavior may include measurements of the

physical parameters. From one point of view the more information we get from

the sensors – the better, but the problem here is how to correlate this information

80

with user identity? It is very easy and fairly cheap nowadays to deploy a sensor

network that measures vibration, temperature, light, etc. but how to use this

information in a smart way [Estrin et al., 2001]? Every type of measurement

must have an impact to the trust function. Very good example of how PIR

sensors can give us an assumption about who the user is was discussed in paper.

Having smart correlations between the set of physical parameters and users

identity may vastly increase the reliability of the identification.

Some of the user identity algorithms are realized in the software that tracks

behavior of the customers in web-shops, search engines and media-players. The

main goal for this is to help user find information he searches and promote new

goods that may be interesting for potential purchaser. Without knowing user’s

profile it is almost impossible to guess what he/she prefers. Unfortunately recent

methods are quite straight-forward and based on very simple tasks like filling in

the questionnaire and passing some tests. Information update is done in most

cases annually using the same methods. This kind of information is not enough

to make assumptions about real identity of the user. On the other hand this type

of information is provided by user. He knows what kind of information being

asked for and answers on his free will.

Observation of user’s behavior initially is not bounded. But information we

get as a result may be considered as private. This is true especially if we observe

user’s communications. Gathering any kind of information in observation mode

is always question of privacy and hence – needs to be legally accepted.

Legacy is not probably the main problem in designing such a system. There

is still no good theoretical and practical background of how intelligent systems

should be designed in order to be human-like. Multi-agent system theory is

probably the closest one because it encompasses sensors, behaviors, agents,

social activities – everything we need to fulfill the task.

Implementation and usage is another weak point. It can take some time for

the system to make assumption about user identity if we want agents to act

insensibly. By all means this kind of system will be more complex and slower

than system that is operating with traditional authentication methods. The main

difficulty to build shared knowledge authentication system is knowledge itself.

What to represent, how to represent, how to share this knowledge and how to

evolve it.

Taking all above in consideration we don’t see shared knowledge

authentication as primary way for authenticating users. The main reason for that

is speed. User cannot spend much time to communicate with the system just to

be able to log-in. Nevertheless after log-in procedure we have enough time to

judge who is working behind this account and may restrict access to critical

81

resources if there is doubt regarding user identity. Strong side of such a system is

that it knows the user and more he works with the system the better system

recognizes the user. Authentication is not bounded to initial log-in procedure but

lasts during the whole period of work.

Another function that shared knowledge can carry on is system usability. If

system knows user’s preferences it can serve his needs faster. Good example is

user profile in operating system. It holds all customizations that user has made to

desktop, applications, system components, etc. manually. Instead system will

adapt to user’s needs automatically. Traditional application areas like online

shopping, information search and gaming can also get benefit from knowing real

user’s profile.

7.6 Teaching agent structure and basic notions

The main activity of the agent is observation. Another important task is to

transform the results of observation into knowledge. For such a specific area

there is a better approach to build an agent than BDI model [Kinny et al., 1996].

There is an opinion that artificial entities build on the principles of the neural

systems fits better to carry out such task [Жданов, 2009].

The result of observation is pure knowledge in terms of agent’s ontology.

This ontology, when defined, remains unchanged during agent life cycle. It is

hard to describe how invention process should look like in terms of basic

ontology. But it is possible to describe how this new notions (ontological

elements) can be spread between agents and can be used later on.

The main goal of this simulation is to get software agent that can study new

knowledge by means of communication act(s) and then use this knowledge to

perform some useful action.

7.6.1 Agents roles and properties

For this task it was defined three types of the agents. First type is agent under

test called “student”. Initially it knows nothing, but can accept messages from

other agents and ether adopt new knowledge or demonstrate the result of known

actions.

Second type of the agent is “teacher”. It knows initially something. In our

case it knows mathematical operation add on two elements – ether integer or

fractional numbers. Teacher can also send this knowledge during

communication act. Teacher is also able to find any students before

communication act happens because only students are able to learn.

There is also third type of the agent. It is called “examiner”. Examiner knows

the same terms teacher does, but it searches for the student agents in order to

82

inspect their knowledge by sending them special type of requests. In our case

examiner sends to student two integers expecting student to answer with the

result of summary.

7.6.2 Agents ontology

Initially “student” agent knows only studentOntology that is empty and both

“teacher” and “examiner” share the same teacherOntology. “Examiner” must

operate with terms that teacher trains and thus have a feedback from other

agents. It is important that “teacher” agent does not perform actions it trains

other agents, but “examiner” does and can control that result of the action is

correct from the reply of examinee.

For the “student” should be defined general response action in order to create

any kind of responses for the request from other agents.

For the “teacher” and “examiner” ontology is static (does not change over the

time), but for the “student” ontology is dynamically extendable – agent adds new

notions and actions by the set of communication acts. All the initial elements are

described in Table 8.

Table 8. Otologies in knowledge sharing experiment at the beginning

Ontology name Action Arguments Agent

teacherOntology add double, double teacher, examiner

 add int, int teacher, examiner

 add long, long teacher, examiner

studentOntology response string[] student

In this experiment I have extended BeanOntology class that uses “convention

over configuration” principle to create new ontological elements. As a result

there is no need in external tools to generate schemas – they are generated

automatically from the corresponding JAVA beans.

7.6.3 Results in math study for student/teacher simulation in JADE

There are certain ACL messages that agent will react to. They are described

in Table 9.

Table 9. Message types in agent communications

Message Source agent Target agent Description

PROPAGATE teacher student teachers new concept

REQUEST examiner student check if concept is studied

INFORM student examiner make use of studied

concept

There is also automatic reply from the “student” agent to the “teacher” after

obtaining the new concept (in our case addition operation), but this reply is

ignored by the teacher.

83

To make knowledge transfer possible ontological class must be serializable

(using JAVA serialization) and the recipient must have opportunity after de-

serialization make “union” operation with existing ontology. This is now

possible after author’s patch to JADE ontology class.

Thus after first PROPAGATE message “student” gets, in fact, serialized

teacherOntology and makes after de-serialization the following operation:

The result of simulation is shown on Fig 30.

Figure 30. Student obtains new knowledge from the teacher

The next step is exam. To be able to use methods of the class dynamically we

used JAVA reflection [Forman et al., 2004]. Since “student” understands

teacherOntology it can extract arguments of the request automatically. In this

particular example we executed all the methods defined in ontology sequentially,

but using reflection we can guess arguments types or using more complicated

message protocol – guess the required method to execute. This also can be done

using “convention over configuration” principles in message exchange.

The result of experiment is shown on Figure 31. There were 2 numbers to

summarize and “student” agent executes summary operation correctly giving

back 3 answers (by type): integer, float and long. We can update or extend the

84

knowledge of the student by propagating new ontologies and this is done at

runtime without agent being reloaded or restarted.

Figure 31. Students answer to examiner with a result of addition

operation

7.7 Conclusion and further work

The experiment with knowledge sharing between teacher and student is the

first step for creating complex systems that can study new concepts and actions

dynamically without being at one of the definite state, hence cannot be described

as FSM. Interaction computing model should be used here to describe the

behavior of the system. At the simulation stage we work with pre-defined

information thus results in most of the cases are clearly predictable. There

should be sensors that supply agent with incoming information and events. The

role of the developer in such a case is to wrap this information into ontology.

In our further work we will continue to develop the other parts of the system

because knowledge representation and sharing is only the first step. To make

first working prototype of the entire system some critical parts need to be

investigated, particularly – probabilistic function (). For the working

prototype application domain must be defined as well, notwithstanding that

designing principles are general; ontology elements are domain-dependent.

It will be also very interesting to go further for real world implementation

and combine pure software agents with sensor networks. Thus problem of

having reliable (not simulated) input can be solved.

85

Conclusion
There is an inextinguishable interest to multi-agent systems and agent

oriented system development over decades. The main reason for that from my

point of view is its own niche of the application domain. Particularly in software

development most of the paradigms like functional programming or object-

oriented programming cover only Turing-complete algorithms. Even parallel

computing, that is very close by execution pattern to MAS (where each agent

executes in parallel with other agents), has its goal to solve the same Turing-

complete algorithms extending single “tape reader” to multiple readers

(executors).

MAS goes beyond that principle and while every single agent may use one of

the structured programming paradigms (usually event-driven methodology) the

entire system itself may operate as super-Turing machine. Particularly this

feature of MAS is interesting for me.

This thesis makes a set of attempts to construct different MAS systems and

investigate their behavior based on emergency principle. In spite of the fact that

all the inputs for the systems were simulated and I can’t say that the resulting

system demonstrates emergent behavior there is an opportunity to judge the

potential of each system to demonstrate the emergency in real world

environment based on experiments. The ability of each simulated system to

demonstrate emergent behavior strictly depends on inputs. Simulation is used to

simplify the process of MAS development and to predict the results on

experiment’s early steps. Furthermore each experiment has had useful practical

results that may be used to solve the existing problems in different application

domains. For example – TLMK protocol to secure sensor node networks and

SOA agents to extend functionality of web-services.

While programming MAS systems for experiments using OO languages like

JAVA and C++ it was noticed that there is a trend for OOP paradigm to become

closer to AOP. For example “convention over configuration” principle and MEF

framework are good practices that can be treated as AOP though are designed

and used as a part of OOP.

One of the most interesting topics to investigate further on is agent’s ability

to study new ontologies and share them between others. Thesis demonstrates

how this is achieved at the last chapter. Nevertheless potential of the self-

studing agents is much higher and may be used in any MAS where agent needs

to be trained during its lifetime. Since subject of training is new behaviors and

not just entities and their meanings there is a possibility to construct true

emergent MAS if its inputs are not simulated, but read from sensors.

86

Bibliography
1. Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. 2002.

Wireless sensor networks: a survey – [s.l.]: Computer Networks, 38

2. Apache Software Foundation. Apache Tomcat.

http://tomcat.apache.org/ – [s.l.] June 2012

3. Aurisch, T.; Ginzler, T. 2008. Practical efficiency analysis of a dual

mode group key management – [San Diego, USA]:IEEE MILCOM 2008

4. Bell, Michael. 2008. Service-Oriented Modeling (SOA): Service

Analysis, Design, and Architecture – [s.l.]: John Willey & Sons

5. Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G. 2003. JADE: A

White Paper – Parma: EXP Volume 3 - n. 3 p.6-19

6. Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G. 2010. JADE

programmer's guide – [Parma]: Telecom Italia S.p.A.

7. Bellifemine, Fabio; Caire, Giovanni; Greenwood, Dominic. 2007

Developing Multi-Agent Systems with JADE – [s.l.]: John Wiley

8. Bhargava, S.; Agrawal, D. P. 2002. Scalable Security Schemes for Ad

Hoc Networks – [Anaheim, USA]: IEEE Milcom 2002

9. Bieberstein, Norbert; Bose, Sanjay; Fiammante, Marc; Jones, Keith;

Shah, Rawn. 2005. Service-Oriented architecture (SOA) Compass:

Business Value, Planning and Enterprise Roadmap – [s.l.]: IBM Press.

10. Bojkovic, Z.; Bakmaz, B.; Bakmaz, M. 2008. Security Issues in

Wireless Sensor Networks – [s.l.]: International Journal of

Communications Issue 1, Volume 2

11. Bollella, Greg; Brogsol, Ben; Dibble, Peter; Furr, Steve; Gosling,

James; Hardim, David; Turnbull, Mark. 2000. The Real-Time

Specification for Java – [s.l.]: Addison Wesley Longman

12. Bonabeau, Eric; Dorigo, Marco; Theraulaz, Guy. 1999. Swarm

Intelligence: From Natural to Artificial Systems – [Santa Fe]: Oxford

University Press

13. Booch, Grady; Jacobson, Ivar; Rumbaugh James. 1998. The Unified

Software Development Process – [s.l.]: Addison-Wesley

14. Bramwell, M. 2006. Implementing a MICA2 MOTE sensor network. –

[Waterloo, Ontario, Canada]: The University of Waterloo

15. Buchegger, S; Boudec, J. 2001. The Selfish Node: Increasing Routing

Security in Mobile Ad Hoc Networks – [Lausanne, Switzerland]: LCA-

REPORT-2001-008

16. Burk, Robin; Horvath, David. 1998. UNIX Unleashed: System

Administrator's Edition – [s.l.]: SAMS Publishing

http://tomcat.apache.org/

87

17. Čapkun, S.; Buttyan, L.; Hubaux, J. 2003. Self-Organized Public-Key

Management for Mobile Ad Hoc Networks – [s.l.]: IEEE Transactions on

Mobile Computing, Volume 2 Issue 1

18. Cardelli, L. 1996. Bad Engineering Properties of Object-Oriented

Languages – [s.l.]: ACM Comput. Surv. (ACM) 17: 471–523

19. Carman, D.; Kruus, P.; Matt, B. 2000. Constraints and Approaches for

Distributed Sensor Network Security – [s.l.]: NAI Labs Technical Report

#00-010

20. Chandy, Many; Misra, Jayadev. 1988. Parallel Program Design: A

Foundation – [s.l.]: Addison-Wesley

21. Chappell, David. 2004. Enterprise Service Bus: Theory in Practice –

[s.l.]: O'Reilly Media

22. Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V. 2010. Body

Area Networks: A Survey – [s.l.]: Springer Mobile Netw Appl (2010) 16

23. Cooney, D.; Roe, P. 2003. Mobile Agents Make for Flexible Web

Services – [Quensland, Australia]: The 9
th
 Australian World Wide Web

Conference

24. Cranfield, S; Purvis, M. 2001. Generating ontology-specific content

languages – [Dunedin, New Zeland]: 5
th
 International Conference on

Autonomous Agents

25. CVE. 2011. Computer vulnerabilities and exposures database – [s.l.]:

http://cve.mitre.org/cve/index.html , December 2011

26. D’Inverno, M; Luck M. 2001. Understanding Agent Systems – [Berlin]:

Springer-Verlag

27. Daemen, J; Rijmen, V. 1998. AES Proposal: Rijndael – [s.l.]: Federal

Information Processing Standards Publication 197, available at http://

http://csrc.nist.gov/ , December 2011

28. Dorigo, M.; Socha, K. 2007. An Introduction to Ant Colony

Optimization – [s.l.]: Published as a chapter in Approximation

Algorithms and Metaheuristics

29. Erl, Thomas. 2005. Service-Oriented Architecture: Concepts,

Technology, Design – [s.l.]: Prentice Hall

30. Estrin, D.; Girod, L.; Pottie, G.; Srivastava, M. 2001. Instrumenting

the World with Wireless Sensor Networks – [Salt Lake

City]:International Conference on Acoustics, Speech, and Signal

Processing (ICASSP)

31. FIPA homepage – [s.l.]: http://www.fipa.org/, 12 december 2011

http://cve.mitre.org/cve/index.html
http://csrc.nist.gov/
http://www.fipa.org/

88

32. FIPA SL. 2004. FIPA SL Content Language Specification, XC00008G –

[s.l.]: http://www.fipa.org/, December 2011

33. Fokine, K. 2002. Key Management in Ad Hoc Networks – [Linköping,

Sweden]: Master. Thesis, LiTH-ISY-EX-3322-2002

34. Forman, Ira; Forman, Nate. 2004. Java reflection in action – [s.l.]:

Manning Publications

35. Gopalan, S., Park, J. 2010. Energy-Efficient MAC Protocols for

Wireless Body Area – [Moscow]:Ultra Modern Telecommunications and

Control Systems and Workshops (ICUMT)

36. Greenwood, D. 2005. JADE Web Service Integration Gateway(WSIG) –

[Utrecht, Netherlands]: Autonomous Agents and Multi agent Systems

(AAMAS 2005)

37. Haddadi, Afsaneh; Sundermeyer, Kurt. 1996. Foundations of

distributed artificial intelligence – [New York]: John Wiley & Sons

38. Henriksson, R.; Kauppinen, T.; Hyvönen, E. 2008. Core Geographical

Concepts: Case Finnish Geo-Ontology – [Ohio, USA]: Location and the

Web (LocWeb) 2008 workshop, 17th International World Wide Web

Conference WWW 2008

39. Hoare, Charles Antony Richard. 1985. Communicating Sequential

Processes – [s.l.]: Prentice Hall International

40. Hu Yih-Chun; Perrig, A.; Johnson D. 2003. Rushing Attacks and

Defense in Wireless Ad Hoc Network Routing Protocols – [San Diego,

USA]: Proceedings of the ACM Workshop on Wireless Security (WiSe

2003)

41. Huhns M. 2002. Agents as Web Services – [South Carolina]: IEEE

Internet computing, Volume 6, Issue 4, pages 93-95

42. Johnson, D. 1994. Routing in Ad Hoc Networks of Mobile Hosts –

[Santa Cruz, USA]: Proceedings of the Workshop on Mobile Computing

Systems and Applications

43. Johnson, D.; Maltz, D.; Hu, Y. 2007. The Dynamic Source Routing

Protocol (DSR) for Mobile Ad Hoc Networks for IPv4 – [s.l.]: RFC4728

44. Karlof, C; Wagner, D. 2003. Secure Routing in Wireless Sensor

Networks: Attacks and Countermeasures – [s.l.]: IEEE International

Workshop on Sensor Network Protocols and Applications

45. Khodabakchian E., Shaffer D., GaurH., Zirn M. 2011. SOA Best

Practices: The BPEL Cookbook – [s.l.]:

http://www.oracle.com/technetwork/articles/soa/index-

095969.html, December 2011

http://www.fipa.org/
http://www.oracle.com/technetwork/articles/soa/index-095969.html
http://www.oracle.com/technetwork/articles/soa/index-095969.html

89

46. Kimlaychuk, V. 2003. 5 Hungry philosophers’ problem. Modelling with

JADE – Italy: TILAB "EXP in search of innovation"

47. Kimlaychuk, V. 2004. Creating intelligent agents in JADE (an example

of ant colony simulation) – [Orlando, FL]: EISTA2004

48. Kimlaychuk, V. 2008. SOA Integration Aspects for Large Companies –

[Algarve, Portugal]:IADIS International Conference Information

Systems, April 9-13

49. Kimlaychuk, V. 2008. Integrating Oracle enterprise service bus with

JADE agents – [Stara Lesna, Slovakia]:6
th
 International Conference on

Computational Cybernetics, November 27-29.

50. Kimlaychuk, V. 2010. Jade contribution – Tallinn:

http://jade.tilab.com/credits.htm , 12 december 2011

51. Kimlaychuk, V. 2011. Security in ad-hoc sensor networks with pre-

loadedtime limited memory keys – [Shanghai, China]: 4
th
 International

Conference on BioMedical Engineering and Informatics, October 15-17

52. Kimlaychuk, V. 2012. Authentication using shared knowledge. Learning

agents. – [Jeju Island, Korea]: The 12th International Conference on

Intelligent Autonomous Systems, 26-29 June 2012

53. Kinny D.; Georgeff M.; Rao A. 1996. A Methodology and Modelling

Technique for Systems of BDI Agents – [Secaucus, NJ, USA]:

Proceedings of the 7th European workshop on Modelling autonomous

agents in a multi-agent world: agents breaking away: agents breaking

away, pages 56 - 71. Springer-Verlag New York, Inc.

54. Knublauch, H. 2002. Extreme Programming of Multi-Agent Systems –

[Bologna, Italy]: First International JointConference on Autonomous

Agents & MultiAgentSystems (AAMAS 2002)

55. Long, Johnny; Wiles, Jack; Pinzon, Scott; Mitnick, Kevin. 2008. No

Tech Hacking: A Guide to Social Engineering, Dumpster Diving, and

Shoulder Surfing – [s.l.]: Syngress

56. Lupu, T. 2009. Main Types of Attacks in Wireless Sensor Networks –

[Budapest]: WSEAS 2009

57. Magno, B. 1996. Survey of user authentication mechanisms – Monterey:

Storming Media

58. Marks, Eric; Bell, Michael. 2006. Service-Oriented Architecture

(SOA): A Planning and Implementation Guide for Business and

Technology – [s.l.]: Willey

59. McCarthy, J.; Minsky, M.; Rochester, N.; Shannon, C. 1955. A

Proposal for the Dartmouth Summer Research Project on Artificial

http://jade.tilab.com/credits.htm

90

Intelligence. Hanover: Dartmouth Summer Research Conference on

Artificial Intelligence

60. Menezes Alfred, Oorschot Paul, Vanstone Scott. 1996. Handbook of

Applied Cryptography – [s.l.]: CRC Press

61. Mitnick, Kevin; Simon, William; Wozniak, Steve. 2002. The art of

Deception: Controlling the Human Element of Security – [s.l.]: John

Wiley & Sons

62. Murray, Arthur. 2002. Ai4U: Mind-1.1 Programmer's Manual – [s.l.]:

iUniverse

63. Musen, M.; Noy N. Protégé homepage – [s.l]:

http://protege.stanford.edu/ , 12 december 2011

64. Mõtus, L. 1990. Динамика програмного обеспечения встроенных

систем – [Tallinn]: Valgus

65. Mõtus, L; Rodd, M. 1994. Timing analysis of real-time software –

[s.l.]: Elsevier/Pergamon

66. Mõtus, L. 2003. Modeling metric time – [Norwell]: Kluwer Academic

Publ.

67. Mõtus, L.; Meriste, M. ; Dosch, W. 2005. Time-awareness and

Proactivity in Models of Ineractive Computations – [s.l.]: Elsevier.

Theoretical Computer Science 141, p 69-95

68. Nosseir, A; Connor, R.; Dunlop, M. 2005. Internet Authentication

Based on Personal History – A Feasibility Test – [Chiba,

Japan]:Proceedings of Customer Focused Mobile Services Workshop at

WWW2005

69. Nosseir, A.; Connor, R.; Revie, C.; Terzis, S. 2006. Question-based

authentication using context data – [Oslo, Norway]: Nordic Conference

on Human-Computer Interaction; Vol. 189

70. Noy, N.; McGuinness, D. 2001. Ontology Development 101: A Guide to

Creating Your First Ontology – [s.l.]: Stanford University (KSL-01-05)

71. Odell, J. 2011. Foundation for Intelligent Physical Agents – [s.l.]:

http://www.fipa.org/specifications/index.html, December, 2011

72. Otway, D., Rees, O. 1987. Efficient and Timely Mutual Authentication,

Operating Systems Review – [New York, USA]: ACM SIGOPS

Operating Systems Review, Volume 21 Issue 1

73. Peters, J. 2005. Integration of Mobile Agents and Web Services –

[Leicester , U.K.]: The First European Young Researchers Workshop on

Service Oriented Computing

http://protege.stanford.edu/
http://www.fipa.org/specifications/index.html

91

74. Poole, David; Mackworth, Alan; Goebel, Randy. 1998. Computational

Intelligence. A logical approach – [New York]: Oxford University Press

75. Radzevych, V.; Mathew, S. 2004. Security in Sensor Networks: Key

Management Approaches – [s.l.]: Unpublished

76. Russel, Stuart; Norvig Peter. 2003, Artificial Intelligence a modern

approach – [s.l.]: Prentice Hall

77. Sasse, A. 2005. Usability and trust in information systems – [s.l.]:

Edward Elgar, p. 319-348

78. Schittko, C. 2003. WebService Orchestration with BPEL –

[Philadelphia, USA]: XML Conference & Exposition 2003

79. Schneier, Bruce. 1996. Applied Cryptography – [s.l.]:John Willey &

Sons

80. Selic, Bran; Lavagno, Luciano; Martin Grant. 2003. "Modeling

Metric Time" in UML for Real: Design of Embedded Real-time Systems

– [s.l.]: Springer

81. Shoham Y. 1993. Agent-oriented programming – [s.l.]: Elsevier Science

Publishers

82. Soley, R. 2003. Unified modeling language specification – [s.l.]:

http://www.uml.org/ , December 2011

83. Stepney, S.; Clark, J.; Tyrrell, A.; Johnson, C.; Timmis, J.;

Partridge, D.; Adamatzky, A.; Smith, R. 2005. Journeys in Non-

Classical Computation. A Grand Challenge for Computing Research –

[s.l.]: International Journal of Parallel, Emergent and Distributed

Systems, p. 5-19

84. Sterling L.; Taviter K. 2009. The Art of Agent-Oriented Modeling –

[London, England]: MIT Press

85. Tomson, T. 2009. Research Laboratory for Proactive Technologies

annual report – Tallinn: http://www.proactivity-

lab.ee/images/proact%20rep_%202009.pdf, p. 48-54, 12 december 2011

86. Toomim, M.; Zhang, X.; Forgaty, J.; Landay, J. 2008. Access control

by testing for shared knowledge – [Florence, Italy]: 26
th
 Annual CHI

Conference on Human Factors in Computing Systems

87. Tripathi, K.; Agarwal, T.; Dixit, S. D. 2010. Performance of DSDV

Protocol over Sensor Networks – [s.l.]: International Journal of Next-

Generation Networks (IJNGN) Vol.2, No.2

88. Weiss, Gerhard. 1999. Multi-agent systems: A Modern Approach to

Distributed Artificial Intelligence – [s.l.]: MIT Press

89. Wooldridge, M. 1997. Agent-based software engineering – [s.l.]: IEEE

Proc. on Software Engineering

http://www.uml.org/
http://www.proactivity-lab.ee/images/proact%20rep_%202009.pdf
http://www.proactivity-lab.ee/images/proact%20rep_%202009.pdf

92

90. Wooldridge, M; Jennings, N. 1995. Intelligent agents: theory and

practice – [s.l.]: The Knowledge Engineering Review 10(2)

91. Yan, J.; Ahmad, A.S. 2008. A Low-cost Attack on a Microsoft

CAPTCHA – [Alexandria, USA]:Proceedings of the 15th ACM

conference on Computer and communications security

92. Zapata, M.G.; Asokan, N. 2002. Securing Ad-Hoc Routing Protocols –

[Singapore]: Proceedings of the ACM Workshop on Wireless Security

(WiSe 2002)

93. Zviran, M; Haga, W. 1990. User authentication by cognitive passwords:

an empirical assessment – [Jerusalem]: Proceedings of the fifth Jerusalem

conference on Information technology

94. Жданов Александр. 2009. Автономный искусственный ителлект –

[Москва]:БИНОМ. Лаборатория знаний

95. Зенин О.; Иванов М. 2002. Стандарт криптографической защиты

AES. Конечные поля – [Москва]: КУДИЦ-Образ

93

List of publications

 Kimlaychuk, V. (2012). Authentication using shared knowledge. Learning

agents. The 12
th
 International Conference on Intelligent Autonomous

Systems, 26-29 June 2012, Jeju Island, Korea

 Kimlaychuk, V. (2011). Security in ad-hoc sensor networks with pre-loaded

time limited memory keys. The 4th International Conference on BioMedical

Engineering and Informatics, 15 Oct - 17 Oct 2011. IEEE, 2011.

 Kimlaychuk, V. (2008). Integrating Oracle enterprise service bus with JADE

agents. In: IEEE 6th International Conference on Computational

Cybernetics, November 27-29, 2008: IEEE, 2008, 59 - 61.

 Kimlaychuk, V. (2008). SOA Integration Aspects for Large Companies. In:

Proceedings of the IADIS International Conference Information Systems

2008: IADIS International Conference, Algarve, Portugal, APRIL 9-11,

2008. (Toim.) Nunes, M.B.; Isaias, P.; Powell, P. Algarve, Portugal: IADIS

Press, 2008.

 Kimlaychuk, V. (2004). Creating intelligent agents in JADE (an example of

ant colony simulation). EISTA 2004 (Orlando, FL, July 2004). , 2004, 55 -

60.

 Motus, L.; Meriste, M.; Helekivi, J.; Kelder, T.; Kimlaychuk, V. (2003). A

Testbed for Time-sensitive Agents – Some Involved Problems. EFTA 2003:

9th IEEE International Conference on Emerging Technologies and Factory

Automation ETFA2003; Lisabon, Portugal; 16-19 September, 2003. IEEE

Computer Society Press, 2003, 645 - 651.

 Kimlaychuk, Vadim (2003). 5 Hungry philosophers’ problem. Modelling

with JADE. Italy, electronic journal TILAB "EXP in search of innovation"

95

Annex A.
ELULOOKIRJELDUS

1. Isikuandmed

 Ees- ja perekonnanimi: Vadim Kimlaychuk

 Sünniaeg ja koht: 12 november 1977, Ukraina, Kovel

 Kodakondsus: Venemaa

2. Kontaktandmed

 Aadress: Paekaare 2-8, Tallinn 13621, Estonia

 Telefon: 5233474

 E-posti aadress: vadim@dcc.ttu.ee

3. Hariduskäik

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase

Vene, Ukraaina emakeel

Inglise kõrgtase

Eesti kesktase

Rootsi algtase

5. Teenistuskäik

Töötamise aeg Tööandja nimetus Ametikoht

2012 – Koolitööde AS tarkvara arendaja

2011 – 2012 Stoneridge Electronics AS tarkvara arenduse juht

2006 – 2011 Elion AS integratsiooni arendaja

2004 – 2006 Stoneridge Electronics AS tarkvara arendaja

2002 – 2004 Stoneridge Electronics AB industrialiseerimine,

insener

Õppeasutus

(nimetus lõpetamise ajal)

Lõpetamise

aeg

Haridus

(eriala/kraad)

Moskva Riiklik Elektroonikatehnoloogia

Instituut

2001 magister

Moskva Riiklik Elektroonikatehnoloogia

Instituut

2001 magister

12 keskkool, Tallinn 1995 keskharidus

96

6. Teadustegevus

BF38 Gene-Auto, Automaatne koodigeneraator sardsüsteemidele

(02.01.2006-31.12.2008), täitja

F7007 Gene-Auto, Automaatne koodigeneraator sardsüsteemidele

(30.01.2007-01.09.2008), täitja

ETF6182 Multiagentsüsteemide uurimine heterogeenses,

dünaamiliselt muutuva struktuuriga keskkonnas (Hopadhoc

projekt) (01.01.2005-31.12.2008), täitja

SF0140113As08 Proaktiivsus ja situatsiooniteadlikkus

(01.01.2008-31.12.2013), täitja

7. Kaitstud lõputööd

Õppeklassi võrk ehitatud UNIX ja Windows NT integratsiooni alusel –

(magister, 2001)

Sisevõrgu kaitse Internetis – (magister, 2001)

8. Teadustöö põhisuunad

a. Multiagentsüsteemid

b. Andurivõrgu simuleerimine

c. Tekkiva käitumise süsteemid

9. Teised uurimisprojektid

Multiagentsüsteemide tarkvara arendus

Kuupäev: 28/12/2011

97

Annex B
CURRICULUM VITAE

1. Personal data

 Name: Vadim Kimlaychuk

 Date and place of birth: 12 November 1977, Ukraine, Kovel

2. Contact information

 Address: Paekaare 2-8, Tallinn 13621, Estonia

 Phone: 5233474

 E-mail: vadim@dcc.ttu.ee

3. Education

4. Language competence/skills (fluent; average, basic skills)

Language Level

Russian, Ukraininian mothertongue

English fluent

Estonian average

Swedish basic

5. Professional Employment

Period Organisation Position

2012 – now Koolitööde AS software developer

2011 – 2012 Stoneridge Electronics AS software development

manager

2006 – 2011 Elion AS integrations developer

2004 – 2006 Stoneridge Electronics AS software developer

2002 – 2004 Stoneridge Electronics AB industrialization engineer

Educational institution Graduation

year

Education (field of

study/degree)

Moscow Institute of Electronic

Engineering

2001 master

Moscow Institute of Electronic

Engineering

2001 master

Secondary school nr. 12, Tallinn 1995 secondary

98

6. Scientific work

BF38 Gene-Auto, Automatic Software Code Generation for Real-time

Embedded Systems (02.01.2006-31.12.2008), performer

F7007 Gene-Auto, Automatic Software Code Generation for Real-time

Embedded Systems (30.01.2007-01.09.2008), performer

ETF6182 Research of multi-agent systems in heterogeneous

environment with dynamic structure (Hopadhoc project)

(01.01.2005-31.12.2008), performer

SF0140113As08 Proactivity and situation-awareness

(01.01.2008-31.12.2013), performer

7. Defended theses

Student’s training LAN based on UNIX and Windows NT integration –

(M.Sc., 2001)

LAN protection in Internet, based on student’s training LAN - (M.Sc.,

2001)

8. Main areas of scientific work/current research topics

a. Multi agent systems

b. Simulation of the sensor network

c. Emergent behavior

9. Other research projects

Agent-oriented software development

Date: 28/12/2011

99

Annex C

DISSERTATIONS DEFENDED AT TALLINN UNIVERSITY OF

TECHNOLOGY ON INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on

the Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with

Mobility Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-

Business. 1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of

Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented

by Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation

Methods for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled

Data Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis

and Reproduction of Periodic Components of Band-Limited Discrete-Time

Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:

Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with

Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented

Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of

Digital Systems. 2004.

100

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes

in Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to

Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication

Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-

Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based

Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega

astmete ja elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.

2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum

Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission.

2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой

фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n

переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech

Recognition. 2006.

32. Erki Eessaar. Relational and Object-Relational Database Management

Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-

impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired

Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for

Analysis and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of

Nonlinear Systems: ANARX Model Based Approach. 2007.

101

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case

Studies of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit

State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A

Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit

Based on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear

Information Processing Methods: Case Studies of Estonian Islands

Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-

Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving

Program Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model

– Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems.

2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of

the Thoracic Bio-Impedance Variations into Cardiac and Respiratory

Components. 2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like

Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems.

2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children

Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation

Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and

Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of

Attack Trees. 2010.

102

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User

Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and

Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.

2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability

Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger

Integrated Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber

Militia. 2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-

Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile

Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance

Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber

Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models.

2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems.

2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of

Domains, Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions.

2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting

Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test

Automation. 2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-

Chip Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

103

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based

Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending

Web Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-

Level Decision Diagrams. 2012.

	Kimlaychuk-sisu10.08uus
	Simulations in multiagent communication system_B5

