
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Gregor Tammert 179562IADB

Data Validation Optimization in Teradata-

based Data Warehouse

Bachelor's thesis

Supervisor: Nadežda Furs

 MBA

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Gregor Tammert 179562IADB

Andmete valideerimise optimeerimine

Teradata-põhises andmelaos

Bakalaureusetöö

Juhendaja: Nadežda Furs

 MBA

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Gregor Tammert

13.05.2021

4

Abstract

The overall goal of this thesis is to investigate different ways of how to optimize data

validation process in a Teradata-based data warehouse.

Optimization topics dicussed during this thesis can be divided into two categories:

database-side (administrative) and client-side optimization. This paper focuses mainly on

the client-side optimization. After doing the research the author developed a prototype

which was used to measure and prove the effectiveness of the presented optimization

aspects.

This thesis was done in collaboration with one financial institution which provided the

required environment for development and experimentation. One goal of this thesis was

to come up with a solution that could outperform the system currently used in the

mentioned institution.

This thesis is written in English and is 28 pages long, including 8 chapters, 6 figures and

6 tables.

5

Annotatsioon

Andmete valideerimise optimeerimine Teradata-põhises

andmelaos

Käesoleva lõputöö eesmärgiks oli esmalt uurida ning seejärel välja pakkuda erinevaid

viise, kuidas oleks võimalik optimeerida andmete valideerimise protsessi Teradata-

põhises andmelaos.

Töös esitatud optimeerimise aspektid saab jagada kaheks: andmebaasi-poolsed

(administratiivsed) ja klientrakenduse poolsed. Töö põhirõhk on asetatud klientrakenduse

poolsele optimeerimisele, mille raames arendatakse töö käigus välja prototüüp, mille abil

saab katsetada ning mõõta erinevate väljapakutud aspektide efektiivsust.

Töö valmis koostöös finantsettevõttega, mis pakkus autorile vajaliku keskkonna nii

arendustööks kui ka eksperimenteerimiseks. Lõputöö üheks eesmärgiks oli luua süsteem,

mis oleks oma jõudluselt etem, kui ettevõttes hetkel töös olev lahendus.

Uurimistulemused on ettevõttele sisendiks uue süsteemi ehitamiseks, mille üheks osaks

on andmete valideerimine.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 28 leheküljel, 8 peatükki, 6

joonist, 6 tabelit.

6

List of abbreviations and terms

.NET is an open source developer platform, created by Microsoft, for

building many different types of applications

AMP Access module processor

CLI Command-line interface

DAL Data access layer

DI Dependency Injection

EF Entity Framework

ERD Entity relationship diagram

GUID Globally Unique Identifier

MPP Massively parallel processing

MS Microsoft

SMP Symmetric multiprocessing

SQL Structured Query Language

TD Teradata

TPL Task Parallel Library

7

Table of contents

1 Introduction ... 11

2 Teradata Database.. 12

2.1 Architecture .. 12

2.1.1 Hardware ... 12

2.1.2 Virtual Processors .. 12

2.2 Terminology ... 14

2.2.1 Spool space .. 14

2.2.2 Skew .. 14

2.2.3 Statistics ... 15

2.2.4 Workload ... 15

3 Data validation ... 16

3.1 Definition and foundation ... 16

3.2 Validation from perspective of relational databases ... 16

4 Optimization .. 17

4.1 Teradata Database optimization ... 17

4.1.1 Even data distribution .. 17

4.1.2 Statistics collection .. 19

4.2 Client-side optimization ... 19

4.2.1 Limiting Factors & Requirements ... 19

4.2.2 Connection pooling ... 19

4.2.3 Parallelism ... 20

4.2.4 Data persistence ... 21

5 Prototype .. 22

5.1 Architecture .. 22

5.1.1 Layers .. 22

5.1.2 Data model ... 24

5.1.3 Main process and classes ... 24

5.2 Implementation ... 26

8

5.2.1 CLI ... 26

5.2.2 Data Access Layer ... 27

5.2.3 Validation Service ... 28

5.2.4 Parallelism ... 28

6 Experiment .. 30

6.1 Common methodology ... 30

6.2 Obscure factors ... 30

6.3 Experiment A – Connection Pooling efficiency ... 30

6.4 Experiment Z – Old solution vs. TdValidator .. 31

6.5 Experiment B – Heap size .. 32

6.6 Experiment C – Batch Size ... 34

7 Analysis ... 35

7.1 Connection Pooling .. 35

7.2 Parallelism .. 35

7.2.1 Spool errors ... 35

7.2.2 Occupying queries ... 36

7.3 Data Persistence frequency ... 36

7.4 Old solution vs. TdValidator .. 37

8 Summary .. 38

References .. 39

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 41

Appendix 2 – Query for finding skewed tables .. 42

Appendix 3 – Entity relationship diagram of prototype ... 43

Appendix 4 – Validation process flow ... 44

Appendix 5 – Core module classes .. 45

9

List of figures

Figure 1. Simplified Teradata query processing [2] ... 13

Figure 2. Skew calculation using SQL aggregates [4] ... 14

Figure 3. Validation steps (high-level) ... 20

Figure 4. N-layer architecture ... 23

Figure 5. Console output of validate command with help option 26

Figure 6. Implementation of Unit of Work and generic repositories 27

10

List of tables

Table 1. Results of Experiment A .. 31

Table 2. Results of Experiment Z ... 31

Table 3. Results of Experiment B ... 33

Table 4. Results of Experiment B aggregated per profile .. 33

Table 5. Results of Experiment C ... 34

Table 6. Results of Experiment C aggregated per profile .. 34

11

1 Introduction

Throughout the day we make many decisions relying on previous experience. Our brains

store trillions of bits of data about past events and leverage those memories each time we

face the need to make a decision. Like people, companies generate and collect tons of

data about the past and this data can be used to make better decisions. [1]

Business decisions are desired to be based on the most trustworthy data available. One

factor to contribute to that matter is data validation which tries to eliminate incorrect

records from the data set using predefined constraints. That process is quite essential and

should be done on regular basis, luckily enough this can be automated. The author of this

thesis is currently employed at an enterprise where a solution for the described process is

already implemented but the author sees that it is acting rather poorly and could be

improved or replaced by another system.

Purpose of this thesis is to do research and come up with a solution that first would

outperform the enterprise’s current solution and secondly would give an overall analysis

which aspects of developed solution prove to be beneficial. This paper will be one of the

inputs for developing a testing framework inside the named enterprise and as it is an

international institution the research is documented in English.

The solution is directed towards Teradata Database and .NET Provider for Teradata.

Practical part of thesis is to develop a prototype that later could be used for collecting

performance data of the developed solution so that afterwards both qualitative and

quantitative analysis could be done. Goal of this thesis is not to test Teradata Database’s

limits but rather to attain an optimized solution between the duration of validation and

use of database resources.

12

2 Teradata Database

Following chapter is dedicated for giving a selective overview of Teradata Database’s

architecture and terminology so that optimization topics discussed later in this thesis

would be more comprehensible to the reader.

2.1 Architecture

In this chapter is described a small but essential portion of Teradata Database’s

architecture specifically there will be description of two virtual processors Access

Module Processor and Parsing Engine.

2.1.1 Hardware

The essence of Teradata Database is parallel processing, for achieving that, it demands a

particularly dedicated processing hardware which consists of two main components:

processor node(s) and BYNET.

Processor nodes are based on Symmetric Multiprocessing (SMP) technology. The

hardware (nodes) can be combined with a communications network (BYNET) that

connects the SMP systems to form Massively Parallel Processing (MPP) systems. [2]

2.1.2 Virtual Processors

The versatility of Teradata Database is based on virtual processors (vprocs) that eliminate

dependency on specialized physical processors. Vprocs are a set of software processes

that run on a node under Teradata Parallel Database Extensions (PDE) within the

multitasking environment of the operating system. [2] There are several types of vprocs

but regarding this thesis one would be particularly interested in AMPs and PEs.

As stated in the documentation [2], access module processors (AMP) perform different

database functions e. g. executing database queries. Each AMP owns a portion of the

overall database storage meaning that rows of one table can and should be distributed

between different AMPs to increase the benefit of parallel processing.

13

The Parsing Engine (PE) is the vproc that communicates with the client system on one

side and with the AMPs (via the BYNET) on the other side. Each PE executes the

database software that manages sessions, decomposes SQL statements into steps, possibly

in parallel, and returns the answer rows to the requesting client. [2] One element of PE is

Optimizer which role and functions are discussed later in upcoming chapters of this thesis.

Considering the information provided previously the following is a simple high-level

illustration of the communication between different logical units in Teradata Database

when processing a query.

Figure 1. Simplified Teradata query processing [2]

14

2.2 Terminology

This chapter provides explanations for several Teradata specific terms that are related to

the scope of this thesis.

2.2.1 Spool space

While processing user requests Teradata Database uses spool space as temporary storage

for intermediate and returned rows. It is worth mentioning that spool space is allocated

from user’s permanent space and is distributed evenly between all AMPs. When use of

spool space exceeds in one of the AMPs then query execution is aborted and error

message is returned instead. In addition to that all other active queries for that user get

aborted as well. [3]

As an example, one can imagine that there is a system which has 400 AMPs. User is given

a total of 100GB of spool space which means that every AMP has access to 250MB of

that memory. It can be deduced that it is very important that data is distributed evenly

between the AMPs otherwise queries can easily run into spool space issues.

2.2.2 Skew

Skewness is the third moment of a distribution. It is a measure of the asymmetry of the

distribution about its mean compared with the normal, Gaussian, distribution. The normal

distribution has a skewness of 0. [4]

The computing of SKEW is defined as follows:

Figure 2. Skew calculation using SQL aggregates [4]

Where x is a value expression and STDDEV_SAMP is function for calculating the sample

standard deviation for the non-null data points in x. [4] This is useful for finding skew

based on column value distribution.

In appendix 2. author has also provided a query for detecting skewed tables on a database

level which is based on the current permanent space usage per AMP and where ideal and

minimum value of column “Custom Skew Factor” is 1.

15

2.2.3 Statistics

The COLLECT STATISTICS statement collects demographic data for one or more

columns of a base table, hash index, or join index, computes a statistical profile of the

collected data, and stores the synopsis in the Data Dictionary. The Optimizer uses the

synopsis data when it generates its table access and join plans. [5] So it can be said that

there is a direct link between statistics collection and database performance.

2.2.4 Workload

A workload is a class of database requests with common traits whose access to the

database can be managed with a set of rules. Workloads are useful for: [15]

• Setting different access priorities for different types of requests

• Monitoring resource usage patterns, performance tuning, and capacity planning

• Limiting the number of requests or sessions that can run at the same time

In the context of this thesis, the database user running the validations is classified under

a workload that allows maximum number of five parallel requests.

16

3 Data validation

As data validation is quite broad topic and this thesis focuses mainly on optimization

rather than on the concept itself then this chapter gives only a brief overview and main

takeaways for performing data validation on a relational database level. If the reader finds

itself in a position where implementation of data validation is needed at any scale, then

the author recommends delving into official paper [8] provided by ESSnet (European

Statistical System).

3.1 Definition and foundation

Data validation is an activity verifying whether or not a combination of values is a

member of a set of acceptable combinations. Data validation assesses the plausibility of

data: a positive outcome will not guarantee that the data is correct, but a negative outcome

will guarantee that the data is incorrect. Data validation is a decisional procedure ending

with an acceptance or refusal of data as acceptable. The decisional procedure is generally

based on rules expressing the acceptable combinations of values. Rules are applied to

data. If data satisfy the rules, which means that the combination expressed by the rules is

not violated, data are considered valid for the final use they are intended to. [8]

3.2 Validation from perspective of relational databases

Because validation rules can vary between different requisitions and data sets then

regarding the scope of this thesis it is needless to discuss them in detail but there are still

two statements that can be postulated about them. Firstly, regarding relational databases

every validation rule must be able to express itself in a form of SQL. Secondly instead of

returning rule violating records the SQL should return a scalar value that indicates the

result of validation. This significantly reduces the amount of data transmitted to client

which in turn improves the overall validation process. In addition to that a single scalar

value can be more informative regarding data validation and it is more humanly readable.

17

4 Optimization

This thesis assumes that there are two contributors to data validation process, one being

the Teradata Database itself and the second one being the client-side application which is

dedicated for orchestrating the overall process and persisting the outcome, therefore the

optimization topics discussed next can be split accordingly. As the subject of this thesis

is database optimization then its inevitable to discuss optimization topics from a

perspective of database administrator, as a healthy database is a preliminary for client-

side optimization.

4.1 Teradata Database optimization

Following chapter gives overview and explanation of some techniques for optimizing

Teradata Database to improve data querying performance. This applies to all queries not

just only for data validation ones. Techniques are Teradata Database specific and essential

SQL optimization techniques are not relevant at this time.

4.1.1 Even data distribution

As it was previously stated Teradata’s performance comes from parallelism. This chapter

first tries to illustrate why it is important that data are evenly distributed in AMPs and

then later to give guidelines for achieving that.

For explaining the importance of data distribution between AMPs the author has decided

to take into play a quite primitive but easily understandable real-life parallel. In that

example there is a restaurant which represents a database which has an object stored

within it where each row represents a guest for the current night. Every guest had to pick

their choice of course from tonight’s selection. There’s database user named ‘KITCHEN’

that needs that information to start preparing the dishes, for obtaining that info it must do

a query. For processing that query the restaurant has waiters which in this case represent

AMPs. On average it takes one waiter 12 seconds to ask guest for its choice of course.

18

During the current night there are total of 48 guests and 6 waiters at duty. Author has

described four different scenarios:

1. For unknown reason only one waiter can serve the guests

2. Waiter no. 6 falls ill and waiter no. 5 will take care of its duties

3. Waiter no. 6 falls ill and its duties are evenly distributed between all other waiters

4. Guests are evenly distributed between all six waiters

In preceding scenarios, the skew factor reduces per scenario number increment, therefore

the time consumption to serve all the guests should also appear in descending fashion.

After doing the calculations, the processing of KITCHEN’s request will take

approximately:

1. 576 sec.

2. 192 sec.

3. 115.2 sec.

4. 96 sec.

In addition to time consumption one must consider that putting too heavy load on single

waiter can cause burnout. A query that references a skewed table may try to process more

rows on some AMPs than others and may run out of spool space. [9]

The cause of skewed tables is inappropriate indexing. Defining the primary index (PI) for

a table is the most critical aspect of table design. The system uses the PI to assign each

data row to an AMP. A well-chosen PI balances the distribution across AMPs and helps

optimize the performance of queries that access the table. PIs also enable efficient joins

and aggregations. For guidelines on choosing an effective PI the author suggests referring

to chapter “Choosing a Primary Index” in the Teradata Vantage™ Database

Administration documentation. [9]

19

4.1.2 Statistics collection

Collecting statistics provides the Optimizer with the data demographics it needs to

generate good query plans. The more accurate and up to date the statistics, the better the

Optimizer can decide on plans and choose the fastest way to answer a query. The

computed results are stored in the Data Dictionary DBC.StatsTbl for use during the

optimizing phase of statement parsing. [9]

It is worth mentioning that optimization that can be done on Teradata Database side is an

ongoing process and as the data are constantly moving then from time to time there is a

need to come back to previously optimized objects and redesign them.

4.2 Client-side optimization

In contrast to Teradata Database side optimization, techniques and aspects discussed in

this chapter are persistent, meaning that once they are set there is no need to alter, modify

or reapply them in the future. It should be noted that this chapter’s content is oriented

towards .NET Data Provider for Teradata and C# but most of the concepts described can

be translated to other technologies or programming languages as well.

4.2.1 Limiting Factors & Requirements

Before elaborating on client-side optimization topics it should be mentioned that there are

some limiting factors and requirements to bear in mind while planning the solution:

• Max spool space allocated to database user

• Max number of allowed Teradata connections/sessions

• Validation results must be saved/reported

4.2.2 Connection pooling

A connection in the .NET Data Provider for Teradata is managed by the TdConnection

class. When TdConnection.Open is called, a connection is established to the Teradata

Database specified in the connection string using the Data Source attribute. When a

connection is established, a Teradata Session is opened, and internal objects are

initialized. Each connection manages one Teradata Session. Each time an application calls

TdConnection.Open to open a connection to a Teradata Database, the provider goes

20

through the overhead of opening a Teradata Session and initializing internal objects

associated with the connection. For applications that continually open and close

connections, this overhead will significantly degrade performance. To reduce this

overhead, the provider supports Connection Pooling. [6] It is possible to configure max

pool size parameter which as the name suggests limits the number of connections in a

pool. This parameter is a good way to control application’s load on database. Max pool

size should always be less than or equal to max allowed sessions for current database

user.

4.2.3 Parallelism

Validation of a single rule on a data set (object) is a totally independent process meaning

that other validations do not depend on it. This gives an opportunity to execute validations

in parallel but one caveat being that there is a high chance of running out of resources,

mainly out of spool space, so this issue must be addressed. Author suggests executing

validations in a fixed-size heap, that way extensive use of resources can be more or less

avoided.

Figure 3. Validation steps (high-level)

Validation process consists of three main steps where step Evaluation is the least

troublesome because it is the only one that does not use or depend on any external

resource. Execution step of course depends on Teradata Database and step Persist depends

on a filesystem or database where results are stored. It seems that most of the heavy lifting

is done via communication between client application and data stores so in conclusion

the less amount of connections that need to be established and requests that need to be

sent the more efficient is the outcome.

The .NET Data Provider for Teradata can support multiple concurrent connections

(TdConnection) to Teradata Database. Each connection can be used by one thread at any

moment in time and instance members are not guaranteed to be thread safe. For example,

two threads should not try to execute two separate commands (TdCommand)

simultaneously against the same connection. However, two threads can execute two

separate commands (TdCommand) associated with two separate and distinct connections

21

(TdConnection). [6] This means that to achieve thread safety parallelism every query

execution must establish a new connection or take existing one from the pool.

4.2.4 Data persistence

When it comes to data persistence then there is also an optimal balance that should be

met. It is rather useless to persist every validation result one-by-one instead it should be

done in a batch with configurable size that should not be too large otherwise when a

transaction fails then there will be plenty amount of validations that need to be re-

executed. Practical example of data persistence solution using Oracle Database and Entity

Framework Core is given in chapter ‘Prototype’.

22

5 Prototype

Following chapter gives an overview of TdValidator, a client-side prototype, that was

developed regarding this thesis. From here on term prototype and TdValidator denote to

the same subject and their use is alternating. This chapter intertwines aspects discussed

earlier in the Optimization chapter with an actual implementation. In addition, there are

given annotations about variables that could possibly influence validation performance

and therefore should be measured during the experimentation phase which is described

in detail in the chapter Experiment.

5.1 Architecture

In this chapter author describes the developed prototype in a conceptual manner leaving

out actual technological implementations.

5.1.1 Layers

Application is divided into three layers: Presentation, Service and Data Access Layer.

Following is a high-level visualisation of application components based on Traditional

"N-Layer" architecture. [10]

23

Figure 4. N-layer architecture

Presentation Layer’s purpose is to provide an interface to the end-user for interacting with

the application. Presentation Layer communicates with Service Layer only via Services

module. Regarding TdValidator the CLI must be capable of starting validation process

for specific project and logging the process with its results. In addition to that there should

be a convenient way for seeding test data.

Service Layer contains the business logic of the solution and is divided into three

modules: Core, Services and Models. Core module contains logic that fulfils application’s

business needs. Models module contains code representation of business domain entities

that are persisted to data store. Services module acts as a middleman between user

interfaces (Presentation Layer), business logic (Core) and Data Access Layer.

Data Access Layer provides interfaces for Services module to interact with application

data store. It also provides a business transaction solution to avoid persisting partial data.

24

5.1.2 Data model

This chapter gives description of domain entities presented in the data model. ERD can

be found in Appendix 3. In following text business domain entities are written in bold

text.

Component represents a TD Database object which has environment identifier attached

to it which is taken into account when generating or executing validation queries.

Project, which is created by end-user, is an entity which has unique name and acts as a

logical unit of data validations. There is a many-to-many relationship between

Component and Project which results in ProjectComponent entity.

ValidationRule entity stores within itself a query template that is used when generating

an actual validation query. It has also Operator, Operand, ValueType columns that work

in conjunction and are used for evaluating query execution results.

ComponentValidation has execution ready query attached to it which is generated from

ValidationRule’s query template. Parameters that need to be bound to query are stored

as QueryParameter entities and relationships between rules and parameters are stored

using RuleParameter entity.

ValidationResult is artifact created during validating a single ComponentValidation.

Every result contains evaluation status, query execution result and duration.

5.1.3 Main process and classes

In this chapter author describes the purpose of different business logic classes. It is

suggested to refer to Appendix 4. where main process flow of data validation is presented.

In addition to that in Appendix 5. main elements of the Core module are visualised on

object-oriented level. Class names in following paragraphs are written in bold text and

references to method names end with open and closing parenthesis.

ValidationQueue is a conventional queue data structure that has possibility to enqueue

and dequeue validations. At the start of validation process all the validations of a project

are enqueued, and then dequeued whenever there is an empty spot in the execution heap

which size is defined in the validation profile.

25

TdQueryExecutor is for executing queries against TD Database. It is instantiated by

passing in a connection string that should not be altered during the lifecycle of the

instance. It has a method ExecuteScalar() that is used for executing validation queries.

QueryExecutionManager as the name insists manages the query execution. It controls

the execution heap size and provides functionality for scheduling and executing

validation queries. By scheduling is meant to start a new parallel query execution. It has

property OnTaskComplete which is called after query execution completes.

ResultEvluator is used for evaluating ValidationResult based on input scalar value. As

evaluation process is executed in parallel this class also keeps track of evaluation workers

(parallel running tasks). ResultEvaluator also has property OnTaskComplete which is a

method declaration that worker calls when it has finished the task. OnTaskComplete takes

in a ValidationResult as an argument.

BatchManager takes care of organizing batches of validation results. AddToBatch()

method adds validation result to current batch. CompleteBatch() method creates a new

batch if specified and starts a worker (parallel task) that calls delegate stored in

OnTaskComplete property.

Through ValidationProfile it is possible to configure the overall validation process.

Configurable properties are: ConnectionPooling (boolean), MaxPoolSize, HeapSize,

BatchSize. For gaining overview of how those properties impact validation process,

author suggests referring to chapters Experiment and Analysis.

TdDataValidator is a class that assembles all the classes previously mentioned into one

functional unit. It is instantiated by passing in a connection string and validation profile.

Method Validate() takes in a Project entity, validates all of its ComponentValidations

and creates a ValidationReport which is a data structure containing info about single

validation run. It contains following:

• Run ID – GUID of validation run

• Project ID

• Profile used

26

• Validation results

• Validation start and end datetime

• Validation time report (total time and absolute times per validation step)

5.2 Implementation

In this chapter author describes the actual implementation of the planned solution. It

should be noted that the architecture presented earlier can be implemented using various

technologies, but the ones used regarding this thesis were solely chosen based on the

author’s previous experience and products available in the enterprise.

5.2.1 CLI

The command-line interface was built as .NET 5 console app that implements a generic

host. Generic host enables application to use built-in functionality such as: Dependency

Injection, Logging and Configuration. [11] Through dependency injection the CLI can

access application services that first need to be registered in the host configuration.

In addition to that the CLI implemented Microsoft.Extensions.CommandLineUtils NuGet

package which can be used to create conventional console applications with ease. By

conventional it is meant a console app that is capable of parsing out commands, arguments

and options from user input.

Figure 5. Console output of validate command with help option

Validation can be initiated by passing in identifier of validation project and target

environment. There is also an option for selecting the validation profile which is loaded

from configuration file called appsettings.json.

27

5.2.2 Data Access Layer

The DAL was implemented as .NET 5 class library using Entity Framework Core in

conjunction with Oracle Data Provider. Implementation was done by following two

complementing architectural patterns: Unit of Work and Generic Repository.

At the implementation level, a repository is simply a class with data persistence code

coordinated by a unit of work when performing updates. [12] Generic repository pattern

is just a further development of it which provides one common repository that through

generic input type parameter specifies the underlying domain entity for the repository

instance. So, all the repositories created regarding this thesis derived from one common

parent class RepositoryBase<TEntity> where TEntity is the generic type described above.

A Unit of Work keeps track of everything done during a business transaction that can

affect the database. When the transaction is finished, it figures out everything that needs

to be done to alter the database accordingly. [13] That way it is ensured that data integrity

is remained between transactions and data corruption is avoided. Following is a

illustration of the structure of DAL where the amount of repositories is truncated for

simplicity’s sake.

Figure 6. Implementation of Unit of Work and generic repositories

28

Entity Framework Core was used to implement DAL which meant that there was a need

to create a database context class which is used to access different tables. Unit of Work

is basically a wrapper class that passes the same instance of database context to different

repositories therefore enabling business transactions.

5.2.3 Validation Service

Main component of the Service Layer is definitely validation service which is responsible

for initiating the validation process through TdDataValidator class and persisting the

validation results using UnitOfWork that is injected to the service via Dependency

Injection. It is also capable of binding validation profile from application configuration

which again is acquired with the help of DI.

5.2.4 Parallelism

The parallelism was achieved by using Task Parallel Library which is a set of public types

and APIs in the System.Threading and System.Threading.Tasks namespaces. The

purpose of the TPL is to make developers more productive by simplifying the process of

adding parallelism and concurrency to applications. [14]

BatchManager, QueryExecutionManager and ResultEvaluator all derive from an abstract

class ParallelWorker.which is capable of keeping track of all parallel tasks in the current

validation run. It also measures duration of every task completion separately which is

then accumulated and regarding this thesis that accumulated time is referred to as absolute

time.

ParallelWorker has method AddWorker() which can be used to add new task to the

worker pool. It also has method WaitAll() which can be used to wait all current tasks in

the pool to finish. This comes handy when the validation queue becomes empty and the

program wants to start reporting the results. There is a special case for BatchManager

where all pre-exsiting tasks are waited before adding a new worker because EF Core is

using a classed called DbContext, for communicating with the application’s database,

which is not thread safe.

ParallelWorker class has property named OnTaskComplete which type is generic and

needs to be passed in while a new instance is created. It is noted that underlying generic

type must be a subtype of Delegate meaning that OnTaskCompleted is basically a

29

callback that is invoked when a parallel task completes e. g. ResultEvaluator is derived

from ParallelWorker<Action<ValidationResult>>. In C# Action is a delegate that has a

void return type meaning that in a previous example when evaluation task completes then

it calls a method passing in a first parameter of type ValidationResult.

30

6 Experiment

Following are described several experiments that were conducted during the creation of

this thesis. This chapter is the main input for quantitative analysis that is performed in the

next chapter Analysis. Before delving into the experiments, author sets out some aspects

about experimentation environment and results.

6.1 Common methodology

All the measurements, except for old solution, are based on validation profiles and

measured in a controlled environment meaning that only one variable was changed at a

time. In ideal scenario, for the most precise results, the number of iterations per

experiment should be as high as possible but regarding this thesis there were usually five

iterations, so to that extent there is definitely some amount of ambiguity in the results.

6.2 Obscure factors

As previously mentioned, for almost every experiment, there were thousand fixed

validations so that query execution times per validation would be somewhat static, of

course there are other factors contributing to that matter e. g. network speed and current

workload on Teradata Database itself. Regarding network it is stated that the system under

test (Teradata), client-side application and its database all reside in the same internal

network. When it comes to Teradata’s environment then the experiments were done

during time periods where the overall load on database was approximately 3% compared

to usual 20 - 100%.

6.3 Experiment A – Connection Pooling efficiency

While this experiment focuses on illustrating the importance of connection pooling the

number of queries was reduced from 1000 to 10. Total time of query executions was

measured (in milliseconds) and then average for every profile was calculated accordingly.

31

Profile Connection

Pooling

Run 1 Run 2 Run 3 Run 4 Run 5 Average

A1 No 5 062 4 157 4 455 4 470 4 647 4 558

A2 Yes 2 138 2 358 2 048 2 307 2 286 2 227

Table 1. Results of Experiment A

It can be seen that there is clearly a difference between executing queries with or without

connection pooling.

6.4 Experiment Z – Old solution vs. TdValidator

As one of the goals of this thesis is to improve an already existing solution, therefore

measurements between the two systems must be taken. For measuring the prototype, a

validation profile was created that would try to mimic the currently used solution in the

enterprise. The parameter values were:

• Connection Pooling: true

• Heap size: 1

• Batch size: 1

System Run 1 Run 2 Run 3 Run 4 Run 5 Average

Existing 3 303 042 3 215 881 3 471 262 3 538 554 3 229 003 3 351 548

Prototype 1 370 000 1 368 538 1 545 145 1 482 557 1 421 741 1 437 596

Table 2. Results of Experiment Z

It is worth mentioning that a profile like this is theoretically not using any of the

optimization functionality that was developed for the prototype, except execution and

persistence is done in parallel so that could possibly affect results between the systems

but overall these should not be very drastic. Measurements were done in milliseconds.

32

6.5 Experiment B – Heap size

In this experiment the goal was to measure duration of the validation process for different

heap sizes. As the maximum number of requests for current workload was five and to

avoid queuing requests on database side which in turn can result in connection timeouts

then the heap size variable was measured for values 2, 3 and 5, but to investigate the effect

of inappropriate heap size also a series of runs were done for a heap size of 16.

During the experiment the number of connection timeouts (60 seconds) and spool errors

were measured. In addition to that also the average processing time of validation queries

was measured. Note, that by processing time it is meant a time span between sending out

the request from client and getting a response from the database, this includes the time a

query spent in the waiting list. Results of the experiment are presented on the next page.

33

Profile Profile

Run

No

Heap

Size

Num of

Timeouts

Spool

Errors

Query

Processing

Avg. (ms)

Total Time

(ms)

Formatted

Total Time

B2 1 2 0 12 1 971 986 902 00:16:26.933

B2 2 2 0 22 2 030 1 016 202 00:16:56.229

B2 3 2 0 21 2 151 1 076 564 00:17:56.591

B2 4 2 0 14 1 996 999 666 00:16:39.688

B2 5 2 0 19 2 110 1 056 575 00:17:36.597

B3 1 3 0 21 2 787 932 496 00:15:32.513

B3 2 3 0 15 2 689 901 015 00:15:01.030

B3 3 3 0 15 2 689 909 603 00:15:09.615

B3 4 3 0 22 2 877 963 386 00:16:03.398

B3 5 3 0 15 2 805 939 752 00:15:39.764

B5 1 5 1 22 4 407 889 813 00:14:49.823

B5 2 5 2 22 4 326 872 909 00:14:32.920

B5 3 5 0 29 4 255 856 674 00:14:16.686

B5 4 5 5 29 4 666 940 424 00:15:40.434

B5 5 5 2 27 4 159 838 229 00:13:58.239

B16 1 16 7 96 7 381 493 076 00:08:13.083

B16 2 16 4 103 7 492 489 724 00:08:09.731

B16 3 16 11 91 7 255 502 255 00:08:22.262

B16 4 16 7 97 7 344 485 381 00:08:05.389

B16 5 16 8 82 7 783 506 295 00:08:26.328

Table 3. Results of Experiment B

Profile Heap

Size

Num of

Timeouts

Spool

Errors

Query

Processing

Avg. (ms)

Total Time (ms) Formatted

Total Time

B2 2 0 18 2 052 1 027 182 00:17:07.182

B3 3 0 18 2 769 929 250 00:15:29.250

B5 5 2 25 4362 879 609 00:14:39.609

B16 16 7 94 7 451 495 346 00:08:15.346

Table 4. Results of Experiment B aggregated per profile

The results clearly indicate benefits of parallel query execution. Results of Experiment

B are analysed in more detail, later in this thesis.

34

6.6 Experiment C – Batch Size

This experiment tried to map the impact of batch size parameter on the validation process

by measuring total time of the process and absolute time of data persistence. There were

three different scenarios for testing batch size: 1, 10 and 100.

After conducting the experiment, the results were as follows:

Profile Profile Run

No

Batch Size Absolute time

of Data

Persistence

Total Time Data

Persistence %

of Total Time

C1 1 1 14 390 834 907 1.724

C1 2 1 11 428 812 301 1.407

C1 3 1 13 781 828 020 1,664

C1 4 1 13 583 826 902 1,643

C1 5 1 11 874 818 661 1,450

C2 1 10 4 262 808 596 0,527

C2 2 10 3 504 813 222 0,431

C2 3 10 3 711 885 468 0,419

C2 4 10 4 158 822 713 0,505

C2 5 10 4 337 814 054 0,533

C3 1 100 2 989 857 271 0,348

C3 2 100 3 353 822 335 0,407

C3 3 100 2 886 842 007 0,343

C3 4 100 3 421 824 407 0,415

C3 5 100 2 997 854 127 0,351

Table 5. Results of Experiment C

Profile Batch Size Absolute time of

Data Persistence

Total Time Data Persistence %

of Total Time

C1 1 13 011 824 158 1,579

C2 10 3 994 828 814 0,482

C3 100 3 129 840 029 0,372

Table 6. Results of Experiment C aggregated per profile

35

7 Analysis

This chapter is dedicated for synthesizing a qualitative and quantitative analysis of

optimization aspects proposed and experiment results gathered during this thesis.

7.1 Connection Pooling

Based on the results of Experiment A it can be stated that Connection Pooling is a heavy

contributor to the overall performance. The runs with Connection Pooling were on

average two times faster than the ones without the pooling. As the average query

execution time decreases then the cruciality of Connection Pooling increases and vice

versa.

7.2 Parallelism

The results of Experiment B indeed indicate the benefit of running validations in parallel,

yet the outcomes are somewhat controversial. After examining the results more

thoroughly there was a need to determine the cause of certain phenomena. Following

proportions and resolutions are tightly coupled with the specific validation set used during

the experimentation phase hence there can be some fluctuation between different sets.

7.2.1 Spool errors

First there seem to be constant spool errors for certain validations even when executing

them sequentially (with heap size 1). After verifying, that it really is like that, it can be

said that regarding spool space profiles B2 and B3 in essence are not that problematic but

there is still a minor failure rate of 0.9%. When it comes to profile B5 and B16 then it’s

obvious to see a raise in spool errors which proportions are 1.9% and 8.5% accordingly.

Possible solutions would be to increase database user’s spool space, refine queries or fix

possible skew problems, but all of these are administrative tasks. From the perspective of

software engineering, a solution for limiting spool space errors would be to enqueue all

spool space related (failed) validations to a side queue which validations will be re-

36

executed sequentially when the main queue finishes as at one point those validations need

to be re-executed anyways so why not to do it right away. Of course, that sort of

functionality can be made configurable.

7.2.2 Occupying queries

When inspecting the results of Experiment B, there appears to be an increase in

connection timeouts when the heap size is nearing the maximum (B5) or is totally over it

(B16). There is also a positive correlation between average query processing time and

heap size. Furthermore, if to look at the relationship between the increase of total time

and increment of heap size then it’s not linear but rather logarithmic.

One factor contributing to that matter is the fact that as the heap size is nearing its

maximum allowed value the likelihood of requests being queued on the database side

increases. Average query processing time expresses that pretty clearly. Secondly, after

analysing the validations it was found that approximately 20 – 25% (depending on heap

size) of queries took longer to process than the average query processing time where the

vast majority of them took over 15 seconds. This creates scenarios where queries that

would run quickly (below average processing time) must wait behind longer running

queries which are occupying current heap.

7.3 Data Persistence frequency

When it comes to batch size variable then it can be deduced that there is indeed a

legitimacy between the growth of batch size and validation performance. As the results

present also a ratio between time spent on data persistence and validation process overall

then the merit becomes questionable, namely the average proportion of time spent on

persistence compared to the whole process ranges between 0,372 - 1,579% which is rather

marginal. So, to sum it up it can be said that from the profiles presented in Experiment C

the profile C2 is the victor as its time contribution is acceptable and batch size compact.

37

7.4 Old solution vs. TdValidator

First when comparing just the results between old system versus TdValidator mimicking

configuration of the former one, already then there is a huge performance difference

roughly about 2.3 times. Author finds two possible reasons for that being:

• Platform upgrade from .NET Framework 4.5.2 to .NET 5

• In new system there is zero interference between data persistence and validation

execution compared to the old system which shared same connection between

execution and persistence

Secondly, after enabling the developed parallelism functionality the difference grows

even more, to about 3.6 times when using profile B3 which proved to be reliable enough.

The parallelism clearly improves the performance, yet the author intended to get even

better results, but the outcome is at least satisfactory. In addition to performance increase

the TdValidator provides a more flexible system that can be adjusted by the user through

validation profiles.

38

8 Summary

In conclusion it can be said that the expectations raised in the beginning of thesis were

reached and the optimization aspects found confirmation. Although the experimentation

environment was not ideal then the results still indicate the expedience of the proposed

solution.

This research will definitely add value to the underlying enterprise which current system

was the main driver to write this thesis. In addition to that this paper is a useful source of

information for anyone who is interested in data validation optimization (or query

execution in general) in Teradata Database, both from administrative and software

engineering perspective but it’s worth mentioning the empirical part of thesis focuses

solely on developed client-side application.

39

References

[1] Altexsoft, “Enterprise Data Warehouse: Concepts, Architecture, and Components”,

24. Oct. 2019, Accessed on: 21.03.2021 [Online]. Available:

https://www.altexsoft.com/blog/enterprise-data-warehouse-concepts/

[2] Teradata Vantage™ - Database Introduction (March 2019, version 16.20), Teradata

Corporation, San Diego, CA, USA. Accessed on: 27.03.2021 [Online]. Available:

https://docs.teradata.com/r/WJbR7YRqjgLIL9fZwxIBOg/root

[3] Teradata Vantage™ - Database Design (March 2019, version 16.20), Teradata

Corporation, San Diego, CA, USA. Accessed on: 27.03.2021 [Online]. Available:

https://docs.teradata.com/r/2W4uUc~MxQ6lsG5v30LY5w/root

[4] Teradata Vantage™ - SQL Functions, Expressions, and Predicates (March 2019,

version 16.20), Teradata Corporation, San Diego, CA, USA. Accessed on: 27.03.2021

[Online]. Availablehttps://docs.teradata.com/r/756LNiPSFdY~4JcCCcR5Cw/root

[5] Teradata Vantage™ SQL Fundamentals (March 2019, version 16.20), Teradata

Corporation, San Diego, CA, USA. Accessed on: 28.03.2021 [Online]. Available:

https://docs.teradata.com/r/aFcrqJBUrrMhnpBHTtr71g/root

[6] .NET Data Provider for Teradata (2019), Teradata Corporation, San Diego, CA, USA.

Accessed on: 04.04.2021 [Online]. Available: https://teradata-

docs.s3.amazonaws.com/doc/connectivity/tdnetdp/16.20/help/webframe.html

[7] ADO.NET Documentation, Microsoft Corporation, Redmond, Washington, USA.

Accessed on: 04.04.2021 [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/framework/data/adonet/

https://www.altexsoft.com/blog/enterprise-data-warehouse-concepts/
https://docs.teradata.com/r/WJbR7YRqjgLIL9fZwxIBOg/root
https://docs.teradata.com/r/2W4uUc~MxQ6lsG5v30LY5w/root
https://docs.teradata.com/r/aFcrqJBUrrMhnpBHTtr71g/root
https://teradata-docs.s3.amazonaws.com/doc/connectivity/tdnetdp/16.20/help/webframe.html
https://teradata-docs.s3.amazonaws.com/doc/connectivity/tdnetdp/16.20/help/webframe.html
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/

40

[8] Methodology for data validation 1.0 (June, 2016), Marco Di Zio, Nadežda Fursova,

Tjalling Gelsema, Sarah Gießing, Ugo Guarnera, Jūratė Petrauskienė, Lucas Quenselvon

Kalben, Mauro Scanu, K.O. ten Bosch, Mark van der Loo, Katrin Walsdorfer ESSnet

(European Statistical System), Eurostat Accessed on: 22.04.2021 [Online]. Available:

https://ec.europa.eu/eurostat/cros/system/files/methodology_for_data_validation_v1.0_r

ev-2016-06_final.pdf

[9] Teradata Vantage™ Database Administration (March 2019, version 16.20), Teradata

Corporation, San Diego, CA, USA. Accessed on: 22.04.2021 [Online]. Available:

https://docs.teradata.com/r/ueCMQAxljdET5klb6rbF1g/root

[10] Common web application architectures (January 2020), Microsoft Corporation,

Redmond, Washington, USA. Accessed on: 24.04.2021 [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-

web-application-architectures

[11] .NET Generic Host in ASP.NET Core (April 2020), Microsoft Corporation,

Redmond, Washington, USA. Accessed on: 08.05.2021 [Online]. Available:

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host

[12] Implement the infrastructure persistence layer with Entity Framework Core (January

2021), Microsoft Corporation, Redmond, Washington, USA. Accessed on: 08.05.2021

[Online]. Available: https://docs.microsoft.com/en-

us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-

persistence-layer-implementation-entity-framework-core

[13] Unit of Work, Martin Fowler, Accessed on: 09.05 [Online] Available:

https://martinfowler.com/eaaCatalog/unitOfWork.html

[14] Task Parallel Library (March 2017), Microsoft Corporation, Redmond, Washington,

USA. Accessed on: 11.05.2021 [Online]. Available: https://docs.microsoft.com/en-

us/dotnet/standard/parallel-programming/task-parallel-library-tpl

[15] Teradata Vantage™ Workload Management User Guide (March 2019, version

16.20), Teradata Corporation, San Diego, CA, USA. Accessed on: 11.05.2021 [Online].

Available: https://docs.teradata.com/r/MdJpFyYdQYA50wtFdSdNPA/root

https://ec.europa.eu/eurostat/cros/system/files/methodology_for_data_validation_v1.0_rev-2016-06_final.pdf
https://ec.europa.eu/eurostat/cros/system/files/methodology_for_data_validation_v1.0_rev-2016-06_final.pdf
https://docs.teradata.com/r/ueCMQAxljdET5klb6rbF1g/root
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-implementation-entity-framework-core
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-implementation-entity-framework-core
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-implementation-entity-framework-core
https://martinfowler.com/eaaCatalog/unitOfWork.html
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

41

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Gregor Tammert

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Data Validation Optimization in Teradata-based Data Warehouse”, supervised

by Nadežda Furs

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright.

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

13.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

42

Appendix 2 – Query for finding skewed tables

-- Based on: https://docs.teradata.com/r/B7Lgdw6r3719WUyiCSJcgw/Y8b2MSxk_FjfSX~O1QCRmQ

SELECT

 TableName (FORMAT 'X(20)'),

 MIN(CurrentPerm) AS "AMP Minimum",

 AVG(CurrentPerm) AS "AMP Average",

 MAX(CurrentPerm) AS "AMP Maximum",

 (("AMP Average" / "AMP Minimum") + ("AMP Maximum" / "AMP Average")) / 2 AS "Custom Skew Factor"

FROM DBC.TableSizeV

WHERE DatabaseName = 'DatabaseName' -- Replace with acutal database name

GROUP BY TableName

ORDER BY "Custom Skew Factor" DESC;

43

Appendix 3 – Entity relationship diagram of prototype

44

Appendix 4 – Validation process flow

45

Appendix 5 – Core module classes

