
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Jaanus Kääp 182507IVCM

HYPER-V VMBUS BASED TRAFFIC
INTERCEPTION AND FUZZING

Master's thesis

Supervisor: Sille Laks

MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Jaanus Kääp 182507IVCM

HYPER-V VMBUS PÕHISE
ANDMELIIKLUSE INFOPÜÜK JA

HÄGUSTUS

Magistritöö

Juhendaja: Sille Laks

MSc

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jaanus Kääp

07.12.2020

3

Abstract

This thesis is written in English and is 78 pages long, including 6 chapters, 4 figures,

and 10 tables.

The thesis provides an overview of Hyper-V virtualization software. The thesis is

focused on the internal workings of one of Hyper-V virtualization software's main

components called VMBus.

The thesis describes the general working logic of the VMBus based communication,

several undocumented internal kernel functions and data structures as well as their

usage. Based on the reverse engineering of those kernel components that has been

performed by the author, the thesis describes internal workings of VMBus

communication pathway, from the perspective that was necessary for developing the

tools for monitoring, intercepting, and modifying data traffic moving through over

VMBus.

The goal of the thesis is to create a good open source knowledge base and

documentation for security researchers in order to simplify the beginning of Hyper-V

vulnerability research targeting VMBus.

The thesis includes and analysis the most efficient methods that can be used for

developing monitoring, interception, and fuzzing tools as well as a documented

description of the tools by the author of the thesis. All tools developed are developed by

the author of this work and will be publicly available under MIT licence from

https://github.com/JaanusKaap/ThesisMaterials.

4

https://github.com/JaanusKaap/ThesisMaterials

Annotatsioon

Hyper-V VMBus põhise andmeliikluse infopüük ja hägustus

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 6 peatükki, 4

joonist ja 10 tabelit.

Lõputöö kirjeldab Hyper-V virtualiseerimise tarkvara tausta ja keskendub ühe hyper-V

komponendi, VMBus, sisemisele implementatsioonile. VMBus on virtualiseeritud

andmesiin, mida kasutatakse partitsioonide (virtualiseeritud masinate) vaheliseks

suhtluseks.

Lõputöö kirjeldab VMBus põhise suhtluse põhiloogikat, Microsofti poolt

dokumenteerimata kerneli funktsioone ja andmestruktuure ning näiteid nende

kasutamisest. Tuginedes VMBus kerneli komponentide pöördkonstrueerimisele, annab

töö ülevaate VMBus-i sisemisest toimimisest ulatuses, mis on vajalik arendamaks välja

tööriistad, mis on võimeliseid neist läbiliikuvaid andmeid monitoorima, pealt kuulata ja

muutma. Lõputöö eesmärk on luua avalikult kättesaadav ja avatud lähtekoodiga

teadmistepagas mis võimaldaks infoturbeuurijatel edukamalt VMBus kaudu suhtlevatest

komponentidest turvavigade leidmisega algust teha.

Lõputöö tulemuseks on erinevate metoodikate analüüs ja tööriistad mille abil on

võimalik VMBuspõhist suhtlust monitoorida, pealt kuulda ja hägustada ning autori

poolt koostatud tööriistade kohta käiv dokumentatsioon. Kõik lõputöö käigus autori

poolt arendatud tarkvaralised tööriistad on avalikult kättesaadavad MIT litsentsi alusel

aadressilt https://github.com/JaanusKaap/ThesisMaterials.

5

https://github.com/JaanusKaap/ThesisMaterials

List of abbreviations and terms

Hypervisor Software that enables creation and running virtual machines that
work inside single host machine as they would work in separate
machines

SLAT Second Level Address Translation

IOMMU Input–output memory management unit

VSP Virtualization Service Providers

VSC Virtualization Service Consumers

MDL Memory description list

GPADL Guest Physical Address Descriptor List

WDF Windows Driver Frameworks

word Size of 2 bytes or 16 bits

dword Size of 4 bytes or 32 bits

qword Size of 8 bytes or 64 bits

oword Size of 16 bytes or 128 bits

MSRC Microsoft Security Response Center

MIT licence The primary terms and conditions of the MIT license are to
grant permissions and indemnify developers for future use. It
grants any person who obtains a copy of the software and
associated files the right to use, copy, modify, merge, distribute,
publish, sublicense, and sell copies of the software.

OS Operating system

OSR Offensive Security Research

KMCL Kernel Mode Client Library

API Application Programming Interface

VM Virtual Machine

SDK Software Development Kit

Root partition The host OS, the name “partition” in this context is used by the
Microsoft but can be translated as virtual machine.

6

Table of Contents

1 Introduction...11

2 Literature review...13

3 VMBus generic info...17

3.1 Research setup..18

4 VMBus channels internal components...20

4.1 vmbkmclr.sys driver...20

4.1.1 Channel allocation function..20

4.1.2 Channel initializations function..22

4.1.3 Channel enabling - VmbChannelEnable function..22

4.1.4 Channel enabling - InInitializeQueue function..23

4.1.5 Channel enabling - OutInitializeQueue function..23

4.1.6 Channel enabling - KmclpServerOfferChannel function...............................23

4.1.7 Channel enabling - KmclpServerOpenChannel function...............................25

4.1.8 Packet allocation...27

4.1.9 Packet initializations...29

4.1.10 Packet sending functions..29

4.1.11 Packet sending - OutSendPacket function..31

4.2 Vmbusr.sys driver..33

4.2.1 RootFileReadWritePreprocess function...35

4.2.2 PipeRead function...35

4.2.3 PipeTryRead function...36

4.2.4 PipeTryReadMultiple function...36

4.2.5 PipeTryReadSingle function...37

4.2.6 PipeWrite functions..37

4.2.7 PipeTryWriteIrp functions..38

4.2.8 PipeTryWriteDeferred function..38

5 Monitoring, intercepting and fuzzing traffic..40

5.1 Fuzzing basics..40

7

5.2 Reading channels...41

5.3 Intercepting regular channels using a debugger...42

5.4 Intercepting regular channels using a driver..45

5.5 Testing/fuzzing regular channels using a debugger...47

5.6 Testing/fuzzing regular channels using a host kernel driver..............................48

5.7 Testing/fuzzing regular channels using a guest kernel driver............................49

5.8 Intercepting pipe channels using a debugger...50

5.9 Intercepting pipe channels using a driver..51

5.10 Testing/fuzzing pipe channels using a debugger..51

5.11 Testing/fuzzing pipe channels using a host kernel driver................................52

5.12 Testing/fuzzing pipe channels from guest system..52

5.13 Tools developed based on the research..52

6 Summary...56

 Appendix 1 – Table of KmclInitializeChannel changes...59

 Appendix 2 – Table of initialization functions changes...61

 Appendix 3 – Table of InInitializeQueue changes..68

 Appendix 4 – Table of OutInitializeQueue changes...70

 Appendix 5 – Table of VMBCHANNEL members..72

 Appendix 6 – showChannels.py script...74

 Appendix 7 – Script handling buffer and MDL from packet handlers...........................76

8

List of Figures

 Figure 1. Windbg output for pipe read operation stacktrace..33

 Figure 2. Windbg output for pipe read operation stacktrace..34

Figure 3. ShowChannels.py script output..43

 Figure 4. Channel packet handling function prototype..43

9

List of Tables

Table 1. Changes made in VMBCHANNEL structure by KmclInitializeChannel if not

server...21

Table 2. Changes made in VMBCHANNEL structure by

KmclpEnablePerformanceCounters..25

Table 3. Changes made in VMBPACKET structure by VmbPacketAllocate..................28

Table 4. Changes made in VMBPACKET structure by set functions.............................29

Table 5. Changes made in VMBPACKET structure by OutSetupGpaDirectPacket.......31

Table 6. Changes made in VMBCHANNEL structure by KmclInitializeChannel.........59

Table 7. Changes made in VMBCHANNEL structure by initialization functions..........61

Table 8. Changes made in VMBCHANNEL structure by InInitializeQueue..................68

Table 9. Changes made in VMBCHANNEL structure by OutInitializeQueue...............70

Table 10. Most useful members of VMBCHANNEL structure......................................72

10

1 Introduction

Hyper-V is a virtualization tool that was released by Microsoft in year 2008 and from

that point on has been included in all Windows Server versions and Pro/Enterprise

versions of Windows 8 and Windows 10. It allowed the creation of virtual machines

(VMs) and from 2016 it also allows adding additional security features in Windows

operating system itself. A special version of Hyper-V is also used in Microsoft's Azure

cloud platform called Azure Hypervisor.

The above- mentioned aspects of Hyper-V make it a potentially valuable target for the

attackers. In case of a successful exploitation it allows a breakout from a VM, privilege

escalation, or bypassing security features. Microsoft has acknowledged this and offers

the highest bug bounties for vulnerabilities found from Hyper-V[1]. This has been done

to motivate security researchers as the technical knowledge needed to research

vulnerabilities from hypervisors is above average professional knowledge and a large

amount of effort is needed for Hyper-V vulnerability research. Not only does

researching Hyper-V require additional effort and self-development but Hyper-V is at

the same time less popular for server virtualization as some of its alternatives like

RedHat Virtualization and VMware vSphere. This means that it would be more

beneficial time wise for the researchers to work on other virtualization environments

that are used more widely. Hyper-V internals documentation has also not been published

and this also makes the vulnerability research harder. For example, the communication

channels that are used for communicating between different parts of the Hyper-V

technology are not documented or are documented only from the external developer’s

perspective who is developing another operating systems to support Hyper-V.

The goal of the thesis is to increase the amount of public information about Hyper-V

communication channels internals focusing on the VMBus based communications.

Microsoft Virtual Machine Bus (VMBus) is a mechanism within the Hyper-V

architecture that enables logical communication between partitions. The VMBus works

as the internal communications channel to redirect requests to virtual devices. The thesis

11

will investigate the internal workings of the VMBus communications and mostly how it

is used by the root partition. The thesis will also attempt to find possible ways to

intercept the mentioned communications and to provide tools for doing this by the

researchers.

Another goal of the thesis is to produce a full set of tools, that will be based on the

performed research and allow showing information about VMBus channels internal

configuration values and allow to intercept, record, and fuzz the data moving through

VMBus. The research will make it easier for the author and other researchers to cover

the VMBus attack surface and to reproduce or analyze any findings.

In order to achieve the goals for the thesis an empirical research will be done on the

present research conducted in the field. The analysis will be used for carrying out actual

technical research in order to increase the knowledge about Hyper-V communication

channels internals with the focus on VMBus internals and to develop full set of tools

that allow showing information about VMBus channels values and allow to intercept,

record, and fuzz the data moving through VMBus.

Authors contribution is the reverse-engineering the parts of the kernel drivers that are

used for VMBus based communication, the analysis of the overall logic of the

communication and development of the techniques and tool for monitoring, intercepting

and fuzzing the VMBus based traffic.

All reverse engineering described in this thesis is done on the 64 bit Windows 10

version 19041 (19041.1.amd64fre.vb_release.191206-1406).

All software and tools developed throughout this work are solely developed by the

author and will be made open source with an MIT License that allows nearly

unrestricted additional usage of the software and tools.

Parts of the work included in the thesis have been presented by the author at POC

conference in South Korea in 2019 and at CyberShock conference in Latvia 2020.

12

2 Literature review

There is plenty of literature on the topic of hypervisors and Hyper-V [2][3][4][5] but

there is not much literature that covers the internal workings of Hyper-V. There is some

documentation provided by Microsoft for software developers on how to communicate

with Hyper-V[6] and on how to communicate over VMBus via Windows API[7]. There

is nearly no documentation or information about the internal workings of the VMBus

and how Hyper-V internally handles it. The existing documentation is useful for starting

the research but it is not enough to perform any other needed activities, such as data

recording and fuzzing.

There are some published scientific and technology papers and articles that cover

Hyper-V's security a bit [3][4][5] but most of them only cover setup methodology for

administrators or how to secure the networks using Hyper-V. There appears to be no

paper that covers the attack surface needed for VM breakout style of attacks or attacking

the driver or device level communication through the Hyper-V. Those that do cover such

topics in the first glance are unfortunately not an in-depth analysis and are not useful for

security research. There are some examples of the existing public academic research

that according to the title should cover similar topics but in reality do not cover any

aspect of VMBus security research's point of view:

“A methodology for testing virtualisation security” by Scott Donaldson, Natalie

Coull, and David McLuskie [8]

Very perfunctory description of testing the drivers inside the guest OS. The article

claims to cover a testing virtualization environment, but in reality it covers fuzzing

IOCTLs sent to the guest OS own drivers. While there exists a low probability that

such testing can find issues in the host as well, it requires multiple issues in the chain.

This is not how the guest-host communication is tested as it has a tendency to miss

13

almost all relevant issues and actual attack surface. It also covers no internal workings

or anything relevant for Hyper-V research.

“Towards Testing the Software Aging Behavior of Hypervisor Hypercall

Interfaces” by Lukas Beierlieb, Lukas Ifflander, Aleksandar Milenkoski, Charles

F. Gonc¸alves, Nuno Antunes and Samuel Kounev [9]

The paper covers the overall logic how hypercall fuzzing could be done, it is not

applicable for VMBus research as the research does not cover internals inside the

hypevisor nor how debugging or any other part would work on VMBus. Hypercalls and

VMBus are different things and the most important difference is that hypercalls do not

work over VMBus. For researchers who are conducting research on VMBus, this paper

adds no value, as the same information can already be found on some blog posts online

that unlike this paper also include relevant kernel symbols.

In the other sources that are not counted as academic papers exists more information

about Hyper-V internals, including information about VMBus. Most of this information

can be found from the blog posts or slides from conference presentations from which

some even originate from Microsoft Security Response Centre's (MSRC) team

members. Most information regarding Hyper-V and VMBus at the beginning of author's

research was collected from below mentioned resources as these are much more

accurate, specific, and relevant to the research than information that can be found from

currently published academic literature.

“Fuzzing para-virtualized devices in Hyper-V” by Microsoft Virtualization

Security Team [10]

Microsoft Virtualization Security team's publication as a blog post that describes

workings of the VMBus channels and how it can be fuzzed from guest OS side. It is one

of the best currently published resources for anyone who is starting a VMBus based

14

research as it provides a good foundation about the logical implementation and relevant

technical information. Unfortunately it does not cover channel handling internal logic

sufficiently enough that would allow to create more generic tools for monitoring and

modifying existing channel communications.

“A Dive in to Hyper-V Architecture & Vulnerabilities” by Nicolas Joly and Joe

Bialek [11]

Conference presentation of research conducted by Nicolas Joly and Joe Bialek from

MSRC Vulnerabilities & Mitigations team. This describes very broadly how different

communication channels work inside Hyper-V controlled system. It is a relevant

knowledge for the beginning of research on Hyper-V, but it does not go in depth with

technical analysis nor does it provide any information nor guidelines for development of

actual tools or techniques.

“Hardening Hyper-V through offensive security research” by Jordan Rabet [12]

Conference presentation of research conducted by Jordan Rabet from Microsoft

Offensive Security Research (OSR) team. The research focuses on providing general

overview of the VMBus main working logic and bugs that have been discovered so far.

Similarly to the research on “A Dive in to Hyper-V Architecture & Vulnerabilities” by

Nicolas Joly and Joe Bialek the current research also does not present in depth technical

analysis or references to internals.

"Hyper-V internals” by Artur Kudyaev [13]

Hyper-V internals research by Artur Khudyaev on VMBus device stack and

initialization implementation. It is a very thorough research, but unfortunately at the

time of conducting my research the technical information has already aged a few years

and does cover only some of the aspects needed for VMBus security research.

15

As can be seen from the referenced literature, there is some information about the

VMBus working logic and also some information available in the documentation

provided by Microsoft but simultaneously there is no provided information about

suitable tools or even detailed techniques for researchers on how to monitor, intercept

and fuzz VMBus traffic. This thesis will try to cover this research gap.

16

3 VMBus generic info

Microsoft Virtual Machine Bus (VMBus) is a mechanism within the Hyper-V

architecture that enables logical communication between partitions. The VMBus works

as the internal communications channel to redirect requests to virtual devices. In a

simplified way - VMBus is a virtual bus that is used by the guest and root partitions to

create communication channels between them. This is mostly used for access for a

virtualized device that is controlled by the root partition. The root partition has drivers

called Virtualization Service Providers (VSP) and they communicate with guest

partition drivers called Virtualization Service Consumers (VSC). As names indicate, the

VSC drivers relay data related to device communications to VSP drivers over the

VMBus, and VSP drivers then handle the data. Handling the data might can refer to

relaying it directly to a physical device, emulating it, or to any combination of the

mentioned activities. [10]

VMBus itself is implemented as a ring buffer that is mapped to both virtual machines

with the help of Hyper-V. For each data channel there exists two buffers - upstream

buffer and downstream buffer. Notifications about new data channels are also

implemented via Hyper-V with the help of synthetic interrupts. [10]

Because of the use of multiple VSPs and VSCs, there are also multiple channels over

VMBus. The channels are called just - channels or VMBus channels and they are

created by the root partition. Within VMBus exist regular channels and a special

subtype of channels called pipes. Pipes are described more in depth in the next chapters.

Communication between regular channel endpoints works by using packets. One side

will send the packet and the other side will handle the packet and respond to the packet

if possible. The packet handling is based on callback functions and data within the

packet can be included in two ways:

1. Data inside ring buffer - this is the data that is copied from the sender's partition

memory to the ring buffer and then copied to the receiver's partition memory.

17

This means that from one side the data copying can take longer, but at the same

time there is no possibility for different time-to-check to time-to-use bugs.

2. Included Guest Physical Address Descriptor List (GPADL) - this is a list that can

be used to make some part of the guest partition memory available to receiver's

partition. With the help of Hyper-V, some virtual memory from the sender's

partition will be also mapped to the other partition. In the case of large data

buffers, such method is much faster than copying the same buffer twice between

ring buffer. At the same time nevertheless it makes time-to-check to time-to-use

bugs possible because during the time receiver handles the data in this shared

buffer, the sender can still change it. [12]

Application Programming Interface (API) functions for creating and connecting VMBus

channels are partially publicly documented [7] and header files are included in driver

development SDK. But outside of some functions, the rest of the internals are not public

and the documentation provides a warning “Some information relates to pre-released

product which may be substantially modified before it's commercially released.

Microsoft makes no warranties, express or implied, with respect to the information

provided here.” [7]. For example it means that all the structures used by the VMBus

implementations are not available in the documentation or in the symbols server.

Authors contribution is the reverse-engineering the parts of the kernel drivers that are

used for VMBus based communication, the analysis of the overall logic of the

communication and development of the techniques and tool for monitoring, intercepting

and fuzzing the VMBus based traffic

3.1 Research setup

The research environment setup was following:

• Host machine: Linux Mint (Linux Mint 18.3 Sylvia)

18

• Outer virtualization software: VMware Workstation 15

• Debugging OS: Windows 10 running in VMware Workstation

• Debugging software: Windbg (pykd extension)

• Reverse engineering tools: IDA Pro

• Research target OS: 64 bit Windows 10 version 19041

(19041.1.amd64fre.vb_release.191206-1406)

• Research target OS specific setup:

◦ Kernel debugging enabled

◦ Debugging over COM port (virtualized by Vmware)

• Crash detection: Via windbg running on “Debugging OS”

19

4 VMBus channels internal components

Although several of the VMBus channels's API functions are publicly documented, their

internal workings inside windows kernel is not. Because of this the following chapter

describes the pieces of VMBus internal logic that is found by reverse-engineering the

API and the drivers that implement most of the VMBus logic.

As the actual research done covers a large amount of technical details, only parts that

are needed to find ways to monitor VMBus channels or intercept and fuzz the traffic are

in the scope of this thesis.

4.1 vmbkmclr.sys driver

Vmbkmclr.sys is the driver implementing most the API functionality for VMBus

channel communication on host OS. It is used by the VSP drivers and its API is partially

documented by Microsoft [7]. Since the documentation and also information provided

by the vmbuskernelmodeclientlibapi.h header file from winsdk-10 points mostly to the

functions exported by this driver, it would be reasonable to start reverse engineering

from this driver.

4.1.1 Channel allocation function

Before a new channel can be activated and used it has to be allocated by the function

VmbChannelAllocate. According to the documentation [14] it requires 2 input

parameters and 1 output parameter. The input parameters are the parent device object

and the boolean value determining whether the created channel is a server type. The

output parameter points to the VMBCHANNEL structure (undocumented). While

reverse engineering this part, it can be seen that the memory allocated for

VMBCHANNEL structure is with pool type NonPagedPoolNx, in size of 3072 bytes,

20

and with tag Vkmc. After the allocation the VmbChannelAllocate function calls out the

function KmclInitializeChannel (the name is based on Windows public symbols, the

function itself is not exported under any name or ordinal). This will initialize the

structure by zeroing out the entire structure and then setting the following values to the

structure offsets as specified in table 6 at appendix 1. If the channel is not a server type

and the kernel has AccessPartitionReferenceTsc privilege then it is followed by

initialization described in table 1.

Table 1. Changes made in VMBCHANNEL structure by KmclInitializeChannel if not server

Offset Size Value

0x9E0 word 0x101

0x9F8 qword
Pointer to the allocated work item structure
(IO_WORKITEM)

0xA80 byte 0x1

0x6F dword 0x80000

0x6FC dword 0x2000000

0xA00
sizeof(PAGED
_LOOKASID
E_LIST)

Initializes NPAGED_LOOKASIDE_LIST structure inside
channel structure via ExInitializeNPagedLookasideList with
following parameters:

1. Lookaside = Pointer to structure offset 0xA00

2. Allocate = 0

3. Free = 0

4. Flags = ExDefaultNonPagedPoolType |
POOL_NX_ALLOCATION

5. Size = 0x20

6. Tag = ‘Vkmc’

7. Depth = 0

0x508 qword Allowable CPU DBC usage

21

When the rest of the initialization was successful the function will acquire fast mutex

from WPP_MAIN_CB.DeviceQueue.32 and will add the channel into the double linked

list of channels. The first channel is referenced by the

WPP_MAIN_CB.DeviceQueue.DeviceListHead (vmbkmclr!KmclChannelList) and the

double link structure locates in the channel structure at offset 0x7A0.

4.1.2 Channel initializations function

After the Channel is allocated, there are multiple other functions that can be used to

configure channel additionally. Table 7 at appendix 2 describes some of these functions

by showing what changes each of these cause in VMBCHANNEL structure.

4.1.3 Channel enabling - VmbChannelEnable function

After the channel has been set up it is in a disabled state by default. In order to enable

the channel, the VmbChannelEnable function has to be called out. According to the

comments in Windows kernel software development kit (SDK) header file “On the

host, this function offers a channel to the guest. On the guest, this function accepts an

existing offer or waits for such an offer to arrive. In either case, VmbChannelEnable

does not wait until the opposite endpoint offers/opens the channel and returns

immediately. At this point, the channel is enabled but not open. When the host offers a

channel that the guest is waiting on, or the guest decides to open an existing channel

offer, kernel mode client library (KMCL) will invoke the \ref EvtChannelOpened

callback.” [15]

As the entire VmbChannelEnable function is a rather large one including multiple calls

to different functions inside vmbkmclr driver it will not be fully described here in detail

because of the complexity. Instead the following list will provide a high level overview

of the inner workings and some of the objects and structures used:

1. Writes log messages via WmiTraceMessage method.

22

2. Verifies that channel GUID is zero GUID.

3. Unless queue management is suppressed (in case of pipe channels for example),

the “in queue” is initialized via InInitializeQueue function and “out queue” is

initialized via OutInitializeQueue function. These functions are described in the

next chapters.

4. The function uses FAST_MUTEX structure for synchronization referenced by

the pointer at channel structure at offset 0x7F8.

5. If all checks are successful then new channel is offered to guest OS with

function KmclpServerOfferChannel. These functions are described on separate

chapter.

4.1.4 Channel enabling - InInitializeQueue function

InInitializeQueue function initializes the queue that is being used for incoming

messages. This is not used in case of pipe subtype of channels. The changes made to

channel structure by this function are described in table 8 at appendix 3.

4.1.5 Channel enabling - OutInitializeQueue function

OutInitializeQueue function appears to initialize queue that is used for outgoing

messages. This is not used in case of pipe subtype of channels. The changes made to

channel structure by this function are described in table 9 at appendix 4.

4.1.6 Channel enabling - KmclpServerOfferChannel function

This function is responsible for sending the channel offer to guest OS via VMBus. The

next steps will give a broad overview of the steps the function goes through to do it:

1. If the channel already has VMBus handle set on offset 0x6E0 then it will

generate a string \DosDevices\VMBus\offer\ID where ID equals the numeric

value of the VMBus handle pointer. If the VMBus handle is not set then the

23

string that will be generated is \DosDevices\VMBus\offer\GUID where GUID

equals to the VM id.

2. Based on the string generated during step 1, the function will request pointer to

the file and device objects with call to the IoGetDeviceObjectPointer. The access

mask of the call is 0x1F01FF. File object pointer is written into channel structure

to the offset 0x988 and device object pointer to offset 0x980.

3. The function puts together a 176 byte buffer that contains a request and sends it

to the VMBus via KmclpSynchronousIoControl function. This in turn uses

IoBuildDeviceIoControlRequest function along with the control code

0x3EC01C to send it to the device (RootVMBus) written to channel structure at

offset 0x980. The KmclpSynchronousIoControl function is synchronous and

waits for the result before returning a value.

4. If previous steps have been successful then the function

VmbusSendInterfaceQuery is called out. This will generate an IRP with major

function IRP_MJ_PNP and a minor function IRP_MN_QUERY_INTERFACE

to query interface for the communication from the RootVMBus device driver.

5. After the interface query has been successful, a call to

KmclpInitializeVmbusConnection will be made. This function allocates IRP

based on stack size of the RootVMBus device's stack size and writes its pointer

to channel structure at the offset 0x9C0. After that there is a function pointer

taken from channel structure at offset 0x900 (usually containing pointer to

function vmbusr!BusChGetVmName) and called with following parameters:

1. Qword taken from channel structure at offset 0x848.

2. 0

3. 0

4. Pointer to channel structure offset 0x9B0.

After the call to KmclpInitializeVmbusConnection has been successful, the

function KmclpEnablePerformanceCounters is called to enable performance

24

counters. This fills some of the values in the channel structure, described in table

2.

6. When VMBus connection is initialized and guest VM is already waiting for the

channel, then the function KmclpServerOpenChannel will be called. The

function sets up the last pieces of the channel for it to function correctly and will

be covered in depth in the next chapter.

Table 2. Changes made in VMBCHANNEL structure by KmclpEnablePerformanceCounters

Offset Size Value

0x7B2 word Length of the instance name

0x7B8 qword Pointer to the instance name

0x7C0 dword Performance counter ID (incremental)

4.1.7 Channel enabling - KmclpServerOpenChannel function

This is the function that opens the channel from host side. It is triggered by the function

KmclpServerOfferChannel in case the guest was already waiting for a particular

channel or by function KmclpWaitForActionWorkerRoutine in case the channel was

created from host side before it was requested by the guest. In both cases the function

does the same thing and sets up the last actions for communication to begin. The

overall logic how the function works:

1. Function pointer is taken from the channel structure at offset 0x868 and called

out with following parameters:

1. Qword from channel structure at offset 0x848.

2. Pointer to be allocated a local 64bit integer variable (certainly OUT type).

This function pointer is currently always pointing to vmbusr!

BusFdoOpenChannel function.

25

2. Function pointer is taken from channel structure at offset 0x898 and called out

with following parameters:

1. Qword from channel structure at offset 0x848.

2. Integer received from function vmbusr!BusFdoOpenChannel (second

parameter).

3. 2

4. Pointer to MDL structure (certainly OUT type).

This function pointer is by default pointing to vmbusr!BusChMapGpadlView

function.

3. The MDL received back from vmbusr!BusChMapGpadlView is then locked by

call to MmMapLockedPagesSpecifyCache with parameters that lock it to kernel

access mode, MmCached cache type and, ExDefaultMdlProtection |

0x40000010 priority.

4. Calls PkInitializeRingBuffer that performs the following actions:

1. Maps existing buffers to additional locations.

2. Initializes ring buffer and its controls by using the function

PkInitializeDoubleMappedRingBuffer.

5. Sets interrupt mask to skip count in channel structure at offset 0xD8 to point to

channel structure at offset 0x1E8.

6. Calls function InOpenChannel that performs the following actions:

1. Function pointer is taken from the channel structure at offset 0x908 and

called with 2 parameters:

1. Qword from channel structure at offset 0x848.

2. Pointer to local 64bit integer variable (certainly OUT type).

26

This function pointer is currently always pointing to vmbusr!

BusChGetLockChildPagesParams function.

2. Allocates memory block via ExAllocatePoolWithTag. The size is assigned

from the last function call's second parameter and the tag is ‘Vkmc’.

3. The function pointer is taken from the channel structure at offset 0x8E0 and

called with 3 parameters:

1. Qword from channel structure at offset 0x848.

2. Qword from channel structure at offset 0xB40.

3. Pointer to channel structure at offset 0x590.

This function pointer is by default pointing to vmbusr!

BusChCreateAwWorkItem function.

4. Calls function InpReacquirePacketAllocationResources

4.1.8 Packet allocation

In order to send data over a regular channel, there is a special type of data structures

used - VMBPACKET (undocumented). This data structure is created using the function

VmbPacketAllocate that is partially documented by the header file and in Microsoft's

documentation [8]. Even by using this information, the internal structure of the packet

remains unknown. In order to understand its usage better the package needs to be

reversed to some extent. After investigating the disassembled VmbPacketAllocate

function, it is revealed that the buffer for the structure is allocated from channels

lookaside list which is located in channel structure at offset 0x140. After the buffer is

returned, it is filled as specified in table 3.

27

Table 3. Changes made in VMBPACKET structure by VmbPacketAllocate

Offset Size Value

0x9C dword Dword value from channel structure at offset 0x608

0 qword Pointer to the channel structure

0xC dword 0

0x10 qword 0

0x18 qword 0

0x2E byte 0

0x60 qword Pointer to packet structure offset 0xE0

0x68 dword Dword value from channel structure at offset 0x608

0x90 dword 1

0x50 qword 0

0x8 dword 0

0x2D byte 0

0x18 qword
Pointer to packet structure offset 0xE0 + dword value from
channel structure at offset 0x608

0x2E byte 8

0x48 qword Pointer to function VmbPacketFree

Along with VmbPacketAllocate there is also a function named VmbPacketInitialize

which is meant for use in situations where memory block that will be written to the

structure is provided by the caller. VmbPacketInitialize function performs the same

initialization as VmbPacketAllocate.

28

4.1.9 Packet initializations

After the packet has been allocated, there are multiple other functions that can be used

for additional packet configuration. Table 4 describes some of the configurations by

showing what changes each of these causes to the VMBPACKET structure.

Table 4. Changes made in VMBPACKET structure by set functions

VmbPacketSetCompletionRoutine

Offset Size Value

0x48 qword Pointer to completion callback function

VmbPacketSetCompletionRoutineEx

Offset Size Value

0x50 qword Callback context

0x58 qword Pointer to compleation callback function

VmbPacketSetPointer

Offset Size Value

0x10 qword Pointer to context

4.1.10 Packet sending functions

There are multiple functions that allow sending packets over a channel. Their main logic

is the same, but there are some differences that are described in the list below:

1. VmbPacketSend - most simplistic function, allows sending data in a packet

buffer and/or external data (not copying over the ring buffer but shared directly).

2. VmbPacketSendWithExternalMdl - allows sending data in a packet buffer and/

or external data like VmbPacketSend but additionally allows to specify MDL

offset and MDL length. [16]

29

3. VmbPacketSendWithExternalPfns - allows sending data in a packet buffer and/

or external data like VmbPacketSend but additionally allows to send a array of

PFNs (Page Frame Numbers, effectively Physical addresses) instead of MDL-s.

[17]

4. VmbChannelSendSynchronousRequest - allows sending data in a packet buffer

and/or external data like VmbPacketSend, but waits for the response and returns

completion packet directly. [18]

Because all the functions above are extended versions of the VmbPacketSend, then

only this function needs to be reversed in order to understand the sending logic.

In the essence VmbPacketSend function is rather small and simple but its sub-functions

are much more complicated and will be described separately. The main logic of the

VmbPacketSend function as follows:

1. Packet structure for sending with function OutSetupGpaDirectPacket is set. The

changes made in the structure are described in table 5.

2. In case a VMBUS_CHANNEL_FORMAT_FLAG_PAGED_BUFFER is set,

then the function OutCopyAndSendPacket is called for sending the data in case

paged memory can be handled. Otherwise the function OutSendPacket is called.

As OutCopyAndSendPacket just copies memory to unpaged location and then calls out

the OutSendPacket function, only OutSendPacket is described in more detail

30

Table 5. Changes made in VMBPACKET structure by OutSetupGpaDirectPacket

Offset Size Value

0x38 dword 0

0x30 qword Pointer to external data MDL structure

0x3C dword 0

0x2D byte 1

0x40 qword 0

0x2E byte
1 if byte from packet structure at offset 0x2E has any bit
except least significant set or 0x2 flag is set. Otherwise value
is 0

4.1.11 Packet sending - OutSendPacket function

OutSendPacket function itself is a large and complicated function and it has a lot of

dependencies. Because of the size and the high number of dependencies it was not

reverse engineered fully for this thesis, but only analyzed as much as needed in order to

understand its main logic and how packets are relayed. The list below will describe the

most important parts of the function and its sub-functions. Not all functions nor

subfunctions will be executed in all situations.

1. The function sets the IRQL to DISPATCH_LEVEL and acquires a spin lock via

KeAcquireSpinLockRaiseToDpc function.

2. The function calls OutpEnqueuePollingDpc that queues a DPC for execution via

KeInsertQueueDpc function. The KDPC pointer locates itself within the channel

structure at offset 0x308. On success, the dword value in channel structure at

offset 0x348 is incremented.

3. The function calls OutpPreparePacketForIsolation that will isolate the data

buffer in order to get bounce buffers and create MDLs. The bounce buffer

31

location is written to packet structure offset 0x40 and MDL pointer is in the

same structure and offset 0x30.

4. The function registers a work item with IoQueueWorkItem for a routine

OutPacketAddMoreBounceWorkerRoutine and sends the packet to the queue for

later use with function OutpEnqueuePacket.

5. In case a packet is not queued for a later sending, then after multiple checks,

verifications, and additional setup, the packet is going to be sent along with one

of the following functions (depending on the packet and overall setup):

PkSendPacketSimple, PkSendPacketGpaDirectListm or

PkSendPacketGpaDirect.

32

4.2 Vmbusr.sys driver

Vmbusr driver manages two important aspects of the VMBus communication. First it

manages some higher and lower level core functionalities that are needed for VMBUS

to work at all. Second and more important for this thesis specifically, it manages the

pipe type of channels. As the pipe channels are read and written using typical

NtReadFile and NtWriteFile functions (equivalent of a regular ReadFile and WriteFile),

first it must be clarified what stacktraces such functions have.

After starting with NtReadFile and tracing through the entire call chain it can be

concluded that the call to function vmbusr!PkGetReceiveBuffer is the deepest one. The

entire call stack at that point is shown on following figure 1.

Figure 1. Windbg output for pipe read operation stacktrace.

It is clear that after the userland process (vmwp.exe) calls NtReadFile and the WDF

does its filtering and dispatching, the following functions are executed in vmbusr driver:

1. RootFileReadWritePreprocess

33

2. PipeRead

3. PipeTryRead

4. PipeTryReadSingle

5. PkGetReceiveBuffer

In next sub-chapters these functions are shortly analysed along with the input parameter

types as these are important for monitoring and tracking the functions.

For NtWriteFile the logic is similar but when tracing the call chain, the

PkGetSendBufferEx function is the deepest meaningful function called out when

triggering NtWriteFile to the pipe channel. Overall the deepest is the PkpValidatePointer

function but the function just verifies the pointer.

Figure 2. Windbg output for pipe read operation stacktrace

It is clear that after the process vmwp.exe calls WriteFile and the WDF does its filtering

and dispatching, the following functions are executed in the vmbusr driver:

1. RootFileReadWritePreprocess

2. PipeWrite

34

3. PipeTryWriteIrp

4. PipeTryWriteDeferred

5. PkGetSendBuffer

6. PkGetSendBufferEx

4.2.1 RootFileReadWritePreprocess function

This function is called out by both NtReadFile and NtWriteFile functions. It has 2

parameters, but important for this thesis only the second one that is the pointer to the

IRP structure is relevant. Based on its major function the function vmbusr!PipeRead or

vmbusr!PipeWrite is called out. The function will also derive a pointer to the underlying

pipe structure (undocumented) from the IRP using the following logic:

1. Gets FsContext pointer from PIRP->Tail.Overlay.CurrentStackLocation-

>FileObject->FsContext

2. If dword from address FsContext+0x8 is 7, then the pipe structure pointer is

taken from FsContext+0x168.

3. If dword from address FsContext+0x8 is 6, then the pipe structure pointer is

taken from FsContext+0x50

The pointer to pipe structure is used as a first parameter to the PipeRead/PipeWrite

function that is being called out.

4.2.2 PipeRead function

The function has two parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

35

This function maps IRP contained MDLs to virtual memory, acquires a spinlock from

the pipe structure (offset 0x0), and after that calls PipeTryRead directly or queues the

call via PipeQueueIrp function.

4.2.3 PipeTryRead function

The function has three parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for something.

Depending on the pipe structure configuration, one of the below functions will be

called:

1. If the byte in the pipe structure offset 0x111 is larger than 0, then the function

PipeTryReadMultiple is called with following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for a specific feature.

2. If the byte in the pipe structure offset 0x111 is 0, then the function

PipeTryReadSingle is called with the following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. 0

4. Out parameter for a specific feature.

4.2.4 PipeTryReadMultiple function

The function has three parameters:

36

1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for a specific feature.

This function endlessly calls out the PipeTryReadSingle function until it finally returns

0 value or until read size has reached the limit specified by the pipe structure (dword

value pointed by pointer+0x8 at offset 0xB8 in the pipe structure). The function

PipeTryReadSingle is called out with the following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. 1

4. Out parameter for a specific feature.

4.2.5 PipeTryReadSingle function

The function has four parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Flag showing is the pipe channel with chained MDLs.

4. Out parameter for a specific feature.

This is the actual function that gets shared to buffer via PkGetReceiveBuffer and reads

data to local buffer which is returned as a result to NtReadFile

4.2.6 PipeWrite functions

The function has two parameters:

1. Pipe structure pointer.

37

2. IPR structure pointer.

This function maps IRP contained MDLs to virtual memory, acquires a spinlock from

the pipe structure (offset 0x0), and after that either calls PipeTryWriteIrp directly or

queues the call via PipeQueueIrp function.

4.2.7 PipeTryWriteIrp functions

The function has 3 parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. In and out parameter – how many bytes to write or to be written.

The function will trigger copying of necessary data to ring buffer with the help of

function PipeTryWriteDeferred and if needed, then function PipeMapChainedMdl to

also get connected MDLs. After that the function triggers context switches with the

Hypervisor via functions HviEnterKernelAperture and HviLeaveKernelAperture.

4.2.8 PipeTryWriteDeferred function

The function has 7 parameters:

1. Pipe structure pointer.

2. Unknown integer value, always 1.

3. Out integer parameter.

4. Flag of write size limit (0x4000).

5. Out parameter, bytes that can be written.

6. Unknown out parameter.

7. Out parameter – will return pointer to the buffer to the ring buffer.

38

This function gets pointer to the ring buffer and makes all preparations for data to be

copied over. The ring buffer pointer is received via function PkGetSendBuffer.

39

5 Monitoring, intercepting and fuzzing traffic

In this chapter the analysis and reverse engineering done in the previous chapters will be

combined into actual knowledge on how to monitor, intercept, and fuzz VMBus based

traffic. This includes the knowledge how to perform it and actual tools that can be used

for this. All tools will be open sourced and released under MIT License for anyone to

use, extend, and repurpose.

All debugging plugins described in this paper are written in Python scripting language

by the author of this thesis – they are easier to follow than the ones written in C++. But

for this, the pykd library for python and pykd extension for Windbg are also needed.

5.1 Fuzzing basics

In next subchapters there are lot of mentions of “fuzzing”. Because of this the current

subchapter gives brief explanation what fuzzing is, how fuzzing loop overall works, and

how fuzzing can be used in current context. It has to be kept in mind, that specifics on

how to make every detail needed for fuzzing work together, depends of the overall setup

as specific details for each project have to be determined by the researcher conducting

the specific fuzzing project during the research.

Fuzzing means providing random, mutated or generated inputs [19] to the target with

the goal of causing some errors in input parsing. Inputs in current context are data

buffers sent over VMBus ring buffer or shared as external data.

The fuzzing loop is known as following:

1. Create input

2. Run target with the input

3. If no misbehaviour detected, go to step 1

40

4. If misbehaviour detected, store the input that caused it, then go to step 1

In current case, the “misbehaviour “ detected is either invalid read or write by the target

kernel or userland process. The detection part of the loop can most easily be done by the

attached debugger but there are other options such as just detecting the crash of the

kernel or exit of the targeted process. More exact approach has to be selected by the

researcher him- or herself based on the overall fuzzing setup.

5.2 Reading channels

First requirement to start analysing VMBus channels is to get list of the channels with

additional information such as type (pipe or not), human readable name (if exists),

status, handling functions (if not pipe), etc. This information could easily be taken from

VMBCHANNEL if the structure would be public, but since it is not, the reverse

engineering results conducted throughout previous work needs to be used. Additionally

this means that in case Microsoft does some internal changes to the structure then this

information has to be renewed - in most cases the changes are small and simply the new

offsets has to be taken from same locations. But in the current version (Windows 10

19041, 19041.1.amd64fre.vb_release.191206-1406) the important values and offsets in

VMBCHANNEL structures, based on their usefulness for reverse engineering and

security testing, can be taken from table 10 at appendix 5. The usefulness is determined

by how well the values in these locations can be used to determine the behaviour of the

channels or identify them.

When using Windbg the pointer to the first channel can be found from vmbkmclr!

KmclChannelList. Unless the pointer at that location is pointing to itself, it is pointing

to the double link list structure inside VMBCHANNEL structure. In order to get the first

channel structure base address, the command "?poi(vmbkmclr!KmclChannelList)-

0x7A0” is required. From that all other values can be read via Windbg commands.

Some examples of such commands:

• In order to get interface type GUID bytes:

41

◦ db (poi(vmbkmclr!KmclChannelList)-0x7A0+0x61C) L10

• In order to find out whether the pipe flag has been set:

◦ db (poi(vmbkmclr!KmclChannelList)-0x7A0+0x640) L1

• In order to show human readable name:

◦ dt nt!_UNICODE_STRING (poi(vmbkmclr!KmclChannelList)-
0x7A0+0x7C8) L1.

With the help of LIST_ENTRY structure at 0x7A0 offsets, the entire chain of the

channels can be traversed, but to do it manually is rather time consuming and therefore

in appendix 1, the python script for Windbg can be found. The script displays all the

channels including their detailed information. It displays the internal information such

as GUID values (it is important that the GUID values have to be read as little endians

not as big endians described by RFC 4122), some configuration values and callback

functions. This information is sufficient for the research.

5.3 Intercepting regular channels using a debugger

Intercepting regular channels is rather simple when using a debugger. Since

showChannels.py script returns the callback functions, it is straightforward to set

breakpoints for these locations. For example, in order to intercept storage related

packages sent via VMBus to storvsp driver (configuration displayed on figure 3), the

command to use is:

42

bp storvsp!VspPvtKmclProcessPacket

Figure 3. ShowChannels.py script output

The breakpoint should be triggered rather fast and since the prototype of the handler

function is known [20] and shown on figure 4, the parameters can be parsed.

Figure 4. Channel packet handling function prototype

In case there is a need to verify it, the first parameter should point to the channel

structure, but in most cases only the last four parameters are relevant. Third and fourth

parameters give input buffer with length that was received from the ring buffer. Second

parameter points to the completion packet structure VMBPACKETCOMPLETION

(different than VMBPACKET) that can be useful to recover shared memory

43

information for situations where GPADLs were sent along with the packet. These are

determined by the fifth parameter. The completion packet structure is also used when

driver finishes the handling of the packet using the function

VmbChannelPacketComplete. [21]

The inner logic of how the GPADL conversion to MDL is done, is implemented by

function VmbChannelPacketGetExternalData [22]. There are 2 important aspects that

can be taken from the function:

1. If the GPADL to MDL conversion has already been done, then the pointer to

MDL is cached in the packet structure at offset 0x30.

2. If the GPADL to MDL conversion has not been done, then long chain of

function calls will be made that lock the referenced pages, acquire GPA lock,

etc. For most part it is not useful to reverse the entire logic because in all

situations where external data is being used, it is recovered by the drivers using

this function. Because of that it is easier to add a breakpoint on return of this

function and recover MDL structure after that. Or if an own driver is used for

interception, then VmbChannelPacketGetExternalData function itself should be

called.

Based on this information it can be seen how data moves through the handler function.

For example in a case of channel shown on figure 3, researcher can track ongoing

requests to the specified channel with such breakpoint:

bp storvsp!VspPvtKmclProcessPacket ".printf \"Input packet at 0x%p
with buffer at 0x%p with size 0x%X - \", rdx, r8, r9;
.if(poi(rsp+0x28)&1 > 0){.printf \"EXTRA DATA\\n\"}.else{.printf \"NO
EXTRA DATA\\n\"};"

If there is a wish to allow tracking of external data received, then it can easily be

implemented by using a short Python script like the one added in appendix 2.

44

5.4 Intercepting regular channels using a driver

While intercepting channels with a debugger is straightforward, it is not always the best

solution for intercepting the channels. Every request interception means that the entire

OS is stopped, debugger has to get out the necessary data over the debugging channel

and only then OS will resume its work. This will create lot of overhead. Because of that

it is often more reasonable to perform the interception in host kernel using a special

driver. The main workflow of such interception by the driver is rather simple:

1. Driver has to have an interception function with the prototype

PFN_VMB_CHANNEL_PROCESS_PACKET. This will record all required

data and then jump to the actual handler (stored in step 3).

2. Find structure of the channel to intercept.

3. Store ProcessPacketCallback pointer from the channel structure.

4. Overwrite ProcessPacketCallback pointer in the structure to point the driver its

own function (described at step 1).

5. Keep interception working until it will be stopped and then restore the original

pointer that was overwritten in step 4.

While the logic is rather simple, there is one larger problem – since developers should

not handle the channel structures directly, there is no good way to get a location of the

existing channels. In debugger solution the vmbkmclr!KmclChannelList symbol was

used to find pointer to the first channel. This nevertheless is not an exported value by

the driver, but a simple debug symbol. So based on these findings there are at least 3

options to get the pointer location by driver:

1. Hardcode the offset of the pointer for vmbkmclr driver. This is a shorter term

solution as with every OS update it is possible that the offset will change.

45

2. Allocate and initialize own channel. This will be added to the linked list and

after that the driver can move back through the list to find other channels.

3. Find offset from one of the vmbkmclr exported function in a way that is not

likely to break with every OS update.

Author of the paper has been mostly using options 1 and option 3. Option 1 is rather

reasonable for a researcher because the hardcoded value has to be renewed only once a

month after Microsoft's patch Tuesday and it is a rather simple thing to find using a

debugger:

?vmbkmclr!KmclChannelList-vmbkmclr

Using option 3 is a little bit more efficient for other situations – for example for

situations where symbols are not available or when the tool is used by others who

cannot make necessary changes themselves. The author has used DllInitialize function

in order to solve that problem. In DllInitialize KmclChannelList is referenced as

following:

mov qword ptr cs:WPP_MAIN_CB.DeviceQueue.Type, rax

Based on the facts above and rest of the DllInitialize function, the driver has to perform

the following steps:

1. Locate DllInitialize function from vmbkmclr driver exports.

2. Locate first 3 bytes with values 0x48 0x89 and 0x05 from the given function.

3. Read the following 4 bytes as an dword value (OFFSET).

4. Calculate the location of the KmclChannelList using the following formula:

Location of step 2 + 0xFFFFFFFF00000000 + OFFSET + 0x7.

5. Calculation has to take the integer overflow into consideration.

The explained method can most likely endure multiple OS updates until DllInitialize

function is changed in a way that creates different machine code.

46

In addition it also has to be noted, that when the driver stores recorded data to the

filesystem, it should be done via work queue logic as in some cases the packet handlers

are called out with IRQL higher than PASSIVE_LEVEL. This means that writing onto

filesystems results in kernel crash. A mitigation measure is to always copy all the

buffers to work queues and its effects can be reduced by only using them where IRQL is

not at PASSIVE_LEVEL.

5.5 Testing/fuzzing regular channels using a debugger

After the interception part has been clarified it is now possible to move further to testing

and fuzzing parts. A handler function is problematic to trigger by using debugger, but

it’s possible to intercept the existing requests and to make changes in them which in the

other words can be referred to as performing mutational fuzzing. The author of the

paper has found a vulnerability CVE-2019-0695 [23] in hypercalls using the given

method. This method is rather efficient but also contains the following problems:

1. The number of requests made is controlled by the guest VM and it is hard to

make it do more. While the requests being made are valid ones and suit very

well for mutations, the bandwidth is not very good.

2. Since fuzzer is modifying active request that the guest OS is relaying on, then

the modification will result in guest OS crashing rather fast, either by leaving

the request hanging or acting otherwise unexpectedly. Because of crashing the

guest OS the environment has to be recovered often and this is rather time

consuming.

While debugger cannot trigger requests to handler function in a usual way, there is still

another option how similar situation could be achieved to work up to a certain point.

This handler function logic is mostly the following:

1. Handler function is called out by vmbkmclr driver.

2. Handler function gets input buffer and MDL values needed.

3. Handler function does its work.

47

4. Handler function marks request complete by using the function

VmbChannelPacketComplete.

Because of this logic and the fact that VMBPACKETCOMPLETION structure can be

restored by the debugger, it is possible to perform the following fuzzing loop:

1. Debugger adds breakpoint to the beginning of a handling function.

2. Debugger lets the OS run.

3. Debugger breaks at handler function breakpoint.

4. Debugger stores thread address and all registry values.

5. Debugger adds breakpoint to VmbChannelPacketComplete function.

6. Debugger removes breakpoint added in step 1

7. Debugger lets the OS run.

8. Debugger breaks at VmbChannelPacketComplete function.

9. If the thread is the same as stored in step 4, the registry values are restored to the

ones in step 4 and the input buffer and/or MDL buffer will be randomly

modified.

10. Return to step 7.

This kind of approach allows the usage of the same request to actually force handler

function to handle the request multiple times, destroying the downside of not being able

to start requests. But this implementation might not always work because of the

internals of handler functions. There are multiple reasons for it not to work in same

situations but in most cases this is still a viable approach.

5.6 Testing/fuzzing regular channels using a host kernel driver

After the fuzzing is completed by the OS kernel driver, then the subsequent approach is

very similar to the interception part described in chapter 5.3. The only difference is that

48

the driver does not record the packet buffer and MDL buffer but randomly changes

them. The changes have to be recorded for crash situations. The author of this paper

usually implements the procedure in following way:

1. Driver allocates some memory in the kernel.

2. Location of the allocation is sent to the kernel debugger using DbgPrint

function.

3. With every fuzzing iteration the thread pointer, buffer location, MDL location,

and changes made are stored on location allocate at step 1.

4. If a crash occurs, the debugger can be used to recover changes made by the

driver from location relayed to debugger during step 2.

5.7 Testing/fuzzing regular channels using a guest kernel driver

Similarly to the host kernel drivers, the guest kernel driver has to first allocate the

location of the existing channels from the system. The only difference is that the driver

used for this is not vmbkmclr.sys as previously but vmbkmcl.sys. Most logic and

functionality remains the same. The functions and variable offsets are different, but can

be located using same methods as when using vmbkmclr. After the target channel has

been found, the regular Vmb functions such as VmbPacketSend [24] can be used to

send data to the host kernel.

In such cases, the data sent by the driver has to be self generated and there are 3 options

how to generate the required data:

1. By sending random data or dumb fuzzing [19]. Data being sent is randomly

generated in full. This approach rarely works.

2. by sending modified data or mutational fuzzing [19]. This approach requires that

some of the traffic is previously recorded and can now be randomly modified

and sent over. This approach is commonly most time effective as this can be

quickly implemented, does not require a lot of reverse-engineering, but

generates almost correct inputs.

49

3. By generating correct data or smart fuzzing [19]. Using this approach, the

researcher has to first reverse engineer the protocol being sent over and then

write the generator that will generate inputs based on the protocol. This is the

most comprehensive way to fuzz, but it is highly time consuming at the

beginning.

The author of this paper is mostly using the mutational fuzzing in order to avoid huge

time consumption for the topics that are not guaranteed to give the desired results. From

the other aspect smart fuzzing is a good option in case the target is highly valuable and

additional time consumption is not a problem.

5.8 Intercepting pipe channels using a debugger

As previously described in chapter 4.2, the pipe channels data is received by VMWP

and via regular ReadFile API call. Due to this reason, there is no handler function to add

a breakpoint for. But at the same time there are couple of functions that will always be

called whenever data is read from the pipe channel. One of these functions is vmbusr!

PipeTryReadSingle and it includes 2 important parameters:

1. The first parameter is a pointer to pipe structure data from where at offset 0x100

the pointer to channel structure can be found.

2. The second parameter is the IRP structure pointer that contains information

about read length and the buffer where data is written.

While it is straightforward to intercept PipeTryReadSingle function, the interception is

happening at the moment when the data has not yet been received. The breakpoint

should be put at the end of the function to handle the situation after the read operation is

over. At that point, the values of original function parameter registers (rcx and rdx) have

been changed. Fortunately the values are still held around on other registers so it is not

necessary to have additional breakpoint at the start of function for a parameter storage.

At the end of the function, the original first parameter can be found from the register rbx

and second parameter from register rsi.

50

Additionally to the information found above it should also be noted that these read

operations often return 0 bytes, and thereby these cases should be also sorted out. In

order to simply display read operation results to the debugger, the following windbg

command can be used for it to function correctly (0x3ac is offset from the beginning of

PipeTryReadSingle to its ret opcode):

bp vmbusr!PipeTryReadSingle+0x3ac ".printf \"Read from channel 0x%p -
size: 0x%X\\n\", poi(rbx+0x100), poi(rsi+0x38); .if(poi(rsi+0x38) ==
0){.echo \"NO DATA\";}.else{db poi(poi(rsi+0x8)+0x18)
poi(poi(rsi+0x8)+0x18)+poi(rsi+0x38)-1;};gh;"

5.9 Intercepting pipe channels using a driver

Intercepting pipe channel traffic using a driver requires extra effort than intercepting

regular channels. As there are no handler functions, the interception requires injection of

machine code snippet that will make the code flow jump to the driver code. The location

for the code injection is the end of the function PipeTryReadSingle. The main logic for

this is as follows:

1. The driver implements function/s capable of filtering and recording data and

recovering to the status expected by the PipeTryReadSingle function.

2. The driver locates end of the PipeTryReadSingle function and adds a

conditionless jump to the function described in step 1.

3. When the CPU reaches the execution of the end of the PipeTryReadSingle

function, the codeflow will switch to the function described at step 1, where data

is recorded and correct values of the registers are restored before returning to the

PipeTryReadSingle caller function.

5.10 Testing/fuzzing pipe channels using a debugger

Exactly like with regular channels, the debugger cannot initiate writes to the channels,

but has to work on the traffic already being generated. This means that that bandwidth

cannot be very high – it’s highly dependent but usually not more than couple of requests

per second. In addition there are lot on reads that do not return a result. These could

51

potentially be used to generate random responses - filling up everything needed and

setting IRP structure status and values. The author has not tried to generate random

responses as this did not seem to achieve any goals that would be considered valuable.

5.11 Testing/fuzzing pipe channels using a host kernel driver

The approach is the same as with the interception driver described at chapter 5.8 and

fuzzing driver at 5.5. The access to the data will be achieved in a way described in

chapter 5.8 and the fuzzing logic and modification storage implemented and achieved as

in chapter 5.5.

5.12 Testing/fuzzing pipe channels from guest system

Write operations to the pipe channel can be triggered from guest system with both

kernel driver and for most part also by a userland program. All code that runs outside

the operating system's kernel belongs to the userland, that is sometimes also referred to

as user space. In both cases usual NtWriteFile/WriteFile functions can be used and input

generation methods have same options as described in chapter 5.6. As already

previously, the author recommends using either mutational fuzzing or smart fuzzing for

pipe channels from the guest system as dumb fuzzing almost never give results on

hardened targets.

5.13 Tools developed based on the research

Based on reverse engineering performed throughout chapters 4 to 4.28 and methods

created for monitoring, interception, and fuzzing in chapters 5 to 5.11, the author has

created a new toolset for VMBus research. The toolset is available from github

repository at https://github.com/JaanusKaap/ThesisMaterials.

The toolset code is broken into smaller pieces in order to make it easily understandable

and simply modifiable. The driver code is separated to different drivers and not

implemented on a single one, in order to clarify the understanding of each functionality.

52

The following list will describe different tools developed, what is their purpose and

profitability for the researchers:

• Windbg scripts https://github.com/JaanusKaap/ThesisMaterials/scripts

The scripts meant to run in Windbg debugger. All scripts have been written in

python (preference of the author) and therefore require pykd library for python

and Windbg itself.

◦ showChannels.py

Displays information about the VMBus channels locations, internal

configuration values, and handler functions.

◦ recordChannel.py

Records regular channel traffic to the debugger machine filesystem with

different filtering options.

◦ recordPipeChannel.py

Records pipe channel traffic to the debugger machine filesystem with

different filtering options.

◦ fuzzChannelOnInterception.py

Fuzzes traffic passing through the regular channel handler function. Can be

configured with different settings and allows fuzzing of external data. Crash

detection is simple and no crash analysis is performed by the script.

◦ fuzzPipeChannelOnInterception.py

Fuzzes traffic passing through the pipe channel during read operation. Can

be configured with different settings. Crash detection not included as the

crash happens in VMWP process, the fuzzing data is logged.

◦ fuzzChannelRepetition.py

Fuzzes traffic passing through the regular channel handler function but with

additional capability to replay the VMBPACKETCOMPLETION handling

as explained in chapter 5.4. Can be configured with different settings and

allows fuzzing of external data. Crash detection is simple and no crash

analysis will be performed by the script.

53

• Drivers https://github.com/JaanusKaap/ThesisMaterials/DriversTools

◦ VMBusChannels.sys

Can locate information about the existing channels and return internal

information about them to userland process.

◦ VMBusIntercept.sys

Can intercept traffic moving through the regular VMBus channels with

capability to store this data on filesystem. Stores both ring buffer and

external data.

◦ VMBusFuzz.sys

Can fuzz traffic moving through the regular VMBus channels while storing

all current fuzzing information to exported location making it possible to be

found by the debugger in case of a crash. Can fuzz both ring buffer and

external data.

• Libraries https://github.com/JaanusKaap/ThesisMaterials/DriversTools

Dll files are good way to make it easier for any language to communicate with

drivers without requiring to implement entire driver communication logic.

◦ VMBusChannels.dll

Contains all methods needed for communication with VMBusChannels.sys

driver.

◦ VMBusIntercept.dll

Contains all methods needed for communication with VMBusIntercept.sys

driver.

◦ VMBusFuzz.dll

Contains all methods needed for communication with VMBusFuzz.sys

driver.

• Tools https://github.com/JaanusKaap/ThesisMaterials/DriversTools

Programs that allow user to communicate with drivers

54

◦ VMBusChannels.exe

Tool that can communicate with VMBusChannels.sys driver in order to

display the user information about existing VMBus channels.

◦ VMBusIntercept.exe

Tool that can communicate with VMBusIntercept.sys driver in order to set

up recording of ongoing VMBus regular channel traffic including some

additional filtering and setup options.

◦ VMBusFuzz.exe

Tool that can communicate with VMBusFuzz.sys driver in order to set up

fuzzing of the VMBus regular channel traffic with some configuration

options.

55

6 Summary

In this paper, the author reverse engineered and analysed some of the internal workings

of VMBus implementation in Windows 10 version 19041

(19041.1.amd64fre.vb_release.191206-1406) running on x64 architecture.

The analysis was driven by the goal to be able to create methods for creation of tools to

monitor, intercept, and fuzz data moving through VMBUS between guest and host

systems. The resulting knowledge, tools and methods can now be used to perform

additional vulnerability research with the end-goal of finding new security

vulnerabilities and bugs in kernel drivers that provide virtualization service provider

functionality support and in virtual machine working processes running in the host

system userland. The tools created are publicly available from github under MIT license

from https://github.com/JaanusKaap/ThesisMaterials.

56

https://github.com/JaanusKaap/ThesisMaterials

References
1: Microsoft, Microsoft Hyper-V Bounty Program, , https://www.microsoft.com/en-us/msrc/bounty-
hyper-v?rtc=1
2: Jason Kappel, Anthony Velte, Toby Velte, Microsoft Virtualization with Hyper-V: Manage Your
Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization (Network
Professional's Library), 2009
3: Lei Chen, Ming Xian, Jian Liu and Huimei Wang, Research on Virtualization Security in Cloud
Computing, 2020
4: Purva Vishwakarma , Sumit Kumar, Desktop Virtualization on different system using Hyper-V , 2015
5: Federico Sierra-Arriaga, Rodrigo Branco, Ben Lee, Security Issues and Challenges for Virtualization
Technologies, 2020
6: Microsoft, Hypervisor Top-Level Functional Specification, 2018, https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/reference/tlfs
7: Microsoft, vmbuskernelmodeclientlibapi.h header, 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/
8: Scott Donaldson; Natalie Coull; David McLuskie, A methodology for testing virtualisation security,
2017
9: Lukas Beierlieb; Lukas Ifflander; Aleksandar Milenkoski; Charles F. Gonc¸alves; Nuno Antunes;
Samuel Kounev, Towards Testing the Software Aging Behavior ofHypervisor Hypercall Interfaces, 2019
10: Microsoft Virtualization Security Team, Fuzzing para-virtualized devices in Hyper-V, 2019,
https://msrc-blog.microsoft.com/2019/01/28/fuzzing-para-virtualized-devices-in-hyper-v/
11: Nicolas Joly; Joe Bialek , A Dive in to Hyper-V Architecture & Vulnerabilities, 2018
12: Jordan Rabet, Hardening Hyper-V throughoffensive security research, 2018
13: Gerhart X, Hyper-V internals, 2015,
14: Microsoft, FN_VMB_CHANNEL_ALLOCATE callback function (vmbuskernelmodeclientlibapi.h),
2018, https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-
vmbuskernelmodeclientlibapi-fn_vmb_channel_allocate
15: Microsoft, vmbuskernelmodeclientlibapi.h header file,
16: Microsoft, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_packet_send_with_external_mdl, 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_packet_send_with_external_mdl
17: Microsoft, FN_VMB_PACKET_SEND_WITH_EXTERNAL_PFNS callback function
(vmbuskernelmodeclientlibapi.h), 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_packet_send_with_external_pfns
18: Microsoft, FN_VMB_CHANNEL_SEND_SYNCHRONOUS_REQUEST callback function
(vmbuskernelmodeclientlibapi.h), 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_channel_send_synchronous_request
19: F-Secure, OUR GUIDE TO FUZZING, , https://www.f-secure.com/en/consulting/our-thinking/15-
minute-guide-to-fuzzing
20: Microsoft, EVT_VMB_CHANNEL_PROCESS_PACKET callback function
(vmbuskernelmodeclientlibapi.h), 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
evt_vmb_channel_process_packet
21: Microsoft, FN_VMB_CHANNEL_PACKET_COMPLETE callback function
(vmbuskernelmodeclientlibapi.h), 2018, https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_channel_packet_complete
22: Microsoft, FN_VMB_CHANNEL_PACKET_GET_EXTERNAL_DATA callback function
(vmbuskernelmodeclientlibapi.h), 2018, https://docs.microsoft.com/en-us/windows-

57

hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-vmbuskernelmodeclientlibapi-
fn_vmb_channel_packet_get_external_data
23: Microsoft, CVE-2019-0695, , https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-
2019-0695
24: Microsoft, FN_VMB_PACKET_SEND callback function (vmbuskernelmodeclientlibapi.h), 2018,
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/vmbuskernelmodeclientlibapi/nc-
vmbuskernelmodeclientlibapi-fn_vmb_packet_send

58

Appendix 1 – Table of KmclInitializeChannel changes

Table 6. Changes made in VMBCHANNEL structure by KmclInitializeChannel

Offset Size Value

0x7F8 dword 0x1

0x810
sizeof(KEV
ENT)

Kernel event structure for synchronizationEvent with unsignaled
status

0xAE8 dword 0x1

0xB00
sizeof(KEV
ENT)

Kernel event structure for synchronizationEvent with unsignaled
status

0x0 dword Pointer to the structure itself

0xB38 qword Pointer to the structure offset 0xB30

0xB30 qword Pointer to the structure offset 0xB30

0xB28 qword Pointer to the structure offset 0xB20

0xB20 qword Pointer to the structure offset 0xB20

0x9F0 qword Pointer to the structure offset 0x9E8

0x9E8 qword Pointer to the structure offset 0x9E8

0x3F0 byte 0x1

0x4B4 dword If server flag is set, then 0x100, otherwise 0xFFFFFFFF

0x600 byte Server flag

0x830 byte If the server flag is not set, then value is OR-ed with 0x1

0x6F0 dword 0xFFFFFFFF

59

Offset Size Value

0x738 qword Pointer to function KmclpDefaultChannelOpenedEx

0x740 qword Pointer to function KmclpDefaultChannelClosed

0x748 qword Pointer to function KmclpDefaultChannelClosed

0x750 qword Pointer to function KmclpDefaultChannelClosed

0x758 qword Pointer to function KmclpDefaultChannelClosed

0x798 qword Pointer to function KmclpDefaultChannelClosed

0xB40 qword Pointer to the parent device object

0x7F0 qword Pointer to the allocated work item structure (IO_WORKITEM)

0x9C8 qword Pointer to the allocated work item structure (IO_WORKITEM)

60

Appendix 2 – Table of initialization functions changes

Table 7. Changes made in VMBCHANNEL structure by initialization functions

VmbChannelInitSetBounceBufferSizes

Offset Size Value

0x6F4 dword
Size of bounce buffer 1

Limitation: Has to be larger then 0x40000 and page sized

0x6F8 dword
Size of bounce buffer 2

Limitation: Has to be larger then 0x40000 and page sized

0x6FC dword
Size of bounce buffer 3

Limitation: Has to be larger then 0x40000 and page sized

VmbChannelInitSetClientContextSize

Offset Size Value

0x614 dword Size of the client context

VmbChannelInitSetFlags

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x640 byte Flag VMBUS_CHANNEL_INIT_FLAG_IS_PIPE

61

VmbChannelInitSetFriendlyName

Limitations
• Dword at structure offset 0x7D8 has to be 0

• Qword at structure offset 0x7D0 has to be 0

Offset Size Value

0x7C8

sizeof(UNICO
DE_STRING)

UNICODE_STRING structure referencing the human
readable name of the channel

VmbChannelInitSetInlinePacketContextSize

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x618 dword

Size of the inline packet context size. The actual value set
is input (value + 7) & 0xFFFFFFF8

Limitation: Can only be set when dword at structure offset
0x7D8 is 0

VmbChannelInitSetMaximumExternalData

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x60C dword Maximum data size

0x610 dword Maximum chain length

VmbChannelInitSetMaximumPacketCount

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x604 dword Maximum packet count

62

VmbChannelInitSetMaximumPacketSize

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x608 dword Maximum packet size

VmbChannelInitSetPrimaryChannel

Limitations

• Dword at structure offset 0x7D8 has to be 0

• Byte at structure offset 0xAE0 has to be 0

• Byte at primary channel structure offset 0x700 has to be 0

• Byte at primary channel structure offset 0x830 can’t have third bit

set

Offset Size Value

0xAD8 qword Pointer to primary channel

0xAE0 byte 1

0xB50 word Subchannel index

VmbChannelInitSetProcessPacketCallbacks

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x708 byte 0

0x710 qword Pointer to ProcessPacketCallback function

0x718 qword Pointer to ProcessingCompleteCallback function

63

VmbChannelInitSetProcessPacketCallbacksEx

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x708 byte 0

0x720 qword
CallbackContext value that is provided with all calls to
ProcessPacketCallbackEx and
ProcessingCompleteCallbackEx for this channel

0x710 qword Pointer to ProcessPacketCallbackEx function

0x718 qword Pointer to ProcessingCompleteCallbackEx function

VmbChannelInitSetShortLifetimeThreshold

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x63C dword Short lifetime threshold value

VmbChannelInitSetStateChangeCallbacks

Limitations
• Dword at structure offset 0x7D8 has to be 0

• Callbacks structure has to be version 1 or 5

Offset Size Value

0x728 byte
1

Limitation: Only set when input structure version is 5

0x738 qword Pointer to EvtChannelOpened callback

0x740 qword Pointer to EvtChannelClosed callback

0x748 qword Pointer to EvtChannelSuspend callback

0x750 qword Pointer to EvtChannelStarted callback

0x758 qword Pointer to EvtChannelPostStarted callback

64

VmbChannelInitSuppressQueueManagement

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x601 byte 1

0x790 qword Pointer

VmbChannelSetIncomingPollOnCompletion

Offset Size Value

0x3F0 byte Is set 0 if flag parameter is 0, otherwise 1

VmbChannelSetIncomingProcessingAtPassive

Offset Size Value

0x3F2 byte Is set 0 if flag parameter is 0, otherwise 1

0x3F1 byte Is set 1 if flag parameter is not 0

VmbChannelSetPointer

Offset Size Value

0x838 qword Pointer to the parameter specified location

VmbServerChannelInitSetTargetInterfaceId

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x61C sizeof(GUID) Interface type GUID

0x62C sizeof(GUID) Interface instance GUID

65

VmbServerChannelInitSetTargetVtl

Limitations

• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

• VTL value provided can’t be larger then 2

Offset Size Value

0x702 byte VTL parameter value

VmbServerChannelInitSetVmId

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x650 sizeof(GUID) VM id

VmbServerChannelInitSetVmbusHandle

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x6E0 qword VMBus handle pointer

66

VmbChannelInitSetFlags

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x641 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_LOOPBA
CK_OFFER flag

0x642 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_ENUMER
ATE_DEVICE_INTERFACE flag

0x643 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_OFFER_
AS_PIPE flag

0x644 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_FORCE_
NEW_CHANNEL flag

0x645 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_TLNPI_P
ROVIDER_OFFER flag

67

Appendix 3 – Table of InInitializeQueue changes

Table 8. Changes made in VMBCHANNEL structure by InInitializeQueue

Offset Size Value

0x388 dword 0x0

0x510
sizeof(KDP
C)

Initialized DPC object with DeferredRoutine pointer pointing
to function InpProcessingDpcRoutine and DeferredContext
pointing to channel structure itself

0x550
sizeof(KDP
C)

Initialized DPC object with DeferredRoutine pointer pointing
to function InpProcessingDpcRoutine and DeferredContext
pointing to channel structure itself

0x598 dword -1 or 0xFFFFFFFF

0x59C dword -1 or 0xFFFFFFFF

0x5A0 dword -1 or 0xFFFFFFFF

0x448 qword Pointer to channel structure offset 0x440

0x440 qword Pointer to channel structure offset 0x440

0x398 qword Pointer to channel structure offset 0x390

0x390 qword Pointer to channel structure offset 0x390

0x458 qword Pointer to channel structure offset 0x450

0x450 qword Pointer to channel structure offset 0x450

0x4B0 dword Dword from channel structure offset 0x614

0x3F3 byte Single byte from channel structure offset 0x646

0x4BC dword 0

68

Offset Size Value

0x4D8 qword 0

0x46C dword Dword from channel structure offset 0x63C

0x710 qword Pointer to function InpChannelProcessPacketExNoOp

0x718 qword Pointer to function KmclpDefaultChannelClosed

0x4E4 dword Something related to sizes of external data

0x4E0 dword Something related to sizes of external data

69

Appendix 4 – Table of OutInitializeQueue changes

Table 9. Changes made in VMBCHANNEL structure by OutInitializeQueue

Offset Size Value

0x100
sizeof(SPIN_
LOCK)

Spin lock object initialized with KeInitializeSpinLock

0x240
sizeof(SPIN_
LOCK)

Spin lock object initialized with KeInitializeSpinLock

0x110 qword Pointer to structure at offset 0x0x110

0x118 qword Pointer to structure at offset 0x0x110

0x288
sizeof(TIMER
)

Timer structure initialized with KeInitializeTimer

0x2C8 sizeof(KDPC)
Initialized DPC object with DeferredRoutine pointer pointing
to function OutpPollingDpcRoutine and DeferredContext
pointing to channel structure itself

0x308 sizeof(KDPC)
Initialized DPC object with DeferredRoutine pointer pointing
to function OutpPollingDpcRoutine and DeferredContext
pointing to channel structure itself

70

Offset Size Value

0x140
sizeof(PAGED
_LOOKASID
E_LIST)

Initializes NPAGED_LOOKASIDE_LIST structure inside
channel structure via ExInitializeNPagedLookasideList with
following parameters:

1. Lookaside = Pointer to structure offset 0x140

2. Allocate = 0

3. Free = 0

4. Flags = ExDefaultNonPagedPoolType |
POOL_NX_ALLOCATION

5. Size = Dword taken from structure offset 0x618 +
dword taken from structure offset 0x608 + 0x224

6. Tag = ‘Vkou’

7. Depth = 0

0x1C0
byte 1

0x250 qword 0

0x258 qword 0

0x260 qword 0

0x268 qword 0

0x248 qword Pointer to channel structure at offset 0x260

0x25C dword ExDefaultNonPagedPoolType

0x254 dword
If dword in structure at offset 0x604 is larger then 0x4000
then this is written, otherwise 0x4000

0x258 dword 0x636D6B56

0x250 dword 1

71

Appendix 5 – Table of VMBCHANNEL members

Table 10. Most useful members of VMBCHANNEL structure

Offset Size Value

0x0 qword Pointer to structure itself (for verification)

0x604 dword Maximum packet count

0x608 dword Maximum packet size

0x614 dword Client context size

0x61C sizeof(GUID) Interface type GUID

0x62C sizeof(GUID) Interface instance GUID

0x640 byte Pipe flag

0x650 sizeof(GUID) VM id GUID

0x6E0 qword VMBus handle pointer

0x702 byte VTL value

0x710 qword Pointer to ProcessPacketCallback callback

0x718 qword Pointer to ProcessingCompleteCallback callback

0x720 qword
CallbackContext value that is provided with all calls to
ProcessPacketCallbackEx and
ProcessingCompleteCallbackEx for this channel

0x738 qword Pointer to EvtChannelOpened callback

0x740 qword Pointer to EvtChannelClosed callback

0x748 qword Pointer to EvtChannelSuspend callback

72

Offset Size Value

0x750 qword Pointer to EvtChannelStarted callback

0x758 qword Pointer to EvtChannelPostStarted callback

0x7A0
sizeof(LIST_
ENTRY)

Double link list structure connecting all channels

0x7C8
sizeof(UNICO
DE_STRING)

UNICODE_STRING structure referencing the human
readable name

0x838 qword Channel set pointer

0xAD8 qword Primary channel

0xB40 qword Parent device object

0xB50 word Subchannel index

73

Appendix 6 – showChannels.py script

import pykd

import uuid

header = pykd.getOffset("vmbkmclr!KmclChannelList")

nextPtr = pykd.loadQWords(header, 1)[0]

if header == nextPtr:

print "No channels found!"

exit()

def byteArray2ByteBuffer(arr):

ret = ""

for x in arr:

ret += chr(x)

return ret

while nextPtr != header:

base = nextPtr – 0x7A0

print "Channel at 0x%X" % base

if pykd.loadQWords(base, 1)[0] != base:

print " INVALID CHANNEL"

exit()

pipe = pykd.loadBytes(base + 0x640, 1)[0]

interfaceTypeGuid =
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x61C,
16)))

interfaceInstanceGuid =
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x62C,
16)))

vmIdGuid =
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x650,
16)))

pointer = pykd.loadQWords(base + 0x838, 1)[0]

primaryChannel = pykd.loadQWords(base + 0xAD8, 1)[0]

parentDeviceObj = pykd.loadQWords(base + 0xB40, 1)[0]

subchannelIndex = pykd.loadWords(base + 0xB50, 1)[0]

packetCallback = pykd.loadQWords(base + 0x710, 1)[0]

completeCallback = pykd.loadQWords(base + 0x718, 1)[0]

channelOpened = pykd.loadQWords(base + 0x738, 1)[0]

74

channelClosed = pykd.loadQWords(base + 0x740, 1)[0]

channelSuspended = pykd.loadQWords(base + 0x748, 1)[0]

channelStarted = pykd.loadQWords(base + 0x750, 1)[0]

channelPostStarted = pykd.loadQWords(base + 0x758, 1)[0]

if pipe > 0:

print " --Pipe--"

else:

print " --Normal channel--"

print " Interface type: %s" % str(interfaceTypeGuid)

print " Interface instance: %s" % str(interfaceInstanceGuid)

print " VM id: %s" % str(vmIdGuid)

print " Pointer: 0x%X" % pointer

print " Parent Device Object: 0x%X" % parentDeviceObj

print " Primary channel: 0x%X" % primaryChannel

print " Sub channel index: 0x%X" % subchannelIndex

print " Callbacks"

if packetCallback > 0:

print " packet callback = 0x%X (%s)" % (packetCallback,
pykd.findSymbol(packetCallback))

if completeCallback > 0:

print " packet completion callback = 0x%X (%s)" %
(completeCallback, pykd.findSymbol(completeCallback))

if channelOpened > 0:

print " channel opened = 0x%X (%s)" % (channelOpened,
pykd.findSymbol(channelOpened))

if channelClosed > 0:

print " channel close = 0x%X (%s)" % (channelClosed,
pykd.findSymbol(channelClosed))

if channelSuspended > 0:

print " channel suspended = 0x%X (%s)" %
(channelSuspended, pykd.findSymbol(channelSuspended))

if channelStarted > 0:

print " channel started = 0x%X (%s)" % (channelStarted,
pykd.findSymbol(channelStarted))

if channelPostStarted > 0:

print " channel post started = 0x%X (%s)" %
(channelPostStarted, pykd.findSymbol(channelPostStarted))

nextPtr = pykd.loadQWords(nextPtr, 1)[0]

print "\n"

75

Appendix 7 – Script handling buffer and MDL from packet

handlers

import pykd

import uuid

import sys

def byteArray2ByteBuffer(arr):

ret = ""

for x in arr:

ret += chr(x)

return ret

def checkValidChannel(addr):

return (pykd.loadQWords(addr, 1)[0] == addr)

def getChannelPtr(channel):

if isinstance(channel, int) and not checkValidChannel(channel):

return None

if isinstance(channel, str):

header = pykd.getOffset("vmbkmclr!KmclChannelList")

nextPtr = pykd.loadQWords(header, 1)[0]

if header == nextPtr:

return None

while nextPtr != header:

base = nextPtr - 0x7A0

if not checkValidChannel(base):

return None

interfaceInstanceGuid =
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x62C,
16)))

if str(interfaceInstanceGuid) == channel:

return base

nextPtr = pykd.loadQWords(nextPtr, 1)[0]

return None

if len(sys.argv) == 1:

76

print "Missing channel address/instance GUID"

exit()

if sys.argv[1].startswith("0x"):

channel = getChannelPtr(int(sys.argv[1][2:], 16))

else:

channel = getChannelPtr(sys.argv[1])

if channel is None:

print "Could not find channel"

pykd.dbgCommand("bc *")

print "Channel found at 0x%X" % channel

packetCallback = pykd.loadQWords(channel + 0x710, 1)[0]

print "packet callback @ 0x%X (%s)" % (packetCallback,
pykd.findSymbol(packetCallback))

pykd.dbgCommand("bp 0x%X" % packetCallback)

packets = {}

breakAddr = pykd.getOffset("nt!DbgBreakPointWithStatus")

extAddr = pykd.getOffset("vmbkmclr!VmbChannelPacketGetExternalData")

pykd.dbgCommand("bp 0x%X" % extAddr)

cnt = 0

while True:

pykd.dbgCommand("gh")

if pykd.reg("rip") != packetCallback and pykd.reg("rip") !=
extAddr:

if pykd.reg("rip") == breakAddr:

break

continue

if pykd.reg("rip") == packetCallback:

buf = pykd.reg("r8")

bufSize = pykd.reg("r9")

extDataFlag = pykd.loadQWords(pykd.reg("rsp") + 5*8, 1)[0]
& 1

if extDataFlag == 0:

print "Call to handler with buffer @ 0x%X with size
0x%X and no external data" % (buf, bufSize)

else:

packets[pykd.reg("rdx")] = (buf, bufSize)

if pykd.reg("rip") == extAddr and pykd.reg("rcx") in packets:

packet = pykd.reg("rcx")

pmdl = pykd.reg("r8")

pykd.dbgCommand("bd *")

77

pykd.dbgCommand("gu")

pykd.dbgCommand("be *")

(buf, bufSize) = packets[packet]

print "Call to handler with buffer @ 0x%X with size 0x%X
and external data:" % (buf, bufSize)

while True:

mdl_next = pykd.loadQWords(pmdl, 1)[0]

print " MDL @ 0x%X" % pmdl

if mdl_next == 0:

break

pmdl = mdl_next

del packets[packet]

pykd.dbgCommand("bc *")

78

	1 Introduction 11
	2 Literature review 13
	3 VMBus generic info 17
	3.1 Research setup 18

	4 VMBus channels internal components 20
	4.1 vmbkmclr.sys driver 20
	4.2 Vmbusr.sys driver 33

	5 Monitoring, intercepting and fuzzing traffic 40
	5.1 Fuzzing basics 40
	5.2 Reading channels 41
	5.3 Intercepting regular channels using a debugger 42
	5.4 Intercepting regular channels using a driver 45
	5.5 Testing/fuzzing regular channels using a debugger 47
	5.6 Testing/fuzzing regular channels using a host kernel driver 48
	5.7 Testing/fuzzing regular channels using a guest kernel driver 49
	5.8 Intercepting pipe channels using a debugger 50
	5.9 Intercepting pipe channels using a driver 51
	5.10 Testing/fuzzing pipe channels using a debugger 51
	5.11 Testing/fuzzing pipe channels using a host kernel driver 52
	5.12 Testing/fuzzing pipe channels from guest system 52
	5.13 Tools developed based on the research 52

	6 Summary 56
	Appendix 1 – Table of KmclInitializeChannel changes 59
	Appendix 2 – Table of initialization functions changes 61
	Appendix 3 – Table of InInitializeQueue changes 68
	Appendix 4 – Table of OutInitializeQueue changes 70
	Appendix 5 – Table of VMBCHANNEL members 72
	Appendix 6 – showChannels.py script 74
	Appendix 7 – Script handling buffer and MDL from packet handlers 76
	1 Introduction
	2 Literature review
	3 VMBus generic info
	3.1 Research setup

	4 VMBus channels internal components
	4.1 vmbkmclr.sys driver
	4.1.1 Channel allocation function
	4.1.2 Channel initializations function
	4.1.3 Channel enabling - VmbChannelEnable function
	4.1.4 Channel enabling - InInitializeQueue function
	4.1.5 Channel enabling - OutInitializeQueue function
	4.1.6 Channel enabling - KmclpServerOfferChannel function
	4.1.7 Channel enabling - KmclpServerOpenChannel function
	4.1.8 Packet allocation
	4.1.9 Packet initializations
	4.1.10 Packet sending functions
	4.1.11 Packet sending - OutSendPacket function

	4.2 Vmbusr.sys driver
	4.2.1 RootFileReadWritePreprocess function
	4.2.2 PipeRead function
	4.2.3 PipeTryRead function
	4.2.4 PipeTryReadMultiple function
	4.2.5 PipeTryReadSingle function
	4.2.6 PipeWrite functions
	4.2.7 PipeTryWriteIrp functions
	4.2.8 PipeTryWriteDeferred function

	5 Monitoring, intercepting and fuzzing traffic
	5.1 Fuzzing basics
	5.2 Reading channels
	5.3 Intercepting regular channels using a debugger
	5.4 Intercepting regular channels using a driver
	5.5 Testing/fuzzing regular channels using a debugger
	5.6 Testing/fuzzing regular channels using a host kernel driver
	5.7 Testing/fuzzing regular channels using a guest kernel driver
	5.8 Intercepting pipe channels using a debugger
	5.9 Intercepting pipe channels using a driver
	5.10 Testing/fuzzing pipe channels using a debugger
	5.11 Testing/fuzzing pipe channels using a host kernel driver
	5.12 Testing/fuzzing pipe channels from guest system
	5.13 Tools developed based on the research

	6 Summary
	Appendix 1 – Table of KmclInitializeChannel changes
	Appendix 2 – Table of initialization functions changes
	Appendix 3 – Table of InInitializeQueue changes
	Appendix 4 – Table of OutInitializeQueue changes
	Appendix 5 – Table of VMBCHANNEL members
	Appendix 6 – showChannels.py script
	Appendix 7 – Script handling buffer and MDL from packet handlers

