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Abstract

This thesis is written in English and is  78 pages long, including 6 chapters, 4 figures,

and 10 tables. 

The  thesis  provides  an  overview  of  Hyper-V virtualization  software.  The  thesis  is

focused  on  the  internal  workings  of  one  of  Hyper-V virtualization  software's  main

components called VMBus.

The thesis describes the general working logic of the VMBus based communication,

several  undocumented  internal  kernel  functions  and  data  structures  as  well  as  their

usage.  Based on the  reverse  engineering  of  those  kernel  components  that  has  been

performed  by  the  author,  the  thesis  describes  internal  workings  of  VMBus

communication pathway, from the perspective that was necessary for developing the

tools  for  monitoring,  intercepting,  and  modifying  data  traffic  moving  through  over

VMBus. 

The  goal  of  the  thesis  is  to  create  a  good  open  source  knowledge   base  and

documentation for security researchers in order to simplify the beginning of Hyper-V

vulnerability research targeting VMBus.

The  thesis  includes  and  analysis  the  most  efficient  methods  that  can  be  used  for

developing  monitoring,  interception,  and  fuzzing  tools  as  well  as  a  documented

description of the tools by the author of the thesis. All tools developed are developed by

the  author  of  this  work  and  will  be   publicly  available  under  MIT  licence  from

https://github.com/JaanusKaap/ThesisMaterials.
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Annotatsioon

Hyper-V VMBus põhise andmeliikluse infopüük ja hägustus

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti  78 leheküljel,  6 peatükki,  4

joonist ja 10 tabelit.  

Lõputöö kirjeldab Hyper-V virtualiseerimise tarkvara tausta ja keskendub ühe hyper-V

komponendi,  VMBus,  sisemisele  implementatsioonile.  VMBus   on  virtualiseeritud

andmesiin,  mida  kasutatakse  partitsioonide  (virtualiseeritud  masinate)  vaheliseks

suhtluseks. 

Lõputöö  kirjeldab  VMBus  põhise  suhtluse  põhiloogikat,   Microsofti  poolt

dokumenteerimata  kerneli  funktsioone  ja  andmestruktuure  ning  näiteid  nende

kasutamisest. Tuginedes VMBus kerneli komponentide pöördkonstrueerimisele, annab

töö ülevaate VMBus-i sisemisest toimimisest ulatuses, mis on vajalik arendamaks välja

tööriistad, mis on võimeliseid neist läbiliikuvaid andmeid monitoorima, pealt kuulata ja

muutma.  Lõputöö  eesmärk  on  luua  avalikult  kättesaadav  ja  avatud  lähtekoodiga

teadmistepagas mis võimaldaks infoturbeuurijatel edukamalt VMBus kaudu suhtlevatest

komponentidest turvavigade leidmisega algust teha. 

Lõputöö  tulemuseks  on  erinevate  metoodikate  analüüs  ja  tööriistad  mille  abil  on

võimalik  VMBuspõhist  suhtlust  monitoorida,  pealt  kuulda  ja  hägustada  ning  autori

poolt  koostatud  tööriistade  kohta  käiv  dokumentatsioon.  Kõik  lõputöö käigus  autori

poolt arendatud tarkvaralised tööriistad on avalikult kättesaadavad MIT litsentsi alusel

aadressilt https://github.com/JaanusKaap/ThesisMaterials.
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List of abbreviations and terms

Hypervisor Software that enables creation and running virtual machines that
work inside single host machine as they would work in separate
machines

SLAT Second Level Address Translation

IOMMU Input–output memory management unit

VSP Virtualization Service Providers

VSC Virtualization Service Consumers

MDL Memory description list

GPADL Guest Physical Address Descriptor List

WDF Windows Driver Frameworks

word Size of 2 bytes or 16 bits

dword Size of 4 bytes or 32 bits

qword Size of 8 bytes or 64 bits

oword Size of 16 bytes or 128 bits

MSRC Microsoft Security Response Center

MIT licence The primary terms and conditions of the MIT license are to 
grant permissions and indemnify developers for future use. It 
grants any person who obtains a copy of the software and 
associated files the right to use, copy, modify, merge, distribute, 
publish, sublicense, and sell copies of the software.

OS Operating system

OSR Offensive Security Research

KMCL Kernel Mode Client Library

API Application Programming Interface

VM Virtual Machine

SDK Software Development Kit

Root partition The host OS, the name “partition” in this context is used by the 
Microsoft but can be translated as virtual machine.
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1 Introduction

Hyper-V is a virtualization tool that was released by Microsoft in  year 2008 and from

that  point  on  has  been included in  all  Windows Server  versions  and Pro/Enterprise

versions of Windows 8 and Windows 10. It allowed the creation of virtual machines

(VMs) and from 2016 it  also allows adding additional  security features in Windows

operating system itself. A special version of Hyper-V is also used in Microsoft's Azure

cloud platform called Azure Hypervisor. 

The above- mentioned aspects of Hyper-V make it a potentially valuable target for the

attackers. In case of a successful exploitation it allows a breakout from a VM, privilege

escalation, or bypassing security features. Microsoft has acknowledged this and offers

the highest bug bounties for vulnerabilities found from Hyper-V[1]. This has been done

to  motivate  security  researchers  as  the  technical  knowledge  needed  to  research

vulnerabilities from hypervisors is above average professional knowledge and a large

amount  of  effort  is  needed  for  Hyper-V  vulnerability  research.  Not  only  does

researching Hyper-V require additional effort and self-development but Hyper-V is at

the  same time  less  popular  for  server  virtualization  as  some of  its  alternatives  like

RedHat  Virtualization  and  VMware  vSphere.  This  means  that  it  would  be  more

beneficial time wise for the researchers to work on other virtualization environments

that are used more widely. Hyper-V internals documentation has also not been published

and this also makes the vulnerability research harder.  For example, the communication

channels  that  are  used  for  communicating  between  different  parts  of  the  Hyper-V

technology are not documented or are documented only from the external developer’s

perspective who is developing another operating systems to support Hyper-V.

The goal of the thesis is  to increase the amount of public information about Hyper-V

communication  channels  internals  focusing  on  the  VMBus  based  communications.

Microsoft  Virtual  Machine  Bus  (VMBus)  is  a  mechanism  within  the  Hyper-V

architecture that enables logical communication between partitions. The VMBus works

as the internal communications channel to redirect requests to virtual devices. The thesis
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will investigate the internal workings of the VMBus communications and mostly how it

is  used  by the  root  partition.  The thesis  will  also  attempt  to  find  possible  ways  to

intercept  the  mentioned  communications  and to  provide  tools  for  doing this  by  the

researchers. 

Another  goal of the thesis is to produce a full set of tools, that will be based on the

performed research and  allow showing information about VMBus channels internal

configuration values and allow to intercept, record, and fuzz the data moving through

VMBus. The research will make it easier for the author and other researchers to cover

the VMBus attack surface and to reproduce or analyze any findings.

In order to achieve the goals for the thesis an empirical research will be done on the

present research conducted in the field. The analysis will be used for carrying out actual

technical research in order to increase the knowledge about Hyper-V communication

channels internals with the focus on VMBus internals and to develop full set of tools

that allow showing information about VMBus channels values and allow to intercept,

record, and fuzz the data moving through VMBus.

Authors contribution is the reverse-engineering the parts of the kernel drivers that are

used  for  VMBus  based  communication,  the  analysis  of  the  overall  logic  of  the

communication and development of the techniques and tool for monitoring, intercepting

and fuzzing the VMBus based traffic.

All  reverse  engineering  described  in  this  thesis  is  done on the  64  bit  Windows 10

version 19041 (19041.1.amd64fre.vb_release.191206-1406).

All  software and tools developed throughout this work are solely developed by the

author  and  will  be  made  open  source  with  an  MIT  License  that  allows  nearly

unrestricted additional usage of the software and tools.

Parts  of the work included in the thesis  have been presented by the author at  POC

conference in South Korea in 2019 and at CyberShock conference in Latvia 2020.
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2 Literature review

There is plenty of literature on the topic of hypervisors and Hyper-V [2][3][4][5]  but

there is not much literature that covers the internal workings of Hyper-V. There is some

documentation provided by Microsoft for software developers on how to communicate

with Hyper-V[6] and on how to communicate over VMBus via Windows API[7]. There

is nearly no documentation or information about the internal workings of the VMBus

and how Hyper-V internally handles it. The existing documentation is useful for starting

the research but it is not enough to perform any other needed activities, such as data

recording and fuzzing.

There  are  some  published  scientific  and  technology  papers  and  articles  that  cover

Hyper-V's security a bit [3][4][5]  but most of them only cover setup methodology for

administrators or how to secure the networks using Hyper-V. There appears to be no

paper that covers the attack surface needed for VM breakout style of attacks or attacking

the driver or device level communication through the Hyper-V. Those that do cover such

topics in the first glance are unfortunately not an in-depth analysis and are not useful for

security research. There are some examples of the existing public academic research

that according to the title should cover similar topics but in reality do not cover any

aspect of VMBus security research's point of view:

“A methodology for testing virtualisation security” by Scott Donaldson, Natalie

Coull, and David McLuskie [8]

Very  perfunctory  description  of  testing  the  drivers  inside  the  guest  OS.  The  article

claims to  cover  a  testing virtualization  environment,  but  in reality  it  covers  fuzzing

IOCTLs sent to the guest OS own drivers. While there exists a low  probability that

such testing can find issues in the host as well, it requires multiple issues in the chain.

This is not how the guest-host communication is tested as it has a tendency to miss
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almost all relevant issues and actual attack surface. It also covers no internal workings

or anything relevant  for Hyper-V research.

“Towards  Testing  the  Software  Aging  Behavior  of  Hypervisor  Hypercall

Interfaces” by Lukas Beierlieb, Lukas Ifflander, Aleksandar Milenkoski, Charles

F. Gonc¸alves, Nuno Antunes and Samuel Kounev [9]

The  paper  covers  the  overall  logic  how hypercall  fuzzing  could  be  done,  it  is  not

applicable  for  VMBus  research  as  the  research  does  not  cover  internals  inside  the

hypevisor nor how debugging or any other part would work on VMBus. Hypercalls and

VMBus are different things and the most important difference is that hypercalls do not

work over VMBus. For researchers who are conducting research on VMBus, this paper

adds no value, as the same information can already be found on some blog posts online

that unlike this paper also include relevant kernel symbols.  

In the other sources that are not counted as academic papers exists more information

about Hyper-V internals, including information about VMBus. Most of this information

can be found from the blog posts or slides from conference presentations from which

some  even  originate  from  Microsoft  Security  Response  Centre's  (MSRC)  team

members. Most information regarding Hyper-V and VMBus at the beginning of author's

research  was  collected  from  below  mentioned  resources  as  these  are  much  more

accurate, specific, and relevant to the research than information that can be found from

currently published academic literature.

“Fuzzing  para-virtualized  devices  in  Hyper-V”  by  Microsoft  Virtualization

Security Team [10]

Microsoft  Virtualization  Security  team's  publication  as  a  blog  post  that  describes

workings of the VMBus channels and how it can be fuzzed from guest OS side. It is one

of the best currently published resources for anyone who is starting a VMBus based
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research as it provides a good foundation  about the logical implementation and relevant

technical information. Unfortunately it does not cover channel handling internal logic

sufficiently enough that would allow to create more generic tools for monitoring and

modifying existing channel communications.

“A Dive in to Hyper-V Architecture & Vulnerabilities” by Nicolas Joly and Joe

Bialek [11] 

Conference presentation of research conducted by Nicolas Joly and Joe Bialek from

MSRC Vulnerabilities & Mitigations team. This describes very broadly how different

communication  channels  work  inside  Hyper-V  controlled  system.  It  is  a  relevant

knowledge for the beginning of research on Hyper-V,  but it does not go in depth with

technical analysis nor does it provide any information nor guidelines for development of

actual tools or techniques.

“Hardening Hyper-V through offensive security research” by Jordan Rabet [12]

Conference  presentation  of  research  conducted  by  Jordan  Rabet  from  Microsoft

Offensive Security Research (OSR) team. The research focuses on providing general

overview of the VMBus main working logic and bugs that have been discovered so far.

Similarly to the research on “A Dive in to Hyper-V Architecture & Vulnerabilities” by

Nicolas Joly and Joe Bialek the current research also does not present in depth technical

analysis or references to  internals.

"Hyper-V internals” by Artur Kudyaev [13]

Hyper-V  internals  research  by  Artur  Khudyaev  on  VMBus  device  stack  and

initialization implementation.  It is a very thorough research, but unfortunately at the

time of conducting my research the technical information has already aged a few years

and  does cover only some of the aspects needed for VMBus security research.
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As can be seen  from the  referenced  literature,  there  is  some information  about  the

VMBus  working  logic  and  also  some   information  available  in  the  documentation

provided  by  Microsoft  but  simultaneously  there  is  no  provided  information  about

suitable tools or even detailed techniques for researchers on how to monitor, intercept

and fuzz VMBus traffic. This thesis will try to cover this research gap.
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3 VMBus generic info

Microsoft  Virtual  Machine  Bus  (VMBus)  is  a  mechanism  within  the  Hyper-V

architecture that enables logical communication between partitions. The VMBus works

as  the  internal  communications  channel  to  redirect  requests  to  virtual  devices.  In  a

simplified way - VMBus is a virtual bus that is used by the guest and root partitions to

create  communication  channels  between them.  This  is  mostly  used  for  access  for  a

virtualized device that is controlled by the root partition. The root partition has drivers

called  Virtualization  Service  Providers  (VSP)  and  they  communicate  with  guest

partition drivers called Virtualization Service Consumers (VSC). As names indicate, the

VSC drivers  relay  data  related  to  device  communications  to  VSP drivers  over  the

VMBus, and VSP drivers then handle the data. Handling the data might can refer to

relaying it  directly  to  a  physical  device,  emulating  it,  or  to  any combination  of the

mentioned activities. [10]

VMBus itself is implemented as a ring buffer that is mapped to both virtual machines

with the help of Hyper-V. For each data channel there exists two buffers - upstream

buffer  and  downstream  buffer.  Notifications  about  new  data  channels  are  also

implemented via Hyper-V with the help of synthetic interrupts. [10]

Because of the use of multiple VSPs and VSCs, there are also multiple channels over

VMBus.  The  channels  are  called  just  -  channels  or  VMBus  channels  and  they  are

created  by  the  root  partition.  Within  VMBus  exist  regular  channels  and  a  special

subtype of channels called pipes. Pipes are described more in depth in the next chapters.

Communication between regular channel endpoints works by using packets. One side

will send the packet and the other side will handle the packet and respond to the packet

if  possible.  The packet  handling is  based on callback functions  and data  within the

packet can be included in two ways:

1. Data inside ring buffer - this is the data that is copied from the sender's partition

memory to the ring buffer and then copied to the receiver's partition memory.
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This means that from one side the data copying can take longer, but at the same

time there is no possibility for different time-to-check to time-to-use bugs.

2. Included Guest Physical Address Descriptor List (GPADL) - this is a list that can

be used to make some part of the guest partition memory available to receiver's

partition.  With  the  help  of  Hyper-V,  some virtual  memory from the sender's

partition will be also mapped to the other partition.  In the case of large data

buffers, such method is much faster than copying the same buffer twice between

ring buffer. At the same time nevertheless it makes time-to-check to time-to-use

bugs possible because during the time receiver handles the data in this shared

buffer, the sender can still change it. [12]

Application Programming Interface (API) functions for creating and connecting VMBus

channels are partially publicly documented  [7] and header files are included in driver

development SDK. But outside of some functions, the rest of the internals are not public

and the documentation provides a warning “Some information relates to pre-released

product  which  may  be  substantially  modified  before  it's  commercially  released.

Microsoft  makes  no warranties,  express  or  implied,  with  respect  to  the  information

provided here.”  [7]. For example it means that all the structures used by the VMBus

implementations are not available in the documentation or in the symbols server.

Authors contribution is the reverse-engineering the parts of the kernel drivers that are

used  for  VMBus  based  communication,  the  analysis  of  the  overall  logic  of  the

communication and development of the techniques and tool for monitoring, intercepting

and fuzzing the VMBus based traffic

3.1 Research setup

The research environment setup was following:

• Host machine: Linux Mint (Linux Mint 18.3 Sylvia)
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• Outer virtualization software: VMware Workstation 15

• Debugging OS: Windows 10 running in VMware Workstation

• Debugging software: Windbg (pykd extension)

• Reverse engineering tools: IDA Pro

• Research  target  OS:  64  bit  Windows  10   version  19041

(19041.1.amd64fre.vb_release.191206-1406)

• Research target OS specific setup:

◦ Kernel debugging enabled

◦ Debugging over COM port (virtualized by Vmware)

• Crash detection: Via windbg running on “Debugging OS”
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4 VMBus channels internal components

Although several of the VMBus channels's API functions are publicly documented, their

internal workings inside windows kernel is not. Because of this the following chapter

describes the pieces of VMBus internal logic that is found by reverse-engineering the

API and the drivers that implement most of the VMBus logic. 

As the actual research done covers a large amount of technical details, only parts that

are needed to find ways to monitor VMBus channels or intercept and fuzz the traffic are

in the scope of this thesis.

4.1 vmbkmclr.sys driver

Vmbkmclr.sys  is  the  driver  implementing  most  the  API  functionality  for  VMBus

channel communication on host OS. It is used by the VSP drivers and its API is partially

documented by Microsoft  [7]. Since the documentation and also information provided

by the vmbuskernelmodeclientlibapi.h header file from winsdk-10 points mostly to the

functions exported by this driver, it would be reasonable to  start reverse engineering

from this driver. 

4.1.1 Channel allocation function

Before a new channel can be activated and used it has to be allocated by the function

VmbChannelAllocate.  According  to  the  documentation  [14] it  requires  2  input

parameters and 1 output parameter. The input parameters are the parent device object

and the boolean value determining whether the created channel is a server type. The

output  parameter  points  to  the  VMBCHANNEL  structure  (undocumented).  While

reverse  engineering  this  part,  it  can  be  seen  that  the  memory  allocated  for

VMBCHANNEL structure is with pool type NonPagedPoolNx, in size of 3072 bytes,
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and with tag Vkmc. After the allocation the VmbChannelAllocate function calls out the

function KmclInitializeChannel  (the name is based on Windows public symbols, the

function  itself  is  not  exported  under  any  name  or  ordinal).  This  will  initialize  the

structure by zeroing out the entire structure and then setting the following values to the

structure offsets as specified in table 6 at appendix 1. If the channel is not a server type

and  the  kernel  has  AccessPartitionReferenceTsc  privilege  then  it  is  followed  by

initialization described in table 1.

Table 1. Changes made in VMBCHANNEL structure by KmclInitializeChannel if not server

Offset Size Value

0x9E0 word 0x101

0x9F8 qword
Pointer to the allocated work item structure 
(IO_WORKITEM)

0xA80 byte 0x1

0x6F dword 0x80000

0x6FC dword 0x2000000

0xA00
sizeof(PAGED
_LOOKASID
E_LIST)

Initializes NPAGED_LOOKASIDE_LIST structure inside 
channel structure via ExInitializeNPagedLookasideList with 
following parameters:

1. Lookaside = Pointer to structure offset 0xA00

2. Allocate = 0

3. Free = 0

4. Flags = ExDefaultNonPagedPoolType | 
POOL_NX_ALLOCATION

5. Size = 0x20

6. Tag = ‘Vkmc’

7. Depth = 0

0x508 qword Allowable CPU DBC usage
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When the rest of the initialization was successful the function will acquire fast mutex

from WPP_MAIN_CB.DeviceQueue.32 and will add the channel into the double linked

list  of  channels.  The  first  channel  is  referenced  by  the

WPP_MAIN_CB.DeviceQueue.DeviceListHead (vmbkmclr!KmclChannelList) and the

double link structure locates in the channel structure at offset 0x7A0.

4.1.2 Channel initializations function

After the Channel is allocated, there are multiple other functions that can be used to

configure channel additionally. Table 7 at appendix 2 describes some of these functions

by showing what changes each of these cause in VMBCHANNEL structure.

4.1.3 Channel enabling - VmbChannelEnable function

After the channel has been set up it is in a  disabled state by default. In order to enable

the channel,  the VmbChannelEnable function has to be called out. According to the

comments in Windows kernel software development kit  (SDK) header file  “On the

host, this function offers a channel to the guest.  On the guest, this function accepts an

existing offer or waits for such an offer to arrive.  In either case, VmbChannelEnable

does  not  wait  until  the  opposite  endpoint  offers/opens  the  channel  and  returns

immediately. At this point, the channel is enabled but not open.  When the host offers a

channel that the guest is waiting on, or the guest decides to open an existing channel

offer,  kernel  mode  client  library  (KMCL)  will  invoke  the  \ref  EvtChannelOpened

callback.” [15]

As the entire VmbChannelEnable function is a rather large one including multiple calls

to different functions inside vmbkmclr driver it will not be fully described here in detail

because of the complexity. Instead the following list will provide a high level overview

of the inner workings and some of the objects and structures used:

1. Writes log messages via WmiTraceMessage method.
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2. Verifies that channel GUID  is zero GUID.

3. Unless queue management is suppressed (in case of pipe channels for example),

the “in queue” is initialized via InInitializeQueue function and “out queue” is

initialized via OutInitializeQueue function. These functions are described in the

next chapters.

4. The function uses FAST_MUTEX structure for synchronization referenced by

the pointer at channel structure at offset 0x7F8. 

5. If  all  checks  are  successful   then  new channel  is  offered  to  guest  OS  with

function KmclpServerOfferChannel. These functions are described on separate

chapter.

4.1.4 Channel enabling - InInitializeQueue function

InInitializeQueue  function   initializes  the  queue  that  is  being  used  for  incoming

messages. This is not used in case of pipe subtype of channels. The changes made to

channel structure by this function are described in table 8 at appendix 3.

4.1.5 Channel enabling - OutInitializeQueue function

OutInitializeQueue  function  appears  to  initialize  queue  that  is  used  for  outgoing

messages. This is not used in case of pipe subtype of channels. The changes made to

channel structure by this function are described in table 9 at appendix 4.

4.1.6 Channel enabling - KmclpServerOfferChannel function

This function is responsible for sending the channel offer to guest OS via VMBus. The

next steps will give a broad overview of the steps the function goes through to do it:

1. If  the  channel  already  has  VMBus  handle  set  on  offset  0x6E0  then  it  will

generate  a  string  \DosDevices\VMBus\offer\ID  where  ID equals  the  numeric

value of the VMBus handle pointer.  If the VMBus handle is not set then the
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string that will be generated is \DosDevices\VMBus\offer\GUID where GUID

equals to the VM id.

2. Based on the string generated during step 1, the function will request pointer to

the file and device objects with call to the IoGetDeviceObjectPointer. The access

mask of the call is 0x1F01FF. File object pointer is written into channel structure

to the offset 0x988 and device object pointer to offset 0x980.

3. The function puts together a 176 byte buffer that contains a request and sends it

to  the  VMBus  via  KmclpSynchronousIoControl  function.  This  in  turn  uses

IoBuildDeviceIoControlRequest  function  along  with  the  control  code

0x3EC01C to send it to the device (RootVMBus) written to channel structure at

offset  0x980.  The  KmclpSynchronousIoControl  function  is  synchronous  and

waits for the result before returning a value.

4. If  previous  steps  have  been  successful  then  the  function

VmbusSendInterfaceQuery is called out. This will generate an IRP with major

function IRP_MJ_PNP and a minor function IRP_MN_QUERY_INTERFACE

to query interface for the communication from the RootVMBus device driver.

5. After  the  interface  query  has  been  successful,  a  call  to

KmclpInitializeVmbusConnection  will  be  made.  This  function  allocates  IRP

based on stack size of the RootVMBus device's stack size and writes its pointer

to channel structure at the offset 0x9C0. After that there is a function pointer

taken  from  channel  structure  at  offset  0x900  (usually  containing  pointer  to

function vmbusr!BusChGetVmName) and called with following parameters:

1. Qword taken from channel structure at offset 0x848.

2. 0

3. 0

4. Pointer to channel structure offset 0x9B0.

After  the  call  to  KmclpInitializeVmbusConnection  has  been  successful,  the

function  KmclpEnablePerformanceCounters  is  called  to  enable  performance
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counters. This fills some of the values in the channel structure, described in table

2.

6. When VMBus connection is initialized and guest VM is already waiting for the

channel,  then  the  function  KmclpServerOpenChannel  will  be  called.  The

function sets up the last pieces of the channel for it to function correctly and will

be covered in depth in the next chapter. 

Table 2. Changes made in VMBCHANNEL structure by KmclpEnablePerformanceCounters

Offset Size Value

0x7B2 word Length of the instance name

0x7B8 qword Pointer to the instance name

0x7C0 dword Performance counter ID (incremental)

4.1.7 Channel enabling - KmclpServerOpenChannel function

This is the function that opens the channel from host side. It is triggered by the function

KmclpServerOfferChannel  in  case  the  guest  was  already  waiting  for  a  particular

channel  or by function KmclpWaitForActionWorkerRoutine  in  case the channel  was

created from host side before it was requested by the guest. In both cases the function

does the same thing and sets  up the last   actions  for  communication  to begin.  The

overall logic how the function works:

1. Function pointer is taken from the channel structure at offset 0x868 and called

out with following parameters:

1. Qword from channel structure at offset 0x848.

2. Pointer to be allocated a local 64bit integer variable (certainly OUT type).

This  function  pointer  is  currently  always  pointing  to  vmbusr!

BusFdoOpenChannel function.
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2. Function pointer is taken from channel structure at offset 0x898 and called out

with following parameters:

1. Qword from channel structure at offset 0x848.

2. Integer  received  from  function  vmbusr!BusFdoOpenChannel  (second

parameter).

3. 2

4. Pointer to MDL structure (certainly OUT type).

This function pointer  is  by default  pointing to vmbusr!BusChMapGpadlView

function.

3. The MDL received back from vmbusr!BusChMapGpadlView is then locked by

call to MmMapLockedPagesSpecifyCache with parameters that lock it to kernel

access  mode,  MmCached  cache  type  and,  ExDefaultMdlProtection  |

0x40000010 priority.

4. Calls PkInitializeRingBuffer that performs the following actions:

1. Maps existing buffers to additional locations.

2. Initializes  ring  buffer  and  its  controls  by  using  the  function

PkInitializeDoubleMappedRingBuffer. 

5. Sets interrupt mask to skip count in channel structure at offset 0xD8 to point to

channel structure at offset 0x1E8.

6. Calls function InOpenChannel that performs the following actions:

1. Function pointer  is  taken from the  channel  structure  at  offset  0x908 and

called with 2 parameters:

1. Qword from channel structure at offset 0x848.

2. Pointer to local 64bit integer variable (certainly OUT type).
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This  function  pointer  is  currently  always  pointing  to  vmbusr!

BusChGetLockChildPagesParams function.

2. Allocates memory block via ExAllocatePoolWithTag. The size is assigned

from the last function call's second parameter and the tag is ‘Vkmc’.

3. The function pointer is taken from the channel structure at offset 0x8E0 and

called with 3 parameters:

1. Qword from channel structure at offset 0x848.

2. Qword from channel structure at offset 0xB40.

3. Pointer to channel structure at offset 0x590.

This  function  pointer  is  by  default  pointing  to  vmbusr!

BusChCreateAwWorkItem function.

4. Calls function InpReacquirePacketAllocationResources 

4.1.8 Packet allocation

In order to send data over a regular channel, there is a special type of data structures

used - VMBPACKET (undocumented). This data structure is created using the function

VmbPacketAllocate that is partially documented by the header file and in Microsoft's

documentation [8]. Even by using this information, the internal structure of the packet

remains  unknown.   In  order  to understand its  usage better  the package needs to  be

reversed  to  some  extent.  After  investigating  the  disassembled  VmbPacketAllocate

function,  it  is  revealed  that  the  buffer  for  the  structure  is  allocated  from channels

lookaside list which is located in channel structure at offset 0x140. After the buffer is

returned, it is filled as specified in table 3.
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Table 3. Changes made in VMBPACKET structure by VmbPacketAllocate

Offset Size Value

0x9C dword Dword value from channel structure at offset 0x608

0 qword Pointer to the channel structure

0xC dword 0

0x10 qword 0

0x18 qword 0

0x2E byte 0

0x60 qword Pointer to packet structure offset 0xE0

0x68 dword Dword value from channel structure at offset 0x608

0x90 dword 1

0x50 qword 0

0x8 dword 0

0x2D byte 0

0x18 qword
Pointer to packet structure offset 0xE0 + dword value from
channel structure at offset 0x608

0x2E byte 8

0x48 qword Pointer to function VmbPacketFree

Along with VmbPacketAllocate there is also a  function named VmbPacketInitialize

which is meant for use in situations where memory block that will be written to the

structure is provided by the caller.   VmbPacketInitialize function performs the same

initialization as VmbPacketAllocate. 
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4.1.9 Packet initializations

After the packet has been allocated, there are multiple other functions that can be used

for additional  packet configuration.  Table 4 describes some of the configurations  by

showing what changes each of these causes to the VMBPACKET structure.

Table 4. Changes made in VMBPACKET structure by set functions

VmbPacketSetCompletionRoutine

Offset Size Value

0x48 qword Pointer to completion callback function

VmbPacketSetCompletionRoutineEx

Offset Size Value

0x50 qword Callback context

0x58 qword Pointer to compleation callback function

VmbPacketSetPointer

Offset Size Value

0x10 qword Pointer to context

4.1.10 Packet sending functions

There are multiple functions that allow sending packets over a channel. Their main logic

is the same, but there are some  differences that are described in the list below:

1. VmbPacketSend -   most simplistic  function,  allows sending data  in a packet

buffer and/or external data (not copying over the ring buffer but shared directly).

2. VmbPacketSendWithExternalMdl - allows sending data in a packet buffer and/

or external data like VmbPacketSend but additionally allows to specify MDL

offset and MDL length. [16]
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3. VmbPacketSendWithExternalPfns -  allows sending data in a packet buffer and/

or external data like VmbPacketSend but additionally allows to send a array of

PFNs (Page Frame Numbers, effectively Physical addresses) instead of MDL-s.

[17]

4. VmbChannelSendSynchronousRequest - allows sending data in a packet buffer

and/or external data like VmbPacketSend, but waits for the response and returns

completion packet directly. [18]

Because all  the functions above are  extended versions of the VmbPacketSend, then

only this function needs to be reversed in order to understand the sending logic.

In the essence VmbPacketSend function is rather small and simple but its sub-functions

are much more complicated and will  be described separately.  The main logic of the

VmbPacketSend function as follows:

1. Packet structure for sending with function OutSetupGpaDirectPacket is set. The

changes made in the structure are described in table 5.

2. In  case  a  VMBUS_CHANNEL_FORMAT_FLAG_PAGED_BUFFER  is  set,

then the function OutCopyAndSendPacket is called for sending the data in case

paged memory can be handled. Otherwise the function OutSendPacket is called. 

As OutCopyAndSendPacket just copies memory to unpaged location and then calls out

the OutSendPacket function, only OutSendPacket is described in more detail 
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Table 5. Changes made in VMBPACKET structure by OutSetupGpaDirectPacket

Offset Size Value

0x38 dword 0

0x30 qword Pointer to external data MDL structure

0x3C dword 0

0x2D byte 1

0x40 qword 0

0x2E byte
1 if byte from packet structure at offset 0x2E has any bit 
except least significant set or 0x2 flag is set. Otherwise value 
is 0

4.1.11 Packet sending - OutSendPacket function

OutSendPacket function itself is a large and complicated function and it has a lot of

dependencies.  Because of the size and the high number of dependencies  it  was  not

reverse engineered fully for this thesis, but only analyzed as much as needed in order to

understand its main logic and how packets are relayed. The list below  will describe the

most  important  parts  of  the  function  and  its  sub-functions.  Not  all  functions  nor

subfunctions will be executed in all situations.

1. The function sets the IRQL to DISPATCH_LEVEL and acquires a spin lock via

KeAcquireSpinLockRaiseToDpc function.

2. The function calls OutpEnqueuePollingDpc that queues a DPC for execution via

KeInsertQueueDpc function. The KDPC pointer locates itself within the channel

structure at offset 0x308. On success, the dword value in channel structure at

offset 0x348 is incremented.

3. The  function  calls  OutpPreparePacketForIsolation  that  will  isolate  the  data

buffer  in  order  to  get  bounce  buffers  and  create  MDLs.  The  bounce  buffer
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location is written to packet structure offset  0x40 and MDL pointer is in the

same structure and offset 0x30.

4. The  function  registers  a  work  item  with  IoQueueWorkItem  for  a  routine

OutPacketAddMoreBounceWorkerRoutine and sends the packet to the queue for

later use with function OutpEnqueuePacket.

5. In case a packet is not queued for a later sending, then after multiple checks,

verifications, and additional setup, the packet is going to be sent along with one

of  the  following  functions  (depending  on  the  packet  and  overall  setup):

PkSendPacketSimple,  PkSendPacketGpaDirectListm  or

PkSendPacketGpaDirect.
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4.2 Vmbusr.sys driver

Vmbusr driver manages two important aspects of the VMBus communication. First it

manages some higher and lower level core functionalities that are needed for VMBUS

to work at all. Second and  more important for this thesis specifically, it manages the

pipe  type  of  channels.  As  the  pipe  channels  are  read  and  written  using  typical

NtReadFile and NtWriteFile functions (equivalent of a regular ReadFile and WriteFile),

first it must be clarified what stacktraces such functions have.

After  starting  with  NtReadFile  and  tracing  through  the  entire  call  chain  it  can  be

concluded that the call to function vmbusr!PkGetReceiveBuffer is the deepest one. The

entire call stack at that point is shown on following figure 1.

Figure 1.  Windbg output for pipe read operation stacktrace.

It is clear that after the userland process (vmwp.exe) calls NtReadFile and the WDF 

does its filtering and dispatching, the following functions are executed in vmbusr driver:

1. RootFileReadWritePreprocess
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2. PipeRead

3. PipeTryRead

4. PipeTryReadSingle

5. PkGetReceiveBuffer

In next sub-chapters these functions are shortly analysed along with the input parameter 

types as these are important for monitoring and tracking the functions.

For NtWriteFile the logic is similar but when tracing the call chain, the 

PkGetSendBufferEx function is the deepest meaningful function called out when 

triggering NtWriteFile to the pipe channel. Overall the deepest is the PkpValidatePointer

function but the function just verifies the pointer.

Figure 2. Windbg output for pipe read operation stacktrace

It is clear that after the process vmwp.exe calls WriteFile and the WDF does its filtering 

and dispatching, the following functions are executed in the vmbusr driver:

1. RootFileReadWritePreprocess

2. PipeWrite
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3. PipeTryWriteIrp

4. PipeTryWriteDeferred

5. PkGetSendBuffer

6. PkGetSendBufferEx

4.2.1 RootFileReadWritePreprocess function

This  function  is  called  out  by both  NtReadFile  and NtWriteFile  functions.  It  has  2

parameters, but important for this thesis only the second one that is the pointer to the

IRP structure is relevant. Based on its major function the function  vmbusr!PipeRead or

vmbusr!PipeWrite is called out. The function will also derive a pointer to the underlying

pipe structure (undocumented) from the IRP using the following logic:

1. Gets  FsContext  pointer  from  PIRP->Tail.Overlay.CurrentStackLocation-

>FileObject->FsContext

2. If dword from address FsContext+0x8 is 7, then the pipe structure pointer is

taken from  FsContext+0x168. 

3. If dword from address FsContext+0x8 is 6, then the pipe structure pointer is

taken from  FsContext+0x50

The pointer  to pipe structure is  used as a first  parameter  to the PipeRead/PipeWrite

function that is being called out.

4.2.2 PipeRead function

The function has two parameters:

1. Pipe structure pointer.

2. IPR structure pointer.
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This function maps IRP contained MDLs to virtual memory, acquires a spinlock from

the pipe structure (offset 0x0), and after that calls PipeTryRead directly or queues the

call via PipeQueueIrp function.

4.2.3 PipeTryRead function

The function has three parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for something.

Depending  on  the  pipe  structure  configuration,  one  of  the  below functions  will  be

called:

1. If the byte in the pipe structure offset 0x111 is larger than 0, then the function

PipeTryReadMultiple is called with following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for a specific feature.

2. If  the  byte  in  the  pipe  structure  offset  0x111  is  0,  then  the  function

PipeTryReadSingle is called with the following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. 0

4. Out parameter for a specific feature.

4.2.4 PipeTryReadMultiple function

The function has three parameters:
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1. Pipe structure pointer.

2. IPR structure pointer.

3. Out parameter for a specific feature.

This function  endlessly calls out the PipeTryReadSingle function until it finally returns

0  value or until read size has reached the limit specified by the pipe structure (dword

value  pointed  by  pointer+0x8  at  offset  0xB8  in  the  pipe  structure).  The  function

PipeTryReadSingle is called out with  the following parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. 1

4. Out parameter for a specific feature.

4.2.5 PipeTryReadSingle function

The function has four parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. Flag showing is the pipe channel with chained MDLs.

4. Out parameter for a specific feature.

This is the actual function that gets shared to buffer via PkGetReceiveBuffer and reads

data to local buffer which  is returned as a result to NtReadFile

4.2.6 PipeWrite functions

The function has two parameters:

1. Pipe structure pointer.
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2. IPR structure pointer.

This function maps IRP contained MDLs to virtual memory, acquires a spinlock from

the pipe structure (offset 0x0), and after that either calls  PipeTryWriteIrp directly or

queues the call via PipeQueueIrp function.

4.2.7 PipeTryWriteIrp functions

The function has 3 parameters:

1. Pipe structure pointer.

2. IPR structure pointer.

3. In and out parameter – how many bytes to write or to be written.

The function  will  trigger  copying of  necessary  data  to  ring buffer  with  the help  of

function PipeTryWriteDeferred  and if  needed,  then function PipeMapChainedMdl to

also get connected MDLs. After that the function triggers context  switches with the

Hypervisor via functions HviEnterKernelAperture and HviLeaveKernelAperture.

4.2.8 PipeTryWriteDeferred function

The function has 7 parameters:

1. Pipe structure pointer.

2. Unknown integer value, always 1.

3. Out integer parameter.

4. Flag of write size limit (0x4000).

5. Out parameter, bytes that can be written.

6. Unknown out parameter.

7. Out parameter – will return pointer to the buffer to the ring buffer.
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This function gets pointer to the ring buffer and makes all preparations for data to be

copied over. The ring buffer pointer is received via function PkGetSendBuffer.
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5 Monitoring, intercepting and fuzzing traffic

In this chapter the analysis and reverse engineering done in the previous chapters will be

combined into actual knowledge on how to monitor, intercept, and fuzz VMBus based

traffic. This includes the knowledge how  to perform it and actual tools that can be used

for this. All tools will be open sourced and released under MIT License for anyone to

use, extend, and repurpose. 

All debugging plugins described in this paper are written in Python scripting language

by the author of this thesis – they are easier to follow than the ones written in C++. But

for this, the pykd library for python and pykd extension for Windbg are also needed.

5.1 Fuzzing basics

In next subchapters there are lot of mentions of “fuzzing”. Because of this the current

subchapter gives brief explanation what fuzzing is, how fuzzing loop overall works, and

how fuzzing can be used in current context. It has to be kept in mind, that specifics on

how to make every detail needed for fuzzing work together, depends of the overall setup

as specific details for each project have to be determined by the researcher conducting

the specific fuzzing project during the research.

Fuzzing means providing random, mutated or generated inputs  [19] to the target with

the goal  of causing some errors in input  parsing.  Inputs in  current  context  are  data

buffers sent over VMBus ring buffer or shared as external data. 

The fuzzing loop is known as following:

1. Create input

2. Run target with the input

3. If no misbehaviour detected, go to step 1
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4. If misbehaviour detected, store the input that caused it, then go to step 1

In current case, the “misbehaviour “ detected is either invalid read or write by the target

kernel or userland process. The detection part of the loop can most easily be done by the

attached debugger but there are other options such as just detecting the crash of the

kernel or exit of the targeted process. More exact approach has to be selected by the

researcher him- or herself based on the overall fuzzing setup.

5.2 Reading channels

First requirement to start analysing VMBus channels is to get list of the channels with

additional  information  such as  type  (pipe  or  not),  human readable  name (if  exists),

status, handling functions (if not pipe), etc. This information could easily be taken from

VMBCHANNEL if  the  structure  would  be  public,  but  since  it  is  not,  the  reverse

engineering results conducted throughout previous work needs to be used. Additionally

this  means that in case Microsoft does some internal changes to the structure then this

information has to be renewed - in most cases the changes are small and simply the new

offsets has to be taken from same locations. But in the current version (Windows 10

19041,  19041.1.amd64fre.vb_release.191206-1406) the important values and offsets in

VMBCHANNEL structures,  based  on  their  usefulness  for  reverse  engineering  and

security testing, can be taken from table 10 at appendix 5. The usefulness is determined

by how well the values in these locations can be used to determine the behaviour of the

channels or identify them.

When using Windbg the pointer  to  the first  channel  can be found from vmbkmclr!

KmclChannelList. Unless the pointer at that location is pointing to itself, it is pointing

to the double link list structure inside VMBCHANNEL structure. In order to get the first

channel  structure  base  address,  the  command  "?poi(vmbkmclr!KmclChannelList)-

0x7A0” is  required.  From that  all  other  values can be read via  Windbg commands.

Some examples of such commands:

• In order to get interface type GUID bytes:
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◦ db (poi(vmbkmclr!KmclChannelList)-0x7A0+0x61C) L10

• In order to find out whether the pipe flag has been set:

◦ db (poi(vmbkmclr!KmclChannelList)-0x7A0+0x640) L1

• In order to show human readable name:

◦ dt nt!_UNICODE_STRING (poi(vmbkmclr!KmclChannelList)-
0x7A0+0x7C8) L1. 

With  the  help  of  LIST_ENTRY structure  at  0x7A0 offsets,  the  entire  chain  of  the

channels can be traversed, but to do it manually is rather time consuming and therefore

in appendix  1, the python script for Windbg can be found. The script displays all the

channels including their detailed information. It displays the internal information such

as GUID values (it is important that the GUID values have to be read as little endians

not as big endians described by RFC 4122), some configuration values and callback

functions. This information is sufficient for the research.

5.3 Intercepting regular channels using a debugger

Intercepting  regular  channels  is  rather  simple  when  using  a  debugger.  Since

showChannels.py  script  returns  the  callback  functions,  it  is  straightforward  to  set

breakpoints  for  these  locations.  For  example,  in  order  to  intercept  storage  related

packages sent via VMBus to storvsp driver (configuration displayed on figure 3), the

command to use is:
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bp storvsp!VspPvtKmclProcessPacket

Figure 3. ShowChannels.py script output

The breakpoint should be triggered rather fast and since the prototype of the handler

function is known  [20] and shown on figure 4, the parameters can be parsed.

Figure 4. Channel packet handling function prototype

In case there  is  a  need to  verify  it,  the  first  parameter  should point  to  the  channel

structure, but in most cases only the last four parameters are relevant. Third and fourth

parameters give input buffer with length that was received from the ring buffer. Second

parameter  points  to  the  completion  packet  structure  VMBPACKETCOMPLETION

(different  than   VMBPACKET)   that  can  be  useful  to  recover  shared  memory
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information for situations where GPADLs were sent along with the packet. These are

determined by the fifth parameter. The completion packet structure is also used when

driver  finishes  the  handling  of  the  packet  using  the  function

VmbChannelPacketComplete. [21]

The inner logic of how the GPADL conversion to MDL is done, is implemented by

function VmbChannelPacketGetExternalData  [22]. There are 2 important aspects that

can be taken from the function:

1. If the GPADL to MDL conversion has already been done, then the pointer to

MDL is cached in the packet structure at offset 0x30.

2. If  the  GPADL to  MDL conversion  has  not  been  done,  then  long  chain  of

function calls will be made that lock the referenced pages, acquire GPA lock,

etc.  For  most  part  it  is  not  useful  to  reverse  the  entire  logic  because  in  all

situations where external data is being used, it is recovered by the drivers using

this function. Because of that it is easier to add a breakpoint on return of this

function and recover MDL structure after that. Or if an own driver is used for

interception, then VmbChannelPacketGetExternalData function itself should be

called.

Based on this information it can be seen how data moves through the handler function.

For example  in  a  case of  channel  shown on figure 3,  researcher  can track ongoing

requests to the specified channel with such breakpoint: 

bp storvsp!VspPvtKmclProcessPacket ".printf \"Input packet at 0x%p 
with buffer at 0x%p with size 0x%X - \", rdx, r8, r9; 
.if(poi(rsp+0x28)&1 > 0){.printf \"EXTRA DATA\\n\"}.else{.printf \"NO 
EXTRA DATA\\n\"};"

If  there  is  a  wish to  allow tracking  of  external  data  received,  then  it  can  easily  be

implemented by using a short Python script like the one added in appendix 2.
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5.4 Intercepting regular channels using a driver

While intercepting channels with a debugger is straightforward, it is not always the best

solution for intercepting the channels. Every request interception means that the entire

OS is stopped, debugger has to get out the necessary data over the debugging channel

and only then OS will resume its work. This will create lot of overhead. Because of that

it is often more reasonable to perform the interception in host kernel using a special

driver. The main workflow of such interception by the driver is rather simple:

1. Driver  has  to  have  an  interception  function  with  the   prototype

PFN_VMB_CHANNEL_PROCESS_PACKET.  This  will  record  all  required

data and then jump to the actual handler (stored in step 3).

2. Find structure of the channel to intercept.

3. Store ProcessPacketCallback pointer from the channel structure.

4. Overwrite ProcessPacketCallback pointer in the structure to point the driver its

own function (described at step 1).

5. Keep interception working until it will be stopped and then restore the original

pointer that was overwritten in step 4.

While the logic is rather simple, there is one larger problem – since developers should

not handle the channel structures directly, there is no good way to get a location of the

existing channels.  In debugger  solution the vmbkmclr!KmclChannelList  symbol was

used to find pointer to the first channel. This nevertheless is not an exported value by

the driver, but a simple debug symbol. So based on these findings there are at least 3

options to get the pointer location by driver:

1. Hardcode the offset of the pointer for vmbkmclr driver. This is a shorter term

solution as with every OS update it is possible that the offset will change.
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2. Allocate and initialize own channel. This will be added to the linked list and

after that the driver can move back through the list to find other channels.

3. Find offset from one of the vmbkmclr exported function in a way that is not

likely to break with  every OS update.

Author of the paper has been mostly using options 1 and option 3. Option 1 is rather

reasonable for a researcher because the hardcoded value has to be renewed only once a

month after Microsoft's patch Tuesday and it is a rather simple thing to find using a

debugger:

?vmbkmclr!KmclChannelList-vmbkmclr

Using  option  3  is  a  little  bit  more  efficient  for  other  situations  –  for  example  for

situations where symbols are not available   or when the tool is used by others who

cannot make necessary changes themselves. The author has used DllInitialize function

in  order  to  solve  that  problem.  In  DllInitialize  KmclChannelList  is  referenced  as

following:

mov     qword ptr cs:WPP_MAIN_CB.DeviceQueue.Type, rax

Based on the facts above and rest of the DllInitialize function, the driver has to perform

the following steps:

1. Locate DllInitialize function from vmbkmclr driver exports.

2. Locate first 3 bytes with values 0x48 0x89 and 0x05 from the given function.

3. Read the following 4 bytes as an dword value (OFFSET).

4. Calculate  the location  of the  KmclChannelList  using the following formula:

Location of step 2 + 0xFFFFFFFF00000000 + OFFSET + 0x7.

5. Calculation has to take the integer overflow into consideration. 

The explained method can most likely endure multiple OS updates until DllInitialize

function is changed in a way that creates different machine code.
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In addition  it  also has to be noted, that when the driver stores recorded data to the

filesystem, it should be done via work queue logic as in some cases the packet handlers

are called out with IRQL higher than PASSIVE_LEVEL. This means that writing onto

filesystems  results  in  kernel  crash.  A mitigation  measure  is  to  always  copy all  the

buffers to work queues and its effects can be reduced by only using them where IRQL is

not at PASSIVE_LEVEL. 

5.5 Testing/fuzzing regular channels using a debugger

After the interception part has been clarified it is now possible to move further to testing

and fuzzing parts.   A handler function is problematic to trigger by using debugger, but

it’s possible to intercept the existing requests and to make changes in them which in the

other words can be referred to  as performing mutational  fuzzing. The author of the

paper  has  found a  vulnerability  CVE-2019-0695  [23] in  hypercalls  using  the  given

method. This method is rather efficient but also contains the following problems:

1. The number of requests made is controlled by the guest VM and it is hard to

make it do more. While the requests being made are valid ones and suit very

well for mutations, the bandwidth is not very good.

2. Since fuzzer is modifying active request that the guest OS is relaying on, then

the modification will  result in guest OS crashing rather fast, either by leaving

the request hanging or acting otherwise unexpectedly. Because of crashing the

guest  OS the  environment  has  to  be  recovered  often  and this  is  rather  time

consuming. 

While debugger cannot trigger requests to handler function in a usual way, there is still

another option how similar situation could be achieved to work up to a certain point.

This handler function logic is mostly the following:

1. Handler function is called out by vmbkmclr driver.

2. Handler function gets input buffer and MDL values needed.

3. Handler function does its work.
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4. Handler  function  marks  request  complete  by  using  the  function

VmbChannelPacketComplete.

Because of this logic and the fact that VMBPACKETCOMPLETION structure can be

restored by the debugger, it is possible to perform the following fuzzing loop:

1. Debugger adds breakpoint to the beginning of a handling function.

2. Debugger lets the OS run.

3. Debugger breaks at handler function breakpoint.

4. Debugger stores thread address and all registry values.

5. Debugger adds breakpoint to VmbChannelPacketComplete function.

6. Debugger removes breakpoint added in step 1

7. Debugger lets the OS run.

8. Debugger breaks at VmbChannelPacketComplete function.

9. If the thread is the same as stored in step 4, the registry values are restored to the

ones  in  step  4  and  the  input  buffer  and/or  MDL buffer  will  be  randomly

modified.

10. Return to step 7.

This kind of approach allows the usage of the same request to actually force handler

function to handle the request multiple times, destroying the downside of not being able

to  start  requests.  But  this  implementation  might  not  always  work  because  of  the

internals of handler functions. There are multiple reasons for it not to work in same

situations but in most cases this is still a viable approach.

5.6 Testing/fuzzing regular channels using a host kernel driver

After the fuzzing is completed by the OS kernel driver, then the subsequent approach is

very similar to the interception part described in chapter 5.3. The only difference is that
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the driver does not record the packet  buffer  and MDL buffer but randomly changes

them. The changes have to be recorded for crash situations. The author of this paper

usually implements the procedure in following way:

1. Driver allocates some memory in the kernel.

2. Location  of  the  allocation  is  sent  to  the  kernel  debugger  using  DbgPrint

function.

3. With every fuzzing iteration the thread pointer, buffer location, MDL location,

and changes made are stored on location allocate at step 1.

4. If a crash occurs, the debugger can be used to recover changes made by the

driver from location relayed to debugger during step 2.

5.7 Testing/fuzzing regular channels using a guest kernel driver

Similarly  to  the host kernel  drivers,  the  guest  kernel  driver  has to  first  allocate  the

location of the existing channels from the system. The only difference is that the driver

used  for  this  is  not  vmbkmclr.sys  as  previously  but   vmbkmcl.sys.  Most  logic  and

functionality remains the same. The functions and variable offsets are different, but can

be located using same methods as when using vmbkmclr. After the target channel has

been found, the regular Vmb functions such as VmbPacketSend  [24] can be used to

send data to the host kernel.

In such cases, the data sent by the driver has to be self generated and there are 3 options

how to generate the required data:

1. By sending random data or dumb fuzzing  [19]. Data being sent is  randomly

generated in full. This approach rarely works.

2. by sending modified data or mutational fuzzing [19]. This approach requires that

some of the traffic is previously recorded and can now be randomly modified

and sent over. This approach is commonly most time effective as this can be

quickly  implemented,  does  not  require  a  lot  of  reverse-engineering,  but

generates almost correct inputs.

49



3. By  generating  correct  data  or  smart  fuzzing  [19].  Using  this  approach,  the

researcher has to first reverse engineer the protocol being sent over and then

write the generator that will generate inputs based on the protocol. This is the

most  comprehensive  way  to  fuzz,  but  it  is  highly  time  consuming  at  the

beginning.

The author of this paper is mostly using the mutational fuzzing in order to avoid huge

time consumption for the topics that are not guaranteed to give the desired results. From

the other aspect smart fuzzing is a good option in case the target is highly valuable and

additional time consumption is not a problem.

5.8 Intercepting pipe channels using a debugger

As previously described in chapter 4.2, the pipe channels data is received by VMWP

and via regular ReadFile API call. Due to this reason, there is no handler function to add

a breakpoint for. But at the same time there are couple of functions that will always be

called whenever data is read from the pipe channel. One of these functions is vmbusr!

PipeTryReadSingle and it includes 2 important parameters:

1. The first parameter is a pointer to pipe structure data from where at offset 0x100

the pointer to channel structure can be found.

2. The  second  parameter  is  the  IRP structure  pointer  that  contains  information

about read length and the buffer where data is written.

While it is straightforward to intercept  PipeTryReadSingle function, the interception is

happening at  the moment  when the  data  has not  yet  been received.  The breakpoint

should be put at the end of the function to handle the situation after the read operation is

over. At that point, the values of original function parameter registers (rcx and rdx) have

been changed. Fortunately the values are still held around on other registers so it is not

necessary to have additional breakpoint at the start of function for a parameter storage.

At the end of the function, the original first parameter can be found from the register rbx

and second parameter from register rsi. 

50



Additionally  to  the information  found above it  should also be noted that  these read

operations often return 0 bytes, and thereby these cases should be also sorted out. In

order to simply display read operation results to the debugger, the following windbg

command can be used for it to function correctly (0x3ac is offset from the beginning of

PipeTryReadSingle to its ret opcode):

bp vmbusr!PipeTryReadSingle+0x3ac ".printf \"Read from channel 0x%p - 
size: 0x%X\\n\", poi(rbx+0x100), poi(rsi+0x38); .if(poi(rsi+0x38) == 
0){.echo \"NO DATA\";}.else{db poi(poi(rsi+0x8)+0x18) 
poi(poi(rsi+0x8)+0x18)+poi(rsi+0x38)-1;};gh;"

5.9 Intercepting pipe channels using a driver

Intercepting pipe channel traffic using a driver requires extra effort  than intercepting

regular channels. As there are no handler functions, the interception requires injection of

machine code snippet that will make the code flow jump to the driver code. The location

for the code injection is the end of the function PipeTryReadSingle. The main logic for

this is as follows:

1. The driver  implements  function/s  capable of filtering  and recording data  and

recovering  to the status expected by the  PipeTryReadSingle function.

2. The  driver  locates  end  of  the  PipeTryReadSingle   function  and  adds  a

conditionless jump to the function described in step 1.

3. When the  CPU reaches  the  execution  of  the  end of  the  PipeTryReadSingle

function, the codeflow will switch to the function described at step 1, where data

is recorded and correct values of the registers are restored before returning to the

PipeTryReadSingle caller function.

5.10 Testing/fuzzing pipe channels using a debugger

Exactly like with regular channels, the debugger cannot initiate writes to the channels,

but has to work on the traffic already being generated. This means that that bandwidth

cannot be very high – it’s highly dependent but usually not more than couple of requests

per second. In addition there are lot on reads that do not return a result. These could
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potentially be used to generate random responses - filling up everything needed and

setting IRP structure status and values. The author has not tried to generate  random

responses as this did not seem to achieve any goals that would be considered valuable.

5.11 Testing/fuzzing pipe channels using a host kernel driver

The approach is the same as with the interception driver described at chapter 5.8 and

fuzzing driver at 5.5. The access to the data will be achieved in a way described in

chapter 5.8 and the fuzzing logic and modification storage implemented and achieved as

in chapter 5.5.

5.12 Testing/fuzzing pipe channels from guest system

Write  operations  to  the  pipe channel  can be triggered  from guest  system with  both

kernel driver and for most part also by a userland program. All code that runs outside

the operating system's kernel belongs to the userland, that is sometimes also referred to

as user space. In both cases usual NtWriteFile/WriteFile functions can be used and input

generation  methods  have  same  options  as  described  in  chapter  5.6.  As  already

previously, the author recommends using either mutational fuzzing or smart fuzzing for

pipe channels  from the guest  system as  dumb fuzzing almost  never  give results  on

hardened targets.  

5.13 Tools developed based on  the research

Based on reverse engineering performed throughout chapters 4 to 4.28 and methods

created for monitoring, interception, and fuzzing in chapters 5 to 5.11, the author has

created  a  new  toolset  for  VMBus  research.  The  toolset  is  available  from  github

repository at https://github.com/JaanusKaap/ThesisMaterials.

The toolset code is broken into smaller pieces in order to make it easily  understandable

and  simply  modifiable.  The  driver  code  is  separated  to  different  drivers  and  not

implemented on a single one, in order to clarify the understanding of each functionality.
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The following list  will  describe different  tools developed,  what is their  purpose and

profitability for the researchers:

• Windbg scripts https://github.com/JaanusKaap/ThesisMaterials/scripts

The scripts meant to run in Windbg debugger. All scripts have been written in 

python (preference of the author) and therefore require pykd library for python 

and Windbg itself.

◦ showChannels.py

Displays  information  about  the  VMBus  channels  locations,  internal

configuration values, and handler functions.

◦ recordChannel.py

Records  regular  channel  traffic  to  the  debugger  machine  filesystem with

different filtering options.

◦ recordPipeChannel.py

Records  pipe  channel  traffic  to  the  debugger  machine  filesystem  with

different filtering options.

◦ fuzzChannelOnInterception.py

Fuzzes traffic passing through the regular channel handler function. Can be

configured with different settings and allows fuzzing of external data. Crash

detection is simple and no crash analysis is performed by the script.

◦ fuzzPipeChannelOnInterception.py

Fuzzes traffic passing through the pipe channel during read operation. Can

be configured with different  settings.  Crash detection not included as the

crash happens in VMWP process, the fuzzing data is logged.

◦ fuzzChannelRepetition.py

Fuzzes traffic passing through the regular channel handler function but with

additional capability to replay the VMBPACKETCOMPLETION handling

as explained in chapter 5.4. Can be configured with different settings and

allows  fuzzing  of  external  data.  Crash  detection  is  simple  and  no  crash

analysis will be performed by the script.
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• Drivers https://github.com/JaanusKaap/ThesisMaterials/DriversTools

◦ VMBusChannels.sys

Can  locate  information  about  the  existing  channels  and  return  internal

information about them to userland process.

◦ VMBusIntercept.sys

Can  intercept  traffic  moving  through  the  regular  VMBus  channels  with

capability  to  store  this  data  on  filesystem.  Stores  both  ring  buffer  and

external data.

◦ VMBusFuzz.sys

Can fuzz traffic moving through the regular VMBus channels while storing

all current fuzzing information to exported location making it possible to be

found by the debugger in case of a crash. Can fuzz both ring buffer and

external data.

• Libraries https://github.com/JaanusKaap/ThesisMaterials/DriversTools

Dll files are good way to make it easier for any language to communicate with 

drivers without requiring to implement entire driver communication logic.

◦ VMBusChannels.dll

Contains all methods needed for communication with VMBusChannels.sys

driver.

◦ VMBusIntercept.dll

Contains all methods needed for communication with VMBusIntercept.sys

driver.

◦ VMBusFuzz.dll

Contains  all  methods  needed  for  communication  with  VMBusFuzz.sys

driver.

• Tools https://github.com/JaanusKaap/ThesisMaterials/DriversTools

Programs that allow user to communicate with drivers
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◦ VMBusChannels.exe

Tool  that  can  communicate  with  VMBusChannels.sys  driver  in  order  to

display the user information about existing VMBus channels.

◦ VMBusIntercept.exe

Tool that can communicate with VMBusIntercept.sys driver in order to set

up  recording  of  ongoing  VMBus  regular  channel  traffic  including  some

additional filtering and setup options.

◦ VMBusFuzz.exe

Tool that can communicate with VMBusFuzz.sys driver in order to set up

fuzzing  of  the  VMBus  regular  channel  traffic  with  some  configuration

options.
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6 Summary

In this paper, the author reverse engineered and analysed some of the internal workings

of  VMBus  implementation  in  Windows  10  version  19041

(19041.1.amd64fre.vb_release.191206-1406) running on x64 architecture. 

The analysis was driven by the goal to be able to create methods for creation of tools to

monitor,  intercept,  and fuzz  data  moving  through  VMBUS between  guest  and  host

systems.  The  resulting  knowledge,  tools  and  methods  can  now be  used  to  perform

additional  vulnerability  research  with  the  end-goal  of  finding  new  security

vulnerabilities and bugs in kernel drivers that provide virtualization service provider

functionality  support  and in  virtual  machine  working processes  running in  the  host

system userland. The tools created are publicly available from github under MIT license

from https://github.com/JaanusKaap/ThesisMaterials.
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Appendix 1 – Table of KmclInitializeChannel changes

Table 6. Changes made in VMBCHANNEL structure by KmclInitializeChannel

Offset Size Value

0x7F8 dword 0x1

0x810
sizeof(KEV
ENT)

Kernel event structure for synchronizationEvent with unsignaled 
status

0xAE8 dword 0x1

0xB00
sizeof(KEV
ENT)

Kernel event structure for synchronizationEvent with unsignaled 
status

0x0 dword Pointer to the structure itself

0xB38 qword Pointer to the structure offset 0xB30

0xB30 qword Pointer to the structure offset 0xB30

0xB28 qword Pointer to the structure offset 0xB20

0xB20 qword Pointer to the structure offset 0xB20

0x9F0 qword Pointer to the structure offset 0x9E8

0x9E8 qword Pointer to the structure offset 0x9E8

0x3F0 byte 0x1

0x4B4 dword If server flag is set, then 0x100, otherwise 0xFFFFFFFF

0x600 byte Server flag

0x830 byte If the server flag is not set, then value is OR-ed with 0x1

0x6F0 dword 0xFFFFFFFF
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Offset Size Value

0x738 qword Pointer to function KmclpDefaultChannelOpenedEx

0x740 qword Pointer to function KmclpDefaultChannelClosed

0x748 qword Pointer to function KmclpDefaultChannelClosed

0x750 qword Pointer to function KmclpDefaultChannelClosed

0x758 qword Pointer to function KmclpDefaultChannelClosed

0x798 qword Pointer to function KmclpDefaultChannelClosed

0xB40 qword Pointer to the parent device object

0x7F0 qword Pointer to the allocated work item structure (IO_WORKITEM)

0x9C8 qword Pointer to the allocated work item structure (IO_WORKITEM)
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Appendix 2 – Table of initialization functions changes

Table 7. Changes made in VMBCHANNEL structure by initialization functions

VmbChannelInitSetBounceBufferSizes

Offset Size Value

0x6F4 dword
Size of bounce buffer 1

Limitation: Has to be larger then 0x40000 and page sized

0x6F8 dword
Size of bounce buffer 2

Limitation: Has to be larger then 0x40000 and page sized

0x6FC dword
Size of bounce buffer 3

Limitation: Has to be larger then 0x40000 and page sized

VmbChannelInitSetClientContextSize

Offset Size Value

0x614 dword Size of the client context

VmbChannelInitSetFlags

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x640 byte Flag VMBUS_CHANNEL_INIT_FLAG_IS_PIPE
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VmbChannelInitSetFriendlyName

Limitations
• Dword at structure offset 0x7D8 has to be 0

• Qword at structure offset 0x7D0 has to be 0

Offset Size Value

0x7C8

sizeof(UNICO
DE_STRING)

UNICODE_STRING structure referencing the human 
readable name of the channel

VmbChannelInitSetInlinePacketContextSize

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x618 dword

Size of the inline packet context size. The actual value set 
is input (value + 7) & 0xFFFFFFF8

Limitation: Can only be set when dword at structure offset
0x7D8 is 0

VmbChannelInitSetMaximumExternalData

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x60C dword Maximum data size

0x610 dword Maximum chain length

VmbChannelInitSetMaximumPacketCount

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x604 dword Maximum packet count
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VmbChannelInitSetMaximumPacketSize

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x608 dword Maximum packet size

VmbChannelInitSetPrimaryChannel

Limitations

• Dword at structure offset 0x7D8 has to be 0

• Byte at structure offset 0xAE0 has to be 0

• Byte at primary channel structure offset 0x700 has to be 0

• Byte at primary channel structure offset 0x830 can’t have third bit 

set

Offset Size Value

0xAD8 qword Pointer to primary channel

0xAE0 byte 1

0xB50 word Subchannel index

VmbChannelInitSetProcessPacketCallbacks

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x708 byte 0

0x710 qword Pointer to ProcessPacketCallback function

0x718 qword Pointer to ProcessingCompleteCallback function
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VmbChannelInitSetProcessPacketCallbacksEx

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x708 byte 0

0x720 qword
CallbackContext value that is provided with all calls to 
ProcessPacketCallbackEx and 
ProcessingCompleteCallbackEx for this channel

0x710 qword Pointer to ProcessPacketCallbackEx function

0x718 qword Pointer to ProcessingCompleteCallbackEx function

VmbChannelInitSetShortLifetimeThreshold

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x63C dword Short lifetime threshold value

VmbChannelInitSetStateChangeCallbacks

Limitations
• Dword at structure offset 0x7D8 has to be 0

• Callbacks structure has to be version 1 or 5

Offset Size Value

0x728 byte
1

Limitation: Only set when input structure version is 5

0x738 qword Pointer to EvtChannelOpened callback

0x740 qword Pointer to EvtChannelClosed callback

0x748 qword Pointer to EvtChannelSuspend callback

0x750 qword Pointer to EvtChannelStarted callback

0x758 qword Pointer to EvtChannelPostStarted callback
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VmbChannelInitSuppressQueueManagement

Limitations • Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x601 byte 1

0x790 qword Pointer

VmbChannelSetIncomingPollOnCompletion

Offset Size Value

0x3F0 byte Is set 0 if flag parameter is 0, otherwise 1

VmbChannelSetIncomingProcessingAtPassive

Offset Size Value

0x3F2 byte Is set 0 if flag parameter is 0, otherwise 1

0x3F1 byte Is set 1 if flag parameter is not 0

VmbChannelSetPointer

Offset Size Value

0x838 qword Pointer to the parameter specified location

VmbServerChannelInitSetTargetInterfaceId

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x61C sizeof(GUID) Interface type GUID

0x62C sizeof(GUID) Interface instance GUID
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VmbServerChannelInitSetTargetVtl

Limitations

• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

• VTL value provided can’t be larger then 2

Offset Size Value

0x702 byte VTL parameter value

VmbServerChannelInitSetVmId

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x650 sizeof(GUID) VM id

VmbServerChannelInitSetVmbusHandle

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x6E0 qword VMBus handle pointer
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VmbChannelInitSetFlags

Limitations
• Byte at structure offset 0x600 can’t be 0

• Dword at structure offset 0x7D8 has to be 0

Offset Size Value

0x641 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_LOOPBA
CK_OFFER flag

0x642 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_ENUMER
ATE_DEVICE_INTERFACE  flag

0x643 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_OFFER_
AS_PIPE  flag

0x644 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_FORCE_
NEW_CHANNEL  flag

0x645 byte
VMBUS_SERVER_CHANNEL_INIT_FLAG_TLNPI_P
ROVIDER_OFFER  flag
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Appendix 3 – Table of InInitializeQueue changes

Table 8. Changes made in VMBCHANNEL structure by InInitializeQueue

Offset Size Value

0x388 dword 0x0

0x510
sizeof(KDP
C)

Initialized DPC object with DeferredRoutine pointer pointing 
to function InpProcessingDpcRoutine and DeferredContext 
pointing to channel structure itself

0x550
sizeof(KDP
C)

Initialized DPC object with DeferredRoutine pointer pointing 
to function InpProcessingDpcRoutine and DeferredContext 
pointing to channel structure itself

0x598 dword -1 or 0xFFFFFFFF

0x59C dword -1 or 0xFFFFFFFF

0x5A0 dword -1 or 0xFFFFFFFF

0x448 qword Pointer to channel structure offset 0x440

0x440 qword Pointer to channel structure offset 0x440

0x398 qword Pointer to channel structure offset 0x390

0x390 qword Pointer to channel structure offset 0x390

0x458 qword Pointer to channel structure offset 0x450

0x450 qword Pointer to channel structure offset 0x450

0x4B0 dword Dword from channel structure offset 0x614

0x3F3 byte Single byte from channel structure offset 0x646

0x4BC dword 0
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Offset Size Value

0x4D8 qword 0

0x46C dword Dword from channel structure offset 0x63C

0x710 qword Pointer to function InpChannelProcessPacketExNoOp

0x718 qword Pointer to function KmclpDefaultChannelClosed

0x4E4 dword Something related to sizes of external data

0x4E0 dword Something related to sizes of external data
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Appendix 4 – Table of OutInitializeQueue changes

Table 9. Changes made in VMBCHANNEL structure by OutInitializeQueue

Offset Size Value

0x100
sizeof(SPIN_
LOCK)

Spin lock object initialized with KeInitializeSpinLock

0x240
sizeof(SPIN_
LOCK)

Spin lock object initialized with KeInitializeSpinLock

0x110 qword Pointer to structure at offset 0x0x110

0x118 qword Pointer to structure at offset 0x0x110

0x288
sizeof(TIMER
)

Timer structure initialized with KeInitializeTimer

0x2C8 sizeof(KDPC)
Initialized DPC object with DeferredRoutine pointer pointing 
to function OutpPollingDpcRoutine and DeferredContext 
pointing to channel structure itself

0x308 sizeof(KDPC)
Initialized DPC object with DeferredRoutine pointer pointing 
to function OutpPollingDpcRoutine and DeferredContext 
pointing to channel structure itself
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Offset Size Value

0x140
sizeof(PAGED
_LOOKASID
E_LIST)

Initializes NPAGED_LOOKASIDE_LIST structure inside 
channel structure via ExInitializeNPagedLookasideList with 
following parameters:

1. Lookaside = Pointer to structure offset 0x140

2. Allocate = 0

3. Free = 0

4. Flags = ExDefaultNonPagedPoolType | 
POOL_NX_ALLOCATION

5. Size = Dword taken from structure offset 0x618 + 
dword taken from structure offset 0x608 + 0x224 

6. Tag = ‘Vkou’

7. Depth = 0

0x1C0
byte 1

0x250 qword 0

0x258 qword 0

0x260 qword 0

0x268 qword 0

0x248 qword Pointer to channel structure at offset 0x260

0x25C dword ExDefaultNonPagedPoolType

0x254 dword
If dword in structure at offset 0x604 is larger then 0x4000 
then this is written, otherwise 0x4000

0x258 dword 0x636D6B56

0x250 dword 1
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Appendix 5 – Table of VMBCHANNEL members

Table 10. Most useful members of  VMBCHANNEL structure

Offset Size Value

0x0 qword Pointer to structure itself (for verification)

0x604 dword Maximum packet count

0x608 dword Maximum packet size

0x614 dword Client context size

0x61C sizeof(GUID) Interface type GUID

0x62C sizeof(GUID) Interface instance GUID

0x640 byte Pipe flag

0x650 sizeof(GUID) VM id GUID

0x6E0 qword VMBus handle pointer

0x702 byte VTL value

0x710 qword Pointer to ProcessPacketCallback callback

0x718 qword Pointer to ProcessingCompleteCallback callback

0x720 qword
CallbackContext value that is provided with all calls to 
ProcessPacketCallbackEx and 
ProcessingCompleteCallbackEx for this channel

0x738 qword Pointer to EvtChannelOpened callback

0x740 qword Pointer to EvtChannelClosed callback

0x748 qword Pointer to EvtChannelSuspend callback
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Offset Size Value

0x750 qword Pointer to EvtChannelStarted callback

0x758 qword Pointer to EvtChannelPostStarted callback

0x7A0
sizeof(LIST_
ENTRY)

Double link list structure connecting all channels

0x7C8
sizeof(UNICO
DE_STRING)

UNICODE_STRING structure referencing the human 
readable name   

0x838 qword Channel set pointer

0xAD8 qword Primary channel

0xB40 qword Parent device object

0xB50 word Subchannel index
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Appendix 6 – showChannels.py script

import pykd

import uuid

header = pykd.getOffset("vmbkmclr!KmclChannelList")

nextPtr = pykd.loadQWords(header, 1)[0]

if header == nextPtr:

print "No channels found!"

exit()

def byteArray2ByteBuffer(arr):

ret = ""

for x in arr:

ret += chr(x)

return ret

while nextPtr != header:

base = nextPtr – 0x7A0

print "Channel at 0x%X" % base 

if pykd.loadQWords(base, 1)[0] !=  base:

print "  INVALID CHANNEL"

exit()

pipe = pykd.loadBytes(base + 0x640, 1)[0]

interfaceTypeGuid = 
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x61C, 
16)))

interfaceInstanceGuid = 
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x62C, 
16)))

vmIdGuid = 
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x650, 
16)))

pointer = pykd.loadQWords(base + 0x838, 1)[0]

primaryChannel = pykd.loadQWords(base + 0xAD8, 1)[0]

parentDeviceObj = pykd.loadQWords(base + 0xB40, 1)[0]

subchannelIndex = pykd.loadWords(base + 0xB50, 1)[0]

packetCallback = pykd.loadQWords(base + 0x710, 1)[0]

completeCallback = pykd.loadQWords(base + 0x718, 1)[0]

channelOpened = pykd.loadQWords(base + 0x738, 1)[0]
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channelClosed = pykd.loadQWords(base + 0x740, 1)[0]

channelSuspended = pykd.loadQWords(base + 0x748, 1)[0]

channelStarted = pykd.loadQWords(base + 0x750, 1)[0]

channelPostStarted = pykd.loadQWords(base + 0x758, 1)[0]

if pipe > 0:

print "  --Pipe--"

else:

print "  --Normal channel--"

print "  Interface type: %s" % str(interfaceTypeGuid)

print "  Interface instance: %s" % str(interfaceInstanceGuid)

print "  VM id: %s" % str(vmIdGuid)

print "  Pointer: 0x%X" % pointer

print "  Parent Device Object: 0x%X" % parentDeviceObj

print "  Primary channel: 0x%X" % primaryChannel

print "  Sub channel index: 0x%X" % subchannelIndex

print "  Callbacks"

if packetCallback > 0:

print "    packet callback = 0x%X (%s)" % (packetCallback,
pykd.findSymbol(packetCallback))

if completeCallback > 0:

print "    packet completion callback = 0x%X (%s)" % 
(completeCallback, pykd.findSymbol(completeCallback))

if channelOpened > 0:

print "    channel opened = 0x%X (%s)" % (channelOpened, 
pykd.findSymbol(channelOpened))

if channelClosed > 0:

print "    channel close = 0x%X (%s)" % (channelClosed, 
pykd.findSymbol(channelClosed))

if channelSuspended > 0:

print "    channel suspended = 0x%X (%s)" % 
(channelSuspended, pykd.findSymbol(channelSuspended))

if channelStarted > 0:

print "    channel started = 0x%X (%s)" % (channelStarted,
pykd.findSymbol(channelStarted))

if channelPostStarted > 0:

print "    channel post started = 0x%X (%s)" % 
(channelPostStarted, pykd.findSymbol(channelPostStarted))

nextPtr = pykd.loadQWords(nextPtr, 1)[0]

print "\n"
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Appendix 7 – Script handling buffer and MDL from packet 

handlers

import pykd

import uuid

import sys

def byteArray2ByteBuffer(arr):

ret = ""

for x in arr:

ret += chr(x)

return ret

def checkValidChannel(addr):

return (pykd.loadQWords(addr, 1)[0] == addr)

def getChannelPtr(channel):

if isinstance(channel, int) and not checkValidChannel(channel):

return None

if isinstance(channel, str):

header = pykd.getOffset("vmbkmclr!KmclChannelList")

nextPtr = pykd.loadQWords(header, 1)[0]

if header == nextPtr:

return None

while nextPtr != header:

base = nextPtr - 0x7A0

if not checkValidChannel(base):

return None

interfaceInstanceGuid = 
uuid.UUID(bytes_le=byteArray2ByteBuffer(pykd.loadBytes(base + 0x62C, 
16)))

if str(interfaceInstanceGuid) == channel:

return base

nextPtr = pykd.loadQWords(nextPtr, 1)[0]

return None

if len(sys.argv) == 1:
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print "Missing channel address/instance GUID"

exit()

if sys.argv[1].startswith("0x"):

channel = getChannelPtr(int(sys.argv[1][2:], 16))

else:

channel = getChannelPtr(sys.argv[1])

if channel is None:

print "Could not find channel"

pykd.dbgCommand("bc *")

print "Channel found at 0x%X" % channel

packetCallback = pykd.loadQWords(channel + 0x710, 1)[0]

print "packet callback @ 0x%X (%s)" % (packetCallback, 
pykd.findSymbol(packetCallback))

pykd.dbgCommand("bp 0x%X" % packetCallback)

packets = {}

breakAddr = pykd.getOffset("nt!DbgBreakPointWithStatus")

extAddr = pykd.getOffset("vmbkmclr!VmbChannelPacketGetExternalData")

pykd.dbgCommand("bp 0x%X" % extAddr)

cnt = 0

while True:

pykd.dbgCommand("gh")

if pykd.reg("rip") != packetCallback and pykd.reg("rip") != 
extAddr:

if pykd.reg("rip") == breakAddr:

break

continue

if pykd.reg("rip") == packetCallback:

buf = pykd.reg("r8")

bufSize = pykd.reg("r9")

extDataFlag = pykd.loadQWords(pykd.reg("rsp") + 5*8, 1)[0]
& 1

if extDataFlag == 0:

print "Call to handler with buffer @ 0x%X with size 
0x%X and no external data" % (buf, bufSize)

else:

packets[pykd.reg("rdx")] = (buf, bufSize)

if pykd.reg("rip") == extAddr and pykd.reg("rcx") in packets:

packet = pykd.reg("rcx")

pmdl = pykd.reg("r8")

pykd.dbgCommand("bd *")
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pykd.dbgCommand("gu")

pykd.dbgCommand("be *")

(buf, bufSize) = packets[packet]

print "Call to handler with buffer @ 0x%X with size 0x%X 
and external data:" % (buf, bufSize)

while True:

mdl_next = pykd.loadQWords(pmdl, 1)[0]

print "  MDL @ 0x%X" % pmdl

if mdl_next == 0:

break

pmdl = mdl_next

del packets[packet]

pykd.dbgCommand("bc *")
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