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Abstract

Today, more and more cruise ships are built every year. As the market expands, so change
the requirements from new-build vessels. Typically, this means the increase in ships gross
tonnage, which requires an increase in dimensions, or more complex structures due to the
desired design. Despite the requirements set by the industry, the ship's internal and external
structures must provide a safe voyage for passenger and the crew. In standard ship design
practice, initial strength evaluation is performed with a small amount of structural detail, for
which there are numerous different methods.

This thesis introduces a new shear deformation theory designed for accurate assessment of
global displacements and stresses. The theory utilises a beam element with 6 variables de-
fined in each beam element node: deflection, rotation of cross-section, displacement due to
shear and axial forces and shear deformation in beam element bottom surface and displa-
cement due to shear and axial forces and shear deformation in beam element top surface.
Approximations are presented so that variables could be described over the length and width
of the beam elements. Coupling of beam elements in the global matrix has been presented
for the holistic behaviour of the beam theory.

The thesis provides a comparative analysis between higher-order shear deformation theory
calculations and FEM results performed with NX Nastran on two structures, first of which
is a simple box structure and second is a nonuniform beam model, where three layers of
beams are of different length.

The analysis shows a very good coincidence between analytically calculated displacements
and stresses and FEM results for the box struct and between displacements for the nonho-
mogeneous structure and FEM results. In nonhomogeneous beam element configuration,
the theory proved to lack the capability of assessing peak stress values and showed de-
ficiencies in describing vertical stress distribution. Based on the results, the theory needs
additional research to be done in terms of defining boundary conditions and element
coupling to provide better results in the case of more complex structures.
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Abstrakt

Tanapéeva kasvavas majanduses tduseb iga aastaga uute ehitatavate kruiisilaevade hulk.
Majandusvaldkonna laienemisega muutuvad ka nGuded laevadele. Tudpiliselt tihendab see
laevade kogumahtuvuse kasvu, mille vdimaldab dimensioonide suurendamine voi keeruli-
sema struktuuri rakendamist, et saavutada soovitud disain ja konstruktsiooni originaalsus.
Laevade sise- ja valiskontstruktsioon peavad suutma tagada reisijate ja meeskonnaliikmete
ohutu reisimise hoolimata valdkonna nduetest disainile. Mitmeid meetodeid on loodud, et
pakkuda esmast hinnangut laevakonstruktsiooni tugevusele, seejuures ndudmata uksikde-
tailideni viimistletud struktuuri disaini.

Ké&esolev 16putdo esitleb kdrgemat jarku I6ike deformatsiooni teooriat, mis vdimaldab tép-
semat siirete ja pingete hinnangut vorreldes klassikalise talateooriaga. Teooria defineerib
uut tlupi talaelemendi, mille igas s6lmes on defineeritud 6 vabadusastet: labipaine, ristldike
poore, 1Gikest ja pikijoust tingitud siire ja I6ike deformatsioon talaelemendi alumisel pinnal
ning IGikest ja pikijoust tingitud siire ja I6ike deformatsioon talaelemendi tlemisel pinnal.
Labipainde ja pikisiirde hindamiseks vabalt valitud ristl6ikes ning kdrgusel on kasutatud
kolmanda ja esimese astme pollinoomidena aproksimeeritud kujufunktsioone. Teooria ho-
lisiliseks rakendamiseks globaalses mudelis on defineeritud siduvuselement ning elemen-
tide sidumisskeem.

Ldputdds on esitatud vordlusanaliiiis kdrgemat jarku I6ike deformatsiooniga teooria ning
I6plike elementide meetodi (LEM) kohta, mis késitleb kahte lihtsat talamudelit. Esimeseks
mudeliks on Uhtlase talaelementide paigutusega kaststruktuur ning teiseks on ebaiihtlase
talaelementide paigutusega mudel.

Analidsi tulemused néitavad véga head kokkulangevust siirete ja pingete tulemuste osas
kaststruktuuri puhul. Ebalihtlase paigutusega mudeli puhul ei ole teooria véimeline suure
kokkulangevusega hindama maksimaalseid pingevaartusi piirkondades, kus ebauhtlasest
paigutusest tingitud lokaalsed mdjud. Lisaks sellele esines erinevusi vertikaalses pingejao-
tuses. Tulemustele p6hinedes vajab esitatud teooria edasist to0d rajatingimuste defineerimi-
sel ning elementide sidumisega, et saavutada paremaid tulemusi keerulistes struktuurides.

Keywords korgemat jarku loike deformatsiooniga teooria, laeva globaaltugevus, seotud

talade meetod, 10plike elementide meetod, magistritoo
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1 Introduction

1.1 Background and motivation

Today, more and more cruise ships are built every year. As the market expands, so change
the requirements from new-build vessels. Typically, this means the increase in ships gross
tonnage, which requires an increase in dimensions, or more complex structures due to the
desired design. Multi-story atriums, large concert halls, and indoor pools are just a few
examples of what design challenges engineers face. Despite the requirements set by the in-
dustry, ship's internal structures, together with the hull, must provide safe voyage for pas-
senger and the crew.

Typical passenger ship consists of the hull and superstructure, separated with the main deck
and lifeboat recess, see Figure 1-1. The structures are supported by longitudinal and trans-
versal bulkheads together with pillar lines throughout the height of the ship.

Recent trends have been introducing large openings in side shell and bulkheads, which chan-
ges the typical transfer of shear stresses to a more complex problem. In a case where comp-
licated design is desired, Classification Society regulations for ship structural dimensioning
do not provide sufficient coverage. Here arises the necessity for checking global strength in
early design stages. Today, the most widely used method for solving passenger ship response
to loads acting on the ship is a three-dimensional (3D) finite element method (FEM) as it
provides most life-like results. However, it is unreasonably time-consuming in most cases.

Therefore, engineers use more straightforward and simplified methods.
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Figure 1-1 Cross-section examples of a typical modern passenger ship

One simplified method is the coupled beam theory, presented by Naar et al [1]. Coupled
beam (CB) was created to evaluate hull girder response using beam elements to represent
ship structures with the preliminary design. These beam elements were coupled together
using distributed spring elements to transfer normal and shear forces between the beam ele-
ments. In this thesis, further development of vertical stress transfer is investigated, as the
formerly mentioned CB theory lacked the capability of generating a continuous normal and
shear stress distribution curve over the height of the ship analyses, see chapter 2.3.6. This
thesis is written to explore a different way of defining a beam element and coupling element

to assess stresses and displacements over the whole vertical span as a continuous function.

1.2 Aim of the thesis

This thesis aims to present an effective analytical solution for a new higher-order shear de-

formation beam theory, which would consider normal and shear stress distribution within



the beam cross-section as a continuous function to provide more accurate results applying

the general CB method.

To accomplish this goal, research objectives were defined:

O1: Generating a single element stiffness matrix by approximating the axial displa-
cement field and deformations in the beam cross-section with an arbitrary reference
line. Approximations are validated by comparing analytical results coincidence with
a single beam FE-model.

02: Adjusting single layer beam model to multi-layered beam model by defining
coupling of vertically adjacent elements.

03: Comparison of an analytical solution for a coupled simple beam model to plate

element FE-models.

Obijectives mentioned above generate the following research questions:

Q1: How can axial displacement within the cross-section be defined in reference to
a non-specific axis using the defined variables.

Q2: How to express and solve the differential equations to define a stiffness matrix
to a beam element with the defined variables?

Q3: How to achieve coupling between vertically adjacent beam elements?

Q3: Is the new higher-order shear deformation theory applicable when comparing to
FEM results?

1.3 Scope of the work

In this thesis, the author performed analytical calculations using primarily Mathcad perfor-

ming analytical calculations and Microsoft Excel for data analysis. FEM calculations used

in comparative analyses were performed using FEMAP 2019.1 Academic software with NX

Nastran. The performed analyses are limited by the level of detail of FE-models that are

reasonable to create for this thesis as well as the necessary level of detail to assess the quality

of developed beam theory. As the analytical solution provides extensive data for a single

beam element, complicated models were unable to be used in this thesis due to time and

computing power restrictions.



2 State of the art

2.1 Global Loads on ships

2.1.1 Load classification

For ships strength analysis, it is essential to understand the loads induced to the ship hull and
structural members. In general, the specificity of the loads used for design is dependant on
the stage in which the ship is currently in terms of structural details. Even though loads can
be classified into four groups according to the structure level these are acting on as follows:

e hull girder,

e hull module,

e principal member,

e local,
the global strength analysis performed during early-stage design only focuses on two former
groups. These loads can be considered as globally acting loads [2].
Loads are additionally classified by their time variability: static, slowly varying and rapidly
varying. Depending on the type of loading, static or dynamic strength analysis is carried out

to estimate ship response. See Table 2-1 for typical loads and structural analysis performed

Table 2-1 Load classification according to time variability and strength analysis performed

Time variation Loading type Strength analysis performed

Stillwater loads
Static Drydocking loads Static

Thermal loads

Wave-induced hydrodynamic pressure
Liquid cargo sloshing

Green water on deck

Static
Slowly varying Wave slapping
(Quasi-static)
Inertia loads

Launching, berthing loads

Ice-breaking loads

Slamming
Rapidly varying Forced vibration Dynamic

Springing, whipping




In essence, slowly varying loads need a quasi-static strength analysis. However, as even the
shortest loading periods are significantly longer than the natural frequencies of the structure,
slowly varying loads can be considered within the context of static analysis with only small
loss of accuracy. In contrast, rapidly varying loads need dynamic analysis for sufficient

accuracy [2].

2.1.2 Internal loads acting on rigid hull girder

In global strength analysis, internal forces and moments acting on a hull are estimated, while
the ship is operating in waves. These are mainly induced by ships mass distribution over the
length of the ship and the interaction between hull and waves. In still water mass forces
consists of the distributed ship weight. Interaction between the hull and waves is described
as buoyancy forces in the form of hydrostatic pressure [3].

When waves are present, ship mass is subject to accelerations. As a result, the inertia compo-
nent is added. In addition to inertia, hull and water interactions become more complicated as
radiation, Froude-Krylov and diffraction forces are introduced [3].

Sagging is the state in which wave crests are located in the bow and stern and the hull girder
is compressed in the top deck. The sagging increases with hull features such as a large bow
flare and a flat stern bottom, which increase vertical slamming forces. Hogging is the state
where a wave crest is located in the midship and the ship is compressed at the bottom [3].

Figure 2-1 presents the deformation shapes for sagging and hogging.

sagging

hogging

Figure 2-1 Hull sagging and hogging



Hull bending moment and shear force is assessed using a linear approach for which a typical
body-specific coordinate system is defined with assigned ship motions, see Figure 2-2.
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Figure 2-2 Definition of ship fixed coordinate system and ship motions [3]

Assessment of ultimate bending moment and shear force requires the definition of net
loading per unit length q;(x) on ship cross-section. To do so, initial weight distribution
m;(x)g and buoyancy distribution p;gA;(x) must be defined, where A;(x) is the cross-
sectional area under waterline at coordinate x.

Weight distribution is typically estimated roughly by factoring in primary and secondary
structural elements such as shell, deck and bulkhead plating, floors, transversal, longitudinal
girders and stringers as well as dimensioning of main equipment and placing their respective
mass elements along the length of the ship as precisely as possible [4]. Structural elements
at the earliest stage are typically dimensioned according to Classification Society rules. For
example, Det Norske Veritas sets the standards for hull principles in Part 3 Ch 1 [5].
Buoyancy distribution is estimated by defining the hull shape and draft at still water con-
dition. Equilibrium is achieved at the draft, where the total buoyancy of the hull section
Under waterline opposes the total weight of the ship. In the state of global equilibrium, the
difference of local weight component and buoyancy component creates vertical shear force,
which can be positive, negative or even equal to 0 depending on the coordinate [4].

By defining a section of the ship dx;, see Figure 2-3 , distributed load in that section becomes

qi(x;) = —my(x1:)g + prg A (xr). (1)



By integrating distributed load over the length dx;, ; shear force becomes

1.
Qu(x1) = [ qi (o) doy; = f;?lll qr(xy)dxy . 2)

By integrating shear force over the length dx;, the bending moment becomes

M) = le(xl’i)dxl‘i - J J qu(xy;)dx; dxg
X (Xl
B fo fo ql(xl;i)dxl,idxl,i.

Xii X

©)

Example of net loading, ultimate shear stress and extreme bending moment curves are pre-

sented in Figure 2-4.

S )
\

V><

< »
<4 o

dxi

Figure 2-3 Definition of a ship section

Figure 2-4 Typical loading, ultimate shear force and the ultimate bending moment [4]



2.2 Research on evaluating hull and superstructure interaction

Methods using beam theory to describe hull and superstructure interactions were first intro-
duced by Crawford et al. [6] by considering longitudinal shear force and vertical force in a
two-beam system. A similar approach was introduced by Bleich et al. [7], where the com-
putation of stresses in prismatic beams in a vertically coupled two-beam system is presented.
Terazawa and Yagi [8] further developed two-beam theory by introducing shear lag pheno-
mena

Further development of Bleich’s method was presented by Naar et al [1] introducing the
Coupled Beam method, where shear and vertical coupling between beams is defined to eva-
luate multi-deck passenger ships. The coupled beam theory is described in length in Chapter
2.3. Romanoff et al [9] investigated hull and superstructure interaction in optimised passen-
ger ships. The research showed that simplified two-dimensional section models are not
adequate for the assessing load-carrying mechanism of the hull girder. Andri and Ani [10]
researched the vertical stress distributions in the hull girder considering effects caused by
side shell openings. Bending efficiencies of superstructure decks of aluminium alloy su-
perstructure have been researched by Chen [11].

With the development of software, FEM calculations are more widely used to describe hull
and superstructure interaction. The performed calculations are used to verify analytical met-
hods as well as perform entire analyses if the ship can be modelled with sufficient time and
detail. Zhiyong et al [12] provided a modification to Bureau Veritas, 2019 PART - B analy-
tical calculation for stress in the vertical direction. A correction factor of bending efficiency
is presented for various superstructure width and length to provide more accurate coinci-
dence to FEM results. 3D FE models of various types of ships are researched in Zanic et al
[13], Andric [14] etc. Zou [15] performed FEM analysis for typical inland passenger ship
and compared vertical stress distribution values to rule values of Bureau Veritas (NR 217,
2011). Fricke and Gerlach [16] presented a method of evaluating the contribution of large
openings on shear stiffness, which was validated with FEM.

In addition to beam theory approach, Crawford [17] and Fransman [18] provided an alterna-

tive approach using plane stress theory which allows the inclusion of shear lag phenomenon.



2.3 Coupled beam method [1]

This sub-chapter presents the principles of the coupled beam theory [1] and discusses its
deficiencies, which the higher-order shear deformation theory presented in this thesis aims

to resolve.

2.3.1 Method description

Coupled beam method was proposed by Naar et al. [1]. In the research, the author described
the longitudinal bending response of a modern passenger ship with a long, multi-deck su-
perstructure and a recess on the main deck. The ships girder was described as a prismatic
beam with constant cross-section. The model consisted of longitudinal beams each descri-
bing a section of a deck plate with connecting side shell or longitudinal bulkheads with
stiffeners and girders. Vertical and horizontal coupling of beams is created with spring
elements. All beam elements had axial and bending stiffness dependant on the ship structural
section it represented.

The Basic concept of dividing ship hull girder into beams using the CB method is shown in
Figure 2-5. Two separate types of coupling were defined. The first method uses only vertical
coupling, which is used for simple cross-section without longitudinal bulkheads. The second
method uses both vertical and horizontal coupling to obtain more accurate results, see Figure
2-6.
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Figure 2-5 The basic concept of dividing ship hull girder into beams [1]
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Figure 2-6 Types of coupling between beams [1]

2.3.2 Equilibrium equations

mixed coupling
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coupling 46

beam 2
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A beam segment to which internal forces, coupling forces and external load is presented.

Basic beam theory defines two active internal forces and bending moment: axial force N;,
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shear force Q; and bending moment M;. Coupling forces are applied on the surfaces of the
beam segment: vertical distributed force p;; and longitudinal shear force s;;. Subsricpts i
and j are used to describe beam i with its adjacent beam j. External loads such as wave
pressure, loads induced by weights acting upon ship structures are described using distribu-
ted vertical force g;.Symbols e, d;; describe the distance from beam top and bottom surfa-
ces to the reference line, where j denotes the lower adjacent beam segment, and k denotes

the upper adjacent beam segment. The described beam segment is presented in Figure 2-7.

A

z Puc + dpi
Dik

— 71 1 [ 1 || =i+t

Sy Sik + dsik
—
dik
Q;
M;

Reference line

Dij ‘l\
qi ll\

dx

Figure 2-7 Beam segment i with internal forces and external load

Equilibrium equation for beam i with n couplings are defined as:

Nl' + le - Ni + (Sik + dsik)dx - (Sij + dsij) dX =0 (4)
Q; +dQ; — Q; + (pix + dpy)dx — (pij + dp;j)dx — (q; + dg;)dx = 0 (5)
Ldx?  dp;dx? dx?  dp;idx®

Mi + dMi _Mi . Ql'dX‘i' Pik + Pik N pl} + pl]

2 6 2 6
X X (6)

qidx N dq;dx”\ 0
2 6 B

11



After assuming that dx; ds;; ds;j; dpy; dp;j; dq; — 0 equations are reorganised.

The equilibrium equation for axial forces:

N,
— +ZSU:0’ 7
=1

where the external load vector does equal 0 and distributed axial coupling force s;; is descri-

bed in matrix form such that

Sij lf] > i,
sy=1 0 ifj=4i (8)

The equilibrium equation vertical forces:
90\
i
) + Zpij =qi ©)
j=1

where g; is the external distributed load vector and distributed vertical coupling force p;; is

described in matrix form such that

py=4 0 ifj=4 (10)

The equilibrium equation of moments around y-axis:

2 . n n

92M, )

7+ QP+ | s | = a
j=1 j=1

Distance from the reference line is described with matrix C:

d ifj >,

2.3.3 Coupling equations

Interaction of adjacent beams is described by coupling equations. These equations are used

to approximate distributed internal vertical and axial forces. Shear forces can be visualized

12



with a shear element, see Figure 2-8. Displacement discontinuity &;; causes shear force bet-

ween the beams. These forces can be evaluated by signing the shear element stiffness T;;,
which is dependant on the effective area of the element and the effective height H;;. As the
reference lines correspond with deck levels, the effective height equals to deck height. As
the shear force is constant over the length dx, horizontal springs are used to apply this force
on the beam segment surfaces.

Shear force is approximated for horizontal coupling as:

sij(x) = T (%) 655 (x). (13)

Using axial displacement u and vertical deflection due to bending v™, displacement dis-

continuity can be described as

M M
By substitution, equation (13) can be written as
G ovM
Sl-joi-(uj—Cj-W—ui+CijW>. (15)

The shear element stiffness matrix is

T, ifj # 1,
Tl-j:{” J

0 ifj=i. (16)
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Figure 2-8 Shear coupling in adjacent beams

Shear forces are similarly calculated in the case of mixed coupling, where the model has also
been divided into beam segments in the transversal direction. In these situations shear ele-
ment is located in the ships horizontal plane, thus changing effective height from deck height
to transversal distance of adjacent longitudinal members such as side shell and longitudinal
bulkheads.

Secondly, the vertical coupling is described, which occurs when vertically adjacent beams
have different bending shape. Coupling forces become greater in situations, where structures
are not sufficiently supported. Less supported pillars and long bulkhead spacing results in
higher vertical forces in supporting side shell or bulkheads. In CB method vertical loads are
modelled with vertical springs, which have been assigned vertical coupling stiffness K;;

Elongation element visualizes relative deflection 6;}’ in adjacent beams, see Figure 2-9.

14
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Figure 2-9 Vertical coupling in adjacent beams

Vertical coupling force is dependant on the coupling stiffness and discontinuity of vertical

deflection, thus it is described as

pij(x) = Kij(x) 6 (x) (17)
where vertical displacement discontinuity is
877 (x) = v;(x) — vi(x). (18)

Vertical stiffness in matrix form is given as

K. ifj#i
Ki_{l j#1

77 lo ifj =i (19)

Further estimation of coupling stiffnesses T;; and K;; based on the characteristics of the beam

segment can be seen in Naar [1].
2.3.4 Relations between deformations and displacements
The coupled beam method utilises beam theory to describe relations between internal forces

and displacements assuming that the material follows Hooke’s law.

Axial force and bending moment are described as:

ou; a2vM
U e (20)
d92vM ou;
Mi = —Elii*a—x;-l'EXii*a—xl (21)
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where A;; is the cross-sectional area of the beam, I;; is the moment of inertia of the cross-
section and X; is the First moment of the cross-sectional area in reference to the neutral axis

The relation between shear force and deflection due to shear is given as:

an
_(AS « (22)
Q; = GA;; ax
where A3, is the effective area of the cross-section in shear.
2.3.5 Differential equations to be solved
Based on Chapter 2.3.2 equilibrium equations (7), (9) and (11) are to be solved:
f n
ON;
ox * Z Sy =0,
j=1
n
aQ; _
X Ox + Zpij = qi (23)
j=1
92M;, 0 [~
0 x2 + zpif + P) Z Cljsl] qi
\ j=1 j=1

By substituting internal components with constitutive equations (20), (21) and (22) and rep-
lacing partial derivative with full derivative as the axial coordinate is the only variable for

displacements, equations to be solved are:

( L TR L AT
ax\EAu 5 — EXam Sij»
j=1
d Savi
X dx GAiiW =Qi_zpij' (24)
d? a2vM <
de( Eljj——— 9x2 + EX;; Ox >_CI1 Zpl] _x Zcijsij
\ j=1

Differential equations are solved for variables u;, v}! and v



2.3.6 Comparison of coupled beam method to FEM

By analysing the research result presented by Naar et al. [1], deficits of the CB can be ob-

served.

First, results for a simple box structure is described, for which the dimensions are shown in

Figure 2-10. The structure was simply supported and was subjected to sinusoidal vertical

distributed loading. Normal stress vertical distribution curve is presented in Figure 2-11. It

can be seen that normal stress calculated using the CB method in the marked sections are

not continuous. This suggests a noncontinuous axial displacement field over the height of

the structure. In the CB method, when using shear coupling, axial displacements are coupled

at the reference line and away from that is dependant on axial displacement due to bending.

Noncontinuous axial displacement field results on noncontinuous axial and shear deforma-

tions over the vertical span and thus resulting in an inaccurate assessment of stresses.
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Figure 2-10 Dimensions for box structure with no openings [1]
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Figure 2-11 Distribution of normal stress in the box structure at x = L/2 cross-section [1]

2.4 Hyperbolic shear deformation theory

2.4.1 Development of shear deformation theories

In most classical beam theory application Euler-Bernoulli beam theory is used. This theory
assumes that the transverse normal of a cross-section remains in the direction of the neutral
axis of the beam. Euler-Bernoulli beam theory is only applicable in the case of slender
beams, which are described by the aspect ratio of a beam. This assumption, however, negates
the effects of shear deformation resulting in underestimation of deflections and overestima-

tion of natural frequencies in thick beams.
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Timoshenko et al [19] introduced the effects of shear deformations for beam displacements.
The theory is now widely known as Timoshenko beam theory or first-order shear defor-
mation theory. The theory requires the use of correctional factors as the shear deformation
distribution is considered to be constant through the beam cross-section.

Since then, many shear deformation theories have been developed to more accurately de-
scribe displacements without the use of correctional factors. Levinson [20], Bickford [21],
Rehfield and Murthy [22], Krishna Murty et al.[23], Bhimaraddi and Chandrashekhara [24]
and Baluch et al. [25] presented parabolic shear deformation theories, which used a higher
variation of axial displacement in terms of thickness coordinate, thus allowed omitting pre-
viously used correctional factors as these satisfied shear stress-free boundary conditions on
the top and bottom surface.

Ghugal and Sharma [26] presented a variationally consistent hyperbolic shear deformation
theory for thick beams. This theory provided a general bending solution for thick rectangular
beams in various loading and boundary conditions. A refined theory is presented in Ghugal
and Sharma [27]. This theory is revied more in-depth in chapter 2.4.2. and a comparative
calculation with analytical results and FEM results on various cross-sections are presented
in Appendix D . The formulation of the displacement field in the theory is considered during
the research to define shear deformation and displacement due to shear and axial forces in

the top and bottom surfaces.

2.4.2 Overview of hyperbolic shear deformation theory by Ghugal and
Sharma [27]

Principle of virtual work is used for the formulation of differential equations and boundary
conditions, based on the assumed displacement field. The beam occupies the region:
0<x<1L;

—b/2<y<b/2;

—h/2 <z < h/2,

where x,y, z are Cartesian system coordinates. L is the length of the beam, b is the width
and h is the depth of the beam. Transverse load intensity q(x) is used to induce bending in
the beam.

Several assumptions are made in the hyperbolic shear deformation theory such as:
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1. The axial displacement is made up of two parts:
a. Axial displacement due to bending:
b. Axial displacement due to shear deformation, which is estimated with a hy-
perbolic function of thickness coordinate
2. Axial displacement is such that the resultant axial stress o, acting over the cross-
section results in only bending moment and not as a force in the x-direction.
3. The transverse displacement w is assumed to be a function of longitudinal coordinate
X.
4. The displacements are considered to be small compared to the total depth of the beam
5. The body forces are ignored in the analysis, which can be taken into account by add-
ing them as external forces.
6. One-dimensional constitutive equations are used.
7. Only transverse load is applied to the beam.
The displacement field in the hyperbolic shear deformation theory is given as:

dv;ix) + [z * cosh (%) — h = sinh (%)] (%), (25)

w(x,z) = w(x). (26)

Axial displacement u and transverse displacement w are considered from the beam center-

u(x,z) = —zx*

line in x and z directions respectively, variable t denotes time. Shear stress distribution
through the thickness of the beam is used for definition of the hyperbolic function. ¢ (x) is
an unknown function associated with the rotation of the cross-section due to shear with re-
spect to beam neutral axis and is to be determined.

Normal strain and shear strain are defined as:

ou d*w 1 _ . rz\1d¢
e s R z*cosh(z)—h*51nh<ﬁ)]a, (27)
ou dw 1 z
== ) - cosh (= . 28
Yaz =5 + T2 [cosh (2) cosh (h)] b (%) (28)
Stresses are given by:
oy = Eéy, Txy = GVxz (29)

where E and G are Young’s modulus and shear modulus, respectively.
Using equations (27)-(29) and a dynamic version of the principle of virtual work governing
differential equations and boundary conditions for the beam under consideration are ob-

tained. The principle of virtual work is given as:
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L2 L
bf fh(ax&x + Ty, 0V )dzdx —f qéwdx = 0, (30)
0o /-2 0

where the symbol § denotes the variational operator. By using applying Green’s theorem in
equation (30) the governing differential equations are obtained
d*w d3¢
Ely—— — ElyAy—— = q(x), (31)
d3w d?¢
dx3 EL,B, * dx?

where A, B, and C, are constants given as:

A, = cosh (%) — 12« [cosh (%) — 2 * sinh (%)], (33)

1 1
B, = cosh? (E) + 6 * [sinh(1) — 1] — 24 * cosh (E)

fron @) -2-sm 3]

Co = cosh? (%) + G) [sinh(1) + 1] — 4 * cosh (%) * sinh (%) (35)

Boundary conditions for equations (31) and (32) are obtained as follows:

El, A, * + GACypp = 0, (32)

(34)

3 2

Either E1,, x — — El,, A * —¢ = 0 orw is prescribed.
aw . .
Either E'L, XY _pp yAgx—=10 or——1is prescribed.

2
Either E1,, A, * — EI,B, =0 o ¢ is prescribed.

After integration, rearrangement and appllcatlon of boundary conditions, first governing

equation (31) can be written as:

d>w d’¢ Q)
a0 G T (36)

where generalized shear force Q(x) is given by:

0.0 = [ adx+ ¢, (37)
After rearrangement, the second governing equation (32) can be written as:

d3w A, d?*¢

- 0 = 38

dx3 B*dx2+’8¢ 0 (38)
where
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_ GAG,
ELAy

(39)

A single differential equation in terms of cross-sectional rotation ¢ can be written by com-

bining governing equations (36) and (38):

d’¢ . Q)
Eﬁn_l¢__aE5 (40)
where
B,
a = A_O - Ao, (41)
A2 = ﬁ (42)
a
The general solution for equation (40) is given by:
¢(x) = C, cosh(Ax) + C3 sinh(Ax) — QZ(x). (43)
BEI,

The general solution for transverse displacement w is obtained by replacing equation (43)
into governing equation (38) and integrating thrice over the length of the beam. The general

solution is:

Cix3 AEI
Elw(x) = jfjjqudxdxdx+ 16x + 0/1 Y [C, sinh(Ax)
2 (44)

X
+ C3 cosh(Ax) + 647 + Csx + Cg

where C; — C, are the constants of integration.

Anillustrative calculation example for a cantilever beam using the refined shear deformation
theory for flexure of beams is presented in chapter 4.1.

The refined shear deformation theory is a well-designed tool to assess thick beams with sim-
ple cross-sections however, it has several deficits. First, the theory allows only the use of
external vertical loading as the equations describing deformations and displacements only
define vertically applied loading. Secondly, the theory is only applicable for rectangular
cross-sections, which in many cases is not feasible. This limits the practical applications of
the theory when dealing with more complicated structures such as a ship. Thirdly, the theory
is not applicable for the evaluation of openings as it is not capable of assessing nonhomoge-

neous structures.
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3 Higher-order shear deformation theory

3.1 Definition of variables

A higher-order shear deformation theory (HOSDT) is derived for a beam in the Cartesian

coordinate system, where the x-axis is aligned with beam axial direction and the z-axis is

aligned with beam cross-section vertical direction, see Figure 3-1.

h—z,

A
Z

he

Figure 3-1 Beam in the Cartesian coordinate system

Degrees of freedom are defined at beam end nodes as presented in Figure 3-2.

Ar 7
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Figure 3-2 Degrees of freedom for a beam segment

Degrees of freedom in beam nodes are as follows:

w; — deflection at the beam reference line in node i,

6; — rotation of the beam cross-section measured at reference line in node i,
Upoe ; — axial displacement in the bottom layer in node i,

Urop,; — aXial displacement in the top layer in node i,

Ybot,; — Shear deformation in the bottom layer in node i,

Ytop,i — Shear deformation in the top layer in node i.
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3.2 Definition of the displacement field

Beam axial displacement field is expressed as:
dw(x)
dx
where the first member denotes axial displacement due to bending, and the second member

+f(x,2), (45)

u(x,z) = —(2) *

is a function describing displacement due to shear and axial forces in a beam cross-section.

Axial deformation is expressed as:

ou(x, z) 0*w  df(x,z)
= =— 46
Ex 0x @) dx?2 + 0x (46)
Shear deformation is expressed as:
ou(x, d d af (x, d af (x,
_ ou( z)+ w__w_ fx,z) ow 9f(x,z) (47)

Yez 0z ax  ox 0z ax 0z
The function expressing displacement due to shear and axial forces is assumed to follow a
3-order polynomial in the vertical direction and thus is expressed as:

f(x,z) = A(x)z® + B(x)z? + C(x)z + D(x) (48)
By expressing axial displacement and shear deformation in the top surface and bottom sur-
face, see Figure 3-3, displacement function equations are

( (X, —2) = Upoe
fl,h—2z)= Utop
d
VL ) = o (49)
af
LE (x,h—2z,) = Ytop

A
A Z
z=h-2z, Q® Uiop; Viop
) x y
Reference line @ > >
Z = —Zy . Upot; Vbot

Cross-section

Figure 3-3 Axial displacement approximation
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Polynomial equations are:

A(=2z.)3 + Bz + C(—2.) + D = upyt
ACh—2,)*+B(h—2.)*+C(h—2) + D = uy,y

50
3A(_Zr)2 + ZB(_Zr) + C = Ypot (50)
34(h—2z.)>+2B(h—2z)+C = Ytop
Matrix form:
(_Zr)3 (Zr)z —Zy 1 A Upot
(h— Zr)3 (h— Zr)z h—z. 1|)B ) Utop (51)
3z2 2(—2z,) 1 of)c( ) Ypot
3(h— Zr)2 2(h—z) 1 ol \D Ytop

By combining polynomial equations and finding constants 4, B, C, D, polynomial equation

can be written as:

f(x,2) = P1(2upor + Y2 (2Durop + Y3(2)¥por + Ya(2)¥top, (52)
where

Di(0) = (h+2z+ 222)3(2 —h+ ZT)Z’ (53)

() = (z + zr)2(3z3— 27 — ZZT)’ (54)

Da() = (z+ zr)(zhz— h+ zr)z, (55)

bu() = (Z+Zr)2(hzz_h+zr)- (56)

An arbitrary cross-section between beam end nodes can be described by defining linear

weight functions to node variables:

=(1-7)ipo =1 57
¢1 - he ) ¢2 - he ( )
which define variables in arbitrary cross-section as:

X X

Upot = (1 - h:) * Upot,1 T+ h_e * Upot,2, (58)
X X

Utop = (1 - h_) * Upop,1 T h_e * Utop,2) (59)
X X

Ybot = (1 - _) *Ypot,1 T 7= * Vbot,2» (60)
he he
X X

Ytop = (1 - h_) *Vtop1 T h_ *VYtop,2- (61)
e e

By replacing equations (58), (59), (60) and (61) into equation (52) shear displacement func-

tion becomes:

25



f(x,2) = Y1y * Upor + 1o * Upor + Yoy * Utop + Yoy * Uy, + P304

* Vot + WaPa * Vior + Waty * Yiop + Wadz * Viop (62
Function f(x, z) can be alternatively represented as:
4 4
FO02) = ) () a0 * @iy + ) () = $o(0) * (63
i=1 j=1
where
a1 Upot,1 ai2 Upot,2
u u
s { = ¥ (P ana (= vooa )
Ay Ytop,1 Ay Ytop,2

The deflection function is assumed to follow a 3-order polynomial in axial direction and thus
is expressed as:

w(x) = A()x3 + B(x)x? + C(x)x + D(x). (65)
By expressing deflection and rotation of cross-section at the reference line for both element
nodes, see Figure 3-4, displacement function equations are

( w(0) =w,
W(he) = WZ
ow
{ = — 66
(=6, (66)
ow _
La (he) - 92
A 2 A 2

Reference line

v
v

Cross-section

Figure 3-4 Vertical displacement approximation

Polynomial equations are:
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(A*03+B*02+C*O+D=w1
A(h,)2 +B(h,)?*+C(h,) +D =w,

67
34(0)?> +2B(0) +C = 6, 67)
3A(h.)? + 2B(h,)+C =6,
Matrix form:
0 0 0 11r74 Wy
(he)®> (he)* he 1|)B( _ W2
0 0 1 o[)c(™)6: (68)
3(he)* 2(he) 1 of\D) 6,

By combining polynomial equations and finding constants A, B, C, D, polynomial equation,

which describes deflection in a random cross-section can be written as:

w(x) =& ()wy + & (0)0; + E3(x)w, + E4(x)0; (69)
where
2x3  3x?
$1(x) = <h_§_h_§+1> (70)
3 2x%2  x3
mw-@—m+g> (71)
3x%2  2x3
$3(x) = (h_g - h_g> (72)
x3  x?
$a(x) = (h_g - h—e> (73)
Equation (69) can alternatively be presented as:
4
W) = ) &by (74)
k=1
where
b, wy
b 6
by ( {WZ} (79)
b, 0,

By replacing equation (63) and (74) into equations (46) and (47), axial and shear deformati-

ons become:
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4

Zsk ° A, (x)
E kT E Y (2) * ) * ;g
i=1

(76)
09,
Y e 2D
j=1
= 0y (2)
Z *p1(x) xa (x) *aj, (77)
i=1 =

3.3 Expression of potential energy

Principle of minimum energy states that in a closed system, where external parameters are
constant, the potential energy will reach its minimum when the difference between the in-
ternal energy and the work done by external forces reaches a minimum value. In the case of
beam bending, an external force is applied at the beam surface as distributed force and in-
ternal energy is expressed with vertical and axial displacement. The potential energy equ-

ation for a beam system is written as:

L L L
1
M= EJ j (Gxgx + szyxz)dAdx - J pZW(X)dX - J Sbotf(x: z)dx
0 A 0 0
L L
—fstopf(x,z)dx—fsbotzrdw(x)dx (78)
0 0

L

+ J Stop(h — z)dw(x)dx = 0

0

By assuming that the material follows Hooke’s law and by replacing equations (76) and (77)

into equation (78), the potential energy equation is given as:

1 L L
= Efo J, (EeZ + Gyi)dAdx — [ p,w(x)dx =

R i)
0y (B (25t S b+ St () 222, + 79)

A, (x) oY(2)
1¢]() Palx ajZ) +G( i II;ZZ ¢1(x)ai_1+

ox
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4 61[)]-(2)

2 L L
jleaj,z) )dAdx — J, W (x)dx — [ Spoef (x, 2)dx —

fOL Stopf (x, z)dx — fOL SpotZrdw (x)dx + fOL Stop(h — z)dw(x)dx = 0

The potential energy minimum is described by defining of the partial derivative of the po-

tential energy equation for each variable as is presented in Appendix A . Variable multipliers

are alternatively presented in Appendix B with symbols used in the stiffness matrix. By

combining equations (105) to (116) potential energy minimum is given in matrix form as:

r W1y
61
Upot,1
utop,l
Ybot,1

oIl = Kel " < Vtop,l

Vtop,z
\Ytop,2/

where

Ek,k, Ekik,
Ek,k, Ek,k,
Eksk, Eksk,
Ek,k, Ek,k,
. | Eksky Eksk,
K = f f Ekgk, Ekgk,
el Ek,k, Ek,k,

0 A \Ekgk, Ekgk,
Ekok, Ekok,
Ekioky  Ekioks
Eki1ky  Ekyik,
Ekizky  Ekizk,

>_Fel=0

Ekyks
Ekks
Eksks + Gkyskys
Ekyks + Gki4kq3
Ekgks + Ghyskys
Ekeks + Gkygkys
Ek ks
Ekgks
Ekoks + Gkyykys
Ekioks + Gkigkys
Ekq1ks + Gkygky3
Ekqzks + Gkyokqs

Ekik,
Ek,k,
Eksky + Gkysky,
Ekyky + Ghygkyy
Eksk, + Ghysky,

Ekeky + Gkigkis

Ek,k,
Ekgk,
Ekoky + Gyskys
Ekioky + Gkigkyy
Eki1ky + Gkigkyy
Ekiy ks + Gkyokqy

(80)

(81)
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Ek ks
Ek,ks
Eksks + Gkqi3kys
Ekyks + Gkqskqc
Ekcks + Gkygkqc
Ekgks + Gkigkqs

h Ek ks
Ekgks
Ekoks + Gkqi7kqs
Ekqioks + Gkigk4s
Ekqi1ks + Gkigks
Eki,ks + Gkyokys
Ekikqo
Ekykyq
Ekzkio + Gkyzkyg
Ekykig + Gkigkqg
Ekskip + Gkyskqg

Ekekio + Gkigkyg
) Ekkig
Ekgk1g
Ekokyg + Gky7kqg
Ekqokyo + Gkqgkyg
Ekq1kio + Gkiokyg
Ekqzk19 + Gkookqg

Ekikg
Ek,kg
Ekske + Gkq3kqg
Ekyke + Gkiskqe
Ekske + Gkiskqg
Ek¢ke + Gkigkqe
Ek kg
Ekgk
Ekoke + Gky7kq g
Ekioke + Gkigkqg
Ekqi1ke + Gkiokqe
Eki,ke + Gkoyokyg
Ekqkqq
Ekykqq
Ekski1 + Gkqi3kqg
Ekyki1 + Gkiskqg
Ekskq1 + Gkyskqg
Ekgkiy + Gkigkqo
Ek7kq1
Ekgk11
Ekoki; + Gki7kqq
Ekqoky1 + Gkqgkyo
Ekq1ky1 + Gkqokqg
Ekqzk11 + Gkyokg

| 51

pz&2 — $191(—2) — 5291 (h — ;)

O

S1P1¢1 + S2P1 ¢4

S1Y2¢01 + s20201

S1Y3P1 + S2P3h,

S1Pah1 + Soathy
Pz$3

Pz&a — $102(—2.) — s2¢2(h — z,)

S1P192 + S2P1 ¢,
S1P2¢2 + 20020,
S1P3h2 + 520030,
S1Pads + S,

Ekik;  Ekqkg Elkkq
Ek,k;  Ekykg Ek;kq
Ek3k, Ekskg Eksko + Gkizkyy
Eksk;  Ekykg Ekikg + Gkiskq;
Ekck, Eksks Ekske + Gkickyy
Ekgk, Ekeks Ekgko + Gkighyy
Ek.k,  Ekokg Ek ko
Ekgk, Ekgkg Ekgko
Ekok;  Ekokg Ekokg + Gky7kiy
Ekyok; Ekioks Ekqgko + Gkigky;
Eki1k; Eki1kg Ekyikq + Gkiokys
Ekizk;  Ekizkg Eki kg + Gkyokyy

Ekqkq,

Ekakq,

Ekskqi, + Gkqi3kyg
Ekykqi, + Gkiskog
Ekskqy + Gkqskyp
Ekgki, + Gkigkog
Ek7kq,
Ekgk1
Ekgkqy + Gkqi7kyg
Ekqoki, + Gkqgkyo
Ekq1ky; + Gkqgkyg
Ekqz2k1z + Gkyokao

dx.

dAdx,

(82)
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3.4 Coupling of elements

3.4.1 Single-layer beam model

The developed shear deformation can be applied in two separate types of models. First of
which involves a beam model, where a single layer of elements is defined. These beam
elements are coupled through a shared node at beam element ends. In these shared nodes, all
degrees of freedoms are coupled, see Figure 3-5 for a beam model with 3 beam elements and

2 shared nodes. In the figure nodes 2,3 and nodes 4,5 are coupled.

w2 r W3 Wy r Ws
0, 04 0, O
Upot,2 Upot,3 Upot,4 Upot,s
Utop,2 - Utop,3 Utop,4 - Utop,5
Vbot,2 Ybot,3 Vbot,4 Ybot,5
Ytop,2 \Vtop,3 Ytop,a/ \Ytop,5
[ o0 — ®
1 2 3 4 5 6

Figure 3-5 Beam element coupling in single layer beam model

Beam model global stiffness matrix is formulated by combining the individual beam element
stiffness matrixes. As node coupling is present, adjacent beam element stiffness matrixes are
added to the global matrix forming a common part. See Figure 3-6 for global matrix scheme
for the beam model depicted in Figure 3-5 where

kb, — 6x6 matrix - beam i stiffness matrix quadrant,
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22 TR ki, 0
. %
_______ 1
I
0 1 0
I
1

Figure 3-6 Global stiffness matrix scheme

Global external force vector follows a similar coupling scheme, see Figure 3-7, where exter-
nal forces acting on coupled nodes are expressed as a common part. £, are forces applied on

beam i, node m .

Figure 3-7 Global external force vector scheme

3.42 Multiple layer beam model.

In real structures, single layer model has its deficits. For example, structural discontinuities
and change in cross-sectional area for beams can not be defined. To evaluate more complex
models, multiple layer model is necessary, where geometric parameters can be defined for

each layer, discontinuities can be expressed as a nonuniform element configuration.
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Figure 3-8 and Figure 3-9 show two types of multiple layer beam models, the former is
defined by uniform beam element configuration and the latter is defined by nonuniform

beam element configuration.

_______________________________________________________________________________

Figure 3-9 Beam model with structural discontinuity, element coupling and element blocks

The primary global stiffness matrix for multiple layer beam model is comprised of individual
horizontal beam block stiffness matrixes without vertical coupling. The primary global
stiffness matrix follows the scheme shown in Figure 3-10 where,

K,ili,mi — the global stiffness matrix for beam block i,

n;; m; — matrix dimensions.

Matrix dimensions are expressed as

ng=m; =6x Nnodes; (83)
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where n;,,4¢5; 1S the number of nodes used to express beam block i.

|
|
1 |
Kn1rm1 0 | 0
|
0 K&, m, 0
__________ I
|
0 : 0 K€3,m3
|
]

Figure 3-10 Global stiffness matrix scheme without vertical coupling for multiple layer beam model

3.4.3 Vertical coupling of beam elements

In the case of multiple layer beam model, the higher-order shear deformation theory must be
able to describe displacements and deformations as continuous throughout the vertical span
of the global model. When describing local beam elements, displacements and deformations
are defined in a local coordinate system. To keep that definition applicable, the vertical
coupling between adjacent elements is introduced by defining a coupling matrix.

Coupling matrix is defined between two vertically adjacent nodes, see Figure 3-11 for ver-

tically coupled beam dimensions.
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Figure 3-11 Vertically coupled beam dimensions

Total axial displacement is assumed to be continuous over the vertical span of the global
model and is described as:

Up(x=0,z=h, —2z") =u,(x =0,z = -2z} (84)
By describing axial displacement in adjacent surfaces using equations (45), (62) and (69)
and coordinates described in equation (84), axial displacements for surfaces are:

U (X = 0,2 = hyy — Zpn) = —(hy — Zp) * 07" + Ul (85)

Up(x = 0,2 = —2,) = —(=2) * 6] + uflyy (86)
As axial displacement in the described surfaces is only dependant on axial displacement due

to shear and rotation of the cross-section, the horizontal coupling can be described in matrix

form as:
Cu Cp Cs Cu) [ O] (M,
Cy1 Cpy Cyz Cyy . Utopa | _ Ey (87)
C31 (35 (33 C3y o1 M,

n
Upot,1 Ey

Stiffness matrix components are defined by assigning an arbitrary value for one variable,

while other variables are 0 and defining internal force and internal moment equations.

35



Positive force direction aligns with positive x-axis direction while positive rotation direction
Is defined such that a positive cross-sectional rotation angle would result in positive displa-
cement in the surface according to the equation (85) and (86), see Figure 3-11. Next stiffness
matrix components are described:

Positive rotational angle 61" is applied on beam element m, uzg, 1 = Uy, 1 = 61 = 0. Beam
coupling with the assigned variable is shown in Figure 3-12, where spring element with axial

stiffness k,, in beam surface is used to transfer forces between elements.

Spring element i/\
\

Beam n ‘ >

g™, cross-section
1

Figure 3-12 Beam coupling with the assigned variable 87

Internal forces and moments:
M, = 07" x+ (h™ — z™)2k,,
Fn = 67" x (W — z/") (k)
My = 01" * ("™ — z;") (=) (k)
Fy = 01" * (W™ — z7")ky

Positive axial displacement uzg, ; is applied on beam element m, u,,.; = 61" = 61 = 0.

(88)

Beam coupling with the assigned parameter is shown in Figure 3-13.
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+ Spring element

M,
A
Beamn ¢ I
n
M
A" hm — 2z
Beam m @+
En Deformed
«—— cross-section
x | -
ulgp,l

Figure 3-13 Beam coupling with the assigned variable g, |

Internal forces and moments:
My = ugop, * (W™ — z7") (k)
Fn = ufop1ky
My = ugop,1 * (=27) (ky)

F, = ugp,l(_ku)

(89)

Positive rotational angle 67" is applied on beam element n, uip, ; = U, 1 = 67" = 0. Beam

coupling with the assigned parameter is shown in Figure 3-14.

Spring element i/—\
AN

M Deformed
R n ;
* T~ cross-section
\\ Fn
Beam n ' /
o
o7& Zr
M,
AN hm — Z,T-n
Beamm <+— @
m
x | -

Figure 3-14 Beam coupling with the assigned variable 8%
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Internal forces and moments:
My, = 01 (=27 ) (W™ — z7") (=ky)
Fn = 01 (—z1)ky
M, = 01 (—2z7)ky
Fo = 00 (=2 (—ky)

(90)

Positive axial displacement uy,, 1 is applied on beam element n, up,,, = 67" = 61 =
Beam coupling with the assigned parameter is shown in Figure 3-15.
+
Spring element
Deformed
cross-section
Beamn
"
Beam m
X
Figure 3-15 Beam coupling with the assigned variable up,, 4
Internal forces and moments:
My = upoe, (K™ — 27") (ky)
En = ugot,l(_ku)
(91)

M, = ulralot,1(_zﬂ)(_ku)

E, = ugom (ky)

0.

By replacing equations into the equation, horizontal coupling equations can be written as:

(W™ =27k, (A" =z (k) (—z) (W™ —z7) (k) (W™ — 27 (ky)

(hm - Z;n)(_ku) ku (_er*l)ku _ku
(h™ = z7")z7 ky, —zrky (=28)ky zrky
(W™ —zMk -k zk k
r Jhy N u r Ry u (92)
o1 My, 0
% uz;p,l _ Fm _)o
o7 )M, ()0
Upot,1 E, 0
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Moreover, deflection coupling is defined by assuming equal deflection in vertically coupled
beams:

Wn(x =0) = w,(x =0) (93)
By describing deflection in adjacent beams using equation .. and coordinates described in

eq .. deflections for beams are=:

Wy (x =0) =w" (94)

wy(x =0) =w/ (95)
Deflection coupling can be described in matrix form as:

Ci1 ClZ] {W{n} _ {Fm}

[621 Cy2 i W{l B F, (%)

Stiffness matrix components are defined with the same method which was applied for axial
displacement coupling.

Positive deflection wi™ is applied on beam element m, deflection in beam element n is as-
sumed to be 0, wi* = 0. Spring stiffness for deflection coupling is k,,. Beam coupling with

the assigned parameter is shown in Figure 3-16.

Deflected beam 7

|

Beam n ‘
Fo|le——————— Spring element
M Deflected node
—7 m
w.
Beam m Q—

v

Figure 3-16 Beam coupling with the assigned variable wi*

Internal forces and moments:
E, = W{n(kw)
E, = W{n(_kw)

Positive deflection wi* is applied on beam element n, deflection in beam element m is assu-

(97)

med to be 0, w* = 0. Beam coupling with the assigned parameter is shown in Figure 3-17.
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Deflected beam

A

V4

FnI

Beamn '—‘

/ Deflected node

’__
wi'

———— Spring element

“)

Beam m ®

v

Figure 3-17 Beam coupling with the assigned variable w}

Internal forces and moments:

= w1 (—kw)
Fn = wr (ky)

(98)

By replacing equations into the equation, horizontal coupling equations can be written as:

S el b =1
_kw kw Wf B Fn

Complete coupling matrix is defined using equations...

=00

their respective locations. Coupling matrix becomes:

[k, 0 0 0 0 0
0 (h™ =22k, 0 (K™ —2z")(=k,) 0 0

0 0 0 0 0 0

0 ( — Zr )( ku) 0 ku 00

0 0 0 0 0 0

0 0 0 0 0 0
K. =|-k, 0 0 0 0 0
0 (h™ —z™"zl'k, O —zl'k, 0 0

0 (W™ —zMk, 0 -k, 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

- 0 0 0 0 0 0

(99)

and placing stiffness components in

(100)
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—k, 0 0 000
0 (EHM™—z")(k,) (W —z")k,) 0 0 0
0 0 0 0 0 O
0 (—zM)k, —k, 000
0 0 0 0 0 O
0 0 0 0 0 O
k,, 0 0 000
0 (—zM2%k, z"k, 0 0 0
0 2k, k, 00 0
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O

Coupling matrix stiffness values k,, k,,, k,, are arbitrary if the requirement Ke,, » Kqi,, is
achieved. K. .is coupling matrix stiffness component value and K is global beam
i,j mn

stiffness component value, where the coupling is defined. Coupling scheme example is

shown in Figure 3-18 for beam model two vertically coupled elements, where k?i’j is coup-

ling matrix 6x6 quadrant for coupled node pair n.

Coupling element

1
n | n
kC1 1] kC1 2
_____ I R ——
|
n n
kC2,1 | kCz,z
|

Figure 3-18 Vertical coupling scheme
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4 Case studies

4.1 Comparative calculation of refined shear deformation theory

and FE-modelling

4.1.1 Models used for comparative analysis

A comparative analysis was carried out by evaluating the analytical axial displacement and
shear deformation values of the refined shear deformation theory by Ghugal and Sharma
[28] and FE-model. A selection of rectangular beam, I-beam cross-sections and T-beam
cross-sections were analysed to illustrate the range of application of the refined shear defor-

mation theory. Cross-sections with dimensions are presented in Appendix C .

4.1.2 Cantilever beam under uniform distributed load

Analytical equations for cantilever beam with uniformly distributed load were provided by
Ghugal and Sharma [28], where equations for cross-section rotation function ¢ (x), trans-
verse displacement w(x) and first derivative of transverse displacement dw /dx are obtained

from general governing equations (38) and (40):

gL |cosh(Ax) sinh(AL —2x) «x
p(x) = - —= (101)
BEL, |cosh(AL)  ALcosh(AL) L
o =1 <x4 4x+3)
w(x) = ——4-
24EL,\I* L
N 3qL? _ ﬁ _ 2(sinh(4L) — sinh(4x)) (102)
5GA L? ALcosh(AL)
2cosh (A(L — x))
(AL)?cosh (AL) |
dw(x)  qL* (4x®> 4\ 3qL?[2cosh(Ax) 2x 2 sinh(A(L — x)) (103)
dx  24EI,\ L* L) 5GA|[Lcosh(AL) I? L2 cosh(AL)

Axial displacement formula is obtained by substituting equation (103) into equation (25).

Shear deformation formula is obtained by substituting equation (103) into equation (28).
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4.1.3 Results and analysis

Results of comparative analysis of refined shear deformation theory and FE calculations are
described in. Range of cross-sections is described in Appendix C .

Results for a wide range of beam cross-sections show that the refined shear deformation
theory is a well-designed tool to assess axial displacement in beams, where the cross-section
is symmetrical with respect to the reference line. Shear deformation, however, is only
comparable in the beams with prismatic cross-section. For I-beams, the discrepancies bet-
ween analytical and FE results of shear deformations differentiated greater as the ratio bet-
ween flange width and web thickness grew.

It is also evident that the refined shear deformation theory is only applicable for assessing
beams with a vertically applied load. This suggests that shear strain must equal zero on the

top and bottom surface of the beam.

4.2 Higher-order shear deformation theory comparative calcula-

tions

Validation of the higher-order shear deformation theory is carried out by comparing the
analytical results with a selection of simple beam models. The applicative quality of the

theory is explained with several variable comparisons.

4.2.1 Models used for analysis

To illustrate the possible application of the developed higher-order shear theory in ship glo-
bal strength analysis, simple ship models are used for comparison. Toming et al. [27] intro-
duced three plate models, which emulated a longitudinal ship structure. In this thesis, case
A and B from the article are emulated.

Case A model consists of three vertically adjacent plate sections, each with dimensions 60x3
m. FE-model consists of 6000 plate elements with dimensions of 300x300 mm. An elastic

foundation is used as boundary conditions. See Figure 4-1 for Case A model.
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Figure 4-1 Case A FE plate model

Case B model consists of three vertically adjacent plate sections with varying dimensions.

FE-model consists of 4000 plate elements with dimensions of 300x300 mm. An elastic foun-

dation is used as boundary conditions. See Figure 4-2 for Case B model.

3000

60000

3000

Figure 4-2 Case B FE plate model

Beam element models for higher-order shear deformation calculations use identical global

models to FE-models, where the total length of the ship is divided into 60 beam elements.

Case A beam element model has equal 60 elements in all three beam sections with identical

thicknesses to FE model, see Figure 4-3. Case B beam element model has 60 elements in the

bottom section, 39 elements in the middle section and 21 elements in the top section, see

Figure 4-4, where longitudinally shown boxes identify a set of three beam elements. Beam

elements are coupled using vertical and horizontal coupling schemes shown in Figure 3-6

and Figure 3-18.
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t =8 mm t = 6 mm t =10 mm

60000

. Lan|

Figure 4-3 Case A HOSDT model

. L]

Figure 4-4 Case B HOSDT model

Identical material properties for Young’s modulus and Poisson’s ratio are used for HOSDT

calculations and FE-modelling respectively as:

E = 210 GPa,
v =0.3.
4.2.2 Loading

Identical sinusoidal loading is used for both calculation models. The longitudinally distribu-

ted vertical loading is applied on the bottom surface of the models and is calculated as:
p(x) = po * cos (), (104)

where

po — load amplitude, p, = 60 N/mm,

L — total length of the model

Loading curve is seen in Figure 4-5.
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Figure 4-5 Distributed loading curve

4.2.3 Calculation cases

Two separate cross-sections are analysed for case A and case B model, which provides a
wider look into beam model behaviour. In case A the global model consists of identical
vertical beam sections and cross-section discontinuities do not occur. Thus, axial displa-
cements, normal stresses and shear stresses are evaluated close to quarter-length and half-
length of the ship, more specifically at locations x = 0.225 * L; x = 0.475 * L. In case B
structural discontinuities are defined. Calculations at cross-sections x = 0.575 L, x =
0.625 x L and x = 0.725 * L illustrate the effect of nonhomogeneous horizontal beam

sections on displacements and stresses. See Figure 4-6 for calculation cross-sections.

x=0225xL x=0475%1L

x =0575*L

x =0.725 % L

x = 0.625 L

Figure 4-6 Calculation cross-section for beam models
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5 Higher-order shear deformation theory calculation re-

sults and discussion

This chapter presents the results of comparative analyses for case A and case B beam models.
A selection of displacement and stress variables are plotted for HOSDT and FEM calcula-
tions in the model cross-sections shown in Figure 4-6. The coincidence between the two
methods is discussed to reflect the range of real-life practical use of the developed beam

theory. Further work with the beam theory is also discussed.

5.1 Case A results

Comparative results for deflection is presented in Figure 5-1. The figure shows a good coin-
cidence of deflection between two methods.

The difference between analytical and numerical deflection results in the ends of the beam
make up 2% at x = 0 mm, about 4% at x = 60000 mm and about 0.4% at x = 30000 mm

of the deflection amplitude calculated with numerical methods.

25
20
15
10
—w, FEM
O w, HOSDT

w [mm]

-10

- 0 10000 20000 30000 40000 50000 60000
x [mm]
Figure 5-1 Case A deflection comparison
Comparative results for axial displacement vertical distribution is presented in Figure 5-2.
The figure shows good coincidence of axial displacement between two methods in both cal-
culation cross-sections.
The difference between analytical and numerical axial displacements results in the top and

bottom surfaces of the beam make up 0.3% and 0.5% respectively at x = 0.225L and about
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10.9% and 9% respectively at x = 0.475L of the axial displacement amplitude calculated

with numerical methods for the cross-section.

10000
9000
8000
7000 x=0225+L x=0475%L
. 6000
€ x=0.225 L, FEM
% iggg x=0.475 L, FEM
3000 O x=0.225 L, HOSDT
2000 O x=0.475 L, HOSDT
1000
0

-6 -4 -2 0 2 4 6 8

Axial displacement [mm]

Figure 5-2 Case A axial displacement comparison

Comparative calculation results for normal stress vertical distribution is presented in Figure
5-3. The figure shows good coincidence of normal stress between two methods in both cal-
culation cross-sections.

The difference between analytical and numerical normal stress results in the top and bottom
surfaces of the beam makes up 1.2% and 1.3% respectively at x = 0.225L and about 0.5%
and 0.7% respectively at x = 0.475L of the normal stress amplitude calculated with nume-

rical methods for the cross-sections.
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Figure 5-3 Case A normal stress comparison

Comparative calculation results for shear stress vertical distribution is presented in Figure
5-4. The figure shows good coincidence of shear stress between two methods in both calcu-
lation cross-sections.

The difference between analytical and numerical shear stress results in the middle layer, at
z = 4500 mm makes up 0.8% at x = 0.225L and about 9.0% at x = 0.475L of the shear
stress amplitude calculated with numerical methods for the cross-sections.
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Figure 5-4 Case A shear stress comparison
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5.2 Case B results

Comparative results for deflection is presented in Figure 5-5. The figure shows good coin-
cidence between FEM and analytical results.

The difference between analytical and numerical deflection results in the ends of the beam
make up 5.2% at x = 0 mm, about 0.1% at x = 60000 mm and about 0.2% at x = 24000

mm of the deflection amplitude calculated with numerical methods.

x [mm]
0 10000 20000 30000 40000 50000 60000

200

150

-100

Figure 5-5 Case B deflection comparison

Comparative results for axial displacement vertical distribution is presented in Figure 5-6.
The figure shows a good coincidence of axial displacement in all calculation cross-sections.
The difference between analytical and numerical axial displacements results in the top and
bottom surfaces of the beam make up 0.1% and 0.5% respectively at x = 0.575L, about
0.3% and 0.5% respectively at x = 0.625L and about 0.4% and 0.7% respectively at x =
0.725L of the axial displacement amplitude calculated with numerical methods for the cross-

sections.
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Figure 5-6 Case B axial displacement comparison

Comparative calculation results for normal stress vertical distribution is presented in Figure
5-7. The figure shows good coincidence of normal stress in two calculation cross-sections
furthest away from discontinuities. In cross-section at x = 0.575L, where structural discon-
tinuities have a significant effect, the HOSDT shows good ability to assess the overall ver-
tical distribution of normal stresses but underestimates peak stress values. Also, the calcula-
tion cannot assess stresses in the top layer of the global mode close to discontinuities. It can
be seen that for x = 0.575L cross-section, numerical normal stresses are close to 0 at the top
layer. This is due to free corners not being subjected to compression.

The difference between analytical and numerical normal stress results in the top and bottom
surfaces of the beam makes up 3.3% and 1.6% respectively at x = 0.725L, about 3.8% and
7.2% respectively at x = 0.625L of the normal stress amplitude calculated with numerical
methods for the cross-sections.

In the cross-section closest to discontinuities at x = 0.575L difference between analytical
and numerical results makes up 8.6% in the bottom surface, 10.2% at z = 5400 mm and
19.6% in the top surface, of the numerically calculated normal stress amplitude for these
cross-sections. These large differences show that the HOSDT is not able to assess vertical

stress distribution in regions close to discontinuities.
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Figure 5-7 Case B normal stress comparison

Comparative calculation results for shear stress vertical distribution is presented in Figure
5-4. The figure shows good coincidence on shear stress overall, however small discrepancies
occur due to the varying beam thicknesses. In cross-section at x = 0.725L, where the effects
of noncontinious beam section are negligent, shear stress vertical distribution shows good
coincidence. In cross-section at x = 0.575L, x = 0.625L where disconinuities have greater
effect, the figure shows good coincidence in the vertical distribution of shear stress.

In the cross-section at x = 0.725L the difference between analytical and numerical shear
stress results in the middle layer, at z = 4500 mm makes up 0.1% of the shear stress ampli-
tude calculated with numerical methods for the cross-section.

In cross-section at x = 0.625L, the maximum difference between analytical and numerical
shear stress makes up 14.4% at z = 1500 mm and 20,7% at z = 7500 mm of the shear stress
amplitude.

In cross-section at x = 0.527L, the maximum difference between analytical and numerical
shear stress makes up 5.7% at z = 2100 mm and 9% at z = 6500 mm of the shear stress

amplitude.
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Figure 5-8 Case B shear stress comparison
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6 Further work on the topic

In this thesis, comparative calculations included simple beam models, which roughly desc-
ribe ships longitudinal structural unit. The models used solely vertical loading, which in most
cases is not realistic when it comes to assessing loads acting on a ship at sea. This raises the
need for further work to be done in this field. The higher-order shear deformation theory
provides the ability to apply different loading cases, as the external work matrix presented
in chapter 3.3 contains not only vertical loading components but also components to describe
shear loads and load-induced moments. During the development, shear loading was investi-
gated to ensure the holistic behaviour of the beam theory, but no results are presented to
express that. Further work on the topic would likely include a more complex external loading
on the beams, where distributed vertical and horizontal forces are combined.

In terms of ship structural strength analysis, more realistic models could be used. For
example, ship sections, where vertical structures are coupled with horizontal deck structures
using coupling schemes provided in this thesis could be investigated. This would provide
feedback on whether this method is sufficiently time-saving to prefer it to for example FE-
modelling.

It would also be beneficial to explore additional boundary conditions for defined parameters
and the capabilities of finer meshing in the areas of discontinuous structures. Shear stress
and normal stress analysis results presented in chapter 5.2 showed discrepancies due to local
discontinuities. In the case of smaller HOSDT beam element dimensions and more accurate
definition of boundary conditions, these deficiencies in global models could be neglected.
Finer meshing would also be beneficial in models where openings in structures are investi-

gated.
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7 Conclusions

This thesis aimed to define a beam theory which would improve the coupled beam method
introduced by Naar et al [1] by further developing the description of displacement and stress
distributions in an arbitrary cross-section of a beam model. In addition to the single element
definition, the coupling of elements was necessary to the holistic behaviour of this theory,
as it aimed to define variables as continuous functions over the whole cross-section of a
global model. This was achieved by defining 6 degrees of freedom for both beam element
nodes:

o deflection at reference line,

e rotation of cross-section at reference line,

o axial displacement due to shear at a beam bottom surface,

o axial displacement due to shear at a beam top surface,

e shear deformation at a beam bottom surface,

e shear deformation at a beam top surface.
Vertical continuity of displacements and stresses was achieved by defining a coupling ele-
ment, which rigidly connected deflection of vertically adjacent nodes as well as total axial
displacement of adjacent beam surfaces.
The developed theory was tested on a selection of two simple beam models. Case A repre-
sented a vertically segmented beam with homogenous beam element configuration. Case B
represented a beam model where the vertical beam segments varied in length providing an
opportunity to assess the capabilities of the developed theory in regions, where structural
discontinuities have a local effect on global displacements and stresses.
Beam models were subjected to sinusoidal vertical distributed loading. An elastic foundation
was used as boundaries for the models.
Comparative calculations were performed using FE-modelling and analytical results. Selec-
tion of parameters was described:

e deflection in the bottom surface over the length of the beam model,

o axial displacement in a cross-section over the vertical span of the beam model,

e normal stress in a cross-section over the vertical span of the beam model,

e shear stress in a cross-section over the vertical span of the beam model.
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Calculation cross-sections were chosen so that in case A, results close to half-length and
quarter-length of the beam model were described. In case B calculation cross-sections were
chosen so that local effects could be described in a cross-section close to structural discon-
tinuity and further away.

The developed beam theory proved to have highly coincident results to FE-modelling in case
A for a homogenous structure. For case B the results were highly coincident in the cross-
section further away from discontinuities. In the region closer to the discontinuities the
theory proved to provide overall good coincidence of results, however, due to local effects,
normal stress and shear stress results had discrepancies.

Peak normal stress values were underestimated by up to 10.2% and in the top surface up to
19.6% of the normal stress amplitude in the cross-section. In the region, where discontinui-
ties do not have an effect, differences in normal stress values stay below 4% of the normal
stress amplitude.

Peak shear stress values in the cross-sections closer to the discontinuities showed a maxi-
mum difference between numerical and analytical results up to 20% of the shear stress amp-
litude. In the region, where discontinuities do not have an effect, differences in shear stress
values stay below 9% of the shear stress amplitude.

Figure 7-1 and Figure 7-2 show the deficiency of the coupled beam theory on a vertical
normal stress distribution graph presented by Toming et al [28]. Black projection lines have
been added to the graph to illustrate discontinuous calculation results. Figure 7-3 and Figure

7-4 show corresponding results for the HOSDT.
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Figure 7-1 Vertical normal stress distribution in case A beam model [28]
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Figure 7-2 Vertical normal stress distribution in case B beam model [28]
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Figure 7-3 Case A normal stress distribution
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Figure 7-4 Case B normal stress distribution
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Broadly the theory proved to be a good tool to assess thick beam behaviour in simple models.
The quality of results for analyses with more complicated models is dependant on the beam
element size and boundary conditions for defined parameters. Further work is needed to be

done to ensure the effectiveness of the presented theory when assessing more complex struc-

tures and loadings.
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8 Kokkuvote (conclusions in Estonian)

Kéesoleva 16putdo eesmargiks on talateooria defineerimine, mis arendaks edasi P. Sc. Hen-
drik Naari poolt esitatud seotud talade meetodit [1]. TO0O defineerib uut tulpi talaelemendi,
millega on vOimelik hinnata kirjeldatavaid parameetreid vabalt valitud talaelemendi I&-
bildikes ning esitada tulemused pidevate jaotustena. Lputdd keskendub lisaks talaelemendi
ka elementide siduvuse defineerimisele, mis on vajalik mitmest elemendireast koosnevate
talamudelite analiisimisel. Uudset tulpi 2D talaelemendil on defineeritud jargmised vaba-
dusastmed:

e Ladbipaine referentsjoonel

o Risldike poore referentsjoonel

o Ldikest tingitud pikisiire alumisel pinnal

o Ldikest tingitud pikisiire tlemisel pinnal

e LOike deformatsioon alumisel pinnal

e L0Oike deformatsioon tlemisel pinnal

Siirete ning pingete kdrgussuunaline jatkuvuse vdimaldamiseks talamudeli ristldikes on de-
fineeritud siduvuselement, kasutades eeldusi, et kogu pikisiire kdrvuti asuvates pindades
ning l&bipaine vertikaalselt kdrvuti paiknevates sdlmedes on vordsed.
Vordlusanaliitisiks on esitatud kaks lihtsat talamudelit. Mudel A kasutab kolme identset ta-
laelementide kihti, mis on Ghendatud, kasutades siduvuselemente. Mudel B kasutab kolme
talaelementide kihti, mis on ebalhtlase elementide paigutusega, voimaldades uurida teooria
rakenduslikku vdimet piirkondades, kus struktuuri ebatihtlustel on suur mdju globaalsetele
pingetele.
Talamudelitele on v@rdlusanalliusis rakendatud identset sinosoidaalset vertikaalset jaotatud
koormust. Rajatingimustena on mélema mudeli puhul kasutatud elastset vundamenti.
Ldplike elementide meetodi ja talateooria tulemuste vordlusanaliiisis on esitatud tulemused
jargmistele parameetritele:

o Lé&bipainde tala pikkusesuunaline jaotus globaalse mudeli alumisel pinnal

o Kogu pikisiirde jaotus valitud ristldigetes

e Normaalpinge jaotus valitud ristldikes

o LOdikepinge jaotus valitud risldikes
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Analidsitavad risldiked mudelis A valiti kdige optimaalselt iseloomustama kaitumisi kogu
tala ulatuses. Esimene rislGige asetses talamudeli esimese veerandi lahistel ning teine rist-
I6ige talamudeli poole pikkuse lahistel. Ristldiked mudelis B valiti iseloomustama ebaliht-
luste lokaalseid mojusid.

Vordlusanaltsi tulemused néitavad, et mudeli A puhul analudtiliselt iseloomustatud para-
meetrid langevad kokku I6plike elementide meetodi tulemustega. Mudeli B puhul olid tule-
mused kokkulangevad ristl6ikes, kus lokaalsed méjud puuduvad. Ristldigetes, mis asusid
lokaalsete mdjude piirkonnas on siirde jaotused kdrge kokkulangevusega, kuid pingejaotus-
tes esines erinevusi. Talateooriaga arvutatud maksimaalsed pingevaartused osutusid I6plike
elementide meetodi tulemustest vaiksemateks ning normaalpingevaartused vabadel pindadel
erinesid 16plike elementide meetodi tulemustest.

Arvutuste tulemustest selgus, et maksimaalsed normaalpinge vaartuste erinevused moodus-
tasid kuni 10.2% ja normaalpinge véartuste erinevused tala Glemises pinnas moodustasid
kuni 19.6% kogu normaalpinge amplituudist vaadeldavas ristldikes. Ristldigetes, kus geo-
meetria katkevused lokaalseid mdjusid pingetele ei tekita, erinesid normaalpinge vaartused
maksimaalselt kuni 4% kogu normaalpinge amplituudist ristldikes.

Piirkonnas, kus geomeetria katkevustel on suur méju moodustasid maksimaalsed 16ikepinge
vadrtuste erinevused kuni 20% I8ikepinge amplituudist vaadeldavas ristldikes. Piirkondades,
kus lokaalseid mdjusid ei esine jaid 18ikepingete erinevused alla 9% kogu I8ikepinge map-
lituudist vaadeldavas ristldikes.

Joonis 8-1 ja Joonis 8-2, mille esitas Toming [28], illustreerivad seotud talade meetodi puu-
dujaake, mille puhul pingete vertikaalset jaotust ei ole vimalik kirjeldada tihtlaselt. Joonis-
tele on lisatud mustad projektsioonjooned, et réhutada pingevaartuste katkevusi.

Joonis 8-3 ja Joonis 8-4 nditavad vastavaid tulemusi kérgemat jarku 18ike deformatsiooniga

teooria kohta.
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Joonis 8-1 Mudeli A normaalpinge jaotus ritldigetes[28]
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Joonis 8-2 Mudeli B normaalpinge jaotus ristldigetes [28]
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Joonis 8-3 Mudeli A normaalpinge jaotus ristldikes
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Joonis 8-4 Mudeli B normaalpinge jaotus ristl8ikes

Kokkuvotvalt osutus esitatud teooria hasti tootavaks meetodiks kdrgete talade hindamiseks
lihtsates mudelites. Tulemuste kvaliteet keerulisemates mudelites s6ltub kasutatava tala ele-
mendi suurusest ning rajatingimuste definitsioonist. Teooria nfuab edasist t60d, et tagada

usaldusvaarsed tulemused keerulisemate talamudelite ja koormuste rakendamisel.

62



Appendix A

Shear deformation theory potential energy partial derivative equations:
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Appendix B

Shear deformation theory variational multipliers used in the stiffness matrix:

=223 (117)
ky, = —z %2;2 (118)
ks =y % (119)
ks =, % (120)
ks = 3 % (121)
ke = 1, % (122)
k, = —z a;jj (123)
o = —2 222 (124)
ko = 1y % (125)
kio = ¥ % (126)
k1 = s % (127)
kiz =, % (128)
kiz = %4’1 (129)
kiy = %q’)l (130)
kis = %cpl (131)
kie = %qbl (132)
ki7; = %d)z (133)
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0y,
k18 - aZ ¢2

0y
kio = Eqﬁz

0P,
koo = gqbz

(134)

(135)

(136)
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Appendix C

Selection of cross-sections used for calculations using refined shear deformation theory:

Table 0-1 Cross-sections used for comparative analysis

Overall height h (mm) | 300 300 300 300 300 300 300
Overall width b (mm) | 2 5 10 10 10 20 40
Flange thickness t (mm) | - - - 20 20 20 20
Web thickness s (mm) | - - - 2 5 2 2

Cross-section

Overall height h (mm) | 300 300 300
Overall width b (mm) | 40 40 40
Flange thickness t (mm) | 20 20 20
Web thickness s(mm) | 2 10 20
Cross-section B
T —t
——




Appendix D

For all graphs, FE-calculations results are presented in black lines and analytical results

according to refined shear deformation theory are presented in red lines.
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Figure 0-1 Axial displacement and shear deformation comparison for cross-section 1
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Figure 0-2 Axial displacement and shear deformation comparison for cross-section 2
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Figure 0-5 Axial displacement and shear deformation comparison for cross-section 5

71



200 200

150

€ €
£ £
g ]
- )
£ =
B5-10 10 50,015 -0,01
9 o
g 5
N N
-100
-150 B
-200 ‘ 500
Axial displacement [mm] Shear deformation
Figure 0-6 Axial displacement and shear deformation comparison for cross-section 6
200 200
150 150 7
100
E £
£ £ 50
& g
£ e 0
g 10 5 10 T 0015 -0,01 -0,00 0
8 8 50
N N
-100 100
-150 7\
-200
- . -200
Axial displacement [mm] Shear deformation
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Figure 0-8 Axial displacement and shear deformation comparison for cross-section 8
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