DOCTORAL THESIS

Surface Vessel Localization
from Wake Measurements

Margus Ratsep

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025



TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
7/2025

Surface Vessel Localization from
Wake Measurements

MARGUS RATSEP



TALLINN UNIVERSITY OF TECHNOLOGY

School of Science

Department of Cybernetics

This dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Applied Physics and Mathematics) 09/01/2025

Supervisor: Prof Tarmo Soomere
Department of Cybernetics, School of Science
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Prof Kevin E. Parnell
Department of Cybernetics, School of Science
Tallinn University of Technology
Tallinn, Estonia

Opponents: Dr Luca Zaggia
Institute of Geosciences and Earth Resources
National Research Council of Italy
Padova, Italy

Dr Hannes TOnisson

Institute of Ecology

School of Natural Sciences and Health
Tallinn University

Tallinn, Estonia

Defence of the thesis: 28/01/2025, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for doctoral or equivalent academic degree.

Margus Ratsep

* X x
* *
* *
* *
* 5 x
j ——>

European Union Investing
European Regional in your future
Development Fund

signature

Copyright: Margus Ratsep, 2025

ISSN 2585-6898 (publication)

ISBN 978-9916-80-252-6 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9916-80-253-3 (PDF)

DOI https://doi.org/10.23658/taltech.7/2025

Réatsep, M. (2025). Surface Vessel Localization from Wake Measurements [TalTech Press].
https://doi.org/10.23658/taltech.7/2025


https://digikogu.taltech.ee/et/Item/f2a0e889-2719-4239-af66-393de661ad79

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
7/2025

Laevade asukoha ja liikumise parameetrite
maadramine laevalainete salvestustest

MARGUS RATSEP






Contents

[IE o) i o0 o] [ToF: | o o -3 SRS 6
Author’s contribution to the publications ...........cceeeciii i 7
INEFOTUCKION <.ttt st e st e sb e s b e sbeeeneeeas 8
MoNItOring VeSSl traffiC ....uueeiiiiiiciiiieee e e e 9
VESSEI WAKES ...t e 10
SPECLrOgram tECNNIGUE ..ot e e e e e a e e e e ean 12
Vessel detection using wake recordings in the littoral zone..........cccoccoveeeeeeieccnnneenn. 13
The objective and outline of the thesis..........ccceecieeiecciei e 15

1 Vessel Wake detection ..o 17
1.1 Selection Of deVICES....cc..ei it 17
1.2 Detection of a sequence of ship WaKes.........ccccevieciiiiviee e 20
1.2.1 Software based apProach ... 20
1.2.2 Hardware based approach ......c.ccceeveeereieeneeneeeeeeesees e 21

2 VeSSel 10CalZAtION ...eiiiiiiiieee e 25
2.1 Speed Of the VESSEI ... e e e e e e e e 25
2.2 Vessel poSition and COUISE.......uoiiiiiiniiiiiiereeeee et s 29
CONCIUSIONS .ttt st sttt et b e r e reesnessnesmeesreesneeneenes 33
[ o] 8 1=V <L UUT PR 35
REFEIENCES ...ttt ettt e s b e et e sbe e sae e sareenanees 37
ACKNOWIBAZEMENTS.....eeiiiiiieeiieee e e e e e e e e e e e et e e e e e e e e esaraaaeeaeeeenanses 43
Y o153 1 - ot ST PP PUS PR PROURORRORN 44
LUNTKOKKUVBEE ...t s 45
Appendix: Publications constituting the thesis.........cccceeeeciii e 47
CUPTICUIUM VT ..ttt s s sreen e 84
L 1W] FoToT T g = e [V LU PR 85



List of publications

Ratsep, M., Parnell, K.E., Soomere, T., 2020. Detecting ship wakes for the study of
coastal processes. Journal of Coastal Research, Special Issue No. 95, 1258—-1262.
https://doi.org/10.2112/5195-243.1

Ratsep, M., Parnell, K.E., Soomere, T., Kruusmaa, M., Ristolainen, A., Tuhtan, J.A,,
2020. Using spectrograms from underwater total pressure sensors to detect passing
vessels in a coastal environment. Journal of Atmospheric and Oceanic Technology,
37(8), 1353-1363. https://doi.org/10.1175/JTECH-D-19-0192.1

Ratsep, M., Parnell, K.E., Soomere, T., Kruusmaa, M., Ristolainen, A., Tuhtan, J.A,,
2021. Surface vessel localization from wake measurements using an array of
pressure sensors in the littoral zone. Ocean Engineering, 233, 109156.
https://doi.org/10.1016/j.0ceaneng.2021.109156



Author’s contribution to the publications

| | prepared the figures, analyzed the data, wrote most of the paper and acted as the
corresponding author.

Il | prepared the figures, analyzed the data, wrote most of the paper and acted as the
corresponding author.

Il | prepared the figures, analyzed the data, wrote most of the paper and acted as the
corresponding author.



Introduction

Coastal zones have always been attractive because of their vast variety of resources,
providing food and energy, enabling marine trade and transport, and as areas of
recreational and cultural amenity (Neumann et al., 2015). For these reasons roughly one
quarter of world’s population lives in the area less than 100 km from coast (Reimann
et al., 2023). This high concentration of people and activities creates many challenges
when managing the common resource, known as the sea (Till, 2013). The situation is
particularly complex in the contact zone between land and water where a delicate
balance exists between different drivers and their impacts, and any change in the
pressures, for example, general energy pollution (Kelpsaite et al., 2009) or waves with
unusual properties or propagation direction, may destroy this balance (Scarpa
et al., 2019; Soomere, 2005).

One challenge is maintaining control and command of an adjacent state’s territorial
waters (Till, 2013). Other challenges include recognizing and stopping unlawful fishing
(Kurekin et al., 2019), monitoring and preventing pollution (Landrigan et al., 2020),
fighting piracy (Gong et al., 2023), regulating ship traffic to avoid navigational accidents
(Chen et al., 2018), protecting underwater infrastucture (Gilcan and Erginer, 2023), and
ensuring the security of various offshore and coastal facilities (Anupriya and Sasilatha,
2018; Dugad et al., 2017).

As world population increases so does the volume of both national and international
marine trade. This process inherently leads to more ship traffic operating in the littorial
zones and generally to a higher probability of accidents (Altan and Otay, 2018).
The rising pressure on the coastal (Delpeche-Ellmann and Soomere, 2013) and marine
(Claremar et al., 2017; Zanatta et al., 2020) environment calls for more advanced
offshore and coastal sea management (van Westrenen and Baldauf, 2020).

With the rapid development of marine technology and increased interest in green
energy, some new concerns have arisen. One example is the introduction of unmanned
Marine Autonomous Surface Ships (MASSs) (Kim et al., 2022). These vessels operate in
the same navigational environment (Kim et al., 2022) as ordinary manned vessels. Their
introduction generates a need to investigate the ability to detect and classify medium
size and small objects (e.g., leisure boats), to mitigate the risk of collisions. Such vessels
often sail outside the traffic lanes and do not usually use self-reporting automatic ship
indentification systems.

It is also necessary to develop measures and protocols that ensure navigation safety
in the case of technical malfunctions, unexpected behaviours due to storm conditions
(Rgdseth and Burmeister, 2015), and to ensure recovery capability (Thieme et al., 2018)
in the case of failures. As there is usually no permanent crew on such ships, either losing
contact with a ship or the malfunctioning of one or several sensors used for plotting and
maintaining the course, can severely limit the options for maintaining control in critical
situations.

Recent geopolitical developments suggest that in addition to challenges when
operating in confined conditions with poor visibility and in areas with a high
concentration of vessel traffic like inland rivers (Zhang et al., 2019), other situations need
to be taken into account, e.g., hostile GPS signal disturbance. To cope with these risks,
additional external devices located at critical locations (such as near harbours or offshore
structures, or where lights at night interfere visually and tall buildings may damp radar
sensing) are needed in order to detect, set and sustain the sailing characteristics.



A separate issue is that some operators do not want their vessels to be detected and
identified, for military-driven reasons, because of illegal fishing or related to other
malicious or illegal marine traffic (Reggiannini et al., 2024, 2019).

Another significant growing concern to navigational safety are offshore windfarms
(Chang et al., 2014). These reduce the space available for shipping (Tsai and Lin,
2021) and thus increase the density of ships in other sea areas, which in turn
increases the possibility of navigational accidents, both ship-to-facility (Chang et al.,
2014) and ship-to-ship collisions (Tsai and Lin, 2021). The risk is greater due to the
underperformance of radar systems when operating in their near vicinity (De la Vega
et al., 2013), which emphasizes the need for additional vessel detection methods to
mitigate the risks and assist nearby vessel navigation.

Monitoring vessel traffic

There exists a vast variety of methods to detect and monitor movements of the vessels.
Some of the best known long-range detecting and monitoring systems are based on
various remote sensing technologies, from radar (Siegert et al., 2019) and radio
surveillance (licev, 2021) to satellite-based information, including synthetic aperture
(SAR) technology (Gierull, 2019; Panico et al., 2017; Reggiannini et al., 2024; Zilman
et al., 2004). More local options use airborne (Dahana and Gurning, 2020) and
ground-based (both wide-spectrum visual and hyperspectral) optical techniques (Park
et al., 2018) and various acoustic (sonar) technologies (Huang et al., 2017; Zhu et al.,
2018). These methods can be complemented by visual observations from the coast or
other vessels.

None of the methods is perfect for providing ship detection and surveillance in all
situations. The additional complication is that these methods are well known, and
measures exist to either intentionally (or even accidentally) reduce the rate of detection,
or to completely avoid it. For example, self-reporting methods like Automatic Identification
System (AIS) and Long-Range ldentification Tracker (LRIT) (Dahana and Gurning, 2020)
usually provide information about the vessel movements and intentions (name and
destination), but these methods are reliant on whether devices are switched on (AlS) and
are set to report (LRIT). As they rely on the operator’s action, these devices can be used to
provide false information about destination and purpose.

One of the most well-known ship detection methods, optical observations (visual and
infrared) can be interfered with by using the appropriate paint coatings to conceal a
vessel or to disguise its intentions (Aurdal et al., 2019; Casson, 1995). The common
countermeasure to reduce the infrared signature is to put the exhaust outlets of the
ship’s engines in an area of the hull that is near the waterline.

The accuracy of a radar’s readings about the ship depends on the vessel size, shape,
and the weather conditions. Similarly to the above, as the radar technology developed,
so did the countermeasures. The most common means to avoid accurate detection,
known as stealth technology, is to use specific paint coatings, structure and hull materials
that absorb and/or scatter the emissions. Another option is to reduce the size of the part
of the vessel that is above the water, principally the superstructure. This tactic is used in
smuggling narcotics from South America by building low-profile vessels (Ramirez and
Bunker, 2015). These boats have small freeboard, which makes them difficult to detect
using any of the methods described above.

Acoustic detection has so far been one of the most reliable methods for vessel
detection. This technology also enables the monitoring of submersed vessels. However,



this method relies on the fact that ship has something that makes noise. The related
challenges are gradually increasing with the arrival of green technologies like hydrogen
cells or fully electric vessels that are conquering the market, pushing out internal
combustion engines that have a well-known and recognized acoustic footprint. Related
are methods that use wind and solar power (Nyanya et al., 2021) to help to propel the
ship (e.g., during the transit in open ocean) and therefore reduce the time when the main
engines and/or a propeller are used.

A further challenge is the limited amount of information the detection (sensor) system
provides. Some of these techniques (e.g., several acoustic recognition systems) are only
able to detect the presence of a ship in a certain region. Other technologies provide,
similar to the AIS system, the location (or a sequence of locations) of vessels. However,
reliable identification of the sailing parameters (speed and course of the vessel) from the
provided information is not always possible (Fujino et al., 2019).

In order to address the gaps in both reliability and accuracy, additional means for the
surveillance of sea areas should be researched. These efforts are in line with activities
that move towards merging information from several sensor systems and techniques to
detect and monitor vessel traffic with a high level of confidence. Navies and maritime
security organisations refer to this process as creating a Recognized Maritme Picture
(RMP) (Simard et al., 2000). Usually, a RMP provides information about each vessel in
the region by determining its location and heading, also providing the possibility of
follow-up actions based on the ship type and purpose (Simard et al., 2000).

Vessel wakes

When considering the monitoring of vessel traffic, one approach would be to focus on
the emissions created by the vessels themselves. While exhaust gas emissions as well as
the radiation of noise and heat can be effectively eliminated by advanced technologies,
there is an unavoidable emission for all items that move on the water surface. A vessel
moving on the surface of body of the water leaves behind a trace known as wake
(Newman, 1977; Wehausen, 1973). This trace consists of several different linear
(Kuznetsov et al., 2002) and often nonlinear components (Fang et al., 2011; Soomere,
2007; Sorensen, 1973). The most well-known, classic representation is the triangular
wave pattern known as the Kelvin wake (Figure 1) (Newman, 1977) which obtains its
textbook shape about three-vessel lengths behind the ship.

A Kelvin wake and its variations for subcritical speeds are composed of two sets of
waves: transverse and divergent waves. They both exist if the vessel speed does not
reach or exceed the so-called critical speed U = \/ﬁ, where g is acceleration due to
gravity and h is water depth (Sorensen, 1973). These wave systems are traditionally
treated as linear waves (Liang et al., 2024) even though for larger speeds they exhibit
nonlinear properties (Soomere, 2007; Sorensen, 1973).

Transverse waves propagate in the same direction as the vessel heading. Therefore,
their crests are perpendicular to the sailing line. Divergent waves move away from the
sailing line and their crests form a smaller angle with the vessel’s path (Newman, 1977).

A set of so-called cusp waves is formed by interactions of transverse and divergent
waves, along the borders of the ship wake (Kuznetsov et al., 2002). Cusp waves are
usually the most observable part of the wake because their amplitude decays slowly
(as r~1/3) with the distance r from the vessel (Kuznetsov et al., 2002).
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The wave pattern, in general, depends on the vessel properties, water depth and the
sailing speed. On many occasions the vessel’s stern and bow produce their own wake
systems with the height depending on the vessel geometry and sailing regime.
The basic geometric properties of the Kelvin wake produced by a single moving point are
still universal and can be described in terms of a depth Froude number F;, (Newman,
1977):

U

F,=—.
" Joh @)

In deep water or when sailing at low speed (F,, < 1), the divergent and transverse
waves fill a triangular area (Kelvin wedge) with half apex angle of arcsin(1/3) = 19.47°
(Figure 1) (Newman, 1977). When the speed increases or water depth decreases so that
F}, has values 0.5-0.7, the Kelvin wedge starts to widen, energy starts to concentrate to
a few divergent components, and transverse waves become weaker. At F;, = 1, the wave
system becomes highly nonlinear (Soomere, 2007; Sorensen, 1973) and cannot be
described in terms of a Kelvin wedge. In the supercritical speed range F;, > 1 the apex
angle starts to decrease, and most of the wave energy is concentrated in a few
long-crested divergent waves which dominate the wave pattern (Pethiyagoda et al.,
2014; Soomere, 2007). The wave system may contain several types of solitons at
F, = 1 and F;, > 1 (Soomere, 2007). On many occasions it may resemble a Mach-type
wave system (Rabaud and Moisy, 2013).

o

Figure 1. A scheme of the linear Kelvin wake generated by a ship sailing in deep water (h = o)
to the right. The half-angle of the Kelvin wake is 19°28' and the propagation direction of cusp
waves forms an angle of arccos(\/2/3) ~ 35°16’ with the sailing line (Newman, 1977; Torsvik
et al., 2015b). From Paper lll.
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Spectrogram technique

Vessel wakes have been used extensively for detecting and characterizing vessels and
their movement using various kinds of two-dimensional (2D) data from, e.g., synthetic
aperture radars (SAR) (Zilman et al., 2004) and satellite photos (Rabaud and Moisy, 2013).
The benefit of this method is that it is applicable to vessels of different size as their Kelvin
wake always has the same geometry, and its “arms” (cusp lines) have the same length
(as the wave height decays according to the same law) and varies only in amplitude
(zilman et al., 2004). A natural limitation of this method is the signal to noise ratio that
can be low when extracting the properties of Kelvin wakes due to the high sea clutter,
which requires additional algorithms for filtering (Kuo and Chen, 2003).

The ideal Kelvin wedge is stationary in the coordinate system attached to the moving
ship. This perspective is convenient for several theoretical considerations, but it is not
straightforward to use for practical applications. Most observing systems of ship wakes
are anchored at some location or mounted on the shore. On such occasions the ship
wake is recorded as a complex system of water surface undulations or pressure
variations. It is notably unsteady and short crested, despite appearing stationary to an
observer on the generating vessel (Liang et al., 2024).

Therefore, another approach is to use wakes for ship detection and specification of
sailing properties from the water elevation or pressure data, from the perspective of an
Earth-fixed observer. While transverse waves are represented as signals with an almost
constant frequency, the signal of divergent waves is chirp-like and has a gradually
increasing frequency. The properties of these signals carry information about the speed
and location of the vessel. Wu (1991) was the first to show that the sailing speed can be
estimated from the minimum frequency of divergent waves f,,;, as

g
U= 2T[fmin . (2)

This frequency was evaluated from the 2D wake spectrum. This technique applied by Wu
(1991) to estimate the ship speed and direction had problems with the evaluation of the
exact location of the locus of the wake signature. It was further elaborated by Arnold-
Bos et al. (2007) who used the generalized Radon Transform and Stochastic Matched
Filtering to detect the locus of the wake signature in the 2D spectrum wave recordings.
Finally, Torsvik et al. (2015b) derived expressions for the ship’s distance to the
measurement location based on this information.

Another more promising approach using a windowed Fourier transform (so-called
spectrogram) to study the nonlinear components of wakes was first employed by Wyatt
and Hall (1988). The method was expanded by Sheremet et al. (2012) for a broader
selection of vessels. A more elaborate description of different components was
performed by Torsvik et al. (2015b). A systematic analysis of the nonlinear components
based on dispersion curves of ship wake components was presented by Pethiyagoda
et al. (2017), with a description of the effects of different sailing regimes (turning,
accelerating) on the properties of the wake.

The major benefit of an application of a windowed Fourier transform (or Short Time
Fourier Transform, STFT) to water surface elevation data is that a vessel wake has a
distinct L-like shape (Figure 2). This shape appears for data gathered directly from
(above) the water level as well as for data converted from seabed pressure readings
(Paper Il), The upper, inclined part (also called a chirp signal (Sheremet et al., 2012)) of
this signature corresponds to divergent waves. The frequency of these waves increases

12
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Figure 2. (a) An example of pressure time series of a vessel wake that is converted to water
elevation data. (b) Short-time Fourier transform (spectrogram) of the corresponding series (note
that the spectrograms are represented in normalized way). Wake elements are marked with red
dashed rectangles. From Paper II.

over time at each Earth-fixed location. This feature is commonly observed at a fixed
location in the nearshore, at the seashore or on the bottom after the passage of a steadily
sailing ship (Sheremet et al., 2012). The lower, mostly horizontal part of this signature
represents transverse waves. They have a constant frequency for a fixed observer who
records the wake of a steadily sailing ship. The cusp waves are represented by the common
point of these two parts of the signature.

Both windowed Fourier transform, and wavelet transform can be used to derive a
time-frequency representation of the wake data (Sheremet et al., 2012). Testing has
shown that wavelet transform usually has a higher signal-to-noise ratio than Fourier
transform, however, Fourier transform provides the results on a uniform frequency scale
compared to the logarithmic scale obtained from wavelet analysis (Torsvik et al., 2015b).
This in turn simplifies the extraction and analysis of useful information (which is, in
general, determination of the frequencies of the ship wake structure) to such an extent
that the loss in signal-to-noise ratio was acceptable for this study, and wavelet analysis
was not pursued here.

Vessel detection using wake recordings in the littoral zone

Areas near the ports tend to have more vessel traffic than other shipping zones (Li et al.,
2023) and therefore there is a greater emphasis on managing the traffic. One such
location is Tallinn Bay. It is a semi-enclosed bay approximately 10 x 20 km in size situated
on the north coast of Estonia (Figure 3). The two entrances to the bay (from the north
and west) are regulated by a local vessel traffic separation scheme (Figure 3).

As this study tried to evaluate the prospect of using wake recordings as the basis of a
vessel detection system, for simplicity, only steady wake signatures, which would not be
affected by the speed and course alternations, were used. In other words, course and
speed alternations (Pethiyagoda et al., 2021) which are a crucial part of every vessel’s
sailing trajectory in coastal zones and should also be counted by the vessel detection

13



system, are not studied. The focus was on the vessels approaching the Port of Tallinn
from the north-north-west (NNW). Wakes from ships departing the port had a wake
signature typical of an accelerating vessel and vessels heading to or coming from the
west had elements indicating the turn in their wake signatures (Pethiyagoda et al., 2021).

An optimal location for retrieving wakes from incoming vessels, that met the criteria,
is near the eastern shore of the Paljassaare Peninsula where the Pikakari Beach has been
formed over the last century (Figure 3). Katariina Jetty to the south-east and the tip of
this peninsula to the north-west shelter the measurement location from waves
generated by predominant winds from west and south. Also, due to these natural
obstacles, the wakes from the departing vessels (sailing at course 339° clockwise from
north) are negligible at the sensor location.

The sailing direction of vessels that approach the Port of Tallinn from NNW was
approximately 159° (clockwise from north). The deviation of courses of single ships from
this, estimated from ship self-reporting systems, was typically less than +10°.
The water depth in the part of the traffic separation scheme where the wakes of the
approaching vessels could have originated (Figure 3) ranges from 40 to 70 m. Passenger

62°N
)
=
2
©
= 60°N
10°E 20°E
Longitude
A siezo09&2017 oW
- paration scheme
59°35'N
)
=l
2
®
o |
59°30'N
L [Eartstar
24°10E . 24°20E 24°30'E 24°40'E 24°50'E
...... Longitude
PN 4 Site 2009 & 2017
59°30'N Paljassaare Peninsula
@
el
=
T 59°28'N
ek

v o _
) 510 and Board, Eart!
24°40°E 24°45! 24°50'E
Longitude

Figure 3. The study area in Tallinn Bay on the north coast of Estonia. The traffic separation scheme
allows two approaches to the Port of Tallinn: from the north and west. Adapted from Paper |I.
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vessels entering to the port were travelling at 15 to 30 knots?, and therefore they were
sailing at subcritical speeds. Even though the depth Froude number for such speeds may
reach values about 0.7, on average it was below 0.5. Thus, the deviation of the geometry
of the Kelvin wedge from the deep-water geometry was insignificant

This study uses two datasets of wave measurements obtained from this location.
As the author was not involved in either of the field experiments the following is based
on datasets collected by others, references and other indirect sources.

The first dataset was gathered in 2009 by the Wave Engineering Laboratory. This
dataset was used in a number of studies of natural and ship-generated waves
(Didenkulova and Rodin, 2013; Kurennoy et al.,, 2011; Soomere et al., 2011).
Measurements were taken with a “LOG_alevel” echosounder mounted on a tripod in
2.6-2.7 m deep water. Data were collected at a frequency of 5 Hz and divided into 24-h
blocks starting at 04:00 (prior to the first ferry wake of the day) local time. Field
experiments were conducted on 24.-25.06.2009 and 27.—30.06.2009. The properties of
the study site, measurement location, devices deployed, procedures and preprocessing
details are described in these studies.

The second dataset was gathered by the Centre for Biorobotics at the same location
on 10.-14.07.2017 and 16.-21.07.2017. They deployed nine devices called hydromasts
(Ristolainen et al., 2019) in a regularly spaced rectangular array on a 5 x 5 m aluminum
frame at a depth of 3 m. The frame was anchored using 8 mm metal bars and additional
weights at the corners of the frame. The frame was oriented towards NNE (22.5°) to face
the traffic separation scheme. Measurements (pressure) were taken at a height of 0.2 m
from the seabed with a frequency of 100 Hz.

The objective and outline of the thesis

The main goal of this thesis is to evaluate the prospect of using the spectrogram
technique as a vessel traffic monitoring system. As these techniques are applicable for
any kind of wave recordings, including time series of water surface elevation data
measured from above the water surface and time series of wave-induced pressure or
velocity fluctuations measured in the water column, they provide a vast variety of
opportunities for choosing equipment and deploying location. Several sets of wave
elevation data and pressure recordings from the Tallinn Bay are acquired. The results are
compared with “ground truth” —in this case, derived from the AIS data covering the same
period and area.

The evaluation is viewed in the context of the previously mentioned ‘Recognized
Maritme Picture’ which usually consists of five steps: a) detection, b) localization,
c) recognition, d) identification and e) dissemination, from which the first three
(detection, localization and recognition) are sensor based (NATO Standardization Agency,
2015). As the possibility of achieving recognition (determining the characteristics of a
contact) from wake measurements is still unclear, and it is based on the success of
previous steps, the focus of this work was to evaluate the method for detection and for
localization of the vessels (NATO Standardization Agency, 2015).

The evaluation process for vessel detection, that is whether a vessel is in the survey
area or not, requires collecting a time series of water surface elevation from either above
the water surface or from within the water column or on the seabed), and determining
its quality and the level of noise. Secondly, the process is used to investigate means by

11 knot is 1.852 km per hour
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which wakes can be detected automatically. This process should answer questions
relating to the circumstances under which vessels can be identified from the wake
spectrogram (speed, size and distance) These questions are not specifically addressed
here as all the tests were conducted at the same location and are based on the same
types of vessels sailing at same speed.

Vessel localization involves finding the exact location of the vessel and its sailing
characteristics (speed and course). Here the main questions are whether the speed
based on the wake measurements (Torsvik et al., 2015b; Wu and Meadows, 1991) relate
to the actual ship’s movement. Also, is there a possibility to determine the direction of
the incoming wake, which, when combined with the distance travelled by the wake
calculated using the previously determined speed, could be used to estimate the vessel
location? Finally, does the direction of wake propagation and its propagation angle
correspond to the actual course of a ship?

The thesis is organized according to these questions. Chapter 1 focuses on
investigating sensor-specific methods for wake detection and extraction. It follows
Papers | and Il. Paper | reviews the author’s master thesis which was completed in early
2018 and is presented here as a reference due to low resolution of reference AlS data.
It expands the model derived by Torsvik et al. (2015b) by adding automated vessel
detection abilities. The focus of this paper is on the dataset measured by Laboratory of
Wave Engineering in 2009 (Kurennoy et al., 2011). Chapter 2 investigates different
methods of evaluation of the speed of the vessel and the distance of the location from
where the wake was generated. It is based on the findings from Paper | but itisillustrated
using the data from Paper IlIl. Also, it tests the ability to determine the direction of the
wake at its original location and thus the course of the vessel.

As papers 2 and 3 focus on the same dataset measured by the Centre for Biorobotics
then they should be considered together because they represent a single pipeline from
receiving input data to providing the vessel position and sailing parameters. Secondly,
model development was done mostly in 2018. This means that improvements, findings
from other authors from that period onwards on the same topic are not considered here.
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1 Vessel wake detection

In general, there are two main methods for retrieving water wave data on-site for the
analysis of ship wakes (if not including wake studies based on the far field readings like
SAR radars, satellite images etc.). A widely applied approach is recording the fluctuations
of the water surface using either buoys (Metters et al., 2021) or devices that can read
the water level from within the water column or from the seabed or from above the
water surface, e.g. echo sounders (Parnell et al., 2008) or lasers. The use of pressure
sensors mounted in the water column (Soomere and Rannat, 2003) or near the seabed
(Sheremet et al., 2012) is also common. Both methods have positive and negative aspects,
as discussed below, leaving the final decision dependent on the available hardware and
the deployment location.

Another issue relating to vessel detection is the scale (size of area, number of the ships
and sensors, frequency at which data is gathered). When the dataset is small (short time
periods and/or low intensity traffic), manual detection is likely to be sufficient. However,
it can get labor intensive quite quickly near busy ship lanes. This is often the case and
creates a need for additional means to automate the detection process.

This problem was examined in Papers | and Il from both software and hardware
perspectives. The software development in Paper | relies on a straightforward algorithm
utilizing Gabor multipliers (Dorfler and Matusiak, 2013). A major development towards
more advanced hardware is the use of a new type of sensors to describe the wake
characteristics, both with respect to measuring pressure and with respect to water
velocity. These devices, called ‘hydromasts’ are multimodal sensor systems developed
by the Centre for Biorobotics, Tallinn University of Technology (Egerer et al., 2024;
Ristolainen et al., 2019), discussed in Paper Il. The results of both previously mentioned
approaches were compared with visual findings and results obtained from convolutional
neural networks.

1.1 Selection of devices

A straightforward and often preferred approach for recording water level elevation data
in ship wakes, without any kind of conversion loss (as is the case with
pressure-based methods) is to use a sensor system that can take readings from above
the water surface. There are several different types of devices available (Metters et al.,
2021; Parnell et al., 2008). The core data set used for this chapter was recorded in Tallinn
Bay in 2009 using a downward looking echo sounder mounted on a stable tripod.
The tripod was deployed in 2.6 m deep water, with the sensor mounted about 2.5 m
above the typical water level during the measurement campaign (Kurennoy et al., 2011;
Torsvik et al., 2015b).

Two examples of wake spectrograms? are shown in Figure 4, where the motor vessel
(M/V) Star is approaching the port of Tallinn with a speed of 24 knots. Panel a) shows the
situation on a windy day (wind ~4.0 m/s from NE) while panel b) shows the recording
made on a calm day (wind ~1 m/s from SW). A comparison of the upper parts of these
spectrograms firstly signals that the presence of a mild background wave field does not
significantly change or blur the geometry of the patterns that reflect the components of

2 All the development processes were conducted using a mathematical package Matlab with the
addition of ‘The Large Time-Frequency Analysis Toolbox’ (Prisa et al., 2014; Spndergaard et al.,
2012) and OCEANLYZ toolbox (Karimpour and Chen, 2017).
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Figure 4. The signature of passenger ferry Tallink Star approaching the Port of Tallinn on
a) relatively windy day 27.06.2009 and on b) a relatively calm day 28.06.2009. In both cases data
is recorded from the above the water surface.

the wakes. It also shows that even relatively weak winds can generate waves with periods
of 2-3 s (frequency about 0.3-0.5 Hz) with relatively wide spectrum in semi-closed areas
like Tallinn Bay, and appear as noise in the upper higher-frequency parts of the
spectrogram, These short period waves can mask the upper parts of the signal of
divergent waves (Figure 4a).

Open ocean swells usually have a narrow frequency spectrum and periods commonly
longer than components of ship wakes (Soomere, 2005). Therefore, they can be removed
using spectral filters. However, short and young waves of the Baltic Sea (Bjérkqvist et al.,
2018) often have a wide spectrum that overlaps with the frequencies of wake
components.

This feature renders the process of filtering out noise from wave recordings quite
difficult, especially if the goal is to avoid a significant loss in information about the vessel
wakes. Further processing spectrograms that contain a high level of noise can increase
error and add uncertainties during the following steps of wake analysis, for example
when finding the vessel speed and distance to the wake origin point (Torsvik et al.,
2015a).

The use of data collected from above the water surface, despite being noisy (Kurennoy
et al., 2011), is better than other methods with respect to establishing accurate water
surface elevation measurements, especially for investigations that examine the high
frequency and/or low energy components. Other survey methods, such as near-bottom
pressure recordings, either tend to mask or attenuate such components, sometimes to
the level of being unusable.

It is common to use pressure sensors positioned either somewhere in the water
column or on the seabed to record wake signals. In this case the high-frequency part of
the surface wave field is attenuated because the pressure signal decreases in the water
column, most rapidly for shorter waves (Dean and Dalrymple, 1991). This feature also
suppresses the previously mentioned noise produced by wind waves. The near-bed
pressure signal frequently contains a sufficient level of lower-frequency components to
evaluate the properties of transverse waves and the longest fraction of divergent
waves. On some occasions pressure oscillations with periods >10 s can mask the longer
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components of the wake such as transverse waves or precursor solitons (e.g.
near-horizontal higher energy lines up to 0.2 Hz in Figure 5b compared to Figure 5a).

This shortcoming was addressed by using time series from several temporally
synchronized pressure sensors that were close to each other (Paper Il). The idea is that
different from short and short-crested wind waves, single wave components of the wake
(possibly except for cusp wakes, (Liang et al., 2024)) are, ideally, long-crested (Soomere,
2007; Sorensen, 1973). It is therefore natural that wake components produce a coherent
signal at closely located sensors whereas the signal from wind waves is random and
varies much more from sensor to sensor. In other words, if the background noise (either
low-frequency or high-frequency) is not coherent over the distance between the
instruments, it could be suppressed by merging several synchronized spectrogram
snapshots of coherent waves into one picture. To make use of this idea, is it necessary to
consider small delays in the arrival of long-crested wake components to different
sensors.

Time series from a set of 9 devices was available at nodes of a regular rectangular
5 x 5 m rack with a step of 2.5 m in the relevant experiments (Paper Il). The best result
was achieved using five sensors (four in the corners and one in the center). The results
were optimal for the further steps of the vessel wake analysis. The wake-to-background
spectrum noise ratio (Figure 5c) was greatly improved. The result significantly simplified
the wake detection process, eliminated most false detection decisions, and made it
possible to extract and analyze vessel wake components and evaluate properties of ship
motion (Paper ).
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Figure 5. The signature of passenger ferry Tallink Star approaching the Port of Tallinn on
25.06.2009 with a wind-generated sea with typical periods of 2-2.5 s (Torsvik et al., 2015b).
The wake is measured using a one-point measurement device (a downward-looking
echosounder mounted on a tripod) from above the water surface. (b) The signature of the same
vessel approaching the Port of Tallinn on 17.07.2017 under similar weather conditions. The wake
is detected using a single pressure sensor mounted at the seabed at a depth of 3 m. The pressure
sensor is mounted at a height of 0.2 m from the seabed. (c) The same event as observed in (b)
but visualized using five sensors located in the center and the corners of a frame of 5 x5 m.
The spectrograms are normalized by frequency spectrum and overlapped. From Paper Il.
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1.2 Detection of a sequence of ship wakes

If ship traffic is light, the dataset of wake-representing spectrograms is small and
probably the best way for wake detection is visually picking the exact time moments from
the spectrogram. Doing so would also make it possible to recognize complicated
“portrayals” of high-speed vessels (Torsvik et al., 2015b). When there are many wake
events, an automated wake detection method must be considered. A feasible option may
be to apply convolutional neural networks, which have already been successfully used in
similar studies for vessel wake detection from synthetic aperture radar and satellite
images (Kang and Kim, 2019). Downsides to this method are the quantity of necessary
data (including data collected under different weather conditions) and the time needed
to train the model to detect the wakes to reach an acceptable level of detection. Another
disadvantage is that this method is a supervised learning method: after deployment,
the operator must go through the data meant for learning and classify the wakes by hand.

1.2.1 Software based approach

For real applications, methods that can start to detect the wakes without intervention
are clearly preferred, especially those methods that do not need a long period to adapt
to the data. Here, an example of such a method from the signal analysis is applied,
namely, the technique to detect irregularities from the incoming signal by using
so-called Gabor multipliers, as proposed by Dorfler and Matusiak (2013) (Paper 1). Gabor
multipliers are, in essence, composite operators, in other words, sequences of
operations. The first operation is a short-time Fourier transform, like the one used to
produce a spectrogram. This is followed by a pointwise multiplication with a distribution
on phase space (called the Gabor symbol). The last step applied is an inverse short-time
Fourier transform. This sequence helps map the input signal to its analyzed-synthesized
(reconstructed) form (Feichtinger and Nowak, 2003). Manipulations based on Gabor
multipliers are based on ‘The Large Time-Frequency Analysis Toolbox’ (Prlisa et al., 2014;
Sgndergaard et al., 2012).

The Gabor multipliers are not uniquely defined. They are usually chosen so that the
information loss between the original and reconstructed representations is reduced to a
minimum level. A compelling argument for using this multi-step technique is that the
method suppresses (in the sense that it does not carry over) the irregularities of the
original signal to its reconstructed version. Therefore, a comparison of these
representations often reveals anomalies and objects in the input signal (Doérfler and
Matusiak, 2013) and thus makes it possible to remove doubtful situations and avoid false
detections (Paper I).

The method described is cost-effective in terms of computing power and does not
require an additional learning period. However, it may be prone to continuously changing
external forces like weather conditions. An example of the results is given in Figure 6.
The vessel wakes were counted for one 24-hour cycle from 04:00 on 24.06.2009 to 04:00
on 25.06.2009. This period contained both calm times and events with notable wind
wave activity. As discussed above, wind waves can distort the ability of the technology
to separate the wake components from other fluctuations of the sea surface. During the
calm periods (from 04:00 to 12:00 and from 21:00 to 01:00), the method using the Gabor
multipliers has significant outcome only when ship wakes are present and thus leads to
efficient detection of wakes. However, during the windy period (wind speed 5 m/s from
the north-east from 12:00 to 21:00) the significantly higher wind wave driven noise level
in the spectrograms required additional steps for wake detection.
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Figure 6. Wake detection with different methods: (a) using Gabor multipliers, (b) using shallow
convolutional neural network. (c) A spectrogram depicting a measurement period from 04:00
24.06.2009 to 04:00 25.06.2009. Based on the results of Paper .

For comparison, vessel wakes were also detected using a shallow convolutional neural
network (CNN). It consisted of a CNN layer of ten 0.25Hz by 100s elements,
a rectifier layer, a fully connected layer and a softmax layer. This system was trained with
15 epochs and with 16 iterations in each epoch. The results are shown in Figure 6b.
The accuracy (ratio of the number of detected cases over the total number of events)
was 0.44. Of 36 visually detected wakes, CNN detected 24, missed 12 and gave 19 false
positive signals. The method using the Gabor multipliers gave an accuracy of 0.47: 27
detected, 9 missed and 21 false positive signals. The wake events listed here were
counted as peaks from the outputs.

The presented comparison indicates that both methods have comparable detection
power. They miss around one third of the wakes due to the windy (low signal-to-noise
ratio) periods during the daytime. They also produce a comparable number of false
positive signals, due to the same reason. A major difference is that the method using the
Gabor multipliers was applied to the dataset with no previous knowledge. It used only
the first couple of iterations (10-15 minutes of data) to adapt to the environment.
The method based on the convolutional neural networks was trained on data that was
selected from different days that experienced both calm and windy conditions and
already had wakes detected and classified by the (human) operator. For these reasons,
Gabor multipliers were used as a primary method for detecting wakes from the dataset
measured by the Wave Engineering Laboratory in 2009 (Paper ).

1.2.2 Hardware based approach

An alternative approach would be to solve the wake detection problem by using
advanced devices that can sense the wake events in the water column. Ideally,
the approach would describe the water flow itself. A step in this direction was taken
when recording a dataset, using devices made by the Centre for Biorobotics, Tallinn
University of Technology, in 2017.

This measurement campaign used devices called ‘hydromasts’ (Egerer et al., 2024;
Ristolainen et al., 2019). Each hydromast had a pressure sensor for collecting the water
level data, and a vibrating vertical stem with a length of 100 mm, 15 mm in diameter and
with a density close to water density. The movement of this stem was measured by a
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micromechanical inertial measurement unit (IMU) (Ristolainen et al., 2019). Another,
stationary (reference) IMU was mounted in the housing of the device (Ristolainen et al.,
2019). The inertial measurements were registered along three perpendicular axes
(Ristolainen et al., 2019). The idea was that any water flow passing the device would be
registered as movements of the stem that acts like the lateral line of a fish (Ristolainen
et al., 2019). The movements of the stem were used as the proxy of the water’s velocity
passing the sensor.

For wake detection, the data from the IMU connected to the vibrating stem was
corrected by the data from the stationary IMU. The resulting values were viewed as linear
acceleration and gravity vector (Figure 7). For the comparison, wakes were detected by
the methods described previously: by convolutional neural networks (Figure 7c) and
using Gabor multipliers (Figure 7d). The corresponding spectrogram (Figure 7e) highlights
ship wakes as L-shaped features as discussed above. As the (horizontal) time scale is
strongly compressed, horizontal branches of these items are short, and the features are
mostly represented by more-or-less vertical bright lines.

The detection and training processes for the Gabor multipliers and convolutional
neural networks were conducted mostly as described in the previous section. As Gabor
multipliers rely on the combination of a direct and a reverse transformation of the input
signal, the technique was applied to the pressure data of each sensor separately.
The results were afterwards summed and normalized with the assumption that the
outcome converges sufficiently to be regarded as a wake event. Convolutional neural
networks are meant for feature detection from the images, therefore firstly the
spectrograms from the sensors were merged (as seen in Figure 7e), and afterwards the
CNN technique was applied. This sequence of operations is the reason, in the current
example, that the CNN-based detection leads to better results than the use of Gabor
multipliers: the CNN was applied to the cleaned input data.

The example in Figure 7 covers the time frame from 15:00 to 24:00 on the evening
of 10 July 2017. During that time, 12 wake events were visually counted from the
spectrogram (Figure 7e). There were 14 peaks in both the linear vibration data and
in the gravity vector that could indicate a wake. From these, 10 events were detected as
wakes (true positives), 2 events were missed, and 2 false positives were generated giving
an accuracy rate of 0.63. The use of the CNN methods leads to the same
results (10 detected, 2 missed, 2 false positives). The performance of the method
based on Gabor multipliers was slightly worse. The total number of registered events was
18, from which 9 were actual wakes, 3 wakes were missed and 9 were false positives
giving a total accuracy rate as 0.4. Both methods using the water flow data missed the
events at the end of the data stream (at 22:40 and 23:50) Figure 7a and Figure 7b) while
the CNN application missed events at 19:10 and 23:50 (Figure 7c). The method based on
Gabor multipliers failed to detect cases at 19:10, 22:40 and 23:50 (Figure 7d).

From those three wake events, the event at 23:50 was missed due to proximity to the
end of the data series so that only the high peak is present in the spectrogram.
Only the CNN technique was able to detect it as it relied on the contrast of the input
(spectrogram) image rather than on raw input data. This shortcoming could be
easily removed by overlapping data subsets or keeping the data in a continuous
stream. The sensors measured the data continuously and the data was divided into
days to simplify the analysis. Wakes at 19:10 and 22:40 were missed due to the low
signal-to-noise ratio. In both cases only the chirp part of the wake representing divergent
waves is present at high frequencies compared to the rest of the wakes.
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This feature leads to one of the key issues of this analysis. Namely, wakes from the
vessels sailing at 15 knots (approximately 28 km/h) or below were seldom visible in
spectrograms. Even if they were, their properties often had too large uncertainty so that
the rest of the analysis struggled to determine the sailing characteristics.

The results imply that regardless of which of the methods was selected (either relying
on hardware, applying general feature detection methods from images, or using signal
analysis) the overall result of the automated process has adequate accuracy compared
to the case when wake events were counted on spectrograms manually. Also, for all the
methods described, the final selection of the events to be identified as a ship wake was
done by counting the peaks over a certain threshold. This means that for the methods
based on hardware (Figure 7a, Figure 7b), the gravity vector data (Figure 7b) is usable
immediately whereas the linear acceleration data (Figure 7a) requires additional low-pass
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Figure 7. The comparison of the detection results on 10 July 2017. (a) Time series of the linear
acceleration, (b) time series of the gravity vector, (c) the probability for detection found using
convolutional neural networks, (d) the combined probability for vessel wakes calculated with
Gabor multipliers, (e) the spectrogram based on the pressure data where ship wakes are
portrayed as yellow structures. Amended from Paper II.
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To sum up, all the different methods that are reported and used for gathering and
analysis of the vessel wake data are suitable for detection of the presence of ships via
their wakes. A natural limiting factor is the water depth because for pressure sensors
from some point wave attenuation would be too great, and it is difficult to install and
retrieve the sensors in deeper areas. For above-surface sensors, deployment requires
shallow water depths. The preferable way forward is to move from single sensor systems
to sensor arrays and grids. Doing so will 1) improve the overall data quality by
suppressing the signal of random wave fields (Figure 5); and 2) provide additional
information about the vessel itself, as will be discussed in the next chapter. A broad range
of methods can be effectively used for signal analysis, automatic wake detection, and
feature detection, from the (spectrogram) images to hardware-based approaches.
The performance of all developed and employed methods is comparable to the accuracy
achieved by visually picking the events on spectrograms.

There are also obvious limitations for the detection and analysis of vessel wakes in
such a way. The first limitation is the vessel speed. Equally important is the actual location
of the measurement device(s). Both datasets used in this thesis were collected in the
same location which had natural obstacles to shelter the waves and wakes from the
south-east and north-west. Therefore, the focus was on the vessels approaching port
from the north. However, the records contain wakes that have arrived from the south-
east due to diffraction or refraction. For example, wakes from some fast vessels that
travelled out of the port to the north are seen with the cases at 19:10 and 22:40 (the high
frequency divergent components). Thirdly, as the wake events may last several tens of
minutes (Soomere, 2007), traffic density could be a problem. For example, if several
vessels pass the sensor(s) within, say, 30 minutes, the spectrogram will have several
overlapping wake traces. This pattern may be interpreted as a single wake event by the
automated detection methods described above.
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2 Vessel localization

After wake detection, the second step in the process is to determine the vessel position
and its sailing parameters. This step can be regarded as vessel localization. Combined,
the two steps provide sufficient information about a ship’s presence and its movement.
Along with vessel recognition, that is determination of its type and/or purpose, they form
the backbone of the vessel traffic monitoring system. The data provided by these systems
allows real-time continuous vessel tracking. However, usually with the ship wake events
are single point recordings in time and space, and they are usually recorded with a
significant time delay that is the result of the time taken for the wake to travel from the
point of generation to the measurement devices. Therefore, at best, this method only
allows one historical snapshot per vessel as it passes the sensor system.

Continuous vessel monitoring systems use consecutive timestamps to determine to
where and how the ship is moving. Wake events, despite being single events, contain
enough information, which, if measured by the right equipment and interpreted
adequately, may give the same result. The goal is to determine the following four
parameters: speed, distance, bearing and the course of the ship from a single measurement
for each passing vessel. Speed and distance can be obtained directly from the
spectrogram of the wake itself, while the bearing and course can be estimated by using
a grid of closely positioned sensors. In this chapter the findings are presented using the
data from Paper lll, as the results of Paper | use AlS data provided with very coarse time
resolution and thus cannot be regarded to be reliable for estimating actual vessel sailing
parameters.

2.1 Speed of the vessel

In general, the basic idea for determining the speed of the vessel and the distance of the
wake-generation location from the sensors relies on the understanding that this
information is hidden in the frequency of cusp waves, that is, in the frequency of waves
that arrive first to the observer or sensor (Wu, 1991). This frequency can be found using
the spectral representation of the wake by determining the frequency of waves at the
point of the Kelvin wedge that reaches the sensors.

Recent developments in the understanding of the structure of ship wakes have
provided further options to solve this problem. Pethiyagoda et al. (2017) showed that
most of the wake energy is concentrated on the linear dispersion curve (Figure 8) in the
spectrogram. This curve can be described in time-frequency coordinates as:

2VZws =\T? + 4 £ TVT? =3, @)

where w, is the dimensionless angular frequency of the waves and T = t/y corresponds
to dimensionless time of propagation of the wake over distance y. This curve has two
branches. The plus sign ‘+’ represents the frequency range of divergent waves and the
minus sign ‘—’ the frequency range of transverse waves. These two branches interact at
the point where T =8, w = \/3_/2 (point “A” in Figure 8). This point represents the
edge of the Kelvin wakes for the observer or sensor. This edge is usually represented by
cusp waves, that is, the strongest wake components. Even though their arrival would be
the easiest to detect, identification of their common frequency is a nontrivial problem as
waves with this frequency exist during a short time interval and the signal is rapidly split
into two components. This complexity is reflected in Figure 8. The cusp waves are
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represented as the vertical location of the dispersion curve. This means that, technically,
it is necessary to identify the frequency of a signal that changes infinitely fast. This
situation can lead to a misinterpreted frequency value.

A solution to this problem can be found from the properties of the two branches of
the linear dispersion curve. Namely, the branches of this curve for the divergent and
transverse waves have asymptotes for large values of T. In other words, for large values
of T both branches can be approximated by a straight line. These lines are represented
asw = T /2 for the divergent components and a horizontal line w = 1 for the transverse
components. The crossing point of these asymptotes (point “B” in Figure 8) at T = 2,
w =1 (in nondimensional coordinates) can be interpreted as a first (linear)
approximation of the arrival time instant of the Kelvin wedge. It is invariant with respect
to the ship’s speed and to the depth Froude number at subcritical speeds (Pethiyagoda
et al,, 2017). The relevant frequency is the long-term average value of transverse waves.
This feature immediately signals that this approximation is applicable only if the vessel
sails at a subcritical speed. In critical and supercritical speed regimes, when the divergent
component becomes the dominant feature and transverse waves disappear, this method
does not work.

Torsvik et al. (2015b) applied two methods to identify and make use of the frequency
of Kelvin wake components to find the speed U of the vessel and the distance of the
wake generation location to the sensor. First, he noted that the vessel’s speed can be
estimated as (Torsvik et al., 2015b):

_ g
27 froo

where f;,, denotes the limiting frequency of transverse waves if T — oo, that is, the
frequency at point “B” in Figure 8. This frequency can be evaluated as the average
frequency of the transverse components after some time of the passage of the cusp
waves. This approach is a variation of the method expressed by Eq. (2) and proposed by
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Figure 8. Representation of the nondimensional linear dispersion curve of ship waves
(Pethiyagoda et al., 2017). Point “A” is the edge point of Kelvin wedge, point “B”, the crossing
point of the asymptotes of the linear and transverse component, represents the linear
approximation of the edge of the Kelvin wedge (of point “A”). From Paper IlI.
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Wu (1991). Second, Torsvik et al. (2015b) demonstrated that the speed of the ship can
be calculated as:

3.9 (5)
22nfousp

where f.sp is the frequency of the waves at the edge of the Kelvin wake, that is,
corresponding to the location of point “A” in Figure 8. These two approaches are
equivalent because fiysp/ froo = \/3_/2 (Pethiyagoda et al., 2017). Therefore, it is enough
to correctly evaluate f;., to specify the frequency of the cusp waves.

This aspect was discussed in Paper | in the context of the reliability of estimates based
on Egs. (4) and (5). As the frequency of cusp speed corresponds to the vertical section of
the linear dispersion curve (Pethiyagoda et al., 2017), even small errors in the estimates
of cusp wave timing may lead to large errors in f,.s,. The estimates of f;,, are much more
stable. Consistent with the described features, the approach based on the signature of
the transverse component leads to a better match of the estimates of the speed of the
vessels compared to the AIS information (Paper 1).

If the speed U of the vessel is calculated, the distance travelled by the wake can be
determined from the properties of the divergent waves. It is sufficient to determine the
time interval At during which the frequency of the divergent component increases from
the maximum frequency fi,, (frequency of cusp waves) to a V2 times higher value
(Torsvik et al., 2015b). The distance L travelled from the wake generation location to the
observer or the measurement site can be estimated as (Torsvik et al., 2015b):

L = V6UAt. (6)

Three applications were used to evaluate the ship speed and distance: 1) direct
evaluation the frequency f,s, of cusp waves from the record of the highest wave
components at the arrival of the wake, 2) evaluation of this frequency using the shape of
the branch for divergent waves in Figure 8, 3) relying on the properties of the asymptote
of the branch for transverse waves, equivalently, Eq. (4).

In ideal conditions all three methods should provide adequate and matching estimates
of the actual sailing speed of the passing ship (Figure 9). Theoretically, the estimate that
relies on properties of transverse components is expected to be closest to actual values
because it uses in the best way possible the properties of the Kelvin wake. A comparison
of the data from monitoring the actual vessel traffic and the three applications shows
that the results are different, but the above hypothesis concerning their performance is
correct (Figure 9). A comparison of the performance of the three methods was reported
in Papers | and lll. In both cases the same conclusion was reached even though the
temporal resolution of the AIS data was different, with the 2017 reference AIS
information about the passing vessels being available at much finer resolution (5 minute
compared to 1 hour in 2009) (Mitev, 2018; “VesselFinder,” 2020).

The attempts to directly evaluate the cusp wave frequency (Figure 9a) led to
systematic overestimation of ship speed and therefore underestimation of this
frequency. Similarly, the use of properties of divergent waves (Figure 9b) usually led to
overestimation of ship speed. The approximation of the cusp frequency using the limiting
frequency of the transverse components (Figure 9c) has succeeded in providing values
close to actual reference data.

In addition to the theoretical arguments, this method has several significant practical
advantages. Firstly, the transverse part of the wake in the spectrograms is tightly
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confined on the frequency scale. As a result, the errors of estimates are small (Figure 9c).
Secondly, it occurs in a region on the time-frequency scale with a small number of
interfering factors in the study area, therefore enabling a lossless extraction and analysis.
Thirdly, if present, it is well defined over the entire duration of the wake. This increases
the level of confidence of the frequency estimates.

A disadvantage is that it is prone to external influencing factors, such as the ship
moving at a very high speed, equivalently, at large depth Froude numbers. As a result,
this component is not always present or is masked by noise or by other wakes. These
features limit the use of this method: even if it works adequately in good conditions,
it has the lowest application rate among the three.

Therefore, methods for directly determining the frequency of cusp waves at the edge
of the Kelvin wedge should also, at times, rely on the properties of wake components
which are more frequently present or more pronounced than the transverse component.
The approach based on the direct evaluation of the cusp wave properties (Figure 9a) has
an advantage over similar estimates that make use of properties of the divergent
component (Figure 9b) due to the simplicity of the analysis. The disadvantage is that it is
based on one single highest energy value at the intersection of the two branches.
Therefore, one should not be overconfident of the values found. This feature isillustrated
by large error bars in the relevant values (Figure 9a) compared with other methods.
The results found from the properties of divergent waves rely on the part of the wake in
the spectrogram that is often affected by high noise caused by wind waves. Along with
the wide range of frequencies and energy covered by this branch, the estimates contain
high uncertainty levels (Figure 9b). As this step is a crucial part in the process of
determining the distance between the vessel (wake generation location) and sensor
system and it relies on more data than the method of cusp waves, it should be considered
as a fallback method if the transverse component is absent, or the calculation based on
it fails.
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Figure 9. A comparison between the actual vessel traveling speed (blue line) and estimates found
using the properties of (a) cusp waves, (b) divergent waves, and (c) transverse waves (c). Error
bars represent the 95% confidence level of the calculated values. Recalculated based on results
presented in Paper | and Paper Ill. Note that Paper | originally compared the estimates with the
average distance to the centerline of traffic separation scheme, which was a guess at best and
for this reason they are recalculated here.
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The presented description demonstrates that the accuracy of estimates of the
distance travelled by the wake depends on the quality of the extraction of the starting
point of the divergent component. In most cases, the divergent component is quite
reliable when it comes to extraction and analysis. However, one should note the
mentioned uncertainty levels and their influence when calculating the actual distance
between the vessel and the sensor system.

2.2 Vessel position and course

The AIS data from 2017 enabled a vessel’s actual position close to the point where the
wake was generated to be determined. The use of several sensors made it possible to
evaluate the direction of the incoming wake, which was combined with the distance
calculation, as discussed before, based on the transverse component of the wake.
The following discussion is based on Paper Il

The background assumption is that most wake components are long-crested waves
with locally straight crests. This assumption is not correct for cusp waves (Liang et al.,
2024) but acceptable for the rest of the wake. The general idea was that if sensors are
close enough together to record simultaneously the same wave crest or trough passing,
such as during one wave period, then the direction from which the wake is propagating
can be calculated based on the time differences of the passing of the trough or crest at
different sensors. It is therefore crucial to follow wave crests that move at phase speed.
Considering a 7 s period for a transverse wake component, the depth of instruments
being 3 m which results in a phase speed of 4.3 m/s, then the maximum allowed gap
between the sensors to register the same wave crest or trough would be around 30 m.
As described above, we used an array of 9 sensors mounted on a regular rectangular
frame of 5 x5 m. Therefore, the largest distance between a pair of sensors was 7 m.

This method is an implementation of the widely used phase-shift technique used in
many fields, including estimates of the directional spectra of ocean waves (e.g., Dean and
Dalrymple, 1991). For an ideal regular long-crested wave pattern with straight wave
crests an estimate of delay (phase shift) between the arrival of wave crests to the location
of any two devices represents two propagation directions of the wave pattern.
Therefore, for establishing a reliable estimate, several sensor pairs are needed to build
statistics of directions.

The data used in Paper lll for this purpose was measured with 9 devices. This gives 36
different sensor pairs and 72 wave propagation directions (dashed lines in Figure 10).
This number of pairs provided in most cases an approximation for the approach direction
for the incoming wake that correlated well with the direction prescribed by the traffic
separation scheme (within +10° around 14.3°, area with dashed red lines in Figure 3).
The means to reduce the number of instruments (currently 9) needed to find the
necessary direction and their arrangements are not viewed here.

The estimates of wave propagation direction using the phase shift method were based
on the pressure data used for calculating the spectrograms. Getting the time delays from
the evaluation of the proxy of water velocities (speed and direction) that were used for
wake event detection in the previous chapter was also considered. Due to the high level
of noise and sensitivity of the calculation process to small deviations, the retrieved values
were not consistent enough to be considered as reliable results.
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Figure 10. Distribution of 72 potential wave propagation directions (dashed straight lines) from
36 sensor pairs (all pairs from sensors S1 to S9). One direction from every sensor pair (in total
36) leads to the expected (most probable) direction X1 while the second possible direction
contributes to the set of misleading directions X2 to X15. From Paper lll.

Combining the determined direction of the incoming wave with the distance travelled
by the wake leads to the estimation of the vessel position at the time moment when the
wake was generated. One such example is shown in Figure 11 that presents the vessel
position on its movement track around the time the wake was generated. The uncertainty
area is large because, due to the low AIS resolution of 5 minutes, the vessel’s exact
location had to be interpolated. Figure 11 also depicts the calculated position using the
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Figure 11. An example of the results of an evaluation of the position and sailing line of M/S
Megastar approaching the Port of Tallinn (marked as a 'Vessel movement track by AlS’, green
dots indicate the vessel AlS locations) on 13.07.2017. The wake source point was calculated
using the AIS positions. The green rectangle with a green dotted circle around it indicates
possible course (+5°) and speed (12 knots) alterations. The vessel location at this instant found
from the wake readings is indicated by the ‘Calculated position’. The area of uncertainty (error
estimations for the distance and direction) is shown as the cyan polygon within 95% error bars.
From Paper lll.
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distance travelled by the wake and its direction along its area of uncertainty (from
distance and direction evaluation).

The calculated position is close to the position estimated from the AIS data.
The difference is around 400 m for example in Figure 11, and for majority of the cases
the estimate falls into a 0.5 km circle around the actual position (Figure 12). However,
the area of uncertainty is quite big: about 2 km wide (from line 2 to line 4 in Figure 11)
and 2.8 km long (between lines 1 and 3 in Figure 11). As discussed previously,
the uncertainty first stems from errors in calculating the distance. This step often
contains substantial inaccuracies when extracting the properties of divergent
components from the spectrogram. The resulting high level of uncertainty (see error bars
on Figure 9b) translates further into calculating the distance to the location of the wave
generation based on the estimates of vessel speed. Another dimension of inaccuracies
stems from estimates of the wave propagation direction. This component of uncertainty
becomes evident as the width of the area of uncertainty despite showing the general
direction very well.

The likely main reasons for this large uncertainty are the short distance between the
sensors and high level of the background noise. Together they result in quite a large
(approximately 30°) uncertainty in the wave propagation direction and thus the sailing
direction. A feasible way to reduce this kind of uncertainty is to increase the distance
between the sensors. This has a natural limit as the quality of the spectrogram should
not diminish even if the overlapping procedure described earlier is used. However,
as no actual measurements were conducted, then this solution has not been checked.

From Figure 12 another interesting phenomenon arises. There is a correlation
between the estimates of the distance and the direction of the incoming wake. In cases
when the calculated distance was shorter compared to the actual value, the evaluated
sailing direction was shifted towards the north. When the calculated distance exceeded
the actual distance, the direction was shifted towards the east compared to the actual
direction.

1.57

* Position differences
B Wake source point

8%

15 ‘ ‘
& 0° 1

Ax (km)
Figure 12. Differences between wake origin points found from the AIS data (the black rectangle
in the center) and calculated wake origin points from pressure data plotted in cardinal directions

(N: North, E: East, S: South, W: West). The measurement site is in the SW corner. Red line:
the direction of the incoming wake. Green line: the course to port. From Paper Ill.
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Vessel courses were calculated by applying the angle of cusp waves (35°16’) to the
calculated directions of propagation of wake wave crests. This approach leads to two
courses of the vessel. There is no way to determine which of them is correct based solely
on the wake data. Therefore, the final estimate of the vessel course should be
determined using additional information. One solution is to use the local sailing
conditions (Engen and Johnsen, 1995). This approach was used in these estimates.
The possible course (around 230°) was dismissed as it was directing ships directly to the
land (Figure 11). These left values of the realistic courses which coincided with the
orientation of the traffic separation corridor (159°).

An approach to resolve this issue would be to use two sets of sensors, analogous to
using two subsequent synthetic aperture radar images to determine the wave
propagation direction (Ouchi et al., 1999). As the course calculation was a linear
manipulation of the direction of the incoming wake, the same outcomes were inherited:
calculated results matched well with actual courses of the vessels sailing to port (within
+10° of 159°), but the uncertainty, was kept also in a range of 30°.

To sum up, methods for determining the vessel location and its sailing parameters at
the time instant when the wake was generated can produce results that are comparable
to actual data. However, the biggest problem is the ambient noise, mostly due to wind
waves. Its presence significantly increased the level of uncertainty of the estimates.
Another big issue was the high traffic intensity in the study area. For this reason, only the
cases when a single vessel was approaching the port were used. The presence of wakes
from multiple vessels within the same time window (15 minutes) complicated the analysis
process from the extraction of the wake structure from the spectrogram to finding the
direction of the incoming wake. Lastly, these methods are only appropriate if the ship
sails steadily along a fixed course. As shown by Pethiyagoda et al. (2017), violations of
these assumptions can produce spectrogram images where several shapes of wake
components are overlapping, and the proposed analysis becomes unreliable.
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Conclusions

Despite the absence of a well-established method for vessel traffic monitoring, there are
a vast variety of tools and instruments available to gather, detect and analyze
information about ship wakes from water elevation data, applicable to different
environments. The main purpose of the work was to investigate whether it is feasible to
use spectral images of wakes of passing vessels as a component of a vessel traffic
monitoring system. The analysis addresses the first two major steps — vessel detection
and localization — out of five stages of creating a Recognized Maritime Picture (NATO
Standardization Agency, 2015). The third step, recognition, which characterizes the
vessel and therefore is also heavily dependent on the data collected by the sensors, is
not considered here.

Ship detection provides information as to whether the trace of the ship is present in
the input data (Papers | and Il). This aspect was investigated in terms of choice of
environment, signal quality and prospects for automation of the detection. Vessel
localization means identification of its location and where it is heading (Papers | and llI).
This was addressed by calculating the speed of the detected ship and the distance from
the measurement location to the point where the detected wake was generated from
wake spectrograms. Further, the propagation direction of the incoming wake was
estimated and incorporated to determine the location of a ship at a time moment when
the wake was generated, and the course it was heading.

The key findings of the analysis of options relating to the use of ship wake
spectrograms for vessel detection and location are as follows:

e  Wind-wave noise can be reduced by using pressure sensors placed on the seabed
in a shallow area. The quality of the spectrogram can be improved by overlapping
results from multiple closely positioned devices (Paper Il and Chapter 1.1)

e Ship wakes can be detected by evaluating water flow data from near the sensor
(Paper Il and Chapter 1.2). They can be detected by single-step detection algorithms
based on signal transformation (Paper | and Chapter 1.2)

e Vessel speed estimated based on the structure of a wake in the spectrogram
corresponds well with the actual speeds. Approximation using the asymptotic
properties of transverse components provides the best results in terms of accuracy
and the level of the uncertainty (Paper | and Chapter 2.1).

e Using several sensors positioned appropriately close together enables the
determination of the propagation direction of the incoming wake. This, along with
the distance to the location of wake generation derived from the wake structure
from the spectrogram, can be used to find the location where the wake was
generated (Paper Ill and Chapter 2.2).

e If the direction of the wake is known, the course of the ship can be estimated with
the addition of external information (Paper Ill and Chapter 2.2)

The general conclusion is that the developed method of spectral analysis of ship wakes
as part of vessel traffic monitoring system has limited applicability if a single sensor is
used. It provides a single snapshot of the location and the sailing parameters of the
passing vessel. The outcome of the method is only reliable if the ship sails on a steady
course and at a steady speed in subcritical regime but faster than ~15 knots.
The method is trustworthy if only one ship wake is present at the same time. Lastly,
all the information is retrieved with a delay that reflects the propagation time of the
wake from the generation location to the measurement devices. The advantage of the
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described approach is that the required equipment and its deployment are cost-effective
requiring only pressure sensors that can be deployed in 2-3 m deep water from the land
or by small boat.

Some further considerations relate to the ship types, their sizes, and the maximum
distance at which the wakes are detectable. These issues were not considered as all the
measurements were taken at one location, near the Pikakari Beach facing the approach
lane of the marine traffic separation scheme. Thus, all detected wakes were generated
approximately 3.2 km away. All the ships in this study were ferries approximately equal
in size. Further research and measurements could be designed and implemented to
address these questions. Potential locations include areas near ports (like the Pikakari
Beach) with more varied traffic (for example the Hel Peninsula in Poland), or areas that
could test detectability of vessels sailing at larger distances from the measurement
location (for example the KGpu Peninsula on the island of Hiiumaa).
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Figure 1. A scheme of the linear Kelvin wake generated by a ship sailing in deep water
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water elevation data. (b)Short-time Fourier transform (spectrogram) of the
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Figure 3. The study area in Tallinn Bay on the north coast of Estonia. The traffic separation
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Figure 5. The signature of passenger ferry Tallink Star approaching the Port of Tallinn on
25.06.2009 with a wind-generated sea with typical periods of 2-2.5s (Torsvik et al.,
2015b). The wake is measured using a one-point measurement device (a downward-
looking echosounder mounted on a tripod) from above the water surface. (b) The
signature of the same vessel approaching the Port of Tallinn on 17.07.2017 under similar
weather conditions. The wake is detected using a single pressure sensor mounted at the
seabed at a depth of 3 m. The pressure sensor is mounted at a height of 0.2 m from the
seabed. (c) The same event as observed in (b) but visualized using five sensors located in
the center and the corners of a frame of 5 x5 m. The spectrograms are normalized by
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Figure 6. Wake detection with different methods: (a) using Gabor multipliers, (b) using
shallow convolutional neural network. (c) A spectrogram depicting a measurement
period from 04:00 24.06.2009 to 04:00 25.06.2009. Based on the results of Paper I... 21

Figure 7. The comparison of the detection results on 10 July 2017. (a) Time series of the
linear acceleration, (b)time series of the gravity vector, (c)the probability for
detection found using convolutional neural networks, (d) the combined probability for
vessel wakes calculated with Gabor multipliers, (e) the spectrogram based on the
pressure data where ship wakes are portrayed as yellow structures. Amended from
o 0 T= o N 23

Figure 8. Representation of the nondimensional linear dispersion curve of ship waves
(Pethiyagoda et al., 2017). Point “A” is the edge point of Kelvin wedge, point “B”, the
crossing point of the asymptotes of the linear and transverse component, represents
the linear approximation of the edge of the Kelvin wedge (of point “A”). From Paper Il

Figure 9. A comparison between the actual vessel traveling speed (blue line) and
estimates found using the properties of (a) cusp waves, (b) divergent waves, and
(c) transverse waves (c). Error bars represent the 95% confidence level of the
calculated values. Recalculated based on results presented in Paper | and Paper lll.
Note that Paper | originally compared the estimates with the average distance to the
centerline of traffic separation scheme, which was a guess at best and for this reason
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Figure 10. Distribution of 72 potential wave propagation directions (dashed straight
lines) from 36 sensor pairs (all pairs from sensors S1 to S9). One direction from every
sensor pair (in total 36) leads to the expected (most probable) direction X1 while the
second possible direction contributes to the set of misleading directions X2 to X15.
FrOmM Paper 1. e s 30

Figure 11. An example of the results of an evaluation of the position and sailing line of
M/S Megastar approaching the Port of Tallinn (marked as a 'Vessel movement track
by AIS’, green dots indicate the vessel AlIS locations) on 13.07.2017. The wake source
point was calculated using the AlS positions. The green rectangle with a green dotted
circle around it indicates possible course (£5°) and speed (+2 knots) alterations. The
vessel location at this instant found from the wake readings is indicated by the
’Calculated position’. The area of uncertainty (error estimations for the distance and
direction) is shown as the cyan polygon within 95% error bars. From Paper lIl. ....... 30

Figure 12. Differences between wake origin points found from the AIS data (the black
rectangle in the centre) and calculated wake origin points from pressure data plotted
in cardinal directions (N: North, E: East, S: South, W: West). The measurement site is
in the SW corner. Red line: the direction of the incoming wake. Green line: the course
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Abstract
Surface vessel localization from wake measurements in the
littoral zone

There are numerous different vessel detection systems available, but they can be
deceived or have limitations in certain situations. This thesis examines the possibility of
using spectral representations of ship wakes to fill the knowledge gaps in this area.
The main purpose was to test the feasibility of the idea that the spectral representation
of vessel wakes that are recognized from far-field water surface elevation, water velocity
or pressure data at one or at a few points, could be used to fill the knowledge gaps.

The work focused on two steps: ship detection, to determine whether there are
indications that a ship was present in the region in the input data, and ship localization,
to determine the location of the vessel and its speed and course. The focus was on simple
implementation and the possibility of automation. Two datasets were used: one
measured in 2009 and the second measured in 2017. Both sets were collected at the
same location, near Pikakari Beach, gathering information on ships approaching the port
in Tallinn Bay, on the southern side of the Gulf of Finland in the Baltic Sea.

From the results it was concluded that pressure sensors located on the seabed were
able to filter out shorter wind waves. The attenuation of the ship wake data was reduced
by overlapping spectrograms from several sensors. Wake detection was achieved by
using specific algorithms for signal analysis and by monitoring the corresponding water
movements. Both developed algorithms are capable of working without supervision after
being set up. Vessel speed calculated from the spectrogram y using different parts of
wake was in accord with actual speeds measured using an automatic identification
system (AIS). The use of transverse components of the wake provided the most accurate
results with the lowest level of uncertainty. The distance travelled by the wake and the
vessel speed were derived from the divergent component of the wake signature.
The direction of the incoming wake was calculated using an array of closely positioned
sensors. These parameters gave a vessel location comparable to actual position at the
time the wake was generated as measured by AIS. Combining some additional
information made it possible to establish the ship’s course from the propagation
direction of the incoming wake.

From the results it was seen that this method provided a single snapshot of the vessel
movement during the period when the ship passed the sensor. This information was
received with significant time delay. Also, the signal analysis had some restrictions.
Accurate determinations required that no more than one vessel wake was present in the
record simultaneously; the vessel had to sail on steady course and at a steady speed in
the subcritical range and at a speed greater than 15 knots. Ship identification
(characteristics such as type, hull shape etc.) and the maximum distance between the
ship and the measurement site were not considered in this work. It was concluded that
this method provided limited information about the presence of the ships and their
sailing parameters, but at this stage it is not a standalone system for vessel traffic
monitoring and must be complemented by other methods.

44



Liihikokkuvote
Laevade asukoha ja liikumise parameetrite maaramine
laevalainete salvestustest

Analiiisitakse vGimalusi kasutada laeva kdigulainete salvestuste spektraalset esitust
laevaliikluse jalgimiseks. Peamiseks eesmargiks oli katsetada, kas Ghes punktis tehtud
veepinna asendi muutumise salvestusest voi vdhestes ldahestikku asuvates punktides
madalmere pdhja ldhedale paigutatud réhuandurite signaalidest tuletatud informatsiooni
saab kasutada tdiendava vahendina moééduvate aluste tuvastamiseks ja nende lilkumise
parameetrite hindamiseks.

Kaigulainete analliis toimus kahe sammuna. Esimese sammuna (avastamine) tehti
kindlaks, kas laev paiknes vaadeldavas alas. Teise sammuna (lokaliseerimine) maaratleti
laeva asukoht ja liikkumisandmed. Vastava tehnoloogia loomisel seati eesmargiks lihtsus
ja vdimalus seda kasutada automaatreZiimis. Kasutati kaht salvestatud andmestikku. Uks
neist oli méddetud 2009. ja teine 2017. aastal. MGlemad salvestati Pikakari ranna lahistel
Paljassaare poolsaare rannavetes. Md&dtekoht on avatud Tallinna sadama poolde
suunduvate laevade lainetele.

On naidatud, et ranniku Iahedal madalas vees merepd&hjas paiknevate réhuandurite
signaalis on tuulelainetest tingitud mira suhteliselt ndrk. Ka laeva kdigulainete signaal on
osaliselt sumbunud vorreldes veepinna asendi muutumisega. Kuna kaigulained on
pikaharjalised, on neid véimalik eristada ldhestikku paiknevates andurites registreeritud
signaalide spektraalkujutiste kombineerimise teel. On naidatud, et kdigulaineid on
vOimalik tuvastada automaatselt, kasutades nii signaalitootluse algoritme kui ka hinnates
lainete tekitatud vee liikumise kiirust. Kumbki meetod ei vaja spetsiaalset seadistamist
enne andmete kogumist.

Laeva kiirust hinnati kahel erineva meetodiga, kasutades kdigulaine struktuuri eri
osasid. Saadud hinnangud langesid hasti kokku laevade automaatpositsioneerimise
infost (AIS) leitud vaartustega. Kaigulainete ristkomponendi asimptoodi omaduste alusel
arvutatud hinnangud olid tdpsemad. Koha kaugus, kus lained olid tekitatud, leiti laeva
kiiruse hinnangu ja kdigulainete kaldkomponendi sageduse muutumise tempo kaudu.
Kdigulaine harjade orientatsioon ja sellele vastav lainete leviku suund arvutati l[ahestikku
paiknevate sensorite salvestatud signaali ajanihke alusel. Selle suuna ja kauguse p&hjal
maadratleti laeva asukoht kaigulaine tekkimise hetkel. Nonda leitud asukohad kattusid
hasti AIS andmetega laeva tegeliku asukoha kohta. Laeva kurss ei ole kdnesolevatest
andmetest Uheselt leitav. Ndidati, et kursi saab enamikel juhtudel leida kaigulaine
levimise suuna ja kohalike navigatsioonioluside vordlemise alusel.

Too keskse tulemusena naidati, et kirjeldatud tehnoloogia vdimaldab leida laeva
positsiooni ja liikkumisandmed (kiirus ja kurss) hetkel, mil laev tekitas salvestatud
kdigulaine esimese o0sa, teisisbnu, vaid Uhel ajamomendil. Meetodi kasutamist
piirab asjaolu, et kdigulaine jouab md&dtepunkti arvestatava viiteajaga; enamasti
monikimmend minutit. Signaalitootlust saab automatiseerida vaid siis, kui analiilisiks
kasutatavas ajaaknas on vaid Ghe laeva signaal. Meetod annab adekvaatse tulemuse, kui
laev liigub fikseeritud kursil kindla kiirusega vahemalt 15 s6lme. Laeva identifitseerimist
(kere kuju, otstarve jne) ja maksimaalset kaugust m&otepunktist kdesolevas t6os ei
vaadatud.

Tulemustest selgub, et kdigulainete analiilis véimaldab saada ajas ja ruumis vordlemisi
piiratud informatsiooni laeva asukoha ja liikumise kohta. Seetdttu sobib kirjeldatud
meetod tdienduseks teistele laevaliikluse jalgimise siisteemidele.
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Wakes from contemporary vessels may affect, and in some places dominate, coastal processes in the vicinity of major
shipping lanes. The analysis of the properties and impact of wakes has generally been restricted to wakes that can
be visually observed in raw data. In this work, spectral analysis of the time series of single-point measurements of
water surface elevation from Tallinn Bay is used to highlight the structure of ship wakes using a Short Time Fourier
Transform. This method makes it possible to determine the speed and distance of a vessel from the measurement site.
Wakes are detected using an algorithm based on Gabor multipliers. The results are compared with vessel passages
retrieved from the Automatic Identification System (AIS) data. The algorithm detects the majority of ship wakes that
can be visually recognized in spectrograms and misses only those with low signal to noise ratio or those in close
proximity to another vessel wake. The calculated speed and distance are consistent with the AIS data except for high-
speed vessels sailing at >30 knots. The results indicate that by using these techniques the detection of vessel wakes
from a single-point wave record is achievable under favorable weather conditions. The methods provide an option

for mitigation of the impact of ship wakes in semi-enclosed water bodies.

ADDITIONAL INDEX WORDS: AIS data, windowed Fourier transform, Gabor multipliers.

INTRODUCTION

Wakes of vessels may have a significant negative impact on
shorelines and waterways (Parnell, McDonald, and Burke, 2007).
Their strong influence in places has resulted in regulation that uses
the limitation of vessel speed or wave height to mitigate damage
(Croad and Parnell, 2002). With an increase in the size and speed
of ships and the intensity of ship traffic, the need to effectively
protect the coastal environment motivates further research on
vessel wake detection and analysis aimed at linking ship and wave
properties with coastal processes, impacts and management.

Vessel wakes consist of several different components (Fang,
Yang, and Shugan, 2011; Soomere, 2007). Its wavelike features
form a characteristic wave pattern about three-vessel lengths
behind the ship, called a Kelvin wake (Figure 1) (e.g., Newman,
1977). This is usually composed of transverse and divergent
waves. The crests of transverse waves are almost perpendicular to
the vessel’s track and they propagate in the same direction as the
sailing line. The crests of divergent waves make a larger angle to
the vessel’s path and move outward from the sailing line (Newman,
1977). A combination of transverse and divergent waves forms a
set of cusp waves along the borders of the ship wake (the so-
called cusp lines). In deep water, the Kelvin wake fills a triangular
area (Kelvin wedge) with half angle of 19.5° from the sailing line
(Newman, 1977). The wave pattern in shallow waters depends on
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the vessel, water depth and the sailing speed. Its basic properties
can be described in terms of a depth Froude number £, :

U

=T W

where U is the speed of the vessel through the water, g is gravity
acceleration and / is the water depth (Newman, 1977).If F, =1, then
the speed is called the critical speed. When the speed increases,
the Kelvin wedge widens. If F, — 1, its half-angle increases up to
90° and the ship wake, ideally, covers the entire half plane aft from
the ship (Sorensen, 1973). In the supercritical speed range ( £}, >1
) the angle starts to decrease and the wave pattern is composed of
only divergent waves (Pethiyagoda, McCue, and Moroney, 2015;
Soomere, 2007).

Figure 1. Examples of a Kelvin wake.
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Ship wakes created at moderate and high Froude numbers
contain a large number of linear and nonlinear components
with a multitude of constituents with different heights, periods,
propagation directions, and timings. In recent years, spectral
analysis of wake wave data has revealed further information
about the internal structure of vessel wake, and its characteristics
(Pethiyagoda, McCue, and Moroney, 2017; Sheremet, Gravois,
and Tian, 2012; Torsvik et al., 2015;). An application of a Short
Time Fourier Transform (STFT) to water surface elevation data
reveals that a vessel wake contains a distinct sliding frequency
signal (chirp) (Figure 2b) in the corresponding spectrogram
(Sheremet, Gravois, and Tian, 2012). This internal structure makes
it possible to reliably extract the wake from the background and
to separate it into components with a different period, height and
timing (Pethiyagoda, McCue, and Moroney, 2017; Torsvik et al.,
2015). It was demonstrated that each type of vessel has a specific
signature. Moreover, this kind of separation of components not
only enables the estimation of the energy levels of different parts
of the wake but also makes it possible to retrieve several sailing
parameters of the vessel.

This type of spectral analysis also opens new ways for (semi)
automatic ship wake detection using either a single-point water
level time series or a pressure time series. This challenge,
however, requires further refinement of the method, particularly
a thorough analysis of the applicability of the approach using a
larger number of vessels.

The aim of this research is to extend the work undertaken by
Sheremet, Gravois, and Tian (2012) and Torsvik et al. (2015)
towards the use of the spectral methods of wake analysis for vessel
detection and management. This paper focuses on the possibilities
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Figure 2. (a) Wave elevation recordings of the wake of the MV Superstar
entering Tallinn port on 27 June 2009. (b) Example of the outcome of an
STFT applied to the wake data. The boxes indicate different parts of the
ship wake. (c) The peaks of the same wake extracted from the background
noise (cusp wave: red, transverse waves: green, divergent waves: blue).

of remote, passive detection of ship wakes and specification of
several sailing parameters from water surface elevation data. The
outcome of this approach is compared with similar data retrieved
from the output of the vessel’s self-reporting systems (AIS).

METHODS

The analysis is based on the data from Tallinn Bay, an almost
tideless area in the north-eastern Baltic Sea, approximately 10 km
by 20 km in size. The bay opens to the Gulf of Finland to the north
and northeast. The city of Tallinn is located at the southern end
of the bay (Torsvik et al., 2015) (Figure 3). Measurements used
in this study were performed in June 2009 at Pikakari Beach on
Paljassaare Peninsula, (red dot in Figure 3) (Kurennoy, Parnell,
and Soomere, 2011).

The position of water surface elevation was measured using a
“LOG_alevel” echosounder mounted on a tripod in 2.6-2.7 m deep
water. For a more detailed description of the field measurements,
see Torsvik et al. (2015). Data were collected continuously at a
frequency of 5 Hz. The data stream was subsequently divided into
24-h blocks starting at 04:00. Each block represents one calendar
day of Tallinn to Helsinki ferry traffic. In total, six days of data
from Pikakari in 2009 were available for the analysis.

A reference dataset containing AIS information was retrieved
from vtexplorer.com (Mitev, 2018). This dataset listed vessels
with a gross tonnage of 100 and more. The area of interest (green
box in Figure 3) covered the approaches to the Port of Tallinn. The
total number of passages of ships of this size was 158. The number
of ships per day was 25 to 30. From these data, the estimated time
when the ship was passing the measurement site was calculated
and single vessels were matched with wakes.

Ship wakes were detected from the surface elevation signal
using an algorithm developed by Dérfler and Matusiak (2013) and
based on Gabor multipliers. This algorithm is preferred over other
possibilities (e.g., convolutional neural networks) as it depends
on the STFT and thus its outcome is consistent with the results
obtained by Torsvik et al. (2015). Also in this case, it was able to
be implemented without using additional learning phase before
applying the algorithm to the data set.

Measurement site

Figure 3. The traffic separation scheme of Tallinn Bay (white lines) and
the directions of sailing (white arrows). The area from which reference
AIS data was obtained is marked with a green box (SW corner 59.47°N
24.65°E; NE corner 59.65°N, 24.80°E) and the measurement site with
a red triangle (here 1 nm = 1852 m). The background is from Estonian
Maritime Administration (2017).
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Gabor multipliers are composite operators (sequences of
operations) that consist of a short-time Fourier transform similar
to STFT, a subsequent multiplication by a distribution on phase
space (called the Gabor symbol) and, finally, an inverse short-time
Fourier transform. By combining analysis (short-time Fourier
transform) and synthesis windows (of the inverse transform)
with a sequence of complex coefficients over a time-frequency
lattice, they help to map a signal to its analyzed-synthesized
(reconstructed) form (Feichtinger and Nowak, 2003). In order
to prevent data loss, the sequence of coefficients is chosen so it
minimizes the difference between the original and reconstructed
signals, however, differences that remain can reveal objects in the
signal (Dorfler and Matusiak, 2013).

For the analysis, STFT with a Gaussian window function of 4096
data points, an overlap of 1024 data points and in 120 channels was
used. For synthesis, an inverse STFT was used. Calculations were
undertaken with a toolbox developed by Sendergaard, Torrésani,
and Balazs (2012). The results were filtered to allow one wake in
a 6-minute interval in order to reduce multiple detections of the
same wake. Each wake lasted on average 10—15 minutes.

The STFT was implemented on the detected events. The ship
wakes were extracted from the background noise and separated
into different elements using the classification proposed in, and
experimental procedure introduced in Torsvik er al. (2015). For
filtering, the initial signal was first de-meaned. Low-frequency
water-level fluctuations were removed by means of subtraction of
the 2-minute running average from the time series. This procedure
may eliminate precursor solitons from the analysis; however, they
are not always present in ship wakes in Tallinn Bay and their
amplitude is usually very small in such environments (Soomere,
2007). For the analysis, a 900 data point Hamming window was
used. The overlap of subsequent windows was 178 s with a 0.5 s
step. The range of resolved frequencies was from 0.005 to 0.6 Hz.

Wakes were extracted from the background by identification
of peaks in the signal (Figure 2¢). From the group of recognized
peaks, the components of the wake were reconstructed and used
in the detection of wakes (Figure 2b). Cusp waves are often the
highest and arrive first. The transverse component is represented
by the nearly horizontal sequence of peaks from the cusp wave
peak. The divergent component has a variable frequency and is
represented by the inclined set of peaks in Figure 2b.

The calculation of speed relied on the frequency f of cusp
waves. Three methods were used. Methods 1 and 2 used the
following relationship between the frequency of cusp waves and
sailing speed U in deep water (Torsvik et al., 2015):

U=|2_&_ @)
22xf

The cusp wave frequency was derived either from the frequency

from the highest energy peak in the leading waves (Didenkulova

and Rodin, 2013) (Method 1) or using the lowest frequency of

the divergent component at the beginning of its signal (Method

2). Method 3 applied a linear fit to the extracted transverse

component of the ship wake to find frequency f. The ship’s speed

was calculated using the approximated relation (Torsvik ef al.,
2015)

U1 & 3)
0.9826 27 f

The closest distance Y between the vessel and the measurement
site was estimated by using the ship’s speed U and the time
difference Az between frequencies of the cusp wave point (f) and
V2 times the higher value on the divergent (chirp) component
(Torsvik et al., 2015). The least-squares fit was used for the
chirp (divergent) line data and the shortest distance Y to the
measurement site from the shipping line was calculated as

Y =\2UA: . 4)

RESULTS

In total, 190 structures that resembled ship wakes were
identified in the spectrograms. The detection algorithm provided
277 instances of possible wakes, of which 164 were confirmed to
be ship wakes, 113 were false positive cases (that is, the signal
was not a wake) and 26 wakes were missed by the algorithm.
A large number of the false positives were due to the short time
window (6 min) which was used to filter the results. Due to the
high traffic intensity near the port, the subsequent wakes arrived
shortly after each other within a shorter time than the typical
duration of a wake (10 to 15 minutes). Still the short time window
for filtering the results was a trade-off between the detection rate
and the number of false positives. Another reason for the missed
contacts was a changing signal to background spectrum noise
ratio due to the presence of wind waves, which masked some low
energy ship wakes.

Wakes detected by the algorithm were matched with
corresponding vessels by using the time, speed and the course
obtained from the AIS data. The total number of matched cases
was 83 (out of 164 wakes seen visually and detected by model).
For the reference, AIS information provided 158 events for the
given time period and study area (the green box in Figure 3). In
most of the matched events ships were sailing at a speed of 15
knots and higher and thus producing a clear wake.

A large part of the difference between observed wakes and
actual passing vessels stems from the particular location of the
measurement site. The site was sheltered for the wakes from
vessels departing from Port of Tallinn by Katariina jetty (in Figure
3 to the south-east of the site). Secondly, the AIS data had a time
resolution of 1 h. Consequently, vessels that travelled at higher
speeds (30 knots and more) were able to pass the traffic separation
scheme without a single AIS contact. Thirdly, AIS covered vessels
with IMO numbers only, which limited the number of different
ships under observation significantly.

A reasonable estimate of the ship’s speed was calculated in 126
cases out of 164 wakes detected by the model. From this set, 58
cases had AIS references. These vessels were divided into three
groups according to the AIS information about their sailing speed.
Group 1 was vessels with speed of 15-20 knots, group 2 vessels
sailing at 23-28 knots, and group 3 faster vessels that sailed
at 30-37 knots (Note that 1 knot = 1.852 km/h =~ = 0.51 m/s).
Methods for finding the speed and distance were evaluated by the
number of the cases when the corresponding component (cusp
wave point, divergent or transverse branch) was presented and
extracted from the spectrogram. Method 1 was applicable to 49
events (R*=0.51), method 2 to 47 (R’=0.29) and method 3 to 44
cases (R’=0.31) out of 58 matched pairs. The comparison with
the reference AIS data is shown in Figure 4. Method 1 provided
slightly larger estimates of speed for vessels in groups 1 (15 to 20
knots) and 2 (23 to 28 knots) than methods 2 and 3. The outliers
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for speed in groups 1 and 2 occurred due to the limitation of the
processing of sequences of several wakes from different vessels
in close proximity. Vessels in group 3 sail at 30-38 knots, that,
is, in high-speed subcritical regime with depth Froude numbers
F, close to 1. The wakes produced at such speeds differ from the
classic Kelvin wake. They are often composed of one branch that
represents waves with very high energy throughout the structure.
As a consequence, the identification of the exact location of
the cusp wave frequency is complicated. This resulted in large
differences in the estimates of speed using different methods, and
when compared to AIS data (Figure 4).

A sensible estimate of the minimum distance from the
measurement site to the sailing line (Figure 5) was produced
in 52 cases out of 58 previously matched pairs. The procedure
was applicable for both departing and approaching vessels. The
reference distances were based on the local traffic separation
scheme (Figure 3). The departing vessels were approximately 0.2
nm (nautical mile 1 nm = 1852 m) further away than approaching
vessels. The relevant average difference was practically the same
for all methods (0.25 nm, 0.27 nm and 0.22 nm for methods 1,
2 and 3, respectively). Even though spectrograms of vessels
from group 3 (speed >30 knots) did not contain distinct traces of
transverse and divergent components, estimates of the distance in
question had the same accuracy as for other vessels.

DISCUSSION

The aim of this research was to explore the applicability of
the spectrogram technique for vessel detection and management
systems. The wake detection was done by using an algorithm
proposed by Dérfler and Matusiak (2013). This was combined with
methods developed by Torsvik et al. (2015) for the identification
of sailing characteristics. The results were compared with the
estimates received from AIS data.

The algorithm for detecting peaks and changes in a signal
(Doérfler and Matusiak, 2013) was able to detect a majority of
the ship wakes for vessels sailing at >15 knots and passing the
measurement site closer than 2 nm. Wakes were missed mostly
due to the low the signal-to-noise ratio. The method also failed
to separate and detect wakes that arrived at the detection site
soon after an earlier wake. The methods provided by Torsvik
et al. (2015) generally led to estimates for vessel speed and
distance which were comparable with the actual values. The
method encountered problems for wakes generated by high speed
(=30 knots) vessels which did not have clearly distinguishable
divergent and transverse components. These ships were sailing at
close to the critical speed determined from the depth-based Froude
number. These results suggest that the development of a ship wake
detection and analysis system based on these methods to assist in
ship traffic and environmental management is achievable.

However, there remain several problems that need to be
considered. Firstly, when wind waves were significant, the
detection was not always reliable. Secondly, if used for
enforcement, as is needed for regulation in such cases (Croad and
Parnell, 2002), having the measurement device located above the
water level may be problematic. Thirdly, the method had difficulty
in analyzing wakes of faster (=30 knots) vessels, travelling in the
high-speed subcritical regime at depth Froude numbers close to
1. Further developments need to include improvements of the
spectrogram technique to cover situations of high Froude number
(Pethiyagoda, McCue, and Moroney, 2017), and concealed wave
measurement devices (Ristolainen, Tuhtan, and Kruusmaa, 2019).
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Figure 4. Variation in the estimates of sailing speed using the AIS data
(horizontal axis), method 1 (cusp wave point, blue rhombi), method 2 (the
leftmost peak of the divergent component, red rectangles) and method 3
(estimated from the transverse component, green triangles).
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Figure 5. Calculated average of the minimum distance (based on three
methods) of vessels from the measurement site. Horizontal lines show the
location of the traffic lanes and arrows illustrate the sailing direction. The
lane for entering to port is located 0.8 to 1.2 nm from the site and departing
lane is 1.2 to 1.7 nm from the site. The horizontal bars at symbols and
indicate the vessel’s sailing direction (right side for entering the port, left
side for departing).

CONCLUSIONS

The goal of this paper was to test the methods of determining
the sailing properties of vessels from one-point recordings of their
wakes, developed by Torsvik et al. (2015), for a larger group of
vessels sailing at different regimes in the open sea. The aim was to
determine whether these methods could be used in multi-purpose
vessel wake detection and analysis systems. The measurements
were taken with a single point down-looking echosounder.
The wakes in the water elevation data were found using the
algorithm of Dérfler and Matusiak (2013). A Short Time Fourier
Transform was used to extract the wake structure and to identify
its components. The vessel speed and her minimum distance from
the measurement device were calculated using the methods of
Torsvik ef al. (2015). The results were compared with AIS data.
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The majority of wakes were detected by the algorithm. Some
events were missed due to the low signal to noise ratio, or wakes
were closely following each other. The speed and distance
obtained from the wake spectrograms had a reasonable match
with AIS data. The largest mismatch occurred for vessels that
sailed at >30 knots at depth Froude numbers close to 1, where the
wakes did not have the classic Kelvin wake structure. The results
suggest that an automatic ship wake detection and analysis system
based on spectrograms technique is achievable for the majority of
ships sail in the range of up to 4 km from the measurement site
under relatively calm conditions.
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ABSTRACT

Monitoring vessel traffic in coastal regions is a key element of maritime security. For this reason, additional
ways of detecting moving vessels are explored by using the unique structure of their wake waves based on
pressure measurements at the seabed. The experiments are performed at a distance of about 2 km from the
sailing line using novel multisensor devices called ‘“hydromasts” that track both pressure and near-bed water
flow current velocities. The main tool for the analysis is a windowed Fourier transform that produces a
spectrogram of the wake structure. It is shown that time series from the pressure sensors, measured at
a frequency of 100 Hz, 0.2 m above the seabed are a valid source of input data for the spectrogram technique.
This technique portrays the properties of both divergent and transverse waves with an accuracy and resolution
that is sufficient for the evaluation of the speed and distance of the detected vessels from the measurement
device. All the detected passings are matched with vessels using automatic identification system (AIS) data.
The use of several time series from synchronized multisensor systems substantially suppresses noise and
improves the quality of the outcome compared to one-point measurements. Additional information about
variations in the water flow in wakes provides a simple and reasonably accurate tool for rapid detection of
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ship passages.

1. Introduction

The ability to detect and identify passing vessels, their
properties, and sailing parameters has a number of im-
portant applications. They include maintaining control
in territorial waters (Till 2013), recognizing illegal fish-
ing (Kurekin et al. 2019), avoiding navigational acci-
dents (Chen et al. 2018), ensuring the security of various
facilities (Dugad et al. 2016; Anupriya and Sasilatha
2018), and allowing a better understanding of the impact
of high speed or strongly powered ships on the coastal
environment (Soomere et al. 2011).

Several techniques can be used to detect the presence
of vessels and distinguish and monitor vessel move-
ments. The most common are radar and radio surveil-
lance (Siegert et al. 2019), satellite sensing including
synthetic aperture (SAR) technology (Zilman et al. 2004;
Gierull 2019; Renga et al. 2019), both airborne and local
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(visual and hyperspectral) optical techniques (Park et al.
2018), various acoustic (sonar) technologies (Huang
et al. 2017; Zhu et al. 2018), and classic visual observa-
tions from the coast or patrolling vessels.

Some of these techniques (e.g., several acoustic rec-
ognition systems) are only able to detect the presence
of a ship in a certain region. More advanced technolo-
gies provide, similarly to the automatic identification
system (AIS; self-reporting system on board of ships for
vessel tracking), the location (or a sequence of loca-
tions) of vessels. However, the detection of the sailing
parameters (speed and the course of the vessel) from
such data sources is not always possible (Fujino et al.
2018). Also, none of these methods guarantees the re-
liability of detection of vessels present in a given region
under every possible scenario. To address the gaps in
both reliability and accuracy, additional means for the
surveillance of sea areas should be studied.

A feasible way forward is to improve the accuracy
of detection of disturbances that a ship creates in the

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).
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surrounding environment (Panico et al. 2017). A moving
ship always generates a system of surface waves called
a wake. From about three ship lengths behind every
displacement vessel, a characteristic wake emerges
(Newman 1977). The properties of its main compo-
nents have been known for decades (Sorensen 1973;
Wehausen 1973). It usually consists of the turbulent wake
(seen mostly as foam behind the ship) (Zilman et al. 2004;
Fang et al. 2011) and the Kelvin wave wake (Fig. 1)
(Sorensen 1973; Wehausen 1973).

The Kelvin wake consists of two wave systems. The
crests of longer transverse waves form a large angle with
respect to the ship’s track and almost follow the ship’s
motion. The crests of shorter divergent waves are roughly
parallel to the ship’s path. These waves propagate mostly
out of the wave generation area (Sorensen 1973; Wehausen
1973). This characteristic triangular spatial pattern of ship
wakes (Fig. 1) is implemented, e.g., in the analysis of the
data from satellite photography and synthetic aperture
radar, for vessel detection (Zilman et al. 2004).

Vessel wakes have also unique structure in the spec-
tral representation of the wave elevation data (Wyatt
and Hall 1988; Sheremet et al. 2013; Torsvik et al. 2015;
Pethiyagoda et al. 2017,2018). Moreover, it is possible to
extract different wake components from this representa-
tion to characterize the movement of the vessel (Torsvik
et al. 2015; Pethiyagoda et al. 2017).

Field experiments have used two sources of time series to
characterize the ship wake. High-frequency tracking of water
surface undulations created by wakes using downward-
looking devices were used by Didenkulova et al. (2013)
and Torsvik et al. (2015), among others. Pressure time
series in the water column or on the seabed were utilized,
e.g., in Sheremet et al. (2013) and Benassai et al. (2015).
Both methods produced well-defined spectrograms that
allowed for detailed analysis of vessel wakes (Sheremet
et al. 2013; Torsvik et al. 2015). However, the spectro-
grams obtained from pressure recordings (Sheremet et al.
2013; Benassai et al. 2015) highlighted only the energy (or
height) of ship wakes and the distribution of energy be-
tween wake components of different length, but not the
properties of the transverse and divergent waves. More
generally it was not possible to properly describe the wake
components in the time—frequency plane in the manner
that can be used for estimating vessel speed and wake
traveling distance (Torsvik et al. 2015).

Both approaches have some shortcomings. The intense
wind-wave background can shadow shorter components
of ship wakes in the spectrogram based on water surface
undulations and limit the extraction and analysis of the
associated properties of ships (Torsvik et al. 2015). Also,
the pressure signal of shorter waves rapidly attenuates in
the water column. Therefore, the pressure readings have
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FI1G. 1. The standard scheme of the classic Kelvin ship wakes; the ship
is moving to the right. The half angle of the wedge is a ~ 19.47°.

to be corrected to compensate for the attenuation of the
higher-frequency part of the wave data. As a result, some
of the information about the wake may be lost (Cavaleri
1980; Kuo and Chiu 1994; Karimpour and Chen 2017).

This paper aims to extend the spectrogram-based
analysis of the properties of transverse and divergent
waves of vessel wakes from surface elevation recordings
(Torsvik et al. 2015) to datasets recorded by pressure
sensors incorporated into novel multisensor measuring
devices. We start from a short discussion of the core
properties of wave wakes of vessels and their repro-
duction in spectrograms. This is followed by a demon-
stration that the data collected from pressure sensors
can be used to analyze the ship’s movement at the same
level of detail as it is done based on other types of re-
cordings of surface elevations.

To raise the signal-to-noise ratio in wake spectro-
grams and improve the quality and contrast of the sig-
natures of vessels in spectrograms, we use recordings
from a gridded array of five identical pressure sensors.
Finally, we discuss the potential applications and pos-
sible extensions of the presented technology for esti-
mates of ship location, speed, and course. As ship
motion always produces a wave wake, this approach
could be (a part of) an automatic vessel detection sys-
tem. The main message is that the pressure recordings
from the seabed, even if associated with a certain loss of
information, may provide a convenient prefiltered time
series in which the wind-wave signal is attenuated and
ship wakes are highlighted.

2. Methodology and experimental setup
a. Kelvin wake

The two components of the Kelvin wake, the diver-
gent and transverse waves, are basically linear waves.
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FIG. 2. (a) An example of the pressure time series of the vessel wake that is converted
to water elevation data. (b) Short-time Fourier transform of the corresponding series. Wake
elements are marked with red dashed rectangles.

Even though ship wakes may contain other (nonlinear)
components (Soomere 2007), or have other specific fea-
tures for high sailing speeds (such as features character-
istic to the Mach cone; Rabaud and Moisy 2013), the
divergent and transverse waves, are always present if the
ship is sailing at speeds below a certain threshold called
critical speed. This speed is the maximum propagation
speed \/g_h of long waves for the given water depth /2 and
the acceleration due to gravity g (Sorensen 1973). The
waves fill a triangular area called the Kelvin wedge
(Fig. 1). The largest wave amplitudes (cusp waves) occur
along so-called cusp lines at the border of the Kelvin
wedge owing to the interaction of transverse and di-
vergent waves (Kuznetsov et al. 2002).

In deep water, the half angle of the Kelvin wedge
is arcsin(1/3) ~ 19.47° (Fig. 1), the shape of this wedge
does not depend on the sailing speed, and the diverging
waves are short crested. The signature of such wakes
in the spectrogram representation has a characteristic
L-like shape (Fig. 2b). The upper, inclined part of this
signature corresponds to shorter divergent waves. It
has a frequency increasing over time (also known as a
chirp signal), which is commonly observed at a fixed
location at the seashore after the passage of a steadily
sailing ship (Sheremet et al. 2013). The lower, mostly
horizontal part of this signature represents longer trans-
verse waves that have a constant frequency for a steadily
sailing ship and is also constant for a fixed observer. The
cusp waves are represented by the common point of these
two parts of the signature.

If the ship sails in waters where the length of excited
waves is 2 times or more the water depth, the Kelvin
wedge becomes wider, a large portion of the energy of

generated waves is concentrated in a few divergent
waves and the transverse waves become weaker (Sorensen
1973; Soomere 2007). The wave system becomes highly
nonlinear and contains several other components at so-
called near-critical speeds (Soomere 2007) when the sailing
speed is =15% of the critical speed. At even higher speeds
most of the wave energy is concentrated in a few long-
crested divergent waves. This kind of wake may contain
specific types of solitons (Soomere 2007) or resemble a
Mach-type wave system (Rabaud and Moisy 2013). The
described transformation makes it possible to identify
some properties of sailing ships from the records of their
wakes (Wyatt and Hall 1988) and to create characteristic
“portraits” of the wake systems for different ships and
for specific speeds (Torsvik et al. 2015; Pethiyagoda et al.
2018). In this paper, we focus on the extraction of the
classic L-like signatures from the viewpoint of efficient
(all passages detected) and reliable (no false signals)
detection of ship passages.

b. Measurement devices

For measuring the wakes we used a device called a
“hydromast” (Ristolainen et al. 2016), which is designed
to sense near-bed drivers of hydrodynamic processes. Its
name is inspired by the neuromast of the lateral line of
the fish, which is used for sensing the flow (Bleckmann
and Zelick 2009). In addition to pressure data, it incor-
porates the possibility of obtaining a proxy of flow speed
and direction using inertial measurements of the water
flow (Ristolainen et al. 2019). In this paper, we only
discuss part of the functional capacity of hydromasts,
namely, their pressure sensors, the option of having
a proxy of flow velocities, and the ability to provide
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FIG. 3. (a) The components of the hydromast. (b) The working device.

synchronized pressure recordings from an array of
devices.

The hydromasts used in this study (Fig. 3) encompass
a vibrating stem that is fixed to a pressure-sensitive body
(Ristolainen et al. 2019). Vortex induced vibrations are
caused by vortex shedding from the stem. The vibrations
are measured in the directions of three perpendicular
axes by a micromechanical inertial measuring unit (IMU)
fixed to the lower end of the stem (Fig. 3a). The device
incorporates another identical, stationary, IMU, for
reference and for reducing measurement noise gen-
erated by the hydromast body self-motion. The stem is
made from 100 mm long, 15 mm diameter rigid hollow
polyoxymethylene (POM) plastic. The aim was to have
the density as close to the surrounding water as possi-
ble to reduce the restoring force caused by buoyancy.
Pressure is measured using an absolute pressure sensor
(MPX5100GP, NXP) for recording the water depth and
two differential pressure sensors (MPXV7002, NXP) for
measuring dynamic pressure relative to the stagnation
point (Ristolainen et al. 2019). The output stream of the
device includes inter alia a time stamp in milliseconds,
the absolute and two differential pressure sensor outputs
in millivolts, temperature, and calibration status.

c. Field experiment

The results presented below are based on a dataset
recorded in the nearshore of Tallinn Bay. It is a semi-
closed area at the southern coast of the Gulf of Finland
in the northeastern Baltic Sea, with dimensions of ap-
proximately 10 km X 20km. This area is known for ex-
tensive traffic of strongly powered ships that sail at or
close to near-critical speeds (Soomere 2005). Most of the

vessel traffic in the bay follows the traffic separation
scheme for entering/departing the Port of Tallinn (Fig. 4).
The typical shortest distance from the ships to the device
location is about 1.5-2.5 km. Measurements were conducted
from 10 to 21 July 2017 near Pikakari Beach (Fig. 4), a small
accumulation feature with a sandy and gently sloping near-
shore on the western shore of Tallinn Bay. No recordings
exist for 15 July due to the maintenance of the devices.

Nine hydromasts were assembled into a regularly
spaced rectangular array using a Sm X 5m aluminum
frame. The time-averaged water depth at the measure-
ment site was 3m. The frame was anchored to the bottom
using 8 mm metal bars with additional weights at the cor-
ners of the frame. The stems were at the height of 0.3 m
above the seabed. The absolute and differential pressure
was read at a height of 0.2 m from the bed with a frequency
of 100 Hz. The data were saved as text files in 5 min blocks.

d. Analysis of pressure data and velocity proxy

The data streams from the sensors were merged into
continuous 24 h blocks starting at midnight. The outliers
(values that differed more than three standard devia-
tions from the mean value of the pressure series) were
removed. The absolute pressure data were used to identify
and analyze the properties of the ship wakes. The recorded
data p*, originally given in millivolts, were converted into
pressure p (Pa) using the calibration relation obtained
from a water tank test:

p =27.1208p* + 4475.72. (@8]

The correlation coefficient between the raw data and the
linear fit to the raw data is R> > 0.9. As Tallinn Bay has
virtually no tides (Leppidranta and Myrberg 2009) and
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Measurement site

FI1G. 4. The location of Tallinn Bay, traffic separation scheme (white lines), and sailing di-
rections sailing (white arrows) along its main fairways. The measurement site is at Pikakari
Beach (red triangle). The area where AIS data were retrieved is marked with a green rectangle

(Estonian Maritime Administration 2019).

water level variations are just a few centimeters on calm
summer days (due primarily to wind and air pressure
effects), it is reasonable to assume that the water depth
remained nearly constant during the fieldwork. The
height of the water column above the device is the dif-
ference between the average depth # = 3m at the
measurement site and the height of the sensor d; = 0.2m
above the seabed. The attenuation of the pressure signal
in the water column compared to the amplitude of water
surface fluctuations was corrected using the classic re-
lationship for linear waves (Karimpour and Chen 2017):

Py(z=—h)=P+q=pgh +pgnK,, )

where P, is the total pressure, P is static pressure (equal
to the mean water pressure), ¢ is the dynamic pressure
that represents the water fluctuations, Ay, = h — d is
the depth of the sensor, g is gravity acceleration, p is
the water density, z is the depth of the sensor with
positive values above the water level, 7 is the water
surface elevation, and K, is the dynamic pressure to
the surface elevation conversion factor (Karimpour
and Chen 2017):

_ coshk(h +z) cosh(kd) 3
P cosh(kh) ~ cosh(kh)’ ®)

Here, the wavenumber k is a function of the wave
angular frequency w = 27/T and local water depth
h, defined by the dispersion relation of surface grav-
ity waves:

©* = gk tanh(kh). (4)

The values of the wavenumber k were evaluated using
the approach proposed in (Goda 2010).

The time series of fluctuations of the water surface
were sampled at a frequency of 5 Hz, which is sufficient
to allow well-defined spectrograms (Torsvik et al. 2015).
The short-time Fourier transform was applied to this
time series with the frequency resolution of 0.005-0.6 Hz
and a Hamming window with a length of 1024 data points.
We employed an overlap of time windows of 178s to
obtain a good resolution with a 0.5s step and to simul-
taneously reduce the likelihood of extracting false mul-
tiple signatures in close proximity of each other instead
of one real signal. The resulting spectrograms were nor-
malized to make it easier and more consistent to compare
the results from different sensors.

Additionally, vibration level of a stem, measured by
IMU could be used for automatic vessel wake detection
as this information can be considered as a proxy of water
velocity around the instrument. In our case, IMUs po-
sitioned in the hydromasts produced two datasets in-
stead of one combined acceleration measurement: the
linear acceleration information and gravity vector data.
To detect the extreme positions of the vibrating stem,
we used both of them for vessel wake detection.

For each of the hydromasts, the data from the casing
IMU were subtracted from the stem IMU (Ristolainen
et al. 2019). As we were only interested in very strong
readings (in terms of the ratio between high and low values
in the relevant time series), there was no need to convert
the sensor output into dimensional units. Similar to
the pressure signal, the outliers were removed. Also, both
datasets were normalized and the root-mean-square
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average of the acceleration was found from the three
perpendicular axes used for measurements. High-
frequency fluctuations (that cannot be part of ship
wake signal) were filtered out using the ninth-order
low-pass Butterworth filter with a cutoff frequency of
SHz. A threshold depending on the resulting average
value was applied to limit the minimum time interval
between ship wakes to one event within every 10 min.
The resulting sets of possible ship wake events were
compared with visual findings from the spectrograms
derived from the absolute pressure data.

e. The AIS data

The signatures of wakes obtained using the pressure
sensors were compared with data from the vessel AIS
sourced from BigOceanData (BigOceanData 2019). The
AIS data were retrieved for the entire period of fieldwork
for all ships that sailed in the area marked in Fig. 4 en-
compassed by 59.45°-59.60°N, 24.65°-24.80°E. The AIS
dataset does not necessarily contain information about
all ships. For example, there were no ship AIS records in
the retrieved record for 19-20 July, presumably due to
technical issues.

The AIS data are recorded once in every 5 min for all
vessels. The information provided is the geographical
location (longitude, latitude), the time stamp, name of
the vessel, International Maritime Organization (IMO)
identifier, Maritime Mobile Service Identity (MMSI)
number, call sign, course, speed, and status of a vessel
(BigOceanData 2019). The status can be one of the
following: ‘“‘undefined,” ‘“‘underway using engine,”
“underway sailing,” “moored,” “‘anchor,” or “‘restricted
maneuverability.” In total 206 unique vessels were iden-
tified using a total of 82800 entries in the AIS dataset.

The data were grouped by vessels and separated into
passings that may be detected at the measurement site.
Passing is defined here as a closest AIS position to the
measurement site from the series of consecutive AIS
contacts or positions of a vessel. We only considered
vessels that actually sailed in Tallinn Bay, that is, the
vessels that reported their speed and course outside the
harbors and anchoring areas. Most of these vessels were
moving in the area of interest (Fig. 4). A single vessel
may have several passings per day. The passings could
represent either passage through the area of interest or
relocating within the area. For example, the passenger
ferry Megastar (owned and operated by Tallink) had
six passings on 11 July. Megastar had three return
journeys between Tallinn and Helsinki (about 60 km
to the north of Tallinn Bay) and thus had three entries
to and three departures from the Port of Tallinn. For
each passing, we evaluated the closest AIS contact
based on the coordinates and the closest approximate
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position to the location of devices based on the trajec-
tory of the vessel.

3. Results
a. Multiple sensors

Experience with spectrogram analysis of surface
elevation data suggests that on many occasions some
components of ship wakes may be severely masked
by wind waves (Torsvik et al. 2015). This is a frequent
problem in semienclosed sea areas such as Tallinn Bay
where even fairly moderate winds may generate waves
with periods of 2-3s (frequencies 0.3-0.5Hz) with
a wide spectrum that overlaps with vessel wakes in
frequency space. While the elimination of some fea-
tures such as narrowbanded swells from the recorded
signal may be possible, it is usually not feasible to
remove the signal of wave fields with a wide spectrum
from the spectrogram. The presence of relatively strong
levels of wind-wave noise does not necessarily destroy
the entire approach but may modify the results signifi-
cantly and may render part of the chirp-like signal of
divergent waves imperceptible in spectrograms (Torsvik
et al. 2015). A typical case with such a problem is illus-
trated in Fig. 5a.

The use of time series pressure sensors has another
shortcoming. While the high-frequency part of the sur-
face wave field is often attenuated, the near-bed pres-
sure signal frequently contains a substantial level of
low-frequency (periods > 10s) pressure oscillations that
may mask the longer components of the wake such as
transverse waves or precursor solitons (e.g., near-horizontal
higher energy lines up to 0.2 Hz in Fig. 5b compared to
Fig. 5a). A part of this noise has typical periods > 155
and thus is much longer than ship wake components.

This shortcoming may be mitigated using several
synchronized pressure sensors located at a certain dis-
tance from each other. Such a configuration is compli-
cated and expensive to build from downward-looking
devices but easily manageable using an array of hydro-
masts. We used for this purpose data from the five (devices
on the corners and at the center of the grid) out of nine
hydromasts of the frame described above. Adding data
from the additional four sensors did not increase the quality
of the spectrogram in terms of better signal to noise ratio.
The long wave speed at the measurement location was
54ms~". The phase speed of longer vessel wake compo-
nents is thus on the order of 34ms~!. The phase shift of
single wave crests at different sensor locations is therefore
much smaller than the wave period (usually >3s).

If the low-frequency background noise is not coherent
over the distance between the sensors, it can be suppressed
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FIG. 5. (a) The signature of passenger ferry Tallink Star approaching the Port of Tallinn on 25 Jun 2009 with a wind-generated sea with
typical periods of 2-2.5 s (Torsvik et al. 2015). The wake is measured using a one-point measurement device (a down-looking echosounder
mounted on a tripod) from above the water level. (b) The signature of the same vessel approaching Port of Tallinn on 17 Jul 2017 under
similar weather conditions. The wake is detected using a single pressure sensor mounted at the seabed at a depth of 3 m. The pressure
sensor is at a height of 0.2 m from the seabed. (c) Asin (b), but visualized using five sensors located in the center and the corners of a frame
of size 5m X 5m. The spectrograms are normalized by frequency spectrum and overlapped.

by merging several properly synchronized spectro-
gram snapshots of coherent waves into one picture.
This approach was realized by using ensemble aver-
aging, which was done by averaging the normalized
spectrograms from a cluster of five sensors into a single
diagram. This procedure substantially improved the
wake-to-background spectrum noise ratio (Fig. 5¢). It
greatly simplified the wake detection process, elimi-
nated false decisions, and made it possible to evaluate
some properties of ship motion.

b. Detection of a sequence of ship wakes

The applied three-step process of detection of single
wake by (i) evaluating very large values of the velocity
proxy as the potential time instance of the arrival of ship
wakes, (ii) subsequent spectrogram analysis of pressure
fluctuations at the locations of single sensors, and (iii)
refinement of the signatures of single ships by means of
merging and averaging normalized spectrograms from a
cluster of sensors, leads to an overall relatively efficient
and reliable recognition of ship passages (Fig. 6).

An example is given in Fig. 6. During the represented
time interval, 12 ship wakes can be visually identified in
the spectrogram calculated from the absolute pressure
data as described above (Fig. 6¢). All 12 wake signatures
were matched with the corresponding passings retrieved
from the AIS data. Some passings have only the signature
of diverging waves, which makes automatic distinguishing
complicated. However, most of the detected signatures
contain the visually distinguishable divergent and trans-
verse wave components that have been used in similar
studies that use wave elevation data for estimating en-
ergy, duration and spectral composition of the wake and
its components (Torsvik et al. 2015). The number of ship
passages found from the overthreshold values of the
gravity vector data was 12 (Fig. 6b). From these events,
10 cases matched the relevant visually identified images
of ship wakes in the spectrogram. Two were false-positive
signals and two ship passages (at 2240 and 2350 LT; LT =
UTC + 3h) were missed. The total number of ship pas-
sages identified in a similar manner from the linear ac-
celeration dataset was 14 (Fig. 6a). From these events,
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FIG. 6. The comparison of the detection results on 10 Jul 2017. (a) Time series of the
linear acceleration (red) with detected events (blue vertical lines) (the number of de-
tected events was 14), (b) time series of the gravity vector (red) with detected events
(blue) (12 wakes captured), and (c) the spectrogram based on the pressure data where
ship wakes are portrayed as yellow structures (outlined with white dashed rectangles; in

total 12 wakes can be seen).

11 matched the ship wake images visually identified
from the spectrogram. Therefore, four contacts were
false-positive and one contact was missed.

Throughout the period when both the measurement
data and AIS information were present, 852 events of
vessels passing by the measurement site were filtered out
from the AIS data and 160 wake structures were visible
in the spectrograms (as in Fig. 6¢). The number of wake
events in the spectrograms was limited due to the speed
of the ships as wakes from the vessels sailing below
15kt (approximately 28 kmh™') were seldom visible
in the spectrograms. The second factor was the lo-
cation of the measurement devices, as Katariina jetty
(southeast from the measurement site in Fig. 4) shel-
tered the measurement site from the wakes of majority
of the departing vessels and the tip of Pikakari peninsula
stopped wakes from the greater number of the ships
operating east-west directions north from reaching
the measurement site (Fig. 4). Also, on some occa-
sions, wakes from several vessels arrived at the sen-
sors less than 10 min apart, which resulted in reading
them as one structure.

Due to these circumstances, we focused mainly on the
vessels approaching the port of Tallinn at a speed of
15kt or more. There were 144 passings (out of 852) that
met these criteria. Majority of them (135) were roll-on—
roll-off type ferries or passenger ships. The rest (9 vessels)
were small craft (with a length less than 24 m). From those

144 events, 116 cases were matched with corresponding
wakes structures in the spectrograms, 13 misses were due
to small time interval (less than 10 min) between the
wakes, 9 cases were small craft, and in 6 cases ferries
were sailing near 15 kt.

From the 160 cases when a wake was visible in the
spectrogram, 152 wakes were also detected by using
the linear acceleration data and 134 by utilizing gravity
vector information from the sensors. Despite the slightly
better detection rate, linear acceleration information
provided a higher total number of extreme events (292)
compared to the gravity vector information (200).

4. Discussion and conclusions

It is known that high-resolution, one-point measure-
ments of surface fluctuations collected by instruments
such as downward-looking echo sounders generated by
wake waves can be used for ship detection (Torsvik et al.
2015). Such measurements often require expensive field
equipment that can be difficult to deploy and are nega-
tively affected by wind waves. The data can be evaluated
to estimate the sailing regime in terms of depth Froude
numbers, speed, and distance to the measurement loca-
tion to be estimated (Torsvik et al. 2015; Pethiyagoda
et al. 2017, 2018).

The main goal of this work was to investigate the use
of time series of wake waves for vessel detection using
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other technologies. We have demonstrated that infor-
mation of comparable quality (i.e., suitable for the de-
tection of properties of the ship and its sailing regime)
can be produced using time series of properly located
high-resolution pressure sensors. The use of such devices
is on many occasions technically simpler, less expensive,
and much less affected by atmospheric conditions. The
spectrogram technique of windowed Fourier analysis is
identical for the two approaches.

A specific feature of the use of the pressure signal is its
attenuation for shorter waves in the water column. On
the one hand, this feature may serve as a convenient
low-pass filter to single out the ship wakes from the
background of short-period wind seas. On the other
hand, this feature may lead to an unacceptable level
of low-frequency pressure fluctuations and/or noise
in the recorded signal. We demonstrate that this
shortcoming can be mitigated by using synchronized
time series from an ensemble of pressure sensors in
cases when the low-frequency pressure variations are
incoherent. The resulting signatures of wakes in al-
most all cases match the corresponding references
retrieved from the automatic identification system
database.

The increased signal-to-noise ratio produced by
overlapping spectrograms from several sensors ap-
parently provides a simple and possibly better ap-
proach to the automatic detection of ship passages
and several properties of her movement. The ex-
tended dataset, that also contains proxy information
about near-bed velocities, could provide an addi-
tional basis for automatic vessel detection and may
overcome some of the difficulties discussed in Torsvik
et al. (2015). In particular, the use of multimodal
datasets to characterize the properties of the wake
has clear potential to increase the success rate of wake
detection and quantification of the ship’s sailing regime
compared to the tracking of just one physical quantity
from above the water level.

In vessel detection applications, the location, speed,
and course of the vessel are the key features to be de-
termined. The main message from the presented anal-
ysis is that spectrogram representations constructed
using the pressure time series are of sufficient quality
for the interpretation of the different components of
ship wakes. The properties of these components (the
slopes of the branches that correspond to diverging
and transverse waves and the location of the inter-
section point of these branches) allow the quantifi-
cation of several features of the vessel movement,
such as the shortest distance of the sailing line to the
measurement location, the location at which the first
waves of the wake were produced, and the speed of the
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vessel and the local depth Froude number (Torsvik et al.
2015; Pethiyagoda et al. 2018) based on the evolution
of a wake in time at a fixed point.

We also demonstrated that additional information
provided by multisensor flow measurement devices can
serve as a useful aid for the rapid detection of ship
wakes. The proxy of near-bed water velocity from the
described devices known as hydromasts (Ristolainen
et al. 2016) may perform nearly as well as the procedure
of detecting wakes from the spectrograms. The use
of such datasets requires careful calibration and addi-
tional preprocessing tools to improve the accuracy and
reliability of ship detection.

The improvement in the quality of spectrogram rep-
resentation of the wakes using the signals from a cluster
of closely positioned sensors is a first step toward the use
of multiple sensor technology. The use of such clusters
may serve as a feasible way toward the quantification of
the vessel’s course based on the analysis of phase shifts
in single crests of the approaching wake. Another
standing research question is the determination of the
particular vessel (or vessel type) based on its wake. They
both seem feasible using synchronized information in
multimodal data streams from a properly positioned
cluster of measurement devices.

In conclusion, we demonstrated that datasets from
near-bed pressure sensors are equivalent to data of
water surface elevation collected using surface mea-
surements when considering, in the context of spec-
trogram technique, the detection of vessels and their
sailing regimes. The use of synchronized multisensor
systems makes it possible to substantially suppress
noise and improve the quality of the outcome. Water
movement data, which are also collected by the hydro-
mast sensors, provide rapid detection of ship passages
with a high success rate.

Acknowledgments. The current work was done in
the frame of the European Union’s Horizon 2020 re-
search and innovation program project LAKHsMI un-
der Grant Agreement 635568. Also, this research was
supported by the Estonian Ministry of Education and
Research (Estonian Research Council, Institutional
Support TUT33-3 and PUT 1690) and the European
Regional Development Fund program Mobilitas Pluss,
reg.nr 2014-2020.4.01.16-0024, and cosupported by the
Flag-ERA project FuturICT2.0, Estonian Center of
Excellence EXCITE, the Estonian Research Infrastructures
Roadmap object Infotechnological Mobility Observatory
(IMO), and Baltic Research Programme (EEA Financial
Mechanisms 2014-2021) project “Solutions to current and
future problems on natural and constructed shorelines,
castern Baltic Sea” (EMP480).

020z 3snBny g0 uo 1sanb Aq Jpd 261 061PY0RN/LLLO86Y/ESE L/8/LEAPd-B]o1E Y08} (/BI0"00s)eWe s|eulnolj/:dpy woly papeojumoq



1362

REFERENCES

Anupriya, K. R., and T. Sasilatha, 2018: Ship intrusion detection
system—A review of the state of the art. Soft Computing
Systems: ICSCS 2018, 1. Zelinka et al., Eds., Communications
in Computer and Information Science, Vol. 837, Springer,
147-154, https://doi.org/10.1007/978-981-13-1936-5_17.

Benassai, G., V. Piscopo, and A. Scamardella, 2015: Spectral
analysis of waves produced by HSC for coastal management.
J. Atmos. Oceanic Technol., 20, 417-428, https://doi.org/
10.1007/S00773-014-0290-1.

BigOceanData, 2019: BigOceanData. Accessed 14 April 2019,
http://www.bigoceandata.com/.

Bleckmann, H., and R. Zelick, 2009: Lateral line system of
fish. Integr. Zool., 4, 13-25, https://doi.org/10.1111/j.1749-
4877.2008.00131 .x.

Cavaleri, L., 1980: Wave measurement using pressure transducer.
Oceanol. Acta, 3, 339-346.

Chen, P.F., Y. M. Huang, J. M. Mou, and P. H. A.J. M. van Gelder,
2018: Ship collision candidate detection method: A velocity
obstacle approach. Ocean Eng., 170, 186-198, https://doi.org/
10.1016/j.oceaneng.2018.10.023.

Didenkulova, 1., A. Sheremet, T. Torsvik, and T. Soomere, 2013:
Characteristic properties of different vessel wake signals.
J. Coastal Res., 65,213-218, https://doi.org/10.2112/S165-037.1.

Dugad, S., V. Puliyadi, H. Palod, N. Johnson, S. Rajput, and
S. Johnny, 2016: Ship intrusion detection security system using
HoG & SVM. Int. J. Adv. Res. Comput. Eng. Technol.,
5, 2504-2507, http://ijarcet.org/wp-content/uploads/IJARCET-
VOL-5-ISSUE-10-2504-2507.pdf.

Estonian Maritime Administration, 2019: Estonian Maritime
Administration’s web application Nutimeri. Accessed 3 May
2019, https://gis.vta.ee/nutimeri/.

Fang, M. C.,R. Y. Yang, and I. V. Shugan, 2011: Kelvin ship wake
in the wind waves field and on the finite sea depth. J. Mech., 27,
71-77, https://doi.org/10.1017/jmech.2011.9.

Fujino, I., C. Claramunt, and A.-O. Boudraa, 2018: Extracting
courses of vessels from AIS data and real-time warning against
off-course. Proc. Second Int. Conf. on Big Data Research,
Weihai, China, Association for Computing Machinery, 62-69,
https://doi.org/10.1145/3291801.3291823.

Gierull, C. H., 2019: Demystifying the capability of sublook cor-
relation techniques for vessel detection in SAR imagery.
IEEE Trans. Geosci. Remote Sens., 57, 2031-2042, https://
doi.org/10.1109/TGRS.2018.2870716.

Goda, Y., 2010: Reanalysis of regular and random breaking wave
statistics. Coastal Eng. J., 52, 71-106, https://doi.org/10.1142/
S0578563410002129.

Huang, W., D. Wang, H. Garcia, O. R. Godg, and P. Ratilal, 2017:
Continental shelf-scale passive acoustic detection and char-
acterization of diesel-electric ships using a coherent hydro-
phone array. Remote Sens., 9, 772, https://doi.org/10.3390/
rs9080772.

Karimpour, A., and Q. Chen, 2017: Wind wave analysis in
depth limited water using OCEANLYZ, a MATLAB
toolbox. Comput. Geosci., 106, 181-189, https://doi.org/
10.1016/j.cageo.2017.06.010.

Kuo, Y.-Y., and Y.-F. Chiu, 1994: Transfer function between wave
height and wave pressure for progressive waves. Coastal Eng.,
23, 81-93, https://doi.org/10.1016/0378-3839(94)90016-7.

Kurekin, A. A., B. R. Loveday, O. Clements, G. D. Quartly, P. L.
Miller, G. Wiafe, and K. A. Agyekum, 2019: Operational
monitoring of illegal fishing in Ghana through exploitation of

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 37

satellite Earth observation and AIS data. Remote Sens., 11,
293, https://doi.org/10.3390/rs11030293.

Kuznetsov, N. G., V. G. Maz’ya, and B. Vainberg, 2002: Linear Water
Waves: A Mathematical Approach. Cambridge University Press,
513 pp.

Leppédranta, M., and K. Myrberg, 2009: Physical Oceanography of
the Baltic Sea. Springer, 378 pp.

Newman, J. N., 1977: Marine Hydrodynamics. MIT Press, 402 pp.

Panico, A., M. D. Graziano, and A. Renga, 2017: SAR-based vessel
velocity estimation from partially imaged Kelvin pattern.
IEEE Geosci. Remote Sens. Lett., 14, 2067-2071, https:/
doi.org/10.1109/LGRS.2017.2751083.

Park, J.-J., S. Oh, K.-A. Park, P.-Y. Foucher, J.-C. Jang, M. Lee,
T.-S. Kim, and W.-S. Kang, 2018: The ship detection using
airborne and in-situ measurements based on hyperspectral
remote sensing. J. Korean Earth Sci. Soc., 38, 535-545, https://
doi.org/10.5467/JKESS.2017.38.7.535.

Pethiyagoda, R., S. W. McCue, and T. J. Moroney, 2017:
Spectrograms of ship wakes: Identifying linear and non-
linear wave signals. J. Fluid Mech., 811, 189-209, https://
doi.org/10.1017/jfm.2016.753.

——, T. J. Moroney, G. J. Macfarlane, J. R. Binns, and S. W.
McCue, 2018: Time-frequency analysis of ship wave patterns
in shallow water: Modelling and experiments. Ocean Eng.,
158, 123-131, https://doi.org/10.1016/j.oceaneng.2018.01.108.

Rabaud, M., and F. Moisy, 2013: Ship wakes: Kelvin or Mach an-
gle? Phys. Rev. Lett., 110, 214503, https://doi.org/10.1103/
PhysRevLett.110.214503.

Renga, A., M. D. Graziano, and A. Moccia, 2019: Segmentation of
marine SAR images by sublook analysis and application to sea
traffic monitoring. /EEE Trans. Geosci. Remote Sens., 57,
1463-1477, https://doi.org/10.1109/TGRS.2018.2866934.

Ristolainen, A., J. A. Tuhtan, A. Kuusik, and M. Kruusmaa, 2016:
Hydromast: A bioinspired flow sensor with accelerometer.
Biomimetic and Biohybrid Systems, N. Lepora et al., Eds.,
Lecture Notes in Computer Science, Vol. 9793, Springer, 510—
517, https://doi.org/10.1007/978-3-319-42417-0_55.

——, ——, and M. Kruusmaa, 2019: Continuous, near-bed current
velocity estimation using pressure and inertial sensing.
IEEE Sens. J., 19, 12398-12 406, https://doi.org/10.1109/
jsen.2019.2937954.

Sheremet, A., U. Gravois, and M. Tian, 2013: Boat-wake statistics
at Jensen Beach, Florida. J. Waterw. Port Coastal Ocean
Eng., 139, 286-294, https://doi.org/10.1061/(ASCE)WW.1943-
5460.0000182.

Siegert, G., J. Hoth, P. Banys, and F. Heymann, 2019: Generic
framework for vessel detection and tracking based on dis-
tributed marine radar image data. CEAS Space J., 11, 65-79,
https://doi.org/10.1007/s12567-018-0208-6.

Soomere, T., 2005: Fast ferry traffic as a qualitatively new
forcing factor of environmental processes in non-tidal sea
areas: A case study in Tallinn Bay, Baltic Sea. Environ.
Fluid Mech., 5, 293-323, https://doi.org/10.1007/s10652-
005-5226-1.

——, 2007: Nonlinear components of ship wake waves. Appl.
Mech. Rev., 60, 120-138, https://doi.org/10.1115/1.2730847.

——, K. E. Parnell, and I. Didenkulova, 2011: Water transport in
wake waves from high-speed vessels. J. Mar. Syst., 88, 74-81,
https://doi.org/10.1016/j.jmarsys.2011.02.011.

Sorensen, R. M., 1973: Ship-generated waves. Adv. Hydrosci., 9,
49-83, https://doi.org/10.1016/B978-0-12-021809-7.50007-9.

Till, G., 2013: Seapower: A Guide for the Twenty-First Century.
Routledge, 432 pp., https://doi.org/10.4324/9780203880487.

020z 3snBny g0 uo 1sanb Aq Jpd 261 061PY0RN/LLLO86Y/ESE L/8/LEAPd-B]o1E Y08} (/BI0"00s)eWe s|eulnolj/:dpy woly papeojumoq



AUGUST 2020 RATSEP ET AL. 1363

Torsvik, T., T. Soomere, I. Didenkulova, and A. Sheremet, 2015:
Identification of ship wake structures by a time-frequency
method. J. Fluid Mech., 765, 229-251, https://doi.org/10.1017/
jfm.2014.734.

Wehausen, J. V., 1973: The wave resistance of ships. Adv. Appl. Mech.,
13, 93-245, https://doi.org/10.1016/S0065-2156(08)70144-3.

Wyatt, D. C., and R. E. Hall, 1988: Analysis of ship-generated
surface waves using a method based upon the local Fourier
transform. J. Geophys. Res., 93, 14 133-14 164, https://doi.org/
10.1029/7C093iC11p14133.

Zhu, C., H. Garcia, A. Kaplan, M. Schinault, N. O. Handegard,
O. R. Godg, W. Huang, and P. Ratilal, 2018: Detection, lo-
calization and classification of multiple mechanized ocean
vessels over continental-shelf scale regions with passive ocean
acoustic waveguide remote sensing. Remote Sens., 10, 1699,
https://doi.org/10.3390/rs10111699.

Zilman, G., A. Zapolski, and M. Marom, 2004: The speed and
beam of a ship from its wake’s SAR images. IEEE Trans.
Geosci. Remote Sens., 42, 2335-2343, https://doi.org/10.1109/
TGRS.2004.833390.

020z 3snBny g0 uo 1sanb Aq Jpd 261 061PY0RN/LLLO86Y/ESE L/8/LEAPd-B]o1E Y08} (/BI0"00s)eWe s|eulnolj/:dpy woly papeojumoq






Publication Il

Ratsep, M., Parnell, K.E., Soomere, T., Kruusmaa, M., Ristolainen, A. and Tuhtan, J.A,,
2021. Surface vessel localization from wake measurements using an array of pressure
sensors in the littoral zone. Ocean Engineering, 233, 109156.
https://doi.org/10.1016/j.0ceaneng.2021.109156

69






Ocean Engineering 233 (2021) 109156

Contents lists available at ScienceDirect

OCEAN
ENGINEERING

Ocean Engineering

s

ELSEVIER

journal homepage: www.elsevier.com/locate/oceaneng

Check for
updates

Surface vessel localization from wake measurements using an array of
pressure sensors in the littoral zone

Margus Ratsep * “, Kevin E. Parnell?, Tarmo Soomere?, Maarja Kruusmaa b Asko Ristolainen ®,

Jeffrey A. Tuhtan”

2 Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
Y Centre for Biorobotics, Department of Computer Systems, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia

ARTICLE INFO ABSTRACT
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Vessel detection and localization based on wake measurements have been used extensively in aerial and satellite
reconnaissance. Here, a wake-based approach for vessel localization and speed estimation is developed using a
grid of pressure sensors on the seabed. The sensor array consisted of 9 devices in a 3 x 3 rectangular grid with
2.5 m spacing between the instruments. The array was deployed at a depth of 3 m approximately 2.5 km from the
fairway. The pressure time series from all sensors were used to estimate vessel speed and the travelling distance
of the wake by interpreting the geometry of its time-frequency representation. The wake direction and an es-
timate of the vessel course are calculated from the delays of the incoming wake between the sensor locations,
equivalently, based on cross-correlations of the signal at neighbouring sensors. Results for single events are
compared with data collected from the vessels self-reporting systems (AIS). It is concluded that a grid of pressure
sensors can provide a reliable estimation of the vessel location and its speed. The presented technique makes it
possible to locate ships, and their speed and course, as the next step towards a vessel traffic monitoring system

based on wake recordings.

1. Introduction

The increase in the density of maritime traffic, a variety of ship types
and multiple uses gradually adds to the complexity of offshore and
coastal sea management (van Westrenen and Baldauf, 2020). It also
generates a higher probability of accidents (Altan and Otay, 2018) and
raises pressure on the marine (Claremar et al., 2017; Zanatta et al.,
2020) and coastal (Delpeche-Ellmann and Soomere, 2013) environment.
In particular, the introduction of unmanned Marine Autonomous Sur-
face Ships additionally increases the related risks due to a reduced re-
covery capability (Thieme et al., 2018). Specifically, losing contact with
a ship can severely limit the options for maintaining control in critical
applications. To cope with this risk, the ability of coastal services to
detect a vessel and estimate its position, speed and course are essential.

Our research is motivated by several studies which have developed
vessel tracking methods. Vessel movements can be retrieved from well-
known sources like radar and radio systems (Zilman et al., 2004; Gierull,
2019; Renga et al., 2019; Siegert et al., 2019), sonar technologies
(Huang et al., 2017), acoustic devices and/or using direct visual
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observations from other vessels and the coast (Fefilatyev et al., 2012;
Magnier and Gervaise, 2020). Some of these methods including so-
phisticated methods such as those described in Pradhan and Gupta
(2017), Zhang et al. (2017), and Joseph et al. (2019) enable vessel
detection only: determining if there are vessels present in the sea area of
interest. However, before taking appropriate action, additional infor-
mation such as the vessel position, speed and sailing course, are needed.
The entire process of assessing these three properties (position, speed
and course) is referred to as ‘localization’. An adequate estimate of these
parameters is a key part of composing a Recognized Maritime Picture
(RMP) which represents a set of information necessary for creating
situational awareness in maritime operations (NATO Standardization
Agency, 2015). One possible method to achieve this, discussed in this
paper, is to make use of the disturbances left by the passing vessel to the
surrounding water (Panico et al., 2017; Zhang and Jiang, 2020).

One of the core sources of information about the location, properties
and sailing parameters of the ship is its wave wake (Newman, 1991;
Tuck et al., 1971; Wu and Meadows, 1991). This problem, essentially an
inverse ship-wave problem (Newman, 1991), does not necessarily have
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a unique solution for all desired parameters. Technically, one of the
simplest properties to determine from recordings of a wake is speed. A
ship’s speed U, wave propagation direction with respect to the sailing
line ¢, and wave number k (or length) L = 27/k are rigorously related:

8

k(0) = U?cos 2 0

@
where g is the acceleration due to gravity (Newman, 1977; Wu, 1991).
Therefore, one only needs the wave number k and the wake propagation
angle 0 of any part of the wake to determine the ship’s speed (Wu, 1991).
The wave number can be retrieved from the dispersion relation based on
wave period or frequency. This almost naive approach works well if the
ship is following, for example, traffic separation regulations (Torsvik
et al., 2015), and can be used at any distance from the sailing line
provided the wake is distinguishable. However, without a priori infor-
mation about the sailing line, these quantities need to be evaluated
simultaneously.

A straightforward solution to the problem of determining a ships’
speed and direction can be obtained from the entire two-dimensional
(2D) pattern of ship-generated waves (Wu, 1991; Wu and Meadows,
1991) by evaluation of the relevant 2D wave spectrum. This approach
was discussed by Tuck et al. (1971) and justified in detail by Wu (1991).
A limited solution can also be obtained from the one-dimensional (1D)
time series of the wave system.

This approach requires high-resolution images of the water surface
that are capable of resolving single wave crests. Synthetic aperture radar
(SAR) images of this quality and the appropriate techniques for extrac-
tion of wave patterns have become available only since the turn of the
century (e.g. Chaillan and Courmontagne, 2006; Courmontagne, 2005)
and have been relatively recently extended to situations with substantial
wind wave background (Yu and Wu, 2014; Zilman et al., 2015). Alter-
natively, applications based on scanning laser and image processing
have been used in towing tanks and confined environments (e.g. Gomit
et al.,, 2015, 2013). These developments have made it possible to pro-
duce highly accurate 2D spectra of ship waves (Gomit et al., 2014).

The applications of these techniques have been described in a
number of studies estimating parameters of ship characteristics and their
motion based on spectral analysis. Arnold-Bos et al. (2007) present a
method for estimates of ship speed and sailing direction based on the
entire pattern of its Kelvin wake. They use the generalized Radon
transform followed by stochastic matched filtering to reliably detect the
loci of the wake signature in the 2D spectrum of the image. Several
methods such as the fractional Fourier transform (Chen et al., 2020) or
convolutional neural networks (Kang and Kim, 2019) have been devel-
oped to derive the ship’s speed from the SAR imagery of its wake. This
approach has provided a thorough description of linear, nonlinear and
evanescent modes of the wave wake in spectral space (Sun et al., 2018)
and allows for the derivation of several ship motion parameters from
these representations (Fan et al., 2019).

The 2D or 1D patterns of wakes with the necessary resolution are
rarely available to use for the localization of vessels. Also, the described
spectral methods are relatively sensitive to noise and missing informa-
tion about part of the wake. If the quality of snapshots of the wake
pattern is too low, the locus will remain undefined in the spectral space.
Moreover, in conflict situations, it is likely to be impossible to obtain the
required data with the necessary quality.

Some localization and surveillance methods that are valuable on the
open sea may not be suitable for use in the littoral zone due to the
presence of a rigid coastline, which can create false positive contacts for
vessel detection (Aiello et al., 2019) and requires extensive resources for
on-site observation. This creates a clear need for additional research to
improve the detection and localization of vessels that operate near the
shore or in confined waters.

For this reason, we revert to more robust and less demanding (albeit
at times less exact) methods for ship localization and the specification of
motion parameters. Namely, we rely on the decomposition of one-point
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recordings of far-field wake signals into time-frequency representations
(3D compositions of time, frequency and power, here referred to as
spectrograms) by utilizing Short-Time Fourier Transform instead of 1D
and 2D Fast Fourier Transform as used in cases referred to above.

Recent research into vessel wakes has shown that ship wakes have a
content-rich structure in the time-frequency representation (Sheremet
et al., 2012). On many occasions, this structure can be extracted from
one-point recordings of water surface fluctuations measured from above
(Torsvik et al., 2015) or from pressure recordings from the seabed
(Sheremet et al., 2012). Moreover, using the relations between different
components highlighted in the spectrograms, a ship’s sailing charac-
teristics including the speed and minimum distance of the sailing line
from the measurement site (Torsvik et al., 2015) or changes in the vessel
movement such as course and speed alterations (Pethiyagoda et al.,
2017) can be calculated.

The main benefit of this approach is that the loci of single wave
components are represented as straight lines — asymptotes of the rele-
vant linear dispersion relation — at some distance from the point that
corresponds to the border of the Kelvin wedge (Pethiyagoda et al.,
2017). This property makes it possible to reconstruct the location and
orientation of these lines on the spectrogram even if there are only a few
recorded wave crests that present diverging and transverse waves. The
crossing point of these two lines (transverse and divergent waves) is
directly related to the point that represents waves at the border of the
Kelvin wedge. It is therefore possible to reduce the problem of deter-
mination of a ship’s speed to a certain analysis of geometric features in
the spectrogram. Moreover, this method is much less sensitive to the
presence of other waves. In particular, background waves with fre-
quencies clearly different from the wake components at the edge of the
Kelvin wedge can be eliminated by a suitable spectral filter. This reflects
the general perception that it is easier to detect the presence of a ship
sailing using waves portrayed in the spectral domain than from the
spatial pattern of its wake.

Motivated by these findings and confirmation that results based on
the spectrogram methods developed by Torsvik et al. (2015) coincide
with actual ship sailing data derived from their self-reporting systems
(Ratsep et al., 2020a), the question is whether it is possible to develop a
simple remote vessel detection and localization system based on the
wake recordings that would contribute additional information to the
RMP building process. This process usually consists of five steps. The
first three are generally instrument or sensor-based (NATO Standardi-
zation Agency, 2015). These are (i) vessel detection (whether a partic-
ular vessel is in the area of interest), (ii) localization and (iii) recognition
(providing additional information that would help to recognize either a
particular ship or a ship type) (NATO Standardization Agency, 2015).

It has been already demonstrated that vessel detection based on the
wake readings is possible using multimodal pressure and inertial sensors
located on the seabed (Ritsep et al., 2020b). Careful merging of data
from several underwater pressure sensors led to spectrograms with a
quality comparable to those derived from readings collected using
downward-looking echo sounders (Ratsep et al., 2020a; Torsvik et al.,
2015), while keeping the sensors concealed (Ratsep et al., 2020b).

Based on these results we address in this paper a further step towards
vessel localization — the second step of the RMP building process. The
procedure is divided into two major parts. First, we use specific features
of the geometry of the wake signatures retrieved from spectrograms
(Ratsep et al., 2020b) to estimate the speed and the distance of the
passing vessels by further developing methods suggested by Torsvik
et al. (2015) and developed by Pethiyagoda et al. (2017) towards uti-
lisation of geometric properties of the loci of ship wakes in spectro-
grams. Secondly, by applying beamforming theory to the sensor grid
(here referred to as the phase-shift technique), we determine the di-
rection of the incoming wake. The core idea is to use the time of arrival
difference between single wave crests at different locations under the
assumption that the crests are locally straight. A similar concept has
been widely used to quantify wind-wave propagation direction
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(Borgman, 1969; Panicker and Borgman, 1970) and associated along-
shore sediment transport (Seymour and Higgins, 1978) in previous wave
research at a time when directional wave sensors were not yet available
(see also, e.g., Dean and Dalrymple, 1991, Section 7.4). By combining
these two methods, we show that it is possible to determine the vessel
position with its speed and an estimate of its sailing course at the
moment in time when the wake was generated.

The structure of the paper is as follows. The paper is divided into 5
sections. Section 2 provides the mathematical background to the prop-
erties of vessel waves in the Kelvin wake and geometry needed for the
current work. Also, it describes the measurement site, sensors, data sets
and methods used in the analysis process. Section 3 gives an overview of
the results by comparing our calculated vessel locations, sailing speeds
and courses with the values derived from AIS data. The limitations,
challenges and areas of the potential use of the proposed techniques are
discussed in Section 4. Section 5 summarizes the main results.

2. Methodology and experimental setup
2.1. Kelvin wake

A moving vessel inevitably leaves behind a system of surface waves.
A displacement vessel yields a distinctive pattern of surface waves,
known as the Kelvin wake. Its properties are described in detail in many
overviews (Sorensen, 1973; Wehausen, 1973; Newman, 1977; Soomere,
2007; Fang et al., 2011). The description in this section follows these
sources. If the ship sails steadily, the pattern of generated waves is sta-
tionary in the coordinate system attached to the ship. The geometry of
this pattern can be established provided the dispersion relation of the
relevant wave class is known. It is sufficient to recognize that (i) the
constant phase curves (also the wave crests and troughs) are always
perpendicular to the wave vector, and that (ii) the local phase velocity
(celerity) cf of stationary waves is equal to the projection of the velocity
of the ship onto the direction of the wave vector (Yih and Zhu, 1989a,
1989b, 1989b).

Therefore, a wave component that travels steadily at an angle 6 with
respect to the sailing line has the phase velocity

Q:%:Usinﬁ 2)

where ® = w(k) is the dispersion relation for the produced waves. If the
ship sails from X to O (Fig. 1), travelling the distance UAt in time where
At = t; — ty, the steady waves only fill a certain circle (for example,
circle (1) or circle (2) in Fig. 1) during t. The radius of this circle is a

Fig. 1. Scheme of the location of wave energy in ship waves. Circle (3) in-
dicates the area filled by waves created by a paddle located at X during Ar.
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function of the time and the ratio of the phase speed and group speed
¢g = dw/0dk. If the group speed is smaller than the phase speed (which is
the typical case for water waves), the energy released at X covers the
distance cgAt < ceAt and reaches, e.g., in the sailing direction only until a
certain point O* between X and O. The generated waves thus fill circle
(2) with a diameter Vtcgcy ! and centred at X = X+ %Vtcgcf’l.

Consequently, steady ship waves only can exist within a triangular
area (called the Kelvin wedge) that contains all circles (2), and that is
limited by their common tangents going through O. The relevant half-
angle of the apex a of the wedge is defined from the purely geomet-
rical condition

Lype 1
thcg¢f 1

= 3
Vi —4Viceer! 2,6t — 1 ®

sina =

A vessel moving in a deep water regime, where o = \/g_k, produces
the Kelvin wedge with its half-angle being arcsin(1 /3) ~ 19°28’, inde-
pendent of the vessel speed. Transverse waves travel along the vessel
sailing line (Fig. 2), and divergent waves move away from it (Fig. 2). The
two wave systems interact on the borders of the Kelvin wedge due to
which the cusp waves are generated (Fig. 2). The amplitude of cusp
waves, which notably exceeds the amplitudes of transverse and diver-
gent waves, decays slowly (as r~1/3) with the distance r from the vessel
(Kuznetsov et al., 2002). The cusp waves propagate at an angle of
arccos(\/ 2/3) ~ 35°16’ from the sailing line, while transverse compo-
nents travel at smaller angles, reaching 0° at the sailing line. The
divergent components move at higher angles than cusp waves.

The properties of this wave system for a vessel sailing in waters of
finite depth are governed by the general dispersion relation of water
waves @ = y/gk tanh kH that additionally depends on the water depth H.
For this situation

2¢, = ¢y (1 + 2kHsinh™ ' 2kH) (4

and Eq. (3) has a somewhat more complicated form:

1 — 2kHsinh~'2kH
orcoszot:8$2 5)
[3 — 2kHsinh ™' 2kH ]|

1 + 2kHsinh™'2kH

sin@=—————-7—
3 — 2kHsinh™ 2kH

The properties of steady waves located at the border of the Kelvin
wedge on circle (2) can be easily found from Eq. (1) and the dispersion
relation for divergent waves for this case. The triangle OX*R* is obvi-
ously right-angled and the angle OX*R* is 7/2 — a. The triangle XR*X* is
equilateral; therefore the angle R*XX* is 0 = [7 — (7 /2 + a)]/2 = /4 —

Turbulel

e

i
|

Fig. 2. An example of the Kelvin wake generated by surface vessel motion. The
half-angle of the Kelvin wake is 19°28" and the travelling angle of the cusp
waves is 35°16' to the sailing line. The ship is moving to the right. (Newman,
1977; Torsvik et al., 2015).
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a/2.
Similarly, Eq. (1) becomes much more complicated:

2k2U?

gktanh kH=—"——7——
3 — 2kHsinh™ 2kH

(6)

Eq. (6) for the wave number k at the border of the Kelvin wedge can
be interpreted as the following transcendental equation for with respect
to kH (Sorensen, 1973):

gk tanh kH e U\
S22 T (3 — 2kHsinh ' 2kH) = | —— 7
7 s )=\ Vem 2

Eq. (7) is just another way of saying that the basic geometric prop-
erties of the Kelvin wave system depend on the depth Froude number:

U
Fy——0
Vel

where U is the speed of the vessel and g is the acceleration due to gravity.
For ships sailing at subcritical speeds, Fy < 1 (this is the case for most
ships), Eq. (6) has a real solution and the Kelvin wake consists of two
systems of waves. The deviation of the properties of the Kelvin wave
from the situation in deep water (When Fy<1) can thus be characterised
using the variations of the angles « and 6 (Fig. 3).

For relatively fast vessels in shallow waters (0.6 < Fy < 1) the wake
is affected by the water depth H and the overall appearance of the Kelvin
wedge depends on the particular value of Fy.

The changes to the half-angle of the Kelvin wedge and the angle of
cusp wave propagation 6 are relatively modest (less than 0.05°) until Fyy
reaches a value of about 0.6. For larger values of Fy, the apex angle of
the Kelvin wedge starts to increase and 6 to decrease. The deviation of 6
from its deep-water value reaches 1° at Fy = 0.767. The wave genera-
tion process for transcritical speeds Fy ~ 1 is strongly nonlinear and
cannot be described in terms of the classic depth Froude number (Soo-
mere, 2007). When Fy > 1, a further increase in Fy; leads to a decrease in
the half-angle of the Kelvin wedge from its formal limiting value 90° at
Fy—1. The wave system will consist solely of divergent waves
(Wehausen, 1973; Pethiyagoda et al., 2015) and may even obtain a
shape characteristic of a Mach stem (Rabaud and Moisy, 2013). We do
not consider this case in our study as parts of the methodology rely on
the presence of divergent waves.

The method for the identification of properties for the evaluation of
the ship’s location and speed is based on the spectrogram representation
of one-point recordings of the wake. Pethiyagoda et al. (2017) showed
that in this representation the wake signal is concentrated around the
curve that they call the linear dispersion curve (Fig. 4). This curve is
described as
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where w, is the dimensionless angular frequency of the waves, ,,+*
corresponds to diverging waves and ,,—,, to transverse waves, and T = t/y
is dimensionless time. These two branches meet at the point T = /8,
@ = /3/2 (Fig. 4). Both branches approach rapidly to straight lines
when T increases. The branch for the divergent waves has an asymptote
® = T/2 whereas the branch for the transverse waves approaches the
horizontal line w = 1.

The point where the two branches meet corresponds to the edge of
the Kelvin waves, therefore, to cusp waves that are the highest of the far-
field wake and thus the easiest to detect. However, from Fig. 4 it be-
comes clear that the determination of the coordinates of this point in the
spectrogram representation is a complicated task as it is located at the
vertical section of the dispersion curve. Therefore, even small errors in
the evaluation of the properties of cusp waves may lead to large errors in
the estimated frequency of waves and thus to large errors in the esti-
mated ship speed.

To a first (linear) approximation, the point that represents the edge
of the Kelvin wedge in this representation is always directly related to
the crossing point T = 2, = 1 of these two asymptotes (marker ‘A’ in
Fig. 4). This relationship is invariant with respect to the ship’s speed and
also with respect to the relevant depth Froude number (Pethiyagoda
et al.,, 2017). Consequently, the aim is to specify this point and not the
meeting point of the two branches of the linear dispersion curve.

The existence of the two asymptotes makes it possible to identify the
instant of arrival of the wake in the spectrogram even when only a few
components of the wake are detectable (e.g., distinguishable from a
relatively high wind wave field). As this linear dispersion curve is
invariant to the Froude number, the method itself is insensitive to the
variations in this parameter. However, the performance of the method
does depend on the depth Froude number as the ratio of the energy of
transverse and divergent waves and the extension of the identifiable
parts of the two branches varies with the variation in the Froude number
(Pethiyagoda et al., 2017). An intrinsic limitation is that both branches
must be present in the spectrogram. Therefore, the method as described
here cannot be used for supercritical speeds when steady transverse
waves cannot exist.

2.2. Measurement site and devices

The measurements were conducted on the nearshore of Tallinn Bay
in July 2017. Tallinn Bay is a semi-enclosed area of approximately 10 x
20 km in size. It is located on the south-eastern coast of the Gulf of
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Finland in the north-eastern Baltic Sea (Fig. 5). It is open to the central
part of the Gulf of Finland to the north and the north-west. The two
entrances to the bay (from the north and west) are regulated by a local
vessel traffic separation scheme (Fig. 5).

To retrieve steady wake signatures (that would not be affected by the
speed and course alternations), we focused on vessels approaching the
port of Tallinn from the north. We chose to deploy our measurement
devices near the shore of the Pikakari peninsula (Fig. 5). Katariina jetty
to the south-east of the measurement site and the tip of Pikakari
peninsula to the north-west shelter the measurement location from
waves approaching from the west and south, respectively. Their pres-
ence shelters the measurement location from waves generated by the
predominant wind and also means that wakes from the vessels sailing
out of the port of Tallinn or approaching from the west are negligible at
the sensor location. The sailing direction of vessels that approach the
port from the north-north-west was approximately 159° (clockwise from
north). The deviation of courses from this, estimated from ship self-
reporting systems, was typically less than +10°.

The water depth in part of the traffic separation scheme where the
wakes of the approaching vessels could have originated (Fig. 5) ranges
from 40 to 70 m. Passenger vessels entering to port were travelling at 15
to 30 knots' in the mentioned area, and therefore they are sailing at
subcritical speeds. Even though the depth Froude number for such
speeds may reach values about 0.7, on average it was below 0.5. For
these Froude numbers, the deviation of the geometry of the Kelvin
wedge from the deep-water geometry is insignificant (Fig. 3).

The data were collected with multimodal pressure and inertial sen-
sors called hydromasts (Fig. 5) (Ristolainen et al., 2019). In total, 9
sensors were mounted with an equal horizontal spacing of 2.5 m on an
aluminium frame (S1 to S9 in Fig. 5). The frame was deployed at a depth
of 3 m on the seabed with an orientation of 22.5° north to properly catch
the single wake wave crests of the incoming vessels. The frame was
secured to the seabed with 8 mm metal bars and additional weights on
the corners.

The hydromasts recorded the absolute pressure of the water column
(absolute pressure sensor in Fig. 5) and an estimate of the near-bed
water velocities using a calibrated relationship with the linear acceler-
ation of the vibrating mast at the top of the device (Fig. 5). This dataset
has also been used for automatic vessel wake detection (Ratsep et al.,
2020b). Here, however, we only use the pressure data. The pressure
sensors were located near the bottom of the instrument and therefore the
readings were obtained at 0.2 m above the seabed. The measurement
frequency for all the sensors was 100 Hz.

2.3. Data conversion

The spectrogram technique involved the conversion of the pressure
data into water level elevation and subsequent implementation of the
short-time Fourier transform. The main focus was on the retrieval of the
ship wake components from the frequency spectrum of the wave data,
therefore we did not concentrate on actual wave height values, power
values on the time-frequency representation of the pressure data and the
sensitivity caused by external sources to the data. This technique is
based on the process described by Ritsep et al. (2020b) and is presented
here only in summary form, to provide a complete overview of the
procedure. The starting point is the geometry of the wake structure
retrieved from the corresponding spectrogram based on (Torsvik et al.,
2015) and it essentially uses the existence of two asymptotes of the
linear dispersion curve of ship waves.

As a first step, outliers (values that differed by more than three
standard deviations from the mean pressure value) were removed from
the absolute pressure data. An example of input data is given in Fig. 6a.
The data stream, originally measured in mV, was converted into

1 knot is 1.852 km per hour.
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pressure Py (Pa) by a calibration relation established in a test tank:

Py =27.1208+p + 4475.72 (10)

with R? > 0.9. The height of the water column was calculated consid-
ering the average depth at the measurement site as h = 3 m and the
height of the sensor d; = 0.2 m above the seabed. As this area is
microtidal, with typical tidal amplitudes a few cm (Leppdranta and
Myrberg, 2009), tide-driven changes to the water depth are ignored. The
attenuation of water surface fluctuations in the water column was esti-
mated using the relation (Dean and Dalrymple, 1991; Karimpour and
Chen, 2017):

Po(z= —h)=P+q=pgh, + pgnK, an

where P, is total pressure, P is the mean water pressure, g represents the
water surface fluctuations, hs is the depth of the sensor, g is gravity ac-
celeration, p is the water density, z is the depth of the sensor with pos-
itive values above the water level, 7 is the water surface elevation, and
K, is the dynamic pressure to the surface elevation conversion factor
(Dean and Dalrymple, 1991; Karimpour and Chen, 2017):

_ coshk(h +z)  cosh(kd,)

P cosh(kh)  cosh(kh) 12)

Here, the wavenumber k was calculated following the method pro-
posed by Goda (2010). This procedure of reconstruction of wave heights
is not essential for our method and we only included it in order to keep
the compatibility of our research with other studies that have tracked
the water surface. The frequency of pressure fluctuations in surface
waves exactly matches the frequency of waves. Therefore, possible er-
rors of the conversion of measured data series into wave time series may
only affect the wave heights but does not distort the location of
high-energy fluctuations on the linear dispersion curve.

Wave data were downsampled to the frequency of 5 Hz. A short-time
Fourier transform was applied in the frequency range of 0.005-0.6 Hz
(periods from 5/3 to 200 s) with a step size of 0.005 Hz on a uniform
scale, using a Hamming window function of 1024 data points (with a
length of 204.8 s or about 3-4 min) and overlap of 1014 points (203.8 s)
with a 2 s step. Each application of the Fourier transform produces a
discrete representation of the frequencies of identified waves. The
maximum mismatch of the frequency of the relevant high-energy point
from the corresponding point of the linear dispersion curve depends on
the retrieved frequency and decreases with the increase in this fre-
quency. This feature suggests that the asymptotes of the linear disper-
sion curve are better represented in the time-frequency representation
(Fig. 4). Finally, the spectrograms from different sensors were normal-
ised and merged, following the idea of using ensemble averaging of the
output of different sensors to increase the wake-to-background-noise
ratio (Ratsep et al., 2020b). The Fourier transform does not introduce
any systematic bias in the frequency of the retrieved high-energy fluc-
tuations. However, as all sensors are recording the same wave, the
process of merging the data from 9 sensors does not decrease the typical
error in frequency retrieved from a single sensor.

2.4. Spectrogram analysis: speed of the vessel and the distance travelled
by the wake

Vessel localization requires knowledge of the position, speed and
course. We approached the first part of this problem by determining the
propagation direction and the distance travelled by its wake to the
measurement location under the assumption that a ship sailed more or
less with a steady speed and course. The two other parameters (speed
and course) were assessed during the analysis process. We employed two
different and independent techniques: a spectrogram technique for
finding the speed and the distance that the wake had travelled from its
point of origin to the measurement site, and a phase-shift technique
based on the time delays of the incoming wake at the pressure sensors in



M. Ratsep et al.

Ocean Engineering 233 (2021) 109156

59°35'N

Latitude

59°30'N

Traffic separation scheme
AlIS reference area

«

’ s

: »
Wake generation area
{

Measurement site

24°20'E 24°30'E

il Eortnstar Geographics|

24°40'E 24°50'E

Longitude

Fig. 5. The traffic separation scheme in Tallinn Bay (Estonian Maritime Administration, 2017). Arrows show the sailing direction. The geometry of the grid and the

details of sensors are indicated in the upper left corner.

(b)  log10(PSD)

Divergent component
0.5

[ J)
[3;] B
o o
Frequency (Hz)
= o
w =
o
N

frequency (Hz)
o
w

(c) Fig. 6. Wake readings from the M/V Megastar.

(a) Pressure data output from sensors S1-S9 (grid

position is indicated in Fig. 5) after the removal

of outliers and normalization. (b) An example of

Extracted time-frequency representation (spectrogram) of a
divergent B ship wake. (c) The peaks of this wake are
component . Bl extracted from the background noise and linearly
fitted. The time moment ‘0’ marks the cusp wave
point (as the maximum spectrogram value
(Torsvik et al., 2015)). It is evident that direct
estimates of frequency of cusp waves using a few
points in its vicinity contain large uncertainty.
Fits to the datasets are shown with solid lines and

0.2 0.2 error rates with 95% of confidence are marked as
S70 W dashed lines. Black squares represent extracted
time-frequency points for which the energy value
S8 0 W 0.1 0.1 was lower than the average of the extracted wake
Transverse Extracted transverse =~ components.
S9 0 W component component
00:20 00:30 00:20  00:30 . -500 0 500
Time (h) Time (h) time (s)

the grid for estimating the direction of the incoming wake. From this
information, we derive a possible course on which the vessel sails.
Ship wake signatures (Fig. 6b) were extracted from the spectrograms
using peak detection analysis (Fig. 6¢) and divided into the divergent
and transverse components. The speed of the ship and the distance
travelled by the wake were determined using relations developed by
Torsvik et al. (2015) and actually stemming from Wu (1991). The main
wake components used in this process were transverse waves (Pethiya-
goda et al., 2018) represented by the almost horizontal branch of an
L-like signature (Fig. 6b). The divergent waves are represented by an
inclined branch in this signature. In other words, the frequency of
transverse waves changes insignificantly after the cusp waves have
arrived, however, the frequency of divergent waves varies substantially
(and almost linearly in this representation) for the fixed observation
location (Fig. 4). Such signals are often referred to as chirp signals or
‘chirps’ (Sheremet et al., 2012). The cusp waves were associated with
the intersection of the two branches of the spectrogram (Figs. 4 and 6b).
The width of these branches depends on the scale of the image that was
tuned manually to achieve optimal extraction. This width was also taken
into account when estimating the possible errors of estimates of vessel
speed and distance. Finally, the features on spectrograms that reflect

transverse and divergent components were fitted with straight lines
(Fig. 6¢).

Torsvik et al. (2015) applied three approaches for determining the
speed U of the vessel from the spectrogram. They all rely on the fre-
quency f of certain components of ship waves. If the starting point of the
branch for the diverging waves is well defined, the ship’s speed is
(Torsvik et al., 2015):

3 g
U=/~
\/; 27 fcusp

where fuu is the frequency of cusp waves (marker ‘B’ in Fig. 4). This
frequency matches the meeting point of the signatures of diverging and
transverse waves that corresponds to the non-dimensional frequency

13)

o = +/3/2 in Fig. 4. Alternatively, it is possible to use the asymptotic
value w =1 of the signature of the transverse component of the ship
wake. If we denote the relevant frequency by fi, the ship’s speed is
(Torsvik et al., 2015):

8

:ZI(K 14)

Expressions (13) and (14), theoretically, lead to the same results.
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Their applicability is, however, greatly different because of the sensi-
tivity of the accuracy of the specification of the relevant frequency. As
the frequency of cusp speed corresponds to the vertical section of the
linear dispersion curve, even small errors in the estimates of cusp wave
timing may lead to large errors in f..;,. The estimates of f, are evidently
much more stable. Consistent with the described features, the approach
based on the signature of the transverse component generally leads to a
better match of the estimates of the speed of the vessels compared to the
AIS information (Ratsep et al., 2020a). This conjecture is not unexpected
as the location of the meeting point of the two branches is much more
complicated to identify compared to the frequency of transverse waves.
For this reason, only results obtained using Eq. (14) are considered in
this study.

The distance from the point of origin of the wake to the sensor was
estimated using the ship’s speed U and the time interval At during which
the frequency of the divergent component reached from the cusp wave
frequency feus to V2 times higher value \/Qfa,SIJ (Torsvik et al., 2015). To
find At, a linear fit was built for the divergent component. The distance L
to the measurement site from the point of origin of the vessel wake is
(Torsvik et al., 2015) estimated as:

L=+6UAt @5)
2.5. Detection of wakes

To compare our results with actual sailing parameters from passing
ships, we used data from the vessel self-reporting systems (Automatic
Identification System, AIS) collected from the area marked in Fig. 5
(“VesselFinder,” 2020). The AIS data were recorded on average with
5-min intervals for the majority of the vessels. The data included the
geographical location retrieved from a GPS device, timestamp, name,
International Maritime Organisation number, call sign, course and speed
(“VesselFinder,” 2020). In total, 249 different vessels were identified
with 101,275 AIS readings. The accuracy of the estimates of the vessel
speed depends therefore mostly on the accuracy of timestamps. These
are normally provided with an accuracy of a few seconds and thus the
AlS-based estimates of speed apparently have errors below 1%.

Due to the relatively intense traffic (wakes from several vessels often
arriving at the measurement site less than 30 min apart) we focused on
single strong (transverse and divergent component visible and extract-
able from spectrogram as shown in Fig. 6) wake events. This approach
means that we filtered out signals of wakes originating from departing
vessels, and multiple vessel cases. Therefore, the cases were to some
extent ‘hand-picked’.

The AIS data were sorted into single ship passing events. A ‘passing’
is defined here as a series of consecutive data points indicating the
sailing trajectory and time stamps of a ship that passes the measurement
site. For each position in the passing, a corresponding wake origin point
was calculated based on the vessel course at that point. The ship’s po-
sition that had the smallest perimeter of a triangle with vertices at the
measurement site, the AIS position, and estimated wake origin was
chosen as the reference of that particular passing. Those positions were
matched with wake readings. We focused on situations where there was
only a single vessel within 3.7 km (2 nmi?) of the measurement site and
travelling faster than 15 knots in a time window of +15 min from the
wake event, as the closest AIS location to the wake origin point on the
vessel track may have been before reaching it or after passing it. Wakes
from the vessels sailing below 15 knots were not detected mostly
because they were indistinguishable from the background wind waves.

Examples of weak wakes, overlapping wakes and single detectable
wakes are given in Fig. 7. Fig. 7a and d correspond to M/S Seawind
slowing down from its transit speed of 15 knots as it approached the port
of Tallinn (change from solid line to dashed line in Fig. 7a.). Even though

2 nmi is denoted as nautical mile: 1 nmi is 1.852 km.
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it was a single vessel passing the measurement site in the 30-min win-
dow (Fig. 7a.), the wake structure was not extractable from the spec-
trogram without additional filtering (Fig. 7d), due to the low signal to
noise ratio (SNR). Therefore this and similar cases were discarded.

The second case depicts a “rush hour” near the measurement site.
Two vessels M/V HSC Express from Helsinki (from the north) and MV
Victoria I from Mariehamn (from the north-west) were entering port
more or less at the same time (Fig. 7b: two solid lines passing the
measurement site). This results in two wake structures visible in the
spectrogram (Fig. 7e). As the determination of the branches of the
relevant wave systems, and therefore also sailing characteristics of a
particular vessel, from this pair are complicated without further anal-
ysis, cases like this were excluded from our analysis.

The last pair (Fig. 7c and f) shows an example of events selected for
this study. A single vessel (M/V Megastar at 25 knots) approached the
port of Tallinn (solid line in Fig. 7c). AIS data indicate that this time
window contains also two other vessels: a patrol boat operated by the
Estonian Police and a Border Guard Board entering the harbour and
passing the measurement site with speed less than 15 knots and a yacht
sailing up north outside the 2 nmi area. Despite this additional traffic,
the spectrogram (Fig. 7f) contained only a single discernible wake event
with divergent and transverse component visible for extraction.

These constraints left 70 passings for analysis. These vessels were
passenger craft (RO-RO ferries such as M/V Star and M/V Superstar, and
high-speed craft like M/S HSC Express and M/S Supercat) entering the
port of Tallinn.

2.6. The direction of the incoming wake and the travelling course of the
vessel

The direction of the incoming wake was estimated using the same
pressure data but utilized a somewhat different approach. Outliers were
removed in the same manner as described previously. Instead of down-
sampling and correcting the data, fluctuations were filtered out using a
9th order Butterworth filter to ease the estimation of the time delays.
Due to high noise levels and small time-shifts of the approach of the
wake at different sensors (a maximum of 1.6 s at S1 and S9 in Fig. 5) a
relatively large time window (15 min) was used to achieve reliable
values of the cross-correlation. This duration matches the typical length
of the wake signal (Figs. 6 and 7).

To reduce the effect of noise, delays were calculated between all
possible sensor pairs (in total 36 pairs using sensors S1 to S9 from the
instrument grid in Fig. 5). For each pair, two possible directions were
found using the time delay and the distance between the sensors, based
on the positions of each pair and wake wave speed of 4.3 m/s. This phase
speed corresponds to transverse waves with a typical period of 7 s in 3 m
deep water. This resulted maximum of 72 possible combinations for 36
sensor pairs (as an example in Fig. 8). As 36 directions from the 72 were
misleading (X2 to X15 in Fig. 8a) and around half (16-18) of the sensor
pairs were positioned perpendicular to the wavefront (for example
sensor pairs S1-S4, S4-S7, S1-S7 if the source was X1 in Fig. 8a), which
produced high alterations of the found direction, then only 18 to 20
directions (from the sensor pairs that were more or less parallel to the
wavefront, for example, S1-S2, S2-S3, S1-S3 in Fig. 8a) out of 72 could
be considered when finding the actual wave direction. For these reasons,
we applied a histogram analysis (Carlotto, 1987) to determine the
“population” of the angles that could be used to find the wake direction.
An example is shown in Fig. 8 as “selected bin”. The actual direction of
the incoming wake was calculated as an average of that population, with
a standard deviation multiplied by 2 indicating the level of uncertainty
at 95% (indicated with black solid and dashed lines in Fig. 8).

As the location of the devices was chosen in a coastal segment that
had an orientation more or less parallel to most of the approaching crests
of ship waves, shallow-water refraction of waves is not taken into ac-
count. The relevant correction for situations when waves approach the
shoreline under larger angles is straightforward (but not done here)
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because the intensity of refraction only depends on the wave period.

Finally, the courses of the vessels were calculated based on the
assumption that vessels were sailing in the deep-water regime with a
travelling angle of the cusp waves of 35°16' to the calculated direction of
propagation of the incoming wake waves. This resulted in two different
courses, one based on the starboard side branch of the vessel wake and
another on the port side branch (Fig. 2).

As the presented approach for vessel localization based on its wake is
confined to a single point on the sailing path, one-point wake readings
do not provide information to decide which of the two proposed courses
is the right one. This situation is characteristic for various methods of
detection of wave propagation direction that define the line along which
waves propagate but leave +180° degree ambiguity of the direction
(Engen and Johnsen, 1995). A possible way forward is to use two clus-
ters of sensors similar to the idea of using two subsequent synthetic
aperture radar images to determine the wave propagation direction
(Ouchi et al., 1999).

The flow-chart of the entire analysis process for vessel localization is
presented in Fig. 9. The comparison positions (Fig. 9) used the wake
source locations from the AIS data (as discussed in Section 2.5) and
calculated positions using the distance from the spectrogram analysis
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Fig. 7. An example of the selection
process of detectable ship wakes. The
top row (a-c) represents the vessel
traffic up to 5 nmi from the measure-
ment site within +15 min from the wake
event, which time-frequency represen-
tations are shown in the bottom row
(d-f). White circles in the top row (a-c)
indicate the 2 nmi radius around the
measurement device (Fig. 5). Squares
connected by solid lines indicate parts
of sailing trajectories where the travel-
ling speed was >15 knots, dots con-
nected by dashed lines correspond to
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Fig. 8. (a) Distribution of 72 directions
from 36 sensor pairs (all pairs from
sensors S1 to S9). One direction (depic-
ted as a solid straight line) from every
sensor pair leads to expected X1 (in total
60° 36), the second direction contributes to
X2 to X15, which are regarded as
misleading (b) An example of the dis-
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o0 Megastar approach (Fig. 7c and f). The
selected bin represents the population of
directions that were used to calculate
the wake direction. The expected di-
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cusp wave point (35°16').
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(Section 2.4) and the direction of the incoming wake (Section 2.6). The
comparison of the vessel sailing speed (Fig. 9) involves the speed from
the AIS position from the wake source point was derived and the speed
value from the spectrogram analysis (Section 2.4). Comparison of the
vessel courses (Fig. 9) incorporates differences between the course of the
AIS position from the wake source point was found and the course
derived from the phase shift analysis (Section 2.6).

3. Results
3.1. Vessel positions

We start from the comparison of calculated wake source points with
vessel positions derived from the AIS data. An example of the position
calculations is given in Fig. 10, where M/S Megastar is approaching the
port of Tallinn along the track marked by the AIS data (30 min of AIS
track is also shown in Fig. 7c, the spectrogram is presented in Figs. 6b
and 7f, initial data in Fig. 6a and direction estimation in Fig. 8b). The
dashed line in Fig. 10 indicates the track and the dots show the instan-
taneous vessel positions. The square indicates the wake source point on
the vessel’s path with a circle around it indicating a possible area of
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uncertainty based on speed and course alterations. In this case, they are
less than 2.7 km apart as calculated from the location closer to the port.
The distance between the vessel position at the time of wake generation
and the closest AIS position varied from 5 m to 3 km, depending on the
availability of the AIS data and the sailing speed of the ship. The typical
interval between the AIS positions was around 5 min.

The calculated vessel position based only on the measurement data
(a rhombus in Fig. 10) is estimated to be at 3.9 km from the measure-
ment device. The difference between the estimated wake source point
and the associated AIS position is about 400 m. In 49 cases (out of 70 in
this study as indicated in Fig. 11), the estimated ship position was less
than 1.4 km from the calculated wake origin point. In most of these cases
(48) the points were closer than 1 km and on 35 occasions, less than 600
m. Location comparison between calculated results and the wake source
points retrieved from AIS data for all the applicable cases (49) is shown
in Fig. 12. The bias between longitudinal coordinates was 59 m with a
standard deviation (SD) of 237 m and the SD between the latitudinal
coordinates was 490 m (with a bias of 4 m). The average distance be-
tween calculated locations and the measurement site was on average
3.2 km with a standard deviation of 0.5 km.

From the viewpoint of vessel localization, the presented technique

24°50'E

Fig. 10. An example of the results of an evaluation of
the position and sailing line of M/S Megastar
approaching the port of Tallinn (marked as a "Vessel
movement track from AIS data’, dots indicate actual
vessel AIS locations) on July 13, 2017. The wake
source point was calculated using the AIS positions.
Circle around the wake source point indicates
possible course (£5°) and speed (+2 knots) alter-
ations. The vessel location at this instant found from
the wake readings is indicated by the ’Calculated
position’. The area of uncertainty (error estimations
for the distance and direction) is shown as the dotted
polygon within 95% error bars.

bf uncertainty for
culated position

24°55'E

failed to estimate the position if the difference between the estimated
wake source point and the associated AIS position was larger than 1.4
km. This criterion is somewhat arbitrary and is based on the perception
that errors larger than this value may locate the ship either to dry land
(Mazaheri et al., 2014). The proportion of failures (21 out 70) was less
than 1/3 of the entire set of events. From these, in 11 cases the direction
was not properly resolved from the phase-shift technique. On 6 occa-
sions the interpretation of wake components in spectrograms was
problematic and on 4 occasions problems occurred with both aspects of
the presented techniques (actual numbers of successful attempts are
shown in Fig. 11).

The accuracy of the proposed method was evaluated in terms of an
‘area of uncertainty’ (a dotted line around the rhombus in Fig. 10) using
the spread of data points used by both methods (as discussed in 2.4 and
2.6). The length of this area from the line “1” to “3” in Fig. 10) represents
the uncertainty of the distance estimation. Its width reflects the uncer-
tainty of estimates of the wake components extracted from the spec-
trogram (Fig. 6¢). In particular, the width (from the line “2” to “4” in
Fig. 10) comes from the sensor pair selection process (determination of
the principal direction) for finding the propagation direction of the
incoming wake (as illustrated in Fig. 8). The area depicted in Fig. 10 is
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Fig. 11. The distribution of the results. The speed and distance (which depends
on speed as described by Eq. (15)) calculation rely on methods described in
section 2.4, the estimations of directions are based on the analysis process from
section 2.6. The number in brackets indicates the successful attempts out of the
70 study cases.
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Fig. 12. Differences of wake origin points found from AIS data (the black
rectangle in the centre for all 49 cases) and calculated wake points from pres-
sure data plotted in cardinal directions (N: North, E: East, S: South, W: West).
The measurement site is situated to the SW.

2.8 km long (uncertainty of distance estimation: from the line “1” to “3”
in Figs. 10) and 2 km wide (uncertainty of the computation of the di-
rection: from the line “2” to “4” in Fig. 10). This size of the uncertainty
area is typical for most of the 49 successful cases. The average area of
uncertainty was 1.7 km (distance) long with SD of 0.85 km and 1.9 km
(direction) wide with SD of 0.46 km. The wake direction fluctuations
were usually within (width of the area) +16°. The distance (length of the
area) was estimated as varying by an average of +£0.86 km from the
spread of the data points that contributed to the analysis process.

3.2. Speed and course of the vessels

Vessel localization requires estimates of the speed and course of the
vessel. The results of estimates are depicted in Fig. 13 and Fig. 14. The
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7 Calculated speed
|—Reference (AIS) speed
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Fig. 13. A comparison between the AIS speed and the calculated speed for the
64 successful (out of 70) cases in which the transverse component was extracted
adequately. Two extreme cases (difference more than 5 knots) are marked with
letters A and B. Error bars represent the 95% confidence level which is illus-
trated in Fig. 6.

speed estimation was performed successfully in 64 cases (Fig. 11) for
which the spectrogram technique was applicable using Eq. (14). Six
cases were removed due to a high level of noise, which resulted in dif-
ficulties when extracting the transverse component automatically. The
results match vessel speed well at the closest position from the AIS data
(R? ~ 0.81) whereas standard deviation between the reference (AIS)
values and calculated speed was 1.60 knots and bias 0.833 knots.

Consistent with the results in Ratsep et al. (2020a), the speed cal-
culations based on an approximation of the transverse component
generally produced adequate results. It only occasionally under-
estimated or overestimated the AIS-based speed. An example of under-
estimation is point ‘A’ in Fig. 13. The M/V Viking Xpress approached at
20.6 knots, but our method provided an estimate of the speed of 14.8
knots. Other methods analyzed in Torsvik et al. (2015) gave 22.5 knots
(using the highest energy value as the cusp wave point) and 21.5 knots
(taking the beginning of the divergent wave component for the cusp
wave point). The most severe overestimation (point ‘B’ in Fig. 13)
occurred when M/S Supercat was approaching the port at 28.9 knots.
Our approach resulted in an estimate of 34.4 knots whereas the two
other methods gave 35.4 knots and 32.2 knots, respectively.

The possible vessel courses were computed by applying the travelling
angle of the cusp wave to the opposite direction of the incoming wake.
As discussed above, in the current setup, we did not have methods
available to estimate which of the two branches (port or the starboard
side as depicted in Fig. 2) of the wake reached the measurement site. For
this reason, we calculated possible courses for both situations.

The orientation of the vessel sailing line was calculated using the 55
cases (Fig. 11) when the wake direction was successfully estimated
based on the known angle between the propagation direction of the
wake and the sailing line (Fig. 2). The vessel courses from the AIS were
around 159° + 10°. One set of these orientations (‘Set 1’ in Fig. 14)
matched well (usually within +10°, standard deviation from the dif-
ferences was 3.28° and bias 0.846°) the vessel courses evaluated from
the AIS data. This corresponds to the actual situation as the vessels
approaching port were north-north-east from the measurement site
when the wake was generated meaning that the measurement site
received the starboard branches of their wakes.

The alternative orientations obtained from the wake direction (‘Set
2’ in Fig. 14) which correspond to a port side branch of the wake are
about 70° (two times of the cusp wave travelling angle of 35°16', with a
standard deviation of 3.28° and bias of 71.4°) from the actual vessel
course. In our case, this set could be ruled out due to two arguments.
Firstly, the general orientation of the traffic separation scheme near the
measurement site is 159°/339°, whereas set 2 proposes courses around
230°. Secondly, the Pikakari peninsula lies to the west of Tallinn Bay
which means that if the vessel had approached at a course determined by
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Fig. 14. Course difference between the AIS references and direction obtained using 1) starboard branch of the wake 2) port branch of the wake (black dashed line
indicates the 0 value). Error bars represent the 95% confidence level shown in Fig. 8.

set 2, then it would have passed a peninsula either dangerously close
(without considering course changes) or grounded near it. More
generally, the magnitude of the offset (70°) between the two possible
orientations of the sailing line apparently makes it often possible to
select the true course in most nearshore applications simply because the
other orientation is not feasible.

4. Discussion

Since the first application of the spectrogram technique for the
interpretation of ship wake measurements (Sheremet et al., 2012), there
have been several developments to determine sailing characteristics
(speed and distance from the measurement location) along with the
sailing regime (Torsvik et al., 2015; Pethiyagoda et al., 2017, 2018). All
these studies rely on the fundamental properties of the ship wave system
that are invariant to the distance from the sailing line and the speed of
the ship unless the depth Froude number exceeds the value of about
0.75. The set of such properties is particularly simple in the spectrogram
representation where the two branches of the wake signal rapidly
approach well-defined asymptotes. The adequacy of the retrieved
properties therefore basically depends on the capacity of the wake
recording systems to extract at least a small set of wave components that
allow the reconstruction of these asymptotes.

In this work, we evaluated if a vessel could be positioned and its
sailing parameters determined, based on one-point information that
does not include any information on the vessel movement along its
course. We combined the spectrogram technique to estimate the speed
and distance of the passing vessels (Torsvik et al., 2015), extended to the
use of pressure data in the nearshore (Ratsep et al., 2020b), with a
phase-shift (cross-correlation) technique to determine the direction of
the incoming wake to estimate the vessel’s position and course. We
demonstrated that this approach produced results comparable with the
actual data derived from the vessel self-reporting systems.

The techniques used here were highly sensitive to background noise.
Even though some parts of the techniques, including the construction of
spectrograms, is robust, it was difficult to obtain suitable wake struc-
tures from spectrograms when the vessel was travelling at less than 15
knots (Ratsep et al., 2020a) and thus produced very low waves. It is also
natural to expect that the technique will fail when wind wave back-
ground with a substantial proportion of energy in the frequency range of
ship wakes masks the wave signal. Therefore, additional means such as
convolution techniques should be implemented to extend the developed
technique to slower and/or smaller vessels that produce relatively small
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waves and for situations that involve strong wind seas. It is likely that
the spectrogram technique will still work well in strong swells or
short-period wind seas where the ship waves have periods different from
background periods. However, as the height of cusp waves decreases as
r~1/3 with distance from the fairway, even the signal of very large ship
waves will be untraceable at very large distances.

Another intrinsic limitation of the presented technique is that sub-
stantially relies on the properties of transverse waves. As the wake of
very fast vessels in shallow waters (supercritical wake) contain only
diverging waves, the entire approach is not applicable for the evaluation
of vessel distance, speed or course for vessels travelling at supercritical
speeds. As such wakes contain a large proportion of nonlinear waves,
their wake structure is much more complicated in the spectrogram
representation (Pethiyagoda et al., 2017).

The developed technique is only directly applicable for single wakes
(only one wake structure present in the 30-min window). However, in
high-traffic regions wakes from several ships sailing with different speed
and course, may arrive at the measurement devices at the same time, as
seen on multiple occasions in the Tallinn Bay experiments. This makes
the extraction and use of the wake structures in the spectrograms
questionable, compounded by the effects of interference when applying
the phase-shift analysis to determine wake direction. However, a
feasible way forward is to use convolution techniques implemented in
routines for acoustic localization of multiple ships (Byun et al., 2019).

Most of the relevant experiments have been conducted in relatively
shallow water areas to detect highly powered passenger vessels and
analyze the effects of their wakes on the coastal environment (Torsvik
et al., 2015). Our approach can be even more useful for security and
surveillance operations to raise situational awareness in coastal regions
where using usual means of vessel detection and localization is too
resource-demanding (Aiello et al., 2019) or is challenged by intention-
ally removed localization instrumentation (Dumitriu et al., 2018). We
only note that the presented method needs to be modified for shallow
regions to incorporate information about wave refraction. This change is
technically complicated as it must involve ray tracing for each ship wave
component but conceptually it is straightforward as refraction intensity
only depends on the wave period and water depth.

However, we have also identified a range of problems. The maximum
possible detection/localization distance remains unknown. We were
able to position a large proportion of passing vessels by their wakes at an
average distance of 3.2 km because of two favourable features. Firstly,
the local traffic separation scheme guarantees that vessels sail along a
prescribed waterway. Secondly, the experiment recorded only passenger
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ships entering the port. To test further distances, we need to test this
method in an area which is much wider than the approach to the port of
Tallinn.

In addition to these problems, the developed technique can be
complemented by introducing methods for determining the speed and
course alterations (Pethiyagoda et al., 2017, 2018, 2018). Another
natural extension would be to determine whether ship recognition, the
third step of the picture building process (NATO Standardization
Agency, 2015), based on their wakes is possible at large scales. However,
the main message of this study is that a vessel monitoring system solely
based on the wake information in the wave recordings is practically
possible. This message is important due to several developments, such as
the growing number of unmanned Marine Autonomous Surface Ships
operating in coastal regions or (e.g., refugee) vessels which intentionally
remove on-board localization instrumentation (Dumitriu et al., 2018).

We are optimistic as these first results show that vessel localization
based on the wake measurements is technically feasible. An exciting
improvement to the technique used here is that it can be combined with
automatic wake detection (Rétsep et al., 2020b). These are the first two
steps of the picture building process (NATO Standardization Agency,
2015) needed to improve the situational awareness of naval operations.
What makes this method preferable for traffic monitoring is that the
sensing array can be easily concealed. In our case it was set near the
beach at a depth around 3 m, therefore no special equipment (ship or
boat) were required.

5. Conclusion

The objective of this work was to determine whether vessel locali-
zation (position, speed and course of a ship) may be achieved by using
wake measurements from a closely-spaced array of underwater pressure
sensors. A grid of 9 sensors was deployed with a horizontal offset of 2.5
m at the depth of 3 m. Single ship wakes were manually selected from
the continuous recording using 30-min windows. The properties of the
ship movements were matched to AIS vessel data. A spectrogram tech-
nique was implemented for calculating the speed of the passing ship and
the distance travelled by the wake.

The core new developments are the systematic use of the concept of
asymptotes of the linear dispersion relation to determine some param-
eters of the vessel motion and the demonstration that phase shift (cross-
correlation) analysis can retrieve the possible courses on which a vessel
could be sailing from the direction of the incoming wake. We showed
that wake data from pressure sensors can be used for surface vessel
localization, with a positioning error less than 600 m in 50% of the cases.
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	Coastal zones have always been attractive because of their vast variety of resources, providing food and energy, enabling marine trade and transport, and as areas of recreational and cultural amenity (Neumann et al., 2015). For these reasons roughly one quarter of world’s population lives in the area less than 100 km from coast (Reimann et al., 2023). This high concentration of people and activities creates many challenges when managing the common resource, known as the sea (Till, 2013). The situation is particularly complex in the contact zone between land and water where a delicate balance exists between different drivers and their impacts, and any change in the pressures, for example, general energy pollution (Kelpšaite et al., 2009) or waves with unusual properties or propagation direction, may destroy this balance (Scarpa et al., 2019; Soomere, 2005).
	One challenge is maintaining control and command of an adjacent state’s territorial waters (Till, 2013). Other challenges include recognizing and stopping unlawful fishing (Kurekin et al., 2019), monitoring and preventing pollution (Landrigan et al., 2020), fighting piracy (Gong et al., 2023), regulating ship traffic to avoid navigational accidents (Chen et al., 2018), protecting underwater infrastucture (Gülcan and Erginer, 2023), and ensuring the security of various offshore and coastal facilities (Anupriya and Sasilatha, 2018; Dugad et al., 2017).
	As world population increases so does the volume of both national and international marine trade. This process inherently leads to more ship traffic operating in the littorial zones and generally to a higher probability of accidents (Altan and Otay, 2018). The rising pressure on the coastal (Delpeche-Ellmann and Soomere, 2013) and marine (Claremar et al., 2017; Zanatta et al., 2020) environment calls for more advanced offshore and coastal sea management (van Westrenen and Baldauf, 2020).
	With the rapid development of marine technology and increased interest in green energy, some new concerns have arisen. One example is the introduction of unmanned Marine Autonomous Surface Ships (MASSs) (Kim et al., 2022). These vessels operate in the same navigational environment (Kim et al., 2022) as ordinary manned vessels. Their introduction generates a need to investigate the ability to detect and classify medium size and small objects (e.g., leisure boats), to mitigate the risk of collisions. Such vessels often sail outside the traffic lanes and do not usually use self-reporting automatic ship indentification systems.
	It is also necessary to develop measures and protocols that ensure navigation safety in the case of technical malfunctions, unexpected behaviours due to storm conditions (Rødseth and Burmeister, 2015), and to ensure recovery capability (Thieme et al., 2018) in the case of failures. As there is usually no permanent crew on such ships, either losing contact with a ship or the malfunctioning of one or several sensors used for plotting and maintaining the course, can severely limit the options for maintaining control in critical situations.
	Recent geopolitical developments suggest that in addition to challenges when operating in confined conditions with poor visibility and in areas with a high concentration of vessel traffic like inland rivers (Zhang et al., 2019), other situations need to be taken into account, e.g., hostile GPS signal disturbance. To cope with these risks, additional external devices located at critical locations (such as near harbours or offshore structures, or where lights at night interfere visually and tall buildings may damp radar sensing) are needed in order to detect, set and sustain the sailing characteristics. A separate issue is that some operators do not want their vessels to be detected and identified, for military-driven reasons, because of illegal fishing or related to other malicious or illegal marine traffic (Reggiannini et al., 2024, 2019).
	Another significant growing concern to navigational safety are offshore windfarms (Chang et al., 2014). These reduce the space available for shipping (Tsai and Lin, 2021) and thus increase the density of ships in other sea areas, which in turn increases the possibility of navigational accidents, both ship-to-facility (Chang et al., 2014) and ship-to-ship collisions (Tsai and Lin, 2021). The risk is greater due to the underperformance of radar systems when operating in their near vicinity (De la Vega et al., 2013), which emphasizes the need for additional vessel detection methods to mitigate the risks and assist nearby vessel navigation.
	There exists a vast variety of methods to detect and monitor movements of the vessels. Some of the best known long-range detecting and monitoring systems are based on various remote sensing technologies, from radar (Siegert et al., 2019) and radio surveillance (Ilčev, 2021) to satellite-based information, including synthetic aperture (SAR) technology (Gierull, 2019; Panico et al., 2017; Reggiannini et al., 2024; Zilman et al., 2004). More local options use airborne (Dahana and Gurning, 2020) and ground-based (both wide-spectrum visual and hyperspectral) optical techniques (Park et al., 2018) and various acoustic (sonar) technologies (Huang et al., 2017; Zhu et al., 2018). These methods can be complemented by visual observations from the coast or other vessels.
	None of the methods is perfect for providing ship detection and surveillance in all situations. The additional complication is that these methods are well known, and measures exist to either intentionally (or even accidentally) reduce the rate of detection, or to completely avoid it. For example, self-reporting methods like Automatic Identification System (AIS) and Long-Range Identification Tracker (LRIT) (Dahana and Gurning, 2020) usually provide information about the vessel movements and intentions (name and destination), but these methods are reliant on whether devices are switched on (AIS) and are set to report (LRIT). As they rely on the operator’s action, these devices can be used to provide false information about destination and purpose.
	One of the most well-known ship detection methods, optical observations (visual and infrared) can be interfered with by using the appropriate paint coatings to conceal a vessel or to disguise its intentions (Aurdal et al., 2019; Casson, 1995). The common countermeasure to reduce the infrared signature is to put the exhaust outlets of the ship’s engines in an area of the hull that is near the waterline.
	The accuracy of a radar’s readings about the ship depends on the vessel size, shape, and the weather conditions. Similarly to the above, as the radar technology developed, so did the countermeasures. The most common means to avoid accurate detection, known as stealth technology, is to use specific paint coatings, structure and hull materials that absorb and/or scatter the emissions. Another option is to reduce the size of the part of the vessel that is above the water, principally the superstructure. This tactic is used in smuggling narcotics from South America by building low-profile vessels (Ramirez and Bunker, 2015). These boats have small freeboard, which makes them difficult to detect using any of the methods described above.
	Acoustic detection has so far been one of the most reliable methods for vessel detection. This technology also enables the monitoring of submersed vessels. However, this method relies on the fact that ship has something that makes noise. The related challenges are gradually increasing with the arrival of green technologies like hydrogen cells or fully electric vessels that are conquering the market, pushing out internal combustion engines that have a well-known and recognized acoustic footprint. Related are methods that use wind and solar power (Nyanya et al., 2021) to help to propel the ship (e.g., during the transit in open ocean) and therefore reduce the time when the main engines and/or a propeller are used.
	A further challenge is the limited amount of information the detection (sensor) system provides. Some of these techniques (e.g., several acoustic recognition systems) are only able to detect the presence of a ship in a certain region. Other technologies provide, similar to the AIS system, the location (or a sequence of locations) of vessels. However, reliable identification of the sailing parameters (speed and course of the vessel) from the provided information is not always possible (Fujino et al., 2019).
	In order to address the gaps in both reliability and accuracy, additional means for the surveillance of sea areas should be researched. These efforts are in line with activities that move towards merging information from several sensor systems and techniques to detect and monitor vessel traffic with a high level of confidence. Navies and maritime security organisations refer to this process as creating a Recognized Maritme Picture (RMP) (Simard et al., 2000). Usually, a RMP provides information about each vessel in the region by determining its location and heading, also providing the possibility of follow-up actions based on the ship type and purpose (Simard et al., 2000).
	When considering the monitoring of vessel traffic, one approach would be to focus on the emissions created by the vessels themselves. While exhaust gas emissions as well as the radiation of noise and heat can be effectively eliminated by advanced technologies, there is an unavoidable emission for all items that move on the water surface. A vessel moving on the surface of body of the water leaves behind a trace known as wake (Newman, 1977; Wehausen, 1973). This trace consists of several different linear (Kuznetsov et al., 2002) and often nonlinear components (Fang et al., 2011; Soomere, 2007; Sorensen, 1973). The most well-known, classic representation is the triangular wave pattern known as the Kelvin wake (Figure 1) (Newman, 1977) which obtains its textbook shape about three-vessel lengths behind the ship.
	A Kelvin wake and its variations for subcritical speeds are composed of two sets of waves: transverse and divergent waves. They both exist if the vessel speed does not reach or exceed the so-called critical speed 𝑈=𝑔ℎ, where 𝑔 is acceleration due to gravity and ℎ is water depth (Sorensen, 1973). These wave systems are traditionally treated as linear waves (Liang et al., 2024) even though for larger speeds they exhibit nonlinear properties (Soomere, 2007; Sorensen, 1973).
	Transverse waves propagate in the same direction as the vessel heading. Therefore, their crests are perpendicular to the sailing line. Divergent waves move away from the sailing line and their crests form a smaller angle with the vessel’s path (Newman, 1977).
	A set of so-called cusp waves is formed by interactions of transverse and divergent waves, along the borders of the ship wake (Kuznetsov et al., 2002). Cusp waves are usually the most observable part of the wake because their amplitude decays slowly (as 𝑟−13) with the distance r from the vessel (Kuznetsov et al., 2002).
	The wave pattern, in general, depends on the vessel properties, water depth and the sailing speed. On many occasions the vessel’s stern and bow produce their own wake systems with the height depending on the vessel geometry and sailing regime. The basic geometric properties of the Kelvin wake produced by a single moving point are still universal and can be described in terms of a depth Froude number 𝐹ℎ (Newman, 1977):
	In deep water or when sailing at low speed (𝐹ℎ<1), the divergent and transverse waves fill a triangular area (Kelvin wedge) with half apex angle of arcsin(1/3)≈19.47° (Figure 1) (Newman, 1977). When the speed increases or water depth decreases so that 𝐹ℎ has values 0.5–0.7, the Kelvin wedge starts to widen, energy starts to concentrate to a few divergent components, and transverse waves become weaker. At 𝐹ℎ→1, the wave system becomes highly nonlinear (Soomere, 2007; Sorensen, 1973) and cannot be described in terms of a Kelvin wedge. In the supercritical speed range 𝐹ℎ>1 the apex angle starts to decrease, and most of the wave energy is concentrated in a few long-crested divergent waves which dominate the wave pattern (Pethiyagoda et al., 2014; Soomere, 2007). The wave system may contain several types of solitons at 𝐹ℎ→1 and 𝐹ℎ>1 (Soomere, 2007). On many occasions it may resemble a Mach-type wave system (Rabaud and Moisy, 2013).
	Vessel wakes have been used extensively for detecting and characterizing vessels and their movement using various kinds of two-dimensional (2D) data from, e.g., synthetic aperture radars (SAR) (Zilman et al., 2004) and satellite photos (Rabaud and Moisy, 2013). The benefit of this method is that it is applicable to vessels of different size as their Kelvin wake always has the same geometry, and its “arms” (cusp lines) have the same length (as the wave height decays according to the same law) and varies only in amplitude (Zilman et al., 2004). A natural limitation of this method is the signal to noise ratio that can be low when extracting the properties of Kelvin wakes due to the high sea clutter, which requires additional algorithms for filtering (Kuo and Chen, 2003).
	The ideal Kelvin wedge is stationary in the coordinate system attached to the moving ship. This perspective is convenient for several theoretical considerations, but it is not straightforward to use for practical applications. Most observing systems of ship wakes are anchored at some location or mounted on the shore. On such occasions the ship wake is recorded as a complex system of water surface undulations or pressure variations. It is notably unsteady and short crested, despite appearing stationary to an observer on the generating vessel (Liang et al., 2024).
	Therefore, another approach is to use wakes for ship detection and specification of sailing properties from the water elevation or pressure data, from the perspective of an Earth-fixed observer. While transverse waves are represented as signals with an almost constant frequency, the signal of divergent waves is chirp-like and has a gradually increasing frequency. The properties of these signals carry information about the speed and location of the vessel. Wu (1991) was the first to show that the sailing speed can be estimated from the minimum frequency of divergent waves 𝑓𝑚𝑖𝑛 as
	This frequency was evaluated from the 2D wake spectrum. This technique applied by Wu (1991) to estimate the ship speed and direction had problems with the evaluation of the exact location of the locus of the wake signature. It was further elaborated by Arnold-Bos et al. (2007) who used the generalized Radon Transform and Stochastic Matched Filtering to detect the locus of the wake signature in the 2D spectrum wave recordings. Finally, Torsvik et al. (2015b) derived expressions for the ship’s distance to the measurement location based on this information.
	Another more promising approach using a windowed Fourier transform (so-called spectrogram) to study the nonlinear components of wakes was first employed by Wyatt and Hall (1988). The method was expanded by Sheremet et al. (2012) for a broader selection of vessels. A more elaborate description of different components was performed by Torsvik et al. (2015b). A systematic analysis of the nonlinear components based on dispersion curves of ship wake components was presented by Pethiyagoda et al. (2017), with a description of the effects of different sailing regimes (turning, accelerating) on the properties of the wake.
	The major benefit of an application of a windowed Fourier transform (or Short Time Fourier Transform, STFT) to water surface elevation data is that a vessel wake has a distinct L-like shape (Figure 2). This shape appears for data gathered directly from (above) the water level as well as for data converted from seabed pressure readings (Paper II), The upper, inclined part (also called a chirp signal (Sheremet et al., 2012)) of this signature corresponds to divergent waves. The frequency of these waves increases over time at each Earth-fixed location. This feature is commonly observed at a fixed location in the nearshore, at the seashore or on the bottom after the passage of a steadily sailing ship (Sheremet et al., 2012). The lower, mostly horizontal part of this signature represents transverse waves. They have a constant frequency for a fixed observer who records the wake of a steadily sailing ship. The cusp waves are represented by the common point of these two parts of the signature.
	Both windowed Fourier transform, and wavelet transform can be used to derive a time-frequency representation of the wake data (Sheremet et al., 2012). Testing has shown that wavelet transform usually has a higher signal-to-noise ratio than Fourier transform, however, Fourier transform provides the results on a uniform frequency scale compared to the logarithmic scale obtained from wavelet analysis (Torsvik et al., 2015b). This in turn simplifies the extraction and analysis of useful information (which is, in general, determination of the frequencies of the ship wake structure) to such an extent that the loss in signal-to-noise ratio was acceptable for this study, and wavelet analysis was not pursued here.
	Areas near the ports tend to have more vessel traffic than other shipping zones (Li et al., 2023) and therefore there is a greater emphasis on managing the traffic. One such location is Tallinn Bay. It is a semi-enclosed bay approximately 10 × 20 km in size situated on the north coast of Estonia (Figure 3). The two entrances to the bay (from the north and west) are regulated by a local vessel traffic separation scheme (Figure 3).
	As this study tried to evaluate the prospect of using wake recordings as the basis of a vessel detection system, for simplicity, only steady wake signatures, which would not be affected by the speed and course alternations, were used. In other words, course and speed alternations (Pethiyagoda et al., 2021) which are a crucial part of every vessel’s sailing trajectory in coastal zones and should also be counted by the vessel detection system, are not studied. The focus was on the vessels approaching the Port of Tallinn from the north-north-west (NNW). Wakes from ships departing the port had a wake signature typical of an accelerating vessel and vessels heading to or coming from the west had elements indicating the turn in their wake signatures (Pethiyagoda et al., 2021).
	An optimal location for retrieving wakes from incoming vessels, that met the criteria, is near the eastern shore of the Paljassaare Peninsula where the Pikakari Beach has been formed over the last century (Figure 3). Katariina Jetty to the south-east and the tip of this peninsula to the north-west shelter the measurement location from waves generated by predominant winds from west and south. Also, due to these natural obstacles, the wakes from the departing vessels (sailing at course 339° clockwise from north) are negligible at the sensor location.
	The sailing direction of vessels that approach the Port of Tallinn from NNW was approximately 159° (clockwise from north). The deviation of courses of single ships from this, estimated from ship self-reporting systems, was typically less than ±10°. The water depth in the part of the traffic separation scheme where the wakes of the approaching vessels could have originated (Figure 3) ranges from 40 to 70 m. Passenger vessels entering to the port were travelling at 15 to 30 knots, and therefore they were sailing at subcritical speeds. Even though the depth Froude number for such speeds may reach values about 0.7, on average it was below 0.5. Thus, the deviation of the geometry of the Kelvin wedge from the deep-water geometry was insignificant
	This study uses two datasets of wave measurements obtained from this location. As the author was not involved in either of the field experiments the following is based on datasets collected by others, references and other indirect sources.
	The first dataset was gathered in 2009 by the Wave Engineering Laboratory. This dataset was used in a number of studies of natural and ship-generated waves (Didenkulova and Rodin, 2013; Kurennoy et al., 2011; Soomere et al., 2011). Measurements were taken with a “LOG_alevel” echosounder mounted on a tripod in 2.6–2.7 m deep water. Data were collected at a frequency of 5 Hz and divided into 24-h blocks starting at 04:00 (prior to the first ferry wake of the day) local time. Field experiments were conducted on 24.–25.06.2009 and 27.–30.06.2009. The properties of the study site, measurement location, devices deployed, procedures and preprocessing details are described in these studies. 
	The second dataset was gathered by the Centre for Biorobotics at the same location on 10.–14.07.2017 and 16.–21.07.2017. They deployed nine devices called hydromasts (Ristolainen et al., 2019) in a regularly spaced rectangular array on a 5 × 5 m aluminum frame at a depth of 3 m. The frame was anchored using 8 mm metal bars and additional weights at the corners of the frame. The frame was oriented towards NNE (22.5°) to face the traffic separation scheme. Measurements (pressure) were taken at a height of 0.2 m from the seabed with a frequency of 100 Hz.
	The main goal of this thesis is to evaluate the prospect of using the spectrogram technique as a vessel traffic monitoring system. As these techniques are applicable for any kind of wave recordings, including time series of water surface elevation data measured from above the water surface and time series of wave-induced pressure or velocity fluctuations measured in the water column, they provide a vast variety of opportunities for choosing equipment and deploying location. Several sets of wave elevation data and pressure recordings from the Tallinn Bay are acquired. The results are compared with “ground truth” – in this case, derived from the AIS data covering the same period and area. 
	The evaluation is viewed in the context of the previously mentioned ‘Recognized Maritme Picture’ which usually consists of five steps: a) detection, b) localization, c) recognition, d) identification and e) dissemination, from which the first three (detection, localization and recognition) are sensor based (NATO Standardization Agency, 2015). As the possibility of achieving recognition (determining the characteristics of a contact) from wake measurements is still unclear, and it is based on the success of previous steps, the focus of this work was to evaluate the method for detection and for localization of the vessels (NATO Standardization Agency, 2015).
	The evaluation process for vessel detection, that is whether a vessel is in the survey area or not, requires collecting a time series of water surface elevation from either above the water surface or from within the water column or on the seabed), and determining its quality and the level of noise. Secondly, the process is used to investigate means by which wakes can be detected automatically. This process should answer questions relating to the circumstances under which vessels can be identified from the wake spectrogram (speed, size and distance) These questions are not specifically addressed here as all the tests were conducted at the same location and are based on the same types of vessels sailing at same speed.
	Vessel localization involves finding the exact location of the vessel and its sailing characteristics (speed and course). Here the main questions are whether the speed based on the wake measurements (Torsvik et al., 2015b; Wu and Meadows, 1991) relate to the actual ship’s movement. Also, is there a possibility to determine the direction of the incoming wake, which, when combined with the distance travelled by the wake calculated using the previously determined speed, could be used to estimate the vessel location? Finally, does the direction of wake propagation and its propagation angle correspond to the actual course of a ship?
	The thesis is organized according to these questions. Chapter 1 focuses on investigating sensor-specific methods for wake detection and extraction. It follows Papers I and II. Paper I reviews the author’s master thesis which was completed in early 2018 and is presented here as a reference due to low resolution of reference AIS data. It expands the model derived by Torsvik et al. (2015b) by adding automated vessel detection abilities. The focus of this paper is on the dataset measured by Laboratory of Wave Engineering in 2009 (Kurennoy et al., 2011). Chapter 2 investigates different methods of evaluation of the speed of the vessel and the distance of the location from where the wake was generated. It is based on the findings from Paper I but it is illustrated using the data from Paper III. Also, it tests the ability to determine the direction of the wake at its original location and thus the course of the vessel.
	As papers 2 and 3 focus on the same dataset measured by the Centre for Biorobotics then they should be considered together because they represent a single pipeline from receiving input data to providing the vessel position and sailing parameters. Secondly, model development was done mostly in 2018. This means that improvements, findings from other authors from that period onwards on the same topic are not considered here.
	1 Vessel wake detection
	1.1 Selection of devices
	1.2 Detection of a sequence of ship wakes
	1.2.1 Software based approach
	1.2.2 Hardware based approach


	In general, there are two main methods for retrieving water wave data on-site for the analysis of ship wakes (if not including wake studies based on the far field readings like SAR radars, satellite images etc.). A widely applied approach is recording the fluctuations of the water surface using either buoys (Metters et al., 2021) or devices that can read the water level from within the water column or from the seabed or from above the water surface, e.g. echo sounders (Parnell et al., 2008) or lasers. The use of pressure sensors mounted in the water column (Soomere and Rannat, 2003) or near the seabed (Sheremet et al., 2012) is also common. Both methods have positive and negative aspects, as discussed below, leaving the final decision dependent on the available hardware and the deployment location.
	Another issue relating to vessel detection is the scale (size of area, number of the ships and sensors, frequency at which data is gathered). When the dataset is small (short time periods and/or low intensity traffic), manual detection is likely to be sufficient. However, it can get labor intensive quite quickly near busy ship lanes. This is often the case and creates a need for additional means to automate the detection process.
	This problem was examined in Papers I and II from both software and hardware perspectives. The software development in Paper I relies on a straightforward algorithm utilizing Gabor multipliers (Dörfler and Matusiak, 2013). A major development towards more advanced hardware is the use of a new type of sensors to describe the wake characteristics, both with respect to measuring pressure and with respect to water velocity. These devices, called ‘hydromasts’ are multimodal sensor systems developed by the Centre for Biorobotics, Tallinn University of Technology (Egerer et al., 2024; Ristolainen et al., 2019), discussed in Paper II. The results of both previously mentioned approaches were compared with visual findings and results obtained from convolutional neural networks.
	A straightforward and often preferred approach for recording water level elevation data in ship wakes, without any kind of conversion loss (as is the case with pressure-based methods) is to use a sensor system that can take readings from above the water surface. There are several different types of devices available (Metters et al., 2021; Parnell et al., 2008). The core data set used for this chapter was recorded in Tallinn Bay in 2009 using a downward looking echo sounder mounted on a stable tripod. The tripod was deployed in 2.6 m deep water, with the sensor mounted about 2.5 m above the typical water level during the measurement campaign (Kurennoy et al., 2011; Torsvik et al., 2015b).
	Two examples of wake spectrograms are shown in Figure 4, where the motor vessel (M/V) Star is approaching the port of Tallinn with a speed of 24 knots. Panel a) shows the situation on a windy day (wind ~4.0 m/s from NE) while panel b) shows the recording made on a calm day (wind ~1 m/s from SW). A comparison of the upper parts of these spectrograms firstly signals that the presence of a mild background wave field does not significantly change or blur the geometry of the patterns that reflect the components of the wakes. It also shows that even relatively weak winds can generate waves with periods of 2–3 s (frequency about 0.3–0.5 Hz) with relatively wide spectrum in semi-closed areas like Tallinn Bay, and appear as noise in the upper higher-frequency parts of the spectrogram, These short period waves can mask the upper parts of the signal of divergent waves (Figure 4a).
	Figure 4. The signature of passenger ferry Tallink Star approaching the Port of Tallinn on a) relatively windy day 27.06.2009 and on b) a relatively calm day 28.06.2009. In both cases data is recorded from the above the water surface.
	Open ocean swells usually have a narrow frequency spectrum and periods commonly longer than components of ship wakes (Soomere, 2005). Therefore, they can be removed using spectral filters. However, short and young waves of the Baltic Sea (Björkqvist et al., 2018) often have a wide spectrum that overlaps with the frequencies of wake components.
	This feature renders the process of filtering out noise from wave recordings quite difficult, especially if the goal is to avoid a significant loss in information about the vessel wakes. Further processing spectrograms that contain a high level of noise can increase error and add uncertainties during the following steps of wake analysis, for example when finding the vessel speed and distance to the wake origin point (Torsvik et al., 2015a).
	The use of data collected from above the water surface, despite being noisy (Kurennoy et al., 2011), is better than other methods with respect to establishing accurate water surface elevation measurements, especially for investigations that examine the high frequency and/or low energy components. Other survey methods, such as near-bottom pressure recordings, either tend to mask or attenuate such components, sometimes to the level of being unusable.
	It is common to use pressure sensors positioned either somewhere in the water column or on the seabed to record wake signals. In this case the high-frequency part of the surface wave field is attenuated because the pressure signal decreases in the water column, most rapidly for shorter waves (Dean and Dalrymple, 1991). This feature also suppresses the previously mentioned noise produced by wind waves. The near-bed pressure signal frequently contains a sufficient level of lower-frequency components to evaluate the properties of transverse waves and the longest fraction of divergent waves. On some occasions pressure oscillations with periods >10 s can mask the longer components of the wake such as transverse waves or precursor solitons (e.g. near-horizontal higher energy lines up to 0.2 Hz in Figure 5b compared to Figure 5a).
	This shortcoming was addressed by using time series from several temporally synchronized pressure sensors that were close to each other (Paper II). The idea is that different from short and short-crested wind waves, single wave components of the wake (possibly except for cusp wakes, (Liang et al., 2024)) are, ideally, long-crested (Soomere, 2007; Sorensen, 1973). It is therefore natural that wake components produce a coherent signal at closely located sensors whereas the signal from wind waves is random and varies much more from sensor to sensor. In other words, if the background noise (either low-frequency or high-frequency) is not coherent over the distance between the instruments, it could be suppressed by merging several synchronized spectrogram snapshots of coherent waves into one picture. To make use of this idea, is it necessary to consider small delays in the arrival of long-crested wake components to different sensors.
	Time series from a set of 9 devices was available at nodes of a regular rectangular 5  5 m rack with a step of 2.5 m in the relevant experiments (Paper II). The best result was achieved using five sensors (four in the corners and one in the center). The results were optimal for the further steps of the vessel wake analysis. The wake-to-background spectrum noise ratio (Figure 5c) was greatly improved. The result significantly simplified the wake detection process, eliminated most false detection decisions, and made it possible to extract and analyze vessel wake components and evaluate properties of ship motion (Paper II).
	If ship traffic is light, the dataset of wake-representing spectrograms is small and probably the best way for wake detection is visually picking the exact time moments from the spectrogram. Doing so would also make it possible to recognize complicated “portrayals” of high-speed vessels (Torsvik et al., 2015b). When there are many wake events, an automated wake detection method must be considered. A feasible option may be to apply convolutional neural networks, which have already been successfully used in similar studies for vessel wake detection from synthetic aperture radar and satellite images (Kang and Kim, 2019). Downsides to this method are the quantity of necessary data (including data collected under different weather conditions) and the time needed to train the model to detect the wakes to reach an acceptable level of detection. Another disadvantage is that this method is a supervised learning method: after deployment, the operator must go through the data meant for learning and classify the wakes by hand.
	For real applications, methods that can start to detect the wakes without intervention are clearly preferred, especially those methods that do not need a long period to adapt to the data. Here, an example of such a method from the signal analysis is applied, namely, the technique to detect irregularities from the incoming signal by using so-called Gabor multipliers, as proposed by Dörfler and Matusiak (2013) (Paper I). Gabor multipliers are, in essence, composite operators, in other words, sequences of operations. The first operation is a short-time Fourier transform, like the one used to produce a spectrogram. This is followed by a pointwise multiplication with a distribution on phase space (called the Gabor symbol). The last step applied is an inverse short-time Fourier transform. This sequence helps map the input signal to its analyzed-synthesized (reconstructed) form (Feichtinger and Nowak, 2003). Manipulations based on Gabor multipliers are based on ‘The Large Time-Frequency Analysis Toolbox’ (Průša et al., 2014; Søndergaard et al., 2012).
	The Gabor multipliers are not uniquely defined. They are usually chosen so that the information loss between the original and reconstructed representations is reduced to a minimum level. A compelling argument for using this multi-step technique is that the method suppresses (in the sense that it does not carry over) the irregularities of the original signal to its reconstructed version. Therefore, a comparison of these representations often reveals anomalies and objects in the input signal (Dörfler and Matusiak, 2013) and thus makes it possible to remove doubtful situations and avoid false detections (Paper I).
	The method described is cost-effective in terms of computing power and does not require an additional learning period. However, it may be prone to continuously changing external forces like weather conditions. An example of the results is given in Figure 6. The vessel wakes were counted for one 24-hour cycle from 04:00 on 24.06.2009 to 04:00 on 25.06.2009. This period contained both calm times and events with notable wind wave activity. As discussed above, wind waves can distort the ability of the technology to separate the wake components from other fluctuations of the sea surface. During the calm periods (from 04:00 to 12:00 and from 21:00 to 01:00), the method using the Gabor multipliers has significant outcome only when ship wakes are present and thus leads to efficient detection of wakes. However, during the windy period (wind speed 5 m/s from the north-east from 12:00 to 21:00) the significantly higher wind wave driven noise level in the spectrograms required additional steps for wake detection.
	Figure 6. Wake detection with different methods: (a) using Gabor multipliers, (b) using shallow convolutional neural network. (c) A spectrogram depicting a measurement period from 04:00 24.06.2009 to 04:00 25.06.2009. Based on the results of Paper I.
	For comparison, vessel wakes were also detected using a shallow convolutional neural network (CNN). It consisted of a CNN layer of ten 0.25 Hz by 100 s elements, a rectifier layer, a fully connected layer and a softmax layer. This system was trained with 15 epochs and with 16 iterations in each epoch. The results are shown in Figure 6b. The accuracy (ratio of the number of detected cases over the total number of events) was 0.44. Of 36 visually detected wakes, CNN detected 24, missed 12 and gave 19 false positive signals. The method using the Gabor multipliers gave an accuracy of 0.47: 27 detected, 9 missed and 21 false positive signals. The wake events listed here were counted as peaks from the outputs.
	The presented comparison indicates that both methods have comparable detection power. They miss around one third of the wakes due to the windy (low signal-to-noise ratio) periods during the daytime. They also produce a comparable number of false positive signals, due to the same reason. A major difference is that the method using the Gabor multipliers was applied to the dataset with no previous knowledge. It used only the first couple of iterations (10–15 minutes of data) to adapt to the environment. The method based on the convolutional neural networks was trained on data that was selected from different days that experienced both calm and windy conditions and already had wakes detected and classified by the (human) operator. For these reasons, Gabor multipliers were used as a primary method for detecting wakes from the dataset measured by the Wave Engineering Laboratory in 2009 (Paper I).
	An alternative approach would be to solve the wake detection problem by using advanced devices that can sense the wake events in the water column. Ideally, the approach would describe the water flow itself. A step in this direction was taken when recording a dataset, using devices made by the Centre for Biorobotics, Tallinn University of Technology, in 2017.
	This measurement campaign used devices called ‘hydromasts’ (Egerer et al., 2024; Ristolainen et al., 2019). Each hydromast had a pressure sensor for collecting the water level data, and a vibrating vertical stem with a length of 100 mm, 15 mm in diameter and with a density close to water density. The movement of this stem was measured by a micromechanical inertial measurement unit (IMU) (Ristolainen et al., 2019). Another, stationary (reference) IMU was mounted in the housing of the device (Ristolainen et al., 2019). The inertial measurements were registered along three perpendicular axes (Ristolainen et al., 2019). The idea was that any water flow passing the device would be registered as movements of the stem that acts like the lateral line of a fish (Ristolainen et al., 2019). The movements of the stem were used as the proxy of the water’s velocity passing the sensor.
	For wake detection, the data from the IMU connected to the vibrating stem was corrected by the data from the stationary IMU. The resulting values were viewed as linear acceleration and gravity vector (Figure 7). For the comparison, wakes were detected by the methods described previously: by convolutional neural networks (Figure 7c) and using Gabor multipliers (Figure 7d). The corresponding spectrogram (Figure 7e) highlights ship wakes as L-shaped features as discussed above. As the (horizontal) time scale is strongly compressed, horizontal branches of these items are short, and the features are mostly represented by more-or-less vertical bright lines.
	The detection and training processes for the Gabor multipliers and convolutional neural networks were conducted mostly as described in the previous section. As Gabor multipliers rely on the combination of a direct and a reverse transformation of the input signal, the technique was applied to the pressure data of each sensor separately. The results were afterwards summed and normalized with the assumption that the outcome converges sufficiently to be regarded as a wake event. Convolutional neural networks are meant for feature detection from the images, therefore firstly the spectrograms from the sensors were merged (as seen in Figure 7e), and afterwards the CNN technique was applied. This sequence of operations is the reason, in the current example, that the CNN-based detection leads to better results than the use of Gabor multipliers: the CNN was applied to the cleaned input data.
	The example in Figure 7 covers the time frame from 15:00 to 24:00 on the evening of 10 July 2017. During that time, 12 wake events were visually counted from the spectrogram (Figure 7e). There were 14 peaks in both the linear vibration data and in the gravity vector that could indicate a wake. From these, 10 events were detected as wakes (true positives), 2 events were missed, and 2 false positives were generated giving an accuracy rate of 0.63. The use of the CNN methods leads to the same results (10 detected, 2 missed, 2 false positives). The performance of the method based on Gabor multipliers was slightly worse. The total number of registered events was 18, from which 9 were actual wakes, 3 wakes were missed and 9 were false positives giving a total accuracy rate as 0.4. Both methods using the water flow data missed the events at the end of the data stream (at 22:40 and 23:50) Figure 7a and Figure 7b) while the CNN application missed events at 19:10 and 23:50 (Figure 7c). The method based on Gabor multipliers failed to detect cases at 19:10, 22:40 and 23:50 (Figure 7d).
	From those three wake events, the event at 23:50 was missed due to proximity to the end of the data series so that only the high peak is present in the spectrogram. Only the CNN technique was able to detect it as it relied on the contrast of the input (spectrogram) image rather than on raw input data. This shortcoming could be easily removed by overlapping data subsets or keeping the data in a continuous stream. The sensors measured the data continuously and the data was divided into days to simplify the analysis. Wakes at 19:10 and 22:40 were missed due to the low signal-to-noise ratio. In both cases only the chirp part of the wake representing divergent waves is present at high frequencies compared to the rest of the wakes.
	This feature leads to one of the key issues of this analysis. Namely, wakes from the vessels sailing at 15 knots (approximately 28 km/h) or below were seldom visible in spectrograms. Even if they were, their properties often had too large uncertainty so that the rest of the analysis struggled to determine the sailing characteristics.
	The results imply that regardless of which of the methods was selected (either relying on hardware, applying general feature detection methods from images, or using signal analysis) the overall result of the automated process has adequate accuracy compared to the case when wake events were counted on spectrograms manually. Also, for all the methods described, the final selection of the events to be identified as a ship wake was done by counting the peaks over a certain threshold. This means that for the methods based on hardware (Figure 7a, Figure 7b), the gravity vector data (Figure 7b) is usable immediately whereas the linear acceleration data (Figure 7a) requires additional low-pass filtering.
	To sum up, all the different methods that are reported and used for gathering and analysis of the vessel wake data are suitable for detection of the presence of ships via their wakes. A natural limiting factor is the water depth because for pressure sensors from some point wave attenuation would be too great, and it is difficult to install and retrieve the sensors in deeper areas. For above-surface sensors, deployment requires shallow water depths. The preferable way forward is to move from single sensor systems to sensor arrays and grids. Doing so will 1) improve the overall data quality by suppressing the signal of random wave fields (Figure 5); and 2) provide additional information about the vessel itself, as will be discussed in the next chapter. A broad range of methods can be effectively used for signal analysis, automatic wake detection, and feature detection, from the (spectrogram) images to hardware-based approaches. The performance of all developed and employed methods is comparable to the accuracy achieved by visually picking the events on spectrograms.
	There are also obvious limitations for the detection and analysis of vessel wakes in such a way. The first limitation is the vessel speed. Equally important is the actual location of the measurement device(s). Both datasets used in this thesis were collected in the same location which had natural obstacles to shelter the waves and wakes from the south-east and north-west. Therefore, the focus was on the vessels approaching port from the north. However, the records contain wakes that have arrived from the south-east due to diffraction or refraction. For example, wakes from some fast vessels that travelled out of the port to the north are seen with the cases at 19:10 and 22:40 (the high frequency divergent components). Thirdly, as the wake events may last several tens of minutes (Soomere, 2007), traffic density could be a problem. For example, if several vessels pass the sensor(s) within, say, 30 minutes, the spectrogram will have several overlapping wake traces. This pattern may be interpreted as a single wake event by the automated detection methods described above.
	2 Vessel localization
	2.1 Speed of the vessel
	2.2 Vessel position and course

	After wake detection, the second step in the process is to determine the vessel position and its sailing parameters. This step can be regarded as vessel localization. Combined, the two steps provide sufficient information about a ship’s presence and its movement. Along with vessel recognition, that is determination of its type and/or purpose, they form the backbone of the vessel traffic monitoring system. The data provided by these systems allows real-time continuous vessel tracking. However, usually with the ship wake events are single point recordings in time and space, and they are usually recorded with a significant time delay that is the result of the time taken for the wake to travel from the point of generation to the measurement devices. Therefore, at best, this method only allows one historical snapshot per vessel as it passes the sensor system.
	Continuous vessel monitoring systems use consecutive timestamps to determine to where and how the ship is moving. Wake events, despite being single events, contain enough information, which, if measured by the right equipment and interpreted adequately, may give the same result. The goal is to determine the following four parameters: speed, distance, bearing and the course of the ship from a single measurement for each passing vessel. Speed and distance can be obtained directly from the spectrogram of the wake itself, while the bearing and course can be estimated by using a grid of closely positioned sensors. In this chapter the findings are presented using the data from Paper III, as the results of Paper I use AIS data provided with very coarse time resolution and thus cannot be regarded to be reliable for estimating actual vessel sailing parameters.
	In general, the basic idea for determining the speed of the vessel and the distance of the wake-generation location from the sensors relies on the understanding that this information is hidden in the frequency of cusp waves, that is, in the frequency of waves that arrive first to the observer or sensor (Wu, 1991). This frequency can be found using the spectral representation of the wake by determining the frequency of waves at the point of the Kelvin wedge that reaches the sensors.
	Recent developments in the understanding of the structure of ship wakes have provided further options to solve this problem. Pethiyagoda et al. (2017) showed that most of the wake energy is concentrated on the linear dispersion curve (Figure 8) in the spectrogram. This curve can be described in time-frequency coordinates as:
	where 𝜔± is the dimensionless angular frequency of the waves and 𝑇=𝑡𝑦 corresponds to dimensionless time of propagation of the wake over distance 𝑦. This curve has two branches. The plus sign ‘+’ represents the frequency range of divergent waves and the minus sign ‘–‘ the frequency range of transverse waves. These two branches interact at the point where 𝑇=8, 𝜔=32 (point “A” in Figure 8). This point represents the edge of the Kelvin wakes for the observer or sensor. This edge is usually represented by cusp waves, that is, the strongest wake components. Even though their arrival would be the easiest to detect, identification of their common frequency is a nontrivial problem as waves with this frequency exist during a short time interval and the signal is rapidly split into two components. This complexity is reflected in Figure 8. The cusp waves are represented as the vertical location of the dispersion curve. This means that, technically, it is necessary to identify the frequency of a signal that changes infinitely fast. This situation can lead to a misinterpreted frequency value.
	A solution to this problem can be found from the properties of the two branches of the linear dispersion curve. Namely, the branches of this curve for the divergent and transverse waves have asymptotes for large values of 𝑇. In other words, for large values of 𝑇 both branches can be approximated by a straight line. These lines are represented as 𝜔=𝑇2 for the divergent components and a horizontal line 𝜔=1 for the transverse components. The crossing point of these asymptotes (point “B” in Figure 8) at 𝑇=2, 𝜔=1 (in nondimensional coordinates) can be interpreted as a first (linear) approximation of the arrival time instant of the Kelvin wedge. It is invariant with respect to the ship’s speed and to the depth Froude number at subcritical speeds (Pethiyagoda et al., 2017). The relevant frequency is the long-term average value of transverse waves. This feature immediately signals that this approximation is applicable only if the vessel sails at a subcritical speed. In critical and supercritical speed regimes, when the divergent component becomes the dominant feature and transverse waves disappear, this method does not work.
	Torsvik et al. (2015b) applied two methods to identify and make use of the frequency of Kelvin wake components to find the speed 𝑈 of the vessel and the distance of the wake generation location to the sensor. First, he noted that the vessel’s speed can be estimated as (Torsvik et al., 2015b):
	where 𝑓𝑡∞ denotes the limiting frequency of transverse waves if 𝑇→∞, that is, the frequency at point “B” in Figure 8. This frequency can be evaluated as the average frequency of the transverse components after some time of the passage of the cusp waves. This approach is a variation of the method expressed by Eq. (2) and proposed by Wu (1991). Second, Torsvik et al. (2015b) demonstrated that the speed of the ship can be calculated as:
	where 𝑓𝑐𝑢𝑠𝑝 is the frequency of the waves at the edge of the Kelvin wake, that is, corresponding to the location of point “A” in Figure 8. These two approaches are equivalent because 𝑓𝑐𝑢𝑠𝑝𝑓𝑡∞=3/2 (Pethiyagoda et al., 2017). Therefore, it is enough to correctly evaluate 𝑓𝑡∞ to specify the frequency of the cusp waves.
	This aspect was discussed in Paper I in the context of the reliability of estimates based on Eqs. (4) and (5). As the frequency of cusp speed corresponds to the vertical section of the linear dispersion curve (Pethiyagoda et al., 2017), even small errors in the estimates of cusp wave timing may lead to large errors in 𝑓𝑐𝑢𝑠𝑝. The estimates of 𝑓𝑡∞ are much more stable. Consistent with the described features, the approach based on the signature of the transverse component leads to a better match of the estimates of the speed of the vessels compared to the AIS information (Paper I).
	If the speed 𝑈 of the vessel is calculated, the distance travelled by the wake can be determined from the properties of the divergent waves. It is sufficient to determine the time interval Δ𝑡 during which the frequency of the divergent component increases from the maximum frequency 𝑓𝑐𝑢𝑠𝑝 (frequency of cusp waves) to a 2 times higher value (Torsvik et al., 2015b). The distance 𝐿 travelled from the wake generation location to the observer or the measurement site can be estimated as (Torsvik et al., 2015b):
	Three applications were used to evaluate the ship speed and distance: 1) direct evaluation the frequency 𝑓𝑐𝑢𝑠𝑝 of cusp waves from the record of the highest wave components at the arrival of the wake, 2) evaluation of this frequency using the shape of the branch for divergent waves in Figure 8, 3) relying on the properties of the asymptote of the branch for transverse waves, equivalently, Eq. (4).
	In ideal conditions all three methods should provide adequate and matching estimates of the actual sailing speed of the passing ship (Figure 9). Theoretically, the estimate that relies on properties of transverse components is expected to be closest to actual values because it uses in the best way possible the properties of the Kelvin wake. A comparison of the data from monitoring the actual vessel traffic and the three applications shows that the results are different, but the above hypothesis concerning their performance is correct (Figure 9). A comparison of the performance of the three methods was reported in Papers I and III. In both cases the same conclusion was reached even though the temporal resolution of the AIS data was different, with the 2017 reference AIS information about the passing vessels being available at much finer resolution (5 minute compared to 1 hour in 2009) (Mitev, 2018; “VesselFinder,” 2020).
	The attempts to directly evaluate the cusp wave frequency (Figure 9a) led to systematic overestimation of ship speed and therefore underestimation of this frequency. Similarly, the use of properties of divergent waves (Figure 9b) usually led to overestimation of ship speed. The approximation of the cusp frequency using the limiting frequency of the transverse components (Figure 9c) has succeeded in providing values close to actual reference data.
	In addition to the theoretical arguments, this method has several significant practical advantages. Firstly, the transverse part of the wake in the spectrograms is tightly confined on the frequency scale. As a result, the errors of estimates are small (Figure 9c). Secondly, it occurs in a region on the time-frequency scale with a small number of interfering factors in the study area, therefore enabling a lossless extraction and analysis. Thirdly, if present, it is well defined over the entire duration of the wake. This increases the level of confidence of the frequency estimates.
	A disadvantage is that it is prone to external influencing factors, such as the ship moving at a very high speed, equivalently, at large depth Froude numbers. As a result, this component is not always present or is masked by noise or by other wakes. These features limit the use of this method: even if it works adequately in good conditions, it has the lowest application rate among the three.
	Therefore, methods for directly determining the frequency of cusp waves at the edge of the Kelvin wedge should also, at times, rely on the properties of wake components which are more frequently present or more pronounced than the transverse component. The approach based on the direct evaluation of the cusp wave properties (Figure 9a) has an advantage over similar estimates that make use of properties of the divergent component (Figure 9b) due to the simplicity of the analysis. The disadvantage is that it is based on one single highest energy value at the intersection of the two branches. Therefore, one should not be overconfident of the values found. This feature is illustrated by large error bars in the relevant values (Figure 9a) compared with other methods. The results found from the properties of divergent waves rely on the part of the wake in the spectrogram that is often affected by high noise caused by wind waves. Along with the wide range of frequencies and energy covered by this branch, the estimates contain high uncertainty levels (Figure 9b). As this step is a crucial part in the process of determining the distance between the vessel (wake generation location) and sensor system and it relies on more data than the method of cusp waves, it should be considered as a fallback method if the transverse component is absent, or the calculation based on it fails.
	The presented description demonstrates that the accuracy of estimates of the distance travelled by the wake depends on the quality of the extraction of the starting point of the divergent component. In most cases, the divergent component is quite reliable when it comes to extraction and analysis. However, one should note the mentioned uncertainty levels and their influence when calculating the actual distance between the vessel and the sensor system.
	The AIS data from 2017 enabled a vessel’s actual position close to the point where the wake was generated to be determined. The use of several sensors made it possible to evaluate the direction of the incoming wake, which was combined with the distance calculation, as discussed before, based on the transverse component of the wake. The following discussion is based on Paper III.
	The background assumption is that most wake components are long-crested waves with locally straight crests. This assumption is not correct for cusp waves (Liang et al., 2024) but acceptable for the rest of the wake. The general idea was that if sensors are close enough together to record simultaneously the same wave crest or trough passing, such as during one wave period, then the direction from which the wake is propagating can be calculated based on the time differences of the passing of the trough or crest at different sensors. It is therefore crucial to follow wave crests that move at phase speed. Considering a 7 s period for a transverse wake component, the depth of instruments being 3 m which results in a phase speed of 4.3 m/s, then the maximum allowed gap between the sensors to register the same wave crest or trough would be around 30 m. As described above, we used an array of 9 sensors mounted on a regular rectangular frame of 5 5 m. Therefore, the largest distance between a pair of sensors was 7 m.
	This method is an implementation of the widely used phase-shift technique used in many fields, including estimates of the directional spectra of ocean waves (e.g., Dean and Dalrymple, 1991). For an ideal regular long-crested wave pattern with straight wave crests an estimate of delay (phase shift) between the arrival of wave crests to the location of any two devices represents two propagation directions of the wave pattern. Therefore, for establishing a reliable estimate, several sensor pairs are needed to build statistics of directions.
	The data used in Paper III for this purpose was measured with 9 devices. This gives 36 different sensor pairs and 72 wave propagation directions (dashed lines in Figure 10). This number of pairs provided in most cases an approximation for the approach direction for the incoming wake that correlated well with the direction prescribed by the traffic separation scheme (within ±10° around 14.3°, area with dashed red lines in Figure 3). The means to reduce the number of instruments (currently 9) needed to find the necessary direction and their arrangements are not viewed here.
	The estimates of wave propagation direction using the phase shift method were based on the pressure data used for calculating the spectrograms. Getting the time delays from the evaluation of the proxy of water velocities (speed and direction) that were used for wake event detection in the previous chapter was also considered. Due to the high level of noise and sensitivity of the calculation process to small deviations, the retrieved values were not consistent enough to be considered as reliable results.
	Combining the determined direction of the incoming wave with the distance travelled by the wake leads to the estimation of the vessel position at the time moment when the wake was generated. One such example is shown in Figure 11 that presents the vessel position on its movement track around the time the wake was generated. The uncertainty area is large because, due to the low AIS resolution of 5 minutes, the vessel’s exact location had to be interpolated. Figure 11 also depicts the calculated position using the distance travelled by the wake and its direction along its area of uncertainty (from distance and direction evaluation).
	The calculated position is close to the position estimated from the AIS data. The difference is around 400 m for example in Figure 11, and for majority of the cases the estimate falls into a 0.5 km circle around the actual position (Figure 12). However, the area of uncertainty is quite big: about 2 km wide (from line 2 to line 4 in Figure 11) and 2.8 km long (between lines 1 and 3 in Figure 11). As discussed previously, the uncertainty first stems from errors in calculating the distance. This step often contains substantial inaccuracies when extracting the properties of divergent components from the spectrogram. The resulting high level of uncertainty (see error bars on Figure 9b) translates further into calculating the distance to the location of the wave generation based on the estimates of vessel speed. Another dimension of inaccuracies stems from estimates of the wave propagation direction. This component of uncertainty becomes evident as the width of the area of uncertainty despite showing the general direction very well.
	The likely main reasons for this large uncertainty are the short distance between the sensors and high level of the background noise. Together they result in quite a large (approximately 30°) uncertainty in the wave propagation direction and thus the sailing direction. A feasible way to reduce this kind of uncertainty is to increase the distance between the sensors. This has a natural limit as the quality of the spectrogram should not diminish even if the overlapping procedure described earlier is used. However, as no actual measurements were conducted, then this solution has not been checked.
	From Figure 12 another interesting phenomenon arises. There is a correlation between the estimates of the distance and the direction of the incoming wake. In cases when the calculated distance was shorter compared to the actual value, the evaluated sailing direction was shifted towards the north. When the calculated distance exceeded the actual distance, the direction was shifted towards the east compared to the actual direction.
	Vessel courses were calculated by applying the angle of cusp waves (35°16′) to the calculated directions of propagation of wake wave crests. This approach leads to two courses of the vessel. There is no way to determine which of them is correct based solely on the wake data. Therefore, the final estimate of the vessel course should be determined using additional information. One solution is to use the local sailing conditions (Engen and Johnsen, 1995). This approach was used in these estimates. The possible course (around 230°) was dismissed as it was directing ships directly to the land (Figure 11). These left values of the realistic courses which coincided with the orientation of the traffic separation corridor (159°).
	An approach to resolve this issue would be to use two sets of sensors, analogous to using two subsequent synthetic aperture radar images to determine the wave propagation direction (Ouchi et al., 1999). As the course calculation was a linear manipulation of the direction of the incoming wake, the same outcomes were inherited: calculated results matched well with actual courses of the vessels sailing to port (within ±10° of 159°), but the uncertainty, was kept also in a range of 30°.
	To sum up, methods for determining the vessel location and its sailing parameters at the time instant when the wake was generated can produce results that are comparable to actual data. However, the biggest problem is the ambient noise, mostly due to wind waves. Its presence significantly increased the level of uncertainty of the estimates. Another big issue was the high traffic intensity in the study area. For this reason, only the cases when a single vessel was approaching the port were used. The presence of wakes from multiple vessels within the same time window (15 minutes) complicated the analysis process from the extraction of the wake structure from the spectrogram to finding the direction of the incoming wake. Lastly, these methods are only appropriate if the ship sails steadily along a fixed course. As shown by Pethiyagoda et al. (2017), violations of these assumptions can produce spectrogram images where several shapes of wake components are overlapping, and the proposed analysis becomes unreliable.
	Conclusions
	Despite the absence of a well-established method for vessel traffic monitoring, there are a vast variety of tools and instruments available to gather, detect and analyze information about ship wakes from water elevation data, applicable to different environments. The main purpose of the work was to investigate whether it is feasible to use spectral images of wakes of passing vessels as a component of a vessel traffic monitoring system. The analysis addresses the first two major steps – vessel detection and localization – out of five stages of creating a Recognized Maritime Picture (NATO Standardization Agency, 2015). The third step, recognition, which characterizes the vessel and therefore is also heavily dependent on the data collected by the sensors, is not considered here.
	Ship detection provides information as to whether the trace of the ship is present in the input data (Papers I and II). This aspect was investigated in terms of choice of environment, signal quality and prospects for automation of the detection. Vessel localization means identification of its location and where it is heading (Papers I and III). This was addressed by calculating the speed of the detected ship and the distance from the measurement location to the point where the detected wake was generated from wake spectrograms. Further, the propagation direction of the incoming wake was estimated and incorporated to determine the location of a ship at a time moment when the wake was generated, and the course it was heading.
	The key findings of the analysis of options relating to the use of ship wake spectrograms for vessel detection and location are as follows:
	 Wind-wave noise can be reduced by using pressure sensors placed on the seabed in a shallow area. The quality of the spectrogram can be improved by overlapping results from multiple closely positioned devices (Paper II and Chapter 1.1)
	 Ship wakes can be detected by evaluating water flow data from near the sensor (Paper II and Chapter 1.2). They can be detected by single-step detection algorithms based on signal transformation (Paper I and Chapter 1.2)
	 Vessel speed estimated based on the structure of a wake in the spectrogram corresponds well with the actual speeds. Approximation using the asymptotic properties of transverse components provides the best results in terms of accuracy and the level of the uncertainty (Paper I and Chapter 2.1).
	 Using several sensors positioned appropriately close together enables the determination of the propagation direction of the incoming wake. This, along with the distance to the location of wake generation derived from the wake structure from the spectrogram, can be used to find the location where the wake was generated (Paper III and Chapter 2.2).
	 If the direction of the wake is known, the course of the ship can be estimated with the addition of external information (Paper III and Chapter 2.2)
	The general conclusion is that the developed method of spectral analysis of ship wakes as part of vessel traffic monitoring system has limited applicability if a single sensor is used. It provides a single snapshot of the location and the sailing parameters of the passing vessel. The outcome of the method is only reliable if the ship sails on a steady course and at a steady speed in subcritical regime but faster than ~15 knots. The method is trustworthy if only one ship wake is present at the same time. Lastly, all the information is retrieved with a delay that reflects the propagation time of the wake from the generation location to the measurement devices. The advantage of the described approach is that the required equipment and its deployment are cost-effective requiring only pressure sensors that can be deployed in 2–3 m deep water from the land or by small boat.
	Some further considerations relate to the ship types, their sizes, and the maximum distance at which the wakes are detectable. These issues were not considered as all the measurements were taken at one location, near the Pikakari Beach facing the approach lane of the marine traffic separation scheme. Thus, all detected wakes were generated approximately 3.2 km away. All the ships in this study were ferries approximately equal in size. Further research and measurements could be designed and implemented to address these questions. Potential locations include areas near ports (like the Pikakari Beach) with more varied traffic (for example the Hel Peninsula in Poland), or areas that could test detectability of vessels sailing at larger distances from the measurement location (for example the Kõpu Peninsula on the island of Hiiumaa).
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	Abstract
	Surface vessel localization from wake measurements in the littoral zone 
	There are numerous different vessel detection systems available, but they can be deceived or have limitations in certain situations. This thesis examines the possibility of using spectral representations of ship wakes to fill the knowledge gaps in this area. The main purpose was to test the feasibility of the idea that the spectral representation of vessel wakes that are recognized from far-field water surface elevation, water velocity or pressure data at one or at a few points, could be used to fill the knowledge gaps.
	The work focused on two steps: ship detection, to determine whether there are indications that a ship was present in the region in the input data, and ship localization, to determine the location of the vessel and its speed and course. The focus was on simple implementation and the possibility of automation. Two datasets were used: one measured in 2009 and the second measured in 2017. Both sets were collected at the same location, near Pikakari Beach, gathering information on ships approaching the port in Tallinn Bay, on the southern side of the Gulf of Finland in the Baltic Sea.
	From the results it was concluded that pressure sensors located on the seabed were able to filter out shorter wind waves. The attenuation of the ship wake data was reduced by overlapping spectrograms from several sensors. Wake detection was achieved by using specific algorithms for signal analysis and by monitoring the corresponding water movements. Both developed algorithms are capable of working without supervision after being set up. Vessel speed calculated from the spectrogram y using different parts of wake was in accord with actual speeds measured using an automatic identification system (AIS). The use of transverse components of the wake provided the most accurate results with the lowest level of uncertainty. The distance travelled by the wake and the vessel speed were derived from the divergent component of the wake signature. The direction of the incoming wake was calculated using an array of closely positioned sensors. These parameters gave a vessel location comparable to actual position at the time the wake was generated as measured by AIS. Combining some additional information made it possible to establish the ship’s course from the propagation direction of the incoming wake.
	From the results it was seen that this method provided a single snapshot of the vessel movement during the period when the ship passed the sensor. This information was received with significant time delay. Also, the signal analysis had some restrictions. Accurate determinations required that no more than one vessel wake was present in the record simultaneously; the vessel had to sail on steady course and at a steady speed in the subcritical range and at a speed greater than 15 knots. Ship identification (characteristics such as type, hull shape etc.) and the maximum distance between the ship and the measurement site were not considered in this work. It was concluded that this method provided limited information about the presence of the ships and their sailing parameters, but at this stage it is not a standalone system for vessel traffic monitoring and must be complemented by other methods.
	Lühikokkuvõte
	Laevade asukoha ja liikumise parameetrite määramine laevalainete salvestustest
	Analüüsitakse võimalusi kasutada laeva käigulainete salvestuste spektraalset esitust laevaliikluse jälgimiseks. Peamiseks eesmärgiks oli katsetada, kas ühes punktis tehtud veepinna asendi muutumise salvestusest või vähestes lähestikku asuvates punktides madalmere põhja lähedale paigutatud rõhuandurite signaalidest tuletatud informatsiooni saab kasutada täiendava vahendina mööduvate aluste tuvastamiseks ja nende liikumise parameetrite hindamiseks.
	Käigulainete analüüs toimus kahe sammuna. Esimese sammuna (avastamine) tehti kindlaks, kas laev paiknes vaadeldavas alas. Teise sammuna (lokaliseerimine) määratleti laeva asukoht ja liikumisandmed. Vastava tehnoloogia loomisel seati eesmärgiks lihtsus ja võimalus seda kasutada automaatrežiimis. Kasutati kaht salvestatud andmestikku. Üks neist oli mõõdetud 2009. ja teine 2017. aastal. Mõlemad salvestati Pikakari ranna lähistel Paljassaare poolsaare rannavetes. Mõõtekoht on avatud Tallinna sadama poolde suunduvate laevade lainetele.
	On näidatud, et ranniku lähedal madalas vees merepõhjas paiknevate rõhuandurite signaalis on tuulelainetest tingitud müra suhteliselt nõrk. Ka laeva käigulainete signaal on osaliselt sumbunud võrreldes veepinna asendi muutumisega. Kuna käigulained on pikaharjalised, on neid võimalik eristada lähestikku paiknevates andurites registreeritud signaalide spektraalkujutiste kombineerimise teel. On näidatud, et käigulaineid on võimalik tuvastada automaatselt, kasutades nii signaalitöötluse algoritme kui ka hinnates lainete tekitatud vee liikumise kiirust. Kumbki meetod ei vaja spetsiaalset seadistamist enne andmete kogumist.
	Laeva kiirust hinnati kahel erineva meetodiga, kasutades käigulaine struktuuri eri osasid. Saadud hinnangud langesid hästi kokku laevade automaatpositsioneerimise infost (AIS) leitud väärtustega. Käigulainete ristkomponendi asümptoodi omaduste alusel arvutatud hinnangud olid täpsemad. Koha kaugus, kus lained olid tekitatud, leiti laeva kiiruse hinnangu ja käigulainete kaldkomponendi sageduse muutumise tempo kaudu. Käigulaine harjade orientatsioon ja sellele vastav lainete leviku suund arvutati lähestikku paiknevate sensorite salvestatud signaali ajanihke alusel. Selle suuna ja kauguse põhjal määratleti laeva asukoht käigulaine tekkimise hetkel. Nõnda leitud asukohad kattusid hästi AIS andmetega laeva tegeliku asukoha kohta. Laeva kurss ei ole kõnesolevatest andmetest üheselt leitav. Näidati, et kursi saab enamikel juhtudel leida käigulaine levimise suuna ja kohalike navigatsioonioluside võrdlemise alusel.
	Töö keskse tulemusena näidati, et kirjeldatud tehnoloogia võimaldab leida laeva positsiooni ja liikumisandmed (kiirus ja kurss) hetkel, mil laev tekitas salvestatud käigulaine esimese osa, teisisõnu, vaid ühel ajamomendil. Meetodi kasutamist piirab asjaolu, et käigulaine jõuab mõõtepunkti arvestatava viiteajaga; enamasti mõnikümmend minutit. Signaalitöötlust saab automatiseerida vaid siis, kui analüüsiks kasutatavas ajaaknas on vaid ühe laeva signaal. Meetod annab adekvaatse tulemuse, kui laev liigub fikseeritud kursil kindla kiirusega vähemalt 15 sõlme. Laeva identifitseerimist (kere kuju, otstarve jne) ja maksimaalset kaugust mõõtepunktist käesolevas töös ei vaadatud.
	Tulemustest selgub, et käigulainete analüüs võimaldab saada ajas ja ruumis võrdlemisi piiratud informatsiooni laeva asukoha ja liikumise kohta. Seetõttu sobib kirjeldatud meetod täienduseks teistele laevaliikluse jälgimise süsteemidele.
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