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Abstract 

Aim for this thesis work is to develop an improved version of Electronic Control Unit 

based on the ECU used in student formula car FEST20. ECU’s main task is to control 

formula car’s motor inverters. Purpose will be to implement a real-time operating system 

to provide prioritised pre-emptive scheduling to achieve more time-critical system. Due 

to testing purposes, one of the most important functions running on ECU is optimised to 

get performance gain in task execution times. Previous ECU solution is going to be 

analysed. Analysis is necessary to gain an overview on previous system’s performance. 

New improved solution is also analysed, therefore this work provides a comparison 

between both implementations to indicate main differences achieved. As a result of this 

thesis a refined ECU is provided which uses real-time operating system and is able to 

compute control system setpoints with higher frequency. 

This thesis is written in English and is 39  pages long, including 7 chapters, 25 figures 

and 4 tables. 
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Annotatsioon 

Elektrilise tudengivormeli elektroonilise juhtüksuse täiustamine 

Antud lõputöö eesmärgiks on arendada parendatud versioon elektroonilisest juhtüksusest 

(ingl k – Electronic Control Unit, ECU) tudengivormelis FEST20 kasutusel oleva ECU 

põhjal. ECU põhiliseks ülesandeks on vormeli mootorite inverterite juhtimine. 

Eesmärgiks on reaalaja operatsioonisüsteemi kasutusele võtmine, et määrata 

programmikoodi funktsioonidele prioriteedid. Vastavalt prioriteetidele ajastab reaalaja 

operatsioonisüsteem funktsioonide täitmist, arvestades seejuures funktsiooni 

jooksutamise eesõigust määratud prioriteetidest tulenevalt, et parandada süsteemi 

ajakriitilisusest kinni pidamist. ECU kõige tähtsamat funktsiooni optimeeritakse, et 

lühendada selle jooksutamiseks kuluvat aega, mille tulemusena saab testimise eesmärgil 

tõsta selle funktsiooni arvutussagedust. Eelmise ECU jõudlusest parema ettekujutuse 

saamiseks seda analüüsitakse. Samuti analüüsitakse uut täiustatud versiooni ning 

võrreldakse seda vanaga, et leida põhilised saavutatud erinevused nende vahel. Käesoleva 

lõputöö tulemusena valmib reaalaja operatsioonisüsteemil põhinev ECU, mis võimaldab 

juhtimissüsteemi funktsiooni arvutussageduse tõstmist. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 39 leheküljel, 7 peatükki, 25 

joonist, 4 tabelit. 
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1 Introduction 

This thesis work has been done based on a project from Formula Student Team Tallinn 

(FSTT). Formula Student series consists of product development and engineering 

competitions held worldwide in which teams compete with a small-scale one-seated 

formula racing car. Cars must be proven in dynamic racing events and design defending 

event. FSTT consists of students from Tallinn University of Technology and Tallinn 

University of Applied Sciences. The team has been active since 2006. During first 7 years 

the team focused on developing combustion engine formula cars, but since 2013 moved 

to using electric motors. Every season there is a new electric formula car being designed, 

built, and tested to compete in mostly European competitions during summer period. 

This project of building student formula car helps university students to improve their 

knowledge, skill, know-how and practice what they have learned from school. It gives 

students valuable experience from engineering perspective as most of the vehicle is self-

developed. Additionally, there is a chance to improve one’s ability to justify the design 

decisions of certain systems by defending their design to experts of the field. To date 

FSTT has been successful and achieved high ranking places, despite competition being 

very high. To maintain and further improve results, team must develop, analyse, and 

refine systems and parts of which formula cars consist each year. 

Current thesis is focusing on providing improved version of one of those sub-systems 

called the Electronic Control Unit (ECU), which is an embedded system. It is mainly 

responsible of communicating with motor controller to control motor inverters. It also 

performs safety checks and commands vehicle to stop in case of error. Program functions 

in current solution’s source code are executed using self-developed timer-based system 

which is a non-time-critical and non-prioritised timing system. To make the system more 

reliable and efficient, a real-time operating system is essential which is going to be 

implemented as a result of this thesis. The goal is to provide pre-emptive time-critical 

task execution with strict deadlines, prioritised tasks, and deterministic scheduler to 

enhance ECU’s functional safety and efficiency. 
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One important component of ECU’s software is control system. This is used in the process 

of controlling motors to determine how formula car performs on track. It is responsible 

of calculating setpoints containing information essential for motor control. Setpoints are 

computed and transmitted to vehicle’s motor controller by ECU with specific frequency. 

The frequency of calculation and transmission could be raised to acquire test data which 

can be used to analyse and further determine optimal refresh rate of motor control. That 

could improve vehicle’s dynamic driving performance. Together with implementing 

RTOS (Real-Time Operating System) the goal is to develop ECU with improved 

performance to be able to handle higher control system computation frequencies. 

This thesis includes analysis of previous ECU solution developed for FEST20 formula 

car and provides possible new solutions based on that. It focuses on implementing, testing 

RTOS and discusses outcomes. New system with refined performance is analysed in 

comparison with old system to highlight gained benefits. Tests and analysis have been 

carried out in similar conditions: 

▪ FEST20 formula car used. 

▪ Control system developed for FEST20 used [1]. 

▪ FEST20 ECU PCB and FEST21 ECU PCB used (differences on these PCBs do 

not affect results achieved). 
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2 Description of electric formula car 

The formula car is a four-wheel drive vehicle depicted on Figure 1, which has a motor in 

every wheel. Motors are controlled by inverters inside the controller. The controller also 

has a logic board, which is responsible for receiving input setpoints, controlling motor 

inverters, getting feedback information from motor encoders, and transmitting current 

status and motors information as feedback to the electronic control unit. Due to series 

rules, the maximum output power from accumulator container which could be used for 

motors is 80 kW [2, p. 72]. To keep power usage under that level, a power limiter function 

has been built into control system. 

Racing tracks at competitions are usually made up of tight turns, slalom elements and 

there are not so many long straight sections because proving cornering ability of the race 

cars has the most importance. Nevertheless, maximum speeds reached by drivers can go 

up to 120 km/h on some tracks. In addition, considering formula car’s sharp acceleration 

and deceleration capabilities, safety is a huge concern when designing parts of the formula 

car. 

 

Figure 1. Electric formula car FEST20 [3]. 
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The formula cars are powered by a battery pack, which provides power for all electric 

systems in the vehicle. The vehicle’s electrical system is divided into LVS (Low Voltage 

System) and TS (Tractive System). As defined in series rules [2, p. 54] all electric systems 

with occurring maximum voltages under 60 VDC or 25 VAC RMS (root mean square) 

are considered as low voltage systems and anything above 60 VDC is part of TS. Main 

supply voltage used in low voltage system is 24 VDC. This is the operating voltage for 

most of the systems in LVS including ECU. 

All digital systems in LVS communicate with each other through vehicle’s main CAN 

(Controller Area Network) bus. Thus, main CAN bus has the following uses: 

▪ Transfer data required by the control system to ECU 

▪ Transfer data for dashboard to display system states and parameters 

▪ Transfer data to log most of the messages 

▪ Transfer data to indicate of error states 

CAN communication is used widely in automotive industry because it is a robust protocol 

that provides possibility for many devices to be connected to the same bus. Bus speed and 

cost add up as a benefit when choosing a means of communication. Additional advantage 

is the prioritised messages, which ensure good timing and most important information to 

be transferred first as stated in this article [4, p. 721]. The formula car’s digital systems 

communication is visualised on Figure 2. 

 

Figure 2. Overview of CAN buses to which ECU is connected. 
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Following section further describes digital electronics systems in low voltage system 

which are connected to ECU. 

2.1 Sub-systems interconnected to ECU 

Dashboard is a self-developed module consisting of a display and PCB, which main 

responsibility is to provide a user interface for the driver and assisting engineers. Display 

indicates general and most important information about the status of the vehicle and sub-

systems. User interface offers possibility to configure input parameters of control system 

and to control other systems. Dashboard communicates with other PCBs using CAN. 

ECU reads dashboard input messages which are required for control system. 

Accumulator management system (AMS) is used to monitor the state of accumulator 

package. The system consists of self-developed master PCB and slave PCBs. There is one 

slave PCB for every accumulator module and these PCBs are responsible for acquiring 

important information such as cell voltages and temperature. AMS master PCB collects 

the information from slave PCBs and determines the state of accumulator. In case of an 

error high voltage tractive system is deactivated. AMS master PCB communicates with 

other systems on the main CAN bus. ECU uses important message content from AMS for 

error checks and as control system input. 

Sensorics PCB is a self-developed system gathering data from external sensors such as 

pedals’ positions, steering wheel angle, brake pressure, temperatures. It conditions 

signals, processes digitised values and transmits data onto the main CAN bus. All the 

information coming from sensorics is important to be able to drive the formula car, thus 

ECU receives those messages and passes them for control system. 

Ground speed sensor (GSS) is a self-developed sensor system. The main goal is to 

measure vehicle’s longitudinal and lateral velocity relative to the ground. This 

information is processed in ground speed sensor and sent to the main CAN bus. The data 

is used by ECU in vehicle’s control system. 

Inertial measurement unit (IMU) is responsible for providing data about formula car’s 

orientation like acceleration, deceleration, and gyroscopic information. This system 

transmits data onto the main CAN bus for logging and ECU to use as control system 

input. 
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Data logger is used on the main CAN bus. Depending on the configuration it acquires all 

necessary messages content which could be later viewed and analysed from data logging 

software. Logging data is a very important feature as engineers get most of the feedback 

from the data and graphs logs contain. Information in logs is used to verify if a system 

operates as expected or identify the cause of failures and system error states. 

2.2 Description of Electronic Control Unit 

Electronic control unit is a self-developed PCB, which consists of hardware, peripherals, 

functionality-based application code, and control system. ECU serves a main purpose of 

controlling motor inverters. The controlling is done through CAN communication 

between ECU and controller. ECU is responsible for transmitting setpoints to controller 

containing information about status, motor speeds and torques [5]. Controller sends 

feedback which is in turns used when calculating new setpoints by control system. 

Control system needs many different parameters from different systems across the 

formula vehicle. 

ECU is additionally responsible for the following: 

▪ Acquire temperatures of rear motors, cooling radiators and rear brake supports. 

▪ Control water pump 

▪ Control cooling fans 

▪ Control buzzer used for ready-to-drive sound [2, p. 80] 

▪ Control brake light 

▪ Control DRS (Drag reduction system) 

▪ Switch power for motor controller’s logic board and cooling system’s water pump 

Considering CAN bus loads and motors and controller manufacturer’s recommendations, 

ECU communicates with controller using two separate CAN buses as seen on Figure 2. 

Therefore, each bus has the setpoint and feedback information of two motors. 

All the processing on ECU is done by an MCU (microcontroller). It belongs to the 

STM32F7 series [6] of microcontrollers which are produced by STMicroelectronics. It is 

a 32-bit MCU and has a maximum CPU speed of 216 MHz. It hosts an ARM Cortex M7 

core. 
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2.3 Description of control system 

Control system is a model-based program application, which is made using MATLAB 

Simulink [7] environment. Simulink has the advantage to build the program as a model 

using different blocks with various functionality. This means that creation of complex 

algorithms and programs is faster and easier than writing code. Thus, engineers can focus 

more on developing functionality of the program. Additional benefit provided by 

Simulink is the ability to simulate designed model. This gives feedback about how system 

is operating. With Simulink Embedded Coder [8], it is possible to automatically generate 

C code from user model. Code generation has many configuration options and generated 

code can be directly used on an embedded processor. 

A simplified block diagram of the control system used throughout current thesis is 

depicted on the following Figure 3 to give an overview. The control system used in 

current thesis was developed for Formula Student Team Tallinn’s formula car FEST20 

and has not been made by the author of this thesis [1]. 

Inputs handling section has a data bus for all input data signals. ECU is responsible for 

updating input data with every iteration. The data comes from AMS, dashboard, sensorics 

PCB, IMU, GSS, static pre-defined parameters and motors’ feedback. Conditioning of 

input data is done in this section [1]. 

 

Figure 3. Simplified block diagram of control system. 
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Speed control section calculates target speed and torque limit setpoints based on pedal 

position and steering wheel angle. It distributes torques for each motor depending on 

acceleration or deceleration forces. Slip control block adjusts setpoint values according 

to wheel slip [1]. 

Safety limits block calculates power limits for regenerative braking and maximum output 

power limit allowed based on accumulator inputs [1]. 

Power limiter section is responsible for estimating change in output power every 

iteration. It calculates estimated power consumption and must make sure that formula car 

does not use more than 80 kW form the accumulator to comply with rules [1] [2, p. 72]. 

Output bus section is used to condition output data which are speed and torque limit 

setpoints for every motor. ECU transmits these setpoint values onto two CAN buses 

between controller and ECU [1]. 

DRS control block calculates desired position state of vehicle’s rear upper wing profile 

[1].
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3 Analysis of previous solution 

To understand current situation with function execution times, determinism, the solution 

of FEST20 electronic control unit had to be analysed. As this ECU is not based on RTOS 

the test methods had to be selected such that same characteristics could be found later 

with the analysis of new solution. Before addressing testing and analysis results, next 

sections are covering target goals of analysis and possible testing techniques. 

3.1 Aim of analysis 

In different domains and fields, the time-criticality of completing software functions in 

certain timeframe is of varying importance as illustrated on Figure 4. For example, in 

aircraft control and avionics the task execution times for control software are strictly 

defined and the deadlines must be met. In this case vehicle control also has mostly hard 

time requirements because the operation of vehicles is safety-critical [9, p. 2]. 

3.2 Methods used 

This section describes methods used for analysing previous ECU’s performance. These 

methods are going to be used for analysing new solution as well. 

3.2.1 WCET analysis 

Worst-case execution time (WCET) analysis is one of the main ways of analysing a real-

time operating system. This analysis provides insight of how much time each function 

takes to execute. This means the start and stop times of each function are measured to get 

the elapsed time. Worst-case execution time of a certain program section is the longest 

 

Figure 4. Timing criticality in different fields [9, p. 2]. 
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recorded time to execute that section. WCET analysis typically also provides BCET (best-

case execution time) value and generally gives an overview of the average execution 

times and the distribution of execution occurrences [9, pp. 1-4]. A good example of 

WCET analysis is provided on Figure 5. 

3.2.2 Scheduling jitter analysis 

Scheduling jitter is the deviation of task’s actual starting time from ideal (nominal) 

starting time [10, p. 850]. There are different methods used for jitter analysis. Periodic 

task’s jitter can be obtained by acquiring the starting time of the task, knowing the ideal 

desired execution period, and calculating deviations between when the task should start 

and when it really starts. Jitter specification for a function is usually given as worst-case 

jitter between the minimum and maximum deviations from the nominal execution period 

[11, p. 11]. 

Most of the functions in ECU’s source code are periodic, which means scheduling jitter 

analysis is a suitable option to characterise the system. This is because scheduling jitter 

provides an overview of how consistent is the task execution in terms of determinism. 

3.3 Possible execution time measurement techniques 

Program code execution time measurement can be done using many different techniques, 

tools, and equipment. Some of the common ways presented in this article [9, pp. 14-15] 

are the following: 

▪ Oscilloscope and logic analysers – these methods are beneficial in a way that 

they do not alter execution times of the program while measuring running time. 

 

Figure 5. WCET analysis - distribution of execution times [9, p. 4]. 
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Oscilloscope can be used to measure the state of an output pin or LED, which is 

being toggled in the program section of interest. Execution time can be measured 

from the state changes. Logic analysers on the other hand monitor system’s data 

bus for specific instructions and calculate execution time based on that [9, p. 14]. 

▪ High-resolution timers – this method uses timers which are part of the system. 

It requires modifying program code in order to capture function starting and 

stopping times. Thus, this method uses processors resources and therefore may 

slightly affect execution times [9, p. 14]. 

▪ Hardware traces – this method uses built-in hardware tracing and debugging 

features of the system for measuring program code executions. Widely-used 

interface for that is the JTAG (Joint Test Action Group) [9, p. 14]. 

▪ Profilers – this method can be used if it is supported by the compiler. Execution 

time is measured based on hardware timers. Measurement results can be imprecise 

depending on the working principle [9, p. 15]. 

▪ Operating system facilities – this method can be used in the absence of an 

operating system which has to provide features for timing measurement of 

specified functions. Usually this method needs a hardware timer for measuring [9, 

p. 15]. 

▪ Simulators – this method simulates the processor for timing measurements. 

Developing and implementing a simulator to get correct results is very difficult 

[9, p. 15]. 

3.4 Chosen measurement techniques 

Considering available tools and possibilities the most realistic choice was to use high 

resolution timers, which are part of MCU used on ECU. Additionally, this solution can 

be integrated into the system in most suitable way because the timer counter values can 

be easily logged with vehicle’s data logger and later exported into Excel for further 

analysis. Timer TIM2 has high resolution of 32 bits. It had to be configured to be able to 

measure execution times with 1 μs (microsecond) resolution. 

On Figure 6 the configuration with prescaler and period values is shown. TIM2 peripheral 

timer clock is configured to 108 MHz. Prescaler value for this timer is set to 107 (timer 

clock is actually prescaled by 107 + 1 in this case)  to get a timer period of 1 μs. The 
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period variable in timer configuration is set to 1999999999 which equals 2000 seconds. 

This means the timer counter is counting for 2000 seconds and makes an incrementation 

after every 1 μs. If 2000 seconds is reached the counter resets its value to 0 and starts 

incrementing again. 2000 second period is long enough for even track testing. 1 μs 

resolution is chosen based on current task execution frequencies to get meaningful data 

and the fact that jitter analysis results are expected to be in the microsecond range. 

TIM_HandleTypeDef htim2; 

htim2.Instance = TIM2; 

htim2.Init.Prescaler = 107; 

htim2.Init.CounterMode = TIM_COUNTERMODE_UP; 

htim2.Init.Period = 1999999999; 

htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; 

htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; 

if (HAL_TIM_PWM_Init(&htim2) != HAL_OK) 

{ 

Error_Handler(); 

} 

Figure 6. Configuring microcontroller’s high resolution timer peripheral. 

3.4.1 Acquiring test data 

The data was measured by capturing timer counter values at desired program locations in 

program code. To get current counter values HAL (Hardware Abstraction Layer) driver’s 

timer function was used, which returned counter’s current value. Functions to capture the 

current value were created and called before and after execution of the task under 

measurement. These functions are shown on Figure 7. 

void set_bm1_start() { 

 BM1_start = __HAL_TIM_GET_COUNTER(&htim2); 

} 

void set_bm1_end() { 

 BM1_end = __HAL_TIM_GET_COUNTER(&htim2); 

} 

int get_bm1_start() { 

 return BM1_start; 

} 

int get_bm1_end() { 

 return BM1_end; 

} 

Figure 7. Functions for capturing timer counter current value. 

Data was gathered with the help of vehicle’s data logger. Captured counter values were 

sent to formula car’s main CAN bus for logging. Data logger’s configuration was 
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modified to accommodate new variables. The raw testing data presenting timer counter 

values as seen in data logger’s computer software is depicted on Figure 8. After testing 

session suitable timeframe of necessary data and timestamps was exported as excel 

document. Further analysis was done in excel. 

To complement high resolution timer measurement, some of the measured values were 

additionally validated by measuring with an oscilloscope HAMEG HMO 3524 [12]. 

However, this could not be done in case of track driving. 

3.5 Analysis results 

Previous ECU’s program code has main functions which are called by the timing system 

in program’s int main(void) function. These functions all serve their own purpose, 

whether it be controlling systems connected to ECU, calculating control system setpoints 

or reading and processing ADC (Analog Digital Converter) channels’ input signal values. 

Primary target of testing was to determine time required for running each program code 

function (further referred to as a task). Based on running times task execution analysis 

was made together with WCET and jitter analysis for control system. 

 

Figure 8. Raw timer counter data in data logger software. 
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3.5.1 Task execution time 

After analysing data in excel it was clear that control system task takes the longest time 

to run which can be seen on Figure 9. For this reason, other functions were added together 

and depicted as one bar. For every task minimum, average, median and maximum 

execution times were found. In case of maximum column, longest execution times of 

every task were added on top of each other regardless of the timestamp they were taken 

because the intention is to determine the worst possible situation. 

Derived from the maximum column on Figure 9, in worst case the whole program 

iteration could take 1694 μs, which means iteration computation frequency of 

approximately 590 Hz. This could be safe when using previous ECU’s control system 

execution frequency of 200 Hz, but it is quite close to potential 500 Hz execution 

frequency of new improved ECU’s expected performance, without much room for 

reserve. Considering remarkable fluctuations in control system execution times and 

possible increased performance need caused by further development, providing higher 

safe upper bound estimation is essential [9, p. 4]. 

 

Figure 9. Task execution times on the previous ECU. 
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Execution times of other tasks excluding control system can be seen on Figure 10. It 

seems tx_can and rx_can take the longest to run when compared to other tasks. In 

maximum possible conditions other tasks can play a significant role in execution time of 

whole iteration, but in minimum, average, and median cases other functions do not affect 

program iteration that much. 

3.5.2 WCET analysis of control system 

To give a good overview of WCET and BCET the graph seen on Figure 11 was created. 

This graph shows the distribution of execution times for control system. The horizontal 

axis is for task execution time in microseconds and vertical axis shows how many times 

a certain execution time has occurred. This graph also gives an understanding of average 

execution times of certain task. In this case average execution times of control system are 

from 1040 - 1100 μs. The BCET is 776 μs and WCET 1140 μs. It seems that in some 

conditions control system execution times are also lower in the range of 810 – 890 μs. 

This could be due to control system not using certain sensor data in its calculations during 

those iterations. 

 

Figure 10. Task execution times without control system on the previous ECU. 
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3.5.3 Scheduling jitter analysis of control system 

In previous FEST20 ECU control system was a periodic task with execution frequency 

of 200 Hz which means that in ideal case the task should start processing after every 5000 

μs. This would mean there is no scheduling jitter, but in practice there are deviations in 

the execution starting times. Plot on Figure 12 depicts scheduling jitter analysis of 1000 

task instances. The green line indicates the ideal instance starting time from last instance 

execution. Red dots demonstrate current task instance’s starting time from last execution. 

The jitter of one instance is the difference between current instance’s starting time and 

ideal (nominal) starting time i.e., if current instance’s starting time is 5025 μs, it means 

that 25 μs is the jitter in that case because 5000 μs is the ideal start time. 

For a hard real-time operating system, the jitter should typically be from some 

microseconds to a few tens on microseconds as stated in this article [11, p. 10]. From the 

graph on Figure 12 it can be seen that many task instances have jitter above 30 μs and 

some abnormal instances even have in the range of 125 – 185 μs. Those can arise in a 

situation where ECU receives CAN bus messages due to interrupts and therefore executes 

message processing functions before handling control system task. Maximum deviation 

over the nominal period time is 185 μs and under nominal -3 μs. This means the worst-

case jitter for control system task execution is 188 μs which is quite significant and can 

affect system performance. This is the result of using sequential non-prioritised 

 

Figure 11. Distribution of control system execution times. 
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scheduling, implementing RTOS could be a solution for this problem and should decrease 

the unwanted jitter. 

 

 

Figure 12. Scheduling jitter of control system – task instance starting time deviations from previous ideal 

(nominal) task starting time. 
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4 Real-time operating system implementation 

Considering relatively high jitter of control system task, which was found with analysis 

in last chapter, the implementation of real-time operating system (RTOS) is essential. To 

find a suitable solution, many RTOSs had to be compared. Following sections are 

describing the selection process and final implementation on ECU. 

4.1 Real-time operating system background 

This section gives an understanding of what real-time operating system is and what are 

the features and functionality it provides. 

4.1.1 Embedded systems architecture 

An operating system manages different resources of hardware such as memory and 

processors. A simplified visualisation on Figure 13 shows hardware and software layers 

of an embedded system. On the left there is a basic system without operating system, but 

for more complex systems an operating system is typically used as depicted on right side 

on Figure 13. Operating system manages processor and resources to fulfil the application 

software. Many embedded systems also have hardware abstraction layer (HAL). This 

additional layer is between hardware and software layers. It is convenient because porting 

the application’s source code in-between different hardware platforms becomes easier 

[13]. 

 

Figure 13. Overview of an embedded system’s hardware and software layers [13]. 
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4.1.2 Real-time operating system overview 

Real-time operating systems are typically used in applications which have more complex 

timing requirements. The aim for an RTOS is to meet strict deadlines of task execution 

in a program in order for time- and safety-critical tasks to be reliable. Critical real-time 

systems, also referred to as hard real-time systems, have very strict timing deadlines and 

if these are not met, this results in the system failure and possible damage. Additionally, 

there are firm and soft real-time systems. Firm real-time systems can allow a few missed 

deadlines and would not result in a failure right away. Soft real-time systems do not fail 

completely if deadlines are not met, but the system performance will degrade [14, pp. 40-

41]. 

RTOSs provide execution scheduling which essentially is used for timing of tasks. 

Widely used scheduling method is priority-based pre-emptive scheduling, which tends to 

be applied in safety- and time-critical systems. Pre-emption is the ability of scheduler to 

stop currently running task in order to start handling a task with higher priority. This kind 

of feature enables the application to always run the most important and urgent task. For 

pre-emption to work RTOSs also provide various priority levels for tasks [14, p. 42]. 

These are used to divide tasks into groups based on how critical they are. 

In addition to task management and scheduling RTOSs typically provide the following 

features [15, pp. 143-144]: 

▪ Memory management 

▪ Task communication and synchronisation (with semaphores) 

▪ Timers support 

▪ Interrupt service routines support 

A lot of embedded systems’ processing units have only one core. This means that there 

can be only one process running at a time, whereas if a CPU has more cores, it means that 

many parallel threads can run simultaneously. In simpler systems, functions are typically 

executed sequentially. However, RTOS’s scheduler provides the illusion of multi-tasking 

even if the system has only one core by rapidly switching between tasks [16]. Following 

Figure 14 illustrates the multi-tasking behaviour. 
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4.2 Choice of real-time operating system 

Some RTOSs are focused towards different fields and therefore have varying features, 

making the comparison more complicated. Nevertheless, here are some universal criteria 

that could be considered [18, pp. 33-34]: 

▪ Memory footprint – RAM and ROM usage 

▪ Performance – context-switching 

▪ Processor architecture support 

▪ Safety-criticality support 

▪ Real-time capability 

▪ Language support 

▪ Documentation, product support 

▪ Debugging tools 

▪ Operating system awareness support in IDE 

▪ Source and object code distribution 

▪ Licensing scheme 

▪ API richness 

▪ Vendor’s reputation 

4.2.1 Alternative real-time operating systems 

Nowadays many RTOS providers exist who concentrate in various areas like automotive, 

industrial, IoT (Internet of Things), medical, avionics, consumer electronics. All RTOSs 

differ in functionality and performance. Some have quicker context-switching, smaller 

memory footprints and better overall performance, but at the same time lack technical 

 

Figure 14. RTOS scheduler rapidly switching between tasks to create multi-tasking effect [17]. 
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support, documentation or support a very limited amount of processor architectures. 

Following is a list of some available RTOSs at the moment: 

1. FreeRTOS – Amazon Web Services [19] 

2. ThreadX (AzureRTOS) – Microsoft, Express logic [20] 

3. embOS – SEGGER [21] 

4. Keil RTX – ARM [22] 

5. SafeRTOS – Wittenstein [23] 

6. Zephyr – Zephyr Project [24] 

7. QNX Neutrino RTOS – QNX, Blackberry [25] 

4.2.2 Comparison of real-time operating systems 

From the initial list four most relevant RTOSs were selected mostly based on how much 

documentation was available. More detailed comparison of these can be seen in Table 1. 

 FreeRTOS ThreadX 

(AzureRTOS) 

embOS Keil RTX 

Type RTOS RTOS RTOS RTOS 

Provider 

(Company) 

Amazon Web 

Services 

Microsoft 

(Express logic) 

SEGGER Arm Limited 

License fees No No Yes No 

Domain Embedded Embedded Embedded Embedded 

Language C C C C 

Processor 

architecture 

support 

ARM Cortex-M 

(and others) 

ARM Cortex-

M (and others) 

ARM Cortex-

M (and others) 

ARM Cortex-

M (and others) 

Compiler support Arm, GCC, IAR 

compiler 

Arm, GCC, 

IAR compiler 

Arm, GCC, 

IAR compiler 

Arm, GCC, 

IAR compiler 

Atollic TrueStudio 

kernel awareness 

Yes Yes Yes N/A 

Scheduler Pre-emptive, 

Round-robin, 

Co-operative 

Pre-emptive, 

Co-operative 

Pre-emptive, 

Round-Robin 

Pre-emptive, 

Round-robin, 

Co-operative 

Table 1. Comparison table for FreeRTOS, ThreadX, embOS and Keil RTX [18, p. 36], [20], [21], [22], 

[26], [27], [28], [29], [30], [31]. 
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 FreeRTOS ThreadX 

(AzureRTOS) 

embOS Keil RTX 

Memory footprint Kernel 5-10 kB, 

Scheduler 236 

bytes RAM 

Instruction area 

2 kB, 

1 kB RAM 

Code space 

~1.7 kB, RAM 

usage < 100 B 

Code space < 4 

kB, 

Kernel 428 

bytes (RAM) 

Context switching  Context 

switching some 

microseconds 

0.4 μs @ 

200MHz 

1.5 μs @ 

200MHz 

2.6 μs @ 

72MHz 

Safety-criticality 

support 

Possibility to 

switch to 

SafeRTOS [23] 

Variety of 

safety-

standards 

Functional 

safety 

certifications 

Safe and secure 

operation 

Ease of Use Simple and 

intuitive, easy-

to-use API 

Intuitive Easy-to-use 

API 

RTX5 aware 

tools supported 

in µVision IDE 

Documentation, 

forum support 

Very good 

(online 

document) 

Good 

(online 

document) 

Good 

(online 

document) 

Average 

(online web 

pages) 

     

From comparison in Table 1 most of the compared RTOSs have similar features and 

provide all basic functions such as task creation, scheduling based on priority and memory 

management. They all support C language and GCC (GNU Compiler Collection) 

compiler, thus can be used with Atollic TrueStudio. In addition, these RTOSs can be used 

with ECU’s MCU processor architecture. They all support priority based pre-emptive 

scheduling, which is necessary to fulfil current project’s purpose. Most of the providers 

claim their RTOS to be easily ported and used. Main differences between these operating 

systems are memory footprint and task switching times, which affect performance. 

Memory footprint size is not a huge concern for current project, because memory 

resources of used MCU are not very limited. The microcontroller used on ECU has 512 

kB of SRAM and 2048 kB of flash memory as seen from datasheet [6, p. 17]. 

 It can be seen that embOS [21] is not a free-to-use RTOS, thus this could be excluded 

from the selection. Keil RTX [22] seems to be most complicated when it comes to porting 

and implementation, there is not much information on whether Atollic TrueStudio [31] 

has any awareness support. Additionally, documentation for that RTOS seems to be not 

that good compared to others. Therefore, Keil RTX is not going to be selected. 
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ThreadX [20] has good performance, as the context switching times are very small. 

Provider claims to have good determinism and safety-criticality support as well. 

Compared to FreeRTOS [19] it tends to be a bit more complex and seems not to have so 

good forum support. FreeRTOS on the other hand has a very large community, great 

documentation, and a lot of examples available. Additional advantage is that 

STM32CubeMX [32] has a built-in support for enabling the FreeRTOS middleware. 

Based on that the chosen RTOS going to be used on ECU is FreeRTOS. 

4.3 Implementation 

4.3.1 Task distribution 

Most of the tasks in ECU’s software are periodic, which means they have certain 

frequency of execution. The frequencies for each task come from the functionality 

requirements of that task and are kept the same as they were for previous ECU. With the 

use of an RTOS, each task can be assigned a priority level. These levels are defined by 

task’s criticality and importance. For example, the control_system task is responsible for 

calculating control system setpoints, thus it is the most important task in ECU and has to 

occur with the specified frequency for the formula car to perform as expected. 

ECU’s application code has one aperiodic task which is running in the background most 

of the time. This task is responsible for processing received information form CAN bus 

and updating variables. Periodic tasks with their assigned priority levels and execution 

frequencies can be seen in Table 2. 
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Table 2. Source code periodic tasks’ priorities and execution frequencies. 

Task name Priority Frequency 

control_system 0 200 Hz 

heartbeat_sens 1 100 Hz 

heartbeat_ams 1 100 Hz 

heartbeat_inc 1 100 Hz 

drs_control 2 500 Hz 

gss_status 2 200 Hz 

heartbeat_gss 2 100 Hz 

heartbeat_imu 2 100 Hz 

tx_can 2 100 Hz 

buzzer_control 3 100 Hz 

adc_conv 3 100 Hz 

pump_control 4 1 Hz 

fan_control 4 1 Hz 

odometry 4 100 Hz 

toggle_led 5 10 Hz 

   

4.3.2 STM32CubeMX configuration 

STM32CubeMX is a good tool produced by STMicroelectronics which can be used for 

configuring the chosen microcontroller. It shows all MCU pins and available functionality 

under each pin. There is a menu which has all required configuration options, and these 

can be used to initialise MCU functionality and peripherals as necessary. The software 

also has clock configuration possibility and middleware configuration such as FreeRTOS. 

After configuration C code can be generated, which includes drivers, libraries, selected 

IDE project files and all required initialisation code for peripherals and system [32]. 

Besides choosing task priorities, configuration of RTOS requires a stack size to be 

determined for each task. Task’s stack size is an important parameter because if it is too 

small the system can crash. To get some kind of overview of how much stack functions 

require, a compiler option -fstack-usage was added to program code project’s compiler 

settings in Atollic TrueStudio. Now after compiling the project additional files were 

generated into project’s debug folder, which included the information about maximum 
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amount of stack required for each function in the whole project [33]. An example of one 

such generated file can be seen on Figure 15. 

The number after function name on Figure 15 indicates the required stack size of the 

corresponding function in bytes. This information was used to figure out initial stack sizes 

for tasks. Tasks typically include many different functions therefore the stack sizes 

needed to be summarised to get an indication. Following Figure 16 shows how tasks were 

configured in STM32CubeMX interface indicating priorities and stack sizes. 

4.3.3 Timing of tasks 

Most of the tasks in ECU’s source code have periodic nature, it means they are called 

with a certain interval. A default FreeRTOS task is idle and therefore running 

continuously in the background only to be pre-empted by another higher priority task. To 

achieve periodic execution, FreeRTOS API provides delay functions such as 

vTaskDelayUntil() and vTaskDelay(). Difference between these functions is the way 

delay is specified. vTaskDelay() creates a relative delay from the moment the function 

itself is called, but vTaskDelayUntil() creates an absolute delay time after which task can 

unblock and execute. This means using vTaskDelayUntil() function establishes a constant 

execution rate for a periodic task and interruptions or pre-emption cannot alter time period 

length between tasks as it could be with vTaskDelay() [19, pp. 48-51]. 

 

Figure 15. Generated file containing information about functions stack size. 

 

Figure 16. RTOS tasks configuration view in STM32CubeMX. 
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For this reason timing of periodic tasks in ECU’s source code is done using 

vTaskDelayUntil() function which could contribute to achieving smaller jitter. Example 

of how this function is used in one of ECU’s tasks is shown on Figure 17. 

void adc_conv_start(void const * argument) 

{ 

/* USER CODE BEGIN adc_conv_start */ 

 TickType_t xLastWakeTime; 

 const TickType_t xFrequency = 10; // 100 Hz 

 xLastWakeTime = xTaskGetTickCount(); 

/* Infinite loop */ 

for(;;) 

{ 

  vTaskDelayUntil(&xLastWakeTime, xFrequency); 

  adc_process(); 

osDelay(1); 

} 

/* USER CODE END adc_conv_start */ 

} 

Figure 17. Example of timing of periodic tasks. 

4.3.4 FreeRTOS scheduling overview 

FreeRTOS has various task states which are used for scheduling tasks. Each task can be 

in either of the following states [27, pp. 65-66]: 

▪ Running state – task being in the running state is the task, which is currently 

executed, meaning it uses the processor. 

▪ Blocked state – task being in the blocked state is currently not running and is 

waiting for an event to happen to get into ready state. The event can be for example 

an absolute delay period ending. Blocked tasks also have a timeout period after 

which they are unblocked to move into ready state. 

▪ Suspended state – task being in suspended state is currently not running and also 

not available for the scheduler. Task can only enter and exit suspended state with 

certain function calls. 

▪ Ready state – task being in a ready state is not currently running but is ready to 

begin execution waiting for scheduler. 

These task states with possible transitions can be seen on Figure 18. Majority of tasks in 

ECU are scheduled by using a delay function as covered in previous section. The 

vTaskDelayUntil() function puts a task in blocked state after it has finished its execution 
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[19, p. 50]. The task waits in blocked state until delay time period expires and then 

transitions into ready state to be executed again. This cycle is depicted on Figure 18 with 

bold lines. 

 

 

 

Figure 18. Real-time operating system possible task states and transitions between them [27, p. 71]. 
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5 Control System modifications 

All of the control system input variables are essential to calculate output setpoints which 

are sent to motor controller. The input variables are updated in ECU before every control 

system task execution and all the calculations are performed during one iteration. 

Simulink model of control system has many different sections that serve individual 

purpose as seen on Figure 3. Sections divide into blocks which are interconnected by 

different signals that essentially are the variables used in the whole model. Blocks contain 

function-blocks and formulas, which use the signal variables. 

FEST20 control system uses a bus system in Simulink model, which combines many 

separate signals into different buses [1]. After generating C language source code these 

signal buses appear in code as structures containing Simulink model signals as data 

variables. Some structures contain other structures inside of them. All structures 

consisting of setpoints data contain this data for every motor. Additionally, Embedded 

Coder generates many auxiliary variables, which are used in the process of calculating 

setpoints. 

Majority of used variables are of type double, which is a 64-bit data type. This data type 

has a floating-point format. Another floating-point format data type is known as float, but 

this type stores 32 bits [34]. Compared to double type float takes two times less memory 

space. It has single precision whereas double has double precision which means that a 

variable of type double could have two times more precision. On the other hand, 

processing of float type variables in a program takes less time, which makes the whole 

application run faster [35, p. 24]. 

Additionally, there is the int data type, which has fixed-point format. This is one of the 

most basic data types used in embedded systems software. This type stores 32-bit integer. 

Processing int data types is also faster than processing double because operations take 

less CPU cycles [35, p. 6]. Following sections are covering information about using int 

or float types instead of double to improve control system task execution times. 
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5.1 Floating-point unit 

STM32F7 microcontrollers host an FPU which is implemented in the MCU’s hardware. 

FPU helps to improve performance when it comes to computing with floating-point 

variables such as float or double. Some STMicroelectronics’ MCUs have only SP-FPU 

meaning that calculations with float data type could be made quicker. But to also gain 

calculation speed with double variables, hardware DP-FPU is needed. There are 

alternative software algorithms which try to imitate hardware FPU, but these do not have 

the same effect on performance, because hardware implementation does operations with 

less CPU cycles [35]. 

5.1.1 Julia set testing 

Julia set is a complementary set, which can be used to calculate a mathematical fractal 

[35, p. 18]. Data types used for calculation can be changed and therefore this set can be 

used to compare MCU’s performance with different data types. Julia set generation 

function can be seen on Appendix 2. For testing purposes this function has been slightly 

modified. Definitions IMG_CONSTANT and REAL_CONSTANT have been replaced with 

a floating-point number and the data buffer is declared inside the function. These 

modifications do not affect the outcome in this sense, that this test is only about how long 

it takes for the MCU to execute one iteration of this function. Modified Julia set function 

can be seen on Figure 19. 
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void GenerateJulia_fpu(uint16_t size_x, uint16_t size_y, uint16_t 
offset_x, uint16_t offset_y, uint16_t zoom) 

{ 

 float tmp1, tmp2; 

 float num_real, num_img; 

 float radius; 

 uint8_t i; 

 uint16_t x,y; 

 uint8_t buffer[115680]; 

 for (y=0; y<size_y; y++) 

 { 

  for (x=0; x<size_x; x++) 

  { 

   num_real = y - offset_y; 

   num_real = num_real / zoom; 

   num_img = x - offset_x; 

   num_img = num_img / zoom; 

   i=0; 

   radius = 0; 

   while ((i<ITERATION-1) && (radius < 4)) 

   { 

    tmp1 = num_real * num_real; 

    tmp2 = num_img * num_img; 

    num_img = 2*num_real*num_img + 3.14; 

    num_real = tmp1 - tmp2 + 3.14; 

    radius = tmp1 + tmp2; 

    i++; 

   } 

   buffer[x+y*size_x] = i; 

  } 

 } 

 HAL_GPIO_TogglePin(LED1_GPIO_Port, LED1_Pin); 

} 

Figure 19. Modified Julia set function used to measure execution times with different data types. 

The GenerateJulia_fpu() function is called in the endless while loop and there are no 

more functions in the loop. An LED toggling function has been added to the end of the 

Julia set function. This means every time the function completes, an LED on ECU 

changes its state. Voltage on LED’s anode terminal has been measured with oscilloscope 

to determine the time differences between LED state changes. Plot on Figure 20 shows 

oscilloscope display view of LED states measurement. That measurement corresponds to 

the test set, which used float type. 
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Six different test sets were carried out. In these sets DP-FPU was used with double,  float 

and uint32_t types, then SP-FPU with float and uint32_t and lastly hardware FPU 

disabled with uint32_t data type. Activation of FPU was changed from compiler 

configuration options. Used data types were changed for variables tmp1, tmp2, num_real, 

num_img and radius. Results are shown in Table 3. As seen even if using DP-FPU to 

calculate double types, it takes still the longest to execute the whole function. On the other 

hand, using float has considerable improvement in execution time. Using uint32_t gives 

further improvements so this could be the fastest, but with integers there is a greater loss 

in precision. 

Table 3. Test results of modified Julia set calculation times. 

Test no. FPU Data type Execution 

time (ms) 

Test 1 DP-FPU double 424 

Test 2 DP-FPU float 360 

Test 3 DP-FPU uint32_t 330 

Test 4 SP-FPU float 360 

Test 5 SP-FPU uint32_t 330 

Test 6 None uint32_t 330 

    

 

Figure 20. LED state changes after each Julia set calculation seen on oscilloscope display. 
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5.2 Control system model optimisation 

One way to improve control system task execution times would be to optimise the used 

data types in the model. The tests carried out in last section using Julia set calculation 

function [35] showed promising results with float and uint32_t data types providing 

significantly quicker execution. Based on that the double data types used for control 

system signals are replaced. 

Control system has used many double variables in the process of calculating setpoints. 

After setpoint data is ready, ECU passes these variables on to functions which are 

responsible for storing them into CAN transmission mailboxes. Mailboxes store up to 

three messages before transmitting them onto CAN bus. Standard CAN message contains 

64 bits or 8 bytes of payload data [36, p. 13]. These bytes are transmitted as integers 

which means that the setpoint variables are casted from double type to either unsigned or 

signed integer. This also means that the calculated values are rounded. 

Therefore it could be possible to even use integer type variables in control system model 

which would probably make the best performance. Disadvantage comes from the fact that 

if integers are used for a lot of consecutive calculations the end result may differ quite a 

bit because these variables do not have decimal point. Using integers would require a 

system, where every variable is multiplied by powers of 10 during calculations and the 

end result is divided accordingly to gain in precision. Easier would be to use float types, 

which have single-precision and would provide more precise end results for consecutive 

calculations. Additionally the task execution time difference from testing results in Table 

3 between uint32_t and float is not so remarkable. 

5.2.1 Editing data types in Simulink 

Simulink environment has a tool called bus editor. This editor lists all buses which are 

used in the project and indicates the signals which are inside of those buses. Parameters 

of buses and signals can be configured easily by using this interface. An example on 

Figure 21 is shown where data types of two signals are changed from double into single 

(float). 

It is better for other data types and block outputs in the model to have inherited data type, 

because this can automatically assign their type based on input. Furthermore, in 
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Embedded coder under code generation settings, there is an option to choose a default 

data type for underspecified type signals to be of type single. 

 

 

Figure 21. Signal variables data type configuration in Simulink bus editor. 
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6 Analysis of new solution 

This section is covering the analysis of the new ECU solution. Its program code is based 

on RTOS and control system data types are optimised. The ECU hardware platform has 

irrelevant changes in case of testing which do not affect the performance. Formula car in 

which the ECU is tested is the same as previously. 

6.1 Results achieved 

Same data was gathered for newly implemented ECU to be able to compare both solutions 

and find whether new solution has advanced as expected. 

6.1.1 Task execution time of optimised control system 

This analysis was done with control system using float data types. Other tasks are added 

together and depicted as one grey column. Execution times of other tasks are similar to 

previous analysis on Figure 9. This seems correct as these tasks were not optimised. As 

seen from Figure 22 worst-case execution time for whole program iteration could be 1252 

μs. This corresponds to approximately 799 Hz of iteration computation frequency, which 

is remarkably better compared to calculation frequency with non-optimised control 

system. This result leaves plenty of reserve for control system task to be executed with 

500 Hz. Additionally, from Figure 22 it seems that the deviation between minimum and 

maximum execution times has reduced, which means more consistent execution. 
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6.1.2 WCET analysis of optimised control system 

WCET analysis was done based on similar amount of sample execution occurrences as 

with previous system. Plot on Figure 23 gives overview of the distribution of execution 

times. Again it can be seen that execution times are more concentrated towards the 

average, so difference from minimum to maximum execution time is smaller with the 

new solution. There is no distinctive lower range of running times. Average execution 

time range of control systems is about 635 – 685 μs, this is almost the same as before. 

BCET for control system is 562 μs and WCET is 727 μs, which is significantly better 

than the previous system without RTOS and using double types. 

 

Figure 22. Task execution times with optimised control system. 
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6.1.3 Scheduling jitter of control system with RTOS 

Plot on Figure 24 visualises scheduling jitter analysis of 1000 control system task 

instances. Vertical axis upper and lower bounds are kept the same as used previously on 

Figure 12 to better indicate the difference that occurs when control system task is 

scheduled by an RTOS. Graph on Figure 24 shows that most task instances have minor 

jitter and are quite close to the green line indicating ideal (nominal) execution period 

ranging from -5 to 5 μs. Some instances are under the nominal line in the range of -12 to 

-8 μs, this means that in those cases tasks execute a little bit earlier than ideal, which does 

not create a problem as the differences are very small. Maximum deviation which goes 

over the nominal execution period time is 13 μs and biggest deviation under nominal is -

14 μs. Accordingly the worst-case jitter for control system task execution with RTOS 

implemented is 27 μs which is notably better in contrast with previously used timing 

system not employing RTOS. 

 

Figure 23. Control system execution times using float data type. 
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6.2 Comparison of both solutions 

This section brings out concrete differences between the two ECU solutions. Firstly task 

execution time of control system is compared, following is the difference between control 

system task scheduling jitter. 

6.2.1 Control system task execution time comparison 

Measurements were carried out with using both double and float data types in otherwise 

similar conditions. Testing set using double was the same as for previous system testing, 

but now RTOS was used for scheduling. Interestingly, the deviation between minimum 

and maximum running times was smaller even for double types. Similar behaviour goes 

for float testing set. Table 4 provides speed increase percentage from double to float and 

it is safe to say that this optimisation had valuable effects on the performance of ECU. 

Table 4. Control system execution times with using double or float comparison. 

 Execution time [ms] 

 Minimum Average Median Maximum 

double 931 1049 1034 1193 

float 562 660 658 727 

Speed increase 39.63% 37.12% 36.36% 39.06% 

 

 

Figure 24. Scheduling jitter of control system with RTOS – task instance starting time deviations from 

previous ideal (nominal) task starting time. 
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6.2.2 Scheduling jitter comparison 

Finally previously covered scheduling jitter analysis results have been depicted on the 

same graph seen on Figure 25. RTOS scheduling is indicated with green dots and self-

developed variant with red dots. With its small deviations RTOS scheduling seems a lot 

more consistent. It tends to start tasks little bit before the nominal period from last ideal 

execution, whereas self-developed timing system executes tasks after deadline. Self-

developed system has more variations in individual task’s jitter and even some serious 

deviations which should not be present in a hard real-time system. RTOS scheduling 

clearly has smaller worst-case jitter. 

 

 

Figure 25. Control system scheduling jitter – self-developed vs RTOS scheduling. 
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7 Summary 

Current thesis was presented in order to develop enhanced version of Electronic Control 

Unit which was used for controlling the motors of Formula Student Team Tallinn’s 

formula car FEST20. The software of previous ECU lacked time-criticality and ability to 

run tasks concurrently based on their priorities. Furthermore, emerged interest in raising 

control system task execution rate for testing purposes was complicated with previous 

ECU because of relatively long and varying control system execution times. 

This work tackles with providing solutions to aforementioned problems. Firstly previous 

ECU is analysed to determine system performance and define problematic areas. Next 

sections introduce solutions which are the basis for developing new improved ECU 

solution. In the end comparison between both ECU solutions is conducted to underline 

benefits gained from the new system and get an overview of system’s performance. 

Previously used self-developed timing system is replaced by a real-time operating system, 

which enables prioritisation of tasks and pre-emptive scheduling. It refines time-

criticality of the whole system. To achieve greater control system execution rates, the 

control system model is optimised. Analysis of both ECU solutions determine task 

execution times, WCET and scheduling jitter. 

As a result of this thesis a refined version of ECU has been implemented. Important and 

critical tasks have higher priorities and can pre-empt other less important tasks. Task 

scheduling jitter is smaller thus providing more reliable operation. Control system 

execution times are shorter, meaning higher computation rate could be tested. 

Further work could be to decrease the deviation between minimum and maximum 

execution times of control system to improve system determinism and predictability. 

Additionally higher execution rate tests can be carried out. 
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Appendix 2 – C language function to calculate Julia set 

This function snippet originates from STMicroelectronics’ document [35]. 

 


