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1 Introduction
The world’s oceans contain 96% of the world’s water [6], play a critical role in regulatingglobal climate, and serve as a vast, connected ecosystem for flora and fauna. Additionally,around 10% of the Earth’s population (more than 600Million people) live in coastal areasthat are less than 10m above sea level [7].

Monitoring and collecting data about underwater environments is crucial to improveour understanding of the complex ecosystems that have evolved therein, and would bol-ster conservation efforts. Notwithstanding its importance, large parts of the underwaterenvironment are still unexplored, mostly due to the difficulty and danger imposed on hu-man observers. The need for artificial air supply and pressure regulation lead to very timelimited and high cost operation, nomatter if divers, or crewed submersibles, are involved.
Recent decades have seen the development of autonomous systems inmanyfields. Forunderwater applications, tethered unmanned vehicles called remotely operated vehicles(ROVs) have enabled operations without placing human workers in danger, while retain-ing the benefit of extended operational times and increased workspace regarding depth.However, an extensive infrastructure, namely a support vessel and highly specialised op-erators, are needed to effectively use ROVs. Additionally, the spatial range of the vehiclesis limited by the tether connecting it to the support vessel. Long range exploration or themonitoring of confined or highly unstructured spaces can be difficult or impossible withROVs.
To decrease the dependency on costly external infrastructure and to increase spatialoperation range, autonomous underwater vehicles (AUVs) have been introduced. AUVsreduce direct human involvement and can significantly lower operational costs while in-creasing spatial range. However, the increased autonomy and spatial range come at thecost of decreased temporal range, because the vehicle’s energy supply has to be self-sufficient. Additionally, reliable and extensive autonomy is crucial for the successful ap-plication of AUVs, because outside intervention is close to impossible in most applicationscenarios.
Autonomy for robots can be loosely defined as the capability to perceive the environ-ment, make decisions based on those perceptions, and to act on such decisions withoutthe need for external guidance. Those three capabilities can be summarised as sense,think and act [8]. Thepossible relationships between those elements are defined in roboticparadigms, which describe the nature of a robot’s autonomy. The work presented in thisthesis was based on the classic hierarchical paradigm [9], where the robot senses theworld, forms a goal for the next action and then enacts the required actuation for the givenaction. For underwater vehicles, most autonomy software architectures mirror this struc-ture by encoding observation, planning and control modules, which can be parallelizedand act collaboratively as shown by Palomeras et. al in their COLA2 framework [10]. Thevehicles used in the work presented in this thesis will use a similar software architecture.An abstraction of such an autonomy structure is shown in Figure 1. To represent a givenautonomy framework with higher granularity, the sense element can be further dividedinto signal acquisition and processing, tightly linked with a respective sensing modality,and into a state estimation component that gathers and fuses sensing data from all avail-able sources to construct a coherent global world model for the robot. State estimationand sensor fusion is typically facilitated by some variant of a Bayesian filter. Those filtersare recursive estimators, that try to infer a probability density function based on incomingsensor data and a mathematical process model if available. The most common variantsare Kalman and Particle filters [11].
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The think element can be divided into a higher level decision making routine, a midlevel planning component and a controller that interfaces with the act element to enablethe necessary actuations. In the context of underwater robotics the high level decisionmaking component is very often a set of rigid behaviours based on the worldmodel of therobot. The transition from a limited and rigid set of behaviours to more flexible, adaptiveand self-dependent decisions is still an open field of research. The planning component formobile robotics mostly concerns itself with the creation of waypoints in multidimensionalspace connected by a path or smooth time parametrized functions (i.e. trajectories) thatdescribe a robot’s pose and time derivatives (velocity, acceleration, etc.). These are tightlylinked to high level objectives identified in the decision making layer. Usually paths ortrajectories are created to make the robot cover a specific area or lead the robot to aspecific point in space. Additionally, obstacle avoidance, various optimization criteria andplatform specific constraints play an important role in shaping the paths or trajectoriesgenerated by the planning module.
For traditional AUVs, high level decision making and planning have received an in-creased focus in recent years, while for sensing, control and actuation solid baseline so-lutions have already been developed. However, traditional AUVs tend to be large, expen-sive and require a certain infrastructure for their deployment. While such features tendto play a smaller role for end-users in the military and industrial sector, as well as forbig scientific institutions, other potential costumers remain underserved and importantuse-cases remain unexplored. In recent years attempts have been made to develop smallscale low-cost AUVs. Such vehicles have been designed for various applications, such asthe inspection of nuclear facilities [12], deployments in swarms [13], or the survey of polarregions where ease of deployment is crucial [14]. Additionally, the usage of more afford-able and easy to deploy vehicles could impact the performance for blue growth industriessuch as algae farms. Lastly, environmental monitoring for marine sciences could be mademuch more accessible on various government levels and for smaller scientific institutions[15, 16].
On the general AUV market, the segment of archaeology and exploration is projectedto have the largest growth over the next years [17]. While this market growth is still mainlyattributed to traditional AUVs, specific archaeological sites and exploration targets likeshipwrecks or sea caverns are high risk environments in confined spaces, that requireagile, small and low-cost alternatives to traditional AUVs.
Traditional AUVs can be usually divided into two groups relative to their motion capa-bilities. The first and larger group constitutes slender streamlined AUVs that are optimizedfor speed and efficiency to conduct long rangemissions. However, they are usually under-actuated and thus lack maneuverability. The second group of AUVs is made up out ofhover style AUVs that are at least fully actuated and are used for inspection and manip-ulation missions. However, as a compromise to their agility they lack efficiency, speedand range. Recent focus has been on agile underactuated AUVs that have the potentialto bridge the gap between those two types of vehicles [18] and leverage advantages fromboth sides. Such capabilities would be specifically useful for several applications for theemerging class of small low-cost AUVs. However, the capacity of these vehicles, particu-larly with respect to state estimation, actuation design, and control, remains in question.The research presented in this thesis focuses on significant improvements to small, low-cost AUVs in each of these critical areas.
With a reduction in size and budget comes a reduction in available sensors for stateestimation and navigation, and the available sensors are of lesser quality. While attitudeestimation can bemaintained with reasonable quality [19], position or velocity estimation

14



becomes much more difficult, specifically in situations where vision is not a viable option.In addition to that, state-of-the-art positioning or velocity sensors send out high frequencyacoustic signals. Recent research suggests that certain high-frequency acoustic signalsmight have adverse effects on the surrounding fauna [20, 21]. Thus, sensors with novelsensing strategies have the potential to increase navigation performance and to decreasethe environmental impact of small low-cost AUVs. This can be specifically important if thevehicles are used in missions in which minimal invasive monitoring is desired.
Inspiration can be taken from aquatic animals, which have co-evolved with their en-vironment for millions of years. They often rely on the sensing of gradients of physicalquantities. The perception of those gradients is mostly passive, and has the potential tobe a promising role model for developing sensors with less environmental impact and asmaller energy consumption. The work presented in this thesis specifically considers thesensing of pressure gradients in combination with potential flow theory to infer quanti-ties related to fluid flow. Many attempts have been made to develop artificial sensingmodalities for such gradients [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, there is aclear lack of testing of the developed sensors in realistic field conditions. Some success-ful field applications in the context of environmental sensing with static probes have beenshown [32, 33, 34], but there is still no proof that such technologies are robust and reliableenough for mobile robotics applications in the field. The research presented in Chapter 2addresses this problem.
Additionally, potential research gaps remain in scenarios that require the AUV to be op-erated in a minimally invasive manner. Motor driven propellers as standard actuators forAUVs produce noise and cavitation with an unaccounted effect on the surrounding floraand fauna. Propellers can additionally affect the surrounding environment in a mannerthat could be detrimental to the functioning of sensors used in state estimation, like cam-eras or acoustics. Most aquatic animals utilize some sort of fin or flipper for propulsion. Asopposed to the rigid structure of traditional mechanical propulsors, bio-inspired actuatorscan be soft with a varying degree of compliance. Replacing conventional propellers withbio-inspired actuators can thus create vehicles which are safer to work with in the vicinityof divers or other living organisms, but also could reduce adverse interactions with theenvironment and living organisms. However, the introduction of soft bio-inspired actua-tors also adds complex nonlinear dynamics to an already nonlinear nominal system. Thisincreases the difficulty in appropriately controlling such vehicles. A wide variety of controlapproaches has been proposed for conventional AUVs, with a much smaller coverage forAUVs with bio-inspired propulsion. The research presented in Chapter 3 tries to leveragethe unique character of bio-inspired actuators and the idea of asymmetry in the controlaction to increase controllability of a sub-class of bio-inspired underwater vehicles.
The potential complexity of actuation, the desired agility and the underactuated natureof many small low-cost AUVs, lead to complex nonlinear motion dynamics. A high levelmotion control that takes those dynamics into account is therefore desirable. Usually, non-linear model-based control strategies can be employed to steer such complex systems todesired states [35]. However, such strategies often require high order derivatives of therobot’s pose, such as acceleration or jerk, which are usually difficult to measure. This gen-eral limitation across all mobile robotic platforms is amplified by the lack of sophisticatedsensing modalities for the vehicles that the work presented in this thesis focuses on. Theconcept of event-based control [36] has the potential to alleviate this problem by remov-ing the requirement for continuous real-time state feedback to the high level controller.Additionally, the underwater environment itself exhibits highly nonlinear dynamics andcan cause disturbances to the autonomous operation of AUVs. For successful field appli-
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Figure 1 – Research presented in this thesis in the context of robot autonomy. Each of the chapters
provides an attempt to answer one of the research questions, and describes contributions to a differ-
ent layer of the mobile robot autonomy framework. Each box briefly mentions main contributions,
which research question is addressed and which publications display the respective research.

cations, high level control approaches that can deal with uncertainty and disturbances arenecessary. Another problem for high level control comes with the requirement for agilemotion. This requirement necessitates the implementation of efficient and fast trajectorytracking, which is non-trivial for systems with complex dynamics. The exploitation of aproperty of dynamical systems that is called differential flatness [37] can significantly sim-plify the generation and tracking of viable trajectories. To deal with the above mentionedproblems, the work presented in this thesis therefore, proposes a new control strategythat tries to combine ideas from: event-based control, disturbance estimation as well astrajectory generation and tracking based on differentially flat motion dynamics. For sim-plicity, the proposed controller is restricted to movement in the horizontal plane but haspotential for extensions into more degrees of freedom (DOFs).
1.1 Research questions
To summarize, the overarching goal of the research presented in this thesis was the im-provement of autonomy for AUVs, with a focus on the class of small low cost underwaterrobots. Improved autonomy was achieved by designing and employing novel methodsand/or hardware for state estimation, actuation and control (see Figure 1). The subse-quent description of the research questions and related contributions reflect this three-fold division.

1) How can state estimation for small low-cost AUVs be improved and made morerobust for the application under field conditions?
2) Can asymmetric actuation increase maneuverability of AUVs using compliant bio-inspired actuators?
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3) How canmodel-based nonlinear controllers be augmented, to overcome limitationsrelated to unreliable state feedback and motion constraints of AUVs with complexdynamics?
Quantitative methods in conjunction with clearly defined performance metrics wereemployed to answer the listed research questions. Where logistically possible, field ex-periments were conducted to test performances under real world conditions. Otherwisesimulations where performed for proofs of concept, taking into account their limited ex-planatory power for real world applications.

1.2 Contributions
In the context of the above mentioned research questions the research described in thisthesis provides the following contributions:
Research question 1)

• The extension and advancement of a sensor system [38] for velocity estimationbasedondifferential pressure sensors for the purpose ofmobile underwater robotics.
• The mathematical derivation of the relation between velocity and pressure for thedesign of the given sensor system, by employing standard potential flow theory.
• Testing of the capability of the proposed sensor system for 2D velocity estimationin laboratory and field conditions with a rigorous comparison to state-of-the-arttechnology.
• The combination of the new sensor systemwith state-of-the-art technology formo-bile environmental sensing, specifically to infer tidal water currents.
Research question 2)
• The design and implementation of an nonlinear orientation control framework fora robotic fish based on asymmetric actuations of the fish robot’s compliant tail.
• Testing the proposed control framework under field conditions with a comparisonto the standard actuation for orientation control of fish-like robots.
Research question 3)
• The design of a nonlinear control framework for the trajectory tracking in the hori-zontal plane for underactuated AUVs using elements from event based control, dif-
ferential flatness and disturbance estimation. This included the augmentation ofthe nominal dynamics and a proof of differential flatness for the augmented system,as well as the design of a disturbance observer to compensate for the augmenta-tion.

• Testing the efficacy and robustness of the trajectory tracking controller in simula-tion. The dynamics of an agile underwater vehicle with bio-inspired actuation and acommercial torpedo shaped low cost AUV were simulated. The control frameworkwas validated for scenarios with and without external disturbances and comparedto a PID controller serving as a standard baseline. A further comparison was madeto a RISE controller [39], which was used as an example for a robust model freecontrol method.
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It should be noted that the presented contributions to the three problems of stateestimation, actuator control and high level motion control vary in their scope of appli-cability. The work on actuator control has immediate relevance to bio-inspired actua-tors only, while the presented sensor system and high level control strategy have a muchbroader scope. The sensor system is essentially agnostic to the marine vessel on which itis mounted and could be used generically. However, it would have the biggest impact onsmall resource constraint vehicles, by providing information about states that would bedifficult to observe otherwise. Thus, the contextualization of the contribution is made ona specific subset of AUVs. The proposed high level motion controller has theoretically aneven bigger scope with a potential applicability to terrestrial or aerial vehicles that exhibitsimilar motion dynamics as the system the controller was developed for. However, thefocus of the work presented in this thesis solely remains on underwater vehicles and thecontribution is therefore contextualized in that domain.
Most of the research presented in this thesis has been already published in leadingjournals and conferences and all publications are attached in Appendices 3 to 7. The onlyexception is part of the motion control framework presented in Chapter 4, which will bethe basis for future publications.

1.3 SNAME notation for marine vessels
All methodologies and concepts throughout this thesis are related to the motion of un-derwater vehicles. Definitions defined by the Society of Naval Architects and Marine En-gineers (SNAME) [40] are used to establish a clear framework of notation for various di-rections of movement, state variables and reference frames for all sensors and vehiclesdescribed in this thesis. The SNAME notation for marine vessels concerning the notationof forces, moments, velocities and orientation angles is shown in Table 1. Additionally, themotion of AUVs is represented in two distinct reference frames. The first is a referenceframe that is fixed to a defined vehicle origin and the second is a static inertial or Earth-fixed reference frame as shown in Figure 2. There are various options for the definitionof earth fixed reference frames and for the purpose of the work presented in this thesisthe earth fixed coordinate frame is represented by a North-East-Down coordinate systemalso called NED-frame [40], where the North and East directions form a tangent plane onthe Earth’s surface. In general the NED frame does not represent an Earth-fixed frame,however, for vehicles operating in a local area of approximately constant longitude andlatitude the tangent plane on the earth’s surface can be seen as static and the NED framecan be defined as an earth fixed and inertial (Newton’s laws do apply) frame. It should benoted that throughout the thesis a true NED frame is only being used during field trials.During laboratory tests or simulations an inertial frame with more local meaning for axisdirections is used. However, the general downward orientation of the z-axis and the use ofa right-handed Cartesian coordinate system remains consistent throughout the researchpresented in this thesis.
1.4 Thesis outline
Following along with the three research questions, the thesis is organized in three chap-ters, each describing a contribution to a different part of the introduced autonomy frame-work, by addressing one of the three research questions (see Figure 1). Within each chap-ter, the context of the given research question is outlined and an overview about relevantstate-of-the-art research, as well as theoretical information is provided where required.Thenmethodologies employed to answer the respective research question are presented.
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Table 1 – SNAME notation for marine vessels [40]

Direction forces andmoments velocities positions andEuler anglesmotion along x-axis (surge) X u xmotion along y-axis (sway) Y v ymotion along z-axis (heave) Z w zrotation about x-axis (roll) K p φrotation about y-axis (pitch) M q θrotation about z-axis (yaw) N r ψ
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O

Figure 2 – Body fixed and earth fixed reference frames according to SNAME notation.

This is followed by the validation of the proposed methodologies through an applicationto a specific use-case and through empirical experimentaion. Afterwards, the test resultsare presented and discussed. Each chapter ends with concluding remarks about the effi-cacy of the presented solutions to the posed research question. The thesis is thus dividedinto the following chapters:
• Chapter 2 describes research on the problem of velocity estimation for small low-cost AUVs and introduces a sensor system that utilizes differential pressure. Thechapter presents a derivation of first principle relations between velocity and pres-sure, utilizing standard potential flow theory. Two prototyped iterations of the pro-posed sensor system are presented and rigorous tests under field conditions aredescribed and discussed.
• Chapter 3 addresses the second research question and highlights the potential of
asymmetric actuation for control purposes. First, the use of bio-inspired soft ac-tuators is motivated and asymmetric actuation is briefly contexualized in the fieldsof robotics and biology. Then a nonlinear controller using asymmetric actuation isintroduced and examined in the application of yaw control for a fish-like robot witha compliant tail.

• Chapter 4 investigates the effectiveness of a novel model-based nonlinear con-troller to enable efficient trajectory tracking in the horizontal plane for underac-tuated AUVs. An overview about the problem of motion control for mobile un-derwater robots is given, and the problem of trajectory tracking is motivated. Thechapter includes a brief presentation of standardmodel-free controllers that can beused for trajectory tracking. Then, a novel control approach is presented that bor-rows ideas fromevent-based control, aswell as disturbance estimation and uses theproperty of differential flatness. The efficacy of the proposed control framework is
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then tested in simulation, using two small low-cost AUVs. To that end, the deriva-tion of the control framework for the specific dynamics of the vehicles is presentedand the simulation setup is described. The chapter closes with the presentation anddiscussion of the simulation results.
• Chapter 5 summarizes this thesis and draws conclusions based on the presented re-sults. The chapter also highlights the scientific contributions of the work presentedin this thesis. Finally, limitations of the work are explained and an outlook is givenon potential future research directions.
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2 Flow based state estimation
This chapter addresses the first research question:
"How can state estimation for small low-cost AUVs be improved and made more robust

for the application under field conditions?"
The chapter starts with the contextualization of state estimation for underwater ve-hicles. This is followed by an overview about the present state-of-the-art for a relevantsubset of state estimation in AUVs. Then the concept of flow sensing with differentialpressure is introduced and motivated. This is followed by a first principle derivation ofthe relation between flow velocity and pressure by representing the sensor as a simplegeometric object within a potential flow. Finally, the design and experimental validationof two prototypes with a measurement principle, based on the derived relation, are de-scribed at the end of this chapter. The research presented in this chapter has been pub-lished in publications I, II and V.

A successful operation and recovery of AUVs requires robust navigation and localizationcapabilities [41, 42]. Navigation and localization in turn depend on reliable and precisestate estimation, where the relevant system states are the physical quantities that de-scribe the vehicle’s kinematics and dynamics: pose, velocity and possibly acceleration in6 DOFs. The quality of the estimation process depends on the employed sensors and al-gorithms, which are bounded by the size and energy supply of the respective vehicle, aswell as monetary budget limitations and operation conditions. Along with the increasinguse of low-cost and small underwater vehicles, there is a need for scalable and affordablesolutions for state estimation.Unlike in terrestrial or aerial environments, state estimation underwater is impededby the rapid high-frequency attenuation of sensor signals, so that the most common stateestimation technique using satellite-based global positioning units can not be effectivelyemployed. Another typical state estimation framework in robotics is visual odometry (VO)[43, 44]. Because of it’s heavy dependency on visual cues VO faces difficulties underwater,where relevant physical conditions, such as turbidity and lighting, are highly dynamic.An additional complicating factor is the lack of salient and well structured features forthe vast majority of the underwater environment. Existing solutions for underwater stateestimation can be roughly divided into threemain categories, based on the environmentalstructures used and the type of interaction between the structure and sensor: (1) acousticstate estimation in a local artificial coordinate system, (2) geophysical state estimation and(3) inertial state estimation.Acoustic state estimation requires additional hardware to be deployed, which createsthe artificial local coordinate system. Therefore, this solution is limited to environmentswhere such a hardware deployment is feasible. Geophysical state estimation uses thefeatures near AUVs to track location within an environment, but is not extensible to en-vironments that lack classical salient features such as the open ocean or for highly un-structured or dynamic environments. Inertial state estimation, as the most basic method,uses dead reckoning techniques to estimate the state of a vehicle. Based on introspec-tive measurements, inertial state estimation is independent of and insensitive to environ-mental characteristics, making it suitable for operations in either featureless or complexenvironments. Additionally, this method removes the need for costly and complex addi-tional infrastructure, decreasing the expenses for AUV missions. Though contemporaryinertial navigation systems (INS) provide increasingly accurate heading and accelerationestimates, the method suffers from unbounded error growth [45].
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In best practice, the aforementioned methods are combined through sensor fusion[45, 11] to increase overall robustness and accuracy of the state estimation in the naviga-tion system. Methods for sensor fusion include Kalman Filters (KFs), Particle Filters, andSimultaneous Localization andMapping (SLAM) [11]. Due to its global applicability, inertialstate estimation is the core technique for most navigation solutions. It can be improvedby the addition of measurements or estimates of states that can not be directly observedby inertial sensors. A typical and very well studied addition to inertial state estimationis the supplement of pose estimates based on the relative orientation and distance fromvisual cues located in the local vicinity of a vehicle. The technique of combining visualwith inertial information is called visual inertial odometry (VIO) [46]. However, the VIOapproach inherits the above mentioned limitations of the VO framework for underwa-ter applications. A standard addition to INS for AUVs is the direct measurement of thevehicle velocity, which usually is less dependent on the environmental conditions. Incor-porating velocity information into an INS helps to bound or at least slow its error growth[47]. Measurements of vehicle velocity are usually complicated by naturally occurringwater flows relative to the AUV. However, if the water-flow is spatially distributed andsufficiently heterogeneous, it can also be viewed as an information source for navigationand state estimation as shown in various theoretical works and controlled experiments[48, 49]. Furthermore, the estimation of water flows and related natural phenomena caninform environmental research by providing additional opportunities for in situ measure-ments.The focus of the sensor related work presented in this thesis was therefore the devel-opment and especially the field validation of cost and energy efficient sensor technologythat provides velocity estimates and potentially flow related environmental cues for AUVs.To that end, the state-of-the-art for underwater flow estimation is presented in the nextchapter, with subsequent chapters describing the rationale behind the choice of how tosense and estimate water flow, as well as prototype designs and their validation underfield conditions.
2.1 State-of-the-art
Doppler velocity logs (DVLs) are the most widely applied class of velocity sensors used toaid the INS [50, 51, 47, 52] of AUVs, providing velocity estimationwith a sufficiently narrowerror margin [45]. DVLs are often used in bottom lock mode (DVL-BL) which relies on asmooth surface where scattering of the hydroacoustic signals can be avoided. In regionswith uneven or absent surfaces, DVLs can use a water lock mode (DVL-WL) to estimatevelocity. However, DVL-WL has certain limitations as this mode relies on the presence ofparticles in the water, that can reflect the hydroacoustic signals. Generally, DVL-WL thuscannot provide the same accuracy as the DVL-BL. Recentwork suggests the use of acousticdoppler current profilers (ADCP) to solve some of those problems [53, 54]However, despite recent efforts to reduce their size [55, 56, 57], DVLs and ADCPs aredifficult to integrate into small vehicles with a limited payload capacity and a tight budget[58, 59, 60]. Furthermore, as active sensing devices, DVLs have a comparably high energyconsumption, which lessens their efficacy on long-term missions [61]. Additionally, lowcost vehicles used in applications entailing a high-risk [62], in swarm operations [63] orin consumer robotics [64, 65] could benefit from an inexpensive alternative for velocityestimation.The state-of-the-art measurement modalities for flow sensing on AUVs almost exclu-sively rely on active emission of acoustic signals and the subsequent recording and in-terpretation of resulting reflections. This creates a dependency on available reflective
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surfaces and also increases the energy consumption of the devices. In contrast, other en-gineering fields such as aeronautics have successfully employed passive sensing for theestimation of flow related variables. Commonly, pressure sensors are employed to mea-sure relative speed, angle of attack, yaw rate and altitude of aircrafts [66, 67]. Additionally,pressure sensors are base utilities in other fluid related fields, such as in the control of in-dustrial processes, or in wind and flow tunnels.
Currently, the closest related pressure sensor based systems for the estimation of flowrelated variables for underwater robots are artificial lateral lines. Those sensor systemsare inspired by the lateral line organ that fish employ to navigate their environment bydetecting mechanical changes in the surrounding water [68]. Artificial lateral lines havebeen employed to estimate various flow related parameters such as relative flow speed[25, 26, 27, 33], angle of attack [24, 30, 31], the detection of objects and wake struc-tures [22, 23] or walls [28, 29]. The artificial lateral line systems have been based on vari-ous technological approaches, such as micromachined piezoresistive cantilevered beams[69, 70], optical flow sensors [71, 72], or commercially available absolute or gauge pres-sure sensors [73, 74, 75]. While artificial lateral lines based onmicromachined cantileveredbeams or optical flow sensors remain highly experimental with usage almost exclusivelylimited to laboratory conditions, artificial lateral lines based on commercial absolute orgauge pressure sensors have been shown to be robust and accessible enough for environ-mental measurements in the field at discrete geographically static measurement points[33, 34]. Absolute or gauge pressure sensors measure pressure relative to a fixed ref-erence, which increases the required measurement range and decreases sensitivity pro-portionally to operation depth. Additionally, absolute and gauge pressure sensors areaffected by fluctuations in the height of the water column, which can increase measure-ment noise for flow features close to the water surface in the presence of wave action. Todiminish those problems differential pressure sensors can be used instead, showing greatpotential for improved sensitivity without a significant reduction in robustness [76]. Thesensing systems that are presented in this thesis have been designedwith such differential

pressure sensors as a basic component. The following section describes how flow velocitycan be estimated by sampling differential pressure at several points on the surface of asensor system.
2.2 Flow sensing with differential pressure
Differential pressure is defined as the difference in pressure between two measurementpoints. If those measurement points are kept in the same horizontal plane or the relativevertical motion of the two points is detected and filtered out, then the static componentof the pressure is mechanically compensated for [28, 38]. It follows, that the necessarypressure range to bemeasured can beminimized and themeasurement sensitivity can beincreased. Artificial lateral lines based on differential pressure sensors have been shownto successfully estimate hydrodynamic forces for wall detection and vehicle control in [28]and for hydrodynamic force decoupling for motion control in [77] and [78]. To measureflow, velocity several differential pressure sensors can be arranged to form a variant ofa Pitot-tube, a structure routinely employed in aeronautics and other engineering fields.This concept has been shown to work for the estimation of flow speed in a laboratorysetting [38] and for static environmental sensing applications in the field [32].

The relation between the output of several differential pressure sensors to flow speedin laminar flow conditions was empirically established for a specific Pitot-tube configura-tion in [38]. The empirical relation was valid for a limited range of velocities, and the useddata was subject to possible wall disturbances caused by a narrow flow tunnel.
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Thework presented in this thesis provides a simple first principle derivation for the em-pirical relation found in [38] and expands it for applications inmobile underwater robotics.The tested velocity range is further expanded and field tests are conducted to proof therobustness and applicability of the proposed solution. The following sections outline thetheoretical basis for the approach of differential pressure based flow sensing. Focus isapplied on the estimation of flow velocity based on the pressure distribution over a 3Dsphere.
2.2.1 Potential flow theory
To estimate flow velocity it is fundamental to establish a relationship between pressureand velocity on the surface of the sensor in a flow field. The relationships between fun-damental quantities of any fluid are generally described by the Navier-Stokes equations,where a solution is not tractable for online applications required in mobile robotics. How-ever, based on several simplifying assumptions first principle relationships can be derivedto connect the pressure distribution over a well defined geometrical object to the freestream velocity. The required simplifications are valid if the flow in question can be as-sumed to be inviscid, irrotational and incompressible. Those assumptions enable the ap-plication of potential flow theory, which is very well established for specific geometries.The relationships needed for the estimation of flow velocity based on differential pressureare standard in potential flow theory and a lot of exhaustive treatments of this subject ex-ist. However, to provide a sufficient context for the description, application and testing ofthe prototypes described in later sections, a brief overview about the potential flow overa 3D sphere is provided, by heavily leaning on the treatment of the subject given in [79].We first start by deriving a relationship between the free stream velocity vectorV∞ andthe velocity field on the surface of a measurement probe. For an irrotational flow we canconstruct a scalar function Φ such that the flow velocity is given by the gradient of thatfunction, while ensuring conservation of mass:

∇ ·V = ∇ · (∇Φ) = 0. (1)
Equation (1) can be written as:

∇
2
Φ = 0. (2)

Equation (2) describes the governing relationship for potential flow theory and is calledLaplace’s equation. It is very well studied and numerous solutions to the equation exist.For flows over a body the solutions to (2) must additionally conform with a boundarycondition that describes flow-tangency on the body that is placed in the flow:
V ·n = 0, (3)

with n being a unit vector normal to the bodies surface. For three-dimensional flows,the velocity potential Φ will be a function of three-dimensional space. The choice of aproper coordinate frame to describe the flow is application dependent. For a flow over aspherical body, a natural choice is the use of spherical coordinates Φ = Φ(r,ϕ,Ψ). Here
rs presents the distance from the origin of the reference frame defined to coincide withthe center of the spherical body, ϕ describes the polar and Ψ the azimuth angle in thespherical reference frame as can be seen in Figure 3.The flow over a spherical body can be derived based on the superposition of a uniformand a doublet flow (see Figure 3), which describes a flow where streamlines emanatefrom a source point and revolve around that point. The doublet itself is constructed of apair of source and sink flows which are described in detail in basic potential flow theory
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Figure 3 – Superposition of a uniform flow field and a three dimensional doublet flow. The uniform
flow is characterized by its free stream velocity V∞ and the doublet is characterized by its strength
µD. Space is defined by the spherical coordinates rS, ϕ , Ψ. adapted from [79]

textbooks such as [79]. The velocity components in spherical coordinates for a uniformvelocity field with magnitudeV∞ can be described by:
Vrs =−V∞ cosϕ

Vϕ =V∞ sinϕ

VΨ = 0.
(4)

The corresponding velocity components for a doublet flow can be described by:
Vrs =

µD

2π

cosϕ

r3
s

Vϕ =
µD

4π

sinϕ

r3
s

VΨ = 0,

(5)

with µD describing the strength of the doublet. Now the combined flow can be describedby the sum of (4) and (5):
Vrs =−

(
V∞−

µD

2πr3
s

)
cosϕ (6a)

Vϕ =

(
V∞ +

µD

4πr3
s

)
sinϕ (6b)

Vψ = 0. (6c)
Since the points of the velocity field that are relevant for this derivation are at the surfaceof the spherical body, the distance from the coordinate system origin can be set to theradius of the spherical body rs = R. Using the stagnation points in the flow where VrS =
Vϕ = 0 and (6a), the relationship between the radius of the spherical body, the strengthof the corresponding doublet flow and the free stream velocity can be derived:

R =

(
µD

2πV∞

) 1
3
. (7)

By reinserting (7) back into (6a) the expression becomes:
Vrs =−

[
V∞−

µD

2π

2πV∞

µ

]
cosϕ = 0, (8)
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leading toVrs = 0 for all values of ϕ and ψ on the condition of rs = R. This shows that thederived velocity field is compliant with the flow-tangency condition defined in (3).The relevant velocity for the proposed measurement principle is thus the tangentialvelocityVϕ and its relationship to the free-stream velocity for rs = R is given by:
Vϕ =

(
V∞ +

µD

4πR3

)
sinϕ. (9)

In terms of the proposedmeasurement principle, the polar angleϕ is given by the locationof the pressure sensor inlet on the surface of the measurement probe, but the doubletstrength is an unknown. By expressing the strength of the doublet flow based on (7):
µD = 2πR3V∞ (10)

and substituting (10) into (9) one can get a direct relationship between ϕ ,Vϕ andV∞:
Vϕ =

3
2

V∞ sinϕ. (11)
With a relationship for the free stream velocity we can proceed to derive the mappingbetween velocity distribution over the surface of the measurement probe and the cor-responding pressure distribution, specifically considering pressure differences. We firststart by stating the momentum equation for a general fluid flow. For simplicity we onlyconsider the x component from a three dimensional flow in Cartesian coordinates. Wecan state the momentum equation as:

ρ
Du
Dt

=−∂ p
∂x

+ρ fx +(Fx)viscous. (12)
Here ρ denotes the density of the considered fluid element, u is the linear velocity along
the x component direction of the fluid element, D(∗)

Dt is the substantial derivative, ∂ p f
∂x thepressure force on a fluid element, ρ fx is the sumof body forces acting on the fluid element(such as gravity) and (Fx)viscous is the viscous shear stress on a fluid element. By assumingan inviscid flow with no body forces (12) becomes:

ρ
Du
Dt

= ρ
∂u
∂ t

+ρu
∂u
∂x

+ρv
∂u
∂y

+ρw
∂u
∂ z

=−∂ p f

∂x
, (13)

with x,y,z being the principal spatial and t the temporal descriptors of the system, and
v,w being the linear velocities along the y and z axes respectively. By adding anothersimplifying assumption of steady flow ∂u

∂ t = 0 equation (13) can be written as:
u

∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=− 1
ρ

∂ p f

∂x
. (14)

Now considering flowalong a streamline in three dimensional space given by the followingrelationships:
w dy− v dz = 0
u dz−w dx = 0
v dx−u dy = 0.

(15)

By using some calculus we can arrive at the following relationship:
u du =

1
2

d(u2) =− 1
ρ

∂ p f

∂x
dx. (16)
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Derivations for the y and z components of the momentum equation are yielding equiva-lent results:
1
2

d(v2) =− 1
ρ

∂ p
∂y

dy

1
2

d(w2) =− 1
ρ

∂ p
∂ z

dz,
(17)

which can be combined into:
1
2

d(u2 + v2 +w2) =− 1
ρ
(

∂ p f

∂x
dx+

∂ p f

∂y
dy+

∂ p f

∂ z
dz), (18)

given
u2 + v2 +w2 =V 2, (19)

and
∂ p f

∂x
dx+

∂ p f

∂y
dy+

∂ p f

∂ z
dz = d p, (20)

we can substitute (19) and (20) into (18) and get:
d p f =−ρV dV, (21)

which is called Euler’s equation and relates changes in velocity to changes in pressurealong a streamline. Now by making the additional simplifying assumption of constantdensity of the fluid in question (assumption of incompressible flow) equation (21) can beeasily integrated between two points a and b along a streamline:
∫ pb

pa

d p =−ρ

∫ Vb

Va

V dV

pa +
1
2

ρV 2
a = pb +

1
2

ρV 2
b .

(22)

Relationship (22) is valid for rotational and irrotational flows, but is only applicable alongstreamlines. Assuming irrotational flow instead, allows to generalize (22) between anytwo points in the flow if all simplifying assumptions are met:
p f +

1
2

ρV 2 = const. (23)
We thus have gained a simple first principle relationship between pressure and velocity ina flow field. The simplicity of (23) relies on several assumptions that are explicitly statedagain to clarify when (23) can be used: The fluids viscosity is negligible (inviscid flow),gravity is negligible and static pressure is equal for differentmeasurement points (no body
forces), steady flow over a finite time horizon and the flow is assumed to be irrotational.The listed assumptions might seem to be rather restrictive for the use in field applica-tions with dynamic environments. However, flow velocity estimation based on the pres-sure distribution over an immersed, often spherical, body using equation (23) has beenextensively employed in aeronautics. By assuming a steady flow over a spherical body anddefining two specific measurement points A and B, lying on the same plane on a spheres’surface, one can infer the one dimensional free stream velocity v∞ from the pressuremea-surements at A and B. For a special case shown in Figure 4.a point A directly faces theflow and the pressure is measured in a position where the fluid velocity is zero (stagna-tion point) and point B is situated at an angle ϕst where the local velocity equals the free
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Figure 4 – Irrotational, inviscid and incrompressible flow over a sphere for two measurement
points [publication II]. The stagnation point on the spheres surface is indicated by A. (a) We in-
troduce the static point B, respective velocities vA, vB and the enclosing angle ϕST . (b) We introduce
an arbitrary surface point C, respective velocities vA, vC and the enclosing angle ϕ . In both cases v∞

denotes the free stream velocity

stream velocity (static point). In this case equation (23) can be rewritten as thewell knownPitot equation:
pA = pB +

1
2

ρv2
B (24a)

v∞ = vB =

√
2(pA− pB)

ρ
=

√
2∆p

ρ
. (24b)

2.2.2 Velocity - pressure relationship for a Pitot-like probeFuentes-Perez et al. [38] introduced an additional mirrored measurement point C* in-spired by the concept described in [80], so that two pressure differences were utilized toincrease the robustness of the velocity estimation. This relationship can be expanded forarbitrarymirrored points C and C* as shown in Figure 5.a. A geometric principle derivationof the empirical equation found in [38] is given in the following.Using equation (11) the relationship between v∞ and the tangential velocity vC at anarbitrary measurement point C (see Figure 4.b) can be described as:
vc =

3
2

v∞ sin(ϕC), (25)
where ϕC is the planar angle between stagnation point A and measurement point C, asshown in Figure 5.a. Now equation (24b) can be rewritten for arbitrary measurementpoint locations by substituting (25) in (24b):

v∞ =

√
2
ρ

4 ∆p
9sin2 (ϕC)

, (26)
with the pressure difference ∆p = pA − pC. Equations (24b) and (26) are only valid ifmeasurement point A coincides with a stagnation point of the flow field, which requiresmeasurement point A to directly face the flow. This can not always be guaranteed duringthe operation of a mobile underwater robot moving in 3D space. The velocity estimationcan be made more robust by introducing a second measurement point C* that is locatedat the mirrored position from point C as shown in Figure 5.a. Then, equation (26) can beexpanded to utilize two pressure differences ∆p1 = pA− pC and ∆p2 = pA− pC∗. First,the quadratic average of both pressure differences is taken to combine the information
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Figure 5 – Irrotational, inviscid and incrompressible flow over a sphere for three measurement
points and at angled ambient [publication V]. a) Point Amarks the stagnation point on the spheres’
surface where the local velocity is zero. Points B and B* describe mirrored and arbitrary positions at
the spheres’ surface for an angle 0°≤ ϕC ≤ 90°. b) Point A is angled towards the flow by α and the
local velocity is nonzero. Given the same configuration as in a) both measurement points A and B
are shifted by the angle of incoming flow.

from the two measurements. Then, the pressure differences are expressed in terms offree stream velocity by using equations (24a) and (25):
√

∆p2
1 +∆p2

2
2

=

√( 9
4 ρv2

∞

)2 [
sin4 (ϕC)+ sin4 (ϕC∗)

]

2
. (27)

By defining ϕ = ϕC =−ϕC∗ and using the symmetry of the sine function it can be statedthat sin4 (ϕC)+ sin4 (ϕC∗) = 2sin4 (ϕ). Equation (27) can be simplified and solved for v∞:
v∞ =

4

√
2α(ϕ)

ρ2 (∆p2
1 +∆p2

2), (28)
with

α(ϕ) =

(
4

9sin2 (ϕ)

)2

. (29)
Equation (28) agrees well with the relationship, found by using computational fluid dy-namics (CFD), presented in [38]. The relationship presented in equation (28) was furtherverified under laboratory conditions [publication I], where it showed an accuracy of 0.012m/s for surge speed estimation. To accurately estimate surge speed in field conditions, selfmotion effects of the vehicle carrying the sensor have to be taken into account. A hydro-static correction algorithm can be introduced to account for pitch θ and roll φ motions ofan AUV [publication II]. Subsequently, we can augment (28) to:

v∞ =
4

√
2α(ϕ)

ρ2 ((∆p1−∆h1ρg)2 +(∆p2−∆h2ρg)2), (30)
with the vertical height differences between the measurement points as:

∆h1 = (xC− xA)cos(φ)sin(θ)− (yC + yA)sin(φ)
∆h2 = (xC∗ − xA)cos(φ)sin(θ)− (yC∗ + yA)sin(φ),

(31)
where ∆p1 and ∆p2 represent the pressure differences between the stagnation point andthe arbitrary mirrored points C / C*. ϕ = ϕC = −ϕC∗ is the planar angle between the
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stagnation point and points C / C*. Additionally, g represents the gravitational constantand x(·) and y(·) are Cartesian coordinates of the respective measurement points relativeto the center of the spherical head of the sensor.
The model for sway velocity is based on the assumption, that the location of the stag-nation point on the spherical object will change in the presence of a non zero flow in swaydirection as depicted in Figure 4.b. We furthermore assume that equation (30) is invariantto changes in flow direction of up to 45° [38] and captures the true velocity componentin the surge direction. The velocity estimation for a single differential pressure sensor forthe general case can be written as:

∆p1 = pA− pC =
1
2

ρ(v2
C− v2

A +2g∆h1). (32)
Note that with h1 the elevation compensation presented in equation (31) is also utilizedfor the estimation of the velocity component in sway direction. Substituting equation (11)in equation (32) and accounting for a change in the flow direction by the angle α resultsin the following relationship:

∆p1 =
1
2

ρ

[
9
4

v2
∞

(
sin2 (ϕC−α)− sin2 (−α)

)
+2g∆h1

]
. (33)

Using trigonometric identities and solving for α (see full derivation in Appendix 1) we get:

α =
ϕB− arcsin

(
8(∆p1−ρg∆h1)
9ρv2

∞ sin(ϕC)

)

2
. (34)

Based on the assumption that v∞ = vx as given by Eq. (30), the sway velocity componentcan be estimated by:
vy = vx tan(α). (35)

The following chapterswill present prototype designs, whichmake use of the pressure-velocity relationships derived above.
2.3 Surge velocity estimation with differential pressure
To validate the theoretical relation (30) and to test the hardware design presented in [38]under realistic conditions, field tests with an AUV where necessary. To that end, a newsensor prototype, defined as differential pressure sensor speedometer (DPSS), was build.The DPSS was then integrated into the commercial AUV SPARUS II (Iqua Robotics) andtested in the harbor of St. Feliu de Guixols, Spain. Those tests are described in detail in
publication II and are briefly presented in subsections 2.3.1 to 2.3.4.
2.3.1 The differential pressure sensor speedometer (DPSS)In accordance with the derived concepts in section 2.2, the two differential pressure sen-sors build the core of the DPSS. They are connected to three flush holes, subsequentlycalled pressure taps, which are normal to the surface of the DPSS housing. Figure 6.billustrates the location of the pressure taps at an azimuth angle of 0° (stagnation point)and ±35°. A 6DOF IMU provides input to the correction algorithm (31) and the vehicle’ssurge velocity is calculated using a microcontroller that computes (30). The total powerconsumption of the full electronics setup is 243.5 mW and everything is integrated intoa 3D printed water-tight housing (see Figure 6.a). To reduce size and budget, but mostly
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Figure 6 –DPSS housing and pressure tab location [publication II]. a) Isometric viewof a CADmodel
of the 3D printed DPSS housing indicating the location of the pressure tabs that directly connect to
the differential pressure sensors. b) Top view of a schematic drawing of the DPSS with indications
at which planar angle (relative to the local x-axis starting at the center of the spherical outermost
section of the housing) the pressure taps are located.

DPSS

Top cover

Bottom cover

1000
mm

200

Frame ring

Frame bars

Figure 7 – Exploded view of DPSS CAD Assembly [publication II]. The DPSS is shown together with
a custom made frame and covers that reproduce the payload section of the SPARUS II AUV. A new
frame and new covers are used to ensure a spherical geometry at the head of the AUV during trials
with the DPSS, so that the derived potential flow model can be directly applied.

to increase sensitivity, the DPSS uses differential pressure sensors not directly rated forwater. To ensure that do not come into contact with water, but still measure the pres-sure at the pressure tabs, a tubing system is designed that forms a permanent layer of airbetween the sensor and it’s surrounding medium when the DPSS is submerged. A moredetailed description of the prototype can be found in [publication I] and [publication II].
The housing of the DPSS was specifically designed to be integrated with a SPARUS IIAUV (IQUA Robotics), which has an interchangeable head section [81]. This head sectionis replicated and slightly modified for the purpose of seamless integration of the DPSSinto SPARUS II. Figure 7 shows the computer aided design (CAD) drawing of the DPSS andauxiliary components that recreated the head section of SPARUS II. Those componentsare comprised of a mounting frame and 3D printed covers that have a modified geometryas compared to the standard SPARUS II covers. When assembled, the covers and the outersurface of the DPSS form a hemisphere, which allows the use of the relations derived insection 2.2.1.
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General specifications:

Length:1.60 m

Hull diameter:0.23 m

Max. width:0.46 m

Weight in air:52 kg

Max. depth:200 m

Li-Ion batteries:1.4 kWh

Endurance:8-10 h

Max. surge velocity:1.5-2.0 m/s

Installed sensors:

IMU:Analog DevicesADIS

DVL:Teledyne RDI Explorer 600

GPS:OEM Fastrax IT 500

Pressure sensor:Keller

DPSS

Figure 8 – SPARUS II AUV [publication II]. On left SPARUS II is shown with integrated DPSS in an
indoor pool at the Underwater RObotics Research Centre (CIRS, University of Girona, Girona, Spain.
Relevant specifications of SPARUS II can be seen on the right (adapted from [81])

.
2.3.2 DPSS performance characterization
For a successful assessment of the DPSS’s performance under field conditions, a perfor-mance characterization under controlled laboratory conditions was required first. Thebaseline performance of the DPSS for surge velocity estimation was characterized by towtank experiments, which are described in [publication I]. Given a sampling rate of 100Hzof the raw pressure data, the effect of the number of pressure samples that are usedfor the computation of surge velocity at a given time-step was investigated. The resultspresented in [publication I] show that a stable optimum accuracy can be obtained for es-timation rates between 5Hz to 13Hz. One possibility to establish an error model for theDPSS, would be the propagation of the nominal error attributed to the commercial pres-sure sensors through (30). However, the error estimates provided by the manufacturerare conservative, which makes it difficult to establish an accurate error model. Instead,the error model was developed based on empirical data from the tow tank experiments.All error sources were lumped together into a probabilistic error term “err” assuming anormal distribution where the mean µ represents the sensor accuracy:

v∞ =
4

√
2α(ϕ)

ρ2 ((∆p1−∆h1ρg)2 +(∆p2−∆h2ρg)2)+ err err ∼ N(µ,σ2). (36)
The obtained accuracy of µ = 0.012m/s± 0.01m/s [publication I] was then used as abaseline for the evaluation of the DPSS’s performance in the field tests, which are pre-sented in the following subsection.
2.3.3 Experimental setup for field tests
For field testing the DPSS prototype the SPARUS II AUVwas used. SPARUS II is a lightweightsurveillance AUV for long term missions with a classical torpedo shaped hull. The vehiclecan be actuated in surge, heave, pitch and yaw and the DPSS was integrated into the frontpart of the hull as can be seen in Figure 8. The basic sensor suite of SPARUS II consistedof a pressure sensor, IMU, DVL and GPS (see Figure 8) and all information was forwardedto an EKF for state estimation [82]. The DVL was used as the reference for surge velocityestimation. More specifically information from the DVL-BL was favored by the EKF overinformation from the DVL-WL.Field trials were conducted in the harbor area of Sant Feliu de Guixols, Catalonia,Spain (see Figure 9). The DPSS was tested for different reference paths (linear, loop, lawnmower) and at a variety of reference velocities ranging from 0.2m/s to 2m/s at a con-
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Figure 9 – Geographic location of the test site [publication II]. Harbor area of Sant Feliu de Guíxols
(Catalonia, Spain). WGS84 (km) — 41.7775° N, 3.0325° E

stant target depth of either 3m or 4m. Additionally, different test sites within the har-bor provided variable environmental conditions. SPARUS II was following the referencepaths using the EKF state estimation based on the sensor suite described above and in
Figure 8. The DPSS was recording data independently, but was not used online in thecontrol framwework of the robot. In postprocessing the surge velocity estimates of theDPSS were calculated based on relation (30) and after filtering the raw pressure signals.It is important to note, that all the postprocessing steps done for the DPSS, can be doneonline during vehicle operation. Based on the described experiments, a comparable per-formance between DPSS and DVL surge velocity estimations was expected. Additionally,a degradation of the accuracy, if compared to the nominal values from the DVL datasheetand from [publication I], of both sensors was anticipated as a consequence environmen-tal disturbances. For this reason the most degradation was expected in scenario C whichwas less sheltered from wave and other ocean dynamics.Based on the assumption of equal performance of the surge velocity estimation forDVL-BL and DPSS a fit was defined and the coefficient of determination R2 was used forevaluation. Additionally, the root mean squared error (RMSE) was used to compare bothvelocity estimations. Given the field character of the experiments the RMSE is here tobe considered as a measure for a difference in estimation between two sensors ratherthan an absolute error between sensor and the true reference. To reduce environmentaldisturbances all estimates are filtered through the EKF of SPARUS II [82].
2.3.4 Results and discussion
Figure 10 shows a logarithmic density plot of the correlation between DPSS and DVL-BLsurge velocity estimations with associated R2 values for different environmental settingsA to C. Here A describes themost sheltered setting with least environmental disturbancesand C the most open setting with higher environmental disturbances. It can be seen that
R2 is smallest for themost open setting C as expected. However, for all settingsR2 is biggerthan0.9, withR2 = 0.95 for the set of all surge velocity estimation pairs. This indicates thatDPSS and DVL-BL had a comparable average performance for surge velocity estimation.Additionally, a higher variability in all plots can be seen for smaller target velocities. Thiscan be explained on the one hand by the decreased ratio between vehicle velocity andenvironmental disturbances and on the other hand by the quadratic relationship between
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Figure 10 – Logarithmic density plot for the correlation between DVL-BL and DPSS surge velocity
estimates [publication II]. a) Correlation plot for experiments across all scenarios, b) - d) plots
for environmental settings A-C. For all plots an assumed perfect fit vDV L

x = vDPSS
x is shown as red

dotted line and the R2 value, computed based on the assumed perfect fit, is shown as a quantitative
measure of the correlation.

pressure and velocity for the DPSS, which makes the velocity estimation more susceptibleto pressure noise at lower velocities.
Figure 11.a shows the RMSE between DPSS and DVL-BL velocity estimation for differentsettings and repetitions. Again it can be seen that for the more open setting C variabil-ity between the senors is higher and that the difference between the sensors decreaseswith increasing velocity. The differences even approach the accuracy boundaries estab-lished by the manufacturer (DVL) and previous calibration experiments (DPSS) for settingA. In contrast, the differences between DVL-BL and DVL-WL, shown in Figure 11.b seemto significantly increase with increasing target velocity. RMSEs for loop and lawn mowerpaths are consistent with the results presented in Figure 11. The better performance ofthe DPSS compared to the DVL-WL for higher target velocities is specifically important,because both measure the same velocity, namely the velocity relative to the surroundingmedium, as opposed to velocity over ground measured by the DVL-BL. Therefore, theseresults indicate that the DPSS could be not just a replacement for a DVL for vehicles withbudget and payload constraints, but also a good complement to a standard AUV sensorsuite that already includes a DVL. This is further supported by the raw velocity estimatesshown in Figure 12 where SPARUS II was moving over a rough terrain close to the harborwall, causing continues outtakes from theDVLwhile the DPSS is unaffected. In this contextthe addition of the DPSS to the regular sensor suite can improve navigation in conditionswhere the DVL-BL fails to provide reliable velocity estimates such as mid water columntravels or movement over rough and unstructured terrain.
To the best of the author’s knowledge, the described field trials marked the first suc-cessful implementation of pressure based speedometry for AUVs in field conditions. The

34



Velocity [m/s]

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

[m
/s

]

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
E

[m
/s

]

Setting A rep1

Setting A rep2

Setting B rep1

Setting B rep2

Setting C rep1

Setting C rep2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Velocity [m/s]

(a) (b)

Figure 11 – RMSE between various surge velocity estimations at different target velocities [publi-
cation II]. a) DPSS vs DVL-BL and b) DVL-WL vs DVL-BL. Repetitions of the same experimental config-
uration are distinguished by color and the three different environmental settings are differentiated
by line type.

results were a successful proof of concept for the differential pressure based surge ve-locity estimation and confirmed that the proposed algorithms and hardware work underfield conditions. However, there is remaining potential for reducing the size of the sensorand expanding measurement capabilities for more degrees of freedom. The following it-eration of the DPSS prototype addressed those remaining potentials and is described inthe next section.
2.4 2D velocity estimation relative to tidal currents
The first iteration of the DPSS was specifically designed and tailored for the integrationinto the SPARUS II AUV. For the next iteration (DPSSv2) the hardware design was changedso that the resulting sensor was platform agnostic and self sustained. Additionally, thesize of the sensor was significantly reduced and the velocity estimation was expanded to2D still relying upon potential flow theory and using geometric principles as described byequations (26) - (35).All DPSS prototypes measure velocity relative to water and not relative to a static ref-erence. Previous experiments where carried out in a sheltered environment in relativelycalm conditions. Therefore, the frame of reference for themeasurement did not play a bigrole. In fact it was possible to directly compare the DPSS performance to the DVL-BL per-formance. However, in generic open water applications, conditions are most likely moredynamic with a including reference frame for the DPSS velocity estimation. Therefore, itwas necessary to conduct experiments in conditions with a relatively controlled naturalflow. Additionally, the combination of the DPSS relative velocity estimates with a sourcefor velocity estimates relative to a static reference frame can enable the estimation ofhydraulic influences on a robot such as water currents. An estimation of such currentscould be then used to inform controllers for dynamic positioning or trajectory tracking.Estimates of water currents can also help to update and improve oceanographic models[83] or can inform the decision making for adaptive sampling [84]. If estimates of vehiclevelocity relative to a static reference and a source of vehicle velocity relative to the sur-
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Figure 12 – Example of raw velocity readings for DPSS and DVL-BL for lawnmower trajectory [pub-
lication II]. At around 90 s SPARUS II got close to the harbor wall, where the ground is unstructured
and rough. This disadvantageous environmental conditions is clearly reflected in the sensor output.
It can be clearly seen that the DPSS was not affected. Differences at the beginning and the end of
the plot are due to vertical movement of the robot which was not compenstated for in the DPSS.

rounding water are simultaneously available, the water current velocity can be inferredas the difference of the former two quantities.
Different approaches to estimate water currents have been presented in the literature.A completely computational approach makes use of the concept of observers from con-trol theory. Given an observable model describing the movement of a vehicle, a secondmodel can be developed based on inputs andweighted outputs of the real system. Severaltypes of observers such as Luenberger type observers [85, 86, 87, 88, 89] and high gainobservers [90, 91] have been shown to work in simulation and have been partially veri-fied on real physical systems. However, they all rely on accurate position feedback whichis not readily available for AUVs. Some methods, developed for ocean gliders, are mak-ing use of sparse GPS fixes [92, 93] and predictive ocean models [94, 95, 96]. However,even sparse GPS fixes might be unavailable for AUVs, especially during long term mis-sions. Several solutions for water current estimation that do not rely on measurementsof the global position of the vehicle have been proposed as well. Medagoda et al. use anADCP to estimate currents during midwater column travel [54]. While this would be anapproach where ocean currents could be directly measured, the use of an ADCP demandsamounts of energy, space, as well as monetary and computational costs that are usuallyonly fulfilled by heavyweight high budget vehicles.
Hegreneas et al. showed that an INS, aided either by a dynamics model of the vehicle[97] or by a DVL-WL [52] both in combination with a DVL-BL, can provide the necessaryinformation to estimate water currents. The DPSS prototypes can be seen in the samelight as an alternative source of in situ measurements of velocity relative to water andthus act as a replacement or a complement for the DVL-WL or dynamics model used byHegrenaes et al, but also for the other approaches previously mentioned.

2.4.1 Prototype design (DPSSv2)
The hardware design of the new DPSSv2 resulted in a volume reduction of 28% and aweight reduction of 39%while integrating the sameelectronic components as the originalDPSS. Table 2 compares the DPSSv2 with three small-scale DVLs regarding size, weight,and energy consumption. The DPSSv2 has a comparable size to the smallest DVL availableat the moment. The DPSSv2 is also about an order of magnitude more energy efficient in
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Table 2 – Comparison of DPSSv2 with three small DVLs for size, weight and power consumption /
adapted from [2]

.
Sensor SizeL x W x H [cm] Weight(air / water) [kg] PowerConsumption [W]Teledyne Wayfinder [55] 10 x 10 x 7 0.85 / 0.51 3Nortek DVL1000 [57] 15.8 x∅ 11.4 1.3 / 0.15 1.3NavQuest 600 Micro [56] 17.4 x∅ 12.6 2.9 / 1.2 2 - 5

DPSSv2 14.1 x∅ 5 0.27 / 0.17 0.244

Micro

IMU

APS DPS 1

ADC 16 bits

SD

DPS 2BAT

b)

a)

Figure 13 – The new DPSSv2 prototype. a) fully assembled prototype with 3D printed housing. b)
Electronic component architecture of the DPSSv2 with the following notation: APS - absolute pres-
sure sensor, SD - SD card, Micro - Microcontroller, BAT - Battery pack, IMU - Inertial Measurement
Unit, ADC - Analog to Digital Converter, DPS - differential pressure sensor.

comparison to all the three DVLs. Cost is another importantmetric to evaluate the DPSSv2against state of the art technology. However, a direct comparison is very complicated,because the listed DVLs are fully developed products, whereas the DPSSv2 is still in theprototyping stage. Nevertheless, based on a rough projection the price range for DPSSv2could probably at least be around one order of magnitude lower.Additionally, the DPSSv2 is now equipped with a battery so that it can be used as astandalone measurement device in addition to a possible integration into an AUV sensorsuite. Figure 13 shows the new prototype with a schematic of its electronic components(Figure 13 b).The performance of the DPSSv2 was verified with tow tank experiments equivalent tothe ones described in [publication I]. Based on the results, an accuracy of µ = 0.01m/s±
0.046m/swas determined. The standard deviation is larger, when compared to the origi-nal DPSS. This was expected to some extend, because the noise sensitivity of the velocityestimation seems to scale with the distance between the pressure taps. A slightly reducedperformance is thus to some extend a sacrifice for volume and weight reduction of thesensor. However, a slightly increased noise sensitivity should not have a major influenceon the estimation performance for typical target velocities of AUVs and is a worthwhilecompromise to make the sensors usable for a wider class of vehicles and other applica-tions. It is also clear that the combination of the DPSS velocity estimation with a Bayesian
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Figure 14 – Test site and experimental setup [publication V]. a) and b) Indication of the test site near
the Island of Tautra in the Trondheim Fjord, Norway. The right site of b) shows the exact location of
the experiments as a red dot. Tidal currents patterns for the upper fluid layer are shown as black
arrows (reproduced from [98]). c) and d) Experimental setup to test the capability of the DPSSv2
for 2D velocity estimation in the presence of ambient flows. The main direction was assumed to
be as shown in b) and the LAUV was operated alternately driven in-line and against this predicted
tidal current main direction. A surface vehicle with an ADCP was employed to provide an additional
resource for water flow estimation. e) Tidal cycle for the day of the experiments (2019/05/20). The
gray area in the tidal graph represents the time slot of the experiments.

filter or other applicable signal processing techniques can compensate for a slightly de-creased signal to noise ratio The reported accuracy is with 0.01m/s equal to the reportedaccuracy for the original DPSS, which is a very positive result.
2.4.2 Experimental setup for field tests
To test theDPSS under significant environmental forcing, a test sitewith strong enoughbutstill relatively controlled water currents was required. A suitable test site was found in theTrondheim Fjord, close to the island of Tautra, Norway (see Figure 14.a and b). The fjordexperiences a semi-diurnal tide, leading to noticeable tidal currents which reverse theirdirection between ebb and flood tide conditions three times a day [98]. The experimentswere conducted during one day before and after themaximum tidewas reached as shownin Fig. 14.e. Therefore, the tidal current estimates where expected to reflect a change inflow direction between flood and ebb flow.

As shown in Figure 15, the DPSSv2 was mounted on a light AUV (LAUV) [15], which wasequippedwith an IMU, and aDVL providing DVL-WL andDVL-BL estimates simultaneously.Additionally, an ADCP mounted on a surface vehicle was used to acquire global watercurrent measurements for comparison. To predict the tidal currents the DVL-BL estimateswere combined with the DPSSv2 estimates or with the DVL-WL estimates respectively. Intotal 14 trials were conducted at a constant target depth The robotwas following a straightline path with half of the trials running at theminimum sustainable velocity for the vehicle(around 1.25m/s) and the other half of the trials runningwith the target velocity of 1.5m/s.
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Figure 15 – LAUV Fridtjof with attached DPSSv2 [publication V]. The AUV used DVL, GPS and INS
for navigation and the DPSSv2 was sampling independently.

Aside from different velocities, half of the trials were conducted in opposite direction ofwhat was predicted to be the main tidal current direction as shown in Figure 14.c andhalf of the trials were running along the assumed main direction of the tidal currents, see
Figure 14.d.

The tidal currents were calculated by subtracting the DPSSv2 and DVL-WL velocity esti-mates from the velocity estimates of the DVL-BL. The resulting planar water current veloc-ity vector was then rotated into a global reference frame based the attitude and headingreference system of the LAUV.
2.4.3 Results and discussion
Figure 16presents the tidal current estimates in the formofmedian (IQR)magnitudeof thecurrent velocity and the heading of the tidal current relative to True North. Considering
Figure 16.a, in most cases the ADCP provides estimates for the tidal current velocities thatare larger and have a higher variance than the DPSsv2 and DVL-WL estimates. Both highermedian magnitude and variability led to the exclusion of the ADCP data in the furtheranalysis. The ADCP employed on a surface vehicle is usually used for the estimation ofriver flow velocities, where several transects across the river aremade to determine a bulkflow velocity. However, in our application only instantaneous velocities could be recordedin conditions of higher waves and varying salinity. Those factors indicate that the ADCPwas not operating in optimal conditions and could thus not provide the best tidal currentestimates.

Figure 16.b and c depict the tidal current magnitude and orientation relative to TrueNorth as 2D vectors. Results for cases when the AUV moved against the tidal currents areshown in Figure 16.b, and Figure 16.c displays results for cases where the vehicle movesalong the tidal currents. According to data provided by the Norwegian MeteorologicalInstitute a reversal in flow direction shortly before high tide was to be expected and thatreversal can be seen in the estimates of both sensors. Additionally, the DPSSv2 and DVL-WL estimates have relatively good agreement for trials against the predicted tidal current,but significant differences in trials thatwere running along the predicted tidal current. Thegreater difference for the later scenario is to be expected, as the potential flowassumptionthat is required for the derivation of (30) breaks down if there is a flow component thatis moving in the same direction than the DPSSv2.
This inherent limitation of the current DPSSv2 design could be resolved in variousways.One could design trajectories or paths, which guarantee changes in the direction ofmove-
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ment such as lawn mower paths. Some works have shown that a few changes in headingcan make water relative velocities and water currents observable [99, 100]. Furthermore,a combination with almost all of the solutions provided at the beginning of section 2.4like observers, GPS fixes or ocean models could improve the performance. Current limi-tations notwithstanding, the analysis of the summary statistics (provided in detail in pub-lication V) suggests that for the more favourable conditions when the LAUV was movingagainst the tidal flow, the tidal current estimation based on DPSSv2 measurements wasclose to the DVL-WLmeasurements with amedian absolute (IQR) difference inmagnitudeof 0.03m/s and in heading of 8.13° (11.0°). Specifically for the tidal currentmagnitude arethose differences close to the accuracy bound of the DPSS in field conditions [publication
II] and at the same scale as estimation errors reported by other approaches [91, 101].
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Figure 16 – Estimation of tidal current velocity vector for DVL, DPSSv2 and ADCP [publication V].
Tidal current estimates for the DVL and DPSSv2 are both augmented by DVL-BL readings. a) Mag-
nitude estimates of the tidal current in the global reference frame represented by median, IQR and
extreme values for each trial. b) and c) Median magnitude and heading estimates of the tidal cur-
rent relative to true north for DVL and DPSSv2 (ADCP estimates are not used in the performance
comparison and thus omitted to improve the readability of the figure). The difference between the
two median heading estimates in degrees is annotated for each trial. Instances where the LAUV
was moving with the tidal currents, shown in c), are distinguished from instances where the LAUV
was moving against the tidal currents, shown in d). The trial numbers are further augmented with
either (s) for trials with the slower target velocity of 1.25 m/s or (f) for the faster target velocity of
1.5 m/s. The light beige patch (trials 1–6) represents slack water conditions close to high tide, where
the currents are less strong, more turbulent and change direction eventually. The light grey patch
(trials 7 to 14) shows the tidal conditions for ebb flow, which occurs after the maximum tidal water
level has been reached.
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2.5 Summary and conclusions
This chapter introduced the problemof pressure based velocity estimation for AUVs. A po-tential flow model is given that generalizes an empirical model defined in an earlier work[38]. Additionally, a new prototype, the DPSS, was presented to test the efficacy of theproposed approach for speedometry under field conditions. Compared to previous work[38], this new prototype had added capabilities, which where tailored to its application onmobile platforms. The efficacy of the proposed approach was tested through laboratorytests and most importantly, through the integration of the DPSS into a commercial AUVand rigorous testing in various scenarios in the field. The obtained test results confirmedthat, under the constraint of near constant depth, the derived first principle relations holdunder dynamic field conditions and that speedometry based on differential pressure canprovide information of equivalent quality compared to state of the art sensors.

In a subsequent iterative procedure, a next generation prototype, the DPSSv2 was de-signed with equivalent capabilities to the DPSS but a significantly smaller size and weight.Additionally, theoretical relations were expanded to enable 2D velocimetry in the hori-zontal plane instead of 1D speedometry. The new design and relations were tested underlaboratory and field conditions. A special focus was placed on the performance of theDPSSv2 in the presence of ambient flow fields, which had been absent for previous fieldtests with the DPSS. Furthermore, the capabilities of the DPSSv2, in conjunctionwith addi-tional sensing modalities, for estimating those flow fields were tested. For test scenarioswhere the potential flow assumption was fully valid, results showed again, that under theconstraint of near constant depth the DPSSv2 could provide 2D velocimetry of equivalentquality compared state of the art sensors. Additionally, it could be shown that tidal cur-rents could be observed by the DPSSv2 when used together with complementary sensortechnologies.
In regards to the research question that was posed at the beginning of the chapter:

"How can state estimation for small low-cost AUVs be improved and made more robust
for the application under field conditions?", the work presented in this chapter showsthat differential pressure can be used to provide robust estimates of vehicle velocity. Ad-ditionally, there is a large range of possible extensions for the sensor system to enable theestimation of more complex environmental features such asmixing zones (presently workin progress), hydrodynamic imprints of other vehicles [102] or animals and hydrodynamicforces [77].

Additionally, its small size and low energy consumption make the DPSSv2 a valid can-didate to make direct estimates of velocity more broadly available for low-cost and / orsmall AUVs. Additionally, the DPSS prototypes could be established as complementarysensing modalities for higher grade vehicles to add redundancy or for vehicles with verystrict energy efficiency requirements during long termmissions. Results in both field testsshowed that for certain scenarios the DPSS estimates can outperform state of the art ve-locity sensors and a fusion of the information of both sensor systemwould provide betterstate estimation capabilities.
However, the field experiments with the DPSS and DPSSv2 also clearly indicated limita-tions and problems that still need to be solved and provide guidance for future research.One of the main limitations for the DPSS prototypes is the occurrence of a seeminglydepth dependent offset on the pressure measurements. This could be cause either by achange of volume in the air boundary in the pressure tubing or by overpressure on thesensors themselves where the total pressure on the full sensor is out of the linear rangefor the devices. Both hypotheses are currently investigated but both problem would es-sentially require basic engineering solutions. Another limitation that was expected but
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also became apparent during tests with the DPSSv2, is the dependence on the sensor onconditions that approximate potential flow. An extension of the theoretical framework inwhich the pressure-velocity relations were derived could alleviate this problem. Anotheroption is the addition of either more sensing modalities or mathematical constructs suchas ocean current observers in conjunction with coarse ocean models to provide an esti-mate of local ambient flow that can be used to compensate for some adverse effects onthe DPSS measurements. Such a combination could also have the potential to lead to es-timates for vehicle velocity over ground which would enable the DPSS to provide a fullnavigation solution. Another limitation that is subject to future work is the restriction ofmeasurements in two dimensions. By adding two more sensors on the vertical axis of theDPSSv2 sensor head, the system is enabled to estimate flow in all three dimensions includ-ing a 3D angle of attack. Numerous similar solutions already exist in the field of airflowmeasurements [103, 104, 105].In addition to a good and robust state estimation for salient world models, a mobilerobot needs a sophisticated control framework to achieve increased autonomy. The twofollowing chapters in this thesis describe contributions to control related problems on twodifferent levels of abstraction. Chapter 3 describes contributions to problems of controldirectly affecting the actuator layer, while chapter 4 introduces a novel trajectory trackingcontroller operating on the layer of robot motion control.
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3 Actuator control for autonomous bio-inspired underwater
locomotion

This chapter addresses the second research question:
"Can asymmetric actuation increase maneuverability of AUVs using compliant

bio-inspired actuators?"
The chapter starts by contextualizing actuator control in the bigger framework of con-trol for autonomous robots. Afterwards an overview about compliant actuators for un-derwater locomotion is given and then the idea of asymmetric action is introduced andinvestigated using the example of attitude control for a fish-like robot with amotor-drivencompliant tail. The research presented in this chapter has been published in publication

III.
The knowledgebase for controlling general robotic systems is vast and growing for decades.A lot of early developmentwas dedicated to static roboticmanipulators for industrialman-ufacturing, with a focus on high speed and accuracy for repetitive movements. Beginningin the 1990s control problems for autonomous mobile robots came into sharper focus, asthis class of robots does not share the inherent location restraints of static manipulators.Mobile robots therefore, are more versatile and flexible.However, unsupervised mobility comes with it’s own challenges, specifically in highlydynamic environments. The first challenge is locomotion itself. How can a mobile robotaffect it’s environment to trigger reactions that cause movement in a desired manner?The choice of specific actuators, the hardware components that enable locomotion, andtheir control is thus the first fundamental problem that needs to be solved. However, thecapability to change locations in a controlled manner is not enough for an unsupervisedmobile robot to achieve autonomy.Additionally, the mobile robot needs to estimate its configuration (pose, velocity andacceleration inmost cases) in relation to the environment through state estimation. Basedon the estimated present configuration, an autonomous mobile robot is required to de-cide which actions its actuators need to conduct to move towards a desired configurationthat satisfies a higher level goal.This high level goal can be either provided by an additional abstraction layer of therobot autonomy framework or by an external user. It becomes obvious that problems andsolutions to autonomous mobility are layered and dependent on each other. Therefore,also control problems in mobile robotics are layered and interdependent.At least two control layers can be identified. The first layer constitutes the movementof the robot as a whole. Motion demands are generated to minimize the error betweena desired configuration of the robot and the robot’s present configuration. The desiredconfiguration is designed to achieve a higher level goal that is either given as an input bya user or comes from an even higher abstraction layer in the autonomy framework of themobile robot. This robot control layer depends on an accurate estimation of the robot’sconfiguration, which connects the robot control layer to the sensing and state estimationutilities of the robot. The second, lower, control layer constitutes the actuator control,which is necessary to achieve the effects that satisfy the demands of the robot controllayer.In the field of marine robotics most of the research on control architectures is con-cerned with the robot control layer. Reliable and robust control of underwater vehiclesis still an open problem due to complex interactions of the robots with their environ-ment. This is specifically true for small resource constraint and unconventional AUVs. On
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the actuator control layer instead, well developed standard control structures are used inconjunction with standard actuators and propulsors. However, bio-inspired underwatervehicles rely on non-standard actuators and propulsors that have unique advantages, butdo also present challenges regarding the actuator control. To increase the autonomouscapabilities of agile, small and low-cost AUVs, improvements in both control layers are stillnecessary, which is reflected in the contributions of the research presented in this thesis.The contribution on the actuator control layer is focused on improvements for bio-inspired compliant actuators. The contribution on the robot control layer is more broadlydefined and applicable to amuchmore general class of AUVs, namely agile underactuatedvehicles. However, the development and application of the control framework will be onan AUV with bio-inspired locomotion.Thus, the presentation of theoretical frameworks, prototypes, experiments and resultsin the following two chapters will be two-part, with the first part presenting contributionsto the actuator control layer and the second part presenting contributions to the robotcontrol layer for small bio-inspired underwater robots.
3.1 Underwater locomotion with compliant actuators
Locomotion for underwater vehicles is classically facilitated by a set of propellers. De-pending on the number and arrangement of those propellers an underwater vehicle canmove holonomically in all degrees of freedom and is additionally capable of hovering, ora vehicle’s active motion space is limited to reduced number of degrees of freedom dueto underactuation and nonholonomic motion constraints. While at first glance it seemssensible to equip a vehicle with sufficiently many actuators to enable holonomic motion,in practice it is often more prudent to reduce the number of actuators in favor of vehiclecost, energy efficiency, payload capacity or a reduced mechanical complexity of the vehi-cle. One of the most prominent configurations for AUVs is a torpedo shaped body withone or two propellers at the aft combined with several control surfaces [106, 107, 108].Occasionally a vertical thruster is added [81].Propellers as the actuators of choice for underwater vehicles have been in use in themaritime industry for centuries, they have reached a state of high optimization and so-phistication. However, in recent years more focus has been centered around bio-inspiredactuation for underwater locomotion. Aquatic animals, honed by millions of years of evo-lution are very well adapted to movement in their habitat. Fish, for instance, have beenshown to exhibit superior maneuverability and efficiency compared to engineered sys-tems [109]. In addition, bio inspired locomotion promises actuation that should createless turbulence, which enables minimally invasive observations of marine life or archae-ological sites. This has led to the development of an increasing number of aquatic robotswith bio-inspired locomotion including fish-like robots [110, 111, 112, 113, 114, 115] and robotsrelying on a multitude of flippers [116, 117, 118, 119, 120, 121, 122, 123]. Reflecting the widerange of aquatic niches, each requiring a specific locomotion profile, a wide variety ofpropulsion mechanisms have been studied and developed. Excluding inspirations fromthe locomotion amphibious animals, which exhibit trade-offs in swimming performancefor land or air locomotion, most aquatic locomotion solutions have been based on propul-sion with one or several hydrofoil-like appendages called fins.The subsequent presentation of locomotion types is further restricted to fish, as lo-comotion principles based on several independently appendages will be discussed laterin chapter 4. Depending on the location of the fins that are used for propulsion, severallocomotion types can be distinguished. Fish that are mainly using their body or caudal finto produce thrust are defined as BCF swimmers, while fish that are using their median or
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paired fins to propel themselves are knownasMPF swimmers. Both groups are further dis-tinguished into subgroups basedon the actual fin type that is used [124]. Another groupingfor both BCF and MPF swimmers is their association with undulatory or oscillatory swim-ming. In undulatory swimming a significant part of the body is involved in the generationof wave traveling from head to tail which propels the fish forward, while in oscillatoryswimming the periodic movement of the respective appendage(s) creates the thrust. Forrobotic applications, that go beyond the study of the biomechanics or fluid dynamics ofthe actual animal, inspiration from oscillatory locomotion types is usually preferable, be-cause the thrust generation is fully restricted to the appendages and the main body canbe completely used for the transport of the power electronics and additional payload. TheBCF oscillatory locomotion type is arguably the most studied and implement propulsiontype in the robotics community [110, 111, 112, 113, 114, 115, 125]. Based on their inspiringcounterparts, the major expected benefit for this locomotion type was the efficient gen-eration of thrust for fast cruising, while MPF swimmers are usually thought to excel atmaneuverability and to be more efficient at low speeds.
Fish and other aquatic animals often rely on rhythmic motions of compliant bodies.To take inspiration from their locomotion, requires a fundamentally different engineer-ing approach compared to ordinary marine technology. The advent of soft robotics hasprovided the necessary tools to facilitate the integration of novel propulsion and subse-quently locomotion methods for underwater vehicles. There are two distinct approachesto emulate a soft actuation. The first approach uses multiple rigid components and actua-tors, potentially connected by softer or compliant parts, and a soft actuator like behavioremerges from the interaction of the rigid elements [126, 114, 127, 128]. This approach pro-vides a high degree of controllability over the actuator and relative ease of mathematicalmodeling at the expense of an increased mechanical complexity. The second approach isbased on soft, often elastomeric materials that mimic the properties of the soft biologicalcounterpart, while actuation can be realized mechanically, hydraulically or pneumatically[129, 130, 125]. Thematerial properties of the elastomericmaterial can be designed to pas-sively assist the realization of the desired actuator kinematics, and potentially dynamics,without the need for an increased active actuation effort. This comes at the expense of ahigher control complexity. However, a truly soft actuator has the additional benefit that itis much safer to interact with, which is specifically important for applications that requireminimal invasive observation or missions where the robot is supposed to collaborate witha diver.
Based on the state-of-the-art for bio-inspired underwater propulsors, it can be statedthat the goal of more efficient and maneuverable locomotion has not been achieved yetand will be a task with a large future horizon. However, the other benefits of specificallysoft bio-inspired actuators such as minimal invasive monitoring and safe interaction canbe leveraged upon more readily and are therefore the main motivation in this thesis toinvestigate the actuator control of bio-inspired underwater locomotion.

3.2 Asymmetric actuation for yaw control
A new control approach that leverages the unique features of compliant propulsors, butalso tackles new constraints imposed by such actuators, is tested on a fish like robot thatwas developed in the European project Fish Locomotion and Sensing (FILOSE). The robotcan be seen in Figure 17 andwas designed to demonstrate solution driven bio-inspired de-sign for flow sensitive sensor systems and compliant propulsors [131]. State estimation isachieved in part by flow sensing and in part by inertial measurements. The improvementsin state estimation based on differential pressure shown in 2 could be transferred and ex-
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Figure 17 – Specifics of the FILOSE robot [publication III]. a) Side view: 1 - rigid head of the robot; 2
- compliant silicon tail; 3 - rigid fin; 4 - Styrofoam float; 5 - splash proof box containing battery pack
and Bluetooth module. b) CAD drawing of electronics and actuation mechanism: 6 - microcontroller
and orientation sensor; 7 - servomotor; 8 - steel cables; 9 - actuation plate

tended to the artificial lateral line that the FILOSE robot has so far used. However, thefocus of this chapter is on control and to test the new control approach only attitude esti-mation was necessary, which can be achieved by inertial measurements using a standardIMU.
The FILOSE robot consist of a rigid head connected to a compliant silicon tail with arigid fin. Tail and fin were designed to emulate the morphology and compliance of a rain-bow trout (Oncrohynchus mykiss) [132]. The tail is actuated by a single motor, located inthe rigid head, that is connected to the tail via cables attached to an embedded plate. Ad-ditionally, the rigid head contains all on-board electronics, including amicrocontroller andan IMU for orientation feedback. Additionally, the robot is connected to a float which car-ries a battery pack and a Bluetoothmodule for wireless communication. Figure 17.a showsthe robot with the attached float, while Figure 17.b describes the internal structure of therobot.
The FILOSE robot has beenmostly used to develop and test flow relative control strate-gies [133, 134, 75] utilizing an artificial lateral line, based on absolute pressure sensors, toaugment state estimation. Linear motion of the robot is facilitated by a sinusoidal excita-tion of the compliant tail with a static frequency and a variable amplitude. The robot isenabled to turn, by adding an offset to the sinusoidal excitation. The offset causes thecentre of oscillation of the compliant tail to be out of line with the centre line of therobot, which creates a turning moment. This strategy has been proven to be effectivein conditions where external flow is present, but seems to be ineffective in calm environ-mental conditions. However, orientation control is crucial for the autonomy of the robotand should be effective independent of the environmental conditions. To overcome thisproblem new control strategies are necessary.
The main focus of both, biologists and roboticists, has been on rapid turning maneu-vers for fish or fish-like robots that utilize large tail bending angles [135, 126, 136, 137, 138,115]. However, for fish-like robots with simple and robust actuation mechanisms opti-mized for cruising such a solution is not feasible. Additionally, steady turns that could playan important role during inspection and observation tasks have been given little attentionso far. Hu et al. [139] and Tan et al. [140] present results for steady turns where an offsetto the tail beat is added, which is identical to the strategy employed for the FILOSE robotwhen external flow is present. However, the mechanical structure of the robot used in[140] allows for much larger tail beat offsets compared to the FILOSE robot. Since the off-
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set approach does not seem to be fruitful for the actuation setup of the FILOSE robot, adifferent solution was necessary. The necessity for a turning moment around the robotscentre mass makes the problem of attitude control for the FILOSE robot a good exampleto test the new control approach based on asymmetric actuation, which should providesuch a turning moment.Utilization of asymmetry for underwater locomotion has been shown in rowing-likemotions of appendages. The asymmetry is produced by a fast power stroke and a slowrecovery stroke of the appendages, that is used for thrust production [141]. Those rowingmotions have been mimicked by robotic prototypes either focusing on fins following aspecific kinematic profile [142, 143], or by adapting themorphology ofmoving appendagesas shown in [144] and [145]. However, in all cases the purpose of the asymmetric actuationwas the generation of drag-based thrust in a low Reynolds number regime.More complex asymmetric actuation patterns have been shown in [146] and [147],again with a focus on thrust generation. A different type of asymmetry related to un-derwater locomotion can be observed in the caudal fins of fish as shown in [148]. Hereeither the basic morphology of the caudal fins is already asymmetric or a symmetric cau-dal fin is differentially actuated to create asymmetries during motion. The latter has beeninvestigated using an artificial caudal fin actuated by independent fin rays [149]. Similar topreviously cited works, themain focus was on in-plane thrust generation, however resultspresented in both [148] and [149] indicate to the existence of out of plane forces that aremodulated by the asymmetries of the caudal fin. The generation of an out of plane forceis also utilized by the work presented here. However, the asymmetric motion is gener-ated by a compliant tail of a robotic fish using only one actuator instead of a caudal finequipped with many actuators. Additionally, the application of asymmetric actuation inthe presented work aims for the extension of maneuverability of an underwater robot, asopposed to the focus on increased thrust production shown in the previously cited works.A novel skewed waveform is defined and implemented as actuator input, which producesasymmetric tail motions that in turn create significant torques that the FILOSE robot canuse in turning manoeuvres. The following sections describe the control framework that isbuilt to drive the asymmetric actuation, show results from field trails to validate the pro-posed framework. The results are subsequently analysed and discussed and the chapterends with a summar and conclusion of the research on actuation control presented in thethesis.
3.2.1 Control frameworkIn it’s basic form the motor actuates the compliant tail based on a sinusoidal input ϕ ofthe following form:

ϕ(t, f ,A,ϕ0) = A∗ sin(2π f t)+ϕ0, (37)
where A is the amplitude of the motor’s oscillation, f is the oscillation frequency, t is timeand ϕ0 is the oscillation offset.To implement a novel asymmetric actuation framework the sinusoidal input is replacedby an asymmetric periodicwaveformdefined as a piecewise continuous functionϕ(t, f ,A,sk)with a skew parameter sk ∈ IR,0.1≤ τ ≤ 0.9:

ϕ(t, f ,A,sk) =
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Figure 18 – Asymmetric Periodic Waveform [publication III]. All functions are normalized and have
a wave period T = 1s. The skewed triangle waves are represented by the limit cases sk = 0.9 and
sk = 0.1, all other waveforms lie between these two cases. The standard sine wave commonly used
for actuation is shown as reference

whereT = f−1 is thewave period of the function andwe defineΦ(t)= t mod T asmodulooperator for time. For a sk of 0.5 a triangle wave is generated without skew, which shouldinduce no turning action. The upper and lower limits of sk also define the limits of thecorresponding turning rate and the resulting waveform of the two limit cases is shown in
Figure 18. Two 8-th order Savitzky-Golay filters are used to smoothen the output signal.Nowa feedback control law canbedesigned for the skew factor basedon anempiricallyvalidated relation between skew factor sk and torque N in the following form:

sk = 0.5+αN, (39)
whereα is an experimentally determined constant. The control law is based on the nonlin-ear proportional-derivative control strategy as described in [150]. However, it is assumedthat the hydrodynamic damping of the water will act similar to a derivative control term,so that the resulting control law is in the form of a proportional controller. Inspired by[151] a control law for N can then be designed as:

N =− 1
α

sin(aψ̂)√
2(1+ cos(aψ̂))

, (40)
where ψ̂ = ψ−ψd is the orientation error comprised of the measured yaw angle ψm andthe desired yaw angle ψd . Additionally, a is a factor that determines the tightness of theerror. The effect of that tightness factor on the skew factor can be seen in Figure 19. A fullderivation of this control law and a stability analysis can be found in [3].Finally substituting (40) in (39) the final feedback control law for sk, taking into accountsaturation effects (skmax,skmin) = (0.9,0.1), can be synthesized as:

sk =





0.4∗ sign(ψ̂)+0.5 |aψ̂| ≥ π/4

0.5− sin(aψ̂)√
2(1+ cos(aψ̂))

|aψ̂|< π/4.
(41)

48



-200 -100 0 100 200

yaw error [°]

0

0.2

0.4

0.6

0.8

1

s
k
e

w
 f

a
c
to

r
- 

s
k

a = 20

a = 2.5

a = 1

a = 0.5

a = 0.1

Figure 19 – Skew factor τ vs. heading error [publication III]. The choice of the tightness factor a de-
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a higher risk of overshoot. For very high tightness factors the controller approximates a bang bang
control.

Note that the above nonlinear proportional control law differs from the standard one con-sidered in [151], in order to avoid sluggish tracking when aψ̂ is close to ±π . Increasingthe tightness factor a increases the tracking rate (Fig. 19), at the cost of an overshoot af-ter reaching the desired orientation. Figure 20 shows the complete orientation controlscheme, which highlights that the yaw angle is measured by the IMU of the robot andthat amplitude A and frequency f for the waveform generation are defined by a higherlevel layer that can either be a user or a higher level control layer.
3.2.2 Experimental setup
After initial tests in a small laboratory tank, the effectiveness of the proposed controlscheme was evaluated under field conditions in a lake. The initial orientation of the robotwas set 110° away from the desired yaw angle and trials were conducted for different
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Figure 20 – The proposed control scheme [publication III]: The shown parameters are: ψ - yaw,
ψm - measured yaw, ψd - desired yaw, ψ̂ - heading error (ψm - ψd ), sk - skew factor, ϕ(*) - motor
input, N - body torque, A - actuation amplitude and f - actuation frequency
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tightness parameters a. The trials were stopped when the orientation error had settledwithin the 2% bound or the robot ran out of space for movement. The frequency of thetail actuation was held constant at 2Hz and the actuation amplitude was set to A = 30°.This experimental setup allowed to study the effectiveness of the controller and to de-termine its step response for different tightness factors. Standard metrics such as risetime (10%), overshoot and settling time (2%) were used to quantify the controller per-formance in contrast to the turning performance of the robot with a sinusoidal actuationof the form described in equation (37) and a maximum attainable phase offset ϕ0 of 10°
3.2.3 Results and discussion

The results for the offset based turning and the novel asymmetric actuation based turningfor tightness factors a = 20, 5, 0.1 is shown in Figure 21. A distinct oscillation is superim-posed on the general trend of the yaw signal in all trials. This oscillation is caused by therecoil of the anterior part of the robot due to the tail motion. The yaw is subsequentlytime averaged (blue lines in Figure 21.a-d) over one tail beat cycle to smooth the outputsignal.
The default orientation control, based on an offset to the center of oscillation, fails toapproach the desired yaw setpoint in a reasonable amount of time (Figure 21.a) and thetrial had to be aborted. This result strengthens the claim that the offset based orientationcontrol is not effective for the FILOSE robot in the absence of external flow. In contrast tothat, with the proposed control scheme, the robot could reach the setpoint in all testedconfigurations (Figure 21.b-d). However, the results clearly show that the controller per-formance depends on the tightness factor. For a tightness factor a = 20 the controllerapproaches a bang-bang control which is reflected in the overshoot seen in Figure 21.b.
With a smaller tightness factor the approach towards the setpoint was expected to beless steep, projecting less overshoot. Figure 21.c shows the yaw control for a= 5 and it canbe seen that the approach to the setpoint is indeed smoother. However, this achieved atthe expense of a larger settling time, because for a = 5 the skew factor and subsequentlythe turning rate are small when the heading is close to the setpoint.
A further decrease of the tightness factor causes the controller to deviate earlier fromthe maximum skew which results in a slower turning motion. Figure 21.d shows an ex-treme case for a skew factor of 0.1. Here the bandwidth for the asymmetric actuationis significantly narrowed with an admissible range for the skew factor between 0.6 and

0.5. This causes slows down the turning motion significantly, which is reflected by a muchhigher rise time and the absence of any stabilization of the yaw around the setpoint. Fur-thermore, the controller was more susceptible to disturbances because the heading errorincreases again after 24 s, possibly due to local currents in the pondorwind induceddistur-bances acting on the float. However, the robot was able to recover and continued to turntowards the setpoint. Environmental influences also seem to be reflected in the controllerperformances for larger gain factors (see Figure 21.b and c), because the turning rates arevarying for constant skew factors. The results suggest that the controller is robust againstsuch influences. Another limiting factor for the turning rate was the attachment of theFILOSE robot to a float. Its hydrofoil profile reduces drag in surge direction, but producesa large drag in lateral direction which opposes the turningmotion. It can be thus expectedthat the control performance would be improved on a free swimming robot.
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Figure 21 – Results of the field trials [publication III]. Shown are the time series of instantaneous
(red) and averaged over one tail beat cycle (blue), yawangle during field tests for different parameter
settings. For figures b) - d) the time series of the skew factor (grey) is shown to visualize the control
action. In a) the default orientation control with an oscillation offset of ϕ0 = 10° was used. In b) -
d) the novel orientation control was applied with tightness factors of a = 20,5,0.1 respectively. The
controller performance is characterized by the rise time from 10% to 90% of the desired yaw, the
overshoot in % of the desired yaw and the settling time where the actual yaw stays within a 2%
error band of the desired yaw.
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3.3 Summary and conclusions
This chapter introduced a novel nonlinear control framework for the orientation controlof a fish-like robot with compliant tail. The control strategy is based on controlling anasymmetric waveform that is used as a reference input for the motor that actuates thetail of the robotic fish.

With the presented new control approach the FILOSE robot was enabled to conductreliable and steady turns in conditions without flow. A comparison to the standard tail-beat offset based turning of such fish-like robots showed the efficacy of the proposedmethod. In the absence of flow, the standard approach does not produce enough torqueto enable the robot to control its orientation, while the proposed method based on the
asymmetric actuation successfully enables turning maneuvers. The tests with differenttightness factors show that this parameter controls the aggressiveness of the controllerwhen approaching a given setpoint. It seems that for a given environmental conditionand for specific actuator properties an optimal tightness factor exists. A rigorous tuningprocedure for the tightness factor and for the proportional gain of the controller have thepotential to improve the performance further. Investigations into the complex fluid bodyinteractions between compliant actuator and the surrounding fluid would provide usefulinsights for such an optimization procedure.

To refer back to the second research question of the thesis "Can asymmetric actuation
increase maneuverability of AUVs using compliant bio-inspired actuators?", it can be con-cluded that the asymmetric actuation in combination with the nonlinear controller wasindeed capable of improving the attitude control of the FILOSE robot.

One limitation of the asymmetric control approach, is the increasing speed at whichthe motor has to actuate the tail in the direction of the fast tail beat. The slope of theskewed triangular wave cannot be increased indefinitely due to physical constraints ofthe actuator. The achieved turning rate is significantly lower than for other orientationcontrol frameworks shown in the literature [152, 26]. However, this difference is mainlycaused by the different mechanical design of the actuator, specifically the difference inmaximum tail bending angles. A significantly increased bending capability usually comeswith increases in the mechanical and / or control complexity.
The experimental setup that was used to test the efficacy of the proposed controlscheme presents another limitation of the research presented in this chapter. The pre-dictive strength of the results shown above is limited by the damping effect of the floatthat is attached to the robot. The dynamics of a free swimming robot might be signifi-cantly different and turning should become easier. However, at the moment necessaryequipment is carried by the float and a redesign of the mechatronic system for the fishrobot would be necessary to get rid of the float. A possible compromise could be the useof a spherical geometry for the float that does experience equivalent drag in all directionsof movement. Nevertheless, the effect of those changes would be impacting both testedactuation approaches in the same way and should not have an effect on their relativeperformance. Finally, orientation control by itself is not sufficient for mobile robots anda path following or trajectory tracking scheme should be layered on top of the existingorientation controller.
Although, the control method developed in this thesis was designed for fish-like robotsthat do not have the capability of large tail-bend angles, the control scheme is generic andcan be applied to any fish-like robot using BCF locomotion mechanism. Beyond applica-tions for fish-like robots the asymmetric actuation scheme can also provide additional ver-satility for the actuation of a broader class of AUVs propelled by bio-inspired appendages.The presented asymmetric actuation control can be best viewed as an additional tool to
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leverage the unique capabilities of bio-inspired actuators and should be used in conjunc-tion with other state of the art solutions.Given improvements for state estimation and locomotion control the next chapter inthis thesis presents contributions on the higher abstraction layer of motion control for ageneral class of underactuated AUVs. This class includes the two commercial AUVs usedto test the DPSS prototypes in Chapter 2 as well as the FILOSE robot introduced in thischapter.
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4 Motion control for AUVs
This chapter addresses the third research question:
"How can model-based nonlinear controllers be augmented, to overcome limitations
related to unreliable state feedback and motion constraints of AUVs with complex

dynamics?"

The chapter first introduces the general problem of motion control for underwatervehicles and provides an overview of common control methodologies. A novel model-based control approach, which combines event-based control, a differentially flat dynam-ics model and disturbance estimation, is then presented. Validation and experimenta-tion through simulation is discussed. While several core concepts of the novel controlapproach are published in publication IV, chapter 4 also represents, at the time of thisthesis, some unpublished work."
Motion control of AUVs can be classified into two key categories: dynamic positioningand path following. Dynamic positioning concerns the problem of stabilizing a vehicle at agiven set point, which is essential for applications such asmonitoring of underwater struc-tures, underwatermanipulation or object identification. In contrast, path following entailsthe goal to reach a set of given configurations potentially in multidimensional space. Thecapability for path following is relevant for survey operations and for traveling to, from orbetween mission sites / areas. An extension of path following is the problem of trajec-tory tracking where a time instance is assigned to every configuration of the path. Thetrajectory tracking control problem is particularly relevant for applications that requireenergy and / or time efficiency as well as for applications where obstacle avoidance andagility play a major role. The focus of the work presented in this chapter was on trajectorytracking control.Another classification can be made based on the degrees of freedom (DOFs) in whicha vehicle is actively moving. While surface vehicles are mostly restricted to 2D planarmotion, AUVs, in general, move in 3D space and thus exhibit 6 DOFs with potentially sig-nificant coupling between DOFs, which increases the control complexity. However, de-pending on the respective vehicle and it’s application various DOFs can be decoupled orneglected. Then, only a subset ofmotion directions are considered in the control problem,which reduces the complexity. The center of gravity and centre of buoyancy formost AUVsare configured so that the vehicle experiences a passive restoring force, which countersroll motions. Thus, the control of the roll DOF can be often neglected. A vast amount ofwork has been focused on motion restricted to some plane in 3D space, either horizontalmotion only consideringmovements in surge, sway and yaw [153, 154, 155], or vertical mo-tion only considering surge, heave and pitch DOFs [156]. For 3D motion those two planescan be combined to control motion in surge, sway, heave, pitch and yaw [157, 158].An additional factor that increases control complexity is the underactuated nature ofmost standard AUVs. Due to resource, budget or efficiency constraints it is often not sen-sible to design AUVs that can be independently actuated for all DOFs that are relevantfor a certain mission. The lack of actuation increases the control complexity, because thereachable configuration space of the vehicle is reduced and the actuation and control inthe remaining degrees of freedomneed to be utilized to compensate for the loss of controlaction in a specific direction. Further complicating factors for AUV control are the nonlin-ear dynamics, which significantly restrict common linear control approaches to distinctoperating points.

54



The control performance of linear control approaches can be sufficient in applicationsin which vehicles are operating in a close neighbourhood of a linearizing point or for AUVsthat are operating in stationary and deterministic environments. However, most environ-ments that AUVs are deployed in violate these assumptions: they are dynamic, character-ized by sharp nonlinearities or non-stationary processes, and may be non-deterministic.
Complex fluid body interactions are the main contributor to the nonlinear dynamicsand can only be approximated in the vehicle dynamics model, making the accurate rep-resentation of AUV dynamics difficult. The nonlinear character of the AUV dynamics to-gether with the difficulty to identify an accurate parametric model for those dynamicspose an interesting dichotomy from the control point of view. On the one hand the highlynonlinear and potentially coupled dynamics of AUVs suggest the use of nonlinear modelbased control approaches to either cancel out the nonlinear dynamics or to utilize the"useful" nonlinear parts of the dynamics. On the other hand, the inherent uncertainty inAUVmodeling poses a significant challenge for nonlinear model based control and seemsto favor robust model free control approaches that need to concede some of their con-trol performance for robustness. The most favourable control architecture is thereforedependent on the respective underwater vehicle, the application and measures of imple-mentation effort such as computational complexity and complexity of the tuning processfor hyperparameters. In recent years machine learning approaches, specifically neuralnetworks and reinforcement learning type architectures have found widespread interestand application in the mobile robotics community [159, 160, 161, 162]. However, machinelearning approaches are highly dependent on access to datasets which are expensive orimpossible to collect and which typically fail to generalize well to real-world scenarios.Thus, this thesis specifically focuses on non-learning based techniques.
The research presented throughout this thesis pays specific attention to the control ofAUVs with bio-inspired actuation. For this chapter the focus will be especially on multi-fin underwater vehicles. While a variety of such vehicles vehicles exist [116, 117, 118, 119,120, 121, 122, 123] their motion control has not been studied extensively. In most workonly open loop or manual control is presented [116, 119, 163, 164, 165] with a specificfocus on gait generation using central pattern generators [163, 165, 164]. Some studieshave focused on 1 DOF motion control during surge motions. Geder et al. show a model-free control framework for either heading or depth control [122], while Siegenthaler et al.use model-free control of the angular rate to stabilize forward swimming [123]. Attitudecontrol for different turning maneuvers is presented by Licht et al [120]. However, thosecontrol frameworks only were concerned with controlling single DOFs at a time, usingsimple model-free control frameworks. Additionally, control was mostly employed for setpoint regulation, while more advanced control tasks remained unstudied. An exception isthe motion control of the Aqua AUV [118], which has been extensively studied in recentyears. In [166] and [167] modeling and model-based control of the vehicle are presented,but again only for single DOFs at a time. Multi DOF control for attitude and heave, usingmodel-free PID and PI controlles is presented by Giguere et al. [168]. Problems regard-ing the control range and coupling were avoided using gain scheduling, which resulted inadequate trajectory following. However, the gain scheduling technique necessitated thetuning of an array of 45 control parameters, resulting in extensive and complex develop-ment of the control framework.
Some research on control has also been published on the Underwater Curious Archae-ology Turtle (U-CAT), which will be the main experimental platform (see section 4.4) tovalidate the research presented in this chapter. Chemori et al. [169] presented a depthcontroller for U-CAT comparing two model-free control approaches, RISE and PID. The
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authors conclude that the RISE controller has a better tracking performance comparedto the standard PID controller. In [170] Salumäe et al. show a control framework enablingthe robot tomove in several degrees of freedom (surge, yaw, heave) simultaneously, whileonly yaw and heave were actively controlled. The authors used a model-based approach,termed inverse dynamics (ID), which was utilizing feedback linearization with accelera-tion feedforward [35]. This ID controller was compared with the standard model-free PIDcontroller in various scenarios that included disturbances. The results show that the IDcontroller outperforms the PID controller, specifically in the presence of disturbances.The work presented in [169] and [170] showed the autonomous capabilities of U-CATfor motions in the vertical plane. However, surge and pitch were not actively controlledand surge was effectively decoupled from heave through DOF prioritization so that activetrajectory tracking in the vertical plane was not shown. However, for fully autonomousand reactive exploration of confined spaces U-CAT should be able to effectively track tra-jectories in 3D space that are produced by navigation and obstacle avoidance nodes suchas presented in [171]. General problems for the extension of tracking in more DOFs arereliable state estimation and the potentially underactuated nature of U-CAT specificallybut also of many commonly used AUVs in general. This motivates the development of amodel-based controller that extends trajectory tracking capabilities and addresses theseissues specifically, but not exclusively for U-CAT.In the following sections commonly usedmodel-free control architectures for AUVs arebriefly introduced, followed by the novel model-based control framework that representsthe research contribution to answer the third research question. For all subsequently pre-sented controllerswe consider as underlying dynamics a control affine nonlinearMultiple-Input Multiple-Output (MIMO) system of the following classical form:
ẋ = f (x, t)+g(x, t)τ

y = h(x, t),
(42)

where x represents the system states, τ the control inputs, t time and y system outputs.
f (·),g(·),h(·) are the nonlinear mappings for system states, control inputs and systemoutputs respectively. Additionally, the tracking error η̃ is defined as the difference be-tween a desired reference configuration ηd and the actual robot configuration:

η̃ = η−ηd . (43)
4.1 Overview of traditional model-free motion controllers
For brevity only two model-free motion controllers, the PID controller and the RISE con-troller, will be presented. These controllers will subsequently be used as baselines towhich the novel model-based control approach will be compared.
4.1.1 PID control
The most widely applied control architecture in engineering in general, but also in mobilerobotics, is arguably the PID controller. The control law can be expressed as follows:

τ = KPη̃ +KI

∫ t

0
η̃dt +KD ˙̃η . (44)

KP,KI ,KD are positive definite matrices representing the feedback gains for the propor-tional, integral and derivative terms for the controller. The popularity of PID control ismostly attributed to its simplicity and ease of implementation.
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4.1.2 RISE controlMuch focus formodel free controllers has been applied on increasing their robustness, i.e.their capability to handle uncertainties including exogenous disturbances and nonlinear-ities. A popular and widespread nonlinear robust approach is sliding mode control (SMC)[172]. The control design for SMC is a two part process, where the first part is concernedwith the design of a specific surface in the state space, defined as sliding surface, ontowhich the system states need to be driven. During this design steps the sliding surfacecan be tailored to influence the dynamic behavior of the controlled system. In the seconddesign step a control law is synthesized that ascertains that the system states remain in theneighborhood of the sliding surface. A problem of SMC control is that it is discontinuous,which makes it prone to chatter and it theoretically requires infinite bandwidth [173]. Theproblem of chatter can be addressed by the introduction of higher order state derivativeinputs to the controller. However, higher order state derivatives like acceleration or jerkare generally hard to obtain or estimate in a reliable manner for constant feedback.In contrast, robust integral of the sign of the error (RISE) control is structurally similar,but continuous and so does not suffer as much from the aforementioned problems [39].To synthesise the RISE feedback controller we first define an auxiliary tracking error of thefollowing form:
η̃2 = ˙̃η +α1η̃ , (45)

where η̃ is defined as in (43). Note that the preceding error synthesis is done for thespecial case of a second order MIMO system, to which the general AUV dynamics belongto. The subsequent feedback structure for a RISE controller then takes the following form:
τ(t) = (ks +1)η̃2(t)− (ks +1)η̃2(t0)+

∫ t

t0
[(ks +1)α2η̃2(σ)+β sgn(η̃2(σ)]dσ , (46)

where α1,α2,β ,ks ∈ R are a positive constant control gains and sgn(·) is the standardsignum function. Stability analysis and experimental results in the context of the controlof AUVs is provided in [173]. With the two model-free baseline controllers being defined,the next section will provide the necessary mathematical background to understand thenovel model-based motion controller that is introduced in this thesis.
4.2 Overview of model-based motion control
This section will give an overview about the standard AUV dynamics model that, in someform, almost always is used as the basis for any kind of model-based control algorithmfor AUVs. Additionally, the property of differential flatness is introduced and the struc-ture of a novel event-based controller for fully actuated vehicles, first presented in pub-
lication IV, is derived. This general controller will later be adapted for underactuatedvehicles moving in the 2D horizontal plane, which constitutes the major contribution ofthe unpublished part of the work presented in this chapter (shown in section 4.3.3). Thisadaptation requires the use of disturbance observers to estimate motion in unmodeledDOFs. Therefore, the theory of disturbance observers is shortly introduced at the end ofthe current section.
4.2.1 AUV dynamics model for 6 DOFThe full 6DOF rigid-body equations ofmotion for anAUV canbedescribedby the followingvectorial representation [40]:

Mν̇ +C(ν)ν +D(ν)+g(η) = τ

η̇ = J(η)ν ,
(47)
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where the first equation describes the dynamics and the second equation the kinematicsof the system. In both cases η = [x,y,z,ϕ,ϑ ,ψ]T is the pose vector of the robot in aCartesian earth-fixed frame with orientation represented by the Euler-angles [ϕ,ϑ ,ψ]T .Furthermore, ν = [u,v,w, p,q,r]T represents the linear and angular velocities in body-fixed frame. J(η) ∈ R6x6 maps the body-fixed frame to the earth fixed frame [40].
M is the inertial matrix of the vehicle, while C and D represent Coriolis-centripetaland damping effects respectively and g(η) is the vector hydrostatic forces and moments.Finally, τ = [X ,Y,Z,K,M,N] is the vector of control inputs. The matrices M andC can befurther subdivided into:

M = MRB +MA

C(ν) =CRB(ν)+CA(ν),
(48)

where the subscript ”RB” indicates that the parameters in the respective matrix describerigid body effects. The subscript A instead indicates a matrix summarizing parametersdescribing the hydrodynamic effect of addedmass [174]. By using the simplifying assump-tions that the centre of gravity of the robot coincides with the origin of the body-fixedcoordinate frame, that the robot is symmetric along all body axes and that the vehicle ismoving at reasonably low speed [40] the inertia matrix M can be described by:
M =

[
mI3x3 03x3
03x3 Ic

]
−diag{Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ}, (49)

with m being the mass of the vehicle, I being the identity matrix and Ic = diag{Ixx, Iyy, Izz}describing the moments of inertia around the principle axis of the vehicle. The diagonalterms of the second element in (49) are addedmass coefficients that are tied to the kineticenergy of the fluid that is moved aside by the motion of the vehicle [174].With the same assumptions, the Coriolis-centripetal matrixC can be defined as:
C(ν) =

[
03x3 −mS(ν1)

−mS(ν1) −S(Icν2)

]
+

[
03x3 S

(
[Xu̇u,Yv̇v,Zẇw]T

)

S
(
[Xu̇u,Yv̇v,Zẇw]T

)
S
(
[Kṗ p,Mq̇q,Nṙr]T

)
]
, (50)

where v1 = [u,v,w]T , v2 = [p,q,r]T and S() denotes the skew symmetric matrix of thefollowing form:
S(λ ) =




0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0


 . (51)

The damping matrix D can be approximated as a combination of linear and quadraticdamping effects on the vehicle and takes the following form:

D(ν) =−diag{Xu,Yv,Zw,Kp,Mq,Nr}
−diag{X|u|u|u|,Y|v|v|v|,Z|w|w|w|,K|p|p|p|,M|q|q|q|,N|r|r|r|}. (52)

Finally, assuming the centre of buoyancy of the vehicle rb = [xb,yb,zb]
T coincides withthe centre of gravity along the x-axis and y-axis of the body coordinate frame, the vectorof hydrostatic forces and moments g(η) can be described by:

g(η) =




(W −B)sin(θ)
−(W −B)cos(θ)sin(φ)
−(W −B)cos(θ)cos(φ)
−zbBcos(θ)sin(φ)
−zbBsin(θ)

0



. (53)
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A commonly used nonlinear control strategy for marine systems of the form (47) iscalled state feedback linearization. The basic idea behind state feedback linearization isto define a control input and a state transformation that transform the nonlinear systemdynamics into a linear system [175]. An underlying assumption for the control with statefeedback linearization is that the system is fully actuated or overactuated.However, many AUVs are underactuated systems where some entries in the vectorof control forces τ are zero. It has been shown that one can still linearize the actuateddegrees of freedom by feedback of some form [176], which is called partial feedback lin-earization. However, the dynamics of the remaining degrees of freedom are not directlyaccessible and remain as nonlinear internal dynamics. For certain underactuated systemsit was shown that the dynamics of the system without actuation can be also linearized[177].If one wishes to employ control strategies for trajectory tracking feasible trajectoriesfor the system to follow need to be found. This can be a non-trivial problem for complexdynamics system and is layered on top of the actual control problem that one might wantto address with state feedback linearization. A different framework that is closely relatedto state feedback linearization makes use of a property of control systems that is called
differential flatness [178, 37], which is introduced in the next section.
4.2.2 Differential flatness
Differential flatness is a property of control systems, which characterize the possibility ofparameterizing all possible system trajectories by the so-called flat output. A system ofform (42) is said to be differentially flat if there exists an output function y ∈ Rn:

y = h(η ,τ, . . . ,τ(l)) l ≥ 0, (54)
called flat output, such that all states η ∈ Rn and inputs τ ∈ Rm can be determined fromthese outputs without integration:

η = ϕη(y, . . . ,y(k)) (55)

τ = ϕτ(y, . . . ,y(k)), (56)
with analytic functions ϕη ,ϕτ and k ∈ N.Flat outputs are not unique; in fact for a given flat system there are infintiely many.While finding flat outputs for an arbitrary systems can be non-trivial [179, 180], it hasbeen shown that physically meaningful quantities, such as the pose of a robot, are validflat outputs for robot control problems. The property of differential flatness is closelyrelated to the possibility of state feedback linearization. In fact, any flat system can befeedback-linearized using dynamic feedback. Additionally, differential flatness has impor-tant implications for automated trajectory generation and tracking, because trajectoriescan be defined in the flat output space, where they are by definition consistent with thesystem’s dynamics.Thus, differential flatness is a very convenient framework for trajectory tracking, as itis very natural and straight forward to construct a feedforward controller for differentially
flat systems. In fact, feedforward trajectories can be generated automatically, becauseany smooth trajectory with properly bounded derivatives in the flat output space can befollowed by the respective system. In most cases a feedforward controller, constructedbased on the flat system, is combinedwith other control constructs, like PID or pole place-ment to ensure stability or tracking [181, 182, 183]. Flatness based control strategies have
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been successfully applied in the mobile robotics domain for terrestrial robots [184] andfor drones [185]. For underwater robots the framework presented in [185] has been used,but only for attitude control [186].
As soon as a controller needs to be deployed in a real world scenario in dynamic en-vironmental conditions, certain unmodeled external influences on the controlled systemdynamics arise. Additionally, the first principle derivations for the dynamics models ofphysical systems are always based on simplifying assumptions and, sometimes, empiri-cally determined parts, to make them conceptually and computationally tractable. Thismeans that dynamics models are only able to predict the system behavior up to a certainlevel of accuracy. Disturbance observers can be used to compensate for unmodeled ex-ternal and internal influences on the vehicle dynamics and are therefore introduced in thenext section.

4.2.3 Disturbance observers
Both, unmodeled external influences and internal inaccuracies of the vehicle dynamicsare usually combined into a lumped parameter, which is called disturbance. Disturbancesare often unknown and not measurable and, therefore, cause difficulties in the controldesign. In the context of AUV control, irrotational ocean currents are often defined asthe main external disturbance, but eddies and wave induced changes in the environmentcan be also encountered by an AUV. Inaccuracies of the hydrodynamic coefficients of thedynamics model (47) represent the biggest internal source of error for AUVs and are alsooften modeled as disturbance.

One solution to deal with both internal and external disturbances is the use of robustcontrollers, which are able to achieve a satisfactory performances even under the influ-ence of disturbances. The integral component in a PID controller adds robustness towarddisturbances to a limited degree. The RISE controller defined in 4.1.2 is part of a family ofrobust controllers together with SMC, H∞ control or high-gain feedback control, that haveall been shown to accomplish their goal under disturbances. However, those controllerstrade part of their performance for their increased robustness.
Model based approaches generally have a better control performance compared to ro-bustmodel free controllers. Yet, they are very reliant on an accurate dynamicsmodel. Thisprerequisite is violated under conditions with significant disturbances. To fully leveragethe control performance of model based controllers when disturbances are present, dis-turbance observers can be used. These structures are designed to estimate disturbancesand, possibly, a certain number of their time derivatives. Those disturbance estimatescan then be directly integrated into the chosen controller design to create a disturbance-observer-based control (DOBC). Running a disturbance observer in the inner loop of aDOBC does not degrade the control performance of the outer loop controller, so that nosacrifice is necessary for increased robustness [187]. This makes DOBC also attractive forrobust control methods in applications where their base performance is not satisfactory.
Many types of disturbance observers have been proposed in the literature, however,the two main types of nonlinear observers that have received the most attention are ba-sic nonlinear disturbance observers (BDO)[188, 189] and extended state observers (ESO)[190, 191, 192]. The efficacy of the proposed disturbance observers relies on various as-sumptions about the character of the disturbances to be estimated. In many cases dis-turbance dynamics are assumed to be known [188, 193, 190, 194], which is generally notthe case in real world scenarios. Other approaches rely on the assumption that the firstor a higher order time derivative of the disturbance is bounded [195, 191, 192] . For bothassumptions, known disturbances or zero time derivatives, the resulting observer will im-
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prove the overall performance of the DOBC, but does not necessarily provide the capa-bility to reject the disturbance. However, a seemingly restrictive assumption that the firsttimederivative of the disturbance is zeromight still provide a sufficiently performingDOBCif the disturbance is constant or slowly time varying [187]. Knowledge about the expectedapplication conditions is thus of high importance for the controller design. The followingsectionwill describe a version of the BDO, introduced in [187], with less restrictive assump-tions on the system dynamics and disturbance dynamics compared to BDOs presented in[195, 196, 197]. We first extend the description of our system to be controlled (42) withthe notion of disturbance w ∈ Rp:
ẋ = f (x, t)+g1(x, t)τ +g2(x, t)w. (57)

Based on the assumption of w(k) = 0 we can define the observer as [187]:
ż0 =−L0(x)[ f (x)+g1(x)τ +g2(x)(z0 + p0(x))]+ z1 + p1(x)

ż1 =−L1(x)[ f (x)+g1(x)τ +g2(x)(z0 + p0(x))]+ z2 + p2(x)
...

żk−2 =−Lk−2(x)[ f (x)+g1(x)τ +g2(z0 + p0(x))]+ zk−1 + pk−1(x)

żk−1 =−Lk−1(x)[ f (x)+g1(x)τ +g2(z0 + p0(x))]

ŵ = z0 + p0(x)

ŵ(1) = z1 + p1(x)
...

ŵ(k−1) = zk−1 + pk−1(x),

(58)

with zi(t) ∈Rp, i = 0, . . . ,k−1 being the observer state, ŵ(i) the estimation of w(i) and
pi(x), Li(x) observer gains chosen to be satisfying:

Li(x) =
∂ pi(x)

∂x
. (59)

If we now assume that the kth time derivative of w is approximately zero, wk ≈ 0, anddefine the estimation error as ei := w(i)− ŵ(i), i = 0, . . . ,k−1, one can write the errordynamics as:
ė0 = e1−L0(x)g2(x)e0

ė1 = e2−L1(x)g2(x)e0

...
ėk−2 = ek−1−Lk−2(x)g2(x)e0

ėk−1 =−Lk−2(x)g2(x)e0

(60)

To stabilize ei, i = 0, . . . ,k−1 to zero one can choose Li(x), i = 0, . . . ,k−1, such that (60)is stable for all x. Subsequently, pi(x) can be calculated from (59).Now that the theoretical foundations for relevant control related concepts have beenintroduced, the next sectionwill describe the research contributions to the research ques-tion of this chapter. First a general differentially flat feedforward controller with event-based feedback (DFEC) is derived for fully actuated AUVs. This constitutes the research
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contribution published in publication IV. Afterwards, the presented controller is aug-mented to apply it to underactuated AUVs moving in the 2D horizontal plane. To that enda state space representation of the AUV dynamics model is reduced and the previouslydescribed concept of DOBC is leveraged to compensate for that reduction and robustifythe resulting controller.
4.3 The DFEC framework
For model based control as presented in section 4.2, an accurate feedback of higher orderderivatives of the robot’s pose, such as acceleration, is necessary. Those quantities areeither very difficult or impossible to accurately measure or estimate for continuous feed-back, which has been a general problem for many model based control strategies that areusing state feedback. A possible solution to this problem can be the use of tools fromevent-based control [36], which can be used to reduce the number of instances that statefeedback is required. With a reduced number of state feedback instances measurementscan be processed and filtered without a real-time requirement which should improve thestate estimation performance for higher order derivatives of the robot’s state.Event-based control [36] is a technique that only makes use of feedback if a chosenmetric indicates that a correction of the feedforward control is necessary. In the caseof a feedforward controller based on flat trajectories an event can be triggered by anincrease of the difference between output trajectory and desired trajectory over somepredefined threshold. The event based control framework consists of three main parts:an event generator, the controller and a control input generator. The event generatorchecks a predefined metric continuously and generates events if it registers a deviationof the metric from a predefined range. The controller defines the control input when anevent occurs and the control input generator, usually defined as a zero-order hold, takescontrol input values received from the controller and generates a continuous time inputfor the system in question.In a novel control framework described in publication IV that fuses flatness basedfeedforward control with event-based control, the flatness based feedforward controlleracts as the controller and the control input generator in the event-based control frame-work. An event generator tracks the output of the feedforward controller and comparesit with the desired output. If the difference reaches a predefined threshold an event istriggered and at the time instance of the event the feedforward controller parametersare recalculated based on measurements and estimates of the system outputs and theirderivatives.
4.3.1 General DFEC derivationFor system (47) the flat outputs could be defined as the robot’s pose η as well as, τfrom (56) a tracking controller can be derived following [publication IV]. First, a trajec-tory ymr(t) is defined, which converges to a given reference trajectory rm(t) of ym, m =
1,2, . . . ,n. Additionally, a discrete time constant tevent is defined that is equal to the lasttime instance that corresponds to an event. Let:

ymr(t, tevent) = pm(t− tevent)e−Km(t−tevent + rm(t), (61)
where Km > 0 is a constant parameter and pm(t− tevent) ∈R[t] is a time dependent poly-nomial, which is chosen so that the initial state and input satisfy the relations (55) - (56),where y is replaced by ym from (61). This means that the coefficients of pm(t) depend onthe initial conditions of the system states and inputs. In addition, the degree ρm of pm(t)is equal to the highest time-derivative in (55) - (56). The flat feedforward trajectories ymr
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are then substituted in (56) to define a feedforward controller, which also means that thereference trajectories have to be k times differentiable.In contrast to the usual choice ymr = rm(t) the definition in (61) simplifies the defini-tion of the event-based control strategy by avoiding the necessity to solve the trajectoryplanning problem at each event [publication V]. The polynomial pm(t− tevent) in (61) canbe calculated in the following way:
pm(t− tevent) =

ρm

∑
λ=0

pm,λ (t− tevent)
λ , (62)

where the coefficients of pm are calculated by solving the systemof the following algebraicequations:
pm,0 = em(0)

pm, j =
e( j)

m(0)

j!
−

j

∑
µ=1

(
j
µ

)
(−Km)

µ ( j−µ)!
j!

pm, j−µ , j > 0,
(63)

with em(0) = ym(0)−rm(0). Then to complete the feedforward controller the time deriva-tives of ymr are computed as:
y( j)

mr (t, tevent) =
j

∑
µ=0

(
j
µ

)
(−Km)

µ p( j−µ)
m (t− tevent)e−Km(t−tevent + r( j)

i (t). (64)
Finally, by substituting (61) and (64) in (56) the following feedforward controller can beconstructed:

τ = ϕτ(ymr, . . . ,y
(k+1)
mr ). (65)

The efficacy of the constructed feedforward controller heavily relies on the assump-tion that model (67) accurately captures the real dynamics of the vehicle. Specifically forunderwater vehicles the presented models can only be an approximation of the real dy-namics and the environment is usually non-stationary as well. This means that (65) willnot yield the desired trajectories ymr and a compensation becomes necessary. To thisend a feedback loop is introduced leveraging the concept of event-based control. Figure22 shows the control algorithm of the feedforward controller combined with a feedbackloop. At all times the difference between the flat output ym(t) and the computed desiredflat output ymr(t) is monitored. In case this difference exceeds the predefined threshold
ε an event is triggered and the error and feedforward controller are essentially reset andthe desired flat trajectory is recomputed based on state and input feedback. This requiresthat the full set of states and inputs are provided at the moment an event is triggered,whereas only the flat outputs need to be monitored between events.In publication IV the novel control approach presented in this thesis was applied toa general model for fully actuated AUVs of the form (47) that was restricted to the hori-zontal plane. In the case of underactuated vehicles, the resulting dynamics model is not
differentially flat and the proposed control approach can not be directly used. This hasbeen somewhat addressed in publication IV under the problem of fault tolerant control.However, the assumptions that have been made to derive underactuated dynamics thatare differentially flat would be difficult to justify from a physics point of view.To that end, the development of a control framework extended from publication IVand inspired by work of Ryu et al. [184] is presented in the following subsections, whichpresent, as of the time of writing, unpublished work. The presented augmented DFEC will
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Figure 22 – Flow chart for the DFEC algorithm based on work presented in publication IV. THe
algorithm starts with the initialization of the polynomial pm so that the feedforward trajectory co-
incides with the flat output of the dynamics, which are state space variables of the robot. The time
tevent tepresents the last time an event has occured and therefore resets the timing of the controller
for each event so that a fresh feedforward trajectory can be generated starting from known "initial"
conditions that are provided by the event based feedback.
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be restricted to 2DAUVmotions in the horizontal plane for a prove of conceptwith simplerderivations. However, the presented approach should be generalizable to 3D motionsunder certain restrictions for the degree of underactuation.
4.3.2 State space equations for underactuated AUV dynamics in horizontal plane

For motion in the horizontal plane, the state space of the dynamics model (47) can be re-duced to q = [x,y,ψ,u,v,r]T = [x1,x2,x3,x4,x5,x6]
T . Additionally, a classical underactionin sway direction is considered. Therefore, the control space gets reduced by one input

τ = [X ,0,N]T = [u1,0,u2]. The state space equations can then be formulated as:

ẋ1 = x4 cos(x3)− x5 sin(x3)

ẋ2 = x4 sin(x3)+ x5 cos(x3)

ẋ3 = x6

ẋ4 =−
1

m11
[(Yv̇−m)x5x6 +Xux4 +Xuux4|x4|−u1]

ẋ5 =−
1

m22
[(m−Xu̇)x4x6 +Yvx5 +Yvvx5|x5|]

ẋ6 =−
1

m66
[(Xu̇−Yv̇)x4x5 +Nrx6 +Nrrx6|x6|−u2] ,

(66)

with m11, m22, m66, Xu,Xuu, Yv, Yvv, Nr, Nrr being constants that define inertial and hy-drodynamic attributes of the vehicle dynamics respectively. Additionally, Xu̇ and Yv̇ areconstant that define the influence of the Coriolis and centripetal forces on the system.Whenever the robot turns, i.e. x4 6= 0 and x6 6= 0, a force arises in lateral (sway) directiondue to the centripetal and Coriolis terms that is reduced by the drag in sway (because
sgn(x4) = −sgn(x6)) but can not be actively countered, due to the underactuated na-ture of the robot. The robot thus experiences an undesired sideslip motion. This cansignificantly decrease the tracking performance for curved paths or trajectories, depend-ing on the amount of environmental damping and the velocities in the actuated DOFs.The underactuated nature of the system also prohibits the use of classical state feedbacklinearization [177] and the state space model is not differentially flat.

Nevertheless, the model can be augmented by excluding the sway velocity x5, whichreduces the state space by one. Thus, all terms in (66) that are related to x5 vanish. How-ever, the cross-dimensional coupling effects of the sway velocity can be expected to benonzero. Therefore, the terms associated with the sway velocity are re-introduced intothe state space model in the form of additive disturbances, which are estimated by a dis-turbance observer. The resulting model is differentially flat, which is shown in the nextsubsection where a DFEC, as described in 4.3.1, is constructed based on the flat proper-ties of the reduced state space model.
4.3.3 Augmented DFEC for underactuated AUV dynamics

For each state the sway velocity related effects are lumped together with other unmod-elled phenomena in an additive disturbance term and the sway velocity is reduced from
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the system states. Model (66) then becomes:
ẋ1 = x4 cosx3 +d1

ẋ2 = x4 sinx3 +d2

ẋ3 = x5

ẋ4 =−
1

m11
(Xux4 +Xuux4|x4|−u1)+d3

ẋ5 =−
1

m66
(Nrx5 +Nrrx5|x5|−u2)+d4,

(67)

with d = [d1,d2,0,d3,d4]
T as the disturbances on different degrees of freedom.Now a DOBC can be derived based on differential flatness and by including the dis-turbances. Following (55) - (56) the states and inputs can be defined in terms of the flatoutputs F = [x1,x2] = [y1,y2] and the disturbances d:

x4 =
√

(ẏ1−d1)2 +(ẏ2−d2)2, (68)

ẋ4 =
(ẏ1−d1)(ÿ1− ḋ1)+(ẏ2−d2)(ÿ2− ḋ2)√

(ẏ1−d1)2 +(ẏ2−d2)2
, (69)

x3 = arctan
(

ẏ2−d2

ẏ1−d1

)
, (70)

x5 = ẋ3 =
(ẏ1−d1)(ÿ2− ḋ2)− (ẏ2−d2)(ÿ1− ḋ1)

(ẏ1−d1)2 +(ẏ2−d2)2 , (71)

ẋ5 = ẍ3 =
(ẏ2−d2)(

...y 1− d̈1)− (ẏ1−d1)(
...y 2− d̈2)

(ẏ1−d1)2 +(ẏ2−d2)2

−
[
(ẏ2−d2)(ÿ1− ḋ1)− (ẏ1−d1)(ÿ2− ḋ2)

][
2(ẏ1−d1)(

...y 1− d̈1)+2(ẏ2−d2)(
...y 2− d̈2)

]

[(ẏ1−d1)2 +(ẏ2−d2)2]2
,

(72)

u1 =m11

[
(ẏ1−d1)(ÿ1− ḋ1)+(ẏ2−d2)(ÿ2− ḋ2)√

(ẏ1−d1)2 +(ẏ2−d2)2
−d3

]

+Xu

√
(ẏ1−d1)2 +(ẏ2−d2)2 +Xuu

[
(ẏ1−d1)

2 +(ẏ2−d2)
2] ,

(73)

u2 = m66

[
(ẏ2−d2)(

...y 1− d̈1)− (ẏ1−d1)(
...y 2− d̈2)

(ẏ1−d1)2 +(ẏ2−d2)2 −
[
(ẏ2−d2)(ÿ1− ḋ1)− (ẏ1−d1)(ÿ2− ḋ2)

][
2(ẏ1−d1)(

...y 1− ḋ1)+2(ẏ2−d2)(
...y 2− ḋ2)

]

[(ẏ1−d1)2 +(ẏ2−d2)2]2
−d4

]

+Nr
(ẏ2−d2)(ÿ1− ḋ1)− (ẏ1−d1)(ÿ2− ḋ2)

(ẏ1−d1)2 +(ẏ2−d2)2

+Nrr

[
(ẏ2−d2)(ÿ1− ḋ1)− (ẏ1−d1)(ÿ2− ḋ2)

(ẏ1−d1)2 +(ẏ2−d2)2

]2

.

(74)
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Now a BDO for the disturbance vector d can be derived following the theory presented in
section 4.2.3. For brevity only the resulting conditions for choosing gains that guaranteestability of the BDO are presented. The full derivation can be found in Appendix 2. TheBDO gains should computed according to the following inequalities:

l0,n > 0

l1,n =
l2
0,n

3
l3
0,n

27
≤ l2,n ≤

l3
0,n

9
,

(75)

with n = 1,2,3,4.Following the statement in [publication IV] that the error threshold ε should not bemuch smaller than the noise in the disturbance, an adaptive law is defined for the errorthreshold if disturbances are present:
εad = max(ε,max(d)+ kε max(d)), (76)

with 0 ≤ kε < 1 being a positive constant parameter. The final feedforward controller isthen defined as:
τ =

(
u1
u2

)
=


 ϕτ1

(
y,y(1),y(2),d,d(1)

)

ϕτ2

(
y,y(1),y(2),y(3),d,d(1),d(2)

)

 , (77)

with u1 and u2 defined by equations (73) and (74). εad and τ are then inserted into theevent based control framework presented Figure 22.
To test the efficacy of the proposed controller, U-CAT was used as an experimentalplatform and first proof of concept tests were carried out with a simulated version of thevehicle. U-CAT itself and the simulation framework are presented in the next sections.

4.4 Experimental platform - U-CAT
U-CAT is a small size, low cost vehicle designed for shipwreck penetration [58]. The vehiclewas designed to support archaeologists during inspection and survey operations in poten-tially dangerous environments by autonomously navigating in confined spaces and creat-ing visual maps [170]. To enable highly maneuverable actions andminimize disturbance ofits environment, U-CAT’s movements are facilitated by a bio-inspired locomotion mecha-nism, which is comprised of four flexible fins (see Figure 23). The four fins are mountedat an angle, which in theory enables fully holonomic motion of the vehicle with possibleactuation in 6 DOFs. Each fin can be actuated independently in any direction around themotors axis. To propel the robot forward the fins are usually oscillating with a sinusoidalmotion profile with a fixed frequency and a variying amplitude.The robot can be operated in two motion modes, denoted by SLOW and FAST, whichdiffer in their fin configuration and subsequent motion capabilities of the robot. In SLOWmode the neutral position of all fins is facing inwards as shown in Figure 24.a. This shouldprovide higher maneuverability and stability as the fin’s mass distribution is symmetricand forces can be produce in all directions. However, this comes at the cost of maximumachievable thrust in surge direction, as only two fins can contribute in that direction. Ad-ditionally, the pitching torque caused periodic oscillations of the front fins cannot be com-pletely countered by oscillating the back fins, which leads to periodic pitching motions of
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Figure 23 – Rendering of bio-inspired AUVU-CATwith 4-fin propulsion. The vehicle is shown in FAST
mode configuration where all flippers point towards the back of the robot when not actuated. This
is the configuration that will be used throughout the subsequent controller development.

the vehicle. In this configuration, the robot can essentially turn in place in yaw directionwhich makes it highly maneuverable in confined spaces, however, this comes at the costof the ability to effectively surge and yaw at the same time, as the torque generation foryawing would be detrimental to the thrust generation for surging. Instead in "FAST"mode(see Figure 24.b) the fin configuration allows for simultaneous surging and yawing at theexpense of the capability tomove in sway direction. The inability to produce forces in swaydirection essentially makes the robot underactuated and nonholonomic in FASTmode. Toprevent continuous oscillations in roll and pitch direction in FAST mode, diagonal fins areactuated synchronously while fins at the opposite diagonal are actuated with a 180°Mo-tion in heave direction is possible in bothmodes by shifting the centre of oscillation of thefins out of the horizontal plane. Rolling motions are also achievable in both modes, whileFASTmode is more conducive to pitchingmotions, especially in combination with surging.While the SLOW mode is the mode of choice for station keeping tasks and slow motionin very confined spaces, the FAST mode is the most promising for more general trajectorytracking tasks. Since the motion control work presented in this thesis is concerned aboutplanar trajectory tracking for U-CAT, the robot will be always assumed to be configured inFAST mode.
The vehicle has a length of 0.56m and a mass of 19 kg and battery power for conti-nous operation of up to 6 hr. The main computation unit of the robot is a Nvidia JetsonTX2. U-CAT uses a monocular camera (Grey Chameleon digital color camera CMLN-13S2C-CS.), ultrasonic rangefinders (in-housemanufactured based on [198]), an IMU (InvensenseMPU-6050) and a analog output pressure sensor (GEMS 3101) for state estimation. Thework presented in this thesis mainly relies on camera, pressure and IMU information. Inregards to software architecture an autonomy framework has been developed using therobot operating system (ROS). In this framework various software nodeswere designed forstate estimation, to model vehicle dynamics, establish trajectories and control actuatorsand the robot’s motion. Additionally, software layers for higher level behavior definitionswere added for autonomous confined space mapping [199].
The full autonomy framework of U-CAT is described by Salumäe et al. in [200] is shownin Figure 25. Here the dynamics node is essentially a representation of the nominal dy-namicsmodel of the robot as defined in equation (47). The odometry node gathers all sen-sor information and estimates all relevant states of the robot, while the automatic control
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Figure 24 – Top view of U-CAT with indications for the direction of mean forces τ that are pro-
duced by oscillations of each flipper around an axis in the horizontal plane [publication IV]. a) Fin
configuration for SLOWmode. In this configuration the robot can be theoretically actuated in all de-
grees of freedom simultaneously. However, the control allocation problem that arises is still subject
to investigation and it is unclear how efficient the resulting motions will be. U-CAT also only uses
half of its available fins for surging which leads to constant pitch oscillations and a lower maximum
achievable speed. b) fin configuration for FAST mode. Here all fins can be utilized for actuation in
surge direction. However, the sway direction becomes uncontrollable making the vehicle in this con-
figuration underactuated (at least for maneuvers that include the simultaneous control of several
DOFs.

node is essentially themotion controller of the robot that produces desired control forcesbased on the state input from the odometry node and desired trajectories from the trajec-torymanager. The trajectorymanager in its present form uses predefined timed setpointsinterpolated by hyperbolic tangent functions to produces smooth trajectories through thegiven set-points. Important to ensure safe operation of the robot’s fins are the rate limiterand saturation functionalities contained within the automatic control node, which posean additional restriction to any controller that is employed for motion control. To dealwith the complex problem of motion coupling Salumäe et al. [200] proposed a DOF pri-orization that essentially weighs the importance of control in a certain DOF based on therequired control action for each DOF. Finally, the Wrenchdriver translates the requiredcontrol forces for the robots body into separate kinematic profiles for each fin, also serv-ing as a control allocation node. The desired kinematic fin profiles in turn are producedby low level control on each fin’s motor.The following section will describe the simulation setup to test the efficacy of the con-trol framework proposed in section 4.3.3 applied to the motion dynamics of U-CAT. Ad-ditionally, components of U-CAT’s autonomy framework that are necessary to enable tra-jectory tracking control are presented as well.
4.5 Simulation
To enable trajectory tracking for U-CAT in the horizontal plane, several modifications andadditions to the existing autonomy framework presented in Figure 25were necessary. Thenew autonomy framework is described in Figure 26. Firstly, the previous trajectory man-ager, which was taking user defined set points, was replaced by a dual structure made outof a planner and a new trajectory manager. The planner takes a user defined rectangulararea that is to be covered in a lawn mower pattern by the robot. The planner then com-
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Figure 25 – Present autonomy framework of U-CAT as shown in [200].

putes a lawn mower type path, by taking into account the motion limitations due to thenonholonomic nature of U-CAT in FAST mode. This is achieved by computing the shortestpath between several seed points based on a Dubin’s car model [201] using algorithms de-veloped in [202] and [203]. Figure 27 shows an example for a path created by the planner.The Dubin’s model only allows forward motion with a defined minimum turning radius.While U-CAT can theoretically move backwards in FASTmode, it would need to reverse it’sfin orientation by 180°. This would result in a prolonged transition period, where efficienttrajectory tracking would be not possible. Additionally, any efficient trajectory tracking forthe sway direction necessitates a non-zero motion in surge due to the underactuation ofthe robot. Therefore, the Dubin’s car model was a natural choice for the path generation.Once the path is generated, it is sent to the trajectory manager where the path pointsare timed and interpolated. B-splines are used to generate smooth multiple times differ-entiable trajectories. The trajectories are then sent to the pilot node, which is the equiv-alent of the automatic control node in the old framework. This node defines the trackingerrors, decides which controller type to use, runs the controller and provides desired con-trol forces to the Wrenchdriver, which is unchanged compared to the old framework. Anew addition to the frawemwork is the navigator node, which is essentially an extensionof the old odometry node. The navigator takes available sensor information and fuses itwith an EKF that is structurally equivalent to the filter described by Palomeras et al. in[10]. Since trajectory tracking in the horizontal plane requires position and velocity feed-back, a camera is used to track fiducial markers, thereby providing position and velocityestimates used by the EKF of the navigator.The model based control approach requires higher order derivatives (acceleration andjerk) of the robot’s pose. While a noisy and potentially unreliable measurement of ac-celeration can be gained by an IMU, the jerk can not be directly measured. The problem
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Figure 26 – Updated autonomy framework for the U-CAT AUV. An orange border indicates novel
functionalities, compared to the framework in Figure 25, and green borders indicate existing func-
tionalities that have been extended or improved

Figure 27 – Example of a lawn mower path. The lawn mower type path generated by the planner
node of the new autonomy framework is shown in red. The user defined area that is the input to
the path planner providing the seed points for the Dubins model based path generation is shown in
green
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Table 3 – Model parameters used to simulate U-CAT’s dynamics

Parameter Value Parameter Valuem 19 Izz 0.512
Xu̇ -40 Yv̇ -21
Nṙ -2.306 m11 = m−Xu̇ 59

m22 = m−Yv̇ 40 m66 = Izz−Nṙ 2.818
Xu 3.342 Xuu 18.98
Yv 31.7 Yvv 184.3
Nr 2.013 Nrr 3.312

of obtaining and using higher order state derivatives in real applications of the controlleris informing the controller structure and will be addressed in the discussion of the re-sults of the controller comparison. During simulations, the accelerations can be directlygained from the dynamics model that forms the basis of the simulator. A simple time dif-ferentiation then yields the jerk. Given the desired state trajectories the three differentcontrollers can now be constructed. In the following sections the event-based controllerusing a feedforward term based on flat trajectories will be derived and the error definitionfor the model free controllers will be provided as well.Simulations are conducted using the same ROS based autonomy framework as de-scribed in Figure 26, including a slightly modified dynamics model of U-CAT that includeswater current disturbances and by using theUWSim virtual environment [204] to simulatesensor input. The dynamics of the bio-inspired actuators of U-CAT are simulated based ona simple hydrodynamics model presented in [205]. The lift and drag coefficients of thismodel were determined based on empirical data of the amplitude-frequency-force rela-tionship of U-CAT’s fins. The parameters used to simulate the dynamics of U-CAT in thehorizontal plane are shown in Table 3.To includewater current disturbances, a planar irrotational water flowwithmagnitude
Vc is introduced. A 1st-order Gauss-Markov process is used to simulate the flow [40]:

w = V̇c +µcVc, (78)
where w is Gaussian white noise with N(0,varc) and µc ≥ 0 is a constant. The watercurrent Vc is defined in the inertial frame and can be transformed into flow velocities vcin the robot’s reference frame via:

νc =




uc
vc
0


= J0x3(η)Rrot(α f low)




Vc
0
0


 , (79)

with J0x3 the upper half of the Jacobian in (47), Rrot(·) being the standard 2D rotationmatrix and α f low the incidence angle of the water flow disturbance in the inertial frame.Given νc we can now define the relative velocity νr = ν−νc and by assuming the watercurrent vector to be slowly varying ν̇c ≈ 0 the nominal dynamics model (47) becomes:
Mν̇ +CRB(ν)ν +g(η)+CA(νr)νr +D(νr)νr = τ. (80)

To test the three controllers on U-CAT two scenarios are simulated, one scenario iswithout any water flow disturbance and one with water flow disturbance. In both scenar-ios a lawnmower trajectory to cover an area of 15m x 10m (width x height) was generatedwith a constant target velocity of 0.3 m/s. In the second scenario a constant water flow
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Table 4 – Parameters for different simulation scenarios. lm - lawn mower, α f low - angle at which
water flow disturbance acts in the inertial frame

Scenario lm−width[m] lm−height[m] utarget [m/s] Vc[m/s] α f low[deg]1 15 10 0.3 0.15 452 15 10 0.3 0.15 453 100 60 1.5 0.5 45
Table 5 – PID controller gains for different simulation scenarios

Scenario Kp Ki Kd1 [9.0, 3.0] [5.0, 1.0] [0.5, 3.0]2 [9.0, 3.0] [5.0, 1.0] [0.5, 3.0]3 [8.0, 6.0] [8.2, 5.0] [1.0, 20.0]

of magnitude of 0.15m/s + N(0, 0.01) and incidence angle of 45° is introduced. A com-parison between both scenarios indicates that the difference in operation conditions arenot very high, which is owed to the slow movement of the vehicle in the horizontal planedue to actuator limitations. However, the robot is capable of fast attitude changes whichwould change the operational range significantly. Since a full 3D motion control was be-yond the scope of this thesis a third scenario with a surrogate AUVmodel was introducedto simulate faster operational ranges. The dynamics model of the LAUV [15] was chosenas an example of a more traditional torpedo shaped underactuated nonholonomic AUVoperating at higher velocities. The dynamics of the LAUV are described in [206]. In thisthird scenario the area covered by the lawnmower was significantly larger (100m x 60m)as was the constant target velocity 1.5m/s and the water current disturbance 0.5m/s +N(0, 0.1). The parameters for each scenario are presented in Table 4.The gains for all three controllers were hand tuned based on a testing scenario with-out disturbances within approximately the same maximum time. The gains remained thesame for scenarios 1 and 2 but were adjusted for scenario 3. The numeric values of thegains for the respective controllers can be found in Table 5 to 7. Additionally, the BDOgains are provided in Table 8.To evaluate the performance of the various controllers the RMSE between referencetrajectory and actual trajectory of the vehiclewas computed. Additionally, the timederiva-tive of the control output was used as a measure of control action that can give an indi-cation about the energy efficiency of the controller in relation to the actuator.
4.6 Results and discussion
Figure 28 shows the trajectory tracking performance of U-CAt using the Flat-event basedcontroller for the scenario without any disturbances. The position trajectories shown in
Figure 28.a and c indicate that the reference trajectory was very closely tracked by the

Table 6 – RISE controller gains for different scenarios

Scenario α1 α2 β ks1 [0.02, 0.05] [0.5, 0.05] [0.04, 0.01] [0.85, 0.5]2 [0.02, 0.05] [0.5, 0.05] [0.04, 0.01] [0.85, 0.5]3 [0.05, 0.01] [0.3, 0.05] [0.3, 0.25] [0.5, 12.1]
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Table 7 – Flat-event controller gains for different scenarios

Scenario K ε kε1 [1.0, 1.0] 0.05 0.052 [1.0, 1.0] 0.05 0.053 [0.47, 0.47] 0.15 0.2
Table 8 – BDO gains calculated based on (75)

l0,1 = l0,2 l0,3 = l0,4 l1,1 = l1,2 l1,3 = l1,4 l2,1 = l2,2 l2,3 = l2,480 20 2133.3 133.3 28444 444.4

controller. In Figure 28.b and d the velocity trajectories are closely tracked as well butsome oscillations can be observed at the end of turns, which indicates the difficulty tocounter the forces in sway direction without any actuation for that DOF, although thedrag based dampening decreases this cross coupling effect already. Moreover, the con-trol signals shown in Figure 28.e and f are very smooth without many instances of largecontrol action. Only a very small number of events was triggered as can be seen in Figure
28.g. Given the accurate state measurements and no differences between the dynamicmodels of the controller and the simulation it was expected that the feedforward part ofthe controller would be sufficient.

Figure 29 displays the results of the same controller under unknown disturbances. Itcan be seen that the positions are still tracked very closely (see Figure 29.a and c), butthat there are deviations specifically in global y direction visible. This becomesmore obvi-ous when looking at the velocity tracking (see Figure 29.b and d). A lot of oscillations arepresent in the global y-direction, which indicates the constant struggle of the controllerto counter the disturbance and to deal with sudden directional changes of the distur-bance as the robot changes heading. The control signals are qualitatively comparable tothe ones in Figure 29, but the control commands are less smooth, with increased controlaction indicating again the attempts of the controller to counter the disturbances. Thenumber of events has gone up as well, but only slightly (8 vs 14). This seems to indicatethat the BDO was working well and that it enabled the feedforward part of the controllerto effectively deal with the disturbances most of the time. The low number of eventsis specifically promising, because it reduces the number of required full state measure-ments. One of the major limitations of model-based nonlinear controls for underwatervehicles in real applications is the requirement for continuous observation of the full stateand its derivatives, including accelerations and possibly even higher order derivatives. Ac-celeration measurements or estimates are usually very noisy unless expensive and bulkyhardware is deployed. Since the events for the DFEC are all at least several seconds apart,the close to real-time restriction for filters is somewhat lifted and advanced signal pro-cessing algorithms such as the Rauch-Tung-Striebel filter [207] could be used to filter ac-celeration measurements. With increased estimation accuracy, full state estimates couldbecome available for robots employing lower budget hardware in real world scenarios aswell. This possibility poses one of the main differences to the controller proposed in [184]where continuous full state feedbackwas necessary, which seems to have prohibited testsfor the dynamics based controller on the real vehicle.
The efficacy of the BDO is further highlighted by the results shown in Figure 30. Thekinematic disturbances are tracked very well as shown in Figure 30.a and b. The distur-bances on the dynamics level are also very well tracked and the white noise of the water
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Figure 28 – Trajectory tracking performance for the flat event controller when disturbances were
absent. a) and c) Description of the position tracking performance for global x and y position. b)
and d) Velocity tracking performance along the global x and y axes. e) - f) Control force in surge and
control torque in yaw. g) Occurrence of events denoted in a binary graph, where 0 means no event
and 1 means event.

flow disturbance is filtered to some extend, as indicated by Figure 30.c and d. Figure
31 shows the position tracking performance of all three tested controllers for scenario 1(without disturbances) and for scenario 2 (with disturbances). All controllers show a verygood position tracking in scenario 1 as seen in Figure 31.a. For the two model-free con-trollers it can be seen that the robot exhibits slight oscillations during the first and laststraight part in x-direction, which would increase the energy consumption of the vehicle.However, the oscillations are on a rather small scale around 0.1m.

In the scenario with disturbances, shown in Figure 31.b, the tracking performances de-grades for all controllers, which is to be expected. Yet, all controllers are still able to trackthe trajectory within a reasonable error margin. Surprisingly, the robust RISE controllerseems to be outperformed by the standard PID controller in this scenario. In fact the PIDcontroller seems to be even performing as well as the DFEC. However, as indicated bythe actual RMSE metrics shown in Figure 32 the DFEC outperforms both model free con-trollers. It becomes clear that the PID controller indeed performs better than the RISEcontroller in scenario 2 and performs better in y-direction compared to the x-direction.For the tracking in x-direction there is a constant error as the PID controller and the RISEcontroller could not fully steer the vehicle trajectory on the reference trajectory. This wasdifferent for the DFEC, which partially explains the better performance in x-direction. Itbecomes also evident that a 2D position plot does not reflect the tracking performancein x-direction well and can be slightly misleading for trajectory tracking problems. Thisstresses the importance of evaluation metrics such as the RMSE.
The second evaluation metric defined for this simulation was the control effort de-fined as first time derivative of the control signal shown in Figure 33. Here it becomes
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Figure 29 – Trajectory tracking performance for the flat event controller when disturbances were
present. Disturbances were modeled as modeled as a constant irrotational fluid flow with an inci-
dence angle of 45° and amagnitude of 0.5m/s. a) and c) Position tracking performance for global x
and y position. b) and d) Velocity tracking performance along the global x and y axes. e) - f) Control
force in surge and control torque in yaw. g) Occurrence of events denoted in a binary graph, where
0 means no event and 1 means event.
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Figure 30 – Disturbance estimates for the DFEC. a) - b) Kinematic disturbances in global x and y
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Figure 32 – RMSE for the three tested controllers with andwithout disturbances. a) and c) Tracking
performance of the three tested controllers for global x and y directions when disturbances were
absent. b) and d) Tracking performance of the three tested controllers for global x and y directions
when disturbances were present. The disturbance was modeled as a constant irrotational fluid flow
with an incidence angle of 45° and a magnitude of 0.5m/s.
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Figure 33 – Control action for the three tested controllers controllers. Control action is quantified
by the first time derivative of the time series of control commands, which the controllers have issued
during a simulation run. The control action for one run is then characterized using the median and
IQR, which are shown in the figure. Additionally, "outliers" expressing large changes in subsequent
control signals, are represented in red.

apparent that the DFEC produces smoother and less varying control signals, which leadsto less control effort for the actuators. The wide spread of outliers in the control actionin the DFEC could be explained with the re-initialisation of the whole controller structureat each event, which can cause steps in the control signal. As expected the control effortis increasing between scenario 1 and scenario 2 as more force and torque is needed tocounter the water flow disturbance. The increase in control action is specifically apparentfor the RISE controller, but to a lesser extend also for the PID controller. The increase incontrol action is smallest for the DFEC. The results so far would indicate the PID controllerwould be a preferable choice over the RISE controller for a model-free controller for tra-jectory tracking with U-CAT. A possible explanation for this could be the manual tuningprocess. Given that the RISE controller has one gain more to tune with a less intuitivebehavior of the different gains, the resulting gains for this simulation might be furtheraway from the optimal values for the RISE controller as compared to the PID controller.For a more rigorous performance comparison it would be necessary to find globally opti-mal gains for all controllers, which could be done via a Bayesian optimization frameworkas presented in [208]. However, in a real world scenario it is unlikely that a computa-tionally heavy optimization framework is always available and usually time for tuning isrestricted. Therefore, the employed method of manually tuning the gains for a similar setamount of time can be seen as a valid approach. The control performances after manualtuning might also inherently reflect the complexity in the tuning process of a given con-troller, whichwould be another importantmetric for controller evaluation. Though tuningcomplexity remains hard to quantify, specifically in real world applications with time andcomputational restraints.
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Another explanation for the good performance of the PID controller could be that thedisturbances have not been big enough to place the operation conditions outside of thepermissible range of the PID controller with the given gains. To test this further, scenario
3 was used exhibiting larger disturbances, a much larger absolute range between the dis-turbance free and the disturbance cases, as well as generally faster dynamics. Figure 34shows a summary of the controller performances for scenario 3. It can be seen here, thatin the presence of disturbances the PID controller cannot adequately track the trajectoriesanymore. The robot control becameunstable in the second straight segment in x-directionas can be seen in Figure 34 and the trial was aborted after oscillations and rotations gottoo extensive. On the contrary the RISE controller showed a convincing performance, evenoutperforming the DFEC on the RMSE metric. Again, the manual gain tuning could intro-duce artificial differences, although the tuning procedure and available time was similaracross all scenarios.

While the RISE and DFECs show a similar performance regarding the trajectory track-ing itself, significant differences can be seen in the control action metric. Here the DFEC isfar more economical with its control actions, which should lead to more efficient move-ments. Beyond it’s application to general torpedo shaped AUVs with similar dynamics tothe LAUV, this scenario is also of relevance for future tracking scenarios for U-CAT. Whilelinear motions will remain rather slow in the 3D tracking case as well, orientation changescan happen on a much faster time-scale with a higher relative importance of the rotationdynamics on the overall system. In that scenario the benefits of the model based con-troller should become apparent similarly to scenario 3 presented here. One could arguethat trajectory tracking in the horizontal plane is not the best use-case for the proposedcontroller, however, given U-CAT’s available capabilities in locomotion and state estima-tion it is the most accessible problem to be tested on the real vehicle. The results shownfor this sub-optimal case are still a sufficient for a proof of concept for the controller thathighlight the benefits compared to standard model free controllers.
A very important detail to contextualize the control performance of the model basedcontroller, is the accuracy of the dynamics model of the vehicles and the accuracy of thestate estimation. In simulations, as employed here, dynamics models are assumed to befully accurate which biases results towards model-based control strategies. The hydrody-namic coefficients only represent rough approximations of the true fluid body interactionsbetween the vehicles and its surrounding water. Additionally, some assumptions aboutsymmetries of the vehicles geometry do not fully hold introducing cross coupling effects.Finally, the actuator dynamics are only roughly approximated, and are more complex inreality, which is specifically true for U-CAT’s actuator dynamics. However, the proposedcontrol framework has already proven a good robustness to modeling uncertainties usingthe BDO. Additional model identification and adaptation can be employed to improvedthe used dynamics model [209, 210, 211, 212] . Of course, real world tests with U-CAT arethe next necessary step to validate the controller performance and its potential to solvethe problem of reliable full state feedback for higher order pose derivatives. Additionally,such experiments would show if there is a benefit of using discontinuous full state feed-back instead of amodel free feedback loop as used for example in [185]. Such experimentsare currently under preparation and will be conducted in the near future.

4.7 Summary and conclusions
This chapter introduced the problem of trajectory tracking in the horizontal plane for un-deractuated AUVs subject to motion constraints. A new control framework was derivedtaking ideas from event-based control and using the property of differential flatness. The
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Figure 34 – Controller performances for simulated LAUVdynamics. a) Global x and y coordinates for
trajectory tracking using PID, RISE and flat event controller. A lawnmower trajectory was computed
for an area of 100m x 45m and the target velocitywas set to 1.5m/s. A disturbancewas introduced
as constant irrotational water flow (blue arrows / not to scale) at an incidence angle of 45° and a
magnitude of 0.5m/s corrupted by zero-centered white Gaussian noise with a variance of 0.01. b)
RMSE for x-coordinate tracking for the three tested controllers. c) RMSE for x-coordinate tracking for
the three tested controllers. d) - e) Distribution of control action for force / torque, defined as first
derivative of the control force / torque, for the three tested controllers. The distribution of control
action is shown as a box plot and represented by the median and IQR. Outliers are shown in red.

80



property of differential flatness was used to construct a controller that can guarantee ef-ficient tracking of trajectories, while the ideas for event-based control where employedto deal with the problem of required state feedback of high order derivative that are hardto measure.The resulting DFEC was derived for the dynamics of the bio-inspired AUV U-CAT. Whilethe nominal AUV dynamics in the horizontal plane are differentially flat [publication IV],the dynamics of underactuated AUVs, such as U-CAT in its FAST motion mode, do nothave that property. The state space model of U-CAT was then augmented by reducingthe state space by one state (sway velocity), so that the resulting dynamics were differen-
tially flat. Afterwards, a BDO was designed, to estimate the influences of the unmodeledstate on the system dynamics. The estimated disturbances where then integrated intothe proposed event-based controller following the DOBC concept. As additional benefit,the integration of the disturbance estimates increased the robustness of the controlleragainst external disturbances. The proposed control scheme was tested in simulation ina disturbance free scenario and a scenario with disturbances modeled after irrotationalconstant water currents. The controller was then compared to a standard PID and a ro-bust RISE controller using the metrics of RMSE and control action. The results showedthat the proposed controller outperformed both standard controllers for both scenarios.Additionally, a third scenario was used to test the controller for disturbances and dynam-ics at a larger scale. To this end a more conventional torpedo shaped low-cost AUV, theLAUV, was simulated instead of U-CAT. Here the PID failed to track the trajectory success-fully and the DFEC showed a similar performance in terms of RMSE to the RISE controller.However, the DFEC outperformed the RISE controller on the metric of control action.In regards to the research question posed at the beginning of the chapter: "How can
model-based nonlinear controllers be augmented, to overcome limitations related to un-
reliable state feedback andmotion constraints of AUVswith complex dynamics?", it can beconcluded that the simulation results provided a proof of concept that the combination ofa feedforward controller based on the property of differential flatness for an augmentedstate spacemodel, an event-based state feedback and a BDO can overcome the limitationsstated in the research question. The simulation results also indicated potential benefitsof the DFEC over standard model free controllers.The main limitation for the presented trajectory tracking control scheme is the lackof real world tests. This limitation is currently addressed and the logistics are set up totest the controller on the real U-CAT vehicle. As far as the simulation is concerned, amore expansive simulation environment with a comparison to more advanced controllerssuch as [157], [185] or [158] and various extensions for the presented baseline controllerswould be interesting and useful. Additionally, the robustness of various controllers shouldbe tested for a wider variety of trajectories and disturbances. The work presented in thischapter should thus be seen as an initial step to establish the proposed control frameworkas a viable option for model-based trajectory tracking control for marine vehicles.
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5 Conclusions
Here I provide an overview about the contributions that were presented in this thesis.This is followed by a discussion about the limitations of the presented work and possiblefuture directions are mentioned.
5.1 Summary of thesis contributions
Small, agile, and low-cost AUVs have the potential to significantly expand the use of au-tonomous vehicles as tools for environmental monitoring and exploration. However, thereduction in size and cost comes with a trade-off in capabilities in the areas of state es-timation, actuation and motion control. To extend the autonomous capabilities of small,agile, and low-cost AUVs, the work presented in this thesis was aimed at addressing oneproblem in each of the three areas, by asking the following research questions:

1) How can state estimation under field conditions for AUVs, with a specific focus onsmall resource constraint autonomous underwater vehicles, be improved based onubiquitous environmental information?
2) Can asymmetric actuation increase maneuverability of AUVs using compliant bio-inspired actuators?
3) Can a model-based nonlinear controller combining ideas from event based control,differential flatness and disturbances estimation, be used to improve the trajectorytracking performance of AUVs with complex dynamics and motion constraints?
In line with the three research questions, the contributions of the work described inthis thesis fall into the same three research areas, state estimation, actuator control andmotion control, which are all embedded within the framework of mobile vehicle auton-omy.The main contribution in the first area, state estimation, is the extension and advance-ment of a differential pressure sensor based system for the estimation of velocity for AUVs.Themain advantages of the proposed sensor system, compared to state of the art technol-ogy, are its small size, low energy consumption and the lack of potentially adverse effectson the environment during operation. The developed technology is based on the sens-ing of differential pressure and potential flow theory. To that end a simple potential flowmodel was derived from first principles to extend an empirical model previously build us-ing an early laboratory prototype [38]. The efficacy of various prototypes was tested inlaboratory conditions and most importantly under field conditions. Pressure based sen-sors for environmental sampling have been successfully tested in the field beforehand[32, 33, 34], however the field tests with the developed prototypes constituted to thebest of my knowledge the first application of differential pressure based sensing on AUVs.By combining the new sensor system with state of the art technology providing comple-mentary information it was possible to gather in-situ information about tidal currents.With respect to actuator control, the main contribution of this thesis is the develop-ment of an asymmetric actuation scheme for the orientation control of the FILOSE robot,a fish-like robot with a compliant motor-actuated tail. The application of asymmetric ac-tuation to support orientation control provides a novel tool in the control framework forrobots with bio-inspired propulsors. The efficacy of the proposed solution was tested un-der field conditions where it outperformed the standard approach for turning in fish-likerobots due to the motion restrictions of the specific robot in question. The control andactuation framework also showed a certain robustness to environmental disturbances.
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However, orientation control alone will not provide sufficient autonomy for the FILOSErobot, so that methods for path following or trajectory tracking would be required. Thisnecessitates robust and precise capabilities in navigation, that are hard to achieve onrobots of this type. The FILOSE robot employs an array of absolute pressure sensors toaid in navigation and the research presented in Chapter 2 could be used to improve thissensing modality, linking the contributions of this thesis in the fields of state estimationand actuation. From an autonomy perspective orientation control by itself is not sufficientandmethods to ensure path following or trajectory tracking capabilities are required. TheFILOSE robot is underactuated and motions in different DOFs are coupled which makes itdifficult to apply some traditional motion control techniques. This provides a link to thecontributions of this thesis in the area of motion control that will be summarized below.To answer the third research question which concerns motion control, a novel controlframework for trajectory tracking in the horizontal plane was developed. The controlleris based on ideas from event-based control and makes use of the property of differentialflatness. To enable trajectory tracking for a class of underactuated vehicles that is verycommon among AUVs, the system dynamics were augmented and a disturbance observerwas designed to estimate any adverse affects of this augmentation on the vehicle dynam-ics. The estimated disturbances were integrated into the control scheme, which increasedthe robustness of the resulting controller. The proposed control framework was tested insimulation on a small low-cost AUV with bio-inspired actuation (U-CAT) and a commer-cial low-cost torpedo shaped AUV (LAUV). The controller performance was assessed forscenarios with and without external disturbances and compared to standard model freecontrollers. The results indicate that the proposed control scheme is a viable alternativefor trajectory tracking problems for AUVs.U-CAT is another good example to highlight the connections between the differentresearch contributions of this thesis. The design of the new motion controller assumedthat the problems of actuation control and state estimation have been sufficiently solved.However, U-CAT is too small and has a too low budget to employ state of the art velocitysensing technologies, so that adequate state estimation for velocity and position is en-tirely dependent on VO or VIO. Salient features for vision based state estimation are notalways present. Even given that the most likely application scenarios for the robot areconfined spaces with sufficient environmental markers, it U-CAT has to reach the targetlocation first. A velocity aiding as could be provided by the DPSS prototypes would thusbe very valuable. Additionally, the versatility of U-CAT’s four flipper based propulsion sys-tem has not been fully explored. Initial tests show that the rotation of the fins can createlarge torques that could be leveraged for orientation control. Here the asymmetric controlapproach developed in this thesis could be a helpful starting point. Even a direct imple-mentation of the skewed waveform could be useful for applications were a reorientationof U-CAT’s fins would be detrimental.
5.2 Future directions
In this section some broader research questions are discussed that go beyond the limita-tions and future work discussed in the conclusion sections of the respective chapters.The present versions of the DPSS prototypes weremainly designed for velocity estima-tion, however, such designs do not use the full potential of pressure basedmeasurements.Ongoing work investigates the capability of the existing prototypes to detect environmen-tal features that affect ambient pressure, while simultaneously providing velocity informa-tion for an AUV. Adding more differential pressure sensors to the prototypes can extendto include an artificial lateral line type sensor array, can enable the detection of various
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flow features [213, 214, 215, 216]. Extensions of the DPSS prototypes could therefore en-able other researchers to bridge the gap between simulations or controlled laboratoryenvironments and applications in the field. Additionally, the presented research providespotential platforms for testing or implementing findings related to biology such as statedin [217].Reversely, the research about asymmetric actuation presented in Chapter 3 could in-spiremore investigations into how asymmetric forces are used in fish beyond thrustmodi-fication. A better investigation of the fluid-body interactions between compliant actuatorsand surrounding fluid during asymmetric actuation would benefit the related controllerdesign. From a more practical point of view, it seems very promising to test the conceptof asymmetric actuation for robots that are using several flippers such as U-CAT [58] orAqua [218] to increase maneuverability.Regarding the proposed trajectory tracking controller proposed in Chapter 4, the re-duction of the tracking problem to the horizontal plane, made sense for a proof of conceptbut is not the final goal. Work is ongoing to implement and test a 3D trajectory trackingscheme. The ability to efficiently track trajectories in three dimensions would be specifi-cally useful in combination with more sophisticated trajectory generation frameworks asshown for example in [185] or in [171]A limitation of model based controllers in general, is their dependency on a very ac-curate dynamics model. The complex actuator dynamics of U-CAT might necessitate ad-ditional, potentially online, identification procedures to bring the dynamics model to anacceptable level of accuracy. Such a dynamics model augmentations could be done withGaussian processes as shown in a different context by McKinnon et al. [219].Generally, the possible range of application of the proposed control framework reachesbeyondmarine robotics, such that this controller could be potentially useful for terrestrialrobots that experience significant slip as shown in [184] or for aerial vehicles where un-deractuation in sway direction would lead to substantially more sideslip due to the lag ofenvironmental damping.As a whole, a guiding principle for future research will be the maturation of the pro-posed solutions, so that they can reliably improve the navigation and motion capabilitiesof small low-cost AUVs, which in turn will enable a much bigger variety of researchers toinvestigate the underwater environment.
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Abstract
State Estimation and Control for Small Low-Cost Autonomous
Underwater Vehicles
Autonomous underwater vehicles (AUVs) have extended human capabilities for monitor-ing and exploration of the underwater environment. However, commercial AUVs are al-most exclusively used by entities with large monetary budgets, due to the high capitalinvestment that is required to acquire, maintain and develop such vehicles. This has re-stricted the use of AUVs to sectors of oil and gas industry, military, and well-funded bigresearch institutions. Thus, the potential of AUVs as tools to provide important andmean-ingful knowledge about the underwater environment has been only marginally explored.

In recent years there have been attempts to develop small, low-cost AUVs to increaseaccessibility of such technology for smaller research institutions and government agen-cies. Additionally, small low-cost vehicles have broadened the application area of AUVstowards swarm implementations, high risk missions in confined environments, and con-sumer robotics. However, the reduction in cost and size comes with trade-offs in termsof the navigation and motion capabilities of such vehicles, which essentially reduces theirachievable autonomy. Standard state of the art solutions for state estimation and controlrely on sophisticated and expensive hardware that may not be available to small low-costvehicles. Additionally, propellers as conventional tools used to maneuver AUVs, might beunsatisfactory in applications that require minimal invasive monitoring or close proximitytowildlife or humans. This points to open questions in several key parts of AUV autonomy,namely state estimation, actuation and motion control. The work presented in this thesistries to address one specific research question in each field and therefore thematicallyassumes a tripartite structure.
Work presented in Chapter 2 investigates the question of state estimation, and teststhe hypothesis that the passive mechanism of sensing instantaneous pressure differencesacross a body in fluid flow can be used to robustly estimate themotion velocity of AUVs infield conditions. To that end, early prototypes, that had been tested under stationary labo-ratory conditions, were extended and tailored to the use on autonomousmobile vehicles.This was done by utilizing fundamental relations from potential flow theory and by em-ploying additional sensing modalities to compensate for self-motion effects. Several ad-vanced prototypes were developed, characterized under laboratory conditions, and thenrigorously tested in field conditions. Quantitative comparisons were made to state of theart senors. The obtained results indicate that for the tested scenarios, velocity estimationwith a comparable performance to state of the art technology was achieved. Additionally,the presented prototypes have a smaller size, an energy consumption that is one orderof magnitude lower and a lower projected price compared to the state of the art sensors.The presented work provides an important step towards the establishment of the testedtechnology as a complement or alternative to the state of the art, specifically for smalllow cost vehicles.
Given the improvements in state estimation as presented in Chapter 2, the researchin Chapter 3 is aimed at the problem of robot mobility using bio-inspired soft actuators.Compliant actuators are safer to interactwith and potentially less harmful to their environ-ment than propellers, which is specifically important whenminimally invasive observationis the goal of the underwater robot. However, those benefits usually come with highercontrol complexity. Usually, soft bio-inspired actuators are driven by a symmetrical peri-odic motion similar to their biological counterparts. In contrast, the research presentedin Chapter 3 investigates the use of asymmetric actuation to increase the maneuverabil-
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ity of robots with bio-inspired soft actuators. The role of asymmetric movements in thegeneration of thrust has been investigated in various animals and robotic platforms. Themain contribution of the research presented in Chapter 3 is the utilization of asymmetric
actuation for turning control instead of focusing on thrust generation. A nonlinear propor-tional controller was developed and used to control the actuation asymmetry for a roboticfish driven by a compliant tail. The efficacy of the proposed control approach was testedunder field conditions. The proposed controller outperformed the standard approach toturning control for the given type of robot. While the direct application of the controllermight be only immediately useful for a very narrow set of robots, the idea of asymmetric
actuation for orientation control can be applied to a much wider set of vehicles and addsanother tool to utilize the unique features of soft bio-inspired actuators.Finally, Chapter 4 addresses a core problem in motion control. Many underwater vehi-cles are not fully and independently actuated in all degrees of freedom, something whichis specifically true for small low-cost vehicles. Furthermore, certain applications, like themonitoring of confined spaces or the motion within a group of vehicles, require agile mo-tion and efficient trajectory tracking capabilities. Nonlinear model based controllers havebeen shown to be able to enable efficient trajectory tracking for agile motions, but oftenrequire permanent feedback of higher order time derivatives of the vehicle’s pose, such asacceleration. Those quantities can not be measured effectively in real time with sensorsavailable on small low-cost AUVs.A major contribution of the research presented in chapter Chapter 4 is the introduc-tion of an event-based controller that could alleviate the requirement of permanent statefeedback. The controller is combined with a feedforward part that relies on the differen-
tial flatness property of the vehicle’s state space model to efficiently generate and trackfeasible trajectories. A base implementation of the controller is then extended to under-actuated systems subject to nonholonomic constraints, which are usually not differentially
flat. The efficacy of the proposed approach is then tested in simulation for planar trajec-tory tracking for a small low-cost AUV with bio-inspired actuation and a small torpedoshaped AUV. The controller is compared to standard model free approaches and showsan equal or better tracking performancewithmore economical control actions both in theabsence and presence of external disturbances.As a whole the research presented in this thesis provides contributions to three coreaspects of the autonomy framework, state estimation, actuation and motion control, forsmall low-cost AUVs. A combination of all three contributions has the potential to enablesmall low-cost vehicles tomovemore efficiently, withmore agility andwith increased nav-igation capacities. However, each research contribution by itself provides a starting pointfor future improvement and investigation of related research problems. There is signifi-cant potential in the utilization of differential pressure for measurements of environmen-tal states beyond fluid relative velocity and the true strengths of asymmetric actuationand the presented model based controller are expected to emerge for fast agile motionsin three dimensions.

109



Kokkuvõte
Meetodid olekute hindamiseks ja juhtimiseks soodsa hinnaga
autonoomsetele allveerobotitele
Autonoomsete allveesõidukite (AUV-de) kasutuselevõtt on laiendanud veealuste keskkon-dade uurimise ja seirevõimalusi. Kommertsallveesõidukeid kasutavad aga peaaegu eran-ditult suure eelarvega ettevõtted, sest selliste sõidukite soetamine, hooldamine ja aren-damine nõuab suuri investeeringuid. See piirab AUV-de rakendamist valdavalt nafta- jagaasitööstuses, sõjaväes ning hästi rahastatud suurtes teadusasutustes. AUV-de potent-siaali veealuse keskkonna kohta oluliste ja sisukate teadmiste saamiseks on kasutatud vaidvähesel määral.

Viimastel aastatel on hakatud arendama väikeseid ja odavaid AUV-sid, et võimaldadaka väiksemate teadusasutuste ja riiklike institutsioonide ligipääsetavust tehnoloogiale. Li-saks on väikesed ning odavad lahendused laiendanud AUV-de rakendusvaldkondi sülemite(swarm) rakendustesse, kõrge riskiga missioonide jaoks tõkestatud keskkondades ja leid-nud tee isegi kodurobootikasse. Hinna ja suuruse vähenemisega kaasnevad paraku komp-romissid sõidukite navigeerimis- ja liikumisvõimekuse osas, mis kahjuks vähendavad nen-de poolt saavutatavat autonoomiat. Standardsed nüüdisaegsed lahendused allveesõidu-kite olekute hindamiseks ja juhtimiseks põhinevad keerukal ja kallil riistvaral, mis ei pruugiväikeste odavate sõidukite jaoks saadaval olla. Samuti võivad propellerid (olles tavapära-selt kasutatavad vahendid AUV-de manööverdamisel) muutuda mittesobivaks rakendus-tes, mis vajavad minimaalset invasiivset seiret või liikumist eluslooduse ning inimese lä-heduses. See osundab lahendust ootavatele ülesannetele AUV-de autonoomsusega seon-duvates võtmekohtades, nimelt olekute hindamises, täiturmehhanismide rakendamises jaliikumise juhtimises. Antud dissertatsioonis käsitletakse üht konkreetset uurimisproblee-mi igas eelpool nimetatud valdkonnas, mis tingib uurimistöö kolmeks jaotuva struktuuri.
Töö teine peatükk käsitleb süsteemi olekute hindamise küsimust ja testib hüpoteesi, etAUV-de liikumiskiiruse robustne hindamine välitingimutes on võimalik nö passiivset lähe-nemist kasutavate sensorite abil, mismõõdvad vedeliku rõhu diferentsi kahemõõtepunktivahel antud ajahetkel. Sel eesmärgil arendati edasi prototüüpe, mida oli varasemalt kat-setatud laboritingimustes, kohandamaks neid edaspidiseks kasutamiseks autonoomsetesliikurites. Voolukiiruse hindamisel kasutati potentsiaalse voolamise põhialused ja raken-dati täiendavaid tajumismooduseid, et kompenseerida omaliikumise mõjusid. Töötati väl-ja mitu edasiarendatud prototüüpi, mille tööd uuriti laboritingimustes ja katsetati seejä-rel põhjalikult välitingimustes, võrreldes prototüüpe ühtlasi tipptehnoloogiste sensoritekvantitatiivsete näitajatega. Saadud tulemused näitavad, et testitud stsenaariumite puhulsaavutati kiiruse hindamisel tipptehnoloogiliste lahendustega võrreldav kvaliteet. Lisakson edasiarendatud prototüüpidel väiksem suurus, suurusjärgu võrramadalam energiatar-bimine ja odavam prognoositav hind võrreldes kõrgtehnoloogiliste sensoritega. Antud tööastus olulise sammu testitud tehnoloogia kasutuselevõtu suunas kui täiendus või alterna-tiiv olemasolevatele tipptehnoloogilistele lahendustele, seda eriti väikeste ning odavateAUV-de korral.
Tuginedes teises peatükis kirjeldatud arendustele olekute hindamisel, keskendub kol-mas peatükk bioloogiast inspireeritud pehmete täiturmehhanismidega varustatud roboti-temobiilsusprobleemidele. Painduvad täiturmehhanismid on ohutumad ning potentsiaal-selt ka keskkonda vähem mõjutavad kui propellerid, mis on eriti oluline, kui eesmärgikson minimaalse invasiivsusega vaatlustegevus. Ent mainitud eelistega kaasneb keerulisemjuhtimisloogika. Pehmete bioloogiast inspireeritud täiturmehhanismide käitamisel kasu-tatakse tavaliselt (sarnaselt nende bioloogilistele vastetele) sümmeetrilist perioodilist lii-
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kumist. Vastupidiselt tavapärasele uuritakse 3. peatükis asümmeetrilise liikumise raken-damist eesmärgiga parandada selliste robotite manööverdusvõimet. Asümmeetriliste lii-gutuste rolli tõukejõu tekitamisel on uuritud erinevatel loomadel ja robotplatvormidel.Kolmanda peatüki peamiseks panuseks on asümmeetriliste liigutuste rakendamine tõu-kejõu tekitamise asemel robotkala orientatsiooni juhtimisel. Painduva sabaga robotkalaasümmeetriliseks käitamiseks arendati välja mittelineaarne proportsionaalne kontroller.Antud juhtimismeetodi tõhusust katsetati välikatsetel ning eelpool mainitud roboti tüübiorientatsiooni juhtimise puhul töötas väljapakutud juhtimismeetod paremini standard-setest juhtimislahendustest. Kuigi kontrolleri vahetu rakendamine võib olla kasulik ainultväga kitsa rühma robotite jaoks, on idee asümmeetrilisest käitamisest orientatsiooni juh-timisel rakendatav palju enamatele sõidukitele ja annabmeie käsutusse veel ühe tööriistakasutamaks pehmete bioloogiast inspireeritud täiturite ainulaadseid omadusi.Viimane, neljas peatükk käsitleb liikumise juhtimise tuumprobleemi. Paljud allveesõi-dukid ei ole täielikult ega sõltumatult juhitavad kõikides vabadusastmetes. Eriti peab seepaika väikeste odavate sõidukite puhul. Lisaks on mõningates rakendustes nagu näitekskitsaste ruumide seire või rühmas liikumine vajalik hea manööverdus- ja efektiivne tra-jektoori järgimise võimekus. Varasemalt on näidatud, et mittelineaarsed mudelipõhisedkontrollerid võimaldavad keerukate liikumiste korral efektiivset trajektoori järgimist, kuigivajavad selleks sageli pidevat tagasisidet sõiduki asendi ja orientatsiooni kõrgema astmetuletiste, näiteks kiirenduste näol. Antud muutujate efektiivne mõõtmine reaalajas poleaga väikestel odavatel AUV-del kasutatavate sensoritega võimalik.Neljandas peatükis esitatud uurimistöö peamine panus on sündmuspõhise kontrollerikasutuselevõtt, mis võimaldab pideva tagasiside vajadust leevendada. Kontroller kasutabjuhtimisalgoritmi, mis põhineb roboti diferentsiaalse lameduse omadusel, et genereeridaja järgida efektiivselt võimalikke trajektoore. Seejärel laiendatakse baaskontrollerit ala-juhitud süsteemidele, millele rakenduvad mitte-holonoomsed piirangud. Sellised süstee-mid ei ole tüüpliselt diferentsiaalselt lamedad. Kavandatud lähenemisviisi tõhusust tes-titi simulaatoris tasapinnaliste trajektooride järgimiseks väikesel odaval AUV-l, millel onbioloogiliselt inspireeritud täiturmehhanismid ning väikesel torpeedokujulisel AUV-l. Väl-japakutud kontrollerit võrreldi standardsete mudelivabade juhtimismeetoditega ning uusmeetod andis võrdse või parema järgimistulemuse ökonoomsemate vahenditega nii vä-liste häiringute puudumisel kui ka nende olemasolul.Tervikuna annabdissertatsioonis esitatud uurimus omapanuse autonoomia raamistikukolmele põhiaspektile: olekute hindamisele, täiturmehhanismide rakendamisele ja liiku-mise juhtimisele väikeste odavate AUV-de jaoks. Kolme panuse kombinatsioon võimaldabväikestel odavatel sõidukitel liikuda tõhusamalt, kiiremini ja paremanavigeerimisvõimega.Aga iga uurimistulemus iseenesest annab lähtepunkti edasisteks täiendusteks ja teema-ga seotud teadusküsimustega tegelemiseks. Vedeliku rõhu diferentside mõõtmisel basee-ruval olekute hindamisel on märkimisväärne potentsiaal keskkonna olekute hindamisellisaks suhtelise vedelikukiiruse hindamisele ning asümmeetriliste täiturmehhanismide jamudelipõhise juhtimise tõelised väärtused tõusevad eeldatavalt esile eriti just kiirete kõr-ge manööverdusvõimega kolmedimensionaalsetel liikumistel.

111





Appendix 1 - DPSS flow-angle derivation
We begin with equation (33) in section 2.2.2:

∆p1 =
1
2

ρ

[
9
4

v2
∞

(
sin2 (ϕB−α)− sin2 (−α)

)
+2g∆h1

]
. (81)

We then start solving for α :
sin2 (ϕB−α)− sin2 (−α) =

8∆p1−ρg∆h1

9ρv2
∞

. (82)
By using the power reduction formula:

sin2 (θ) =
1− cos(2θ))

2
(83)

we and get:
1
2
− cos(2(ϕB−α))

2
−
(

1
2
− cos(−2α)

2

)
=

8∆p1−ρg∆h1

9ρv2
∞

(84)
cos(−2α)− cos(2(ϕB−α)) = 2

(
8∆p1−ρg∆h1

9ρv2
∞

)
. (85)

Now we use the sum to product relation:
cos(θ)+ cos(ϕ) =−2sin

(
θ +ϕ

2

)
sin
(

θ −ϕ

2

)
. (86)

and get from 84:
−2sin(ϕB−2α)sin(−ϕB) = 2

(
8∆p1−ρg∆h1

9ρv2
∞

)
(87)

Now we can solve for α :
sin(ϕB−2α) =− 8∆p1−ρg∆h1

sin(−ϕB)9ρv2
∞

=
8∆p1−ρg∆h1

sin(ϕB)9ρv2
∞

(88)

α =
ϕB− arcsin

(
8∆p1−ρg∆h1
9ρv2

∞ sin(ϕB)

)

2
, (89)

and get equation (34) in section 2.2.2
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Appendix 2 - BDO derivation for augmented DFEC
Summarizing (67) from section 4.3.3 we can write:

ẋ = f (x)+g1(x)u+g2(x)d, (90)
with ẋ = [ẋ1, ẋ2, ẋ3, ẋ4, ẋ5]

T ,u = [u1,u2]
T ,d = [d1,d2,0,d3,d4], and

f (x) =




x4 cos(x3)
x4 sin(x3)

x5
− 1

m11
(Xux4 +Xuux4|x4|)

− 1
m66

(Nrx5 +Nrrx5|x5|)



, (91)

g1(x) =




0 0
0 0
0 0
1

m11
0

0 1
m66



, (92)

g2(x) =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1



, (93)

Given that (73) and (74) depend on d and its first and second time derivatives the as-sumption is made of ...d ≈ 0, which means k = 3 and the following disturbance observercan be defined:
ż0 =−L0(x)[ f (x)+g1(x)u+g2(x)(z0 + p0(x))]+ z1 + p1(x)

ż1 =−L1(x)[ f (x)+g1(x)u+g2(x)(z0 + p0(x))]+ z2 + p2(x)

ż1 =−L2(x)[ f (x)+g1(x)u+g2(x)(z0 + p0(x))]

d̂ = z0 + p0(x)

d̂(1) = z1 + p1(x)

d̂(2) = z2 + p2(x),

(94)

with zi(t)∈Rp, i= 0,1,2being theobserver state, d̂(i) the estimation of d(i) and pi(x),Li(x)observer gains chosen to satisfy:
Li(x) =

∂ pi(x)
∂x

. (95)
We further can define the following error dynamics for the estimation error ei := d(i)− d̂(i)

as:
ė0 = e1−L0(x)g2(x)e0

ė1 = e2−L1(x)g2(x)e0

ė2 =−L2(x)g2(x)e0.

(96)
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Given g2(x) ∈ R5x4 we choose Li(x) ∈ R4x5 and get:

Li =




li,1 0 0 0 0
0 li,2 0 0 0
0 0 0 li,3 0
0 0 0 0 li,4


 , (97)

with (97) in (96) we get the linear autonomous system:
ė = Ae

=



−L0g2(x) I4x4
−L1g2(x) I4x4
−L2g2(x) 04x4


e.

(98)

Now we determine the characteristic polynomial, which results in four independent sys-tems with three roots each:
det(A− sI) =(−s3− s2l0,1− sl1,1− l2,1)(−s3− s2l0,2− sl1,2− l2,2)

(−s3− s2l0,4− sl1,4− l2,4)(−s5− s2l0,5− sl1,5− l2,5)
(99)

Restricting the roots of the polynomial to be on the left side of the complex plane wecan compute the conditions of (75) in section 4.3.3.
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Differential Pressure Sensors for Underwater
Speedometry in Variable Velocity and

Acceleration Conditions
Juan Francisco Fuentes-Pérez , Christian Meurer, Jeffrey Andrew Tuhtan, and Maarja Kruusmaa

Abstract—Autonomous underwater vehicles require estimation
of their velocity relative to the surrounding flow to perform essen-
tial navigation tasks. Available technologies for speed estimation
rely on Doppler velocity logs or acoustic Doppler current pro-
filers and are not suitable for application in small low cost or
energy consumption vehicles. Encouraged by the successful re-
sults of our previous lab-scale investigations using pressure-based
speedometry, we developed differential pressure sensor speedom-
etry as an alternative to conventional technologies. We built a full-
scale physical prototype, compared analog and digital differential
pressure sensors and evaluated the performance in variable veloc-
ity (0–2 m/s) and acceleration (0–2 m2/s) conditions in a marine
tow tank. A simple equation based on the conservation of energy
accurately estimated the velocity, with estimated mean absolute
errors of 0.0087 m/s for analog and 0.0107 m/s and digital config-
urations. This equation is shown to hold under variable velocity
and acceleration conditions. We conclude that differential pres-
sure sensor speedometry is a valid solution to perform underwater
speedometry and we confirm that the system can provide instan-
taneous and stable velocity estimates with a sampling rate higher
than 10 Hz.

Index Terms—Bernoulli, differential pressure sensor, pitot,
speedometry, underwater vehicles.

NOMENCLATURE

a Acceleration (m/s2).
Cc Correlation coefficient (dimensionless).
Cp Pressure coefficient (dimensionless).
p Pressure (Pa or indicated).
R2 Determination coefficient.
Re Reynolds number (dimensionless).
T Temperature (°C).
v Velocity (m/s).
α Coefficient in a (dimensionless).
Δp Pressure drop (Pa).
β Coefficient in (4).
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Θ Angle (°).
ρ Density (kg/m3).

I. INTRODUCTION

OBTAINING vehicle speed information using onboard
sensing is essential to perform navigation in autonomous

underwater vehicles (AUVs) [1]. However, underwater vehicles
do not enjoy the benefit of global positioning, and must instead
rely on local sensing. One of the oldest and most common nav-
igation techniques is dead reckoning [2]. In the most frequent
configuration, inertial sensor data are used to estimate the vehi-
cle’s location from a known position using integrated speed or
acceleration measurements. Unfortunately, sensor drift leads to
unbounded errors [1], requiring the fusion of multiple sensors
with different error characteristics [3], [4].

To overcome these problems, the basic navigation suite of
most AUVs consists of an inertial navigation system aided by
a Doppler velocity log (DVL) [5]–[7] or an acoustic Doppler
current profiler (ADCP) [8] for additional velocity information.
Both technologies make use of hydroacoustic measurements
based on the Doppler shift [9]: An acoustic signal is transmitted
and reflected back to the sensor via a solid reference surface
as in DVL or by ambient particles in the water as in ADCP.
Afterward, the relative velocity is computed from the Doppler
shift of the reflected signal.

However, both DVL and ADCP suffer from certain limita-
tions. The devices are expensive, typically have a large form
factor and high energy consumption. Therefore, they are not
suitable for small vehicles [10] or for prolonged missions with
low energy consumption requirements [11]. Moreover, these
technologies are too expensive for low-cost vehicles, which are
useful in high risk applications, swarm operations, or in con-
fined environments such as rivers and lakes [10], [12], [13].
Additionally, low-cost vehicles represent a developing market
in consumer robotics [14].

Engineering fields such as aeronautics have successfully
solved the problem of speed estimation by using pressure-based
sensors [15], [16]. For instance, pressure sensors are commonly
used to measure the relative speed, angle of attack, yaw rate,
or altitude of aircrafts [17]–[20]. Moreover, they are standard
applications in fluid related fields, e.g., to control industrial pro-
cesses, for physical modeling, or for wind and flow tunnels. In
view of their widespread and successful use in many fields,

0364-9059 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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exploring the potential of pressure sensors for underwater
robotics is a logical step.

The most closely related pressure-based systems for underwa-
ter applications use artificial lateral lines that have been proposed
for flow and speed measurements in underwater applications
[21]–[24]. They are inspired by the passive sensing modalities
present in fish, which are used to detect mechanical changes in
the surrounding water [25], and they have shown the potential to
overcome the following limitations of hydroacoustic methods.

1) They can be considered as a low-cost solution.
2) They have a lower energy consumption.
3) They can measure flows around the vehicles [26]. Like-

wise, they can be useful to perform complementary tasks
such as for force estimation and wall detection [27].

In [26], we demonstrated the potential of differential pressure
sensor based speedometry for underwater velocity estimation.
We overcame some of the limitations of artificial lateral lines by
substituting common absolute pressure sensors by differential
pressure sensors, which a) increased the measuring range as well
as the sensitivity and b) introduced a mechanical filtering for the
static pressure components. Furthermore, we demonstrated that
combining the output from two differential pressures sensors
allowed speed estimations even under yaw angle deviations. Our
previous study was made using a static small-scale laboratory
platform. The obtained conclusions were thus limited and did
not completely confirm the viability of the system for AUVs.

In this paper, we overcome the aforementioned limitations
to validate differential pressure sensor speedometry as a viable
full-scale technology for AUVs. To achieve this, following steps
were performed.

1) A full-scale physical model based on differential pressure
sensors is developed.

2) Two different types of sensors, digital and analog, are
tested to obtain a more robust and faster platform.

3) A marine tow tank with a velocity range of 0–2 m/s is
used.

4) The velocity time series under variable acceleration
(0–2 m/s2) are analyzed.

With this, we conclude that differential pressure sensor
speedometry is a valid solution to perform underwater speedom-
etry and we confirm that the system can provide instanta-
neous and stable velocity estimates with a sampling rate higher
than 10 Hz.

II. MATERIALS AND METHODS

A. Derivation of the Velocity–Pressure Relation

Invoking the conservation of energy within a fixed fluid vol-
ume, the fundamental relation [see (1)] between the pressure p
and velocity v for an inviscid, incompressible flow is described
by Bernoulli’s law as follows:

p +
1

2
ρv2 = const (1)

where p is pressure (Pa), ρ is the density (kg/m3), and v is
the velocity (m/s). The equation states that between two points
along the same streamline, the relation between v and p is a
constant.

Fig. 1. Pressure coefficient [Cp = (p − pmax )/0.5 · ρ · v2
max = 1 −

(v/vmax )2 ] distribution over a circular cylinder under laminar and turbulent
air-flows according to the angle (Θ) from stagnation point (modified from
[16]).

A common application of Bernoulli’s law is the estimation of
flow velocity using the effect of a rigid body in the flow [15].
The presence of such a body distorts the flow passing over it, and
the undisturbed freestream velocity can be estimated utilizing
the pressure difference across two or more points on surfaces
encompassing a wide variety of geometries [28]. Our probe
relies on the known empirical relation across two points on a
spherical or circular body (see Fig. 1). At these points, the device
is equipped with flush holes (pressure taps), which are normal to
the surface. At the upstream most point, stagnation point A, the
velocity is equal to zero (vA = 0 m/s). At the second location,
static point B, the pressure is equal to the static pressure of the
undisturbed freestream flow (pressure coefficient, Cp , is equal
to 0). The general equation for flow speed estimation is then
derived based on the two measurement locations A and B as
follows:

pB +
1

2
ρv2

B = pA +
1

2
ρv2

A = pA (2)

vB =

√
2 (pA − pB )

ρ
=

√
2Δp

ρ
. (3)

Equation (3) is well known as a basic principle in fluid me-
chanics, and widely applied for velocity estimation in air [15],
[17] and water [21], [22]. The simplicity of the underlying
physics has allowed others to successfully use alternative pres-
sure tap placements [21].

In our previous work with a static small-scale laboratory pro-
totype, we were able to demonstrate that the equations for the
left and right differential inputs could be combined into a single
formulation [26] as follows:

v = 4

√
β (Δp2

1 + Δp2
2) (4)

where β = 2α/ρ2 and Δp1 and Δp2 are the pressure drops
at each side of the circular shape from the stagnation point to
another point downstream and α is a coefficient that depends
on the position of the points downstream (α � 1 if –35° � Θ
� 35°). Note that when the circular shape is facing the flow
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Fig. 2. Physical platform used in the experiments. (a) CAD design of the prototype. (b) Side view of the real prototype. (c) Comparison of the current platform
against the static lab platform used for the preliminary results [26]. (d) Sensor box with pressure holes in red.

(Δp1 = Δp2), (4) is equal to (3) if α = 1. This equation was
found to provide satisfactory performance even under yaw devi-
ations of up to 45° [26]. It is valid for static or forward-moving
bodies to provide estimates of one-dimensional speedometry,
which can be expanded into two and three dimensions using
multihole probes [15], [19].

The decision to work with circular and spherical geometries
was not only based on their simplicity. Additionally, radially
symmetric shapes benefit from a near-analytical pressure distri-
bution up to ±35°, which is nearly independent of the Reynolds
number (Re) [29]. As shown in Fig. 1, the distribution of pres-
sure and the flow over a circular cylinder are dependent on
the orientation angle and present flow conditions, which are
described by their respective Re. Neglecting the effects of vor-
ticity or large-scale gradients in the static pressure field (e.g.,
the sensor body is impacted by waves), the fundamental physics
underlying our design should allow it to perform under a large
variety of real-world conditions.

B. Experimental Platform

The prototype was designed to be used in torpedo-shaped
AUVs with interchangeable heads (e.g., [30]). However, as can
be seen from Fig. 2(c), due to the small size of the pressure sen-
sors, the design and dimensions can be easily adapted to cover
an expanded range of vehicle sizes and sensor head geometries.

Drawing from our previous laboratory work based on a small-
scale half cylinder [see Fig. 2(c)] [26], the experimental plat-
form for these trials is a full-size hemisphere (see Fig. 2). It
is worth noting that differential pressure speedometry with a
hemispherical sensing head has also been applied successfully
in aeronautics [17]–[19], [31]. The design consists of a frame
of aluminum bars [5 in Fig. 2(a)] and polyoxymethylene rings
[4 in Fig. 2(a)], where two three-dimensional (3-D) printed cov-
ers (printed using fused deposition modeling out of polylactic
acid with epoxy reinforcement) [2 and 3 in Fig. 2(a)] and a

TABLE I
DIFFERENT ELECTRONICS TESTED IN THE PHYSICAL PLATFORM

Component Analog Digital

Microcontroller board Arduino Micro

Pressure sensors MPXV7002 SSCDRRN005ND2A5

Number of pressure sensors 2

Range ±2000 Pa ±1244 Pa
Maximum pressure (pA > pB ) 75 000 Pa 4903.325 Pa
Temperature sensor ADT7301 (13 bits) On-board
Multiplexer − TCA9548A
Analog to digital converter 16 bits—LTC1867 14 bits—on-board
Resolution 0.0695 Pa 0.03 Pa
Tested sampling frequency 200 Hz 100 Hz
Maximum sampling frequency >400 Hz 200 Hz

sensor box [1 in Fig. 2(a)] are attached. The sensor box is the
most essential part of the system, as it houses all the electronics
and provides the connection of the sensors with the environment.
The box was 3-D printed using stereolithography.

Digital and analog sensors were tested and their comparison
can be found in Table I. The digital sensors used the setup from
our previous small-scale lab experiments [26]. In both cases,
each pressure sensor measures one of the side pressure drop
across the sensor box, from the stagnation point (θ = 0°) to the
static point (θ = 35°) [see Fig. 2(d)].

Analog sensor conversion into standard pressure units re-
quires a two-step calibration process (see Fig. 3): 1) subtraction
of the constant temperature offset and 2) the transformation to
real units. After calibration, a performance similar to the self-
calibrating digital sensors was achieved.

C. Experimental Setup

Experiments were performed in a 59.4 m long and 5 m
wide marine tow tank at the Small Craft Competence Centre in
Kuressaare (Saaremaa, Estonia) (see Fig. 4). The prototype was
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Fig. 3. Calibration of the analog sensor. (a) and (b) Subtraction of the offset due to temperature. (c) Fit to transform digital values to pressure in SI units.

Fig. 4. Experimental setup. (a) Image of the tow tank carriage. (b) Top view
of the tow tank.

attached to a tow tank carriage at a water depth of 0.5 m facing
the motion direction parallel to the tank walls [see Fig. 4(a)]. The
carriage belt drive is capable of covering a velocity range from
0.01 to 5.5 m/s and an acceleration a range from 0.01 to 3 m/s2,
in steps of 0.01 m/s and 0.01 m/s2, respectively. At the lowest
velocity ranges (<0.05 m/s), it was found that the carriage could
not provide completely smooth motion and exhibited stepping,
presumably caused by the belt drive. This was detected by the
speedometry system, and its potential influence is discussed in
Section III-B.

All velocity and acceleration tests were repeated using both
analog and digital sensors (see Table II). Before each of the two
replicates, a measurement in still water with a sampling time of
60 s was done. During velocity tests, the carriage was driven
with a constant velocity, and data were gathered for 60 s in
low velocities (�0.5 m/s). Due to the fixed length of the tank,
the sample duration was shorter for higher velocities. A simi-
lar procedure was used for acceleration, where the maximum

constant acceleration time was recorded taking into account the
observed pressure sensor velocity limitations (2.4 m/s for analog
and 2.0 m/s for digital).

D. Data Processing and Validation

The still water measurements were used as a reference point
in each of the conducted replicates. All the proposed fits were
evaluated using the coefficient of determination R2 as well as
graphically. In addition, the observed data were compared to
the predicted data and the mean absolute error was used as the
measure of achieved accuracy.

In the time series analysis, the relation between the estimated
velocity and the carriage velocity data was evaluated graphi-
cally, as well as using the cross correlation Cc between signals.
Likewise, the time series were estimated from (4). However,
this formulation does not allow the use of negative values [note
that Δp in (4) is squared] leading to a poor performance in low
velocities. For low velocities, negative values of Δp occurred,
either due to the influence of other pressure sources in the water
or, in the case of these experiments, because of the stepping
of the carriage. To solve this, a short correction algorithm was
implemented as follows:

v=

⎧
⎪⎨
⎪⎩

0, if Δp1 ,Δp2 < 0

4
√

β |(Δp1 |Δp1 | + Δp2 |Δp2 |)|, if Δp1 + Δp2 > 0

− 4
√

β |(Δp1 |Δp1 | + Δp2 |Δp2 |)|, if Δp1 + Δp2 < 0.

(5)

The performance of this correction algorithm will be dis-
cussed in Section III-C.

III. RESULT AND DISCUSSIONS

A. General Equation

Fig. 5 summarizes the pressure distribution and the expected
results for long-term velocity estimations using the designed
prototype with both sensor types. In Fig. 5(a) and (b), the pres-
sure distribution of each sensor for each velocity test replicate
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TABLE II
CONDUCTED EXPERIMENTS

Variables Replicates Configurations Tow tank carriage settings Total number
of experiments

v (m/s) 2 2 [0.01, 0.05] every 0.01 m/s 64
[0.10, 0.50] every 0.10 m/s
[0.75, 1.00] every 0.25 m/s

a (m/s2) 2 2 [0.01, 0.05] every 0.01 m/s2 68
[0.075]

[0.10, 0.50] every 0.10 m/s2

[0.75, 1.00] every 0.25 m/s2

In each test, the target variable was held constant.

Fig. 5. Pressure distribution and fits for the two studied sensor types. (a) Pressure distribution in analog sensors. (b) Pressure distribution in digital sensors.
(c) Estimated against observed results for analog sensors. (d) Estimated against observed results for digital sensors.

can be observed. When comparing the analog and digital re-
sults, a slight deviation between the sensors is present, which
is produced by a small misalignment of the prototype with the
motion vector of the carriage. The deviation is more distinct
for analog sensors, because the misalignment of the prototype
was corrected prior to the experiments with digital sensors.
Despite this small deviation, the results provide a good ex-
ample to demonstrate the potential of (4), which can correct
these deviations with a small error margin (R2 = 1.00 for ana-
log and R2 = 0.99 for digital) [see Fig. 5(c) and (d)]. After
fitting, the estimated mean absolute errors were 0.0087 m/s
for analog and 0.0107 m/s for digital sensors. The obtained
mean errors of both analog and digital sensor configurations
were lower than those obtained in our previous small-scale tests
in [26] (0.024 m/s).

Fig. 5 further shows the importance of sensitivity when mea-
suring low velocities. Based on the fitted equations for a velocity
of 0.01 m/s, the pressure difference is 0.037 Pa for analog and
0.027 Pa for digital configurations. These quantities are outside
the sensitivity range of the pressure sensors and could be easily
corrupted by other pressure sources, especially turbulence. To
estimate lower velocities, a large number of data samples are
required.

In the same way, when the prototype was placed in the water,
a still water measurement was recorded as reference. Although
this is not always necessary, placing the robot into the water may
generate a small constant offset due to the different quantity of
water in the pressure tap internal tubing. Precise knowledge
of this difference could be used to improve the estimation of
low-range velocities.

B. Effective Sampling Frequency and Sensor Comparison

Fig. 6 shows the expected behavior of the mean velocity error
with respect to the sampling time. For both electronic configu-
rations, errors are higher for low velocities (darker lines, Fig. 6)
and a stable value is achieved later. It is worth mentioning that
the observed stepping in the carriage could also have contributed
to increase this error.

As argued in Section III-A, due to the quadratic relation be-
tween v and p, the sensitivity requirements to estimate differ-
ent velocities are also different. This leads to the need of an
increased sample size to estimate low velocities. A similar be-
havior is expected for the error, it will be higher for low veloc-
ities due to the sensitivity requirements and a higher influence
of external pressure noise sources.
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Fig. 6. Average error evolution over time. (a) Evolution of analog sensor mean value in 1 s (200 Hz) for different velocities. (b) Evolution of digital sensor mean
value in 1 s (100 Hz) for different velocities.

Considering the evolution of the mean absolute velocity er-
ror, an error lower than 0.01 m/s is achieved using 15 analog
and 29 digital samples. Taking this and the sampling rate of
analog sensors 200 Hz into account, an effective sampling rate
of 13 Hz is obtained. In the case of digital sensors due to the
lower measurement rate 100 Hz, an effective sampling rate of
3 Hz is achieved. In view of this, we presume that by exploiting
the highest possible measurement rate in the sensors we could
increase the effective sampling rate. For instance, in the labora-
tory experiments conducted in [26] using 200 Hz with the digital
platform, an effective sampling rate higher than 10 Hz was cal-
culated. In both cases, the sampling rate is higher or in the range
of 1–5 Hz, which is the conventional rate of DVLs [32], [33].

The motivation behind the analog configuration was to check
the possibility of obtaining similar results with a more robust
rapid platform. As shown, both sensor configurations are able
to correctly estimate the velocity; however, both have their ad-
vantages and disadvantages. Digital sensors have a higher reso-
lution (0.03 Pa < 0.0695 Pa) due to the lower measuring range
(±1244 Pa < ±2000 Pa) and an unknown internal process of
average filtering. Additionally, the internal analogue-to-digital
converter (ADC) and temperature sensors reduce the number
of necessary components in the hardware. On the other side,
due to the I2C connection, and because we use sensors with
the same address, it is necessary to implement a multiplexer,
which slows down the possible sampling frequency (200 Hz <
400 Hz). Also, the measuring range of the digital sensors can be
limiting for some applications and they are more expensive (due
to their resolution, on-board compensation, and stability). The
connectors in the digital sensors require a more complex design
and are more difficult to install. In addition, it is not possible
to control the calibration process, which generates a black box
effect and makes it impossible to apply customized workflows.

C. Time Series and Acceleration Analysis

In Fig. 7, the results of the acceleration tests are shown
for three of the experiments (low = 0.02 m2/s, medium =

0.20 m2/s, and high = 2.00 m2/s) with both sensor types. In
this figure, considering the results of the previous sections, the
velocities have been calculated after average filtering the signals
and downsampling them to 10 Hz.

As can be seen in Fig. 7, the quadratic relation between the v
and Δp holds for all accelerations, which allows us to apply (4)
instantly. In Fig. 7(a)–(d), decelerations are shown as an exam-
ple, demonstrating similar behavior and, thus, the possibility of
using (4).

The good performance of the correction algorithm (5) be-
comes apparent when raw and corrected signals from the begin-
ning of each series are compared [cf., details in Fig. 7(a)–(e)].
Using (4) would produce an overestimation in the low-range ve-
locities, which could only be compensated if the average value
of the long-time data series of Δp was considered for v calcula-
tion. This overestimation may have been caused by the observed
stepping error of the carriage; nevertheless, it can happen with
other natural pressure sources, too. In view of the results, using
(5) seems to provide a solution to achieve a better result and a
higher sampling frequency during low velocities. Likewise, the
algorithm can be applied online due to its simplicity.

After applying the correction algorithm, the Cc between mea-
sured velocity signal and estimated velocity is in all cases higher
than 0.999. Furthermore, the estimated velocity signals are able
to reproduce the small velocity oscillation produced by the con-
trol system of the tow tank [see Fig. 7(d)–(b)], this accuracy
could be essential to correct deviations during AUV navigation.

Contrary to absolute pressure sensors, differential sensors
mechanically filter the static water pressure contribution. This
provides increased sensitivity and allows for direct mechanical
filtering of disturbances such as waves. The positive effect of this
performance was observed during the conducted experiments.
The carriage generated surface waves, which were undetected
in the pressure sensor time series data. This can be a potential
issue that should be further considered in systems where the
distance between pressure taps is larger, for passage through
standing waves, or for wavelengths smaller than the offset
between taps.
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Fig. 7. Time series analysis of the velocity estimation for three scenarios (low acceleration, medium acceleration, and high acceleration) for both electronic
types. Analog sensor: (a) acceleration of 0.02 m/s2, deceleration of 0.5 m/s2, and detail of the correction algorithm performance; (b) acceleration of 0.20 m/s2 and
detail of velocity oscillation tracking; (c) acceleration of 2.00 m/s2. Digital sensor: (d) acceleration of 0.02 m/s2, deceleration of 0.3 m/s2, and detail of velocity
oscillation tracking; (e) acceleration of 0.20 m/s2 and detail of the correction algorithm performance; (f) acceleration of 2.00 m/s2.

IV. SUMMARY AND CONCLUSION

In this paper, underwater differential pressure sensor
speedometry is introduced and studied. Building on our pre-
vious results, a full-scale prototype using analog and digital
sensors was tested in a marine tow tank. The speed calculation
is based on a simple formulation built upon the conservation
of energy. It shows the ability to calculate the speed in moving
platforms as well as correct angular deviations, which may be
useful to correct sensor misalignment.

The comparison of analog and digital sensors revealed similar
results. Considering the tested prototype, the analog sensors

offer the more promising alternative as they provide a higher
sampling rate and have a lower price and the possibility of
implementing customized calibration processes.

Analysis showed that differential pressure speedometry cor-
rectly estimated the velocity, and was able to detect the rapid
fluctuations caused by the belt drive. A basic derivation using
the conservation of energy was developed and applied to ac-
curately estimate the velocity. The mean absolute errors were
0.0087 m/s for analog and 0.0107 m/s and digital sensors.

The effective sampling frequency in the velocity range of
0–2 m/s was found to be higher than other available technolo-
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gies, which makes differential pressure sensor speedometry a
valuable complement to existing solutions. Likewise, it seems
to be a viable alternative for those AUVs outside the application
range of DVLs or ADCPs, such as small, low cost, or low energy
requirement vehicles.

V. FUTURE WORK

Future work will concentrate on the implementation of the
prototype into a real AUV and subsequent prototype testing in
laboratory and field conditions. Direct comparison with existing
key technologies for speedometry such as DVL could provide
more information about the performance of our sensor technol-
ogy. In addition, we plan to develop sensor-fusion algorithms
using differential pressure sensors, inertial measurements, and
DVLs to access the complementary potential of our sensors for
navigation and control. The extension of the sensor system into
two or three dimensions is another promising research topic
which could provide new methods for underwater speedometry
and navigation.
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Differential Pressure Sensor Speedometer for
Autonomous Underwater Vehicle Velocity Estimation
Christian Meurer , Juan Francisco Fuentes-Pérez , Narcís Palomeras , Marc Carreras , and Maarja Kruusmaa

Abstract—Velocity estimation is central for the reliable naviga-
tion of autonomous underwater vehicles (AUVs). Doppler velocity
logs (DVLs), currently the leading technology for underwater ve-
locity estimation, can be too big, expensive, and energy consuming
to be used on low-cost and small AUVs or for long missions. In
our previous work, a system based on differential pressure sen-
sors was developed for estimating surge velocity. In this paper, we
combine this system with an inertial measurement unit to compen-
sate for orientation errors and create a differential pressure sen-
sor speedometer (DPSS). We propose and demonstrate the DPSS
prototype as an important step toward a small, inexpensive, and
energy-efficient alternative or complement to a DVL in certain ap-
plications. This paper presents the first underwater field tests of
a sensor using differential pressure for velocity estimation. Tests
were conducted with a SPARUS II AUV (IQUA Robotics, Girona,
Spain). To demonstrate the efficacy of our proposed solution, we
compare the surge velocity estimation of the DPSS and the vehicle’s
DVL in bottom and water locks. Trials were conducted by varying
the trajectory and velocity of the vehicle in three different environ-
ments. We show that the DPSS displayed a superior performance
with respect to the DVL water lock for velocities above 0.6 m/s. The
differences in the velocity estimations of the DVL in bottom lock for
high velocities were as small as 0.013 m/s. These results encourage
further development of the presented technology.

Index Terms—Autonomous underwater vehicle (AUV), differen-
tial pressure sensors, Doppler velocity log (DVL), dead reckoning,
flow sensing.

I. INTRODUCTION

FOR THE successful operation and recovery of autonomous
underwater vehicles (AUVs), robust navigation and local-

ization are crucial [1], [2]. However, the availability of sophisti-
cated sensor systems for navigation and localization is restricted
by the size, energy requirements, budget, and operation condi-
tions of the particular vehicle. Especially with the increasing
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use of low-cost and small vehicles, there is a need for alterna-
tive sensor solutions. This paper describes field tests to validate
a small, low-cost, and energy-efficient sensor system for surge
velocity estimation that uses differential pressure sensors.

Unlike terrestrial or aerial environments, autonomous under-
water navigation is impeded by the rapid high-frequency attenu-
ation of sensor signals or by the lack of salient features in mostly
unstructured environments. Common navigation methods, such
as satellite-based global positioning units, are not directly im-
plementable. Existing underwater navigation solutions can be
divided into three main categories [3]: acoustic navigation, geo-
physical navigation, and inertial navigation.

Acoustic navigation requires additional hardware to be de-
ployed, which creates a local coordinate system. Therefore, this
solution is limited to environments where hardware deployment
is feasible. Though geophysical navigation uses the features near
the AUV to track location within an environment, it is not ex-
tensible to unstructured or open water environments. Inertial
navigation, the most basic navigation method, uses dead reck-
oning techniques to estimate the position of the vehicle. Iner-
tial navigation is insensitive to environmental characteristics,
making it suitable for operations in either featureless or com-
plex environments. Further, this method removes the need for
a costly and complex infrastructure, decreasing the expenses
for AUV missions. Though current inertial navigation systems
(INS) provide increasingly accurate heading and acceleration
measurements that can improve overall position estimates [1],
this method suffers from unbounded errors [4]. In best prac-
tice, the methods mentioned above are combined using sensor
fusion and state estimation [4], [5] to increase the overall ro-
bustness and accuracy of the navigation system. Methods for
sensor fusion and state estimation include Kalman filters, parti-
cle filters, and simultaneous localization and mapping [5]. The
most commonly adopted method for state estimation is the ex-
tended Kalman filter (EKF) that can handle nonlinear processes
with Gaussian error distributions at a moderate computational
load.

Due to its global applicability, inertial navigation is the core
technique for most navigation solutions. Measuring velocity di-
rectly is a particularly compelling way to complement measure-
ments from INSs. Doppler velocity logs (DVLs) are the most
widely applied class of velocity sensors used to aid the INS
[6]–[9], providing velocity estimation with a sufficiently narrow
error margin [4]. DVLs are preferably used in bottom lock (BL)
mode that relies on a smooth surface where the scattering of
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hydroacoustic signals can be avoided. In regions with uneven or
absent surfaces, DVLs can employ a water lock (WL) mode to
estimate velocity. However, DVL WL has certain limitations as
it cannot provide the same accuracy as the BL and relies on the
presence of particles that can reflect the hydroacoustic signals in
water. As recent work suggests, using acoustic Doppler current
profilers (ADCP) can solve some of these problems [10], [11].

However, despite recent efforts to reduce their size [12]–[14],
DVLs and ADCPs are difficult to integrate in small vehicles
with a limited payload capacity [15]. Further, as active sens-
ing devices, DVLs have a high energy consumption, which im-
pedes their application in vehicles on long-term missions [16].
Additionally, low-cost vehicles used in areas such as high-risk
applications [17], swarm operations [18], or consumer robots
[19] could benefit from an inexpensive alternative for velocity
estimation.

In this paper, we propose a low-cost, small-sized, and energy-
efficient technology for estimating surge velocity based on dif-
ferential pressure sensors. The proposed solution builds upon
our previous work, which was originally bioinspired by fish lat-
eral line sensing [20]. Several artificial lateral line systems have
been proposed earlier [21], [22], but none of them has been
combined with a fully autonomous AUV and, to the best of
the authors’ knowledge, none have been tested outside of the
carefully controlled laboratory environment. The artificial lat-
eral line systems proposed earlier have been based on various
technological approaches, such as micromachined piezoresis-
tive cantilevered beams [23], [24], optical flow sensors [25],
or commercially available absolute or gauge pressure sensors
[26]–[32]. In contrast, our system is built with commercially
available, inexpensive and robust pressure sensors, which are
most suitable for field conditions.

Flow estimation based on pressure sensors can be achieved by
applying Bernoulli’s law, which establishes a quadratic relation
between flow velocity and pressure [33], [34]. However, the
quadratic relation implies that a high sensitivity for pressure
is required for low velocity estimations. Absolute and gauge
pressure sensors measure pressure relative to a fixed reference,
which increases the pressure ranges and reduces the pressure
sensitivity proportionally to the operation depth. To overcome
this problem, differential pressure sensors can be used.

These sensors can measure a pressure difference across two
points in the same plane. Thus, the static component of the pres-
sure is mechanically filtered out, which decreases the neces-
sary pressure range to be measured, increasing the sensitivity of
the sensor [22], [35]. In our previous publication, we described
a prototype to estimate the surge velocity for torpedo-shaped
AUVs based on differential pressure sensors [36]. The proto-
type was calibrated and tested in laboratory conditions and able
to estimate velocity with an accuracy of 0.012 m/s. Given the
envisioned applications where it may be difficult to use DVLs
in BL or where no velocity aiding is available at present, this
accuracy is sufficiently close to those achieved by DVLs [37],
which motivated the field tests presented in this paper. By testing
in field, self-motion effects induced by environmental dynamics
had to be considered. In this paper, we enhance the proposed

prototype with an inertial measurement unit (IMU) to compen-
sate for such self-motion effects.

We will refer to the resulting sensor system as differ-
ential pressure sensor speedometer (DPSS) and present its
performance in field tests. The DPSS was integrated into a com-
mercial AUV (SPARUS II, IQUA Robotics) and tested in differ-
ent environmental conditions including several depths in pro-
tected and open waters. SPARUS II followed three types of
trajectories (linear, lawn mower, and loop) at surge velocities
ranging between 0.1 and 1.5 m/s. For tests in the protected en-
vironment with target velocities greater than 1 m/s, the differ-
ences in the velocity estimations of DPSS and DVL, expressed
as root-mean-square error (RMSE), did not exceed 0.032 m/s.
Furthermore, minimum errors of 0.013 m/s could be achieved,
which were very close to the ideal accuracy of the DPSS.

This paper is organized as follows: In Section II, we provide
the theoretical background and design of the DPSS. Section III
describes the experimental platform, the SPARUS II AUV, used
for field tests. The experimental setup and data analysis for the
field tests are explained in Section IV. In Section V, we present
the results from our field tests and discuss them. Finally, we
conclude this paper in Section VI and provide some remarks
about lessons learned during the field trials and potential for
future work.

II. DIFFERENTIAL PRESSURE SENSOR SPEEDOMETER

In this section, we present the theoretical background and
the physical implementation of the DPSS. We start by deriving
the velocity model relating the pressure measurements of the
DPSS with the surge velocity. We then describe the design and
physical setup of the DPSS, which ensures accurate and stable
measurements.

A. Velocity Model

Based on the conservation of energy within a fixed fluid vol-
ume assuming an inviscid and incompressible flow and neglect-
ing elevation effects, Bernoulli’s law describes the fundamental
relation between pressure p and velocity v as

p +
1

2
ρ v2 = const (1)

where ρ is the density of the fluid.
Bernoulli’s law can be used to estimate flow velocity around

an immersed rigid body. The fluid motion over spherical shapes
has been especially used for flow speed estimation in aeronautics
[38], [39]. As explained in Fig. 1, a spherical body with two
specific measurement points for pressure on its surface can be
utilized to estimate the flow speed.

In Fig. 1(a), point A is defined as the stagnation point, where
the velocity vA equals zero, whereas point B represents a static
point, where the velocity vB is equal to the free stream velocity
v∞. Under the assumption of an irrotational and steady flow,
points A and B can be used together with (1) to derive a general
equation for flow velocity, which is commonly known as the
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Fig. 1. Irrotational inviscid and incompressible flow over a sphere. The stag-
nation point on the spheres surface is indicated by A. (a) We introduce the static
point B, respective velocities vA and vB and the enclosing angle ϕST . (b) We
introduce an arbitrary surface point C, respective velocities vA and vC and the
enclosing angle ϕ. In both cases, v∞ denotes the free stream velocity.

Pitot equation

pB +
1

2
ρ v2

B = pA (2)

v∞ = vB =

√
2 (pA − pB)

ρ
=

√
2Δp

ρ
. (3)

Equation (3) assumes that the measurement point B is a static
point of a specific body. To relax this constraint, the relation
between the velocity vc at an arbitrary position C on the spherical
body and the free stream velocity needs to be established. For a
high Reynolds number flow regime past a sphere, this relation
can be described with [33]

vC =
3

2
v∞ sin (ϕ) (4)

where ϕ is defined as the angle between stagnation point A and
measurement point C [see Fig. 1(b)]. Equation (3) can be rewrit-
ten for arbitrary locations of measurement points by replacing
vB with (4) as follows:

v∞ =

√
2

ρ

4Δp

9sin2 (ϕ)
. (5)

Equation (3) and subsequently (5) only allow accurate flow
velocity estimation if the stagnation point faces the flow, which
cannot always be guaranteed in dynamic applications underwa-
ter. This problem can be solved by introducing a second measure-
ment point C∗ at a mirrored position from point C. Equation (5)
can be used to utilize two pressure differences Δp1 = pA − pC

and Δ p2 = pA − pC∗ between the stagnation point and the two
additional measurement points. First, we take the quadratic av-
erage of the pressure differences and express them in terms of
free stream velocity using (2) and (4) as follows:
√

Δp2
1 + Δp2

2

2

=

√√√√
(

1
2ρ

(
3
2v∞ sin (ϕ1)

)2
)2

+
(

1
2ρ

(
3
2v∞ sin (ϕ2)

)2
)2

2
(6)

Fig. 2. Effect of roll and pitch distortions on the position of the pressure
measurement points in the yz plane. zR

2 and zR
3 represent the z components of

the two measurement points with an angular distortion.

with ϕ1 and ϕ2 describing the angles between stagnation point
A and the additional measurement points C and C∗. In our case,
point C∗ is mirrored from C and thus ϕ1 = ϕ2 = ϕ. We can then
further simplify (6) and calculate v∞ as follows:

v∞ = 4

√
2α (ϕ)

ρ2
(Δp2

1 + Δp2
2) (7)

with

α (ϕ) =

(
4

9sin2 (ϕ)

)2

. (8)

Equation (7) agrees well with the relation found through
computational fluid dynamics (CFD) analysis and laboratory
experiments in [35], which provided satisfactory performance
for deviations from the yaw axis of up to 45° with an accuracy
of 0.009 m/s [36]. Additionally, the derivation in this paper
provides an explanation, based on first principles, for the
empirical coefficient α(ϕ) used in [35] and [36].

In real-world conditions, disturbances induced by the dy-
namic environment are not restricted to a single dimension. The
motion of a vehicle may cause movements in roll and pitch di-
rections, which invalidate the no–elevation assumption of the
above derivation. To compensate for those effects, additional
hydrostatic pressure components need to be introduced. Fig. 2
shows a simplified example of the expected effects.

A correction algorithm based on measurements of roll (φ)
and pitch (θ) motions is applied. We define the initial Cartesian
coordinates of the pressure measurement points relative to the
center of the sphere with ri = [xi yi zi]

T i ≤ 3 and calculate
the new coordinates caused by roll and pitch disturbances rR

i

with

rR
i = ri ∗ R (φ, θ) =

[
xR

i yR
i zR

i

]T
(9)

where R(φ, θ) is a direction cosine matrix based on roll and
pitch measurements while yaw is neglected, which is given as
follows:

R (φ, θ) =

⎡
⎢⎣

cos (θ) 0 −sin (θ)

sin (φ) sin (θ) cos (φ) sin (φ) cos (θ)

cos (φ) sin (θ) −sin (φ) cos (φ) cos (θ)

⎤
⎥⎦ .
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Fig. 3. DPSS housing shown in (a) isometric view and (b) top view. Both
views indicate the location of the pressure taps at the stagnation point (0°) and
the additional measurement points (±35°).

The additional hydrostatic components are then calculated
based on the vertical distance between the stagnation and the
two additional measurement points (see Fig. 2). The corrected
pressure differences are as follows:

Δ phc1 = Δp1 −
(
zR
2 − zR

1

)
ρg

Δ phc2 = Δp2 −
(
zR
3 − zR

1

)
ρg (10)

with ρ representing the density of water and g defined as the
gravitational constant. This results in a compensated equation
(6) given as follows:

v∞ = 4

√
2α (ϕ)

ρ2

(
Δp2

hc1
+ Δp2

hc2

)
. (11)

Throughout the above derivation, an idealized flow field is
assumed and, thus, the velocity estimation based on (11) will
be sensitive to disturbances. Such disturbances can include near
surface, near bottom, and near structure effects. In laboratory
conditions, it was shown that the velocity estimation was insen-
sitive toward wall effects at a distance of 0.25 m [35] and water
surface at a distance of 0.5 m [36]. The experiments described in
this paper were well within those limits. A more extensive char-
acterization of those boundaries including objects with complex
geometries and dynamic water surfaces in field conditions may
be part of future research.

B. DPSS Design

The DPSS utilizes two differential pressure sensors to mea-
sure pressure across three points on its surface, and an IMU
is used to detect angular disturbances. A microcontroller em-
bedded in the DPSS uses the velocity model (11) to relate the
pressure measurements of the differential pressure sensors with
the surge velocity.

The pressure on the surface of the DPSS is measured using
three flush holes normal to its surface, which we call pressure
taps. Fig. 3 illustrates the location of the pressure taps on the sur-
face of the DPSS at 0◦ (stagnation point) and ± 35◦. The pressure
differences are measured using two analog differential pressure

sensors (NXP Semiconductors MPXV7002). As already men-
tioned in Section I, differential pressure sensors are not sensitive
to depth changes, contrary to absolute pressure sensors, which
enables the DPSS to measure with a higher sensitivity. The ana-
log signal is converted using a 16-b analog-to-digital converter
(Linear Technology, Milpitas, CA, USA, LTC1867), and the
temperature is monitored with a 13-b sensor (Analog Devices,
Norwood, MA, USA, ADT7301). Furthermore, a six-degree-
of-freedom IMU (InvenSense, San Jose, CA, USA, MPU-6050)
provides input for the correction algorithm. An Arduino Micro
is used as the processing unit for the sensor information. Fi-
nally, the information from the DPSS is transmitted to the AUV
using a serial connection with a transmission rate of 100 Hz.
All electronic components have a total power consumption of
243.5 mW and are integrated into a three-dimenisonal printed
water-tight housing (see Fig. 3). Table I compares the DPSS
with three small-scale DVLs regarding size, weight, and energy
consumption. The DPSS is smaller and more energy efficient in
comparison to all the three DVLs, whereas there is still potential
to decrease the dimensions and weight of our sensor system. A
one-to-one price comparison is difficult because the DVLs are
fully developed products, whereas the DPSS is still in a proto-
type stage. However, based on a rough comparison, the price
range for the DPSS should be around one order of magnitude
lower.

In underwater applications, stiff membranes are used to ensure
water tightness of pressure sensors, which limits the sensitivity
for low-pressure ranges. However, due to the quadratic relation
of pressure and velocity, high sensitivities and a small pressure
range (< ±2000 Pa) are necessary to measure low velocities. To
overcome those limitations, we selected an air pressure sensor
able to operate in high humidity environments and included an
internal tubing system within the housing of the DPSS, which
always maintains a layer of air between the sensors and the en-
vironment (see Fig. 4). The geometry of the tubing enables to
trap a single volume of air and is designed to prevent the forma-
tion of several air pockets, which would increase measurement
noise. However, the volume of the trapped air is variable and is
expected to depend on environmental conditions, such as angle
of deployment of the sensor into the water, depth, and temper-
ature. This variability affects the sensor readings and must be
accounted for.

The DPSS prototype used during this study was specifically
designed to be integrated with a SPARUS II AUV, which has an
interchangeable head section [40]. Fig. 5 shows the computer-
aided design (CAD) drawing of the prototype, with the DPSS
as its main component, a supporting frame, and covers forming
the payload area of SPARUS II. When assembled, the covers of
SPARUS II and the exposed face of the DPSS form a hemisphere,
which allows the use of (11).

C. DPSS Performance Characterization

DPSS performance for surge velocity estimation was char-
acterized by experiments in a tow tank, which are described in
[36]. As discussed before, the relation between pressure and
velocity (3) is quadratic; therefore, similar pressure deviations
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TABLE I
COMPARISON OF DPSS WITH THREE SMALL-SCALE DVLS REGARDING SIZE, WEIGHT, AND POWER CONSUMPTION

Fig. 4. Cross-sectional view of the DPSS showing the internal tubing and the
air–water interface.

cause higher velocity variations for lower velocities. We thus
expected higher errors of the DPSS for low velocities in a dy-
namic environment. In addition, the number of pressure samples
considered in calculating velocity influenced the accuracy of the
DPSS. It was shown in [36] that a stable optimum accuracy was
obtained for sampling rates from 5 to 13 Hz.

To establish an error model for the DPSS, it would be possi-
ble to propagate the nominal error of the commercial pressure
sensors through (11). However, the error estimates provided by
the manufacturer are conservative, which makes it difficult to
establish an accurate error model. Instead, we developed the er-
ror model based on empirical data and lumped possible errors
together in a probabilistic error term “err” assuming a normal
distribution where the mean μ represents the sensor accuracy

v∞ = 4

√
2α (ϕ)

ρ2

(
Δp2

hc1
+ Δp2

hc2

)
+ err err ∼ N

(
μ, σ2

)
.

(12)

Fig. 6 shows the PDF of the velocity errors from the perfor-
mance experiments described in [36]. The velocity error fol-
lows a Gaussian distribution N(μ, σ2), resulting in an accu-
racy of the DPSS of μ = 0.012 m/s and a standard deviation of
σ = 0.009 m/s. However, the accuracy of the tow tank used in
[36] was limited to 0.01 m/s. Therefore, we assumed a standard

Fig. 5. Exploded view of the DPSS together with a frame and covers repro-
ducing a payload section for a torpedo-shaped robot.

Fig. 6. Probability density function (PDF) of the DPSS velocity error obtained
during tow tank experiments [36] (red) and fitted Gaussian distribution (dashed)
with estimated mean μ and standard deviation σ.

deviation of σ = 0.01 m/s. Under field conditions, other possi-
ble pressure sources or flow field distortions may modify the
described performance; for instance, the influence of waves or
currents and attitude dynamics of the AUV.
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Fig. 7. SPARUS II AUV in an indoor pool at Underwater Robotics Research Centre (CIRS), University of Girona, Girona, Spain, with the integrated DPSS.
General specifications (adapted from [40]) and sensor suite specifications used during the experiments can be seen on the right.

III. EXPERIMENTAL PLATFORM—SPARUS II

A. SPARUS II System Overview

SPARUS II is a lightweight surveillance AUV for long-term
missions with a classical torpedo-shaped hull. The general spec-
ifications and the specific test configuration of the robot are pre-
sented in Fig. 7.

The vehicle has two horizontal thrusters, a vertical thruster,
and fins at the stern that enable actuation in surge, heave, pitch,
and yaw direction. The bow of the robot is a customizable pay-
load area with a volume of 8 L supporting a maximum weight of
7 kg. The DPSS was integrated into the front part of the payload
area. For this work, the covers of the payload area were changed
to create a spherical head (see Figs. 5 and 7).

The software architecture of SPARUS II is based on the open
source Robot Operating System (ROS) [41]. The basic sensor
suite of SPARUS II used during the experiments consists of a
pressure sensor, IMU, DVL, and a GPS (see Fig. 7). The infor-
mation of all sensors was forwarded to an EKF for sensor fusion
and state estimation [42]. The data provided by the sensors, in-
cluding the DPSS and the EKF state estimation, were stored in
separate datalog files.

The DVL (Teledyne RD Instruments, Inc., Poway, CA, USA,
Explorer 600), integrated at the rear conical part of SPARUS II,
was used in this study as the reference for velocity estimation.
Using the frequency shift of backscattered acoustic signals, it
estimates the velocity of SPARUS II in three degrees of freedom
with an accuracy of 1.15% of distance traveled [37]. Velocity can
be measured relative to a solid surface (BL) or particles in the
water (WL). The navigation framework of SPARUS II favored
velocity information from BL, if available, because it usually is
more accurate. Subsequently, the BL mode was used to create
the reference velocity estimation for the WL and the DPSS.

IV. EXPERIMENTAL CONFIGURATION

Field trials were conducted in the harbor area of Sant Feliu
de Guíxols, Catalonia, Spain (see Fig. 8). SPARUS II was in
autonomous mode throughout each trial. However, for safety
reasons and monitoring and recording real-time telemetry data,
the vehicle was connected to a wireless access point buoy.

A. Test Conditions and Trajectories

The DPSS was tested in three different sets of conditions,
which we will define as test settings A, B, and C. As can be
seen in Fig. 8, the tests in setting A and B were conducted in the
same area protected by harbor walls, whereas the tests in set-
ting C were conducted in open water with larger environmental
disturbances. Based upon observable conditions at the time of
testing, setting A was assumed to represent the most stable envi-
ronment, with settings B and C representing higher and highest
waves, respectively (see Table II). The potential effect of surface
waves on the recorded pressure data [43] was further decreased
for setting A by using a target depth of 4 m, as opposed to the
target depth of 3 m for settings B and C. Table II summarizes
the experimental conditions of the three test settings.

For each of these settings, three types of trajectories were
executed: linear, lawn mower, and loop (see Fig. 9). We will
refer to a single successful trial of a trajectory as a “run.” Every
run was conducted twice for each velocity in each setting, and
we subsequently divided such a pair of runs in repetition 1 and
repetition 2. Due to the dynamics of the testing environment, a
one-to-one comparison between those repetitions was not fea-
sible. However, it is possible to infer some information about
reproducibility by comparing the distributions of the whole data
set of the repetition 1 runs versus the repetition 2 runs.

The linear trajectory [see Fig. 9(a)] was designed to verify the
laboratory calibration in [36] for field conditions. The vehicle
initially dived to target depth and then performed the first of
two linear “tracks.” At a predefined length, the vehicle surfaced,
performed a maneuver to reorient back toward the initial starting
direction, dived, and performed the second of the linear tracks.
Only the parts of the trajectory that were at the target depth
were used in the data set. On each linear track, SPARUS II was
moving with a different target velocity. In total, four pairs of
different target velocities were tested (see Table III). Due to an
error in setting the target depth, the second repetitions for the
target velocity pairs of 0.4–0.5 m/s and 0.75–1.0 m/s in setting
B were conducted at a target depth of 4 m.

The lawn mower [see Fig. 9(b)] and loop [see Fig. 9(c)] tra-
jectories were used to assess the robustness of the DPSS during
turns and check its performance for standard trajectories com-
monly used in underwater robotics. For those trajectories, we
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Fig. 8. Location of the test site for field trials: harbor area of Sant Feliu de Guíxols (Catalonia, Spain). WGS84 (km)—41.7775° N, 3.0325° E.

TABLE II
TEST SETTINGS FOR FIELD TRIALS INCLUDING WEATHER CONDITIONS, DEPTH, AND TEST SITE

Note: Wave heights for settings A and B were expected to be lower than stated, due to the shielding effect of the harbor walls (temperature and wave heights according to environmental
monitoring of the Spanish Government—http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx).

Fig. 9. Trajectories used during field trials (the segments at which the velocities were measured are colored in red). (a) Linear—After receiving a stable GPS
signal at the starting point, the robot dived to its target depth (1) and started moving forward along the first linear track with the first target velocity (2). Once
the first endpoint was reached, the robot stopped and surfaced (3). After the robot received a stable GPS signal and the dead reckoning position estimation was
corrected, the AUV moved to the second starting point (4) and dived to target depth (5). Once target depth was reached the robot moved forward on the second
linear track with the second target velocity (6), the robot stopped upon reaching the second endpoint and surfaced (7). The run was completed once the robot got a
stable GPS signal at the final endpoint. (b) Lawn mower and (c) loop—After receiving a stable GPS signal at the starting point, the robot dived to its target depth
(1) and started to follow a lawn mower or loop trajectory and maintained a constant velocity (2). When the endpoint was reached, the robot surfaced and got the
final GPS signal (3).
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TABLE III
PAIRS OF TARGET VELOCITIES FOR THE LINEAR TRAJECTORY AND THEIR TARGET DEPTH DEPENDING ON REPETITION (“REP”) AND SETTING

Note: Two deviations in target depth for setting B are marked in bold font.

chose two target velocities, 0.5 m/s and 1.0 m/s, which are on
the lower bound of the operational speeds for torpedo-shaped
AUVs [44]. These velocities were chosen to test the lower lim-
its of the DPSS since the quality of the velocity estimation was
expected to increase with velocity. After getting a stable GPS
signal at its starting position, SPARUS II executed a vertical dive
to the target depth and then performed either a lawn mower or
loop trajectory with constant velocity. After SPARUS II reached
the final location, it surfaced and waited for a stable GPS signal.
A complete description of the test parameters for all trajectories
can be found in Appendix A.

B. Data Analysis

The current design of the DPSS estimates velocity in surge
direction up to a minimum depth of 0.5 m in the absence of sig-
nificant deviations in depth. Additionally, waves had distorting
effects on the velocity estimation close to the surface. We thus
restricted the performance comparison of DVL and DPSS to ve-
locity estimation in surge direction at target depth (red segments
in Fig. 9). For the work described in this paper, the surge velocity
estimation was sufficient, because the sway velocity was close
to 0 m/s for all tests (see Appendix B).

During the trials, the raw data from all sensors, in addition
to the state estimates produced by the EKF, were recorded au-
tomatically within the ROS framework. The raw pressure mea-
surements of the differential pressure sensors were sampled at
a rate of 100 Hz and averaged over 20 samples to achieve op-
timum accuracy. Thus, the DPSS provided velocity estimations
with an effective sampling rate of 5 Hz, which was comparable
to the sampling rate of the DVL (6 Hz).

An important factor regarding the DPSS velocity calculation
is the volume of air inside the internal tubes of the housing.
This volume was expected to depend on the angle at which the
sensor is deployed in the water, the depth of the sensor, and
the temperature of the surrounding environment. Therefore, for
each deployment, different reference offsets Θ1 and Θ2 were
created for each pressure differential (Δphc). Thus, (11) must
be corrected for those offsets and becomes

v∞ = 4

√
2α (ϕ)

ρ2

(
(Δphc1 − Θ1)

2 + (Δphc2 − Θ2)
2
)

+ err err ∼ N
(
μ, σ2

)
. (13)

TABLE IV
OFFSETS USED TO COMPENSATE THE VOLUME CHANGE OF AIR IN THE DPSS

TUBING FOR DIFFERENT DEPLOYMENTS

A single pair of offsets was computed offline for each day
of deployment. As the air in the tubing is compressible, the
offsets are depth dependent and an additional pair of offsets had
to be computed for the two trials in test setting B, which were
conducted at a target depth of 4 m. The offsets were calculated
by three independent regression fits taking the respective DVL
BL velocities at target depth as a reference and are shown in
Table IV.

As it is very difficult to establish a reliable ground truth for
velocity estimation under field conditions, we restricted the anal-
ysis of the DPSS velocity estimation to a comparison between
DPSS and DVL. It is important to note that DVL in BL and
DPSS do not measure the same type of velocity. The DVL mea-
sures the velocity of the vehicle relative to the ground, whereas
the DPSS measures the vehicle’s velocity with respect to the
fluid stream. Thus, waves, currents, and other related distur-
bances were expected to have a stronger effect on the DPSS
velocity estimation. The DVL velocity estimation in WL pro-
vided a comparison with a similar sensing principle. Therefore,
both the DPSS velocity estimation and the DVL estimation in
WL in reference to the DVL BL are presented. For the follow-
ing comparisons, it is further important to consider that all tests
were conducted in conditions where environmental disturbances
could not be neglected. Those disturbances introduced attitude
dynamics to the AUV that affected both velocity sensors. In the
case of the DPSS, the hydrostatic correction algorithm (9) was
used to partially compensate for those dynamics. For the veloc-
ity estimation of the DVL, a compensation of attitude dynamics
as suggested by Liu et al. [45] was not considered. We thus did
expect a decrease in accuracy for both sensors compared to their
nominal values of 0.3% of measured velocity and 0.012 m/s.

The general performances of velocity estimations were com-
pared using the correlation between the DPSS and DVL data.
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Fig. 10. DPSS velocity estimation with (red) and without (blue) hydrostatic compensation. Further shown are pitch and roll estimates of the AUV (lower part).
The DVL BL velocity estimation is given in gray for comparison. The dashed lines mark the beginning and end of the movement of SPARUS II at target depth. The
movements of the vehicle toward/on the surface are irrelevant for the analysis and are not shown. The light shaded regions highlight intervals where the hydrostatic
compensation had a high impact.

Assuming the velocity estimations of DPSS and DVL to be
equal, we defined a fit of vDVLx

= vDPSSx
and evaluated it with

the coefficient of determination R2. Furthermore, the RMSE be-
tween DPSS and DVL was used to compare both velocity estima-
tions. In the context of this paper, and due to the environmental
disturbances, the RMSE should be considered as a difference
between the two devices rather than an absolute error from a de-
vice to a ground truth. To reduce the effect of those influences,
the RMSEs are computed based on the filtered velocity estima-
tions produced by the EKF of SPARUS II [42]. The dynamic
environment affecting DVL and DPSS, the early development
stage of a “field-ready” DPSS, opposed to the well-established
DVL, and the DPSS’s intended application as a supplement to
existing technologies or as a solution in situations where the
use of other velocity sensors is not feasible, will be considered
during the performance evaluation.

To assess the repeatability of the experiments, we divided the
RMSEs of DPSS and DVL velocity estimates for all trials into
two groups based on repetitions. We used the Student’s t-test
to check the null hypothesis stating that there is no significant
difference of RMSEs between the two groups, based on a cutoff
value for statistical significance of 0.05. A direct comparison of
the DPSS time series of two runs with identical parameters was
not feasible due to the highly dynamic environment. However,
since DPSS and DVL were affected by the same environmen-
tal disturbances, the RMSEs between their velocity estimations
were expected to be comparable. The RMSEs between DPSS
and DVL were further used in the linear trajectory trials to

validate the laboratory calibration of [36] for field conditions
and to check the performance of the DPSS across a wide range
of velocities (from 0.2 to 2 m/s). It is important to note that those
velocities represented the target velocities which were, if at all,
only reached at the end of a run. The deviations from the desired
velocities were caused by the limited space for the linear trajec-
tory trials and by inherent mechanisms of the controller provided
by the AUV. The RMSEs in the results section are therefore
presented in relation to the velocity range the AUV achieved
during each test.

The RMSEs were further computed for the lawn mower and
loop trajectories to assess the velocity estimation for common
AUV trajectories with a special focus on turns.

V. RESULTS AND DISCUSSION

A. General Performance of DPSS Velocity Estimation

The effect of the hydrostatic correction algorithm [see Fig. 2
and (10)] in relation to the pitch and roll of the robot is shown
in Fig. 10. The shaded regions indicate intervals where the cor-
rection had the highest impact on the velocity estimation.

The hydrostatic compensation effectively reduced the peaks,
caused by pitch and roll deviations due to a simultaneous heave
and surge motion, at the start of the trials. This could be espe-
cially beneficial for the accuracy of DPSS-aided position estima-
tion. Fig. 10 also illustrates the presence of permanent pitch and
roll deviations during some of the trials, which could have been
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Fig. 11. Logarithmic density plot showing the correlation of surge velocity estimates of the DVL in BL and DPSS. (a) Correlation plot for all experiments. (b)–(d)
Correlation plots for settings A–C. For all plots, R2 value, based on an assumed fit of vDVL = vDPSS (red dotted line), is provided to assess the quality of the
correlation.

caused by the surface buoy attached to SPARUS II or small inac-
curacies of the robot’s trim. The compensation of these perma-
nent deviations caused the DPSS estimates to differ more from
the DVL reference for the first linear track, but for the second
linear track, the difference between the estimates decreased. As
the DVL was also susceptible to roll and pitch disturbances [45],
a definitive conclusion regarding the performance of the correc-
tion algorithm, beyond the peak reduction, cannot be drawn.
This highlights the need for further investigation on the effects
of roll and pitch deviations on the DPSS velocity estimation to
improve the correction algorithm and expand it beyond hydro-
static effects.

Fig. 11 shows a logarithmic density plot of the correlation
between velocity estimations of DPSS and DVL with associated
R2 values. While Fig. 11(a) shows the correlation for all runs,
Fig. 11(b)–(d) visualizes the individual velocity correlations for
the three test settings.

R2 value of 0.95 for the data set of all runs shows a high corre-
lation between velocity estimations of DVL and DPSS. There-
fore, it is possible to assume that the DPSS had comparable
average performance. The variation in correlation is dependent
on the target velocity, which can be seen in the higher variability
of the correlation for smaller target velocities in all plots. This

Fig. 12. Distribution of RMSEs between velocity estimations of the DPSS and
the DVL in BL for all experiments grouped by repetitions. Further shown are
the p-value and t-statistic for the Student’s t-test assuming the null hypothesis
that no significant difference exists between the two groups.

was expected due to the quadratic relationship between pressure
and velocity. Pressure sensors need to have high sensitivities to
accurately measure at low velocities. At the same time, the sen-
sitivity to environmental disturbances is concurrently increased,
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Fig. 13. Variability plot of velocity estimations in three different environmental settings for (a) DPSS and (b) DVL in BL.

causing a higher variability in the estimations of the DPSS for
low velocities.

Fig. 11 further shows the general effect of the environmental
conditions for different settings. The density distributions for
settings A and B [see Fig. 11(b) and (c)] are equally narrow,
whereas the distribution for setting C [see Fig. 11(d)] is wider.
This is also reflected in R2 values, which is 0.96 for settings A
and B and 0.92 for setting C. First, this suggests that the environ-
mental influences between settings A and B (difference in depth
of 1 m and smaller surface waves) were negligible regarding the
correlation between velocity estimations. Second, it shows that
there were stronger environmental influences in the open sea. In
setting C, both sensors have a higher variance in their velocity es-
timation, possibly due to stronger sea currents and wave actions
affecting the movement of the robot. However, R2 value remains
above 0.9, showing that the DPSS mean velocity estimation is
robust enough to be used in dynamic field conditions.

Fig. 12 shows the mean and distribution of RMSEs grouped
by repetitions. The test statistic and p-value of the Student’s t-test
are shown as well. The p-value of 0.08 supports the null hypoth-
esis that no significant difference exists between the RMSEs for
both repetition groups. This indicates that a certain repeatability
of the results exists for comparable test conditions.

B. Linear Trajectories

The dynamic nature of the testing environment required an
analysis of the variability of the velocity estimations of DVL
and DPSS to provide a better basis for the comparison of both
sensors and the evaluation of the DPSS’s performance. Fig. 13
shows the variability of both velocity sensors for the range of
tested velocities and indicates that the variability was similar for

both sensors. It is also clearly shown that the increased environ-
mental dynamics in setting C caused a higher variability in the
velocity estimation of both sensors. The observed variability in-
dicated, while being only a rough estimate of the true variance,
that the dynamic environment decreased the ideal accuracies of
both DVL [37] and DPSS [36]. This was considered during the
performance evaluation of the DPSS velocity estimation.

Fig. 14(a) visualizes the RMSEs between DPSS and DVL
BL velocity estimations for the linear trajectories grouped by
setting and repetition. The RMSEs are generally higher for
low velocities and decrease with increasing velocity in all
settings.

For velocities greater than 1 m/s, a reasonable operation range
for torpedo-shaped AUVs, the RMSEs for settings A and B lie
below 0.04 m/s and decrease toward 0.02 m/s for higher veloci-
ties, approaching the nominal DPSS accuracy of 0.012 m/s. The
RMSEs for setting C lie below 0.06 m/s for velocities greater
than 0.8 m/s. Given the dynamic environment, the early develop-
ment stage of the DPSS and envisioned applications for vehicles
are unable to equip other velocity aiding technologies; those re-
sults do encourage further development of the technology. The
difference between repetitions was generally low, but a signif-
icant deviation can be observed for velocities between 0.6 and
1 m/s in setting A. A possible explanation for those differences
could be the calculation of the offsets. Only one pair of offsets
for each day of deployment was calculated. Therefore, changes
in the air volume inside the DPSS’s connection tubes due to
repeated surfacing and submerging between runs could not be
fully corrected. This hypothesis is supported by the big differ-
ence of the RMSEs for both replicates of setting B at velocities
between 0.3 and 0.6 m/s. As explained in Section IV-B, a new
pair of offsets was calculated for the second replicate. Those
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Fig. 14. RMSEs of velocity estimations for (a) DPSS versus DVL in BL and (b) DVL in BL versus DVL in WL at different target velocities. Repetitions are
distinguished by color and settings are distinguished by line type.

new offsets corrected for most of the mentioned variability sig-
nificantly improved the velocity estimation. This supports the
suggestion in [36] that computing new offsets by an autocali-
bration process before the start of each run could enhance the
DPSS velocity estimation, especially for lower velocities. Such
an autocalibration could be achieved by commanding the vehi-
cle to wait at its starting position at target depth and letting the
DPSS sample for a specified amount of time at zero velocity.
Aside from the expected improvement in accuracy, the autocal-
ibration procedure would make the offset calculation fully in-
dependent from any external sensors. Future tests utilizing this
autocalibration procedure are necessary to fully verify the posi-
tive effect on the accuracy of the velocity estimation. However,
such a procedure necessitates a vehicle capable of hovering,
which limits the applicability of the calibration. In the future,
we will try to establish a model relating external factors, such
as depth and temperature, to the offset based on first principles
and experimental data. With such a model, the autocalibration
would be only necessary at the start of a new deployment on the
surface.

Furthermore, Fig. 14(a) illustrates that the differences in ve-
locity estimation decreased with increasing target velocity. This
indicates that environmental disturbances ,such as turbulence
and currents, had a larger effect on the pressure signals for lower
velocities, which can be explained by the quadratic relationship
between pressure and velocity (12). Ocean current disturbances,

for instance, could be compensated by using an ocean current
observer or a complementary velocity sensor with different error
characteristics [46], [47]. Fig. 14(b) shows the RMSEs between
the DVL velocity estimates in BL and WL. The error increases
with increasing velocity from below 0.05 to around 0.25 m/s.
There is no clear distinction between settings. Compared to the
DPSS, the DVL WL estimation seems to show better perfor-
mance for low velocities up to 0.6 m/s. However, for velocities
greater than 0.6 m/s, the WL error steadily increases, whereas
the DPSS error decreases, resulting in a significant difference
for the highest velocities. This shows the potential advantage of
DPSS velocity estimation in situations where the DVL cannot
utilize the BL mode.

C. Lawn Mower and Loop Trajectories

The comparison between DVL in BL and DPSS for the lawn
mower and loop trajectories across all settings (see Fig. 15)
shows satisfying results as the RMSEs are well below or equal
to their counterparts in the linear experiments. The RMSEs are
similar for settings A and B, mostly in a range between 0.03 and
0.02 m/s, whereas the RMSEs for setting C are between 0.058
and 0.04 m/s. The improvement compared to the linear experi-
ments could be caused by a longer period of constant velocity.
The error between DVL in BL and WL shown in the same figure
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Fig. 15. RMSEs for velocity estimations of DPSS versus DVL in BL and BL versus DVL in WL for (a) lawn mower and (b) loop trajectories at target velocities
of 0.5 and 1.0 m/s in settings A, B, and C.

exceeds the error for the DPSS in all cases. The difference is es-
pecially apparent for the target velocity of 1 m/s, which indicates
that the DPSS velocity estimation in the tested conditions seems
to be superior to the DVL in WL. Furthermore, the results show
that the quality of DPSS velocity estimation does not degrade
for longer distances. However, experiments on bigger scales will
be necessary to characterize the long-term performance of the
DPSS. The results further indicate that the DPSS is capable of
reliable surge velocity estimation for common mission trajecto-
ries of AUVs at the lower end of typical target velocities. The
estimation for the higher target velocity of 1 m/s seems to be
generally better. This suggests, together with the results of the
linear trajectory experiments, that a further increase in accuracy
and robustness can be expected for typical cruising speeds of
AUVs around 2 m/s.

A second incentive for the lawn mower and loop trajectory
experiments was to test the robustness of the velocity estimation
during turns. Fig. 16 shows one example for each tested trajec-
tory and indicates the regions of turning. The DPSS velocity

estimations closely follow the DVL estimations in both cases
and no significant deviations during the turning events could be
observed.

Furthermore, peaks toward a lower velocity in the DVL ve-
locity estimation during the second turn and after the third turn
in Fig. 16(a) highlight a general limitation of the DVL veloc-
ity estimation in BL. To produce reliable velocity estimates,
the DVL requires a smooth reference surface. Fig. 17 illustrates
this by showing that the readings of the DVL are severely cor-
rupted when SPARUS II is moving close to the harbor wall
(at approximately 90 s) where the bottom gets rougher. The
DPSS does not have such problems and exhibits a superior ac-
curacy compared to the velocity measurements of the DVL in
WL. The DPSS could, therefore, be used as a complementary
sensor for AUVs equipped with a DVL, which need to move
through highly unstructured or featureless areas. A combination
of DVL and DPSS could be further used to increase the robust-
ness of autonomous navigation against ocean currents. As nav-
igation based on DVL or DPSS input relies on dead reckoning,
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Fig. 16. Two examples of EKF velocity estimates (left) and EKF position estimates (right) based on BL DVL and DPSS data, respectively, for (a) lawn mower
trajectory and (b) loop trajectory. The black dashed line indicating the northing position of the AUV illustrates the turning points of the curved trajectories.

Fig. 17. Example of the raw velocity readings for DPSS and DVL in BL for
a lawn mower trajectory. The robot got close to the harbor wall and thus moved
over an unstructured and nonsmooth ground at around 90 s.

estimation errors are unbounded in both cases. Low-cost and
small-package navigation solutions with bounded error esti-
mates are the subject of recent work [48], [49]. A combination

of the DPSS with such solutions could lead to an accurate self-
sustainable navigation suite completely independent from large
and costly sensors.

VI. SUMMARY AND CONCLUSION

In this paper, we present the DPSS for underwater vehicle ve-
locity estimation as an extension of previous work [36] by com-
bining velocity estimation based on differential pressure with
IMU-based orientation corrections. We integrated the DPSS into
the SPARUS II AUV and conducted the first field tests of a sen-
sor using differential pressure for velocity estimation on an au-
tonomous underwater robot. The field tests validated the surge
velocity estimation of the DPSS against the state-of-the-art tech-
nology (DVL). For a range of target velocities between 0.2 and
2 m/s, SPARUS II followed three different trajectories in three
different test settings, and the surge velocity estimations of the
DPSS and a DVL in BL and WL were compared. The quality of
the DPSS velocity estimations increased with increasing veloc-
ity and subsequently decreasing impact of environmental influ-
ences the pressure readings, whereas the quality of the DVL WL
estimation decreased with increasing velocity. The difference
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between DPSS and DVL in BL was further dependent on the
strength of the environmental dynamics. For linear trajectories
at higher velocities (>1 m/s), the differences between the veloc-
ity estimates did not exceed 0.032 m/s in less dynamic environ-
ments and 0.063 m/s in highly dynamic environments. Results
for lawn mower and loop trajectories were even more encourag-
ing. Here, the differences for the target velocity of 0.5 m/s did
not exceed 0.039 m/s in less dynamic environments and 0.058
m/s in highly dynamic environments. This contrasts the results
of the linear trajectory experiments and indicates the potential of
the DPSS to reliably estimate lower velocities down to 0.5 m/s
as well. Furthermore, the difference between DVLs in BL and
WL always exceeded the differences between DVLs in BL and
DPSS, indicating that the DPSS surge velocity estimation was
superior for the DVL WL measurements for the given test con-
ditions. Deviations within the linear trajectory experiments and
the differences to the lawn mower and loop trajectories highlight
the need for an improved offset calculation. Identification and
quantitative analysis of the influencing factors on the offset will
be a future research topic. This research could lead to an auto-
calibration procedure for the DPSS, utilizing measurements at
zero velocity and a model relating the volume of air inside the
tubing to external conditions, such as pressure and temperature.
Such a procedure combined with further disturbance correction
methods, such as a hydrodynamic correction of the pressure
readings, will be implemented and tested in the future work to
increase the accuracy of the DPSS, especially for lower veloc-
ities. A comparison of the DPSS performance with a propeller
turns to speed model will be another possible focus of the future
research.

Aside from the validation of the DPSS in field conditions,
several additional lessons have been learned during the field
tests.

1) Both DPSS and DVL were similarly affected by environ-
mental disturbances, illustrated by the differences of test
settings A and B compared to setting C. This highlights
the need for a reliable test setup with a suitable ground
truth for velocity estimation in field conditions.

2) The DPSS showed a robust performance even in the
open sea setting with higher environmental disturbances.
However, for low velocities, the impact of disturbances
was higher for the DPSS compared to that of the DVL.
Future investigations in those low velocity regions are
necessary.

3) The hydrostatic correction algorithm successfully con-
tributed to a more accurate velocity estimation of the
DPSS, especially at the beginning of trials. However, fur-
ther investigations regarding the hydrodynamic effects of
roll and pitch distortions are necessary.

4) The results with the two trials conducted at a differ-
ent target depth suggest that an autocalibration pro-
cedure to compute individual offsets before each trial
would significantly enhance the velocity estimation of the
DPSS.

5) The DPSS has an improved performance over the DVL in
BL in terrains with rough or unstructured surfaces.

TABLE V
PARAMETER SETUP FOR LINEAR TRACK EXPERIMENTS

Note: ∗Depth in setting A second repetition for 0.4 and 0.5 m/s and 0.75 and 1 m/s was 4
m instead of 3 m.
∗∗Distance in setting A second repetition for 1.5 and 2 m/s was 60 m instead of 70 m.

TABLE VI
PARAMETER SETUP FOR LAWN MOWER EXPERIMENTS

TABLE VII
PARAMETER SETUP FOR LOOP EXPERIMENTS

Considering all this, we conclude that the successful field tests
of the DPSS prototype mark an important step in developing a
useful sensor for a variety of underwater vehicles. Due to its
low energy requirements, a power consumption of 243.5 mW,
the DPSS could be used for vehicles on long-term deployments,
such as underwater gliders or long-range AUVs. Further, low-
cost and/or small AUVs, which do not have the budget or space
to carry sophisticated sensor systems, could also benefit from a
small and inexpensive velocity sensor to improve the accuracy
of their navigation. The DPSS has further potential as a viable
complement for DVL-aided navigation systems by increasing
redundancy and enabling more precise navigation during mid-
water column travels or missions with highly unstructured en-
vironments. In addition to the suggested topics in the learned
lessons, the velocity estimation for sway and heave and the in-
fluence of both on the surge velocity estimation is a topic for the
future research.

APPENDIX A
EXPERIMENTAL SETUP

See Tables V–VII.
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APPENDIX B
EKF VELOCITIES

The following figures show EKF estimates for surge velocity from the DVL in BL (DVLx BL) and DVL in WL (DVLx WL)
and the DPSS. Additionally, the EKF estimates for sway velocity from the DVL in BL (DVLy) are shown

Setting A

Linear Trajectories
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Lawn Mower Trajectories
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Loop Trajectories
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Setting B

Linear Trajectories
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Lawn Mower Trajectories
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Loop Trajectories
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Setting C

Linear Trajectories
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Lawn Mower Trajectories
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Loop Trajectories
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Nonlinear Orientation Controller for a Compliant Robotic Fish Based
on Asymmetric Actuation

Christian Meurer1, Ashutosh Simha2, Ülle Kotta2 and Maarja Kruusmaa1

Abstract— Compliant fish-like robots are being developed as
efficient and dependable underwater observation platforms with
low impact on the observed environment. Orientation control
is an essential building block to achieve autonomy for those
vehicles. So far, the major focus has been on rigid tails or
on flexible tails with a high degree of actuation. We present
a novel control strategy for an underactuated robotic fish
with a flexible tail optimized for cruising. The basis for our
approach is the generation of asymmetric velocity profiles of
the robot’s tail beats. To achieve such velocity profiles, the usual
sinusoidal tail actuation is replaced with skewed triangle waves.
We provide a simple formulation for such waves, where their
skew is dependent on only one variable which we define as
skew factor. Furthermore, a nonlinear control law is derived
to achieve the desired turning motions. We implement the
controller on a compliant fish-like robot with a simple actuation
mechanism. The control scheme is experimentally validated,
and its robustness is tested in field trials.

I. INTRODUCTION

Honed by millions of years of evolution, fish are very
well adapted to underwater locomotion. They show superior
maneuverability and efficiency compared to conventional en-
gineered systems [1]. Exploiting those characteristics has the
potential to lead to better propulsion mechanisms for under-
water vehicles used for applications such as oceanographic
surveys or monitoring of underwater facilities. Furthermore,
fish inspired robots can be used to study fish locomotion
in a controlled environment [2], provide platforms to study
robot-animal interaction [3], [4] and enable observations of
marine life with minimal disturbance [5].

These reasons have led to the development of an in-
creasing number of fish robots [6], [7], [8], [9], [10]. A
wide variety of propulsion mechanisms has been studied
and adapted. Presently, most of the fish-like robots are
based on body and/or caudal fin (BCF) locomotion, due to
its superiority regarding thrust production and acceleration
[11]. The kinematics of the compliant tail of real fish are
mostly mimicked by utilizing discrete and rigid mechanism
[12], [13], [14], [15]. While it is easier to formulate the
kinematics and dynamics of those mechanisms, they add
to the mechanical complexity, size and energy consumption
of the robotic system. To circumvent those limitations, fish
robots with compliant tails have been suggested and designed
[16], [17], [18], [19]. Compliant structures show the potential

1Centre for Biorobotics, Department of Computer Systems, Tallinn Uni-
versity of Technology, 12616 Tallinn, Estonia christian.meurer,
maarja.kruusmaa@taltech.ee

2Department of Software Science, Tallinn University of Tech-
nology, 12616 Tallinn, Estonia ashutosh.iisc@gmail.com;
kotta@cc.ioc.ee

Fig. 1. Fish-like robot with compliant tail: The FILOSE robot represents
a class of underactuated fish-like robots with compliant tails. If such robots
are optimized for mechanical simplicity and cruising, orientation control
becomes a challenging problem.

to increase the locomotion efficiency of fish-like robots [20].
One of the first robots to use a compliant structure was
developed within the FILOSE project [21] and is shown in
Fig. 1. The compliant tail of the FILOSE robot was designed
to mimic the kinematics of a rainbow trout by exploiting
passive material and shape properties. This led to a simple
and very robust mechanical actuation mechanism. Only a
minimal set of control parameters is necessary to facilitate
complex kinematics. Furthermore, it has been shown that
a compliant tail design can increase motion efficiency by
interacting with the ambient flow [22].

For most of their envisioned applications fish-like robot
would benefit from autonomous capabilities. An essential
part of every autonomy framework is the orientation control
of the robot. The main focus of biologists [23], [24] and
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roboticists alike has been centered on rapid maneuvers,
which are facilitated by large tail bending angles [25], [26],
[27], [10]. Hirata et al. [28] present three distinct turning
modes which either use a tail offset for steady turns or
frozen tail deflections for rapid turns. Yu et al. [29] generate
turning maneuvers based on step functions which influence
the lateral excursion of the robotic tail. However, little
attention has been given to more economic steady turns,
which could play an important role during inspection and
observation tasks of fish robots. Hu et al. [30] and Tan et
al. [31] focus on steady turns by adding an offset to the
tail oscillation. All presented orientation control strategies
require rather large bending angles of the tails and/or refined
control of distinct tail sections. For robots with simple and
robust actuation mechanisms optimized for cruising, such
orientation control strategies are difficult to implement. The
FILOSE robot is an example of such a class of vehicles. It
was optimized for simplicity and straight cruising and is not
capable of producing large tail deflections. Furthermore, the
compliant passive tail does not allow on-line manipulation
of specific parts. The FILOSE robot’s capability to sense
flow enabled the successful implementation of flow relative
control strategies [32], [33], [34]. A problem remains for
applications in conditions where flow is absent and new
control strategies need to be developed within the boundaries
of the specific actuation of this robot type.

Gray [35] and Webb et al. [36] suggest that some fish use
asymmetric tail motions for turning maneuvers, where the
tail beat in the direction of turning seems to be accelerated.
In this paper we show that this strategy can be utilized
to implement steady turning maneuvers for underactuated
compliant fish robots. We define and implement a novel
skewed waveform as actuator input to produce asymmetric
tail motions. Furthermore, we use a nonlinear PD controller
to control the orientation of the fish-like robot. We will use
the FILOSE robot as a platform to validate this new approach
of orientation control in field tests. However, the proposed
approach extends to other fish-like robot platforms discussed.

II. THE FILOSE ROBOT

The robot consists of a rigid head and a compliant silicon
tail with a rigid fin emulating the morphology of a rainbow
trout (Oncorhynchus mykiss). The tail is actuated by a single
servo motor (Futaba BLS152 brushless servo) which is con-
nected to an actuation plate embedded in the silicon tail. Two
steel wires transform the rotation of the motor into a bending
motion of the tail (Fig. 2b) The rigid head contains all on-
board electronics including an Arduino Mini micro-controller
and an BNO055 9-axis absolute orientation sensor (Bosch
Sensortec). The overall size of the robot amounts to 500 mm
x 8.5 mm x 15.6 mm (L x H x W) with a mass of 3.04 kg.
The FILOSE robot is connected to a float which carries a
battery pack and a bluetooth module (HC-05 Guangzhou HC
Information Technology) for wireless communication. The
disturbance on the robot’s motion caused by the cable in
the previous configuration is thus removed. Fig. 2a shows
the robot with the attached float. Data processing and higher

Fig. 2. Specifics of the FILOSE robot: a) Side view: 1 - rigid head of
the robot; 2 - compliant silicon tail; 3 - rigid fin; 4 - Styrofoam float; 5 -
splash proof box containing battery pack and bluetooth module.
b) CAD drawing of electronics and actuation mechanism: 6 - microcontroller
and orientation sensor; 7 - servomotor; 8 - steel cables; 9 - actuation plate

level control are implemented in LabView on an external
computer.

The motor actuates the compliant tail based on a sinusoidal
input ϕ of the form:

ϕ(t, f, A, ϕ0) = A ∗ sin (2πft) + ϕ0 (1)

where A is the amplitude of the motor’s oscillation, f is
the oscillation frequency, t is time and ϕ0 is the oscillation
offset. The surge velocity of the robot can be controlled by
altering either amplitude or frequency. Salumäe et al. [34]
identified that the FILOSE robot is most efficient with an
actuation frequency of 2 Hz, which was subsequently used
for all experiments. In conditions with high flow speeds, a
non-zero oscillation offset is sufficient to induce turning.
However, in conditions lacking high flow speeds such an
actuation scheme produces very small turning rates and is
therefore ineffective.

III. CONTROL FRAMEWORK

We propose an asymmetric periodic actuation signal for
the motor torque which controls the tail motion, such that the
rise and fall times are distinct. Such a waveform is motivated
by two factors:

4689

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on July 03,2020 at 11:04:04 UTC from IEEE Xplore.  Restrictions apply. 



• Faster motion of the tail in one lateral direction over
the other creates an imbalance in the drag-induced
torque acting on the tail in each wave period, therefore
generating a non-zero net average torque.

• The tail motion can also be regarded as internal torque
actuation and therefore the anterior rigid head exhibits
a recoil motion due to momentum conservation. This
recoil is also asymmetric due to the asymmetric internal
actuation.

The net effect is that the FILOSE robot turns in the direction
of the faster tailbeat while traveling forward. To create the
asymmetric tail actuation, the existing sinusoidal motor input
(1) had to be replaced by an asymmetric waveform. In this
section we will describe the generation of this waveform
and its effect on the turning behavior of the FILOSE robot.
Furthermore, we will derive a nonlinear feedback controller
which changes the input waveform based on input from the
robot’s orientation sensor.

A. Waveform Generation

The required waveform is derived from a standard triangle
wave. We introduce a skew factor which tilts the triangle
wave either clockwise or counterclockwise. This skew causes
the slope of one side of the triangle wave to increase
while the counterpart decreases, which is proportional to the
actuation velocity of the motor during both halves of the tail
beat. We define a piecewise continuous function ϕ(t, f, A, τ)
as new input waveform and we introduce the skew parameter
τ ∈ IR, 0.1 ≤ τ ≤ 0.9.

ϕ(t, f, A, τ) =



0 t = 0
2AfΦ(t)

τ 0 ≤ Φ(t) < τ
2T

A(1−2fΦ(t))
1−τ

τ
2T ≤ Φ(t) < (1− τ

2 )T

A(2fΦ(t)−2)
τ (1− τ

2 )T ≤ Φ(t) ≤ T
(2)

T = f−1 is the wave period of the function and we define
Φ(t) = tmodT as modulo operator for time. For a τ of
0.5 a triangle wave is generated without skew, which should
induce no turning action. The upper and lower limits of τ
also define the limits of the corresponding turning rate. Two
8th order Savitzky-Golay filters are used to smooth the output
signal. Fig. 3 compares the two limit cases for skew with a
standard sine wave to illustrate the difference in the actuation
patterns.

B. Orientation Controller

The dynamics of the planar orientation Ψ of the robot is
given by:

JΨ̈ = −kdΨ̇ + C(Ψ, Ψ̇, t) + U, (3)

where J is the inertia about the vertical axis, U is a
control torque, kd is a damping factor for the drag which
is assumed to be linear and C(Ψ, Ψ̇, t) is a lumped quantity
denoting the Coriolis force and other external disturbances
and unmodeled dynamics, and is assumed to be a small or
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Fig. 3. Input waveforms for the motor of the FILOSE robot: All
functions are normalized and have a wave period T = 1s. The skewed
triangle waves are represented by the limit cases τ = 0.9 and τ = 0.1,
all other waveforms lie between these two cases. The standard sine wave
commonly used for actuation is shown as reference

negligible quantity (and is therefore ignored for the stability
analysis). The preceding two assumptions are valid at low
angular velocities. However, for a more accurate description
of the dynamics at different regimes, one needs to employ
the nonlinear models given in [37].

A feedback control law is designed for the skew factor
τ based on the empirically validated assumption that it is
related to the torque U as

τ = 0.5 + αU (4)

where α is an experimentally determined constant. The
control law is derived based on the nonlinear proportional-
derivative control strategy as described in [38]. A heading
angle error function is chosen (as in [39]) as

Θ(θ) = 2−
√

2(1 + cos(aθ)) (5)

where θ = Ψ − Ψd and a is a factor that determines the
tightness of the error. Its differential is obtained as

dΘ(θ) =
a sin(aθ)

2
√

2(1 + cos(aθ))
(6)

which is smooth and well defined as long as aθ 6= ±π Now
consider the Lyapunov function

V =
2

a
Θ(θ) +

α

2
(Jθ̇)2 (7)

Its derivative along the controlled trajectories of (3) with
C(θ, θ̇, t) = 0, for Ψd fixed is obtained as

V̇ =
2

a
dΘθ̇ + θ̇(U − kdθ̇) (8)

A control law for U is designed as

U = − 1

α

sin(aθ)√
2(1 + cos(aθ))

(9)
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The dynamics of V with the above control law is now
obtained as

V̇ = −kdθ̇2 (10)

We now use the LaSalle theorem [40] in the region aθ 6= ±π
to conclude that Θ asymptotically vanishes. The control law
for the skew factor τ is now designed after substituting (9)
in (4) after taking into account saturation effects as the skew
factor is limited within the region (τmax, τmin) = (0.9, 0.1).
We set:

τ =


0.4 ∗ sign(θ) + 0.5 |aθ| ≥ π/4

sin (aθ)√
2(1 + cos (aθ))

+ 0.5 |aθ| < π/4
(11)

Note that the above PD control law differs from the standard
one considered in [38], in order to avoid sluggish tracking
when aθ is close to ±π. Increasing the tightness factor
a increases the tracking rate (Fig. 4), at the cost of an
overshoot after reaching the desired orientation. Fig. 5 shows
the complete orientation control scheme.

Fig. 6. Field trials: The FILOSE robot was manually turned towards
its initial orientation (yawstart) and then released to reach it’s desired
orientation (yawdesired). A trial was finished when the orientation error
settled within a 2% error band or when the robot approach the edges of
the pond.

IV. EXPERIMENTAL SETUP

To validate the proposed asymmetric motor input and
nonlinear controller a series of experiments were conducted.
After initial tests in a small laboratory tank a sufficiently
large pond was chosen as a test site to evaluate the robust-
ness of the control scheme under field conditions (Fig. 6).
Due to interference between motor and magnetometer, the
orientation sensor was operated in ”IMU mode”, which uses
only accelerometer and gyroscope. To account for sensor
drift, the desired yaw was redefined for each trial and the
starting orientation was chosen such that the initial error
was comparable across trials. The setpoint for the controller
was defined around 110◦ away from the starting orientation.
The robot was manually kept at the starting position and
released upon the start of the actuation. The trials were
stopped when the orientation error had settled within the
2 % bound or the robot ran out of space for movement.
The frequency of the tail actuation was held constant at
2 Hz and the actuation amplitude was set to A = 30◦. This
experimental setup allowed to study the effectiveness of the
controller and to determine its step response for different
tightness factors. We use the standard metrics of rise time
(10 %), overshoot and settling time (2 %) to quantify the
controller performance. Due to time and resource constraints
only a limited number of trials was feasible. Ten trials were
conducted for a tightness factor of a = 20 and four trials for
a = 5. Where possible we provide the means and standard
deviations of the metrics introduced above.

V. RESULTS AND DISCUSSION

A distinct oscillation is superimposed on the general trend
of the yaw signal in all trials. This oscillation is caused
by the recoil of the anterior part of the robot due to the
tail motion. The yaw is subsequently time averaged over
one tail beat cycle to smooth the output signal. The default
orientation control based on an offset fails to approach the
desired yaw setpoint in a reasonable amount of time (Fig. 7a).
The trial with an offset ϕ0 = 10◦ had to be aborted after 19s
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Fig. 7. Results of the field trials: Shown are the time series of instantaneous (red) and averaged over one tail beat cycle (blue), yaw angle during
field tests for different parameter settings. For figures b) - d) the time series of the skew factor (grey) is shown to visualize the control action. In a) the
default orientation control with an oscillation offset of ϕ0 = 10◦ was used. In b) - d) the novel orientation control was applied with tightening factors of
a = 20, 5, 0.1 respectively. The controller performance is characterized by the rise time from 10% to 90% of the desired yaw, the overshoot in % of the
desired yaw and the settling time where the actual yaw stays within a 2% error band of the desired yaw.

because the robot was approaching the edge of the pond.
This result supports our assumption that the offset based
control is not effective for the FILOSE robot in the absence
of significant flow. In contrast to that, with our proposed
control scheme, the robot could reach the setpoint in all
tested configurations (Fig. 7b-d). While the setpoint was
always reached, the results clearly show the dependency of
the controller performance on the tightness factor. For a = 20
the desired setpoint is reached with a mean overshoot of
5.5 %± 2.6 % (Fig. 7b). The time series of the skew factor
illustrates the control action during the experiment. For a
tightness factor of twenty the controller approaches a bang-
bang control which is reflected in the overshoot. With a
smaller tightness factor the approach towards the setpoint

was expected to be less steep, reducing the amount of
overshoot. This is illustrated in Fig. 7c showing the controller
performance for a = 5. For a heading error smaller than
15◦, the skew factor decreases from its maximum at 0.9
towards 0.5. This causes the turning rate of the robot to
decrease, which results in a smoother approach towards the
setpoint with very little overshoot. However, this achieved
at the expense of a larger settling time, because for a = 5
the skew factor and subsequently the turning rate are small
when the heading approaches the setpoint. Furthermore, a
bigger steady state error is present which in several cases
kept the orientation error outside of the 2 % error bound. We
therefore, do not show any summarized values for settling
time with this parameter setting. A further decrease of the
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tightness factor causes the controller to deviate earlier from
the maximum skew which results in a slower turning motion.
Fig. 7d shows the extreme case for a skew factor of 0.1.
Here the controller has a very narrow operational range
between a skew factor of 0.6 and 0.5, which causes a
significantly slower turning motion. This is reflected by a
much higher rise time and the absence of any stabilization
of the yaw around the setpoint. Furthermore, the controller
was more susceptible to disturbances because the heading
error increases again after 24 s, possibly due to local currents
in the pond or wind induced disturbances acting on the
float. However, the robot was able to recover and continued
to turn towards the setpoint. Environmental influences also
seem to be reflected in the controller performances for larger
gain factors (Fig. 7b and c), because the turning rates are
varying for constant skew factors. The results suggest that the
controller is robust against such influences. Another limiting
factor for the turning rate was the necessary attachment of
the FILOSE robot to a float. Its NACA profile reduces drag in
surge direction but produces a large drag in lateral direction
which opposes the turning motion. It can be thus expected
that the control performance would be improved on a free
swimming robot.

VI. CONCLUSION AND FUTURE WORK

In this paper we present a novel approach to control
turning manoeuvres specifically suited, but not limited to,
compliant fish-like robots with tight constraints on tail bend-
ing. We modulated the velocity of single tail beats during a
tail beat cycle by replacing the conventional sinusoidal motor
input with skewed triangle waves. We control the steepness
of the skew with a single parameter, which we define as
skew factor. We further introduced a nonlinear PD controller
to adjust the skew factor based on information from an ori-
entation sensor. The controller showed convergence towards
the setpoint and robustness against disturbances in field
conditions. The results suggest that a gain factor of around
five provides a good controller performance with very little
overshoot and an acceptable rise time. The control scheme is
generic and can be applied to any fish-like robot using BCF
locomotion mechanism. With this new control approach we
enable the FILOSE robot to conduct reliable and steady turns
in conditions without flow. Additionally, the authors see this
work as a starting point to establish an asymmetric velocity
profile of tail beats as an additional and complementary tool
to existing turning manoeuvres. Future work will focus on
improving the proposed turning controller by optimizing the
waveforms used as motor input. The optimization should be
driven by an in-depth analysis of the fluid-body interactions
causing the turning moment, specifically taking into account
recent findings which suggest an increased importance of
local hydrodynamic drag for undulations [41]. Another op-
timization could be the combination of sinusoidal inputs
for straight swimming with asymmetric inputs for turning.
Additionally, the presented controller could be part of a path
following or trajectory tracking controller for the FILOSE
robot.

ACKNOWLEDGEMENTS

The authors would like to thank Juan Francisco Fuentes-
Perez for his help during field tests and Jaan Rebane for
invaluable assistance with the hardware of the robot. This
work was supported in parts by the Estonian Centre of Ex-
cellence in ICT Research project EXCITE (No. TAR16013)
and the Estonian Research Council grant (No. IUT-339)

REFERENCES

[1] D. Scaradozzi, G. Palmieri, D. Costa, and A. Pinelli, “BCF swimming
locomotion for autonomous underwater robots: a review and a novel
solution to improve control and efficiency,” Ocean Engineering, vol.
130, pp. 437–453, 2017.

[2] G. V. Lauder and P. G. Madden, “Fish locomotion: Kinematics
and hydrodynamics of flexible foil-like fins,” Experiments in Fluids,
vol. 43, no. 5, pp. 641–653, 2007.

[3] S. Marras and M. Porfiri, “Fish and robots swimming together:
attraction towards the robot demands biomimetic locomotion,” Journal
of The Royal Society Interface, vol. 9, no. 73, pp. 1856–1868, 2012.

[4] M. Kruusmaa, G. Rieucau, J. C. C. Montoya, R. Markna, and N. O.
Handegard, “Collective responses of a large mackerel school depend
on the size and speed of a robotic fish but not on tail motion,”
Bioinspiration and Biomimetics, vol. 11, no. 5, p. 056020, oct 2016.

[5] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Explo-
ration of underwater life with an acoustically controlled soft robotic
fish,” Science Robotics, vol. 3, no. 16, p. eaar3449, mar 2018.

[6] M. S. Triantafyllou and G. G. Triantafyllou, “An efficient swimming
machine,” Scientific American, vol. 272, no. 3, pp. 64–71, 1995.

[7] R. J. Mason and J. W. Burdick, “Construction and Modelling of a
Carangiform Robotic Fish,” in Experimental Robotics VI. London:
Springer London, 2000, pp. 235–242.

[8] X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic,
J. Rapai, B. Sabadus, and X. Zhou, “An autonomous robotic fish
for mobile sensing,” in IEEE International Conference on Intelligent
Robots and Systems. IEEE, oct 2006, pp. 5424–5429.

[9] V. Kopman and M. Porfiri, “Design, modeling, and characterization of
a miniature robotic-fish for research and education in biomimetics and
bioinspiration,” IEEE/ASME Transactions on Mechatronics, vol. 18,
no. 2, pp. 471–483, 2012.

[10] J. Yu, C. Zhang, and L. Liu, “Design and control of a single-motor-
actuated robotic fish capable of fast swimming and maneuverability,”
IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1711–
1719, 2016.

[11] J. E. Colgate and K. M. Lynch, “Mechanics and control of swimming:
A review,” IEEE Journal of Oceanic Engineering, vol. 29, no. 3, pp.
660–673, 2004.

[12] J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic
robotic fish and its control algorithm,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 4, pp. 1798–
1810, 2004.

[13] J. Liu and H. Hu, “Biological Inspiration: From Carangiform Fish to
Multi-Joint Robotic Fish,” Journal of Bionic Engineering, vol. 7, no. 1,
pp. 35–48, 2010.

[14] R. J. Clapham and H. Hu, “ISplash-I: High performance swimming
motion of a carangiform robotic fish with full-body coordination,”
in Proceedings - IEEE International Conference on Robotics and
Automation. IEEE, may 2014, pp. 322–327.

[15] L. Li, C. Wang, and G. Xie, “Modeling of a carangiform-like robotic
fish for both forward and backward swimming: Based on the fixed
point,” in Proceedings - IEEE International Conference on Robotics
and Automation. IEEE, may 2014, pp. 800–805.

[16] P. Valdivia y Alvarado, “Design of biomimetic compliant devices for
locomotion in liquid environments,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2007.

[17] B. P. Epps, P. Valdivia Y Alvarado, K. Youcef-Toumi, and A. H.
Techet, “Swimming performance of a biomimetic compliant fish-like
robot,” Experiments in Fluids, vol. 47, no. 6, pp. 927–939, 2009.
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1. INTRODUCTION

Flatness property provides a natural way of controlling
dynamical systems, since a feedforward controller can be
easily constructed based on the reference trajectory of
the flat output. However, in general, one must assume
that the system does not depend on unknown inputs
(disturbances) and is described by an exact model. These
are very restrictive assumptions for practical applications.
Most papers (see, for example, Chung et al. (2007); Al-
louache et al. (2011); Menhour et al. (2014); Bröcker and
Herrmann (2017)) combine the feedforward controller with
other approaches, such as PID control or pole placement,
to guarantee stability or tracking. In this paper a different,
novel approach is described for flatness-based control.

Event-based control is a control method that closes the
feedback loop only if an event indicates that it is necessary
(see Lunze (2015) for an introduction and survey). This
event can be, for example, that the output trajectory de-
viates from the desired trajectory too much. The main ad-
vantages of the event-based control are irregular sampling
and reduced communication between system components,
which can save energy. The event-triggered approach has
received increased research interest due to rapid develop-
ment of network and communication technology. The basic
configuration of event-based control consists of the event
generator, the controller and the control input generator.
The event generator continuously compares the current
system behavior and the desired behavior and generates

⋆ The work of A. Kaldmäe and C. Meurer was supported by the
Estonian Center of Excellence in IT (EXCITE), funded by the
European Regional Development Fund.

events, when the differences become too large. The con-
troller determines the control input at the event times,
based on the information sent to it at these times. The
control input generator (usually it is a simple zero-order
hold) uses the values of the control input received from the
controller to generate continuous-time input for the plant
until the next event appears.

In this paper a new approach for flatness-based control is
developed following the ideas of the event-based control.
More precisely, the flatness-based feedforward controller
works as the controller and the control input generator in
the event-based control setting. The feedforward controller
is designed such that system output, which is also assumed
to be the flat output, converges to its desired reference
trajectory. However, unmodelled dynamics and external
disturbances affect the system. An event generator detects
when the actual output value is too far from the desired
one. At that time instance the measurements of the system
outputs and the estimates of their time-derivatives are
used to redefine the feedforward controller parameters. As
the developed control approach is an event-based strategy,
it has all the benefits of an event-based control approach
compared to traditional methods. However, unlike stan-
dard event-based approaches, here a feedforward control
instead of zero-order hold is applied between the events.
Then, at event times the feedforward control is updated
according to the measurements and estimates of the state
variables.

The proposed control strategy is tested on a bioinspired
autonomous underwater vehicle, called U-CAT (Salumäe
et al. (2014)). The vehicle was developed to assist in the
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1. INTRODUCTION

Flatness property provides a natural way of controlling
dynamical systems, since a feedforward controller can be
easily constructed based on the reference trajectory of
the flat output. However, in general, one must assume
that the system does not depend on unknown inputs
(disturbances) and is described by an exact model. These
are very restrictive assumptions for practical applications.
Most papers (see, for example, Chung et al. (2007); Al-
louache et al. (2011); Menhour et al. (2014); Bröcker and
Herrmann (2017)) combine the feedforward controller with
other approaches, such as PID control or pole placement,
to guarantee stability or tracking. In this paper a different,
novel approach is described for flatness-based control.

Event-based control is a control method that closes the
feedback loop only if an event indicates that it is necessary
(see Lunze (2015) for an introduction and survey). This
event can be, for example, that the output trajectory de-
viates from the desired trajectory too much. The main ad-
vantages of the event-based control are irregular sampling
and reduced communication between system components,
which can save energy. The event-triggered approach has
received increased research interest due to rapid develop-
ment of network and communication technology. The basic
configuration of event-based control consists of the event
generator, the controller and the control input generator.
The event generator continuously compares the current
system behavior and the desired behavior and generates
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events, when the differences become too large. The con-
troller determines the control input at the event times,
based on the information sent to it at these times. The
control input generator (usually it is a simple zero-order
hold) uses the values of the control input received from the
controller to generate continuous-time input for the plant
until the next event appears.

In this paper a new approach for flatness-based control is
developed following the ideas of the event-based control.
More precisely, the flatness-based feedforward controller
works as the controller and the control input generator in
the event-based control setting. The feedforward controller
is designed such that system output, which is also assumed
to be the flat output, converges to its desired reference
trajectory. However, unmodelled dynamics and external
disturbances affect the system. An event generator detects
when the actual output value is too far from the desired
one. At that time instance the measurements of the system
outputs and the estimates of their time-derivatives are
used to redefine the feedforward controller parameters. As
the developed control approach is an event-based strategy,
it has all the benefits of an event-based control approach
compared to traditional methods. However, unlike stan-
dard event-based approaches, here a feedforward control
instead of zero-order hold is applied between the events.
Then, at event times the feedforward control is updated
according to the measurements and estimates of the state
variables.

The proposed control strategy is tested on a bioinspired
autonomous underwater vehicle, called U-CAT (Salumäe
et al. (2014)). The vehicle was developed to assist in the
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Arvo Kaldmäe ∗ Ülle Kotta ∗ Christian Meurer ∗∗

Ashutosh Simha ∗

∗ Department of Software Science, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia (e-mail:
{arvo,kotta}@cc.ioc.ee;ashutosh.simha@taltech.ee).

∗∗ Department of Computer Systems, Tallinn University of Technology,
Akadeemia tee 15a, 12618 Tallinn, Estonia (e-mail:

christian.meurer@taltech.ee)

Abstract: The problem of trajectory tracking for nonlinear differentially flat systems is
addressed in the paper. A novel event-based control methodology is developed for systems
depending on unmeasurable disturbances. A standard flatness-based feedforward control is
applied when the flat outputs are close to their desired values. If the error becomes too large, the
feedforward controller parameters are updated based on the measurements of the flat outputs
and on the estimates of their time-derivatives. The developed control strategy is applied to
an autonomous underwater vehicle. Simulations show that the vehicle tracks the pre-defined
reference trajectory both in healthy situation as well as in the case of certain mechanical faults.

Keywords: Feedforward control, events, fault tolerance, robotics.

1. INTRODUCTION

Flatness property provides a natural way of controlling
dynamical systems, since a feedforward controller can be
easily constructed based on the reference trajectory of
the flat output. However, in general, one must assume
that the system does not depend on unknown inputs
(disturbances) and is described by an exact model. These
are very restrictive assumptions for practical applications.
Most papers (see, for example, Chung et al. (2007); Al-
louache et al. (2011); Menhour et al. (2014); Bröcker and
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which can save energy. The event-triggered approach has
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based on the information sent to it at these times. The
control input generator (usually it is a simple zero-order
hold) uses the values of the control input received from the
controller to generate continuous-time input for the plant
until the next event appears.

In this paper a new approach for flatness-based control is
developed following the ideas of the event-based control.
More precisely, the flatness-based feedforward controller
works as the controller and the control input generator in
the event-based control setting. The feedforward controller
is designed such that system output, which is also assumed
to be the flat output, converges to its desired reference
trajectory. However, unmodelled dynamics and external
disturbances affect the system. An event generator detects
when the actual output value is too far from the desired
one. At that time instance the measurements of the system
outputs and the estimates of their time-derivatives are
used to redefine the feedforward controller parameters. As
the developed control approach is an event-based strategy,
it has all the benefits of an event-based control approach
compared to traditional methods. However, unlike stan-
dard event-based approaches, here a feedforward control
instead of zero-order hold is applied between the events.
Then, at event times the feedforward control is updated
according to the measurements and estimates of the state
variables.

The proposed control strategy is tested on a bioinspired
autonomous underwater vehicle, called U-CAT (Salumäe
et al. (2014)). The vehicle was developed to assist in the
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exploration of archaeological sites, see Allotta et al. (2015).
Due to the low cost of U-CAT it is specifically suited for
high risk explorations in shipwrecks or other confined areas
such as caves or submerged buildings. Four fin actuation
configuration of U-CAT (see Fig. 1 and 2) enables it to
translate along and rotate around all of its principle axes.
Various schemes have been proposed to control depth and
yaw of the vehicle, see Salumäe et al. (2017) and Preston
et al. (2018). The latter showed the capability of U-CAT
to autonomously move in confined spaces. An area of
control which has not been explored so far is fault tol-
erance control, which is especially significant considering
the envisioned high risk applications of the vehicle. Due
to its 4-fin configuration U-CAT exhibits redundancies in
actuation which can be explored for fault tolerant control.
Accurate state estimation is one of the major difficulties
of underwater robotics and necessitates control schemes
which are robust against measurement noise. An event
based control scheme provides the opportunity for longer
sampling periods and thus could mitigate some of the
difficulties in state estimation. Underwater vehicles are
further subjected to dynamic disturbances which can not
be modelled accurately, such as ocean currents or eddies.
Furthermore, often the identification of parameters for the
model can not be done analytically and relies on exper-
iments, which introduce some uncertainty. A controller
which is robust against disturbances and model param-
eter uncertainties would thus be beneficial. A situation
where two of the four fins fail to operate is simulated.
Since both the fault free and the faulty models are flat
one is able to test the proposed control scheme on these
models. Simulations show that the U-CAT tracks the pre-
defined trajectory and that the controller is robust against
disturbances and unmodelled forces.

2. EVENT-BASED CONTROL

Consider a nonlinear control system of the general form

ẋ = f(x, u), (1)

where x(t) ∈ X ⊆ Rn is the system state and u(t) ∈ U ⊆
Rm is the system input. It is assumed that the function f
is analytic and satisfies on some open and dense subset of
X × U the condition rank[∂f/∂u] = m.

The most common way of defining flatness property of
system (1) is the following.

Definition 1. System (1) is said to be flat if there exists
an output function

y = h(x, u, . . . , u(l)) l ≥ 0 (2)

(y ∈ Rm), called flat output, such that

x = φx(y, . . . , y(k)) (3)

u = φu(y, . . . , y(k+1)) (4)

for some k ∈ N and functions φx, φu.

A more formal definition of flatness and more thorough
discussion can be found, for example, from Fliess et al.
(1995, 1999); Lévine (2009). The flat output is not unique
and one can always find infinitely many flat outputs
for any flat system. Note that under the assumption
rank[∂f/∂u] = m the dimension of the flat output is
equal to m = dim u. Finding a flat output is, in general, a

very difficult problem (see Aranda-Bricaire et al. (1995);
Chetverikov (2001); Lévine (2009, 2011); Schlacher and
Schöberl (2013); Schöberl and Schlacher (2014)), though,
often it has a practical meaning and can be guessed from
the configuration of the physical object. For example, in
robotics, often the position of some moving part is the flat
output.

First we describe how to track a predefined trajectory for
a flat system (1). An event-based controller is defined such
that the system output trajectory follows the reference
trajectory. We make the following assumption.

Assumption 1. The elements of controlled output of sys-
tem (1) are also the elements of flat output of system (1).

Though the assumption seems to be rather restrictive, in
many practical examples it is satisfied, see Sira-Ramirez
and Agrawal (2004); Lévine (2009) and references therein.
Also, Assumption 1 is, in general, not necessary, but helps
to simplify the controller design. If it is not satisfied, then
one has to find the reference trajectory of the flat output
y from the relation (2), based on the reference trajectories
of the system states and inputs. In other words, one has to
guarantee that if the flat output converges to its reference
trajectory, then the controlled output of the system also
converges to its reference trajectory.

Let y = (y1, . . . , ym)T be the flat output of system (1)
for which we want to construct a tracking controller. We
choose a trajectory for every yi(t) such that it converges to
the reference trajectory ri(t) of yi(t), and substitute them
for y in (4) to define a feedforward controller. Define, for
i = 1, . . . , m,

yir(t) = pi(t)e
−Kit + ri(t), (5)

where ri(t) is the trajectory we want the variable yi to
follow, Ki > 0 is a constant parameter and pi(t) ∈ R[t]
is a polynomial in t, which is chosen such that the initial
state and input satisfy the relations (3) and (4), i.e.,

x(0) = φx(yr(0), . . . , y(k)
r (0))

u(0) = φu(yr(0), . . . , y(k+1)
r (0)),

(6)

where yr = (y1r, . . . , ymr)
T . Thus, the coefficients of the

polynomials pi(t) depend on the initial conditions of x and
u. The degree ρi of the polynomial pi(t) is equal to the
highest time-derivative of yi which appears in the relations
(3) and (4). Moreover, the desired trajectories ri(t) have
to be k + 1 times differentiable, so that one could find the
time-derivatives of (5) up to the order k + 1.

Note that usually one takes simply yir(t) = ri(t) in (5).
However, first, in this case the reference trajectory ri(t)
must satisfy ri(0) = yi(0), which means that the trajectory
planning becomes much more difficult. Second, choosing
yir(t) as in (5) allows us to easily define the event-based
control strategy without solving the trajectory planning
problem whenever an event happens.

The coefficients of the polynomials pi(t), i = 1, . . . , m, in
(5) can be calculated as follows. The time-derivatives of
yir in (5) are

y
(j)
ir (t) =

j∑

µ=0

(
j

µ

)
(−Ki)

µp
(j−µ)
i (t)e−Kit + r

(j)
i (t) (7)
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and Agrawal (2004); Lévine (2009) and references therein.
Also, Assumption 1 is, in general, not necessary, but helps
to simplify the controller design. If it is not satisfied, then
one has to find the reference trajectory of the flat output
y from the relation (2), based on the reference trajectories
of the system states and inputs. In other words, one has to
guarantee that if the flat output converges to its reference
trajectory, then the controlled output of the system also
converges to its reference trajectory.

Let y = (y1, . . . , ym)T be the flat output of system (1)
for which we want to construct a tracking controller. We
choose a trajectory for every yi(t) such that it converges to
the reference trajectory ri(t) of yi(t), and substitute them
for y in (4) to define a feedforward controller. Define, for
i = 1, . . . , m,

yir(t) = pi(t)e
−Kit + ri(t), (5)

where ri(t) is the trajectory we want the variable yi to
follow, Ki > 0 is a constant parameter and pi(t) ∈ R[t]
is a polynomial in t, which is chosen such that the initial
state and input satisfy the relations (3) and (4), i.e.,

x(0) = φx(yr(0), . . . , y(k)
r (0))

u(0) = φu(yr(0), . . . , y(k+1)
r (0)),

(6)

where yr = (y1r, . . . , ymr)
T . Thus, the coefficients of the

polynomials pi(t) depend on the initial conditions of x and
u. The degree ρi of the polynomial pi(t) is equal to the
highest time-derivative of yi which appears in the relations
(3) and (4). Moreover, the desired trajectories ri(t) have
to be k + 1 times differentiable, so that one could find the
time-derivatives of (5) up to the order k + 1.

Note that usually one takes simply yir(t) = ri(t) in (5).
However, first, in this case the reference trajectory ri(t)
must satisfy ri(0) = yi(0), which means that the trajectory
planning becomes much more difficult. Second, choosing
yir(t) as in (5) allows us to easily define the event-based
control strategy without solving the trajectory planning
problem whenever an event happens.

The coefficients of the polynomials pi(t), i = 1, . . . , m, in
(5) can be calculated as follows. The time-derivatives of
yir in (5) are

y
(j)
ir (t) =

j∑

µ=0

(
j

µ

)
(−Ki)

µp
(j−µ)
i (t)e−Kit + r

(j)
i (t) (7)

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

243



182 Arvo Kaldmäe  et al. / IFAC PapersOnLine 52-16 (2019) 180–185

for j ≥ 0. Assuming that pi(t) =
∑ρi

λ=0 pi,λtλ one has

p
(j)
i (0) = j!pi,j . By substituting y

(j)
ir from (7) to (3) and

(4) for y
(j)
i one gets

pi,0 = ei(0)

pi,j =
e
(j)
i (0)

j!
−

j∑

µ=1

(
j

µ

)
(−Ki)

µ (j − µ)!

j!
pi,j−µ, j > 0

(8)
where ei(0) = yi(0) − ri(0). Then the coefficients pi,j ,
j = 0, . . . , ρi, can be computed by solving the equations
(8). Note that the coefficients will depend on the initial
conditions of the error ei and its time-derivatives. These
can be computed, for example, from the initial conditions
of system states and inputs.

By substituting yir in (5) and its time-derivatives to (4)
for yi and its derivatives, one gets a feedforward controller,
which, by the definition of flatness, yields the trajectories
(5) for the elements of flat output y, which we want to
control. Note that the polynomials pi(t) are chosen such
that the trajectories (5) pass the initial conditions.

Lemma 2. The error ēi(t) = yir(t) − ri(t), i = 1, . . . , m,
satisfies limt→∞ ēi(t) = 0.

Proof. Since the proof is valid for every i = 1, . . . , m, we
leave out the indices i everywhere. Let p(t) =

∑ρ
j=0 pjt

j .

Then from (5) one gets

ē(t) =

ρ∑

j=0

pjt
je−Kt. (9)

After using the L’Hospital’s rule repetitively, one gets for
any j ≥ 0

lim
t→∞

(pjt
je−Kt) = lim

t→∞
pjt

j

eKt
= lim

t→∞
pjjt

j−1

KeKt
= · · ·

= lim
t→∞

pjj!

KjeKt
= 0.

Thus, limt→∞ ē(t) = 0. �

Lemma 2 says that the feedforward controller

u = φu(yr, . . . , y
(k+1)
r ), (10)

ensures that the output trajectories converge to the desired
trajectories ri(t) as t → ∞. Larger Ki > 0 results in faster
convergence.

Remark 3. In principle, instead of constants Ki in (5)
the time-functions Ki(t) can be taken, that satisfy the
condition Ki(t) > 0 for t ∈ (0, ∞).

So far, the constructed feedforward controller (10) assumes
that the system model (1) is exact and there are no
external disturbances. When the disturbances affect the
system, i.e., when instead of (1) we have

ẋ = f(x, u, w), (11)

where w(t) ∈ W ⊆ Rσ is the (unmeasurable) disturbance,
then the computed control (10) will not yield exactly
the desired trajectory yr, since the relation (4) is not
exact anymore. Instead, when applied to system (11), the
real trajectory of yi starts to deviate from the desired
trajectory yir. To compensate this error, we introduce a
feedback loop, based on the ideas of event-based control.
First, we apply the feedforward control (10) as if there

are no external or internal disturbances. Since the system
(11) is actually affected by the disturbances, there will be
a non-zero error between yi(t) and yir(t). Assume that
at the time instant t1 the error between the measured
output and the one in (5) exceeds a pre-defined threshold
ϵ. Then this time instant is set to be a new initial time
instant and the coefficients of polynomials pi(t) in (5)
are recomputed based on the actual measurements of the
system outputs, estimations of their time-derivatives and
inputs at time instant t1. Also the reference trajectories
have to be redefined, since they are now shifted, i.e., a
new reference trajectory is r̃i(t) = ri(t1 + t). By doing so,
at the time instant t1 we define a new trajectory (5) for
the output yi, which will converge to the desired trajectory
r̃i. To conclude, at the time instant t1 the error between
the measured output and the desired trajectory (5) is set
to zero again. The idea of the method can be summarized
in the following algorithm:

0. Specify the threshold value ϵ and parameters Ki,
i = 1, . . . , m.

1. Compute yir, i = 1, . . . , m, from (5).
2. Compute the feedforward control (10).
3. At all time, monitor the error êi(t) := yi(t) − yir(t).

If at the time instant t1 the error |êi(t1)| > ϵ, at least
for one i, then follow the steps:
a. Set the new reference trajectory as r̃i(t) := ri(t+

t1).
b. Recompute the coefficients of polynomials pi(t) in

(5) such that the trajectories yir = pi(t)e
−Kit +

r̃i(t) satisfy x(t1) = φx(yr(0), . . . , y
(k)
r (0)) and

u(t1) = φu(yr(0), . . . , y
(k+1)
r (0)). Note that the

coefficients pi,j of pi(t) depend on the values of
the system states and inputs at the time instant
t1. This requires that the state is measurable or,
at least, can be estimated.

c. Let yir = pi(t)e
−Kit + r̃i(t) and go to step 2.

Remark 4. Note that the proposed method works only if
the disturbances affect the system in such way that the
flatness property is not lost. That is, when y is a vector of
flat outputs for the nominal model, then it is also for the
model with disturbances. This must be true generically.

3. U-CAT MODEL

The full six degree of freedom (6 DOF) model of U-CAT
can be described by the equations (see Fossen (2011)):

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ (12)

η̇ = J(η)ν, (13)

where η = [x, y, z, φ, ϑ, ψ]T describes the position and
orientation of the robot in the earth-fixed frame, ν =
[u, v, w, p, q, r]T represents the linear and angular velocities
in the body-fixed frame, and J(η) ∈ IR6x6 maps the body-
fixed frame to the earth fixed frame (see Fig. 1). The
inertia matrix of the vehicle is denoted by M , while C
and D represent Coriolis-centripetal and damping effects
respectively and g(η) is the vector of gravitational / buoy-
ancy forces and moments. Finally, τ = [X, Y, Z, K, M, N ]T

is the vector of control inputs. See Salumäe et al. (2017)
for more details about the model. The development of the
controller in this paper will be restricted to two dimen-
sional movement of the vehicle with no change along the
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Fig. 1. Autonomous underwater vehicle U-CAT and its
coordinate frames.xb, yb, zb represent the position of
the robot in body frame and xe, ye, ze denote the
earth fixed reference frame. The position vector of the
vehicle is defined in the earth fixed reference frame
η = [x, y, z, φ, ϑ, ψ]T . / figure adapted from Salumäe
et al. (2017)

Fig. 2. Top view of U-CAT with depicting control inputs
for each fin [u1, u2, u3, u4]. a) fin configuration for
SLOW mode, b) fin configuration for FAST mode.

z axis. The rational behind this is that the fins of U-CAT
have to be oriented vertically for movement along the z-
axis which essentially decouples this movement from the
motions along the two other axes. Thus, the control scheme
can be cascaded as well.

U-CAT has two motion modes, denoted by SLOW and
FAST, which depend on the fin configuration (see Fig. 2).
In SLOW mode all fins are rotated inward and fins 1 and
2 are the main contributors to the locomotion and fins 3
and 4 act as stabilizers. By reducing the states of U-CAT
to [x, u, y, v, ψ, r]T =: [x1, x2, x3, x4, x5, x6]

T we define the
state space model for SLOW mode:

ẋ1 = x2 cos (x5) − x4 sin (x5)

ẋ2 = −C1

C2
x4x6 − Xuu

C2
x2|x2| + X + w1

ẋ3 = x2 sin (x5) + x4 cos (x5)

ẋ4 = −C3

C4
x2x6 − Yvv

C4
x4|x4| + Y + w2

ẋ5 = x6

ẋ6 = −C5

C6
x2x4 − Nrr

C6
x6|x6| + N + w3,

(14)

where w = [w1, w2, w3]
T represents the unknown distur-

bance vector.

In FAST mode all fins face in one direction and have an
equal contribution to the locomotion. A fault in fins 3 and
4 will not have a significant effect on the motion perfor-
mance in SLOW mode and FAST mode would degenerate
to SLOW mode in this case. The robot is thus already
fault tolerant by design for this case of fault. Therefore,
we concentrate on faults of fins 1 and 2. In SLOW mode
the fins would have to reorient themselves in FAST mode
configuration. We thus limit our control design to FAST
mode configuration of U-CAT and consider the case were
fins 1 and 2 are faulty. In particular, we assume that both
fin 1 and fin 2 have stopped working. The model for faulty
FAST mode setting will be written in terms of the direct
control inputs to the third and fourth fins (u3, u4) instead
of the generalized control inputs X, Y and N in (14) and
is described by the equations:

ẋ1 = x2 cos (x5) − x4 sin (x5)

ẋ2 = −C1

C2
x4x6 − Xuu

C2
x2|x2| + α1(u3 + u4) + w1

ẋ3 = x2 sin (x5) + x4 cos (x5)

ẋ4 = −C3

C4
x2x6 − Yvv

C4
x4|x4| + w2

ẋ5 = x6

ẋ6 = −C5

C6
x2x4 − Nrr

C6
x6|x6| + α3(u3 − u4) + w3.

(15)

where α1 is a parameter which accounts for the angle of
the fins on the horizontal plane of the vehicle and α3 is a
parameter for the moment arm from the fin to the center
of mass of U-CAT.

The vector of flat output of system (14) is composed of
y1 = x1, y2 = x3, y3 = x5. Note that the controlled
variables x1, x3 and x5 are elements of the flat output,
meaning that Assumption 1 is satisfied. However, the
model (15) is not flat. For control purposes we make
additional assumptions to simplify the equations (15) to
get a flat system. First, body symmetry is assumed which
leads to equal added mass terms, i.e., −C1 = C2 = C3 =
C4 and C5 = 0. Second, we assume that the drag terms
in second and fourth equations of (15) are linear due to
piecewise linearization at nominal velocities. This gives us
simplified model equations

ẋ1 = x2 cos(x5) − x4 sin(x5)
ẋ2 = x4x6 − Lx2 + α1(u3 + u4) + w1

ẋ3 = x2 sin(x5) + x4 cos(x5)
ẋ4 = −x2x6 − Lx4 + w2

ẋ5 = x6

ẋ6 = −Nrr

C6
x6|x6| + α3(u3 − u4) + w3

(16)

for some constant L. Then the flat outputs of system (16)
are y1 = x1 and y2 = x3.

Table 1. Values of the parameters

Parameter Value Parameter Value

C1 -40 C2 59
C3 59 C4 40
C5 -19 C6 2.8179

Xuu 56 Yvv 551
Nrr 0.7226 α1 0.0147
α3 -1.77437 L 0.1673
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Fig. 1. Autonomous underwater vehicle U-CAT and its
coordinate frames.xb, yb, zb represent the position of
the robot in body frame and xe, ye, ze denote the
earth fixed reference frame. The position vector of the
vehicle is defined in the earth fixed reference frame
η = [x, y, z, φ, ϑ, ψ]T . / figure adapted from Salumäe
et al. (2017)

Fig. 2. Top view of U-CAT with depicting control inputs
for each fin [u1, u2, u3, u4]. a) fin configuration for
SLOW mode, b) fin configuration for FAST mode.
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ẋ5 = x6

ẋ6 = −C5

C6
x2x4 − Nrr

C6
x6|x6| + N + w3,

(14)

where w = [w1, w2, w3]
T represents the unknown distur-

bance vector.

In FAST mode all fins face in one direction and have an
equal contribution to the locomotion. A fault in fins 3 and
4 will not have a significant effect on the motion perfor-
mance in SLOW mode and FAST mode would degenerate
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ẋ2 = −C1

C2
x4x6 − Xuu

C2
x2|x2| + α1(u3 + u4) + w1
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where α1 is a parameter which accounts for the angle of
the fins on the horizontal plane of the vehicle and α3 is a
parameter for the moment arm from the fin to the center
of mass of U-CAT.

The vector of flat output of system (14) is composed of
y1 = x1, y2 = x3, y3 = x5. Note that the controlled
variables x1, x3 and x5 are elements of the flat output,
meaning that Assumption 1 is satisfied. However, the
model (15) is not flat. For control purposes we make
additional assumptions to simplify the equations (15) to
get a flat system. First, body symmetry is assumed which
leads to equal added mass terms, i.e., −C1 = C2 = C3 =
C4 and C5 = 0. Second, we assume that the drag terms
in second and fourth equations of (15) are linear due to
piecewise linearization at nominal velocities. This gives us
simplified model equations

ẋ1 = x2 cos(x5) − x4 sin(x5)
ẋ2 = x4x6 − Lx2 + α1(u3 + u4) + w1

ẋ3 = x2 sin(x5) + x4 cos(x5)
ẋ4 = −x2x6 − Lx4 + w2

ẋ5 = x6

ẋ6 = −Nrr
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x6|x6| + α3(u3 − u4) + w3

(16)

for some constant L. Then the flat outputs of system (16)
are y1 = x1 and y2 = x3.

Table 1. Values of the parameters

Parameter Value Parameter Value

C1 -40 C2 59
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Fig. 3. Trajectories of flat outputs for K1 = K2 = K3 = 1
and ϵ = 0.02 (healthy model (14)). The bottom graph
shows event times.

4. SIMULATION RESULTS

The simulation studies demonstrate the effectiveness and
applicability of the proposed method. The healthy U-CAT
is simulated in SLOW mode, i.e., using the model (14).
For the faulty U-CAT the model (16) is used.

4.1 Healthy situation

Here we test the developed trajectory tracking strategy
on a healthy U-Cat model (14). The situation, where
the underwater vehicle starts from the point (−4; 4) on
a (x1, x3)-plane with x5 = x2 = x4 = x6 = 0 and does
circles around 0 with radius 2, is simulated. At the same
time, the angle x5 will go from 0 to the new set point π/2.
The parameters Ki, i = 1, 2, 3, are all taken equal to 1.
The error threshold ϵ = 0.02. All three disturbances wi,
i = 1, 2, 3, have randomly changing values between -1 and
1. The trajectories for the flat outputs and the event times
are displayed in Fig. 3.

The simulations presented in Fig. 3 were done under the
assumption that exact measurements are available. Next,
measurement noise is added to describe a more realistic
situation. All three outputs are assumed to have a mea-
surement noise between -0.1 and 0.1. Note that the error
threshold ϵ cannot be much smaller than the measurement
noise. Otherwise continuous sampling is achieved and the
system will be most probably unstable. Thus, now we take
ϵ = 0.2. Also, one can change the parameters to get better
tracking. However, this results in higher values for the
inputs. The trajectories for the flat outputs are displayed
in Fig. 4 together with the event times.

4.2 Faulty situation

Next we consider a situation where the first two fins of
U-CAT are not working. That is, we use the faulty U-
CAT model (16) to compute the values for the control
inputs. However, the model (15) is used to simulate the
faulty U-CAT behavior. The system is driven from the
initial starting position x = 0 towards a pick up point
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Fig. 4. Trajectories of flat outputs for K1 = K2 = 1.5,
K3 = 3.5 and ϵ = 0.2, under the measurement noise
(healthy model (14)). The bottom graph shows event
times.
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Fig. 5. Trajectories of outputs y1 = x1, y2 = x3 and
y3 = x5 for K1 = K2 = 0.6 and ϵ = 0.02 (faulty
model (15)). The bottom graph shows event times.

with constant speed. The parameters Ki, i = 1, 2, are
all taken equal to 0.6. The error threshold ϵ = 0.02. All
three disturbances wi, i = 1, 2, 3, have randomly changing
values between -1 and 1. The trajectories for the outputs
y1 = x1, y2 = x3 and y3 = x5 are displayed in Fig. 5
together with the event times. Note that only y1 and y2

are the flat outputs, so we can define a reference trajectory
only for these variables. Fig. 6 presents the same situation
when the measurement noise is added to the simulations.
As before, all three outputs are assumed to have a random
measurement noise between -0.1 and 0.1. Note that despite
the simplified model (16) was used for controller design,
satisfactory performance of the faulty U-CAT is achieved.

5. CONCLUSION

A novel event-based control approach was presented for
differentially flat systems. The idea is to apply the ba-
sic flatness-based feedforward control when the system
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Fig. 6. Trajectories of outputs y1 = x1, y2 = x3 and
y3 = x5 for K1 = K2 = 0.55 and ϵ = 0.2 under the
measurement noise (faulty model (15)). The bottom
graph shows event times.

performance is good enough and update (based on the
measurements of the outputs and the estimates of their
time-derivatives) the feedforward control at event times,
which indicate deviation from the desired output values.
The approach was tested on simulations for an underwa-
ter vehicle U-CAT. Two cases were simulated. First, the
healthy case and then the case, when two of the vehicles
fins were stopped working.

The paper presents preliminary work on the subject. There
is a lot of space for improvement. In particular, a formal
proof of stability of the closed-loop system is missing.
Many questions, for instance, how to deal with the system
constraints, and whether the approach be extended to non-
flat systems, need an answer. From application point of
view the future goal is to test the approach experimentally
on U-CAT. Also, we would like to add a fault detection
scheme so that the U-CAT can be made fault tolerant
against failure of some of the vehicles fins.
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A Lie-Bäcklund approach to equivalence and flatness of
nonlinear systems. IEEE Trans. on Automatic Control,
44(5), 922–937.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrody-
namics and Motion Control [Bookshelf ]. John Wiley &
Sons. doi:10.1109/MCS.2015.2495095.
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healthy case and then the case, when two of the vehicles
fins were stopped working.
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Many questions, for instance, how to deal with the system
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M., Salumäe, T., Frost, G., Tsiogkas, N., Lane, D.M.,
Cocco, M., Gualdesi, L., Roig, D., Gündogdu, H.T.,
Tekdemir, E.I., Dede, M.I.C., Baines, S., Agneto, F.,
Selvaggio, P., Tusa, S., Zangara, S., Dresen, U., Latti,
P., Saar, T., and Daviddi, W. (2015). The ARROWS
project: Adapting and developing robotics technologies
for underwater archaeology. IFAC-PapersOnLine, 48(2),
194–199. doi:10.1016/j.ifacol.2015.06.032.

Allouache, M., Lowenberg, M., and Wagg, D. (2011). Syn-
thesis of flatness control for a multi-axis robot manipu-
lator: an experimental approach. In IEEE International
Symposium on Robotic and Sensors Environments, 1–6.
Montreal, Canada. doi:10.1109/ROSE.2011.6058539.

Aranda-Bricaire, E., Moog, C.H., and Pomet, J.B. (1995).
A linear algebraic framework for dynamic feedback

linearization. IEEE Trans. on Automatic Control, 40(1),
127–132.
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2D Estimation of Velocity Relative to Water and
Tidal Currents Based on Differential Pressure for

Autonomous Underwater Vehicles
Christian Meurer , Juan Francisco Fuentes-Pérez , Kordula Schwarzwälder, Martin Ludvigsen ,

Asgeir Johan Sørensen , and Maarja Kruusmaa

Abstract—Reliable navigation of autonomous underwater ve-
hicles (AUVs) depends on the quality of their state estimation.
Providing robust velocity estimation thus plays an important role.
While water currents are main contributors to the navigational
uncertainty of AUVs, they are also an important variable for
oceanographic research. For both reasons, water current estima-
tion is desirable during AUV operations. State of the art velocity
estimation relies on expensive acoustic sensors with considerable
energy requirements and a large form factor such as Doppler Ve-
locity Logs (DVL) and Acoustic Doppler Current Profilers (ADCP),
while water currents are either estimated with the same sensors, or
with algorithms that require accurate position feedback. In this
letter, we introduce a low-cost, lightweight and energy efficient
sensor (DPSSv2) to estimate fluid relative velocity in 2D based
on differential pressure. The sensor is validated in field trials
on-board an AUV in the presence of tidal currents. We further
show that, while moving against the currents, our device is capable
of estimating tidal currents in situ with comparable accuracy to
a DVL, given a source for absolute vehicle velocity. Additionally,
we establish the limitations of the current design of DPSSv2 while
moving with the currents.

Index Terms—Marine robotics, autonomous vehicle navigation,
sensor fusion.
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I. INTRODUCTION

V ELOCITY estimation for AUVs is essential for successful
underwater navigation and allows the use of such vehicles

for long term autonomous missions, such as in situ monitoring
and sampling in marine environments [1]–[3]. The rapid high
frequency attenuation of electromagnetic signals underwater
impedes the use of navigation methods such as satellite global
positioning. A local positioning system can be established with
acoustic devices [4], but this increases the cost and complexity
of missions and restricts use cases to areas were deployment
of acoustic infrastructure is feasible. Inertial navigation systems
(INS) rely on heading and acceleration measurements and use
dead reckoning techniques to estimate velocity and position of a
vehicle [4]. They do not require additional infrastructure and are
at the core of most standard navigation solutions. Though state
of the art INS provide increasingly accurate measurements, they
usually need to be complemented by aiding sensors to prevent a
rapidly growing error drift.

The most common way to complement INS is the use of
sensors that directly provide velocity estimates. The velocity
can be measured relative to a static reference, which directly
provides the velocity of a vehicle. In cases where such a reference
does not exist, the vehicle velocity can be estimated relative
to the surrounding fluid. However, the marine environment
is inherently dynamic and the fluid surrounding a submerged
vehicle is seldom at rest. Water currents can affect both the
motion of an AUV and velocity readings relative to the fluid
flow. A combination of sensors and/or techniques to estimate
absolute and relative velocity can help to increase the robustness
of a navigation system.

Beyond the capabilities for navigation, such a sensor suite
can also enable the estimation of hydraulic influences such as
water currents, which can be used to inform controllers for
dynamic positioning or trajectory tracking. Estimates of water
currents can also help to update and improve oceanographic
models [5], or can be used as information for adaptive sampling
decisions [6]. If a source of vehicle velocity relative to a static
reference and a source of vehicle velocity relative to the sur-
rounding fluid are simultaneously available, the water current
velocity can be calculated as their difference.

The most widely applied sensor class for velocity aiding are
Doppler Velocity Logs (DVLs) [7], which use the reflection of an
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acoustic signal to estimate velocity. DVLs can be used in bottom
lock (BL) relative to the smooth surface of a structure such as the
sea bottom, or in water lock (WL) relative to particles suspended
in the surrounding water. Depending on the mode, the vehicle
velocity is measured as a total velocity over ground (DVL-BL),
or as velocity relative to the surrounding fluid flow (DVL-WL).
While the DVL-BL is generally the more accurate and preferred
mode, its use is restricted to areas where a smooth surface can
be used to reflect the signals. This cannot be guaranteed for mid-
water column travels during deep sea applications or in highly
unstructured environments. The quality of DVL-WL velocity
estimates is restricted by the presence of a sufficient number of
reflecting particles in the water and it has a smaller signal to
noise ratio.

For long term deployments in complex and potentially un-
known environments sensor redundancy and cost efficiency
are key factors. Furthermore, a reduction in size and energy
consumption is essential for such missions, as well as for the
improvement of navigation capabilities of low cost and low
energy vehicles. These objectives have motivated our previous
work, where we introduced a sensor for surge velocity based
on differential pressure [8] referred to as Differential Pressure
Sensor Speedometer (DPSS) and verified its utility as a low cost
and energy efficient system for speed estimation in surge [9].

In this work we present a new enhanced and smaller version
of the DPSS (DPSSv2), building upon our previous work. Based
on geometric principles and potential flow theory, we expand the
velocity estimation from 1D to 2D, and estimate velocity relative
to water in the horizontal plane. While the previous sensor was
tightly integrated and tailored for a specific AUV, we now present
a standalone system which can be employed in a wide variety of
vehicles. Furthermore, we characterize the performance of the
DPSSv2 in field conditions under the influence of tidal currents.
We show that the DPSSv2 can be used in conjunction with
another sensor providing total vehicle velocity to estimate water
currents in situ.

II. RELATED WORK

A common approach to estimate water currents uses the
concept of observers from control theory. Given an observable
model describing the movement of a vehicle, a second model can
be developed based on inputs and weighted outputs of the real
system. The observer can then be used to estimate states which
are not directly measurable. Assuming a steady, incompress-
ible and irrotational current, Encarnação et al. [10] proposed
a nonlinear Luenberger type observer based on the horizontal
kinematics of an AUV, which has been frequently used after-
wards [11]–[13]. Refsnes et al. [14] used a nonlinear Luenberger
type observer based on the dynamics of the vehicle, specifically
capturing the effect of water currents on the modelled Coriolis
and centripetal forces for an underactuated AUV. Recently, high
gain observers have been proposed to estimate water currents
based on a dynamic vehicle model [15], [16]. While the proposed
observers have been shown to be accurate in simulation and
have been partially verified with field data, they all assume
accurate state feedback for position. For surface vehicles this

is not a restrictive assumption, whereas underwater vehicles can
not densely sample position data. They either operate outside of
any acoustic network and do not get any direct position mea-
surements at all or they get sparse updates from GPS fixes after
surfacing.

Building upon sparse but periodical GPS fixes, several ap-
proaches with varying levels of complexity and accuracy have
been used to estimate water currents. Those approaches are lim-
ited to missions where periodical resurfacing of the vehicle is in-
herent in the mission or, at least, feasible. A class of AUVs which
periodically surfaces and utilizes GPS fixes are water gliders. A
solution to estimate currents for robust navigation of ocean glid-
ers is the use of a motion integration error [17]. This approach
assumes that no vertical currents are present due to stratification
and calculates a depth averaged horizontal current based on the
difference between dead reckoning position estimates and sparse
GPS fixes. The method does not account for dynamics of the flow
field. The motion tomography introduced by Chang et al. [18]
expands on the previous approach and computes the most likely
flow field, based on the motion integration error. Additionally,
predictive ocean models have been used to estimate currents and
to assist with the guidance of gliders [19], [20]. However, those
models are computationally complex and only provide a coarse
resolution for a given position. Lee et al. [21] combine a model of
the region of interest with a Gaussian Process Expectation Min-
imization algorithm, using sparse GPS data to predict the ocean
current field surrounding a glider. While the proposed solutions
do work for gliders, they can not be used for long term AUV
missions in the deep sea or under ice where surfacing is not an
option.

Several solutions for water current estimation that do not
require direct measurements of global vehicle position have
been proposed. Randeni et al. [22] used motion responses of
the AUV in turbulent environments together with a model of the
vehicle’s dynamics to estimate water currents. However, this
approach requires a calibration of the algorithm in still water
which might be not feasible for certain deployments. Medagoda
et al. [23] employ an ADCP mounted on a Sentry AUV to
facilitate velocity estimation during midwater column travels.
While this is a viable approach for heavyweight vehicles such as
the Sentry AUV, the size and energy consumption of an ADCP
and the computational costs of the proposed algorithm might
be restrictive for smaller classes of AUVs. Hegreaneas et al.
showed that an INS aided either by a dynamic model [24],
[25] of the vehicle, or a DVL-WL in combination with a DVL-
BL can be used for water current estimation. We propose the
DPSSv2 as an alternative source to estimate velocity relative
to water, which can be used as a replacement of a DVL-WL,
or as a complement providing in situ estimates of velocity
relative to water for the approaches previously mentioned in this
section.

III. METHODOLOGY

In this section we first describe the mathematical derivations
for surge and sway velocity estimation. Then we present the
design of the DPSSv2 and explain the experimental setup used
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Fig. 1. Irrotational, inviscid and incrompressible flow over a sphere:
(a) Point A marks the stagnation point on the spheres’ surface where the local
velocity is zero. Points B and B* describe mirrored and arbitrary positions at the
spheres’ surface for an angle 0◦ ≤ ϕC ≤ 90◦. (b) Point A is angled towards the
flow by α and the local velocity is nonzero. Given the same configuration as in
(a) both measurement points A and B are shifted by the angle of incoming flow.

to verify its performance. Finally, we describe the analysis of
the experimental data.

A. 2D Velocity Estimation

1) Surge Velocity Model: Assuming a planar, inviscid, irro-
tational and incompressible flow and the conservation of energy
within a fixed fluid volume, the relation between pressure p and
velocity v can be described by Bernoulli’s law:

p+
1

2
ρv2 = const (1)

Where p describes the fluid pressure, ρ the fluid density and
v the flow velocity. Equation (1) can be used to estimate flow
velocity around an immersed rigid body and has been extensively
employed for flow speed estimation in aeronautics [26]. By
assuming a steady flow over a spherical body and utilizing
the directional finding Pitot-static concept [27], we can define
a stagnation point A and two mirrored points B and B* on
the spheres’ surface as can be seen Fig. 1(a). Based on the
pressure measurements at those three points we can infer the free
stream velocity v∞. The necessary relation between pressure and
velocity was derived based on geometric principles in [9] and
was verified under laboratory conditions [8] with an accuracy
of 0.012 m/s for surge speed estimation. To accurately estimate
surge speed in field conditions, self motion effects of the vehicle
carrying the sensor have to be taken into account. The final
relation including hydrostatic correction terms for pitch θ and
roll φ motions of an AUV is given by:

v∞ = 4

√
2α(ϕ)

ρ2
((Δp1 − Δh1ρg)2 + (Δp2 − Δh2ρg)2) (2)

with

α(ϕ) =

(
4

9 sin2 (ϕ)

)2

(3)

and

Δh1 = (xB − xA) cos (φ) sin (θ) − (yB + yA) sin (φ)

Δh2 = (xB∗ − xA) cos (φ) sin (θ) − (yB∗ + yA) sin (φ) (4)

where Δp1 and Δp2 represent the pressure differences be-
tween the stagnation point and the arbitrary mirrored points
B / B* and ϕ = ϕB = −ϕB∗ is the planar angle between the

stagnation point and points B / B*. Additionally, g represents the
gravitational constant and x(·) and y(·) are Cartesian coordinates
of the respective measurement points relative to the center of the
sphere. Equation (2) has been validated under field conditions
and showed a comparable performance to a DVL-BL for oper-
ational velocities above 1 m/s. Refer to [9] for more details.

2) Sway Velocity Model: The model for sway velocity is
based on the assumption, that the location of the stagnation
point on the spherical object will change in the presence of a
non zero flow in sway direction (see Fig. 1(b)). We furthermore
assume that Eq. (2) is invariant to changes in flow direction
of up to 45◦ [28] and captures the true velocity component in
surge direction. The velocity estimation for a single differential
pressure sensor for the general case can be written as:

Δp1 = pA − pB =
1

2
ρ(v2

B − v2
A + 2 gΔh1) (5)

Note that withh1 the elevation compensation presented in Eq. (4)
is also utilized for the estimation of the velocity component in
sway direction. Based on potential flow theory, the relationship
between free stream velocity v∞ and the velocity at a specified
point (·) on the surface of a sphere in a steady flow can be defined
as [29]:

v(·) =
3

2
v∞ sin (ϕ(·)). (6)

Inserting Eq. (6) in Eq. (5) and accounting for a change in flow
direction by the angle α results in the following relation:

Δp1 =
1

2
ρ

[
9

4
v2

∞
(
sin2 (ϕB − α) − sin2 (−α)

)
+ 2 gΔh1

]

(7)
Using trigonometric identities and solving for α we get:

α =
ϕB − arcsin

(
8(Δp1−ρgΔh1)
9ρv2∞ sin (ϕB)

)

2
(8)

Based on the assumption that v∞ = vx as given by Eq. (2), the
sway velocity component can be estimated by:

vy = vx tan (α) (9)

3) Planar Water Current Estimation: The planar velocity
vector estimated by the DPSSv2 is relative to the fluid flow
surrounding the sensor. The total velocity vector vtotal ∈ IR2 of
a vehicle moving through a moving fluid in its body frame can
be defined as:

vB
total = vB

rel + vB
c (10)

where vB
rel ∈ IR2 describes the velocity relative to water vector

estimated by the DPSSv2 and vB
c ∈ IR2 is the vector of water

current velocity in body frame. Given a source for vB
total such

as a DVL-BL, the water current velocity in the global frame vG
c

can be calculated as:

vG
c = R(ψ)(vB

total − vB
rel) (11)

whereR(ψ) ∈ IR2 is the standard planar rotation matrix, which
transforms the velocities from the local body frame into the
global frame and ψ is the heading angle of the vehicle relative
to the true north provided by the IMU.
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Fig. 2. LAUV Fridtjof and integrated DPSSv2 for Field trials: (a) DPSSv2
attached to the LAUV. (b) Sketch of the DPSSv2 with the distribution of the
pressure taps. (c) Architecture of the DPSSv2. DPS - differential pressure sensor,
APS - absolute pressure sensor, BAT - battery and ADC - analog to digital
converter.

B. DPSSv2

The new sensor system developed in this letter (DPSSv2)
provides a stand alone system to use in any AUV. To achieve
this, our previous DPSS design (DPSSv1, [8]) is scaled down
to a bullet shaped cylinder 14.1cm long, 5 cm in diameter and
with a weight of 0.27kg (volume reduction of 28% and weight
reduction of 39%). As pictured in Fig. 2, the DPSSv2 is equipped
with: 1) two differential pressure sensors (MPXV7002DP from
NXP semiconductors / range: ± 2kPa, accuracy: 5Pa) to mea-
sure pressure across three different points, subsequently called
pressure taps, on the sensor surface at the stagnation point
and at ±35◦ from the stagnation point on each side, 2) an
absolute pressure sensor (MS583730BA from TE Connectivity/
range: 0 to 30bar, accuracy: 30mbar) for depth estimation, 3)
an IMU (BNO005 from Bosch) that provides information about
sensor orientation (used in Eq. (4)) and 4) a micro-controller
based data-logger (Feather M0 Adalogger from Adafruit) with
integrated battery charger and SD card reader for data acquisition
and preliminary computations.

The performance of the DPSSv2 was verified with a series of
controlled experiments in a tow tank (for test description see [8]).
Under such conditions, the differential pressure based velocity
estimation was shown to be insensitive to structural effects at a
distance greater than 0.25 m for walls and 0.5 m for the water
surface [8]. Both conditions are well met in the experimental
setup in this letter. The tow tank experiments were conducted for
surge velocities in still water ranging from 0.1 m/s to 2 m/s. The
surge velocity error followed a Gaussian distribution resulting
in an accuracy of μ = 0.01 m/s with a standard deviation of
σ = 0.046 m/s. The DPSSv2 was not tested for deviations in
yaw, but based on tests with a comparable prototype described
in [28] and using Eq. (8), an angular accuracy of μ = 6.1◦ with
a standard deviation of σ = 3.5◦ was determined.

C. Experimental Setup

Field trials were conducted in the Trondheim Fjord, close
to the island of Tautra, Norway (see Fig. 3(a) and 3(b)). The
current dynamics in the Trondheim Fjord are mostly driven
by a semi-diurnal tide, making the expected flow field time

Fig. 3. Test site and experimental setup: (a) and (b) Test site (red dot) with
mean tidal current patterns for the upper fluid layer reproduced from [30]. (c) and
(d) Experimental setup to test the estimation of tidal currents with the DPSSv2.
(e) Tidal cycle for the day of the experiments 2019/05/20. The grey area in the
tidal graph represents the time slot of the experiments.

varying with a reversal in flow direction between ebb and flood
tide conditions [30] three times a day. The experiments were
conducted before and after the maximum tide was reached as
shown in Fig. 3(e). Therefore, we expected the tidal current
measurements to reflect the change in flow direction between
flood and ebb flows.

The experimental setup consisted of a light AUV
(LAUV) [31], equipped with an IMU (Microstrain 3DM-GX4-
25) and a DVL (Nortek DVL 1 MHz) providing WL and BL ve-
locity estimates simultaneously. Additionally, the DPSSv2 was
mounted on the LAUV (see Fig. 2). A boat employing an ADCP
(Sontek River Surveyor M9) gathered global current measure-
ments for comparison. During the experiments, the DPSSv2
sampled data autonomously, which were then analysed in post
processing. To estimate the tidal current velocity components in
surge and sway, the velocity estimates of DPSSv2 and DVL-WL
were referenced to the total velocity estimates given in our case
by the DVL-BL.

The velocity estimation was tested in 14 trials, while the ve-
hicle followed a straight line trajectory at constant depth (15 m,
Fig. 3(c) and 3(d)). Six trials were conducted with the minimum
velocity the vehicle was able to reliably maintain (1.25 m/s) in
the given conditions and for eight trials the target velocity was
set to 1.5 m/s. In both cases, half of the trials were conducted
against the main direction of the anticipated current and the
other half in the opposite direction. Four trials at the beginning
of the experiments with a target velocity of 1m/s were excluded
from the analysis, because the LAUV could not ensure a stable
movement in those conditions.

D. Data Analysis

The raw differential pressure measurements from the
DPSSv2, sampled at a rate of 100 Hz, were averaged to 5 Hz,
using a rolling mean to achieve maximum accuracy [8]. The
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resulting sampling rate was equal to the sampling rate of the
employed DVL. A constant offset in the differential pressure sen-
sors was compensated for by subtracting the pressure measured
for zero velocity in air. The surge and sway velocity components
were then calculated with Eq. (2) and Eq. (9), respectively. For
the DVL velocities raw sensor values were used, with outliers
removed, based on validity information provided by the sensor.
Furthermore, we restricted the data-analysis to the part of each
trial where the LAUV had reached its target depth and moved in
a straight line.

The main focus of the data analysis was to evaluate the ability
of the DPSSv2 to estimate tidal currents in conjunction with a
source for total vehicle velocity, provided by the DVL-BL in
our experiments. We compared the results with the tidal current
velocity estimation from the DVL-BL - DVL-WL pair. This
evaluation implicitly includes a performance characterization
for the DPSSv2’s capability to estimate velocity relative to
water. The DVL-WL and the DPSSv2 body frame velocities in
surge and sway were subtracted from the respective DVL-BL
total vehicle velocities. The resulting planar current velocity
vector was then rotated into a global reference frame using
Eq. (11), based on the heading provided the LAUV’s attitude
and heading reference system. Magnitude and angle relative to
true north of the estimated tidal currents were then compared to
characterize the performance of the DPSSv2 - DVL-BL current
estimation in relation to the DVL-WL - DVL-BL estimation.
Additionally, the tidal current estimates from the ADCP were
used for comparison. The median (IQR) for each time series per
trial was used as evaluation metric.

Furthermore, we investigated how the tidal current estimates
from the DPSSv2 - DVL-BL pairing were impacted by changes
in the motion direction of the LAUV (with and against antici-
pated current direction) and different vehicle velocities. For this
purpose we concentrated on tidal current estimates in the body
fixed frame, because the interpretation of the effects is more
intuitive here. For brevity we subsequently refer to DPSSv2 and
DVL-WL tidal current estimations, with the implicit indication
that all results for tidal current estimations have been augmented
with DVL-BL velocity readings. We took the median and IQR of
the absolute differences between DVL-WL and DPSSv2 current
velocity estimates for each trial as evaluation metrics and divided
the trials into sub-classes based on target velocity and direction
of movement.

IV. RESULTS AND DISCUSSION

We first present results for DVL-WL, ADCP and DPSSv2
tidal current estimates, represented by their magnitude and
heading angle relative to true north in a global reference frame.
We use those results to motivate our subsequent choice to
concentrate on a comparison between DVL-WL and DPSSv2
and show the influences of the tidal conditions on the estimation
performance. We then compare the DVL-WL and DPSSv2 tidal
current estimates for the different sub-classes shown in Table I.
For this comparison the planar tidal current vectors are split
up into their respective surge and sway components in a body
referenced frame, to get a more intuitive understanding of the
estimation performance of the DPSSv2.

TABLE I
TRIALS DIVIDED INTO SUB-CLASSES BASED ON DIFFERENT TEST CONDITIONS

Fig. 4. Estimation of tidal current velocity vector for DVL, DPSSv2 and
ADCP: Tidal current estimates for the DVL and DPSSv2 are both augmented
by DVL-BL readings. (a) Magnitude estimates of the tidal current in the global
reference frame represented by median, IQR and extreme values for each trial.
(b) and (c) Median magnitude and heading estimates of the tidal current relative
to true north for DVL and DPSSv2 (ADCP estimates are not used in the
performance comparison and thus omitted to improve the readability of the
figures). The difference between the two median heading estimates in degrees is
annotated for each trial. Instances where the LAUV was moving with the currents
(c) are distinguished from instances where the LAUV was moving against the
currents (d). The trial numbers are further augmented with either (s) for trials
with the slower velocity of 1.25 m/s or (f) for the faster velocity of 1.5 m/s. The
light beige patch (trials 1–6) represents slack water conditions close to high tide
were the currents are less strong, more turbulent and change direction eventually.
The light grey patch (trials 7 to 14) shows the tidal conditions for ebb flow after
the maximum tidal water level.

A. Tidal Current Magnitude and Heading in Global Frame

Fig. 4(a) shows that DVL-WL and DPSSv2 estimate, in most
cases, a lower current velocity with less variance than the ADCP.
Due to the tidal influence the flow direction and flow velocity
were changing over the course of the experiments. Surface waves
were affecting the stability of the boat where the ADCP was
installed. Furthermore, resulting from the signal to noise ratio,
the depth of interest was, even though the values were sufficient
at that level, close to the limit. Additionally, salinity levels and
salinity stratification were changing throughout the trials, which
affected the ADCP data.

In general, the data shows that it is difficult to select a reliable
reference for current estimation under highly dynamic field
conditions. We evaluated predictions from a publicly available
current model of the Norwegian Meteorological Institute [32],
which indicated small current velocities during the first trials
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TABLE II
MEDIAN (IQR) IN M/S FOR ABSOLUTE DIFFERENCE IN CURRENT VELOCITY

ESTIMATION IN BODY FRAME BETWEEN DVL WL AND DPSS. THE

FOLLOWING SUB-CLASSES ARE PRESENTED: AGAINST - AGAINST THE

CURRENT, WITH - WITH THE CURRENT, HIGH - HIGHER VELOCITY (1.5 M/S)
AND LOW - LOWER VELOCITY (1.25 M/S)

and a reversal in flow direction shortly before high tide. Those
predictions were best matched by DPSSv2 and DVL-WL tidal
current estimates. Based on this information and due to the lower
variance in the DPSSv2 and DVL-WL estimates we decided
to base the subsequent evaluation of the DPSSv2 performance
on a comparison with the DVL-WL. We refrain from defining
a ground truth and treat both sensors as data sources with
uncertainties and evaluate the similarity of the provided tidal
current estimates.

Fig. 4(b) and 4(c) show magnitude and direction of the es-
timated currents for DVL-WL and DPSS. The reversal of flow
direction can be seen from estimates of both sensors. The results
for trials conducted at a later point in time (towards the right of
the figure) indicate that the flow conditions were more stable
as the water level was moving away from its maximum. The
figure also shows that the DVL and DPSSv2 estimates have good
agreement for trials were the vehicle went against the current.
However, for trials in the direction of the current the estimates
differ especially regarding the heading angle.

B. Influence of Direction of Movement and Vehicle Velocity

To better understand the underlying cause of the observed
contrast regarding the direction of movement, we evaluate the
differences between DVL-WL and DPSS current estimation in
the vehicles body frame for sway and surge direction separately.
Additionally, we investigate the effect of the two target veloc-
ities on the differences between the current estimates. Table II
presents summary statistics (median absolute difference with
IQR) for the following four scenarios: 1) higher velocity - against
currents (high - against), 2) higher velocity - with currents (high
- with), 3) lower velocity - against currents (low - against), 4)
lower velocity - with currents (low - with).

The statistics show, that the main contribution to a bigger
difference for trials along the current direction is coming from
the sway velocity estimation. This is an expected result, because
the assumption of potential flow around the DPSSv2 with a
stagnation point on the spherical head section, which was used to
derive equations (2) and (8), does not hold with the movement of
the sensor along the ambient flow. The surge velocity estimation
is to some degree affected by the same problem. This is detailed
in Fig. 5 which shows velocity estimates for DVL-BL, DVL-WL

Fig. 5. Velocity estimation for DVL (BL and WL) and DPSSv2: surge
(a) and sway (b) against the main current direction for trial number 5. Surge
(c) and (d) sway along the main current direction for trial number 10.

and DPSSv2 for a trial against the tidal currents and along the
tidal currents respectively.

Fig. 5(a) and 5(b) show the surge and sway velocity estima-
tions for trial number 5, when the vehicle is moving against the
tidal current. In this case the relative velocity is the sum of total
vehicle and water current velocity and DVL-WL and DPSSv2
should overestimate the velocity components. This can be seen
for both surge and sway directions. Additionally, it can be seen
that the DPSSv2 velocity estimation tracks the DVL-WL veloc-
ity estimations very closely for surge and sway components, as
the potential flow assumption holds in this case. The DPSSv2
further estimates velocity with less variance compared to the
DVL-WL estimations at the same effective sampling rate.

In contrast, Fig. 5(c) and 5(d) show the velocity estimates for
trial number 10, where the movement of the LAUV is along the
tidal current. The DVL-WL underestimates the total velocity
component in surge direction Fig. 5(c) due to the superimposed
velocity component of the current. For the sway component
in Fig. 5(d) a change in direction can be seen for the total
velocity, which is not reflected in the DVL-BL readings due
to the superimposed current flowing with an angle of attack
relative to the LAUV. The DPSSv2 velocity estimation for the
surge component is also underestimating the surge speed but
by a smaller margin compared to the DVL-Wl. Regarding the
sway component of the velocity the DPSSv2 fails to resolve
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the direction of the velocity component relative to the flow and
does not follow changes due to the lack of potential flow. This
lack of accurate relative velocity estimation, specifically in sway
direction, causes the great deviations for the heading angles of
the tidal current estimates in the global reference frame shown
in Fig. 4(b).

This inherent limitation of the DPSSv2 for situations, in
which it is not facing the flow, could be resolved through the
design of trajectories, which guarantee changes in the direction
of movement such as lawn mower patterns. It has been shown
in [33] and [34] that a few changes in heading can make water
relative velocities and water currents observable. Furthermore,
combining the DPSSv2 estimates with sparse GPS fixes, or
a model aided INS could provide those methods with in situ
velocity updates and subsequently help to correct the DPSSv2
errors for movements along the ambient flow. To that end, a
combination with many approaches presented in Section II is
conceivable.

The summary statistics in Table II also show a difference be-
tween higher and lower target vehicle velocities, with the median
absolute differences being smaller for the lower target velocity.
At first glance this is a surprising result, because the DPSSv2
velocity estimation should be more robust against disturbances
at higher vehicle velocities, due to the quadratic relationship
between pressure and velocity. However, the actual tidal current
velocity needs to be considered, which was smaller during slack
water. Due to the omission of the first four trials at low target
velocity, almost all lower target velocity trials were conducted
during ebb flow after slack water, which provided more stable
environmental conditions with higher tidal current velocities
(see Fig. 4). Another reason for the increased differences at
higher target velocities could be a performance degradation of
the DVL-WL for higher vehicle velocities as shown in [9].

However, in all cases were the potential flow assumption was
valid, the DPSSv2 tidal current estimation was close to the
DVL-WL with a median absolute (IQR) difference in global
tidal current magnitude of 0.03 m/s (0.043 m/s) and heading
of 8.13◦ (11.0◦). Those differences are close to the accuracy
bound, defined for the DPSS under field conditions reported
in [9] and at the same scale as estimation errors reported by
other approaches [16], [35]. The results show that the DPSSv2
can be a viable option to improve velocity estimation for vehicles
that can not equip state of the art sensors such as DVL or ADCP.

Another important factor for successful and reliable navi-
gation for AUVs, specifically in long term and/or deep sea
missions, is redundancy. Fig. 6 shows a case where the DVL
readings are corrupted by an unkown disturbance, whereas
the DPSSv2 readings are not affected. The addition of the
DPSSv2 to the sensor suite of a vehicle already equipped
with the state of the art velocity aiding technology could
thus provide additional reliability and stability for the velocity
estimation.

V. CONCLUSION AND FUTURE WORK

In this study we presented a flow-relative velocity sensor for
marine vehicles, using differential pressure. We expanded the

Fig. 6. Extract of the time series for velocity estimation of DVL and
DPSSv2 for a trial: From 55 s to 65 s the DVL returns false readings due
to unknown disturbances

capabilities of the sensor developed in our previous works [8], [9]
to measure velocity components in two dimensions (surge and
sway) and provided a design reducing size and weight compared
to the previous version. We validated the new prototype under
field conditions on an AUV. The presented DPSSv2 can be
used as a complementary sensor for existing sensor suites to
increase robustness and redundancy. The sensor can also provide
water-relative velocity information for navigation in conditions
were GPS and DVL-BL are not available such as mid-water
column operations. This has the potential to simplify the logistics
of long term experiments by decreasing the need for external
infrastructure such as support vessels or acoustic networks. With
a small form factor and low power requirements, 0.244 W versus
1.3 W for the deployed DVL, the device has the potential to
provide in situ velocity estimation to vehicles, which can not
equip state of the art velocity sensors due to size, budget or
energy restrictions. This work has shown that a robust planar
velocity estimation is already possible in operation conditions
that do not violate the potential flow assumptions. A combination
with other proposed methods and algorithms that quantify water
currents or fluid relative velocity has the potential to expand the
robustness of the DPSSv2 in situ velocity estimation to more
general conditions. While it is difficult to compare production
costs of fully developed products versus lab prototypes, we
estimate that the costs for the DPSSv2 are roughly one order
of magnitude smaller than the DVL used in this study.

We characterized the velocity estimation performance of
DPSSv2 under the influence of tidal currents and evaluated its
capability to estimate those tidal currents when combined with
a sensor providing total vehicle velocity estimates. The results
showed that in combination with a DVL-BL the DPSSv2 could
estimate tidal currents with a similar accuracy as the DVL-WL
when the sensor was facing the currents. The acquired tidal
current estimates can in turn be used to increase the precision
of navigation or to inform and update oceanographic models.
Future work will continue on three fronts: (1) expanding sensor
to 3D velocity estimation, (2) exploring the use of aiding sensors
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such as GPS or INS, and algorithms such as water current
observers to resolve problems when the sensor moves in line with
the current, and (3) producing a standalone navigation system
independent of other sources for vehicle velocity estimation.
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