
DOCTORAL THESIS

Automating Defences
against Cyber Operations in
Computer Networks

Mauno Pihelgas

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2021

TALLINN UNIVERSITY OF TECHNOLOGY DOCTORAL THESIS
36/2021

Automating Defences against Cyber
Operations in Computer Networks

MAUNO PIHELGAS

TALLINN UNIVERSITY OF TECHNOLOGYSchool of Information TechnologiesDepartment of Software Science
The dissertation was accepted for the defence of the degree of Doctor of Philosophy inComputer Science on 10 June 2021
Supervisor: Dr. Risto Vaarandi,

Department of Software Science, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Co-supervisor: Professor Dr. Olaf Manuel Maennel,
Department of Software Science, School of Information Technologies,
Tallinn University of Technology,
Tallinn, Estonia

Opponents: Professor Dr. Anja Feldmann,
Max Planck Institute for Informatics,
Saarbrücken, Germany
Professor Dr. Jan Vykopal,
Masaryk University,
Brno, Czechia

Defence of the thesis: 11 August 2021, Tallinn
Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Mauno Pihelgas signature

Copyright: Mauno Pihelgas, 2021 ISSN 2585-6898 (publication)ISBN 978-9949-83-718-2 (publication) ISSN 2585-6901 (PDF)ISBN 978-9949-83-719-9 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOL DOKTORITÖÖ
36/2021

Arvutivõrkude kaitse automatiseerimine
küberoperatsioonide vastu

MAUNO PIHELGAS

Contents

List of Publications . 8
Author’s Contributions to the Publications . 9
List of Abbreviations . 11
1 Introduction . 131.1 Research questions . 141.2 Contributions . 161.3 Thesis structure . 17
2 Related work . 182.1 Security metrics, situation awareness systems, and cyber security exercises 182.1.1 Security metrics research and general-purpose SA systems 182.1.2 CSX-specific SA systems and the use of CSXs as a proving groundfor novel research . 202.1.3 CSX background . 232.2 Detection capability improvement and validation. 242.2.1 Event log analysis and knowledge discovery . 242.2.2 Network security and anomaly detection . 252.3 AI and autonomy in cyber security . 272.3.1 Autonomous systems research . 282.3.2 Autonomous systems’ tournament. 28
3 Security metrics and situation awareness systems . 313.1 Production framework architecture . 323.1.1 Extracting security metrics from IDS/IPS alert logs 323.1.2 Extracting security metrics from NetFlow data . 333.1.3 Extracting security metrics from workstation logs . 343.1.4 Extracting security metrics from other event logs . 353.2 Discussion of open-source SA system capabilities . 353.3 Verifying system capabilities . 363.4 Comparison with related work . 37
4 Situation awareness systems for cyber security exercises . 384.1 Author’s involvement with CSXs . 384.2 Enhancing operator training quality during CSXs . 384.2.1 Crossed Swords . 394.2.2 Locked Shields . 394.3 CSX network layout . 404.4 Frankenstack . 404.4.1 Input data sources. 404.4.2 Data processing components . 424.4.3 Visualisation components. 434.4.4 Frankenstack developments since 2017 . 444.5 CSX Availability Scoring system . 474.5.1 Basics of availability scoring . 474.5.2 Availability calculation . 484.5.3 CSX-specific challenges . 49

5

4.5.4 Community contributions . 514.5.5 Availability Scoring system developments since 2018 524.6 Comparison with related work . 524.6.1 Cyber Conflict Exercise . 534.6.2 Cyber Czech . 53
5 Event log analysis and knowledge discovery . 555.1 Description of LogCluster . 555.2 Discussion of related work . 585.3 Comparison with newer log mining algorithm implementations 605.3.1 Experiment setup. 605.3.2 LogCluster results . 615.3.3 Comparison with Drain. 625.3.4 Comparison with LogMine . 645.3.5 Comparison with Spell . 655.3.6 Summary. 66
6 Covert data exfiltration and network anomaly detection . 686.1 Covert channel data exfiltration detection. 686.1.1 Comparison with related work . 726.2 Network anomaly detection . 736.2.1 Ensemble of anomaly detectors . 736.2.2 Flow pattern mining with LogCluster . 766.2.3 Evaluation. 776.2.4 Comparison with related work . 78
7 Towards autonomous cyber defence . 807.1 Autonomous intelligent cyber-defence agents . 807.1.1 Rationale of AICA . 807.1.2 AICA Reference Architecture. 817.2 Author’s contributions . 827.2.1 Agent’s sensing and World State Identification . 837.2.2 Use case of AICA. 857.3 Conclusion . 87
8 Thesis conclusions and future work discussion . 898.1 Summary and conclusions . 898.2 Future work . 90
List of Figures . 91
List of Tables . 92
References . 93
Acknowledgements . 105
Abstract . 106
Kokkuvõte . 107

6

Appendix 1 . 109
Appendix 2 . 117
Appendix 3 . 127
Appendix 4 . 135
Appendix 5 . 155
Appendix 6 . 163
Appendix 7. 175
Appendix 8 . 185
Appendix 9 . 209
Appendix 10 . 215
Appendix 11 . 227
Curriculum Vitae . 236
Elulookirjeldus . 239

7

List of Publications
I R. Vaarandi and M. Pihelgas. Using Security Logs for Collecting and Reporting Tech-nical Security Metrics. InMilitary Communications Conference (MILCOM), 2014 IEEE,pages 294–299, October 2014II R. Vaarandi and M. Pihelgas. LogCluster - A data clustering and pattern mining algo-rithm for event logs. In Network and Service Management (CNSM), 2015 11th Interna-
tional Conference on, pages 1–7, November 2015III R. Vaarandi, M. Kont, and M. Pihelgas. Event log analysis with the LogCluster tool.In MILCOM 2016 - 2016 IEEE Military Communications Conference, pages 982–987,November 2016IV B. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi. Creating and De-tecting IPv6 Transition Mechanism-Based Information Exfiltration Covert Channels.In Secure IT Systems: 21st Nordic Conference, NordSec 2016, Oulu, Finland, November
2-4, 2016. Proceedings, pages 85–100. Springer International Publishing, 2016V M. Kont, M. Pihelgas, K. Maennel, B. Blumbergs, and T. Lepik. Frankenstack: Towardreal-time Red Team feedback. InMILCOM 2017 - 2017 IEEE Military Communications
Conference (MILCOM), pages 400–405, October 2017VI M. Pihelgas. Design and Implementation of an Availability Scoring System for CyberDefence Exercises. In 14th International Conference on Cyber Warfare and Security
(ICCWS 2019), page 329–337, 2019VII P. Théron, A. Kott,M. Drašar, K. Rzadca, B. LeBlanc,M. Pihelgas, L.Mancini, andA. Pan-ico. Towards an active, autonomous and intelligent cyber defense of military systems:The NATO AICA reference architecture. In 2018 International Conference on Military
Communications and Information Systems (ICMCIS), pages 1–9, May 2018VIII P. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini, and F. de Gas-pari. Reference Architecture of an Autonomous Agent for Cyber Defense of ComplexMilitary Systems. In Adaptive Autonomous Secure Cyber Systems, pages 1–21, Cham,2020. Springer International PublishingIX A. Kott, P. Théron, L. V.Mancini, E. Dushku, A. Panico,M.Drašar, B. LeBlanc, P. Losiewicz,A. Guarino,M. Pihelgas, and K. Rzadca. An introductory preview of Autonomous Intel-ligent Cyber-defenseAgent reference architecture, release 2.0. The Journal of Defense
Modeling and Simulation, 17(1):51–54, 2020X R. Vaarandi and M. Pihelgas. NetFlow Based Framework for Identifying AnomalousEnd User Nodes. In 15th International Conference on Cyber Warfare and Security (IC-
CWS 2020), page 448–456, 2020XI M. Pihelgas and M. Kont. Frankenstack: Real-time Cyberattack Detection and Feed-back System for Technical Cyber Exercises. In 2021 IEEE CSR Workshop on Cyber
Ranges and Security Training (CRST). IEEE, July 2021. (Accepted paper)

8

Author’s Contributions to the Publications
I I conducted the background study on security metrics research, properties of goodsecurity metrics, and how to create an organisational security metrics program. Fur-thermore, I offered proposals and suggestions in the metrics selection process aswell as helped draw conclusions on the example security metrics extracted from theorganisational framework implementation.
II I conducted performance evaluation experiments of the LogCluster algorithm onLocked Shields data including both the final and intermediate versions of the algo-rithm. I also participated in the design anddevelopment discussions of the LogClusteralgorithm. During the development phase of the algorithm, I conducted a detailedevaluation of various data structures used by the cluster candidate support aggre-gation procedure, measuring how different data structures influence the algorithmperformance under heavy workloads.
III I participated in the discussions and helped create several novel LogCluster usageexamples presented in the paper.
IV I was responsible for describing the data exfiltration detection experiment and as-sembling the set of capture combinations of each exfiltration tool, source and desti-nation port number, transport layer protocol, and IP version. Altogether, 126 uniquepacket capture (PCAP) files were generated for analysis. We used dedicated mon-itoring nodes to run a selection of five popular open-source detection tools whichwould analyse each of these PCAP files, produce flow records, and potentially gener-ate alerts for suspicious activity. We presented the detection results in an extensivetable and I provided the detailed discussion of the detection results.
V I was the co-author of the cyberattack detection and feedback system designed toincrease the training benefit for the cyber red team participants during cyber ex-ercises. The authors organised a one-week hackathon during the Crossed Swords2017 Test Run for sprint-developing the Frankenstack framework—the near real-timetechnical feedback system for the cyber red team. I was responsible for designingthe post-processing, filtering and correlation engine to process raw events from in-trusion detection system, syslog, Windows logs. These transformed and correlated(i.e., meaningful) events were then displayed on feedback dashboard for the cyberred team to see and learn. The framework was successfully implemented and testedin the NATO CCD COE’s technical cyber security exercise Crossed Swords. Further-more, I provided input for the cyber red team situation awareness (SA) feedbackquestionnaire prior to the event and later analysed the feedback to extract valuabletakeaways for improving Frankenstack in the upcoming years.
VI I was the sole author of this paper and have been the primary designer, developerand implementer of the Availability Scoring system for the Locked Shields cyber de-fence exercise since 2014. The paper describes the design process and reasoningbehind various decisions made in the scoring system that has been used annuallysince 2014. The system provides automated scoring checks for a variety of systemsthroughout the exercise. While the framework employs many standard systemmon-itoring practices, one of the primary differentiators is the adversarial environmentin which the service availability checks have to be performed. It is in the winninginterest of participating teams to mislead the monitoring system in order to obtain abetter score for the availability of services.

9

VII This is the first of three publications on the topic of Autonomous Intelligent Cyber-defence Agents (AICA). Publication VII is based on the intermediate results of thework done by the NATO Science and Technology Organisation’s IST-152 Research TaskGroup (RTG) between 2016 and 2018. I was an active member of this research group.PublicationVII captures the primary concepts of the initial reference architecture [85]published by the IST-152 group. This preliminary research resulted in the publicationof the Initial Reference Architecture of an Intelligent Autonomous Agent for Cyber De-
fense [85], in which I directly contributed to the research and write-up of the Sensing
and World State Identification chapter. Correspondingly, I was the co-author of thesame chapter within Publication VII.

VIII This book chapter published in [68] is the second of three publications on the topic ofAICAs. This chapter is largely based on the second revision of the Autonomous Intel-
ligent Cyber-defense Agent (AICA) Reference Architecture report [86] that comprisesthe work done by the NATO IST-152 group between 2016 and 2019. In Publication VIII,I contributed to the research and write-up of section Sensing and World State Iden-
tification and was the primary author of section Use Cases that provides an examplescenario of AICAs being deployed within Unmanned Aerial Vehicles (UAV).

IX This journal article is the third of three publications on the topic of AICAs. Publi-cation IX serves as an introductory and overview article of the second revision ofthe Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architecture re-port [86] that concludes the work done by the NATO IST-152 RTG between 2016 and2019. Within this second release of the reference architecture, I directly contributedto the research and write-up of the Rationale of AICA and Scenario and Sensing and
World State Identification chapters.

X I provided input for the development and features of the novel detection frame-work. In later phases, I supported the work by looking through the analysed Net-Flow dataset to provide additional observations on the performance of the proposedmethods.
XI I was the primary author of this paper. The paper describes the research and de-velopment effort of Frankenstack following the initial paper (Publication V) in 2017.This latest publication describes the updated architecture, event normalisation, dataenrichment methods, and improved event processing within the newly developedversion. In addition to contributing most of the manuscript write-up, I was respon-sible for the development of the Exercise asset collection and Python event shippermodules described in the paper.

10

List of Abbreviations

ACK AcknowledgementAHEAD Attackers Hindered by Employing Active DefenseAICA Autonomous Intelligent Cyber-defence AgentsAIS Automatic Identification SystemAMD Advanced Micro DevicesAPI Application Programming InterfaceAPT Advanced Persistent ThreatARIMA Autoregressive Integrated Moving AverageARP Address Resolution ProtocolAWS Amazon Web ServicesBT Blue TeamCCD COE Cooperative Cyber Defence Centre of ExcellenceCDX Cyber Defence ExerciseCERT Computer Emergency Response TeamCGC Cyber Grand ChallengeCIS Center for Internet SecurityCPU Central Processing UnitCRS Cyber Reasoning SystemsCSX Cyber Security ExerciseDARPA Defense Advanced Research Projects AgencyDDoS Distributed Denial of ServiceDDR Double Data RateDGA Domain Generation AlgorithmDNS Domain Name SystemERSPAN Encapsulated Remote Switched Port AnalyserEWMA Exponentially Weighted Moving AverageFIN FinishGB GigabyteGiB GibibyteGNU GNU’s Not Unix!GPL GNU General Public LicenseGT Green TeamHDFS Hadoop Distributed File SystemHPC High-Performance ComputingHQ HeadquartersHTTP HyperText Transfer ProtocolICMP Internet Control Message ProtocolICS Industrial Control SystemICT Information and communications technologyIDS Intrusion Detection SystemIMAP Internet Message Access ProtocolIoC Indicator of CompromiseIoT Internet of ThingsIP Internet ProtocolIPv4 Internet Protocol version 4IPv6 Internet Protocol version 6IPFIX IP Flow Information Export
11

IPS Intrusion Protection SystemIPsec Internet Protocol SecurityISP Internet Service ProviderIST Information Systems TechnologyIT Information TechnologyJSON JavaScript Object NotationLCS Longes Common SubsequenceLS Locked ShieldsLTE Long-Term EvolutionMB MegabyteMiB MebibyteNATO North Atlantic Treaty OrganizationNCIA NATO Communications and Information AgencyNIST National Institute of Standards and TechnologyNOC Network Operations CenterNSM Network Security MonitoringNTP Network Time ProtocolPCAP Packet CapturePID Process IdentifierPLC Programmable Logic ControllerRT Red TeamRTG Research Task GroupSA Situation AwarenessSCADA Supervisory Control and Data AcquisitionSIEM Security Information and Event ManagementSITREP Situation ReportSLA Service-Level AgreementSMTP Simple Mail Transfer ProtocolSOC Security Operation CenterSSD Solid-State DriveSSH Secure ShellSSL Secure Sockets LayerSYN SynchroniseTCP Transmission Control ProtocolTICK Telegraf, InfluxDB, Chronograf, KapacitorTTL Time to LiveUAV Unmanned Aerial VehicleUDP User Datagram ProtocolUSB Universal Serial BusVLAN Virtual Local Area NetworkVM Virtual MachineVPN Virtual Private NetworkWSI World State IdentificationWT White TeamXS Crossed SwordsYT Yellow Team

12

1 Introduction
Over the last two decades computer networks have grown significantly. Modern systemsare becoming more complex and more difficult to test, operate, monitor, and defend.Along with the accelerated proliferation of interconnected systems, the attack surface formalicious actors has also increased.In order to discover problems and detect breaches in computer networks and con-nected systems, it has become common to collect and analyse network traffic and systemlogs from network devices, servers, and even workstations. However, for large organi-sations the amount of data collected on a daily basis can exceed hundreds of gigabytesand over the course of weeks terabytes of data accumulate. Just maintaining storage andcomputational requirements for timely analysis of such amount of data is difficult, how-ever, making sense of this data is even more challenging for the monitoring and securityanalysts. For the reasons above, it is essential for organisations to operate well-designedmonitoring and situation awareness (SA) systems which rely on advanced network moni-toring and system log analysis algorithms.Considering the increasing sophistication and level of automation employed by mali-cious actors, human operators’ reaction times are far too slow to take any defensive ac-tion before the adversary has already been able to disrupt the target systems. Defendingcomplex and highly interconnected systems will soon become overwhelming for humanoperators. To counter this critical tendency, cyber defenders must improve their moni-toring techniques and strive to implement better defensive solutions. Automation andadvances towards autonomous defences are pivotal in this endeavour.In recent years, the number of security appliances on the market has increased con-siderably. While it might be tempting to just connect one of these systems to the networkand expect them to just work and provide meaningful output on their own, this is gener-ally not the case. No system can effectively defend a complex organisational network outof the box. Instead, security systems must be customised and continuously maintainedin order to meet the organisation’s needs. Furthermore, such systems still rely heavily onthe expertise of their developers, administrators, and analysts, which is why it is crucial fororganisations to ensure adequate training for cyber defender to increase their readinessin this relatively new domain.Cyber exercises are a great way to enable cyber security experts to enhance their com-petence and skills in defending IT systems and networks under the stress of real-time at-tacks. Fictional, yet realistic scenarios turn a cyber security exercise (CSX) into an intrigu-ing experience for all participants. While proper tools and infrastructure are essential forlearning, they do not make an exercise successful by default. Instead, the progression andlearning experience of the participants has to be continuously measured and adapted inorder to maximise their learning benefit from the exercise. Providing participants contin-uous feedback throughout the exercise is crucial for improving skills in a fast-paced cyberexercise.In addition to training cyber security experts, cyber exercises offer an excellent op-portunity for verifying the design of security monitoring and SA tools and algorithms ina controlled exercise environment. The content of this thesis is intricately connected tocyber exercises, since many of the concepts, methods and algorithms discussed in thisthesis have been validated during cyber exercises.With all kinds of scientific and technological improvements organisations are still strug-gling with ensuring adequate level of security for their IT networks and systems. Even ifstandards and best practices are applied when installing andmaintaining the systems, thecurrent security posture is not really known unless appropriate full-stack monitoring ca-

13

pability has been set up. Although the need for security monitoring is generally agreedupon, it is often unclear how to build a useful monitoring solution. It is not possible togo from zero to hundred (e.g., from no capability to autonomous defences) with just onestep. Rather, it is a rigorous process which has to consider the basic steps before proceed-ing to more advanced challenges. This thesis aims to describe this process starting fromthe fundamental capabilities (e.g., specifying security metrics) and working up to devel-oping a tailored security solution that comprises advanced algorithms for log mining andnetwork security monitoring.Many organisations can operate some basic monitoring capability (e.g., log collectionor availability monitoring). First obstacles typically arise when the amount of collecteddata grows large. People are generally not particularly good at comprehending largeamounts of machine-generated data (e.g., event logs or technical metrics) and this databy itself is typically quite useless. It must be processed to extract relevant information andtransform it into actionable knowledge. Furthermore, it is often necessary to re-examinesome of those basic functions (e.g., event log processing or metrics gathering) to assurethat it actually supports the requirements of higher level security incident analysis. Sub-sequently, with improved data exploration capability operators often develop a particularinsight and a raised SA level regarding the environment they have to defend.While humans are struggling to understand the data, computers should bemaking thisprocess simpler. However, this is not always the case. One concern is thatmany traditionallog management and network analysis tools are not able to handle big data which createsa serious obstacle for security monitoring and analysis. Moreover, high performance so-lutions or commercial appliances are often not affordable for many smaller institutions.Furthermore, many standard tools do not provide the required functionality or enoughinformation, so the operator is forced to use multiple tools simultaneously to get a fullpicture of the situation. Tackling this problem requires a decent methodology, capabletools, and more efficient algorithms. Therefore, this thesis focuses on the use of open-source solutions for building efficient security monitoring frameworks.This thesis addresses problems in the areas of determining which metrics are rele-vant for security monitoring, how to build general-purpose and cyber-exercise-specific SAsystems, how to raise SA qualification and readiness of security system operators duringcyber exercises, how to implement and verify novel monitoring algorithms and frame-works for cyber defence, and improving defence by designing advanced intelligent agentsfor relieving the burden from human operators. In a long-term future outlook, the goal ofthis research is to advance monitoring and cyber defence techniques forward to a degreewhere it would be possible to consider a fully functional autonomous defence system incyber security. Eventually, leaving the human operator out of the immediate decision-making loop.A secondary objective of the thesis is to be a valuable source of information not justfor researchers but also for practitioners looking to implement similar systems. Therefore,this thesis aims to unite theoretical research with an abundance of practical guidanceand implementation examples. A similar approach has also been followed in most of theauthor’s publications presented as a part of this thesis.
1.1 Research questions
This thesis addresses three primary topics. For each topic, a short description and severalresearch questions aiming at specific nuances of the topics are provided. Table 1 outlinesthe relevant connections between research questions, thesis chapters, publications, andcontributions (described in subsection 1.2 below).

14

Security metrics and SA solutions in organisational and training environments It isoften unclear how to set up proper organisational monitoring and situation awarenesssolution—deciding which metrics to gather, how to process event logs, when to sendalerts, what to show on dashboards, etc.Useful security metrics and SA systems can only be built on a foundation that providesefficient monitoring capability. Although many security monitoring tools facilitate datacollection and data representation functions, they often lack the necessary systematicapproach for accommodating security metrics reporting and raising operator SA levels.Without proper tools andmonitoring capability, operators cannot effectively defend largenetworks. Furthermore, the tools and solutions have to support the operator’s ability totransform data into actionable knowledge.However, just providing the tools is often not enough—operators require a good learn-ing environment to practice using those tools, develop new skills, and advance existingones. CSXs provide an excellent training environment for cyber defenders in a realisticsetting without the fear of disrupting critical production systems.
RQ1.1. What information is relevant and in which form should it be displayed in the SAsystem to support operator’s ability to perceive and comprehend events and processes?
RQ1.2. How to verify that the SA system and its underlying algorithms are well-designedand provide adequate performance?
RQ1.3. How to design a CSX-specific SA and scoring systems?
RQ1.4. How to measure and improve the quality of operator training and learning experi-ence?
Enhancing security monitoring detection capability Computer networks are growing insize, complexity, bandwidth, and variety of connected devices. Consecutively, the grow-ing number of IT systems and applications are producing progressively larger volumes ofsystem and application logs. Protection of organisational assets and data requires contin-uous testing and improvement of security monitoring and SA systems. It is often requiredto improve existing methods and develop new algorithms to meet all the requirements.Verifying novel algorithms is necessary to ensure that the implementation works and is infact useful in the proposed environment.
RQ2.1. How to discover new knowledge from event logs for improving monitoring sys-tems?
RQ2.2. How to detect covert network communication channels and anomalous networktraffic?
Advancing towards autonomous cyber defence With the increasing level of sophisti-cation and automation employed by adversaries, protection of complex interconnectedsystems may soon become overwhelming for human cyber defenders. The third set ofresearch questions focuses on advancing research towards autonomous cyber defenceusing deployable autonomous intelligent agents. While this research has been driven bythe foreseeable evolution of military systems, it is likely that civil systems, such as com-plex interconnected systems or the increasing deployment of the Internet of Things (IoT)devices, will soon generate similar demands.

15

RQ3.1.What is the purpose and rationale of Autonomous Intelligent Cyber-defenceAgents(AICAs)?
RQ3.2. What are the required capabilities for AICAs?
RQ3.3. How can an AICA acquire data from the environment to reach an understandingof the current state of the world?

Table 1: Mapping of research questions to corresponding thesis chapters, publications, and contri-
butions.

Research Questions Chapters Publications ContributionsRQ1.1, RQ1.2 3 I, V 1, 2RQ1.3, RQ1.4 4 V, VI, XI 5, 6, 7RQ2.1 5 II, III 3RQ2.2 6 IV, X 4RQ3.1, RQ3.2, RQ3.3 7 VII, VIII, IX 8

1.2 Contributions
This thesis is based on a collection of publications in a journal and international confer-ences. The thesis explores the improvement of organisational security monitoring capa-bility and readiness to advance towards autonomous cyber defence systems. The the-sis captures recommendations for data collection, transformation, and analysis methodsalongside relevant data representation techniques. Furthermore, a data clustering andmining algorithm is proposed and later used to extend a novel NetFlow-based anomalydetection solution. Moreover, Frankenstack and cyber exercise Availability Scoring frame-works are described and verified in several iterations of cyber exercises. Finally, the con-cept and reference architecture for autonomous cyber-defence agents is proposed for thedefence of future military and civil systems.The main contributions of this thesis are:

1. Recommendations for security analyst’s toolkit. The thesis addresses determiningessential requirements such as security analysis and reporting tools having impor-tant features like drill-down functionality and ability to handle large amounts ofdata.
2. Recommendations for extracting, transforming, and reporting meaningful securitymetrics. Definingmeaningful securitymetrics is not easy but following certain guide-lines can benefit this process. While the cyber defenders are the primary targetaudience in this scope, other target groups are briefly discussed.
3. Novel data clustering and pattern mining algorithm (LogCluster) for textual eventlogs. Publicly available open-source implementation that has been verified withseveral production system event logs as well as custom logging formats from cyberexercise Availability Scoring logs. The thesis provides various use cases of advancedevent log analysis using the LogCluster tool implementation.
4. Covert channel and anomalous network node detection solutions. Extensive analy-sis of data exfiltration methods using covert channels and their detection capability

16

by various open-source network security monitoring tools. Additionally, a novelNetFlow-based anomaly detection framework which calculates an anomaly scoreof each end-user device by analysing network flows using a multi-step and multi-detector process. The framework employs the LogCluster algorithm to mine flowpatterns of nodes which had exhibited anomalous behaviour.
5. Review of existing CSX-specific SA and scoring frameworks. While the number ofvarious cyber exercises has been on the rise, there is little information availableabout the design and implementation of those exercises. More specifically, the the-sis demonstrates how SA and scoring systems within the exercises are built.
6. Development of near real-time cyberattack detection, analysis, and representationframework named Frankenstack. The novel framework provides timely feedbackand SA for exercise participants to increase the training benefits and learning ex-perience. A cyber security exercise environment was used to verify and test theimplementation of the framework.
7. Design of a cyber exercise Availability Scoring system to measure the effectivenessof defences against cyber red team attacks. The scoring system was verified andcontinuously improved during six annual iterations of cyber defence exercises.
8. Novel reference architecture for an Autonomous Intelligent Cyber-defence Agent(AICA). A concept designed for complex interconnected systems or limited-accessnetworks to which human security operators cannot connect easily or cannot de-liver fast enough reactions to cyberattacks. The deployment scope of the agentremains largely for military networks where the variety of authorised network ac-tivities are more limited. Nevertheless, those agents need to continuously learnand adapt because the adversary attack patterns are constantly evolving. The the-sis author’s contribution in this extensive research is primarily represented in theformulation of the agent’s Sensing andWorld State Identification functions as wellas the example AICA use case development.

1.3 Thesis structure
This thesis is divided into eight chapters. The Introduction (chapter 1) provided a briefoverview of the problem landscape, presented the reasoning as well as research ques-tions, and described contributions of the thesis.Chapter 2 provides an overview of related work in subsections following the structureof the topics discussed throughout the thesis. Note, that the following thesis chapters alsoinclude a dedicated section for an in-depth comparison of key similarities and differenceswith relevant work from other authors that has been published after the correspondingoriginal publications in this thesis.Chapter 3 handles establishing a proper organisational monitoring system in order tostart collecting security metrics and integrate data feeds into an open-source SA system.Chapter 4 describes the use of CSXs to improve and verify complex SA systems andenhance cyber defence operator readiness.Chapter 5 presents the novel LogCluster log mining algorithm for event log analysis.Chapter 6 details network security research on the discovery of covert data exfiltrationchannels and a novel NetFlow-based anomaly detection algorithm.Chapter 7 describes the reasoning behind the need for autonomous cyber-defenceagents and provides a brief overview of the AICA reference architecture.Finally, chapter 8 provides conclusions and outlines future work.

17

2 Related work
This section reviews the background and related work within the scope of the thesis. Thesection is divided into subtopics that are largely inspired by the groups of research ques-tions above. Additionally, research gaps are identified and contributions to address theseare emphasised.
2.1 Security metrics, situation awareness systems, and cyber security ex-

ercises
Over the years, researchers have struggled to establish what distinguishes a good securitymetric from a bad one. Furthermore, even good metrics can have distinct meaning fordifferent audiences. For example, a metric that is useful for a technical system engineer,might not mean much to a higher-level executive. Security metrics and situation aware-ness systems are closely related topics, since after identifying relevant security metrics fora given scope (e.g., company or state), it often makes sense to collect and visualise thesemetrics with a situation awareness system.
2.1.1 Security metrics research and general-purpose SA systems
There several academic papers, reports, case studies, and documents available on thetopic of security metrics. Although the notion of security metrics is defined in a slightlydifferent way in various papers, sources generally agree that a security metric refers to astandard of measurement.One of the earliest mentions of the term security metrics comes from Orlandi [130],however, the term was used in the context of measuring computer software quality interms of security, risk management and economics of software security. In [44] Geer,et al. identified substantial gaps in measuring information security—questions easily an-swered in business context had proved exceptionally difficult to answer by technical in-formation security experts. The authors stressed the need for defining rigorous securitymetrics and establishing a risk-management framework to effectively assess these met-rics.One of the earliest works which describes the implementation of an organisationalsecurity metrics program was an article [132] by Payne. Her paper provides the definitionand general information on security metrics. The report also discusses potential motiva-tion, as well as some daunting factors regarding committing to a securitymetrics program.Although the paper does not give technical recommendations for gathering data from ITsystems, it does offer general ideas that can help security managers and technical special-ists make the first steps towards implementing a security metrics program.A book [69] by Jaquith (also a co-author of an earlier work [44] mentioned above)describes the properties of a good metric and provides a detailed discussion on how toreport and visualise metrics. The book attempts to bridge themanagement’s quantitativeviewpoint with the technical approach typically taken by security professionals.The NIST article by Black et al. [16] emphasises the importance of the surroundingcontext to realise the full benefit securitymetrics. They introduce the notion of ameasure,which is a simple measurable system attribute without a surrounding context, while themetric is composed of one or moremeasures that are combined with relevant context.Security metrics have also been suggested for measuring some specific aspects of se-curity, such as cyber threats. A study paper [42] by Frye et al. discusses possible metricsfor characterising cyber threats arising from malicious organizations and individuals. Thestudy conducted in Sandia National Labs proposes the use of a threat matrix model to

18

assess the threats based on commitment and resources available to the threat actors.A comprehensive book [22] by Brotby and Hinson offers practical guidance and ex-amples of information security metrics. The authors propose a novel methodology (thePRAGMATIC approach) on how to better define, score and rank securitymetrics to identifythe ones thatwould be beneficial for various audiences. PRAGMATIC is an acronymof ninecriteria for describing and selecting metrics: Predictive, Relevant, Actionable, Genuine,
Meaningful, Accurate, Timely, Independent, Cheap. Each criterion assesses different at-tributes of a metric, using a scale of 0 to 100. Although the scoring is subjective, theauthors have provided some guidelines on how this assessment should be carried out.They have also included over 150 metrics as examples, allowing the reader to build his orher own metrics program.Kotenko and Doynikova [84] propose a technique to dynamically determine appropri-ate countermeasure selection for ongoing computer network attacks based on relevantsecurity metrics. The approach is established on a set of quantitative interrelated metricsthat are calculated based on attack graphs and service dependencies.In-depth survey papers by Pendelton et al. [134] and Ramos et al. [140] identified thestate-of-the-art security metrics and described what properties a desirable metric shouldexhibit. Both papers agree that quantifying the overall security state of interconnectedsystems is a difficult problem. Similarly, they conclude that current state of the art onlysupports decision-making rather than perfectly represents the security level.Since 2010 the Center for Internet Security has published and continuously developedthe CIS Critical Security Controls [24] that provide a set of 20 control groups along withnumber of proposed measures, metrics, thresholds, and guides that can be used acrossdifferent organizations to collect and analyse data on security processes and outcomes.In recent versions (since version 6 [23]) the CIS Controls have also adapted their defini-tions and terminology to differentiate the term measure from the term metrics basedon the aforementioned article by Black et al. [16]. Moreover, a recent update to version7.1 introduced a practical notion of implementation priority depending on the amount ofresources and level of expertise available in organizations [25]. In recent years, the CISCritical Security Controls have also been adopted by the SANS Institute and used in theirtraining courses (e.g., for SIEM and SOC operators) and research [148].To summarise the main ideas from aforementioned sources, the following commonkey properties of a good security metric can be identified:

• It is unambiguous and meaningful for predefined purposes while making sense tothe human analyst.
• Taking measurements of the metric should not involve significant costs.
• Measurements should be taken consistently using the samemethodology, with ap-propriate time frames between measurements, and preferably with an automateddata collection procedure.
• The metric should be expressed on a quantitative, not qualitative scale.
SA systems are typically a set of tools that work together to provide data storage, pro-cessing, analytical and visualisation capabilities. SA systems are generally used by moni-toring specialists or analysts in various organisational, national, or military security teams(e.g., in CSIRTs, NOCs, or SOCs). Appliances from commercial vendors might offer moreadvanced functionality compared to free and open-source software solutions, however,since this work focuses on open-source solutions, commercial tools are beyond the scopeof the thesis.

19

A recent paper by [78] Kohlrausch and Brin presented a set of securitymetrics for qual-ity assurance (QA) and SA that were supplemented by ARIMA (autoregressive integratedmoving average) time-series analysis models. They showed that these models can effec-tively support the security practitioners’ typical analysis process (e.g., baselining, detect-ing trends, forecasting future measurements to detect anomalies) of security and qualitymetrics. They demonstrated the applicability and usefulness of these metrics by integrat-ing the prototype system implementation into the QA processes and SA systems activelyused by CSIRTs and SOC security teams.
A paper [8] by Arendt et al. presented Ocelot, a SA and decision support visualisa-tion tool. The system features multiple viewing modes: visualisations as well as text-based interfaces to facilitate drill-down functionality for investigative purposes. The paperdescribes four primary modules of the system: a circle-packing visualisation componentcalled Petri Dish, a Filters panel for filtering the view the network based on host attributes,an Alerts panel to display relevant alerts, a Quarantine panel for taking an appropriate de-fensive action. The authors emphasise their attention for user-centric design for Ocelot.With that in mind, the tool only supports a somewhat limited set of six predefined defen-sive strategies that the operator can take for any group of network hosts.
Hall et al. have researched the problem of lacking SA communication in cross-domaincollaborations. In their work [51] they propose a model and present a use case based onthe collaboration between the cyber security and military operations teams. The authorsanalyse potential caveats and mistakes to avoid when building cross-domain SA systems.Their model relies extensively on Endsley’s well-known SA model [39] and aims to aid thedesign of future collaborative SA systems.
A research paper [45] by Graf et al. aims to replace human input requirement for ba-sic and repetitive SA analysis tasks by proposing a solution that combines modern dataanalysis techniques with anomaly detection and pre-existing user knowledge base. Theauthors describe the goal of bridging the critical gap between data collection and situationcomprehension—something that the complex human brain can do, but artificial systemscurrently lack. The fuzzy inference system has a feedback loop that constantly improvesexisting fuzzy rules based on the decision made. The system was evaluated as a decision-support system in a critical infrastructure in the cyber security domain.
Scaling up from SA systems used by organisational CERTs and SOCs, in a recent paper[15] Bahşi et al. have described a system architecture for a national-level SA that wouldsupport country’s everyday management and facilitate decision-making at various loca-tions and levels of government, local authorities, as well as the private sector. The paperdetails how the mapping of information flows between institutions enables the develop-ment of such a SA system. Furthermore, their work proposes a systematisation methodfor individual types of information flows to reduce their heterogeneity. In another recentpaper [107], Mõtus et al. discuss the issues related to the modelling process of such anational-level SA system based on the example of [15].

2.1.2 CSX-specific SA systems and the use of CSXs as a proving ground for novel research
Apart from general-purpose SA systems which have been described above, there is onespecial class of SA systems which has emerged during the recent years—cyber-exercise-specific SA systems. These systems are specifically designed for improving situation aware-ness during cyber exercises, andwhile traditional SA systems are oriented to cyber defend-ers, cyber-exercise-specific SA systems have been designed to provide situation awarenessnot only to the defending blue teams, but to all involved teams alike (e.g., the attacking redteam or the white team in charge of exercise control). A more comprehensive overview

20

of various team roles is provided below in section 2.1.3.
Moreover, cyber exercises introduce unique requirements. Most importantly, the ex-ercise must support a scoring system which measures the performance of participants.Furthermore, it is important to collect feedback and measure the learning experience ofparticipants during the exercise to improve the future iterations of the exercise.
While cyber exercises introduce several unique requirements, they have neverthelessproven to be an excellent testing ground for validating novel SA systems and securitymon-itoring algorithms. For example, deploying a novel SA system for a live exercise helps toassess its suitability for providing situation awareness during massive cyberattacks. How-ever, cyber exercises are not only useful for conducting live experiments with new sys-tems and algorithms, but they can provide large amounts of valuable data that could of-ten not be acquired from real environments. For example, a day’s worth of exercise datamight include traces of hundreds of cyberattacks that rarely happen inside organisationalnetworks. Furthermore, the controlled exercise environment enables to better establish

ground truth that can be later utilised for research validation. While these datasets areexercise specific, they often represent an interesting research topic on their own. Forexample, the data captured during an exercise enables improving learning efficiency dur-ing future exercises or predicting cyber defender’s potential performance during real-lifesituations.
Despite the usefulness of cyber exercises for validating novel SA systems and securitymonitoring algorithms, they have one unfortunate limitation—the number of large-scaleexercises that mimic real-life environments and situations is relatively low. Understand-ably, designing and organizing such exercises requires a great deal of effort and resources.Since these live exercises typically take place annually over a relatively short period oftime, the experiments conducted during an exercise have to be carefully planned andtimed, because theremight not be an opportunity to re-run the experiment several times.Moreover, elaborate details of military cyber exercises are sometimes not publicised dueto potentially sensitive content.
Research by Känzig et al. [71] aims to detect command and control (C&C) channelsin large networks without prior knowledge about the network characteristics. The au-thors leverage the notion that while benign traffic differs, malicious traffic bears similari-ties across networks. They trained a random forest classifier on a set of computationallyefficient features designed for the detection of C&C traffic. They verified their approachusing the NATO CCD COE’s Locked Shields exercise datasets. Results revealed that if theparticipants of the LS18 Swiss blue team had used the proposed system, they would havediscovered 10 out 12 C&C servers within first few hours of the exercise.
A publication [75] by Klein et al. compares two different machine learning techniques,i.e., the unsupervised autoencoder and the supervised gradient boosting machine meth-ods, on a partially labelled cyber defence exercise dataset. Both techniques were ableto classify known intrusions as malicious while surprisingly also discovering 50 previouslyunknown attacks in the analysed cyber exercise dataset.
In [7], Arendt et al. presented CyberPetri, a redesign of the aforementionedOcelot tool[8]. CyberPetri was used to provide real-time SA during the 2016 Cyber Defense Exercise.Primary aim of the tool was to provide high-level feedback to network analysts basedon exercise target systems’ service availability reports. The authors note scaling to largedatasets as a limitation. The exercise participants’ feedback revealed that the tool wasuseful for the exercise White Team (WT) high-level decision making, however, technicalspecialists weremore interested in improved exploratory capability for specific events andtime windows.

21

A paper [57] fromHenshel et al. proposed a performance assessmentmodel of humancyber defence teams and verified its applicability during the Cyber Shield 2015 exercise.While exercise data was captured during the game, most of the analysis was done post-mortem. For future iterations, the authors stress the need for real-time analysis of thecollected data in order to adapt training and assessment methods already during the ex-ercise. The capability to meaningfully analyse the collected data was the primary limitingfactor, as operators were not able to keep up with the huge amounts of incoming data.
Research paper [97] by K. Maennel has focused on measuring and improving learningeffectiveness at cyber exercises. Furthermore, a recent contribution [96] on team-learningassessment by K. Maennel et al. proposes an unobtrusive method that is based on min-ing textual information and metrics from situation reports (SITREPs) submitted by teamsduring cyber exercises. Since SITREPs are regularly filled in by blue teams as a part of theexercise, this approach would enable gathering relevant information without disturbingthe teams by conducting regular surveys and questionnaires throughout the exercise. An-other recent paper [40] by Ernits et al. discusses how technical event logs and metricsfrom the exercise game system can be transformed to measure skills and learning out-comes.
The work [26] by Chmelař describes the analysis of Crossed Swords 2020 exercise datausing the MITRE ATT&CK framework in order to create reports of red team progress. Al-though being currently created as part of a post-mortem analysis, the author proposesthat the reports could provide in-game overview and visualisation during the exercise.
A paper [72] by Kim et al. proposes a design for a universal cyber-physical battlefieldplatform to train defending ICS/SCADA systems within national critical infrastructures andsmart city solutions. The authors implemented and validated the solution during the 2017Cyber Conflict Exercise (CCE) as well as the 2018 and 2019 iterations of the Locked Shieldsexercise [114]. The CCE event itself is described in another paper [73] by Kim et al. In short,the CCE is a newly developed annual live-fire cyber exercise organized by the NationalSecurity Research Institute of South Korea. CCE is a competitive exercise between blueand red teams. In addition to explaining different roles and the in-game environment, thepaper by Kim et al. discusses the technical and operational challenges related to steeringthe exercise in the right direction while having only limited control over the red and blueteam activities.
There are several recent publications regarding a cyber security exercise called CyberCzech [28]. A group of authors from the Masaryk University in Brno, Czech Republic havedone extensive research on visual analytics, exercise feedback systems, and scoring sys-tems. In a lessons-learned overview [179], Vykopal et al. describe the Cyber Czech exercisewhich was directly inspired by the larger Locked Shields exercise. Another paper [126] byOšlejšek et al. evaluates the exercise preparation procedures as well as the systems anddata gathered during the exercise using a visual analytics process.
A recent article [164] by Tovarňák et al. describes the benefits of using network andsystem log data available from cyber exercises. The publication also argues that lack of re-alistic data in cyber-security research often leads to newly developed methods which arenot useful in practice. To remedy this problem, the authors have described and officiallyreleased the data [163] collected during the March 2019 exercise iteration.
Further research by Vykopal, Ošlejšek et al. in papers [178, 131] focuses on providingtimely feedback for the exercise participants during or directly after an exercise withoutany delay caused by a lengthy analysis process. The aim is tomaximize the learning benefitby providing feedback while the exercise experience is still fresh. They developed and val-idated an interactive visual feedback tool that presents a personalised timeline of exercise

22

objectives, relevant events, and scoring data for each exercise participant.
Finally, a recent publication [125] Ošlejšek et al. takes another look at the visual an-alytics process of hands-on cyber security trainings and proposes a conceptual model toimprove such cyber defence exercises. The discussion section brings out four key chal-lenges that must be overcome in order to improve the future visualisation domain: visu-alisation tools lack post-exercise reflection and SA capability, insight into learner’s edu-cational impact is still highly limited, general purpose monitoring and analysis tools lackexercise-specific requirements, and data processing and correlation cannot keep up withdata collection.

2.1.3 CSX background
The topic of organising CSXs was handled in a recent PhD thesis [18] by Blumbergs, how-ever, for the sake of completeness, a short description of exercises that are strongly linkedto this thesis will be summarised here as well. Blumbergs focused primarily on research-ing red team responsive operations and developing specialised CSXs to train such skills inan organised form. Comparatively, this thesis complements his work and makes use ofsuch exercises to predominantly verify novel algorithms and integrations of tools. Addi-tionally, an important segment of the thesis discusses the design and implementation ofCSX-specific monitoring and scoring systems to measure and improve the learning effec-tiveness of participants as well as the overall exercise quality in future iterations.

Locked Shields (LS) [115] is an annual game-based real-time CSX that has been organ-ised by the NATO Cooperative Cyber Defence Centre of Excellence (CCD COE) since 2010.Although the primary exercise goals are learning and cooperation, there is still a com-petitive element in the game—the defending blue teams (BTs) are scored on their opera-tional performance in several different interdisciplinary categories, e.g., defending againstcyberattacks, incident reporting, situation reporting, responding to scenario injects, andkeeping their systems functional to the end users. Scoring and team feedback are inte-gral elements of the exercise, because participants need to understand how well theyperformed with regards to the tasks set out for them.
As LS is a defence-oriented CSX the primary training audience of the exercise are theBTs. Other participants represent one of four additional teams: red team (attacks), yellowteam (situation awareness), green team (exercise infrastructure), and white team (exer-cise management, strategy game, media, etc.). BTs undertake the role of rapid-reactionteams sent to assist the fictional country of Berylia, which is in a long-standing conflictwith another fictitious country, Crimsonia, represented by the red team (RT). Althoughall teams have to prepare long in advance, the exercise takes place over just two days(approximately 8 hours per day) of intensive gameplay.
The exercise has been growing remarkably—in just a couple of years the number ofparticipants has risen from a few hundred tomore than a thousand. Training audience hascomprised more than 20 BTs in the past few years. Each BT is responsible for maintainingthe continuous and secure operation of about 150 physical and virtual hosts with severalscored services on each host. The exercise scoring and SA system keeps track of all checkresults and continuously calculates the uptime for each service. The availability pointsaccount for approximately one-third of the total positive score in the exercise. This isroughly the same as the amount of negative score that teams can get for successful attackscarried out by the RT. Therefore, teams need to balance the strategy between ensuringavailability and enforcing security wisely.
The BTs are tasked to defend a wide variety of conventional IT infrastructure as wellas special-purpose industrial systems. For example, Windows and Linux servers, Windows

23

and Linux workstations, FreeBSD servers and firewalls, industrial programmable logic con-trollers (PLCs), professional power management systems, drone flight controllers, and4G/LTE gateways. In addition to system administration and system hardening tasks, teamsare also assigned forensic and legal challenges as well as various injects from the whiteteam (WT). Therefore, BTs must incorporate specialists with a variety of skills to encom-pass all necessary expertise.
Crossed Swords (XS) [119] is another annual CSX that has been developed and or-ganised by the CCD COE since 2014. Overall, XS is closely related to its older sibling LS,however, the principal difference is that the roles of the training audience are reversed—instead of the BTs, it is now the RT that is playing out a responsive cyber-kinetic scenario.RT has to work as a united team, uncover an unknown game network, and complete a setof technical challenges and collect evidence for attribution. All this must be accomplishedwhile staying as stealthy as possible.On the tactical level, RT consists of multiple sub-teams based on the skills and engage-ment specifics. Specifically, the network team targets network services, protocols androuting; client-side team exploits human operators and maintains foothold in the inter-nal network segments; web team targets web services, applications and any associateddatabases; digital forensics team performs data extraction and artefact collection; andkinetic forces team provides support in operations that require a kinetic element suchas physical surveillance, intelligence collection, hardware extraction, forced entry, targetcapture, etc. It is important to note that XS is not a capture-the-flag competition. Thesesub-teams are not competing with one another, but rather serve as specialised divisionsof a singlemilitary detachment. The scenario is constructed in a way that these sub-teamsmust coordinate their actions, share intelligence, pivot between sub-objectives, and co-operate when executing attacks to complete the exercise goals.

2.2 Detection capability improvement and validation
This subsection describes work related to various detection concepts, methods and algo-rithms presented in this thesis.
2.2.1 Event log analysis and knowledge discovery
Modern systems often produce large volumes of system and application logs. Event pat-tern mining is an important log management task in order to discover frequent patternsof events. However, in some cases the opposite applies—infrequent events might be themost crucial ones to look out for while being the easiest to miss in a large number ofevents.Vaarandi developed one of the earliest event log frequent pattern mining algorithmscalled SLCT [167] which has been applied in various log monitoring domains such as intru-sion detection alert processing [177], detection of recurrent fault conditions [144, 143] andevent log visualisation [99]. These publications have also identified several shortcomingsin SLCT, such as inability to detect wildcard suffixes in line patterns, sensitivity to wordposition shifts as well as delimiter noise, and needless overfitting when pattern mining isconducted with low support thresholds.Makanju developed a hierarchical clustering algorithm IPLoM [100, 98] that starts withthe entire event log as a single partition and splits it into sub-partitions during three it-erative steps after which a line pattern is derived for each partition. Splitting dependson various criteria, such as the number of words in a line as well as affiliations betweenword pairs. IPLoM algorithm does not need a user-specified support threshold but takesseveral other threshold parameters which impose fine-grained control over partition split-

24

ting. Like SLCT, IPLoM is sensitive to shifts in word positions, however, unlike SLCT, IPLoMcan identify wildcard suffixes in line patterns.
Reidemeister et al. developed a methodology that uses event log mining techniquesfor diagnosing recurrent faults in software systems. The work [144, 143] describes a mod-ified version of SLCT, that handles delimiter noise and shifts in word positions. To achievethis, the results from SLCT are clustered further with a single-linkage clustering algorithmwhich employs a variant of the Levenshtein distance function. Detected knowledge is thenharnessed for building decision tree classifiers to identify potential faults in future events.
A paper [52] byHamooni et al. describes a fast pattern recognitionmethod for log anal-ysis called LogMine. It is an unsupervised framework that only makes one pass over theinput logs and generates a hierarchy of patterns. The framework can be scaled out tomul-tiple parallel processing nodes. For measuring the performance of LogMine, the experi-ments were conducted using three proprietary and three publicly available log datasets.
Du and Li developed an online streaming event log parser called Spell [34]. The namestands for Streaming Parser for Event Logs using an LCS (longest common subsequence).Searching is accelerated by subsequence matching and use of a prefix tree. The compara-tive experiments were performed using the well-known and long-lived high-performancecomputing (HPC) cluster logs from the Los Alamos National Laboratory and the Blue-Gene/L (BGL) supercomputer logs [166]. The authors state that Spell was able to out-perform the efficiency of offline methods such as IPLoM and another clustering-based logparser [43] proposed by Fu et al. The authors recommend pre-filtering to improve effi-ciency of the method even further.
Another online streaming log parser called Drain [55] was proposed by He et al. Theauthors report a 51%–81% improvement in runtime compared to the Spell tool. The searchprocess is accelerated by using a fixed depth parse tree, which uses purpose-designedrules for parsing log messages. Evaluation log datasets comprised the aforementionedHPC and BGL logs as well as Hadoop File System, Apache Zookeeper, and Proxifier logs.
Messaoudi et al. have tackled the problem of log message format identification bycoming up with approach called MoLFI (Multi-objective Log message Format Identifica-tion) [103] to search for a Pareto optimal set of message templates for logs. They em-ployed a search-based solution based on themulti-objective genetic algorithm and trade-off analysis. MoLFI was evaluated with six log datasets of various size and type. Accuracyandperformancewere compared against the IPLoMandDrain tools. The authors reportedhigher accuracy and scalability compared to the previous approaches.
Finally, a comparative evaluation study [183] by Zhu et al. offers a detailed overview of13 automated log parsers released over the last two decades. Among others, they havealso re-analysed all of the aforementioned event log analysis tools to offer a broader com-parison of their capabilities. Furthermore, the authors have released a public Logparserrepository that comprises all 13 tools allowing to conveniently compare their performancefor different types of logs [94]. Log datasets used in the evaluation process included 16sources of various size and type. Additionally, the authors have provided an overviewof ten industrial log analysis and management tools, making the effort to bridge the gapbetween industrial and academic research in this field.

2.2.2 Network security and anomaly detection
Over the years, the number and level of sophistication of cyberattacks against end usershave grown significantly. Unfortunately, traditional rule- and signature-based technolo-gies (e.g., network IDS/IPS and next generation firewalls) have their drawbacks and areonly able to detect previously known attack patterns. Furthermore, the adoption of Inter-

25

net Protocol Version 6 (IPv6) has opened up a wide scope of new potential attack vectors,such as network IDS/IPS evasion and data exfiltration [11, 108].
Niemi et al. presented Evader [123] which can create combinations of multiple atomicnetwork level evasion techniques (inter alia, IPv4/IPv6 dual-stack evasions). They foundthat combiningmultiple evasion techniques enables potential evasion of detection byma-jority of network IDS/IPS solutions.
A recent paper [101] by Mazurczyk et al. investigates various IPv6 covert channels de-ployed in the wild. The authors evaluated six different data hiding techniques for IPv6 in-cluding their ability to bypass some IDS solutions. They conclude that the hiding capacityof real networks (e.g., using cloud providers such as Digital Ocean or Amazon Web Ser-vices) is less than what is proposed by theoretical research. They also criticise the lack ofrelated work which would employ IPv6 protocol and real networks in their covert channeldetection research.
Considering the aforementioned limitations of traditional rule-based technologies, theuse of network traffic pattern analysis and anomaly detection of end user nodes has be-come an important research problem that has been tackled by many. Furthermore, fullpacket capture in high-speed networks is often infeasible due to substantial computa-tional requirements. Even with NetFlow, sampled traffic is often used in backbone linksinstead of analysing all the traversing flows.
In [181], Wendzel and Zander employed supervised machine learning to detect proto-col switching covert channels (PSCCs). They monitored the number of packets betweennetwork protocol switches and the time interval between switches. Their solution wasable to achieve a 98-99% detection accuracy for high bitrate transmissions, however theauthors conclude that for busy networks this might still result in a high number of falsepositives as vast majority of the traffic is usually normal traffic.
An article [21] by Brauckhoff et al. presents an algorithm which generates histogramsof flow features (e.g., source or destination ports) between fixed measurement intervals.Each histogram effectively serves as a flow feature distribution. An alert is returned forthe operator if the Kullback-Leibler distance between current and previous interval distri-butions exceeds a given threshold. Suspicious flow records are then processed with theApriori frequent itemset mining algorithm.
A paper [169] by Vaarandi proposed two unsupervised anomaly detection algorithmsthat are applicable in organizational networks. The first algorithm analyses recently usednetwork services and maintains a behaviour profile for each node. An alarm is raised ifa node connects to an unusual service. The second algorithm detects clusters of nodesthat use the same set of services on a daily basis. An alarm is raised if a node’s behaviourdeviates from its prior group.
A paper [48] by Grill et al. investigatesmalware that uses domain generation algorithm(DGA). The authors suggest using a statistical approach and measure the ratio of DNSrequests to the number of IP addresses contacted by the host. The authors expect theinfected hosts to try to resolve more domain names during a short period of time withoutactually connecting to a corresponding amount of IP addresses.
Zhou et al. have presented ENTvis [182], a tool which divides network flows into timeframes, and for each period calculates both source and destination IP and port entropies.The results are visualized with several techniques (e.g., visual clustering) which enablesoperators to detect and investigate anomalies.
Hofstede et al. published an extensive tutorial [58] providing an in-depth overview ofnetwork security monitoring using NetFlow and IPFIX. Moreover, a paper [59] by Hofst-ede et al. introduces a near real-time intrusion detection and mitigation approach that

26

integrates with NetFlow and IPFIX flow exporters. The solution uses the exponentiallyweighted moving average (EWMA) based algorithm for DDoS detection by tracking thenumber of flows. In case of an unexpected change, the algorithm can create firewall rulesfor blocking malicious traffic.NetFlow analysis and machine learning have been used for DDoS detection in high-speed backbone network links. A paper [60] by Hou et al. proposes random forest classi-fiers for DDoS detection. The solution proved efficient in analysing real ISP NetFlow logsand achieved the classification accuracy of 99% and less than 0.5% false-positive rate inlab experiments containing real benign traffic and simulated DDoS attacks.Finally, the paper [71] by Känzig et al. which was mentioned under the 2.1.2 cyber ex-ercises subsection is relevant in this section as well. To reiterate, the authors proposedan approach train a random forest classifier on an efficient set of network traffic featuresto detect C&C channels in large network without prior knowledge of the network. Theyreported 99% precision and over 90% recall in near real-time detection while keeping theresource requirements within realistic bounds. The authors propose further evaluation infuture LS exercise iterations.
2.3 AI and autonomy in cyber security
Topics such as artificial intelligence, autonomy andmachine learning have been a researchsubject formany decades with some underlying foundations (e.g., probability theory) dat-ing back centuries. AI and autonomous systems research has initiated various academicconferences [62, 63, 64] and practical applications such as signal processing, underwaterexploration, autonomous navigation, and more recently also cyber defences.Moreover, during the last decade, the use of these terms has skyrocketed as the hightechnology industry has begun boosting the technological advances at an acceleratedpace. Although not directly related to cyber security, the general tendency of introducingautonomous technology is definitely on the rise. Autonomous vehicles (e.g., Tesla’s Au-topilot [157]) and robots (e.g., by Boston Dynamics [20] and Starship Technologies [155])are being tested in public and will likely abide next to us in everyday life even more thannow. Additionally, extensive research and development progress is made in the develop-ment of military-purpose autonomous vehicles (e.g., by Milrem Robotics [105]). Effortstowards autonomy is not pursued only in vehicles or robots—it can be true for any tech-nological device or even software. So called smart technologies and IoT devices are per-meating our lives at an increasing speed, resulting in smart household appliances, smartbuildings, and smart cities [158].When looking at all this technology from the cyber security perspective, there is onething that is in common for most if not all such modern systems—they are largely inter-connected and depend on a myriad of ICT components to function properly. Moreover,the security of such highly complex devices is difficult to audit and assure.Even if technology industry is moving towards developing autonomous systems, theprocess of detecting and especially countering new cyberattacks and malware infectionvectors is unfortunately still largely artisanal. In [87], Kott and Theron claim that today’scyber defence tools are still not capable of planning and executing dynamic responses toattacks, nor are they able to plan and take action after an incident has occurred—thesecore tasks are still left to human operators (e.g., cyber defenders, incident responders,and administrators). However, given the complexity of today’s systems and networks,fully automated attack detection and mitigation would considerably increase the speedof security incident resolution and lessen the damage from such incidents. In this section,related work on automated cyber defence with intelligent agents is discussed.

27

2.3.1 Autonomous systems research
The focus of the following relatedwork is on the recent use of AI and autonomous systemsfor cyber security.

In one of the leading textbooks in the field of AI [146], Russell and Norvig present theidea of intelligent agents that can perceive the environment and perform actions. Differ-ent agents may fulfil various functions depending on the environment, tasks, and goals.
Learning is one of the key capabilities of the agents and is necessary to avoid manuallyconstructing large common-sense knowledge bases—an approach that has not fared wellup until now.

A paper [137] by Preden et al. presents a distributed sensor system where the primarycomputation is pushed to the edge of the network where the sensor data is generatedinstead of collecting everything centrally. This is especially useful for low bandwidth net-works (e.g., in deployed military operations). This allows the individual edge systems tomaintain a high level of autonomy. In addition to central communication, sensors are ableto collaborate among themselves by utilizing the Fog Computing paradigm and applyingData to Decision concepts.
De Gaspari et al. argue that instead of building complex honeypots identical to theproduction systems they are supposed to defend, production systems themselves shouldbe designed in a way to provide active defence and deception capabilities. The paper[30] proposes a system called Attackers Hindered by Employing Active Defense (AHEAD),which slows down the attacker and provides incident responders with enough time toidentify and monitor the intruder in action.
Guarino studied the potential implications arising from the use of autonomous agentsin offensive cyber operations. The paper [49] provides an overview of underlying science,taxonomy, and state of the art of intelligent agents as well as the reasoning behind theuse of agents. Furthermore, the author has examined the potential legal implications andhow the use of agents might fit into existing legal and doctrinal frameworks. The paperconcludes that while truly autonomous agents did not exist at the time of writing, it isonly a matter of time when they would be developed and deployed, and it would be bestto be prepared both technologically as well as legally.
Tyugu discussed the increasingly relevant research topic of intelligent autonomouscyber weapons. The paper [165] considers several unintended critical behaviours of au-tonomous cyber weapons: situation misunderstanding, commandmisinterpretation, lossof contact, and establishment of unwanted coalitions. Considering a longer timeframe,with the growing level of intelligence and autonomy these systems will be increasinglydifficult to control—essentially leaving the human out of the control loop. The paperstresses that the developer of the weapon must put in appropriate control mechanismsthat would allow to override the weapon under any circumstance. Furthermore, in recentyears, interest in the topic of autonomousweapons has been extending well beyond tech-nical discussions, engaging policy [56] and legal researchers [180, 92] as well as inspiringworkshops [17] and debates [9].

2.3.2 Autonomous systems’ tournament
One of the largest autonomous system competitions was set up by Defense Advanced Re-search Projects Agency (DARPA) in 2016. This subsection describes theDARPACyberGrandChallenge as well as the Cyber Reasoning Systems (CRS) and strategies implemented bythe top three teams in the DARPA CGC.

Compared to previous endeavours, DARPA took a more practical approach when theylaunched the Cyber Grand Challenge (CGC) [31], a competition to develop automated,
28

scalable, machine-speed vulnerability detection and patching systems capable of reason-ing about flaws, formulating patches and deploying them on a network in real time. Over100 participants joined the competition while only seven made it to the final event inthe summer of 2016. Prize pool of over 3.5 million USD for the top three teams sparkedinterest and pushed teams to solve the tough research challenges. Each team had to de-velop a CRS that would automatically identify software flaws, and scan a purpose-built,air-gapped network to identify affected hosts—all this autonomously without any humaninteraction. The teams were given approximately two years to prepare for the challenge[14].
For 12 hours CRSs had to autonomously protect the target hosts, scan the networkfor vulnerabilities, and maintain the correct function of software [32]. According to [122],the score calculation algorithm comprised three components: system availability, securi-ty/vulnerability, and attack success evaluation. Each component was actively scored in afive-minute time window to determine the top performing teams. The teams were notprovided with exact details of the scoring logic to deter their attempts to trick the scoringsystem instead of playing the game in a graceful manner. Furthermore, since players couldsend malicious input to other CRSs during the game, teams had to think of implementingcounter-autonomy countermeasures (e.g., minimising attack surface, isolating faults, andsandboxing application) for their systems in order to be resilient to such adversarial tech-niques.
An article [150] by Shoshitaishvili et al. describes the CRS called Mechanical Phish thatwas created by the team Shellphish. The authors reveal the modular architecture of theirCRS and state that the entire code base for Mechanical Phish was about 100,000 lines ofcode (LoC). Their central software component was called angr [3, 151], a binary analysisframework integrating various different binary analysis techniques. The authors hold theirreservation about the efficacy of deployingMechanical Phish in real world systems, as thiswas just an initial step, a prototype towards an autonomous cyber agent deployed in arealistic scenario.
Xandra, the CRS created by the team called TECHx, is described in the paper [122]by Nguyen-Tuong et al. The essential component of their system was the Helix binaryanalysis platform along with Zipr [54], the static rewriter framework capable of patchingarbitrary binaries in a space- and time-efficient manner. The paper also describes thenetwork packet capture analysis and use of network IDS to monitor and modify networktraffic. The team takes pride in the efficiency of their system by bringing out the fact thatXandra consumed the least amount of power than any of the competitor system.
Mayhem, the CRS developed by the team For All Secure that won the DARPA CGC,is described in a paper [14] by Avgerinos et al. For its defence, the system made use oftwo different binary patching techniques, namely the full-function rewriting and themoreconservative injectionmulti-patching approaches. Their system did not use a network IDScomponent because the developers reasoned that maintaining a signature-based rule-set against polymorphic exploits would not prove good enough. Furthermore, the paperincludes an extensive discussion on choosing the correct strategy throughout the cyberdefence game (e.g., how to make the best use of limited resources or how to choose acorrect patching procedure).
The binary patching capability as well as patching strategy selection seems to haveplayed a critical role in determining the winner. All three top teams describe the strategyselection as one of the cornerstones of their success or failure. The teams seemed to havedistinguished between threemain strategies: always patch everything as soon as possible,patch only if exploited, or never patch. The first (always patch) might seem reasonable,

29

however, not all services were attacked in every scoring round and many teams caused aservice to fail because of a poor patch even if it was not attacked. The second (patch ifexploited) seems to have been the more reliable option within the rules and constraintsof the game. Mechanical Phish (III place) chose the always-patch strategy while Xandra(II place) and Mayhem (I place) opted for the patch-if-exploited strategy.

30

3 Security metrics and situation awareness systems
Measuring organisational security has long been in the interest of security managers, an-alysts as well as researchers. Having well-established history of quantifiable security logsand metrics allows to better understand organisational security posture, predict futuretrends based on historic data analysis, support decision-making in setting up proper se-curity mechanisms, and respond more effectively to security incidents. Furthermore, inorder to take action, presenting this information to operators (analysts, security experts,administrators, etc.) in a clear, understandable, and actionable manner is of crucial im-portance. Finally, these systems alone are not particularly useful without skilled operatorsto constantly observe, maintain and improve these systems. Therefore, operators have tobe trained in order to develop their skills as well as kept up to speed with state-of-the-arttechnology.

However, it is often unclear how to effectively measure security within the context ofa state, organisation, computer network, or even a single system. The identification ofrelevant security metrics for a given scope is a difficult task but does not serve the finalpurposewithout a proper technical solution to collect, analyse, and visualise them. There-fore, implementing an SA systemand customising it according to the specific requirementsof the security analyst’s team is a sensible and important next step. While many technicalsecurity monitoring tools provide data collection and generic representation functional-ity, they often lack a rigorous and systematic approach in the context of security metricsand SA reports.
While the amount of existing publications on this topic (analysed in section 2.1.1) issubstantial, the proposed methodologies often provide generic recommendations whichlack concrete examples or specifics for implementing a security metrics collection systemas well as practical advice for integrating it with SA systems. There is an apparent re-search gap in utilising the proposed recommendations in practice. Even if modern moni-toring and SA tools have the necessary functionality to customise the solutions accordingto one’s requirements, operators seem to be struggling in applying the theoretical adviceinto practice.
This chapter addresses the gap by describing the process of extracting, transforming,and reporting meaningful security metrics that are facilitated by following certain practi-cal guidelines. While the cyber defenders are the primary operators and target audiencein this scope, other target groups are briefly discussed to illustrate the different informa-tion requirements of each group. Additionally, the work discusses essential functionalityrequirements for security analyst’s toolkit in order to enable them to efficiently analyseand report the information gathered into the SA system.
Furthermore, a good security metrics and SA system can only be built on a solid mon-itoring solution that encompasses event logs, network data, and IT asset management.Thus, many of the underlying information sources and data requirements will also be ad-dressed. To exemplify specific use cases, the thesis makes use of an organisational pro-duction metrics and SA framework used for extracting and reporting security metrics (de-scribed in detail in Publication I). The framework employs four primary data sources—IDS/IPS alert logs, NetFlow data, workstation logs, and other events (e.g., infrastructure,service, or application logs)—that are generally available and used in organisational envi-ronments. The framework demonstrates how common data sources can be leveraged forgathering security metrics and how this information can be presented in open-source SAsystems.
This chapter addresses research questions RQ1.1 andRQ1.2. The researchwas originallypublished in Publications I and V. Thesis contributions 1 and 2 are described.

31

3.1 Production framework architecture
The described metrics and reporting framework had been implemented in a large insti-tution which had a complex computer network consisting of thousands of workstations,servers, network devices, IDSs, firewalls, and other nodes.

According to the common identifiers of good security metrics (as identified in Publica-tion I as well as in related work subsection 2.1.1), the collection of metrics should not incursignificant cost and should preferably be automated in order to have consistent measure-ment methodology and interval. Thus, the framework leveraged a centralised design, i.e.,all of the data was collected centrally for analysis and long-term storage. This approachsignificantly reduced the complexity of the framework, as edge nodes only had to submitevent logs and network data once, instead of the reaching out to edge nodes over thenetwork during the analysis phase. Furthermore, this enabled performing the resourceintensive computations on the central dedicated hardware instead of placing additionalload on the edge nodes and potentially interfering with active users.
The framework processed approximately 100 million log records per day (excludingNetFlow data). Handling such volumes of data requires deliberate planning and efficienttools. The system makes extensive use of the syslog and NetFlow protocols for collect-ing event logs and network flow data. The rsyslog tool was used to receive, parse, andforward syslog events. For event logs which do not natively support the syslog protocol,applicable conversion tools were used. For example, NXLog tool [124] was used to convertand transmit Microsoft Windows Event Logmessages to the central log collection servers.Logstash [38] was primarily used for parsing more complex syslog events and forwardingNetFlow data to Elasticsearch. All data from the collectors was forwarded to the Elastic-search [36] for indexing and support for extensive search functionality. The simplest wayto access and explore the data stored in the Elasticsearch was using the Kibana tool [37].It provided end users a flexible interface for writing search queries, drilling down into rawdata, defining visualisations, and composing various dashboards. Event correlation taskswere handled by SEC [171], which also extracted several security metrics and sent themto the Graphite tool [159], a numeric time-series storage and graphing tool. In addition tocollecting NetFlow data to Elasticsearch and visualising it with Kibana, NetFlow was alsovisualised with NfSen [121], a simple yet powerful graphical frontend for comprehensiveNetFlow analysis.

3.1.1 Extracting security metrics from IDS/IPS alert logs
Organisations typically operate various IDS/IPS solutions to protect their network. Logsfrom IDS solutions are commonly collected and critical alerts are displayed to the securityoperators for additional verification and potential escalation. While an IPS can defend anetwork independently, they still require regular supervision and updates, because anymisconfiguration or outdated signature may result in legitimate traffic being dropped orcyberattack left unnoticed. While these alerts are of crucial importance to organisation’ssecurity monitoring, it makes sense to analyse these logs in a slightly wider scope to iden-tify trends and patterns in time. For example, a steady number of low severity alerts overa longer period can signify a low threshold probing activity by an APT. In such security sys-tems it is common to determine the amount IDS alarms per hour, day, week, and presentthis as a time-series data to the security analyst. Additional filtering attributes can pro-vide more meaningful results. For instance, describing additional metrics based the typeof alert (e.g., malware-related alerts, perimeter scanning activity, etc.) or classification ofaffected services and networks (e.g., public services, internal services, workstations, etc.).Any unexpected change or anomaly in the IDS-related metrics should be investigated by

32

the security analyst.
There are several caveats that one has to consider when working with IDS/IPS rulesand alerts. Many available rulesets (e.g., the Emerging Threats ruleset [138]) are publishedwith a large number of generic rules that are enabled by default. For instance, there arerules that alert on various software update services or even the ICMP ping activity. De-pending on the monitored environment these rules can make sense—for example, in anetwork segment with just Microsoft Windows workstations it would be wise to monitorfor network activity emanating from non-Windowsmachines. The presence of such activ-ity could indicate a rogue or malicious device connected to the network. However, havingsuch rules might prove to be too noisy in some volatile environments where people areallowed to connect their personal devices into the network. To clarify, these alerts shouldnot be considered as false positive, because they work as intended, however, dependingon the type of nodes and activity allowed on the network, some rules would have to betuned or disabled for specific environments. This is a normal rule-management processtypical for any IDS/IPS ruleset.
Unfortunately, IDS signatures are also known to cause false-positive alerts. For exam-ple, a rule that was previously known to function as intendedmight suddenly start to pro-ducemany alerts. This might be inadvertently caused by external factors such as softwareupdates or changes in configuration. For example, some anti-virus definition updates havebeen known to cause false-positive alerts because the downloaded definitions are incor-rectly classified as malware retrieval. Consequently, if too many false positive IDS alertsoccur, it can seriously affect the quality of collected security metrics. This introduces arequirement to be able to exclude certain alerts from further processing. Additionally,there is the issue of background noise produced by frequent bad traffic emanating fromwell-known internet scanners and worms. To handle such cases, an IDS alert classifica-tion system could be used to distinguish noise from more relevant alarms. Vaarandi andPodin, š have published an algorithm in [177] for that purpose based on frequent itemsetmining and data clustering techniques. This method would allow to present the securityanalyst only with relevant alarms.

3.1.2 Extracting security metrics from NetFlow data
Collecting network traffic statistics using NetFlow can provide several interesting metrics.Although IDS/IPS solutions can analyse and collect data in an analogous format comparedto the NetFlow protocol, the latter does provide some advantages over the more com-prehensive IDS/IPS counterpart. The NetFlow protocol does not analyse and store fullpacket payloads and is therefore more lightweight in terms of computational and stor-age requirements. Furthermore, the NetFlow protocol is supported on most professionalnetwork devices (e.g., switches, routers), whereas installing a full-blown IDS/IPS wouldtypically require dedicated hardware. This makes collecting network flows more feasibleeven inside smaller private networks. On high-speed backbone links, where full NetFlowcollection would consume too many resources, traffic sampling can be set up to only pro-cess a small portion (e.g., 0.01%) of all packets. Contrariwise, sending sampled networktraffic to an IDS/IPS would not provide a similar result and would instead hamper the sys-tem. This happens because those tools are designed to assemble full network sessions inorder to reconstruct and analyse the payload that was transmitted [91, 147].

NetFlow monitoring enables to set up blacklist-based security metrics that are usefulindicators of any data exchange with known compromised, malicious, or suspicious IP ad-dresses or domains in the internet. The first potential step would be to correlate NetFlowdata with publicly available blacklists such as Proofpoint’s Emerging Threats Intelligence
33

[138] and abuse.ch [1]. Another possible method includes observing the NetFlow fieldwhich holds the union of TCP flags in order to detect illegal flag combinations indicatingabnormal or malicious traffic. For instance, in a legitimate network flow a TCP FIN flagshould never appear without a TCP ACK flag. This method would allow to specify a metricindicating the number of distinct sources (i.e., IP addresses) of abnormal traffic per hour(or day). Furthermore, such metrics should separately keep track of external (i.e., inter-net) and internal hosts because malicious activity from external sources can typically beexpected but detecting such activity in an internal network should be considered evenmore alarming.
3.1.3 Extracting security metrics from workstation logs
Workstations hold a crucial role in organisational security. Since end-user workstationscan typically access restricted internal services and information, they are often the ini-tial targets for malware and targeted attacks. Therefore, it is essential to monitor andcreate security metrics of their activity. Workstation logs contain a significant amountof security information (e.g., login failures, antivirus alerts, installation of new softwareand/or services, modification of protected system files, etc.) that can be used to craftvaluable security metrics. The relevance of some metrics depends largely on organisa-tional policies—for instance, hardware events (e.g., plugging in an USB stick) might benormal in most organisations, however, for organisations handling classified information,such events might be extremely critical.While there is awide variety ofmetrics that can be produced fromworkstation logs, forthe sake of brevity we will only discuss the most relevant type: user account monitoringand control. In many cases it enables effective detection of system compromise, malwarepropagation as well as malicious insider activities. According to the CIS Critical SecurityControls [24] it is a critically important cyber security discipline. As such, it is commonto monitor events indicating both successful and failed login attempts into workstations.For example, consider the metric observing the number of unique workstations or ac-counts with login failures in each timeframe. A sudden upsurge in the number of hostsor accounts might signify an unauthorised account probing activity, possibly to gain unau-thorised access to data. Furthermore, monitoring successful remote logins from unusual(e.g., non-administrative) sources can potentially reveal lateral movement of an attackeror a malware spreading in the network.Although the event log format and collection techniques differ betweenWindows andUNIX-like platforms, the mentioned event types are not specific to Microsoft Windowsand can be similarly observed for other workstation platforms (e.g., Linux, MacOS1). Fur-thermore, it often makes sense to extend the default security logging functionality. Forinstance, Windows Event Log can be supplemented using the Sysmon [104] utility pro-vided by the Microsoft Sysinternals team. There are a number of recommendations aswell as example configurations available for Sysmon [53, 156]. Similarly, for Linux thereare various built-in security tools (e.g., AppArmor [6] or SELinux [141]) that provide addi-tional security and can log relevant events.Unfortunately, the analysis of workstation logs is often under-utilised. Primarily be-cause workstations often generate large number of logs which makes collecting them foranalysis an expensive process, especially in large organisations with hundreds or thou-sands of workstations. This situation is further exacerbated by extending the default log-ging functionality with additional tools, therefore careful considerations are necessary

1Due to limited access toMacOS-based hosts, the security monitoring ofMacOS is not discussedit this thesis.
34

when designing and configuring the logging infrastructure. Collecting all available logswould of course allow for a more in-depth analysis, however, identifying the most rele-vant types of logs enables creating filtering conditions before transmitting and storing thelogs at the central log server, which in turn can help keep the log volumes under control[4].
3.1.4 Extracting security metrics from other event logs
Furthermore, there are several other categories of logs available in most organisationalnetworks. For example, this includes events from hardware device logs, server OS logs,service-specific logs. Extracting hardware logs from routers, switches, servers, but alsofrom other network-capable devices is often overlooked as a source of information and asecurity measure. While these logs mostly contain messages about hardware health andregular maintenance procedures, they may also reveal unauthorised physical access andtampering with the device. Although acquiring logs from some proprietary device mayprove challenging, hardware health messages should be kept track of nevertheless, asthese provide a metric of the overall infrastructure health and potentially avoiding criticalhardware failure resulting in loss of availability.Server OS logs might be collected in a similar OS-dependent manner compared toworkstation logs, however, when it comes to analysis and correlation, the characteristicsthat are induced by user activity in the logs are usually quite different. Whenworkstationstypically operate in a graphical environment and run a variety of applications then serversare commonly operated in a headless fashion and are managed via a remote terminal.Furthermore, users ordinarily do not log directly into servers, but rather access remoteservices hosted by the server. Therefore, any user activity on servers should always cor-respond to administrative activity. There are of course exceptions such as organisationalterminal servers or administrative jump hosts.Regarding the myriad of potential services hosted on the servers, it is reasonable tomake use of the IDS/IPS solution to monitor for known security vulnerabilities being ex-ploited over the network (this approach was already explained in subsection 3.1.1). Addi-tionally, it also worthwhile to look for suspicious event patterns or unusual combinationsof events. Consider a web server scenario where under normal circumstancesmost of theHTTP client requests receive the normal 2xx and 3xx (i.e., successful responses and redi-rections respectively) response from the web server, while non-OK (e.g., 4xx client error)response codes might occur from time to time when the clients request a non-existingor a forbidden resource. However, when the rate of error messages increases comparedto normal traffic, it might signify a reconnaissance scan. Although this kind of scanninghappens regularly on public facing web sites, it is still sensible to keep an eye on the rateof such scans, because they can help in assessing the threat level for individual services.
3.2 Discussion of open-source SA system capabilities
Our organisational framework takes a step further from generating static metrics reports(e.g., sent regularly via e-mail). The thesis argues that organisations should be operatingan SA system that is capable of searching, analysing, aggregating, and visualising largeamounts of diverse data.Although processed events andmetrics are often generalised and correlatedwithmul-tiple data sources, one essential requirement for such tools is that they should enable theoperator to understand the presented results and the underlying data transformationsby facilitating additional queries and a drill-down capability into the raw data. Consecu-tively, this allows the operator to spot anomalies, potentially revise collectedmetrics, and

35

improve their meaningfulness.Ideally, a single tool or interface would be the best for keeping the focus of operators.However, as the number of various data types (e.g., time-series data, network data, eventlogs) builds up, it becomes increasingly difficult to create an SA systemwhich excels at ev-ery data type and task. While thismay be possible in case of limited scope or specific tasks,the unfortunate reality is that security operators often have to query or cross-referencemultiple tools while inspecting collected data or investigating a security incident.Technology has been advancing at an increasing pace and is continuously improvingthe potential to provide better security, monitoring capability, and autonomy. However,when it comes to cyber security monitoring and especially the more advancedmetric andsituation awareness systems handled in this thesis, technology alone is not yet enoughto operate an effective security metrics and situation awareness programme. Operatorsmanning those systems require training to maintain and further develop these complexsystems on a regular basis. Therefore, the need for more skilled cyber security special-ists is increasing. CSXs provide a way to provide a training in a realistic environment, yetwithout the risk of breaking live production systems. The operator training aspects will bediscussed in more detail in section 4.2.
3.3 Verifying system capabilities
For development and research purposes it generally makes sense to test the systems andtheir components in amore controlled environment. For direct performance comparisonsbetween various algorithms the use of static or generated datasets is justified, however,their use can also lead to inherent optimisation for that specific dataset and potentiallydeterring the focus from volatile production environments. This may result in the cre-ation of systems and algorithms that work well with specific type of data but experiencedifficulties as any unexpected or non-standard input is received.To converge research and practicality, this thesis actively promotes the use of realisticyet supervised environments in research and development (R&D). Environments for suchresearch endeavours are potentially available during various CSXs, however, their use forresearch purposes should be carefully planned beforehand. To ensure practicality andsupport closing the aforementioned research gap, most algorithms and tools developedas a part of this thesis have been tested and verified under realistic conditions duringannual CSXs or with the datasets collected during those exercises.It has to be considered that the primary purpose of manymonitoring and SA tools is tooperate in production environments. Thus, contemplating their use in CSX environmentsis bound to have some shortcomings that must be addressed and overcome. We appliedprior research and expertise with organisational monitoring and situation awareness sys-tems to design and implement exercise-specific systems. These systems were presentedin Publications V, VI, and XI, and will be described in detail in section 4.Although the exercises described in this thesis depict a realistic scenario, there arenumerous nuances that introduce several influential differences due to the nature of theexercises and the requirement to provide meaningful feedback to participants in a shorttimeframe. For example, prior to the exercise the deployed target systems are just idling,hindering any kind of experimentation and baselining required to tune detection meth-ods. Contrariwise, due to the limited timeframe of the exercise, when participants accessthe systems and the red team starts their attack campaigns, the rate of incoming securityevents far exceeds typical production environments. Thus, the actual testing and verifi-cation of the systems can only happen effectively during the short timespan when theexercise takes place.

36

3.4 Comparison with related work
This section compares the work presented in this chapter with the related work describedin section 2.1. As stated above, one of the primary goals of the research behind chapterwas to bridge the gap between published theoretical suggestions and practical implemen-tations. This was achieved by offering practical recommendations and example organisa-tional implementation for a metrics and SA system.While a number of security metrics papers were discussed in the related work section2.1.1, due to differences in how the topic is addressed, a direct (i.e., side-by-side) com-parison is not applicable for any of the publications. However, the following publicationsdiscussed below took a similar approach or proposed a somewhat similar solution forbridging this gap.Similarly to our work, Jaquith provided recommendations for reporting and visualis-ing metrics while also identifying the gap between managerial metrics requirements andtechnical metrics typically provided by technical security professionals [69]. An earlierwork [44] by Geer et al. noted in surprise that in the field of business metrics, these prob-lems have already largely been solved, while information security specialists seem to bestill struggling.The CIS Critical Security Controls have been actively developed formore than a decadeand currently describe 20 groups of comprehensive security controls. Furthermore, likein our paper, the CIS publishers have just recently started to publish more detailed imple-mentation and practical guidance for specific types of systems (e.g., Windows, networkdevices, mobile devices, and IoT) [24].In [8], Arendt et al. discussed the requirements of an SA system based on the exampleof their Ocelot tool. The authors developed Ocelot with a clear user-centric emphasis,meaning that the operator should have everything at hand to explore and visualise data,drill down for investigating raw data, and act when deemed necessary. Although it isa customised SA solution, Ocelot had several critical limitations—the presented versionof Ocelot only supported six predefined defensive strategies the user can execute on aselection of hosts. It remains unclear whether any additional progress has been made tocontinue the development of Ocelot.Alternatively, a recent paper [78] by Kohlrausch and Brin discusses a similar securitymetrics problem, but proposes a somewhat different solution (i.e., the ARIMAmethod fortime-series analysis) to the issue. In contrast, Publication I suggests the use of frequentitemset mining and data clustering algorithms for various anomaly detection tasks basedonNetFlow and IDS alert data. Similarities include identifying the need for novel advancedalgorithms and approaches to detect anomalies in gathered security metrics.

37

4 Situation awareness systems for cyber security exercises
This chapter discusses a multi-faceted endeavour to enhance the learning process by pro-viding CSX participants improved training feedback, verify the performance and applicabil-ity of standardmonitoring and SA systems during CSXs, and advance the newly developedCSX-specific SA systems (i.e., Frankenstack and Availability Scoring systems). Although weimplemented the particular SA systems for use during the XS and LS exercises, the archi-tecture of these systems still provides a clear point of reference for other researchers andcyber defenders in need of building such monitoring frameworks in their specific exerciseor production environments.This chapter addresses research questions RQ1.3 and RQ1.4. The research was origi-nally published in Publications V, VI, and XI. Thesis contributions 5–7 are described.
4.1 Author’s involvement with CSXs
The author of the thesis has been in the organising team of the LS and XS exercises (de-scribed in section 2.1.3) since 2014 and has been directly involved with providing SA andtraining feedback to CSX participants. The author has been involved with the XS exer-cise as a YT member during its entire existence, however, LS exercise was already a well-established exercise when the author joined the NATO CCD COE and the exercise greenteam.Note, that the author’s primary aim has been to advance technical research, thereforethe discussion of participant learning experience serves as side topic that provides the rea-soning behind some of the technological decisions. Although the author of this thesis wasinvolved with the preparation of questionnaires for the LS exercise, none of the author’scontributions directly handle the assessment of the participant feedback collected fromthe LS exercise. The author was directly involved with analysing the feedback for the XSexercise, however, the questionnaires and interviews conducted during the LS exercisehave been assessed by Maennel in [97].
4.2 Enhancing operator training quality during CSXs
The exercise infrastructure and the provided toolset are critical for efficient learning, how-ever, they do notmake the exercise a success by default. Inmany cases the human factors,such as how the training audience perceives the environment and uses the tools, have asignificant impact.A key factor in improving the training quality and improving participants’ learning ex-perience is asking direct feedback about the CSX toolset that was provided during the ex-ercise. One fundamental part of the training experience assessment was to observe thebehaviour of the training audience and their interaction with Frankenstack and Availabil-ity Scoring system during respective exercises to gain further awareness into their trainingexperience. Since 2016, we have carried out interviews and questionnaires among exer-cise participants during the CSXs about the monitoring and CSX-specific SA tools that wehave provided to the exercise target audience. Based on the feedback, we have continuedthe development and attempted to iteratively improve the Frankenstack framework andthe Availability Scoring system.Therefore, one objective of this work was to assess and improve the quality of trainingand learning experience during CSXs. One of the primary concerns that exercise partic-ipants had expressed during interviews was the amount of time it took to receive feed-back about the current situation and ongoing activities. For example, it was previouslyunknown for the participant, whether a recent action affected the current security pos-

38

ture of the adversary or not. While this indeed remains unknown in the real-world usecases, it hindered the learning pace and experience of participants.Another issuewas the lack of consistency when human-generated feedback or reportswere provided by multiple people on short notice to the participants during the exercise.Manual analysis performed by different human security operators in a constrained timewindow may result in different interpretations for the same set of events. Thus, anotherobjective was to provide uniform feedback that would be clear and similarly understand-able for all CSX teams and participants.
4.2.1 Crossed Swords
The first iterations of the XS exercise (since 2014) revealed several issues with RT learningexperience. Traditionally, YT feedback sessions took place at the end of each exercise day,however, this was not best suited to the fast-paced and technical nature of the exercise.The time it took fromRTmember triggering an alert to the YT briefing session at the end ofthe day was just too long. Most likely the RT member had already forgot the exact detailsof the conducted attack.Furthermore, due to limited time, the briefing addressed only the most noteworthyobservations from that day, however, the RT needs explicit and immediate feedback aboutdetected activity to learn from their mistakes as they happen. The feedback observationsneed to be well described and detailed, so that the RT can quickly understand why andhow a specific attack was detected, and then try again with an improved approach.Finally, in the first few XS iterations most of the data analysis in YT was done manuallyby several different operators. This proved to be slowand sometimes inconsistent inwhichattacks were followed up on. Therefore, the slowest and most inconsistent element (i.e.,the human operator) in the feedback loop needed to be eliminated and replaced withautomation as much as possible.To solve this problem, for the 2017 iteration of XS we re-used the same ensemble ofopen-source tools that we had already previously used in production environments (de-scribed in section 3.1) as well prior XS iterations. However, we included event correlation,a novel query automation tool, and a newly developed visualisation solution to automatethe feedback process. The resulting open-source framework was called Frankenstack andis published on GitHub [117].Frankenstack is an SA systemdesigned to increase the training experience and learningbenefit of the cyber-RT participants during CSXs. Over the years the technical feedbackframework has developed into an integral part of the XS exercise. This work directly re-lates to thesis contributions 5 and 6, described in Publications V and XI. The technicaldescription of Frankenstack follows in section 4.4.On occasion, we discovered that the feedback we provided to the RT revealed toomuch information too soon. There is a fine balance between enhancing the learning ex-perience and ruining the game by spoiling the fun of exploratory discovery. We remaincommitted to perfecting and maintaining this balance for future iterations.
4.2.2 Locked Shields
Prior to the 2015 Locked Shields event, detailed availability scoring status information wasnot available to BTs. Although the predecessor to the presented Availability Scoring sys-tem already existed along with the overall exercise scoring capability, there were no liveavailability dashboards or direct feedback to participants during the game. As a result, BTshad no way of knowing what was causing them to lose points for availability. They couldsee the overall score summary, but no detailed breakdown of individual services.

39

The development of the Availability Scoring system that is presented in this thesisstarted in February 2014. After the newly developed Availability Scoring system had beensuccessfully implemented and verified at the 2014 LS exercise, the organising team wasconvinced that the new solution is stable enough to provide live availability feeds anddashboards to all participants in the upcoming years.In short, Availability Scoring framework is an SA system designed to measure BT per-formance during defence-oriented CSXs by adopting several common SLA metrics for ITservices. The framework has become an integral part of the overall LS exercise SA system.This work directly relates to thesis contributions 5 and 7, originally described in PublicationVI. The technical description of Availability Scoring system follows in section 4.5.
4.3 CSX network layout
The XS and LS exercises are mimicking realistic computer networks with a variety of dif-ferent hosts (e.g., network devices, servers, workstations, laptops, and other specialisedequipment). See Figure 1 for a networkmap that was prepared for LS 2015. Since a consid-erable amount of exercise environment is reused from year to year, the use of an outdatedimage is intentional to not reveal anything sensitive. When examining the figure, it is im-portant to note that every BT gets its own full set of hosts that are indicated in the networkmap—hence the xx, X, and XX notations within hostnames, VLAN IDs, and IP addresses.Furthermore, to scale up the in-game office network segments into more realistic organ-isational networks, each workstation icon actually represents five sequential workstationnodes deployed into the corresponding network.Although the training audience for XS is the RT, the main elements of the BT infras-tructure remain largely similar. Therefore, the network illustrated in Figure 1 can also beeffectively used to describe the XS exercise. However, the primary difference is that dur-ing the XS, RT starts out with only minimal information about the target environment andhas to discover the entire network themselves.
4.4 Frankenstack
The Frankenstack framework features a near real-time feedback loop for the RT partici-pants: any RT action that is discovered on the game network and hosts is analysed andreported back to the RT dashboard as an indicator of compromise. This allows RT mem-bers to immediately try again to improve their methods to avoid at least basic detectionmethods. Furthermore, the framework provides SA about RT progress to the exerciseleadership (i.e., the white team) allowing them to precisely control the pace of scenarioadvancement. See Figure 2 for an high-level overview of the Frankenstack feedback cyclebetween various in-game teams.Although Frankenstack was developed as an SA tool for the XS exercise, the open-sourcemodules are publicly available onGitHub and can bematerialised by others runninga similar environment. Frankenstackmakes use of several input data sources: full networktrafficmirror, numeric metrics, and event logs. These sources are largely overlapping withthe data sources that are used by the production security metrics system described inchapter 3 and Publication I.
4.4.1 Input data sources
The network traffic capture was provided as ERSPAN (Encapsulated Remote Switched PortANalyser) mirror sessions from the switches in the virtualised game network environ-ment. This meant that Frankenstack’s IDS component (i.e., Suricata [128]) also had visibil-

40

Figure 1: An example CSX network layout.

ity within internal networks not just traffic that was traversing between network routersand perimeter firewalls. Furthermore, all traffic was captured and indexed using the fullpacket capture and analysis tool called Moloch2 [10]. Note, that NetFlow data from net-work routers was available but was used only during the first iteration of Frankenstack. Aswas discussed in section 3.1.2, IDS/IPS solutions can output information that is very similarto NetFlow. There is a computational overhead compared to NetFlow, however, within XSthe amount of network traffic is relatively low, so we finally opted for Suricata to collectnetwork flow data. Another upside was the improved network visibility from the virtualgame network switches compared to network perimeter routers.Moreover, we configured the in-game target systems to collect numerical time-seriesmetrics (e.g., system load, CPU, memory usage, and network interface statistics) usingthe Telegraf tool [65] that is part of the TICK stack [66] developed by InfluxData. Wecollected event logs from all in-game systems wherever possible (e.g., Event Logs fromWindows, Apache and nginx web server logs, syslog from Linux). We extended WindowsEvent logging with additional rules [53, 156] for Microsoft Sysinternals Sysmon [104]. In-stead of implementing AppArmor and SELinux for enhanced Linux auditing, we opted forusing a small library called Snoopy Logger [70]. This was because configuring AppArmoror SELinux typically incorporates increasing the base level of security on the system, how-ever, we did not want to interfere or impair any of the pre-configured vulnerabilities thatwere planted on the target systems. According to [70], Snoopy Logger is not designed as areliable security auditing tool for production systems, however, it fits the exercise scenariowhere the YT instrumentation should not interfere with the in-game systems.The host instrumentations mentioned above are very difficult to implement in a stan-dard defence-oriented CSX with BTs as the training audience: if the objective is to give
2Moloch was renamed to Arkime in the second half of 2020.

41

Simulated target infrastructure
Attacks Red team

N
etw

ork traffic

E
vent logs

N
etflow

Frankenstack

Yellow team

Data input

Monitors,
develops,
maintains

Real-tim
e feedback

Internal events

White team
Output

C
ontrols,

evaluates

Data
correlation

and
aggregation

Figure 2: High-level overview of Frankenstack. [82]

BTs full control of their in-game network infrastructure, then they also have full power todisable or reconfigure these tools for any reason. However, as the XS training audience isthe RT, the YT could maintain supervisory control of all BT systems and ensure a constantstream of incoming monitoring data.
4.4.2 Data processing components
Post-mortem analysis of available datasets is an irreplaceable method during incidentanalysis. Although it often reveals valuable insight about cyberattacks, it requires a sub-stantial amount of time andmanual work. Unfortunately, this conflicts with the short timespan of the exercise and is not a viable method to keep track of the RT. Furthermore, dur-ing such incident investigations cyber defenders oftenwrite ad-hoc search queries (e.g., inMoloch or Kibana), making analysis results challenging to reproduce later. Thus, Franken-stack comprises Otta [112], a novel query documentation and automation system for ex-ecuting user-defined queries on large datasets at predetermined intervals. As such, Ottatransforms aggregated search query results into time-series security metrics, enables op-erators to graph trends, define alerts, and detect anomalies for user-defined queries. Thisdirectly reduces time spent on analysis, automates detection, and provides reproduciblequeries to retrieve relevant results.

Frankenstack processes data from the aforementioned input sources and applies eventnormalisation, enrichment, and correlation for combining various information sourcesinto a single stream of meaningful events. The system employs pre- and post-processingscripts for several event normalisation and enrichment tasks, however, themain data con-version and correlation pipeline is handled by SEC [171, 172]. This exercise-specific config-uration and ruleset called frankenSEC has been published in GitHub [113].
Although Frankenstack itself has been kept open source, we have not excluded cooper-

42

ation with existing analytical platforms, SIEM systems, or commercial vendor appliances.Over the years many security vendors (e.g. Cymmetria [29], Greycortex [47], and StamusNetworks [154]) have joined the exercise YT to test their products in a unique live-fire en-vironment [116]. We do not treat any security product as a all-in-one solution, but just asanother data source that produces a separate feed back to the data pipeline.
4.4.3 Visualisation components
During the XS exercise numerous large screens are installed in the training room directedat the RT. The purpose of those screens is to provide visual feedback from various toolswithout necessarily taking up any of the valuable screen real estate from the RTmembers.Furthermore, it is not possible to give RT members direct access to some of the SA tools(e.g., Moloch and Kibana) used for creating dashboards, because being able to directlyquery those tools would expose too much information that the RT is tasked to discoverby themselves. The machines displaying the dashboards were directly connected to theYT network segment which was not available for the RT members. Of course, by havingphysical access to the machines that were connected to the large screens in the sameroom, it was possible for them to circumvent this network separation.

Frankenstack comprises a set of open-source tools for visualising log data, time-seriesmetrics, and alerts. There are slight differences in handling various types of alerts: forexample, alerts for CPU and memory usage trigger and recover automatically based ona predefined set of thresholds, however, security events (e.g., IDS/IPS alerts) are onlytriggered based on some detection condition but lack the concept of a recovery threshold.Thus, such security alerts will never receive a recovery event, leading to an overflow ofinformation on the feedback dashboard.
Correlation and deduplication of recurring events is crucial for creating usable visual-isations. Due to the volatile nature of CSXs and simulated network traffic generation canat times potentially overflow visualisation tools with too much information for users tofollow. For example, a network scan using the nmap tool can trigger a large amount of se-curity events over a period of time. While event correlation can collect and combine thoseevents, it does not make sense to wait indefinitely before emitting the alert to the dash-board. The aim is to notify the RT of their activity in near real-time, therefore the lengthof the correlation window has to be kept relatively short. With effective deduplicationfunctionality sending the same alert multiple times does not cause any issues.
Alerta [149] is used as the primary feedback dashboard to present detected RT activityback to the RT. The RT feedback cycle is completed by emitting the transformed event fromthe correlation engine to the RT dashboard. Each RT member has access to the Alerta APIand web interface to create personal filtering rules for limiting the displayed informationonly to what is relevant in the current attack campaign. To address the issue of securityalerts not recovering and leading to an overabundance of events on the dashboard, weset a timeout to automatically archive events that had no correlated activity within thelast 15 minutes. Although some event thresholding and deduplication was implementedwithin the frankenSEC ruleset, Alerta also featured deduplication based on a set of fieldswithin the event. Based on the 2017 XS statistics, the RT dashboard displayed 691 uniqueevents out of 28660 (i.e., 97.59% of all events were de-duplicated).
Kibana [37] and Grafana [46] are used to for presenting more overarching analyticaldashboards that provided insight over the entire duration of the exercise, not just therecent events view available in Alerta. For instance, summary of detected RT attack typesor statistics of IP addresses that have been generating the most alerts, etc. In additionto RT members, the large-screen dashboards were often observed by WT members who

43

were interested in the progress of the exercise and overall performance of the RT.Attack maps are often used to provide a condensed way of visualising events. Un-fortunately, they are typically not usable during CSXs because they rely on geographicaldata which is largely fictional in exercise environments. To address this problem, the au-thor proposed the concept of Event Visualization Environment (EVE), a novel web-basedtool for visualising detected attacks in relation to CSX-specific game infrastructure [102].Source code of EVE has been made publicly available in GitHub [111]. Although, the devel-opment of EVE was largely carried out by another YT member, the author of this thesiswas the principal user and responsible for providing the data feeds to EVE.EVE displays attacks carried out by the RT with a customisable game network mapas the application background. In a short time window, EVE is able to correlate multipleevents that have the same source and destination addresses into a single attack. Attacksare displayed as arrows connecting the source and target hosts on the network map. Fur-thermore, detailed attack information and a list of previous attacks is displayed next to thenetwork map. The use of the original exercise network map makes EVE a very intuitivetool that enables both participants and observers to easily comprehend CSX events on ahigh-level. During the first experiment, the EVE tool was not shown to RT members, as itrevealed too much of the exercise network map that they had to discover on their own.However, EVE featured a dedicated replaymode to display all the attacks condensed into apredefined time period (e.g., 15 minutes). The entire exercise dataset was replayed to theRT after the exercise. This allowed RT participants to obtain an overview of their entire at-tack campaign—revealing themost critical mistakes, such as the surge of alerts generatedby several network attacks and periodic beaconing during otherwise quiet night periods.
4.4.4 Frankenstack developments since 2017
This section describes the more recent R&D efforts of Frankenstack following the initialpaper publication in 2017. This subsection summarises the recent Publication XI detailingthe revised architecture, event normalisation process, data enrichment techniques aswellas updated event processing pipeline.
Distributed event streaming The initial design of the event processing pipeline reliedprimarily on syslog-ng [127] to collect, store and forward events. This works well for sys-tems and applications that are set up and configured beforehand, so that proper syslogrules can be created. However, during the annual hackathons that preceded the XS event,contributing participants within the YT would often integrate their own tools and scriptsthat also needed to analyse the same incoming data feeds or a subset of past events toprovide an alternative assessment in addition to the main data processing pipeline. Hav-ing events stored as files on the central log collection server is not ideal for this purpose.Alternatively, Elasticsearch can be used to query historic data, but there is no good wayto continuously stream all incoming events in real time.We analysed various distributed message streaming tools and opted for using ApacheKafka [5] as a central collection point for all emitted messages. Kafka fulfils the require-ment for a multi-producer andmulti-consumer event feeds. Since 2018, there is a generaldecision within the Frankenstack framework that all events should be produced to Kafkaand for further analysis all tools should stream the corresponding topics from Kafka.
Determining the attacker One of the primary problems the YT faced was automaticallydetermining the directionality of the attacks, i.e., identifying the victim and the attackerin a particular cyberattack. For a moment we planned to rely on IDS alerts from Suricata

44

which always contain source and target fields. However, this approach did not turn outquite as planned—the source and target fields in IDS rules just signify the direction oftraffic for which the detectionmatch conditions are written for. Thismeant that wheneverthe rule writers had written a rule that detects a response of an attack (e.g., sensitive dataleaving the victim node), we would have erroneously classified the victim as the attacker.With this approach, we were only able to connect the relevant nodes, but lacked thedirectionality between them. Unfortunately, there was no other reliable metadata withinthe IDS rules that could have revealed the directionality of the attack.Fortunately, Eric Leblond, one of the core Suricata developers, had been part of theXS YT since 2016. He raised this issue with the Emerging Threats rule writers and for thenext XS iteration there was already a preliminary solution available, which has now beenadopted into the mainstream version of the rules [138]. Emerging Threats rules now con-tain a metadata field called attack_target3, which reveals the victim-side counterpart ofthe attack. Although not specifically published, this development effort has been pre-sented at several security conferences, e.g., Hack.Lu [89] and SuriCon [90].

BT targets
Cyber Range infrastructure

Frankenstack tooling

Dashboards and visualizations

Partners' tools

Snoopy
Logger

Syslog

Sysmon

Windows
Event Log

Kafka collector

Provisioning API

Exercise
asset collection

vSphere API Network capture

ArkimeSuricata Stamus
SSP

GreyCortex
Mendel

Kafka processor

Elasticsearch

Peek Python shipper

Sigma engine

Kibana AlertaATT&CK Navigator

Figure 3: Yellow team’s updated technological perspective from XS 2020. Green area denotes data
sources originating from the exercise backend infrastructure, i.e., Green team assets. Blue area
signifies YT tools and data sources deployed on BT networks and hosts. Black area indicates industry
partner tools. Yellow area describes Frankenstack components and the data flow between them.
Rectangle-shaped nodes represent novel tools developed for Frankenstack. Red rectangles signify
tools developed by the author of the thesis.

Improving event processing Frankenstack employed SEC as the primary normalisation,enrichment, and correlation tool until 2019. As discussed above, all relevant event streamswithin Frankenstack were already configured to output structured JSON events at thesource or transformed into JSON already at the pre-processing phase. Unfortunately, theJSON events emitted by distinct sources featured different structure which had to be indi-vidually handled. Bearing in mind that SEC and its rule language was initially designed for
3At the time of writing in September 2020, there are nearly 15,000 rules which contain the

attack_targetmetadata keyword.
45

complex event correlation tasks on unstructured messages, it soon became cumbersometo handle complex nested data structures within the SEC rule language. For example, anychanges in input JSON key values resulted in the need to edit numerous textual rules.Therefore, instead of using the conventional SEC rule syntax, the author had to write Perlcode into most frankenSEC rules. Although it was possible to accomplish what we re-quired using Perl functions, the rule writing and management soon became infeasible tomaintain.Alternatively, processing complex nested data structures within a fully-fledged pro-gramming language seemed more approachable. In hindsight, it seems that our primaryissuewas thatwe attempted to correlate events too soon in the data processing pipeline—SEC is an event correlation tool, not a programming environment or a data normaliser.Unfortunately, in our ruleset we tried to accommodate many of the data processing andtransformation tasks which should have been completed prior to pushing events into SEC.This hindered the rule-writing process and the lack of proper post-processing meant thateven minor changes in the input event structure resulted in the need to rewrite a largeportion of the rules.As a replacementwe developed a novel data normalisation and enrichment tool calledPeek [118]. Peek enriches each atomic message with metadata to determine the eventsender, event directionality (i.e., inbound, outbound, lateral, or local), and, if applicable,the attack source and target. This automated enrichment is facilitated by the exercise
asset collection tool developed by the thesis author. Furthermore, asset information col-lection enables us to for map hostnames and IP addresses from alerts to known assetswhich in turn simplifies threat hunting.The frankenSEC ruleset was largely replaced by the Sigma ruleset [145]. An exampleSigma rule is provided in Listing 1. Similarly to Peek, our Sigma match engine was alsowritten in Golang and is available in GitHub [79]. A comprehensive description of theSigma rule engine is available in a recent whitepaper [81] by Kont and Pihelgas.

Listing 1: Sigma rule to detect base64 encoded PowerShell scripts. [136]

t i t l e : Encoded S c r i p t B l o c k Command I n v o c a t i o nauthor : Mauno P i h e l g a sd e s c r i p t i o n : De t e c t s s u s p i c i o u s PowerShe l l i n v o c a t i o n command parametersd e t e c t i o n :c o n d i t i o n : s e l e c t i o ns e l e c t i o n :w in log . even t_da ta . S c r i p t B l o c k T e x t :− ' − FromBase64St r ing 'f a l s e p o s i t i v e s :− Pene t r a t i o n t e s t s− Very s p e c i a l PowerShe l l s c r i p t sf i e l d s :− win log . even t_da ta . S c r i p t B l o c k T e x ti d : 697e4279 −4b0d−4b14 −b233 −9596 bc 1 ca cdal e v e l : h i ghl o g s ou r c e :p roduc t : windowss e r v i c e : powe r she l ls t a t u s : e xpe r imen t a lt a g s :− a t t a c k . e x e cu t i on− a t t a c k . defense − eva s i on− a t t a c k . t 1059 .00 1
Moreover, the author of the thesis redeveloped the part of frankenSEC that interfacedwith the Alerta dashboard as a comprehensive Python event shipper script which ensuredthat all events sent to Alerta conform to a uniform structure and aremapped to theMITREATT&CK adversary tactics and techniques knowledge base. This emitter script also imple-

46

mented a simple baselining functionality to identify security events that occur under nor-mal system use (e.g., execution of scheduled tasks, system updates, etc.). Later, duringthe exercise, such benign events were suppressed and not displayed to the RT dashboard.Figure 3 illustrates Frankenstack’s technological outline from the latest iteration of XS inDecember 2020.
4.5 CSX Availability Scoring system
To measure the performance of the LS exercise training audience, the organisers mustestablish proper situation awareness over more than 20 BTs involving hundreds of indi-vidual players. Assessing and scoring the performance of BTs is essential in providing themmeaningful feedback. Although one of the goals of LS is to improve learning and cooper-ation between nations, there is still a competitive element in the game that compels allBTs to give their best during the CSX. The primary task of the Availability Scoring system isto measure the availability and functionality of individual services provided by BT systemsto provide availability scores and detailed technical feedback to all exercise participants.
4.5.1 Basics of availability scoring
This section describes the basic design and operation of the availability scoring system.Note, that Frankenstack-like host instrumentations are exceedingly difficult to implementin a standard defence-oriented CSX with BTs as the training audience: if the aim is to giveBTs full control of their gamenet infrastructure, then they also have full volition to disableor reconfigure these tools for any reason.The central component of the Availability Scoring framework is Nagios Core [110]. Na-gios Core is a stable and mature open-source monitoring software that has been devel-oped since 19994. It features a modular design that supports the use of both active andpassive service checks. Although the research considered several other standard mon-itoring tools (e.g., Centreon, Shinken, Opsview, Nagios XI, op5, and Zabbix), the authorconcluded that Nagios provides most of the basic monitoring functionality that we re-quired from the scoring system. Additional issue with some monitoring suites was thatthey included too much unnecessary functionality for our environment, for example, in-cident tracking and helpdesk functions are not needed in our case.

Listing 2: Service check log format and example output.

De f ined i n Nag ios c o n f i g u r a t i o n as :# $HOSTNAME$| $SERVICEDESC$ | $SERVICESTATE$ | $SERVICEOUTPUT$ | $LASTSERVICECHECK$ | $TIMET$
" ma i l . b lue05 . ex " | " h t t p " | "OK "| " HTTP OK : HTTP / 1 . 1 200 OK − 322 by te s i n 0.005 secondresponse t ime " | " 1 5 2472 1 248 " | " 1 5 2472 1 248 "
" hmi . pgc . b l u e 1 3 . ex " | " h t t p . i p v6 " | "OK "| " HTTP OK : HTTP / 1 . 1 200 OK − 954 by te s i n 0 .014second response t ime " | " 1 5 2472 1 248 " | " 1 5 2472 1 249 "
" w i k i . b l u e 1 3 . ex " | " h t t p s " | " CR I T I CAL " | " HTTP CR I T I CAL : HTTP / 1 . 1 200 OK − pa t t e r n notfound − 53048 by te s i n 0.649 second response t ime " | " 1 5 2472 1 248 " | " 1 5 2472 1 249 "
"ws4 −02 . i n t . b l u e 1 5 . ex " | " s sh " | " CR I T I CAL " | "No rou te to hos t " | " 1 5 2472 1 244 " | " 1 5 2472 1 249 "

The scoring system checks and reports the state (OK, Warning, Critical, or Unknown)of the services that the BTs have to keep functional during the two-day exercise. Anyinterruption (i.e., any non-OK state) in the service will cause loss of uptime and, more
4The project initially used the name NetSaint, but was renamed to Nagios in 2002 due to adispute over the name Saint. [106]

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

SC

4U-1, low
10U-1,medium
50U-1, high
1000U-1, very high

Figure 4: Score coefficient (SC) with regards to uptime (U) and four example service weight values
(W).

importantly, valuable score points. Similarly to Frankenstack, the output (see an examplein Listing 2) produced by these service checks is submitted to Apache Kafka for furtherprocessing and uptime calculation. The custom output log format involving the verticalbar separator was adopted from the previous scoring system. However, it fitted the newsolution ideally since the vertical bar symbol is treated as a special character in Nagiosto separate the emitted message from the check script performance metadata and thuscannot accidentally appear in the output message.
4.5.2 Availability calculationDuring the twodays of LS exercise gameplay BTs can gather up to 20,000 availability points(i.e., approximately 1

3 of total positive score). Individual scored services are distributedinto various sub-groups based on their importance. Typically four or five importance levels(e.g., from low to very high) have been definedduring each LS event, albeit, specificweightvalues (W) have been tuned from year to year. Note, that W> 1 for each weight value. Anyloss of uptime (U) will affect the score coefficient (SC) exponentially:
SC = WU-1, 0≤ U≤ 1

Evidently, higher service weight values (W) result in steeper score penalty for any lostavailability (see Figure 4). Actual scored points are calculated according to P× SC, whereP is the point budget for that particular service. For example, if the point budget (P) for aservice is 800points and it has been assigned the highest service importance (representedby the solid line in Figure 4) it will only yield circa 400 score points if its uptime is 0.9 (i.e.,90%). This is due to the score coefficient (SC) quickly declining to approximately 0.5 if theuptime (U) drops to 90%.This harsh score penalty is derived from real-life approximation—many informationtechnology service providers are commonly expected to maintain production systems’availability value in the order of 99.9% or in some cases even higher. For instance, this
48

means that a corresponding service can be unusable for just about 1.44 minutes per dayor 10 minutes per week. Of course, exact requirements are generally settled in writtenservice level agreements.
4.5.3 CSX-specific challenges
In a typical organisational monitoring scenario, the monitored system is either under thecontrol of the monitoring operator or the monitoring is provided as a consensual serviceto the system operator. In other terms, the target system operator has no reasonable mo-tivation to deceive the monitoring system. Furthermore, within organisations there areoften some best practices and rules that are followed by all system operators. However,this is not the case in LS as all teams canmore or less choose their own defensive strategy.Furthermore, as there is a competitive element within the game, so it is in the interestof the BTs to maximise their score. Although tricking the scoring system is forbidden ac-cording to the exercise rules, over the years some BTs have attempted to use questionablemeans to block the RT from attacking and delude the scoring system into thinking the ser-vice is up and running when it is not. If RT attacks are not averted by good defensive skills,then BTs are actually diminishing their own potential learning experience.
Large number of teams and replicated networks First and foremost, the exercise imple-mentation differs from real-world environment as each BT (totalling over 20 since 2018) isgiven an identical network of systems to defend. Although setting up the scoring systemfor cloned environments seems like a simplifying aspect at first, it has to be consideredthat from the moment teams are allowed to access their machines each team will picka slightly different defensive strategy and system configuration. Therefore, the scoringsystem has to be capable of adjusting to changing configurations on the fly. For example,many teams often change the IP addresses of their hosts or modify the network structure,so the Availability Scoring system must keep track of those changes. Team-specific DNSserver has proved to be the most trustworthy source of information for keeping track ofsuch modifications.Moreover, BTs often upgrade their software packages to newer versions and configu-rations which can naturally affect how the service behaves, sometimes erroneously break-ing the scoring check. Such rare cases require a fix to be developed and applied as quicklyas possible. However, it may be that only a subset of the teams decides to upgrade to anewer version, which means the scoring check has to be flexible in choosing the correctapproach. As a result, by the end of the exercise most BT systems have become slightlydifferent and potentially using a distinct configuration.
Active service checks Although using host-based agents and submitting passive checkresults to a central collector is the preferred approach in many monitoring solutions5, theAvailability Scoring system makes extensive use of active checks (i.e., checks initiated bythe server) to verify the availability and proper functionality of remote targets. Activechecks are more reliable in adverse environments, such as competitive CSXs, where BTshave full control of their infrastructure and could theoretically take advantage of passivechecks initiated by the monitored host itself. As mentioned, active checks are initiated bythe scoring server and BTs have no control over what exactly is being checked or when thechecks are executed.

5In Nagios context, passive check means that the host-based agent initiates the check and com-municates results back to the central monitoring server
49

Listing 3: Typical unmodified Nagios checks examined from a BT web server access log.

1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 20 1 8 : 06 : 39 : 5 8 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" check_h t tp / v2 . 2 . 1 (nag ios − p l u g i n s 2 . 2 . 1) "
1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 20 18 :06 : 40 : 58 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" check_h t tp / v2 . 2 . 1 (nag ios − p l u g i n s 2 . 2 . 1) "
1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 2 0 1 8 : 0 6 : 4 1 : 5 8 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" check_h t tp / v2 . 2 . 1 (nag ios − p l u g i n s 2 . 2 . 1) "
1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 20 1 8 : 06 : 4 2 : 5 8 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" check_h t tp / v2 . 2 . 1 (nag ios − p l u g i n s 2 . 2 . 1) "

Listing 4: Web server access log entries created by a modified check script and a varying check
interval.

1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 20 1 8 : 06 : 4 5 : 4 3 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" Mo z i l l a / 5 . 0 (X 1 1 ; L i n u x x86_64 ; r v : 5 2 . 0) Gecko /20100101 F i r e f o x / 5 2 . 0 "
1 0 . 0 . 2 2 8 . 1 1 1 − − [2 3 / A p r i l / 20 1 8 : 06 : 46 : 2 5 +0000] "GET / HTTP / 1 . 1 " 200 437 " −"" Mo z i l l a / 5 . 0 (X 1 1 ; L i n u x x86_64 ; r v : 5 2 . 0) Gecko /20100101 F i r e f o x / 5 2 . 0 "

Hiding identification strings Production monitoring systems typically do not need hidetheir identity, on the contrary, many such tools contain identification strings that enableoperators analysing the logs or network traffic to easily distinguishmonitoring checks fromother traffic. For instance, many web monitoring plug-ins specify a user-agent string thatspecifies the name and version of the script: see Listing 3 for an example. Similar situationapplies for checking SSH and e-mail services, where the client commonly identifies itselfto the server upon setting up the connection.
However, the Availability Scoring is meant to monitor the BT services in a way that isnot clearly recognisable as the scoring check. This is meant to avoid BTs whitelisting thescoring checks while blocking all other traffic, inter alia, the RT attack traffic. Therefore,the author had to edit and recompile several scoring checks to bettermimic end-user toolsdeployed on regular workstations. See Listing 4 for an example of a modified web moni-toring script that was using the user-agent string of theMozilla Firefox browser. Note, thatthis specific version of the browser was in fact present on the Linux-based BTworkstationsthat were deployed in the game and used by the User Simulation subteam.

Randomising check intervals Furthermore, having a fixed checking interval is a reason-able approach in standard monitoring situations. Thus, default configuration for Nagiosschedules service checks at 60-second intervals, however, more adept BT operators ob-serving event logs or network traffic are likely able to notice the heartbeat-like sequenceof incoming checks (observe the timestamps in Listing 3). This enabled BTs to predict to anexact second when the scoring system will execute the next availability check. Therefore,the author introduced a periodic change of the check interval at which individual scoringchecks are initiated. The exact interval was randomly generated in the range of 40 and55 seconds (observe the timestamps of the modified check interval in Listing 4). Shorterintervals also provide more accurate data about the status of various services in any giventime.
50

Randomising IP addresses Even if BTs can identify and whitelist some of the AvailabilityScoring IP addresses, the system is configured to periodically acquire new public IP ad-dresses that are used to communicate with BT services from the public networks. Note,that RT attacks also originate from the same public network ranges. To safeguard againstIP conflicts when assigning new addresses, arping (for IPv4) and ndisc6 utilities (for IPv6)were used to verify that the newly generated IP address is in fact vacant. Within inter-nal BT network segments, the Availability Scoring nodes have fixed IP addresses. In earlyyears, the system also generated new IP addresses within internal BT networks, however,it was deemed unrealistic to have a rogue host in an internal segment that keeps changingits IP address.
Countering removed service functionality Even when taking all aspects above into ac-count, there are still several ways the Availability Scoring can be deceived. For example,BTs have set up fake services (e.g., portspoof [35] or short-lived Docker containers [33])that attempt to mimic the monitored service, but in fact do not offer the entire requiredfunctionality. To counter this, scoring checks executed within the Availability Scoring sys-tem cannot check only the basic connectivity (e.g., ICMP ping or establishing a TCP con-nection), but rather need to implement more advanced functionality checks that mimicthe usage patterns of end-users. This is a continuous process that has been addressedand improved by the author over the years.Another method has been to employ versatile network redirections (e.g., using DNSor ARP spoofing) so that instead of the intended target the scoring checks end up at someother host. Such activity can also be used to reduce the number of hosts the BT has tomaintain and just redirect all identical services at a single host. For example, multiple loadbalanced NTP servers have been reduced to just one single host providing the service. Therationale behind such activity is often that the BT is attempting to reduce the potentialattack surface for the RT.Moreover, web service functionality is often intentionally crippled to stop RT from at-tacking and gaining foothold via insecure websites. To counter this approach, we haveused the open-source SeleniumWebDriver [153] which is a comprehensive testing frame-work for web applications. Selenium enables writing test cases for automatedweb brows-ing to check the proper functionality of various websites. For instance, mimicking a uservisiting the page of an online store, logging in, selecting a few items, and adding themto the shopping cart, then finalising the purchase, and verifying that the transaction wasactually saved under previous orders. Such test cases have their pros and cons: they pro-vide an extensive toolset for writing checks to verify that required functionality is present,but due to the complexity of the test cases they are problematic to debug if the test caseerroneously flags the site as non-functional.
4.5.4 Community contributions
In the early spring of 2014, after starting to implement the Availability Scoring systembased on the latest stable version of Nagios (v4.0.3 at the time), the author unfortunatelydiscovered some bugs in the Nagios Core software when the overall timeout for all checkswas set to 20 seconds, which is low for any normal monitoring environment, but this lowthreshold actually fits well with simulating regular end-users, whomost likely do not havethe patience towait more than 20 seconds for a single request to complete. The problemssurfaced when the timeout of 20 seconds was reached. First, the status of the timed-outservice check was considered to be OK, not CRITICAL, as it should have been. Second,there was an extra newline symbol present on one of the built-in timeout messages that

51

Nagios writes into its log file. This caused problems with the log parser that publishedmessages to Apache Kafka for the uptime calculation of BT services. The author was ableto identify the bugs from the source code and recompile the Nagios Core software forpersonal use, however, the author also reported the bugs to Nagios developers alongwitha suggested fix for the problems. The first bugfix (Fixed bug #600) was released in NagiosCore v4.0.6, and the second (Fixed bug #608) in v4.0.7 [109].
4.5.5 Availability Scoring system developments since 2018
TheR&Dof the scoring engine has also continued after the initial description in PublicationVI. Although not academically published, the following developments of the AvailabilityScoring system aid in providing amore relevant comparison with some of themore recentrelated publications fromother authors (e.g., papers [131, 125] byOšlejšek, et al. and paper[164] by Tovarňák, et al.).
Extensive useof container technology TheAvailability Scoring framework first employedDocker containers in 2018 to verify the functionality of 22 BT VPN services in parallel with-out one interfering with the other. Testing a VPN tunnel connectivity typically involvesapplying network settings retrieved from the corresponding VPN server onto the connect-ing client. Furthermore, establishing the connection and testing if required services worktakes some time, so checking 22 teams in sequence would have taken too long. Alterna-tively, deployingmultiple VMs for this lightweight yet specific task seemed to be excessivein terms of resources consumption and management overhead. Thus, deploying Dockercontainers for each BT was a sensible and lightweight method of executing all checks inparallel and independent of one another. The following years brought along even largeradoption of Docker container technology in order to conveniently proxy scoring checkswithin numerous BT internal network segments.
Integrations of the Availability Scoring data feed The live data feed from the Availabil-ity Scoring system has been integrated into RT tools to signal the RT members regardingthe current status of particular services. For example, the Availability Scoring data canindicate that the targeted service is unavailable before the RT launches an attack againstthat resource. This forewarning can help RT to remain stealthy and not reveal their attackmethods before the target services are actually available.Furthermore, the Availability Scoring data feed has become an authoritative sourceof information for the GT as well. The information about the state of all monitored BTsystems provides an excellent overview the general BT infrastructure. Prior to the start ofthe game, GT has to assure that all services are functional and configured identically forall BTs.
4.6 Comparison with related work
This section compares the work presented in this chapter with the related work describedin section 2.1. Discussion has been grouped by individual exercises and compares the sys-temswhich aim to increase the training experience by providing immediate and improvedfeedback to CSX participants. Furthermore, this section provides observations for readersseeking to implement such frameworks. The purpose of this section is not to compareexercises in detail.Note, that since the primary training audience of XS is the RT, the entire purpose andarrangement of the exercise seems to be rather unique. Alternatively, the reason for this

52

could be that training the red team responsive capability is considered a sensitive topicand as such is often not publicly discussed. However, there is slightly more material avail-able on CDXs.
4.6.1 Cyber Conflict Exercise
The South Korean Cyber Conflict Exercise (CCE) described in [72, 73] follows the CDXmodelsimilar to the LS exercise. Unfortunately, the papers do not reveal much technologicaldetail about the scoring system. Therefore, the primary developer of the CCE scoringsystem was interviewed to gain more insight about the entire framework6. The scoringsystem designed for the exercise is called TeSLA (short for Testing SLA). The author ofTeSLA had no prior organisational monitoring background, but rather was an experiencedsoftware developer.
Architecture Even though the authors of the two systems have different backgrounds,TeSLA still bears many similarities with the Availability Scoring solution described in thisthesis. For example, there is a central scoring server that holds the configuration of allnecessary scoring checks, but many of the checks are executed on proxy nodes that arelocated in numerous internal BT segments. Similarly, these proxies are running in Dockercontainers. The public-range IP addresses used by TeSLA are not changed during the game,however, this is compensated by deploying a large number of scoring proxy nodes thepublic network segment and using hundreds of IP addresses simultaneously.
Sustainability While the Availability Scoring framework is composed of many standardITmonitoring tools that are combinedwith custom integrations and data processing tools,the author of TeSLA decided to implement most of the components (i.a., standard moni-toring functionality) in Node.js [129]. Although this approach ensures applicability to thecorresponding CSX, it also results in a very particular software solution where the devel-oper may very well be the only person who is able to fix bugs and problems, should theybe encountered. According to the developer, since this was a newly developed software,therewere indeed several bugs that had to be fixed during the game or improved betweenexercise iterations.
Score calculation TeSLA used a function linear to the corresponding uptime value tocalculate the availability score points. Compared to the exponential function used in theAvailability Scoring framework, a linear function is simpler for participants to understandand predict, however, the downside of the linear score coefficient is that BTs with rela-tively different uptime values experienced only modest differences in scored points. Forinstance, when considering the prior discussion about high-availability service providers,a BT with an average uptime of 75% performed far worse than a team with an averageuptime of 90%, however, the difference in accrued points would average to 15% (givenidentical service point budgets).
4.6.2 Cyber Czech
The research group from Czech Republic working on the R&D of the Cyber Czech exercisehas published a number of papers [131, 125, 126, 164, 178, 179] that describe both theexercise and the SA systems deployed during the event. The authors acknowledge thatthe Cyber Czech exercise is similar to the LS exercise which serves as good example of a

6The interviews with YoungJae Maeng took place on multiple occasions in August 2020
53

CSX. The publications are rather detailed and describe the technical background for betterunderstanding and reproducibility.In addition to information described in numerous publications, the author of this the-sis also contacted7 the Cyber Czech technical and analytical team and received a briefdemonstration of their systems and visualisation tools.
Architecture Similarly to the Availability Scoring system, their central check processor isalso based on automated checks implemented in Nagios. Furthermore, they have also im-plemented network traffic analysis and event logmonitoring. Thesemake up the essentialcomponents of their exercise-specific SA system as well as the primary input for technicalexercise scoring. The systems integrate with the RT attacks to provide more detailed atimeline of in-game events.
Visualisations The Cyber Czech team has developed comprehensive visualisations aswell as a separate highly integrated visual analytics tool to provide BTs detailed feedbackabout their progress in the game and skills in various areas of expertise (e.g., web, Win-dows, Linux, etc.) [131, 125]. However, according to the interview they have not testedtheir visualisation solutions with a large number of participating BTs. The number of par-ticipating BTs has generally been between four and six which is much less compared to LSwhere the number of BTs has exceeded 20 for the past several years.
Capturing and storing exercise data A paper by Tovarnak [164] provides detailed insightinto the systems used for network traffic (PCAP) and log data capturing during the CyberCzech exercise. This paper compares well with some of the prior discussions regardingFrankenstack in section 4.4. Their team has released the exercise dataset collected duringa CSX that took place in the KYPO Cyber Range Platform in March 2019 [163].The Cyber Czech team has opted to capture the PCAP from the central gateway node,however, they are additionally processing the network PCAP and exporting it as IPFIX8(Internet Protocol Flow Information Export) flows. Capturing traffic from the central gate-way nodes resembles more the ISP point of view for traffic analysis. Comparatively, wedecided to not use NetFlow or IPFIX within our exercise environments and relied on Suri-cata IDS to provide flow information. Moreover, network traffic in XS and LS is capturedfrom all in-game networks segments using the Cisco ERSPAN functionality, resulting in fullnetwork visibility.Logs were collected using respective OS-based tools and forwarded to a central col-lector running Logstash. Similarly, the collected logs are already stored in structured JSONformat. Modifications to this log collection by the BT was forbidden according to exerciserules, nevertheless, the paper states that any unsanctioned actions taken by BTs mighthave resulted in loss of events in the log.

7The interview with the Cyber Czech research team took place via Zoom on June 15, 2020.8An IETF protocol that is based on NetFlow version 9.
54

5 Event log analysis and knowledge discovery
This chapter describes the novel data clustering and event patternmining algorithm calledLogCluster. The algorithm and its use cases were initially introduced in Publications II andIII. Furthermore, in October 2020 the author conducted a follow-up performance compar-ison of our algorithm alongside several other pattern mining algorithms which have beenreleased over the past few years. The experiment and the results are described in section5.3 below. This chapter addresses research question RQ2.1. The research was originallypublished in Publications II and III. Thesis contribution 3 is described.Modern systems often produce large volumes of system and application logs, render-ing manual review of those events infeasible. Understanding event patterns is an impor-tant step in log analysis process in order to discover frequent patterns, develop event logmonitoring and correlation rules. However, in some cases the opposite applies—outliers(e.g., infrequent or unusual events)might be themost important ones to discover as a crit-ical error or a log entry describing a security breach might exhibit itself just once. Motiva-tion for engaging in log analysis and clustering effort can vary between different industrialand research applications. For instance, log exploration, duplicate issue discovery, failureor incident diagnosis, analysis automation, anomaly detection, and performance evalua-tion are common endeavours addressed by both researchers and industry practitioners.
5.1 Description of LogCluster
The LogCluster algorithm was designed to analyse textual event logs to discover both fre-
quent line patterns as well as outlier events. LogCluster addresses several shortcomings ofpre-existing event log clustering algorithms discussed in papers [168, 144, 100]. In particu-lar, LogCluster resolves several issues of the SLCT algorithm, such as detection of wildcardsafter the last word in a proposed line pattern, sensitivity to delimiter noise and discover-ing shifts in word positions. The LogCluster tool is distributed under the terms of GNUGPLand is available from [170]. At the time of writing, the latest version of LogCluster is 0.10which was released on March 20, 2019. LogCluster processes logs in a single-threadedfashion, however, multiple processes can be launched for independent analyses.LogCluster uses frequent pattern mining to address the log clustering problem. Log-Cluster expects the support threshold s as user-defined input parameter (if the eventlog contains n lines, then 1≤ s≤ n). To detect cluster candidates, LogCluster identifiesline patterns by parsing the textual event logs. In the default operating mode, LogClustermakes two passes over the log data: first to identify frequent words (i.e., words that ap-pear in at least s event log lines) and second to generate cluster candidates (assigning oneor more event log lines to each candidate). Configuring certain additional features (e.g.,
outlier detection) invokes an additional pass over the dataset.

Listing 5: Example dataset for log clustering.

I n t e r f a c e eth0 downI n t e r f a c e e th 1 upI n t e r f a c e HQ l i n k down
Each detected cluster candidate is uniquely identified by its line patternwhichmatchesall lines assigned to the cluster candidate. Line patterns consist of frequent words andwildcard notations. The support of a particular cluster candidate is defined as the num-ber of event log lines assigned to the cluster candidate. Finally, after cluster candidateshave been detected, candidates with the support of at least s are selected as clusters. Toillustrate, an example dataset is provided in Listing 5. If s=2, the detected line pattern

55

Interface *{1,2} down consists of frequent words Interface and down, and the wild-card notation *{1,2}whichmatches at least one and atmost twowords. EventsInterface
eth0 down and Interface HQ link down both belong to the cluster represented bythe pattern Interface *{1,2} down.

Outliers are lines which do not belong to any of the detected clusters (i.e., clustercandidates with the support of at least s). In the example above, when s=2, the event
Interface eth1 upwould be considered an outlier. Detection of outliers is not enabledby default but can be enabled by using the relevant command line parameter.

In addition to specifying the input log file to process, the support threshold is the onlymandatory input parameter the user has to provide when using the LogCluster tool (seeexample #1 in Listing 6). To ease the exploration of unfamiliar log files, LogCluster alsoenables the user to define a relative support threshold which denotes the percentagefrom total lines read from the input. Although results vary with different types of logs,our experiments indicated that a relative support value in the order of 0.1% and 1% is asensible starting point.
The experiments also revealed some use cases where it might not be optimal to at-tempt clustering the events with just one LogCluster execution. For instance, when clus-tering event logs with a large variety of log messages from many hosts, higher supportthresholds are likely to yield too many outliers. Contrariwise, lower support thresholdswill produce a large number of clusters. For addressing this issue, LogCluster can be runiteratively to cluster the outliers that were detected from the previous execution at eachconsecutive step (see example #2 in Listing 6). Such multi-step approach enables to iden-tify clusters of events which occur at various frequency levels.
LogCluster has several data pre-processing capabilities to improve the clustering out-come. For example, it is possible to apply additional line filters to only process lines thatmatch the user-defined regular expression (see example #3 in Listing 6). Furthermore,when the line filter regular expression is set to store match variables and used in con-junction with the line template function, it is possible to alter the original input log linebefore it is processed. For instance, example #4 in Listing 6 removes the preceding syslogtimestamp and hostname, leaving just the syslog tag prefix along with the message. Thisapproach can be used to remove excessive noise arising from changes in the timestampand hostname segment of syslog events.
Moreover, words often share the same format that is not detected during clusteringdue to some changing parameters. For instance, the program name of the syslogmessageis followed by a process ID that can change frequently, resulting in many infrequent wordsfor the same program (e.g., sshd[40515]: and sshd[261017]:). For addressing thisissue, LogCluster enables to mask particular words or word parts. This can be achievedusing a regular expression filter and search pattern to replace the matching section of thelog line with a given string. Such masking can be used to replace values (e.g., processID numbers, IP addresses, port numbers, timestamps, etc.) that often change betweenotherwise similarly formattedwords. See example #5 in Listing 6 for replacing SSHdaemonprocess ID with a string PID. Note, that this approach actually sets up another word class

sshd[PID]:, which is treated like a regular word by LogCluster. If a corresponding wordclass is frequent, it replaces all infrequent words during the clustering process. However,if both the original word (e.g., sshd[40515]:) and the corresponding word class (i.e.,
sshd[PID]:) are frequent, the original word is given preference during the clusteringprocess.

Finally, in addition to regular expression based line parsing and word class creation,the LogCluster tool supports defining custom Perl functions for these tasks and enables
56

Listing 6: Sample LogCluster invocations in a log discovery process (omitting output).

#1 − S imp le i n v o c a t i o n u s i n g an ab so l u t e suppor t t h r e s h o l d va l uel o g c l u s t e r . p l −− i n pu t = auth . l o g −− suppor t =100
#2 − I t e r a t i v e c l u s t e r i n g u s i n g a r e l a t i v e suppor t t h r e s h o l dl o g c l u s t e r . p l −− i n pu t = auth . l o g −− r s uppo r t =0 .5 −− o u t l i e r s = o u t l i e r s − i 1 . l o gl o g c l u s t e r . p l −− i n pu t = o u t l i e r s − i 1 . l o g −− r s uppo r t =0 .5 −− o u t l i e r s = o u t l i e r s − i 2 . l o gl o g c l u s t e r . p l −− i n pu t = o u t l i e r s − i 2 . l o g −− r s uppo r t =0 .5 −− o u t l i e r s = o u t l i e r s − i 3 . l o g
#3 − P ro ce s s on l y SSH daemon messages from auth . l o gl o g c l u s t e r . p l −− i n pu t = auth . l o g −− r s uppo r t =1 −− l f i l t e r = ' sshd \ [\ d + \] : '
#4 − P ro ce s s sshd messages from auth . log , remove s y s l o g t imestamp and hostnamel o g c l u s t e r . p l −− i n pu t = auth . l o g −− r s uppo r t =1 \−− l f i l t e r = ' (s shd \ [\ d + \] : . +) ' −− temp la te = ' $1 '
#5 − P ro ce s s sshd messages , remove t imestamp and hostname , r e p l a c e p ro ce s s IDl o g c l u s t e r . p l −− i n pu t = auth . l o g −− r s uppo r t =1 \−− l f i l t e r = ' (s shd \ [\ d + \] : . +) ' −− temp la te = ' $1 ' \−− w f i l t e r = '^ \w+ \ [\ d + \] : $ ' −−wsearch = ' \ [\ d + \] ' −−wrep lace = ' [P ID] '

loading such functions from external Perl modules. This allows for addressing complexdata pre-processing tasks which cannot be handled by regular expressions alone.When using lower support thresholds, LogCluster can sometimes overfit and need-lessly split meaningful line patterns into too specific ones. For example, LogCluster canoutput the following two line patterns which both exceed the desired support threshold:
Interface *{1,1} up and Interface eth0 up. To address such overfitting, LogClus-ter supports two heuristics for joining clusters to produce fewer and more generic linepatterns that are likely more comprehensible for human operators.First heuristic to join clusters detects cluster overlap and aggregates supports of rele-vant cluster candidates before final clusters are formed. For each cluster candidate othercandidates are analysed to identify the ones with more specific line patterns. Conse-quently, the lines corresponding to more specific candidates are assigned to the moregeneric cluster candidate.Second heuristic employs various word weight functions and is applied after clustershave been selected. LogCluster defines several word weight functions9 which measurehow closely (ranging from 0 to 1) each word in the line pattern is correlated to otherwords in this pattern. For identifying words with insufficient weights, the heuristic re-quires a user defined word weight threshold (0< t≤ 1). When clusters are joined, the
supports of original clusters are summed and the resulting line pattern is adjusted to de-scribe the lines in all original clusters: words with insufficient weights are combined intocompact lists of alternatives and wildcards are joined. Such approach enables knowledgediscovery from original patterns in a concise manner. When evaluating this cluster joiningheuristic, we found that word weight thresholds ranging between 0.5–0.8 produced themost reasonable joint clusters.The LogCluster usage example in Listing 7 brings most of the mentioned features to-gether. The output represents a joint cluster produced from the LS15 Availability Scoringsystem log file containing a total of 3,400,185 events. The example cluster represents theunion of twelve clusters which have been combined using the word-weight-based clus-
ter joining heuristic. Contextually, this cluster combines all successful SSH service checksusing both IPv4 and IPv6 for 192 different hosts.

9LogCluster v0.10 includes four different word weight functions.
57

This usage example makes use of several input parameters, some of which mightrequire an additional explanation. The clustering is performed with a relative supportthreshold of 0.1% which results in the support threshold of 3,400 lines. To accommodateparsing the custom vertical bar (|) separated format of the LS Availability Scoring logs (seeListing 2 in the section 4.5 above for examples), the word separator regular expressionhas been set to match the double quote and vertical bar symbols as well as all whitespacecharacters. Line filtering and template options are used to remove the check start andend timestamps at the last two positions of each event. Word classes are used to maskspecific BT numbers (e.g., 04 or 16) within the hostnames with a genericNN notation. Theoutliers are written to the ls15-outliers.log file for further analysis.
Listing 7: Example of using LogCluster to analyse LS Availability Scoring system logs.

l o g c l u s t e r . p l −− i n pu t = l s 1 5 . l o g −− r s uppo r t =0 . 1 −− s e p a r a t o r = ' [" | \ s] + ' \−− l f i l t e r = ' ^ (. *) (? : \ | " \ d + ") { 2 } ' −− temp la te = ' $1 ' \−− w f i l t e r = ' b lue \ d \d ' −−wsearch = ' b lue \ d \d ' −−wrep lace = ' blueNN ' \−−wweight =0 .5 −− o u t l i e r s = l s 1 5 − o u t l i e r s . l o g
(ws4 −0 1 . l a b . blueNN . ex |ws4 −04. l a b . blueNN . ex |ws4 −03 . i n t . blueNN . ex |ws4 −04. i n t . blueNN . ex|ws4 −02 . i n t . blueNN . ex |ws4 −05 . l a b . blueNN . ex |ws4 −05 . i n t . blueNN . ex | d lna . l a b . blueNN . ex|ws4 −0 1 . i n t . blueNN . ex |ws4 −02 . l a b . blueNN . ex |ws4 −03 . l a b . blueNN . ex | g i t . l a b . blueNN . ex)(s sh | s sh . i p v6) OK SSH OK − (OpenSSH_6 . 6 . 1 p1 |OpenSSH_5 . 9 p1 |OpenSSH_6 . 6 . 1 _hpn 13v 1 1)(Ubuntu −2 ubuntu2 | FreeBSD −20140420| Debian −5 ubuntu1 | Debian −5 ubuntu1 . 4) (p r o t o c o l 2 . 0)

Rare events may easily go unnoticed in large log files. Iterative processing of the out-liers file (described in example #2 in Listing 6)may reveal interesting events or unexpectedsituations that only occur rarely during the CSX. For instance, further processing of theoutlier file ls15-outliers.log from Listing 7 resulted in an even smaller set of outlier events.Listing 8 describes one problematic check result from a time when the BT was updatingthe SSL configuration of its mail server. Notably, the event triggered an exception statealong with fairly verbose error message within the check script. This was something thatneeded to be followed up and improved within the script itself. Moreover, such verboseerror messages should not be printed into the Availability Scoring data feed but ratherlogged separately for further investigation.
Listing 8: Problematic error message detected from the outliers of the Availability Scoring log.

" ma i l . b lue06 . ex " | " imap_ re ce i ve " | " CR I T I CAL " | " IMAP RECEIVE CR I T I CAL − Could not connectto 1 0 . 6 . 1 . 4 po r t 993 : IO : : Socke t : : I P c o n f i g u r a t i o n f a i l e d e r r o r :00000000: l i b (0) :func (0) : reason (0) (i f you ge t t h i s on l y when u s i n g both −− s s l and −− s s l −ca − f i l e , butnot when u s i n g j u s t −− s s l , the s e r v e r SSL c e r t i f i c a t e f a i l e d v a l i d a t i o n) a tcheck_ imap_ rece i ve l i n e 1 38 . " | " 1 4 29686 1 7 7 " | " 1 4 29686 1 7 7 "

5.2 Discussion of related work
This section summarises prior comparisons of LogCluster and other relevant log miningtools.
Comparison with SLCT SLCT is a direct predecessor to LogCluster. Before proceedingto conduct new comparisons, it would make sense to first recap our prior experiment inPublication II where we performed a thorough comparison of SLCT10 and LogCluster. Bothalgorithms use frequent pattern mining to detect log clusters. Performance evaluation

10The SLCT algorithm was re-implemented in Perl language for a more suitable side-by-side com-parison with LogCluster.
58

with Perl-based implementations indicated that the SLCT algorithm was 1.28–1.62 timesfaster than LogCluster. This is because SLCT does not check and adjust the line patterns ofcluster candidates, resulting in a simpler candidate generation procedure. However, thisrelates directly to the shortcomings of SLCT (e.g., not discovering shifts in word positions)that were mentioned above.Nevertheless, a recent comparison of SLCT (originally written in C) with a simplifiedC-based prototype11 of LogCluster revealed that C-based implementations of both algo-rithms have roughly the same speed [184]. The reason for this is the fact that SLCT encodesposition information into words which increases the length of words and therefore alsothe computational cost of word hashing. With C-based implementations, this extra costcan even exceed the cost of more complex candidate generation procedure of LogCluster.Perl-based implementations of both algorithms proved to be relatively efficient interms of processing speed. However, processing remarkably large log files still consumed aconsiderable amount of time. In case of the largest event log file (16.3GiB and over 49mil-lion lines) SLCT implementation needed about 1.5 hours to complete, while LogCluster’sruntime took slightly over 2 hours. Note, that C-based implementations were significantlyfaster—for example, the original version of SLCT written in C processed the same 16.3GiBlog file in 19 minutes. Thus, the Perl implementation was approximately 4.6 times slower.
Automated benchmarking framework by LogPAI As mentioned in the Related Worksection 2.2.1, the comparative analysis and automatedbenchmarking framework describedin [183] by Zhu, et al. is likely one of the most comprehensive comparisons of various logparsers that has been published within the past few years. While their extensive researchendeavour provided plenty of valuable insight to the author of this thesis, there are sev-eral shortcomings that were encountered while reviewing their implementation of theautomated benchmarking framework.When describing the experiment setup, the paper provides an extensive descriptionof the Loghub project [93] which comprises 16 different log datasets and contains a totalof 440million logmessages that sum up to about 77GiB in size. However, the benchmarkswere conducted using only a sample of 2000 lines from each log type. On one hand, thislimitation is justified, because the accuracy evaluation methodology used manual datalabelling for establishing event templates as ground truth. However, on the other hand,assessing the efficiency and performance of various log parsers based on just 2000 eventsis hardly sufficient. Moreover, for some log types there are additional regular expressionpre-filters which further reduce the number of events that are passed on to log parsersas input. To alleviate the situation, the second phase of the experiment selected six logparsers (MoLFI, LenMa, AEL, Spell, IPLoM and Drain) for further testing on three larger1GiB datasets—Android, BGL, and HDFS log files.Furthermore, the relative support threshold values used for LogCluster are not opti-mal. As mentioned, the benchmark iterates over a set of 16 different log types. LogClusterconfiguration for six out of 16 log types specify an abnormally high relative support valueof 10% and higher, in some cases 30–40%. While moderately higher support values mightbe justified in some cases, it is important to consider that we have suggested using signif-icantly lower relative support thresholds (e.g., between 0.1% and 1%) with LogCluster. Forexample, specifying a relative support threshold of 40% for a 2000-line Linux syslog eventlog file would mean that the resulting cluster(s) would have to contain at least 800 similarevents. This is rather unrealistic considering the large variety of Linux syslog events.

11The simplified C-based LogCluster prototype implements only a subset of the main Perl-basedLogCluster tool and is based on its older version.
59

Finally, the paper claims (as shown in Table II in [183]) that LogCluster tool output doesnot provide a full coverage of analysed log files and lacks log pre-processing capabilities.As described above, this is not true. First, if LogCluster is executedwith the optional outlier
detection functionality, then its output covers the entire input log file. Second, LogClusteroffers many event pre-processing functions (e.g, see Listings 6 and 7), however, there areno mandatory pre-processing steps and logs can also be parsed just as they are.
5.3 Comparison with newer log mining algorithm implementations
This subsection describes the experiment with LogCluster (published in 2015) and severalmore recently published log parsing tools to understand how LogCluster compares withsimilar but newer competitors. The experiment provides an assessment of the followingprimary aspects:

• Efficiency: Time and resource consumption evaluation;
• Features: Discussion of common and unique features;
• Usability: Ease of use and applicability of log mining results.

5.3.1 Experiment setup
To reduce any potential interference and uncertainty arising from using shared environ-ments and virtualisation, all benchmark experimentswere conductedon adedicatedphys-ical Linux host12 built on an ASUS motherboard13 coupled with the 10th generation IntelCore i9 CPU 14 and 256GB of memory15. The storage device used in the experiments wasa 2TB NVMe SSD drive16. Software version for Perl was 5.32 and for Python 3.8.3.The experiments were conducted using two different log types from CSXs: Availabil-ity Scoring system logs (from Locked Shields) and Linux syslog server logs (from CrossedSwords). First, the Availability Scoring system log file (hereafter indicated as LF1) containsthe results of all service checks (both OK and not-OK) from LS15. As already describedabove, the Availability Scoring system events use a custom vertical bar separated format.Therefore, a custom regular expression that matches the vertical bar symbol as well aswhitespace characters as word separators has to be defined (see Listing 7). The 392MiBfile contains a total of 3,400,185 events spanning approximately 16 hours of LS gameplay.Second, the 4.6GiB Linux syslog file (hereafter indicated as LF2) contains 27,365,365 eventsfrom the XS19 central syslog server that has collected logs from 54 unique hosts over thecourse of 10 days. The syslog events were logged with rsyslog using the high-precisiontimestamp format.The experiment executes a log exploration scenario where a log mining utility is usedto parse large unstructured log files without applying any kind of advanced masking orpre-filtering which is possible only when the analyst has already gained a comparativelygood overview of the contents of corresponding log files. The comparison investigatesefficiency, available features, ease of use in various applications, and an assessment ofeach tool’s output.

12Manjaro Linux 20.1.1 (Mikah), kernel version 5.8.11-1-MANJARO13ASUS Prime X299-Deluxe II14Intel Core i9-10920X15Crucial DDR4 2666MHz BL32G32C16U4B.M16FB116Gigabyte NVMe SSD GP-ASM2NE6200TTTD
60

5.3.2 LogCluster resultsFor the experiment, the latest available version of the LogCluster tool (LogCluster v0.10)from the LogCluster homepage [170] was used. The LogCluster tool is executed with the
outlier detection to provide a full coverage of the input log file.LogCluster was able to parse the LF1 log file with good efficiency and concluded in 78seconds (i.e., 1m 18s). Since LogCluster implementation is single-threaded and its CPU-thread utilization was 100% according to the GNU time utility, then each LogCluster run-time closely matches CPU time that was consumed during this and the following experi-ments. Memory use peaked at 228MB. LogCluster produced a total of 39 clusters usingthe relative support threshold of 0.5% (s=17000). The resulting 39 line patterns match1,750,405 input events (71.7%), the rest (i.e., 962,866 events) were considered as out-liers. An example of four clusters is depicted in the #LF1 section of Listing 9. The leadinghostnames and the timestamps at the final two positions are replaced by correspondingwildcard notations in all line patterns.

Listing 9: Example of LogCluster output.

L F 1# l o g c l u s t e r . p l −− i n pu t = l s 1 5 . l o g −− r s uppo r t =0 .5 −− o u t l i e r s = l s 1 5 . o u t l i e r s \# −− s e p a r a t o r = ' [" | \ s] + '
* { 1 , 1 } rdp OK x224 OK . Connec t ion se tup t ime : * { 1 , 1 } sec . * { 2 , 2 }Suppor t : 420322
* { 1 , 1 } rdp . i p v6 OK TCP OK − 0.001 second response t ime on * { 1 , 1 } po r t 3389 * { 2 , 2 }Suppor t : 271926

−−− 35 p a t t e r n s omi t ted −−−
* { 1 , 1 } ntp . i p v6 OK NTP OK : O f f s e t * { 1 , 1 } s e c s * { 2 , 2 }Suppor t : 18209
* { 1 , 1 } ntp OK NTP OK : O f f s e t * { 1 , 1 } s e c s * { 2 , 2 }Suppor t : 1 7747
LF2# l o g c l u s t e r . p l −− i n pu t = s y s l o g . l o g −− r s uppo r t =0 . 1 −− o u t l i e r s = s y s l o g . o u t l i e r s
* { 1 , 1 } v t s − s e r v e r . gdt . c l f . ex vhf − r a d i o s e r v e r [9 2 9] : (VHF A IS2) Rece i ved A IS sentencefrom tcp : 1 0 . 2 4 2 . 1 0 . 1 9 2 : 9 0 1 0 : * { 1 , 1 }Suppor t : 1084528
* { 1 , 1 } v t s − s e r v e r . gdt . c l f . ex vhf − a i s c l i e n t [8 5 9] : A i s C l i e n t I n t e r f a c e : A I S out : * { 1 , 1 }(VHF A IS2)Suppor t : 1084489
* { 1 , 1 } n a g i o s . c l f . ex * { 1 , 1 } [l o g i n : n ag i o s s sh : ((unde f ined)) username : nag i o s u id : 1 0 5group : nag i o s g i d : 1 0 7 s i d :407 t t y : (none) cwd : / tmp f i l ename : / b in / p ing6] :/ b i n / p ing6 −n −U −w 15 −c 3 * { 1 , 1 }Suppor t : 735860

−−− 291 p a t t e r n s omi t ted −−−
* { 1 , 1 } n a g i o s . c l f . ex * { 1 , 1 } [l o g i n : n ag i o s s sh : ((unde f ined)) username : nag i o s u id : 1 0 5group : nag i o s g i d : 1 0 7 s i d :407 t t y : (none) cwd : / tmp f i l ename : / b in / p ing] :/ b i n / p ing −n −U −w 33 −c 3 1 0 . 2 4 2 . 6 . 7Suppor t : 27968

When assessing the clusters detected from LF1, it becomes evident that 37 (i.e., 94.9%)of them are representing events with an OK state. As these events describe the uptime ofservices, then OK states are naturally more frequent and less likely to change comparedto events describing fault or critical states. This means that many fault events were clas-sified as outliers. Based on this observation, it might make sense to take additional stepswhen analysing this log file, e.g., attempt iterative clustering of outliers as we described
61

in example #2 in Listing 6 or employ more advanced heuristics to aggregate the supportsof less frequent cluster candidates.Parsing of the LF2 took slightly longer: 549 seconds (i.e., 9m 9s). However, consideringthe larger size (11.7 times) of the input file compared to LF1, this could still be consideredhighly efficient. The memory consumption of the LogCluster process was also notablyhigher, peaking at 6GB. However, LogCluster’s memory use can be reduced by enablingvarious memory optimisation techniques (e.g., sketching) at the expense of an additionalpass over the input data. For instance, when using a word sketch with 100,000 counters(--wsize=100000) the process runtime increased to 14m 54s (increase of 5m 45s) due tothe additional pass over the data, however, LogCluster’s memory consumption droppedby approximately 98.7% to just 80MB. LogCluster produced a total of 295 clusters usingthe relative support threshold of 0.1% (s=27365). The 295 line patternsmatch 20,409,430input events (i.e., 74.6%), the rest (i.e., 6,955,935) were considered as outliers. An exam-ple of four clusters is depicted in the #LF2 section of Listing 9. The leading timestamp hasbeen replaced by the wildcard notation in all 295 line patterns. The same applies for thesyslog tag (e.g., sshd[261017]:) in many cases where the process ID number has changedover time. When assessing the line patterns from LF2, it seems that some systems (e.g.,AIS - the vessel tracking Automatic Identification System) and programs (e.g., Snoopy log-ger events for Nagios) have been extremely verbose. Although using additional clusterjoining heuristics would merge some of those clusters, in some cases it might make senseto set up a line filter to exclude these lines from the analysis to better focus on otherevents.
5.3.3 Comparison with Drain
For the experiment, the latest available version of the Drain tool (Drain3 v0.7.9) from thePython Package Index [139] was used. Drain3 is an updated version of the original Drainimplementation that did not support python version 3 [61]. Drain is an online log parser,meaning that it can analyse a stream of events. It can be configured to periodically dumpits current state to Apache Kafka, Redis [142] or a file on disk. The data dump also enablesDrain to maintain a persistent state across restarts. Processing takes place in a single-threaded manner and the output offers full coverage of the input log file—even line pat-terns with just one input line are returned. This behaviour is intentional since Drain ismeant to process streams rather than complete files, so under normal operating condi-tions a new line matching an existing cluster with a single member could come in at anytime.First thing to note is that instead of using command-line parameters, Drain loads aconfiguration file which specifies three user-defined input parameters which come withdefault pre-defined values17. Additionally, the configuration file enables the user to spec-ify regular expressions for masking commonly occurring patterns (e.g., process ID, IP ad-dresses, date, and time values) with a fixed string placeholder before the log mining com-mences. For LF2 no regular expression masking was used, however, for LF1 masking fea-ture was used to handle the custom word delimiter conversion to single whitespaces.Since Drain is designed for stream processing, the most reasonable method was to feedthe input event logs via the program’s standard input (stdin) stream.Drain demonstrated good efficiency for LF1 which was processed in 113 seconds (i.e.,1m 53s). Since Drain3 implementation is single-threaded and its CPU-thread utilizationwas 100% according to the GNU time utility, then the actual runtime closely matches CPUtime that was consumed. Maximum process memory usage was only 16MB. The process

17Default parser configuration for Drain3: sim_th=0.4, depth=4, max_children=100

62

yielded 90 clusters (see four examples under #LF1 in Listing 10). However, when comparingDrain’s output with LogCluster, only 17 clusters detected by Drain contained more (i.e.,17,000) members than what was set by the support threshold for LogCluster.
Drain’s processing speed deterioratedwhenfile size grew larger. LF2was processed in 1hour 21minutes 21 seconds. Maximumprocessmemory usagewas only 26MB. Theminingyielded 4962 patterns (see four examples under #LF2 in Listing 10). When compared withLogCluster, 91 clusters detected by Drain containedmore (i.e., 27,365)members thanwhatwas set by the support threshold for LogCluster.
Cluster IDs are assigned incrementally (e.g., A0001, A0002, etc.) as new line patterntemplates are identified. Whenmessages are added to an existing cluster, the correspond-ing line pattern is updated, as necessary. The output is not sorted by the size of individualclusters, but rather by the order of cluster IDs.
Produced line patterns are understandable, however, several identified line patternsseem too specific and should have rather been joined together. For example, in case ofLF1, nine line patterns (10%) were formed around the single term OK and the two UNIXtimestamps at the end of each message (e.g., 1429684088< >1429684088). In case ofLF2, similar issue could be observed. For instance, the changing PID number of the mailserver’s SMTP daemon has resulted in a total of 214 distinct line patterns where the onlychanging element is the process ID number (e.g., postfix/smtpd[10948]:). Unfortunately,Drain’s functionality does not seem to include any post-processing heuristics to join similarline patterns. Therefore, to avoid such unwanted behaviour the end-user should studythe log file and prepare a set of regular expressions to mask such varying elements in logmessages. Furthermore, according to the paper [55] describing the original algorithm,Drain assumes that log messages describing a similar event contain the same number ofwords. This means, for example, that Drain is unable to correctly handle the log clusteringscenario presented in Listing 5 where one of the log messages has an additional word init.

Listing 10: Example of Drain3 output.

L F 1# s im_th =0 .4 , depth =4 , max_ch i l d ren =100A0001 (s i z e 1 3 1 6 4 6 5) : < <*> <*> >OK< >TCP OK − <*> second response t ime on <*> po r t<*> <*> <*> >A0002 (s i z e 200035) : < <*> <*> <*> >HTTP <*> HTTP / 1 . 1 <*> <*> − <*> by te s i n<*> second response time < <*> <*> >A0003 (s i z e 3 59 5 7) : < <*> <*> >OK< >NTP OK : O f f s e t <*> secs < <*> <*> >−−− 86 p a t t e r n s omi t ted −−−A0090 (s i z e 1) : < >dev . b lue06 . ex < >w ik i _web log i n < > CR IT ICAL < >HTTP_AUTH CR IT I CAL −Cannot connect to h t t p : / / w i k i . b lue06 . ex / i ndex . php? t i t l e = S p e c i a l : U se r Log i n&a c t i o n =s ubm i t l o g i n&type = l o g i n&r e t u r n t o =Main+Page : w r i t e f a i l e d : Connec t ion r e s e t by peera t / u s r / l o c a l / sha re / p e r l / 5 . 1 4 . 2 / LWPx / TimedHTTP .pm l i n e 2 5 1 .< >1429706566 < >1429706567 < >
LF2# s im_th =0 .4 , depth =4 , max_ch i l d ren =100A0001 (s i z e 22 768 10) : <*> nag i o s . c l f . ex <*> [l o g i n : n ag i o s s sh : ((unde f ined))username : nag i o s u id : 1 0 5 group : nag i o s g i d : 1 0 7 s i d :407 t t y : (none) cwd : / tmp<*> <*> <*> <*> <*> <*> <*> <*> <*>A0002 (s i z e 2 3 1 7 7) : <*> <*> <*> <*> DEBUG [S e r i a l G p s L o c a t i o n L i s t e n e r H a n d l e r . j a v a : 4 7]T r i e d to open s e r i a l , d idn ' t f i n d any po r t w i th g i v en name , have these po r t s : []A0003 (s i z e 1084528) : <*> v t s − s e r v e r . gdt . c l f . ex vhf − r a d i o s e r v e r [9 2 9] :(VHF A IS2) Rece i ved A IS sentence from tcp : 1 0 . 2 4 2 . 1 0 . 1 9 2 : 9 0 1 0 : <*>−−− 4958 p a t t e r n s omi t ted −−−A4962 (s i z e 1) : 2019−02−02T04 : 3 7 : 0 1 . 5 435 1 9+00 :00 v t s − s e r v e r . gdt . c l f . ex su [3 1 2 1 1] :− ??? roo t : vh f

63

5.3.4 Comparison with LogMine
For the experiment, the latest available version of the LogMine tool (logmine v0.2.2) fromthe Python Package Index was used. Similarly to LogCluster, LogMine is also an offline logparser, meaning there is no support for stream processing. Subjectively, LogMine is easyto use and provides basic usage information within the tool’s help function.LogMine enables the user to configure several command line parameters. Besides theinput log file, none of them aremandatory for the user to specify, since they all comewithsome default values18. By default, LogMine is configured to detect clusters which have atleast 2members. In the experiments, this thresholdwas set to 1, so LogMine outputwouldcover the entire input file similarly to LogCluster andDrain in prior experiments. Note, thatLogMine is the only multi-threaded log processor in this experiment.LogMinewas able to parse the LF1 log filewith relatively good efficiency and concludedin 100 seconds (i.e., 1m 40s). The process yielded 67 clusters with min-members set to 1(see four examples under #LF1 from Listing 11). When compared with LogCluster, 16 clus-ters detected by LogMine contained more (i.e., 17,000) members than what was set bythe support threshold for LogCluster. Since LogMine implementation is multi-threaded, itwas able to utilise all available (i.e., 24) CPU threads, resulting in 38m 20s of consumedCPU time and an average of 96% CPU utilisation according to the GNU time utility. Pro-cess memory use peaked at 86MB. Furthermore, it seems that LogMine tends to producemore generic line patterns when compared with LogCluster or Drain. For example, fullcoverage of LF1 was achieved with just 67 clusters out of which 64 had more than onemember, additionally, the pattern * * * * * * * * * * * containing just eleven wildcardnotations matched 35,934 input lines. Alternatively, parsing LF1 with a single thread took21m 43s (i.e., approx. 13 times longer) to complete.Parsing LF2 took noticeably longer and concluded in 36 minutes and 52 seconds. Theprocess yielded 3012 clusters with min-members set to 1 (see four examples under #LF2from Listing 11). When compared with LogCluster, 77 clusters detected by LogMine con-tained more (i.e., 27,365) members than what was set by the support threshold for Log-Cluster. LogMine analysis resulted in 5.0 hours of consumed CPU time and an average of34% CPU utilisation per thread according to the GNU time utility. The average CPU utili-sation is rather low because some of the threads finished processing much quicker thanothers. Processmemory use peaked at 909MB. Again, the performance in single-threadedmode is very slow—parsing LF2 took approximately 22 hours to complete.LogMine demonstrated remarkably high CPU usage. With the default settings, Log-Mine exhibited relatively fast processing speeds on modern multi-core CPUs. However,except formodifying the number ofminimum clustermembers (i.e.,min-members value),most command-line parameter (e.g., the max-dist or the K1 and K2 weight values) mod-ifications resulted in highly increased processing times. For example, when setting line-
distance-weight-K1=0.5 the parsing of LF1 took 13h 54m. An attempt to parse LF2 withthe same parameters exceeded 22 hours before the process was manually interrupted.Although this change drastically improved LogMine output for LF1, it is just not feasible incase of larger log files.It is important to note that LogMineoutput differswhen it is executed inmulti-threadedmode compared to the single-threaded mode. The authors have acknowledged this dif-ference and claim that this is an expected side-effect. However, this raised some con-cerns regarding the reliability and reproducibility of LogMine results in various situations.The experiments revealed an output variation in results not just when switching between

18Default values of relevant LogMine command line parameters: max-dist=0.6,
min-members=2, line-distance-weight-K1=1, variable-weight-K2=1

64

different operating modes, but also when switching between different test machines. Itseems that in order to speed up the log mining process, input log lines are distributedbetween different threads based on some characteristics, so each thread sees only a frac-tion of the input file. The more threads a machine has, the less data each thread actuallyreceives. Clusters that form on a small subset of data can be much different from clustersthat would form when analysing the entire dataset. To verify this variation in practice, anadditional side-experiment using another physical server with two highly multi-threadedCPUs19 was conducted. Even with identical LogMine configurations the resulting clustersfrom LF1 were noticeably different when compared to results from the primary testingmachine with just 24 CPU threads. Not only were there differences in cluster sizes, butsome smaller clusters had not formed at all.
Listing 11: Example of LogMine output.

L F 1# logmine −− pa t te rn − p l a c e ho l d e r ' * ' −−min−members 1 −− d e l i m i t e r s ' [" | \ s] + ' l s 1 5 . l o g# Output format : C lus ter_members L i n e _ p a t t e r n
1336365 * * OK * OK − * * response t ime * * * * * * * * * *420322 * rdp OK x224 OK . Connec t ion se tup t ime : * sec . * * *338388 * * OK * OK − * * * * * *−−− 63 p a t t e r n s omi t ted −−−1 ma i l . b l ue 10 . ex smtp . i p v6 WARNING re c v () f a i l e d 1429687172 1429687177
LF2# logmine −− pa t te rn − p l a c e ho l d e r ' * ' −−min−members 1 s y s l o g . l o g
6270207 * apps rv . gdt . c l f . ex s t a r t . sh [5 7 6] : #01 1 a t * *2956762 * * * * s sh : ((unde f ined)) username : nag i o s * group : nag i o s * * t t y : (none)* * * * * * * * * *1588265 * * unbound : * i n f o : * * * IN−−− 3008 pa t t e r n s omi t ted −−−1 2019 −02 −01 T15 : 24 : 5 2 . 43348 1+02 :00 fw . gdt . c l f . ex smbd [2 3 3 6 3] : PANIC(p id 2 3363) : i n t e r n a l e r r o r

5.3.5 Comparison with SpellFor the experiment, the latest available version of the Spell tool (spellpy v0.0.9) fromthe Python Package Index was used. Similarly to Drain, Spell is also an online log miningalgorithm capable of stream processing. However, the tool implementation seems to lackany directly configurable settings for loading, periodically outputting or storing its runtimestate. Processing takes place in a single-threaded manner and the output provides fullcoverage of the input log file. Spell has one user provided parameter called tau (by default
tau=0.5).Spell demonstrated the lowest efficiency for parsing LF1 with default settings. LF1 wasprocessed in 657 second (i.e., 10m 57s). Since Spell is single-threaded and its CPU-threadutilization was 100% according to the GNU time utility, then the actual runtime closelymatches CPU time that was consumed. Maximum process memory usage was 3.5GB,which is the highest in the experiment. The process yielded 1148 clusters (see four ex-amples under #LF1 in Listing 12). Spell provides full coverage of the input file and out-puts all detected clusters. When compared with LogCluster, 22 clusters detected by Spellcontained more (i.e., 17,000) members than what was set by the support threshold forLogCluster.The low efficiency proved to be detrimental for Spell. At first, Spell could not finishloading LF2, instead a Timeout exception was raised. After inspecting the Python source

19Two AMD EPYC 7452 32-Core Processors that sum up to a total of 128 processing threads forthe entire system.
65

code the operation timeout was manually increased from 1 second to 10 seconds for thefollowing attempts. After this, LF2was loaded successfully and even the process of parsingLF2 reached 100%, but unfortunately failed to produce an output. The process seemedto be stuck in some internal function timeout loop. The Spell process was manually inter-rupted after 22 hours. No output was produced. Memory usage peaked at 22.4GB.Basedon the results fromLF1, the quality of line patterns is relatively good, comparablewith Drain and LogCluster. Spell seems to suffer from one of the drawbacks discussed forSLCT above, particularly the ability to detect multiple wildcards at the end of the linepattern. By default, the output is not sorted based on the rate of occurrence, but the CSVformatted file can be easily loaded and sorted using other tools.
Listing 12: Example of Spell output.

L F 1# tau =0 .5# Output format : Even t Id , EventTemplate , Occu r rences60e656d4 , <* > <*> OK TCP OK − <*> second response t ime on <*> <*> <*> <*> <*>po r t <* > ,1316438e383799d , <* > <*> OK TCP OK − <*> second response t ime on 2001 10 <*> <*> <*>po r t <*> 1429684081 1429684081 ,272 f190908 , <* > <*> OK HTTP OK HTTP / 1 . 1 <*> <*> − <*> by te s i n <*> second responset ime <* > ,247976−−− 1 1 44 p a t t e r n s omi t ted −−−9b34512e , dc 1 . b lue04 . ex <*> CR I T I CAL Connec t ion r e f u s ed <* > ,4
LF2# tau =0 .5−−− No output −−−

5.3.6 SummaryTable 2 summarises the primary aspects (runtime, highest recorded memory use, totalamount of clusters detected, and the amount of clusters where the member count ex-ceeds the support threshold that was used for LogCluster) of the experiment. Qualitativeanalysis and discussion about detected line patterns is not feasible to be summarised in atable form and is only provided in the respective paragraphs. The following summary gen-eralises some more prominent observations from this experiment. Note, that LogClusterresults for LF2 also include performance data for running LogCluster with theword sketch-ing memory optimization technique.
Table 2: Summary of the experiment comparing LogCluster with newer log mining tools.

Test type LogCluster Drain LogMine SpellRuntime (LF1) 1m 18s 1m 53s 1m 40s 10m 57sRuntime (LF2) 9m 9s / 14m 54s 1h 21m 21s 36m 52s -Max. memory use (LF1) 228 MB 16 MB 86 MB 3.5 GBMax. memory use (LF2) 6.0 GB / 80 MB 26 MB 909 MB 22.4 GBTotal clusters (LF1) 39 90 67 1148Total clusters (LF2) 295 4962 3012 -Clusters if s≥17000 (LF1) 39 17 16 22Clusters if s≥27365 (LF2) 295 91 77 -
LogCluster is the fastest log mining tool in this experiment. It has the most descriptivewildcard notation that also indicates how many words a particular wildcard can match.The high performancewas accompanied by highermemory usewith default settings com-pared to Drain and LogMine. However, by enabling word sketching, the peak memory use

66

of 6GB can be reduced to just 80MB at the cost of an additional pass over the input data.Therefore, users can easily adjust the balance between LogCluster’s memory consump-tion and processing speed based on available computational resources. LogCluster hasby far the most comprehensive set of user-configurable parameters for modifying the logmining process and presented outcome.Drain is fast for smaller amounts of input data but gets significantly slower as theamount of input data increases. It consumed by far the least amount of memory in all ex-periments. The overall quality of line patterns was acceptable, however, many identifiedline patterns were anchored to highly varying elements of log messages (e.g., timestampsand PID numbers). Moreover, the large number of line patterns that were returned poseda problem of assessing the output. This aspect might be something that can potentiallybe tuned by the three user-configurable parameters. However, as there was no clear guid-ance on the effect that each of these parameters would have on the outcome, then thisprocess was considered out of scope for this experiment.LogMine is fast in multi-coremode but themining results are not reliably reproducibleon multi-threaded CPUs. The amount of available processor threads has an effect on theoutcome of the mining process (i.e., the input data is split between processing threads).Single-threaded mode does not suffer from this adverse side-effect but is unfortunatelyexceedingly slow. Furthermore, LogMine tends to produce very generic line patterns (e.g.,
* * * * * * * * * * *) that can match a substantial amount of events.Spell was the slowest logmining tool in this experiment. It was only capable of loadingsmaller files and timed out when LF2, the larger 4.6GiB syslog file, was analysed. Further-more, it also used the most memory in the experiments—consuming over 22GB of RAMmight become troublesome even for some modern workstations. Based on the miningresults of LF1, the line patterns seemed optimal and comparable to LogCluster and Drain.A notable problem that affected Drain, Logmine and Spell was the large number ofpatterns that was returned during the experiments. For example, in the case of LF2 dataset, several algorithms generated more than 1,000 patterns (see Total Clusters in Table2), with many of them being either too specific or having redundant nature. This issueis not specific to log pattern mining, but is a general data mining problem known sincethe 1990s [77, 76], and requires special techniques for post-processing detected patterns.LogCluster addresses this issue by implementing a number of post-processing techniquesfor eliminating too specific patterns and other redundancies [175]. As other tested algo-rithms did not include such features, this drawbackwill make them less suitable forminingpatterns from large log files with many different message types, likely requiring a lengthymanual review of detected patterns from the end user.Finally, the experiment demonstrated that LogCluster compares favourably to morerecently released algorithms and is the fastest of the tested algorithms. Leaving few short-comings aside, Drain also demonstrated reasonably good results and can be considereda viable alternative to LogCluster, especially when there is a need to analyse continuouslog streams instead of complete log files. Both tools indicated their strengths in analysingsecurity log files from cyber security exercises.

67

6 Covert data exfiltration and network anomaly detection
In this chapter, subsection 6.1 describes the research on advancing organisational networksecurity by being able to discover covert channels used to exfiltrate sensitive data. This re-search along with details of the experiment and the release of two novel proof of conceptdata exfiltration tools were originally published in Publication IV.

Subsection 6.2 describes a novel NetFlow-based framework designed for detectinganomalous behaviour of end-user nodes within organisational computer networks. De-tailed description of the framework was initially published in Publication X.
This chapter addresses research question RQ2.2. Thesis contribution 4 is described.

6.1 Covert channel data exfiltration detection
This subsection discusses the research on improving organisational network security re-garding the discovery of data exfiltration channels. Although the first half of PublicationIV focused heavily of exploiting various IPv6 transition mechanisms, within the context ofthis thesis, the primary focus lies in comparing the detection capability and IPv6 readinessof various Network SecurityMonitoring systems (NSM). The data exfiltration detection ex-periment involved extensive testing of five different NSM tools to detect 126 unique dataexfiltration attempts. Apart from the detection aspect, this research resulted in the re-lease of two novel proof of concept data exfiltration tools (nc64 and tun64) that tookadvantage of IPv6 transition methods. Notably, these tools were later used within theNATO CCD COE CSXs. Particularly, the detection of the nc64 was integrated as a side chal-lenge into a bigger digital forensic challenge of LS 2016. Within the 2016 XS exercise thetools were used to exfiltrate sensitive in-game data as part of the scenario.

At the time of conducting this research, the support for IPv6 protocol in many securitysolutions had not yet reached the level of acceptable maturity and readiness. Further-more, the lack of practical experience resulted in IPv6 being often considered as a back-
door protocol which may allow an attacker to bypass security mechanisms. This notionis particularly important when an attacker already resides within the network perimeter.There is still a commonmisconception thatmalicious actors always originate fromoutside,thus NSMdevices are commonly placed on the perimeter to detect and stop unauthorisedaccess from the outside. Unfortunately this is not the case—in addition to insider threats(e.g., as described in [83]) who already operate within a privileged space, persistent andresourceful adversaries can often find alternative means (e.g., gaining physical access, in-fecting portable devices, planting amalicious USB stick, etc.) to bypass the outward-facingnetwork security mechanisms. This research focused on measuring the ability of networksensors to detect tunnelling attempts originating from seemingly safe organisational net-works.

Any kind of protocol tunnelling can pose a security risk, as it allows bypassing poorlyconfigured or unsupported network security devices. IPv6 transition mechanisms, as wellasmore generic tunnelling techniques (e.g., HTTP, SSH, DNS, ICMP, IPsec), can often hinderdetection or bypass network protection mechanisms. Furthermore, different tunnellingapproaches can be employed to establish a covert channel by encapsulating exfiltratedinformation in various networking protocols. Covert communication channels based onDNS, HTTP(S), ICMP, and SSH protocol are the most common approaches for evading net-work detection mechanisms, due to both their widespread use and inclusion in standardnetwork policy, which allows these outbound protocols and ports for end-user require-ments and remote administration needs. For the NSM experiment test cases we consid-ered fully developed and publicly available open-source tools.
68

Our research demonstrated that NSM solutions had several drawbacks in parsing andanalysing IPv6 traffic. While there have been many improvements in handling IPv6 proto-col traffic over the past few years, some of the shortcomings regarding inspecting multi-protocol channels are more fundamental and would require serious effort to redevelopthe principles how NSM tools correlate disguised or seemingly separate network sessionsto detect such malicious behaviour involving protocol switching, tunnelling or encapsu-lation. For instance, the nc64 and tun64 (the two IPv6 transition-based covert channelapproaches) use both IPv4 and IPv6 implementations simultaneously making it harderto attribute them to the same covert channel and analyse them as a single session. Incomparison, common tunnelling approaches (e.g., SSH, DNS, ICMP) were easier to detectby an automated monitoring solution or human analyst since their behaviour pattern isfamiliar and well understood.
Experiment scenario Testing environment and experiments were set up according tothe following scenario. The cyberattack target was a small- to medium-sized research or-ganisation that had a network of up to 100 nodes. This organisation assumed that it wasrunning an IPv4-only core network, however, all their network hosts were dual-stack ca-pable by default. With that assumption, the network administrators had implementedorganisational network security policies only for the IPv4 protocol. The following com-mon services and egress ports were allowed through the perimeter firewall: SSH (tcp/22),DNS (udp/53, tcp/53), HTTP (tcp/80), HTTPS (tcp/443), and ICMP (type 8—echo). Whenconnecting to such ports, internal network nodes were able to establish a connection tothe Internet without the use of proxies or any other connection handlers. The networkadministrators had unfortunately neglected that their ISP had just recently started to rollout IPv6 connectivity to customers.Moreover, this organisation had been recently contracted by the government to con-duct advanced technological research which involved storing and processing sensitive in-formation on the organisation’s workstations and servers. To verify the fulfilment correctsecurity measures at the organisation, penetration testers (the red team) was tasked toassume the role of a reasonably sophisticated attacker with persistent foothold in the re-search organization’s network. Their mission was to exfiltrate sensitive information fromthe target network without being detected. For the sake of the experiment, the red teamhad a wide selection of tools available at their disposal for establishing covert exfiltrationchannels.
Technical setup The testing environment consisted of six VMs. The network map of theexperiment environment is presented in Figure 5. The organisation’s network consistedof the compromised internal host and a perimeter router (Router1) connecting to the sim-ulated ISP network. The attacker’s C&C server resided in another network segment be-hind Router2. Two monitoring VMs provided detection capability. The first machine wasconnected with a virtual tap to the ISP network link between the routers, so all packetstraversing this link were copied to its network capture interface and stored in a corre-sponding PCAP file. PCAP analysis and result collection was performed separately on asecond monitoring machine.Before setting up the detection environment, we worked together with the red teamcounterpart in this research to establish all potential exfiltration methods that we hadto detect. The sensitive data that was to be exfiltrated in every attempt comprised the
/etc/shadow file and the root user’s private SSH cryptographic key. Both files could po-tentially be used for gaining unauthorised access organisational assets.

69

Figure 5: Network map of the data exfiltration experiment environment. [19]

We had to ensure fair and reproducible testing conditions for all tools, so each uniqueexfiltration attemptwas captured as a PCAP file thatwas later analysed by every NSM tool.One ideawas tomix standard port numbers for various protocols (e.g., establishing an SSHconnection on port 80 or setting up a DNS tunnel on port 443) to see whether it wouldevade or hinder detection. Furthermore, the nc64 and tun64 tools employed several dis-tinct operatingmodes (e.g., transmitting plain-text or base64 encoded payloads). With allcombinations of exfiltration tools, operating modes, destination port numbers, transportlayer protocols, and IP versions we ended up with 126 unique PCAP files. Each exfiltrationattempt and PCAP file creation was automated by a set of scripts [80] which enabled torepeat the experiment multiple times while also avoiding potential human errors whenhandling such a diverse combination of exfiltration attempts.The testing involved four open-source NSM tools that are often used in organisationalenvironments—signature-based network IDS solutions Snort and Suricata, as well as net-work traffic analysers Bro20 [160] andMoloch (nowArkime). Suricatawas using the Emerg-ing Threats Open ruleset (ET Open), while for Snort we compared the results with bothSourceFire (SF) and ET Open rulesets.
Discussion of results The results of this experiment are summarised in Table 3. Moredetailed results are presented in an extensive table that can be found in the Appendix 1.Aof Publication IV. Since the table spans over more than three pages, therefore only a briefsummary is represented here. Each row in that table describes a unique data exfiltrationattempt, while the columns represent a detection tool that was used to undertake itsdetection. Each detection attempt had four potential outcomes:

1. Positivematch for an attack that was correctly classified as a malicious activity withappropriate alerts;
2. Partial or abnormal footprint which resulted in an alert, but the alert did not cor-rectly describe the attack;
3. Visual anomaly which can potentially be detected by an expert human analyst in-specting logs or traffic patterns;
4. Failed detection when no alerts or specific connection logs were generated.

20Bro was renamed to Zeek in 2018
70

Table 3: Summarised results of the detection experiment.

Match type Snort SF Snort ET Suricata Bro Moloch Sum %Positive matches 0 61 61 0 0 122 19.4%Partial matches 0 7 7 78 0 92 14.6%Visual matches 0 0 7 48 62 117 18.6%Failed detection 126 58 51 0 64 299 47.4%
Total iterations 126 126 126 126 126 630 100%

Firstly, from an attacker’s point of view, we noted that in order to avoid detection dataexfiltration tools using a particular application layer protocol should not reuse standardport numbers of other application layer protocols. For instance, an HTTP tunnel on TCPport 22 raised an Outbound SSH Scan alert with the ET Open signatures, whereas thesame HTTP tunnel on port 80 only generated HTTP connection logs which are more likelyto go unnoticed—as such, we classified this particular exfiltration attempt as being only
potentially visible. However, the Outbound SSH Scan alert for the HTTP tunnel on port22 was considered only a partial match because the traffic was incorrectly classified asoutbound SSH connections. Notably, the same ET Open rule was again responsible for a
partial match against the nc64 tool on port 22.

Moreover, an alarm was triggered if SSH connection headers were detected on port443, or if port 443 was used to send plain-text HTTP traffic. Similarly, if non-DNS trafficwas detected on UDP port 53, the ET Open ruleset raised various alerts (e.g., for having
non-compliant traffic to DNS protocol), or those connections being overly aggressive (i.e.,generating too many connections). Surprisingly, most of these signatures were evadedwhen TCP port 53 was used.

Within the current experiment the selection of allowed outbound port numbers wasrather limited, however, this is not the case for many less restricted organisational net-works. As most server-side applications can be bound to listen on any applicable portnumber (e.g., an SSH server on TCP port 2022 or an HTTPS console on TCP port 8443) it ispossible to evade or obscure detection by NSM tools even further while still staying withinthe relatively normal use of the particular application layer protocol.
The difference between SF and ET rulesetswas critical for Snort. The SF ruleset seemedto primarily focus on inbound attacks on the network perimeter, and therefore could notidentify any malicious outbound traffic in our tests. Note, that the poor results of Snortcoupled with the SF ruleset negatively impacted the overall experiment statistics (see

Failed detection rates in Table 3). Other tool and ruleset combinations resulted in sig-nificantly better detection rates. Moreover, there were also slight differences betweenSnort and Suricata when the ET Open ruleset was used. Most importantly, Snort clearlydetected Ptunnel as the tool used for ICMP tunnelling.
Bro (now Zeek) does not use signatures like Snort or Suricata. In addition to its in-ternal processors, custom scripts can be executed to inspect network traffic. By default,Bro was able to create protocol specific logs for all identified network connections. Assuch, it was able to generate log records of all exfiltration attempts. Although Bro doesnot generate alerts, it does have a specific log file called weird.log which lists detectedanomalous connections. During the experiment several weird.log records were observedfor protocol non-compliant traffic on port 53. Interestingly, Bro’s SSH connection parsermalfunctioned while processing non-SSH traffic on port 22. As a result, highly abnormalSSH logs were generated in the detection system (e.g., parts of HTTP traffic headers wereparsed as SSH client and server identification strings).

71

Moloch does not provide traditional alerting functionality, however, its viewer com-ponent is a powerful network traffic search and visualisation tool. At the time of theexperiment, Moloch did not support IPv6 due to various limitations in indexing 128-bitIP addresses in Elasticsearch prior to version 5.0. Taking this limitation into account, theIPv6-only channels were left completely unnoticed. Some dual-stack attacks still left atrace. For instance, when tun64was used with the t6to4mode so that IPv6 packets wereencapsulated as the payload in IPv4 packets, thus making it visible in Moloch.
Notable considerations It must be acknowledged, that any sophisticated data exfiltra-tion method will be hard to detect by existing network IDSs in real-time. Further com-plexity is added in situations where the data in question is split into smaller chunks andtransmitted across different network sessions or protocols (in our case IPv4 and IPv6).To detect such malicious activity the NSM solution would need to correlate the sessioninformation in near real-time across various flows with different types of IP addresses.Although theoretically possible, it would incur a significant performance penalty for anysuch application. Distinguishing flows which belong together on busy network nodes withmany simultaneous connections can be increasingly difficult.Regardless, the research highlighted that by employing IPv6 tunnelling and dual-stacktransition mechanisms in a particular way it is possible to evade detection of NSM solu-tions. This is something security operators have to be aware of. Considering the relativelyhigh amount of potential visual matches, the experiment emphasises the shortcomingsof traditional security monitoring solutions and clearly demonstrates the need for highlyskilled operators in charge of those systems. Moreover, it illustrates the need for anomalydetection algorithms that can identify organisational network nodes with unusual trafficpatterns. One such algorithm is presented in section 6.2.
6.1.1 Comparison with related work
The recent paper by Mazurczyk et al. in [101] specified a similar goal of testing the possi-bility of using IPv6 for covert channel data exfiltration. Furthermore, the research groupassessed the covert channel detection capability of Suricata and Bro/Zeek. The experi-ments were set up using the hosting services of two major cloud service providers (AWSand Digital Ocean) in multiple geographical locations. Most importantly, the authors con-cluded that the hiding capacity of real network traffic in enterprise environments is actu-ally less than what is suggested by experiments described in recent scientific literature.For example, many proposed covert channels work well in isolated lab setups, but whenimplemented in the wild, it turned out that the underlying network configuration of cloudproviders simply rendered some of the covert channels unusable. The research also re-vealed that some of the detection mechanisms used by NSM tools cannot be consideredeffective to detect advanced covert channel techniques, especially when there is nativeIPv6 connectivity and no transitional mechanisms are required. Although the detectionresults were quite poor, the experiment indicated that Suricata outperformed Bro/Zeek.The paper by Wendzel and Zander [181] discusses the use of protocol switching (e.g.,between HTTP and DNS) to exfiltrate data over covert channels. While the general idea issimilar to our approach, their research considers only IPv4 networks. Our nc64 providesseveral additional features by allowing the user to also switch between IP protocol ver-sions which in addition to other network parameters results in different source and des-tination IP addresses. The authors also proposed some novel detection methods whichachieved up to 99% detection accuracy. Unfortunately, in practise the 1% false positiverate would still cause problems when analysing large amounts of network traffic.

72

6.2 Network anomaly detection
With the increasing complexity organisational networks and the sophistication of adver-sarial activity, the use of machine learning for advancing network security has becomean important research problem. As discussed in the previous section 6.1, traditional rule-based technologies such as firewalls and network IDS/IPS solutions are only able to detectpreviously known and sufficiently described attacks, while advanced attack techniquesthat do not match any existing signatures often remain unnoticed.

This section describes a novel NetFlow-based framework for detecting anomalous enduser nodes and their network usage patterns in organisational networks. The frameworkis focusing on end user nodes, since they are often targeted by malware, APTs and otherthreats. The unsupervised framework uses three distinct anomaly detectors for calculat-ing a combined anomaly score for each end user node in hourly timewindows. The frame-work is executed once every 60 minutes to process the network flows from the past hourfor each end user node. If a particular node has no flows in that timeframe, it is consideredinactive and will be skipped. Once an anomalous node has been identified, LogCluster al-gorithm is used for finding network traffic patterns by analysing NetFlow data. Figure 6provides a general overview of the framework and its components.

Figure 6: Overview of the anomaly detection framework. [176]

6.2.1 Ensemble of anomaly detectors
The framework comprises three anomaly detectors that calculate anomaly scores score1,
score2 and score3 within the range 0..1 for each node. Furthermore, the three anomalydetectors are assigned corresponding non-negative weights w1, w2 and w3, whereas:

73

w1 + w2 + w3 = 1

The total anomaly score of the end user node is calculated as follows:
score1*w1 + score2*w2 + score3*w3

Evidently, the total anomaly score can range from 0..1. If the total anomaly score for aparticular node exceeds a predefined threshold (we used a threshold of 0.5 in our exper-iments), an alert is generated and network flows related to that node from the past hourare processed using the LogCluster algorithm. Identified network traffic patterns are pre-sented to the operator for further inspection. The following paragraphs provide a briefoverview of each anomaly detection method that is employed in the framework.
EWMA-based anomaly detector The primary purpose of the EWMA-based (Exponen-tially Weighted Moving Average) anomaly detector is to detect unexpected increases fora number of monitored features. For each end user node E, the anomaly detector keepstrack of the following features in 1-hour time increments:

• Peers: № of unique peers21;
• RarePeers: № of new or rarely connected peers, raremeaning that node E has notcommunicated with a particular peer within the last N hours;
• PeerPorts: № of unique peer ports22;
• LogFlows: log10 M, whereM denotes the№ of flows;
• LogPackets: log10 M, whereM denotes the total№ of packets exchanged;
• LogBytes: log10 M, whereM denotes the total№ of bytes exchanged.
The first three features employ a simple unique count of peers and ports, however,the values of the other three network-specific characteristics (the number of flows, pack-ets, and bytes) have been converted to logarithmic scale to reduce the number of falsepositives due to large variations of valueM.The feature RarePeers identifies unanticipated rise in the number of new or very rarelyconnected peers, even if the total number of peers remains within predicted limits. Forour experiments, we set the value of N to 50 hours. A total of six features are tracked bythe EWMA-based anomaly detector and each feature contributes to the reported anomalyscore equally. For instance, if for node E alerts have been triggered for PeerPorts and

LogPackets features, anomaly score 1
3 will be reported for node E.

Clustering-based anomaly detector The main purpose of the clustering-based anomalydetector within the framework is to find collections of similarly behaving nodes and de-clare outliers as anomalous. The EWMA-based anomaly detector alone is not aware of thesurrounding knowledgewhichmay influence the level of criticality of detected anomalies.For instance, when a single node is observed downloading an unusually large amountof data it is considered anomalous, however, if many hosts suddenly exhibit similar be-haviour it might be explained by scheduled updates or centralised patching of all devices.
21In this context, peer is defined as a 3-tuple containing transport protocol ID, IP address of the

remote node, and port number at the remote node.22Peer port is defined as a 2-tuple containing transport protocol ID and port number at the remote
node.

74

We have employed the DBSCAN algorithm [41] for clustering the network nodes. Forthat purpose, each node E is represented by a 10-dimensional vector that comprises thehourly values of the following features:
1. Peers;
2. RarePeers;
3. PeerPorts;
4. total bytes;
5. total packets;
6. total flows;
7. outgoing bytes;
8. outgoing packets;
9. incoming bytes;
10. incoming packets.
The first three features (Peers, RarePeers, and PeerPorts) are defined the same as forthe EWMA-based anomaly detector. The other seven features again describe a collec-tion of network-specific characteristics of node. Note the different groups of incoming,outgoing, and total values.Nodes that belong to a detected cluster have an anomaly score of 0. The anomalyscore for outlier nodes depends on the number of detected outliers. Specifically, if k out-liers are detected among a total of n nodes, an anomaly score of 1-(k

n) is returned for eachoutlier node. Therefore, fewer outlier nodes will yield anomaly scores close to 1, whilea large number of outliers (i.e., when anomalous behaviour among monitored nodes ismore common) the anomaly scores will decrease.

Sketch-based anomaly detector The purpose of the sketch-based anomaly detector isto predict the future behaviour of monitored nodes. The sketch-based anomaly detectoris our novel contribution which uses one-row sketches for compiling past communicationpatterns of individual end user nodes and employs those patterns for predicting futureusage patterns. The sketch-based detector has three anomaly detection components:
• Similarity and entropy of peers;
• Similarity and entropy of peer ports;
• Entropy of node’s local ports.
Again, each anomaly detection component contributes 1

3 of the total anomaly scorereported by the detector. The operation of the anomaly detector starts out with twosketches S and V, which are vectors of n counters. In our environment we set n=100000for peers, and n=10000 for the values describing ports. The aim of vector S is to calculaterecent average communication patterns of node E, while vector V captures this informa-tion for the last hour.To provide an example howvector V is built for peers—for each flow, a peer is extractedand hashed into a value from range 1..n, and if the value is k, the kth counter in vector Vis incremented (therefore, each counter in vector V reflects the number of flows for the
75

group of one or more peers). Vectors V for peer ports and local ports are built in a similarfashion.
Subsequently, each hourly calculated vector V is used for updating the average pat-terns in vector S in EWMA-based fashion. Since according to our findings end user nodestend to follow recent communication patterns with peers and peer ports, vector S servesas a good predictor of the future behaviour of the monitored nodes. Thus, any signifi-cant difference between vector S and the newly calculated vector V can be considered ananomaly. Note, that our framework calculates the difference between S and V before S isupdated with V.
During the development of the anomaly detector component several distance func-tionswere tested, however, experiments revealed that cosine similarity produced the bestresults. Cosine similarity function (cosim) measures the angle between two vectors. Sincethe counter values of S and V are non-negative, the similarity value ranges from0 to 1. Val-ues closer to 1 indicate that the distribution of flows over peer (or port) groups during thelast 1 hour is similar to the distribution of past measurements. Conversely, smaller valuesindicate larger deviations from prior observations. For instance, cosim(S,V) = 1 if vec-tors S and V have the same direction (e.g., in case of vectors (2,4,23) and (4,8,46)), and

cosim(S,V) = 0, if the vectors are orthogonal.
Our research indicated that organisational end user nodes mostly communicate withrelatively small number of peers which means that counters of vector S rarely encounterlarge values, while many values often remain zero. That is because end user nodes tendto belong to a single user with clear network usage patterns. On the other hand, if thebehaviour of nodes is changing frequently and has no clear baseline (e.g., in computerclassrooms where machines are shared between many users with different usage habits),the similarity between vectors S and V remains low and becomes meaningless for detect-ing anomalous behaviour. To counter unwanted alerts in such situations, the anomalydetector performs additional checks for disabling similarity-based anomaly detection forthese nodes.
Furthermore, the anomaly detector uses entropy-based anomaly detection for vector

S to discover nodes with frequently changing behaviour. In previous research, entropy-based techniques have been successfully used for detecting such situations [182]. Theentropy of S is calculated after each update of vector S. The anomaly detector raises analarm if the calculated entropy is higher than the defined threshold of Tent . In our experi-ment, we set Tent to 0.5 and 0.3 for peers and peer ports respectively.Finally, end user nodes typically use ephemeral (short-lived) local port numbers forestablishing outgoing connections with remote services. The anomaly detector maintainsa vector S for local ports of each node E. In case of ephemeral port numbers, vector Sis expected to have a high entropy. As such, the anomaly detector raises an alarm if theentropy falls below a predefined threshold ofTent2. In our experiments, we setTent2 = 0.2.
6.2.2 Flow pattern mining with LogCluster
If a node’s combined anomaly score from the three anomaly detectors for last hour ex-ceeds a predefined threshold (set to 0.5 during our experiments), NetFlow records of thepreceding 1 hour for this node are mined with the LogCluster algorithm. This procedureenables the detection of prominent traffic patterns that likely capture the nature of thereported anomaly. Since LogCluster is designed formining textual events, each binaryNet-Flow record is transformed into a textual format with keyword-value pairs. This conver-sion can be performed using the advanced Perl-based input pre-processing functionalityof LogCluster.

76

The resulting textual line-based flowdescription and two example output line patternsare outlined in Listing 13. Example #1 depicts DNS requests from node 10.3.7.22 to server192.168.1.1 port 53/UDP. Furthermore, similarly to prior LogCluster usage example in List-ing 7 we configured LogCluster to use advanced heuristics for joining flow patterns basedon word weights. Example #2 demonstrates the case where two similar patterns for DNSqueries from node 10.1.1.1 to two DNS servers 192.168.1.1 and 192.168.1.2 have been joinedtogether. Note, that the tcpflags<flagstring> values are NA because both examples de-scribe UDP traffic. In case of TCP traffic, the potential values for flagstring are invalid-flags,
with-ACK, and without-ACK.Moreover, as discussed previously in section 5, determining a good support thresholdvalue depends highly on the type and nature of input data. Our experiments indicatedthat in case of NetFlow data, the support threshold value of √n (where n denotes thenumber of flow records for node E) highlights the nature of anomaly adequately in mostcases.

Listing 13: Input line format along with LogCluster output examples.

I npu t l i n e format :# pro to < t r a n s p o r t p r o t o c o l ID > s r c i p < source I P address > s r c p o r t < sour ce port > d s t i p# < d e s t i n a t i o n I P address > d s t p o r t < d e s t i n a t i o n port > t c p f l a g s < f l a g s t r i n g >
Example # 1 :p ro to 17 s r c i p 1 0 . 3 . 7 . 2 2 s r c p o r t * { 1 , 1 } d s t i p 1 9 2 . 1 6 8 . 1 . 1 d s t p o r t 53 t c p f l a g s NA
Example #2 :p ro to 17 s r c i p 1 0 . 1 . 1 . 1 s r c p o r t * { 1 , 1 } d s t i p (1 9 2 . 1 6 8 . 1 . 1 | 1 9 2 . 1 6 8 . 1 . 2) d s t p o r t 53t c p f l a g s NA .

6.2.3 Evaluation
We conducted a five-month experiment to assess our framework’s performance in the of-fice network of an academic institution. The network consisted of over 200 workstationsand laptops with various operating system platforms (e.g., Windows, Linux, MacOS). Asdescribed above, the framework was designed for detecting anomalous end user nodes,so server nodes were considered out of scope.The anomaly detection framework employed softflowd NetFlow exporter [67] on adedicated Linux server for monitoring the network traffic of the entire network segmentwithout data sampling. The exported flow data was collected with nfdump NetFlow col-lector [50].To reiterate some of the configuration items mentioned above—each anomaly detec-tor was assigned an equal weight (i.e., 1

3) and the anomaly score alarm threshold was setto 0.5. During the five months, the system raised 1026 alarms for 33 hosts. However, over90% of those alarms were generated by four highly verbose hosts, and for 25 nodes only1–3 alarms were raised. Listing 14 depicts some anomalous traffic patterns the frameworkdiscovered with LogCluster.Detailed analysis of the alarms revealed that 638 (62.2%) alarms were generated forjust five hosts which were using a BitTorrent client—an activity that is not allowed by or-ganisational policies. Furthermore, 327 alarms (31.9%)were triggered by a special InternetMeasurement probe which was erroneously connected to the office network segment.Despite its minor network footprint of up to 100Kbit/s, the anomaly detection frameworkwas able to flag the probe as anomalous. Moreover, the framework generated a total of 46false positive alarms (4.5%), with most of them being triggered by legitimate downloadsof large files.
77

Listing 14: Discovered flow patterns for anomalous network traffic. [176]

P a t t e r n s de tec ted f o r an I n t e r n e t Measurement probe 1 0 . 1 . 1 . 1 . The f i r s t p a t t e r n# r e f l e c t s ICMP echo (type 8 , code 0) pa c ke t s sen t to a l a r g e number o f p u b l i c hos t s ,# wh i l e the second pa t t e r n r e f l e c t s ICMP response pa c ke t s from those ho s t s : ICMP# echo r e p l y (type 0 , code 0) , ICMP network un reachab le (type 3 , code 0) , ICMP TTL# e xp i r e d i n t r a n s i t (t ype 1 1 , code 0) .
p ro to 1 s r c i p 1 0 . 1 . 1 . 1 s r c p o r t 0 d s t i p * { 1 , 1 } d s t p o r t 8 .0 t c p f l a g s NA
proto 1 s r c i p * { 1 , 1 } s r c p o r t 0 d s t i p 1 0 . 1 . 1 . 1 d s t p o r t (1 1 . 0 | 0 . 0 | 3 . 0) t c p f l a g s NA

P a t t e r n s de tec ted f o r hos t 1 0 . 1 . 1 . 7 t h a t ran a B i t T o r r e n t c l i e n t a t a known# B i t T o r r e n t po r t 8999/udp , and exchanged data wi th o the r known remote B i t T o r r e n t# po r t s 6881/ udp and 5 1 4 1 3 / udp .
p ro to 17 s r c i p 1 0 . 1 . 1 . 7 s r c p o r t 8999 d s t i p * { 1 , 1 } d s t p o r t (5 1 4 1 3 | 6 88 1) t c p f l a g s NA
proto 17 s r c i p * { 1 , 1 } s r c p o r t (6 8 8 1 | 5 1 4 1 3) d s t i p 1 0 . 1 . 1 . 7 d s t p o r t 8999 t c p f l a g s NA

P a t t e r n s de tec ted f o r hos t 1 0 . 1 . 1 . 1 2 t h a t executed a TCP SYN scan of the hos t# 1 9 2 . 1 6 8 . 1 6 . 2 5 0 wi th nmap − sS# Note t h a t a l l TCP SYN packe t s were sen t from a s i n g l e po r t 44290/ t cp .
p ro to 6 s r c i p 1 0 . 1 . 1 . 1 2 s r c p o r t 44290d s t i p 1 9 2 . 1 6 8 . 1 6 . 2 5 0 d s t p o r t * { 1 , 1 } t c p f l a g s wi thout −ACK
pro to 6 s r c i p 1 9 2 . 1 6 8 . 1 6 . 2 5 0 s r c p o r t * { 1 , 1 }d s t i p 1 0 . 1 . 1 . 1 2 d s t p o r t 44290 t c p f l a g s with −ACK

To evaluate the precision and recall of the anomaly detection framework, a controllednetwork scanning experiment with the nmap tool [95] was executed from one of theworkstations against test targets for the duration of 15 hours. Malicious activity scenariosinvolved various types of scans against a single target and a full network scan involving2048 hosts. Altogether, this workstation node was online for 548 hours during the entirefive-month timeframe. The duration of the scanning experiment (15 hours) was correctlyflagged as anomalous. No other malicious network activity was observed for this nodeduring remaining 533 hours. Furthermore, as no false alarms were raised during the en-tire five-month timeframe, our framework demonstrated the precision and recall of 100%.
6.2.4 Comparison with related work
Similarities can be drawn with several publications dealing with network anomaly detec-tion. During the last two decades, most research on network anomaly detection has notfocused on end user nodes in organisational networks. This section will discuss recentmethodswhich can be applied in the scope of organisational networks to specifically iden-tify anomalous end user nodes.Kind et al. have described a histogram-based network anomaly detection solution intheir paper [74]. Their proposed solution employs a supervised method which involvesgenerating detailed histograms of IP protocol header information. These histograms areclustered to build models of common network behaviour. Vectors that encode the net-work behaviour of nodes are compiled and for anomaly detection the distance of the vec-tors from the detected clusters is calculated. Unlike the work by Kind et al., our methodis unsupervised and does not require retraining when the nature of the network trafficchanges—creating training data sets for supervised algorithms is time consuming and re-quires input from human experts, and is thus an expensive process.

78

In a previous paper [169] Vaarandi proposed two distinct anomaly detection algo-rithms for analysing NetFlow data. The first algorithm maintains a network service usageprofile for each node. The detection works near real time and raises an alarm if the nodeconnects to unusual services. The second algorithm performs daily clustering of nodesbased on behavioural similarities. The algorithm raises an alarm if a node’s behaviour de-viates from the rest of the group. According to the author, the algorithm is not just capableof detecting suspicious or unusual activity, but also inactivity compared to its peers. Forinstance, an alarm was raised if a node had stopped sending logs to the central log serveror stopped synchronising its timewith the NTP server. Themain advantage of our methoddescribed in this thesis is its ability to detect situations when an end user node exchangesan abnormally large amount of data with its peers.In [48] Grill et al. presented an anomaly detection method that uses a statistical ap-proach of analysing NetFlow data to detect nodes compromised with malware types thatemploy a DGA for C&C communication. The algorithm calculates the mean and varianceof the ratio between the number of DNS queries and the number of contacted IPs forevery host in the monitored network. Deviations from the mean value are labelled asanomalous DNS queries that typically indicates an infection with DGA-based malware. Incontrast, our method does not just focus on detecting a specific type of malware, butidentifying anomalous behaviour in general, such as network scanning and prohibited filesharing activity.In [182] Zhou et al. present a visualisation solution for addressing some of the short-comings of entropy-based anomaly detection methods. Their ENTVis tool is designed toprovide a more coherent visual analysis experience that makes analysing entropy-basedNetFlow anomaly detection features more intuitive for users. This approach allows hu-man analysts to spot alerted anomalies and understand the cause. Although our methodalso uses an entropy-based technique in one of its anomaly detectors, our method em-ploys additional classifierswhich allow for the detection ofmuchwider range of anomalies(e.g., communicationswith unexpected peers and transfers of large data volumes over thenetwork), making it more suitable as a generic anomaly detection algorithm.

79

7 Towards autonomous cyber defence
This chapter presents research that serves as a future outlook of potential developmentsin cyber defence. These developments focus on advancing cyber defences towards au-tonomy by proposing a concept and a reference architecture for intelligent cyber agentscapable of performing self-determined defensive actions within a given scope (e.g., sys-tem or device). Our work refers to such agents as Autonomous Intelligent Cyber-defenceAgents (AICAs). This research is based on the work of the NATO Science and TechnologyOrganization’s [27] Research Task Group (RTG) IST-152 [120], where the author of this the-sis was an active and contributing member.This chapter addresses research questions RQ3.1–RQ3.3. The chapter summarises Pub-lications VII, VIII and IX. Thesis contribution 8 is described. Additionally, the final report[86] of the IST-152 group is the primary basis of these publications and includes the de-tailed description of the proposed reference architecture for AICAs.Subsection 7.1 provides an overall description of AICA, the reference architecture, andmotivation for developing such agents. Subsection 7.2 describes the particular contribu-tions of the thesis author, i.e., specification of the Sensing and World State Identification(WSI) function and development of the Agentfly UAV use case to illustrate the role of AICAin a UAV.
7.1 Autonomous intelligent cyber-defence agents
This research has been driven by the evolution of advanced interconnected military sys-tems, which are relying increasingly on new software and hardware technologies. To ef-fectively defend such systems from cyberattacks an autonomous intelligent cyber defencesystem is required.To clarify the most significant term, autonomy, we proposed the following definition:

’Autonomy is the capacity of systems to decide by themselves on their courseof action in uncertain and challenging environments without the help of hu-man operators.’ [162]
Autonomy should not be confused with automation, i.e., performing a set tasks ac-cording to a collection of pre-defined rules in known environments where the level ofuncertainty is low. While full and continuous autonomy is not necessarily the objective,AICAs will need to be able to cope with operational challenges such as making rapid de-cisions, analysing high volumes of data, handling intermittent communications, and re-maining persistent in adverse situations.AICAs are meant to autonomously and reliably handle cyberattacks affecting the sys-tem they defend. Furthermore, the agents can communicate with one another, a remoteC&C system, or even a human operator when required and technically possible.

7.1.1 Rationale of AICA
Although military systems are generally resilient, the increasing number of high-tech fea-tures and interconnections that they hold make cyberattacks an attractive way for hinder-ing their functions and the missions they are involved in. Even if AICA’s IDS componentreported any malicious activity, it might be too late to take manual action, thus thesesystems must be capable of taking autonomous defensive actions themselves.Furthermore, on the battlefield there is always a scarcity of available cyber compe-tencies. Deployed operational forces are often not specialists of cyber security nor cyberdefence. Additionally, military systems are often deployed in remote areas with limited

80

connectivity and bandwidth, making any communication back to the C&C element evenmore difficult. For example, a well-planned automated attack could be carried out in amatter of seconds, and quite likely before any human operator can take action. Thus, thedefence of ICT components in such complex systems should be relieved from any unqual-ified operators.
Although the IST-152 RTG focused primarily on military applications of AICAs, it wasgenerally agreed within the group that AICAs could be deployed in civilian systems in asimilar manner. For instance, complex interconnected systems or the wide-scale deploy-ment of IoT devices in non-military domains are facing similar cyber defence concerns.Requirements to adapt with frequent reconfigurations and emerging circumstances maysoon render classic centralised monitoring techniques and big SOCs infeasible for cyberdefence. However, locally implemented distributed swarms of intelligent cyber defenceagents can monitor and defend such fuzzy networks. Furthermore, AICA’s capabilities willinclude learning from prior experience to improve the accuracy of its future decisions.
Potential cooperation between multiple agents is achieved through available commu-nication channels. Agents must be as stealthy as possible to protect themselves fromattacks by the adversary. Therefore, external communications must be kept as covertas possible given the agents’ current security posture. However, this policy can limit theagent’s capability to receive external orders, whichmay substantially diminish its usability.
As autonomous agents, AICAs should resolve most cyberattacks without interruptingend users and necessary system functionality. Naturally, agents should collaborate withhuman operators when they reach the limits of their capabilities, i.e., not understandingthe current situation, needing to elaborate on defensive countermeasures, or when facinga critical error. However, such cases should remain minimal.
The balance of autonomy and human collaboration should be adapted based on theapplication and criticality of a particular system. For instance, an AICA responsible for de-fending a live weapon system might be more constrained in terms of autonomous deci-sions compared to AICAs defending a typical computer network. There is a vast differencebetween whether an AICAs false-positive decision would result in a weapon system to befired or someone’s workstation getting locked down.
Implementing AICAs in practice will not be a simple task. Constructing the requiredcompetencies, functions and technology will definitely be challenging. Some challenges,for example, might include working in resource-constrained environments, managing in-tegration into host hardware, enabling the agent to learn and improve its own decision-making process, ensure agents’ resilience, autonomously generating and executing plansof countermeasures in case of an attack, assuring its safety towards friendly systems, etc.
AICAs are implemented within or attached to one delimited system or device. Its pri-mary objective is to ensure the availability and integrity of all relevant computerised func-tions in case of malicious attacks. Detecting abnormal behaviour of the physical platform(e.g., physical tampering) is not within the direct scope of the agent but may be detectedby sensors in certain situations.

7.1.2 AICA Reference Architecture
The IST-152 RTG based the AICA reference architecture on the classical model proposedby Russel and Norvig in [146]. The architecture along with the functional components areillustrated in Figure 7. The functional components are divided into three primary classesbased on their particular role—see Table 4 for the classification.

Based on the relevance of various components, the analysis proposed a selection offive high-level functions necessary for the cyber defence of military systems.
81

Figure 7: Proposed AICA’s architecture and primary functions. [86]

Table 4: Classification of AICA components. [86]

Core components Supporting functions Data servicesSensing Collaboration and negotiation World modelWSI Learning Current state and historyPlanning Goals management World dynamicsAction selection Self-assurance GoalsAction execution Stealth and security
1. Sensing and WSI: enables cyber-defence agents to gather data from the surround-ing environment, systems in which it operates, and from itself. Any detected riskstrigger the Planning and Action Selection function.
2. Planning and Action Selection: enables cyber-defence agents to specify one ormore action proposals and propose them to the action selection subfunction, whichdecides the action or set of actions to execute.
3. Action Execution: enables cyber-defence agents to execute action(s) assigned bythe previous step, as well as monitor the execution process and its effects.
4. Collaboration and Negotiation: enables cyber-defence agents to exchange infor-mation with other agents, a central C&C, or with a human operator.
5. Learning: enables cyber-defence agents to employ their prior experience to contin-uously improve their future decisions and efficiency.

7.2 Author’s contributions
Chapter 7 summarises the results of a multi-year research effort by the NATO IST-152 RTG.Therefore, with four relevant publications, multiple authors, and the final report [86] ofover 150 pages, it is essential to pinpoint the contributionsmade by the thesis author. Thefollowing subsections describe the two primary tasks the thesis author was working on.

82

7.2.1 Agent’s sensing and World State IdentificationTo interact with the external environment, AICA has to perceive and understand itselfand its surroundings. Sensing and WSI components are crucial for establishing agent’ssituation awareness. Achieving this first high-level functional requirement provides thenecessary input for other functions down the line.
Sensing Sensing is AICAs first high-level function that is responsible for collecting datafrom both external (i.e., the defended system, external environment) and internal sources(i.e., the agent itself). Figure 8 depicts the primary elements of the Sensing componentand how it relates to other AICA components.

Figure 8: Overview of the AICA Sensing component. [86]

To ensure agent’s own integrity and continuous operation, the Sensing function moni-tors itself by analysing runtime statistics and logs. The input modules of the Sensing func-tion can largely be considered as typical system and network monitoring tools which col-lect logs andmetrics from the agent, the defended system, and relevant functions runningon the defended host. The Sensing component is also capable of capturing and analysingthe protocol-specific network communications traversing the host network interfaces. Toassure that the sensory data is readily usable by the rest of the system, it should be prop-erly normalised, correlated, and deduplicated, so that only unique and relevant informa-tion is passed on. Moreover, any input data always goes through the input sanitationprocess. This also applies to data sent by other AICAs and C&C, because attackers mayattempt to inject malicious code or garbage data into the agent.
World State Identification TheWSI function processes and interprets the data from the
Sensing component. TheWSI function determines the current state of the world (i.e., thesurrounding environment) and of the agent itself. This state is represented by an abstractmodel of reality that establishes a semantic meaning to the data perceived by the agents.
WSI function detects any changes in this state and logs observations of any adversarial orsuspicious events. Finally, the collected data is routinely analysed for anomalies to detectattack scenarios taking place over a longer period of time.

83

The WSI comprises four consecutive processes:
1. Environment identification: Determine the properties of the current operating en-vironment based on both the Sensing information and the expected state knowl-edge. Any irrational input or unexpected changes (e.g., detection of virtualisation,adversarial debugging, or reverse engineering) can trigger a change to a heightenedsecurity posture.
2. Friend-or-foe identification: Tagging of processes, files and any network connec-tions on the system.
3. Anomaly identification: Anomaly detection in the Sensing function data. The de-tection canbe a selection or combinationof rule-based, pattern-based, or behaviour-based detection. The anomaly detection baseline is stored in the current worldstate.
4. WSI update: Transforms the data from the previous steps (i.e., environment, friend-or-foe, and anomaly identification) into an update of the World Model and WorldDynamics databases.
The processes alongwith supporting data sources are illustrated in Figure 9. TheWorld

Model, the Current State and the World Dynamics databases are used to establish andstore a baseline of incoming data feeds. Additionally, these databases also include a lim-ited set of historic data to detect unexpected changes and anomalous behaviour.

Figure 9: Overview of the AICA World State Identification component. [86]

The exact components of the world models are highly dependent on the particularagent’s design and implementation. However, given the required operational parametersof AICA, it is expected that the model should minimally contain the components listed inTable 5. The components and data requirements strongly overlap with some of the pre-viously described systems (e.g., Frankenstack). The World Dynamics knowledge updatesmust be computed during run-time based on theWorldModel and the Current State data.
84

Table 5: Components of the World and Current State models. ([86])

Component Relevant model DescriptionFlow database Current State Network flow records; full traffic capture (whenfeasible)Log stash Current State Collection of all available logs; indexed for quicksearching and analysisSystemmetrics Current State Performance and operational metrics of theagent and host systemBehaviourbaselines World Model Predetermined policies and baselines of normalagent and host behaviourEntity descrip-tion Current State &World Model Technical properties of assets in AICA’s proximity

7.2.2 Use case of AICA
It is evident that the type of the defended host system will have different operational im-pacts on AICAs designed to protect them. An AICA responsible for defending the comput-erised components of a static system might be significantly easier to engineer comparedto an AICA that has to be mounted to a military vehicle’s (e.g., ground, aerial, surface,subsurface) computational unit. Additional distinction to consider is based on type of thecontrol system that the system has, e.g., manned, optionally manned, or unmanned sys-tems. This distinction is important because in some cases (e.g., if the agent loses controlor fails), it may be possible to fall back to manual control by the on-site human operator—something which is not applicable to unmanned systems.The AICA reference architecture aims to describe the common characteristics appli-cable to every system. Therefore, the IST-152 RTG attempted to generalise the referencearchitecture as much as possible. However, to better explain how an AICA might performin practice the thesis author developed a hypothetical military UAV use case, which de-scribes the possible deployment of AICAs to the AgentFly project developed by the Agent-Fly Technologies [2].Figure 10 illustrates the relevant components within the UAV example. Highlighted el-ements in the figure are within the scope of AICA’s defence responsibilities. Computing
powermeans the computational units that are required to operate the UAV. Actuators aredevices used controlling the physical elements (e.g., wheels, wings, flaps) of the UAV. Ac-
tuators, sensors and communicationmodule are assumed to include computer processingand can thus be targets of cyberattacks.Note, that the following paragraphs until the end of this subsection are a close repre-sentation of the use case published in Publication VIII. Minor changes have been appliedto synchronise terminology used throughout this thesis and improve readability.

The AgentFly project facilitates the simulation of multi agent UnmannedAerial Vehicles (UAV). Its features include flight path planning, decentralisedcollision avoidance and models of UAVs, physical capabilities, and environ-mental conditions [152]. In addition to simulations, AgentFlywas implementedon a real fixed-wing Procerus UAV [133].This use case is based on the set of missions described within the Agent-Fly project. They are extended to include an adversarial cyberattack activ-ity against the AgentFly UAV to disrupt its mission. The use case is that aswarm of AgentFly UAVs perform a routine tactical aerial surveillancemission
85

Figure 10: Potential scope of an AICA illustrated in the context of a hypothetical UAV. [86]

in an urban area. Typical collaboration between AgentFly UAVs aims at col-lision avoidance, trajectory planning, automatic distributed load-balancing,and mission assurance. The following use case follows the perspective of asingle AICA agent, but this basic use case could be expanded to multiple AICAagents deployed across the swarm of AgentFly UAVs.The AgentFly UAVs use case is built around the following assumptions:
• AgentFlyUAVs self-assess and share informationwith neighbouringUAVs.
• When setting up a communication channel, AgentFly UAVs have to de-termine whether they trust their correspondent.
• Network-wide collaboration and negotiation is affected by reachability,range, and timing issues.
• The AgentFly UAV lacks modern cyber defence capabilities and is thusvulnerable to potential cyberattacks.
• Due to environmental conditions, AgentFly UAVs might be offline forsome time and later re-join the swarm when connectivity allows.
• A single AICA agent is implemented within each AgentFly UAV.
• The AICA connects with the modules of the UAV and can supervise theactivity and signals in and between various UAV modules (e.g., sensors,navigation, and actuators).
• The AICA can function in isolation from other AICA agents present in theAgentFly UAV swarm.
Attackers have acquired a technology similar to that used inAgentFlyUAVs’COMMS module. They have discovered a zero-day vulnerability that can beexploited remotely over the radio link from the ground, and they plan to usethe vulnerability to gain control over the swarm of UAVs and cut them off

86

from the theatre’s C&C system. The UAVs are using the COMMS module tocollaborate among themselves and report to the C&C when needed.The vulnerability lies in the functionality responsible for dynamically reg-istering newUAVagents in the swarmupondue request. TheCOMMSmoduleis interconnected with other intrinsic modules of the AgentFly UAV via a cen-tral control unit. The adversary has set up a ground station in the area of thesurveillance mission. When AgentFly UAVs enter the area, the cyberattack islaunched. AICA detects a connection to the COMMS module and allows theincoming connection for the dynamic registration of a new UAV agent intothe swarm. Due to the nature of zero-day attacks, an IDS module would nothave any corresponding signature or IoC to detect the compromised payload.AICA’s Sensing function monitors the entire set of modules of the Agent-Fly UAV. The AICA’sWSI component flags the connection from the newly con-nected UAV agent as anomalous since it does not follow the baseline pat-tern that has been established based on previous connectionswith legitimateUAVs. It also detects a change in the UAV’s system configuration and deemsit anomalous because no new configurations have been received from theC&C. Using its Sensing function, AICA launches a full system integrity check.A compromise within the UAV’s COMMS module is detected.AICA decides (within its Planning and Action Selection modules) to iso-late (using theAction Executionmodule) the COMMSmodule fromother UAVmodules in order to prevent further propagation of the attack. Alerting theC&C is not possible because of the compromised COMMS module.In order to reduce the attack surface (decided in the Planning and Action
Selection functions), the AICA requests (Action Execution module) that theUAV’s central control unit resets the COMMSmodule, raises the security leveland disables auxiliary functions (i.a., the dynamic inclusion of new UAVs intothe swarm).After the reset of the COMMSmodule, AICA attempts to recover commu-nications functionality (Sensing function). AICA performs another integritycheck to verify that no other compromise exists. It keeps its Sensing andWSIcomponents on a high-level of vigilance in relation to integrity monitoring.AICA adds the signature of the payload that caused the anomaly into its IoCknowledge base (WSI function). Furthermore, it sends out an alert alongwithmalware signature updates to other agents as well as to the C&C.

This concludes the use case description. While the use case might be slightly simplis-tic, it nevertheless provides a generic concept of how AICA should perform in relation tosupervising and defending an existing interconnected unmanned system.
7.3 Conclusion
Foreseeable evolution of military systems suggests that AICA agents will be required toeffectively defend complex systems. Furthermore, it is likely that civil systems, e.g., thewide-scale deployment of the IoT technology, will soon generate similar demands. Theproposed AICA reference architecture is a response to these requirements, aiming to as-sure a common structure, defence efficacy and of the agents.Since the development of the AICA reference architecture has been an arduous en-deavour, the number of people involved with the project is substantial. The current chap-ter first outlined the relevance of autonomy in cyber defence and then described the

87

generic AICA architecture. Secondly, the chapter summarised specific contributions, i.e.,the Sensing and World State Identification functions, as well as the example use case todescribe the functions of an AICA within a UAV.The AICA research turned out to be a prominent activity which gathered substantialinterest from both industry and academia. The official NATO IST-152 RTG activities con-cluded with the publication of the final report [86], however, the group decided to pursuea continuation. This endeavour has already resulted in a two-dayworkshop [12] whichwasorganised in cooperation with NATO NCIA and a new AICA-themed academic conference[13] held in spring 2021.

88

8 Thesis conclusions and future work discussion
8.1 Summary and conclusions
The thesis describes the research and methods for automating defences against adver-sarial cyber operations in computer networks. Additionally, this thesis aims to bridge thegap between theoretical research and practical guidance usable for cyber security prac-titioners. The difficulty of applying theoretical research outcomes in practice has beenpreviously criticised in related publications by several authors. To alleviate this issue, thethesis and the accompanying publications provide plenty of valuable practical guidanceand implementation examples.

The relatedwork discussion in chapter 2 follows the overall structure of the thesis. Fur-thermore, most thesis chapters also include a dedicated subsection that describes someof the key similarities and differences compared to related work from other authors, in-cluding the works that have been published after the author’s corresponding publicationsin this thesis.
Chapter 3 discusses problems in the areas of developing well-performing situationawareness (SA) systems and establishing relevant metrics for security monitoring. Thechapter addresses research question RQ1.1 by providing numerous collection and practi-cal usage examples of relevant securitymetrics based on a production securitymonitoringframework. The details of this framework are presented in Publication I. In response toRQ1.2, the chapter proposes to verify the suitability and performance of various SA sys-tems in realistic yet supervised environments, e.g., during cyber security exercises (CSXs).This proposal (presented in Publication V) is introduced in chapter 3 and the subsequentCSX-specific discussion carries over to chapter 4.
Chapter 4 describes the use of CSXs to improve and verify complex SA systems and en-hance cyber defence operator readiness. The chapter addresses research questions RQ1.3and RQ1.4 by first describing the background of two CSXs (Crossed Swords and LockedShields) that needed improved SA systems and naturally aimed to improve the qualityof participants’ learning experience during the exercise. The response for RQ1.3 detailsthe technical design and implementation of the Frankenstack framework (presented inPublications V and XI), and the CSX Availability Scoring system (presented in PublicationVI). Additionally, chapter 4 (collectively with Publications V, VI, and XI) describes effortsof enhancing operator learning experience by providing them instant technical feedbackabout their in-gameprogress and actions. Although the qualitative aspects of learning andtraining quality are not the primary focus points of this thesis, they cannot be neglectedbecause providing continuous improvement for exercise participants is the driving forcebehind every consecutive exercise.
Chapter 5 presents the novel LogCluster log mining algorithm for discovering both fre-quent line patterns aswell as outlier events from textual event logs. The chapter describesthe development and implementation of LogCluster and presents a performance compar-ison of several competing log analysis algorithms which have been released over the pastfew years. In response to RQ2.1, the chapter provides numerous practical examples of howLogCluster can be used to perform log data exploration and extract valuable informationfrom syslog events as well as CSX-specific SA system logs. The LogCluster algorithm andits various use cases have been presented in Publications II and III.
Chapter 6 describes the detection of covert network communication channels andanomalous network traffic. The chapter addresses RQ2.2 by providing detailed guidanceon data exfiltration detection and by presenting a novel anomaly detection frameworkwhich employs LogCluster and three distinct anomaly detectors working in ensemble to

89

discover anomalous flows in NetFlow data. The data exfiltration detection research alongwith an extensive experiment has been presented in Publication IV. The detailed descrip-tion and verification results of the novel NetFlow-based anomaly detection frameworkhas been presented in Publication X.Chapter 7 provides the reasoning behind the need to improve cyber defences by de-signing Autonomous Intelligent Cyber-defence Agents (AICAs). In response to RQ3.1 andRQ3.2 the first half of the chapter provides a brief overview of the AICA reference architec-ture and describes the generic purpose, rationale and capabilities of proposed agents. Thedevelopment of the AICA Reference Architecture was an extensive international projectwith a number of different authors. The second half of the chapter answers RQ3.3 and fo-cuses on the particular AICA functions (i.e., Sensing andWorld state identification) whichthe thesis author directly contributed to. The chapter is based on three Publications VII,VIII, and IX.
8.2 Future work
When considering some of the thesis contributions, it is safe to conclude that the researchis far from complete—there is always more to do and improve.For instance, the exercise-specific SA systems are in need of improved visualisationswhich would benefit the participants of the exercises evenmore. This research would firstneed to gather the timely feedback from actual participants to assess their informationneeds at various stages of the exercise more appropriately. This is not an easy task, be-cause exercise participants rarely attend the same exercise more than once, so getting afollow-up feedback assessment from the same person is difficult. Moreover, it is impor-tant to bear in mind that people’s ideas of an expected feature or functionality can oftencontradict one another.While some novel tools (e.g., LogCluster) presented in this thesis are stable and ma-ture, there are some (e.g., Frankenstack and the exerciseAvailability Scoring system)whichstill require additional work so that they would be easier to use and deploy in the future.Furthermore, having proper deployment and end-user documentation is something thatis often forgot.Finally, the AICA research is still fairly new and conceptual. The main objective ofthis research is to advance monitoring and cyber defence techniques forward to a de-gree where it would be possible to consider a fully functional autonomous cyber defencesystem. Perhaps eventually leaving the human operator out of the immediate decision-making loop.

90

List of Figures

1 An example CSX network layout. 412 High-level overview of Frankenstack. [82] . 423 Yellow team’s updated technological perspective from XS 2020. 454 Score coefficient (SC) with regards to uptime (U) and four example serviceweight values (W). 485 Network map of the data exfiltration experiment environment. [19] 706 Overview of the anomaly detection framework. [176] . 737 Proposed AICA’s architecture and primary functions. [86]. 828 Overview of the AICA Sensing component. [86] . 839 Overview of the AICAWorld State Identification component. [86] 8410 Potential scope of an AICA illustrated in the context of a hypothetical UAV.[86] . 86

91

List of Tables

1 Mapping of research questions to corresponding thesis chapters, publica-tions, and contributions. 162 Summary of the experiment comparing LogCluster with newer log miningtools. 663 Summarised results of the detection experiment. 714 Classification of AICA components. [86] . 825 Components of theWorld and Current Statemodels. ([86]). 85

92

References
[1] abuse.ch. abuse.ch - A Swiss non-profit cybersecurity organisation. Available:

https://abuse.ch/, 2020.
[2] AgentFly Technologies s.r.o. Tactical Operations - Military & Security. Available:

https://www.agentfly.com/tactical-operations-military-security,2021.
[3] angr. angr. Available: https://angr.io, 2021.
[4] R. Anthony. Detecting security incidents using windows workstation event logs.

SANS Institute Reading Room, 2013.
[5] Apache Software Foundation. Apache Kafka. Available:

https://kafka.apache.org/, 2021.
[6] AppArmor. AppArmor Linux kernel security module. Available:

https://apparmor.net/, 2021.
[7] D. L. Arendt, D. Best, R. Burtner, and C. L. Paul. CyberPetri at CDX 2016: Real-timenetwork situation awareness. In 2016 IEEE Symposium on Visualization for Cyber

Security (VizSec), pages 1–4, October 2016.
[8] D. L. Arendt, R. Burtner, D. M. Best, N. D. Bos, J. R. Gersh, C. D. Piatko, and C. L.Paul. Ocelot: user-centered design of a decision support visualization for networkquarantine. In 2015 IEEE Symposium on Visualization for Cyber Security (VizSec),pages 1–8, October 2015.
[9] Arizona State University. Will we control artificial intelligence or will it con-trol us? Available: https://asunow.asu.edu/20170223-will-we-control-artificial-intelligence-or-will-it-control-us, 2017.
[10] Arkime. Arkime. Available: https://arkime.com/, 2021.
[11] A. Atlasis. Security Impacts of Abusing IPv6 Extension Headers. Technical report,Centre for Strategic Cyberspace + Security Science, 2012.
[12] Autonomous Intelligent Cyber Defence Agents International Work Group. NCIA –AICA IWG Virtual Technical Workshop. Available: https://www.aica2021.org/ncia-aica-iwg-virtual-technical-workshop/, 2020.
[13] Autonomous Intelligent Cyber Defence Agents International Work Group. 1st Inter-national Conference on Autonomous Intelligent Cyber-defence Agents. Available:

https://www.aica2021.org/, 2021.
[14] T. Avgerinos, D. Brumley, J. Davis, R. Goulden, T. Nighswander, A. Rebert, andN. Williamson. The mayhem cyber reasoning system. IEEE Security & Privacy,16(2):52–60, 2018.
[15] H. Bahşi, V. Dieves, T. Kangilaski, P. Laud, L. Mõtus, J. Murumets, I. Ploom, J. Priisalu,M. Seeba, E. Täks, K. Tammel, P. Tammpuu, K. Taveter, A. Trumm, T. Truusa, andT. Vihalemm. Mapping the information flows for the architecture of a nationwidesituation awareness system : (poster). In 2019 IEEE Conference on Cognitive and

Computational Aspects of Situation Management (CogSIMA), pages 152–157, 2019.
93

[16] P. Black, K. Scarfone, andM. Souppaya. Cyber Security Metrics andMeasures. JohnWiley and Sons, 2009.
[17] Bloomberg. AI Scientists Gather to Plot Doomsday Scenarios (and Solutions). Avail-able: https://www.bloomberg.com/news/articles/2017-03-02/ai-scientists-gather-to-plot-doomsday-scenarios-and-solutions, 2017.
[18] B. Blumbergs. Specialized Cyber Red Team Responsive Computer Network Opera-

tions. PhD thesis, Tallinn University of Technology, 2019.
[19] B. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi. Creating and De-tecting IPv6 TransitionMechanism-Based Information Exfiltration Covert Channels.In Secure IT Systems: 21st Nordic Conference, NordSec 2016, Oulu, Finland, Novem-

ber 2-4, 2016. Proceedings, pages 85–100. Springer International Publishing, 2016.
[20] Boston Dynamics. Boston Dynamics’ Robots. Available:

https://www.bostondynamics.com/, 2020.
[21] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian. Anomaly extractionin backbone networks using association rules. IEEE/ACM Transactions on Network-

ing, 20(6):1788–1799, 2012.
[22] W. K. Brotby and G. Hinson. PRAGMATIC Security Metrics: ApplyingMetametrics to

Information Security. Auerbach Publications, 2013.
[23] Center for Internet Security. CIS Controls Measurement Companion Guideversion 6. Available: https://www.cisecurity.org/white-papers/a-measurement-companion-to-the-cis-critical-controls/, October 2015.
[24] Center for Internet Security. CIS Controls V7 Measures & Metrics. Avail-able: https://www.cisecurity.org/white-papers/cis-controls-v7-measures-metrics/,March 2018.
[25] Center for Internet Security. CIS Controls V7.1 Implementation Groups. Avail-able: https://www.cisecurity.org/white-papers/cis-controls-v7-1-implementation-groups/, March 2020.
[26] M. Chmelař. Utilizing MITRE ATT&CK to Create Adversary Reports of Live-Fire Cy-bersecurity Exercises for Feedback Purposes. Technical report, Tallinn University ofTechnology, 2020.
[27] Collaboration Support Office. NATO Science and Technology Organization. Avail-able: https://www.sto.nato.int/, 2020.
[28] CSIRT-MU. Cyber Czech Security Exercise. Available:

https://csirt.muni.cz/projects/cyber-czech, 2021.
[29] Cymmetria. Cyber deception & NATO red teams. Available:

https://cymmetria.com/white-paper/nato-crossed-swords/, 2018.
[30] F. De Gaspari, S. Jajodia, L. V. Mancini, and A. Panico. Ahead: A new architecture foractive defense. In Proceedings of the 2016 ACMWorkshop on Automated Decision

Making for Active Cyber Defense, SafeConfig ’16, page 11–16, New York, NY, USA,2016. Association for Computing Machinery.
94

[31] Defense Advanced Research Projects Agency (DARPA). Cyber Grand Challenge(CGC). Available: https://www.darpa.mil/program/cyber-grand-challenge, 2016.
[32] Defense Advanced Research Projects Agency (DARPA). DARPACelebrates Cyber Grand Challenge Winners. Available:

https://www.darpa.mil/news-events/2016-08-05a, 2016.
[33] Docker, Inc. Docker. Available: https://www.docker.com/, 2021.
[34] M. Du and F. Li. Spell: Streaming parsing of system event logs. In 2016 IEEE 16th

International Conference on Data Mining (ICDM), pages 859–864, 2016.
[35] P. Duszyński. Portspoof. Available: https://github.com/drk1wi/portspoof,2017.
[36] Elasticsearch B.V. Elasticsearch. Available:

https://www.elastic.co/elasticsearch, 2021.
[37] Elasticsearch B.V. Kibana. Available: https://www.elastic.co/kibana, 2021.
[38] Elasticsearch B.V. Logstash. Available: https://www.elastic.co/logstash,2021.
[39] M. Endsley. Toward a Theory of Situation Awareness in Dynamic Systems. Hu-

man Factors: The Journal of the Human Factors and Ergonomics Society, 37:32–64,March 1995.
[40] M. Ernits, K. Maennel, S. Mäses, T. Lepik, and O. Maennel. From Simple Scoring To-wards aMeaningful Interpretation of Learning in Cybersecurity Exercises. In 15th In-

ternational Conference on Cyber Warfare and Security (ICCWS 2020), March 2020.
[41] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discov-ering clusters in large spatial databases with noise. In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, KDD’96, page226–231. AAAI Press, 1996.
[42] J. N. Frye, C. K. Veitch, M. E. Mateski, J. T. Michalski, J. M. Harris, C. M. Trevino, andS. Maruoka. Cyber threat metrics, March 2012.
[43] Q. Fu, J. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed systemsthrough unstructured log analysis. In 2009 Ninth IEEE International Conference on

Data Mining, pages 149–158, 2009.
[44] D. Geer, K. S. Hoo, and A. Jaquith. Information security: why the future belongs tothe quants. IEEE Security & Privacy, 1(4):24–32, 2003.
[45] R. Graf, F. Skopik, and K. Whitebloom. A decision support model for situationalawareness in national cyber operations centers. In 2016 International Conference

On Cyber Situational Awareness, Data Analytics And Assessment (CyberSA), pages1–6, 2016.
[46] GrafanaLabs. Grafana. Available: https://grafana.com/, 2021.
[47] Greycortex. Greycortex supports Crossed Shields for second year. Available:https://www.greycortex.com/blog/greycortex-supports-crossed-shields-second-year, 2019.

95

[48] M. Grill, I. Nikolaev, V. Valeros, and M. Rehak. Detecting dga malware using net-flow. In 2015 IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pages 1304–1309, 2015.

[49] A. Guarino. Autonomous intelligent agents in cyber offence. In 2013 5th Interna-
tional Conference on Cyber Conflict (CYCON 2013), pages 1–12, 2013.

[50] P. Haag. nfdump. Available: https://github.com/phaag/nfdump, 2021.
[51] M. J. Hall, D. David Hansen, and K. Jones. Cross-domain situational awareness andcollaborative working for cyber security. In 2015 International Conference on Cyber

Situational Awareness, Data Analytics and Assessment (CyberSA), pages 1–8, 2015.
[52] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen. Logmine: Fastpattern recognition for log analytics. In Proceedings of the 25th ACM Interna-

tional on Conference on Information and Knowledge Management, CIKM ’16, page1573–1582, New York, NY, USA, 2016. Association for Computing Machinery.
[53] O. Hartong. sysmon-modular. Available:

https://github.com/olafhartong/sysmon-modular, 2021.
[54] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, and J. W. Davidson. Zipr: Effi-cient static binary rewriting for security. In 2017 47th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 559–566, 2017.
[55] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online log parsing approach withfixed depth tree. In 2017 IEEE International Conference on Web Services (ICWS),pages 33–40, 2017.
[56] C. H. Heinl. Artificial (intelligent) agents and active cyber defence: Policy implica-tions. In 2014 6th International Conference On Cyber Conflict (CyCon 2014), pages53–66, 2014.
[57] D. S. Henshel, G. M. Deckard, B. Lufkin, N. Buchler, B. Hoffman, P. Rajivan, andS. Collman. Predicting proficiency in cyber defense team exercises. In MILCOM

2016 - 2016 IEEE Military Communications Conference, pages 776–781, November2016.
[58] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras. Flowmonitoring explained: From packet capture to data analysis with netflow and ipfix.

IEEE Communications Surveys Tutorials, 16(4):2037–2064, 2014.
[59] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras. Towards real-time intrusion detec-tion for netflow and ipfix. In Proceedings of the 9th International Conference on

Network and Service Management (CNSM 2013), pages 227–234, 2013.
[60] J. Hou, P. Fu, Z. Cao, and A. Xu. Machine learning based ddos detection throughnetflow analysis. InMILCOM 2018 - 2018 IEEEMilitary Communications Conference

(MILCOM), pages 1–6, 2018.
[61] IBM. Drain3. Available: https://github.com/IBM/Drain3, 2021.
[62] IEEE. Conference on Artificial Intelligence for Applications. Available:

https://ieeexplore.ieee.org/xpl/conhome/1000050/all-proceedings,1995.
96

[63] IEEE. Proceedings of International Symposium on Au-tonomous Decentralized Systems (ISADS). Available:
https://ieeexplore.ieee.org/xpl/conhome/1000067/all-proceedings,2017.

[64] IEEE. International Conference on Tools for Artificial Intelligence (ICTAI). Available:
https://ieeexplore.ieee.org/xpl/conhome/1000763/all-proceedings,2019.

[65] InfluxData. Telegraf. Available: https://www.influxdata.com/time-series-platform/telegraf/, 2021.
[66] InfluxData. TICK stack. Available: https://www.influxdata.com/time-series-platform/, 2021.
[67] H. Irino. softflowd – A software NetFlow probe. Available:

https://code.google.com/archive/p/softflowd/, 2021.
[68] S. Jajodia, G. Cybenko, V. Subrahmanian, V. Swarup, C. Wang, and M. Wellman.

Adaptive Autonomous Secure Cyber Systems. Springer International Publishing,2020.
[69] A. Jaquith. Security Metrics: Replacing Fear, Uncertainty, and Doubt, January 2007.
[70] B. S. Jese. Snoopy Logger. Available: https://github.com/a2o/snoopy, 2021.
[71] N. Känzig, R. Meier, L. Gambazzi, V. Lenders, and L. Vanbever. Machine Learning-based Detection of C&C Channels with a Focus on the Locked Shields Cyber DefenseExercise. In 2019 11th International Conference on Cyber Conflict (CyCon), volume900, pages 1–19, 2019.
[72] J. Kim, K. Kim, andM. Jang. Cyber-physical battlefield platform for large-scale cyber-security exercises. In 2019 11th International Conference on Cyber Conflict (CyCon),volume 900, pages 1–19, 2019.
[73] J. Kim, Y. Maeng, and M. Jang. Becoming invisible hands of national live-fire attack-defense cyber exercise. In 2019 IEEE European Symposium on Security and Privacy

Workshops (EuroS PW), pages 77–84, 2019.
[74] A. Kind, M. P. Stoecklin, and X. Dimitropoulos. Histogram-based traffic anomalydetection. IEEE Transactions on Network and Service Management, 6(2):110–121,2009.
[75] J. Klein, S. Bhulai, M. Hoogendoorn, R. Van DerMei, and R. Hinfelaar. Detecting Net-work Intrusion beyond 1999: Applying Machine Learning Techniques to a PartiallyLabeled Cybersecurity Dataset. In 2018 IEEE/WIC/ACM International Conference on

Web Intelligence (WI), pages 784–787, 2018.
[76] M. Klemettinen. A knowledge discovery methodology for telecommunication net-work alarm databases, May 1999.
[77] M. Klemettinen, H. Mannila, P. Moen, H. Toivonen, and A. Verkamo. Finding inter-esting rules from large sets of discovered association rules. Proceedings of the Third

International Conference on Information and Knowledge Management, February1995.
97

[78] J. Kohlrausch and E. A. Brin. Arima supplemented security metrics for quality assur-ance and situational awareness. Digital Threats: Research and Practice, 1(1), March2020.
[79] M. Kont. Sigma rule engine. Available:

https://github.com/markuskont/go-sigma-rule-engine, 2020.
[80] M. Kont and M. Pihelgas. Automated virtual testing environment. Available:

https://github.com/markuskont/exfil-testbench, 2015.
[81] M. Kont and M. Pihelgas. IDS for logs: Towards implementing a streaming Sigma

rule engine. NATO CCD COE Publications, 2020.
[82] M. Kont, M. Pihelgas, K.Maennel, B. Blumbergs, and T. Lepik. Frankenstack: Towardreal-time Red Team feedback. InMILCOM2017 - 2017 IEEEMilitary Communications

Conference (MILCOM), pages 400–405, October 2017.
[83] M. Kont, M. Pihelgas, J. Wojtkowiak, L. Trinberg, and A.-M. Osula. Insider Threat

Detection Study. NATO CCD COE Publications, 2015.
[84] I. Kotenko and E. Doynikova. Dynamical calculation of security metrics for coun-termeasure selection in computer networks. In 2016 24th Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing (PDP), pages558–565, 2016.
[85] A. Kott, L. V. Mancini, P. Théron, M. Drasar, E. Dushku, H. Günther, M. Kont,B. Leblanc, A. Panico, M. Pihelgas, and K. Rzadca. Initial Reference Architecture ofan Intelligent Autonomous Agent for Cyber Defense. CoRR, abs/1803.10664, 2018.
[86] A. Kott, P. Théron, M. Drašar, E. Dushku, B. LeBlanc, P. Losiewicz, A. Guarino,L. Mancini, A. Panico, M. Pihelgas, and K. Rzadca. Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architecture. Release 2.0, 2019.
[87] A. Kott and P. Theron. Doers, not watchers: Intelligent autonomous agents are apath to cyber resilience. IEEE Security & Privacy, 18(3):62–66, 2020.
[88] A. Kott, P. Théron, L. V. Mancini, E. Dushku, A. Panico, M. Drašar, B. LeBlanc,P. Losiewicz, A. Guarino, M. Pihelgas, and K. Rzadca. An introductory preview ofAutonomous Intelligent Cyber-defense Agent reference architecture, release 2.0.

The Journal of Defense Modeling and Simulation, 17(1):51–54, 2020.
[89] E. Leblond. Finding the Bad Guys, Yes Really. Available:

https://www.youtube.com/watch?v=Scntdv1Vp_0, 2017. Hack.lu 2017Presentation.
[90] E. Leblond. Finding the Bad Guys, Yes Really. SuriCon 2017, 2017. Presentation.
[91] E. Leblond and P.Manev. Suricata and XDP, Performancewith a S like Security. Avail-able: https://suricon.net/wp-content/uploads/2019/11/SURICON2019_XDP-New-Features-and-Testing-Methodologies.pdf, 2019.
[92] R. Liivoja, M. Naagel, and A. Väljataga. Autonomous Cyber Capabilities under Inter-

national Law. NATO Cooperative Cyber Defence Centre of Excellence, 2018.
[93] LogPAI. Loghub. Available: https://github.com/logpai/loghub, 2020.

98

[94] LogPAI. Logparser. Available: https://github.com/logpai/logparser, 2021.
[95] G. Lyon. Nmap – Network Mapper. Available: https://nmap.org/, 2021.
[96] K. Maennel, J. Kim, and S. Sütterlin. From Text Mining to Evidence Team Learning inCybersecurity Exercises. In Companion Proceedings 10th International Conference

on Learning Analytics and Knowledge (LAK20), March 2020.
[97] K. Maennel, R. Ottis, and O. Maennel. Improving and Measuring Learning Effec-tiveness at Cyber Defense Exercises. In Secure IT Systems: 22nd Nordic Conference,

NordSec 2017, Tartu, Estonia, November 8-10, 2017. Proceedings, pages 123–138,November 2017.
[98] A. Makanju. Exploring event log analysis with minimum apriori information, 2012.
[99] A. Makanju, S. Brooks, A. N. Zincir-Heywood, and E. E. Milios. Logview: Visualizingevent log clusters. In 2008 Sixth Annual Conference on Privacy, Security and Trust,pages 99–108, 2008.
[100] A.Makanju, A. Nur Zincir-Heywood, and E.Milios. A Lightweight Algorithm forMes-sage Type Extraction in SystemApplication Logs. In IEEE Transactions on Knowledge

and Data Engineering, pages 1921 – 1936, September 2012.
[101] W. Mazurczyk, K. Powójski, and L. Caviglione. Ipv6 covert channels in the wild. In

Proceedings of the Third Central European Cybersecurity Conference, CECC 2019,New York, NY, USA, 2019. Association for Computing Machinery.
[102] F. J. R. Melón, T. Väisänen, and M. Pihelgas. EVE and ADAM: Situation AwarenessTools for NATO CCDCOE Cyber Exercises. In STO-MP-SCI-300 Cyber Physical Security

of Defense Systems, pages 10–1–10–15, 2018.
[103] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas. A search-based approach for accurate identification of log message formats. In 2018

IEEE/ACM 26th International Conference on Program Comprehension (ICPC), pages167–16710, 2018.
[104] Microsoft. Windows Sysinternals - Sysmon. Available:

https://technet.microsoft.com/en-us/sysinternals/sysmon, 2021.
[105] Milrem AS. Milrem Robotics. Available: https://milremrobotics.com/, 2020.
[106] D. W. Morgan. Interview: Ethan Galstad - The Nagios future. Available:http://www.h-online.com/open/features/Interview-Ethan-Galstad-The-Nagios-future-958826.html, 2010.
[107] L. Motus, M. Teichmann, T. Kangilaski, J. Priisalu, and J. Kaugerand. Some issues inmodelling comprehensive situation awareness. In 2019 IEEE International Confer-

ence on Systems, Man and Cybernetics (SMC), pages 540–545, 2019.
[108] R. P. Murphy. IPv6 / ICMPv6 Covert Channels. DEF CON’14, 2014. Presentation.
[109] Nagios. Nagios Core 4.x Version History. Available:

https://www.nagios.org/projects/nagios-core/history/4x/, 2021.
[110] Nagios Enterprises. Nagios Core. Available:

https://www.nagios.org/projects/nagioscore, 2021.
99

[111] NATO CCD COE. EVE - Event Visualization Environment. Available:
https://github.com/ccdcoe/EVE, 2017.

[112] NATO CCD COE. Otta. Available: https://github.com/ccdcoe/otta, 2017.
[113] NATO CCD COE. frankenSEC. Available: https://github.com/ccdcoe/frankenSEC,2019.
[114] NATO CCD COE. Locked Shields 2019. Available:https://www.ccdcoe.org/news/2019/france-wins-cyber-defence-exercise-locked-shields-2019/, 2019.
[115] NATO CCD COE. Locked Shields Exercise. Available:

https://ccdcoe.org/locked-shields.html, 2019.
[116] NATO CCD COE. Exercise Crossed Swords 2020 Reached New Lev-els of Multinational and Interdisciplinary Cooperation. Available:https://ccdcoe.org/news/2020/exercise-crossed-swords-2020-reached-new-levels-of-multinational-and-interdisciplinary-cooperation/, 2020.
[117] NATO CCD COE. Frankenstack. Available:

https://github.com/ccdcoe/frankenstack, 2020.
[118] NATO CCD COE. Peek. Available: https://github.com/ccdcoe/go-peek, 2020.
[119] NATO CCD COE. Crossed Swords Exercise. Available:

https://ccdcoe.org/exercises/crossed-swords/, 2021.
[120] NATO Science and Technology Organization. IST-152: Intelligent, Au-tonomous and Trusted Agents for Cyber Defense and Resilience. Available:https://www.sto.nato.int/Lists/test1/activitydetails.aspx?ID=16533, 2019.
[121] NfSen. NfSen. Available: http://nfsen.sourceforge.net/, 2011.
[122] A. Nguyen-Tuong, D. Melski, J. W. Davidson, M. Co, W. Hawkins, J. D. Hiser, D. Mor-ris, D. Nguyen, and E. Rizzi. Xandra: An autonomous cyber battle system for thecyber grand challenge. IEEE Security & Privacy, 16(2):42–51, 2018.
[123] O.-P. Niemi, A. Levomäki, and J. Manner. Dismantling intrusion prevention systems.

SIGCOMM Comput. Commun. Rev., 42(4):285–286, August 2012.
[124] NXLog Ltd. NXLog. Available: https://nxlog.co/, 2021.
[125] R. Ošlejšek, V. Rusnak, K. Burská, V. Švábenský, J. Vykopal, and J. Cegan. Conceptualmodel of visual analytics for hands-on cybersecurity training. IEEE Transactions on

Visualization and Computer Graphics, pages 1–1, 2020.
[126] R. Ošlejšek, J. Vykopal, K. Burská, and V. Rusňák. Evaluation of cyber defense exer-cises using visual analytics process. In 2018 IEEE Frontiers in Education Conference

(FIE), pages 1–9, 2018.
[127] One Identity LLC. syslog-ng. Available: https://www.syslog-ng.com/, 2021.
[128] Open Information Security Foundation. Suricata. Available:

https://suricata-ids.org/, 2021.
100

[129] OpenJS Foundation. Node.js. Available: https://nodejs.org/, 2021.
[130] E. Orlandi. Computer security: a consequence of information technology quality.In IEEE International Carnahan Conference on Security Technology, Crime Counter-

measures, pages 109–112, 1990.
[131] R. Ošlejšek, V. Rusňák, K. Burská, V. Švábenský, and J. Vykopal. Visual feedback forplayers of multi-level capture the flag games: Field usability study. In 2019 IEEE

Symposium on Visualization for Cyber Security (VizSec), 2019.
[132] S. C. Payne. A Guide to Security Metrics, June 2006.
[133] M. Pěchouček, M. Jakob, and P. Novák. Towards simulation-aided design of multi-agent systems. In Programming Multi-Agent Systems, pages 3–21, Berlin, Heidel-berg, 2012. Springer Berlin Heidelberg.
[134] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu. A survey on systems securitymetrics. ACM Comput. Surv., 49(4), December 2016.
[135] M. Pihelgas. Design and Implementation of an Availability Scoring System for CyberDefence Exercises. In 14th International Conference on Cyber Warfare and Security

(ICCWS 2019), page 329–337, 2019.
[136] M. Pihelgas andM. Kont. Frankenstack: Real-time Cyberattack Detection and Feed-back System for Technical Cyber Exercises. In 2021 IEEE CSR Workshop on Cyber

Ranges and Security Training (CRST). IEEE, July 2021. (Accepted paper).
[137] J. Preden, J. Kaugerand, E. Suurjaak, S. Astapov, L. Motus, and R. Pahtma. Data todecision: pushing situational information needs to the edge of the network. In 2015

IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation
Awareness and Decision, pages 158–164, 2015.

[138] Proofpoint. Emerging Threats rules. Available:
https://rules.emergingthreats.net/, 2020.

[139] Python Software Foundation. Python Package Index (PyPI). Available:
https://pypi.org/, 2021.

[140] A. Ramos, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues. Model-based quantita-tive network security metrics: A survey. IEEE Communications Surveys Tutorials,19(4):2704–2734, 2017.
[141] Red Hat. Security-Enhanced Linux (SELinux). Available:

https://www.redhat.com/en/topics/linux/what-is-selinux, 2021.
[142] RedisLabs. Redis. Available: https://redis.io/, 2021.
[143] T. Reidemeister. Fault Diagnosis in Enterprise Software SystemsUsingDiscreteMon-

itoring Data. PhD thesis, University of Waterloo, 2012.
[144] T. Reidemeister, M. Jiang, and P. A. S. Ward. Mining unstructured log files for re-current fault diagnosis. In 12th IFIP/IEEE International Symposium on Integrated

Network Management (IM 2011) and Workshops, pages 377–384, May 2011.
[145] F. Roth. Sigma. Available: https://github.com/Neo23x0/sigma, 2021.

101

[146] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,3 edition, 2010.
[147] P. Sanders. The Effect of Packet Loss on an IDS Deployment. Available:https://www.napatech.com/the-effect-of-packet-loss-on-an-ids-deployment/,2019.
[148] SANS Institute. CIS Critical Security Controls. Available:

https://www.sans.org/critical-security-controls, 2020.
[149] N. Satterly. Alerta. Available: http://alerta.io/, 2021.
[150] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Corbetta, F. Disperati,A. Dutcher, J. Grosen, P. Grosen, A. Machiry, C. Salls, N. Stephens, R. Wang, andG. Vigna. Mechanical Phish: Resilient Autonomous Hacking. IEEE Security & Pri-

vacy, 16(2):12–22, 2018.
[151] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,S. Feng, C. Hauser, C. Kruegel, andG. Vigna. SOK: (State of) TheArt ofWar: OffensiveTechniques in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP),pages 138–157, 2016.
[152] D. Sislak, P. Volf, S. Kopriva, and M. Pěchouček. AgentFly: Scalable, High-Fidelity

Framework for Simulation, Planning andCollisionAvoidance ofMultipleUAVs, chap-ter 9, pages 233–264. John Wiley & Sons, Ltd, 2012.
[153] Software Freedom Conservancy. Selenium. Available:

https://www.selenium.dev//, 2021.
[154] Stamus Networks. Stamus Networks at XS20. Available:https://twitter.com/StamusN/status/1339968510924120066, 2021.
[155] Starship Technologies OÜ. Starship. Available: https://www.starship.xyz/,2020.
[156] SwiftOnSecurity. sysmon-config. Available:https://github.com/SwiftOnSecurity/sysmon-config, 2021.
[157] Tesla Motors. Autopilot. Available: https://www.tesla.com/autopilot, 2020.
[158] Thales Group. Secure, sustainable smart cities and the IoT. Avail-able: https://www.thalesgroup.com/en/markets/digital-identity-and-security/iot/inspired/smart-cities, 2020.
[159] The Graphite Project. Graphite. Available: https://graphiteapp.org/, 2021.
[160] The Zeek Project. The Zeek Network Security Monitor. Available:

https://zeek.org/, 2021.
[161] P. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini, andA. Panico. Towards an active, autonomous and intelligent cyber defense of mili-tary systems: The NATO AICA reference architecture. In 2018 International Con-

ference on Military Communications and Information Systems (ICMCIS), pages 1–9,May 2018.
102

[162] P. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini, andF. de Gaspari. Reference Architecture of an Autonomous Agent for Cyber Defenseof ComplexMilitary Systems. InAdaptive Autonomous Secure Cyber Systems, pages1–21, Cham, 2020. Springer International Publishing.
[163] D. Tovarňák, S. Špaček, and J. Vykopal. Dataset: Traffic and Log Data Captured

During a Cyber Defense Exercise. Zenodo, April 2020.
[164] D. Tovarňák, S. Špaček, and J. Vykopal. Traffic and log data captured during a cyberdefense exercise. Data in Brief, 31:105784, 2020.
[165] E. Tyugu. Command and control of cyber weapons. In 2012 4th International Con-

ference on Cyber Conflict (CYCON 2012), pages 1–11, 2012.
[166] USENIX. The Computer Failure Data Repository (CFDR). Available:

https://www.usenix.org/cfdr-data.
[167] R. Vaarandi. A data clustering algorithm for mining patterns from event logs. In IP

Operations Management, 2003. (IPOM 2003). 3rd IEEE Workshop on, pages 119–126, October 2003.
[168] R. Vaarandi. Mining event logswith SLCT and LogHound. InNetworkOperations and

Management Symposium, 2008. NOMS 2008. IEEE, pages 1071–1074, April 2008.
[169] R. Vaarandi. Detecting anomalous network traffic in organizational private net-works. In Cognitive Methods in Situation Awareness and Decision Support

(CogSIMA), 2013 IEEE International Multi-Disciplinary Conference on, pages 285–292, February 2013.
[170] R. Vaarandi. LogCluster. Available: http://ristov.github.io/logcluster,2019.
[171] R. Vaarandi. SEC - simple event correlator. Available:

https://simple-evcorr.github.io, 2021.
[172] R. Vaarandi, B. Blumbergs, and E. Çalişkan. Simple event correlator - Best practicesfor creating scalable configurations. In Cognitive Methods in Situation Awareness

and Decision Support (CogSIMA), 2015 IEEE International Conference on, pages 96–100, March 2015.
[173] R. Vaarandi, M. Kont, and M. Pihelgas. Event log analysis with the LogCluster tool.InMILCOM 2016 - 2016 IEEE Military Communications Conference, pages 982–987,November 2016.
[174] R. Vaarandi andM. Pihelgas. Using Security Logs for Collecting and Reporting Tech-nical Security Metrics. In Military Communications Conference (MILCOM), 2014

IEEE, pages 294–299, October 2014.
[175] R. Vaarandi and M. Pihelgas. LogCluster - A data clustering and pattern miningalgorithm for event logs. In Network and Service Management (CNSM), 2015 11th

International Conference on, pages 1–7, November 2015.
[176] R. Vaarandi and M. Pihelgas. NetFlow Based Framework for Identifying AnomalousEnd User Nodes. In 15th International Conference on Cyber Warfare and Security

(ICCWS 2020), page 448–456, 2020.
103

[177] R. Vaarandi and K. Podin, š. Network IDS alert classification with frequent itemsetmining and data clustering. In Network and Service Management (CNSM), 2010
International Conference on, pages 451–456, October 2010.

[178] J. Vykopal, R. Ošlejšek, K. Burská, and K. Zákopčanová. Timely feedback in unstruc-tured cybersecurity exercises. In Proceedings of the 49th ACMTechnical Symposium
on Computer Science Education, SIGCSE ’18, page 173–178, New York, NY, USA, 2018.Association for Computing Machinery.

[179] J. Vykopal, M. Vizvary, R. Oslejsek, P. Celeda, and D. Tovarnak. Lessons learnedfrom complex hands-on defence exercises in a cyber range. In 2017 IEEE Frontiers
in Education Conference (FIE), pages 1–8, 2017.

[180] D. Wallace. Cyber weapon reviews under international humanitarian law: A criticalanalysis. Tallinn Papers, 11, 2018.
[181] S. Wendzel and S. Zander. Detecting protocol switching covert channels. In 37th

Annual IEEE Conference on Local Computer Networks, pages 280–283, 2012.
[182] F. Zhou, W. Huang, Y. Zhao, Y. Shi, X. Liang, and X. Fan. Entvis: A visual analytic toolfor entropy-based network traffic anomaly detection. IEEE Computer Graphics and

Applications, 35(6):42–50, 2015.
[183] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu. Tools and benchmarks forautomated log parsing. In Proceedings of the 41st International Conference on Soft-

ware Engineering: Software Engineering in Practice, ICSE-SEIP ’19, page 121–130.IEEE Press, 2019.
[184] C. Zhuge and R. Vaarandi. Efficient Event Log Mining with LogClusterC. In Proceed-

ings of the 2017 IEEE International Conference on Big Data Security on Cloud, pages261–266, May 2017.

104

Acknowledgements
The cruelties of rare diseases and the effectuation of unlikely odds within my familyhas rendered this undertaking significantly more difficult than many of the readers canprobably imagine.I am deeply grateful to my beloved family for their unwavering support throughoutthe years. Without their kind understanding and encouragement it would not have beenpossible for me to complete this endeavour.Furthermore, I thank my supervisors, Risto and Olaf, for their valuable advice, contin-uous support, and patience. I would also like to thank Raimo for supporting the research
pillar, which has enabled me to carry out my research. I would also like to thank my cur-rent and past colleagues at the NATO CCD COE for their cooperation. Special thanks go toMarkus, a good friend and an invaluable co-researcher in many sophisticated projects.This research has been supported by the Estonian IT Academy (StudyITin.ee) and theNATO Cooperative Cyber Defence Centre of Excellence.

105

Abstract
Automating Defences against Cyber Operations in Computer
Networks
This thesis is based on a collection of eleven publications. The thesis explores the improve-ment of organisational security monitoring capability and readiness to advance towardsintelligent autonomous cyber defence systems.Additionally, the thesis aims to reduce the gap between suggestions derived from aca-demic research and practical guidelines that are useful for cyber defenders. The feasibilityof utilising theoretical research outcomes in practice has been criticised in related pub-lications by several different authors. To relieve this issue, this thesis and the bundledcollection of publications provide numerous actionable recommendations and practicalexamples.This thesis addresses problems in the areas of establishing which metrics are relevantfor securitymonitoring, how to build both general-purpose and cyber-exercise-specific sit-uation awareness systems, how to raise SA qualifications and readiness of cyber defend-ers, how to implement and verify novel logmining algorithms and network security frame-works for cyber defence, and how to improve cyber defences by designing autonomousintelligent cyber-defence agents.The thesis provides recommendations for metrics and log data collection, transforma-tion, and analysis methods alongside relevant data representation techniques. Further-more, a novel data clustering and log mining algorithm LogCluster is proposed, comparedthoroughly with several other log analysis tools, and later used to provide practical ex-amples of clustering logs from two different cyber security exercises (Locked Shields andCrossed Swords). Furthermore, the thesis describes two novel cyber-exercise-specific sit-uation awareness systems—Frankenstack and the Availability Scoring system: comprisingan overview of the development process, technical architecture, and validation duringthe aforementioned cyber security exercises. In the area of network security, the thesisdescribes the research on data exfiltration detection with open-source tools and detailsa novel NetFlow-based anomaly detection framework. Finally, the concept and referencearchitecture for autonomous intelligent cyber-defence agents is described and proposedas the basis for future military and civil cyber defence systems.

106

Kokkuvõte
Arvutivõrkude kaitse automatiseerimine küberoperatsioonide
vastu
Käesolev ingliskeelne doktoritöö põhineb autori üheteistkümnel publikatsioonil ja uuribvõimalusi arvutivõrkude küberkaitse automatiseerimiseks küberoperatsioonide vastu. Tööpeamine eesmärk on luua eeldused ning tõsta üldist valmisolekut autonoomsete küber-kaitse süsteemide arendamiseks ja juurutamiseks lähitulevikus.Töö teine eesmärk on teoreetilise teadustöö ning praktikas rakendatavate juhiste ti-hedam sidumine. Akadeemilistes publikatsioonides jagatud soovituste rakendamine ontihti liiga keeruline—taoliste soovituste ebapraktilisust on kritiseeritud mitmes doktori-töös viidatud allikas. Selle probleemi leevendamiseks pakub käesolev doktoritöö ja sellegakaasnevad publikatsioonid arvukalt praktilisi soovitusi ning näiteid tehniliste lahendustejuurutamiseks.Doktoritöös otsitakse vastuseid järgnevatele küsimustele ja probleemidele: milliseidtehnilisi meetrikaid on oluline jälgida küberturbe seires; kuidas rajada nii tavakasutusekui ka küberharjutuste jaoks mõeldud situatsiooniteadlikkuse süsteeme; mil viisil oleksvõimalik tõsta küberkaitsjate üldist kvalifikatsiooni ja treenida nende oskusi situatsiooni-teadlikkuse valdkonnas; kuidas oleks võimalik testida uudsete andmekaevandamisalgo-ritmide ja võrguturbesüsteemide efektiivsust ja töökindlust; ning kuidas tõsta küberkaitsevõimekust iseõppivate autonoomsete küberkaitse agentidega.Doktoritöö kätkeb soovitusi meetrikate ja logiandmete kogumise, töötlemise ning esit-lemise parendamiseks. Töö kirjeldab logide kaevandamise algoritmi LogCluster, võrdlebLogClusterit mitme konkureeriva logianalüüsi tööriistaga ning toob mitmeid praktilisi näi-teid LogClusteri kasutamisest küberharjutuste andmekogude analüüsimiseks. Eraldi käsit-letakse küberharjutuste tarbeks loodud kahte vabatarkvaralistmonitooringusüsteemi: töösisaldab ülevaadet nende süsteemide väljatöötamisest, komponentide tehnilisest ülesehi-tusest ning katsetamisest kahe erineva küberharjutuse, Locked Shields ja Crossed Swords,raames. Võrguturbe valdkonnas uurib töö andmelekete avastamist vabatarkvaraliste va-henditega ning kirjeldab hiljuti publitseeritud NetFlow-põhist võrguanomaaliate tuvasta-mise seireraamistikku. Viimaks kirjeldatakse kontseptuaalset intelligentsete küberagenti-de etalonarhitektuuri, mida saaks potentsiaalselt rakendada autonoomsete küberkaitseagentide arendamisel ja juurutamisel.

107

Appendix 1

Publication I

R. Vaarandi and M. Pihelgas. Using Security Logs for Collecting and Re-porting Technical SecurityMetrics. InMilitary Communications Conference
(MILCOM), 2014 IEEE, pages 294–299, October 2014

© 2014 IEEE. Reprinted. Internal or personal use of this material is permitted. Permissionfrom IEEE must be obtained for all other uses, in any current or future media, includingreprinting/republishing this material for advertising or promotional purposes, creatingnew collective works, for resale or redistribution to servers or lists, or reuse of any copy-righted component of this work in other works.The paper is included in the Proceedings of the 2014 IEEE Military Communications Con-
ference (MILCOM 2014).DOI: 10.1109/MILCOM.2014.53.

109

Using Security Logs for Collecting and Reporting

Technical Security Metrics

Risto Vaarandi and Mauno Pihelgas

NATO Cooperative Cyber Defence Centre of Excellence

Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract—During recent years, establishing proper metrics

for measuring system security has received increasing attention.

Security logs contain vast amounts of information which are

essential for creating many security metrics. Unfortunately,

security logs are known to be very large, making their analysis a

difficult task. Furthermore, recent security metrics research has

focused on generic concepts, and the issue of collecting security

metrics with log analysis methods has not been well studied. In

this paper, we will first focus on using log analysis techniques for

collecting technical security metrics from security logs of

common types (e.g., IDS alarm logs, workstation logs, and

Netflow data sets). We will also describe a production framework

for collecting and reporting technical security metrics which is

based on novel open-source technologies for big data.

Keywords—security metrics; security log analysis

I. INTRODUCTION

During recent years, the question “how to measure system
security?” has received increasing attention, and has been
addressed in a number of academic papers [1–6], governmental
research reports [7–9], standards [10], books [11–12], and
various other documents like recommendations and domain
overviews [13–15]. For easing the process of measuring the
system security, the notion of security metric is employed by
most researchers and practitioners. Although this notion is
defined in a slightly different way in different documents, all
sources agree that security metric refers to a standard of
measurement. For example, one can define the metric number
of port scanners per day which involves collecting relevant
data from a firewall after the end of each day. In several
sources, the following common properties of a good security
metric have been identified [4, 9, 11–13]:

 It is unambiguous and meaningful for predefined
purposes, making sense to the human analyst

 Taking measurements for the metric should not
involve significant cost impact

 Measurements should be taken consistently using
the same methodology, with appropriate time
frames between measurements, and preferably
through an automated data collection procedure

It is often hard to find a metric which is equally meaningful

for every possible audience. For example, while the metric
number of port scanners per day is useful for security
administrators, it has little value to a higher level executive
who is interested in business level metrics. In a recent study
[14], security metrics are classified by their expected audience
into management, operational, and technical metrics.
Technical metrics provide details for security experts, but also
a foundation for other two metric classes which are primarily
meant for different levels of management [14].

Even if the metric is meaningful for a particular audience,
the knowledge of a wider context around the metric is often
useful for increasing its clarity [13]. For instance, the metric
number of port scanners per day does not make much sense if
one is looking only at a single measurement taken for the last
24 hours, since it is not known what are the usual values for
this metric in a given environment. Furthermore, during the
metrics collection process the knowledge about the
surrounding environment should be used. For example, if
known false positive alarms are excluded when the metric
number of network attacks per day is collected, the value of
this metric will greatly increase.

Although security metrics related issues have been studied
in a number of sources, they often lack detailed
recommendations for implementing security metrics collection
and reporting system. Furthermore, since many metrics can
only be obtained from security logs which are often very large
in size, metrics collection requires a log management solution
for big data with efficient searching and reporting capabilities.
However, many traditional log management solutions are not
able to cope with big data which creates a serious obstacle for
metrics collection. Moreover, high-end commercial solutions
are not affordable for many smaller institutions.

Also, in existing literature metrics reporting is often seen as
the generation of static reports to end users. One notable
exception is a hierarchical visualization architecture proposed
by Savola and Heinonen [3] which supports interactive
navigation from generic metrics to underlying more specific
metrics. We take a step further and argue that the security
metrics reporting system should be able to access raw security
data sets (such as security logs) and have efficient drill-down
functionality – the generation of more specific reports on user-
defined queries, and the identification of individual entities in
raw security data (such as log messages or Netflow records).
This allows the human analyst to study details behind the

This work was supported by the SEB financial group. This paper is a
product of the authors; it does not represent the opinions or official policies of

NATO CCDCOE or NATO and is designed to provide an independent

position.

metric and increase its meaningfulness [3], and also helps to
find root causes for anomalies which have been spotted in
reported metric values.

During the last few years, open-source technologies for
storing, searching, analyzing, and visualizing very large log
data sets have rapidly emerged (e.g., Elasticsearch, Kibana, and
Graylog2). These technologies can be used for creating a cost-
efficient security metrics collection and reporting system with
dynamic reporting and drill-down capabilities for security logs.

 Unfortunately, these developments have received little
attention in recent academic and industrial papers, and previous
works have not focused on using security logs for metrics
collection. This paper addresses this research gap, and
discusses log analysis methods and open-source solutions for
collecting and reporting technical security metrics. The
remainder of the paper is organized as follows – section II
provides an overview of related work, section III discusses log
analysis methods for extracting metrics from security logs of
common types, section IV describes an open-source based
production framework for security metrics collection and
reporting, and section V concludes the paper.

II. RELATED WORK

One of the earliest works which suggested the use of
security metrics was a book by Jaquith [11]. The book
describes the properties of a good metric and provides a
detailed discussion on how to report metrics. During the past
few years, the use of security metrics has been proposed for a
wide variety of domains, including SCADA and other control
systems [5, 7, 8], cloud computing [6], application security [2],
software design [1], and assessment of cyber threats [9].

Recently, the Center for Internet Security has published a
report [14] on standard metric and data definitions that can be
used across different organizations, in order to collect and
analyze data on security processes and outcomes. The paper
offers universal guidelines on implementing security metrics
program in an organization. The paper proposes 28 metric
definitions that have all been categorized in two ways, either
by relevant business function or by purpose and target
audience. These metrics are meant to serve as a starting point
for organizations which are beginning to implement their
metrics program. Nevertheless, the paper does not offer any
detailed recommendations for implementing a production
system for metrics collection and reporting.

A recent paper by the Council on CyberSecurity [15]
describes 20 critical controls for achieving effective cyber
defense. The paper considers security log collection and
analysis as one of the critical controls, and also emphasizes the
importance of IDS and Netflow based network monitoring.
Although the main focus of the paper is not on security
metrics, it proposes a number of specific metrics for measuring
the efficiency of suggested cyber defense controls.

Security metrics have also been discussed in the ISO/IEC
27004:2009 standard [10] which aims to measure, report on,
and systematically improve the effectiveness of Information
Security Management Systems that have been specified in
ISO/IEC 27001. However, the current standard has been

criticized by some security practitioners for being too generic
and lacking practical guidance on which particular metrics to
collect [12].

In addition to aforementioned sources, a recent book by
Brotby and Hinson [12] offers practical recommendations and
examples on implementing security metrics program. The
authors of the book propose the novel PRAGMATIC
methodology for defining, scoring, and ranking security
metrics, in order to identify the most beneficial metrics for
different audiences (e.g., security professionals, managers, and
other stakeholders). Furthermore, the book describes over 150
example metrics, in order to help the reader to build his/her
own metrics program.

Apart from generic studies, security metrics have also been
suggested for measuring specific aspects of cyber security. For
example, a recent study conducted in Sandia National Labs [9]
discusses possible metrics for cyber threats (malicious
organizations and individuals), and proposes the use of the
threat matrix model for assessing cyber threats.

III. EXTRACTING TECHNICAL SECURITY METRICS FROM

SECURITY LOGS

As discussed in the previous section, existing works often
focus on generic security metric concepts, and lack
recommendations for implementing production systems for
metrics collection and reporting. In this section, we will discuss
the use of log analysis methods and tools for several common
security log types, in order to collect technical security metrics.

A. Extracting Security Metrics from IDS Alarm Logs

Today, IDSs are used by vast majority of institutions which
are processing data of critical importance. Therefore, IDS
alarm based security metrics are a popular choice for
measuring the system security and the threat level against the
local network. In production systems, it is a common practice
to measure the number of IDS alarms per hour, day, or some
other time frame, and report this metric as time-series data to
the human analyst. Based on IDS alarm attributes, a number of
additional metrics can be defined (such as the number of botnet
related alarms per time frame or the number of distinct
malicious hosts per time frame). Also, it is often worthwhile to
use event correlation for detecting alarm patterns that
correspond to specific attacks, for example, the appearance of 7
different alarms within 60 seconds that indicate the use of a
certain attack toolkit. This allows for creating metrics for these
specific attacks (section IIIc provides a more detailed example
on how to employ event correlation for extracting metrics from
log data).

Although IDS alarm based metrics are commonly used,
they are sensitive to false positives, especially if a larger
volume of false positive alarms appears and the reported metric
becomes seriously distorted. Furthermore, IDS signatures
which detect frequent bad traffic of low importance (such as
probes from well-known Internet worms) can routinely trigger
many alarms over longer periods of time [16]. Such alarms
form the background noise which might again distort reported
metrics. Although filters for known false positives and threats
of low importance can be created manually, new types of false

positives and noise might be easily introduced with signature
updates and changes in the environment. In order to alleviate
this problem, we have proposed a real-time IDS alarm
classification algorithm during our past research which is able
to distinguish false positives and noise from interesting alarms
[16]. The proposed algorithm applies various data mining
techniques to past IDS alarm logs, in order to learn patterns
which describe noise and false positive alarms, and uses
detected patterns for real-time IDS alarm classification. The
learning step of the algorithm is periodically repeated (e.g.,
once in 24 hours), in order update the classification knowledge
and adjust to changes in the surrounding environment. While
our previous paper described preliminary results of using this
algorithm [16], we have employed this method for several
years in production. One of the purposes for introducing this
method was to filter out irrelevant IDS alarms and calculate
more meaningful security metrics from important alarms only.

B. Extracting Security Metrics from Netflow Data

Netflow is a protocol for collecting network traffic statistics
which was developed by Cisco Systems in the 1990s. If a
network device has Netflow statistics collection enabled, it will
extract data from the header of each observed packet, and store
these data in Netflow records. For each network flow a
separate record is maintained, where the network flow is
identified by the transport protocol ID, source and destination
IP addresses, source and destination port numbers, and couple
of other fields (such as Type of Service). Apart from transport
protocol, source and destination transport addresses, each
Netflow record contains a number of additional fields,
including the total number of packets and bytes for the network
flow, the union of all TCP flags seen in the packet headers of
the flow, and the start and end times of the flow. Since
collecting Netflow data in Internet backbone networks requires
a lot of resources, the collection is often accomplished with
sampling in such environments (e.g., only 0.01% of the packets
are processed). However, in institutional networks it is often
feasible to collect Netflow data without sampling which
provides a detailed picture of all communications in the
monitored network without storing full packet payloads.

If Netflow data are collected, they can be used for
calculating a number of security metrics. Firstly, it is often
useful to set up blacklist-based security metrics, in order to
monitor and collect trend information on data exchange with
known malicious, compromised, or suspicious peers in the
Internet. Some security institutions such as EmergingThreats
are maintaining publicly available blacklists of known bad
hosts, including botnet C&C nodes, compromised nodes,
Russian Business Network nodes, and Tor nodes (e.g., see
[17]). When these blacklists are frequently downloaded and
used for querying collected Netflow data sets, it is
straightforward to create metrics that describe communications
with malicious peers. For example, Figures 1 and 2 depict
metrics which reflect daily traffic exchanged with known
compromised nodes and Tor network nodes during the last 2
months (depicted metrics are collected on the outer network
perimeter of a large institution).

Collected Netflow data can also be used for creating
metrics for abnormal and potentially malicious network

activity which supplement similar IDS alarm based metrics.
For example, since a Netflow record contains a field which
holds the union of all observed TCP flags for the given flow, it
is straightforward to write a filtering condition for detecting
flows with illegal flag combinations (e.g., TCP FIN flag never
appears without TCP ACK flag in normal network traffic).
Based on detected flows, metrics can be set up which describe
various aspects of illegal traffic (such as the number of distinct
Internet hosts per hour which are sources of abnormal traffic).

Fig. 1. Daily traffic exchanged with known compromised hosts (reflects

probing activity from infected Internet hosts, but also suspicious or unwanted
communications from local network to malicious hosts)

Fig. 2. Daily traffic exchanged with known Tor network hosts (reflects Tor

client traffic to institutional web site and other public services, but can also
reveal Tor clients in the institutional network)

Netflow statistics collection and analysis can also be
employed in private networks, in order to discover illegal
devices and services, malicious insiders, and infected
computers, since they often manifest themselves through
anomalous network traffic which differs from regular network
usage patterns. Netflow based network monitoring offers some
unique advantages. Firstly, it does not involve inspecting
network packet payloads and consumes much less computing
resources than IDS. Also, traditionally illegal devices and
services are detected by scanning the entire network with
dedicated tools. However, this is an expensive and time
consuming procedure which might also alert the owner of
illegal device or service. In contrast, Netflow based detection is
stealthy and does not consume network bandwidth.

However, service detection from Netflow data involves
several caveats. Due to commonly found design flaws in
Netflow implementations, Netflow records might have
imprecise timestamps which confuses the service detection
algorithm [18, 19].

Fig. 3. Daily login failures for all institutional Windows workstations (note that unexpected spike in April 22 reflects an account probing activity by malware

which infected one of the workstations, but was promptly detected and removed)

For example, if the Netflow record for server-to-client
traffic is incorrectly tagged with an earlier timestamp than the
record for client-to-server traffic, the server can be mistakenly
taken for the client. Also, some router-based Netflow
implementations might leave the “union-of-flags” field unset in
some cases [18], and this exacerbates service detection further.
For addressing these issues, various heuristic techniques have
been suggested by us and other researchers [19, 20]. After
services and hosts have been identified from Netflow data and
compared with the lists of legitimate hosts and services, it is
straightforward to identify illegal devices and services, and
create corresponding security metrics (e.g., the number of
illegal devices by organizational unit as recommended in [15]).

In order to detect anomalous network traffic in private
networks which might indicate malware infection, illegal data
access, or malicious insider activity, various methods can be
applied to Netflow data sets. For example, if workstations in
the private network are using a small set of well-known
services, a simple filtering condition might be written which
reports workstation traffic not related to known services (this
would easily allow to find a number of network misuse cases,
such as malware propagation from an infected workstation to
other workstations). For more complex networks, automated
methods might be used which learn normal network usage
patterns from past Netflow data sets, and use detected
knowledge for finding deviations from normal behavior. For
example, during our past research, we have developed a
method which learns and updates service usage profiles for
each individual client node and the entire network, and uses
these profiles for real-time detection of anomalous TCP and
UDP network flows [20]. Once anomalous network flows have
been detected, it is straightforward to create metrics from them
(e.g., the number of anomalous TCP flows per 24 hours).

C. Extracting Security Metrics from Workstation Logs

Workstations in institutional networks are major targets for
malware and targeted attacks, and therefore their monitoring
and the creation of security metrics from monitoring
information plays an important role. Significant amount of
workstation security status information can be obtained from
workstation logs, such as login failures into the workstation
from console or other hosts, antivirus alerts, installation of new
software and new services, alerts about modification of
protected system files, etc. Unfortunately, the collection and

analysis of workstation logs are often neglected – largely
because workstations create large volumes of log data which
makes the log collection and analysis an expensive process. A
recent SANS paper by Anthony [21] proposes several
strategies for setting up a centralized log collection and
analysis framework for Windows workstations, and identifies a
number of event types which should be collected, monitored,
and correlated. In order to minimize the cost of log collection
and analysis, the author of the paper proposes to send only
events of few relevant types to the central collection point
where they are analyzed with SEC (an event correlation tool
created by one of the authors of this paper [22]). In another
recent paper [23], a number of detailed recommendations are
provided for monitoring Windows event logs, in order to detect
adversarial activities.

One group of well-known security event types in the
workstation log reflects login attempts into the local
workstation. Note that these event types are not Windows-
specific, but can also be easily identified for UNIX-like
workstation platforms (e.g., login failures for SSH or FTP
services). As discussed in [15], user account monitoring and
control is one of the critical cyber defense controls. Also, the
monitoring of unusual login attempts helps to detect malware
propagation [21] and malicious insiders [15]. For these
reasons, it makes sense to set up metrics which reflect different
types of successful and failed login attempts into workstations
(e.g., the number of successful logins from unexpected remote
hosts per 1 hour, or the number of login failures for
administrative accounts per 15 minutes). For example, Figure 3
depicts a metric which reflects daily numbers of login failures
for all institutional workstations during 1 month time frame
(this example metric is collected in a large institutional
network from the logs of thousands of workstations). In
addition to the above scenario, several other metrics could be
collected from workstation logs, for example, the number of
distinct workstations or accounts with login failures in a given
timeframe (sudden increase in the number of hosts and
accounts might indicate massive account probing over the
entire network, in order to get unauthorized access to data).

Also, event correlation techniques are often useful for
creating more meaningful metrics from workstation log events.
For example, instead of including each accidental login failure
in a relevant metric, the login failure might only be taken into
account if it is not followed by a successful login within a

reasonable amount of time (e.g., 60 seconds). Figure 4 displays
an example SEC event correlation rule for Linux platform
which processes SSH login failure events, and sends collected
metric values to Graphite reporting and visualization system.

if the login failure is not followed by a successful login

within 60 seconds, include the failure in the metric

type=PairWithWindow

ptype=RegExp

pattern=sshd\[\d+\]: Failed .+ for (?:invalid user)?(\S+) \

from ([\d.]+) port \d+ ssh2

desc=SSH login failed for user $1 from IP $2

action=lcall %count %count -> (sub { ++$_[0] })

ptype2=RegExp

pattern2=sshd\[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2

desc2=SSH login successful for user %1 from IP %2

action2=none

window=60

send the current metric value to the Graphite server

in every 5 minutes and reset the metric counter

type=Calendar

time=*/5 * * * *

desc=report SSH login failure metric once in 5 minutes

action=if %count () else (assign %count 0); eval %n "\n"; \

 tcpsock graphite:2003 login.failures.ssh.total5m %count %u%n; \

 free %count

Fig. 4. Sample SEC ruleset for collecting the metric number of SSH login

failures for all workstations per 5 minutes, and sending it to Graphite
reporting and visualization platform

Apart from event types mentioned above, workstation logs
contain a wide variety of other events which can be harnessed
for creating useful security metrics. For example, Figure 5
presents two metrics which indicate daily numbers of update
and patching failures for Windows operating system and
Internet Explorer (depicted metrics are collected from the logs
of thousands of Windows workstations of a large institution,
and the metrics are used for measuring the quality of the
patching process). Finally, it should be noted that the relevance
of a particular event type for the metric collection process
depends on the nature of the environment (e.g., in many regular
networks USB insertion events are unimportant, while in
classified networks they often deserve closer inspection).

D. Extracting Security Metrics from Other Logs

Security metrics can be extracted from a number of other
logs, including server and router logs, firewall logs, service
logs, etc. Establishing proper metrics is especially important
for public services that can be accessed from the Internet.
Apart from creating metrics from events which describe known

security issues, one can also process both regular and unusual
events. For example, while normally most HTTP client
requests are for existing web pages, occasionally clients might
request non-existing or forbidden pages which produce HTTP
log entries with 4xx response codes. However, unexpectedly
large volumes of 4xx log messages or normal 200 messages
can indicate a reconnaissance scan or the start of a DDoS
attack. Deriving metrics from such messages will help to assess
the threat level for the service. Also, applying event correlation
techniques for a service log or cross-correlating messages from
different logs (e.g., service log and IDS log) is often useful for
detecting advanced threats, and creating metrics for these
threats (see our previous papers [22, 24] for examples on how
to employ SEC for various event correlation tasks).

IV. SECURITY METRICS COLLECTION AND REPORTING

FRAMEWORK FOR SECURITY LOGS

In this section, we will describe a production framework for
collecting and reporting security metrics that harnesses log
analysis techniques outlined in the previous section. The
framework has been set up in a large institution which is an
important part of the national critical information
infrastructure, and has a complex organizational network
consisting of many thousands of workstations, servers, network
devices, IDSs, firewalls, and other nodes.

As discussed in section I, the collection of security metrics
should not involve significant cost impact, and it should be
preferably done with an automated collection system. In order
to address these requirements, our framework is centralized,
since analyzing security logs locally at workstations, servers,
and other nodes would impose additional load on them, and
interfere with normal system activities. Also, decentralized log
analysis would considerably increase the complexity of the
metrics collection system. For reducing the implementation
costs, our framework is based on open-source solutions.

Our centralized framework is receiving security log data
from all relevant nodes in the organizational network over the
syslog and Netflow protocols. For events which are not
natively in syslog format, appropriate format conversion
gateways are used (e.g., Windows EventLog messages are
converted to syslog format with nxlog [25]). Incoming syslog
and Netflow data are received by several central log collection
servers which are running SEC for correlating incoming syslog
events.

Fig. 5. Daily updating and patching failures of Windows operating system and Internet Explorer for all institutional Windows workstations

During the event correlation, a number of security metrics
are extracted and sent to Graphite reporting and visualization
system. Graphite [26] has been specifically designed for
performing computations on time-series data, and generating
wide variety of graphs and reports from computation results.
Also, Netflow data are sent to NfSen [27] which is a flexible
visualization tool for Netflow with drill-down capabilities (see
Figures 1-2 for example metric reports generated with NfSen).

From log collection servers, all syslog events and Netflow
data are forwarded to a central Elasticsearch [28] database
cluster which the end users are accessing through Kibana
visualization interface [29]. Currently, almost 100 million
security log records are stored in Elasticsearch on a daily basis.
In order to receive, parse, and store these volumes of data, we
are using rsyslog [30] and logstash [31] (rsyslog is one of the
most efficient syslog servers with Elasticsearch support, while
logstash supports flexible parsing of syslog and Netflow data
[32]). In Kibana, more than 20 dashboards have been set up for
displaying various security metrics (Figures 3 and 5 display
two metric report examples). All reports generated with Kibana
are interactive and allow for drilling down to more specific
reports and individual log records. Therefore, after spotting an
anomaly in a metric report, the root cause events for this
anomaly can be quickly identified.

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the use of security logs for
collecting and reporting of security metrics, and have reviewed
a number of metrics collection scenarios for common security
log types. Also, we have described a production framework for
metrics collection and reporting which is based on open-source
log management technologies. For the future work, we plan to
research log analysis methods for insider threat detection, and
to implement relevant algorithms within our framework.

ACKNOWLEDGMENT

The authors express their gratitude to Mr. Kaido Raiend
and Mr. Ain Rasva from SEB Estonia for supporting this work.

REFERENCES

[1] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics for Object-
Oriented Class Designs,” in Proceedings of 2009 International
Conference on Quality Software, pp. 11-20

[2] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen, “Using
security patterns to combine security metrics,” in Proceedings of 2008
International Conference on Availability, Reliability and Security, pp.
1156-1163

[3] R. M. Savola and P. Heinonen, “A Visualization and Modeling Tool for
Security Metrics and Measurements Management,” in Proceedings of
2011 Information Security for South Africa Conference, pp. 1-8

[4] R. Barabanov, S. Kowalski, and L. Yngström, “Information Security
Metrics: Research Directions,” University of Stockholm, Technical
Report, 2011

[5] W. Boyer and M. McQueen, “Ideal Based Cyber Security Technical
Metrics for Control Systems,” in Proceedings of 2007 International
Conference on Critical Information Infrastructures Security, pp.
246-260

[6] C. A. da Silva, A. S. Ferreira, and P. L. de Geus, “A Methodology for
Management of Cloud Computing using Security Criteria,” in
Proceedings of 2012 IEEE Latin American Conference on Cloud
Computing, pp. 49-54

[7] R. A. Kisner, W. W. Manges, L. P. MacIntyre, J. J. Nutaro, J. K. Munro,
P. D. Ewing, M. Howlander, P. T. Kuruganti, R. M. Wallace, and M. M.
Olama, “Cybersecurity through Real-Time Distributed Control
Systems,” Oak Ridge National Laboratory, Technical Report
ORNL/TM-2010/30, February 2010

[8] A. McIntyre, B. Becker, and R. Halbgewachs, “Security Metrics for
Process Control Systems,” Sandia National Laboratories, Sandia Report
SAND2007-2070P, September 2007

[9] M. Mateski, C. M. Trevino, C. K. Veitch, J. Michalski, J. M. Harris, S.
Maruoka, and J. Frye, “Cyber Threat Metrics,” Sandia National
Laboratories, Sandia Report SAND2012-2427, March 2012

[10] ISO/IEC 27004:2009 standard “Information technology -- Security
techniques -- Information security management -- Measurement”, 2009

[11] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Addison-Wesley, 2007

[12] W. K. Brotby and G. Hinson, PRAGMATIC Security Metrics: Applying
Metametrics to Information Security. Auerbach Publications, 2013

[13] P. E. Black, K. Scarfone, and M. Souppaya, “Cyber Security Metrics
and Measures,” in Wiley Handbook of Science and Technology for
Homeland Security, John Wiley and Sons, 2009

[14] “The CIS Security Metrics,” The Center for Internet Security, Technical
Report, version 1.1.0, November 1 2010

[15] “The Critical Controls for Effective Cyber Defense,” Council on
CyberSecurity, Technical Report, version 5.0, 2014

[16] R. Vaarandi and K. Podiņš, “Network IDS Alert Classification with
Frequent Itemset Mining and Data Clustering,” in Proceedings of the
2010 IEEE Conference on Network and Service Management, pp.
451-456

[17] http://rules.emergingthreats.net/fwrules/emerging-Block-IPs.txt

[18] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, and A. Pras, “Measurement
Artifacts in NetFlow Data,” in Proceedings of the 2013 Passive and
Active Measurement Conference, pp. 1-10

[19] B. Trammell, B. Tellenbach, D. Schatzmann, and M. Burkhardt,
“Peeling Away Timing Error in NetFlow Data,” in Proceedings of the
2011 Passive and Active Measurement Conference, pp. 194-203

[20] R. Vaarandi, “Detecting Anomalous Network Traffic in Organizational
Private Networks,” in Proceedings of the 2013 IEEE CogSIMA
Conference, pp. 285-292

[21] R. Anthony, “Detecting Security Incidents Using Windows Workstation
Event Logs,” SANS Institute, InfoSec Reading Room Paper, June 19
2013

[22] R. Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine, vol. 1/2006 (6), pp. 28-39, 2006

[23] “Spotting the Adversary with Windows Event Log Monitoring,”
National Security Agency/Central Security Service, Information
Assurance Directorate, Technical Report, Revision 2, December 16
2013

[24] R. Vaarandi and M. R. Grimaila, “Security Event Processing with
Simple Event Correlator,” Information Systems Security Association
Journal, vol. 10(8), pp. 30-37, 2012

[25] http://nxlog.org

[26] http://graphite.readthedocs.org

[27] http://nfsen.sourceforge.net

[28] http://www.elasticsearch.org

[29] http://www.elasticsearch.org/overview/kibana/

[30] http://www.rsyslog.com

[31] http://logstash.net

[32] R. Vaarandi and P. Niziński, "Comparative Analysis of Open-Source
Log Management Solutions for Security Monitoring and Network
Forensics," in Proceedings of the 2013 European Conference on
Information Warfare and Security, pp. 278-287

Appendix 2

Publication II

R. Vaarandi andM. Pihelgas. LogCluster - A data clustering and patternmin-ing algorithm for event logs. InNetwork and ServiceManagement (CNSM),
2015 11th International Conference on, pages 1–7, November 2015

© IFIP, 2015. Reprinted. The author retains the right to use his contribution for his furtherscientific career by including the final published paper in his dissertation or doctoral thesis.Not for redistribution.The paper is included in the Proceedings of the 11th International Conference on Network
and Service Management (CNSM 2015), ISBN: 978-3-901882-77-7.DOI: 10.1109/CNSM.2015.7367331.

117

LogCluster - A Data Clustering and Pattern Mining
Algorithm for Event Logs

Risto Vaarandi and Mauno Pihelgas
TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology
Tallinn, Estonia

firstname.lastname@ttu.ee

Abstract—Modern IT systems often produce large volumes of
event logs, and event pattern discovery is an important log
management task. For this purpose, data mining methods have
been suggested in many previous works. In this paper, we present
the LogCluster algorithm which implements data clustering and
line pattern mining for textual event logs. The paper also
describes an open source implementation of LogCluster.

Keywords—event log analysis; mining patterns from event logs;
event log clustering; data clustering; data mining

I. INTRODUCTION
During the last decade, data centers and computer networks

have grown significantly in processing power, size, and
complexity. As a result, organizations commonly have to
handle many gigabytes of log data on a daily basis. For
example, in our recent paper we have described a security log
management system which receives nearly 100 million events
each day [1]. In order to ease the management of log data,
many research papers have suggested the use of data mining
methods for discovering event patterns from event logs [2–20].
This knowledge can be employed for many different purposes
like the development of event correlation rules [12–16],
detection of system faults and network anomalies [6–9, 19],
visualization of relevant event patterns [17, 18], identification
and reporting of network traffic patterns [4, 20], and automated
building of IDS alarm classifiers [5].

In order to analyze large amounts of textual log data
without well-defined structure, several data mining methods
have been proposed in the past which focus on the detection of
line patterns from textual event logs. Suggested algorithms
have been mostly based on data clustering approaches [2, 6, 7,
8, 10, 11]. The algorithms assume that each event is described
by a single line in the event log, and each line pattern
represents a group of similar events.

In this paper, we propose a novel data clustering algorithm
called LogCluster which discovers both frequently occurring
line patterns and outlier events from textual event logs. The
remainder of this paper is organized as follows – section II
provides an overview of related work, section III presents the
LogCluster algorithm, section IV describes the LogCluster
prototype implementation and experiments for evaluating its
performance, and section V concludes the paper.

II. RELATED WORK
One of the earliest event log clustering algorithms is SLCT

that is designed for mining line patterns and outlier events from
textual event logs [2]. During the clustering process, SLCT
assigns event log lines that fit the same pattern (e.g., Interface
* down) to the same cluster, and all detected clusters are
reported to the user as line patterns. For finding clusters in log
data, the user has to supply the support threshold value s to
SLCT which defines the minimum number of lines in each
cluster. SLCT begins the clustering with a pass over the input
data set, in order to identify frequent words which occur at
least in s lines (word delimiter is customizable and defaults to
whitespace). Also, each word is considered with its position in
the line. For example, if s=2 and the data set contains the lines

Interface eth0 down

Interface eth1 down

Interface eth2 up

then words (Interface,1) and (down,3) occur in three and
two lines, respectively, and are thus identified as frequent
words. SLCT will then make another pass over the data set and
create cluster candidates. When a line is processed during the
data pass, all frequent words from the line are joined into a set
which will act as a candidate for this line. After the data pass,
candidates generated for at least s lines are reported as clusters
together with their supports (occurrence times). Outliers are
identified during an optional data pass and written to a user-
specified file. For example, if s=2 then two cluster candidates
{(Interface,1), (down,3)} and {(Interface,1)} are detected with
supports 2 and 1, respectively. Thus, {(Interface,1), (down,3)}
is the only cluster and is reported to the user as a line pattern
Interface * down (since there is no word associated with the
second position, an asterisk is printed for denoting a wildcard).
Reported cluster covers the first two lines, while the line
Interface eth2 up is considered an outlier.

SLCT has several shortcomings which have been pointed
out in some recent works. Firstly, it is not able to detect
wildcards after the last word in a line pattern [11]. For instance,
if s=3 for three example lines above, the cluster {(Interface,1)}
is reported to the user as a line pattern Interface, although most
users would prefer the pattern Interface * *. Secondly, since
word positions are encoded into words, the algorithm is

This work has been supported by Estonian IT Academy (StudyITin.ee)
and SEB Estonia.

978-3-901882-77-7 © 2015 IFIP

sensitive to shifts in word positions and delimiter noise [8]. For
instance, the line Interface HQ Link down would not be
assigned to the cluster Interface * down, but would rather
generate a separate cluster candidate. Finally, low support
thresholds can lead to overfitting when larger clusters are split
and resulting patterns are too specific [2].

Reidemeister, Jiang, Munawar and Ward [6, 7, 8]
developed a methodology that addresses some of the above
shortcomings. The methodology uses event log mining
techniques for diagnosing recurrent faults in software systems.
First, a modified version of SLCT is used for mining line
patterns from labeled event logs. In order to handle clustering
errors caused by shifts in word positions and delimiter noise,
line patterns from SLCT are clustered with a single-linkage
clustering algorithm which employs a variant of the
Levenshtein distance function. After that, a common line
pattern description is established for each cluster of line
patterns. According to [8], single-linkage clustering and post-
processing its results add minimal runtime overhead to the
clustering by SLCT. The final results are converted into bit
vectors and used for building decision-tree classifiers, in order
to identify recurrent faults in future event logs.

Another clustering algorithm that mines line patterns from
event logs is IPLoM by Makanju, Zincir-Heywood and Milios
[10, 11]. Unlike SLCT, IPLoM is a hierarchical clustering
algorithm which starts with the entire event log as a single
partition, and splits partitions iteratively during three steps.
Like SLCT, IPLoM considers words with their positions in
event log lines, and is therefore sensitive to shifts in word
positions. During the first step, the initial partition is split by
assigning lines with the same number of words to the same
partition. During the second step, each partition is divided
further by identifying the word position with the least number
of unique words, and splitting the partition by assigning lines
with the same word to the same partition. During the third step,
partitions are split based on associations between word pairs.
At the final stage of the algorithm, a line pattern is derived for
each partition. Due to its hierarchical nature, IPLoM does not
need the support threshold, but takes several other parameters
(such as partition support threshold and cluster goodness
threshold) which impose fine-grained control over splitting of
partitions [11]. As argued in [11], one advantage of IPLoM
over SLCT is its ability to detect line patterns with wildcard
tails (e.g., Interface * *), and the author has reported higher
precision and recall for IPLoM.

III. THE LOGCLUSTER ALGORITHM
The LogCluster algorithm is designed for addressing the

shortcomings of existing event log clustering algorithms that
were discussed in the previous section. Let L = {l1,...,ln} be a
textual event log which consists of n lines, where each line li
(1 ≤ i ≤ n) is a complete representation of some event and i is a
unique line identifier. We assume that each line li ∈ L is a
sequence of ki words: li = (wi,1,…,wi,ki). LogCluster takes the
support threshold s (1 ≤ s ≤ n) as a user given input parameter
and divides event log lines into clusters C1,…,Cm, so that there
are at least s lines in each cluster Cj (i.e., |Cj| ≥ s) and O is the
cluster of outliers: L = C1 ∪ ... ∪ Cm ∪ O, O ∩ Cj = ∅,

1 ≤ j ≤ m. LogCluster views the log clustering problem as a
pattern mining problem – each cluster Cj is uniquely identified
by its line pattern pj which matches all lines in the cluster, and
in order to detect clusters, LogCluster mines line patterns pj
from the event log. The support of pattern pj and cluster Cj is
defined as the number of lines in Cj: supp(pj) = supp(Cj) = |Cj|.
Each pattern consists of words and wildcards, e.g., Interface
*{1,3} down has words Interface and down, and wildcard
*{1,3} that matches at least 1 and at most 3 words.

In order to find patterns that have the support s or higher,
LogCluster relies on the following observation – all words of
such patterns must occur at least in s event log lines. Therefore,
LogCluster begins its work with the identification of such
words. However, unlike SLCT and IPLoM, LogCluster
considers each word without its position in the event log line.
Formally, let Iw be the set of identifiers of lines that contain the
word w: Iw = {i | li ∈ L, 1 ≤ i ≤ n, ∃j wi,j = w, 1 ≤ j ≤ ki}. The
word w is frequent if |Iw| ≥ s, and the set of all frequent words
is denoted by F. According to [2, 3], large event logs often
contain many millions of different words, while vast majority
of them appear only few times in event logs. In order to take
advantage of this property for reducing its memory footprint,
LogCluster employs a sketch of h counters c0,…,ch-1. During a
preliminary pass over event log L, each unique word of every
event log line is hashed to an integer from 0 to h-1, and the
corresponding sketch counter is incremented. Since the hashing
function produces output values 0…h-1 with equal
probabilities, each sketch counter reflects the sum of
occurrence times of approximately d / h words, where d is the
number of unique words in L. However, since most words
appear in only few lines of L, most sketch counters will be
smaller than support threshold s after the data pass. Thus,
corresponding words cannot be frequent, and can be ignored
during the following pass over L for finding frequent words.

After frequent words have been identified, LogCluster
makes another pass over event log L and creates cluster
candidates. For each line in the event log, LogCluster extracts
all frequent words from the line and arranges the words as a
tuple, retaining their original order in the line. The tuple will
serve as an identifier of the cluster candidate, and the line is
assigned to this candidate. If the given candidate does not exist,
it is initialized with the support counter set to 1, and its line
pattern is created from the line. If the candidate exists, its
support counter is incremented and its line pattern is adjusted
to cover the current line. Note that LogCluster does not
memorize individual lines assigned to a cluster candidate.

For example, if the event log line is Interface DMZ-link
down at node router2, and words Interface, down, at, and node
are frequent, the line is assigned to the candidate identified by
the tuple (Interface, down, at, node). If this candidate does not
exist, it will be initialized by setting its line pattern to Interface
*{1,1} down at node *{1,1} and its support counter to 1
(wildcard *{1,1} matches any single word). If the next line
which produces the same candidate identifier is Interface HQ
link down at node router2, the candidate support counter is
incremented to 2. Also, its line pattern is set to Interface *{1,2}
down at node *{1,1}, making the pattern to match at least one
but not more than two words between Interface and down. Fig.
1 describes the candidate generation procedure in full details.

Procedure: Generate_Candidates
Input: event log L = {l1,…,ln}
 set of frequent words F
Output: set of cluster candidates X

X := ∅
for (id = 1; id <= n; ++id) do
 tuple := ()
 vars := ()
 i := 0; v := 0
 for each w in (wid,1,…,wid,kid) do

 if (w ∈ F) then
 tuple[i] := w
 vars[i] := v
 ++i; v := 0
 else
 ++v
 fi
 done
 vars[i] := v
 k := # of elements in tuple
 if (k > 0) then
 if (∃Y ∈ X, Y.tuple == tuple) then
 ++Y.support
 for (i := 0; i < k+1; ++i) do
 if (Y.varmin[i] > vars[i]) then
 Y.varmin[i] := vars[i]
 fi
 if (Y.varmax[i] < vars[i]) then
 Y.varmax[i] := vars[i]
 fi
 done
 else
 initialize new candidate Y
 Y.tuple := tuple
 Y.support := 1
 for (i := 0; i < k+1; ++i) do
 Y.varmin[i] := vars[i]
 Y.varmax[i] := vars[i]
 done
 X := X ∪ { Y }
 fi
 Y.pattern = ()
 j: = 0
 for (i := 0; i < k; ++i) do
 if (Y.varmax[i] > 0) then
 min := Y.varmin[i]
 max := Y.varmax[i]
 Y.pattern[j] := “*{min,max}”
 ++j
 fi
 Y.pattern[j] := tuple[i]
 ++j
 done
 if (Y.varmax[k] > 0) then
 min := Y.varmin[k]
 max := Y.varmax[k]
 Y.pattern[j] := “*{min,max}”
 fi
 fi
done
return X

Fig. 1. Candidate generation procedure of LogCluster.

After the data pass for generating cluster candidates is
complete, LogCluster drops all candidates with the support
counter value smaller than support threshold s, and reports
remaining candidates as clusters. For each cluster, its line
pattern and support are reported, while outliers are identified
during additional pass over event log L. Due to the nature of its

frequent word detection and candidate generation procedures,
LogCluster is not sensitive to shifts in word positions and is
able to detect patterns with wildcard tails.

When pattern mining is conducted with lower support
threshold values, LogCluster is (similarly to SLCT) prone to
overfitting – larger clusters might be split into smaller clusters
with too specific line patterns. For example, the cluster with a
pattern Interface *{1,1} down could be split into clusters with
patterns Interface *{1,1} down, Interface eth1 down, and
Interface eth2 down. Furthermore, meaningful generic patterns
(e.g., Interface *{1,1} down) might disappear during cluster
splitting. In order to address the overfitting problem,
LogCluster employs two optional heuristics for increasing the
support of more generic cluster candidates and for joining
clusters. The first heuristic is called Aggregate_Supports and is
applied after the candidate generation procedure has been
completed, immediately before clusters are selected. The
heuristic involves finding candidates with more specific line
patterns for each candidate, and adding supports of such
candidates to the support of the given candidate. For instance,
if candidates User bob login from 10.1.1.1, User *{1,1} login
from 10.1.1.1, and User *{1,1} login from *{1,1} have supports
5, 10, and 100, respectively, the support of the candidate User
*{1,1} login from *{1,1} will be increased to 115. In other
words, this heuristic allows clusters to overlap.

The second heuristic is called Join_Clusters and is applied
after clusters have been selected from candidates. For each
frequent word w ∈ F, we define the set Cw as follows: Cw =
{f | f ∈ F, Iw ∩ If ≠ ∅} (i.e., Cw contains all frequent words that
co-occur with w in event log lines). If w’ ∈ Cw (i.e., w’ co-
occurs with w), we define dependency from w to w’ as
dep(w, w’) = |Iw ∩ Iw’| / |Iw|. In other words, dep(w, w’) reflects
how frequently w’ occurs in lines which contain w. Also, note
that 0 < dep(w, w’) ≤ 1. If w1,…,wk are frequent words of a line
pattern (i.e., the corresponding cluster is identified by the tuple
(w1,…,wk)), the weight of the word wi in this pattern is
calculated as follows: weight(wi) = ∑j

k
=1 dep(wj, wi) / k. Note

that since dep(wi, wi) = 1, then 1/k ≤ weight(wi) ≤ 1. Intuitively,
the weight of the word indicates how strongly correlated the
word is with other words in the pattern. For example, suppose
the line pattern is Daemon testd killed, and words Daemon and
killed always appear together, while the word testd never
occurs without Daemon and killed. Thus, weight(Daemon) and
weight(killed) are both 1. Also, if only 2.5% of lines that
contain both Daemon and killed also contain testd, then
weight(testd) = (1 + 0.025 + 0.025) / 3 = 0.35. (We plan to
implement more weight functions in the future versions of the
LogCluster prototype.)

The Join_Clusters heuristic takes the user supplied word
weight threshold t as its input parameter (0 < t ≤ 1). For each
cluster, a secondary identifier is created and initialized to the
cluster’s regular identifier tuple. Also, words with weights
smaller than t are identified in the cluster’s line pattern, and
each such word is replaced with a special token in the
secondary identifier. Finally, clusters with identical secondary
identifiers are joined. When two or more clusters are joined,
the support of the joint cluster is set to the sum of supports of
original clusters, and the line pattern of the joint cluster is
adjusted to represent the lines in all original clusters.

Procedure: Join_Clusters
Input: set of clusters C = {C1,…,Cp}
 word weight threshold t
 word weight function W()
Output: set of clusters C’ = {C’1,…,C’m}, m ≤ p

C’ := ∅
for (j = 1; j <= p; ++j) do
 tuple := Cj.tuple
 k := # of elements in tuple
 for (i := 0; i < k; ++i) do
 if (W(tuple, i) < t) then
 tuple[i] := TOKEN
 fi
 done
 if (∃Y ∈ C’, Y.tuple == tuple) then
 Y.support := Y.support + Cj.support
 for (i := 0; i < k+1; ++i) do
 if (Y.varmin[i] > Cj.varmin[i]) then
 Y.varmin[i] := Cj.varmin[i]
 fi
 if (Y.varmax[i] < Cj.varmax[i]) then
 Y.varmax[i] := Cj.varmax[i]
 fi
 done
 else
 initialize new cluster Y
 Y.tuple := tuple
 Y.support := Cj.support
 for (i := 0; i < k+1; ++i) do
 Y.varmin[i] := Cj.varmin[i]
 Y.varmax[i] := Cj.varmax[i]
 if (i < k AND Y.tuple[i] == TOKEN) then
 Y.wordlist[i] := ∅
 fi
 done
 C’ := C’ ∪ { Y }
 fi
 Y.pattern := ()
 j: = 0
 for (i := 0; i < k; ++i) do
 if (Y.varmax[i] > 0) then
 min := Y.varmin[i]
 max := Y.varmax[i]
 Y.pattern[j] := “*{min,max}”
 ++j
 fi
 if (Y.tuple[i] == TOKEN) then
 if (Cj.tuple[i] ∉ Y.wordlist[i]) then
 Y.wordlist[i] :=
 Y.wordlist[i] ∪ { Cj.tuple[i] }
 fi
 Y.pattern[j] := “(elements of
 Y.wordlist[i] separated by |)”
 else
 Y.pattern[j] := Y.tuple[i]
 fi
 ++j
 done
 if (Y.varmax[k] > 0) then
 min := Y.varmin[k]
 max := Y.varmax[k]
 Y.pattern[j] := “*{min,max}”
 fi
done
return C’

Fig. 2. Cluster joining heuristic of LogCluster.

For example, if two clusters have patterns Interface *{1,1}
down at node router1 and Interface *{2,3} down at node

router2, and words router and router2 have insufficient
weights, the clusters are joined into a new cluster with the line
pattern Interface *{1,3} down at node (router1|router2). Fig. 2
describes the details of the Join_Clusters heuristic. Since the
line pattern of a joint cluster consists of strongly correlated
words, it is less likely to suffer from overfitting. Also, words
with insufficient weights are incorporated into the line pattern
as lists of alternatives, representing the knowledge from
original patterns in a compact way without data loss. Finally,
joining clusters will reduce their number and will thus make
cluster reviewing easier for the human expert.

Fig. 3 summarizes all techniques presented in this section
and outlines the LogCluster algorithm. In the next section, we
describe the LogCluster implementation and its performance.

IV. LOGCLUSTER IMPLEMENTATION AND PERFORMANCE
For assessing the performance of the LogCluster algorithm,

we have created its publicly available GNU GPLv2 licensed
prototype implementation in Perl. The implementation is a
UNIX command line tool that can be downloaded from
http://ristov.github.io/logcluster. Apart from its clustering
capabilities, the LogCluster tool supports a number of data
preprocessing options which are summarized below. In order to
focus on specific lines during pattern mining, a regular
expression filter can be defined with the --lfilter command line
option. For instance, with --lfilter=’sshd\[\d+\]:’ patterns are
detected for sshd syslog messages (e.g., May 10 11:07:12
myhost sshd[4711]: Connection from 10.1.1.1 port 5662).

Procedure: LogCluster
Input: event log L = {l1,…,ln}
 support threshold s
 word sketch size h (optional)
 word weight threshold t (optional)
 word weight function W() (optional)
 boolean for invoking Aggregate_Supports
 procedure A (optional)
 file of outliers ofile (optional)
Output: set of clusters C = {C1,…,Cm}
 the cluster of outliers O (optional)

1. if (defined(h)) then
 make a pass over L and build the word sketch
 of size h for filtering out infrequent words
 at step 2
2. make a pass over L and find the set of
 frequent words: F := {w | |Iw| ≥ s}
3. if (defined(t)) then
 make a pass over L and find dependencies for
 frequent words: {dep(w, w’) | w ∈ F, w’ ∈ Cw}
4. make a pass over L and find the set of cluster
 candidates X: X := Generate_Candidates(L, F)
5. if (defined(A) AND A == TRUE) then
 invoke Aggregate_Supports() procedure
6. find the set of clusters C
 C := {Y ∈ X | supp(Y) ≥ s}
7. if (defined(t)) then
 join clusters: C := Join_Clusters(C, t, W)
8. report line patterns and their supports
 for clusters from set C
9. if (defined(ofile)) then
 make a pass over L and write outliers to ofile

Fig. 3. The LogCluster algorithm.

If a template string is given with the --template option,
match variables set by the regular expression of the --lfilter
option are substituted in the template string, and the resulting
string replaces the original event log line during the mining.
For example, with the use of --lfilter=’(sshd\[\d+\]: .+)’
and --template=’$1’ options, timestamps and hostnames are
removed from sshd syslog messages before any other
processing. If a regular expression is given with the --separator
option, any sequence of characters that matches this expression
is treated as a word delimiter (word delimiter defaults to
whitespace).

Existing line pattern mining tools treat words as atoms
during the mining process, and make no attempt to discover
potential structure inside words (the only exception is SLCT
which includes a simple post-processing option for detecting
constant heads and tails for wildcards). In order to address this
shortcoming, LogCluster implements several options for
masking specific word parts and creating word classes. If a
word matches the regular expression given with the --wfilter
option, a word class is created for the word by searching it for
substrings that match another regular expression provided with
the --wsearch option. All matching substrings are then replaced
with the string specified with the --wreplace option. For
example, with the use of --wfilter=’=’, --wsearch=’=.+’,
and --wreplace=’=VALUE’ options, word classes are created
for words which contain the equal sign (=) by replacing the
characters after the equal sign with the string VALUE. Thus,
for words pid=12763 and user=bob, classes pid=VALUE and
user=VALUE are created. If a word is infrequent but its word
class is frequent, the word class replaces the word during the
mining process and will be treated like a frequent word. Since
classes can represent many infrequent words, their presence in
line patterns provides valuable information about regularities in
word structure that would not be detected otherwise.

For evaluating the performance of LogCluster and
comparing it with other algorithms, we conducted a number of
experiments with larger event logs. For the sake of fair
comparison, we re-implemented the public C-based version of
SLCT in Perl. Since the implementations of IPLoM and the
algorithm by Reidemeister et al. are not publicly available, we
were unable to study their source code for creating their exact
prototypes. However, because the algorithm by Reidemeister et
al. uses SLCT and has a similar time complexity (see section
II), its runtimes are closely approximated by results for SLCT.
During our experiments, we used 6 logs from a large institution
of a national critical information infrastructure of an EU state.
The logs cover 24 hour timespan (May 8, 2015), and originate
from a wide range of sources, including database systems, web
proxies, mail servers, firewalls, and network devices. We also
used an availability monitoring system event log from the
NATO CCD COE Locked Shields 2015 cyber defense exercise
which covers the entire two-day exercise and contains Nagios
events. During the experiments, we clustered each log file three
times with support thresholds set to 1%, 0.5% and 0.1% of
lines in the log. We also used the word sketch of 100,000
counters (parameter h in Fig. 3) for both LogCluster and
SLCT, and did not employ Aggregate_Supports and
Join_Clusters heuristics. Therefore, both LogCluster and
SLCT were configured to make three passes over the data set,
in order to build the word sketch during the first pass, detect
frequent words during the second pass, and generate cluster
candidates during the third pass. All experiments were
conducted on a Linux virtual server with Intel Xeon E5-2680
CPU and 64GB of memory, and Table I outlines the results.
Since LogCluster and SLCT implementations are both single-
threaded and their CPU utilization was 100% according to
Linux time utility during all 21 experiments, each runtime in
Table I closely matches the consumed CPU time.

TABLE I. PERFORMANCE OF LOGCLUSTER AND SLCT

Row

Event log type Event log size
in megabytes

Event log
size in lines

Support
threshold

Number of
clusters found
by LogCluster

LogCluster
runtime in

seconds

Number of
clusters found

by SLCT

SLCT
runtime in

seconds
1 Authorization messages 3800.1 7,757,440 7,757 49 3146.42 89 1969.04
2 Authorization messages 3800.1 7,757,440 38,787 32 3070.18 37 1892.41
3 Authorization messages 3800.1 7,757,440 77,574 9 3050.20 15 1911.93
4 UNIX daemon messages 740.2 5,778,847 5,778 150 692.08 158 479.90
5 UNIX daemon messages 740.2 5,778,847 28,894 40 682.95 44 462.85
6 UNIX daemon messages 740.2 5,778,847 57,788 12 667.82 16 470.48
7 Application messages 9363.0 34,516,290 34,516 109 5225.32 114 3674.47
8 Application messages 9363.0 34,516,290 172,581 16 4891.51 25 3559.36
9 Application messages 9363.0 34,516,290 345,162 5 4765.09 8 3517.67
10 Network device messages 4705.0 12,522,620 12,522 193 3181.97 195 2015.52
11 Network device messages 4705.0 12,522,620 62,613 31 3083.16 33 2000.98
12 Network device messages 4705.0 12,522,620 125,226 17 3080.66 19 1945.69
13 Web proxy messages 16681.5 49,376,464 49,376 105 8487.37 111 5409.23
14 Web proxy messages 16681.5 49,376,464 246,882 14 8128.34 14 5277.54
15 Web proxy messages 16681.5 49,376,464 493,764 5 8081.30 5 5244.96
16 Mail server messages 246.0 1,230,532 1,230 129 144.42 139 96.34
17 Mail server messages 246.0 1,230,532 6,152 40 141.83 40 96.85
18 Mail server messages 246.0 1,230,532 12,305 21 142.34 23 94.12
19 Nagios messages 391.9 3,400,185 3,400 45 435.76 46 316.77
20 Nagios messages 391.9 3,400,185 17,000 39 412.08 41 320.26
21 Nagios messages 391.9 3,400,185 34,001 19 409.87 22 318.25

May 8 *{1,1} myserver dhcpd: DHCPREQUEST for
*{1,2} from *{1,2} via *{1,4}

May 8 *{3,3} Note: no *{1,3} sensors

May 8 *{3,3} RT_IPSEC: %USER-3-RT_IPSEC_REPLAY:
Replay packet detected on IPSec tunnel on *{1,1}
with tunnel ID *{1,1} From *{1,1} to *{1,1} ESP,
SPI *{1,1} SEQ *{1,1}

May 8 *{1,1} myserver httpd: client *{1,1} request
GET *{1,1} HTTP/1.1 referer *{1,1} User-agent
Mozilla/5.0 *{3,4} rv:37.0) Gecko/20100101
Firefox/37.0 *{0,1}

May 8 *{1,1} myserver httpd: client *{1,1} request
GET *{1,1} HTTP/1.1 referer *{1,1} User-agent
Mozilla/5.0 (Windows NT *{1,3} AppleWebKit/537.36
(KHTML, like Gecko) Chrome/42.0.2311.135
Safari/537.36

Fig. 4. Sample clusters detected by LogCluster (for the reasons of privacy,
sensitive data have been obfuscated).

As results indicate, SLCT was 1.28–1.62 times faster than
LogCluster. This is due to the simpler candidate generation
procedure of SLCT – when processing individual event log
lines, SLCT does not have to check the line patterns of
candidates and adjust them if needed. However, both
algorithms require considerable amount of time for clustering
very large log files. For example, for processing the largest
event log of 16.3GB (rows 13-15 in Table I), SLCT needed
about 1.5 hours, while for LogCluster the runtime exceeded 2
hours. In contrast, the C-based version of SLCT accomplishes
the same three tasks in 18-19 minutes. Therefore, we expect a
C implementation of LogCluster to be significantly faster.

According to Table I, LogCluster finds less clusters than
SLCT during all experiments (some clusters are depicted in
Fig. 4). The reviewing of detected clusters revealed that unlike
SLCT, LogCluster was able to discover a single cluster for
lines where frequent words were separated with a variable
number of infrequent words. For example, the first cluster in
Fig. 4 properly captures all DHCP request events. In contrast,
SLCT discovered two clusters May 8 * myserver dhcpd:
DHCPREQUEST for * from * * via and May 8 * myserver
dhcpd: DHCPREQUEST for * * from * * via which still do not
cover all possible event formats. Also, the last two clusters in
Fig. 4 represent all HTTP requests originating from the latest
stable versions of Firefox browser on all OS platforms and
Chrome browser on all Windows platforms, respectively (all
OS platform strings are matched by *{3,4} for Firefox, while
Windows NT *{1,3} matches all Windows platform strings for
Chrome). Like in the previous case, SLCT was unable to
discover equivalent two clusters that would concisely capture
HTTP request events for these two browser types.

When evaluating the Join_Clusters heuristic, we found that
word weight thresholds (parameter t in Fig. 3) between 0.5 and
0.8 produced the best joint clusters. Fig. 5 displays three
sample joint clusters which were detected from the mail server
and Nagios logs (rows 16-21 in Table I). Fig. 5 also illustrates
data preprocessing capabilities of the LogCluster tool. For the
mail server log, a word class is created for each word which

contains punctuation marks, so that all sequences of non-
punctuation characters which are not followed by the equal
sign (=) or opening square bracket ([) are replaced with a single
X character. For the Nagios log, word classes are employed for
masking blue team numbers in host names, and also, trailing
timestamps are removed from each event log line with --lfilter
and --template options. The first two clusters in Fig. 5 are both
created by joining three clusters, while the last cluster is the
union of twelve clusters which represent Nagios SSH service
check events for 192 servers.

logcluster.pl --support=12305 \
--input=mail.log --wfilter='[[:punct:]]' \
--wsearch='[^[:punct:]]++(?![[=])' \
--wreplace=X --wweight=0.75

May 8 X:X:X (myserver1|myserver2|myserver3)
sendmail[X]: STARTTLS=client,
(relay=relayserver1,|relay=relayserver2,
|relay=relayserver3,) version=TLSv1/SSLv3,
(verify=FAIL,|verify=OK,) (cipher=DHE-RSA-AES256-
SHA,|cipher=AES128-SHA,|cipher=RC4-SHA,)
(bits=256/256|bits=128/128)

May 8 X:X:X (myserver1|myserver2|myserver3)
sendmail[X]: X: from=<myrobot@mydomain>, size=X,
class=0, nrcpts=1, msgid=<X.X@X.X>,
bodytype=8BITMIME, proto=ESMTP, daemon=MTA,
(relay=relayserver1|relay=relayserver2)
([ipaddress1]|[ipaddress2])

logcluster.pl --support=3400 \
--input=ls15.log --separator='["|\s]+' \
--lfilter='^(.*)(?:\|"\d+"){2}' --template='$1' \
--wfilter='blue\d\d' --wsearch='blue\d\d' \
--wreplace='blueNN' --wweight=0.5

(ws4-01.lab.blueNN.ex|ws4-04.lab.blueNN.ex
|ws4-03.int.blueNN.ex|ws4-04.int.blueNN.ex
|ws4-02.int.blueNN.ex|ws4-05.lab.blueNN.ex
|ws4-05.int.blueNN.ex|dlna.lab.blueNN.ex
|ws4-01.int.blueNN.ex|ws4-02.lab.blueNN.ex
|ws4-03.lab.blueNN.ex|git.lab.blueNN.ex)
(ssh|ssh.ipv6) OK SSH OK -
(OpenSSH_6.6.1p1|OpenSSH_5.9p1|OpenSSH_6.6.1_hpn1
3v11) (Ubuntu-2ubuntu2|FreeBSD-20140420|Debian-
5ubuntu1|Debian-5ubuntu1.4) (protocol 2.0)

Fig. 5. Sample joint clusters detected by LogCluster (for the reasons of
privacy, sensitive data have been obfuscated).

V. CONCLUSION
In this paper, we have described the LogCluster algorithm

for mining patterns from event logs. For future work, we plan
to explore hierarchical event log clustering techniques. We also
plan to implement the LogCluster algorithm in C, and use
LogCluster for automated building of user behavior profiles.

ACKNOWLEDGMENT
The authors thank NATO CCD COE for making Locked

Shields 2015 event logs available for this research. The authors
also thank Mr. Kaido Raiend, Mr. Ants Leitmäe, Mr. Andrus
Tamm, Dr. Paul Leis and Mr. Ain Rasva for their support.

REFERENCES
[1] Risto Vaarandi and Mauno Pihelgas, “Using Security Logs for

Collecting and Reporting Technical Security Metrics,” in Proceedings of
the 2014 IEEE Military Communications Conference, pp. 294-299.

[2] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management, pp. 119-126.

[3] Risto Vaarandi, “A Breadth-First Algorithm for Mining Frequent
Patterns from Event Logs,” in Proceedings of the 2004 IFIP
International Conference on Intelligence in Communication Systems,
LNCS Vol. 3283, Springer, pp. 293-308.

[4] Risto Vaarandi, “Mining Event Logs with SLCT and LogHound,” in
Proceedings of the 2008 IEEE/IFIP Network Operations and
Management Symposium, pp. 1071-1074.

[5] Risto Vaarandi and Kārlis Podiņš, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” in Proceedings of
the 2010 International Conference on Network and Service
Management, pp. 451-456.

[6] Thomas Reidemeister, Mohammad A. Munawar and Paul A.S. Ward,
“Identifying Symptoms of Recurrent Faults in Log Files of Distributed
Information Systems,” in Proceedings of the 2010 IEEE/IFIP Network
Operations and Management Symposium, pp. 187-194.

[7] Thomas Reidemeister, Miao Jiang and Paul A.S. Ward, “Mining
Unstructured Log Files for Recurrent Fault Diagnosis,” in Proceedings
of the 2011 IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-384.

[8] Thomas Reidemeister, “Fault Diagnosis in Enterprise Software Systems
Using Discrete Monitoring Data,” PhD Thesis, University of Waterloo,
2012.

[9] Wei Xu, Ling Huang, Armando Fox, David Patterson and Michael
Jordan, “Mining Console Logs for Large-Scale System Problem
Detection,” in Proceedings of the 3rd Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques, 2008.

[10] Adetokunbo Makanju, A. Nur Zincir-Heywood and Evangelos E.
Milios, “Clustering Event Logs using Iterative Partitioning,” in
Proceedings of the 2009 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1255-1264.

[11] Adetokunbo Makanju, “Exploring Event Log Analysis With Minimum
Apriori Information,” PhD Thesis, University of Dalhousie, 2012.

[12] Mika Klemettinen, “A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases,” PhD thesis, University
of Helsinki, 1999.

[13] Qingguo Zheng, Ke Xu, Weifeng Lv and Shilong Ma, “Intelligent
Search of Correlated Alarms from Database Containing Noise Data,” in
Proceedings of the 2002 IEEE/IFIP Network Operations and
Management Symposium, pp. 405-419.

[14] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic Event
Patterns with Unknown Periods,” in Proceedings of the 17th
International Conference on Data Engineering, pp. 205-214, 2001.

[15] James J. Treinen and Ramakrishna Thurimella, “A Framework for the
Application of Association Rule Mining in Large Intrusion Detection
Infrastructures,” in Proceedings of the 2006 Symposium on Recent
Advances in Intrusion Detection, LNCS Vol. 4219, Springer, pp. 1-18.

[16] Chris Clifton and Gary Gengo, “Developing Custom Intrusion Detection
Filters Using Data Mining,” in Proceedings of the 2000 IEEE Military
Communications Conference, pp. 440-443.

[17] Jon Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings
of the 2004 IEEE International Conference on Cluster Computing,
pp. 309–318.

[18] Adetokunbo Makanju, Stephen Brooks, A. Nur Zincir-Heywood and
Evangelos E. Milios, “LogView: Visualizing Event Log Clusters,” in
Proceedings of the 6th Annual Conference on Privacy, Security and
Trust, pp. 99-108, 2008.

[19] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner and Kavè
Salamatian, “Anomaly Extraction in Backbone Networks using
Association Rules,” in Proceedings of the 2009 ACM SIGCOMM
Internet Measurement Conference, pp. 28-34.

[20] Eduard Glatz, Stelios Mavromatidis, Bernhard Ager and Xenofontas
Dimitropoulos, “Visualizing big network traffic data using frequent
pattern mining and hypergraphs,” Computing Vol. 96(1), Springer, pp.
27-38, 2014.

Appendix 3

Publication III

R. Vaarandi, M. Kont, and M. Pihelgas. Event log analysis with the LogClus-ter tool. InMILCOM 2016 - 2016 IEEEMilitary Communications Conference,pages 982–987, November 2016

© 2016 IEEE. Reprinted. Internal or personal use of this material is permitted. Permissionfrom IEEE must be obtained for all other uses, in any current or future media, includingreprinting/republishing this material for advertising or promotional purposes, creatingnew collective works, for resale or redistribution to servers or lists, or reuse of any copy-righted component of this work in other works.The paper is included in the Proceedings of the 2016 IEEE Military Communications Con-
ference (MILCOM 2016).DOI: 10.1109/MILCOM.2016.7795458

127

Event Log Analysis with the LogCluster Tool

Risto Vaarandi

TUT Centre for Digital Forensics and Cyber Security

Tallinn University of Technology

Tallinn, Estonia

firstname.lastname@ttu.ee

Markus Kont and Mauno Pihelgas

Technology Branch

NATO CCD COE

Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract—Today, event logging is a widely accepted concept

with a number of event formatting standards and event collection

protocols. Event logs contain valuable information not only about

system faults and performance issues, but also about security

incidents. Unfortunately, since modern data centers and

computer networks are known to produce large volumes of log

data, the manual review of collected data is beyond human

capabilities. For automating this task, a number of data mining

algorithms and tools have been suggested in recent research

papers. In this paper, we will describe the application of the

LogCluster tool for mining event patterns and anomalous events

from security and system logs.

Keywords—security log analysis; event log clustering; pattern

mining from event logs; data mining

I. INTRODUCTION

Nowadays, event logging is supported by most
applications, services, network devices, and other IT system
components. Well-known standards exist for event logging
(such as BSD syslog [1] and IETF syslog [2]) and widely used
solutions have been developed for event log collection (such as
rsyslog [3], syslog-ng [4], and Elastic Stack [5]). Event logs
contain valuable information about security incidents, but since
large volumes of log data are generated in modern data centers
and computer networks [6], the manual review of event logs is
infeasible. In order to aid the human analyst, a number of data
mining algorithms and tools have been proposed [7–22]. Many
suggested approaches are semi-automated, allowing for
interactive discovery of event patterns from event logs. This
knowledge can be used for various purposes like handling
security incidents and developing event correlation rules [23].
During the last decade, data clustering algorithms have been
often suggested for mining line patterns from textual event
logs. Proposed algorithms assume that each line in the event
log is a complete representation of some event. The algorithms
divide the lines into clusters, so that lines from the same cluster
are similar and matching the same line pattern. Instead of
printing lines in each cluster, the algorithms output a line
pattern for each cluster to the end user. Also, lines that do not
fit into any of the detected clusters are arranged into a special
cluster of outliers and reported individually. Due to their
nature, clustering algorithms are able to identify not only event
patterns that reflect regularities, but also unusual outlier events
that deserve closer attention from security personnel.

In this paper, we describe the LogCluster tool for mining
textual event logs and present example scenarios of detecting

security incidents and anomalous events. Full details of the
clustering algorithm implemented by the tool have been given
in our recent paper [7]. The remainder of this paper is
organized as follows – section II reviews related work, section
III describes the LogCluster tool and focuses on its newly
developed functionality along with several use cases, while
section IV concludes the paper and provides the download and
licensing information for the LogCluster tool.

II. RELATED WORK

One of the earliest event log clustering algorithms is SLCT
[8] which has been applied in various domains like IDS alarm
log processing [9, 10], detection of recurrent fault conditions
[11, 12], and visualization of event log data [19, 20]. SLCT
takes support threshold s as a user-given input parameter, and
starts the clustering process by identifying frequent words that
appear in s or more event log lines. The words are considered
with positional information, e.g., if the fifth word of the event
log line is kernel, it is treated as a tuple (kernel, 5). After
identifying frequent words, another pass is made over input
data for assigning lines to cluster candidates. For each line, all
frequent words are extracted, and the candidate for this line is
identified by the set of extracted words. After the data pass,
frequent candidates that contain s or more lines are selected as
clusters. The number of lines in a cluster (or a candidate) is
called the support of the cluster (or the candidate). For
example, consider the event log with four lines:

User bob login from 10.0.0.1

User alice login from 10.0.0.1

User jim login from 10.0.0.2

User Srv Admin login from 10.0.0.3

If s=3, the words (User, 1), (login, 3), and (from, 4) are
detected as frequent. Also, two candidates are identified – the
candidate {(User, 1), (login, 3), (from, 4)} with support 3 that
contains first three lines, and the candidate {(User, 1)} with
support 1 that contains the last line. The first candidate is
selected as a cluster and is reported as the line pattern User *
login from (since the cluster has no word associated with
position 2, a wildcard is printed for this position). Finally, the
last line is reported as an outlier.

Unfortunately, SLCT is known to suffer from some
shortcomings [9, 12, 13]. Firstly, it does not detect wildcard
suffixes for line patterns as illustrated by the previous example.

This work has been supported by Estonian IT Academy (StudyITin.ee)
and SEB Estonia.

Secondly, SLCT is sensitive to word delimiter noise and shifts
in word positions. For instance, in the above example the last
event log line is not assigned to the cluster represented by the
pattern User * login from. Finally, when mining is conducted
with lower support thresholds, SLCT is prone to overfitting –
clusters with meaningful line patterns could be needlessly split,
so that resulting clusters have too specific line patterns. For
example, if s=2 for the above event log example, only the
pattern User * login from 10.0.0.1 is detected which does not
represent the general case.

Recently, we have developed a clustering algorithm called
LogCluster that addresses the shortcomings of SLCT [7].
Similarly to SLCT, the user must supply the support threshold
s to LogCluster which is used for finding frequent words
during the first pass over the event log. However, positional
information is not encoded into words. In order to identify a
cluster candidate for each event log line during the second data
pass, LogCluster extracts all frequent words from the line and
arranges them into a tuple. Also, summary information about
infrequent words in all assigned lines is maintained with each
candidate. Candidates containing s or more lines are selected as
clusters and reported as line patterns, while lines without a
cluster are regarded outliers and reported during an optional
data pass. For instance, if s=3 for the example event log above,
all lines are assigned to the cluster identified by the tuple
(User, login, from), and the line pattern User *{1,2} login from
*{1,1} is reported for this cluster together with its support of 4.

Reidemeister et al developed a methodology for diagnosing
recurrent faults in software systems which employs a modified
version of SLCT for software logs [11, 12]. In order to handle
delimiter noise and shifts in word positions, results from SLCT
are clustered further with a single-linkage clustering algorithm
that uses a Levenshtein distance function. Detected knowledge
is then harnessed for building decision tree classifiers.

Makanju developed a divisive clustering algorithm IPLoM
that starts with the event log as a single cluster and splits it into
partitions during three steps [13]. Splitting is based on various
criteria, such as the number of words in event log lines and
associations between word pairs. After splitting, a line pattern
is derived for each partition. Unlike SLCT, IPLoM is able to
identify wildcard suffixes for line patterns.

Apart from clustering algorithms, frequent itemset mining
methods have been often employed for event log mining.
LogHound is a generalization of the Apriori algorithm that can
discover line patterns from textual event logs [9]. Other
frequent itemset mining approaches have been mainly used for
the detection of temporal associations between event types
[14–18] and for mining NetFlow traffic patterns [21, 22].

III. THE LOGCLUSTER TOOL

The LogCluster tool is an open-source Perl-based UNIX
command line utility. It is able to mine meaningful patterns
from large event logs, and our recent study provides detailed
performance data for the 0.01 version [7]. In this section, we
will review the features of the latest version and discuss several
use cases. Event logs presented in this section originate from
several large and mid-size private and military organizations,
with all sensitive data being obfuscated in Fig. 1–4.

A. Introduction and Basic Use

All parameters are supplied to the LogCluster tool with
command line options. For example, the following command
line

logcluster.pl --support=100 --input=/var/log/messages

mines line patterns from /var/log/messages with support
threshold 100. Default word delimiter is whitespace, but
custom delimiter can be defined with the --separator command
line option. In order to mine patterns from several log files,
multiple --input options can be provided and wildcards can be
used in file names (e.g., --input=/var/log/*.log). The above
command line runs the basic variant of the LogCluster
algorithm which involves two passes over /var/log/messages
for finding frequent words and cluster candidates respectively.

logcluster.pl --input=suricata.log –-support=1000 \

 --wsize=10000 --csize=10000

Feb 27 *{1,1} myhost suricata[17447]: [1:2012708:2]

ET WEB_SERVER HTTP 414 Request URI Too Large

[Classification: Web Application Attack]

[Priority: 1] {TCP} 10.0.19.12:80 -> *{1,1}

Support: 44744

Feb 5 *{1,1} myhost suricata[2223]: [1:2006445:13]

ET WEB_SERVER Possible SQL Injection Attempt SELECT FROM

[Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.33.7:80

Support: 39692

Oct 18 *{1,1} myhost suricata[18941]: [1:2006446:11]

ET WEB_SERVER Possible SQL Injection Attempt UNION SELECT

[Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.3.5:80

Support: 7493

Mar 15 *{1,1} myhost suricata[25554]: [1:2016936:2]

ET WEB_SERVER SQL Injection Local File Access Attempt

Using LOAD_FILE [Classification: Web Application Attack]

[Priority: 1] {TCP} *{1,1} -> 10.0.6.1:80

Support: 3293

Jan 2 *{1,1} myhost suricata[30119]: [1:2101201:10]

GPL WEB_SERVER 403 Forbidden [Classification: Attempted

Information Leak] [Priority: 2] {TCP} 10.0.3.9:80 -> *{1,1}

Support: 2826

…

Fig. 1. Sample Suricata IDS alarm patterns.

When mining larger log files, the number of distinct words
can be quite large, and with lower support thresholds many
cluster candidates could be generated. Therefore, it is
expensive to keep all words and cluster candidates in memory
when their occurrence counts are established. In order to
reduce the memory consumption by filtering out infrequent
words, a sketch based technique can be employed which
requires an extra data pass. During the data pass, the word
sketch of m counters is created, where each counter reflects the
occurrence counts of many words and acts as a filter (see [7]
for full details). A similar method can be used for filtering out
infrequent candidates. The number of counters in the word
sketch is set with the --wsize command line option, while the
size of the candidate sketch can be set with the --csize option.

Fig. 1 illustrates example line patterns detected by the
LogCluster tool from the Suricata IDS log file. The log file
covered the period of 6 months and contained 949,920 lines.

Since the support threshold was set to 1000, strong alarm
patterns were identified which reflect the days when intensive
attacks against specific hosts were conducted. During the
mining process, the word and candidate sketches of 10,000
counters were employed. Both sketches involved an additional
data pass, and the memory consumption of the LogCluster tool
was reduced from 406.2 MB to 13.4 MB.

B. Preprocessing Input

While Fig. 1 provides an example of discovering relevant
patterns from a raw log file, quite often the detection of
meaningful patterns requires elaborate preprocessing of event
logs (e.g., dropping irrelevant events, removal of timestamps,
and rewriting specific parts of event log lines). In many cases,
such tasks require dedicated scripts that store preprocessed log
data to disk. For avoiding this overhead, the LogCluster tool
provides native support for flexible input preprocessing. If a
regular expression is supplied with the --lfilter option, only the
lines matching this regular expression are clustered. Also, if the
regular expression sets match variables, the variables can be
used in the format string defined with the --template option, in
order to convert matching event log lines in memory before
further processing. Fig. 2 depicts a LogCluster application
example for SSH daemon syslog events where timestamp,
hostname, and program name were discarded during clustering
(for instance, the event log line Mar 27 12:01:33 server113
sshd[15437]: test message was converted to test message). The
authpriv.log file contained over 7 million lines from hundreds
of UNIX servers, while 98,920 lines matched the --lfilter
option and were converted. The mining was conducted with the
relative support threshold of 1% (that means setting support
threshold to 1% of the number of clustered lines, i.e., 989).
Also, 2200 outlier event log lines were detected and written to
the outliers.log file. Most outliers reflected SSH probing of
non-existing user accounts by the organizational vulnerability
scanning engine, but some outliers were also error messages
that manifested system faults and configuration errors.

In some cases, regular expression based filtering and
conversion might not be sufficient for complex preprocessing
tasks. For addressing this issue, the LogCluster tool also
supports the --lcfunc option which takes a definition of an
anonymous Perl function for its value. The function is
compiled when LogCluster starts, and the compiled code is
invoked for filtering and converting each event log line. An
event log line is passed to the function as its only input
parameter, and in order to indicate the line should not be
considered during clustering, Perl undef value must be returned
from the function. If any other value is returned, it replaces the
original event log line. For example, if the option

--lcfunc=’sub { if ($_[0] =~ s/192\.168\.\d{1,3}\.\d{1,3}/ip-
192.168/g) { return $_[0]; } return undef; }’

is employed, LogCluster only considers lines which contain
IP addresses from the 192.168.0.0/16 network, and each such
address is replaced with the string ip-192.168. Finally, since
providing longer Perl functions in command line is not
convenient, input preprocessing routines can be defined in a
separate Perl module and used through the --lcfunc interface.
For example, if the option

--lcfunc=’require “/opt/logcluster/perlmod/Test.pm”; sub {
Test::lineconvert($_[0]); }’

is provided, the function lineconvert() from the module
/opt/logcluster/perlmod/Test.pm is invoked for filtering and
converting each event log line.

logcluster.pl --input=authpriv.log --rsupport=1 --aggrsup \

--lfilter='sshd\[\d+\]: (?<msgtext>.+)' --template='$+{msgtext}' \

--outliers=outliers.log

pam_unix(sshd:session): session opened for user *{1,1} by (uid=0)

Support: 26708

Accepted publickey for *{1,1} from *{1,1} port *{1,1} ssh2

Support: 24160

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

tty=ssh ruser= *{1,2}

Support: 1362

…

examples of outlier events from outliers.log

Mar 18 04:43:43 server112 sshd[22902]: Failed password for

 invalid user emailswitch from 10.31.97.21 port 46668 ssh2

Mar 18 04:43:50 server112 sshd[22936]: Failed password for

 invalid user admin from 10.31.97.21 port 46686 ssh2

Mar 18 04:44:06 server112 sshd[23000]: Failed password for

 invalid user manage from 10.31.97.21 port 46726 ssh2

Mar 18 04:44:53 server112 sshd[23056]: Failed password for

 invalid user cisco from 10.31.97.21 port 46841 ssh2

Mar 18 06:31:38 server29 sshd[12133]: PAM unable to dlopen

 (/lib64/security/pam_oddjob_mkhomedir.so):

 /lib64/security/pam_oddjob_mkhomedir.so: cannot open shared

 object file: No such file or directory

Fig. 2. Sample SSH daemon event patterns and outlier events.

C. Defining Word Classes

In many cases, infrequent words share the same format that
is not detected during clustering. For example, the program
name of syslog messages is often followed by frequently
changing process ID, creating many infrequent words for the
same program (e.g., sshd[18991]: and sshd[7655]:). For
discovering such regularities, LogCluster supports the creation
of word classes according to user-defined rules, where each
word class represents many infrequent words and captures their
commonalities. If a regular expression is given with
the --wfilter option, word classes are set up for all words that
match this expression. Word class creation involves searching
the word for all substrings that match the regular expression
supplied with the --wsearch option, and replacing these
substrings with the string provided with the --wreplace option.
For example, with the following command line options

--wfilter=’^\w+\[\d+\]:$’ --wsearch=’\[\d+\]’ --wreplace=
’[PID]’

the word class sshd[PID]: is created for words sshd[1321]:
and sshd[9583]:, while the word class suricata[PID]: is set up
for words suricata[2133]: and suricata[17743]:. Word classes
are treated like regular words by LogCluster. If a word class is
frequent, it replaces all corresponding infrequent words during
the clustering process.

The LogCluster tool also features a more powerful --wcfunc
option which allows for the creation of word classes with a
user-defined Perl function. Unlike with regular expression

based options, multiple word classes can be created for a word,
and the classes are returned from the function as a Perl list. The
order of word classes in the list defines their priority – if the
word is infrequent, the first frequent word class from the list
replaces the word. For example, if the

--wcfunc=’sub { if ($_[0] =~ /^Chrome\/(\d+)/) { return
("Chrome/$1", "Chrome"); } }’

option is provided, word classes Chrome/49 and Chrome
are created for the word Chrome/49.0.2623.87, with
Chrome/49 having precedence over Chrome. If the word class
Chrome/49 and the word Chrome/49.0.2623.87 are infrequent,
then word class Chrome replaces Chrome/49.0.2623.87 during
the clustering process. As with the --lcfunc option described in
the previous subsection, more complex word class creation
routines can be separated into Perl modules (the LogCluster
distribution includes one such example module).

D. Joining Clusters

As discussed in section II, clusters can be split needlessly
with lower support thresholds. As a result, instead of generic
meaningful line patterns too specific patterns are detected. For
addressing the overfitting problem, LogCluster supports two
heuristics for joining clusters that make resulting line patterns
more comprehensible to the human analyst. The first heuristic
is enabled with the --aggrsup option and is applied to cluster
candidates before clusters are selected. The heuristic allows
cluster overlaps, in order to increase the support of clusters
with more generic patterns – for each cluster candidate, other
candidates with more specific line patterns are identified, and
their lines are also assigned to the given candidate. For
instance, if there are two candidates with line patterns Interface
*{1,1} down and Interface eth0 down, lines of the second
candidate are also assigned to the first candidate, and the
support of the first candidate is incremented by the support of
the second candidate. The use of the --aggrsup option has been
illustrated in Fig. 2.

The second heuristic is applied after clusters have been
selected from candidates. The heuristic relies on word weight
functions that are described below. Suppose that a and b are
frequent words, m denotes the number of event log lines where
a appears, and n denotes the number of event log lines where
both a and b appear. Provided that n > 0 (i.e., there is at least
one event log line where both a and b are present), dependency
from a to b is defined as:

dep(a, b) = n / m

Note that dep(a, a) = 1 and 0 < dep(a, b) ≤ 1, with higher
value of dep(a, b) indicating higher likelihood of observing b
when a is present. For measuring how strongly each word in
the line pattern is correlated to other words in this pattern,
LogCluster defines several word weight functions which return
values from 0 to 1. If w1,…,wk are words in the line pattern, the
word weight function f1 is defined as:

f1(wi) = j
k
=1 dep(wj, wi) / k

The smaller the value of f1(wi), the less likely it is to
observe wi with other words of the pattern. For identifying
words with insufficient weights in line patterns, the word

weight threshold is defined with the --wweight option. For
example, if --wweight=0.5 while dep(Interface, eth0) = 0.07
and dep(down, eth0) = 0.07, then the word eth0 has insufficient
weight in the pattern Interface eth0 down, since f1(eth0) = (0.07
+ 0.07 + 1) / 3 = 0.38. The cluster joining heuristic replaces
such words with special tokens in cluster identifier tuples, and
joins two clusters if their modified tuples are identical. Then a
new line pattern is derived for the joint cluster by creating lists
from words with insufficient weights and joining wildcards
(see [7] for full details). For instance, suppose there are two
clusters with identifier tuples (Interface, eth0, down) and
(Interface, eth1, down), and line patterns Interface eth0 down
and Interface eth1 down. If words eth0 and eth1 have
insufficient weights in their respective patterns, modified
identifier tuples for both clusters are (Interface, TOKEN,
down), and two clusters are thus joined into a new cluster with
the line pattern Interface (eth0|eth1) down. Since overfitting
introduces words with lower weights into patterns, the cluster
joining heuristic helps to reduce the number of such patterns by
joining them into more meaningful patterns which are built
around strongly associated words.

The f1 word weight function has some drawbacks that have
motivated the development of additional functions in recent
versions of LogCluster. Firstly, if k is the number of words in
the pattern, then 1/k ≤ f1(wi) ≤ 1, since dep(wi, wi) = 1 (i.e., f1
allows the word to contribute 1/k to its own weight). Therefore,
if a pattern has few words, its words will be assigned higher
weights than words of longer patterns. This bias becomes more
noticeable if the same word appears several times in the
pattern, for example, interface *{1,1} down: interface *{1,2}
fault. The word weight function f2 addresses this shortcoming
by first identifying the set of unique words U for the pattern.
For instance, for the previous example pattern U = {interface,
down:, fault}. If U contains p words (i.e., p = |U|), f2 is defined
as follows:

f2(w) = ((vU dep(v, w)) – 1) / (p – 1), if p > 1

f2(w) = 1, if p = 1

For example, if dep(Interface, eth0) = 0.07 and dep(down,
eth0) = 0.07, then f1(eth0) = 0.38 for line pattern Interface eth0
down, while f2(eth0) = (0.07 + 0.07 + 1 - 1) / 2 = 0.07. By not
allowing the word to contribute to its own weight, f2 calculates
word weights in a fair way for shorter patterns.

One shortcoming of f1 and f2 weight functions is their
inability to assign higher weights to groups of strongly
associated words. For instance, suppose the line pattern is
kernel: interface *{1,1} down, and the words interface and
down always appear together (i.e., dep(interface, down) =
dep(down, interface) = 1). Also, suppose the word kernel: is
always present when words interface and down appear (i.e.,
dep(interface, kernel:) = dep(down, kernel:) = 1), while only
4% of event log lines that contain kernel: also contain the
words interface and down (i.e., dep(kernel:, interface) =
dep(kernel:, down) = 0.04). Thus, f1(kernel:) = 1 and
f1(interface) = f1(down) = 0.68, although word weights should
be distributed more evenly in this pattern, considering that
words interface and down form a very strong sub-pattern. For
achieving this purpose, the mutual dependency between
frequent words a and b is defined as:

mdep(a, b) = (dep(a, b) + dep(b, a)) / 2

Note that mdep(a, b) = mdep(b, a) and 0 < mdep(a, b) ≤ 1.
Also, high values of mdep(a, b) indicate that words a and b
usually appear together, while low values reflect the lack of
such strong association. If w1,…,wk are words in the line
pattern, the word weight function f3 is defined as:

f3(wi) = j
k
=1 mdep(wj, wi) / k

Like the f2 function, the word weight function f4 employs
the set of unique words U for the pattern, and is defined as
follows (note that p = |U|):

f4(w) = ((vU mdep(v, w)) – 1) / (p – 1), if p > 1

f4(w) = 1, if p = 1

For instance, in the case of the previous line pattern
example mdep(interface, down) = (1 + 1) / 2 = 1, mdep(kernel:,
interface) = (0.04 + 1) / 2 = 0.52, and mdep(kernel:, down) =
(0.04 + 1) / 2 = 0.52. Therefore, f3(kernel:) = (1 + 0.52 + 0.52) /
3 = 0.68, while f3(interface) = (0.52 + 1 + 1) / 3 = 0.84 and
f3(down) = (0.52 + 1 + 1) / 3 = 0.84. In other words, compared
to f1, the f3 function assigns more weight to words interface and
down due to their strong association.

The LogCluster tool allows for choosing the weight
function with the --weightf option, e.g., --weightf=3 selects the
f3 function. Also, the --color option highlights words with
insufficient weights in reported line patterns. Finally, detected
cluster and word dependency information can be stored to the
dump file given with the --writedump option. The data from
previously created dump file can be loaded with
the --readdump option during further runs of LogCluster. This
is useful for quick evaluation of different word weight
thresholds and functions without repeating the full clustering
process that is computationally expensive. For example, the
following command line

logcluster.pl --readdump=cluster.dump --wweight=0.75

loads the cluster and word dependency data from dump file
cluster.dump, and joins clusters with the word weight threshold
0.75 and word weight function f1 (the default function).

E. Case Studies

This subsection presents some log analysis scenarios that
utilize previously described features of the LogCluster tool.
Fig. 3 provides an example of employing LogCluster in a mid-
size private organization, in order to create daily e-mail reports
from syslog events of critical servers. Nearly 12 million events
are collected each day with 150-300 detected line patterns. For
producing more meaningful patterns, word classes are created
for words which contain punctuation marks by replacing
letters, digits, and other non-punctuation characters with
character X. Replacement is not done if non-punctuation
characters are followed by [or = character, in order to preserve
keywords and program names which precede these characters
(e.g., word class to=<X@X.X> is created for the word
to=<user@example.com>). Also, the word weight threshold
0.5 and word weight function f2 are used for joining clusters.
The results of the clustering are written into the
/tmp/logcluster-rotate.dmp dump file, in order to facilitate

quick additional analysis with different word weight thresholds
and functions. Fig. 3 also depicts some example patterns
detected with the LogCluster tool. The first pattern in Fig. 3
manifests an attempt to use the organizational DNS server for
conducting DNS reflection and amplification attacks. The
second pattern represents SSH account probing from several
Internet hosts against a number of servers and routers of the
organization. Remaining patterns reflect various attempts to
distribute spam through the organizational mail server.

logcluster.pl --input=/var/log/all.log --rsupport=0.01 \

--wfilter=’[[:punct:]]’ --wsearch=’[ˆ[:punct:]]++(?![[=])’ \

--wreplace=X --writedump=/tmp/logcluster-rotate.dmp \

--wweight=0.5 --weightf=2 --csize=100000 --wsize=100000

Mar 29 X:X:X nameserver2 named[10307]: security: info: client

(X.X.X.X#X:|10.0.137.69#25345:) view authoritative: query (cache)

(’X.X.X.X.X.X/X/X’|’X.X.X.X/X/X’|’X.X.X.X.X/X/X’|’domain.nu/MX/IN’

|’isc.org/ANY/IN’) denied

Support: 198152

Mar 29 X:X:X (backupserver|vps1|nameserver1|router1|vps2|router2

|mailserver|logserver|vps3|vps4) sshd[X]: pam_unix(sshd:auth):

authentication failure; logname= uid=0 euid=0 tty=ssh ruser=

(rhost=10.3.202.120|rhost=10.88.177.98) user=root

Support: 18112

Mar 26 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from

exch001.example.com[10.52.134.35]: 454 4.7.1 <user@example.com>:

Relay access denied; from=<> to=<user@example.com> proto=ESMTP

helo=<webmail.example.com>

Support: 941

Mar 17 X:X:X mailserver X/smtpd[X]: warning: hostname

host94165.example.com does not resolve to address X.X.X.X

Support: 1217

Mar 9 X:X:X mailserver X/smtpd[X]: NOQUEUE: reject: RCPT from

unknown[X.X.X.X]: 554 5.7.1 Service unavailable; Client host

[X.X.X.X] blocked using cbl.abuseat.org;

Blocked - see X://X.X.X/X.X?ip=X.X.X.X; from=<X@X.X> to=<X@X.X>

proto=ESMTP *{1,1}

Support: 1219

…

Fig. 3. Sample attack patterns detected from syslog events.

In some cases, it might not be convenient to cluster the
event log with one LogCluster run, since higher support
threshold might yield too many outliers, while with lower
support threshold a large number of clusters might be
produced. This problem often appears for event logs which
contain events from many servers and programs, and feature
meaningful line patterns with a wide variety of supports. For
addressing this problem, LogCluster can be used iteratively,
clustering results from previous execution(s) at each step. Fig.
4 provides an example of iterative clustering of the mail.log
file which contained syslog messages with mail facility from a
number of mail servers. During the first iteration with relative
support threshold 0.1%, each event log line was converted to a
program name string, so that detected line patterns indicated
programs that have produced most log messages in mail.log. A
cluster for the sendmail daemon was discovered, and during
the second iteration with relative support threshold 0.1% it was
split into smaller clusters by analyzing the message text after
the program name. The second iteration yielded 268 patterns
that reflected normal system activity and 10,264 outliers. The
outliers were clustered further with support threshold 50. As a
result, 105 patterns and 2018 outliers were detected, with many

patterns and outliers representing error conditions and
abnormal events such as connection attempts from spammers.

logcluster.pl --input=mail.log --rsupport=0.1 \

--lfilter=' ([\w\/.-]+)\[\d+\]: ' --template='$1[PID]:'

sendmail[PID]:

Support: 1007754

…

logcluster.pl --input=mail.log –rsupport=0.1 --aggrsup \

--lfilter='sendmail\[\d+\]: (.+)' --template='$1' \

--separator='(?:\s+|=)' --outliers=outliers.log

*{1,1} from *{1,5} size *{1,1} class 0, nrcpts 1, msgid *{1,5}

proto ESMTP, daemon MTA, relay *{1,5}

Support: 161976

STARTTLS client, relay *{1,1} version TLSv1/SSLv3, verify OK,

cipher AES128-SHA, bits 128/128

Support: 71062

…

logcluster.pl --input=outliers.log --support=50 --aggrsup \

--lfilter 'sendmail\[\d+\]: (.+)' --template '$1' \

--separator='(?:\s+|=)' --outliers=outliers2.log

*{1,1} ruleset check_rcpt, arg1 *{1,1} relay *{1,2} reject 550

5.1.1 *{1,1} User unknown

Support: 441

*{1,1} SYSERR(root): collect: I/O error on connection from *{1,1}

from *{1,2}

Support: 104

…

examples of outlier events from outliers2.log

Mar 29 03:51:28 mailserver sendmail[30101]: ruleset=check_relay,

 arg1=box.example.com, arg2=127.0.0.1, reject=550 5.7.1

 Rejected: 10.193.172.92 listed at xbl.spamhaus.org

Mar 29 08:28:07 mailserver sendmail[6276]: XXX: mail.example.com

 [10.109.254.117]: Possible SMTP RCPT flood, throttling.

Mar 29 10:23:58 mailserver sendmail[22746]: XXX:

 ruleset=check_mail, arg1=<pzfsibdlkj@sjfqc.biz>,

 relay=[10.240.79.7], reject=553 5.1.8 <pzfsibdlkj@sjfqc.biz>...

 Domain of sender address pzfsibdlkj@sjfqc.biz does not exist

Fig. 4. Iterative analysis of mail server events.

IV. CONCLUSION

In this paper, we have presented the LogCluster tool for
mining line patterns and outlier events from textual event logs.
We have also described several scenarios of discovering
security incidents and anomalous events with this tool. For a
more detailed information on its performance and comparison
with other log clustering algorithms, the reader is referred to
our recent paper [7].

For the future work, we plan to harness the LogCluster tool
for insider threat detection and to modify the LogCluster
algorithm for stream mining purposes. The LogCluster tool has
been released under the terms of GNU GPLv2 and is available
from http://ristov.github.io/logcluster.

ACKNOWLEDGMENT

The authors thank Mr. Kaido Raiend, Mr. Ain Rasva, Mr.
Raimo Peterson, Mrs. Katrin Kriiska, Prof. Olaf M. Maennel,
and Dr. Rain Ottis for supporting this work.

REFERENCES

[1] C. Lonvick, “The BSD syslog Protocol,” RFC3164, 2001.

[2] R. Gerhards, “The Syslog Protocol,” RFC5424, 2009.

[3] http://www.rsyslog.com

[4] https://www.balabit.com/network-security/syslog-ng

[5] https://www.elastic.co

[6] Risto Vaarandi and Mauno Pihelgas, “Using Security Logs for
Collecting and Reporting Technical Security Metrics,” in Proceedings of
the 2014 IEEE Military Communications Conference, pp. 294-299.

[7] Risto Vaarandi and Mauno Pihelgas, “LogCluster – A Data Clustering
and Pattern Mining Algorithm for Event Logs,” in Proceedings of the
2015 International Conference on Network and Service Management,
pp. 1-7.

[8] Risto Vaarandi, “A Data Clustering Algorithm for Mining Patterns From
Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP
Operations and Management, pp. 119-126.

[9] Risto Vaarandi, “Mining Event Logs with SLCT and LogHound,” in
Proceedings of the 2008 IEEE/IFIP Network Operations and
Management Symposium, pp. 1071-1074.

[10] Risto Vaarandi and Kārlis Podiņš, “Network IDS Alert Classification
with Frequent Itemset Mining and Data Clustering,” in Proceedings of
the 2010 International Conference on Network and Service
Management, pp. 451-456.

[11] Thomas Reidemeister, Miao Jiang and Paul A.S. Ward, “Mining
Unstructured Log Files for Recurrent Fault Diagnosis,” in Proceedings
of the 2011 IEEE/IFIP International Symposium on Integrated Network
Management, pp. 377-384.

[12] Thomas Reidemeister, “Fault Diagnosis in Enterprise Software Systems
Using Discrete Monitoring Data,” PhD Thesis, University of Waterloo,
2012.

[13] Adetokunbo Makanju, “Exploring Event Log Analysis With Minimum
Apriori Information,” PhD Thesis, University of Dalhousie, 2012.

[14] Mika Klemettinen, “A Knowledge Discovery Methodology for
Telecommunication Network Alarm Databases,” PhD thesis, University
of Helsinki, 1999.

[15] Qingguo Zheng, Ke Xu, Weifeng Lv and Shilong Ma, “Intelligent
Search of Correlated Alarms from Database Containing Noise Data,” in
Proceedings of the 2002 IEEE/IFIP Network Operations and
Management Symposium, pp. 405-419.

[16] Sheng Ma and Joseph L. Hellerstein, “Mining Partially Periodic Event
Patterns with Unknown Periods,” in Proceedings of the 17th
International Conference on Data Engineering, pp. 205-214, 2001.

[17] James J. Treinen and Ramakrishna Thurimella, “A Framework for the
Application of Association Rule Mining in Large Intrusion Detection
Infrastructures,” in Proceedings of the 2006 Symposium on Recent
Advances in Intrusion Detection, LNCS Vol. 4219, Springer, pp. 1-18.

[18] Chris Clifton and Gary Gengo, “Developing Custom Intrusion Detection
Filters Using Data Mining,” in Proceedings of the 2000 IEEE Military
Communications Conference, pp. 440-443.

[19] Jon Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings
of the 2004 IEEE International Conference on Cluster Computing, pp.
309–318.

[20] Adetokunbo Makanju, Stephen Brooks, A. Nur Zincir-Heywood and
Evangelos E. Milios, “LogView: Visualizing Event Log Clusters,” in
Proceedings of the 6th Annual Conference on Privacy, Security and
Trust, pp. 99-108, 2008.

[21] Daniela Brauckhoff, Xenofontas Dimitropoulos, Arno Wagner and Kavè
Salamatian, “Anomaly Extraction in Backbone Networks using
Association Rules,” in Proceedings of the 2009 ACM SIGCOMM
Internet Measurement Conference, pp. 28-34.

[22] Eduard Glatz, Stelios Mavromatidis, Bernhard Ager and Xenofontas
Dimitropoulos, “Visualizing big network traffic data using frequent
pattern mining and hypergraphs,” Computing Vol. 96(1), Springer, pp.
27-38, 2014.

[23] Risto Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine 1/2006 (6), pp. 28-39, 2006.

Appendix 4

Publication IVB. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi. Creat-ing and Detecting IPv6 Transition Mechanism-Based Information Exfiltra-tion Covert Channels. In Secure IT Systems: 21st Nordic Conference, Nord-
Sec 2016, Oulu, Finland, November 2-4, 2016. Proceedings, pages 85–100.Springer International Publishing, 2016

© 2016 Springer International Publishing. Reprinted. Authors have the right to reuse theirarticle’s Version of Record, in whole or in part, in their own thesis. Additionally, theymay reproduce and make available their thesis as required by their awarding academicinstitution.The paper is included in the Proceedings of the 2016 Secure IT Systems: 21st Nordic Con-
ference (NordSec 2016).DOI: 978-3-319-47560-8_6

135

Creating and Detecting IPv6 Transition
Mechanism-Based Information Exfiltration

Covert Channels

Bernhards Blumbergs1, Mauno Pihelgas1, Markus Kont1, Olaf M. Maennel2,
and Risto Vaarandi2

1 NATO Cooperative Cyber Defense Center of Excellence, Tallinn, Estonia
name.surname[a]ccdcoe.org

2 Tallinn University of Technology, Tallinn, Estonia
name.surname[a]ttu.ee

Abstract. The Internet Protocol Version 6 (IPv6) transition opens a
wide scope for potential attack vectors. Transition mechanisms could
allow the set-up of covert egress communication channels over an IPv4-
only or dual-stack network. Increased usage of IPv6 in attacks results in
full compromise of a target network. Therefore effective tools are required
for the execution of security operations for assessment of possible attack
vectors related to IPv6 security.
In this paper, we review relevant transition technologies, describe and
analyze two newly-developed IPv6 transition mechanism-based proof-
of-concept tools for the establishment of covert information exfiltration
channels. The analysis of the generated test cases confirms that IPv6
and various evasion techniques pose a difficult task for network security
monitoring. While detection of various transition mechanisms is rela-
tively straightforward, other evasion methods prove more challenging.

Keywords: IPv6 Security · IPv6 Transition · Covert Channels · Com-
puter Network Operations · Red Teaming · Monitoring and Detection

1 Introduction

In this work we explore possible uses of IPv6 transition technologies for creation
of covert channels over dual-stack and native IPv4 connectivity to exfiltrate
information for red teaming [6] purposes. An analysis in Section 2 shows that
this approach is novel and no implementations of such newly-developed tools
have been identified previously.

The main contributions of this paper are:
1. two novel approaches for covert channel creation with IPv6 transition mech-

anisms;
2. fully self-developed proof-of-concept tools that implement the proposed

methods (nc64 and tun64);
3. commonly-used protocol tunneling and developed proof-of-concept tool de-

tection comparison table (Appendix 1.A); and

2

4. a reproducible virtual lab environment providing detection results using
open-source network security monitoring tools.
The Internet is in a period of tremendous growth, currently evolving toward

the Internet of Anything (IoA). The more widely-deployed IPv4 standard and
IPv6 are incompatible, and they can communicate only via transition mecha-
nisms and technologies [37] [43]. This introduces an additional layer of complex-
ity and inherent security concerns for the transition and co-existence period [1].
The adoption of IPv6, and availability per the core backbone of the Internet in-
frastructure and edge networks, varies [10] [12]. IPv6 launch campaigns rapidly
increased the number of autonomous systems (AS) announcing IPv6 prefix3 4.
Nevertheless, connecting to the IPv6 Internet while maintaining scalability and
minimal overall complexity would require edge networks to depend on transi-
tion mechanisms [43], possibly meaning that local area networks (LANs) will
continue to use primary IPv4 for an undefined period.

IPv6 protocol implementations and security solutions are relatively new, al-
ready supported by default by modern operating systems, and have not yet
reached the level of acceptable quality and maturity [43] [15]. The lack of exper-
tise and technological maturity result in IPv6 being considered in most cases as
a “back-door” protocol, allowing evasion of security mechanisms [21] [23]. This
is important particularly when an attack originates from inside the network, as
network security devices are commonly configured and placed on the perimeter
under the assumption that intruders will always come from outside [38].

In the age of advanced high-profile targeted attacks executed by sophisticated
and resourceful adversaries, IPv6 is seen as an additional vector for persistent and
covert attacks [40] [29]. The length of the transition period cannot be estimated,
and it can be assumed that even once the entire Internet is native IPv6, there will
still be systems running deprecated IPv6 functionality specifications, or heritage
transition mechanisms.

Our research shows that current Network Intrusion Detection System (NIDS)
solutions have serious drawbacks for handling IPv6 traffic. To address these
shortcomings would require effort to redevelop the principles how NIDSs de-
tect malicious behavior and correlate separate or encapsulated sessions. The
described IPv6 transition-based covert channel creation approaches use both IP
version implementations in the same protocol stack making it harder to correlate
and attribute them to the same covert channel. The common protocol tunneling
approaches (e.g. SSH, DNS) in comparison with the developed covert channel
proof-of-concept tools (i.e. nc64 and tun64) would be easier to detect by an au-
tomated solution or human analyst since their behavior pattern is well known
and understood.

In this paper, Section 2 reviews background and related work, evasion mech-
anisms, and covert channels; Section 3 describes common protocol tunneling

3 IPv6 Enabled Networks, RIPE NCC. http://v6asns.ripe.net/v/6 (Accessed
15/04/2016)

4 IPv6 CIDR Report. http://www.cidr-report.org/v6/as2.0/ (Accessed
15/04/2016)

3

approaches and newly-developed attack tool implementation and design; Sec-
tion 4 describes the attack scenario, simulation environment, and generated test
cases; Section 5 discusses experiment execution results (presented in Table 1),
and additionally gives recommendations for such attack detection and mitigation
possibilities; and Section 6 offers conclusions.

2 Background and related previous work

The aim for IPv6 was to evolve and eliminate the technical drawbacks and
limitations of the IPv4 standard. However, IPv6 reintroduced almost the same
security issues and, moreover, added new security concerns and vulnerabilities
[11] [19]. Current IPv6 attack tools, such as the THC-IPv6 [21], SI6-IPv6 5,
Topera6, and Chiron7 toolkits, include the majority of techniques for abuse of
IPv6 vulnerabilities, and can be utilized for network security assessment and
IPv6 implementation verification.

The research paper by Ptacek and Newsham [33] proved that NIDS evasions
are possible and pose a serious threat. A proof-of-concept tool, v00d00N3t, for
establishment of covert channels over ICMPv6 [28] has demonstrated the poten-
tial for such approach, though it has not been released publicly. Techniques for
evading NIDS based on mobile IPv6 implementations reveal that it is possible
to trick NIDS using dynamically-changing communication channels [9]. Also, it
could be viable to create a covert channel by hiding information within IPv6
and its extension headers [26]. Network intrusion detection system (NIDS) and
firewall evasions based on IPv6 packet fragmentation and extension header chain-
ing attacks, have been acknowledged [1] [2] [21]. Although current Requests for
Comments (RFCs) have updated the processing of IPv6 atomic fragments [17],
discarding overlapping fragments [24] and enforcing security requirements for
extension headers [25] [20], these attacks will remain possible in the years ahead
as vendors and developers sometimes fail to follow the RFC requirements or im-
plement their own interpretation of them. General approaches for NIDS evasions
have been described and analyzed [32] [3] [42] [7], with the basic principles be-
hind evasions based on the entire TCP/IP protocol stack. Advanced evasion
techniques (AETs) involve creating combinations of multiple atomic evasion
techniques, potentially allowing evasion of detection by the majority of NIDS
solutions [30]. Evasions are possible due to NIDS design, implementation and
configuration specifics, and low network latency requirements [15].

Identified existing approaches and technologies consider native IPv6 network
implementation and connectivity, and do not take into account possible methods
for network security device evasions and covert channel establishment over IPv6
transition mechanisms, in order to reach the command and control (CnC) servers

5 SI6 Networks’ IPv6 Toolkit. http://www.si6networks.com/tools/ipv6toolkit/

(Accessed 10/11/2015)
6 Topera IPv6 analysis tool: the other side. http://toperaproject.github.io/

topera/ (Accessed 10/11/2015)
7 Chiron. http://www.secfu.net/tools-scripts/ (Accessed 10/11/2015)

4

over IPv4 only or dual-stack Internet connectivity. Moreover, to our knowledge
no publicly available tools directly implement transition technology-based at-
tacks. Here we address this gap and advance beyond previous work.

3 Covert channel implementations

3.1 Protocol tunneling

Protocol tunneling and IPv6 tunneling-based transition mechanisms pose a ma-
jor security risk, as they allow bypassing of improperly-configured or IPv4-only
network security devices [35] [11] [22] [23] [18]. IPv6 tunnel-based transition
mechanisms, as well as general tunneling approaches (e.g. HTTP, SSH, DNS,
ICMP, IPsec), can bypass network protection mechanisms. However, IPv6 tun-
nels simply add to the heap of possible tunneling mechanisms, leading to unman-
aged and insecure IPv6 connections [35]. Moreover, dual-stack hosts and Internet
browsers favor IPv6 over IPv4 [10]. Various protocol tunneling approaches can
be used to set up a covert channel by encapsulating exfiltrated information in
networking protocols. Covert channels based on DNS, HTTP(S), ICMP [5], and
SSH [13] protocol tunneling implementations are acknowledged here as the most
common approaches for eluding network detection mechanisms, due to both their
frequent use and standard network policy, which allows outbound protocols and
ports for user requirements and remote network administration needs. For the
purposes of the NIDS test cases we consider already developed and publicly
available tools herein.

3.2 Proof-of-concept nc64 tool

We have developed a proof-of-concept tool, nc648, for the creation of information
exfiltration channel over dual-stack networks using sequential IPv4 and IPv6
sessions. The tool’s source code is publicly available under MIT license.

Signature-based IDSs reassemble packets and data flows, in order to conduct
inspection against a known signature database. We have observed that data
reassembly by IDS is carried out on a per-session basis (e.g. a TCP session).
If the data are sent in sequential sessions over different network or transport
layer protocols interchangeably, the IDS tries to reassemble data based only on a
specific protocol and session, and therefore cannot retrieve the full information to
evaluate whether the traffic is malicious. In such scenario NIDS has to be context
aware in order to be able to correlate and reconstruct the original stream from
multiple sequential ones, which is very challenging to be achieved. While any
set of networking protocols could be used for a sequential session creation, the
security, transition, and immaturity of IPv6 makes it a preferred choice. When
considering NIDS separate session correlation likely possibilities, IP protocol
switching would make it harder to perform such correlation since destination
IPv4 and IPv6 addresses are entirely different. In a dual-stack operating system,

8 nc64 https://github.com/lockout/nc64 (Accessed 12/03/2016)

5

IPv4 and IPv6 protocols are implemented side by side, thus adding a layer of
separation between the two standards and making it more difficult for IDSs to
carry out a data reassembly. Additionally, a single host can have multiple global
IPv6 addresses, making the correlation to a single host even more harder.

To exfiltrate data from the source host to a destination CnC server over
sequential IPv4 and IPv6 sessions, the data must be split into smaller chunks (i.e.
up to IPv6 MTU of 1500B). Alternation between IPv4 and IPv6 per session has
to be controlled to minimize the amount of information that is sent over a single
IP protocol in successive sessions (e.g. not allowing three or more sequential
IPv4 sessions). This control would avoid partial reassembly and deny successful
payload inspection by NIDS.

A CnC server has both IPv4 and IPv6 addresses on which it listens for
incoming connections. Once the connection is established, the listener service
receives sessions and reassembles data in sequence of reception. This can be
hard to accomplish if a stateless transport layer protocol is being used (i.e.
UDP) or data chunk size exceeds the maximum path MTU (e.g. causing packet
fragmentation).

Our proof-of-concept tool, nc64, is written in Python 3 using standard li-
braries. It implements the aforementioned principles, and additionally:
1. provides both the listener server and client part in one Python module;
2. accepts user-specified data from a standard input, which provides flexibility

and freedom of usage;
3. requires both IPv4 and IPv6 addresses for the destination CnC listener, and

can have a list of IPv6 addresses in case the CnC server has multiple IPv6
addresses configured;

4. supports UDP and TCP transport layer protocols, as these are the main
ones used in computer networks;

5. enables the destination port to be freely selected to comply with firewall
egress rules and match the most common outbound protocol ports (e.g.
HTTP(S), DNS), and also allows for setting and randomizing of the source
port for UDP-based communications;

6. provides payload Base64 encoding for binary data transmission, and to some
degree can be treated as obfuscation if the IDS does not support encoding
detection and decoding. It has to be noted that Base64-encoded traffic might
reveal the exfiltrated data in the overall traffic since it would stand out, which
would also apply when using payload encryption;

7. allows for the setting and randomizing of timing intervals between sequential
sessions for an additional layer of covertness and to mitigate possible timing
pattern prediction and detection by NIDS;

8. implements control over how many sequential sessions of the same protocol
can be tolerated before forcing a switch to the other protocol, ensuring that
small files are sent over both IP protocols; and

9. supports additional debugging features, exfiltrated data hash calculation,
and transmission statistics.

6

3.3 Proof-of-concept tun64 tool

We have developed a second proof-of-concept tool, tun649, which exfiltrates in-
formation by abusing tunneling-based IPv6 transition mechanism capabilities
over the IPv4-only computer network. The tool’s source code is publicly avail-
able under MIT license.

Most tunneling-based IPv6 transition mechanisms rely on IPv4 as a link layer
by using 6in4 encapsulation [31], whereby an IPv6 packet is encapsulated in IPv4
and the protocol number is set to decimal value 41 (the IANA-assigned payload
type number for IPv6). Besides 6in4 encapsulation, we also acknowledge GRE
(protocol-47) [14] as an applicable encapsulation mechanism for 6in4-in-GRE
double encapsulation. When 6in4 (protocol-41) encapsulation is used, duplex
connectivity might not be possible if the network relies on strict NAT. However,
for the attack scenario considered in this paper, a one-way communication chan-
nel for information exfiltration to the CnC server is sufficient, making UDP the
preferred transport layer protocol [34].

Most of the transition techniques cannot solve transition problems and hence
are not appropriate for real-world implementation and widespread deployment
[43]. Even though tunnel-based transition approaches are considered deprecated
by the IETF, nevertheless some of these technologies continue to be supported
by modern operating systems and ISPs. The 6over4 [8], ISATAP [39] [36], and
6to4 [27] [41] transition mechanisms were selected for implementation in our
proof-of-concept tool for tunneling-based information exfiltration. Selection of
these mechanisms was based upon the tunnel establishment from the target
host or network, their support by either operating systems or local network
infrastructure devices [36].

Our proof-of-concept tool, tun64, is written in Python 2 using the Scapy
library10. It implements the aforementioned principles and additionally:
1. provides only the client part, thus relying on standard packet capture tools

for reception and reassembly (e.g. tcpdump, Wireshark, tshark);
2. supports TCP, UDP, and SCTP as transport layer protocols;
3. emulates 6over4, 6to4, and ISATAP tunneling by assigning source and des-

tination IPv6 addresses according to the transition protocol specification;
4. enables usage of 6to4 anycast relay routers if the tool is being tested in real

Internet conditions, although in our simulated network, 6to4 relay routers
or agents are not implemented;

5. allows additional GRE encapsulation to create a 6in4-in-GRE double encap-
sulated packet, which may allow obfuscation if the NIDS is not performing
a full packet decapsulation and analysis;

6. gives an option to freely specify source and destination ports, in order to
comply with firewall egress rules; and

7. supports sending a single message instead of files or standard input, a func-
tionality designed with proof-of-concept approach in mind.

9 tun64 https://github.com/lockout/tun64 (Accessed 12/03/2016)
10 Scapy project. http://www.secdev.org/projects/scapy/ (Accessed 10/11/2015)

7

4 Testing environment and test description

4.1 Attack scenario

Our testing environment and experiments are designed according to the follow-
ing scenario. The attack target is a small- to medium-sized research organization
(up to 100 network nodes). Research organization assumes it is running an IPv4-
only network, even though all the network hosts are dual-stack and their ISP
just recently started to provide also IPv6 connectivity. Network administrators
have implemented IPv4 security policies and only the following most common
egress ports and services are allowed through the firewall: DNS (udp/53, tcp/53),
HTTP (tcp/80), HTTPS (tcp/443), SSH (tcp/22), and ICMP (echo). All net-
work hosts can establish a direct connection to the Internet without proxies or
any other connection handlers. This organization was recently contracted by gov-
ernment to conduct advanced technological research and therefore has sensitive
information processed and stored on the network hosts and servers. A red team,
assuming the role of reasonably sophisticated attacker with persistent foothold
in the research organization’s network, is tasked to exfiltrate sensitive informa-
tion from the target network. The red team has a selection of tools available at
its disposal for the establishment of a covert information exfiltration channel, as
described in Section 3.

4.2 Testing environment

To ensure reproducibility of the testbed, we created several bash scripts that
leverage the Vagrant11 environment automation tool. The scripts are publicly
available in a GitHub repository12. A network map of the virtual testing envi-
ronment is presented in Fig. 1.

The host and CnC devices were built on 32-bit Kali Linux 2.0, which comes
bundled with several tunneling tools. Router1 served as the gateway for the tar-
get organization, and Router2 as an ISP node in the simulated Internet (SINET).
Both routers were also built as authoritative DNS servers to facilitate usage of
the Iodine tool, which was explicitly configured to query them during the tests.
Two monitoring machines were built to provide detection capability. The first
node was connected with a tap to the network link between the routers and
all packets were copied to its monitoring interface. Second node was created to
avoid conflicts between monitoring tools, and was therefore not used for capture.

In order to create identical testing conditions, we decided to store a packet
capture (PCAP) file for each combination of the exfiltration tool, destination
port number, transport layer protocol, and IP version. Additionally, several dis-
tinct operation modes were tested for the nc64 (e.g. both plain-text and base64
encoded payload) and tun64 (e.g. ISATAP, 6to4, and 6over4 tunneling mecha-
nism emulation) tools, as these significantly impact the nature of the network

11 Vagrant. https://www.vagrantup.com/ (Accessed 07/12/2015)
12 Automated virtual testing environment. https://github.com/markuskont/exfil-

testbench (Accessed 07/12/2015)

8

traffic. Overall, 126 packet capture files were generated to be used as test cases.
In the next phase we used the same monitoring nodes to run a selection of pop-
ular detection tools which would analyze these PCAP files, produce connection
logs, and possibly generate alerts for suspicious activity.

We considered a number of open-source monitoring tools that are often used
for network security analysis. These include the signature-based NIDSs Snort13

and Suricata14, as well as the network traffic analyzers Bro15 and Moloch16. For
Suricata, we used the Emerging Threats (ET) ruleset, while for Snort we experi-
mented with rulesets from both SourceFire (SF) and ET signature providers. In
our tests, the data exfiltrated from the host system comprise the highly sensitive
/etc/shadow file and the root user’s private SSH cryptographic keys. Both of
which could be used for gaining unauthorized access to potentially many other
systems in the organization.

Fig. 1. Testing environment network map

5 Experiment execution and discussion of results

The results of the experiments are presented in an extensive table (see Table
1 in Appendix 1.A). Each row in the table describes a single attack, while the
columns represent a detection tool that was used to attempt its detection. In
our results, we distinguished four potential outcomes for a test:

1. a positive match (denoted by letter Y and a green cell in the table) was
clearly identified as malicious activity with appropriate alerts;

13 Snort v2.9.8.0. http://manual.snort.org/ (Accessed 07/12/2015)
14 Suricata v2.1beta4. http://suricata-ids.org/docs/ (Accessed 07/12/2015)
15 Bro v2.4.1 https://www.bro.org/documentation/index.html (Accessed

07/12/2015)
16 Moloch v0.12.1. https://github.com/aol/moloch (Accessed 07/12/2015)

9

2. a partial or abnormal footprint (P and yellow cell) which raised an alert,
but the alert did not describe the activity appropriately;

3. a potential visible match (V and orange cell) from connection logs which
requires human analysis or sophisticated anomaly detection for a positive
match; and

4. in the worst case, no visible alerts nor connection logs were generated (N
and red cell).

Firstly, we observed that any exfiltration tool utilizing a specific application
layer protocol should adhere to its standard port numbers if the malicious user
aims to evade detection. For example, a HTTP tunnel on port 22 triggered an
outbound SSH Scan alert with the ET ruleset, whereas when port 80 was used,
only HTTP connection logs were generated such that we classified the attack
as being only visible. Note that we marked the outbound SSH Scan alert for
the HTTP tunnel on port 22 only as a partial match because it was incorrectly
identified as an outbound SSH connection. Additionally, the same rule was re-
sponsible for a partial match against the nc64 technique on port 22. Furthermore,
an alert was raised if a SSH header was detected on port 443, or if that port
was used to send unencrypted HTTP traffic. Similarly, if abnormal (non-DNS)
traffic was identified on UDP port 53, the ET ruleset triggered alerts for either
non-compliant traffic to DNS protocol, or for being overly aggressive (i.e., hav-
ing too many connections). These signatures were easily bypassed if TCP port
53 was used. However, it has to be noted that most server applications can be
bound to any applicable port number (e.g. SSH on tcp/2022, HTTPS console
over tcp/8443), and thus can potentially be used to avoid detection.

The difference between SF and ET rulesets in their default configurations is
significant. The former seems to focus solely on perimeter intrusions, and hence
could not detect any malicious outbound traffic in our tests. Furthermore, the
ET ruleset produced slightly different results in Snort and Suricata. Most im-
portantly, the former could clearly identify Ptunnel as the tool used for traffic
exfiltration. Bro does not employ any traditional signatures like Snort or Suri-
cata, but does create logs for all identified connections. As such, it was able
to produce log records of all test cases. However, although Bro does not gener-
ate alerts, it does have an interesting log file named weird.log wherein a record
of detected anomalous connections is kept. In fact, during our attacks, several
weird.log records were generated for non-compliant traffic on port 53. Addition-
ally, Bro’s SSH connection parser malfunctioned while processing non-standard
traffic, and abnormal logs could be observed in the detection system. Moloch
provides no alerts, but is designed as a packet capture, indexing and visualiza-
tion tool. In the most recent release, at the time of conducting the experiment,
Moloch does not support IPv6 due to various limitations when indexing 128-bit
IP addresses17. Therefore, IPv6-only iterations were unnoticed while IPv4 ses-
sions generated by nc64 in dual-stack configuration were visible. The t6to4 mode

17 Moloch 0.14.0 2016/05/08 CHANGELOG specifies a notice that “[IPv6] support
is experimental, and will change with ES 5.0.” https://github.com/aol/moloch/

blob/master/CHANGELOG (Accessed 16/08/2016)

10

in tun64 encapsulates the IPv6 packet as payload making it visible in IPv4 in-
dexing system. This was observed only in cases of TCP connections without
additional GRE encapsulation.

From the executed test results, detection of malicious activity by NIDS rules
was based predominantly on the direction of network traffic, protocol, and des-
tination port. This detection approach is generally favored because it uses re-
sources (e.g. CPU, RAM) efficiently, with an expensive payload analysis at-
tempted only after the preceding match conditions are achieved. In most cases,
the nc64 tool avoided being detected, and Table 1 shows which protocol/port
combinations can be used to minimize detection by selected NIDS solutions. In
comparison with other exfiltration tools, nc64 performed very well on avoiding
rule-based detection, and moreover could potentially elude payload inspection. In
contrast, the tun64 tool was detected in the majority of cases, since protocol-41
and protocol-47 triggered the rules and generated warning messages by NIDSs.
6to4 tunneling emulation was detected when TCP or 6in4-in-GRE encapsulation
was used, suggesting that double encapsulation is considered more suspicious.
However, if an organization relies on IPv6 tunneling-based transition mecha-
nisms utilizing 6in4 or GRE encapsulation, such warnings might be silenced or
ignored by network-monitoring personnel. In contrast to other tunneling tools
the approach taken by tun64 is feasible only if the network conditions comply
with the specific operational requirements.

6 Conclusions

In this paper, the authors addressed a fundamental problem which could allow
to bypass NIDSs by using the IPv6 tunneling-based and dual-stack transition
mechanisms in a certain way. The proof-of-concept tools were prototyped to
further verify under which circumstances the evasion of major open-source and
commercial NIDS and monitoring solutions would be possible. Developed tools,
tested along side with other well known protocol tunneling tools, proved to be
able to evade detection and addressed certain shortcomings in the core principles
of how modern NIDSs work.

It has to be noted, that any reasonably sophisticated method for exfiltrating
data will be hard to detect in real-time by existing NIDSs, especially in situations
where the data is split into smaller chunks and the resulting pieces use different
connections or protocols (e.g. IPv4 and IPv6). Detecting such activity would
require the capability to correlate the detection information in near real-time
across different flows. This is theoretically possible, but would most likely incur
a significant performance penalty and an increased number of false positives.
There are several possibilities to attempt correlating flows using both IPv4 and
IPv6 protocols. If the destination host (i.e. CnC) used in multi-protocol exfil-
tration has a DNS entry for both A and AAAA records, it would be possible to
perform a reverse lookup to identify that the connections are going to the same
domain name using IPv4 and IPv6 protocols simultaneously. This should not
happen under normal circumstances, since IPv6 is usually the preferred proto-

11

col on dual-stack hosts. Another option would be to rely on source NIC MAC
address for aggregating and correlating flows from both IPv4 and IPv6 which
are originating from the the same network interface. Note, that this requires
capturing the traffic from the network segment where the actual source node
resides, otherwise source MAC address might get overwritten by network de-
vices in transit. One caveat still remains — distinguishing the flows which are
belonging together, especially on busy hosts with many connections. Finally, be-
havior based detection (e.g. unexpected traffic, malformed packets, specification
non-compliance) would provide a way to detect such evasions, at the same time
introducing a significant amount of false positives.

It has to be noted that any commercial product which uses an open-source
tool for data acquisition is subjected to same limitations of the respective tool.
Also, the lack of knowledge regarding IPv6 exploitation methods translate into
low customer demand which leads to insufficient IPv6 support in final products.
Furthermore, any reasonably sophisticated data exfiltration method which splits
that data into smaller chunks and extracts the resulting pieces using different
connections/flows (e.g. IPv4 and IPv6) will be very hard to detect in real-time by
existing NIDS, which typically lack any capability to correlate across different
connections/flows. Finally, commercial tools are often too expensive for small
and medium sized organizations. Therefore, we did not consider these products
in our final evaluation.

Authors believe, that the tendency of use of IPv6 in attack campaigns con-
ducted by sophisticated malicious actors is going to increase; this is also rec-
ognized as an increasing trend by the security reports [16] [15] [4]. Since IPv6
security aspects are being addressed by protocol RFC updates and deprecation
of obsolete transition mechanisms, it would be required to focus on these issues
at the security solution developer (i.e. vendor) and implementer (i.e. consumer)
levels. Adding IPv6 support to the security devices would not solve this prob-
lem, since fundamental changes would be required in the way how network traffic
is interpreted and parsed, while being able to trace the context of various data
streams and perform their correlation. Also, end-users should know how to prop-
erly configure, deploy and monitor security solutions in order to gain maximum
awareness of the computer network flows under their direct supervision.

7 Acknowledgements

This research was conducted with the support of NATO Cooperative Cyber
Defense Center of Excellence. The authors would like to acknowledge the valuable
contribution of Leo Trukšāns, Walter Willinger, and Merike Kaeo.

Appendix 1.A

12

Table 1: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
http-22 4 TCP 22 N P P P V
http-443 4 TCP 443 N Y Y V V
http-53 4 TCP 53 N Y Y P V
http-80 4 TCP 80 N N V V V
Iodine 4 UDP 53 N N Y P V
nc64-t-22-4-b64 4 TCP 22 N P P V V
nc64-t-22-4 4 TCP 22 N P P V V
nc64-t-22-64-b64 4+6 TCP 22 N P P V V
nc64-t-22-64 4+6 TCP 22 N P P V V
nc64-t-22-6-b64 6 TCP 22 N P P V N
nc64-t-22-6 6 TCP 22 N P P V N
nc64-t-443-4-b64 4 TCP 443 N N N V V
nc64-t-443-4 4 TCP 443 N N N V V
nc64-t-443-64-b64 4+6 TCP 443 N N N V V
nc64-t-443-64 4+6 TCP 443 N N N V V
nc64-t-443-6-b64 6 TCP 443 N N N V N
nc64-t-443-6 6 TCP 443 N N N V N
nc64-t-53-4-b64 4 TCP 53 N N N P V
nc64-t-53-4 4 TCP 53 N N N P V
nc64-t-53-64-b64 4+6 TCP 53 N N N P V
nc64-t-53-64 4+6 TCP 53 N N N P V
nc64-t-53-6-b64 6 TCP 53 N N N P N
nc64-t-53-6 6 TCP 53 N N N P N
nc64-t-80-4-b64 4 TCP 80 N N N P V
nc64-t-80-4 4 TCP 80 N N N P V
nc64-t-80-64-b64 4+6 TCP 80 N N N P V
nc64-t-80-64 4+6 TCP 80 N N N P V
nc64-t-80-6-b64 6 TCP 80 N N N P N
nc64-t-80-6 6 TCP 80 N N N P N
nc64-u-22-4-b64 4 UDP 22 N N N V V
nc64-u-22-4 4 UDP 22 N N N V V
nc64-u-22-64-b64 4+6 UDP 22 N N N V V
nc64-u-22-64 4+6 UDP 22 N N N V V
nc64-u-22-6-b64 6 UDP 22 N N N V N
nc64-u-22-6 6 UDP 22 N N N V N
nc64-u-443-4-b64 4 UDP 443 N N N V V
nc64-u-443-4 4 UDP 443 N N N V V
nc64-u-443-64-b64 4+6 UDP 443 N N N V V
nc64-u-443-64 4+6 UDP 443 N N N V V
nc64-u-443-6-b64 6 UDP 443 N N N V N
nc64-u-443-6 6 UDP 443 N N N V N

13

Table 1: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
nc64-u-53-4-b64 4 UDP 53 N Y Y P V
nc64-u-53-4 4 UDP 53 N Y Y P V
nc64-u-53-64-b64 4+6 UDP 53 N Y Y P V
nc64-u-53-64 4+6 UDP 53 N Y Y P V
nc64-u-53-6-b64 6 UDP 53 N Y Y P N
nc64-u-53-6 6 UDP 53 N Y Y P N
nc64-u-80-4-b64 4 UDP 80 N N N V V
nc64-u-80-4 4 UDP 80 N N N V V
nc64-u-80-64-b64 4+6 UDP 80 N N N V V
nc64-u-80-64 4+6 UDP 80 N N N V V
nc64-u-80-6-b64 6 UDP 80 N N N V N
nc64-u-80-6 6 UDP 80 N N N V N
netcat-t-22-4 4 TCP 22 N N N V V
netcat-t-22-6 6 TCP 22 N N N V N
netcat-t-443-4 4 TCP 443 N N N V V
netcat-t-443-6 6 TCP 443 N N N V N
netcat-t-53-4 4 TCP 53 N N N P V
netcat-t-53-6 6 TCP 53 N N N P N
netcat-t-80-4 4 TCP 80 N N N V V
netcat-t-80-6 6 TCP 80 N N N V N
netcat-u-22-4 4 UDP 22 N N N V V
netcat-u-22-6 6 UDP 22 N N N V N
netcat-u-443-4 4 UDP 443 N N N V V
netcat-u-443-6 6 UDP 443 N N N V N
netcat-u-53-4 4 UDP 53 N Y Y P V
netcat-u-53-6 6 UDP 53 N Y Y P N
netcat-u-80-4 4 UDP 80 N N N V V
netcat-u-80-6 6 UDP 80 N N N V N
ptunnel 4 ICMP N Y N V V
ssh-4-22 4 TCP 22 N N V V V
ssh-4-443 4 TCP 443 N Y Y V V
ssh-4-53 4 TCP 53 N N V V V
ssh-4-80 4 TCP 80 N N V P V
ssh-6-22 6 TCP 22 N N V P N
ssh-6-443 6 TCP 443 N Y Y P N
ssh-6-53 6 TCP 53 N N V P N
ssh-6-80 6 TCP 80 N N V P N
tun64-t-22-isatap 4 TCP 22 N Y Y P N
tun64-t-22-t6over4 4 TCP 22 N Y Y P N
tun64-t-22-t6to4 4 TCP 22 N Y Y P V
tun64-t-443-isatap 4 TCP 443 N Y Y P N

14

Table 1: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
tun64-t-443-t6over4 4 TCP 443 N Y Y P N
tun64-t-443-t6to4 4 TCP 443 N Y Y P V
tun64-t-53-isatap 4 TCP 53 N Y Y P N
tun64-t-53-t6over4 4 TCP 53 N Y Y P N
tun64-t-53-t6to4 4 TCP 53 N Y Y P V
tun64-t-80-isatap 4 TCP 80 N Y Y P N
tun64-t-80-t6over4 4 TCP 80 N Y Y P N
tun64-t-80-t6to4 4 TCP 80 N Y Y P V
tun64-u-22-isatap 4 UDP 22 N Y Y P N
tun64-u-22-t6over4 4 UDP 22 N Y Y P N
tun64-u-22-t6to4 4 UDP 22 N Y Y P N
tun64-u-443-isatap 4 UDP 443 N Y Y P N
tun64-u-443-t6over4 4 UDP 443 N Y Y P N
tun64-u-443-t6to4 4 UDP 443 N Y Y P N
tun64-u-53-isatap 4 UDP 53 N Y Y P N
tun64-u-53-t6over4 4 UDP 53 N Y Y P N
tun64-u-53-t6to4 4 UDP 53 N Y Y P N
tun64-u-80-isatap 4 UDP 80 N Y Y P N
tun64-u-80-t6over4 4 UDP 80 N Y Y P N
tun64-u-80-t6to4 4 UDP 80 N Y Y P N
tun64-t-22-isatap-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6over4-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6to4-gre 4 TCP 22 N Y Y P V
tun64-t-443-isatap-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6over4-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6to4-gre 4 TCP 443 N Y Y P V
tun64-t-53-isatap-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6over4-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6to4-gre 4 TCP 53 N Y Y P V
tun64-t-80-isatap-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6over4-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6to4-gre 4 TCP 80 N Y Y P V
tun64-u-22-isatap-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6over4-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6to4-gre 4 UDP 22 N Y Y P V
tun64-u-443-isatap-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6over4-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6to4-gre 4 UDP 443 N Y Y P V
tun64-u-53-isatap-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6over4-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6to4-gre 4 UDP 53 N Y Y P V

15

Table 1: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
tun64-u-80-isatap-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6over4-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6to4-gre 4 UDP 80 N Y Y P V

References

1. Atlasis, A.: Attacking IPv6 Implementation Using Fragmentation. Tech. rep., Cen-
tre for Strategic Cyberspace + Security Science (2011)

2. Atlasis, A.: Security Impacts of Abusing IPv6 Extension Headers. Tech. rep., Cen-
tre for Strategic Cyberspace + Security Science (2012)

3. Atlasis, A., Rey, E.: Evasion of High-End IPS Devices in the Age of IPv6. Tech.
rep., secfu.net (2014)

4. Blumbergs, B.: Technical Analysis of Advanced Threat Tactics Targeting Criti-
cal Information Infrastructure. Cyber Security Review, Winter Edition pp. 25–36
(2014)

5. Blunden, B.: The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the
System, 2nd ed., chap. 14. Covert Channels. Jones and Bartlett Learning (2013)

6. Brangetto, P., Çalişkan, E., Rõigas, H.: Cyber Red Teaming - Organisational, tech-
nical and legal implications in a military context. Tech. rep., NATO CCD CoE
(2015)

7. Bukač, V.: IDS System Evasion Techniques. Master’s thesis, Masarykova Univerzita
Fakulta Informatiky (2010)

8. Carpenter, B., Jung, C.: Transmission of IPv6 over IPv4 Domains without Explicit
Tunnels. RFC 2529, IETF Secretariat (March 1999), standards Track

9. Colajanni, M., Zotto, L.D., Marchetti, M., Messori, M.: Defeating NIDS evasion
in Mobile IPv6 networks. In: IEEE (2011)

10. Colitti, L., Gunderson, S.H., Kline, E., Refice, T.: Evaluating IPv6 Adoption in
the Internet. In: PAM 2010. pp. 141–150. Springer-Verlag (2010)

11. Convery, S., Miller, D.: IPv6 and IPv4 Threat Comparison and Best-Practice Eval-
uation. White paper, Cisco Systems (March 2004)

12. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Mea-
suring IPv6 Adoption. In: ACM SIGCOMM14 (2014)

13. Ellens, W., Źuraniewski, P., Sperotto, A., Schotanus, H., Mandjes, M., Meeuwissen,
E.: Covert Channels in IPv6. In: Doyen, G., Waldburger, M., Čeleda, P., Sperotto,
A., Stiller, B. (eds.) Flow-Based Detection of DNS Tunnels, Lecture Notes in Com-
puter Science, vol. 7943, pp. 124–135. Springer Berlin Heidelberg (2013)

14. Farinacci, D., Li, T., Hanks, S., Meyer, D., Traina, P.: Generic Routing Encapsu-
lation (GRE). RFC 2784, IETF Secretariat (March 2000), standards Track. Sup-
plemented with RFC2890.

15. Fortinet: Biting the Bullet: A Practical Guide for Beginning the Migration to IPv6.
white paper, Fortinet Inc. (2011)

16. G Data SecurityLabs: Uroburos: Highly complex espionage software with Russian
roots. Tech. rep., G Data Software AG (February 2014)

17. Gont, F.: Processing of IPv6 “Atomic” Fragments. RFC 6946, IETF Secretariat
(May 2013), standards Track. Updates RFC 2460, 5722

16

18. Gont, F.: Security Implications of IPv6 on IPv4 Networks. RFC 7123, IETF Sec-
retariat (February 2014), informational

19. Gont, F., Chown, T.: Network Reconnaissance in IPv6 Networks. Tech. rep., IETF
Secretariat (February 2015), internet Draft. Obsoletes RFC 5157 (if approved)

20. Gont, F., Liu, W., Bonica, R.: Transmission and Processing of IPv6 Options. Tech.
rep., IETF Secretariat (March 2015), best Current Practice. Updates RFC 2460
(if approved)

21. Gont, F., Heuse, M.: Security Assessments of IPv6 Networks and Firewalls. IPv6
Congress 2013 (2013), presentation

22. of the HKSAR, G.: IPV6 Security. Tech. rep., The Government of the Hong Kong
Special Administrative Region (May 2011)

23. Hogg, S., Vyncke, E.: IPv6 Security. Cisco Press (2009)
24. Krishnan, S.: Handling of Overlapping IPv6 Fragments. RFC 5722, IETF Secre-

tariat (December 2009), standards Track. Updates RFC 2460
25. Krishnan, S., Woodyatt, J., Kline, E., Hoagland, J., Bhatia, M.: A Uniform Format

for IPv6 Extension Headers. RFC 6564, IETF Secretariat (April 2012), standards
Track. Updates RFC 2460

26. Lucena, N.B., Lewandowski, G., Chapin, S.J.: Covert Channels in IPv6. In:
Danezis, G., Martin, D. (eds.) PET 2005. pp. 147–166. Springer-Verlag (2006)

27. Moore, K.: Connection of IPv6 Domains via IPv4 Clouds. RFC 3056, IETF Sec-
retariat (February 2001), standards Track

28. Murphy, R.: IPv6 / ICMPv6 Covert Channels. DEF CON’14 (2014), presentation
29. National Cybersecurity and Communications Integration Center: ICS-CERT Mon-

itor. Tech. rep., US Dep. of Homeland Security (December 2013)
30. Niemi, O.P., Levomki, A., Manner, J.: Dismantling Intrusion Prevention Systems.

In: ACM SIGCOMM12 (August 2012)
31. Nordmark, E., Gilligan, R.: Basic Transition Mechanisms for IPv6 Hosts and

Routers. RFC 4213, IETF Secretariat (October 2005), standards Track
32. Pastrana, S., Montero-Castillo, J., Orfila, A.: Advances in Security Information

Management: Perceptions and Outcomes, chap. 7. Evading IDSs and firewalls as
fundamental sources of information in SIEMS. Nova Science Publishers (January
2013)

33. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: Eluding
network intrusion detection. Tech. rep., DTIC Document (January 1998)

34. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 Traffic:
What Happened at the World IPv6 Day? In: Taft, N., Ricciato, F. (eds.) 13th
International Conference, PAM 2012. pp. 11–20. Springer-Verlag (March 2012)

35. S.Degen et.al.: Testing the security of IPv6 implementations. Tech. rep., Ministry
of Economic Affairs of the Netherlands (March 2014)

36. Steffann, S., van Beijnum, I., van Rein, R.: A Comparison of IPv6-over-IPv4 Tunnel
Mechanisms. RFC 7059, IETF Secretariat (November 2013), informational

37. Tadayoni, R., Henten, A.: Transition from IPv4 to IPv6. In: 23rd European Re-
gional Conference of the International Telecommunication Society (July 2012)

38. Taib, A.H.M., Budiarto, R.: Evaluating IPv6 Adoption in the Internet. In: 5th
Student Conference on Research and Development. IEEE (December 2007)

39. Templin, F., Gleeson, T., Thaler, D.: Intra-Site Automatic Tunnel Addressing Pro-
tocol (ISATAP). RFC 5214, IETF Secretariat (March 2008), informational

40. TrendLabs: Targeted Attack Trends 2014 Report. Tech. rep., TrendMicro inc.
(2015)

17

41. Troan, O., Carpenter, B.: Deprecating the Anycast Prefix for 6to4 Relay Routers.
RFC 7526, IETF Secretariat (May 2015), best Current Practice. Obsoletes RFC
3068, 6732

42. Vidal, J.M., Castro, J.D.M., Orozco, A.L.S., Villalba, L.J.G.: Evolutions of Evasion
Techniques Aigainst Network Intrusion Detection Systems. In: ICIT 2013, The 6th
International Conference on Information Technology (May 2013)

43. Wu, P., Cui, Y., Wu, J., Liu, J., Metz, C.: Transition from IPv4 to IPv6: A State-
of-the-Art Survey. IEEE Communications Surveys and Tutorials 15(3), 1407–1424
(2013)

Appendix 5

Publication VM. Kont,M. Pihelgas, K.Maennel, B. Blumbergs, and T. Lepik. Frankenstack:Toward real-time Red Team feedback. InMILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), pages 400–405, October 2017

© 2017 IEEE. Reprinted. Internal or personal use of this material is permitted. Permissionfrom IEEE must be obtained for all other uses, in any current or future media, includingreprinting/republishing this material for advertising or promotional purposes, creatingnew collective works, for resale or redistribution to servers or lists, or reuse of any copy-righted component of this work in other works.The paper is included in the Proceedings of the 2017 IEEE Military Communications Con-
ference (MILCOM 2017).DOI: 10.1109/MILCOM.2017.8170852

155

Frankenstack: Toward Real-time Red Team
Feedback

Markus Kont
NATO Cooperative Cyber

Defence Centre of Excellence
markus.kont[a]ccdcoe.org

Mauno Pihelgas
NATO Cooperative Cyber

Defence Centre of Excellence
mauno.pihelgas[a]ccdcoe.org

Kaie Maennel
Tallinn University of

Technology
kamaen[a]ttu.ee

Bernhards Blumbergs
NATO Cooperative Cyber

Defence Centre of Excellence;
IMCS UL, CERT.LV Laboratory

bernhards.blumbergs[a]cert.lv

Toomas Lepik
Tallinn University of

Technology
toomas.lepik[a]ttu.ee

Abstract—Cyber Defense Exercises have received much at-
tention in recent years, and are increasingly becoming the
cornerstone for ensuring readiness in this new domain. Crossed
Swords is an exercise directed at training Red Team members for
responsive cyber defense. However, prior iterations have revealed
the need for automated and transparent real-time feedback
systems to help participants improve their techniques and under-
stand technical challenges. Feedback was too slow and players
did not understand the visibility of their actions. We developed
a novel and modular open-source framework to address this
problem, dubbed Frankenstack. We used this framework during
Crossed Swords 2017 execution and evaluated its effectiveness
by interviewing participants and conducting an online survey.
Due to the novelty of Red Team-centric exercises, very little
academic research exists on providing real-time feedback during
such exercises. Thus, this paper serves as a first foray into a
novel research field.

Keywords—automation, cyber defense exercises, education,
infrastructure monitoring, real-time feedback, red teaming

I. INTRODUCTION

Cyber defense exercises (CDX) are crucial for training
readiness and awareness within the cyber domain. This new
domain is acknowledged by NATO alongside with land, sea,
air, and space [1]. Alliance nations are endorsing the devel-
opment of both defensive and responsive cyber capabilities.
In this context, the paper focuses on further evolving the
quality and learning experience of CDX, aimed at developing
cyber red teaming [2] and responsive skillset. Crossed Swords
(XS) [3], a techical exercise developed by NATO Cooperative
Cyber Defense Centre of Excellence (NATO CCD COE) since
2014, is used as a platform to create the proposed framework.
The solution is applicable to any other CDX where standard
network and system monitoring capability is available.

A. Background

XS is an intense hands-on technical CDX oriented at pene-
tration testers working as a single united team, accomplishing
mission objectives and technical challenges in a virtualized
environment. While common technical CDX is aimed at
exercising defensive capabilities (i.e., Blue Team – BT), XS
changes this notion, identifies unique cyber defense aspects
and focuses on training the Red Team (RT).

To develop and execute the exercise, multiple teams are
involved: rapid response team (i.e., RT); game network and
infrastructure development (Green Team – GT); game scenario
development and execution control (White Team – WT);

defending team user simulation (i.e., BT); and monitoring
(Yellow Team – YT).

The RT consists of multiple sub-teams based on the engage-
ment specifics, those being: network attack team, targeting
network services, protocols and routing; client side attack
team, aiming at exploiting human operator and maintaining
access to the hosts; web application attack team, targeting web
services, web applications and relational databases; and digital
forensics team, performing data extraction and digital artefact
collection. These sub-teams must coordinate their actions,
share information and cooperate when executing attacks to
reach the exercise objectives.

The main goal is to exercise RT in a stealthy fast-paced
computer network infiltration operation in a responsive cyber
defense scenario [4]. To achieve this, the RT must uncover the
unknown game network, complete a set of technical challenges
and collect attribution evidence, while staying as stealthy as
possible. Note that XS is not a capture-the-flag competition,
as the RT has to pivot from one sub-objective to another in
order to achieve the final mission according to the scenario.
Furthermore, Red sub-teams are not competing with each
other, and rather serve as specialized branches of a single unit.

B. Problem Statement

Prior XS iterations revealed several problems with RT learn-
ing experience. Primarily, the YT feedback regarding detected
attacks from the event logs and network traffic was presented
at the end of every day, which was not well suited to the
short, fast and technical nature of the exercise. The feedback
session addressed only some noteworthy observations from the
day, but RT participants need direct and immediate feedback
about their activity to identify mistakes as they happen. This
feedback needs to be adequately detailed, so that the RT
can understand why a specific attack was detected and then
improve their approach. Finally, to make the feedback faster,
the slowest element in the loop—the human operator—needs
to be eliminated.

Therefore, manual data analysis by the YT needs to be
automated as much as possible. To achieve this, we used the
same open-source tools as in the previous XS iterations, but
added in event correlation, a novel query automation tool,
and a newly developed visualization solution. We decided to
call the framework Frankenstack. Fig. 1 illustrates the role of
Frankenstack in the XS exercise.

Simulated target infrastructure
Attacks Red team

N
etw

ork traffic

E
vent logs

N
etflow

Frankenstack

Yellow team

Data input

Monitors,
develops,
maintains

Real-tim
e feedback

Internal events

White team
Output

C
ontrols,

evaluates

Data
correlation

and
aggregation

Fig. 1. High-level overview of Frankenstack

The RT has to receive timely and efficient feedback from
the YT regarding detected attacks on the target systems. This
feedback is critical to raise the level of stealthiness, identify
the gaps of RT coordination, and analyze the tools and tactics
used for computer network operations. The effectiveness of
our framework was assessed during the main execution of XS
2017 (XS17), where the stack provided real-time monitoring
feedback to the RT.

The remainder of the paper is organized as follows: section
II provides an overview of related work, section III describes
our monitoring stack, section IV presents RT feedback results,
while section V discusses future work, and section VI con-
cludes the paper.

II. RELATED WORK

For teaching purposes, the benefit of exercises and compe-
titions is generally well accepted and documented [5], [6], [7],
[8]. Unfortunately, not much research has focused on the per-
ception of feedback which is provided to the training audience,
especially in the context of monitoring technical indicators
of compromise in realistic environments. Thus, this section
presents research related to both measuring and improving the
learning experience as well as situation awareness (SA) during
cyber exercises.

Dodge et al. discussed CDX network traffic analysis in [9],
a practice that is common in modern exercises not only for
situational awareness (SA) but also as educational tool, for
elaborating attacker campaigns, for training network analysts,
etc. However, this early paper focuses on traffic capture and
initial profiling, and does not consider distractions such as
traffic generation, increasing infrastructure complexity, host
instrumentation, data source correlation, or the need for imme-
diate feedback. In [10], Holm et al. correlated network traffic
and RT attack logs from Baltic Cyber Shield, a precursor
for Locked Shields and Crossed Swords exercises. However,
their goal was to improve existing metrics for vulnerability
scoring, as opposed to participant education. Likewise, in [11],

Brynielsson et al. conducted a similar empirical analysis on
CDXs to profile attacks and create attacker personas.

In [12], Arendt et al. presented CyberPetri, a circle-packing
visualization component of Ocelot, which was previously
presented in [13] as a user-centered decision support visu-
alization. They presented several use cases of the tool, but
their main goal was high-level feedback to network analysts
based on target system service availability reports. Although
the tool was useful for high-level decision making, technical
RT members are more interested in immediate effects of
their attacks on target systems. Note that any single system
is often a supporting pillar for more complex services, and
is not noticeable to end-users. Nevertheless, modern security
monitoring is built upon instrumentation of these systems, to
find RT footprints and to trigger notification upon breaching
these digital tripwires.

A paper [14] by Henshel et al. describes the assessment
model for CDXs based on the Cyber Shield 2015 example,
as well as integrated evaluation of metrics for assessing team
proficiency. In addition to data collected during the exercise,
they also conducted a pre-event expertise survey to determine
possible relationships between prior expertise and exercise
performance. For future assessments they suggest that near
real-time analysis of the collected data is required—they stress
that raw data collection is not a problem, but the capability to
meaningfully analyze is the limiting factor. Manual methods
do not scale with the huge amounts of incoming data. This
closely coincides with our observations in section I-B and this
is what we aim to improve.

Furthermore, existing academic research commonly relies
on monolithic tools, which are often not accessible to the
general public, thus, making experiments difficult, if not
impossible, to reproduce. We seek to provide an inexpensive
open-source alternative to these products. The next section
describes our modular monitoring architecture.

III. FRANKENSTACK

Commercial tools are too expensive for smaller cyber exer-
cises, in terms of licensing fees, hardware cost and specialized
manpower requirements. Detection logic in commercial tools
is also not available to the general public, which hinders YT’s
ability to provide detailed explanations of detected attacks.
Frankenstack is easy to customize as individual elements of the
stack are industry standard tools which can be interchanged.
Note that we opted to use a commercial tool SpectX as an
element within Frankenstack for log filtering, due to on-site
competency and developer support. However, this function
could have been achieved with the open-source Elastic stack
[15]. Our stack provides a clear point of reference to other
researchers and system defenders who wish to compile the
monitoring framework in their particular environments, as the
overall architecture is novel.

The data available to us during XS included full ERSPAN
(Encapsulated Remote Switched Port ANalyzer) traffic mirror
from gamenet switches and NetFlow from gamenet routers.
This was provided by the GT. Furthermore, we instrumented

gamenet systems to collect numerical metrics (e.g., CPU and
memory usage, and network interface statistics) and logs (e.g.,
syslog from Linux, Event Logs from Microsoft Windows,
Apache web server access logs, and audit logs from Linux
command line executions). Such host instrumentations are
very difficult to implement in a standard CDX with BT training
focus: if the intent is to give BTs full control of a simulated
infrastructure, then they also have full volition to disable
these tools. However, as the XS training audience is the RT,
then we could maintain control of all target systems and
ensure a constant stream of monitoring data. Moreover, we
complemented the list of BT data sources with various YT
honeypots and decoy servers.

Detailed overview of the resulting stack, in relation to data
processing pipelines, is presented in Fig. 2. The blue area
represents available data sources, the gray area stands for
data storage, and the yellow area denotes the YT presentation
layer (i.e., visualization tools on five monitors). Blue and
green elements represent target systems and all other elements
outside colored boundaries are processing tools. Custom tools
that we developed are highlighted with a dark yellow circle.
Note that some tools, such as Moloch, are designed for both
data storage and visualization, but are not presented in these
respective areas because only their API components were used
for processing automated queries.

We opted against using NetFlow data, as modern packet
capture analyzers (e.g., Suricata, Bro, and Moloch) can fill this
role, albeit by needing more processing power and memory.
Additionally, these tools commonly present their output in
textual log format, which we fed back into the central logging
and correlation engine. Thus, the problem of identifying and
displaying high-priority IDS alerts can be simplified into a log
analysis problem.

Frankenstack uses event correlation for integrating various
information sources as this field has been well researched in
the context of log management [16], [17], [18]. We open-
sourced the correlation ruleset in [19]. See Listing 1 for an
example raw log entry from Snoopy Logger [20] that was
converted into a more universal human-readable security event
that could be presented to the general audience on various
dashboards while preserving the raw message for anyone wish-
ing to drill down. Note that specific IP addresses have been
removed from this example. This generalization is necessary
for handling and grouping subsequent log entries that continue
describing the same event, e.g., additional commands executed
on the same host via SSH.

Listing 1. Event generalization by frankenSEC
#INPUT
login:administrator ssh:(SRC_IP 58261 DST_IP 22)
username:administrator uid:1001 group:administrator
gid:1001 sid:6119 tty:(none) cwd:/home/administrator
filename:/usr/bin/passwd: passwd administrator

#OUTPUT
SRC_IP->[DST_IP]: Command execution by administrator
over SSH

Post-mortem analysis of available data sources has proven
effective during prior CDXs for packet capture (PCAP) anal-
ysis, but requires a significant amount of time and manual
work. Again, this clashes with the short time-frame of a CDX.
Furthermore, search queries are often written ad hoc during
investigations and subsequently forgotten, making analysis
results difficult to reproduce. Thus, we created Otta [21], a
novel query documentation and automation tool for period-
ically executing user-defined queries on large datasets and
converting aggregated results into time-series metrics. Otta
enables trend graphing, alerting, and anomaly detection for
stored user-defined queries. This reduces time spent on anal-
ysis and ensures reproducibility by documenting the queries
that produced the results.

We used various open-source tools for timelining metrics
and log data, for displaying alerts, and presenting correlated
information. There are slight differences in handling various
incoming alerts. While many types of alerts (e.g., CPU and
disk usage) trigger and recover automatically based on a set
of thresholds, there are some types (e.g., IDS alerts) that
lack the concept of a recovery threshold. Thus, the alert
will never recover once raised, leading to an overabundance
of information on the central dashboard. Furthermore, batch
bucketing methods and timelines are lossy, as only the most
frequent items are considered. The volatile nature of CDXs
and an abundance of generated network traffic can therefore
cause these dashboards to be too verbose to follow efficiently.

Attack maps are not usable because they rely on geo-
graphical data which is completely fictional in many CDX
environments. Therefore, we developed Event Visualization
Environment, or EVE, a novel web-based tool for visualizing
correlated attacks in relation to gamenet infrastructure. The
Alpha version of this tool has been made publicly available
in [22]. EVE is a web application that shows attacks carried
out by the RT in real time with a custom gamenet network
map as background. Probes can send information to EVE
listener in JSON format. Real-time visualization is using
WebSocket technology—eliminating the need to reload the
page for updated results.

EVE supports combining multiple events in a short time
window, and that share the same source and destination
addresses, into a unified attack. Resulting attacks are sub-
sequently displayed as arrows connecting the circles around
source and target hosts on the network map, while detailed
attack information is displayed next to the network map. Using
the gamenet map makes EVE a very intuitive tool for enabling
participants and observers alike to comprehend CDX events on
a high-level.

During the exercise EVE was available only to YT and
WT members, as it revealed the entire exercise network map
that RT had to discover on their own. However, EVE has a
dedicated replay mode to display all the attacks condensed
into a given time period, allowing participants to obtain an
overview of the attacks as well as understand the pace and
focus of the previous attack campaign. For instance, attacks
from the previous day can be replayed in 15 minutes. EVE

network

ERSPANnetflow

targets

logsmetrics

honeypots

suricata

moloch syslog-nginfluxdb elastic

scirius kibanagrafana

kapacitor

rsyslog SEC

mysql

EVE alerta

otta

Fig. 2. Data flow between Frankenstack elements during XS17

TABLE I
DEDUPLICATION BY EVENT SOURCE

Event source Total events Unique events
displayed

Percentage
displayed

Apache 1908 35 1.83%
IDS 23790 616 2.59%
Snoopy logger 2962 40 1.35%
Total 28660 691 2.41%

was shown in replay mode to RT participants after the ex-
ercise concluded. This compressed replay was very effective
in presenting the most prevalent problems, such as periodic
beaconing during otherwise silent night periods and verbosity
of particular network sub-team attacks.

Alerta [23] served as the primary dashboard to display alerts
to the RT. We used the HTTP API for submitting Frankenstack
events to Alerta. The RT had direct access to the Alerta web
interface and could write their own filtering rules to view
information relevant to their current campaign. Finally, we
present Tab. I to illustrate how Frankenstack performed in
deduplicating the events that were displayed to the RT on the
Alerta dashboard. Note that deduplication was primarily based
on the generalized event descriptions (see Listing 1).

IV. ASSESSMENT

The tools and infrastructure are essential for learning, but
they do not make the exercise successful by default. Often
human factors, such as how YT and RT members perceive
and use the tools, have significant impact.

One essential part of the assessment was to observe the be-
havior of the RT members and their interaction with Franken-
stack during the exercise in order to gain further insights
into their progress and learning experience. We carried out
qualitative interviews with RT participants, to estimate their

reaction to Frankenstack and their overall learning progress.
The interviews took place in casual settings during breaks in
execution. Furthermore, we conducted a quantitative survey
in the form of an online questionnaire. The survey consists
of multiple choice or ranking style questions with the ability
to provide additional comments for each question. The survey
concluded by asking some general questions about meeting the
training objectives and overall satisfaction with the exercise.

A. Feedback combined from interviews, survey and observa-
tions

This subsection includes the analysis of participants feed-
back. Improvement suggestions to learning design are pre-
sented in the following subsection IV-B.

We received 14 survey responses out of 27 participants
(52%). 46% of participants had attended other exercises, but
none of those exercises had attempted to provide SA via
a similar toolset. The remaining 54% had not previously
attended any exercise.

There were four large screens in the training room directed
to the RT, displaying Alerta, Grafana, Scirius, and Suricata.
A fifth screen displaying EVE was only visible to YT and
WT members. Most RT members preferred to view the main
screens displayed in training room, and 38% responded that
they checked the screens every 60 minutes or less. Another
38% checked the screens every 30 to 50 minutes. RT members
were not restricted from accessing any of the Frankenstack
web interfaces. The survey revealed that learners did access
the monitoring framework on their local computers when at-
tempting new attack vectors. Thus, tools served their intended
usage.

Alerta was considered most useful (46%), followed by
Moloch (31%). There was no clear result for the least useful
tool. The respondents expressed mixed feelings on the ease of

use of the SA tools: 38% equally agreeing and disagreeing,
and the remainder (24%) being neutral.

Regarding learning impact, 79% agreed (of those 57%
strongly agreed) that the SA given during exercise is useful
for their learning process, while 21% were neutral. In terms
of the feedback rate, 77% of the respondents considered the
speed of feedback to be at the correct level, 15% considered
it too slow and 8% considered it too fast. Furthermore, 57%
agreed that alerts were accurate and sufficient for their learning
process, while 43% were neutral about this question. However,
several respondents revealed being too focused on achieving
their primary objectives, and thus unable to properly switch
between their tools and feedback screens.

In relation to visibility, 45% of the participants agreed that
they had learned a lot about how their actions can be detected
(i.e., it is useful to see simultaneously what attack method
could be detected, and how), and 30% were more careful with
their attacks and thus tried to be stealthier than they normally
would have been. However, there were some unintended side-
effects. The feedback sometimes provided insight into the
network map that the RT was tasked to discover independently.
For example, if the RT probes a yet unknown node on a
network, the logs generated on the host might reveal the target
hostname (e.g., sharepoint or ftp), which consequently implies
the purpose of the system—something that would not be
apparent from an IP address. Thus, there is a fine line between
revealing too little or too much to the training audience.

Furthermore, some comments revealed a loss of emphasis
on stealth due to exercise time constraints, i.e., RT members
knowingly used more verbose techniques closer to the ob-
jective deadline. To clarify, 64% of respondents confirmed
that the SA tools were not distracting them nor had negative
impact, while 30% agreed that they were distracted. The
remaining 6% were neutral. This confirms the challenges of
providing instant feedback, as the learning potential is not fully
used. The question is how this learning experience is impacting
long-term behavior of the participant.

One of the key training aspects is working as a team in
achieving goals. Thus, team communication and cooperation
are vital. Overall, 83% of respondents indicated some im-
provement of the skills for these specific training objectives.
However, feedback concerning the impact of SA tools on team
communication and cooperation is mixed—50% perceived
positive impact, whereas 21% were negative and remainder
were neutral. Several respondents acknowledged less need for
verbal communication, as they could see relevant information
on the screens. Unfortunately, not all RT members were
able to interpret and perceive this information correctly. This
combined with the reduced need for communication meant
that not all participants progressed as a team.

Compared to other CDXs, 50% responded that they needed
less information from YT members, as they obtained relevant
SA on their own. Guidance, however, is a critical success
factor for learning, especially in a team setting. 64% of partic-
ipants said they had sufficient help for their learning process,
i.e., when they did not know how to proceed, their team mem-

bers or sub-team leaders provided guidance. However, 64% is
a rather disappointing result and could clearly be increased
with improved learning design. Some respondents admitted
that they did not know how other teams were progressing and
wasted time on targets that were not vulnerable. This caused
significant frustration and stress, especially when combined
with the compressed timeframe of a CDX.

B. Learning improvement suggestions

Given the amount of work that goes into preparing such ex-
ercises, the level of learning potential needs to be maximized.
Our analysis suggests that small learning design changes
may have significant impact. This section presents the main
recommendations derived from these results.

From the learning perspective, we cannot assume that par-
ticipants know how to use or interpret the results. Lack of
in-depth knowledge of monitoring tools (e.g., where is raw
data collected, what is combined and how, what needs to
be interpreted in which way, etc.) has a negative impact on
learning. A dedicated training session or workshop needs to
take place prior to execution. Furthermore, in the light of the
survey results, inclusion of various tools into Frankenstack
needs to be carefully evaluated to avoid visual distractions for
RT participants. There is also a need to reduce prior system
and network monitoring knowledge by making the output more
self-explanatory.

Given the difficulties in switching between multiple screens
whilst also trying to achieve an objective in unfamiliar net-
work, one can easily suggest compressing the amount of
presentable information to reduce the number of monitoring
screens. However, this cannot be attained without reducing the
amount of technical information. The purpose of Frankenstack
is not to provide SA to high-level decision makers, but to
present feedback to technical specialists. Thus, a better ap-
proach would be restructuring each sub-team with a dedicated
monitoring station with a person manning it, allowing team
members to focus on their objectives and get feedback relevant
only for their actions. As such, RT members must be given a
hands-on opportunity to use monitoring systems.

In RT exercises such as XS, there are several main ob-
jectives to be achieved by the whole RT. It is challenging
to evaluate reaching objectives, since there are many steps
involved in reaching a specific objective. Often the tasks
or sub-objectives are divided between sub-teams (network,
web and client-side) and between individuals in those sub-
teams. The difficulty of a specific exploitation depends on the
individual’s skillset, which varies widely. Hence, there is a
trade-off between assigning a task to an experienced member
to increase the chance of success, versus teaching a new
member. For example, an experienced network administrator
is more effective in exploiting network protocols and is likely
less visible while doing so, but may not learn anything new.

Discussions and feedback revealed that several respondents
felt they were stuck and working alone. Division of the tasks
between sub-teams and individuals also diminishes the learn-
ing potential. One training design option to alleviate this issue

would be regular team timeouts for reflection. Reflective team
sharing is crucial for the learning success of each individual,
and would overcome the project management approach where
each team member focuses only on personal objectives. Higher
emphasis should be on offering tips and helping those stuck on
an objective to move forward whilst also keeping track of the
feedback provided by Frankenstack. The coaching could also
be handled in the form of a buddy system where RT members
are not assigned a sub-task individually, but in groups of two
or three. They would then have to share their knowledge and
can benefit from different individual backgrounds.

Finally, it is important to have better time-planning during
the execution. While it is certainly appropriate to allow for
flexibility in the paths that the RT can take to solve the
objectives, participants should avoid spending too much time
on wrong targets. Nevertheless, the learning impact of the
exercise in this format (i.e., with real-time feedback) is very
positive. Only 13% of all participants’ responses reported no
significant change in their skills, while an overwhelming 87%
perceived an improvement in their skill level, and 93% agreed
that they were satisfied with exercise.

V. FUTURE WORK

We encountered several unforeseen problems, as methods
for assessing technical RT campaigns have to be incorporated
into the game scenario itself. However, most XS17 targets
had already been developed before the initial stages of this
research. We plan to increase information sharing between Red
and Yellow teams to improve RT progress measurement. Thus,
we can develop better assessment methodologies for RT skill
levels and YT feedback framework.

Development of a new dynamic version of EVE is already
underway for the next XS iteration. In addition to the network
map view, it can draw the network map dynamically as RT
compromises new targets. Currently, EVE can only be used
after the end of the exercise. However, in addition to providing
more actionable alerting, the new version can also reduce RT
work for mapping new systems and allow them to focus on
the technical exercise.

VI. CONCLUSION

In this paper, we have presented the core challenges in
organizing a CDX with Red Team emphasis, such as timeliness
and accuracy of feedback, and ensuring participant education
without compromising the game scenario. We compiled a
novel stack of open-source tools to provide real-time feedback
and situational awareness, and conducted surveys among the
RT members to assess the effectiveness of this method.

Frankenstack feedback regarding learning impact was
mainly positive. However, there are critical questions to answer
when designing the RT exercises, such as what is the right
balance of information to provide to the RT, does the behavior
change due to monitoring or information visible (i.e., learners
unconsciously limit themselves by not trying out more risky
strategies, etc.). Also, some further learning design changes,
and not necessarily only limited to SA, can maximize the

return on the significant investment into preparing such RT
exercises. We hope to spark a discussion on improving these
problems.

VII. ACKNOWLEDGMENTS

The authors would like to thank Mr. Risto Vaarandi, Mr.
Hillar Aarelaid and Prof. Olaf M. Maennel for their valuable
contributions. This work has been supported by the Estonian
IT Academy (StudyITin.ee).

REFERENCES

[1] T. Minárik, “NATO Recognises Cyberspace as a Domain of Opera-
tions at Warsaw Summit,” Available: https://ccdcoe.org/nato-recognises-
cyberspace-domain-operations-warsaw-summit.html.

[2] P. Brangetto et al., “Cyber Red Teaming - Organisational, technical and
legal implications in a military context,” NATO CCD CoE, Tech. Rep.,
2015.

[3] “Crossed swords exercise,” Available: https://ccdcoe.org/crossed-
swords-exercise.html.

[4] P. Brangetto et al., “From Active Cyber Defence to Responsive Cyber
Defence: A Way for States to Defend Themselves Legal Impli-
cations,” Available: https://ccdcoe.org/multimedia/active-cyber-defence-
responsive-cyber-defence-way-states-defend-themselves-legal.html.

[5] B. E. Mullins et al., “The impact of the nsa cyber defense exercise on the
curriculum at the air force institute of technology,” in System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference on,
Jan 2007, pp. 271b–271b.

[6] A. T. Sherman et al., “Developing and delivering hands-on information
assurance exercises: experiences with the cyber defense lab at umbc,” in
Proceedings from the Fifth Annual IEEE SMC Information Assurance
Workshop, 2004., June 2004, pp. 242–249.

[7] R. C. Dodge et al., “Organization and training of a cyber security team,”
in Systems, Man and Cybernetics, 2003. IEEE International Conference
on, vol. 5, Oct 2003, pp. 4311–4316.

[8] G. H. Gunsch et al., “Integrating cdx into the graduate program,” in
Systems, Man and Cybernetics, 2003. IEEE International Conference
on, vol. 5, Oct 2003, pp. 4306–4310.

[9] R. C. Dodge and T. Wilson, “Network traffic analysis from the cyber
defense exercise,” in Systems, Man and Cybernetics, 2003. IEEE Inter-
national Conference on, vol. 5, Oct 2003, pp. 4317–4321.

[10] H. Holm et al., “Empirical analysis of system-level vulnerability metrics
through actual attacks,” IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 6, pp. 825–837, Nov 2012.

[11] J. Brynielsson et al., “Using cyber defense exercises to obtain additional
data for attacker profiling,” in 2016 IEEE Conference on Intelligence and
Security Informatics (ISI), Sept 2016, pp. 37–42.

[12] D. Arendt et al., “Cyberpetri at cdx 2016: Real-time network situation
awareness,” in 2016 IEEE Symposium on Visualization for Cyber Secu-
rity (VizSec), Oct 2016, pp. 1–4.

[13] D. L. Arendt et al., “Ocelot: user-centered design of a decision support
visualization for network quarantine,” in 2015 IEEE Symposium on
Visualization for Cyber Security (VizSec), Oct 2015, pp. 1–8.

[14] D. S. Henshel et al., “Predicting proficiency in cyber defense team
exercises,” in MILCOM 2016 - 2016 IEEE Military Communications
Conference, Nov 2016, pp. 776–781.

[15] “Elastic stack,” Available: https://www.elastic.co/.
[16] R. Vaarandi et al., “Simple event correlator - best practices for creating

scalable configurations,” in Cognitive Methods in Situation Awareness
and Decision Support (CogSIMA), 2015 IEEE International Inter-
Disciplinary Conference on, March 2015, pp. 96–100.

[17] R. Vaarandi, “Platform independent event correlation tool for network
management,” in Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP, 2002, pp. 907–909.

[18] ——, “Sec - a lightweight event correlation tool,” in IP Operations and
Management, 2002 IEEE Workshop on, 2002, pp. 111–115.

[19] “Frankensec,” Available: https://github.com/ccdcoe/frankenSEC.
[20] “Snoopy Logger,” Available: https://github.com/a2o/snoopy.
[21] “Otta,” Available: https://github.com/ccdcoe/otta.
[22] “Eve - event visualization environment,” Available: https://github.com/

ccdcoe/EVE.
[23] N. Satterly, “alerta,” Available: http://alerta.io/.

Appendix 6

Publication VIM. Pihelgas. Design and Implementation of an Availability Scoring Systemfor Cyber Defence Exercises. In 14th International Conference on Cyber
Warfare and Security (ICCWS 2019), page 329–337, 2019

No reproduction, copy or transmissionmay bemadewithout written permission from theauthor(s).The paper is included in the Proceedings of the 14th International Conference on Cyber
Warfare and Security (ICCWS 2019). ISBN: 978-1-912764-11-2; ISSN: 2048-9870.

163

Design and Implementation of an Availability Scoring System for

Cyber Defence Exercises

Mauno Pihelgas

NATO Cooperative Cyber Defence Centre of Excellence, Tallinn, Estonia

Tallinn University of Technology, Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract: Cyber defence exercises are crucial for training readiness and awareness within the cyber domain. This
new domain is acknowledged by NATO, alongside land, sea, air and space. Alliance nations are endorsing the
development of both defensive and responsive cyber capabilities. This paper discusses designing and building a
reliable availability scoring system for a large international cyber defence exercise, Locked Shields. The system
provides essential input for scoring the exercise participants to spark some friendly competition and motivate
players. The previous solution was replaced by a modular setup that is built around a well-known open-source
IT monitoring software called Nagios Core. Before embarking to develop a new system, we studied available
research and looked at various other CDXs for similar implementations. Unfortunately, we did not find such full-
blown scoring systems in use at the time. At least not according to the information that was provided to us. We
therefore relied on best practices and prior experience to develop an automated availability scoring system. The
paper provides some background information on the exercise, describes the requirements, design process and
implementation of the scoring solution. The current system has been under continuous improvement since 2014
and has successfully provided the automated scoring checks for the past five exercises. In addition to success
stories, several issues and problem workarounds are addressed. As such, this paper serves as a valuable resource
for cyber defence exercise managers and practitioners looking to implement similar scoring solutions.

Keywords: availability, cyber exercise, monitoring, Nagios, scoring, Selenium

 Introduction

The field of cyber defence has become increasingly important over the years and numerous cyber defence
exercises (CDX) are being organised all over the world. One of the largest is Locked Shields (LS), which is a game-
based real-time network defence exercise that has been organised by the NATO Cooperative Cyber Defence
Centre of Excellence since 2010 (NATO Cooperative Cyber Defence Centre of Excellence 2018). Measuring and
scoring the performance of the training audience (Blue Teams) is essential to ensure that everyone gives their
best during the competitive exercise.

The primary focus of this paper is on the process of measuring the availability of individual services provided by
Blue Team (BT) systems and passing the data to the overall scoreboard (see Figure 1). This scoreboard is another
system, which combines all the different sub-scores into a combined score for a BT; however, this does not fall
within the scope of this paper and is not to be confused with the availability scoring system. Although this paper
focuses only on the LS implementation, the same scoring system could be easily implemented for other similar
CDXs.

 Exercise overview

The LS exercise spans two days and is built as a competitive game featuring a fictional scenario in which the
defending BTs are scored on their performance in several different interdisciplinary categories, such as
defending against technical cyber attacks, incident reporting, situation reporting, responding to scenario injects
and keeping their systems available to the users. Scoring is an integral part of the game, because participants
need to know how well they performed in the tasks set for them and compared to other teams. The final
scoreboard ranking decides which team wins the annual LS exercise.

Figure 1: Example scoreboard combining all different score types

Participants represent one of five different roles: Blue Team (defence), Red Team (bad guys), Yellow Team
(situation awareness), Green Team (exercise infrastructure), and White Team (exercise management, strategic
gameplay, media, etc.). According to the scenario, the BTs assume the role of rapid-reaction teams assisting the
fictional country of Berylia, which is in conflict with another fictional country, Crimsonia, represented by the Red
Team (RT). The exercise takes place over just two days (8 hours per day) of intense game-play.

In 2018, each of the 22 BTs was responsible for maintaining the continuous and secure operation of 140 hosts
with several monitored services on each host, amounting to 1,425 monitored services per team to calculate the
availability of each required service. The notion of availability is represented as an uptime value between 0 and
1 for a particular service. This value could be represented as a Service Level Agreement (SLA) percentage for
easier interpretation. The scoring system keeps track of all check results and calculates the uptime for each
service.

The availability score accounts for approximately ⅓ of the total positive score points in the exercise, which is
roughly the same as the amount of negative score that teams may get for successful attacks carried out by the
RT. Therefore, teams need to balance their strategy between security and availability of services wisely, because
the function for calculation of points lost due to downtime is exponential, not linear (discussed in section 3).

The gamenet infrastructure features a wide variety of traditional IT infrastructure and special-purpose industrial
systems: Windows, Linux, and FreeBSD hosts, Siemens Programmable Logic Controllers (PLCs), Threod Flight
Controllers and Ericsson Virtual EPC Packet Gateways for 4G/LTE connectivity. In addition to system
administration and hardening tasks, teams are also faced with forensic and legal challenges and various injects
from the game’s media team. This means that the defending BTs must include specialists with very different
skills to be able to field all the required expertise.

 Problem and motivation

The development of this availability scoring system was motivated by several deciding factors. At the beginning
of 2014 the author of the previous system left the LS organising team. The old system turned out to be a
monolithic Perl script that contained all the information on what services to check and the logic for every single
availability check. We have nothing against implementing solutions in Perl language, but the script was lacking
some of the widely accepted best practices in software engineering (e.g., it is recommended to have a modular

design where smaller and simpler interconnected subsystems communicate) (Seacord 2018). Thus, the old
system was difficult to understand and develop.

Primary concerns were the stability and scalability of the system. There were issues with high memory
consumption with all the various libraries required for checking the BT services constantly loaded in the process.
We decided to replace the previous system with a new and improved solution that, among other aspects, would
provide a modular design and increased stability.

 Outline

The remainder of this paper is organised as follows, section 2 describes the requirements of the new system,
section 3 introduces the basic functionality the monitoring solution, section 4 presents the current
implementation of the availability scoring, section 5 provides a brief insight into future work, section 6 gives an
overview of related work, and section 7 concludes the paper.

 Requirements

When we initially set out to design the new scoring system, we had several requirements due to the nature of
the LS exercise and several of our own ideas and best practices on what is required of an exercise scoring system.
The following list briefly describes the requirements and the reasoning behind the specific item.

▪ Stable and reliable: remain operational even in situations where the underlying network or related

systems may temporarily fail.

▪ Active checks: the queries towards BT systems have to be initiated by the scoring server to avoid any

manipulation of passive check results.

▪ Predictable: each BT should receive the same number of requests (checks) from the scoring engine.

▪ Modular: easy to add new functionality or modify existing modules, also availability of existing modules in

the community.

▪ Customisable: since the CDX is not a regular IT environment, we do not need all the functionality offered

by many monitoring tools (e.g., problem escalation, help-desk functionality, etc.).

▪ Integration: ability to easily integrate the solution with other pre-existing systems.

▪ Scalable: ability to monitor thousands of hosts and services with a short check interval.

▪ Well-known and documented: avoid relying solely on a single person to configure the system.

▪ Evasive tactics: implement various tactics to avoid being easily identified as the scoring engine and thus

allowing the system to be whitelisted by the BTs.

– Randomise IP addresses: periodically change IP addresses on selected network interfaces.

– Randomise check intervals: periodically change check intervals to avoid creating a recognisable

pattern in log files.

– Mimic regular systems: remove any identifiers of the monitoring software.

▪ Preferably open-source software: we might need to modify the source code of various components

(especially to implement the evasive tactics mentioned above).

It was evident that most of the first level requirements listed above could be addressed by using some well-
known monitoring solutions that are already available. We tested several different solutions, such as Zabbix,
Shinken, Opsview, Nagios XI, Nagios Core, op5 and Centreon. Most of the solutions offered similar functionality
and were able to satisfy many or even most of the requirements but were often too overloaded with complex
functionality (e.g., helpdesk and incident handling functionality) which we did not need in our situation. After
testing several strong contenders in our lab environment, we decided to use Nagios Core as a central element
of the new availability scoring system for LS.

However, there was a narrower set of requirements regarding various evasive tactics that none of the compared
solutions was able to solve out of the box. Typical monitoring solutions are not evasive and work in a very
recognisable and predictable manner. For instance, checks usually come from a single known IP address that is
always granted access through the firewall, the time between the checks (check intervals) is usually fixed at
regular intervals (e.g., 1 minute or 5 minutes), and by default the system would identify itself (e.g., in the web
browser user-agent string) as the monitoring system. To avoid this issue, additional functionality had to be
developed separately.

 Basics of availability scoring

Typical monitoring systems actively check and report the state – (OK, Warning, Critical, or Unknown) – of the
monitored services. There is a predefined list of services BTs are supposed to keep up and running for the entire
duration of the two-day exercise. Any disruptions in the services will result in lost uptime and valuable points.

Active checks are implemented by executing various user-defined monitoring scripts that perform the necessary
steps. For example, checking the availability of a web page requires the script to establish a connection to the
web server hosting the site and download the content of the page for any further inspection (e.g., verifying the
presence of correct content). Active checks are initiated by the scoring server and BTs have no control over when
the check is executed or what is being checked within the logic of the script (see Figure 2).

Figure 2: Basic active check process

Alternatively, passive service checks could be used in monitored systems to report the current state of the
system back to the central monitoring server. For instance, in our previous example the web server would
periodically execute a self-check and send the result to the scoring server. Although this is the preferred method
in many standard monitoring solutions, it does not fit well with our exercise scenario, because it is in the interest
of the competing BTs to portray as good an uptime as possible. It can be tempting for teams to stop sending
genuine check results and send forged passive check results to our scoring server instead. We therefore prefer
active checks, because they are more reliable in the adverse situations of the competitive exercise.

Listing 1 illustrates the output produced by these service checks. The output format was largely taken from the
previous scoring system and it fits the purpose nicely since the vertical bar symbol is a special character in Nagios
to distinguish the message from check performance data and thus cannot accidentally appear in our output.

Listing 1: Example output from active service checks
mail.blue05.ex|http|OK|HTTP OK: HTTP/1.1 200 OK - 322 bytes in 0.005 second response time

|1524721248|1524721248

hmi.pgc.blue13.ex|http.ipv6|OK|HTTP OK: HTTP/1.1 200 OK - 954 bytes in 0.014 second response

time|1524721248|1524721249

ws4-02.int.blue15.ex|ssh|CRITICAL|No route to host|1524721244|1524721249

The BTs can gather up to 20,000 points (about ⅓ of total positive score) for the availability of services. Individual
services are distributed into various sub-groups and are assigned an arbitrary weight value (W) based on their
significance. Any loss of uptime (U) will affect the score coefficient (SC) exponentially:

SC=WU-1, 0≤U≤1

The rationale for this harsh score penalty is that in the IT field, production system uptime is commonly expected
to be in the order of 99.9% or in some cases even higher, which, for example, means that a service can be down
for just about 10 minutes per week or 1.44 minutes per day. Evidently, the higher the service weight value, the
steeper the score penalty for lost uptime (see Figure 3). We calculate the resulting score points according to
W×SC. For instance, a service with a relatively high weight value (W) of 1,000 points will only yield 500 score
points if its uptime is 90%. This is because its score coefficient (SC) quickly decreases to approximately 0.5 if the
uptime (U) drops to 0.9.

Throughout the game execution, runtime scores are added up and sent to the live scoreboard. An example
scoreboard can be seen in Figure 1. The availability score discussed in this section is represented as sla score in
the figure.

 Implementation

This section describes the hardware and software specification that the solution was deployed on in 2018,
followed by a description of how the evasive techniques mentioned in section 2 have been implemented.

 System description

There were five virtual machines (VM) assigned for the availability scoring system. Each VM was assigned 12
logical processors, 8GB of memory, and 60GB of disk space. We could have managed with fewer VMs, but the
main requirement was to attain different vantage points (e.g., BT internal or external) in the gamenet
infrastructure. For instance, depending on the type of BT service (e.g., public or private), the availability checks
must be performed from a BT internal network, from an external network, or in some cases from both.

Thus, on each scoring machine, two network interfaces provided Green Team management and generic internet
access, while the third network interface provided the unique network vantage point: 4G/LTE network, RT
network, BT internal networks, or BT management networks.

To monitor all the required internal BT assets, we had to connect the scoring server to five different /24 subnets
for every BT. This added up to 132 virtual network interfaces connected on one of the scoring servers, which is
quite uncommon and created some issues that had to be overcome in the operating system configuration.

Figure 3: Score coefficient (SC) with regards to uptime (U) and three example service weight values (W)

 Nagios

In 2018, the scoring system was built on a Debian GNU/Linux 9.4 operating system using Nagios Core v4.3.4
(latest stable version at that time) which we compiled from source code. We also modified and compiled the
standard nagios-plugins package (version 2.2.1) containing the check scripts provided by Nagios Developers
(section 4.4 discusses the motivation behind these modifications).

We applied several of the steps outlined in the Nagios Performance Tuning guide (Nagios Enterprises 2018a).
We made extensive use of the RAM Disk setup recommended by Nagios Enterprises (2018b) to minimise the
number of slow disk I/O operations and keep frequently accessed files in memory. In addition to Nagios-specific
files, we also used it to store other temporary files required by scripts and plugins.

 Performance assessment

The virtualised systems worked well. System load was mostly below the critical threshold (i.e., equal to the
number of CPU threads), and although there were critical peaks when restarting Nagios, these passed
momentarily. In terms of memory use, the 8GB assigned to the hosts was plenty; on average the systems used
about 3-4GB.

For each BT, we performed scoring checks for 140 hosts providing a total of 1,425 services on both IPv4 and IPv6.
Multiply that by the number participating teams (22), and we get an impressive 3,080 hosts with 31,350 services
being checked at least once per minute. During the 16 hours of game-play, 34,025,305 individual scoring checks
were performed and logged. This averages at about 35,443 checks per minute.

 Evasive techniques

The requirements introduced several situations where we needed to avoid the availability scoring system being
identified by BTs. They could still attempt to identify the scoring server by making an educated guess based on
the requests made by the scripts checking the services, but we tried to make it more difficult for them. To clarify
why this is important, consider a situation in which the BTs were able to successfully identify the IP addresses
from which the scoring server is accessing their services. They could use a whitelisting approach in the firewall
and always allow access for the scoring server, but block everyone else, including the RT, from accessing the
service. The scoring server would see that everything is up and functional, while no other users would be able
to use the service. We describe some of the more important evasive techniques below.

 Randomising IP addresses

The primary way to evade identification was to regularly change the IP addresses of the scoring server. We
configured the server to change all its public IP addresses that were used to communicate with BT services from
the RT networks. The change was scheduled at a random interval ranging between 5 to 10 minutes. To safeguard
against IP conflicts, we used the arping utility for IPv4 and ndisc6 utility for IPv6 to verify that an IP address was
available before assigning it to the interface.

Since changing an IP address could disrupt an ongoing service check, we needed to shut down Nagios before
replacing any addresses. Typically, the entire process took about 7-8 seconds. This was a critical moment,
because the system can end up in a state where it no longer has connectivity to the gamenet. To make sure that
the new configuration was fully correct and operational, we introduced a series of connectivity tests. If the tests
fail, the system reverts to its default static IP addresses, which should always work.

 Randomising check intervals

For normal monitoring applications, a fixed checking interval is a sensible idea. However, in our case the BTs
could predict, with an accuracy of one second, when the scoring system would perform the next availability
check. This look like a heartbeat on log monitoring tools and dashboards. Inspect the timestamps in Listing 2 to
see how easy it is to detect a system with a fixed check interval (e.g., 60 seconds). To counter this, we developed
a simple script that would randomise the check interval within a given range between 40 and 55 seconds. Since
any changes in check interval would only take effect after restarting the Nagios software, we combined this
procedure with changing IP addresses. Observe the access timestamps in Listing 3 after applying the randomised
check interval.

Listing 2: Typical unmodified Nagios checks examined from a BT web server access log
10.0.228.111 - - [23/April/2018:06:39:58 +0000] "GET / HTTP/1.1" 200 437 "-"

"check_http/v2.2.1 (nagios-plugins 2.2.1)"

10.0.228.111 - - [23/April/2018:06:40:58 +0000] "GET / HTTP/1.1" 200 437 "-"

"check_http/v2.2.1 (nagios-plugins 2.2.1)"

10.0.228.111 - - [23/April/2018:06:41:58 +0000] "GET / HTTP/1.1" 200 437 "-"

"check_http/v2.2.1 (nagios-plugins 2.2.1)"

Listing 3: Example of a web server log entry created by a modified Nagios check_http script
10.0.228.111 - - [23/April/2018:06:45:43 +0000] "GET / HTTP/1.1" 200 437 "-" "Mozilla/5.0

(X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0"

10.0.228.111 - - [23/April/2018:06:46:25 +0000] "GET / HTTP/1.1" 200 437 "-"

"Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0"

 Identification strings

We discovered that default Nagios plugins such as check http, check_ssh, check_smtp clearly identify themselves
to the service they are communicating with. Log lines in Listing 2 reveal that the check_http script sends the BT
web server the default user-agent string. Under normal circumstances this is good behaviour and helps anyone
looking into the logs to quickly distinguish events created by the monitoring system. In our case, however, this
would easily allow the BTs to identify and whitelist the scoring server’s IP address. To address this, we modified
several monitoring scripts to replace these identifiable strings with software versions that would exist in a
regular Linux desktop computer. See Listing 3 for a log entry created by a modified version of a monitoring script
using the Mozilla Firefox user-agent string.

 Countering BT tactics

Over the years, we have seen BTs find ways to improve their score by trying to trick the scoring system into
thinking their services are up and running when in fact they have just set up a dummy service or a similar-looking
static website.

For instance, some teams have set up tools such as netcat or Portspoof that bring up fake services on ports and
respond to any incoming requests. Therefore, it is essential that monitoring plugins perform more in-depth
functionality checks to verify that there is in fact a correct service responding on the expected port.

Another questionable tactic has been to take an entire web site and convert it into static HTML pages. Visually
the site seems normal, but any dynamic content and integration with a database has been eliminated. We have
used the open-source Selenium WebDriver, a testing framework for web applications to counter this. Using
Selenium allows us to write our test cases in Python for automating web browsing. For example, mimicking a
customer visiting the page of an online shop: logging in, browsing a few items and adding some of them to the
shopping cart, then finalising the purchase by checking out and verifying that the purchase was indeed saved
under previous orders. Such test cases provide an excellent way of checking that essential functionality is
present, but due to their complexity they are difficult to debug if the test case breaks and erroneously flags the
site as broken.

 Future work

Since we have been collecting exercise data such as scoreboard results, network PCAPs, scoring logs and RT
activity logs for the past five years, we have gathered a substantial dataset for future research.

Our first idea is to analyse the success rate of different strategies used by BTs. For example, some teams focus
more on providing excellent uptime at the expense of security, while others completely lock down their systems
to protect them against the RT, but likely block the scoring system in the process. Having the training dataset,
we could develop a model that would predict the score of the team based on their strategy. This could also
reveal combinations of strategies that are more likely to succeed than others.

Additionally, we aim to develop a system that would better detect cheating among the participants. For instance,
we should verify that the availability scoring results correspond to the RT reports. There should be a strong

correlation between the BT systems going offline after successful attacks and RT attacks failing when the BT
system was already unavailable before the attack. Finding anomalies (e.g., change of expected values or hashes)
in the responses from the BT systems would allow us to discover and sanction (negatively score) the excessive
use of questionable tactics (see subsection 4.4.4 above) during the game. Currently all this requires manual
analysis.

 Related work

LS is by no means the only cyber defence exercise in the world. There are several different cyber exercises
conducted around the globe. The NSA Cyber Exercise (2018) (formerly Annual Cyber Defense Exercise) hosted
by the National Security Agency and Cyber Shield 2018 (2018) hosted by the U.S. Army National Guard are
probably the most similar to Locked Shields.

Other relevant exercises include Cyber Security Awareness Week (CSAW) (2018) challenges, Cyber Security
Challenge UK (2018), DEF CON Capture the Flag Contest (2018), Mid-Atlantic Collegiate Cyber Defense
Competition (MACCDC) (2018), National Collegiate Cyber Defense Competition (NCCDC) (2018), National
Cyber League (NCL) (2018) competition, and International Capture The Flag (iCTF) (2018) exercise. One of the
most recent additions to this list are off-the-shelf technical exercises provided by CybExer Technologies (2018).

With such a variety of annual events, one should also distinguish different types of cyber exercises: security
challenges, capture-the-flag contests, or exercises that focus on defence. Often, there is no clear classification,
but it is still worthwhile to consider what is the primary goal of the exercise. In the case of LS, training to defend
various systems and networks is the main objective and BTs are the training audience.

Unfortunately, there is a limited amount of material available on the subject. Most of the sources listed above
are just limited to a homepage briefly describing the past exercises from a relatively high level. This is especially
the case with military exercises. The remainder of this section discusses several more elaborate sources about
previous work on cyber exercises, especially the ones that mention various scoring or assessment systems.

A paper by Patriciu & Furtuna (2009) presents practical guidelines to follow when designing a new cyber security
exercise. The paper aims to assist CDX newcomers who oversee designing a cyber security exercise. The step-
by-step instructions cover topics such as defining the objectives, designing the network topology, creating a
scenario, establishing rules, choosing the appropriate metrics, and conducting a lessons-learned procedure. The
guideline has a rather brief section on recommendations for the scoring engine, stating only that there must be
a clear set of rules to express the way points can be obtained or lost. Moreover, the whole scoring process has
to be transparent to all participants.

Papers from Hammervik et al. (2010) and Granåsen et al. (2011) try to capture and analyse the data from the
Baltic Cyber Shield exercise, which is in fact a direct precursor of LS. They address whether the vulnerability of a
host influences the time required to compromise it, and whether cyber security professionals can predict the
success rates of arbitrary code execution attacks.

The work by Werther et al. (2011) shares the experience from conducting capture-the-flag exercises in the MIT
Lincoln Laboratory. Regarding scoring, the solution is quite like ours in LS. The scores are calculated as a weighted
average of availability, confidentiality, integrity, and offence. The exercise has a scoreboard where the overall
score of all participating teams is displayed. Like LS, the first 30 minutes of the exercise is not scored to allow
teams to apply patches and secure their machines. However, unlike LS, attacks are allowed during this period.

A paper by Henshel et al. (2016) describes using the Cyber Shield 2015 exercise to develop the assessment model
and integrated evaluation of team proficiency metrics in CDXs. In addition to using exercise data, they also
conducted an expertise survey before the event to determine potential relationships between prior expertise
and performance in the exercise. For future work, they stress that near real-time analysis of the exercise data is
required. They conclude that raw data collection is not an issue, but the capability to manually analyse the
information does not scale with the huge amounts of incoming data. Their aims and observations closely
coincide with ours, thus we have already contacted the authors of this paper and will engage in future
cooperation.

 Conclusion

There is a growing trend of organising cyber defence exercises, which is not an easy task. In addition to difficulties
in finding people who can develop the scenario and build up the required infrastructure to provide an exercise

on this scale, motivating the participants to give of their best is a challenge. We have found that adding a
competition to the exercise is beneficial and serves this purpose well. The competition can be scored based on
the performance of trainees by checking how well they keep their systems up and functional.

This paper has presented an overview of the availability scoring system for the Locked Shields cyber defence
exercise. It has discussed the design and practical implementation of the system and listed some key
observations from the experience gained during the past five years of development.

 Acknowledgements

This work has been supported by the Estonian IT Academy (StudyITin.ee).

References

Cyber Security Awareness Week (CSAW) (2018), Available: https://csaw.isis.poly.edu/.

Cyber Security Challenge UK (2018), Available: http://cybersecuritychallenge.org.uk/.

Cyber Shield 2018 (2018), Available: http://www.cs18.org/.

CybExer Technologies (2018), ‘Technical Exercises’, Available: https://cybexer.com/.

DEF CON Capture the Flag Contest (2018), Available: https://www.defcon.org/html/links/dc-ctf.html.

Granåsen, D., Granåsen, M., Sundmark, T., Holm, H. & Hallberg, J. (2011), Analysis of a Cyber Defense Exercise
using Exploratory Sequential Data Analysis, The 16th International Command and Control Research and
Technology Symposium (ICCRTS).

Hammervik, M., Granåsen, D. & Hallberg, J. (2010), Capturing a Cyber Defence Exercise, The 1st National
Symposium on Technology and Methodology for Security and Crisis Management.

Henshel, D. S., Deckard, G. M., Lufkin, B., Buchler, N., Hoffman, B., Rajivan, P. & Collman, S. (2016), Predicting
proficiency in cyber defense team exercises, in ‘MILCOM 2016 - 2016 IEEE Military Communications
Conference’, pp. 776–781.

International Capture The Flag (iCTF) (2018), Available: http://ictf.cs.ucsb.edu/.

Mid-Atlantic Collegiate Cyber Defense Competition (MACCDC) (2018), Available: http://maccdc.org/.

Nagios Enterprises (2018a), ‘Tuning Nagios For Maximum Performance’, Available: https://assets.
nagios.com/downloads/nagioscore/docs/nagioscore/4/en/tuning.html.

Nagios Enterprises (2018b), ‘Utilizing a RAM Disk in Nagios XI’, Available: https://assets.nagios.com/
downloads/nagiosxi/docs/Utilizing A RAM Disk In NagiosXI.pdf.

National Collegiate Cyber Defense Competition (NCCDC) (2018), Available: http://www.nationalccdc. org/.

National Cyber League (NCL) (2018), Available: https://www.nationalcyberleague.org/.

NATO Cooperative Cyber Defence Centre of Excellence (2018), ‘Locked Shields 2018’, Available: https:
//www.youtube.com/watch?v=meC8O9Mptz4.

NSA Cyber Exercise (2018), Available: https://www.nsa.gov/what-we-do/cybersecurity/ncx/.

Patriciu, V.-V. & Furtuna, A. C. (2009), Guide for Designing Cyber Security Exercises, in ‘Proceedings of the 8th
WSEAS International Conference on E-Activities and Information Security and Privacy’, E-ACTIVITIES’09/ISP’09,
World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, pp. 172–177.

Seacord, R. (2018), ‘Top 10 Secure Coding Practices’, Available: https://wiki.sei.cmu.edu/confluence/
display/seccode/Top+10+Secure+Coding+Practices.

Werther, J., Zhivich, M., Leek, T. & Zeldovich, N. (2011), Experiences in Cyber Security Education: The MIT Lincoln
Laboratory Capture-the-flag Exercise, in ‘Proceedings of the 4th Conference on Cyber Security
Experimentation and Test’, CSET’11, USENIX Association, Berkeley, CA, USA, pp. 12–12.

Appendix 7

Publication VIIP. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini,and A. Panico. Towards an active, autonomous and intelligent cyber de-fense of military systems: The NATO AICA reference architecture. In 2018
International Conference onMilitary Communications and Information Sys-
tems (ICMCIS), pages 1–9, May 2018

© 2018 IEEE. Reprinted. Internal or personal use of this material is permitted. Permissionfrom IEEE must be obtained for all other uses, in any current or future media, includingreprinting/republishing this material for advertising or promotional purposes, creatingnew collective works, for resale or redistribution to servers or lists, or reuse of any copy-righted component of this work in other works.The paper is included in the Proceedings of the 2018 International Conference on Military
Communications and Information Systems (ICMCIS 2018).DOI: 10.1109/ICMCIS.2018.8398730

175

978-1-5386-4559-8/18/$31.00 C2018 IEEE

Towards an Active, Autonomous and Intelligent
Cyber Defense of Military Systems: the NATO AICA

Reference Architecture

Paul Theron
Thales

Salon de Provence, France
paul.theron@thalesgroup.com

Alexander Kott
U.S. Army Research Laboratory

Adelphi, MD, USA
alexander.kott1.civ@mail.mil

Martin Drašar
Masaryk University

Brno, Czech Republic
drasar@ics.muni.cz

Krzysztof Rzadca
University of Warsaw

Warsaw, Poland
krzadca@mimuw.edu.pl

Benoît LeBlanc
Ecole Nationale Supérieure de

Cognitique
Bordeaux, France

benoit.leblanc@ensc.fr

Mauno Pihelgas
NATO CCDCOE
Tallinn, Estonia

mauno.pihelgas@ccdcoe.org

Luigi Mancini
Sapienza University

Rome, Italy
mancini@di.uniroma1.it

Agostino Panico
Sapienza University

Rome, Italy
panico@di.uniroma1.it

Abstract—Within the future Global Information Grid,
complex massively interconnected systems, isolated defense
vehicles, sensors and effectors, and infrastructures and systems
demanding extremely low failure rates, to which human security
operators cannot have an easy access and cannot deliver fast
enough reactions to cyber-attacks, need an active, autonomous
and intelligent cyber defense. Multi Agent Systems for Cyber
Defense may provide an answer to this requirement. This paper
presents the concept and architecture of an Autonomous
Intelligent Cyber defense Agent (AICA). First, we describe the
rationale of the AICA concept. Secondly, we explain the
methodology and purpose that drive the definition of the AICA
Reference Architecture (AICARA) by NATO’s IST-152 Research
and Technology Group. Thirdly, we review some of the main
features and challenges of Multi Autonomous Intelligent Cyber
defense Agent (MAICA). Fourthly, we depict the initially
assumed AICA Reference Architecture. Then we present one of
our preliminary research issues, assumptions and ideas. Finally,
we present the future lines of research that will help develop and
test the AICA / MAICA concept.

Keywords—intelligent agent, autonomy, cyber warfare, cyber
security

I. RATIONALE FOR THE AICA/MAICA CONCEPT

Today, five broad types of systems coexist in Land, Sea and
Air operations:

• Office and information management systems, which
includes web services, emailing systems, and
information management applications ranging from
human resource management to logistics through

maintenance and project management;
• C4ISR systems for the command of war operations,

with associated Battlefield Management Systems that
extend the C4ISR down to single vehicles and
platoons;

• Communication systems such as SATCOM, L16, line
of sight networks, software defined radios, etc.;

• Platform and life automation systems, similar to
industrial systems and that provide sea vessels for
instance with air conditioning, refrigeration, lifts,
video surveillance, etc.;

• Weapon systems, which include both sensors and
effectors of all kinds, including the Internet of Battle
Things (IoBT).

On the battlefield, the future Global Information Grid will
mix those technologies into complex large scale networks of
massively interconnected systems, the cybersecurity
supervision of which by human operators will become
increasingly difficult, if not impossible.

Besides, a great number of military missions will require
defense vehicles and effectors to work stealthily while some
will find themselves isolated because of poor bandwidth or
because communications will become untrustworthy. Isolated
systems will create a specific class of problems in terms of the
possibility to monitor and manage their cybersecurity. On one
hand, to fully analyze their cyber-health would be possible
only when connected at base during maintenance and operation
preparation. On the other hand, in case of cyber-attacks, they
will require immediate counter-reactions while no
cybersecurity or cyber defense specialist is available. This paper is based on NATO IST Panel activity IST-152-RTG,

“Intelligent, Autonomous and Trusted Agents for Cyber Defense
and Resilience.”

Finally, defense infrastructures and systems engaged in
battle operations must show extremely low failure rates.
Counter reactions to cyber-attacks must therefore be initiated at
the speed of operation of these systems, not at the (low) speed
of human decision making in the presence of complex issues.
In a conflict with a technically sophisticated adversary, military
tactical networks will be a heavily contested battlefield. Enemy
software cyber agents -- malware -- will infiltrate friendly
networks and attack friendly C4ISR and computerized weapon
systems.

In this context, systems’ cyber defense will be organized in
two manners:

• Connected systems of lesser criticality will be
monitored by cybersecurity sensors, security
information and event management (SIEM) systems,
and security operations centers (SOCs). This will be
the case of office and information management
systems and of C4ISR systems under peaceful
circumstances.

• Higher grade systems or configurations such as
C4ISR systems deployed in combat circumstances,
communication systems, life and automation systems
and weapon systems require autonomous intelligent
cyber defense capabilities.

To fight cyber-attacks that may target this last class of
military systems, we expect that NATO needs artificial cyber
hunters - intelligent, autonomous, mobile agents specialized in
active cyber defense, that we call Autonomous Intelligent
Cyber defense Agents (AICA). They will work in cohorts or
swarms and will be capable, together, to detect cyber-attacks,
devise the appropriate counter measures, and run and adapt
tactically their execution.

Those friendly NATO cyber agents -- goodware -- will
stealthily patrol networks, detect enemy agents while
remaining concealed, and they will devise the appropriate
counter-attack plan and then destroy or degrade the enemy
malware. They will do so mostly autonomously, because
human cyber experts will be always scarce on the battlefield,
because human reactions will be too slow, and because
connectivity might be nonexistent or poor.

Agents will be learning and adaptive because the enemy
malware and attack patterns are constantly evolving. They will
be stealthy because the enemy malware will try to find and kill
them. They will work in cohorts or swarms as attacks will be
sophisticated and stealthy, and only collective intelligence will
stand a chance to detect the early combined signs of malware
actions and positions. In addition, they will do so because
combatting malware will mean fighting a variety of pieces of
malware acting either simultaneously or in a sequence hard to
detect, and intelligently spread across the friendly military
systems and networks they attack to produce the effect sought
by the enemy.

Deployed on NATO networks, the AICA friendly software
agents will become a major force multiplier. The agents will
augment the inevitably limited capabilities of human cyber
defenders, and will team with humans when ordered or in need
to do so. Without such agents, the effective defense of NATO

computer networks and systems might become impossible if
attackers also resort on multi agent systems to carry out their
attacks. Without active autonomous intelligent cyber defense
agents, a NATO C4ISR will not survive an encounter with a
determined, technically sophisticated enemy.

At this time, such capabilities remain unavailable for the
defensive purposes of NATO. To acquire and successfully
deploy such agents, in an inter-operable manner, NATO
Nations must create a common technical vision - reference
architecture - and a roadmap.

II. PURPOSE AND METHODOLOGY OF THE PROJECT

Inspired by the above rationale, NATO’s IST-152 Research
and Technology Group (RTG) is an activity that was initiated
by the NATO Science and Technology Organization and was
kicked-off in September 2016. The group is developing a
comprehensive, use case focused technical analysis
methodology in order to produce a first-ever reference
architecture and technical roadmap for active autonomous
intelligent cyber defense agents. In addition, the RTG is
working to identify and evaluate selected elements that may be
eligible contributors to such capabilities and that begin to
appear in academic and industrial research.

Scientists and engineers from several NATO Nations have
brought unique expertise to this project. Only by combining
multiple areas of distinct expertise along with a realistic and
comprehensive approach can such a complex software agent be
provided.

The output of the RTG may become a tangible starting
point for acquisition activities by NATO Nations. If based on a
common reference architecture, software agents developed or
purchased by different Nations will be far more likely to be
interoperable.

III. MAIN FEATURES AND CHALLENGES OF THE

MAICA CONCEPT

Related research includes Mayhem (from DARPA Cyber
Challenge, but also Xandra, etc.), agents from the Pechoucek’s
group, Professor Mancini’s work on the AHEAD architecture
[1] and the Aerospace Cyber Resilience research chair’s
research program [2], Anti-Virus tools (Kaspersky,
Bitdefender, Avast, Norton, etc. etc.), HBSS, OSSEC, Various
host-based IDS/IPS systems, Application Performance
Monitoring Agents, Anti-DDOS systems and Hypervisors.
Also, a number of related research directions include topics
such as deep learning (especially if it can be computationally
inexpensive), Botnet technology (seen as a network of agents),
network defense games, flip-it games, the Blockchain, and
fragmentation and replication. The introduction of Artificial
Intelligence into military systems, such as C4ISR, has been
studied, for instance by [3] and [4]. Multi Agent Systems form
an important part of AI.

Since the emergence of the concept of Multi Agent
Systems (e.g., [5]), MAS have been deployed in a number of
contexts such as power engineering [6] and their decentralized
automated surveillance [7], industrial systems [8], networked
and intelligent embedded systems [9], collective robotics [10],

wireless communication [11], traffic simulation and logistics
planning [12], home automation [13].

However, if the use of intelligent agents for the cyber
defense of network-centric environments has already long been
envisaged [14], effective research in this area is still new.

In the context of the cyber defense of friendly systems, an
“agent” has been defined [2] as a piece of software or
hardware, an autonomous processing unit:

• With an individual mission and the corresponding
competencies, i.e. in analyzing the milieu in which
the agent is inserted, detecting attacks, planning the
required countermeasures, or steering and adapting
tactically the execution of the latter, or providing
support to other agents like for instance inter-agent
communication;

• With proactivity, i.e. the capacity to engage into
actions and campaigns without the need to be
triggered by another program or by a human
operator;

• With autonomy, i.e. a decision making capacity of
its own, the capacity to function or to monitor,
control and repair itself on its own, without the need
to be controlled by another program or by a human
operator, and the capacity to evaluate the quality of
its own work and to adjust its algorithms in case of
deviance from its norm or when its rewards
(satisfaction of its goals) get poor;

• Driven by goals, decision making and other rules,
knowledge and functions fit for its purpose and
operating circumstances;

• Learning from experience to increase the accuracy
of its decisions and the power of its reactions;

• With memories (input, process, output, storage);

• With perception, sensing and action, and actuating
interfaces;

• Built around the adequate architecture and
appropriate technologies;

• Positioned around or within a friendly system to
defend, or patrolling across a network;

• Sociable, i.e. with the capacity to establish contact
and to collaborate with other agents, or to enter into
a cyber cognitive cooperation when the agent
requires human help or to cooperate with a central
Cyber C2;

• Trustworthy, i.e. that will not deceive other agents
nor human operators;

• Reliable; i.e. that do what they are meant to do,
during the time specified and under the conditions
and circumstances of their concept of operation;

• Resilient, i.e. both robust to threats (including cyber-
threats aimed at disabling or destroying the agent
itself; the agent being able to repel or withstand
everyday adverse events and to avoid degrading),
and resistant to incidents and attacks that may hit
and affect the agent when its robustness is
insufficient (i.e. the agent is capable of recovering
from such incidents or attacks);

• Safe, i.e., conceived to avoid harming the friendly
systems the agent defends, for instance by calling
upon a human supervisor or central cyber C2 to
avoid making wrong decisions or to adjust their
operating mode to challenging circumstances, or by
relocating when the agent is the target of an attack
and if relocation is feasible and allows protecting it,
or by activating a fail-safe mode, or by way of self-
destruction when no other possibility is available.

In the same context (ibid), a multi agent system is a set of
agents:

• Distributed across the parts of the friendly system to
defend;

• Organized in a swarm (horizontal coordination) or
cohort (vertical coordination);

• In which agents may have homogeneous or
heterogeneous roles and features;

• Interoperable and interacting asynchronously in
various ways such as indifference, cooperation,
competition;

• Pursuing a collective non-trivial cyber defense
mission, i.e. allowing to piece together local elements
of situation awareness or propositions of decision, or
to split a counter-attack plan into local actions to be
driven by individual agents;

• Capable of self-organization, i.e. as required by
changes in circumstances, whether external (the
attack’s progress or changes in the friendly system’s
health or configuration) or internal (changes in the
agents’ health or status);

• That may display emergent behaviors [15], i.e.
performances that are not explicitly expressed in
individual agents’ goals, missions and rules; in the
context of cyber defense, “emergence” is likely to be
an interesting feature as, consisting in the “way to
obtain dynamic results, from cooperation, that
cannot easily be predicted in a deterministic way”
[15]; it can be disturbing to enemy software in future
malware-goodware “tactical” combats within defense
and other complex systems;

• Extensible or not, i.e. open or closed to admitting
new agents in the swarm or cohort;

• Safe, trustworthy, reliable and resilient as a whole,
which is a necessity in the context of cyber defense
whereas in other, less challenging contexts may be
unnecessary. Resilience, here, may require
maintaining a system of virtual roles as described in a
human context by [16].

AICA will not be simple agents. Their missions,
competencies, functions and technology will be a challenging
construction in many ways.

Among many such challenges, we can mention [2] working
in constrained environments, the design of agents’ architecture
and the attribution of roles and possible specialization to each
of them, agents’ decision making process [17], the capacity to
generate and execute autonomously plans of counter-measures
in case of an attack, agents’ autonomy, including versus
trustworthiness, MAICA’s safety to defense systems, cyber
cognitive cooperation [18], agents’ resilience in the face of
attacks directed at them by enemy software, agents’ learning
capacities and the development of their functional autonomy,
the specification and emergence of collective rules for the
detection and resolution of cyber-attacks, AICA agents’
deployment concepts and rationale, their integration into host
hardware as [8] showed in industrial system contexts, etc.

IV. THE INITIAL AICA REFERENCE ARCHITECTURE

To start the research with an initial assumption about
agents’ architecture, the IST-152-RTG designed the AICA
Reference Architecture on the basis of classical perspective
reflected in [19] and [20].

At the present moment, it is assumed to include the
following functional components:

Figure 1 Assumed functional architecture of the AICA

The AICA Reference Architecture delivers five main high-
level functions:

• Sensing and world state identification.

• Planning and action selection.

• Collaboration and negotiation.

• Action execution.

• Learning and knowledge improvement.

Figure 2 The AICA’s main five high-level functions

A. Sensing and World state identification

DEFINITION: Sensing and World state identification is the
AICA’s high-level function that allows a cyber-defense agent
to acquire data from the environment and systems in which it
operates as well as from itself in order to reach an
understanding of the current state of the world and, should it
detect risks in it, to trigger the Planning and Action selection
high-level function. This high-level function relies upon the
“World model”, “Current state and history”, “Sensors” and
“World State Identifier” components of the assumed functional
architecture.

The Sensing and World state identification high-level
function includes two functions: (1) Sensing; (2) Word state
identification.

a-1. Sensing

DESCRIPTION: Sensing operates from two types of data
sources: (1) External (system and device-related) current world
state descriptors; (2) Internal (agent-related) current state
descriptors.

Current world state descriptors, both external and internal,
are captured on the fly by the agent’s Sensing function. They
may be double-checked, formatted or normalized for later use
by the World state identification function (to create processed
current state descriptors).

a-2. World state identification

DESCRIPTION: The World state identification function
operates from two sources of data: (1) Processed current state
descriptors; (2) Learnt world state patterns.

Learnt world state patterns are stored in the agent’s world
knowledge repository. Processed current state descriptors and
Learnt world state patterns are compared to identify
problematic current world state patterns (i.e. presenting an
anomaly or a risk). When identifying a problematic current
world state pattern, the World state identification function
triggers the Planning and Action selection high-level function.

b. Planning and action selection

DEFINITION: Planning and action selection is the AICA’s
high-level function that allows a cyber-defense agent to
elaborate one to several action proposals and to propose them
to the Action selector function that decides the action or set of
actions to execute in order to resolve the problematic world
state pattern previously identified by the World state identifier
function. This high-level function relies upon the “World
dynamics”, “Actions and effects”, “Goals”, “Actions’ effect
predictor” and “Action selector” components of the assumed
functional architecture.

The Planning and action selector high-level function
includes two functions: (1) Planning; (2) Action selector.

b-1. Planning

DESCRIPTION: The Planning function operates on the
basis of two data sources: (1) Problematic current world state
pattern; (2) Repertoire of actions (Response repertoire).

The Problematic current world state pattern and Repertoire
of actions (Response repertoire) are concurrently explored in
order to determine the action or set of actions (Proposed
response plan) that can resolve the submitted problematic
current world state pattern. The action or set of actions so
determined are presented to the Action selector. It may be
possible that the Planning function requires some form of
cooperation with human operators (cyber cognitive
cooperation, C3).

It may alternatively require cooperation with other agents
or with a central cyber C2 (command and control) in order to
come up with an optimal set of actions forming a global
response strategy. Such cooperation could be either to request
from other agents or from the cyber C2 complementary action
proposals, or to delegate to the cyber C2 the responsibility of
coordinating a global set of actions forming the wider response
strategy.

It may be possible that the Planning function requires some
form of cooperation with human operators (cyber cognitive
cooperation, C3). It may alternatively require cooperation with
other agents or with a central cyber C2 (command and control)
in order to come up with an optimal set of actions forming a
global response strategy. Such cooperation could be either to
request from other agents or from the cyber C2 complementary
action proposals, or to delegate to the cyber C2 the
responsibility of coordinating a global set of actions forming
the wider response strategy.

These aspects have been the object of an initial study in
[17] where options such as offline machine learning, pattern
recognition, online machine learning, escalation to a human
operator, game theoretic option search, and failsafe have been

envisaged, and in [18] for cyber cognitive cooperation
processes.

b-2. Action selector

DESCRIPTION: The Action selector function operates on
the basis of three data sources: (1) Proposed response plans; (2)
Agent’s goals; (3) Execution constraints and requirements, e.g.,
the environment’s technical configuration, etc.

The proposed response plan is analyzed by the Action
selector function in the light of the agent’s current goals and of
the execution constraints and requirements that may either be
part of the world state descriptors gained through the Sensing
and World state identifier high-level function or be stored in
the agent’s data repository and originated in the Learning and
Knowledge improvement high-level function. The proposed
response plan is then trimmed from whatever element does not
fit the situation at hand, and augmented of prerequisite,
preparatory or precautionary or post-execution recommended
complementary actions. The Action selector thus produces an
Executable Response Plan, and then submitted to the Action
execution high-level function.

Like with the Planning function, it is possible that the
Action selector function requires to liaise with human
operators, other agents or a central cyber C2 (command and
control) in order to come up with an optimal Executable
Response Plan forming part of and being in line with a global
response strategy. Such cooperation could be to exchange and
consolidate information in order to come to a collective
agreement on the assignment of the various parts of the global
Executable Response Plan and the execution responsibilities to
specific agents. It could alternatively be to delegate to the
cyber C2 the responsibility of elaborating a consolidated
Executable Response Plan and then to assign to specific agents
the responsibility of executing part(s) of this overall plan
within their dedicated perimeter. This aspect is not yet studied
in the present release of the AICA Reference Architecture.

c. Collaboration and negotiation

DEFINITION: Collaboration and negotiation is the AICA’s
high-level function that allows a cyber-defense agent 1) to
exchange information (elaborated data) with other agents or
with a central cyber C2, for instance when one of the agent’s
functions is not capable on its own to reach satisfactory
conclusions or usable results, and 2) to negotiate with its
partners the elaboration of a consolidated conclusion or result.
This high-level function relies upon the “Coordinate with other
agents and C2” component of the assumed functional
architecture.

The Collaboration and negotiation high-level function
includes, at the present stage, one function: Collaboration and
negotiation.

DESCRIPTION: The Collaboration and negotiation
function operates on the basis of three data sources: (1)
Internal, outgoing data sets (i.e. sent to other agents or to a
central C2); (2) External, incoming data sets (i.e. received from
other gents or from a central cyber C2); (3) Agents’ own
knowledge (i.e. consolidated through the Learning and
knowledge improvement high-level function).

When an agent’s Planning and action selector function or
other function needs it, the agent’s Collaboration and
negotiation function is activated. Ad hoc data are sent to
(selected) agents or to a central C2. The receiver(s) may be
able, or not, to elaborate further on the basis of the data
received through their own Collaboration and negotiation
function. At this stage, when each agent (including possibly a
central cyber C2) has elaborated further conclusions, it should
share them with other (selected) agents, including (or possibly
not) the one that placed the original request for collaboration.
Once this (these multiple) response(s) received, the network of
involved agents would start negotiating a consistent,
satisfactory set of conclusions. Once an agreement reached, the
concerned agent(s) could spark the next function within their
own decision making process.

When the agent’s own security is threatened the agent’s
Collaboration and negotiation function should help warning
other agents (or a central cyber C2) of this state.

Besides, the agent’s Collaboration and negotiation function
may be used to receive warnings from other agents that may
trigger the agent’s higher state of alarm.

Finally, the agent’s Collaboration and negotiation function
should help agents discover other agents and establish links
with them.

d. Action execution

DEFINITION: The Action execution is the AICA’s high-
level function that allows a cyber-defense agent to effect the
Action selector function’s decision about an Executable
Response Plan (or the part of a global Executable Response
Plan assigned to the agent), to monitor its execution and its
effects, and to provide the agents with the means to adjust the
execution of the plan (or possibly to dynamically adjust the
plan) when and as needed. This high-level function relies upon
the “Goals” and “Actuators” components of the assumed
functional architecture.

The Action execution high-level function includes four
functions:

• Action effector;

• Execution monitoring;

• Effects monitoring;

• Execution adjustment.

d-1. Action effector

DESCRIPTION: The Action effector function operates on
the basis of two data sources:

• Executable Response Plan;

• Environment’s Technical Configuration.

Taking into account the Environment’s Technical
Configuration, the Action effector function executes each
planned action in the scheduled order.

d-2. Execution monitoring

DESCRIPTION: The Execution monitoring operates on the
basis of two data sources:

• Executable Response Plan;

• Plan execution feedback.

The Execution monitoring function should be able to
monitor (possibly through the Sensing function) each action’s
execution status (for instance: done, not done, and wrongly
done). Any status apart from “done” should trigger the
Execution adjustment function.

d-3. Effects monitoring

DESCRIPTION: The Effects monitoring function operates
on the basis of two data sources: (1) Executable Response
Plan; (2) Environment’s change feedback.

It should be able to capture (possibly through the Sensing
function) any modification occurring in the plan execution’s
environment. The associated dataset should be analyzed or
explored. The result of such data exploration might provide a
positive (satisfactory) or negative (unsatisfactory) environment
change status. Should this status be negative, this should
trigger the Execution adjustment function.

d-4. Execution adjustment

DESCRIPTION: The Execution adjustment function
operates on the basis of three data sources: (1) Executable
Response Plan; (2) Plan execution feedback and status; (3)
Environment’s change feedback and status.

The Execution adjustment function should explore the
correspondence between the three data sets to find alarming
associations between the implementation of the Executable
Response Plan and its effects. Should warning signs be
identified, the Execution adjustment function should either
adapt the actions’ implementation to circumstances or modify
the plan.

e. Learning and knowledge improvement

DEFINITION: Learning and knowledge improvement is
the AICA’s high-level function that allows a cyber-defense
agent to use the agent’s experience to improve progressively its
efficiency with regards to all other functions. This high-level
function relies upon the Learning and Goals modification
components of the assumed functional architecture.

The Learning and knowledge improvement high-level
function includes two functions: (1) Learning; (2) Knowledge
improvement.

e-1. Learning

DESCRIPTION: The Learning function operates on the
basis of two data sources: (1) Feedback data from the agent’s
functioning; (2) Feedback data from the agent’s actions.

The Learning function collects both data sets and analyzes
the reward function of the agent (distance between goals and
achievements) and their impact on the agent’s knowledge
database. Results feed the Knowledge improvement function.

e-2. Knowledge improvement

DESCRIPTION: The Knowledge improvement function
operates on the basis of two data sources: (1) Results
(propositions) from the Learning function; (2) Current
elements of the agent’s knowledge.

The Knowledge improvement function merges Results
(propositions) from the Learning function and the Current
elements of the agent’s knowledge.

V. PRELIMINARY RESEARCH ASSUMPTIONS AND

QUESTIONS: THE EXAMPLE OF LEARNING

The environment of the agent can change rapidly,
especially (but not exclusively) due to an enemy action. In
addition, the enemy malware, its capabilities and Tactics,
Techniques and Procedures (TTP), evolve rapidly. Therefore,
the agent must be capable of autonomous learning. The
reasoning capabilities of the agent rely on its knowledge bases
(KBs). The purpose of the learning function(s) of the agent is
to modify the KBs of the agent in a way that enhances the
success of the agent’s actions. The agent learns from its
experiences. Therefore, the most general cycle of the learning
process is the following:

1. The agent possesses a KB.

2. The agent uses the KB to perform actions; he also
makes observation (receives percepts). These
together constitute the agent’s experience.

3. The agent uses this experience to learn the
desirable modifications to the KB.

4. The agent modifies the KB.

5. Repeat.

The agent’s experience needs a formal representation. It
may look like this sequence:

(t1, a1, e1, R1) (t2, a2, NULL, NULL) (t3, NULL, e3, R3) …
(tn, an, en, Rn)

Where t1 is the time when the agent starts to record his
experience and tn is the moment “now”, an is an action, en is a
percept, Rn is the reward of the action.

To make the representation of knowledge more compact
and useful, we could divide it into shorter chunks where each
chunk ends with the moment when the agent is able to
determine a reward. We could call such a chunk an episode.
Episode Ej is a sequence of pairs {a1, ei}, and the resulting
reward Rj:

Ej = ({ai,, ei},Rj)

The following is an example of such a short episode: a1 -
check file system integrity; e1 - find unexpected file; a2 -
delete file; e2 - file gone; a3 – NULL; e3 - observe Enemy C2
traffic; Reward - 0.09

A representation of this nature could be used in a case-
based reasoning, or in a deep learning approach.

What exactly could an agent learn? One, fairly general
option is that Learning Module learns the World Dynamics
model which is a function that takes as an input a state and an
action applied to that state; its output is a new state that will

result from application of that action, or a distribution of states.
World Dynamics Model is used in particular in “Action
Selector and Predictor” module. In addition, the Learning
Module can learn another function required in “Action Selector
and Predictor” module, which maps the current world state to a
set of feasible actions.

VI. CONCLUSIONS AND FUTURE RESEARCH

Intelligent, partly autonomous agents are likely to become
primary cyber fighters on the future battlefield. Our initial
exploration identified the key functions, components and their
interactions for a potential reference architecture of such an
agent.

The AICA Reference Architecture was derived from [19]
for we needed a broad, cognition-based, all-encompassing
agent structure. Future works will challenge this initial choice.

Embedding AICA agents into highly constrained military
systems is also the focus of future research and this issue was
not addressed at this stage yet.

And, at the present stage, the AICARA architecture is a
preliminary proposal. Its feasibility as well as its power to fight
malware autonomously and intelligently remain to be
evaluated.

With respect to further efforts, this research group plans to
have a basic proof-of-concept prototype developed and tested
by 2019.The current priorities are:

• To study use cases as a reference for the research,
as this will lead to clarifying the scope, concepts,
functionality and functions’ inputs and outputs of
AICA and MAICA systems; use cases will be
based on the one elaborated in the IST-152
intermediary report [21];

• To refine the initially assumed architecture by
drawing further lessons from the case studies;

• To determine the set of technologies that AICAs
should embark and that need to be tested during
the prototyping phase;

• To define the methodology of the tests.

The sum of challenges presented by the AICA / MAICA
concept appears, today, very substantial, although our initial
analysis suggests that the required technical approaches do not
seem to be entirely beyond the current state of the research. An
empirical research program and collaboration of multiple teams
should be able to produce significant results and solutions for a
robust, effective intelligent agent. This might happen within a
time span that could currently be assumed on the order of ten
years.

REFERENCES

[1] F. De Gaspari, S. Jajodia, L. V. Mancini and A. Panico,
“AHEAD: A New Architecture for Active Defense,”

SafeConfig’16, October 24 2016, Vienna, Austria, 2016.

[2] P. Théron, La cyber résilience, un projet cohérent transversal à
nos trois thèmes, et la problématique particulière des Systèmes
Multi Agent de Cyber Défense, Leçon inaugurale, 5 décembre
2017, ed., France, Salon de Provence: Chaire Cyber Résilience
Aérospatiale (Cyb'Air), 2017.

[3] R. Rasch, A. Kott and K. D. Forbus, “AI on the battlefield: An
experimental exploration,” AAAI/IAAI, 2002.

[4] R. Rasch, A. Kott and K. D. Forbus, “Incorporating AI into
military decision making: an experiment,” IEEE Intelligent
Systems, vol. 18, no. 4, pp. 18-26, 2003.

[5] J. Von Neumann, “The General and Logical Theory of
Automata,” in Cerebral Mechanisms in Behavior: The Hixon
Symposium, September 1948, Pasadena, L. A. Jeffress, Ed.,
New York, John Wiley & Sons, Inc, 1951, pp. 1-31.

[6] S. D. McArthur, E. M. Davidson, V. M. Catterson, A. L.
Dimeas, N. D. Hatziargyriou, F. Ponci and T. Funabashi,
“Multi-Agent Systems for Power Engineering Applications -
Part I: Concepts, Approaches, and Technical Challenges,” IEEE
TRANSACTIONS ON POWER SYSTEMS, vol. 22, no. 4, pp.
1743-1752, 2007.

[7] A. Carrasco, M. C. Romero-Ternero, F. Sivianes, M. D.
Hernández and J. I. Escudero, “Multi-agent and embedded
system technologies applied to improve the management of
power systems,” JDCTA, vol. 4, no. 1, pp. 79-85, 2010.

[8] M. Pechoucek and V. Marík, “Industrial deployment of multi-
agent technologies: review and selected case studies,”
Autonomous Agents and Multi-Agent Systems, vol. 17, p. 397–
431, 2008.

[9] W. Elmenreich, “Intelligent methods for embedded systems,” in
Proceedings of the First Workshop on Intelligent Solutions in
Embedded Systems, J. 2. Vienna University of Technology
2003, Ed., Austria: Vienna, Vienna University of Technology,
2003, pp. 3-11.

[10] H.-P. Huang, C.-C. Liang and C.-W. Lin, “Construction and
soccer dynamics analysis for an integrated multi-agent soccer
robot system,” Natl. Sci. Counc. ROC(A), vol. 25, pp. 84-93,
2001.

[11] J.-P. Jamont, M. Occello and A. Lagrèze, “A multiagent
approach to manage communication in wireless instrumentation
systems,” Measurement, vol. 43, no. 4, pp. 489-503, 2010.

[12] B. Chen and H. H. Cheng, “A review of the applications of
agent technology in traffic and transportation systems,” Trans.

Intell. Transport. Sys., vol. 11, no. 2, pp. 485-497, 2010.

[13] J.-P. Jamont and M. Occello, “A framework to simulate and
support the design of distributed automation and decentralized
control systems: Application to control of indoor building
comfort,” in IEEE Symposium on Computational Intelligence in
Control and Automation, Paris, France, IEEE, 2011, pp. 80-87.

[14] M. R. Stytz, D. E. Lichtblau and S. B. Banks, “Toward using
intelligent agents to detect, assess, and counter cyberattacks in a
network-centric environment,” Institute For Defense Analyses,
Alexandria, VA, 2005.

[15] J.-P. Muller, “Emergence of collective behaviour and problem
solving,” in Engineering Societies in the Agents World IV, A.
Omicini, P. Petta and J. Pitt, Eds., volume 3071, Lecture Notes
in Computer Science, 2004, pp. 1-20.

[16] K. Weick, “The Collapse of Sensemaking in Organizations: The
Mann Gulch Disaster,” Administrative Science Quarterly, vol.
38, no. 4, pp. 628-652, 1993.

[17] B. Blakely and P. Theron, Decision flow-based Agent Action
Planning, Prague, 2017.

[18] B. LeBlanc, P. Losiewicz and S. Hourlier, A Program for
effective and secure operations by Autonomous Agents and
Human Operators in communications constrained tactical
environments, Prague, 2017.

[19] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Upper Saddle River, NJ: Prentice-Hall Inc, 1995.

[20] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, 2nd ed. ed., Upper Saddle River, New Jersey:
Prentice Hall, 2003.

[21] A. Kott, L. V. Mancini, P. Theron, M. Drašar, H. Günther, M.
Kont, M. Pihelgas, B. LeBlanc and K. Rzadca, “Initial
Reference Architecture of an Intelligent Autonomous Agent for
Cyber Defense,” US Army Research Laboratory, ARL-TR-
8337, March 2018, available from
https://arxiv.org/abs/1803.10664, Adelphi, MD, 2018.

Appendix 8

Publication VIIIP. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini,and F. de Gaspari. Reference Architecture of an Autonomous Agent for Cy-ber Defense of Complex Military Systems. In Adaptive Autonomous Secure
Cyber Systems, pages 1–21, Cham, 2020. Springer International Publishing

© 2020 Springer International Publishing. Reprinted. Authors have the right to reusetheir article’s Version of Record, in whole or in part, in their own thesis. Additionally, theymay reproduce and make available their thesis as required by their awarding academicinstitution.The chapter is included in the book Adaptive Autonomous Secure Cyber Systems.DOI: 978-3-030-33432-1_1
185

Reference Architecture
of an Autonomous Agent for Cyber
Defense of Complex Military Systems

Paul Theron, Alexander Kott, Martin Drašar, Krzysztof Rzadca,
Benoît LeBlanc, Mauno Pihelgas, Luigi Mancini, and Fabio de Gaspari

1 Future Military Systems and the Rationale for
Autonomous Intelligent Cyber Defense Agents

Modern defense systems incorporate new technologies like cloud computing, artifi-
cial intelligence, lasers, optronics, electronics and submicronic processors, on-board
power-generation systems, automation systems, sensors, software defined radios

This chapter reuses portions of an earlier paper: Theron, P., et al, “Towards an Active, Autonomous
and Intelligent Cyber Defense of Military Systems: the NATO AICA Reference Architecture”, Pro-
ceedings of the International Conference on Military Communications and Information Systems
Warsaw, Poland, 22nd - 23rd May 2018; © 2018 IEEE.

P. Theron
Aerospace Cyber Resilience Chair, Paris, France
e-mail: paul.theron@thalesgroup.com

A. Kott (�)
U.S. Army Research Laboratory, Adelphi, MD, USA
e-mail: alexander.kott1.civ@mail.mil

M. Drašar
Masaryk University, Brno, Czech Republic
e-mail: drasar@ics.muni.cz

K. Rzadca
University of Warsaw, Warsaw, Poland
e-mail: krzadca@mimuw.edu.pl

B. LeBlanc
Ecole Nationale Supérieure de Cognitique, Bordeaux, France
e-mail: benoit.leblanc@ensc.fr

© Springer Nature Switzerland AG 2020
S. Jajodia et al. (eds.), Adaptive Autonomous Secure Cyber Systems,
https://doi.org/10.1007/978-3-030-33432-1_1

1

2 P. Theron et al.

and networks, etc. They are more and more relying on software, and will also embed
new hardware technologies, including high performance computers and quantum
technologies, nanoparticles, metamaterials, self-reconfigurable hardware, etc.

While defense infrastructures and systems engaged on the battle ground may not
fail, the multitude of high-tech features and interconnections that they embed make
cyber-attacks a good way to affect their functionality and the missions in which they
are involved.

Today, five broad classes of systems coexist in Land, Sea and Air operations:

• Office and information management systems: these include web services, email-
ing systems, and information management applications ranging from human
resource management to logistics through maintenance and project management;

• C4ISR systems for the command of war operations: they include associated
Battlefield Management Systems that extend the C4ISR down to single vehicles
and platoons;

• Communication systems: they include SATCOM, L16, line of sight networks,
software defined radios, and the Internet of Battle Things (IoBT) can be seen as
a major operational innovation and extension of communication capabilities;

• Platform and life automation systems: they are similar to industrial systems and
provide sea vessels or armored vehicles, for instance, with capabilities such as
air conditioning, refrigeration, lifts, video surveillance, etc.;

• Weapon systems: these include sensors and effectors of all kinds, operating in all
kinds of situations and contested battle grounds.

On the battlefield, these platforms and technologies will operate together in
complex large scale networks of massively interconnected systems.

Autonomy can be defined as the capacity of systems to decide by themselves on
their course of action in uncertain and challenging environments without the help of
human operators. It should not be confused with automation, the aptitude of systems
to perform set tasks according to set rules in environments where uncertainty is low
and characterized [11].

Despite the fact that “Full autonomy might not necessarily be the objective” and
the existence of a variety of definitions [5], the number of autonomous military
systems will grow [10]. They will be able to mitigate operational challenges such
as needs for rapid decision-making, high heterogeneity and/or volumes of data,
intermittent communications, the high complexity of coordinated actions, or the
danger of missions, while they will require persistence and endurance [11, p. 12].

M. Pihelgas
NATO Cooperative Cyber Defence Centre of Excellence, Tallinn, Estonia
e-mail; mauno.pihelgas@ccdcoe.org

L. Mancini · F. de Gaspari
Sapienza University, Rome, Italy
e-mail: mancini@di.uniroma1.it; degaspari@di.uniroma1.it

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 3

Examples of autonomous capabilities and systems [11] include:

• Unmanned Air Systems, Unmanned Surface Vehicles and Unmanned Underwa-
ter Vehicles, will be able to carry out reconnaissance or attack missions stealthily,
some of them with a large endurance. For instance, the Haiyan UUV [24] is
a mini-submarine built on a civilian platform that China’s People’s Liberation
Army Navy (PLAN) sponsors to create an autonomous UUV capable of carrying
out dangerous missions like minesweeping and submarine detection operations
without any human intervention. Weighing only 70 kg, energy efficient and fitted
with advanced computing capacities, it has an endurance of up to 30 days.

• Today’s Intelligence, Surveillance & Recognition (ISR) missions request more
and more high-definition (HD) images and videos being captured and transmitted
back to ground stations for analysis. As HD means large volumes of raw data
(possibly encrypted, which adds to volumes), communication means cannot
provide the ad hoc transmission throughput (and continuity in contested environ-
ments). Autonomous sensors equipped with artificial intelligence will be capable
of generating on the ground aggregated, high-level information that can be more
easily transmitted to command posts as they require much less bandwidth than
raw data, also lowering the human workload needed to process high volumes of
complex multi-source raw data.

• Autonomous Unmanned Ground Vehicles can be employed in dealing with
chemical, biological, radiological and nuclear (CBRN) threats as well as with
Improvised Explosive Devices (IED), as was the case in Iraq and Afghanistan
conflicts.

• The US MK-18 Mod 2 program has demonstrated significant progress in utilizing
Remote Environmental Monitoring UnitS (REMUS) Unmanned Underwater
Vehicles for mine countermeasure missions, thus allowing pulling military
personnel away from dangerous mine fields and reducing tactical reaction times.

• Unmanned Aircrafts (UA) could be used in anti-access and area denial (A2/AD)
missions to perform functions that today require the intervention of personnel
such as aerial refueling, airborne early warning, ISR, anti-ship warfare, com-
mand, offensive strike facilitation (electronic warfare, communications jamming,
decoys) and actions supporting defense by creating confusion, deception or
attrition through decoys, sensors and emitters, target emulators. Similar functions
could be used in underwater combat.

• Agile ground forces could get local tactical support from Unmanned Aircraft
Systems (UAS) embarking sensors, ISR capacities, communication means,
electronic warfare functions and weapon systems. These UAS would reach
greater levels of efficiency and could better deal with large numbers of ground, air
and possibly sea sensors and actuators if they could themselves work in swarms
or cohorts and collectively adapt their action dynamically on the basis of mission
and environment-related data collected in real time.

• Logistics could be another area of utilization of autonomous land, sea and air
vehicles and functions. Autonomous capabilities could be used in contested
changeable environments either in support and defense of friendly logistic
deployment and operation, or to disturb or strike enemy logistics.

4 P. Theron et al.

Another two fundamental issues need to be taken into account.
The first of these issues is the fact that the level of interconnectedness, and

therefore of interdependence and cross-vulnerability, of military systems will
increase to unseen heights [42].

The Internet of Things is increasing rapidly in both numbers and types of smart
objects, and this is a durable trend with regards to Defense [11] despite the massive
scale of their deployment, their meager configurability and the new (cyber) risks
they create. In effect, with the shift to the IPv6 addressing standard, the number of
devices that can be networked is up to 340 undecillion unique devices (340 with 36
zeroes after it) and this immense network of interconnected devices could become
a global platform for massively proliferated, distributed cyber-attacks [11].

This multitude of devices will work together in clusters, likely hard to map
out, likely subject to unstable changing configurations of their dependencies.
These changes will occur beyond our control because of the degrees of autonomy
conferred to objects in shifting operative conditions.

Massively interconnected military systems will become more and more difficult
to engineer, test, maintain, operate, protect and monitor [42], which leads the
authors to recommend “reducing the number of interconnections by reversing the
default culture of connecting systems whenever possible” to improve cybersecurity.
This recommendation, however intelligent it seems, is very likely never to be
listened to . . .

Thus, cyber defending such complex systems will become arduous. For instance,
they will not anymore allow for the sort of cybersecurity monitoring we currently
deploy across IT and OT systems as they will prevent the implementation of classic,
centralized, and even big data/machine learning-based security operations centers
(SOCs).

They will also overwhelm human SOC operators’ cognitive capacities as it will
become impossible for the latter to get instantly a clear and adequate picture of the
systems they defend, of their condition, of the adverse events taking place and of
the remedies to apply and of their possible impacts.

To defend them against cyber-attacks, only locally implemented distributed and
resilient swarms of cyber defense agents adapting to these frequent reconfigurations
and emerging circumstances will be able to monitor and defend this vast fuzzy
network, learning superior abilities from cumulated experience.

In this particular context, different from the previously exposed context of the
cyber defense of a few well-identified and carefully managed autonomous mission
systems, cyber defense agents will evolve themselves into more and more unknown,
less and less controllable and maintainable states.

Given this last parameter, they may either show decreasing levels of efficiency or
generate uncontrollable adverse effects.

The second issue stems from the fundamental military need to proceed suc-
cessfully with defense missions while operational personnel of Air, Land and Sea
forces are not primarily specialists of cybersecurity and cyber defense. This is not to
mention that on the battlefield there will always be a scarcity of cyber competencies
[22].

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 5

Cyber-attacks may cause human operators sometimes to be fooled, for instance
when radar or GPS data are spoofed, or stressed, for instance when anomalies
multiply while their cause appears unclear and their consequences detrimental.
Studies in a variety of domains such as air, sea and ground transportation have
drawn attention to this phenomenon. Attacks may trigger human errors of varying
consequences. For instance, NAP [29] points out that “Inaccurate information
sent to system operators, either to disguise unauthorized changes, or to cause the
operators to initiate inappropriate actions, [] could have various negative effects”.

The burden of cyber defending systems must therefore be relieved from unquali-
fied operators’ shoulders, while the lack of specialists of cybersecurity on the ground
prohibits calling upon rapid response teams in case of trouble.

In this context, handling cyber-attacks occurring in the course of operations
requires an embedded, undisturbing, seamless autonomous intelligent cyber defense
technology [45]. Autonomous intelligent cyber defense agents should resolve (at -
least most of) cyber-attacks without technology users being aware of issues at hand.

Only when they would reach their limits, i.e. when being unable to understand
situations, to reconciliate disparate pieces of information, or to elaborate cyber
defense counter-measures, such multiple agents should collaborate with human
operators. NAP [28] provides inspiring examples of machine-human collaboration
in a variety of contexts. Such a need for collaboration might also exist in the context
of massively interconnected systems of systems evoked earlier.

2 NATO’s AICA Reference Architecture: A Concept for
Addressing the Need for an Autonomous Intelligent Cyber
Defense of Military Systems

Inspired by the above rationale, NATO’s IST-152 Research and Technology Group
(RTG) is an activity that was initiated by the NATO Science and Technology
Organization and was kicked-off in September 2016. The group has developed
is developing a comprehensive, use case focused technical analysis methodology
in order to produce a first-ever reference architecture and technical roadmap for
active autonomous intelligent cyber defense agents. In addition, the RTG worked
to identify and evaluate selected elements that may be eligible contributors to such
capabilities and that begin to appear in academic and industrial research.

Scientists and engineers from several NATO Nations have brought unique exper-
tise to this project. Only by combining multiple areas of distinct knowledge along
with a realistic and comprehensive approach can such a complex software agent be
provided.

The output of the RTG may become a tangible starting point for acquisition
activities by NATO Nations. If based on a common reference architecture, software
agents developed or purchased by different Nations will be far more likely to be
interoperable.

6 P. Theron et al.

Related research includes Mayhem (from DARPA Cyber Challenge, but also
Xandra, etc.), agents from the Pechoucek’s group, Professor Mancini’s work on
the AHEAD architecture [9] and the Aerospace Cyber Resilience research chair’s
research program [45], Anti-Virus tools (Kaspersky, Bitdefender, Avast, Norton,
etc.), HBSS, OSSEC, Various host-based IDS/IPS systems, Application Perfor-
mance Monitoring Agents, Anti-DDOS systems and Hypervisors. Also, a number
of related research directions include topics such as deep learning (especially if
it can be computationally inexpensive), Botnet technology (seen as a network of
agents), network defense games, flip-it games, the Blockchain, and fragmentation
and replication. The introduction of Artificial Intelligence into military systems,
such as C4ISR, has been studied, for instance by Rasch et al. [35, 36]. Multi Agent
Systems form an important part of AI.

Since the emergence of the concept of Multi Agent Systems, e.g., [46], MAS
have been deployed in a number of contexts such as power engineering [25] and their
decentralized automated surveillance [7], industrial systems [33], networked and
intelligent embedded systems [16], collective robotics [19], wireless communication
[21], traffic simulation and logistics planning [8], home automation [20], etc.

However, if the use of intelligent agents for the cyber defense of network-centric
environments has already long been envisaged [43], effective research in this area is
still new.

In the context of the cyber defense of friendly systems, an “agent” has been
defined [45] as a piece of software or hardware, a processing unit capable of
deciding on its own about its course of action in uncertain, possibly adverse,
environments:

• With an individual mission and the corresponding competencies, i.e. in analyzing
the milieu in which the agent is inserted, detecting attacks, planning the required
countermeasures, or steering and adapting tactically the execution of the latter,
or providing support to other agents like for instance inter-agent communication;

• With proactivity, i.e. the capacity to engage into actions and campaigns without
the need to be triggered by another program or by a human operator;

• With autonomy, i.e. a decision making capacity of its own, the capacity to
function or to monitor, control and repair itself on its own, without the need
to be controlled by another program or by a human operator, and the capacity
to evaluate the quality of its own work and to adjust its algorithms in case of
deviance from its norm or when its rewards (satisfaction of its goals) get poor;

• Driven by goals, decision making and other rules, knowledge and functions fit
for its purpose and operating circumstances;

• Learning from experience to increase the accuracy of its decisions and the power
of its reactions;

• With memories (input, process, output, storage);
• With perception, sensing and action, and actuating interfaces;
• Built around the adequate architecture and appropriate technologies;
• Positioned around or within a friendly system to defend, or patrolling across a

network;

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 7

• Sociable, i.e. with the capacity to establish contact and to collaborate with other
agents, or to enter into a cyber cognitive cooperation when the agent requires
human help or to cooperate with a central Cyber C2;

• Trustworthy, i.e. that will not deceive other agents nor human operators;
• Reliable; i.e. that do what they are meant to do, during the time specified and

under the conditions and circumstances of their concept of operation;
• Resilient, i.e. both robust to threats (including cyber-threats aimed at disabling

or destroying the agent itself; the agent being able to repel or withstand everyday
adverse events and to avoid degrading), and resistant to incidents and attacks that
may hit and affect the agent when its robustness is insufficient (i.e. the agent is
capable of recovering from such incidents or attacks);

• Safe, i.e., conceived to avoid harming the friendly systems the agent defends, for
instance by calling upon a human supervisor or central cyber C2 to avoid making
wrong decisions or to adjust their operating mode to challenging circumstances,
or by relocating when the agent is the target of an attack and if relocation is
feasible and allows protecting it, or by activating a fail-safe mode, or by way of
self-destruction when no other possibility is available.

In the same context (ibid), a multi agent system is a set of agents:

• Distributed across the parts of the friendly system to defend;
• Organized in a swarm (horizontal coordination) or cohort (vertical coordination);
• In which agents may have homogeneous or heterogeneous roles and features;
• Interoperable and interacting asynchronously in various ways such as indiffer-

ence, cooperation, competition;
• Pursuing a collective non-trivial cyber defense mission, i.e. allowing to piece

together local elements of situation awareness or propositions of decision, or to
split a counter-attack plan into local actions to be driven by individual agents;

• Capable of self-organization, i.e. as required by changes in circumstances,
whether external (the attack’s progress or changes in the friendly system’s health
or configuration) or internal (changes in the agents’ health or status);

• That may display emergent behaviors [26], i.e. performances that are not
explicitly expressed in individual agents’ goals, missions and rules; in the context
of cyber defense, “emergence” is likely to be an interesting feature as, consisting
in the “way to obtain dynamic results, from cooperation, that cannot easily be
predicted in a deterministic way” [26]; it can be disturbing to enemy software in
future malware-goodware “tactical” combats within defense and other complex
systems;

• Extensible or not, i.e. open or closed to admitting new agents in the swarm or
cohort;

• Safe, trustworthy, reliable and resilient as a whole, which is a necessity in the
context of cyber defense whereas in other, less challenging contexts may be
unnecessary. Resilience, here, may require maintaining a system of virtual roles
as described in a human context by Weick [47].

8 P. Theron et al.

AICA will not be simple agents. Their missions, competencies, functions and
technology will be a challenging construction in many ways.

Among many such challenges, we can mention [45] working in resource-
constrained environments, the design of agents’ architecture and the attribution of
roles and possible specialization to each of them, agents’ decision making process
[3], the capacity to generate and execute autonomously plans of counter-measures
in case of an attack, agents’ autonomy, including versus trustworthiness, MAICA’s
safety to defense systems, cyber cognitive cooperation [23], agents’ resilience in
the face of attacks directed at them by enemy software, agents’ learning capacities
and the development of their functional autonomy, the specification and emergence
of collective rules for the detection and resolution of cyber-attacks, AICA agents’
deployment concepts and rationale, their integration into host hardware as [33]
showed in industrial system contexts, etc.

To start the research with an initial assumption about agents’ architecture, the
IST-152-RTG designed the AICA Reference Architecture [22] on the basis of
classical perspective reflected in [37].

At the present moment, it is assumed to include the following functional
components (Fig. 1).

The AICA Reference Architecture delivers five main high-level functions
(Fig. 2):

• Sensing and world state identification.
• Planning and action selection.
• Collaboration and negotiation.
• Action execution.
• Learning and knowledge improvement.

Fig. 1 Assumed functional architecture of the AICA

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 9

Fig. 2 The AICA’s main five
high-level functions

2.1 Sensing and World State Identification

Definition: Sensing and World state identification is the AICA’s high-level function
that allows a cyber-defense agent to acquire data from the environment and systems
in which it operates as well as from itself in order to reach an understanding of the
current state of the world and, should it detect risks in it, to trigger the Planning and
Action selection high-level function. This high-level function relies upon the “World
model”, “Current world state and history”, “Sensors” and “World State Identifier”
components of the assumed functional architecture.

The Sensing and World state identification high-level function includes two
functions: (1) Sensing; (2) Word state identification.

2.1.1 Sensing

Description: Sensing operates from two types of data sources: (1) External (system
and device-related) current world state descriptors; (2) Internal (agent-related)
current state descriptors.

Current world state descriptors, both external and internal, are captured on
the fly by the agent’s Sensing function. They may be double-checked, formatted
or normalized for later use by the World state identification function (to create
processed current world state descriptors).

2.1.2 World State Identification

Description: The World state identification function operates from two sources of
data: (1) Processed current world state descriptors; (2) Learnt world state patterns.

10 P. Theron et al.

Learnt world state patterns are stored in the agent’s world knowledge repository.
Processed current world state descriptors and Learnt world state patterns are
compared to identify problematic current world state patterns (i.e. presenting an
anomaly or a risk). When identifying a problematic current world state pattern, the
World state identification function triggers the Planning and Action selection high-
level function.

2.2 Planning and Action Selection

Definition: Planning and action selection is the AICA’s high-level function that
allows a cyber-defense agent to elaborate one to several action proposals and to
propose them to the Action selector function that decides the action or set of
actions to execute in order to resolve the problematic world state pattern previously
identified by the World state identifier function. This high-level function relies upon
the “World dynamics” that should include knowledge about “Actions and effects”,
“Goals”, “Planner - Predictor” and “Action selector” components of the assumed
functional architecture.

The Planning and action selector high-level function includes two functions:
(1) Planning; (2) Action selector.

2.2.1 Planning

Description: The Planning function operates on the basis of two data sources:
(1) Problematic current world state pattern; (2) Repertoire of actions (Response
repertoire).

The Problematic current world state pattern and Repertoire of actions (Response
repertoire) are concurrently explored in order to determine the action or set of
actions (Proposed response plan) that can resolve the submitted problematic current
world state pattern. The action or set of actions so determined are presented to the
Action selector. It may be possible that the Planning function requires some form of
cooperation with human operators (cyber cognitive cooperation, C3).

It may alternatively require cooperation with other agents or with a central cyber
C2 (command and control) in order to come up with an optimal set of actions
forming a global response strategy. Such cooperation could be either to request from
other agents or from the cyber C2 complementary action proposals, or to delegate
to the cyber C2 the responsibility of coordinating a global set of actions forming the
wider response strategy.

It may be possible that the Planning function requires some form of cooperation
with human operators (cyber cognitive cooperation, C3). It may alternatively require
cooperation with other agents or with a central cyber C2 (command and control) in
order to come up with an optimal set of actions forming a global response strategy.
Such cooperation could be either to request from other agents or from the cyber C2

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 11

complementary action proposals, or to delegate to the cyber C2 the responsibility of
coordinating a global set of actions forming the wider response strategy.

These aspects have been the object of an initial study in [3] where options such as
offline machine learning, pattern recognition, online machine learning, escalation to
a human operator, game theoretic option search, and failsafe have been envisaged,
and in [23] for cyber cognitive cooperation processes.

2.2.2 Action Selector

Description: The Action selector function operates on the basis of three data
sources: (1) Proposed response plans; (2) Agent’s goals; (3) Execution constraints
and requirements, e.g., the environment’s technical configuration, etc.

The proposed response plan is analyzed by the Action selector function in the
light of the agent’s current goals and of the execution constraints and requirements
that may either be part of the world state descriptors gained through the Sensing and
World state identifier high-level function or be stored in the agent’s data repository
and originated in the Learning and Knowledge improvement high-level function.
The proposed response plan is then trimmed from whatever element does not fit
the situation at hand, and augmented of prerequisite, preparatory or precautionary
or post-execution recommended complementary actions. The Action selector thus
produces an Executable Response Plan, and then submitted to the Action execution
high-level function.

Like with the Planning function, it is possible that the Action selector function
requires to liaise with human operators, other agents or a central cyber C2 (com-
mand and control) in order to come up with an optimal Executable Response Plan
forming part of and being in line with a global response strategy. Such cooperation
could be to exchange and consolidate information in order to come to a collective
agreement on the assignment of the various parts of the global Executable Response
Plan and the execution responsibilities to specific agents. It could alternatively be to
delegate to the cyber C2 the responsibility of elaborating a consolidated Executable
Response Plan and then to assign to specific agents the responsibility of executing
part(s) of this overall plan within their dedicated perimeter. This aspect is not yet
studied in the present release of the AICA Reference Architecture.

2.3 Collaboration and Negotiation

Definition: Collaboration and negotiation is the AICA’s high-level function that
allows a cyber-defense agent (1) to exchange information (elaborated data) with
other agents or with a central cyber C2, for instance when one of the agent’s
functions is not capable on its own to reach satisfactory conclusions or usable
results, and (2) to negotiate with its partners the elaboration of a consolidated

12 P. Theron et al.

conclusion or result. This high-level function relies upon the “Collaboration &
Negotiation” component of the assumed functional architecture.

The Collaboration and negotiation high-level function includes, at the present
stage, one function: Collaboration and negotiation.

Description: The Collaboration and negotiation function operates on the basis
of three data sources: (1) Internal, outgoing data sets (i.e. sent to other agents or
to a central C2); (2) External, incoming data sets (i.e. received from other gents or
from a central cyber C2); (3) Agents’ own knowledge (i.e. consolidated through the
Learning and knowledge improvement high-level function).

When an agent’s Planning and action selector function or other function needs
it, the agent’s Collaboration and negotiation function is activated. Ad hoc data are
sent to (selected) agents or to a central C2. The receiver(s) may be able, or not, to
elaborate further on the basis of the data received through their own Collaboration
and negotiation function. At this stage, when each agent (including possibly a
central cyber C2) has elaborated further conclusions, it should share them with other
(selected) agents, including (or possibly not) the one that placed the original request
for collaboration. Once this (these multiple) response(s) received, the network of
involved agents would start negotiating a consistent, satisfactory set of conclusions.
Once an agreement reached, the concerned agent(s) could spark the next function
within their own decision making process.

When the agent’s own security is threatened the agent’s Collaboration and
negotiation function should help warning other agents (or a central cyber C2) of
this state.

Besides, the agent’s Collaboration and negotiation function may be used to
receive warnings from other agents that may trigger the agent’s higher state of alarm.

Finally, the agent’s Collaboration and negotiation function should help agents
discover other agents and establish links with them.

2.4 Action Execution

Definition: The Action execution is the AICA’s high-level function that allows
a cyber-defense agent to effect the Action selector function’s decision about an
Executable Response Plan (or the part of a global Executable Response Plan
assigned to the agent), to monitor its execution and its effects, and to provide the
agents with the means to adjust the execution of the plan (or possibly to dynamically
adjust the plan) when and as needed. This high-level function relies upon the
“Goals” and “Action execution” components of the assumed functional architecture.

The Action execution high-level function includes four functions:

• Action effector;
• Execution monitoring;
• Effects monitoring;
• Execution adjustment.

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 13

2.4.1 Action Effector

Description: The Action effector function operates on the basis of two data
sources:

• Executable Response Plan;
• Environment’s Technical Configuration.

Taking into account the Environment’s Technical Configuration, the Action
effector function executes each planned action in the scheduled order.

2.4.2 Execution Monitoring

Description: The Execution monitoring operates on the basis of two data sources:

• Executable Response Plan;
• Plan execution feedback.

The Execution monitoring function should be able to monitor (possibly through
the Sensing function) each action’s execution status (for instance: done, not done,
and wrongly done). Any status apart from “done” should trigger the Execution
adjustment function.

2.4.3 Effects Monitoring

Description: The Effects monitoring function operates on the basis of two data
sources: (1) Executable Response Plan; (2) Environment’s change feedback.

It should be able to capture (possibly through the Sensing function) any
modification occurring in the plan execution’s environment. The associated dataset
should be analyzed or explored. The result of such data exploration might provide
a positive (satisfactory) or negative (unsatisfactory) environment change status.
Should this status be negative, this should trigger the Execution adjustment function.

2.4.4 Execution Adjustment

Description: The Execution adjustment function operates on the basis of three data
sources: (1) Executable Response Plan; (2) Plan execution feedback and status; (3)
Environment’s change feedback and status.

The Execution adjustment function should explore the correspondence between
the three data sets to find alarming associations between the implementation of the
Executable Response Plan and its effects. Should warning signs be identified, the
Execution adjustment function should either adapt the actions’ implementation to
circumstances or modify the plan.

14 P. Theron et al.

2.5 Learning and Knowledge Improvement

Definition: Learning and knowledge improvement is the AICA’s high-level function
that allows a cyber-defense agent to use the agent’s experience to improve progres-
sively its efficiency with regards to all other functions. This high-level function relies
upon the Learning and Goals modification components of the assumed functional
architecture.

The Learning and knowledge improvement high-level function includes two
functions: (1) Learning; (2) Knowledge improvement.

2.5.1 Learning

Description: The Learning function operates on the basis of two data sources: (1)
Feedback data from the agent’s functioning; (2) Feedback data from the agent’s
actions.

The Learning function collects both data sets and analyzes the reward function of
the agent (distance between goals and achievements) and their impact on the agent’s
knowledge database. Results feed the Knowledge improvement function.

2.5.2 Knowledge Improvement

Description: The Knowledge improvement function operates on the basis of two
data sources: (1) Results (propositions) from the Learning function; (2) Current
elements of the agent’s knowledge.

The Knowledge improvement function merges Results (propositions) from the
Learning function and the Current elements of the agent’s knowledge.

3 Use Cases

The use-case of military UAVs that operate in teams illustrates a possible deploy-
ment of the AICA Reference Architecture. It is based on the AgentFly project
developed within the Agent Technology Center [44].

The AgentFly project facilitates the simulation of multi agent Unmanned Aerial
Vehicles (UAV). Its features include flight path planning, decentralized collision
avoidance and models of UAVs, physical capabilities and environmental conditions
[41]. In addition to simulation, AgentFly was implemented on a real fixed-wing
Procerus UAV [32].

The basis of this use-case is the set of missions selected for the AgentFly
project. It is here extended to include an adversarial cyber-attack activity against
the AgentFly UAV to disrupt its mission. The use case is that a swarm of AgentFly

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 15

UAVs perform a routine tactical aerial surveillance mission in an urban area.
Collaboration between AgentFly UAVs aims at collision avoidance, trajectory
planning, automatic distributed load-balancing and mission assurance.

The AgentFly UAVs use case is built around the following assumptions:

• AgentFly UAVs self-assess and share information with neighboring UAVs.
• When setting up a communication channel, AgentFly UAVs have to determine

whether they trust their correspondent.
• Network-wide collaboration and negotiation is affected by timing, range, and

reachability issues.
• The AgentFly UAV lacks modern cyber defense capabilities and is thus vulnera-

ble to potential cyberattacks.
• Due to environmental conditions, AgentFly UAVs might be offline for some time

and later re-join the swarm when connectivity allows.
• A single AICA agent is implemented within each AgentFly UAV.
• The AICA connects with the modules of the UAV and can supervise the activity

and signals in and between various UAV modules (e.g., sensors, navigation, and
actuators).

• The AICA can function in isolation from other AgentFly UAVs’ AICA agents
present in the AgentFly UAV swarm.

Attackers have acquired a technology similar to that used in AgentFly UAVs’
COMMS module. They have discovered a zero-day vulnerability that can be
exploited remotely over the radio link from the ground and they plan to use the
vulnerability in order to gain control over the swarm of UAVs and cut them off from
the theatre’s Command & Control (C2) system. The UAVs are using the COMMS
module to collaborate among themselves and report to the C2 when needed.

The vulnerability lies in the functionality responsible for dynamically registering
new UAV agents in the swarm upon due request. The COMMS module is intercon-
nected with other intrinsic modules of the AgentFly UAV via a central control unit.

The adversary has set up a ground station in the area of the surveillance mission.
When AgentFly UAVs enter the area, the cyberattack is launched.

The AICA detects a connection to the COMMS module and allows the incoming
connection for the dynamic registration of a new UAV agent into the swarm. Due to
the nature of zero-day attacks, an Intrusion Detection System (IDS) would not have
any corresponding signatures to detect a compromised payload.

The AICA’s Sensor monitors the entire set of modules of the AgentFly UAV.
The AICA’s World-state identifier module flags the connection from a newly

connected UAV agent as anomalous since it does not follow the baseline pattern
that has been established out of previous connections with legitimate UAVs. It
also detects a change in the UAV’s system configuration and deems it anomalous
because no new configurations have been received from the C2. The AICA launches,
through its Sensor module, a system integrity check. A compromise within the
UAV’s COMMS module is detected.

The AICA decides (Planner-Selector and Action selection modules) to isolate
(Action execution module) the COMMS module from other UAV modules in order

16 P. Theron et al.

to prevent further propagation. Alerting the C2 is not possible because of the
compromised COMMS module.

In order to reduce the attack surface, the AICA requests (Action execution
module) that the UAV’s central control unit resets the COMMS module, raises the
security level and disables auxiliary functions (among others, the dynamic inclusion
of new UAVs into the swarm).

The AICA performs another integrity check to verify that no other compromise
exists. It keeps its Sensor and World-state identifier modules on a high-level of
vigilance in relation to integrity monitoring. The AICA adds the signature of the
payload that caused the anomaly into its knowledge base. And it sends out an alert
along with malware signature updates to other agents as well as to the C2.

This basic, single AICA agent, use case should be expanded to Multi AICA
agents deployed across the AgentFly UAV’s architecture and modules. Future
research will benchmark Multi AICA agents versus Single AICA agent deployments
in order to assess the superiority and context of Multi AICA agent solutions.

4 Discussion and Future Research Directions

The AICA Reference Architecture (AICARA) [22] was elaborated on the basis of
[37, 38].

Since the end of 70’s and the early works on Artificial Intelligence (AI), the
concept of agent was used by different authors to represent different ideas. This
polymorphic concept was synthesized by authors such as [30, 48]. Since 1995,
Russell and Norvig [38] proposed an architecture and functional decomposition of
agents widely regarded as reference work in the ever-growing field of AI.

Their agent architecture can be seen as an extension of the developments in
object-oriented methods for software development that culminated in the Unified
Modeling Language [4] and design patterns [17]. Both concepts form the basis of
modern software development.

The concept of cooperating cognitive agents [38] perfectly matches requirements
for AICA agents.

First, AICA agents need to prove trustworthy, and therefore the AICA Reference
Architecture is conceived as a white-box. The agent’s architecture involves a set of
clearly defined modules and specifies the links connecting information perception
to action actuation or else the agent to external agents or a central cyber defense C2.

Second, the AICA agents must go beyond merely reactive agents because in
situations of autonomy they will need to make decisions by themselves. Reactive
agents are today widely used in cybersecurity and are based on rule sets in the form
of “if X suspicious, then trigger Y”.

Third, Russell and Norvig [38] has attributes highly required by AICA agents:
autonomous decision making, learning and cooperation. This is important because
these agents may operate for prolonged periods of time if deployed in autonomous
weapon systems. The latter may face multiple and unknown cyber-attacks and AICA

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 17

agents, by learning and cooperating with one another, will sustain their capacity to
equip the weapon system with an autonomous intelligent cyber defense.

Applied to the field of the autonomous cyber defense of military systems [38],
well-known concepts must be reassessed, prototypes must be built and tested, and
the superiority of the concept must now be benchmarked.

Developing the concepts described here also presents many other challenges that
require research in the coming years.

Agents’ integrity, agent communications’ security, the inclusion of cyber defense
techniques such as deception, or else identifying and selecting the right actions, are
only a few of them.

4.1 Agents’ Integrity

A compromise of agents can potentially threaten the entire military platform they
are supposed to defend. It is paramount to harden the agents’ architecture in order to
minimize the chance of such compromise. Methods that assess the integrity of the
agent during runtime are required.

Virtualization techniques have been successfully employed to improve systems’
resiliency [2, 18]. For instance, systems such as [18] allow providing security
guarantees to applications running on untrusted operating systems. It is possible
to build upon such techniques in order to harden AICA agents and to maintain
their functionality even under attack or in case of partial compromise. Furthermore,
periodical assessment of agents’ integrity can be performed through attestation
techniques [15], based on a trusted hardware core (Trusted Platform Module,
TPM). Such techniques allow ensuring that the software of the agent has not been
altered at any time, even during the operations of the platform, and can easily
scale up to millions of devices [1]. Finally, while the topic of protecting machine
learning systems from adversarial examples is still relatively new, techniques such
as distillation [31] could be leveraged to increase robustness.

4.2 Agent Communications’ Security

Sensors are the fundamental building blocks providing the agents with a consistent
world view. As such, they are a part of the AICA architecture most exposed to adver-
sarial tampering. The AICA architecture needs to provide secure communications
to ensure that the agent’s world view is not corrupted.

To this end, cryptographic protocols such as random key pre-distribution [12, 13],
can be employed to provide secure agent-sensor communication even when one or
more sensor channels are compromised.

18 P. Theron et al.

4.3 The Inclusion of Cyber Defense Techniques
Such as Deception

Deception is a key component of active defense systems and, consequently, could
be part of the AICA architecture. Active defense deception tools can be used to
thwart an ongoing attack. To provide this functionality, the AICA architecture can
employ deception techniques such as honeyfiles [6, 49], mock sensors [14] and fake
services [34]. Moreover, implementing dynamic tools deployment and reconfigura-
tion is required for actuating functions. To this end container technologies can be
employed, such as in [9] to provide isolation and configuration flexibility.

4.4 Identifying and Selecting the Right Actions

Identifying the appropriate actions to take in response to external stimuli is one of
the key requirements for the AICA architecture. The AICA agent should include
autonomous decision making that can adapt to the current world state. Machine
learning-based techniques can be employed [39] to this end, to devise complex
plans of action [40] to mitigate an attack, and to learn from previous experiences.
However, Blakely and Theron [3] have shown that a variety of techniques may be
called upon by AICA agents to elaborate their decisions.

5 In Conclusion

AICA agents are required by foreseeable evolutions of military systems, and it
is likely that civil systems, such as the wide-scale deployment of the Internet of
Things, will generate similar demands.

The AICA Reference Architecture (AICARA) [22] is a seminal proposition to
answer the needs and challenges of the situation.

NATO’s IST-152 Research and Technology Group (RTG) has initiated this piece
of work and in a recent meeting held in Warsaw, Poland, has evaluated that future
research is likely to span over the next decade before efficient solutions be operated.

The AICARA opens discussions among the scientific community, from computer
science to cognitive science, Law and moral philosophy.

Autonomous intelligent cyber defense agents may change the face of the fight
against malware. This is our assumption.

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 19

References

1. Ambrosin, M. et al., 2016. SANA: Secure and Scalable Aggregate Network Attestation. New
York, NY, USA, ACM, pp. 731–742.

2. Baumann, A., Peinado, M. & Hunt, G., 2015. Shielding Applications from an Untrusted Cloud
with Haven. ACM Trans. Comput. Syst., 8, Volume 33, pp. 8:1–8:26.

3. Blakely, B. & Theron, P., 2018. Decision flow-based Agent Action Planning. Prague, 18–20
October 2017: https://export.arxiv.org/pdf/1804.07646.

4. Booch, G., 1991. Object-Oriented Analysis and Design with Applications. The Benjamin
Cummings Publishing Company ed. San Francisco, CA: Pearson Education.

5. Boulanin, V. & Verbruggen, M., 2017. Mapping the development of autonomy in weapon sys-
tems, Solna, Sweden, available at https://www.sipri.org/publications/2017/other-publications/
mapping-development-autonomy-weapon-systems: SIPRI.

6. Bowen, B. M., Hershkop, S., Keromytis, A. D. & Stolfo, S. J., 2009. Baiting Inside Attackers
Using Decoy Documents. s.l., Springer, Berlin, Heidelberg, pp. 51–70.

7. Carrasco, A. et al., 2010. Multi-agent and embedded system technologies applied to improve
the management of power systems. JDCTA, 4(1), pp. 79–85.

8. Chen, B. & Cheng, H. H., 2010. A review of the applications of agent technology in traffic and
transportation systems. Trans. Intell. Transport. Sys., 11(2), pp. 485–497.

9. De Gaspari, F., Jajodia, S., Mancini, L. V. & Panico, A., 2016. AHEAD: A New Architecture
for Active Defense, Vienna, Austria: SafeConfig’16, October 24 2016.

10. Defense Science Board, 2012. Task Force Report: The Role of Autonomy in DoD Systems,
Washington, D.C.: Office of the Under Secretary of Defense for Acquisition, Technology and
Logistics.

11. Defense Science Board, 2016. Summer Study on Autonomy, Washington, D.C.: Office of the
Under Secretary of Defense for Acquisition, Technology and Logistics.

12. Di Pietro, R., Mancini, L. V. & Mei, A., 2003. Random Key-assignment for Secure Wireless
Sensor Networks. New York, NY, USA, ACM, pp. 62–71.

13. Di Pietro, R., Mancini, L. V. & Mei, A., 2006. Energy Efficient Node-to-node Authentication
and Communication Confidentiality in Wireless Sensor Networks. Wireless Networks, 11,
Volume 12, pp. 709–721.

14. Disso, J. P., Jones, K. & Bailey, S., 2013. A Plausible Solution to SCADA Security Honeypot
Systems. IEEE, Eighth International Conference on Broadband, Wireless Computing, Commu-
nication and Applications, pp. 443–448.

15. Eldefrawy, K., Francillon, A., Perito, D. & Tsudik, G., 2012. SMART: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of Trust. 19th Annual Network and Distributed
System Security Symposium, February 5–8 ed. San Diego, CA: NDSS 2012.

16. Elmenreich, W., 2003. Intelligent methods for embedded systems. In: J. 2. Vienna University of
Technology 2003, ed. Proceedings of the First Workshop on Intelligent Solutions in Embedded
Systems. Austria: Vienna: Vienna University of Technology, pp. 3–11.

17. Gamma, E., Helm, R., Johnson, R. & Vlissides, J., 1994. Design patterns: elements of reusable
object-oriented software. Reading, Massachusetts: Addison-Wesley.

18. Hofmann, O. S. et al., 2013. InkTag: Secure Applications on an Untrusted Operating System.
New York, NY, USA, ACM, pp. 265–278.

19. Huang, H.-P., Liang, C.-C. & Lin, C.-W., 2001. Construction and soccer dynamics analysis
for an integrated multi-agent soccer robot system. Natl. Sci. Counc. ROC(A), Volume 25, pp.
84–93.

20. Jamont, J.-P. & Occello, M., 2011. A framework to simulate and support the design of
distributed automation and decentralized control systems: Application to control of indoor
building comfort. In: IEEE Symposium on Computational Intelligence in Control and Automa-
tion. Paris, France: IEEE, pp. 80–87.

21. Jamont, J.-P., Occello, M. & Lagrèze, A., 2010. A multiagent approach to manage communi-
cation in wireless instrumentation systems. Measurement, 43(4), pp. 489–503.

20 P. Theron et al.

22. Kott, A. et al., 2019. Autonomous Intelligent Cyber-defense Agent (AICA) Reference Architec-
ture, Release 2.0, Adelphi, MD: US Army Research Laboratory, ARL SR-0421, September
2019, available from https://arxiv.org/abs/1803.10664.

23. LeBlanc, B., Losiewicz, P. & Hourlier, S., 2017. A Program for effective and secure opera-
tions by Autonomous Agents and Human Operators in communications constrained tactical
environments. Prague: NATO IST-152 workshop.

24. Lin, J. & Singer, P. W., 2014. University Tests Long-Range Unmanned Mini Sub. [Online]
Available at: https://www.popsci.com/blog-network/eastern-arsenal/not-shark-robot-chinese-
university-tests-long-range-unmanned-mini-sub [Accessed 11 May 2018].

25. McArthur, S. D. et al., 2007. Multi-Agent Systems for Power Engineering Applications -
Part I: Concepts, Approaches, and Technical Challenges. IEEE TRANSACTIONS ON POWER
SYSTEMS, 22(4), pp. 1743–1752.

26. Muller, J.-P., 2004. Emergence of collective behaviour and problem solving. In: A. Omicini, P.
Petta & J. Pitt, eds. Engineering Societies in the Agents World IV. volume 3071: Lecture Notes
in Computer Science, pp. 1–20.

27. NAP, 2012. Intelligent Human-Machine Collaboration: Summary of a Workshop, available at
http://nap.edu/13479: National Academies Press.

28. NAP, 2014. Autonomy Research for Civil Aviation: Toward a New Era of Flight, available at
http://nap.edu/18815: National Academies Press.

29. NAP, 2016. Protection of Transportation Infrastructure from Cyber Attacks: A Primer,
Available at http://nap.edu/23516: National Academies Press.

30. Nwana, H. S., 1996. Software agents: An overview. The knowledge engineering review, 11(3),
pp. 205–244.

31. Papernot, N. et al., 2016. Distillation as a Defense to Adversarial Perturbations Against Deep
Neural Networks. IEEE, 37th IEEE Symposium on Security & Privacy, pp. 582–597.

32. Pěchouček, M., Jakob, M. & Novák, P., 2010. Towards Simulation-Aided Design of Multi-
Agent Systems. In: R. Collier, J. Dix & P. Novák, eds. Programming Multi-Agent Systems.
Toronto, ON, Canada: Springer, 8th InternationalWorkshop, ProMAS 2010, 11 May 2010,
Revised Selected Papers, pp. 3–21.

33. Pechoucek, M. & Marík, V., 2008. Industrial deployment of multi-agent technologies: review
and selected case studies. Autonomous Agents and Multi-Agent Systems, Volume 17, p.
397–431.

34. Provos, N., 2004. A Virtual Honeypot Framework. Berkeley, USENIX Association, pp. 1–1.
35. Rasch, R., Kott, A. & Forbus, K. D., 2002. AI on the battlefield: An experimental exploration.

AAAI/IAAI.
36. Rasch, R., Kott, A. & Forbus, K. D., 2003. Incorporating AI into military decision making: an

experiment. IEEE Intelligent Systems, 18(4), pp. 18–26.
37. Russell, S. J. & Norvig, P., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. Upper

Saddle River, New Jersey: Prentice Hall.
38. Russell, S. J. & Norvig, P., 2010. Artificial Intelligence: a Modern Approach. 3rd ed. Upper

Saddle River, NJ: Pearson Education.
39. Seufert, S. & O’Brien, D., 2007. Machine Learning for Automatic Defence Against Distributed

Denial of Service Attacks. IEEE, ICC 2007 proceedings, pp. 1217–1222.
40. Silver, D. et al., 2017. Mastering the game of Go without human knowledge. Nature, 10,

Volume 550, p. 354.
41. Sislak, D., Volf, P., Kopriva, S. & Pěchouček, M., 2012. AgentFly: Scalable, High-

Fidelity Framework for Simulation, Planning and Collision Avoidance of Multiple UAVs.
In: P. Angelov, ed. Sense and Avoid in UAS: Research and Applications. Wiley Online
Library: Wiley: John Wiley&Sons, Inc., https://onlinelibrary.wiley.com/doi/pdf/10.1002/
9781119964049.ch9, pp. 235-264.

42. Snyder, D. et al., 2015. Improving the Cybersecurity of U.S. Air Force Military Systems
Throughout Their Life Cycles, Santa Monica, CA: RAND Corporation.

Reference Architecture of an Autonomous Agent for Cyber Defense. . . 21

43. Stytz, M. R., Lichtblau, D. E. & Banks, S. B., 2005. Toward using intelligent agents to detect,
assess, and counter cyberattacks in a network-centric environment, Alexandria, VA: Institute
For Defense Analyses.

44. Tactical AGENTFLY, 2018. Agent Technology Center. [Online] Available at: http://
agents.felk.cvut.cz/projects/agentfly/tactical [Accessed 6 June 2018].

45. Théron, P., 2017. La cyber résilience, un projet cohérent transversal à nos trois thèmes, et la
problématique particulière des Systèmes Multi Agent de Cyber Défense. Leçon inaugurale,
5 décembre 2017, ed. Salon de Provence, France: Chaire Cyber Résilience Aérospatiale
(Cyb’Air).

46. Von Neumann, J., 1951. The General and Logical Theory of Automata. In: L. A. Jeffress, ed.
Cerebral Mechanisms in Behavior: The Hixon Symposium, September 1948, Pasadena. New
York: John Wiley & Sons, Inc, pp. 1–31.

47. Weick, K., 1993. The Collapse of Sensemaking in Organizations: The Mann Gulch Disaster.
Administrative Science Quarterly, 38(4), pp. 628–652.

48. Wooldridge, M. & Jennings, N. R., 1995. Intelligent agents: Theory and practice. The
knowledge engineering review, 10(2), pp. 115–152.

49. Yuill, J., Zappe, M., Denning, D. & Feer, F., 2004. Honeyfiles: deceptive files for intrusion
detection. IEEE Xplore, Information Assurance Workshop, 2004. Proceedings from the Fifth
Annual IEEE SMC, 10–11 June 2004, pp. 116–122.

Appendix 9

Publication IXA. Kott, P. Théron, L. V. Mancini, E. Dushku, A. Panico, M. Drašar, B. LeBlanc,P. Losiewicz, A. Guarino, M. Pihelgas, and K. Rzadca. An introductory pre-view of Autonomous Intelligent Cyber-defense Agent reference architec-ture, release 2.0. The Journal of DefenseModeling and Simulation, 17(1):51–54, 2020

© 2020 SAGE Publishing. Reprinted. The author(s) may use the Final Published PDF (orOriginal Submission or Accepted Manuscript, if preferred) in their dissertation or thesis,including where the dissertation or thesis will be posted in any electronic InstitutionalRepository or database.The article is included in the Journal of Defense Modeling and Simulation: Applications,
Methodology, Technology.DOI: 10.1177/1548512919886163

209

Technical Note

JDMS

Journal of Defense Modeling and
Simulation: Applications,
Methodology, Technology
2020, Vol. 17(1) 51–54
� The Author(s) 2019
DOI: 10.1177/1548512919886163
journals.sagepub.com/home/dms

An introductory preview of
Autonomous Intelligent Cyber-defense
Agent reference architecture,
release 2.0

Alexander Kott1, Paul Théron2, Luigi V Mancini3, Edlira Dushku3,
Agostino Panico3, Martin Drašar4, Benoı̂t LeBlanc5, Paul Losiewicz6,
Alessandro Guarino7, Mauno Pihelgas8, and Krzysztof Rzadca9

Abstract
The North Atlantic Treaty Organization (NATO) Research Task Group IST-152 developed a concept and a reference
architecture for intelligent software agents performing active, largely autonomous cyber-defense actions on military
assets. The group released a detailed report, briefly reviewed in this article, where such an agent is referred to as an
Autonomous Intelligent Cyber-defense Agent (AICA).
In a conflict with a technically sophisticated adversary, NATO military networks will operate in a heavily contested battlefield.
Enemy malware will likely infiltrate and attack friendly networks and systems. Today’s reliance on human cyber defenders will
be untenable on the future battlefield. Instead, artificially intelligent agents, such as AICAs, will be necessary to defeat the enemy
malware in an environment of potentially disrupted communications where human intervention may not be possible.
The IST-152 group identified specific capabilities of AICA. For example, AICA will have to be capable of autonomous
planning and execution of complex multi-step activities for defeating or degrading sophisticated adversary malware, with
the anticipation and minimization of resulting side effects. It will have to be capable of adversarial reasoning to battle
against a thinking, adaptive malware. Crucially, AICA will have to keep itself and its actions as undetectable as possible,
and will have to use deceptions and camouflage.
The report identifies the key functions and components and their interactions for a potential reference architecture of
such an agent, as well as a tentative roadmap toward the capabilities of AICA.

Keywords
Intelligent agent, autonomy, cyber warfare, cyber defense, agent architecture

1. Background and introduction

To focus the attention of our research group, we have cho-

sen to limit the scope of the problem as follows. We con-

sider a single military platform, such as a vehicle, a vessel,

or an unmanned aerial vehicle (UAV), with one or more

computers residing on the platform, connected to sensors

and actuators. Each computer contributes considerably to

the operation of the platform or systems installed on the

platform. One or more computers are assumed to have

been compromised, where the compromise is either estab-

lished as a fact or is suspected.

1US Army CCDC Army Research Laboratory, USA
2Thales, France
3Sapienza Università di Roma, Italy
4Masaryk University, Czech Republic
5Ecole Nationale Supérieure de Cognitique, France
6Cybersecurity and Information Systems IAC, USA
7StAG Srl, Italy
8NATO Cooperative Cyber-defense Centre of Excellence, Estonia
9Institute of Informatics, University of Warsaw, Poland

Corresponding author:

Alexander Kott, US Army CCDC Army Research Laboratory, 2800

Powder Mill Road, Adelphi, MD 20783, USA.

Email: alexander.kott1.civ@mail.mil

Due to the contested nature of the communications

environment (e.g., the enemy is jamming the communica-

tions or radio silence is required to avoid detection by the

enemy), communications between the vehicle and other

elements of the friendly force are often limited and inter-

mittent. At certain times and under some conditions, com-

munications may be entirely impossible.1

Given the constraints on communications, conventional

centralized cyber defense (i.e., an architecture where local

sensors send cyber-relevant information to a central loca-

tion where highly capable cyber-defense systems and

human analysts detect the presence of malware and initiate

corrective actions remotely) is often infeasible.2 It is also

unrealistic to expect that human warfighters residing on

the platform, for example, a vehicle, will have the neces-

sary skills or time available to perform cyber-defense

functions locally on the vehicle, even more so if the vehi-

cle is unmanned.3

Therefore, the cyber defense of such a platform, includ-

ing its computing devices, will have to be performed by

an intelligent, autonomous software agent.4 The agent (or

multiple agents per platform) will stealthily monitor the

networks, detect the enemy agents while remaining con-

cealed, and then destroy or degrade the enemy malware.5

The agent will have to do so mostly autonomously, with-

out the support of or guidance by a human expert.

In most discussions in the architecture document, the agent

is considered as a monolithic piece of software. However,

depending on the implementation, the agent’s modules can be

distributed over multiple processes or devices, or it could be

implemented as a team of agents or subagents.

To fight the enemy malware that has infiltrated the

friendly computer, the agent may have to take destructive

actions, such as deleting or quarantining certain software.

Such destructive actions are carefully controlled by the

appropriate rules of engagement and are allowed only on

the computer where the agent resides.

In most cases, the agent will not be able to stop the

enemy from penetrating the platform’s systems. However,

it will be able to perform the detection of, analysis of, and

response to a given threat. The actions of the agent, in gen-

eral, cannot be guaranteed to preserve the availability or

integrity of the functions and data of friendly computers.

There is a risk that an action of the agent will ‘‘break’’ the

friendly computer, disable important friendly software, or

corrupt or delete important data. Developers of the agent

will attempt to design its actions and planning capability

to minimize the risk. This risk, in a military environment,

has to be balanced against the death or destruction caused

by the enemy if the agent’s action is not taken.

Provisions will be made to enable a remote controller—

a human or automated cyber command and control (C2)

node—to fully observe, direct, and modify the actions of

the agent, and even to update the agent’s software as

needed. However, it is recognized that such a remote con-

trol is often impossible due to the difficulties of communi-

cating between the agent and the control node.6 The agent,

therefore, should be able to plan, analyze, and perform

most or all of its actions autonomously.

Similarly, provisions should be made for the agent to

collaborate with other agents (that reside on other comput-

ers); however, in many cases, because the communications

are impaired or observed by the enemy, the agent has to

eschew collaboration and operate alone.

The enemy malware, specifically, its capabilities and

tactics, techniques, and procedures (TTPs), evolves rap-

idly. Therefore, the agent will be capable of autonomous

learning. In the case that enemy malware knows that the

agent exists and is likely to be present on the computer, the

enemy malware will seek to find and destroy the agent.

Therefore, the agent will possess techniques and mechan-

isms for maintaining a certain degree of stealth, camou-

flage, and concealment.7 More generally, the agent takes

measures that reduce the probability that the enemy mal-

ware will detect the agent. The agent is mindful of the need

to exercise self-preservation and self-defense.

It is assumed here that the agent resides on a computer

where it was originally installed by a human controller or

an authorized process. We do envision a possibility that an

agent may move itself (or move a replica of itself) to

another computer. However, such propagation is assumed

to occur only under exceptional and well-specified condi-

tions, and takes place only within a friendly network—

from one friendly computer to another friendly computer.

2. High-level architecture of the
Autonomous Intelligent Cyber-defense
Agent

Our initial exploration identified the key functions, compo-

nents, and their interactions for a potential reference archi-

tecture (see Figure 1) of such an agent.8 To mention just a

few examples, Sensing and World State Identification is

the Autonomous Intelligent Cyber-defense Agent (AICA)

high-level decision-making function that allows a cyber-

defense agent to acquire data from the environment and

systems in which it operates, as well as from itself, to

reach an understanding of the current state of the world.

Planning and Action Selection is the AICA high-level

decision-making function that allows a cyber-defense

agent to elaborate one to several action proposals

(Planning) and propose them to the Action Selection func-

tion that decides the action or set of actions to execute.9

Learning is the AICA high-level function that allows a

cyber-defense agent to use the agent’s experience to

improve progressively its efficiency with regard to all

other functions. For these and other high-level functions of

52 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 17(1)

AICA, our initial analysis suggests that the required tech-

nical approaches do not seem to be far beyond the current

state of research.7,10

3. Roadmap for Autonomous Intelligent
Cyber-defense Agent development

Based on the analysis of the proposed AICA reference

architecture and available technological foundation, we

envision a roadmap toward initial yet viable capabilities.

The first phase of the roadmap, which could last perhaps

of the order of 2 years, will include the development of

knowledge-based planning of actions, the execution function-

ality, elements of resilient operations under attack, and adap-

tation of the prototype agent for the execution of a small

computing device. This phase would culminate in a series of

Turing-like experiments that would evaluate the capability of

the agent to produce plans for remediating a compromise, as

compared to experienced human cyber defenders.

The second phase, which could last about 3 years,

would focus on adaptive learning, the development of a

structured world model, and mechanisms for dealing with

explicitly defined, multiple, and potentially conflicting

goals. At this stage, the prototype agent should demon-

strate the capability, in a few self-learning attempts, to

return the defended system to acceptable performance

after a significant change in the adversary malware beha-

vior or techniques and procedures.

The third phase, potentially about 3–4 years, would

delve into issues of multiagent collaboration, human

interactions, and ensuring both the stealth and trustworthi-

ness of the agent. Cyberã physical challenges may need to

be addressed as well. This phase would be completed

when the prototype agents are able to successfully resolve

a cyber compromise that could not be handled by any indi-

vidual agent.

4. Conclusions

The report describing the AICA reference architecture has

been released.11 North Atlantic Treaty Organization

(NATO) cyber defense would benefit from active encour-

agement of AICA development efforts. Relevant research

in academia and in some government and industry

research organizations is growing, and should be sup-

ported. It appears that academic institutions have already

begun work toward AICA-like capabilities, and results are

beginning to be available for transition to industry. NATO

defense agencies should query the cybersecurity software

vendors about availability of AICA-like products.

Creating a multi-stakeholder working group engaging

industry, academia, and governments could help facilitate

the development of AICA technologies. NATO must not

fall behind its adversaries in developing and deploying

such capabilities.

Funding

The authors received no financial support for the research,

authorship, and/or publication of this article.

Figure 1. Autonomous Intelligent Cyber-defense Agent reference architecture—the key components of the agent. C2: command
and control.

Kott et al. 53

References

1. Kott A, Swami A and West B. The Internet of battle things.

Computer 2016; 49: 70–75.

2. LeBlanc B, Losiewicz P and Hourlier S. A program for

effective and secure operations by autonomous agents and

human operators in communications constrained tactical envir-

onments. In: Kott A, Thomas R, Drašar M, Kont M, Poylisher

A, Blakely B, Theron P, Evans N, Leslie N, Singh R, Rigaki M

(eds) Toward Intelligent Autonomous Agents for Cyber Defense:

Report of the 2017 Workshop by the North Atlantic Treaty

Organization (NATO) Research Group IST-152-RTG, Prague,

18-20 October 2017, pp.17–21. Aldephi, MD: US Army

Research Laboratory.

3. Kott A and Alberts DS. How do you command an army of

intelligent things? Computer 2017; 50: 96–100.

4. Guarino A. Autonomous intelligent agents in cyber offence.

In: proceedings of the 5th international conference on cyber

conflict (eds Podins K, Stinissen J and Maybaum M),

Tallinn, Estonia, 4–7 June 2013, pp.1–12. Piscataway, NJ:

IEEE.

5. Stytz MR, Lichtblau DE and Banks SB. Toward using intelli-

gent agents to detect, assess, and counter cyber-attacks in a

network-centric environment. Alexandria (VA): Institute for

Defense Analyses, 2005.

6. Kott A (ed.) Advanced technology concepts for command

and control. Bloomington, IN: Xlibris Corporation, 2004.

7. Al-Shaer E, Wei J, Hamlen KW, et al. Towards intelligent

cyber deception systems. In: Al-Shaer E, Wei J, Hamlen

KW and Wang C (eds) Autonomous cyber deception: rea-

soning, adaptive planning, and evaluation of honeythings.

New York: Springer, 2019.

8. Theron P, Kott A, Drašar M, et al. Towards an active, auton-

omous and intelligent cyber defense of military systems: the

NATO AICA reference architecture. In: 2018 international

conference on military communications and information sys-

tems (ICMCIS), 22 May 2018, pp.1–9. Piscataway, NJ:

IEEE.

9. Kott A, Ground L, Budd R, et al. Toward practical

knowledge-based tools for battle planning and scheduling.

In: Dechter R and Sutton R (eds) AAAI/IAAI, Edmonton,

AL, 28 July 2002, pp.894–899. Menlo Park, CA: AAAI.

10. De Gaspari F, Jajodia S, Mancini LV, et al. AHEAD: a new

architecture for active defense. In: Multari NJ, Singhal A

and Manz DO (eds) proceedings of the 2016 ACM workshop

on automated decision making for active cyber defense

(SafeConfig), 24 October 2016, pp.11–16. New York: ACM.

11. Kott A, Théron P, Drašar M, et al. Autonomous Intelligent

Cyber-defense Agent (AICA) Reference Architecture.

Release 2.0, Report ARL-SR-0421, US Army Research

Laboratory, Adelphi, MD, September 2019.

Author biographies

Alexander Kott is the Chief Scientist of the US Army

Combat Capabilities Development Command’s Army

Research Laboratory (ARL) in Adelphi, Maryland.

Earlier, in 2003–2008, he served as a Program Manager at

the Defense Advanced Research Programs Agency

(DARPA).

Paul Théron works for Thales. He is the director of the

French Air Force’s ‘‘Aerospace Cyber Resilience’’

(Cyb’Air) research chair where he drives research on

autonomous cyber defense.

Luigi V Mancini is a full professor of Computer Science

at the University of Rome ‘‘La Sapienza’’, Italy, and the

director of the Master degree program in Cybersecurity.

Edlira Dushku is a PhD student at Sapienza University

of Rome, Italy. She works in Computer Security research

group at the Department of Informatics.

Agostino Panico is a professional penetration tester, a

SANS Mentor, and a PhD student at the Sapienza

University of Rome, Italy, where his research focuses on

penetration testing and incident handling.

Martin Drasar, PhD, is a senior researcher and the head

of Proactive Security Group at Masaryk University.

Benoit LeBlanc is a professor in artificial intelligence

and cognitive sciences at the National Polytechnic

Institute of Bordeaux (Bordeaux INP), France, and a

director of the National Engineering School of Cognitive

Sciences (ENSC, Bordeaux INP).

Paul B Losiewicz is a Senior Scientific Advisor for the

Cybersecurity and Information Systems Information

Analysis Center (CSIAC), a US Department of Defense

information analysis center. He has over 30 years of

defense research and technology experience.

Alessandro Guarino is an independent cybersecurity

and cyber conflict researcher, as well as the founder and

CEO of StAG, a cybersecurity services company. He is

active in several international standardization bodies.

Mauno Pihelgas is a researcher in the Technology

Branch of the NATO Cooperative Cyber Defence Centre

of Excellence (CCDCOE), where his main area of exper-

tise is security monitoring and data mining.

Krzysztof Rzadca, PhD, is an associate professor of

computer science at the Institute of Computer Science,

University of Warsaw, Poland.

54 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 17(1)

Appendix 10

Publication XR. Vaarandi and M. Pihelgas. NetFlow Based Framework for IdentifyingAnomalous End User Nodes. In 15th International Conference on Cyber
Warfare and Security (ICCWS 2020), page 448–456, 2020

No reproduction, copy or transmissionmay bemadewithout written permission from theauthor(s).The paper is included in the Proceedings of the 15th International Conference on Cyber
Warfare and Security (ICCWS 2020). ISBN: 978-1-912764-52-5.DOI: 10.34190/ICCWS.20.035

215

NetFlow Based Framework for Identifying Anomalous End User Nodes
Risto Vaarandi1 and Mauno Pihelgas1,2
1Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, Estonia
2Technology Branch, NATO CCDCOE, Estonia
firstname.lastname@taltech.ee

Abstract: During the last two decades, cyber attacks against end users have grown significantly both in terms
of number and sophistication. Unfortunately, traditional signature-based technologies such as network IDS/IPS
and next generation firewalls are able to detect known attacks only, while new attack types not matching any
signatures remain unnoticed. Therefore, the use of machine learning for detecting anomalous network traffic
of end user nodes has become an important research problem. In this paper, we present a novel NetFlow
based framework for identifying anomalous end user nodes and their network traffic patterns, and describe
experiments for evaluating framework performance in an organizational network.

Keywords: detection of anomalous end user nodes, network anomaly detection, NetFlow based network
monitoring

1. Introduction

For protecting workstations and laptops in corporate networks, security-aware organizations are employing
specialized technologies like gateways for filtering web and e-mail traffic. Also, for lessening the risk of
infection, end user nodes are often centrally managed, with unmanaged computers being blocked from
connecting to corporate network. Unfortunately, many smaller organizations are using simple NAT firewalls
that do not support any filtering of malicious application layer traffic. According to recent report by Symantec
(2019), employees of smaller institutions are more likely to be hit by e-mail threats. Also, many organizations
have no centralized patching routines and have adopted bring-your-own-device policy which makes their end
user nodes much more vulnerable. This problem is exacerbated by insufficient cyber security awareness and
lack of relevant training (SANS, 2018).

After an end user node has been infected, attackers can harness it for various purposes like compromising
other devices in private network, launching attacks against other organizations, etc. For detecting such
activities, network IDS is often used. Since most network IDS are signature based and thus able to identify
previously known malicious traffic patterns only, a number of NetFlow based anomaly detection algorithms
have been suggested in recent papers. However, apart from few exceptions (e.g., (Grill et al, 2015)), most
previously suggested methods have not focused on detection of anomalous end user nodes in organizational
networks. Furthermore, many methods can only raise an alarm about anomaly for some node or network
segment without the ability to highlight malicious traffic patterns. Nevertheless, providing such information to
network administrators would significantly reduce incident resolution time (Zhou et al, 2015). Finally, only few
works have considered the use of multiple classifiers for anomaly detection from NetFlow data (Hou et al,
2018).

This paper addresses above research gaps and presents an unsupervised framework for detecting anomalous
end user nodes in organizational networks. The framework employs several anomaly detectors for finding a
total anomaly score for each node in hourly time windows, and uses LogCluster algorithm for finding network
traffic patterns for anomalous nodes from NetFlow data. We have evaluated the framework during 5 months
in a network of an academic institution. The remainder of this paper is organized as follows – section 2
discusses related work, section 3 presents our framework, section 4 describes performance evaluation of the
framework, and section 5 outlines future work.

2. Related Work

Cisco NetFlow is a protocol which defines flow as a sequence of packets that share a number of common
properties, most notably the source IP address, source port, destination IP address, destination port, and
transport protocol. For monitoring network traffic, NetFlow exporter maintains a record for each flow in a

memory-based cache, with the record holding counters for packets and bytes in the flow, the union of all
observed TCP flags, start and end time of the flow, and other data. NetFlow exporter sends a flow record to
NetFlow collector when some flow-based timer expires (e.g., no packets have been seen during 60 seconds),
when the flow ends (e.g., TCP connection is closed), or when flow cache becomes full. Many modern network
devices can act as NetFlow exporters, and there are many commercial and open-source NetFlow exporter and
collector implementations (Hofstede et al, 2014). Also, a number of approaches have been suggested for
anomaly detection from NetFlow data.

Brauckhoff et al (2012) have proposed an algorithm where histograms are built from flow features (e.g., source
port) during measurement intervals, where each histogram represents a flow feature distribution. At the end
of each interval, Kullback-Leibler distance between distributions for current and previous interval is calculated.
If the distance exceeds a threshold, alarm is raised and Apriori frequent itemset mining algorithm is used for
mining patterns from suspicious flow records. Kind, Stoecklin and Dimitropoulos (2009) have described a
supervised method where the training phase involves building histograms and clustering similar histograms
together, in order to create models of normal behavior. For anomaly detection, a vector is computed that
encodes online network behavior, and a distance of the vector from clusters is calculated.

Grill et al (2015) have suggested a method for discovering hosts with domain generation algorithm (DGA)
based malware by measuring the ratio of DNS requests to the number of unique IP addresses contacted by the
host. According to experiments, the ratio is high for infected hosts. Our past work (Vaarandi, 2013) proposes
two unsupervised anomaly detection algorithms for organizational private networks. The first algorithm
maintains behavior profile for each node which describes recently used services, and raises an alarm if the
node connects to unusual service. The second algorithm clusters nodes on daily basis, in order to find node
groups that consistently use the same services, and raises an alarm if node behavior deviates from the rest of
the group. Muhs et al (2018) have developed a method for detecting P2P botnets which creates a
communication graph from NetFlow data. Each graph node represents a host and each graph edge a
probability of communication between relevant hosts. The method conducts a large number of random walks
(traversals over k nodes), and calculates the probability of reaching each end node. Resulting probability
distribution is then clustered with Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm (Ester et al, 1996), and according to authors, P2P bots form dense clusters.

Hofstede et al (2013) have proposed exponentially weighted moving average (EWMA) based algorithm for
DDoS detection which tracks the number of flows. If unexpected change in the number of flows is detected,
the algorithm can create firewall rules for blocking malicious traffic. Hou et al (2018) have suggested random
forest classifiers for DDoS detection, and have found their performance superior to C4.5, SVM, and Adaboost
classifiers. Paredes-Oliva et al (2012) have proposed a supervised algorithm which first identifies traffic
patterns with FPmax frequent itemset mining algorithm, and then uses C5.0 classifier for finding anomalous
patterns. Finally, Zhou et al (2015) have developed ENTvis tool which divides NetFlow data into timeframes,
and for each timeframe calculates entropies for source IP, source port, destination IP and destination port.
This information is then visualized with several techniques (e.g., visual clustering) which allows human analysts
to spot anomalies and understand their nature.

3. Framework for Detecting Anomalous End User Nodes

3.1 Overview of Anomaly Detection Framework

If an end user node communicates with some port at remote node, we define peer as a tuple (transport
protocol ID, IP address of remote node, port number at remote node). Also, peer port is defined as a tuple
(transport protocol ID, port number at remote node). For protocols without ports (e.g., ICMP), 0 is used for
remote port number.

For studying typical network usage patterns of end user nodes, we analyzed a 1-month NetFlow data set for 78
workstations. We divided this data set into 1 hour timeframes and investigated how many peers and peer
ports each node had accessed during hourly timeframes of its activity. Firstly, total numbers of peers for the
entire month remained relatively modest, and an average node accessed 1213.2 peers (largest number of
peers per node was 4688).

Secondly, significant part of the flows were associated with a small fraction of frequently used peers (see Table
1). For example, an average node contacted only 51.7 peers during at least half of its activity hours, but 69.9%
of flows were associated with these peers.

Table 1: Network usage patterns of end user nodes

N Number of peers contacted during at least N%
of hourly timeframes when node was active
(average over all nodes)

Fraction of flows associated with peers (average
over all nodes)

10 292.6 92.4%

25 145.9 83.4%

50 51.7 69.9%

Also, we discovered similar trends for peer ports – for example, an average node contacted 8.9 peer ports
during at least half of its activity hours, and 96.6% of flows were associated with these peer ports. Finally, we
have observed similar regularities for NetFlow data sets collected in different environments (Vaarandi, 2013).

These findings suggest that if a new flow is observed for an end user node, it is likely that the flow is associated
with a peer and peer port the node has already accessed in recent past. In other words, recent communication
patterns of end user node can be harnessed for predicting its future behavior, and we have developed an
anomaly detection framework which relies on that assumption (see Figure 1).

Figure 1: Overview of the framework

The framework executes once in every hour on NetFlow collector node, and processes the flows of last 60
minutes for each end user node. If the node has no flows, it will be skipped due to its inactivity. The framework

consists of three anomaly detectors which calculate anomaly scores score1, score2 and score3 from range 0..1
for a node. The scores are aggregated into total anomaly score score1*w1 + score2*w2 + score3*w3 with non-
negative weights w1, w2 and w3, where w1 + w2 + w3 = 1 (therefore, total anomaly score ranges from 0 to 1). If
node’s total anomaly score exceeds a given threshold, an alarm is raised and flows of that node for the last 60
minutes are mined with LogCluster algorithm, in order to identify anomalous network traffic patterns
(LogCluster is known to be well suited for analyzing security logs (Vaarandi, Kont and Pihelgas, 2016)). The
following subsections provide a detailed discussion of each anomaly detector from Figure 1.

3.2 EWMA Based Anomaly Detector

Since it has been shown that EWMA based anomaly detection methods are efficient for network traffic
analysis (Hofstede et al, 2013), one of anomaly detectors employs a similar approach. If X = {x1,x2,...} is a time
series, EWMA µ and exponentially weighted moving standard deviation σ are calculated according to Equation
1.

Equation 1: Exponentially weighted moving average and standard deviation

In Equation 1, α ranges from 0 to 1, with larger values of α giving more weight to recent observations of X.
Values close to 0 are distributing weight more evenly, and EWMA is known to estimate the average of last
(2/α)-1 values from X. For detecting anomalies for time series X, the following method is often used:
if |xi −µi−1| > m∗σi−1, then xi is regarded anomalous (m is a user defined constant and commonly set to 3).

The above approach has motivated EWMA based anomaly detector for identifying unexpected increases in the
number of peers and peer ports, and the volume of traffic exchanged with peers (according to section 3.1, end
user nodes communicate with modest number of peers). For each node E, the anomaly detector tracks the
following six features:

 Peers – number of unique peers for node E per 1 hour

 RarePeers – number of unique peers for node E per 1 hour, so that E has not communicated with
these peers during the last N hours of its activity (during our experiments, we have set N = 50)

 PeerPorts – number of unique peer ports for node E per 1 hour

 LogFlows – log10M, where M is the number of flows for node E per 1 hour

 LogPackets – log10M, where M is the number of packets sent and received by node E per 1 hour

 LogBytes – log10M, where M is the number of bytes sent and received by node E per 1 hour

The anomaly detector raises an alarm for any of above features if xi−µi−1 > m∗σi−1, i.e., the value of a feature
increases significantly. We have employed the settings m = 3 and α = 0.05 for anomaly detector, and with
α=0.05, µi−1 estimates the average feature value over previous 39 hours (that is the approximate working week
length for end users, and end user nodes are often switched off outside office hours). The purpose of the
RarePeers feature is to detect unexpected increase of the number of unusual peers, even if the overall number
of peers stays within expected boundaries. Also, instead of tracking the number of flows, packets, and bytes,
these values have been converted to logarithmic scale for lessening the number of false positives. Finally, each
feature contributes equally to the anomaly score reported by the detector. For example, if for node E alarms
have been raised for RarePeers and LogFlows features, anomaly score 1/3 will be reported for node E.

3.3 Clustering Based Anomaly Detector

Unfortunately, EWMA based anomaly detector is not aware of the surrounding context which might influence
the severity of detected anomalies. For example, while downloading unusually large amount of data is an
anomaly if observed for one node only, the same simultaneous behavior change by many nodes can have a

benign root cause (e.g., centralized patching of all workstations). The purpose of the clustering based anomaly
detector is to find groups of similarly behaving nodes and report outliers as anomalous.

For clustering purposes, each node is represented by a vector with the following attributes – the number of
peers, rare peers, and peer ports (defined like Peers, RarePeers, and PeerPorts features in the previous
section); total number of bytes, packets, and flows; total number of bytes and packets for outgoing traffic;
total number of bytes and packets for incoming traffic. Before clustering, all features are standardized by
removing the mean and scaling to unit variance. For clustering the nodes, DBSCAN algorithm (Ester et al, 1996)
is used which takes minPts and ε input parameters.

DBSCAN regards data point as core point if it has at least minPts points (including itself) within distance ε (we
have used Euclidean distance for anomaly detector). A point q is reachable from core point p if either: (1) q is
within distance ε from p, or (2) there exist core points p1,...,pk, so that:

 p1 = p,

 pi is within distance ε from pi−1 (1 < i ≤ k),

 q is within distance ε from pk.

If p is a core point, DBSCAN creates a cluster from p and all points that are reachable from it (therefore, each
cluster will contain at least minPts points). Points that are not reachable from any other point are regarded
outliers.

For favoring the creation of larger clusters with many nodes, the anomaly detector executes DBSCAN with
settings minPts = 10 and ε = 5. For nodes belonging to clusters, anomaly score 0 is returned. Also, if there are k
outliers among n nodes, anomaly score 1-(k/n) is returned for each outlier node. Therefore, if there are only
few outlier nodes, their anomaly scores are close to 1, while with many outliers (i.e., when anomalous
behavior is more common) their anomaly scores will be significantly lower.

3.4 Sketch Based Anomaly Detector

Unlike two previous anomaly detectors that are based on well-known algorithms, this subsection presents a
novel anomaly detector which employs one-row sketches for summarizing past communication patterns of
each end user node, in order to predict its future behavior. The anomaly detector has three components with
the following goals:

 Similarity and entropy based anomaly detection for peers

 Similarity and entropy based anomaly detection for peer ports

 Entropy based anomaly detection for local ports

Each component can raise an alarm which will contribute equally to node’s anomaly score (e.g., if two
components raise an alarm for a node, its anomaly score is 2/3). The following paragraphs will outline the work
of the first peer-related component for node E (the second component works similarly, and the third will be
described in the end of this section).

The anomaly detector will start its work with two sketches S = (s1,...,sn) and V = (v1,...,vn) which are vectors of n
counters (we have set n = 100000 for peers, and n = 10000 for peer ports and local ports). The purpose of
vector S is to capture recent average communication patterns with peers for E, while V captures this
information for the last hour.

When anomaly detector is executed for the flows of E from last 60 minutes, counters of vector V are initialized
to zero and updated in the following way:

1. for each flow, a peer is extracted and hashed into a value from range 1..n,
2. if the value is k, counter vk is incremented.

If V1,V2,... denote above hourly vectors in the order of creation, and vji denotes the ith counter of vector Vj, the
ith counter of vector S is maintained as an EWMA for time series {v1i,v2i,...} (see Equation 1). In other words,
each subsequently calculated vector V = (v1,...,vn) is used for updating S = (s1,...,sn) according to Equation 2.

Equation 2: Vector update procedure

Therefore, counter vi is equal to the number of flows during the last hour for a group of one or more peers,
while counter si estimates the average number of flows during last (2/α)-1 hours for the same peer group.
Thus, vectors S and V represent distributions of flows over peer groups. Since vector S reflects recent
communication patterns with peers that serve as a good predictor for the future behavior of the node (see
section 3.1), significant difference between vectors S and V can be regarded as an anomaly.

For measuring the difference between two vectors, we experimented with several distance functions and
discovered that cosine similarity produces best results (see Equation 3).

Equation 3: Cosine similarity

Cosine similarity measures the angle between two vectors, and ranges from 0 to 1 since counters of S and V
are non-negative. If cosim(S,V) = 1, vectors S and V have the same direction (e.g., vectors (1,0,23,0) and
(2,0,46,0)), and if cosim(S,V) = 0, vectors are orthogonal. Therefore, values close to 1 indicate that during the
last 60 minutes distribution of flows over peer groups is similar to distribution of previous observations, while
smaller values of cosine similarity indicate deviations from past measurements.

The use of cosine similarity introduces the following issue – if node behavior changes frequently and has no
clear baseline, similarity between S and V remains low and becomes meaningless for anomaly detection. For
avoiding false alarms for such nodes, the anomaly detector calculates the similarity cosim(S,V) before each
update of S with Equation 2, and maintains EWMA cavg for past similarity values according to Equation 1.
Before each update of cavg with current similarity value cosim(S,V), anomaly detector raises an alarm only if
cosim(S,V) < Tsim and cavg > Tavg. In other words, alarm is generated if similarity between S and V falls below
threshold Tsim, with average past similarity cavg being sufficiently high and exceeding Tavg (we have used the
settings α = 0.05, Tsim = 0.5 and Tavg = 0.8 for anomaly detector).

In addition, we have also implemented entropy based anomaly detection for vector S, in order to identify
nodes with constantly changing behavior (since cavg is usually smaller than threshold Tavg for such nodes,
similarity based anomaly detection tends to be disabled for them). According to section 3.1, end user nodes
are mostly communicating with relatively small number of peers which results in relatively few counters of
vector S having larger values, while many counter values remain zero. On the other hand, if node behavior is
frequently changing, counter values in S would be less different. In previous research papers, entropy based
techniques have been successfully used for capturing such regularities (Zhou et al, 2015).

If X is a discrete random variable that can take k values with probabilities p1,…,pk (p1+…+pk = 1), normalized
information entropy of X is defined by Equation 4.

Equation 4: Normalized information entropy

Note that norment(X) ranges from 0 to 1, with values close to 1 indicating that distribution of X is close to
uniform. Also, smaller values indicate that X takes some values with significantly higher probabilities. In order
to employ entropy based anomaly detection for S, we first find its normalized vector Ŝ = (1/j) ∗ S, where j =
s1+…+sn (note that ŝ1+…+ŝn = 1). After that, the entropy of S is calculated according to Equation 5.

Equation 5: Calculating sketch entropy

The anomaly detector calculates the entropy of S after each update with Equation 2, and raises an alarm if
entropy is higher than Tent (for peers and peer ports, we have set Tent to 0.5 and 0.3 respectively). Finally, since
typical end user nodes do not use fixed local ports for communicating with remote services but ports are
selected randomly, the anomaly detector also maintains vector S for local ports of each end user node. Since S
is expected to have a high entropy, the anomaly detector raises an alarm if the entropy falls below Tent2 (we
have set Tent2 to 0.2 during experiments).

3.5 Mining Flow Patterns with LogCluster

If node’s total anomaly score for last 60 minutes exceeds a given threshold, flows of last 60 minutes for this
node are mined with LogCluster algorithm, in order to detect prominent traffic patterns that capture the
nature of anomaly. Since LogCluster is designed for mining textual log files, each binary flow record is
converted into a textual line with the following keyword-value based format: proto <transport protocol ID>
srcip <source IP address> srcport <source port> dstip <destination IP address> dstport <destination port>
tcpflags <flagstring>. For easing the conversion process, we have used Perl based LogCluster implementation
with advanced input preprocessing features (https://ristov.github.io/logcluster/).

For detecting patterns from log file with LogCluster, the user has to specify support threshold value which
ranges from 1 to n, where n is the number of lines in the log file. If support threshold is s, LogCluster identifies
patterns that match at least s lines in the log file. During the first pass over the data set, LogCluster will split
each line into words, and identify frequent words in the data set (words which appear in at least s lines).
During the second data pass, LogCluster extracts all frequent words from each line, so that the combination of
frequent words identifies a cluster candidate for the given line. For each cluster candidate, LogCluster
memorizes the number of lines for this candidate, and summary information about the location of infrequent
words for all lines of the candidate. After the data pass, cluster candidates with at least s lines are selected as
clusters, and reported to the end user as line patterns. For example, the following pattern represents DNS
queries from node 10.3.7.22 to server 192.168.1.1 port 53/UDP (note that *{1,1} is a wildcard which matches
exactly one word):

proto 17 srcip 10.3.7.22 srcport *{1,1} dstip 192.168.1.1 dstport 53 tcpflags NA

As discussed in (Vaarandi, Blumbergs and Kont, 2018), finding a good support threshold value for LogCluster is
a non-trivial issue. However, we have discovered that if NetFlow data set contains n flow records, support
threshold value √n ̅allows to adequately highlight the nature of anomalous traffic in most cases. Also, we have
configured LogCluster to use word weight based heuristics for joining patterns with the same nature (Vaarandi,
Kont and Pihelgas, 2016). For example, in the case of two similar patterns that reflect DNS queries from
10.1.1.1 to servers 192.168.1.1 and 192.168.1.2, LogCluster would join them into the following single pattern:

proto 17 srcip 10.1.1.1 srcport *{1,1} dstip (192.168.1.1|192.168.1.2) dstport 53 tcpflags NA.

4. Evaluation

We have implemented our anomaly detection framework in Perl and Python, and measured its performance
during 5 months (October 2018 – February 2019, 151 days) in a network of an academic institution with over
200 workstations and laptops. The framework used softflowd NetFlow exporter
(https://code.google.com/archive/p/softflowd/) on a dedicated Linux host for monitoring Internet traffic of all
end user nodes without sampling, and flow data was collected with nfdump NetFlow collector
(https://github.com/phaag/nfdump).

When evaluating the framework, we used each anomaly detector with an equal weight of 1/3 and set anomaly
score threshold to 0.5 (see Figure 1). During 5 months, the framework generated 1026 alarms about 33 end
user nodes. However, over 90% of alarms were triggered for 4 hosts, and for 25 hosts only 1-3 alarms were
raised. Figure 2 depicts some anomalous traffic patterns the framework discovered with LogCluster.

Figure 2: Flow patterns for anomalous network traffic

When investigating the alarms more closely, we found that 638 of them (62.2%) were generated for 5 hosts
which were running BitTorrent client for file sharing purposes, although such activity is not allowed by
organizational policies (see the second example in Figure 2). Also, 327 alarms (31.9%) were triggered for an
Internet measurement probe which was accidentally connected to end user network (see the first example in
Figure 2). According to the developer of the probe, it needs at most 100 Kbit/s of bandwidth and typical
consumption does not exceed couple of Kbit/s (Internet Measurement Project, 2017). Despite its negligible
network footprint, the anomaly detection framework was able to flag the probe as anomalous. Also, we found
that the framework generated 46 false positive alarms (4.5%), with most of them being triggered by
downloads of large files.

For estimating the precision and recall of the framework for attack traffic, we conducted network scanning
with nmap tool from one of the end user nodes during 15 hours. Altogether, the node was active for 548 hours
during 5 month timeframe, and no malicious network traffic was observed for this node during remaining 533
hours. Network scanning was conducted against test targets in controlled environment, and scanning
scenarios involved different scans of a single host (4 hours) and a network of 2048 hosts (11 hours). Scanning
types included lightweight reconnaissance scans, TCP SYN, Xmas, Fin and Null scans, and scans for detecting
operating system and service versions. We also simulated TCP and UDP flooding attacks against the network of
2048 hosts. All 15 hours of malicious activity were correctly flagged as anomalous (see the third example in

Figure 2 for some detected patterns), and no false alarms were raised for 533 hours of legitimate network
activity, yielding the precision and recall of 100%.

Finally, we measured what is the impact of using multiple classifiers in the anomaly detection framework, and
executed each anomaly detector from Figure 1 separately with weight 1 and anomaly score threshold set to
0.5. The EWMA based anomaly detector triggered 570 alarms, clustering based detector 4020 alarms, and
sketch based detector 1696 alarms. Table 2 depicts the performance of individual detectors for a node which
we used for nmap scanning.

Table 2: Precision and recall of individual detectors for nmap scanning

 Precision Recall

EWMA based detector 50% 20%

Clustering based detector 37.5% 100%

Sketch based detector 88.2% 100%

The primary reason for poor recall of EWMA based detector is the fact that abnormally large values can
significantly increase the average, so that the following similarly large values will no longer be seen as
anomalous (this condition will persist until a sequence of smaller values will lower the average again). Also,
although sketch based detector had the best precision and recall, it triggers more false positive alarms than
the framework of three detectors. We have made a similar observation for other nodes in the data set, and
the use of multiple classification methods is thus beneficial over a single classifier.

5. Future Work

The framework presented in this paper assumes that each node belongs to one person (or few similarly
behaving persons), so that network usage habits of node owners create behavior baselines for nodes which
can be employed for anomaly detection. However, if many persons with different assignments are sharing the
nodes (e.g., classroom computers in a university network), it is often difficult to identify clear behavior
baselines for them. A similar issue arises if IP addresses of nodes are frequently changing (e.g., due to DHCP
based IP address allocation) and the same address is reused for different nodes. In order to overcome these
issues, the framework needs to identify the end user node not by IP address, but rather by unique ID of the
person that operates the node (e.g., an organizational user account name). Augmenting the framework with a
monitoring module for detecting user IDs has been left for future work.

As for other future work, we plan to integrate other anomaly detectors into the framework and experiment
with methods for adjusting detector weights dynamically. We are also planning to research other approaches
for mining traffic patterns from NetFlow data sets, and algorithms for identifying node types in organizational
networks. Finally, we are considering to study methods for fingerprinting end users by their network usage
patterns in large organizational networks.

Acknowledgements

The authors thank Prof. Olaf M. Maennel and Prof. Rain Ottis for supporting this work.

References

Brauckhoff, D., Dimitropoulos, X., Wagner, A. and Salamatian, K. (2012) “Anomaly Extraction in Backbone
Networks Using Association Rules,” IEEE/ACM Transactions on Networking, vol. 20, no. 6, pp. 1788–1799.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996) “A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise,” Proceedings of the 1996 International Conference on Knowledge
Discovery and Data Mining, pp. 226–231.

Grill, M., Nikolaev, I., Valeros, V. and Rehak, M. (2015) “Detecting DGA malware using NetFlow,” Proceedings
of the 2015 IFIP/IEEE International Symposium on Integrated Network Management, pp. 1304–1309.

Hofstede, R., Bartoš, V., Sperotto, A. and Pras, A. (2013) “Towards Real-Time Intrusion Detection for NetFlow
and IPFIX,” Proceedings of the 2013 International Conference on Network and Service Management, pp. 227–
234.

Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A. and Pras, A. (2014) “Flow Monitoring
Explained: From Packet Capture to Data Analysis With NetFlow and IPFIX,” IEEE Communication Surveys and
Tutorials, vol. 16, no. 4, pp. 2037–2064.

Hou, J., Fu, P., Cao, Z. and Xu, A. (2018) “Machine Learning based DDos Detection Through NetFlow Analysis,”
Proceedings of the 2018 IEEE Military Communications Conference, pp. 565–570.

Internet Measurement Project (2017) “Internet Measurement Project FAQ,” [online], University of Nevada,
Reno, https://im.cse.unr.edu/?page=FAQ.

Kind, A., Stoecklin, M. Ph. and Dimitropoulos, X. (2009) “Histogram-based traffic anomaly detection,” IEEE
Transactions on Network and Service Management, vol. 6, no. 2, pp. 110–121.

Muhs, D., Haas, S., Strufe, T. and Fischer, M. (2018) “On the Robustness of Random Walk Algorithms for the
Detection of Unstructured P2P Botnets,” Proceedings of the 2018 International Conference on IT Security
Incident Management and IT Forensics, pp. 3–14.

Paredes-Oliva, I., Castell-Uroz, I., Barlet-Ros, P., Dimitropoulos, X. and Solé-Pareta, J. (2012) “Practical Anomaly
Detection based on Classifying Frequent Traffic Patterns,” Proceedings of the 2012 IEEE INFOCOM Workshops,
pp. 49–54.

SANS (2018) “2018 SANS Security Awareness Report: Building Successful Security Awareness Programs,”
[online], https://www.sans.org/security-awareness-training/reports/2018-security-awareness-report.

Symantec (2019) “Internet Security Threat Report,” [online], Volume 24, February 2019,
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf.

Vaarandi, R. (2013) “Detecting Anomalous Network Traffic in Organizational Private Networks,” Proceedings of
the 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and
Decision Support, pp. 285–292.

Vaarandi, R., Kont, M. and Pihelgas, M. (2016) “Event Log Analysis with the LogCluster Tool,” Proceedings of
the 2016 IEEE Military Communications Conference, pp. 982–987.

Vaarandi, R., Blumbergs, B. and Kont, M. (2018) “An Unsupervised Framework for Detecting Anomalous
Messages from Syslog Log Files,” Proceedings of the 2018 IEEE/IFIP Network Operations and Management
Symposium, pp. 1–6.

Zhou, F., Huang, W., Zhao, Y., Shi, Y., Liang, X. and Fan, X. (2015) “ENTVis: A Visual Analytic Tool for Entropy-
Based Network Traffic Anomaly Detection,” IEEE Computer Graphics and Applications, vol. 35, no. 6, pp. 42–
50.

Appendix 11

Publication XIM. Pihelgas and M. Kont. Frankenstack: Real-time Cyberattack Detectionand Feedback System for Technical Cyber Exercises. In 2021 IEEE CSRWork-
shop on Cyber Ranges and Security Training (CRST). IEEE, July 2021. (Ac-cepted paper)

© 2021 IEEE. Reprinted. Internal or personal use of this material is permitted. Permissionfrom IEEE must be obtained for all other uses, in any current or future media, includingreprinting/republishing this material for advertising or promotional purposes, creatingnew collective works, for resale or redistribution to servers or lists, or reuse of any copy-righted component of this work in other works.The paper has been accepted for publication at the 2021 IEEE CSR Workshop on Cyber
Ranges and Security Training (CRST) and the final version of the paper will be included inthe Conference Proceedings.

227

Frankenstack: Real-time Cyberattack Detection and
Feedback System for Technical Cyber Exercises

Mauno Pihelgas
Technology Branch

NATO Cooperative Cyber Defence Centre of Excellence
Tallinn, Estonia

mauno.pihelgas@ccdcoe.org

Markus Kont
Research and Development

Stamus Networks
Tallinn, Estonia

markus@stamus-networks.com

Abstract—This paper describes a situation awareness frame-
work, Frankenstack, that is the result of a multi-faceted endeavor
to enhance the expertise of cybersecurity specialists by providing
them with real-time feedback during cybersecurity exercises and
verifying the performance and applicability of monitoring tools
during those exercises. Frankenstack has been recently redevel-
oped to improve data collection and processing functions as well
as cyberattack detection capability. This extensive R&D effort
has combined various system and network security monitoring
tools into a single cyberattack detection and exercise feedback
framework.

Although Frankenstack was specifically developed for the
NATO CCD COE’s Crossed Swords exercise, the architecture
provides a clear point of reference for others who are building
such monitoring frameworks. Thus, the paper contains many
technical descriptions to reduce the gap between theoretical
research and practitioners seeking advice on how to implement
such complex systems.

Index Terms—automation, cyber exercises, cyber ranges,
Frankenstack, monitoring, NATO Cyber Range, real-time feed-
back, security training, technical architecture

I. INTRODUCTION

Cybersecurity exercises (CSXs) are key to enhancing cy-
bersecurity operator readiness while also improving situation
awareness (SA) in the cyber domain. Crossed Swords (XS)
[1] is an annual interdisciplinary CSX directed at training
participants for responsive cyber-kinetic operations. Although
NATO nations have begun acknowledging the necessity of
both defensive and offensive cyber capabilities, there are
few exercises that tackle such a controversial subject. XS is
organized by the NATO CCD COE in the NATO Cyber Range
and utilizes a hybrid approach between cyber-physical and
simulated infrastructure.

Cyber-exercise-specific SA systems are designed to improve
SA during cyber exercises. While traditional SA systems are
oriented toward cyber defenders, CSX-specific SA systems
have been designed to provide situation awareness feedback
not only to cyber defenders, but all participating teams alike.

CSXs introduce some unique requirements. The exercise
environment must support the SA systems which measure the
performance of participants. It is also important to assess the
learning experience of participants to improve future iterations
of the exercise.

Stealth is an important factor when conducting cyber op-
erations. During XS, the target Blue team (BT) hosts and
networks are closely monitored for any indicators of compro-
mise (IoC) which are then narrated to the training audience for
learning purposes. Since 2016, a small team of cybersecurity
monitoring specialists, the Yellow team (YT) in the exercise
jargon, has been working to develop and improve the real-
time CSX-specific framework known as Frankenstack that
automates the entire cyberattack detection and feedback cycle
for the training audience. The initial version of Frankenstack
was described in our 2017 paper [2]. Since then, XS has been
used as a platform to further develop, test, and validate the
framework. The open-source solution is widely applicable to
any other CSX where standard exercise technical infrastructure
monitoring capability is available.

A. Problem statement

Some of the problems that inspired the creation of the
initial version of Frankenstack were due to issues with the
participants’ learning experience. During the earlier iterations
of XS, the YT feedback sessions regarding detected malicious
activity were presented only at the end of each day. Due to
limited time, these sessions were only able to summarize the
primary observations from that day. This did not suffice as the
technical training audience needed direct and faster feedback
about their actions to pinpoint mistakes as they happened. This
immediate feedback also needed to be adequately detailed
so that the participants could understand how and why a
particular attack was detected.

Additionally, most of the data analysis in YT was done
manually by team members. This was slow and sometimes
inconsistent in how attacks were followed up. Thus, another
objective was to provide uniform feedback that would be clear
and understandable for all participants.

Moreover, since the defending BT in XS is mostly just
passively observing the situation, it often remained unclear
to the participants whether any of their recent attacks would
have affected the security posture of the adversary. While
this reflects experience in the real world, it did not help
participants’ learning experiences during the CSX.

Furthermore, commercial SA systems are often too ex-
pensive to be acquired solely for cyber exercises due to978-1-7281-5684-2/20/$31.00 ©2021 IEEE

license fees, hardware cost, and vendor-specific knowledge.
The proprietary detection logic in commercial tools is often
unavailable which again restricts YT’s ability to understand
and provide meaningful explanations of detected attacks.

Finally, the initial version of Frankenstack was too complex
and involved several overlapping utilities (e.g., syslog-ng and
rsyslog). While each tool had its purpose, the extra multiplicity
rendered the data pipeline difficult to set up and maintain. The
primary aim of the redevelopment was to reduce complexity
and replace the use of many smaller utilities with tailor-made
solutions that are described in this paper.

B. Structure

The remainder of this paper is organized as follows: section
II provides some general background information about the
XS exercise, section III presents an overview of related work,
section IV describes the improvements and the technical
architecture of the newly developed Frankenstack framework,
section V discusses our efforts at providing relevant real-
time feedback and appropriate visualizations for exercise par-
ticipants, section VI briefly outlines the collaboration with
industry partners, section VII defines future work, and section
VIII concludes the paper.

II. EXERCISE BACKGROUND

Crossed Swords is an annual CSX that has been developed
and organized by the NATO CCD COE since 2014. Although
it started out as a primarily technical exercise, it has evolved
into an interdisciplinary cyber exercise that involves technical,
strategic, operational, and legal training aspects. It features a
fictional scenario involving two notional countries, Berylia and
Crimsonia. While most cyber exercises focus on training the
defensive capability for Blue teams, XS reverses the role of the
training audience, who now assumes the role of the Offensive
Cyber Operations (OCO) team that is exercising a responsive
cyber-kinetic scenario. The OCO team must work in close
cooperation to discover an unknown network, complete a set of
challenges, and collect evidence from the network for proper
cyberattack attribution. Under such conditions, attribution,
especially in the cyber domain, is increasingly hard to establish
[3]. Another goal for the OCO team is to stay as stealthy as
possible to avoid being detected by the monitoring stack which
is described in this paper.

To develop and carry out the exercise, multiple teams are
engaged: game network and infrastructure development (Green
team – GT); game scenario development and execution control
(White team – WT); defending team user simulation (BT);
exercise monitoring and situation awareness (Yellow team –
YT); and exercise training audience (OCO team). Note, that
the OCO team was previously referred to as the Red team
(RT), but since XS 2020 the terminology has been updated to
better reflect current policies. Due to the reversed roles of the
participants, the defending BT is actually the adversary that
prompted the OCO team’s responsive action.

Since offensive measures often take place in a cyber-
physical space, the XS scenario portrays this by offering a

variety of challenges that require a diverse set of skills and
effective communication between members of the OCO team.
In addition to physical devices such as programmable logic
controllers (PLCs), IP cameras, radio devices, the exercise
mimics realistic computer networks with a variety of differ-
ent hosts (e.g., servers, workstations, and network devices)
and operating systems. For instance, the networking subteam
is responsible for attacking network services, protocols and
routing; the client-side subteam targets human operators and
attempts to gain foothold in the adversary’s internal network
segments; web experts attempt to compromise web services,
applications and any associated databases; the digital forensics
subteam performs data extraction and artefact collection; and
kinetic forces provide support in operations that require a
kinetic element such as physical surveillance, hardware ex-
traction, forced entry, target capture, etc.

It is important to distinguish XS from capture-the-flag
exercises. The participating subteams are not competing with
one another, but rather serve as dedicated segments of a single
military detachment. The exercise scenario is developed in a
way that all subteams must coordinate their actions and share
intelligence to achieve their objectives and advance in the
exercise environment.

III. RELATED WORK

Research on exercises with an emphasis on offensive opera-
tions (such as XS) is almost non-existent. This is likely due to
the high sensitivity of offensive cyber operations. However,
there is an increasing amount of research based on other
defensive CSXs and work that describes CSX-specific SA
systems. Although not directly applicable in XS, the CSX-
specific elements in those tools could still be considered
relevant.

Känzig et al. [4] sought to detect command and control
(C&C) channels in large networks without prior knowledge
of the network characteristics. They leverage the notion that
while benign traffic differs, malicious traffic bears similarities
across networks. They trained a random forest classifier on
a set of computationally efficient features designed for the
detection of C&C traffic. They verified their approach using
the NATO CCD COE’s Locked Shields exercise datasets.
Results revealed that the if the LS18 Swiss Blue team had
used the system, they would have discovered 10 out 12 C&C
servers in the first few hours of the exercise.

[5] Klein et al. compared two different machine learning
techniques—the unsupervised autoencoder and the supervised
gradient boosting machine—on a partially labelled cyberde-
fense exercise dataset. Both techniques were able to classify
known intrusions as malicious while, surprisingly, also discov-
ering 50 previously unknown attacks.

In [6], Arendt et al. presented CyberPetri, a redesign of the
pre-existing Ocelot SA tool [7] which was used to provide
real-time SA during the 2016 Cyber Defense Exercise and
provide high-level feedback to network analysts based on ex-
ercise target systems’ service availability reports. The authors
note scaling to large datasets as a limitation. The exercise

participants’ feedback revealed that the tool was useful for
the exercise White team for high-level decision making, but
that technical specialists were more interested in improved
exploratory capability for specific events and time windows.

A paper [8] from Henshel et al. proposed a performance
assessment model of human cyberdefense teams and verified
its applicability during the Cyber Shield 2015 exercise. While
exercise data was captured during the game, most of the
analysis was done after the event. For future iterations, the
authors stress the need for real-time analysis of the collected
data to adapt training and assessment methods already during
the exercise. The ability to analyze the collected data was the
primary limiting factor, as operators were not able to keep up
with the huge amounts of incoming data.

Maennel focuses on measuring and improving learning
effectiveness at cyber exercises [9]. This follows work that
was described in the learning feedback section of the initial
Frankenstack publication [2]. Furthermore, a recent paper [10]
by Ernits et al. discusses how technical event logs and metrics
from the exercise game system can be transformed to measure
skills and learning outcomes.

Another publication [11] on team-learning assessment by
Maennel et al. proposes an unobtrusive method based on
mining textual information and metrics from situation reports
submitted by teams during cyber exercises. Since these reports
are regularly filed by Blue teams as a part of the exercise,
this approach would enable gathering relevant information
without disturbing the teams by conducting regular surveys
and questionnaires throughout the exercise.

Chmelař describes the analysis of the XS 2020 exercise data
using the MITRE ATT&CK knowledge base [12] to create
reports of the OCO team progress [13]. Although the reports
were created as a post-mortem analysis, the author proposes
that they could theoretically provide in-game overview and
visualizations during the XS exercise.

IV. FRANKENSTACK

The Frankenstack SA framework features a near real-time
feedback loop for the OCO team participants: any OCO
action that is discovered on the game network and target
hosts is analyzed in the automated data processing pipeline
and if considered malicious is reported back to the feedback
dashboard as an indicator of compromise. This all happens
automatically without any human-interaction from the YT
operators, allowing OCO members to immediately try again to
improve their attack technique to attempt avoiding detection.
Naturally, YT is still present to continuously improve the
detection capability, reduce false positive alerts, and make sure
the entire framework works as intended.

The framework also provides information about partici-
pants’ progress to the exercise leadership allowing them to
control the pace of the scenario more precisely. Figure 1
illustrates Frankenstack’s technical architecture and various
data flows in the exercise environment.

A. External data sources

Frankenstack requires multiple external data sources for
its operation: full network traffic mirror, event logs, network
configuration information, and the host asset database.

1) Network packet capture: Receiving a network traffic
mirror is crucial for network security monitoring components.
The mirrored network traffic was provided via a GRE (Generic
Routing Encapsulation) tunnel from the virtual switches in
the VMware NSX Data Center software-defined networking
solution. Capturing traffic from virtual switches instead of
edge routers meant that Frankenstack’s IDS component (i.e.,
Suricata [14]) also had visibility in internal network segments,
not just traffic that was traversing between network routers
and perimeter firewalls. All traffic was captured and indexed
using the Arkime full packet capture and analysis tool which
was later used by the YT operators to extract new IoC
samples directly from the indexed PCAPs to improve existing
detection capability [15]. Note, that Arkime was re-branded
from Moloch in November 2020.

2) Event logs: We collected event logs from the in-game
(gamenet) systems wherever possible (e.g., Event Logs from
Windows, Apache and nginx web server logs, and syslog
from Linux). Windows Event logging was extended with
additional rules for Microsoft Sysinternals Sysmon [16] from
public GitHub sources [17], [18]. Instead of implementing
AppArmor and SELinux for enhanced Linux auditing, we
opted to use a small library called Snoopy Logger [19].
This was because configuring AppArmor or SELinux typically
involves increasing the base level of security on the system.
However, we did not want to interfere or impair any of the
pre-configured vulnerabilities that were planted on the target
systems.

Such host instrumentation is difficult to sustain in a standard
defense-oriented CSX with BTs as the training audience. If the
aim is to give BTs full control of their gamenet infrastructure,
then it is difficult to ensure that BTs do not disable or
reconfigure these tools. However, as the XS training audience
is the OCO team, then YT could maintain supervisory control
of all BT systems and ensure a constant stream of event log
data.

3) Asset collection: Another critical piece of information
is up-to-date knowledge about various network configurations
and hosts in these networks. Since this is highly specific to
the exercise and the underlying technical infrastructure, we
developed a custom script that extracts this information from
the Cyber Range provisioning API and the VMware vSphere
API. While the provisioning API contains the information
about how networks and hosts should be configured when
they are deployed by Ansible [20], it lacks any knowledge of
changes introduced after the initial deployment. Therefore, the
list of all provisioned hosts and any static IP information can
be easily collected from the provisioning API. However, if a
host has been configured to obtain an IP address using DHCP,
then the actual IP address must be retrieved from the machine
during runtime. IPv6 link-local addresses are also assigned

BT targets
Cyber Range infrastructure

Frankenstack tooling

Dashboards and visualizations

Partners' tools

Snoopy
Logger

Syslog

Sysmon

Windows
Event Log

Kafka collector

Provisioning API

Exercise
asset collection

vSphere API Network capture

ArkimeSuricata Stamus
SSP

GreyCortex
Mendel

Kafka processor

Elasticsearch

Peek Python shipper

Sigma engine

Kibana AlertaATT&CK Navigator

Fig. 1. XS technological perspective. Green area marks data sources originating from the exercise backend infrastructure, i.e., Green team assets (described in
sections IV-A1 and IV-A3). Blue area indicates tools and data sources deployed on BT hosts and networks (described in section IV-A2). Black area displays
partner tools (described in chapter VI). Yellow area illustrates Frankenstack components and the data flow between them (described in IV-B, IV-C and IV-D).
YT Dashboards and visualizations are described in chapter V. Red nodes represent novel contributions developed solely by the authors of the paper.

dynamically. The script periodically collected the most recent
IP information from all hosts using the vSphere API.

When information is gathered, we establish an asset profile
for each known host in the exercise environment. Among
other information, this profile maps all known IPv4 and IPv6
addresses to a particular host. This is key because when
it comes to correlating events from multiple data sources,
Frankenstack aims to be agnostic as to whether it has to match
a hostname (e.g., from event logs) or on an IP address (e.g.,
from an IDS alert). This problem is something that many
network monitoring solutions struggle with because it is not a
trivial task to associate IPv4 and IPv6 network sessions even if
they originate from the same host [21]. Trying to combine IDS
alerts and event logs complicates things even further. For this
reason, we attempt to enrich all events with an asset host name
as a common identifier for all subsequent event correlation.

B. Distributed event streaming

The initial design of the event processing pipeline described
in [2] relied primarily on Syslog-ng [22] to collect, store and
forward events. This works well for systems and applications
that are set up and configured beforehand so that proper syslog
rules can be created. However, during the annual hackathons
that precede the XS event, contributing partners in the YT
would often need to integrate their own tools and scripts that
needed to analyze the same incoming data feeds or a subset
of past events to provide an alternative assessment to the main

data processing pipeline. Having events stored as files on the
central log collection server is not ideal for this. Alternatively,
Elasticsearch [23] can be used to query historic data, but there
is no good way to re-stream all incoming events in real time.

We analyzed various distributed message streaming tools
(e.g., RabbitMQ and ZeroMQ) but opted for using Apache
Kafka [24] as a central collection point for all emitted mes-
sages. Kafka fulfils the requirement for a multi-producer and
multi-consumer event feeds. The general design concept in
the Frankenstack framework is that all new events should be
produced to Kafka and for any further processing, tools should
consume the corresponding events from Kafka. Therefore,
Kafka always has all the information and relevant stages of
the data analysis processes.

C. Data processing components

Postmortem analysis of available datasets is an irreplaceable
method during incident analysis. Although it often gives
valuable insight about cyberattacks, it requires a substantial
amount of time and manual work. Unfortunately, this conflicts
with the short time span of the XS exercise and is not a viable
method to keep track of the training audience. Frankenstack
processes structured input data that has been sent to Kafka
and applies event normalization, enrichment, and correlation
for combining various information sources into a single stream
of meaningful events.

All relevant event streams in Frankenstack have been
configured to output structured JSON events at the source
or to be transformed into JSON during the pre-processing
phase. Unfortunately, the JSON events emitted by distinct
sources feature varying structure which has to be individually
handled for every input. Until 2019, Frankenstack employed
SEC [25] as the primary data normalization, enrichment,
and correlation tool. Bearing in mind that SEC and its rule
language was initially designed for complex event correlation
tasks on unstructured messages, it soon became difficult to
handle complex nested JSON data structures in the SEC rule
language. For example, any changes in input JSON key values
resulted in the need to edit numerous textual rules. Therefore,
instead of using the conventional SEC rule syntax, we had
to write Perl code snippets into most FrankenSEC rules [26].
Although it was possible to accomplish what we required using
custom Perl functions, the rule writing and management soon
became infeasible to maintain.

Alternatively, processing complex nested data structures in a
fully-fledged programming language seemed more approach-
able. In hindsight, our primary issue was that we attempted to
correlate events too soon in the data processing pipeline—SEC
is an event correlation tool, not a programming environment
or a data normalizer. Unfortunately, in our ruleset we tried to
accommodate many of the data processing and transformation
tasks which should have been completed prior to sending
events into SEC. This significantly hindered the SEC event
correlation rule-writing process. The lack of proper post-
processing meant that even minor changes in the input event
structure resulted in the need to rewrite a large portion of the
rules.

In the initial version of Frankenstack we had to integrate
multiple logging tools (e.g., Syslog-ng, Rsyslog [27], and
Logstash [28]) and custom scripts to implement a CSX-
specific data normalization and enrichment tool. Configura-
tions to process and route the event stream became overly
complex as no single tool was readily able to satisfy all
requirements. As a replacement we developed a novel data
normalization and enrichment tool called Peek [29]. A fully
customizable tool reduced this overhead significantly—we had
to maintain only one tool which was fully under our control.
Peek was able to replace generic log processing and event
routing tools such as Logstash and Syslog-ng within our
framework, albeit only for our particular exercise use-case.

The FrankenSEC ruleset was replaced by the Sigma ruleset
[30] in XS 2020. Sigma is an open-source project that has
gained a wide support and adoption from the information
security community in the past few years. The project defines
a simple rule structure in YAML format. Sigma does not do
any pattern matching or alerting by itself. Rather, it acts as a
technical translation layer and IoC sharing format. See Listing
1 for an example sigma rule that we developed for detecting
base64 encoded scripts being executed in Windows machines.
The rule triggers if the string ’ -FromBase64String ’ is detected
within the ScriptBlockText field of a Windows Event.

Since Frankenstack aims to be vendor-agnostic, we built a

Listing 1. Sigma rule to detect base64 encoded PowerShell scripts.

t i t l e : Encoded S c r i p t B l o c k Command I n v o c a t i o n
a u t h o r : Mauno P i h e l g a s
d e s c r i p t i o n : D e t e c t s s u s p i c i o u s P o w e r S h e l l i n v o c a t i o n

command p a r a m e t e r s
d e t e c t i o n :

c o n d i t i o n : s e l e c t i o n
s e l e c t i o n :

win log . e v e n t d a t a . S c r i p t B l o c k T e x t :
− ' − FromBase64St r ing '

f a l s e p o s i t i v e s :
− P e n e t r a t i o n t e s t s
− Very s p e c i a l P o w e r S h e l l s c r i p t s

f i e l d s :
− win log . e v e n t d a t a . S c r i p t B l o c k T e x t

i d : 697 e4279 −4b0d −4b14 −b233 −9596 bc1cacda
l e v e l : h igh
l o g s o u r c e :

p r o d u c t : windows
s e r v i c e : p o w e r s h e l l

s t a t u s : e x p e r i m e n t a l
t a g s :

− a t t a c k . e x e c u t i o n
− a t t a c k . d e f e n s e − e v a s i o n
− a t t a c k . t1059 . 0 0 1

custom real-time rule matching engine in Go [31] that uses
Sigma rules. That engine is built as separate module and is
publicly available in GitHub [32]. A detailed description and
benchmarks of our Sigma rule engine are available in our
recent whitepaper [33].

The interface to the OCO feedback dashboards was ac-
complished with a comprehensive Python post-processing and
event shipping module which ensured that all processed events
sent to the dashboards (i.e., Alerta [34], ATT&CK Navigator
[35] and Kibana [36]) conformed to a uniform structure
and were mapped to the MITRE ATT&CK adversary tactics
and techniques knowledge base. This post-processing script
also implemented a simple baselining functionality to identify
security events that occur under normal system use (e.g.,
execution of scheduled tasks, system updates, etc.). Later,
during the exercise, such events were automatically filtered and
not displayed on the dashboards. The same post-processing
tool can be leveraged to easily create additional filters to
suppress benign or false positive events which may occur
during the exercise.

During the three days of XS exercise in December 2020,
the Frankenstack framework received a total of 673,225 input
security events. 85% of those were from Windows machines
which are highly verbose, especially with the added Sysmon
logging rulesets. The remaining 15% were logs emanating
from Linux machines and Suricata IDS. To reiterate, manual
inspection of such a large number of events for providing
near real-time feedback to exercise participants would prove
extremely difficult. Therefore, automated event processing
steps such as filtering, correlation, and deduplication are of
key importance within Frankenstack.

D. Determining the attacker

There is one crucial element that has to be determined
for every event before submitting it further—the attacker and

victim assets. To reiterate a problem from the early days of
Frankenstack development, one primary concern the YT faced
was automatically determining the direction of the attacks,
i.e., identifying the victim and the attacker in a particular
cyberattack. With Suricata IDS alerts, relying on the source
and target fields does not yield an expected result—the source
and target fields in IDS rules just signify the direction of traffic
for which the detection match conditions are written. This
meant that whenever the rule writers had written a rule that
detects a response of an attack (e.g., sensitive data leaving the
victim node), we would have erroneously classified the victim
as the attacker. With this approach, we could only connect the
relevant nodes, but lacked the directionality between them.

Fortunately, one of the core Suricata developers had been
part of YT since 2016. He escalated this issue and for the fol-
lowing XS iteration there was a preliminary fix available. An
improved solution has now been adopted into the mainstream
version of the Emerging Threats (ET) rules [37]. ET rules now
contain a metadata field called attack target, which reveals
the victim-side counterpart of the attack. Currently there are
approximately 15,000 rules which contain the attack target
metadata keyword. This development has been presented at
security conferences such as Hack.Lu [38] and SuriCon [39].

Peek now uses those keywords and enriches each atomic
message with metadata to determine event shipper and, if
applicable, proper event source and attack target. Our exercise
asset collection tool enables us to build an asset database for
threat hunting and map individual addresses from alerts to
known assets. Source and destination information is inserted
to every message metadata, along with event directionality flag
(i.e., inbound, outbound, lateral, or local). The post-processing
script is then able to process metadata-enriched messages and
report affected assets to the feedback dashboards.

V. VISUALIZATIONS

During XS, numerous large screens are installed in the
training room directed at the OCO team. Their purpose is to
provide visual feedback from various tools taking up any of
the valuable screen real estate from the training audience.

Frankenstack comprises a set of open-source tools for
visualizing log data, time-series metrics, and alerts. There
are slight differences in handling various types of alerts: for
example, alerts for CPU and memory usage trigger and recover
automatically based on a predefined set of thresholds, while
security events (e.g., IDS/IPS alerts) are only triggered based
on some detection condition but lack the concept of a recovery
threshold. Thus, such security alerts will never receive a
recovery event, leading to an overabundance of information
on the central dashboard. This requires special handling and
conditions for timing out stale alerts.

Correlation and deduplication of recurring events is crucial
for creating useful visualizations. Due to the volatile nature
of CSXs, visualization tools can overflow with too much
information for users to follow. For example, a network scan
using the nmap tool can trigger a large amount of security
events over a short period of time. While event correlation

can collect and continuously combine those events, it should
not wait indefinitely for the scanning to end before emitting
the alert to the dashboard. The aim is to notify the OCO
of their activity as it happens. Therefore, the length of the
correlation window must be kept relatively short. With an
effective deduplication functionality, sending the same alert
multiple times does not cause any issues.

Alerta [34] is used as the primary feedback dashboard to
present any malicious activity to exercise participants. The
entire feedback cycle is completed by emitting the enriched
event from the correlation engine to the Alerta dashboard.
Each OCO team member has access to the Alerta API and
web interface to create personal filtering rules for limiting the
displayed information only to what is relevant in the current
stage of the attack. We set a timeout to automatically archive
stale events that had no correlated activity in the last 15
minutes to avoid flooding the dashboard with events.

Kibana [36] was used to present analytical dashboards that
provided insight over the entire duration of the exercise, not
just the recent events view available in Alerta. The information
included a summary of detected attack types and statistics of
IP addresses that have been generating the most alerts. The
dashboards on the large TV screens were often observed by
WT members who were more interested in the progress of the
exercise and overall performance of the training audience.

We also mapped all feedback events to the MITRE
ATT&CK framework attack phases and techniques. This en-
abled us to integrate the MITRE ATT&CK Navigator applica-
tion to our environment and visualize the security events the
OCO team had triggered to attack the target BT environment.

VI. TESTBED FOR VENDOR APPLIANCES

Although Frankenstack has been kept open source, we have
not denied cooperation with existing security platforms, SIEM
systems, or commercial vendor appliances. Over the years
several security vendors (e.g., Cymmetria [40], Greycortex
[41], and Stamus Networks [42]) have joined the exercise
YT to test their commercial products in a unique live-fire
environment. We do not treat any proprietary security product
as a component of Frankenstack, but rather as another mon-
itoring data feed that can provide a different perspective into
the exercise dataset.

VII. FUTURE WORK

Several issues have remained a challenge. For example, to
assess the progress of the OCO team more systematically,
their attack campaigns would have to be incorporated into
the exercise scenario itself. The exercise scenario and time-
line would also have to be available in a machine-readable
format so that Frankenstack could follow exercise progress
and potentially adapt to non-technical scenario changes that
take place as part of the storyline (e.g., dynamically adjust
the level of detail provided within the feedback based on the
participants’ progress in the campaign).

More advanced visualizations are required for the exercise
training audience and organizers to better follow the partici-
pants’ progress at a higher level. The focus of Frankenstack

has been on technical feedback rather than information that
would provide actionable SA for higher-level decision makers.
We attempted this with EVE [43] but faced the problem of
revealing too much information too early in the game, which
unfortunately limited its usability during the exercise.

VIII. CONCLUSION

The paper outlines the new developments of the cyberat-
tack detection and feedback framework, Frankenstack. This
open-source cyber-exercise-specific framework is based on a
combination of various open-source monitoring tools. The
primary purpose of Frankenstack is to provide detection of
malicious activity and fully automated real-time observations
during cyber exercises where the emphasis on training the
offensive skillset.

The work describes the updated technical architecture com-
pared to an earlier version of the framework. Furthermore,
improved data processing, distributed event streaming, and
feedback dashboards are described. Since 2017, we have
implemented and verified the performance of our framework in
the annual NATO CCD COE’s Crossed Swords cyber exercise.

IX. ACKNOWLEDGEMENTS

The authors would like to thank Dr. Risto Vaarandi and Dr.
Bernhards Blumbergs for their valuable advice.

This work has been supported by the Estonian IT Academy
(StudyITin.ee).

REFERENCES

[1] NATO CCD COE, “Crossed Swords Exercise,” Available: https://ccdcoe.
org/exercises/crossed-swords/, 2021.

[2] M. Kont, M. Pihelgas, K. Maennel, B. Blumbergs, and T. Lepik,
“Frankenstack: Toward real-time Red Team feedback,” in MILCOM
2017 - 2017 IEEE Military Communications Conference (MILCOM),
October 2017, pp. 400–405.

[3] M. Pihelgas, Mitigating Risks arising from False-Flag and No-Flag
Cyber Attacks. NATO CCD COE Publications, 2015.

[4] N. Känzig, R. Meier, L. Gambazzi, V. Lenders, and L. Vanbever,
“Machine Learning-based Detection of C&C Channels with a Focus on
the Locked Shields Cyber Defense Exercise,” in 2019 11th International
Conference on Cyber Conflict (CyCon), vol. 900, 2019, pp. 1–19.

[5] J. Klein, S. Bhulai, M. Hoogendoorn, R. Van Der Mei, and R. Hinfelaar,
“Detecting Network Intrusion beyond 1999: Applying Machine Learning
Techniques to a Partially Labeled Cybersecurity Dataset,” in 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
2018, pp. 784–787.

[6] D. L. Arendt, D. Best, R. Burtner, and C. L. Paul, “CyberPetri at CDX
2016: Real-time network situation awareness,” in 2016 IEEE Symposium
on Visualization for Cyber Security (VizSec), October 2016, pp. 1–4.

[7] D. L. Arendt, R. Burtner, D. M. Best, N. D. Bos, J. R. Gersh, C. D.
Piatko, and C. L. Paul, “Ocelot: user-centered design of a decision
support visualization for network quarantine,” in 2015 IEEE Symposium
on Visualization for Cyber Security (VizSec), October 2015, pp. 1–8.

[8] D. S. Henshel, G. M. Deckard, B. Lufkin, N. Buchler, B. Hoffman,
P. Rajivan, and S. Collman, “Predicting proficiency in cyber defense
team exercises,” in MILCOM 2016 - 2016 IEEE Military Communica-
tions Conference, November 2016, pp. 776–781.

[9] K. Maennel, R. Ottis, and O. Maennel, “Improving and Measuring
Learning Effectiveness at Cyber Defense Exercises,” in Secure IT Sys-
tems: 22nd Nordic Conference, NordSec 2017, Tartu, Estonia, November
8-10, 2017. Proceedings, November 2017, pp. 123–138.

[10] M. Ernits, K. Maennel, S. Mäses, T. Lepik, and O. Maennel, “From
Simple Scoring Towards a Meaningful Interpretation of Learning in
Cybersecurity Exercises,” in 15th International Conference on Cyber
Warfare and Security (ICCWS 2020), March 2020.

[11] K. Maennel, J. Kim, and S. Sütterlin, “From Text Mining to Evidence
Team Learning in Cybersecurity Exercises,” in Companion Proceedings
10th International Conference on Learning Analytics and Knowledge
(LAK20), March 2020.

[12] The MITRE Corporation, “MITRE ATT&CK,” Available: https://attack.
mitre.org/, 2021.

[13] M. Chmelař, “Utilizing MITRE ATT&CK to Create Adversary Reports
of Live-Fire Cybersecurity Exercises for Feedback Purposes,” Tallinn
University of Technology, Tech. Rep., 2020.

[14] Open Information Security Foundation, “Suricata,” Available: https://
suricata-ids.org/, 2021.

[15] Arkime, “Arkime,” Available: https://arkime.com/, 2021.
[16] Microsoft, “Windows Sysinternals - Sysmon,” Available: https://technet.

microsoft.com/en-us/sysinternals/sysmon, 2021.
[17] O. Hartong, “sysmon-modular,” Available: https://github.com/

olafhartong/sysmon-modular, 2021.
[18] SwiftOnSecurity, “sysmon-config,” Available:

https://github.com/SwiftOnSecurity/sysmon-config, 2021.
[19] B. S. Jese, “Snoopy Logger,” Available: https://github.com/a2o/snoopy,

2021.
[20] Red Hat, Inc, “Ansible,” Available: https://www.ansible.com/, 2021.
[21] B. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi,

“Creating and Detecting IPv6 Transition Mechanism-Based Information
Exfiltration Covert Channels,” in Secure IT Systems: 21st Nordic
Conference, NordSec 2016, Oulu, Finland, November 2-4, 2016.
Proceedings. Springer International Publishing, 2016, pp. 85–100.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-47560-8 6

[22] One Identity LLC, “syslog-ng,” Available: https://www.syslog-ng.com/,
2021.

[23] Elasticsearch B.V., “Elasticsearch,” Available: https://www.elastic.co/
elasticsearch, 2021.

[24] Apache Software Foundation, “Apache Kafka,” Available: https://kafka.
apache.org/, 2021.

[25] R. Vaarandi, B. Blumbergs, and E. Çalişkan, “Simple event correlator
- Best practices for creating scalable configurations,” in Cognitive
Methods in Situation Awareness and Decision Support (CogSIMA), 2015
IEEE International Conference on, March 2015, pp. 96–100.

[26] NATO CCD COE, “frankenSEC,” Available:
https://github.com/ccdcoe/frankenSEC, 2019.

[27] Adiscon GmbH, “The rocket-fast Syslog Server,” Available: https://
www.rsyslog.com/, 2021.

[28] Elasticsearch B.V., “Logstash,” Available: https://www.elastic.co/
logstash, 2021.

[29] NATO CCD COE, “Peek,” Available: https://github.com/ccdcoe/go-
peek, 2020.

[30] F. Roth, “Sigma,” Available: https://github.com/Neo23x0/sigma, 2021.
[31] “The Go Programming Language,” Available: https://golang.org/, 2021.
[32] M. Kont, “Sigma rule engine,” Available: https://github.com/markuskont/

go-sigma-rule-engine, 2020.
[33] M. Kont and M. Pihelgas, IDS for logs: Towards implementing a

streaming Sigma rule engine. NATO CCD COE Publications, 2020.
[34] N. Satterly, “Alerta,” Available: http://alerta.io/, 2021.
[35] The MITRE Corporation, “Att&ck navigator,” Available: https://github.

com/mitre-attack/attack-navigator, 2021.
[36] Elasticsearch B.V., “Kibana,” Available: https://www.elastic.co/kibana,

2021.
[37] Proofpoint, “Emerging Threats rules,” Available: https:

//rules.emergingthreats.net/, 2020.
[38] E. Leblond, “Finding the Bad Guys, Yes Really,” Available: https://www.

youtube.com/watch?v=Scntdv1Vp\ 0, 2017, hack.lu 2017 Presentation.
[39] ——, “Finding the Bad Guys, Yes Really,” SuriCon 2017, 2017,

presentation.
[40] Cymmetria, “Cyber deception & NATO red teams,” Available: https:

//cymmetria.com/white-paper/nato-crossed-swords/, 2018.
[41] Greycortex, “Greycortex supports Crossed Shields for second year,”

Available: https://www.greycortex.com/blog/greycortex-supports-
crossed-shields-second-year, 2019.

[42] Stamus Networks, “Stamus Networks at XS20,” Available:
https://twitter.com/StamusN/status/1339968510924120066, 2021.

[43] F. J. R. Melón, T. Väisänen, and M. Pihelgas, “EVE and ADAM:
Situation Awareness Tools for NATO CCDCOE Cyber Exercises,” in
STO-MP-SCI-300 Cyber Physical Security of Defense Systems, 2018,
pp. 10–1–10–15. [Online]. Available: https://ccdcoe.org/uploads/2018/
10/EVE-ADAM-MP-SCI-300-10.pdf

Curriculum Vitae
1. Personal data

Name Mauno PihelgasDate and place of birth 3 January 1988, Haapsalu, EstoniaNationality Estonian
2. Contact information

Address Tallinn University of Technology, School of Information Technologies,Department of Software Science, Ehitajate tee 5, 19086 Tallinn, EstoniaE-mail info[at]pihelgas.eu
3. Education

2014–2021 Tallinn University of Technology, School of Information Technologies,Cyber Security, PhD studies2010–2012 Tallinn University of Technology, Faculty of Information Technology,Cyber Security, MSc cum laude2010–2012 University of Tartu, Faculty of Science and Technology,Cyber Security, MSc cum laude2007–2010 Estonian Information Technology College,IT Systems Development, Diploma cum laude

4. Language competence

Estonian nativeEnglish fluentRussian basic levelGerman basic level
5. Professional employment

2013– . . . NATO Cooperative Cyber Defence Centre of Excellence, Technology Researcher2012–2020 Tallinn University of Technology, Computer Lab Assistant2010–2013 Elion Ettevõtted AS, Monitoring Administrator2008–2010 Microlink Eesti AS, Data Centre Duty Technician
6. Certifications

2020–2023 Red Hat Certified Specialist in Advanced Automation: Ansible Best Practices2017–2023 Red Hat Certificate of Expertise in Ansible Automation Exam (Ansible 2)2016–2024 GIAC Continuous Monitoring Certification (GMON)2014–2023 Red Hat Certified System Administrator (RHEL7)2014–2023 Red Hat Certified Engineer (RHEL7)
7. Voluntary work

2011 Vaata Maailma Foundation, Restoration of donated computers for charity2012–2020 Robotex, Sumo Robot workshop instructor

236

8. Computer skills

• Operating systems: GNU/Linux, MS Windows
• Document preparation: Vim, MS Code, LaTeX, Libre Office, MS Word
• Programming languages: Python, Bash, PHP, Perl, Go
• Scientific packages: Jupyter Notebooks, JupyterLab

9. Defended theses

• 2012, A Comparative Analysis of Open-Source Intrusion Detection Systems, MSc,supervisor Dr. Risto Vaarandi, Tallinn University of Technology
• 2010, Expanding Functionality of the Robot Control Platform of The Estonian Infor-mation Technology College, Diploma, supervisor Margus Ernits, Estonian Informa-tion Technology College

10. Field of research

• Security Monitoring
• Situation Awareness
• Cyber Security Exercises
• Log Analysis

11. Scientific work
Papers

1. R. Vaarandi andM. Pihelgas. Using Security Logs for Collecting andReporting Techni-cal Security Metrics. InMilitary Communications Conference (MILCOM), 2014 IEEE,pages 294–299, October 2014
2. R. Vaarandi and M. Pihelgas. LogCluster - A data clustering and pattern mining al-gorithm for event logs. In Network and Service Management (CNSM), 2015 11th

International Conference on, pages 1–7, November 2015
3. R. Vaarandi, M. Kont, and M. Pihelgas. Event log analysis with the LogCluster tool.InMILCOM 2016 - 2016 IEEE Military Communications Conference, pages 982–987,November 2016
4. B. Blumbergs, M. Pihelgas, M. Kont, O. Maennel, and R. Vaarandi. Creating and De-tecting IPv6 Transition Mechanism-Based Information Exfiltration Covert Channels.In Secure IT Systems: 21st Nordic Conference, NordSec 2016, Oulu, Finland, Novem-

ber 2-4, 2016. Proceedings, pages 85–100. Springer International Publishing, 2016
5. M. Kont, M. Pihelgas, K. Maennel, B. Blumbergs, and T. Lepik. Frankenstack: Towardreal-time Red Team feedback. InMILCOM2017 - 2017 IEEEMilitary Communications

Conference (MILCOM), pages 400–405, October 2017
6. M. Pihelgas. Design and Implementation of an Availability Scoring System for CyberDefence Exercises. In 14th International Conference on Cyber Warfare and Security

(ICCWS 2019), page 329–337, 2019
237

7. P. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini, andA. Panico. Towards an active, autonomous and intelligent cyber defense of mili-tary systems: The NATO AICA reference architecture. In 2018 International Con-
ference on Military Communications and Information Systems (ICMCIS), pages 1–9,May 2018

8. P. Théron, A. Kott, M. Drašar, K. Rzadca, B. LeBlanc, M. Pihelgas, L. Mancini, andF. de Gaspari. Reference Architecture of an Autonomous Agent for Cyber Defenseof ComplexMilitary Systems. In Adaptive Autonomous Secure Cyber Systems, pages1–21, Cham, 2020. Springer International Publishing
9. A. Kott, P. Théron, L. V.Mancini, E. Dushku, A. Panico,M.Drašar, B. LeBlanc, P. Losiewicz,A. Guarino, M. Pihelgas, and K. Rzadca. An introductory preview of Autonomous In-telligent Cyber-defense Agent reference architecture, release 2.0. The Journal of

Defense Modeling and Simulation, 17(1):51–54, 2020
10. R. Vaarandi and M. Pihelgas. NetFlow Based Framework for Identifying AnomalousEnd User Nodes. In 15th International Conference on Cyber Warfare and Security

(ICCWS 2020), page 448–456, 2020
11. M. Pihelgas andM. Kont. Frankenstack: Real-time Cyberattack Detection and Feed-back System for Technical Cyber Exercises. In 2021 IEEE CSR Workshop on Cyber

Ranges and Security Training (CRST). IEEE, July 2021. (Accepted paper)
Conference presentations

1. M. Pihelgas. ’Security Metrics - Background Study and Suggestions for Organiza-tional Networks and IT Systems’, SAS-106 Symposium on Analysis Support to Deci-sion Making in Cyber Defence & Security: 9–10 June 2014, Tallinn, Estonia
2. B. Blumbergs, M. Pihelgas. ’Creating and Detecting IPv6 Transition Mechanism-Based Information Exfiltration Covert Channels’, 21st Nordic Conference on SecureIT Systems (Nordsec 2016): 2–4 November 2016, Oulu, Finland
3. M.Pihelgas, M. Kont. ’Hedghehog in the Fog: Creating andDetecting IPv6 TransitionMechanism-Based Information Exfiltration Covert Channels’, CERT-EE Symposium2017: 29–30 May 2017, Tallinn, Estonia
4. M. Pihelgas. ’Scoring a Technical Cyber Defense Exercise with Nagios and Sele-nium’, 13thOpen SourceMonitoring Conference (OSMC2018): 5–8November 2018,Nuremberg, Germany
5. M. Kont, M. Pihelgas. ’Frankenstack. Busting the Red Team with Duct Tape, Spitand Tears’, 5th Annual SuriCon: 30 October–01 November 2019, Amsterdam, TheNetherlands
6. M. Pihelgas. ’Frankenstack: Real-time Cyberattack Detection and Feedback Systemfor Technical Cyber Exercises’, 2021 IEEE CSR Workshop on Cyber Ranges and Secu-rity Training (CRST): 26 July 2021, Online (Accepted presentation)

238

Elulookirjeldus
1. Isikuandmed

Nimi Mauno PihelgasSünniaeg ja -koht 03.01.1988, Haapsalu, EestiKodakondsus Eesti
2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Tarkvarateaduse Instituut,Ehitajate tee 5, 19086 Tallinn, EstoniaE-post info[ät]pihelgas.eu
3. Haridus

2014–2021 Tallinna Tehnikaülikool, infotehnoloogia teaduskond,Küberkaitse, doktoriõpe2010–2012 Tallinna Tehnikaülikool, infotehnoloogia teaduskond,Küberkaitse, MSc cum laude2010–2012 Tartu ülikool, Matemaatika-informaatika teaduskond,Küberkaitse, MSc cum laude2007–2010 Eesti Infotehnoloogia Kolledž,IT süsteemide arendus, rakenduskõrgharidus
4. Keelteoskus

eesti keel emakeelinglise keel kõrgtasevene keel algtasesaksa keel algtase
5. Teenistuskäik

2013– . . . NATO Küberkaitse Koostöö Kompetentsikeskus, Teadur-nõunik2012–2020 Tallinna Tehnikaülikool, Praktikumi assistent2010–2013 Elion Ettevõtted AS, Monitooringu administraator2008–2010 Microlink Eesti AS, Serverikeskuste valvetehnik
6. Erialased sertifikaadid

2020–2023 Red Hat Certified Specialist in Advanced Automation: Ansible Best Practices2017–2021 Red Hat Certificate of Expertise in Ansible Automation Exam (Ansible 2)2016–2024 GIAC Continuous Monitoring Certification (GMON)2014–2023 Red Hat Certified System Administrator (RHEL7)2014–2023 Red Hat Certified Engineer (RHEL7)
7. Vabatahtlik töö

2011 Vaata Maailma Foundation, Vanade arvutite taastamine heategevuseks2012–2020 Robotex, Sumorobotite töötoa juhendaja

239

8. Computer skills

• Operatsioonisüsteemid: GNU/Linux, MS Windows
• Kontoritarkvara: Vim, MS Code, LaTeX, Libre Office, MS Word
• Programmeerimiskeeled: Python, Bash, PHP, Perl, Go
• Teadustarkvara paketid: Jupyter Notebooks, JupyterLab

9. Kaitstud lõputööd

• 2012, Võrdlusanalüüs vabatarkvaralistest ründetuvastussüsteemidest, MSc, juhen-daja Dr. Risto Vaarandi, Tallinna Tehnikaülikool
• 2010, Eesti Infotehnoloogia Kolledži roboti juhtimisplatvormi funktsionaalsuse laien-damine, juhendaja Margus Ernits, Eesti Infotehnoloogia Kolledž

10. Teadustöö põhisuunad

• Monitooring
• Situatsiooniteadlikkus
• Küberharjutused
• Logianalüüs

11. TeadustegevusTeadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud inglis-keelse elulookirjelduse juures.

240

ISSN 2585-6901 (PDF)
ISBN 978-9949-83-719-9 (PDF)

