

Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Valentin Kirjan 201728IVSB

Facilitation of Kubernetes Role-Based Access

Control Implementation and Management with

Open-Source Software

Bachelor's thesis

Supervisor: Aleksei Talisainen

 MSc.

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Valentin Kirjan 201728IVSB

Kubernetese rollipõhise juurdepääsukontrolli

juurutamise ja haldamise hõlbustamine avatud

lähtekoodiga tarkvara abil

Bakalaureusetöö

Juhendaja: Aleksei Talisainen

 MSc.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Valentin Kirjan

04.01.2024

4

Abstract

Kubernetes is the most popular container orchestration system in the world, which makes

it one of the common attack surfaces for malicious actors. According to recent studies, its

security adoption is not in the best shape, which makes both employees and organizations

pay the price for related security incidents. While Kubernetes does provide mechanisms

for enhancing security, these features may not be enabled by default and require

additional configuration: one of such features is role-based access control (RBAC).

This thesis conducts a detailed study and prototype development to enhance Kubernetes

RBAC implementation and management. The research begins with an exploration of

Kubernetes RBAC, followed by the selection and comparative study of two open-source

modern tools, Permission Manager and RBAC Tool, in a lab environment replicating real-

world scenarios. These tools are examined based on set criteria to identify their

functionalities and limitations. Requirements for the prototype are then established based

on these limitations, leading to the development of a solution offering improved or

additional functionalities. The prototype is designed with a web-based user interface, split

into two components, and operates locally, outside a Kubernetes cluster. The research

concludes with suggestions for future improvements of the prototype.

The thesis contributes to the field of Kubernetes security and administration by educating

and attempting to benefit individuals and organizations adopting role-based access

control.

This thesis is written in English and is 30 pages long, including 6 chapters, 28 figures and

2 tables.

5

List of abbreviations and terms

API Application Programming Interface

CA Certificate Authority

CNCF Cloud Native Computing Foundation

Dockerfile A text file that contains instructions for the Docker daemon on

how to build a container image.

GitHub A platform and cloud-based service for software development

and version control.

JavaScript An interpreted programming language that is one of the core

technologies of the World Wide Web.

JSON JavaScript Object Notation

MicroK8s An open-source system for automating deployment, scaling, and

management of containerised applications, providing the

functionality of core Kubernetes components.

OS Operating System

RBAC Role-based Access Control

TypeScript A strongly typed programming language developed by

Microsoft. It adds static typing with type annotations to

JavaScript.

UI User Interface

YAML Yet Another Markup Language or YAML Ain’t Markup

Language is a data serialization language.

6

Table of contents

1 Introduction ... 11

1.1 Research problem ... 12

1.2 Research objectives and goal .. 12

1.3 Scope and target audience .. 13

2 Role-based access control design in Kubernetes ... 14

2.1 Role-based access control objects .. 14

2.1.1 Role and ClusterRole ... 14

2.1.2 RoleBinding and ClusterRoleBinding ... 16

2.2 Kubernetes object management .. 17

2.2.1 Imperative commands ... 18

2.2.2 Imperative object configuration .. 18

2.2.3 Declarative object configuration ... 19

2.3 Implementation process of role-based access control .. 20

2.4 Authentication using kubeconfig files .. 20

3 Methodology .. 22

3.1 Open-source tools selection .. 22

3.2 Comparative study .. 22

3.2.1 Lab environment setup .. 22

3.2.2 Assessment criteria .. 23

3.3 Prototype development ... 24

3.3.1 Development process ... 24

3.3.2 Design and conceptualization .. 24

4 Comparative study of open-source tools ... 25

4.1 Permission Manager ... 25

4.1.1 RBAC management capabilities .. 27

4.1.2 Adherence to the principle of least privilege ... 27

4.1.3 Ease of use for users with limited Kubernetes expertise 28

4.2 RBAC Tool ... 28

7

4.2.1 Command selection for analysis .. 29

4.2.2 RBAC management capabilities .. 30

4.2.3 Adherence to the principle of least privilege ... 31

4.2.4 Ease of use for users with limited Kubernetes expertise 31

5 Prototype development .. 33

5.1 Requirements .. 33

5.2 Components .. 33

5.2.1 Role and ClusterRole generation ... 34

5.2.2 RBAC object configuration ... 36

5.3 Configuration .. 37

6 Summary .. 39

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 43

8

List of figures

Figure 1. Example: ClusterRole YAML. ... 15

Figure 2. Example: Role YAML. ... 16

Figure 3. Example: ClusterRoleBinding YAML. ... 17

Figure 4. Example: RoleBinding YAML. .. 17

Figure 5. Imperative command. .. 18

Figure 6. Imperative object configuration. ... 18

Figure 7. Declarative object configuration using directory. ... 19

Figure 8. Declarative object configuration using file. .. 19

Figure 9. Kubectl auth reconcile command. ... 20

Figure 10. Permission-manager pod running in MicroK8s cluster. 25

Figure 11. Permission Manager ClusterRoles are prefixed with template-…-

resources___name. ... 25

Figure 12. Creating a new user in Permission manager... 26

Figure 13. Test user YAML configuration. .. 27

Figure 14. Policy rules of developer ClusterRole template. ... 27

Figure 15. Rbac Tool installation via Krew. ... 28

Figure 16. Available commands in RBAC Tool. .. 28

Figure 17. Usage options of rbac-tool show. ... 29

Figure 18. Usage options of rbac-tool gen. .. 29

Figure 19. Usage options of rbac-tool auditgen. .. 30

Figure 20. Third-party custom API groups can be discovered by rbac-tool show. 30

Figure 21. Example: generating Role configuration without deletecollection verb. 32

Figure 22. Developed prototype. .. 34

Figure 23. Role and ClusterRole generation component. ... 36

Figure 24. RBAC object configuration component. Example: cluster-wide RBAC objects.

 .. 37

Figure 25. Prototype ServiceAccount YAML configuration. .. 37

Figure 26. Prototype ClusterRole. .. 38

9

Figure 27. Token generation for service account. .. 38

Figure 28. Environment variables in .env file. ... 38

10

List of tables

Table 1. Role and ClusterRole usage possibilities. .. 14

Table 2. RoleBinding and ClusterRoleBinding access combinations. 16

11

1 Introduction

In recent years, software containerization has become a standard for packaging and

deploying software code: 93% of CNCF annual survey respondents were using, or were

planning to use, containers in production in 2021 [1]. The containerization is the

packaging of software code with just the operating system (OS) libraries and

dependencies required to run the code to create a single lightweight executable — called

a container — that runs consistently on any infrastructure, adding efficiency to the

software development lifecycle [2].

One of the pioneers of containerization is Google, who introduced Borg, their container

cluster management system, in 2003. With three people initially, it started as a small-scale

project [3] and grew into a full-fledged, high-capacity tool of utmost importance for the

organization. For example, huge Google applications, such as Search and Gmail, have

been running at extreme scale on containers for years [4]. In 2013, Docker arrived on the

scene and revolutionized containerization by providing an uncomplicated way to

package, distribute, and deploy applications on a single machine. This development

fuelled the demand for a dependable, large-scale container management system. Inspired

by this need, Google employees began developing the first prototype of Kubernetes, their

open-source version of Borg [5].

Moving forward to the current year, Kubernetes has become the most popular container

orchestration system in the world: the CNCF 2022 annual survey shows that 64% of

CNCF’s end-user organizations are running Kubernetes clusters in production, while 25%

are piloting or evaluating the tool. For the non-end user organizations, the percentages

are 49% and 20% respectively [6]. The widespread usage of Kubernetes makes it one of

the common attack surfaces for malicious actors, which is a major concern for

organizations adopting cloud-native environments.

12

1.1 Research problem

While Kubernetes does provide mechanisms for enhancing security, such as network

policies and role-based access control, these features may not be enabled by default and

require additional configuration: State of Kubernetes security report 2023 by Red Hat

claims that 49% of its 600 respondents had a security incident during runtime, 45%

experienced a misconfiguration incident, and another 42% discovered a major

vulnerability to remediate. Most importantly, as a result of a container and Kubernetes

security incident, 37% of respondents identified revenue or customer loss, 25% said the

organization was fined, and 21% experienced employee termination. In retrospect, 38%

cited that their company’s container strategy was not taking security seriously or investing

in security adequately, and 25% thought it was progressing too slowly [7].

The importance of Kubernetes security rises day by day as more organizations integrate

container orchestration solutions. The aforementioned role-based access control (RBAC)

is a widely adopted access control model that follows guidelines set by modern

cybersecurity standards, such as ISO 27001 and NIST. Since Kubernetes RBAC is a key

security control to ensure that cluster users and workloads have only the access to

resources required to execute their roles [8], it plays a crucial role in hardening the

security of Kubernetes clusters: its neglection or misconfiguration can lead to security

incidents, which are still common and cause damage to organizations up to this day.

1.2 Research objectives and goal

Third-party open-source software tools exist to assist in working with various aspects of

the RBAC in Kubernetes. The objectives of this research are:

1. To examine and outline the functionality of the modern open-source tools

dedicated to the implementation and management of RBAC cluster objects.

2. To identify potential areas for improvement or alternative approaches.

The primary goal of this work is to develop a software prototype that incorporates

functionalities derived from the identified areas, intending to reduce complexity and

enhance efficiency and effectiveness in the RBAC implementation process.

https://kubernetes.io/docs/reference/access-authn-authz/rbac/

13

1.3 Scope and target audience

This thesis concentrates solely on the role-based access control security mechanism in

Kubernetes and associated open-source software solutions that aid in its implementation

and management, which includes the creation and application of RBAC object YAML

configurations and the modification of existing objects within a cluster. Importantly, the

thesis does not employ specific cybersecurity frameworks, as they are deemed

unnecessary for the scope of this research. The focus is primarily on the practical

application within Kubernetes environments, where inherent features provide a sufficient

basis for exploring and enhancing RBAC security measures, without the need for external

cybersecurity frameworks. According to the report papers [7], Kubernetes security

adoption is not in the best shape, thus the work may be of interest to cybersecurity experts

or other technical roles that work with container orchestration and want to secure their

clusters.

14

2 Role-based access control design in Kubernetes

Starting from its initial stable release in Kubernetes v1.8, RBAC has remained an integral

element of Kubernetes security [4], continuing through the latest version, which is v1.29.

RBAC is a mechanism that allows Kubernetes administrators to grant permissions within

a Kubernetes cluster. It defines a set of roles that can be assigned to different entities,

such as users, groups, and service accounts. These roles can be used to authorize access

to various resources and operations within the cluster [9].

2.1 Role-based access control objects

The RBAC API declares four kinds of Kubernetes object: Role, ClusterRole,

RoleBinding, and ClusterRoleBinding [9].

2.1.1 Role and ClusterRole

An RBAC Role or ClusterRole contains rules that represent a set of permissions.

Permissions are purely additive — there are no "deny" rules. A Role always sets

permissions within a particular namespace, an abstraction used by Kubernetes to support

isolation of groups of resources within a single cluster. When one creates a Role, they

must specify the namespace it belongs to. ClusterRole, by contrast, is a non-namespaced

resource. The resources have different names, Role and ClusterRole, because a

Kubernetes object always must be either namespaced or not namespaced; it cannot be

both [9].

Table 1. Role and ClusterRole usage possibilities.

Role ClusterRole

Defines permissions on namespaced resources and grants access within individual namespace

(applies to ClusterRole if it is referenced by RoleBinding; see Table 2. RoleBinding and

ClusterRoleBinding access combinations.).

 Defines permissions on namespaced resources and

grants access across all namespaces.

 Defines permissions on cluster-scoped resources.

15

The minimum viable Role and ClusterRole manifest files follow a similar structure, with

the only exception being the specification of the namespace field in Role. The main points

of interest are apiGroups, resources, and verbs fields. The apiGroups field can define

either a singular or multiple Kubernetes API groups. The API groups include specific

resource types and can be native or custom. A single instance of a resource type is called

a resource [10]. In the Kubernetes API, most resources are represented and accessed using

a string representation of their object name, such as pods for a Pod. The resources field

declares the types of resources on which actions will be granted, with the applicable

actions specified in the verbs field. The RBAC refers to resources using the same name

that appears in the URL for the relevant API endpoint [9].

The example figure below shows the ClusterRole named namespace-view. An empty

string in the apiGroups field indicates the core API group. The ClusterRole permits get,

list, and watch actions on namespaces and pods within the core API group. Since

namespaces are cluster-scoped resources, this ClusterRole is designed for use with

ClusterRoleBinding to grant cluster-wide permissions.

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

 name: namespaces-pods-view

rules:

- apiGroups: [""]

 resources: ["namespaces", "pods"]

 verbs: ["get", "list", "watch"]

Figure 1. Example: ClusterRole YAML.

The next figure depicts the Role named pods-edit-jobs-view. It permits get, list, and watch

actions on jobs within the batch API group in the namespace called example. It also

permits all the possible actions on pods within the core API group of the same namespace.

16

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

namespace: example

name: pods-edit-jobs-view

rules:

- apiGroups: [""]

resources: ["pods"]

verbs: ["create", "delete", "deletecollection",
"patch", "update", "get", "list", "watch"]

- apiGroups: ["batch"]

resources: ["jobs"]

verbs: ["get", "list", "watch"]

Figure 2. Example: Role YAML.

Four user-facing ClusterRoles, namely cluster-admin, admin, edit, and view, exist by

default in a cluster.

2.1.2 RoleBinding and ClusterRoleBinding

A RoleBinding grants the permissions defined in a role to a user or set of users. It holds

a list of subjects (users, groups, or service accounts), and a reference to the role being

granted. A RoleBinding grants permissions within a specific namespace whereas a

ClusterRoleBinding grants that access cluster-wide [9].

A RoleBinding may reference any Role in the same namespace. Alternatively, a

RoleBinding can reference a ClusterRole and bind that ClusterRole to the namespace of

the RoleBinding. A ClusterRoleBinding is used to bind a ClusterRole to all namespaces

in a cluster [9].

Table 2. RoleBinding and ClusterRoleBinding access combinations.

 RoleBinding ClusterRoleBinding

Role Namespace-wide access Inapplicable

ClusterRole Namespace-wide access Cluster-wide access

The ClusterRoleBinding, named namespaces-pods-view-binding, is shown below. It

binds the namespaces-pods-view ClusterRole to the IT-personnel group, thereby granting

cluster-wide permissions.

17

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: namespaces-pods-view-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: namespaces-pods-view

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: Group

 name: IT-personnel

The following figure illustrates the RoleBinding named pods-edit-jobs-view-binding. It

binds the pods-edit-jobs-view Role to the developer user, thereby granting permissions

within the example namespace.

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: pods-edit-jobs-view-binding

 namespace: example

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: Role

 name: pods-edit-jobs-view

subjects:

- apiGroup: rbac.authorization.k8s.io

 kind: User

 name: developer

Figure 4. Example: RoleBinding YAML.

2.2 Kubernetes object management

In Kubernetes, the kubectl command-line tool supports three management techniques to

create and manage objects. These techniques are imperative commands, imperative object

configuration, and declarative object configuration. A Kubernetes object should be

managed using only one technique. Mixing and matching techniques for the same object

results in undefined behavior [11].

Figure 3. Example: ClusterRoleBinding YAML.

18

2.2.1 Imperative commands

When using imperative commands, a user operates directly on live objects in a cluster.

The user provides operations to the kubectl command as arguments or flags. This is the

recommended way to get started or to run a one-off task in a cluster. Since this technique

operates directly on live objects, it provides no history of previous configurations [11].

kubectl run examplepod --image=httpd

Figure 5. Imperative command.

Advantages compared to object configuration:

▪ Commands are expressed as a single action word.

▪ Commands require only a single step to make changes to the cluster.

Disadvantages compared to object configuration:

▪ Commands do not integrate with change review processes.

▪ Commands do not provide an audit trail associated with changes.

▪ Commands do not provide a source of records except for what is live.

▪ Commands do not provide a template for creating new objects [11].

2.2.2 Imperative object configuration

In imperative object configuration, the kubectl command specifies the operation, optional

flags, and at least one file name. The specified locally stored file must contain a full

definition of the object in YAML or JSON format [11].

kubectl create -f examplerole.yaml

Figure 6. Imperative object configuration.

Advantages compared to imperative commands:

▪ Object configuration can be stored in a source control system such as Git.

▪ Object configuration can integrate with processes such as reviewing changes

before push and audit trails.

▪ Object configuration provides a template for creating new objects.

Disadvantages compared to imperative commands:

▪ Object configuration requires basic understanding of the object schema.

19

▪ Object configuration requires the additional step of writing a YAML file.

Advantages compared to declarative object configuration:

▪ Imperative object configuration behavior is simpler and easier to understand.

▪ As of Kubernetes version 1.5, imperative object configuration is more mature.

Disadvantages compared to declarative object configuration:

▪ Imperative object configuration works best on files, not directories.

▪ Updates to live objects must be reflected in configuration files, or they will be lost

during the next replacement [11].

2.2.3 Declarative object configuration

When using declarative object configuration, a user operates on object configuration files

stored locally, however the user does not define the operations to be taken on the files.

Create, update, and delete operations are automatically detected per-object by kubectl.

This enables working on directories, where different operations might be needed for

different objects [11].

kubectl apply -f exampledir/

Figure 7. Declarative object configuration using directory.

In addition, the declarative object configuration supports singular files.

kubectl apply -f examplerole.yaml

Figure 8. Declarative object configuration using file.

Advantages compared to imperative object configuration:

▪ Changes made directly to live objects are retained, even if they are not merged

back into the configuration files.

▪ Declarative object configuration has better support for operating on directories

and automatically detecting operation types (create, patch, delete) per-object.

Disadvantages compared to imperative object configuration:

▪ Declarative object configuration is harder to debug and understand results when

they are unexpected.

20

▪ Partial updates using diff commands create complex merge and patch operations

[11].

2.3 Implementation process of role-based access control

The recommended approach is to use the kubectl auth reconcile -f FILENAME object

configuration command for managing the RBAC objects [9]. This method is preferred to

the kubectl apply -f FILENAME command for RBAC resources, as it performs

semantically-aware merging of rules and subjects. Moreover, it only reconciles rules for

the Role, ClusterRole, RoleBinding, and ClusterRoleBinding objects, preventing

unintended changes to other objects [12].

kubectl auth reconcile -f multiplerbacobjects.yaml

Figure 9. Kubectl auth reconcile command.

If required, the command creates missing objects and containing namespaces for

namespaced objects. It updates existing roles to include permissions in input objects and

removes extra permissions if the --remove-extra-permissions flag is specified.

Furthermore, it updates existing bindings to include subjects in input objects and removes

extra subjects if the --remove-extra-subjects flag is specified [12].

Alternatively, RBAC objects can be applied to a cluster through API calls using

Kubernetes client libraries that are developed for multiple programming languages [13].

2.4 Authentication using kubeconfig files

The primary method for user authentication in Kubernetes is through kubeconfig files.

These files are used to organize information about clusters, users, namespaces, and

authentication mechanisms. The kubeconfig file ensures secure access to the Kubernetes

API and contains the following key sections:

▪ Clusters. The section defines the Kubernetes clusters that the user can access.

Each cluster entry contains a name and the cluster’s API server address.

▪ Users. The section lists the credentials of the users. Each user entry may include

a client certificate, client key, username, password, or token.

▪ Contexts. The section combines a cluster with a user and an optional namespace.

It defines how kubectl or other management tools communicate with clusters.

21

▪ Current-context. The section specifies the context that is used by default.

22

3 Methodology

The methodology used to achieve the goal involves qualitative research. It begins with

the selection and comparative study of existing tools and concludes with prototype

development and its assessment.

3.1 Open-source tools selection

The open-source software is selected based on relevance, which includes timely updates,

functionality relevant to the implementation and management of Kubernetes RBAC, and

a certain level of popularity. Since all the evaluated open-source software is distributed

through GitHub, a solution is chosen if it has had a release within the past 12 months,

contained documentation in the README.md file demonstrating relevance to the

research topic, and has received 50 stars or more. After evaluating several tools, RBAC

Tool and Permission Manager were identified as the tools that meet these criteria [14]

[15].

3.2 Comparative study

Having outlined the selection process for the open-source tools, the next step involves a

detailed comparative study to compare and analyze the tools. This analysis is important

for understanding the practical application and limitations of the selected tools in a real-

world scenario. It provides the basis for the subsequent development of the prototype.

3.2.1 Lab environment setup

The analysis is conducted in a lab environment, which consists of:

▪ an Ubuntu Server 22.04.3 LTS virtual machine hosting a Kubernetes cluster on

MicroK8s 1.28/stable;

▪ two Ubuntu Desktop 22.04.3 LTS virtual machines: one serving as a cluster

administrator and the other as a normal cluster user.

23

MicroK8s is an open-source system for automating deployment, scaling, and

management of containerised applications. It provides the functionality of core

Kubernetes components, in a small footprint, scalable from a single node to a high-

availability production cluster [16].

The virtual machines are hosted on VirtualBox 7.0.10. The Ubuntu distribution of Linux

is chosen because it has wide community support and seamlessly integrates with

MicroK8s, both of which are developed by Canonical [17].

The environment is configured to resemble real scenarios where a user requires access to

specific resources within a cluster. All cluster permissions are managed by the cluster

administrator. Both subjects run kubectl commands against the cluster instead of

accessing the host machine directly.

3.2.2 Assessment criteria

Each tool is evaluated against the following criteria, which are selected to identify the

tools’ capabilities and limitations:

▪ RBAC management capabilities. The criterion is set to examine functionalities

such as creating, modifying, and deleting RBAC objects. It directly relates to the

functional aspect of the tools and their ability to manage access within a

Kubernetes cluster.

▪ Adherence to the principle of least privilege. The criterion determines how well

the tool implements granular access controls to ensure a user has no more

privileges than necessary to perform their tasks. It reflects the tools’ capability to

contribute to a secure Kubernetes environment, which is the reason why RBAC

was invented in the first place.

▪ Ease of use for users with limited Kubernetes expertise. The criterion assesses

how beginner-friendly the tool is for individuals with limited or no prior

knowledge of Kubernetes RBAC by determining the level of detailed knowledge

required to perform basic tasks. It is critical for the adoption of the tools by a

broader audience and affects how effectively users can leverage the tool's features

without prior training. In addition, a tool with a low entry barrier may help its

users acquire the subject faster.

24

3.3 Prototype development

Moving into the prototype development phase, the approach is structured to address the

limitations identified in the previous analysis, which involves setting up specific

requirements for the prototype's capabilities based on the findings.

3.3.1 Development process

In the development of the prototype, attention is paid to selecting technologies that not

only fulfill the functional requirements but also enhance the overall development process.

TypeScript programming language is chosen for both frontend and backend development

due to its capacity to improve code maintainability. As a statically typed extension of

JavaScript, TypeScript offers robust support for writing more error-resistant code [18].

For the backend, Node.js runtime environment is selected for its efficient handling of

concurrent processes and support of the official client library for using the Kubernetes

API [13] [19]. The client library is installed by npm, the default package manager for

Node.js.

For the frontend, Vite local development server is chosen for its rapid development setup,

which noticeably accelerates build times [20]. It is complemented by React, which

provides a component-based architecture for modular and maintainable UI development.

3.3.2 Design and conceptualization

Based on the comparative study of RBAC Tool and Permission Manager, identified

limitations are to be addressed in the prototype by introducing the requirements. To

increase efficiency and effectiveness of the underlying work processes, the prototype

design focuses on enhancing usability for inexperienced users, ensuring adherence to the

principle of least privilege, and expanding RBAC management capabilities.

25

4 Comparative study of open-source tools

This section delves into the comparative study of Permission Manager and RBAC Tool

in the lab environment (see 3.2.1 Lab environment setup), analyzing their functionalities

and how they align with Kubernetes RBAC implementation and management.

4.1 Permission Manager

The tool is designed to be installed within a cluster, in a dedicated namespace called

permission-manager.

Permission Manager offers a web-based UI for managing Kubernetes RBAC and cluster

authentication. It extends existing cluster API groups with the Permissionmanageruser

CustomResourceDefinition object: the tool provides its own user management system

and the ability to generate kubeconfig files for the created users. It uses ClusterRoles,

RoleBindings, and ClusterRoleBindings, which are assigned specific names to

differentiate them from the ones created normally. The tool comes with four preset

ClusterRoles to choose from.

Figure 10. Permission-manager pod running in MicroK8s cluster.

Figure 11. Permission Manager ClusterRoles are prefixed with template-…-resources___name.

26

A test user is created to assess the capabilities of the tool. The developer ClusterRole

template is selected to be applied in the default and permission-manager namespaces. In

addition, the read-only access to cluster resources is selected.

As a result, two similarly named RoleBindings, test___template-namespaced-

resources___developer___default and test___template-namespaced-

resources___developer___permission-manager, are generated in their respective

namespaces. The test___template-cluster-resources___read-only ClusterRoleBinding is

generated. These new RBAC objects bind the ClusterRoles to the test user, granting them

namespaced permissions from the developer template and cluster-wide permissions from

the read-only template. The user is recorded as the Permissionmanageruser object.

Figure 12. Creating a new user in Permission manager.

27

4.1.1 RBAC management capabilities

Permission Manager excels in managing users and generating kubeconfig files. However,

it limits the authentication method by creating its own users, meaning it does not support

users authenticated through identity and access management solutions or certificates.

Additionally, the tool relies on manually created ClusterRoles, as it does not assist in their

creation. This reliance and a lack of support for more specific Role configurations reveal

a gap in its RBAC management capabilities.

4.1.2 Adherence to the principle of least privilege

The tool's primary usage of ClusterRoles and the broad permissions of the provided preset

ClusterRoles, even those intended to be more limited, such as the developer and read-

only ClusterRole templates, pose challenges in adhering to the least privilege principle.

For instance, the developer ClusterRole grants access to a significant number of resources

and allows any action on them because it uses wildcards.

Figure 13. Test user YAML configuration.

Figure 14. Policy rules of developer ClusterRole template.

28

While the tool allows some control through template selection, the lack of support for

finetuning ClusterRoles at a granular level may result in potential overprovisioning of

permissions. Furthermore, the implementation of numerous ClusterRoles, which are to be

namespaced by RoleBindings, pollutes the list of ClusterRoles and is considered a bad

practice.

4.1.3 Ease of use for users with limited Kubernetes expertise

The mentioned web-based UI simplifies Kubernetes RBAC management, enhancing

usability for users with limited expertise. Its intuitive design facilitates the creation and

management of users and RBAC objects. However, the tool’s absence of direct Role and

ClusterRole management limits its effectiveness for those needing granular control but

lacking deep knowledge.

4.2 RBAC Tool

The tool is designed to be installed as a binary package or kubectl plugin via Krew.

RBAC Tool offers a command-line utility with a wide range of functionalities for

Kubernetes RBAC tasks of different origin.

Figure 15. Rbac Tool installation via Krew.

Figure 16. Available commands in RBAC Tool.

29

4.2.1 Command selection for analysis

While functionalities such as rbac-tool lookup, rbac-tool viz, rbac-tool who-can, etc.,

offer value, not all are within the scope of this work (see 1.3 Scope and target audience).

The focus is primarily on the rbac-tool show, rbac-tool gen, and rbac-tool auditgen,

which help in the creation of detailed RBAC configurations.

The rbac-tool show command generates a sample ClusterRole containing all available

permissions from the target cluster. It retrieves available API groups and resource types

using the Kubernetes discovery API.

The rbac-tool gen command generates Role or ClusterRole objects, aiming to minimize

wildcard usage through a variety of flag options.

The rbac-tool auditgen command generates Role, ClusterRole, RoleBinding, and

ClusterRoleBinding objects for different users and service accounts. It does this by

analyzing a Kubernetes audit log file, which contains all the API requests made by these

entities.

Figure 17. Usage options of rbac-tool show.

Figure 18. Usage options of rbac-tool gen.

30

4.2.2 RBAC management capabilities

As mentioned above, RBAC Tool provides an extensive range of features to assist with

different aspects of Kubernetes RBAC. However, the focus is shifted towards the rbac-

tool show, rbac-tool gen, and rbac-tool auditgen.

The rbac-tool show displays all available API groups, including custom ones, associated

resource types, and their verbs within a cluster, offering flexibility through optional flags.

This ultimately saves the time needed to examine a cluster and review Kubernetes

documentation when writing Role or ClusterRole configurations. Equally, the rbac-tool

gen increases efficiency by streamlining the creation of these configurations.

Figure 19. Usage options of rbac-tool auditgen.

Figure 20. Third-party custom API groups can be discovered by rbac-tool show.

31

While the rbac-tool auditgen supports generation of all four kinds of RBAC objects, it is

limited by the information provided in the audit log file. Generally, this means that none

of the listed functions support optimized creation of RoleBinding and ClusterRoleBinding

objects from the ground up.

4.2.3 Adherence to the principle of least privilege

The rbac-tool show and rbac-tool gen complement each other, aiming to provide only the

necessary permissions and avoid wildcards in configurations. On the other hand, the rbac-

tool auditgen requires the audit log, implying that the cluster should have been operational

for a defined period, either without the principle of least privilege or with only partial

implementation of it. Additionally, if the principle of least privilege has not been applied,

this means that the command might generate Role and ClusterRole objects with excessive

permissions based on logged overprivileged actions. These would then need to be

manually tracked and reconfigured.

4.2.4 Ease of use for users with limited Kubernetes expertise

The command-line nature of RBAC Tool makes it more geared towards experienced users

rather than those with limited Kubernetes expertise. While the rbac-tool show offers a

straightforward display of possible permissions within a cluster, retrieving and utilizing

this information effectively requires a knowledge of kubectl commands, RBAC concepts,

and their syntax. Similarly, the rbac-tool gen demands the same level of knowledge to

generate and apply Role and ClusterRole configurations, adhering to the principle of least

privilege. Since the rbac-tool gen does not support flags for denying API groups and

verbs, it can require typing lengthy commands. For example, instead of simply denying

the use of the deletecollection verb, a user must specify all other verbs, such as create,

get, list, watch, etc. In addition to the mentioned knowledge, using the rbac-tool auditgen

requires an understanding of how to enable and retrieve cluster audit logs.

32

Figure 21. Example: generating Role configuration without deletecollection verb.

33

5 Prototype development

The development of the prototype is based on requirements, which are a direct response

to the limitations identified in Permission Manager and RBAC Tool. The design of the

prototype takes shape of a software with web user interface, which is operated locally,

outside of a cluster, providing an alternative to the examined tools.

5.1 Requirements

The prototype must meet the following requirements to address the limitations:

▪ Support in configuration of all four kinds of RBAC objects. An ability to apply,

delete, and retrieve YAML configurations of desired objects more easily, without

the usage of manual commands.

▪ Granular RBAC management. An ability to define Roles and ClusterRoles with

precision, avoiding the use of wildcards and adhering to the least privilege

principle.

▪ Informative user interface. An ability to operate the prototype with minimal

Kubernetes RBAC knowledge by providing all relevant information for working

with the objects and implementing UI elements that prevent misconfiguration by

the users. It reduces the need for constant documentation reference and manual

command execution within a cluster.

5.2 Components

The interface and underlying front-end code are split into two components. The

components interact with the Kubernetes API via the client library, which is called in the

backend code.

34

5.2.1 Role and ClusterRole generation

The first component of the prototype is a beginner-friendly interface that simplifies the

generation of Role and ClusterRole configurations. First, the user must choose between a

Role or a ClusterRole. Depending on this choice, the interface dynamically presents the

user with a list that includes all available namespaces, API groups, and resource types,

along with the checklists of their associated actions.

For example, selecting a Role displays all available namespaces within the cluster. Each

namespace has an option to be expanded into a list of API groups, including custom ones

provided by third-party tools via API extensions. Each group, in turn, can be expanded

into a list of associated resource types. Finally, upon selecting a resource type, a checklist

of available verbs for that resource type appears, allowing the user to specify permissions

for it.

If a ClusterRole is chosen, the process remains similar, except that namespaces are not

being displayed, because a ClusterRole is applied cluster-wide. Instead, the interface

immediately shows available API groups.

Figure 22. Developed prototype.

35

Key specifications:

▪ The interface shows only the available cluster resources. For instance, verbs, such

as create, delete, deletecollection, and patch cannot be selected for the

services/status resource type, since it only supports the verbs get, patch, and

update.

▪ The component allows users to download defined YAML configurations locally

or apply them directly in a cluster instead of writing them manually.

Key specifications when selecting a Role:

▪ If an API group contains only non-namespaced resource types that are applied

cluster-wide, it is not included in the list. The same applies to non-namespaced

resource types within API groups that also have namespaced resource types. The

interface makes it impossible to define a cluster-wide resource type for a Role.

▪ When verbs for resource types within one namespace are selected, the checkboxes

for verbs from different namespaces become grayed out, reflecting the fact that a

Role is applied only in a single namespace.

The component prevents possible misconfigurations, increases efficiency by saving time

that would otherwise be spent on documentation, manual cluster examination, and

configuration writing, and increases the effectiveness of granularity in the resulting Roles

and ClusterRoles.

36

5.2.2 RBAC object configuration

The second component of the prototype is an organizational list, which offers an overview

of all RBAC objects within the Kubernetes cluster. It provides the functionality to

download the YAML configurations of these objects, or to delete the objects directly. The

objects are logically separated based on their scope: they are either namespaced, in which

case they belong to in-built lists of their respective namespaces, or they are cluster-wide,

as in the case of ClusterRoles and ClusterRoleBindings.

Furthermore, the component includes a feature for generating RoleBinding and

ClusterRoleBinding: when a Role or ClusterRole is selected from the list, the component

gives the option to download the configuration of the corresponding RoleBinding or

ClusterRoleBinding. The downloaded configurations have placeholder fields in the

subjects section, allowing users to assign appropriate entities themselves.

Figure 23. Role and ClusterRole generation component.

37

The component enhances overall RBAC management by providing support for all kinds

of RBAC object. It increases efficiency by offering visibility into a cluster and

complementing the first component, which allows a user to create and delete objects using

correct syntax without resorting to manually writing, applying, or deleting configurations

and risking a potential misconfiguration.

5.3 Configuration

To configure and use the prototype, a service account is created in any namespace within

the cluster.

Figure 24. RBAC object configuration component. Example: cluster-wide RBAC objects.

Figure 25. Prototype ServiceAccount YAML configuration.

38

This service account is bound to a permissive ClusterRole via ClusterRoleBinding to

allow for privileged actions invoked by API calls.

Then, either a short-lived or a long-lived API token is created for the service account. As

shown in the figure below, a short-lived token is manually generated.

Finally, the cluster API server, the locally stored cluster CA certificate, and the token are

declared in the .env file located in the prototype’s project directory, and the code is

executed using npm commands.

Figure 26. Prototype ClusterRole.

Figure 27. Token generation for service account.

Figure 28. Environment variables in .env file.

39

6 Summary

This thesis successfully meets its intermediate research objectives: it examines and

outlines the functionality of the modern open-source tools dedicated to the

implementation and management of RBAC cluster objects and identifies potential areas

for improvement via comparative study in a lab environment. To achieve the primary goal

of the work, a software prototype was developed. This prototype incorporates

functionalities derived from these identified areas, achieved through the introduction of

specific requirements aimed at addressing the limitations of selected modern tools,

namely Permission Manager and RBAC Tool.

The prototype successfully fetches the required data from the Kubernetes cluster and

parses it for presentation in the UI. It offers improved functionalities and beginner-

friendly management capabilities, split into two web UI components, which work

robustly. The logic for deploying, manipulating live RBAC objects in the cluster, and

downloading their configuration, as well as providing visibility, functions as intended

without any issues.

Despite its simplicity, given its proof-of-concept status and limited timeframe for

development, the prototype shows potential for more advanced and diverse features: the

project would benefit from the inclusion of more cluster connectivity options, such as the

ability to use a kubeconfig file instead of environment variables, which would also allow

for easier support of multiple clusters simultaneously, in contrast to the current support

of only one cluster. In addition, creating a Dockerfile to containerize the application

would streamline its deployment, allowing it to run seamlessly on any local machine with

a single command, rather than separately executing multiple commands for the back-end

and front-end code. The ClusterRole created for the service account should be made less

permissive to better adhere to the principle of least privilege.

Considering the functional aspects, the Role and ClusterRole generation component could

be enhanced by adding an editable text box that synchronizes with the verb checklists.

This would display the resulting YAML configuration, highlight any errors, including

40

those related to available resources within a cluster (for example, signaling an error if a

specified namespace in a Role does not exist), and automatically update the verb

checklists to match any changes made manually in the text field, and vice versa. The

addition would cater to users who prefer writing configurations directly or combining

manual writing with UI selection, while still protecting them from misconfigurations. It

would also allow for the import of configurations through insertions into the text box.

Moreover, enabling users to see the immediate impact of their choices in the graphical

interface on the YAML configuration would help them understand the structure and

syntax of these configurations more effectively and efficiently than having to download

a configuration as an additional step. This approach not only offers a more informative

user interface but also enhances the learning opportunity.

Similarly, an editable text box that displays the YAML configurations of objects and

highlights errors could be added to the RBAC object configuration component. On top of

providing learning opportunities and catering to a diverse user base, this would enable

users to edit configurations of existing objects more efficiently than the current process,

which requires downloading configurations, editing them, and manually reapplying them

with kubectl in a cluster.

Overall, the study of RBAC design in Kubernetes, the analysis of existing open-source

solutions, and the proposed software prototype, along with its concepts and suggested

further development, contribute to the field of Kubernetes security and administration.

They can provide valuable insights for individuals already working with, or planning to

work with, Kubernetes RBAC. By being both beginner-friendly and cost-free, and by

striving to accommodate different needs, the prototype would benefit organizations of

any size and level of Kubernetes expertise that are interested in strengthening their

Kubernetes security through RBAC implementation.

41

References

[1] Cloud Native Computing Foundation, "Cloud Native Computing Foundation

Annual Survey 2021," 10 February 2022. [Online]. Available:

https://www.cncf.io/wp-content/uploads/2022/02/CNCF-AR_FINAL-edits-

15.2.21.pdf. [Accessed 8 April 2023].

[2] International Business Machines Corporation (IBM), "What is containerization?,"

[Online]. Available: https://www.ibm.com/topics/containerization. [Accessed 9

November 2023].

[3] F. Hámori, "The History of Kubernetes on a Timeline," RisingStack, 26 June 2023.

[Online]. Available: https://blog.risingstack.com/the-history-of-kubernetes/.

[Accessed 24 November 2023].

[4] N. Poulton and P. Joglekar, The Kubernetes Book: 2023 Edition, Kindle Direct

Publishing.

[5] B. Burns, "The History of Kubernetes & the Community Behind It," The Linux

Foundation, 20 July 2018. [Online]. Available:

https://kubernetes.io/blog/2018/07/20/the-history-of-kubernetes-the-community-

behind-it/. [Accessed 5 April 2023].

[6] Cloud Native Computing Foundation, "Cloud Native Computing Foundation

Annual Survey 2022," November 2022. [Online]. Available:

https://www.cncf.io/reports/cncf-annual-survey-2022/. [Accessed 4 April 2023].

[7] Red Hat, Inc., "State of Kubernetes security report 2023," 13 April 2023. [Online].

Available: https://www.redhat.com/en/resources/state-kubernetes-security-report-

2023. [Accessed 8 August 2023].

[8] The Linux Foundation, "Role Based Access Control Good Practices," 25 July 2023.

[Online]. Available: https://kubernetes.io/docs/concepts/security/rbac-good-

practices/. [Accessed 6 August 2023].

[9] The Linux Foundation, "Using RBAC Authorization," 24 August 2023. [Online].

Available: https://kubernetes.io/docs/reference/access-authn-authz/rbac/.

[Accessed 15 September 2023].

42

[10] The Linux Foundation, "Kubernetes API Concepts," 23 July 2023. [Online].

Available: https://kubernetes.io/docs/reference/using-api/api-concepts/. [Accessed

26 August 2023].

[11] The Linux Foundation, "Kubernetes Object Management," 8 January 2022.

[Online]. Available: https://kubernetes.io/docs/concepts/overview/working-with-

objects/object-management/. [Accessed 15 October 2023].

[12] The Linux Foundation, "Kubectl Commands," [Online]. Available:

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands.

[Accessed 16 October 2023].

[13] The Linux Foundation, "Client Libraries," 20 November 2023. [Online]. Available:

https://kubernetes.io/docs/reference/using-api/client-libraries/. [Accessed 24

November 2023].

[14] Rapid7, "rbac-tool," 26 September 2023. [Online]. Available:

https://github.com/alcideio/rbac-tool. [Accessed 24 November 2023].

[15] SIGHUP s.r.l., "permission-manager," 27 March 2023. [Online]. Available:

https://github.com/sighupio/permission-manager. [Accessed 24 November 2023].

[16] Canonical Ltd., "MicroK8s documentation - home," September 2023. [Online].

Available: https://microk8s.io/docs. [Accessed 1 October 2023].

[17] Canonical Ltd., "Canonical," 6 December 2023. [Online]. Available:

https://canonical.com/. [Accessed 6 December 2023].

[18] Microsoft, "The TypeScript Handbook," 18 May 2023. [Online]. Available:

https://www.typescriptlang.org/docs/handbook/intro.html. [Accessed 24

November 2023].

[19] OpenJS Foundation, "About Node.js®," 2023. [Online]. Available:

https://nodejs.org/en/about/. [Accessed 24 November 2023].

[20] E. You, "Why Vite," 16 November 2023. [Online]. Available:

https://vitejs.dev/guide/why.html. [Accessed 24 November 2023].

43

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Valentin Kirjan

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Facilitation of Kubernetes Role-Based Access Control Implementation and

Management with Open-Source Software" supervised by Aleksei Talisainen

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

04.01.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis

that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based

on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis

consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be

valid for the period.

