
TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

40/2019

Automatic Implementation-Time
Usability Evaluation for Web User

Interfaces

JEVGENI MARENKOV

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
This dissertation was accepted for the defence of the degree 11/04/2019

Supervisor: Doctor Tarmo Robal, PhD
Dept. of Computer Systems
Tallinn University of Technology
Tallinn, Estonia

Co-supervisor: Professor Ahto Kalja†, PhD
Dept. of Software Science
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Janis Grundspenkis, Dr. habil.sc.ing.
Dept. of Artificial Intelligence and Systems Engineering
Riga Technical University
Riga, Latvia

Professor Flavius Frasincar, PhD
Erasmus School of Economics
Erasmus University Rotterdam
Rotterdam, The Netherlands

Defence of the thesis: 28/06/2019, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been submitted
for doctoral or equivalent academic degree.

Jevgeni Marenkov:

Signature

Copyright: Jevgeni Marenkov, 2019
ISSN 2585-6898 (publication)
ISBN 978-9949-83-440-2 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9949-83-441-9 (PDF)

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

40/2019

Veebi kasutajaliidese kasutatavuse
automaatne hindamine realisatsioonifaasis

JEVGENI MARENKOV

5

Contents

List of Publications .. 7
Author’s Contribution to the Publications .. 8
Other Related Publications ... 9
Abbreviations .. 10
1 Introduction ... 11
1.1 Motivation ... 11
1.2 Problem Formulation .. 14
1.3 Thesis Contributions ... 16
1.4 Thesis Organization ... 17
2 Preliminaries .. 19
2.1 Usability, Accessibility and User Experience of WUIs ... 19
2.2 Web Usability Guidelines .. 21
2.3 Usability Evaluation Methods ... 23
2.4 Automated Usability Evaluation.. 26
2.5 Related Works ... 29
2.5.1 Research in the Field of Usability Guidelines ... 29
2.5.2 Research on Automated Usability Evaluation .. 31
2.6 Chapter Summary ... 38
3 Usability Guidelines for Automated UI Evaluation ... 39
3.1 Introduction .. 39
3.2 Sources of Usability Guidelines ... 41
3.2.1 Accessibility Standards ... 41
3.2.2 HCI Research .. 43
3.2.3 Company Specific Usability Guidelines .. 44
3.3 Defining Usability Guidelines Programmatically ... 45
3.3.1 Embedded Usability Guidelines ... 46
3.3.2 Separated Usability Guideline Definition ... 46
3.3.3 Limitations of Existing Approaches .. 49
3.4 Ontology for Defining Usability Guideline .. 50
3.4.1 Usability Ontology .. 51
3.4.2 Using Usability Domain Knowledge to Define Usability Guidelines 55
3.5 Chapter Summary ... 58
4 Automated Evaluation of Usability .. 61
4.1 Introduction .. 61
4.2 Guideliner – a Tool for Automated Web Usability Evaluation 63
4.3 Ontology Repository and Ontology Processing Engine ... 64
4.4 WUI Evaluation Component .. 65
4.4.1 Usability Evaluation Report .. 70
4.5 Interfacing with the Guideliner ... 72
4.6 Performance Testing and Optimization of the Guideliner Tool 76
4.7 Guideliner and Other Similar Tools ... 80
4.8 Limitations of the Guideliner .. 89
4.9 Chapter Summary ... 90

6

5 Usability Evaluation within WUI Development .. 91
5.1 Introduction .. 91
5.2 Usability Evaluation during WUI Development Process ... 93
5.3 Guideliner Integration into WUI Implementation Phase .. 95
5.4 Guideliner in Continuous Software Integration Process ... 99
5.5 Integration Use Cases .. 101
5.5.1 Integration into RIA WUI Development Process .. 101
5.5.2 Integration into Kühne + Nagel WUI Development Process 106
5.6 Chapter Summary ... 110
6 Conclusions and Future Work .. 113
6.1 Conclusions ... 113
6.2 Future Work .. 115
References .. 116
Acknowledgements ... 125
Abstract ... 126
Lühikokkuvõte ... 127
Appendixes .. 129
Appendix 1 Example of Usability Guideline Structure .. 131
Appendix 2 Main Concepts of the Usability Ontology .. 133
Appendix 3 Usability Guidelines Used for the Research ... 134
Appendix 4 Guideliner Software Architecture .. 138
Appendix 5 Usability Evaluation Report Based on EARL ... 139
Appendix 6 WUIs Used for Guideliner Verification ... 140
Appendix 7 Comparison of the Benchmark Tools used for the Guideliner Verification .. 143
Appendix 8 Comparison of Features of Automated Usability Evaluation Tools 144
Appendix 9 Results of Usability Evaluation ... 145
Curriculum vitae .. 149
Elulookirjeldus ... 150

7

List of Publications
The list of author’s publications, on the basis of which the thesis has been prepared:

I Marenkov, J., Robal, T., & Kalja, A.: Design-Time Web Usability Evaluation with
Guideliner. Complex Systems Informatics and Modeling Quarterly, (15), 90–109.
(2018)

II Marenkov, J., Robal, T., & Kalja, A.: Guideliner: a tool to improve Web UI
development for better usability. WIMS ‘18: 8th International Conference on Web
Intelligence, Mining and Semantics: June 25 - 27, 2018, Novi Sad, Serbia. Editors:
Akerkar, R.; Ivanovic, M.; Kim, S.-W.; et al. Article No 17, 1–9. ACM, New York (2018)

III Marenkov, J., Robal, T., & Kalja, A.: A tool for design-time usability evaluation of web
user interfaces. Advances in Databases and Information Systems: 21st European
Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceedings.
Editors: Kirikova, M.; Nørvåg, K.; Papadopoulos, 394–407. Springer, Cham (2017)

IV Robal, T., Marenkov, J. & Kalja, A.: Ontology design for automatic evaluation of web
user interface usability. PICMET ‘17: Proceedings, Technology Management for
Interconnected World: July 9 - 13, 2017, Portland, Oregon, USA. Editors: Kocaoglu,
PICMET, USA (2017)

V Marenkov, J., Robal, T., & Kalja, A.: A framework for improving web application user
interfaces through immediate evaluation. Databases and Information Systems IX:
Selected Papers from the Twelfth International Baltic Conference, DB&IS 2016: Riga,
Latvia; 4-6 July 2016. Editors: Arnicans, Guntis; Arnicane, Vineta; Borzovs, Juris;
Niedrite, Laila. IOS Press, Amsterdam (2016)

8

Author’s Contribution to the Publications
Contributions to the papers in this thesis are:

I The author presented a tool called Guideliner that automates usability evaluation in
implementation phase of web UI development. The author developed the Guideliner
tool based on the designed concepts. The author prepared and conducted an
experiment to prove the feasibility of the Guideliner. The author prepared the paper
for publication in cooperation with supervisors.

II The author presented the Guideliner – a tool that evaluates the conformance of web
UI to the set usability guidelines and provides feedback to the developer
immediately after the UI has been modified. The author developed the tool based
on the conceptual foundation presented in previous papers. The author wrote the
paper in cooperation with supervisors and presented it at the conference.

III The author presented a new approach to the usability evaluation contributing to the
design time usability evaluation enabling immediate cost-efficient automatic web UI
evaluation. The author developed the concept, implemented all software
components and conducted experiments. The author wrote the paper in
cooperation with supervisors and presented it at the conference.

IV The author participated in ontology design and development through numerous
discussions with the supervisors. The author was responsible for implementing
numerous usability guidelines in the ontology and developing a software adapter for
transforming ontology-based usability guidelines to the Java-specific format for the
Guideliner tool.

V The author established a framework enabling automated evaluation of various
usability guidelines. The author developed the software component for automated
evaluation of visual characteristics of web UI. The author prepared the paper for
publication in cooperation with supervisors and presented it at the conference.

9

Other Related Publications
I Marenkov, Jevgeni; Robal, Tarmo; Kalja, Ahto (2016). A study on immediate

automatic usability evaluation of web application user interfaces. Databases and
Information Systems: 12th International Baltic Conference, DB&IS 2016, Riga, Latvia,
July 4-6, 2016, Proceedings. Editors: Arnicans, G., et al. Springer, Berlin (2016)

II Marenkov, Jevgeni; Robal, Tarmo; Kalja, Ahto (2015). A study on effective knowledge
reuse in multi-platform Web applications user interfaces. PICMET ‘15: Proceedings,
Management of the Technology Age [August 2-6, 2015, Portland, Oregon, USA].
Editors: Kocaoglu, Dundar F., et al. PICMET, USA (2015)

III Marenkov, Jevgeni; Robal, Tarmo; Kalja, Ahto (2014). A study on user click behaviour
for WIS user interface improvements. Databases and Information Systems VIII:
Selected Papers from the Eleventh International Baltic Conference, Baltic DB&IS
2014. Editors: Haav, Hele-Mai; Kalja, Ahto; Robal, Tarmo. Amsterdam: IOS Press,

IOS Press, Amsterdam (2014)
IV Marenkov, Jevgeni; Robal, Tarmo; Kalja, Ahto (2014). Improving sophisticated self-

service portal user interfaces: a study on user click behaviour. Databases and
Information Systems: Proceedings of the 11th International Baltic Conference, Baltic
DB&IS 2014, Tallinn, Estonia, 8-11 June 2014. Editors: Haav, Hele-Mai; Kalja, Ahto;
Robal, Tarmo. Tallinn: Tallinn University of Technology Pres Tallinn
University of Technology Press, Tallinn (2014)

V Marenkov, Jevgeni; Robal, Tarmo; Kalja, Ahto (2014). Studying the incorrect user
behaviour in sophisticated self-service portal user interfaces. Proceedings of the 8th
Annual Conference of the Estonian National Doctoral School in Information and
Communication Technologies: December 5-6, 2014, Rakvere Tallinn
University of Technology Press, Tallinn (2014)

10

Abbreviations
AI Artificial Intelligence
API Application Programming Interface
CI Continuous Integration
CSS Cascading Style Sheets
DAML DARPA Agent Mark-up Language
DOM Document Object Model
EARL Evaluation and Report Language
ESP Estonian State Portal
EU European Union
GDL Guideline Definition Language
GRF Guideliner Report Format
HCI Human-Computer Interaction
HE Heuristic Evaluation
IDE Integrated Development Environment
IT Information Technology
JAR Java Achieve
JRE Java Runtime Environment
HTML Hypertext Mark-up Language
JSON JavaScript Object Notation
MB Megabyte
OIL Ontology Inference Layer
OWL The W3C Web Ontology Language
PC Personal Computer
RIA Republic of Estonia Information System Authority
QA Quality Assurance
RDF Resource Description Framework
REST Representational State Transfer
RT Research Topic
SEO Search Engine Optimization
TUT Tallinn University of Technology
TV Televis`ion
UGL Unified Guidelines Language
UI Use Interface
UK United Kingdom
URL A Uniform Resource Locator
US United States
UX User Experience
W3C World Wide Web Consortium
WCAG Web Content Accessibility Guidelines
WUI Web User Interface
XML Extensible Mark-up Language

11

1 Introduction
Nowadays, the amount of time people spend on the Internet is constantly increasing.
People are spending approximately twice as much time online compared to 10 years ago
[1]. We are using the Web for searching for information, checking e-mails,
communicating with people, transferring money, listening to music, watching films,
reading books, and so forth. Moreover, online e-commerce stores allow us to purchase
products and services online. We are moving towards a seamless society of
interconnected e-services where e-services and the technologies behind Internet of
Things advance; services for everyday life, including government services are available
online – including the e-health for medical data, e-voting for elections, e-school for
educational services and many others. Overall, most services can be accessed online,
so people can communicate to each other, use private, public and commerce services
without leaving their home.

1.1 Motivation
In the modern world, technology advances extremely rapidly. For instance, in addition to
desktop computers laptops have become increasingly popular starting from 2000s.
The year 2008 was the watershed year for laptops when worldwide laptop shipment
exceeded desktop computer shipment [2]. In 2007, the first mobile devices with
touchscreen were introduced starting a new era of touchscreen smartphones replacing
typical keypads. Mobile phones and tablets are on great demand amongst the users as
people cannot imagine the world without social networks, online e-commerce services,
entertainment portals (e.g. Spotify1) that are all widely used on personal computers and
mobile devices. Devices use different operating systems (Android, iOS, Windows, Linux
etc.) that manage computer hardware and software. Today, inevitable software of every
commercial-grade computing device for general usage is web browser (a software
application used to locate and display web pages [3]). The most widely used browsers
according to the statistics2 are Chrome, Firefox, Internet Explorer and Safari (presented
in the order of popularity). Overall, there are about 113 different web browsers3.
Web pages that are accessible from browsers are based on three primary technologies:
HTML, CSS and JavaScript. HTML is the language that provides the structure of web
pages; CSS is the language that describes the layout and representation of web pages;
JavaScript is interpreted language for developing web pages. In fact, different browsers
interpret standards HTML, CSS and JavaScript differently, and thereby, for example,
a good-looking and fast web application in Chrome can be very slow and unusable in
Internet Explorer or vice versa. Despite the standards for web content delivery, such as
HTML, CSS and JavaScript, browsers render web pages differently as they use their own
rendering engines (e.g. Blink engine is used in Chrome, Gecko engine is used in Firefox)
to display requested content on screen. Finally, rendered visual result of web page is
presented to users as user interface.

A user interface (UI) is the “face” of any application as users communicate with the
system back end by the means of UI. UI is used in a very broad sense combining two main
concepts: UI of native applications and UI of web applications. Native applications are

1 https://www.spotify.com/
2 http://gs.statcounter.com/#desktop-browser-ww-monthly-200807-201712
3 https://www.webdevelopersnotes.com/browsers-list

12

software programs that are developed for a particular platform (e.g. Android specific
native applications will not run on iOS platform). Current thesis concentrates on UI of
web applications – a program that runs in whole or in part on one or more web servers
and that can be run by users through a web site [4]; web application run in web browsers
and can be accessed from any device that has a web browser installed on for accessing
the Web (web applications). In the context of this thesis, Web application is a client-server
system with which users interact over the network using Web browsers [5]. A client side
(also called the front-end) component of Web application is named Web User Interface
(WUI) that is formalised as a Web page which is accessible over the network and viewed
using the Web browser [6].

WUI of web applications should be designed to support various devices with different
screen sizes, resolutions, and operating systems. Moreover, WUI should be equally
compatible with different browsers and their version. This is an important requirement
as users can access WUI from different browsers and devices and if WUI is not
understandable or it does not respond quickly to user actions then users can leave it in
favour of other application. Although current thesis mainly concentrates on the most
popular device types – desktop and mobile devices1 – the methods introduced in the
thesis can also be applied to the tablet devices.

In fact, WUI should be understandable, user-friendly, navigable, smooth and easy to
use and to learn, having clear structure of information and navigation. All these
requirements and characteristics are part of ISO 9241-11 usability definition –
“the extent to which a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use” [7]. Usability
covers comfort and acceptability of WUI to its target users (users that use or intend to
use WUI). In order to design WUI that satisfies all aforementioned requirements,
it should follow various usability guidelines that guide designers to establish solutions
understandable for the majority of users. Usability guideline is considered in the
dissertation as an evaluable concrete rule, criterion or principle pertaining to the
evaluation of usability [8]. Usability guidelines are developed with the purpose to help
WUI developers and designers to develop highly usable WUI. Usability guidelines are not
part of usability definition but rather a separate area concentrating on usability research
with the purpose to come up with concrete guidelines that user-friendly, understandable
and navigable WUIs should satisfy. In order to verify that WUI is compatible with usability
guidelines, WUI usability evaluation should be performed.

Usability evaluation is a method for identifying specific problems with usability of
products [9]. There are two major groups of methods used for usability evaluation:
inspection and empirical methods. Usability inspection methods include formal usability
inspections, heuristic evaluation, pluralistic and cognitive usability walkthrough.
Empirical evaluation methods contain interviews, questionnaires with user-test
participants and card sorting. The main difference between inspection and empirical
evaluation methods is that the latter involves real users into the evaluation, whereas
inspection methods require usability inspection to be held by usability experts. Another
difference between the methods is that empirical evaluation methods are concentrating
on finding a wider range of problems whereas inspection usability evaluation is limited

1 http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-
201701-201712

13

by finding the problems defined in specification. Overall, both inspection and empirical
evaluation methods can be automated.

Automated usability evaluation has multiple advantages over manual methods such
as it does not require the involvement of potential users in usability evaluation.
The benefits of automated evaluation are the increase of the coverage of evaluated WUI
elements, the results of evaluation are processed by computer and the evaluation report
is provided automatically. Overall, automated usability evaluation reduces the costs and
time spent on usability evaluation.

From the perspective of automated usability evaluation, it is possible to automate
certain aspects of empirical and inspection evaluation methods, e.g. automated
evaluation of WUI conformance to usability guidelines, automated evaluation of usability
based on collected user interaction data. Yet, none of existing tools or solutions for
automated usability evaluation can entirely substitute empirical and inspection
evaluation methods as tools cannot emulate human behaviour and evaluate usability
based on human common sense. For the most part, automated evaluation on empirical
evaluation methods is based on capturing user interaction data (clicks, mouse motion,
navigation patterns) with the following data processing to identify possible
interaction-based usability problems.

Automated usability evaluation on inspection methods scans WUI and checks its
conformance to usability guidelines. The method of automated checking of the
conformance of WUI to usability guidelines has been proved as the most effective
method used for automated usability evaluation [16]. There are many existing tools that
check WUI conformance to usability guidelines [10] [11] [16]. Nevertheless, there are
unresolved problems in usability evaluation such as the inability to evaluate visual
characteristic of WUI [12] and insufficient support for implementation-time usability
evaluation [13]. Aforementioned shortcomings are the motivation for current research.

Current thesis concentrates only on automated usability evaluation on inspection
methods as usability inspection methods are more flexible to automation and there are
multiple methods how inspection methods are automated. In fact, tools on automating
inspection evaluation are applicable to the most WUI without extra configurations,
whereas tools for empirical evaluation require additional application specific
configurations as they evaluate interaction-based problems that are in most cases
application specific rather than general. Existing solutions for automated usability
evaluation on inspection methods are mostly concentrating on the evaluation of WUI
conformance to HTML code specific usability guidelines [10] [11]. Nevertheless, existing
solutions of automated inspection evaluation cannot evaluate visual aspects of a WUI
including measuring the presence of scrolling, the layout of elements on the web page
and the positions of elements on the screen. Automated evaluation of visual
characteristics of WUI increases the number of usability defects that can be evaluated
automatically. Automatic evaluation of visual characteristics of WUI is one of the
motivations for current dissertation.

Another common drawback of existing solutions for automated evaluation on
inspection methods is that they are not used for checking each minor change of WUI
separately but rather used to check when all functionality for release is finalised.
It introduces the gap between the moment usability defect has been detected and the
moment when it has been introduced by developer. This is the gap the research
presented in this dissertation addresses.

14

As stated there are still unresolved questions like automated evaluation of visual
characteristics of WUI and evaluation of WUI conformance to usability guidelines
immediately after the code has been modified by developer [14]. The most existing
solution presented for automated usability evaluation are concentrating on the
evaluation of final product rather than on immediate evaluation of introduced changes
[10] [15] [16] – implementation-time automated usability evaluation is the problem that
is challenged in this thesis.

To sum it up, WUI usability evaluation as a research area is developing fast: new
usability guidelines for checking the conformance to the latest technologies (e.g. HTML5)
and devices (usability guidelines for smartphones are not entirely applicable to tablet
devices) appear, new tools for automated usability evaluation on inspection and
empirical methods are introduced in order to automate usability evaluation as much as
possible making the process of usability evaluation less expensive and faster. Common
characteristics of all existing tools for automated usability evaluation is that they are used
during the testing phase of WUI and are concentrating on evaluating only HTML-specific
usability guidelines without possibility to evaluate usability guidelines covering visual
characteristics (e.g. scrolling, contrast rate, visual position, order of elements, the
distance between elements) of finally rendered WUI.

The motivation of the thesis is to address the aforementioned problems of
implementation-phase usability evaluation and automated evaluation of visual usability
guidelines. The thesis introduces a novel method for WUI automated evaluation on
inspection methods of usability evaluation that can be applied already during
implementation phase of WUI development. The method would deliver valuable
feedback to WUI developers, who are not necessarily usability experts, on usability
defects immediately after WUI has been modified. The method also introduces
automatic evaluation of visual characteristics of WUI – an aspect still uncovered by
methods and tools commonly applied during WUI testing.

1.2 Problem Formulation
The evaluation of newly established or revamped web user interfaces and assurance that
they conform to usability guidelines should not be resource-consuming and laborious
task that many companies are attracted to skip. Instead, it should be a cost- and
time-efficient step of development applied as a custom practice, especially when
software gets developed according to agile methods consisting of short and flexible
iterations with frequent releases to production. Yet, usability evaluation is still not
optimized in a way that it can be automated excluding the involvement of usability
experts into the evaluation; of course, it is impossible to entirely exclude usability experts
from the WUI development process as they produce custom usability guidelines and
check their viability. Requiring usability experts for reviewing the evaluation results or
making usability inspections and involving potential users to participate in usability
evaluation are the reasons for skipping usability evaluation. Automated cost- and
time-efficient usability evaluation is one of the driving forces of current thesis.

A typical WUI development process consists iteratively of the next six phases:
planning, analysis, design, implementation, testing and maintenance [17]. Certain
inspection evaluation methods such as heuristic evaluation and cognitive walkthrough
can be applied already during the design phase when the initial prototypes and
mock-ups are evaluated by usability experts. UI code writing occurs during the
implementation phase when a developer establishes or modifies WUI source code

15

according to the requirements set in planning phase. Afterwards, during the testing
phase, it is ensured that the result of the development is exactly the same as it was
planned and that the UI after modifications is usable and user-friendly. In common,
inspection and empirical usability evaluation occur during the testing phase when WUI is
finalized for the release.

In general, during WUI development usability is not tested with each minor change
separately but rather checked when all functionality for release is finalized. It introduces
a gap between the moment a usability defect is found and the moment when it was
introduced by developer. In general, WUI developers do not have enough expertise and
competency to evaluate usability of WUI as their main responsibility is functional
development of WUI, e.g. dividing design into components, writing front-end code and
covering this code with tests. The lack of competence in usability is the reason why
evaluation results should be presented to developers in a way that even developers
without a good usability evaluation experience can understand the cause and fix the
problem easily.

As was stated earlier, there is a gap between the moment usability defect is detected
and the moment it was introduced by developer. The main reason, why automatic
usability evaluation, in general, is not part of implementation phase of WUI
developments is the lack of tools for automated usability evaluation suitable for WUI
implementation phase. There are existing solutions that can be used during the testing
phase of WUI development but there are obstacles (e.g. these tools require special
environment to run and they cannot be executed together with unit or functional tests)
preventing them to be used during implementation phase of WUI development.
Implementation phase of WUI development is code-centric and it incorporates activities
directly connected to WUI development like writing UI code and covering code with unit
tests. In its turn, testing phase of UI is concentrating on UI testing using various methods
and tools that increase the efficiency and accuracy of evaluation such as user tests and
tools for automatic usability evaluation. Existing tools for automated usability evaluation
fall into the category of tools suitable for testing phase being development process-
centric rather than code-centric.

Another shortcoming of existing solutions for automated usability evaluation is that
they are limited in finding deviations in the HTML code processing source code of WUI
as a text and finding problems in HTML syntax and in HTML-specific guidelines; evaluating
visual aspects of a web application like the presence of scrolling, consistency of layout
between WUI elements and the positions of elements on the screen is not technically
possible with that method. It is important to understand that visual aspects of WUI
should be evaluated on the final rendered result shown to user, i.e. when all scripts have
finished their loading. This calls for adopting an alternative method compared to HTML
parsing approach used by most existing tools to evaluate WUI conformance to usability
guidelines — tools that are capable of evaluating both visual aspects of WUI as well as
perform HTML-based evaluations. There are certain existing solutions that can evaluate
a single aspect of finally rendered WUI. For example, WAVE1 evaluates contrast of
elements on the screen; Google Mobile-Friendly Test2 evaluates the size of links and
buttons on mobile screens. Nevertheless, there is no solution for automated usability

1 http://wave.webaim.org/
2 https://search.google.com/test/mobile-friendly

16

evaluation of finally rendered WUI that enables evaluating multiple visual aspects of
WUI, and also that allows defining custom usability guidelines.

The purpose of current thesis is to address the latter gaps of implementation-time
usability evaluation and automated usability evaluation of visual characteristics of WUI.
In particular, these gaps will be addressed through the following research themes (RT):

RT1 – To what extent can WUI usability be evaluated automatically? What inspection
and empirical evaluation methods can be automated?

RT2 – Is it practical and to what extent is it possible to bring forward WUI usability
evaluation in web application development process? Would earlier evaluation deliver
value and what modifications in general a development process requires?

RT3 – To what extent ontology as a method suits for storing knowledge about usability
domain and how ontology can be used for formalising usability guidelines? Would
ontology provide more structured and easy to understand the way of formalising
usability domain knowledge than XML Schema?

RT4 – Would it be possible to automate evaluation of usability guidelines covering
visual aspects of WUI? Is it technically feasible to design and implement a code-centric
integrated solution for automated WUI usability evaluation covering both HTML-specific
usability guidelines and guidelines for visual characteristics as a tool suitable for
automated cost-efficient usability evaluation during WUI development phase, and on
final released product?

Overall, current dissertation is focusing on the problem of automated usability
evaluation during the implementation phase of WUI development, including visual
characteristics of WUIs – a feature missing in tools available today.

1.3 Thesis Contributions
In order to tackle the problems of implementation-time usability evaluation and
automated evaluation of visual usability guidelines, this thesis delivers a system (called
Guideliner) that addresses these problems and enables automated evaluation of
conformance to usability guidelines (HTML-centric as well as visual usability guidelines)
already during implementation phase of WUI development. Also, the Guideliner provides
possibility to perform usability pre-release testing verifying that all developed features
are compliant with usability guidelines. In general, the proposed system increases the
overall quality of WUI as it performs the evaluation of HTML-specific usability guidelines
as well as guidelines checking the visual characteristics of WUI. Applicability of the
Guideliner does not stick to any particular WUI development process (e.g., agile or
waterfall) but rather it is a universal tool challenging a problem of immediate usability
evaluation, especially during WUI development and implementation phases. Overall,
dissertation contributions could be listed as follows:
1. Firstly, establishment of a framework to improve WUI development process

introducing the automated usability evaluation already during the implementation
phase of WUI development process. That enables immediate validation of
introduced changes to WUI and their conformance to usability guidelines. Such
enhancement allows fixing usability defects early in the implementation phase
making the fix less time-consuming than found later. This contribution reflects the
research themes RT1 and RT2.

2. Secondly, a structure of usability ontology for capturing domain knowledge and a
way of declaration usability guidelines in machine-processable and human-readable
format has been created and applied for defining usability guidelines. Usability

17

ontology contains predefined set of usability guidelines and also allows defining
additional custom usability guidelines based on the established usability domain
knowledge. The research covers research theme RT3.

3. Thirdly, a method for evaluating visual characteristics of WUI based on usability
guidelines is introduced. The novelty of the method is that it evaluates WUI
conformance to usability guidelines on the final layout a user sees through WUI, i.e.
when all scripts have finished their loading. Proposed method allows evaluating
HTML-specific usability guidelines as well as guidelines evaluating visual
characteristics of WUI. This contribution reflects RT4.

4. Fourthly, establishment of a tool for automatic WUI usability evaluation that
evaluates finally rendered WUI evaluating HTML-based usability guidelines and
guidelines covering visual characteristics of WUI, and is applicable both at the final
established WUI evaluation phase (traditional approach), and for evaluating WUI
conformance to set usability criteria during WUI implementation phase (novel
method introduced in the thesis). The tool called Guideliner incorporates the
questions addressed in RT 1,2,3,4 into the practical output presented as a tool for
automated usability evaluation. The uniqueness of the Guideliner consists of
implementation-time automated usability evaluation and in automated evaluation
of multiple visual characteristics of WUI.

1.4 Thesis Organization
This thesis consists of six chapters.

Chapter 2 describes state-of-the-art of the topics of formalization of usability
guidelines, usability evaluation methods, automated usability evaluation including issues
of usability evaluation, usability guidelines, empirical and inspection evaluation methods,
essentials of automated usability evaluation, and finally, research works related to
current research are presented.

Chapter 3 focuses on usability guidelines for automated usability evaluation.
The chapter begins with presenting the definition and categorization of usability
guidelines, followed by discussion on automated usability, sources of usability guidelines
and approaches for defining these guidelines. The section delivers usability ontology for
storing usability domain knowledge.

Chapter 4 concentrates on automated usability evaluation. The Chapter presents
existing solutions for automated usability evaluation discussing their advantages and
disadvantages. Afterwards, the Guideliner is presented – a tool for automated evaluation
of WUI conformance to usability guidelines. It gives an overview of the main components
of the tool including ontology processing engine, usability evaluation component and
ontology repository. Finally, an approach for automated evaluation of visual
characteristics of WUI is outlined.

Chapter 5 contributes to the usability evaluation during the implementation phase of
WUI development enabling immediate cost-efficient automatic WUI evaluation and
feedback to developers to ensure the WUI under development conforms to set
guidelines. Hence, this approach will assist developers and WUI testers in finding out
usability problems automatically in early stage of WUI development which
implementation stage of UI development.

Chapter 6 finalises the dissertation with conclusions and presents ideas for future
research work.

There are nine appendix sections (Appendix 1-9) included at the end of the thesis.

19

2 Preliminaries
Web usability evaluation identifies problems with usability of WUI. Usability evaluation
includes two main method groups: empirical and inspection evaluation methods. Overall,
multiple disciplines are related to the usability evaluation such as usability, accessibility,
usability guidelines and automated usability evaluation. This chapter provides overview
of the state-of-the-art research covering main disciplines related to the current study.

Current dissertation is focusing on automated evaluation of WUI conformance to
usability guidelines, and automated usability evaluation on inspection methods. Related
aspects of usability, user experience, accessibility, sources of usability guidelines
including standards, recommendations and best practices are discussed together with an
overview of existing tools for automated usability evaluation.

2.1 Usability, Accessibility and User Experience of WUIs
The diversity of computers, laptops, smartphones, and tablets has become an intrinsic
part of modern life and culture. People use aforementioned devices to access various
private and public services like news, e-commerce and entertainment portals. All these
resources are accessed from web that is why WUI compatibility with these devices is an
essential requirement for each web application. Furthermore, WUI should also be
compatible with various browsers including their different versions; in fact, the same
browser can have different behaviour on different platforms. The diversity of devices,
platforms and browsers have introduced a problem of compatibility – how to guarantee
high level of usability for WUI users between all these platforms and ensure equal
satisfaction. It is important to consider that some usability guidelines are applicable only
to certain platforms and cannot be reused on another one. For example, guideline
requiring radio buttons to be aligned vertically on mobile devices because of the limited
screen size of mobile devices does not apply to desktop devices where the horizontally
aligned radio buttons do not decrease usability of WUI. Notwithstanding, compatibility
with different devices and platforms is only one attribute of usability. WUI should be
consistent between pages (the styles and design patterns used on one page should be
followed within all other pages), clear, understandable, user-friendly, easy to use and
navigate. Usability, as first defined by Nielsen [18] is “a quality attribute that assesses
how easy user interfaces are to use”. Usability applies to all aspects of a system with
which a human might interact. Usability is traditionally related to the following five
quality attributes [19]:

 learnability as the easiness to get something done rapidly,
 efficiency as the ability to productively use the system
 memorability as the capability for a user to return to system usage after a

long pause without having to re-learn it,
 low error rate for user-performed actions,
 satisfaction addressing the pleasant use of the system.

ISO 9241-11 Guidance on Usability [7] provides a more general definition of usability
as – “the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use”.
Both definitions are quite similar covering the same usability characteristics.
Current dissertation concentrates only on usability of Web User Interfaces (WUI) –
a client-side (also called a front end) component of Web application formalised as a Web
page which is accessible over the network and viewed using the Web browser [6].

20

Therefore, interfaces of native applications (software programs that have been
developed for a particular platform) and other systems are out of scope of this thesis.
The European Commission defines web usability in the EU Internet Handbook1 as follows:
„Web usability is an approach to make websites easy to use for an end-user, without
requiring her (or him) to undergo any specialized training. The user should be able to
intuitively relate the actions he needs to perform on the web page with other interactions
he sees in the general domain of life, e.g. press of a button leads to some action “.
The latter definition coincides with the objectives of the thesis the best. The goal of web
usability is to present the information to the user on WUI in a clear and understandable
way and provide the correct choices to them in a very obvious and unambiguous way.

Usability is considered to be a “critical condition for survival”, its absence causes
frustration and web application is likely to be rapidly abandoned [8]. It is found that the
quality of navigation and how easy a web application can be used has an impact on how
much information users read on the web page [20]. In fact, highly usable web
applications influence positively on consumer satisfaction and increase their loyalty
towards the company [21] encouraging visitors to visit the web application again [22].
In fact, the visitors’ return rate for web applications with high usability rate is higher than
for less usable applications. Web application usability is not a luxury but rather a basic
determinant of productivity and of users’ acceptance of web applications [19].
Moreover, usability is called the key to successfully conducting commercial Web site
design [23]. In fact, usability is an essential attribute of every web application including
web application of public sector organizations, banks, e-commerce applications and
social network web applications as purpose of each web application is to provide
information to users in a clear and understandable way. Of course, the purpose of public
sector and e-commerce web applications are different; the latter is focusing on
increasing the purchase rate that cannot be the case for public sector portals.

In addition to aforementioned characteristics (learnability, efficiency, memorability,
low error rate and satisfaction) of usability, it is common to use usability in combination
with accessibility. "Web accessibility is an attribute through which people with disabilities
can perceive, understand, navigate, and interact with the web, and they can contribute
to the web" (as defined by the World Wide Web Consortium2). In fact, usability
considerably overlaps with accessibility when target users include people with a defined
range of disabilities and context of use suggests accessibility observation such as assistive
technologies [24]. Nevertheless, the requirements for people with disabilities are
frequently not sufficiently considered in usability research and practice [24]. Accessibility
contains both: general usability guidelines and guidelines that are more specific to
people with disabilities. This thesis examines both usability and accessibility, as far as
accessibility is often named as a subset of usability [25] than in thesis for incorporating
various subsets of usability the generic term usability is used (usability guidelines also
include accessibility guidelines in the context of dissertation).

In order to design WUI that is understandable, navigable, smooth, and easy to use and
learn, it should follow various usability guidelines that guide designers to establish
solutions understandable for the majority of users. Usability guideline is considered in
the dissertation as an evaluable concrete rule, criterion or principle pertaining to the

1 http://ec.europa.eu/ipg/design/usability/index_en.htm
2 http://www.w3.org/WAI/intro/accessibility.php

21

evaluation of usability [8]. Usability guidelines are developed with the purpose to help
WUI developers and designers to develop highly usable WUI.

Usability should not be confused with User Experience (UX). UX is a person's
perceptions and responses that result from the use and/or anticipated use of a product,
system or service [7]. Usability is a quality attribute measuring whether WUI is easy to
use and learn, user-friendly, navigable. UX, in its turn, is wider concept also including
emotional factors like the comfort of use and attractiveness. Overall, UX encompasses
all possible aspects (including usability and its quality attributes) concerning the
interaction between end-user and the company, its products, and services.

The research presented in this thesis is concentrating on web usability evaluation.
Namely, the dissertation is concentrating on WUI usability aspects that can be
automatically evaluated; usability aspects that require participation of potential users
are not in the scope of the thesis.

2.2 Web Usability Guidelines
Current dissertation is focusing on inspection usability evaluation. In general, inspection
usability evaluation is based on the evaluation of usability to usability heuristics,
guidelines or specifications that contain the rules WUI should satisfy. That leads us to
essential branch of studies about web usability – web usability guidelines. The definition,
types and sources of web usability guidelines are discussed in this section.

An essential part of usability evaluation (including automated usability evaluation) is
a set of guidelines against what WUI is evaluated. This dissertation considers usability
guideline as an evaluable concrete rule, criterion or principle pertaining to the evaluation
of usability. Usability guidelines should not be confused with usability heuristics.
The latter defines broader rules and principles for usability evaluation. For instance,
a heuristic could claim: User interface should present elements simply. In order to
evaluate web application conformance to that heuristic UI should be evaluated according
to a set of guidelines. In general, a heuristic is an abstract principle consisting of a set of
specific guidelines.

Initially, usability guidelines are defined as a text in human readable way. Guidelines that
are suitable for automated usability evaluation are then converted to machine-processable
format (XML Schema is the most widely used method to define usability guidelines) [10].

Web Content Accessibility Guidelines (WCAG)1 (developed by the Accessibility
Guidelines Working Group (AG WG), which is part of the World Wide Web Consortium
(W3C)) and Section 508 Standards for Electronic and Information Technology2
(developed by U. S. General Services Administration Federal Government) are technical
standards (each containing about 70 guidelines) providing guidelines that explain how to
make web content more accessible to target users including people with disabilities.
These standards were designed with two main purposes. Firstly, these standards provide
a rich set of guidelines that make WUI more usable for people with disabilities, as these
guidelines could not always be considered in common practices. Secondly, both
standards contain general usability principles that have an impact on all potential users
equally. WCAG guidelines are divided into three levels [A, AA, AAA]:

 Level A covers the most basic accessibility requirements.
 Level AA contains the most common guidelines for users with disabilities

1 Web Content Accessibility Guidelines, http://www.w3.org/WAI/intro/wcag
2 Section 508, https://www.section508.gov

22

 Level AAA is the highest and most complex level of accessibility containing
very specific web accessibility guidelines.

In fact, WCAG and Section 508 standards contain similar and mostly overlapping
accessibility guidelines. Moreover, Section 508 requires conformance to WCAG Level AA.
WCAG is de-facto accessibility standard and it is ratified as an international standard
being included in legislation of the European Union1. In the European Union, according
to EUROPA - Web accessibility policy, all EU Commission websites should follow WCAG
Level AA guidelines [26]. It is pointed out that following WCAG Level AAA guidelines are
not mandatory as these guidelines are too strict and following all Level AAA guidelines
may be extremely time-consuming for some content. For example, WCAG Level AAA
Guideline 3.1.5 suggests providing spoken version of the text for each paragraph on the
page and suggests providing a text summary that can be understandable by people with
lower reading ability. Applying such guideline to existing content requires manual review
of all text sections of all pages of WUI being a very resource-consuming task.

Interoperability Framework of the State Information System [27] defines a set of
guidelines for preparing public sector Information Technology (IT) legal acts, designing IT
solutions and organizing IT-related public procurements in Estonia. The framework
contains requirements to user interfaces of public information systems created for
residents of Estonia. One of the main statements it contains is that user interfaces of
information systems must comply with WCAG 2.0 Level AA. Nevertheless, based on
research conducted in the year 2015 less than 10% of public sector web pages in Estonia
comply with WCAG standard guidelines [28].

Accessibility guidelines are only one subset of usability guidelines that cover the
structure of HTML code and make the content of WUI understandable to the wider
audience including people with disabilities. For example, accessibility guidelines require
all image elements to have alt attribute that allows understanding the content if image
fails to download. Also, alt attribute enables reading the page to visually impaired people
who use screen readers to browse the page. The purpose of accessibility standards is not
to make all WUI look similar way but to be more accessible to people with different
needs. For example, WCAG says that all web applications should contain search
functionality for searching the content of the whole application but it does not define
where the search field should be located, what the optimal length of the search field is
and how the search results should be presented. Thus, accessibility standards are
focusing on the characteristics that could be standardised such as colour management,
HTML semantics, link management, text alternatives, keyboard operability and focus
management; they are not covering in details the guidelines for evaluating the visual
characteristics of element on the screen, position of elements on the screen, distance
between elements on the screen, usability of search elements, forms and inputs. That is
the reason why many research works aim to establish additional usability guidelines
covering the additional characteristics of WUI elements including images and links [29],
the navigation and page layout [30], mobile usability guidelines [31] and search field
usability [32].

Bringing web applications to mobile platform involves certain benefits and presents
challenges and peculiarities in usability like accommodating less content on the screen
because of the smaller size, optimizing the content on the page to be more usable for

1 Directive (EU) 2016/2102 of the European Parliament and of the Council of 26 October 2016 on
the accessibility of the websites and mobile applications of public sector bodies, http://eur-
lex.europa.eu/legal-ontent/EN/TXT/?uri=CELEX%3A32016L2102

23

touch inputs as the errors for touch input are more probable than using mouse input.
Fortunately, there are guidelines and recommendations for developing UI for mobile
platforms [32]. Wessels, Purvis and Rahman in their paper [33] review the literature
concerning usability on mobile devices and point out main mobile usability principles:

 Minimize and streamline – all not required complexity and excess content
should be excluded from mobile page making mobile page striking a balance
between load as fast as possible.

 Scalability – mobile WUI should be equally usable for mobile devices with
various screen sizes; in fact, it should be the same usable if the device is
switched to the landscape mode.

 Buttons and Hyperlinks – in common, finger is used as a pointer for mobile
devices that is why clickable elements should be wide and high enough, so
person could tap them with a small error rate.

 Consistency – the styles, logos, links and buttons of UI elements on mobile
platform should be consistent with desktop styles [34].

Overall, current thesis concentrates on web usability guidelines (including accessibility
guidelines) for desktop computers (including laptops) and smartphones. Current
dissertation does not concentrate on tablet devices as they follow usability guidelines
that cannot always be applied to smartphones. For instance, usability guideline
encouraging developers to place radio buttons vertically on mobile devices because of
the small screen size of smartphones is not valid for tablet devices that, mostly, having
enough space to place radio buttons also horizontally.

Many companies design their own corporate usability guidelines obliging web
applications within the organisation to follow similar style guidelines. That ensures that
all applications share a common look and feel. Such guidelines establish consistency
between applications encouraging developers to design highly usable web applications.
Corporate usability guidelines focus on guidelines for presentation elements, such as
visual design elements as colour, logos, fonts or icons; page or screen layouts including
spacing, justification and common items; and the correct use of standard controls
including buttons, drop-down selections, radio button or check boxes [35]. Corporate
usability guidelines are widely used for back office web applications and well as for front
office web applications where the UI design between different applications could be
unified making it more usable for employees.

To sum up, web usability guidelines are the starting point for every research on
automated usability evaluation as they are an integral part of every method or a tool
addressing automated usability evaluation. Current dissertation is concentrating on web
usability guidelines derived from the research works and analyse reports, platform-specific
and company-specific usability guidelines. The main focus is set on web usability
guidelines for desktop devices and smartphones.

2.3 Usability Evaluation Methods
Business requirements are a driving force for WUI development as WUI should always
contain up to date information concerning services and values provided by the company.
Business requirements, in the context of WUI development, are described as functional
changes or sets of functionality that they should contain. In fact, business requirements
to WUI could be controversial with usability guidelines. Simple example can be that
business people very often ask to fit as much information on one page as possible
assuming that such approach will make it easier for clients to find the information they

24

are searching for. In fact, such approach does not follow F-Shaped pattern of reading1
and violates many usability guidelines that limit the length of scrolling, density of text.

In order to ensure that new features do not decrease usability of WUI usability
evaluation should be performed. Usability evaluation is a method for identifying specific
problems with usability of products [9]. Usability evaluation plays an important role in
establishment of final design of WUI. It identifies usability problems matching the
designed application and user needs. Thus, it allows detecting usability problems before
the application is released to production where it is used by real users. Multiple research
works on the influences of usability on overall customer satisfaction show that in case
WUI has a high level of usability, users unintentionally increase the loyalty and trust
towards the company [36] [37], and that usability contributes future revisits to the web
application and majorly increases overall user satisfaction [22]. To achieve a high level of
usability it is required to focus on the target users of WUI analysing their needs and
patterns of behaviour. Potential WUI solution should be prototyped and validated
iteratively to ensure that the final product will be highly usable by target users.

There are two main groups of methods to usability evaluation: inspection evaluation
and empirical evaluation methods. The main difference is that inspection evaluation
methods rely entirely on the expertise of usability expert (usability inspector), whereas
empirical evaluation methods involve target users of WUI in the evaluation.

Empirical evaluation methods include interviews with potential target users [38],
questionnaires [39], card sorting [40] and eye tracking [41] for usability evaluation.
Empirical testing methods expose severe, recurring and global problems of navigation,
information and content organisation as target users are involved in testing [42].
For example, in order to understand users' preferences, interviews are a good and
effective approach in measuring users' satisfaction with the system [43]. Card sorting is
an effective way to determine how logically and naturally the information, structure of
navigation and layout are organised on WUI from the view of its end user. In general,
empirical evaluation methods are effective in finding the problems of workflows and
inefficient solutions in WUI. In general, empirical methods require the participation of
usability experts for preparing the evaluation, conducting the evaluation itself and for
analysing the collected data to provide the suggestions for improvements.

Another empirical method that observes the data that is not vocalised by user is eye
tracking. Although eye tracking as a concept is not new to human-computer interaction
(HCI) studies, the applicability of it and its precision has greatly improved with the
development of technologies used. Eye tracking is widely used as an empirical research
approach for mobile and desktop Web usability evaluation as an effective method for
analysing UI [41] [44] [45]. Eye tracking measures the motion of the eye and where the
eye is focused at the time participant views a web page. Seix et al. [41] in their study
proved the efficiency and applicability of the method. They concluded that eye tracking
as a methodology for assessing UI has numerous benefits such as accuracy and reliability
in measuring, non-intrusiveness for user (as it records in a discrete way) and simplicity in
preparing the set-up. Overall, the advantage of that approach is that it is possible to
analyse the behaviour of users (where they are looking at, what parts of the interface
they are missing etc.) without asking feedback from the users themselves.

1 https://www.nngroup.com/articles/f-shaped-pattern-reading-web-content/

25

Another cutting edge approach to usability evaluation is all-around web analytics such
as Google Analytics1, Inspectlet2 and Yandex Metrica3. In general, such tools for
all-around web analytics provide the way to record users’ sessions including user clicks,
scrolling, mouse movements and keystrokes. The integration of these tools into web
application is straightforward; a tiny piece of JavaScript code should be copied to the
source code of WUI. Afterwards, stored data can be analysed by usability experts with
the purpose to understand, how users are using web application, how much time do they
require to perform certain actions on the web page and how users are navigating the
mouse. An important advantage of that approach is that real users' data is stored without
a need to conduct an experiment. For example, all-around web analytics (e.g. Google
Analytics) can determine which field people are abandoning the form. Nevertheless,
 all-around web analytics does not prevent usability issues from being released but rather
helps to find problems when WUI is already used in production, on the contrary,
the problem current dissertation addresses – detecting usability defects immediately
after the code of WUI has been modified.

Despite the fact that empirical evaluation methods are effective in finding usability
defects, there are many obstacles preventing from applying these methods widely:

 Organising and conducting user tests is relatively expensive because it
requires a high demand for human and time resources [46] [47].

 Small software companies do not always have the funds to pay for complete
consultancy or involving usability specialist as they are expensive to hire [48].

 It is not always possible to increase the coverage of evaluated features by
evaluating every single aspect of UI [46].

Empirical evaluation methods cannot be fully automated as real users should
participate on evaluations and cannot be substituted by computers and it is impossible
to simulate human-specific characteristics as human sense and personality as stated in
[49]. The method for automated usability evaluation introduced in the dissertation does
not substitute empirical evaluation methods (such as eye tracking, web analytics, user
tests and questionnaires).

On the contrary, usability inspection evaluation methods are flexible to automated
evaluation. Usability inspection evaluation methods such as heuristic evaluation and
pluralistic walkthrough require the expertise of usability inspectors (usability designers
and experts in usability evaluation) to detect usability problems in WUI design. Usability
inspection methods include cognitive [50] and pluralistic [51] walkthrough and heuristic
evaluation [52].

The cognitive walkthrough is a usability evaluation method when evaluators go
through series of activities to fulfil and ask certain questions imagining that they are
potential users of WUI [50]. The purpose of the method is to understand the learnability
of web application for new or potential users. Currently, the cognitive walkthrough
method is not used widely in scientific research works of usability because, in common,
it uses superficial analysis of WUI focusing mostly on graphics and words on the screen.
In practice, however, it is often used to understand the experience new users get while
visiting WUI first time.

1 https://www.google.com/analytics/
2 https://www.inspectlet.com/
3 https://metrica.yandex.com

26

The pluralistic usability walkthrough allows evaluating usability of WUI on the
conceptual level when WUI initial mock-ups are ready. It is important to understand that
usability problems detected in early prototyping phases are easy to fix then the problems
detected on the later phases. The pluralistic usability walkthrough requires product
developers, representation users, usability experts and other members of the product
team to participate in the process of evaluation. The views of WUI (or WUI mock ups) are
shown in the similar order as they appear to the user and the participants of evaluation
are asked to emulate the role of the user. Afterwards, each screen is discussed within
the participant and aspects to improve presented. The drawback of that method is that
it does not guarantee the inspections of all available navigation paths on WUI [51].

Heuristic evaluation (HE), proposed by Nielsen and Molich [52], is widely used being
an efficient low-cost inspection method for professional evaluation of WUI usability.
With heuristic evaluation, usability experts look at WUI and come up with opinion what
is good about that comparing it against guidelines and accepted usability principles.
HE can contain different principles and guidelines for evaluating web applications of
different categories (e.g. heuristics for governmental application [53] [54], educational
portals [55] and health sector [56]). The output of HE is a list of possible usability issues.
HE is being criticized for focusing on finding the errors, in contrast, empirical evaluation
methods are concentrating on user satisfaction and effectiveness [57]. Nevertheless,
HE is widely used for evaluating usability due to the low-cost and relatively easily
implementable way to improve usability [58]. HE can be done at any time it is needed as
it does not require preliminary planning [59]. As far as during HE WUI is checked against
usability guidelines, then the evaluation can be performed by person who is not familiar
with usability. In fact, usability guidelines can be converted to machine-processable
format and evaluation can be executed by software programs. That is the area current
dissertation concentrates on – performing evaluation of WUI to web usability guidelines
automatically (without involvement of usability expert).

2.4 Automated Usability Evaluation
The main problem of manual usability evaluation methods including inspection and
empirical evaluation methods is that every evaluation requires the participation of
usability experts: in case of inspection evaluation usability expert is responsible for
checking the conformance of WUI to the specifications and usability guidelines; in case
of empirical evaluation methods usability expert is responsible for preparation of the
evaluation and analysis of the collected data. Also, in case of manual evaluation, it is
extremely time-consuming to perform the evaluation of all pages and every element of
WUI (like link, button, search input, form inputs) with every new version of WUI.
Aforementioned obstacles are the motivation for automated usability evaluation.
Automated usability evaluation requires fewer resources to use as the configuration of
the tool for automatic usability evaluation can be done once and, afterwards, evaluation
can be performed multiple times without any preliminary configurations and
involvement of human resources. Nevertheless, it is impossible to automate usability
evaluation entirely, as there is a still needed to produce and update custom usability
guidelines and check viability of usability guidelines.

According to [60], there is number of issues concerned with the use of automated
tools: expandability and upgradeability, alignment with the latest technology and limited
effectiveness of the reports.

27

Expandability and upgradeability are important issues that should be considered in
automated usability evaluation [10] [14] [15] [61] as new usability guidelines appear by
platform vendors and usability researchers, and the existing ones being updated.
Some countries develop the lists of country-specific guidelines by extending WCAG
standard with additional guidelines (e.g. US uses Section 508 accessibility standard based
on WCAG). Also, companies define company-specific usability guidelines that are
applicable only to the designed WUI. Such modification requires significant costs for
resources. The issue of expandability has been challenged by many research works
developing methods for machine-processable formalisation of custom usability
guidelines [14] [15] [61].

Another common problem in tools for automated usability evaluation is limited
effectiveness of the reports [62] [63]. Usability evaluation tools sometimes provide
irrelevant information about the guidelines being violated. As a result, it cannot be
straightforward to identify the main cause of the usability problem. It is important to
consider that the reports can be analysed by people in different roles such as developers,
product owners and usability experts. As a result, the report should provide sufficient
information about detected usability issues including the reason for failure, suggestion
how to fix the problem and how the problem can be reproduced.

Common requirement for usability evaluation is support for new technologies [18].
New languages for designing the style themes of a web application are being released
introducing new features such as semantic tags that were introduced with the release of
HTML5. The amount of dynamic content is increasingly growing; web pages are
becoming more and more interactive. Turns out that some validators as pointed out in
[18] are unable to efficiently evaluate the usability of web applications made with the
most recent technologies like HTML5 and CSS3. Overall, it is an inevitable requirement
to support recent technologies for tools suitable for automated usability evaluation.

Many researchers contribute to the development of automated usability evaluation
tools [10] [11] [15]. Schiavone and Paterno [10] proposed Mauve – a tool for automated
usability evaluation. This tool is capable of evaluating WUI conformance to WCAG
accessibility guidelines of all three levels (containing around 80 different guidelines).
In fact, the tool provides functionality for designing custom usability guidelines in
addition to existing set of predefined guidelines. Dangli [15] developed a framework
called USEFul for automating usability evaluation enabling a non-expert in the field of
usability to conduct the evaluation. USEFul separates the definition of guidelines from
the usability evaluation logic. Such approach allows adding, modifying and deleting the
guidelines without altering the source code of the tool. The disadvantage of USEFul is a
sophisticated way of adding guidelines. Gay and Li in [11] proposed an open source tool
for automated usability evaluation called AChecker (contains around 100 guidelines) that
allows checking the compliance of WUI to WCAG, Section 508 and BITV accessibility
guidelines. The advantage of AChecker is that it provides easy to use WUI for triggering
the evaluation process; the main disadvantage is that it does not allow defining custom
usability guidelines.

Typically, the most advanced tools for automated usability evaluation such as Mauve
[10], USEFul [16], and PowerMapper1 support the evaluation of most WCAG guidelines
out of the box. In general, they all have a possibility to define custom usability guidelines.
The primary disadvantage of existing solutions is that it is not possible to evaluate visual

1 https://www.powermapper.com/

28

aspects of a WUI including measuring the presence of scrolling, the layout of elements
on the web page and the positions of elements on the screen; also, many other
assessments like determining the distance, size and the contrast of elements on the
screen are not possible with that approach. It is not possible because these solutions are
based on parsing the HTML code and subsequent validation of HTML syntax against the
guidelines and thereby ignoring rendered final representation of WUI that is accessed by
end users from web browsers. There are certain attempts to develop tools that evaluate
visual characteristics of WUI that concentrate on evaluating a particular visual aspect of
WUI. For instance, Google Mobile Friendly Test1 contains the test for evaluating size of
tap targets; Wave2 checks the contrast rate of elements. Nevertheless, there is no
integrated solution that allows evaluating multiple characteristics of WUI rather than
concentrating on one specific problem. This calls for adopting an integrated alternative
method for evaluating various visual characteristics of final layout on the screen of WUI
like the size of elements, distance between them, allowance and presence of scrolling.
That is the problem current dissertation is researching – developing integrated method
(discussed in Section 4.5 in more detail) for automated usability evaluation enabling both
automated evaluation of HTML specific usability guidelines as well as evaluation WUI
conformance to guidelines covering visual characteristics of WUI.

There are many other tools (for a list of different available tools for web accessibility
evaluation one may refer to W3C tools list3 of more than 80 tools) to conduct the task of
automated usability evaluation (semi-)automatically and check whether the developed
WUI meets accessibility guidelines. Tools that are based on WCAG or other accessibility
standards do not consider corporate guidelines or specific guidelines set for a particular
WUI. Moreover, existing tools for automated usability evaluation like Mauve [10], USEFul
[16], AChecker [11], PowerMapper4 are used on ready-made or pre-release solutions
considered to be used during the testing phase of developed WUI but there are obstacles
(e.g. these tools require special environment to run and they cannot be executed
together with unit or functional tests) preventing them to be used during
implementation phase of WUI development. Implementation phase of WUI
development is code-centric and it incorporates activities directly connected to WUI
development like writing UI code and covering code with unit tests. In its turn, testing
phase of WUI is concentrating on WUI testing using various methods and tools that
increase the efficiency and accuracy of evaluation such as user tests and tools for
automatic usability evaluation. Aforementioned tools Mauve, Useful, AChecker and
PowerMapper fall into the category of tools suitable for testing phase being process-
centric rather than code-centric.

Unfortunately, it is not possible to evaluate every single usability guideline
automatically because certain usability guidelines require the involvement of usability
expert intelligence and common sense. For instance, the next guideline Change the font
characteristics to emphasize the importance of a word or short phrase cannot be
evaluated automatically as it is extremely complex and practically impossible to make
software understand that the more important phrase has been emphasized and the less
important is not (unless this data is somehow included in the HTML, e.g. with custom
tags indicating the importance of a phrase).

1 https://search.google.com/test/mobile-friendly
2 https://wave.webaim.org
3 https://www.w3.org/WAI/ER/tools/
4 https://www.powermapper.com/

29

Overall, the most advanced solutions for automated usability evaluation have two
common disadvantages. First, existing tools are suitable only for testing phase of WUI
development; it is practically impossible to use these solutions during the
implementation phase with the purpose to get feedback immediately after WUI
modification [13]. Second, existing solutions do not allow evaluating various visual
characteristics of finally rendered layout on the screen of WUI like the size of elements,
distance between them, allowance and presence of scrolling [14].

Usability evaluation during implementation phase and automated usability evaluation
of visual usability guidelines are the problems that current thesis addresses by presenting
a special tool called Guideliner. The Guideliner is code-centric tool for automated
usability evaluation during the implementation phase of WUI development. It is
beneficial to conduct usability evaluation of modified code during the implementation
phase of WUI development as it identifies issues and problems that are out of WUI
developer scope. Another problem challenged by the Guideliner is automated evaluation
of visual usability guidelines of finally rendered WUI that increases the coverage and the
number of usability problems handled by automated usability evaluation.

Both aforementioned problems are addressed in this thesis: Chapter 4 is devoted to
the development of the method capable of evaluating visual characteristics of web UI,
whereas Chapter 5 is addressing the problem of automatic usability evaluation during
the implementation stage of UI development process, using the proposed tool for
automated web usability evaluation.

2.5 Related Works
The research in the area of web usability, web usability evaluation and automated web
usability evaluation is concentrated on the next research directions: improving existing
usability guidelines and heuristics [53] [64] [65], interaction-based [66] [67] [68] and
metric-based [10] [15] automated usability evaluation. The next sections discuss main
topics that are connected to the research presented in this thesis.

2.5.1 Research in the Field of Usability Guidelines
Usability guidelines help designers to create WUI that is equally understandable and clear
for different groups of users. Research in the field of user interface usability covers all
possible types of UI that people are interacting with. For example, Koppel et al. in their
research [69] defined usability guidelines for DVD menus because DVD menus often miss
out of usability. In its turn, Coelho et al. concentrated on guidelines for TV applications
[70], and Moshnyaga [71] proposed guidelines for smart doors and smart systems of
monitoring. Current thesis is concentrating only on WUI usability guidelines that is why
the discussion on usability guidelines for other types of WUI is very limited herein.

The definition of usability guidelines is not an ordinary research activity as usability
guidelines cannot prove effective if they are based on too few findings or the subjectivity
influences the process of guideline formalisation. Most of the existing usability guidelines
are based on the results of usability testing and the evaluation feedback retrieved from
the users [72]. To make the process of usability guideline definition more effective Evan
in [73] proposed an approach for formalisation of usability guidelines. The approach
covers different steps of the usability guideline development including setting the design
question that guideline solves, searching for evidence, systematic assessment of results
and testing the resulting guidelines.

30

Hussain and Ferneley in [74] point out that heuristics are often developed as general
design principles. As a result, the interpretation of heuristics can be different between
designers. To make usability guidelines unambiguous, they applied Goal Question Metric
(GQM) for development of usability guidelines with clearly defined metrics. In the
context of their research the metric is an evaluable characteristic of guidelines such as
task completion time, the size of the elements, colour of elements etc. Their research
proved that including metrics to designed usability guidelines makes the guidelines
equally understandable to designers.

Following usability guidelines makes WUI more usable for the users. The research
conducted by Conti and Sobiesk in [75] studies opposite situation – deliberately
constructed WUIs that violate design principles and usability guidelines to accomplish
business goals and acquisition of revenue (selling a product or service, gathering personal
information from the user that is not needed for business, increasing company
recognition). The examples of such violations are animations and blinking objects or
sounds to attract the attention, forcing users to view the content that they did not want
to see and navigations that are designed deliberately to force user visit as many pages as
possible. Users use different measures to protect from such WUI (e.g. pop-up blockers,
text-only browsers, ad-blocking software, and browser plug-ins), nevertheless, study
shows that the effectiveness of these measures is only marginal.

In general, following WCAG and Section 508 accessibility guidelines (each containing
about 70 guidelines) makes WUI’s more usable for all types of users. Nevertheless,
Section 508 and WCAG are technical standards which do not cover all aspects of usability.
Both standards provide accessibility guidelines to make the content of web applications
accessible to a wider range of people including people with disabilities. To a lesser extent,
the standards are covering other categories of guidelines like the ease of comprehension,
navigation scheme and features, consistency of the context, screen based controls and
others. The limitations of WCAG and Section 508 encourage researchers to cover aspects
of usability ignored by the standards.

Platform specific (e.g. desktop or mobile) [64], UI element specific (e.g. link, button)
[29], web application type specific (e.g. news web application) [53] and target users
specific [65] usability guidelines have been explored by many authors, defining usability
guidelines and usability heuristics for various areas of use and target audience including
usability guidelines for teenagers [65] [76], mobile application specific heuristics [64]
[77], heuristics for usability evaluation of government applications [53] [54], educational
portals [55], and heuristics for the evaluation of captchas on smartphones [77].
All aforementioned research works contribute to the development of usability
guidelines and heuristics. The results of these research works can be used for defining
category-specific usability guidelines suitable for automated usability evaluation.

One of the widely used lists of usability guidelines is combined by Shneiderman and
Leavitt in [78]. The collection of guidelines contains more than 100 research-based web
design and usability guidelines. It is worth noting, that these guidelines are not
established by the authors but are filtered out while analysing usability research works
and usability evaluation reports. The compilation of usability guidelines helps to avoid
potholes and swamps while designing highly usable WUI.

Other cutting edge collections of usability guidelines are produced by Schade and
Nielsen in [79]. They are mostly focusing on e-commerce usability guidelines with the
purpose to increase the rate of purchase and improve the online shopping experience
making the process of online selling smoother and more effective. In fact, these

31

guidelines cannot be applied to the wide range of WUI as the purpose of public section
web applications is to clearly outline the information about the governmental services
rather than earn money.

The rapid development and evolution of mobile devices bring additional requirements
to WUI because of the certain limitations of mobile platforms such as smaller screen size,
finger as a typing and pointing device and additional features like camera and
accelerometer [33] [80]. Alsalamen and Shahin in their research [81] demonstrated that
users make more errors when filling in the forms on the devices with smaller screens
emphasizing that usability guidelines suitable for devices with big screens cannot be
always applied to the devices with the smaller screen. For instance, mobile web usability
guideline presented by Baymard web usability research institute1 says – Place labels
above the input fields in forms. The main issue with left-aligned input field labels that are
common for desktop web applications relates to the smaller size of the display and
different aspect ratio in the case of mobile devices.

In [59] Gómez et al. presented the set of heuristic evaluation adopted for mobile WUI
enriching the existing desktop heuristics with the support for mobile devices.
They presented the evaluation checklist that has been readapted to mobile WUI
overcoming mobile-specific limitations like amount of inputs/outputs, limited processing
capabilities. The main target users of the checklist are WUI developers, product owners,
analysts without competency in usability evaluation. Salgado and Freire [82] performed
the systematic mapping of literature regarding the use of heuristic evaluation methods
applied on mobile web applications. They concluded that the topic of mobile usability
heuristics has been a relevant topic, and the interest since 2010 is becoming bigger in
recent years. Many studies are continuously appearing in the literature developing new
usability heuristics for evaluating usability of mobile web applications including heuristics
defined in [83] [84] [85].

Alsalamen and Shanin in [81] performed the comparative research of usability of
forms on devices with small and big screens. The set of form usability guidelines has been
proposed based on their finding. For instance, their research showed that presenting
error messages above the input field is not recommended on the devices with a small
screen as this can be dismissed by users.

2.5.2 Research on Automated Usability Evaluation
The development of automatic usability evaluation tools is an attractive area of research
in the era of multi-platform devices as it allows performing usability evaluation without
the involvement of usability experts. There are many factors in favour of automated
evaluation of usability such as that manual usability evaluation methods are
time-consuming [47] [86] and resource-intensive [47] [86]; it is not possible to cover
every section of WUI with manual testing [46]; it can be complicated to recruit usability
test participants who represent the real target user group [47] [86]. Automated
solutions, in turn, detect usability problems at a lower cost, and can cover more aspect
of WUI during one evaluation. Nevertheless, available tools for automated usability
evaluation are concentrating mostly on accessibility and HTML-centric guidelines leaving
evaluation of visual characteristics of WUI out of the scope [12].

There are multiple approaches to automated usability evaluation, and currently, most
of them could be suited one of the three main groups: interaction-based usability
evaluation [66] [67], metric-based usability evaluation [87] [88] and model-based

1 https://baymard.com/blog/mobile-form-usability-label-position

32

usability evaluation [87] [89]. The research presented in this thesis falls into the
metric-based usability evaluation.

Interaction-based usability evaluation requires the interaction data to be recorded
within WUI being evaluated. Interaction-based usability evaluation can be used during
the testing phase of WUI development and after WUI has been deployed to production
environment. Various data can be recorded like mouse cursor movements, keyboard
input characteristics and the interaction data such as clicks on links, buttons, and images.
Afterwards, the recorded interaction data is compared to the expected interaction data
suggested by usability expert to identify potential usability issues [68].

Many research works are concentrating on developing tools for automated
interaction-based usability evaluation. Studies in the field of usability evaluation, coming
from the interactions between the user and WUI, are divided into two major groups –
studies concentrating on a solution for gathering of data from users [66] [67] [68] and
the studies that in addition to gathering the data, are suggesting possible solutions to the
detected usability issues [90] [91] [92].

 Grigera, Garrido and Rivero [68] presented a tool called Bad Smells Finder for
automating the gathering of interaction data from real users. The purpose of the tool is
to automate the evaluation of interactive usability problems such as inefficient
navigation issues, unnecessary bulk actions and misleading or misused widgets. Based on
the further client side and server side collected data processing, they introduced an
approach to finding interactive usability problems automatically. In order to collect the
data, a tool script should be included in the header of the web page. The tool can detect
12 different kinds of usability problems including detection of unnecessary bulk actions
and form validation problems.

Dixit and Padmadas [91] presented a recommender system which improves the user's
experience of WUI based concerning learnability and navigability. The proposed system
provides links offering users an alternative navigation path as a suggestion.
The recommendations are provided on the analysis of gathered data of users’ navigation
behaviour between web pages. Such approach helps to find out the required information
in the web application more easily providing the most efficient path for the user. Users
can ignore the suggestion and follow the navigation according to their own
understanding. It should be considered that recommender systems require big amount
of interaction data to be collected in order to make a conclusion on the navigation paths
users select to perform certain activity. Also, the results provided by the system should
be initially reviewed by usability experts in order to make sure that the recommended
paths are valid in the use case evaluated. Overall, it is a promising research direction as
it allows optimizing the navigation but it may be complicated to find the problems on
testing environments because of insufficient amount of data.

Au et al. [90] added additional listeners to the code of WUI recording various events
(e.g. scrolls, click and drags) as they happen. Afterwards, the tool evaluates the usability
of WUI components (e.g. form or navigation) comparing, how the developer expected
WUI component to be used with the recorded results. Then, it highlights the differences
between actual and the expected use of WUI component. Based on the collected real
interaction data, WUI developers can optimise and make WUI components more
understandable and usable for users. The main outcome of the research is the tool that
is capable of evaluating user inputs in forms and presents the results in forms. The main
drawback of the approach is that it is limited to finding the problems only in one domain
– usability issues in forms.

33

In addition to finding usability problems, more advanced tools provide suggestions,
how to improve usability of WUI. Gonçalves et al. [92] presented MOBILICS – task-based
evaluation tool allowing the detection of usability problems during the execution of tasks
and pointing out the interface elements that cause usability issues. MOBILICS collects
data about users’ interaction with WUI and then compares the sequence of recorded
task with the expected task path. If there are deviations between the expected and the
actual interactions, then MOBILICS' provides detailed recommendation on how to fix
discovered usability problems.

In general, tools for interaction-based usability evaluation cover only narrow issues
over a certain section of WUI like input or navigation issues. The reason for that is that
every usability problem connected to user interaction requires specific data to be
collected and then analysed. For instance, in order to find out which components on the
web form are the most unclear for users, special listeners should be developed
measuring the clicks on the components under the study. Afterwards, automatic data
analyser is created to find critical problems in the recorded interaction data. In general,
the results of interaction based usability evaluation should be reviewed by usability
experts as they may suffer from subjectivity due to the configuration of the tool.

One of the paramount disadvantages of interaction-based usability evaluation pointed
out by Bakaev et al. in [87] is that usability can be evaluated only after WUI is already in
use by real consumers. The primary reason for that is obvious: all interaction-based
usability evaluation tools require plenty of captured interactive data to detect usability
issues with high probability. That means the first usability issues are found after real
customers are made to interact with the UI, having potential critical usability issues
causing the damage to the reputation of web application and the whole organisation.
Of course, it is also possible to collect the interaction data on the testing environment
with the potential users but that is very resource-consuming to involve potential users
with every release of WUI. Other problems of interaction-based usability evaluation
pointed out by Speicher et al. in [93] is that it is hard to obtain reliable quantitative data
with any of existing interaction-based tools as quantitative data does not reflect all
possible use cases.

Metric-based usability evaluation is based on the metrics that define its usability. It is
based on the automated evaluation of WUI compliance to usability guidelines covering
various usability aspects like visual consistency and complexity of WUI [87] including
accessibility, readability, navigation, layout consistency, content organisation [88].
Usability level of WUI and the potential usability issues can be detected based on certain
metrics, and metric-based usability evaluation tools demonstrate a good correlation with
human annotators' results [16]. The metric in the context of metric-based usability
evaluation is an evaluable characteristic (e.g. length of links, order of elements, value of
attributes etc.) defined in concrete units of measurement (e.g. alt attribute of img tag
should be defined). Nevertheless, metric-based usability evaluation is limited by
evaluating only the complexity and consistency of a web pages; evaluating the usability
of the workflow or navigation is not possible with that approach as such evaluation
requires the participation of real users in the process of evaluation. All aforementioned
problems cannot be evaluated by any metric-based based usability evaluation including
the solution delivered in the dissertation. Current dissertation is covering metric-based
usability evaluation.

The metric-based tools for automated evaluation of WUI conformance to usability
guidelines are divided into two groups: tools that separate guideline definition from the

34

evaluation providing a way to define new guidelines [10] [15] and tools where the
definition of a guideline is part of evaluation logic excluding the possibility to define
additional guidelines in an easy way [11] [94]. The latter approach is used more often
due to simplicity in implementation. Unfortunately, in that case, updating or adding new
guidelines cannot be done easily. Thus, another critical requirement to the tools for
automatic evaluation of web application usability is extendibility of predefined usability
guidelines with custom application specific usability guidelines. This is a vital requirement
as the existing usability guidelines could change or new one appears (e.g. with the
emergence of new devices like tablet computers or with the evolution of new
technologies such as HTML 5). In fact, it is unlikely that the tool contains usability
guidelines suitable for each web application. For example, e-commerce usability
guidelines presented in e-commerce UX report [79] require to embrace large product
images showing more details and multiple views of the product. For instance,
e-commerce usability guidelines may not be applicable to the governmental health web
application for retrieving prescription information. In general, if there is no way to keep
usability guidelines up-to-date than the tool soon becomes obsolete.

One of the first attempts to propose the language for defining usability guidelines was
done by Beirekdar and Vanderdonckt in [95]. They proposed to separate the editing and
definition of guidelines from the evaluation logic. Afterwards, multiple approaches were
tried out for developing the most effective and usable approach for defining the
guidelines such as using XPath sentences to implement the guidelines as Takata,
Nakamura and Seki proposed in [96] and XML schema-based languages designed by
Leporini, Paterno and Scorcia in [40]. However, XPath based approaches have been
abandoned as it had a strict drawback of using only XPath language limiting evaluation
to find only simple problems in HTML code without possibility to create usability
guidelines covering multiple WUI elements and visual characteristic of WUI.
The successor of XPath is XML Schema-based language incorporating usability guidelines
in XML. XML-based approaches allowed defining more sophisticated guidelines; in fact,
they allow defining most WCAG accessibility guidelines. Nevertheless, these languages
including the XML-based languages defined by Schiavone and Paterno in [10] and
another attempt done by Arrue, Vigo and Abascal in [61] are limited mostly to evaluating
the structure of tags, attributes and their relations; defining visual aspects of web UI is
not possible with that language. That is not the problem of the language but rather the
problem of XML-specific problems and restrictions. XML-based language becomes
sophisticated and unclear when multiple WUI element relations and elements specific
attributes are incorporated into the language. These deficiencies are particularly notable
when necessary to define complex usability guidelines like evaluating the visual position
of elements on the screen, positions and distances between the elements on the WUI.
That calls for adopting alternative approach to definition of usability guidelines
overcoming existing limitations. In Section 3.4 the author proposes a usability ontology
as a successor to the XML-schema based languages.

Schiavone and Paterno [10] proposed a software environment called MAUVE for
automatic accessibility evaluation specifying a high-level language for the definition of
guidelines. The abstract language called Language for Web Guideline Definition (LWGD)
as proposed stated to enable simple and flexible formalisation of guidelines.
The language is not tied to a certain set of guidelines providing possibility to define
various custom usability guidelines. LWGD is based on XML schema providing the ability
to validate custom usability guidelines before performing the validation. The advantage

35

of their tool is that it can express and evaluate more complex conditions, regarding
multiple objects, in comparison with any other similar alternative solution. Nevertheless,
proposed language become hardly extendible as it contains multiple various guidelines
defining the relations and properties of elements. Also, it lacks the structures for defining
usability guidelines covering visual characteristics of WUI.

Dangli [15] developed the framework called USEFul for automating the usability
evaluation enabling a non-expert in the field of usability to conduct the evaluation.
His solution allows adding, modifying and deleting the guidelines without altering the
code that references those separating guidelines and the code into separate
components. He proposed a custom approach to the definition of guidelines based on
the guideline definition table where each row represents the guideline. The solution is
capable of finding problems in HTML code; identifying visual usability issues is not
possible with that approach. The main drawback of the approach is that it is based on
the parsing of HTML code. Such approach cannot evaluate visual aspects of the web
application. Another disadvantage of the proposed solution is the sophisticated way of
adding new usability guidelines using custom guideline definition table.

There are also multiple other alternatives to Mauve and USEFul. For example, Gay and
Li in [11] proposed an open source tool for automated usability evaluation called
AChecker that allows checking the compliance of WUI to WCAG and Section 508
accessibility guidelines. It also allows defining custom usability guidelines. There are
certain commercial tools for automated usability evaluation such as PowerMapper1 that
in addition to WCAG accessibility guidelines also contain some HTML-specific usability
guidelines. Moreover, it contains search optimization guidelines checking that web
application is indexed by search engine properly. Both tools provide API for performing
the evaluation of WUI based on the URL of web application. Also, there are several tools
that can evaluate certain visual aspect of WUI with some big limitations. For example,
Google Mobile Friendly Test2 performs a sanity check of WUI checking if WUI is
compatible with mobile devices. The tool checks the WUI conformance to six very basic
mobile usability guidelines including five HTML-specific guidelines such as the usage of
Flash, font size, Viewport configuration (three guidelines) and one guideline checking
such visual characteristic of WUI as the size of tap targets. The purpose of the service is
to perform initial test and to give feedback if WUI is compatible with mobile devices or
not. Another freeware tool called Wave3 also proposes additional value to WCAG
guidelines by checking the contrast rate of elements. In fact, contrast guidelines are part
of WCAG but very few accessibility tools are capable of evaluating the contrast rate of
elements. Nevertheless, the disadvantage of WAVE is that there is no possibility to define
custom usability guidelines in this tool.

Model-based usability evaluation is overcoming the drawbacks of metric-based
usability evaluation (metric-based evaluation does not take into account the influence of
user tasks and use case context on the metrics value [87]) evaluation detecting usability
problems coming from interactions with WUI. Model-based tools contain task model and
the context of using models (user, platform, and environment) that are constructed
within model-driven interface development paradigm [89]. This approach allows
introduction of additional information in models to allow a designer to tune easily the
interaction technique and simulate the behaviour of the user [97]. For example,

1 https://www.powermapper.com
2 https://search.google.com/test/mobile-friendly
3 http://wave.webaim.org

36

Humayoun and Dubinsky in [98] applied model-based usability evaluation for automated
testing of user gestures. Namely, they presented a task-based method that emulated
user gestures and asserts the behaviour of WUI to the gestures. The main drawback of
model-based usability evaluation is that the modeling and computational complexity are
still quite high and adjusting the models to changing trends in usability engineering may
be costly [87].

At the current state of technological development when the artificial intelligence (AI)
becomes widely used area, AI methods were adopted in order to automatically evaluate
usability guidelines. Guidelines that cannot be evaluated by any existing tool because of
ambiguous metrics could be evaluated by AI methods [16]. For instance, the next
guideline The headings that are used should be unique from one another and
conceptually related to the content cannot be evaluated automatically by any evaluation
tool. Dingli and Cassar in [16] filled the gap proposing the solution based on the
mathematic algorithms that are capable of evaluating that guideline. In their tool, they
implemented only three guidelines mostly because evaluating every sophisticated
guideline requires various custom solution and configurations. Liyanage and Vidanage in
[99] applied machine learning algorithms for automatic evaluation of usability guideline
that checks the meaningfulness of link labels. Aforementioned guideline was selected
because of its uniqueness and difficulty to implement. Their research results proved that
it is possible to automate the evaluation of this guideline. Nevertheless, the authors point
out that their algorithm should be enhanced as the results of the evaluation were correct
only in 70% of cases. In general, AI methods are mostly focusing on the narrow issues
that cannot be covered by interaction or metric based usability evaluation that is the
reason why there is no AI based mainstream tools for automated usability evaluation.

The evaluation of usability without the involvement of users is a challenge for the
researchers as it may make the evaluation cheaper in terms of time and money. Oliveira
et al. challenged aforementioned problem presenting the predictive usability framework.
The main advantage of their solution is that based on the analysis of previous evaluations
their model performs evaluation of WUI quality automatically. The limitation of their
solution is that it requires a lot of usability evaluation data to train the solution; also the
accuracy of usability defects prediction is very low at the current framework
development stage.

There are studies concentrating on evaluation of usability of certain category web
applications like homestay websites [100], public self-service applications and self-service
providers and newspaper website [101] using heuristics evaluation. Isa, Yusoff and Nording
[100] evaluated the usability of homestay websites in Malaysia using various automated
tools such as Web Page Analyzer1 and Dead Link Checker2. A study concentrating on
evaluating the usability of newspaper websites presented by Abdullah and Wei in [101]
found out that the main usability problems of newspaper websites are too large
advertisement areas and start pages containing a lot of links rather than useful
information.

Dungli and Cassar [16] claim that model-based and interaction-based approaches
could suffer from subjectivity of results when the problems found during automated
testing cannot be easily fixed for all users. On the contrary, metric-based automated

1 http://www.websiteoptimization.com/services/analyze/
2 https://www.deadlinkchecker.com/

37

usability evaluation provides precise results as the evaluation is performed based on
known usability guidelines.

The inevitable outcome of every usability evaluation including both manual usability
evaluation and automated usability evaluation is the report provided as a result of the
evaluation. Usability report is an important aspect of every usability evaluation as
properly structured report clearly outlines the elements violating guidelines, reason of
violation and probable cause of the problem making it easier for developers to
understand the cause and fix the problem. In general, reports contain the description of
guidelines that have been checked, an overview of evaluation results pointing out the
guidelines being violated, description of failures and other information relevant to
usability evaluation. According to Schiavone and Paternò [10], tools for automatic
usability evaluation can be additionally divided into the next classes based on the way
they show the validation results: code-oriented approach, graphical approach and
separate application approach. The importance of this division is that the main output
target users of tools for automated usability evaluation receive are the validation results.
Results should clearly outline found defects and the elements that violate the guidelines.
According to the study conducted by Schiavone and Paterno in [10], most of the tools fall
into the code-oriented approach, highlighting detected errors in HTML code.
An advantage of such method is that WUI developers can easily identify the line in code
that caused the problem. The disadvantage of this approach that in many cases finding
the row of the code responsible for certain visual characteristics is practically impossible
as the visual inconsistency can be caused by multiple violations at the same time.
Graphical approach solved aforementioned problem rendering the Web page before the
reporting usability problems and locating the deviations in UI page through placeholders,
tooltips, labels and other graphical elements. Nevertheless, Dingli and Cassar in [16]
point out that such approach does not allow the clear identification of the error type
making it less attractive for developers. In its turn, separate application approach
overcomes the limitation of both previous approaches as stated by Dingli and Mifsud in
[15]. In general, separate application contains the description of failed usability guideline,
the reason for failure and the suggestions on how to fix detected usability defect [15].

 Yusop and Vasa [62] performed the analysis of 147 different usability reports of
different tools and showed that developers and testers often provide the observed
result, expected results and steps to reproduce when describing usability defects.
The main outcome of their work is that they found the information most required by the
software developers was the least provided by reporters such as the cause of the
problem and insufficient information in steps. Friess in the research presented in [102]
came to the same conclusion that many findings in usability evaluations are not reflected
in reports. For that reason, the consistency and sufficiency of the data in evaluation
results are highly variable.

Følstad et al. [63] performed the survey within usability experts on reporting usability
issues during usability evaluation and found that only 4% of automated usability
evaluation results are described according to the format defined in standards or
literature. The remaining 96% of respondents reported they developed their own format
for reporting usability issue.

One possible format for reporting usability problems is to use Evaluation and Report
Language1 (EARL). EARL is a machine-readable format for expressing results for usability

1 https://www.w3.org/TR/EARL10/

38

evaluation based on the designed vocabulary for expressing test results. It is intended
for developers of Web accessibility evaluation and validation tools simplifying the
exchange of test results between evaluation tools in an environment independent way.
The advantage of EARL is that it facilitates processing of evaluation results providing the
unified format of presenting usability evaluation results; it is designed to support
exchanging data between software tools, querying and analysing test reports, evaluating
dynamic and multilingual websites and others. The disadvantage of EARL is that it strictly
defines the format of the report without the possibility to extend it with additional
information such as the screenshot of element violating usability guidelines or the type
of element under evaluation.

Overall, multiple research works in the field of usability evaluation are concentrating
on reporting of new usability guidelines. In its turn, the majority of research works in the
field of automated usability evaluation are divided into three branches: interaction-based,
metric-based and model-based usability evaluation.

2.6 Chapter Summary
This chapter presented required overview of research activities connected to the topics
discussed in the dissertation. The chapter consists of two parts, first part provided
an overview of usability and accessibility, usability evaluation covering empirical
and inspection evaluation methods, automated usability evaluation including
inspection-based, metric-based and model-based approaches. The second part focused
on the state-of-the-art related works related to the current study.

Automated usability evaluation is a very popular and perspective area of research as
growth of web applications and various devices for browsing the Web increases the need
for automated usability evaluation. Interaction-based, metrics-based and model-based
methods addressing automated usability evaluation have been introduced. In fact, the
research achievements (e.g. established usability guidelines, methods for manual and
automated usability evaluation) in this field have paramount importance for designing
highly usable WUIs. Still, there is no complete solution that addresses the problem of
automated evaluation of visual usability guidelines of finally rendered WUI and
automatic evaluation of WUI usability during the implementation phase of WUI
development enabling feedback to developers immediately after modification. That calls
researchers to elaborate on new methods for automated usability evaluation.

39

3 Usability Guidelines for Automated UI Evaluation
A solid foundation for manual and automatic metric based usability evaluation is usability
guidelines that contain well-defined evaluation metrics and detailed description of
expected state of WUI elements and their properties. Multiple methods were used over
time for defining usability guidelines for automated web usability evaluation. The most
successful was XML Schema-based methods [10]. Regardless of this, however, existing
methods (XML Schema and definition table based method) are concentrating on
HTML-centric accessibility guidelines ignoring the usability guidelines covering visual
characteristics of WUI [12].

In this chapter, the thesis addresses this problem proposing usability ontology for
storing usability domain knowledge and for defining custom usability guidelines capable
of defining HTML-centric accessibility guidelines as well as usability guidelines covering
visual characteristics of WUI. The chapter focuses on main sources of usability guidelines,
principles, standards, and also on the methods used for formalising usability guidelines,
and the design of ontology for capturing knowledge of web usability domain for WUI
evaluation is discussed.

3.1 Introduction
Usability guideline is a very broad term including various disciplines, devices, WUI
segments, and approaches to the evaluation. Usability guidelines are developed to
simplify usability evaluation by helping to check that WUI satisfies certain guidelines and
criterions. Usability guideline is considered in the dissertation as an evaluable concrete
rule, criterion or principle pertaining to the evaluation of usability [8].

General usability guidelines applicable to a wide range of WUI are provided by
standards, WUI research works, surveys, and usability related scientific articles. Specific
usability guidelines, in turn, are developed by companies, platform development teams
and researches presented in scientific papers addressing the research of web usability
guidelines in the specific areas such as for example news portals, government, and
banking sector.

Usability guidelines are divided into two main categories: guidelines that can be
evaluated only manually and guidelines that can be evaluated both manually and
automatically without the involvement of human evaluator. Current thesis is
concentrating only on web usability guidelines that can be evaluated automatically.
Usability guidelines suitable for automated and manual evaluation, in turn, can be
divided into common usability and accessibility guidelines (applicable both to mobile and
desktop devices), guidelines designed especially for mobile and guidelines specific for
desktop devices only (Figure 1).

Common usability guidelines should be followed by most WUI. Application specific
usability guidelines including company (e.g. guidelines specific to Google material
design), platform (e.g. iOS guidelines) and application type specific usability guidelines
(usability guidelines suitable for e-commerce) are tied to a certain application type,
platform or a use case.

40

Figure 1. Categorization of usability guidelines suitable for evaluation.

In theory, usability guidelines can be categorized with more precision pointing out the
guidelines for specific devices or the screen resolution specific guidelines. In practice,
however, desktop and mobile platform usability guidelines constitute separate
categories as mobile devices have more constraints than desktop devices such as smaller
screen, single window accessible at one time and shorter user sessions. An important
concern about usability guidelines is that every single usability guideline is not applicable
to all kind of devices. Desktop device specific web usability guidelines are not always
applicable to the mobile web applications and vice versa.

In its turn, usability guidelines specific to tablet devices (portable PC with a mobile
operating system and touchscreen) can be moved into the category of mobile usability
guidelines or can establish their own category. Certain mobile device specific usability
guidelines are not applicable to tablet devices because of the bigger screen size of tablet
device. For instance, usability guideline encouraging developers to place radio buttons
vertically on mobile devices because of the small screen size of smartphones is not valid
for tablet devices because tablet devices have bigger screens and placing radio buttons
horizontally will not affect usability of WUI.

Guidelines suitable for automated evaluation should be precise and contain concrete
evaluation metrics that include the characteristic and the value of characteristic being
evaluated. For example, usability guideline presented in Appendix 1 (Example 3) is
suitable for automated usability evaluation as it accurately declares that the width of the
link is a characteristic being evaluated and 48 CSS pixels is the value of characteristic.

Nevertheless, not every web usability guideline is suitable for automated evaluation.
For instance, the next guideline A typical first-time visitor can do the most common tasks
without assistance derived from Userfocus Usability List1 cannot be accurately evaluated
automatically as there is no measurable characteristic.

In general, usability guidelines suitable for automated usability evaluation are
inevitable part of every tool for automated usability evaluation. Tools are divided into
two types: tools that have guidelines predefined (guidelines that are part of the tool and

1 https://www.userfocus.co.uk/resources/taskchecklist.html

41

that can be checked without preliminary configurations) and tools that have
customizable guidelines.

It is a limitation if a tool has only predefined guidelines and there is no ability to define
custom usability guidelines. There are different possibilities how to describe usability
guidelines. One of them is XML-based representation of guideline declarations.
In general, such XML-based descriptions are delivered as a part of tools focusing on the
automated usability evaluation.

WUI development technologies are now experiencing very rapid progress: HTML 5 has
been released as a successor of HTML 4, new WUI development frameworks have
appeared such as Angular1, Vue.js2, React3. Moreover, new techniques appearing allow
more opportunities for WUI testing (such as PhantomJS4 and Selenium5). They provide
methods for fetching the page, locating elements on the fetched pages, clicking
elements, filling inputs, moving between windows and others according to
pre-programmed scenario. Some of them can be reused also for automated usability
evaluation, especially for evaluating visual characteristics of WUI over DOM. Current
research demonstrates, how latest achievement in the area of WUI testing can be reused
for automated usability evaluation. Namely, this dissertation shows how to apply
Selenium for automated usability evaluation. For example, Selenium provides API for
evaluating finally rendered WUI including the evaluation of visual WUI characteristics.
With this development, the methods for defining usability guidelines should also be
reviewed as none of existing approaches allows defining usability guidelines related to
visual characteristics evaluation of WUI.

The main contributions to the community delivered herein is a method for defining
custom usability guidelines based on an ontology storing usability domain knowledge.

The rest of this chapter is organized as follows, Section 3.2 discusses the sources of
usability guidelines, while Section 3.3 explores existing methods to the definition of
usability guidelines. In Section 3.4, the ontology design for capturing knowledge of web
usability domain for WUI evaluation is introduced, and, finally, Section 3.5 presents the
summary of the chapter.

3.2 Sources of Usability Guidelines
Usability guidelines are developed with the purpose to help WUI developers and
designers to develop highly usable WUI. For WUI evaluation, usability guidelines are
derived from standards, HCI research and company-specific style guides.

3.2.1 Accessibility Standards
Accessibility is often named as a subset of usability [25] because it is focusing on making
WUI more understandable and perceivable including for people with disabilities.
The primary source of accessibility guidelines is accessibility standards. One of such
standards is Web Content Accessibility Guidelines (WCAG) [103] – a stable, referenceable
technical standard (containing about 70 guidelines) developed in collaboration with
organisations and individuals all over the world, with a purpose of providing a shared
international standard for web content accessibility that meets the need of governments,

1 https://angular.io
2 https://vuejs.org
3 https://reactjs.orgw
4 https://phantomjs.org
5 https://www.seleniumhq.org

42

companies and individual people. WCAG provides multiple layers of guidance including
principles, general guidelines, success criteria and a collection of sufficient and advisory
techniques. There are four principles at the top of WCAG: perceivable, operable,
understandable, and robust. Each principle contains general guidelines and basic goals
to make WUI more accessible. For each guideline, multiple testable success criteria with
sufficient and advisory techniques are provided with three levels of conformance A, AA
and AAA [104]:

• Level A covers the most basic accessibility requirements. Example of Level A
accessibility guideline: All non-text content that is presented to the user has
a text alternative that serves the equivalent purpose.

• Level AA contains usability guidelines being the most common barrier for
disabled users. Example of Level AA accessibility guidelines: The visual
presentation of text and images of text has a contrast ratio of at least 4.5:1

• Level AAA is the highest and most complex level of accessibility containing
very specific web accessibility guidelines. Example of Level AAA accessibility
guideline: Sign language interpretation is provided for all prerecorded audio
content in synchronized media

The World Wide Web Consortium (W3C) that is owner of WCAG specification claims
that most organisations will not achieve WCAG Level AAA as these guidelines are too
strict and following all Level AAA guidelines may be extremely time-consuming for some
content. For example, applying Level AAA guideline “Sign language interpretation is
provided for all prerecorded audio content in synchronized media [104]” to existing media
content should be reviewed and sign language interpretation is presented.

WCAG guideline description defines the characteristics WUI elements must hold to be
compliant with the guideline; such guidelines can often be checked automatically that is
why WCAG guidelines are often addressed by tools for automated usability evaluation.
For example, Figure 2 presents requirements WCAG defines towards the use of alternative
text declaring that all non-text content that is presented to the user has a text alternative.
Also, additional requirements are defined for controls, inputs and time-based media.

Figure 2. Example of WCAG guideline declaration – all non-text content has a text alternative [105].

An alternative accessibility standard to WCAG is Section 5081 (USA standard) –
a technical standard against which products can be evaluated to determine if they meet
the technical compliance. Section 508 is expected to require conformance to the W3C
WCAG 2.0 Level AA. Section 508 covers different aspects of IT including Web and desktop
applications, and telecommunication equipment. All United States government agencies

1 https://www.section508.gov

43

are required to comply with Section 5081. The standard contains subparts being separate
technical standards specific to various types of technologies and performance-based
requirements. Web-based intranet and internet information and applications, and
software applications and operating systems are the groups of technical requirements
(that are part of Section 508 standard) intended for improving the accessibility for WUI.
Section 508 provides a detailed explanation of every guideline to be followed including
success criteria, evaluation techniques and sample examples of following the guideline
in different contexts.

In general, WCAG is the only international accessibility standard that became ISO/IEC
International Standard2. Nevertheless, some countries develop their own accessibility
standards. For example, BITV3 is a German variant of the internationally recognised web
accessibility standard WCAG 2.0; RGAA 34 is a standard that all French central
government websites should follow (based on WCAG). The main difference between
BITV 2.0 and WCAG 2.0 is that BITV contains guidelines that are divided into two priorities
(Priority l and Priority 2) instead of three levels as in WCAG (Level A, Level AA, Level AAA)
where Priority l mostly contains guidelines from WCAG Level A and Level AA and Priority
2 contains WCAG Level AAA guidelines. In fact, there are single guidelines that were
moved from Level AAA to Priority l. Also, BITV 2.0 contains several additional guidelines
for sign language.

In reality, however, developing new accessibility standards will not benefit much as all
existing accessibility standards are using WCAG as a fundament. That is the reason,
why many countries require government web applications to comply with WCAG Level
AA guidelines including Estonia [27], Australia5, United Kingdom6 and many others.
Moreover, according to EUROPA - Web accessibility policy, all EU Commission websites
should follow WCAG Level AA guidelines [26].

Interoperability Framework of the State Information System [27] defines a set of
guidelines for preparing public sector IT legal acts, designing IT solutions and organizing
IT related public procurements in Estonia. One of the main statements it contains is that
WUI of information systems should comply with WCAG 2.0 Level AA.

3.2.2 HCI Research
The sources of usability guidelines are not limited only to standards. In fact, standards
like WCAG or Section 508 cover only accessibility guidelines being a narrow scope of
usability. Multiple other specific parts of a webpage like form inputs, layout of elements,
search field usability, content organization and many other categories of usability
guidelines are not covered by standards at all or covered superficially. That is the reason
why many research works aim to establish usability guidelines covering various
characteristics of WUI elements including usability guidelines for images and links [29],
guidelines addressing the navigation and page layout [30] and guidelines concentrating
on mobile devices [31]. One of the most popular evidence based user experience
research companies is Nielsen Norman Group. They conduct various usability studies and

1https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-
section-508-standards/section-508-standards
2 https://www.iso.org/standard/58625.html
3 http://www.bitvtest.eu/
4 http://references.modernisation.gouv.fr/referentiel/
5 https://www.finance.gov.au/archive/publications/wcag-2-implementation/
6 http://www.legislation.gov.uk/ukpga/2010/15/contents

44

present reports on various topics such as e-commerce usability guidelines and search
form design recommendations [79] and design recommendation for content
management [79]. The results provided in reports contain suggestions, guidelines,
recommendations and considerations on how to make WUIs more usable for users.
For example, the report of Content Management and Supporting Multiple Locations and
Languages [79] contains 80 design recommendations for intranet. Every recommendation
contains a name, a brief description, and screenshots with examples of pages that violate
and follow presented usability guidelines.

One of the widely used lists of usability guidelines is combined by Shneiderman and
Leavitt in [78]. The collection of guidelines contains more than 100 research-based web
design and usability guidelines. These guidelines are not established by the authors but
a result of their analysis on usability research works and usability evaluation reports.
The compilation of usability guidelines helps to avoid potholes and swamps while
designing highly usable WUI. Shneiderman and Leavitt unified the structure of all
presented usability guidelines and presented them through a structure consisting of
guideline, comments, category, sources, relative importance and strength of evidence.
Appendix 1 shows the example of usability guideline structure using the next usability
guideline as an example Design for User’s Typical Connection Speed. Relative importance
and strength of evidence are two characteristics being quite subjective as the importance
of guidelines varies between web applications. Nevertheless, these characteristics for
the definition of guidelines are widely used [15] [106].

With the emerge of mobile technologies and widespread of smartphones, research
focused on improving WUI usability has spread to mobile platform. Bringing web
applications to mobile device platform involves certain benefits and presents serious
challenges and peculiarities in usability and user experience because of smaller screen
size, finger as a typing device and additional features like camera and accelerometer [33]
[80]. In fact, mobile WUI should also follow same accessibility guidelines as other WUI.
Nevertheless, WCAG does not provide separate guidelines for mobile accessibility.
W3C provides Mobile Web Best Practices [32] that contain certain basic guidelines
(around 60 guidelines) for developing WUI for mobile platforms (the document has not
been updated since 2010).

3.2.3 Company Specific Usability Guidelines
It is not always enough to follow guidelines derived from the standards and usability
reports. Many companies design or outsource from design companies their own
corporate usability guidelines obliging web applications within the organisation to follow
similar style guidelines. That ensures that all views and pages of different company
applications share equal level of usability. These guidelines are commonly known as style
guides. A style guide contains guidelines that establish consistency between applications
encouraging developers to design highly usable web applications. As a result, users using
multiple applications will have a better understanding of WUI content. For example, style
guide can contain guidelines for submit and cancel buttons that define the colour scheme
for each of them (e.g. submit is blue and cancel is red). When the same colour scheme is
used across one web application or multiple web application of the company then users
can easily find submit and cancel buttons as they already know the colour for different
types of buttons.

Company-specific usability guidelines focus on guidelines for presentation elements,
including visual design elements such as colour, logos, fonts or icons; page or screen
layouts including spacing, justification and common items; and the correct use of

45

standard UI controls such as buttons, drop-down selections, radio button or checkboxes
[35]. Figure 3 shows an excerpt from Tallinn University of Technology style guide
demonstrating colour styles for buttons and examples of fonts. The excerpt provided
contains only a small part of the style guide that should be followed. The entire style
guide also includes allowed icons, styles for input and forms, colour palette, guidelines
for styling form controls (e.g. input fields), page components (e.g. pagination) and
navigation bars. Based on style guide strict usability guidelines are created. For example,
based on the data presented in Figure 3 next usability guidelines can be defined: primary
buttons should have a purple background colour with white font in front. The guideline
can also be evaluated automatically.

Company-specific usability guidelines are widely used for both back office web and
front office web applications where WUI design between different web applications
could be unified simplifying their use for the company employees and external users in
case of the front office web application. These styles are about corporate identity and
not applied only for web but also for publications, name cards etc.

Figure 3. Example of a company-specific usability guideline, excerpt from style guide of Tallinn
University of Technology1.

3.3 Defining Usability Guidelines Programmatically
The formation of comprehensive usability guidelines suitable for automated usability
evaluation is not an ordinary activity as every single usability guideline is not appropriate
for automated evaluation. Properly defined usability guideline suitable for automated
usability evaluation should contain a reference to an element (e.g. link, button), attribute
or property (e.g. contrast, position) being evaluated and the acceptance condition
(e.g. size > 10px); Figure 4 presents example of usability guideline (Example A) that can
be evaluated automatically whereas Example B presents example of a guideline that
cannot be evaluated automatically.

In order to automatically evaluate usability with a tool, guidelines must be formalised
and implemented programmatically. Broadly, two different approaches exist:

1. embedding usability guidelines into the evaluation logic of a tool.
2. separating guideline definition from the evaluation logic by the mean of an

external language. The vast majority of external languages are based on XML
schema.

1 https://www.ttu.ee/public/u/ulikool/TTU_stiiliraamat_2017/mobile/index.html

46

Figure 4. Example of a guideline that can be evaluated automatically and a guideline that cannot
be evaluated automatically (Example A and B).

3.3.1 Embedded Usability Guidelines
Usability guidelines can be embedded (or hard-coded) to evaluation logic. Hard-coding
usability guidelines into the evaluation logic is more straightforward and easy to
implement because it does not require developing the component for reading custom
usability guidelines. Nevertheless, modifying existing or adding new guidelines to such
type of tools is extremely complicated as it requires rewriting the code of the tool.
There are certain tools that do not provide a possibility to define new usability guidelines
such as AChecker [11], TAW1 and TotalValidator2.

AChecker introduced by Gay and Li in [11] is an open source tool used to evaluate
accessibility of WUI by automatically evaluating WUI conformance to WCAG and Section
508 guidelines. The only way to add additional guidelines to the AChecker is to modify
source code of the tool. Another example of a tool that embeds usability guidelines into
the evaluation logic is Test Accessibility Web (TAW)1, which allows checking WUI
conformance to WCAG guidelines automatically.

Embedding usability guidelines into the evaluation logic is not an advised approach as
extendibility of predefined usability guidelines with custom application specific usability
guidelines is a vital requirement as the existing usability guidelines can change or new
appear. In fact, it is unlikely that these tools contain usability guidelines suitable for each
application. Another drawback of the approach that it makes complicated to append
additional usability guidelines to the existing list of usability guidelines. To add additional
or modify existing guidelines source code of the tool should be modified. The modification
of the code requires additional expertise in programming languages that may be an
obstacle for the users of the tool. Also, some tools such as TAW1 do not provide the source
code of the tool meaning that only the tool developer can amend usability guideline.
Yet, they are useful for evaluating WUI against the set of guidelines established in them.

3.3.2 Separated Usability Guideline Definition
In order to enable extendibility and a possibility to modify usability guidelines, guidelines
need to be formalised in some formal language and separated from the logic of the tool.
Several attempts have been proposed. Beirekdar et al. [95] developed a guideline
definition language (GDL), which was one of the first languages for guidelines’ definition
based on the XML schema. Nevertheless, the approach did not have any traction due to
the certain severe disadvantages, such as the absence of dynamic web support (like

1 http://www.tawdis.net
2 http://www.totalvalidator.com

47

JavaScript and CSS) and inability to define relations between WUI components (e.g. the
relations between the label and associated field). These disadvantages called for
adopting alternative XML-based language overcoming the limitations of GDL.

The successor of GDL becomes another XML-based language for guidelines definition
– Unified Guidelines Language (UGL) [61]. The language was developed based on a robust
review of various types of accessibility guidelines integrating necessary elements into the
language defining a wide range of various test cases. The latest and the most
comprehensive XML-based language for defining usability guidelines have been
proposed by Schiavone and Paterno in [10]. They proposed Language for Web Guideline
Definition (LWGD) enabling a simple and flexible formalisation of guidelines, usually
defined using natural language and expressing more fine-grained guidelines than any
existing XML-based alternative. Figure 5 shows an example of describing WCAG guideline
“Every image should have alternative text defined” using LWGD.

This natural language description can be translated into a more structured sentence:
For each img HTML element inside the Web page, check that it has an alt attribute
defined. As we see from Figure 5, LWGD is a low-level HTML element-centric language
requiring solid knowledge of HTML to combine a new usability guideline. Despite the fact
that LWDG is the most advanced language for defining custom usability guidelines and it
is capable of defining most WCAG accessibility guidelines, it is limited mostly to defining
the structure of tags, attributes and their relations; defining visual characteristics of WUI
is not possible with this language, as it was intended for defining accessibility guidelines.
Despite the fact that LWDG was designed as HTML-centric language, extending LWDG
with the elements and characteristics from the domain of visual usability characteristics
will make LWDG more sophisticated.

<gdl_set xmlns="http://giove.isti.cnr.it"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://giove.isti.cnr.it.lwgdl.xsd">
 <name>Web Content Accessibility Guidelines</name>
 <guideline id="24.4" summary="Every image should have alternative text.">
 <description>
Check that every HTML img element contains valued attribute alt
</description>
 <criterion id="24.4.1" type="accessibility"
target="page">
 <checks>
 <cp>
 <eval_object mandatory="no" code="html">
 <object type="tag">img</object>
 </eval_object>
 <conditions>
 <condition>
 <evaluate operator="check" cond="followedby">
 <eltype="attribute">alt</el>
 </evaluate>
 </condition>
 </conditions>
 </cp>
 </checks>
 </criterion>
 </guideline>
</gdl_set>

Figure 5. The definition of accessibility guideline using LWGD.

An alternative to XML-based languages for defining custom usability guidelines –
definition table based approach that was proposed by Dangli [15]. Definition table based

48

approach incorporates usability guidelines through the use of special database table
allowing defining evaluation conditions. Each column of the table in database represents
certain characteristic such as HTML element, attribute, the corresponding text or the
value being evaluated. Also, the table contains conditions to be evaluated. For instance,
Figure 6 shows an example of incorporating usability guideline into definition table:
“URLs should not be complex and should ideally be less than 70 characters”. Every
element with a tag <a> that has href attribute as stated by the contents in the fields under
the tagA and attributeA columns respectively. For the guideline not to be failed, this
content of href needs to be less than 70 characters long, as stated by the contents in the
fields under the compareOperator and sizeA columns respectively. The guideline
presented in Figure 6 does not depend on any other HTML element that is why they are
all set to NULL.

Definition table-based approach is an HTML-centric approach that is capable of
evaluating values of HTML tags and corresponding attributes. Moreover, it allows
evaluating the order and position of HTML tags on the screen. The advantage of the
approach is that it is relatively easy to define new guidelines using that approach because
of simple and logical table structure. The primary disadvantage of definition table-based
approach is that extending definition table with additional concepts like contrast,
position, distance, width, length, scrolling will make the table more complex and less
understandable reducing the main purpose of definition table-based approach to
provide lightweight structure for defining HTML-centric guidelines. Also, it is impossible
to validate the correctness of usability guidelines automatically in definition table based
approach; custom validator should be developed for that purpose.

Figure 6. Example of incorporating the guideline into Guideline Definition Table.

One of the objectives of the thesis is to propose the tool for automated evaluation of
visual characteristics of WUI. As far as LWGD and UGL do not provide functionality for
defining custom usability guidelines for checking visual characteristics of WUI, in the first
preliminary prototype of the Guideliner published in [14] XML based metalanguage to
define such guidelines was proposed, calling it usability guideline definition language
(UGDL). Figure 7 presents an example of custom usability guidelines containing
self-explained elements. Each guideline has a name and description followed by its
evaluation metrics. The main difference between LWGD and UGDL is that the latter
defines elements on the screen rather than their representation in HTML code. Figure 7
shows that element link (HTML syntax does not contain link tag or attribute) was used to
define usability guideline checking the length of the links. LWGD manipulates with HTML
tags and attributes (refer to Figure 5). As a result, UGDL is not tight to any category of
guidelines (like HTML-specific or visual guidelines). However, development of UGDL was
discontinued (the limitations of XML-based approaches are discussed in Section 3.3.3)
in favour of more flexible and feature-rich ontology for defining custom usability
guideline described in Section 3.4.

49

<guideline name = "10.11 Use Appropriate Text Link Lengths"
description = "Make text links long enough to be understood, but short enough to
minimize wrapping. " >
 <link>
 <length notMoreThan = "50" />
 </link>
</guideline>
<guideline name = "5:7 Limit Homepage Length"
 Description = "Width scroll is not allowed.">
 <page type = "HOME_PAGE">
 <scroll type = "width" allowed = "false" />
 </page>
</guideline>

Figure 7. Example of custom usability guideline description using UGDL.

3.3.3 Limitations of Existing Approaches
All the aforementioned approaches including embedding usability guidelines into the
code, definition table based approach and XML-based approaches are capable of
defining various usability guidelines describing the structure of HTML code. They are
capable of incorporating most of the WCAG accessibility guidelines suitable for automatic
evaluation covering the proper structure of tags, attributes and the relations between
them. In fact, these tools allow expressing advanced guidelines regarding multiple
objects and more complex requirements regarding the greater number of types of
relations between objects.

Nevertheless, defining guidelines for evaluating visual aspects of a WUI like the
presence of scrolling, layout of elements, the positions of elements on the screen,
the distance between elements and many other assessments are not possible with these
approaches [12]. Of course, it is possible to extend existing language with new concepts
and relations. Nevertheless, there are conceptual disadvantages of XML Schema being
used as a language for defining usability guidelines. The main disadvantage of XML
Schema is that XML Schema defines the structure of document providing the
prescriptions how the document is styled. It introduces additional layer of complexity
when it is used to describe the domain of knowledge [107]. For example, it is good for
defining an element, element attributes and metadata about attributes such as
occurrence, value pattern, minimum and maximum length.

Another drawback of XML based languages is that they are HTML centric consisting of
HTML tags, attribute and their relations. Such method does not suit for defining visual
usability guidelines as visual characteristic (e.g. there is no HTML tag responsible for
scrolling) cannot be always defined with HTML tags. Adding additional language
constructions that enable to define visual usability guidelines will make the language
opaque and unclear as it should support both HTML tag specific definition of guidelines
and the definition of visual object specific usability guidelines.

The inability to perform the automatic validation of usability guidelines and
sophisticated way of integrating visual usability guidelines to the existing languages for
defining custom usability guidelines calls for adopting alternative approach for defining
usability guidelines compared to existing XML-based approaches. In this thesis the author
has explored a possibility to solve the shortcomings of XML-based languages by
constructing special domain ontology.

50

3.4 Ontology for Defining Usability Guideline
Ontology is a formal, explicit specification of a conceptualization [108]. Ontology is a
prominent component of intelligent system. It enables storing and capturing domain
knowledge in a human-understandable and at the same time in a machine-processable
way. In general, ontology contains entities, attributes, relations and axioms, allowing
formal presentation of knowledge as a concept within a domain, and the relations
between concepts.

Ontology can be described in many languages, e.g. Ontolingua, Loom, and Semantic
Web languages, such as OIL, DAML+OIL, W3C Web Ontology Language (OWL) and RDF
Schema. This thesis is concentrating on OWL – a standard language for ontology
description recommended by the W3C. OWL is a Semantic Web language designed to
represent rich and complex knowledge about things, groups of things, and relations
between things1. OWL was selected for the dissertation as it is the most widely used
language for creating ontologies [109]. OWL enables capturing knowledge by
representing the concepts and relations between them.

The knowledge in ontology is presented via the terminology box (TBox), and assertions
box (ABox). The primary components of OWL ontologies are classes (sets consisting of
individuals), properties (relationships that link two individuals together) and individuals
(also called instances). Classes and properties are combined into Terminology Box (TBox)
– a set of definitions and specifications. In the established usability ontology, the TBox
contains the concepts and terms of usability guidelines. Whereas, Assertion Box (ABox)
contains individuals or a set of data axioms; in particular, the ABox contains various
usability guidelines defined as individuals.

The mostly applied relations between ontology concepts are the is-a relation, that
defines the hierarchy between class to sub-class, and the part-of relation, defining the
relationship of an entity and its components. The formal semantics of OWL allows
inferring of classification taxonomies and thus helps to identify inconsistencies in the
established ontology at any time. Thus, OWL is progressive language that is used in
developing intelligent systems, that also coincides with the aim of current work.

Other important units of ontology are instances. Instances (also known as Individuals)
can be referred to as being ‘instances of classes’; they are specific instances of the objects
or concepts. “A class in ontology is a classification of individuals into groups which share
common characteristics. If an individual is a member of a class, it tells a machine reader
that it falls under the semantic classification given by the OWL class” [105].

Reasoners are used to check the validity of ontology concepts and infer consequences.
Reasoners infer logical conclusions from the asserted facts or axioms. Moreover, they
check the consistency (if a class can have any property, relation or not based on
description) of an ontology. They are used to calculate inferred ontology class hierarchy
based on the definitions of the concept. Hence, the application of reasoners ensures
coherent and consistent hierarchy in ontology.

The purpose of current thesis is to define usability ontology for storing usability
domain knowledge. As already mentioned in Section 3.3.3, existing XML based
approaches are focusing on defining HTML specific guidelines describing HTML tags, their
attributes and the order. Extending these languages with the concept of visual usability
guidelines makes the language opaque and ambiguous. Expressive possibility of XML
based languages is limited, and thereby there is a need for something more expressive

1 https://www.w3.org/OWL/

51

than just a metalanguage. For the reasons presented above, ontology would give more
powerful means to store usability domain knowledge, in particular, different types of
guidelines (e.g. HTML-specific, visual guidelines). Therefore, the exploitation of ontology
instead of XML-based language allows inferring of classification taxonomies and helps to
define inconsistencies in the designed ontology. Overall, it is providing an effective way
to uniformly describe and store usability domain knowledge through various aspects,
being both human- and machine-readable, and deliver a shared vocabulary describing
types of concepts that exist in the domain, and their properties (metrics) and relations.

The idea of integrating WUI usability guidelines into ontology is not new. Xiong et al
in [110] presented ontology-based approach for organising and generalizing usability
guidelines. They point out that the main drawback of their approach is that ontology
contains only domain knowledge and in order to apply it to the evaluation process
additional mappings should be introduced. Another problem is that proposed ontology
contains only HTML-specific domain knowledge; it contains concepts for defining the
tags, HTML attributes and relations between them. Authors point out that it is impossible
to define usability guideline for describing background colour or contrast of element on
the page with their approach.

The usability ontology presented in this chapter addresses the aforementioned
problems providing possibility to define HTML-specific domain knowledge as well as
domain knowledge of visual characteristics of finally rendered WUI. Another advantage
of usability ontology presented in this chapter (Section 3.4.1) is that it is designed with
the possibility to be used for automated usability evaluation. This means that ontology
contains all required data and object properties that can potentially be reused by
automated usability evaluation tools.

3.4.1 Usability Ontology
Ontologies are mostly designed using specific software – ontology editors. To establish
usability ontology, the author used the Protégé1 ontology editor version 5.3 for the task.
Protégé is a free open-source platform providing a suite of components to build domain
models and knowledge-based applications with ontologies. The Protégé ontology editor
can be easily integrated with various reasoner tools, for example, the HermIT, Pellet, and
Fact++. In practice, there are no limitations on editors to be used.

The underlying idea of the ontology is to deconstruct the WUI view, and page as a
whole is one of the views. Such deconstruction is very important, as in general, usability
guideline covers only a single view (or WUI element) of the page. Overall, usability
guidelines are divided into the characteristics; characteristics are grouped into the
corresponding objects, object properties, data properties and relations between various
objects. The data was used as a fundament for the structure of the usability ontology.
Every guideline suitable for automated evaluation was split into different parts that
characterize the element or the attribute being evaluated. For example, usability
guideline The contrast ratio of the link text and its background has a contrast ratio of at
least 4.5:1 presented in [103] by WCAG is divided into next characteristics:

 Element – link.
 Element attribute – contrast.
 Value of attribute – 4.5:1.

In order to formalise such structure in established usability ontology primitive classes
(they have only necessary conditions defined) have been used including Guideline,

1 Protégé, https://protege.stanford.edu/

52

GuidelineElement, ElementAttribute, PageAttribute and ValuePartition (a special class
used to refine guideline descriptions through a pre-defined set of value concepts). Figure
8 outlines class hierarchy of defined usability ontology and its some descendant classes.
Overall, ontology contains around 250 defined classes.

The main concept of usability ontology is class named Guideline that is needed for
storing usability guidelines. All guidelines defined in ontology are stores as a subclass of
Guideline class. Different types of usability guidelines such as mobile, desktop and
accessibility guidelines (subclasses such as MobileUsabilityGuideline,
DesktopUsabilityGuideline and AccessibilityGuideline) are defined as a subclass of
Guideline. Class Guideline also holds defined classes that are used to infer new subclasses
(e.g. GuidelinesConcernedWithLink – a defined class that holds all classes concerned with
links in the set of primitive guidelines) via reasoning – the actual class hierarchy for a
defined class is computed by the reasoner according to definitions given in the ontology.
Defined classes are subsequent subclasses of the Guideline parent class and contain only
class definitions. All guidelines are defined in the primitive class UsabilityGuideline.
Each guideline is linked to the GuidelineElement class via the hasGuidelineElement object
property. That relation defines which GuidelineElement is described by guideline.
Also, each guideline is annotated using the following annotation properties (predicates
that provide additional informal documentation annotations about ontologies):

• Guideline – short description of the guideline (custom defined annotation).
• Comment – provides details of the guideline (Protégé built-in field).
• Reference – source of the guideline (custom defined annotation).

Figure 8. Class hierarchy of defined usability ontology and some of its descendant classes (excerpt
from the Protégé ontology editor).

The GuidelineElement class holds subclasses describing elements a guideline may be
applied to such as button, text input, frame, link, and paragraph. GuidelineElement is
used to represent the element being evaluated by usability guideline; it can represent
WUI element (e.g. link or button) as well as the page as a whole (e.g. when page-specific
characteristics such as load time or the length of scrolling are evaluated). Appendix 2
outlines a selection of usability ontology showing the main concept - GuidelineElement
and its descendant classes over the is-a relationship. This taxonomy of subclasses reflects

53

WUI elements or their equivalents and their related structure. GuidelineElement class
contains elements the guideline can be applied to. For instance, the WUI element
correspondent to the class TextualInput is the element defined in HTML code as <input
type="text">. From the perspective of this thesis, the purpose of usability ontology is to
describe and store usability domain knowledge. Defined ontology does not contain any
direct mapping between the GuidelineElement classes and corresponding HTML elements.

One important problem that is addressed with the designed ontology is ability to
define both HTML-centric and usability guidelines covering visual characteristics.
These types of usability guidelines are distinguished by data properties. ElementAttribute
class incorporates both HTML attributes and visual characteristics of element like width,
distance and contrast. In order to distinguish HTML and visual characteristics, the object
property hasAttributeType was introduced. Object property hasAttributeType links
ElementAttribute class to enumerated class AttributeType restricted to the two
individuals – VisualAttribute (for marking visual characteristics) and HtmlAttribute (for
marking HTML attributes); VisualAttribute and HtmlAttribute are defined as disjoint
classes meaning that the attribute cannot be both VisualAttribute and HtmlAttribute at
the same time. Figure 9 presents the description of Contrast class outlining classes it is
subclass of. Statement hasAttributeType only VisualAttribute states that Contrast is a
visual characteristic and all GuidelineElements linked to the contrast will be treated as
usability guideline covering visual characteristics.

Figure 9. Example of visual usability guideline regarding contrast: description of class Contrast in
the Protégé ontology editor.

GuidelineElement class is linked to class ElementAttribute via the hasAttribute object
property. In this case, the domain of hasAttribute object property is GuidelineElement
and the range is ElementAttribute. That enables to describe the attributes that are
associated with the GuidelineElement. Let us take a closer look at the example of an
existential restriction hasAttribute some Contrast on the Link class. It acts along the
hasAttribute property and has a filler Contrast. This restriction describes the class of
individuals that have at least one hasAttribute relationship to an individual that is a
member of the class Contrast. In fact, GuidelineElement class can be linked to multiple
classes ElementAttribute via the hasAttribute object property. Additionally, the usability
ontology contains the next object properties: hasAttribute, hasAttributeType, hasCase,
hasContentType, hasDeviceType, hasLengt, hasDistanceType, hasGuidelineElement,
hasGuidelineType, hasLayoutType, hasPageAttribute, hasUnit, hasPositionType,
hasRelativeImportance, hasStrengthOfEvidence, hasTagAttribute, hasUnitAction.

In addition to object properties, multiple data properties are defined in the ontology.
The difference between data property and object property is that while object property
links to objects (e.g. GuidelineElement class can be linked to subclasses of
ElementAttribute), then data property links class to an XML Schema Datatype value or an

54

RDF literal (e.g. String, Integer). Data properties are used in the usability ontology to set
certain characteristic of the guideline to a concrete value. Data property can have a
domain and a range defined. They link together individuals from domain to the XML
Schema Datatype value or RDF literal. Thus, they describe relations between an
individual and data values. For example, data property hasMinContrastValue is used to
state the contrast rate of a particular WUI element (Figure 10). The domain of data
property hasMinContrastValue is GuidelineElement and the range is xsd:string.
Data property assertions can be used to associate individuals with data properties.
The usability ontology has the following data properties defined: hasContentLength,
hasMaxNumberOfInput, hasMinNumberOfInput, hasScroll, isVisited, hasUnit, hasValue,
isFollowedBy, isOneDirectional, isPrecededBy, isSelected, isUnique, isValid, isValued.

As it is discussed before, ElementAttribute class describes attributes of WUI elements.
Nevertheless, there are characteristics applicable only to the page as a whole.
For example, page load time or the length of scrolling are the attributes of the whole web
page. That is why class PageAttribute was introduced uniting page specific
characteristics. Currently, only UIPage class (subclass of GuidelineElement) is linked to
subclasses of PageAttribute.

Figure 10. Property assertion view for hasMinContrastValue data property (excerpt from the
Protégé ontology editor).

ValuePartition class plays an important role in defined usability ontology restricting
the definition of certain classes to the defined set of values. Overall, seven subclasses of
ValuePartition class were defined:

1. StrengthOfEvidence defines strength of evidence of a particular guideline on
the scale of 1-5 (added to the guideline description over
hasStrengthOfEvidence object properties accordingly in the ontology).

2. RelativeImportance defines relative importance of the guideline on the scale
of 1-5 (added to the guideline description over hasRelativeImportance object
properties accordingly in the ontology).

3. Unit contains measurement for the element’s characteristic being evaluated.
For instance, width of WUI element could be defined in Pixels or Ems.
Usability guidelines should be strictly defined as designing usability guideline
for evaluation the width of element leaving the unit of measurement out can
be interpreted ambiguously. Unit class reduces uncertainty of usability
guideline meaning.

4. DeviceType specifies the device to which the guideline could be applied. It is
an essential ValuePartition as there are guidelines applicable only to mobile
or to the desktop devices.

5. PositionType defines the relative position of the element in the set of
elements. For instance, there are usability guidelines checking the visual
position of element regard to another element such as checking that the
labels should be above the input fields on mobile devices.

55

6. LayoutType specifies possible types of layout of the WUI elements on the
screen. The appropriate example could be that in order to define usability
guideline claiming that vertically aligned radio buttons are more usable on
mobile device; Layout type class described the vertical alignment via subclass
Vertical.

7. AttributeType allows distinguishing HTML attributes from visual
characteristic of WUI. For instance, alt attribute of the Image is HTML
attribute as it could be retrieved directly from the img tag. On the contrary,
the contrast of image cannot be retrieved from the HTML code of element
but additional calculations are needed.

ValuePartition class lists all individuals that are members of the class. For example,
ValuePartition class has a subclass PositionType that contains the individuals (and only
the individuals) Above, Below, Left and Right. Classes such as this are known as
enumerated classes. All subclasses of ValuePartition class are defined as enumerated
classes. Figure 11 shows Class Description View of PositionType class demonstrating that
PositionType is equivalent to anonymous class defined by enumeration {Above, Below,
Left, Right}.

Figure 11. The class description view displaying an enumeration class PositionType (screenshot
from the Protégé ontology editor).

Overall, proposed ontology has been designed to be flexible enough to capture and
store usability domain knowledge covering both HTML elements and their layout, and
also the visual aspects of WUIs. The design of the core ontology is extendible, and new
guidelines can be easily defined. Section 3.4.2 discusses the exploitation of the usability
ontology for WUIs and how to define usability guidelines in it.

3.4.2 Using Usability Domain Knowledge to Define Usability Guidelines
Having established the ontology design, let us now focus on re-using established domain
knowledge to define custom usability guidelines. Usability guidelines are defined in the
ontology as subclasses of class Guideline. The process of adding new usability guidelines
is based on the example of mobile web usability guideline presented by Google Mobile
group1: All buttons should be at least 48 CSS pixels wide. Figure 12 shows an example of
a guideline concept description in the Protégé ontology editor defining mobile usability
guideline 28-ButtonShouldBeWideEnough.

In order to define a new usability guideline in ontology, new subclass is added as a sub
class UsabilityGuideline, and a naming convention shown by Figure 13 must be applied.
The name of the class starts with unique identifier (is needed to distinct usability
guidelines), following by the short name of the guideline. The class is made disjoint with
other subclasses of class UsabilityGuideline, so instance of any subclass of
UsabilityGuideline class cannot be the instance of another subclass (as each usability
guideline is unique). As shown in Figure 12, class 28-ButtonShouldBeWideEnough
contains object property hasGuidelineElement which defines the element being

1 https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

56

evaluated. Statement hasGuidelineElement only Button shows that the defined guideline
evaluates only buttons; statement hasDeviceType only Mobile outlines that the guideline
is applicable only to mobile devices.

Figure 12. Example of a usability guideline concept definition for the guideline “Buttons should be
wide enough” (screenshot from the Protégé ontology editor).

Figure 13. Naming convention applied while describing classes of usability guidelines in the
ontology.

Additional information about the guidelines is provided as Class Annotations where
guideline’s general description is added as the ‘guideline’ annotation, the annotation
‘comment’ provides further details and ‘reference’ provides URL for the particular
guideline (Figure 14).

Figure 14. Example of guideline annotation with human-readable comments (screenshot from the
Protégé ontology editor).

Next step is to create individuals based on the aforementioned description. Individuals
(also known as Instances) can be referred to as being ‘instances of classes’. Individuals
may represent the objects as an abstract individual such as numbers and words. Thus, it
is possible to create multiple individuals based on the same guideline class. In the context

57

of established ontology, individuals allow defining the same usability guidelines
but with different metrics. Figure 12 contains the individual with name
28-01-ButtonShouldBeWideEnough. After individual is created the Width of Button
should be defined (according to the guideline it should be at least 48 CSS pixels).
An instance of ontology class Width is created defining the value and the unit of
measurement of the metric being evaluated. Figure 15 demonstrates the description and
property assertion view for an individual of Width class. Statement hasUnit Pixel means
that the Pixel is a unit of measurement for width of WUI element, and the statement
hasMinContentLenght 48 determines minimum value for the element measured in the
units defined by hasUnit. The advantage of the approach that the evaluable metric can
be easily modified. For example, a Width instance with hasMinContentLenght of 48 pixels
can be created to define the length of button of mobile device and another instance
hasMinContentLenght of 15 pixels to define the length of the button for desktop device.
Usability domain knowledge defines that the object of type Width contains data property
hasMinContentLength. Whereas, the definition of Width instances specific to the
usability guidelines is done using individuals. Such approach is used to define all metrics
such as length, width, contrast, position of WUI elements defined in usability guideline.

Figure 15. Example of guideline property assertion view (screenshot from the Protégé ontology
editor).

To create the ontology of usability guidelines, the author analysed recommendations
in scientific publications [29] [111], WCAG [103] and Section 508 guidelines1,
Research-Based Web Design [106] and Usability Guidelines from U.S. Dept. of Health and
Human Services [78], and supplemented with recommendations from the Nielsen
Norman Group [8] [31] [65]. Moreover, evidence-based user experiences and usability
research works have been inspected [30] [31]. Overall, around 300 usability guidelines
were analysed and 98 guidelines that can be processed automatically were filtered out.
The purpose of usability ontology is to store only those usability guidelines that can be
evaluated automatically, thereby only these usability guidelines were used as a basis for
ontology definition. Table 1 contains categories of usability guidelines for the established
ontology with the number of guidelines for each category.

Overall, ontology contains 98 usability guidelines including 55 accessibility guidelines,
23 common usability guidelines suitable for desktop and mobile devices and 20 usability
guidelines suitable only for mobile devices. Appendix 3 presents some examples of
guidelines for each category.

Categorisation of usability guidelines by WUI category (refer to Table 1 for more
details) is widely used in researches on usability guidelines [106]. In the context of
desktop devices, defined usability guidelines address laptops and desktop computers
with diagonal 10 – 24 inches. Usability guidelines for tablet devices and smart phones
with diagonal bigger than six inches and desktop devices bigger than 24 inches are not in

1 https://www.section508.gov

58

the scope. Aforementioned groups of devices were taken as according to the research
conducted in year 2016 and published in [112], the most popular screen size of mobile
devices (more than 90% accessed web) are from 4 till 6 inches. In case of desktop devices,
computers with diagonal 10 – 24 inches cover more than 90% of all web usage from
desktop devices1. Overall, devices with screen size 6 – 10’’ form less than 10% usage all
over the world.

Overall, established ontology has been published in [113] and complemented with
additional concepts and guidelines that are presented in current thesis. Presently,
established ontology is used only for describing and storing usability domain knowledge.
It does not perform any kind of evaluations of WUI conformance to the guidelines;
however, based on available descriptions this can be achieved. The evaluation process of
WUI is carried out by the WUI evaluation component, described in detail in Section 4.4.

Table 1. Categories of usability guidelines for the established usability ontology.

Category Mobile Com-
mon

Accessi-
bility Total

Organisation of information and content 2 8 5 15
Tag attributes 0 0 14 14
Links 4 3 3 10
Screen-based controls 7 3 0 10
Tags 0 0 6 6
Radio Button 1 2 3 6
Text Appearance 0 0 6 6
Checkbox 0 2 3 5
Heading 0 0 5 5
Button 4 0 0 4
Text Appearance 0 3 0 3
Graphics, images and multimedia 0 1 2 3
Select 0 1 2 3
Scrolling 2 0 0 2
Password input 0 0 2 2
File 0 0 2 2
Textarea 0 0 2 2
Overall 20 23 55 98

3.5 Chapter Summary
This chapter focused on the sources of web usability guidelines and the methods used to
formalise usability guidelines to use in different tools, e.g. XML Schema and definition
table. Major contribution of this chapter is the usability ontology. The author analysed
the structure of usability ontology he proposed as a solution to overcome the limitations
of existing approaches such as inability to define visual usability guidelines, and
presented an alternative method to define usability guidelines in a machine-processable

1 https://techtalk.pcpitstop.com/2017/01/16/pc-monitor-display-size

59

form. The established usability ontology makes it possible to capture domain knowledge
in human-understandable, yet in a machine-processable way. Design of the ontology is
extendable; additional guidelines can be easily added based on the established usability
domain knowledge.

This chapter constitutes to the first phase of the author’s studies about web usability
guidelines continued by research into automated evaluation of WUI conformance to the
usability guidelines and usability evaluation during its implementation phase, discussed
in the forthcoming chapters.

61

4 Automated Evaluation of Usability
High demand for human and time resources [47], difficulty to get potential users
participating in usability evaluations [114] and limited coverage of evaluated features
[46] are the main drawbacks of manual usability evaluation. The alternative to manual
usability evaluation is automated usability evaluation requiring fewer resources to use,
as the configuration of the tool for automatic usability evaluation can be done once and,
afterwards the evaluation can be performed multiple times without any preliminary
configurations. Automatic evaluation will save on involvement of human resources.
In contrast, manual usability evaluation requires the involvement of experts with every
usability evaluation.

This Chapter addresses automated evaluation of WUI conformance to usability
guidelines, including visual usability guidelines, and proposes the Guideliner tool –
a solution for automated evaluation of HTML-centric and visual usability guidelines. The
Guideliner tool is one of the main contributions of the thesis author.

4.1 Introduction
Usability evaluation is a method for identifying specific problems with usability of
products [9]. The evaluation can be conducted manually or executed automatically using
special tools. Automated usability evaluation has multiple advantages over manual
methods such as it does not require the involvement of potential users in usability
evaluation, the evaluation is conducted by computer and the evaluation report is
provided automatically, and it also increases the coverage of evaluated WUI elements.
Overall, automated usability evaluation reduces the costs and time spent on usability
evaluation.

Typically, research of automated usability evaluation is divided into three main areas:
interaction-based usability evaluation [66] [67], metric-based usability evaluation [87]
[88] and model-based usability evaluation [87] [89]. As described in Section 2.5.2,
model-based and interaction-based approaches to automated usability evaluation suffer
from subjectivity as the problems found during automated testing cannot be easily fixed
for all users. On the contrary, metric-based automated usability evaluation provides
precise results as the evaluation is performed based on known usability guidelines and
measurable characteristics. Current thesis concentrates only on metric-based automated
usability evaluation as (in comparison with interaction and model-based usability
evaluation) it is more flexible to automation, the evaluation results, in general, are better
interpretable and comparable to well-established guidelines and standards, and there
are many methods to automate metric-based usability evaluation.

Multiple tools exist that are developed for automated metric-based usability
evaluation. The widest variety of such tools – a list of 116 tools1 – is provided by W3C in
their Web Accessibility Evaluation Tools List2. The Web Accessibility Evaluation Tools List
contains tools for evaluating WUI conformance to WCAG, Section 508, BITV (German
government standard), JIS (Japanese industry standard) and conformance to other
country-specific accessibility guidelines. The list also contains WUI element specific tools
that evaluate only certain characteristics of elements such as the contrast rate of
buttons, or broken links. A general characteristic of most of the automated accessibility

1 as of 16.09.2018
2 https://www.w3.org/WAI/ER/tools/

62

evaluation tools presented in this list is that they are concentrating on finding web
accessibility problems parsing the HTML code of the WUI and finding deviations from
accessibility guidelines in the HTML code [10] [15]. Only ten out of 116 tools listed
address some visual aspects of WUI described by guidelines.

While W3C maintains a well-represented list of tools for WUI evaluation,
Timbi-Sisalima et al. in [115] performed a comparative analysis of 126 online accessibility
evaluation tools including tools listed by W3C, free and the commercial tools, and tools
presented in scientific publications that are not available online. They found that the
most popular tools in the market are those that have a web interface for running the
evaluation and that perform the evaluation of complete web page. They filtered out 18
tools (e.g. AChecker1, WAVE2, Tenon3, Tanaguru4, Examinator5) out of 126 based on the
characteristics of the tools including the guidelines tools support, report format, API
support, repair recommendation. The results of their comparative analysis shows that
about half of the evaluated tools (10 tools out of 18 most popular) are configurable
(e.g. it is possible to select the category of guidelines for evaluation), the vast majority of
tools (17 tools) are capable of evaluating only one page at a time (it is not possible to
evaluate group of pages with them). In general, all evaluated tools provide detailed
reports and the recommendations on how detected usability defects can be fixed.
Overall, Timbi-Sisalima et al. point out that there is still a need for further research for
developing tools for automated usability evaluation as mostly the existing tools are
limited only to accessibility evaluation (they are all mostly concentrating on WCAG) with
minor differences in a feature set they provide and the way they propose evaluation
results.

Only a few tools out of 126 are able to assess visual characteristics of WUI in addition
to accessibility guidelines – these are Wave2, Google Mobile-Friendly Test6, and
TestMySite7 etc. WAVE in addition to usability guidelines allows evaluating contrast of
elements on the screen. Google Mobile-Friendly Test is only targeting mobile platforms
and allows checking the size of links and buttons on mobile screens as well as
mobile-specific HTML characteristics (e.g. HTML attribute viewport values). TestMySite7
tool allows in addition to HTML-centric guidelines to evaluate page load time,
optimization of images and scripts on the page for mobile devices.

Overall, all previously discussed tools are concentrating mostly on HTML-centric
usability guidelines. Of course, there are tools that evaluate single visual usability
guidelines such as contrast of elements and the size of buttons (e.g. WAVE).
Nevertheless, none of the aforementioned tools provide a solution that is capable to
evaluate multiple visual characteristics of WUI (e.g. length of scrolling, contrast, position,
distance, width, length) at the same time, as their capabilities are limited to only a certain
aspect of user interface and its usability. The primary motivation of the current chapter
is to address the aforementioned gap by concentrating on the methods of automatic
evaluation of WUI conformance to HTML-specific as well as visual usability guidelines on

1 https://achecker.ca/checker/index.php
2 http://wave.webaim.org/
3 https://tenon.io/
4 http://www.tanaguru.com/en/
5 http://examinator.ws/
6 https://search.google.com/test/mobile-friendly
7 https://testmysite.withgoogle.com/

63

the final layout of WUI as a user sees it rendered in browser window, i.e. when all scripts
and styles have finished their loading and have been applied.

In this chapter, a solution for automated evaluation of WUI conformance to usability
guidelines called the Guideliner is presented. The Guideliner tool concentrates on
automatically evaluating both types of usability guidelines – HTML-centric accessibility
guidelines and guidelines covering visual characteristics of WUI. The main contribution
to the community delivered herein is twofold – first a method for automated evaluation
of visual usability guidelines of finally rendered WUI, and second – a tool to carry out
automatic evaluation of WUI and its accordance to guidelines, including automated
visual evaluation.

The rest of this chapter is organized as follows: Section 4.2 introduces the Guideliner
tool and provides an overview of its architecture. Section 4.3 discusses the structure of
ontology repository of usability guidelines and ontology processing engine used within
the Guideliner tool, while Section 4.4 concentrates on the description of WUI evaluation
component of the tool. In Section 4.5 the User Interface and technical interfaces of the
Guideliner are described. Section 4.6 focuses on the Guideliner performance
optimization, while Section 4.7 performs evaluation of the Guideliner in comparison with
other tools. The limitations of the Guideliner are pointed out in Section 4.8. Finally,
Section 4.9 summarizes the chapter.

4.2 Guideliner – a Tool for Automated Web Usability Evaluation
Most of the tools for automated accessibility evaluation focus on checking the
compliance of the page’s HTML code to HTML-specific guidelines; evaluation of
correspondence to visual guidelines of finally rendered WUI is not possible with these
solutions. The novelty of the Guideliner is that it evaluates WUI conformance to visual as
well as HTML-centric usability guidelines on the final rendered result (after page has
finished its loading and all scripts have been applied).

Architecturally, the Guideliner is divided into four self-sufficient software modules –
name WUI Evaluation Component, Ontology Processing Engine, Ontology Repository and
Guideliner User Interface – based on the aspect of functionality they cover. Such design
principle is called separation of concerns [116] and is widely used in software
development industry when one component has a very limited and narrow scope of
functionality it is responsible for. Limiting scope of functionality allows development and
testing of each component in isolation from the rest of the system, eliminating failures
caused by unintentional side effects. The high-level architecture of the Guideliner is
presented in Figure 16.

The Guideliner Core is a primary back-end component and contains three
sub-components: Ontology Repository, Ontology Processing Engine, and WUI Evaluation
Component. The Guideliner User Interface is a separate component (easy-to-use web
application) providing a user interface for managing usability guidelines and triggering
the evaluation process. The advantage of this modularization is that every component
has its own area of responsibility such as Ontology Repository is the source of usability
guidelines, while Ontology Processing Engine transforms the guidelines to the required
format, and WUI Evaluation Component performs the evaluation of input WUI according
to the usability guidelines. Each of these modules will be addressed in detail throughout
Sections 4.3-4.5. The XRebel module is a temporary addition to the Guideliner to analyse
the performance of the tool through performance tests presented in Section 4.6.

64

Figure 16. High level architecture of the Guideliner.

4.3 Ontology Repository and Ontology Processing Engine
The role of the Ontology Repository is to store the usability ontology (described in Section
3.4) that captures knowledge of web usability domain, consisting of a set of predefined
usability guidelines suitable for automatic evaluation of WUIs. The usability ontology has
been designed with Protégé Ontology Editor using the standard Web Ontology Language
(OWL) version 2 [117] (informally OWL 2) to describe the ontology. OWL 2 is an ontology
language for the Semantic Web with formalised meaning for representing the concepts
and relationships among concepts. In current case, the usability ontology containing the
definitions of usability guidelines is stored in OWL/XML syntax in an OWL file that is fully
compliant with OWL 2 Web Ontology Language Structural Specification defined in [117].
The use of the OWL/XML format is justified as it has a comprehensive support by Java
OWL API [118] which allows easily transforming guidelines described in OWL/XML to
corresponding Java objects. This transformation is required because processing
guidelines in native OWL 2 format is not trivial due to the complicated API of OWL 2
language. The purpose of the transformation is to ensure that the guidelines described
in the ontology repository will be in an understandable format for the WUI Evaluation
Component. The design of the usability ontology has been described in Section 3.4, and
thereby its discussion within this Section is limited.

The transformation task is carried out by the Ontology Processing Engine (Figure 16)
that consists of Ontology Processor and JFact Reasoner. Ontology Processor is
responsible for loading and processing the ontology, while, JFact Reasoner allows
automatic classification over the captured concepts. JFact Reasoner is a Java port of
FaCT++ reasoner [119] having full compatibility with OWL API library. JFact Reasoner is
used to compute actual class hierarchy for defined classes according to definitions given
in the ontology (e.g. the reasoner is used to infer all usability guidelines suitable for
mobile devices).

Ontology Processing Engine provides a simplified, well documented, and clear Java API
for retrieving usability guidelines from Usability Ontology. It provides the following public
methods (refer to Guideliner class diagram presented in Appendix 4 for more details on
the class formation of the Guideliner core) for retrieving usability guidelines:

65

 reloadOntology – a method that fills Java objects with the latest version of
usability guidelines defined in OWL/XML file; this method is called by WUI
Evaluation Component every time OWL/XML file is modified (e.g. when existing
usability guidelines are updated or the new ones created).

 findAllCategoriesOfUsabilityGuidelines – a method to retrieve all possible
categories of usability guidelines such as mobile or desktop guidelines.
The method is called by the Guideliner User Interface to present all categories
of guidelines supported by the Guideliner.

 findUsabilityGuidelinesByCategory – a method to find all usability guidelines of
the selected category. For instance, the method can be called to retrieve all
usability guidelines of mobile or WCAG category.

 retrieveUsabilityGuidelineByName – a method to retrieve a usability guideline
by its name.

Overall, the guidelines stored in the Ontology Repository in OWL/XML format are
transformed by the Ontology Processing Engine into Java-based guideline descriptions
which will then be consumed by WUI Evaluation Component for WUI evaluation.

4.4 WUI Evaluation Component
The WUI Evaluation Component is a component of the Guideliner tool that is responsible
for assessing WUI conformance to usability guidelines stored and described in the
Ontology Repository. This component consists of the following entities: Usability
Evaluation Engine performing the evaluation of WUI conformance to usability guidelines,
and the Reporting Component responsible for generating usability evaluation reports.
The WUI Evaluation component contains evaluation logic including opening the browser
instance with the WUI being evaluated and comparing the conditions set in usability
guidelines with actual results extracted from WUI.

The WUI Evaluation Component is a central unit of the Guideliner tool being
responsible for checking the conformance of measurable values defined in usability
guidelines to the values extracted from the evaluated WUI.

Before continuing with the discussion of the different subcomponents of the WUI
Evaluation Component, let us analyse the two main possible approaches for WUI
evaluation against usability ontology – performing WUI evaluation within the usability
ontology using reasoning, or exploiting the knowledge described in the ontology to carry
out evaluation in separate.

In the first case, the evaluation process is carried out using the ontology, reasoning
capabilities and rules described in it. A Knowledge Base Reasoner (e.g. Fact++ [119] or
Hermit1) is used to evaluate WUI conformance to usability guidelines. For this, actual
values of WUI attributes are extracted and delegated to the Knowledge Base Reasoner.
Figure 17 outlines a possible architectural layout for this approach. As can be seen, with
this setup, WUI Evaluation Component is responsible for parsing the user interface that
is being evaluated into WUI attributes and then transferring them for the evaluation to
the Ontology Repository, using Ontology Processing Engine as a mediator. Ontology
Repository is responsible for storing usability guidelines (consisting of TBox and ABox
(refer to Section 3.4), performing evaluation using Knowledge Base Reasoner and storing
the evaluation results RDF Store. The purpose of RDF Store is to keep the evaluation
results and to provide possibility for retrieving them through semantic queries. In that

1 http://www.hermit-reasoner.com

66

case, WUI Evaluation Component would use Ontology Processing Engine to execute
SPARQL Protocol and RDF Query Language (SPARQL1) queries in order to retrieve
evaluation results from Knowledge Base Reasoner. SPARQL is a semantic query language
for RDF databases used for manipulating and storing the data. Thus, the responsibility of
Ontology Processing Engine is to fill individuals of ABox with actual values extracted from
WUI being evaluated, whereas responsibility of Knowledge Base Reasoner is to check the
consistency of the ontology modified with values added from WUI.

Figure 17. Architecture of the Guideliner using Knowledge Base Reasoner for evaluation.

The advantage of the latter approach is that WUI Evaluation Component is used only
for extracting the WUI attributes (e.g. width of a button, text length of a link, etc.) and
filling the individuals of the ontology with extracted properties. The whole evaluation
logic is done by Knowledge Base Reasoner; the evaluation results, in turn, are stored
separately from the evaluation logic. A major drawback of this approach is that in order
to obtain human-readable evaluation results from Knowledge Base Reasoner,
(e.g. element being evaluated, expected and actual value of measured characteristic and
reason of violation) SPARQL queries must be used. The drawback of SPARQL queries is
that the result of the queries should be processed again by Reporting Component to
provide the evaluation result in required format. It means that all usability guidelines
defined in ontology must be processed twice: first by WUI Evaluation Component to
define what WUI characteristics should be extracted, and second by Knowledge Base
Reasoner to perform the evaluation itself.

Overall, the most time-consuming part of retrieving WUI attributes is done on the side
of WUI Evaluation Component, and then the retrieved WUI attributes are transferred to
Ontology Repository that performs assertion of retrieved values and actual values of WUI
attributes. In addition to the duplication of processing usability guidelines mentioned
before, evaluation results are processed twice: firstly, by Ontology Processing Engine to
retrieve them from ontology and transform to the Java objects, and, secondly by
Reporting Component to transform evaluation results to the required format. Thus, the
described approach requires redundant mappings and transformations between

1 https://www.w3.org/TR/rdf-sparql-query/

67

components and requires creating additional SPARQL queries to retrieve evaluation
results. For example, in order to create usability evaluation report, RDF Store should be
queried to retrieve usability guidelines, evaluation results and then, additionally,
transform all results to the required format. For the aforementioned reasons,
the described architecture has not been selected for the Guideliner development.

To overcome the limitations of the previously analysed approach, it was decided to
describe domain knowledge in ontology and exploit this knowledge described in the
ontology to carry out evaluation in separate. With this approach, the central task of
evaluation is performed by the Usability Evaluation Engine (Figure 16), which then must
satisfy the next aspects to carry out this task:

 Be able to evaluate visual aspects of finally rendered WUI such as position of
elements on the screen, foreground and background colour of elements,
presence of scrolling and layout of elements on the page.

 Have full support for checking the consistency of HTML code including the
comprehensive API for retrieving the elements by HTML tags and HTML
attributes, and the possibility to trace the order of HTML elements.

 Have compatibility with various browsers, operating systems and platforms to
verify that the conformance to usability guidelines is not affected by external
factors like browser type or version, or device platform.

The aforementioned aspects clearly outline that WUI processing and evaluating is not
a straightforward task as all those aspects should be considered. For this reason,
the most logical approach is to perform the whole evaluation of WUI conformance to the
guidelines as a part of WUI Evaluation Component.

Taking this approach clearly separates the responsibility of the individual components
of the Guideliner, and also decreases the communication between them. Thereby,
Ontology Repository is responsible only for storing usability guidelines; Ontology
Processing Engine only for transforming those guidelines into Java objects, and WUI
Evaluation Component for performing the evaluation of WUI conformance to usability
guidelines and providing evaluation report in the required format.

The high-level architecture of the Guideliner presented in Figure 16 became the
structural fundament for the physical implementation. WUI Evaluation component is
Spring Boot1 based Java application running in Tomcat2 container. Java language was
used because of a high proficiency of the author in that language (C# or other languages
suitable for Web development that has libraries for integrating with ontology can be also
used for that purpose). Spring Boot was selected as it is a de facto standard3 for
developing new Model View Controller application in the Java world. An advantage of
Java is OWL API that provides API for processing ontology files; though OWL API also is
ported to other languages such as C# and Python.

The focal responsibility of Usability Evaluation Engine (a part of WUI Evaluation
Component) is to parse final rendered user interface and extract the characteristics of
WUI components being evaluated (e.g. contrast, alternative text, etc.). There are two
widely used WUI frameworks - Selenium WebDriver4 and PhantomJS5 – that provide a
full-stack of instruments and operations needed for automated testing of user interfaces,

1 http://spring.io/projects/spring-boot
2 https://tomcat.apache.org
3 https://www.developer.com/java/ejb/what-is-spring-boot.html
4 https://www.seleniumhq.org/projects/webdriver
5 http://phantomjs.org

68

and can potentially be used as a mechanism to automate the evaluation process of
HTML-centric guidelines and visual aspects against usability guidelines.

PhantomJS is a headless WebKit scriptable browser providing a JavaScript API. It has a
built-in native support for multiple web standards (including JSON, CSS selector and DOM
handling), and runs perfectly on command line. PhantomJS is more suitable for sanity
check or smoke tests than for extensive UI tests as it does not support cross-browser
consistency and the accuracy of elements visual representation is not precise enough to
be the solution for extensive automated WUI usability testing. The advantage of
PhantomJS compared to Selenium WebDriver is less overhead and better performance
(it uses headless browser that is around 2 – 3 times quicker than actual browser [120]).
The cost it pays for that is the absence of compatibility with browsers and less advanced
evaluation possibilities of visual aspects of WUI.

Selenium WebDriver, on the other hand, is a tool that provides a full-stack API for
automated WUI testing and verification to ensure that WUI behaves in an expected way.
Selenium WebDriver is distributed as a standalone library and has full support for most
common programming languages like Java, C#, Python, Ruby, PHP and others. It is
compatible with various browsers and their versions such as Firefox, Internet Explorer,
Chrome etc. The main advantage of the Selenium WebDriver is the ability to execute
tests on multiple browser platforms with high accuracy and full compatibility with
HTML/CSS/JavaScript standards. Selenium WebDriver provides operations and
commands for fetching the page, locating elements on the fetched pages, clicking
elements, filling inputs, moving between windows and others, and has a clear API for
finding HTML elements by the tag name, by class name, link text, XPath. Moreover,
it allows determining the position, size and colour of elements on the page. Therefore,
it provides the full-stack of instruments and tools that are needed for evaluating various
usability guidelines automatically. The common way to integrate Selenium WebDriver
into existing Java project is to include Selenium WebDriver as Java Archive (JAR).
For instance, this can be done automatically by using a dependency management tool
such as Maven1.

In the current case, better performance and less overhead may be disregarded if the
accuracy of evaluation of visual aspects of WUI is more comprehensive. The accuracy in
evaluation of visual aspects has a critical impact on the overall quality of usability
evaluation. For this reason, Selenium WebDriver was chosen as a base for the Guideliner.
Because of Selenium WebDriver use, the Guideliner tool supports evaluating usability
guidelines in various common browsers2 like Mozilla Firefox (v. 47+), Google Chrome
(v. 60+), Internet Explorer (v. 8+), Microsoft Edge (v. 12+) and Safari (v. 5.1+) running on
Windows, Linux, Android and iOS platforms. Moreover, it is possible to simulate testing
on different devices with various resolutions using for example Browserstack3 – a service
that runs Selenium tests on more than 2000 browsers and provides native browser
experience.

Let us now focus back on the process of WUI conformance evaluation with the taken
approach (Figure 18) in the context of WUI. The WUI Evaluation Component is capable
of evaluating the properties of HTML elements such as length of element value, the
existence of alternative text, value of element attribute etc. As a novelty compared to

1 https://maven.apache.org
2 Stated as of 2018
3 https://www.browserstack.com

69

existing solutions, this component is also capable to evaluate visual characteristics of
finally rendered WUI including the position of elements on the screen, foreground and
background colour of elements, presence and the length of scrolling, layout and the
order of elements – through the use of the Selenium Web Driver. All the capabilities are
provided through adapters. Adapter-based approach for the tool development was
selected as adapters are pluggable and simple WUI-element specific components that
can be easily added if needed. The methods in adapters are divided into two steps:
initially, adapter retrieves all elements from WUI and their corresponding attributes
being evaluated using Selenium WebDriver; afterwards, it checks if retrieved elements
comply with usability guidelines or not. Figure 18 shows that initially the Guideliner User
Interface triggers evaluation by calling UsabilityEvaluationController which in turn calls
Ontology Processing Engine to retrieve guidelines for evaluation and then triggers the
evaluation by calling the AdapterService, which identifies the element on WUI (and its
corresponding characteristics) that should be evaluated. After this, the AdapterService
calls evaluation adapter (adapters are responsible for performing the evaluation of
certain WUI components such LinkAdapter is responsible for evaluation link specific
characteristics) providing the characteristics of the element as a parameter to the
adapter (e.g. contrastMinValue = 4.5). The corresponding adapter retrieves the actual
values of the WUI element characteristic being evaluated using Selenium WebDriver and
asserts if the retrieved values are corresponding to the value defined in the usability
guideline. For instance, if the length of the Link text is evaluated then the LinkAdapter
asks Selenium WebDriver to find all Links and calculate the length of each Link text.
Afterwards, LinkAdapter checks if the values returned by Selenium Web Driver
correspond to the value defined in the usability guideline. If the link text of all Links
corresponds to the length of the text in the usability guideline then a success response is
generated, otherwise, a failure response is generated.

In addition to evaluation of HTML element properties, the Guideliner addresses the
evaluation of visual usability guidelines that requires more functionality for the
processing of visual elements than Selenium WebDriver proposes. Selenium does not
provide clear API for evaluating all kind of visual characteristics, for this reason,
the author extended Selenium API with custom methods (Figure 18 Selenium WebDriver
Custom Extension) providing additional operations for evaluating scrolling, contrast rate,
visual position, order of elements and the distance between elements on the page,
not present in the original tool.

To exemplify the evaluation of visual usability guidelines, let us consider the following
guideline from Nielsen Norman Group1: “Horizontal scrolling is not allowed”, which
cannot be evaluated by any of the existing tools for automated usability evaluation as it
is not possible to verify the existence of horizontal scrolling only by processing HTML
code. To evaluate the guideline, it is necessary to inspect the final rendered page and
scroll it horizontally and check if it is allowed. The Guideliner is capable of evaluating such
guideline using the Selenium JavascriptExecutor that helps to detect if scrolling is allowed
and scroll the page horizontally if it is possible. Or, to evaluate the following guideline
“The distance between links should be at least 30 pixels for mobile devices” defined by
Google2, the Usability Evaluation Engine retrieves all links on the web page, and then
checks that the real distance is not less than the value defined in usability guideline.

1 https://www.nngroup.com/articles/horizontal-scrolling
2https://developers.google.com/web/fundamentals/accessibility/accessible-styles#multi-
device_responsive_design

70

Figure 18. The process of evaluating WUI conformance to usability guidelines.

Through the use of Selenium WebDriver the Usability Evaluation Engine in the
Guideliner tool supports evaluating visual usability guidelines as well as HTML-centric
usability guidelines, and delivers a clear advantage over existing evaluation tools.

4.4.1 Usability Evaluation Report
An essential outcome of every usability evaluation carried out, including both manual
and automated usability evaluation, is the report that presents the results of the
evaluation. Properly structured report clearly outlines the elements violating guidelines,
reason of violation and probable cause of the problem making it easier for developers to
understand and fix the problem.

The reporting component of the Guideliner tool (Figure 16) provides two reporting
APIs including an EARL Schemes based API1 for exchanging evaluation results between
other usability evaluation tools, and a REST API for communicating with Guideliner User
Interface. EARL is a machine-readable format for expressing results for usability
evaluation based on the designed vocabulary for expressing test results. EARL is
concentrating on describing the results of usability evaluation; evaluation criteria,
requirements and procedures are covered by EARL rather superficially.

EARL is intended for developers of Web accessibility evaluation and validation tools
simplifying the exchange of test results between evaluation tools in an
environment-agnostic way. EARL is the only industry option that addresses the problem
of unification of usability evaluation results that is the reason why the Guideliner uses
EARL for expressing test results. Every evaluation result is defined as an assertion in EARL.

1 https://www.w3.org/TR/EARL10

71

An example of automated usability evaluation report in EARL generated by the Guideliner
tool is presented in Appendix 5. The EARL report consists of the following information:

 Assertor – contains the information about the runner of the test: it can be the
person performing the evaluation or the tool for automated usability
evaluation. EARL supports five types of assertors: Software, Agent, Person,
Organization and Group. Assertor of type Software is used in EARL reports as
the evaluation is performed automatically by the tool.

 Test Subject – contains web content, software or response being evaluated.
In the context of the Guideliner, Test Subject contains URL of web application
being evaluated.

 Test Criterion – contains the specification such as set of guidelines, tests or any
other testable elements that test subject is evaluated against. In the context of
the Guideliner, Test Criterion (defined as a TestCase) presents the description of
usability guideline.

 Test Result – contains the outcome of test including the information if the test
failed or passed and the description of a test result.

The unified format of EARL is strictly defined and does not allow additional elements
such as screenshots of the elements violating the guideline and the type of elements
under evaluation (both elements are required and supported by the Guideliner User
Interface described in Section 4.5) to be described. In general, it is common for all existing
usability evaluation tools to have a custom format of usability evaluation reports that
satisfies the needs of a particular tool, and so does Guideliner.

The main consumer of the WUI Evaluation Component is the Guideliner User Interface
that uses it for triggering the evaluation process, retrieving guideline, and presenting
evaluation results. EARL is designed only for representing evaluation results (for
exchanging between the tools) and it is not intended for being a protocol for all kinds of
communication (like retrieving the guidelines, creating new usability guidelines) between
the components of the tool. Thus, in order to share the data between the Guideliner User
Interface and WUI Evaluation Component an internal custom format called Guideliner
Report Format (GRF) of usability evaluation report (based on EARL) was defined and used
as a communication protocol between client and server side. Other external systems
should use the Guideliner EARL endpoint for performing the evaluation with the
Guideliner. GRF added the next properties to EARL: screenshot of failed element, text
and description of the element violating the guideline. Table 2 presents the structure of
the internal usability evaluation report containing a brief description of each element in
report and its sample value. An extract of usability evaluation report based on this format
is presented in Figure 19 containing the results of the tests run on https://www.etis.ee
for the WUI conformance evaluation on the guideline presented by Google Mobile
research group1: “There should be no other links within 48 CSS pixels (roughly 7 mm)”.
The evaluation result is presented in JavaScript Object Notation (JSON) format as JSON is
a native communication format for Guideliner User Interface (Section 4.5) – a common
format used for data interchange between JavaScript-based applications. The Guideliner
endpoint also allows using XML if needed. The example on Figure 19 shows that the
evaluation failed (line 4) and contains the list of the elements that violate the guideline
(lines 12 – 24) with the violation reason and the name of the violated element’s

1 https://developers.google.com/speed/docs/insights/SizeTapTargetsAppropriately

72

screenshot. Based on GRF, the Guideliner User Interface generates a visual report for
human evaluators (Figure 22 discussed further in Section 4.5).

Table 2. Structure of the internal usability evaluation report format GRF.

Element Name Element Description Sample Value
elementType Type of evaluated element Navigation, Link,

Paragraph
Result Identifies if test passed or

failed
SUCCESS, FAIL

Guideline Guideline being evaluated N/A
guideline.code Guideline unique identifier

in the ontology
14-9_OptimizeImages

guideline.name Brief name of the guideline All images on the
screen should be
optimized

guideline.description Detailed description of the
Guideline

The maximal size of the
image should be 1 MB

failedElements Elements violating guideline N/A
failedElements.path Path for downloading

screenshot of element
violating the guideline

screenshot42.jpg

failedElements.description Reason for failure Actual size of images is
2 MB, expected is less
than 500 Kbytes.

failedElements.text Text of the element
violating guideline

Press to continue

To sum it up, the Guideliner Reporting Component provides different ways of

formatting evaluation results including EARL for (automated) exchanging evaluation
results between other usability evaluation tools, and REST API for communicating with
the Guideliner User Interface over the GRF, delivering additional features compared to
the EARL format.

4.5 Interfacing with the Guideliner
Having discussed all other components of the Guideliner tool (Figure 16), it is now time
to turn to the Guideliner User Interface – a web user interface for managing usability
guidelines and triggering the whole evaluation process. The intended users of the
Guideliner are technical (including developers and quality assurance specialists) and
business (including analysts and product owners) users. Technical users can use the
Guideliner Core REST API to trigger the evaluation process and receive evaluation results.
In general, business users do not have required technical background to use REST API as
they are mostly used to visual interfaces. For this reason, a separate web application was
designed that makes use of the Guideliner Core REST API. This REST API provides direct
access to the Guideliner Core to invoke evaluation process; in both cases, the process of
WUI evaluation is absolutely the same on regardless of how this process is invoked, i.e.,
via visual user interface or using the direct call. The structure of the Guideliner REST API

73

and Guideliner Report Format GRF that the REST API supports have been discussed
previously in Section 4.4.1 in more details.

1 [
2 {
3 "elementType": "LINK",
4 "result": "FAIL",
5 "failedElements": [
6 {
7 "type": "LINK",
8 "text": "A+",
9 "description": "Link with text A+ is very close to A-",
10 "pathToElement": "screen1503742712142.5.png"
11 },
12 {
13 "type": "LINK",
14 "text": "A-",
15 "description": "Link with text A- is very close to Est",
16 "pathToElement": "screen1503742712142.6.png"
17 },
18 {
19 "type": "LINK",
20 "text": "Est",
21 "description": "Link with text Est
22 is very close to link with text Events",
23 "pathToElement": "screen1503742712142.7.png"
24 }
25],
25 "guideline": {
26 "code": "21-01_DistanceBetweenLinksShouldBeEnough",
27 "name": "There should be no other Links within 48
28 CSS pixels (roughly 7 mm)",
29 "description": "There should still be no other
30 tap targets within 7mm (32 CSS pixels),
31 both horizontally and vertically, so that a user's finger
32 pressing on one tap target will not inadvertently
33 touch another tap target."
34 }
35 }
36]

Figure 19. An example of usability evaluation report in JSON format for the guideline checking the
distance between elements. Test run on https://www.etis.ee.

The Guideliner User Interface is a single-page web application (Figure 20) that has
been built based on Angular JavaScript framework using Bootstrap – stylesheets
containing an extensive list of components for designing client web applications.
Alternatively, any other front end JavaScript framework could have been selected such
as ReactJS. In fact, ReactJS and Angular are the most widely used JavaScript frameworks
according to Stackoverflow Developer Survey Results, both technologies being powerful
and flexible. As far as there are no obvious advantages in both technologies the author
decided in favour of Angular because of the extensive experience and better expertise in
Angular web application development.

Instead of using pure JavaScript, TypeScript1 was used as a language for Guideliner
User Interface development. TypeScript is typed language that compiles into JavaScript.
It is a common approach to write web applications using Typescript as the Angular
framework itself is written in TypeScript meaning that there are no limitations to using
Typescript instead of pure JavaScript.

1 https://www.typescriptlang.org/docs/home.html

74

Figure 20. Screenshot of the Guideliner User Interface.

The user interface application has been developed based on Angular Seed1 (a skeleton
for Angular based applications served together with development and testing tools)
providing fast, reliable and extensible starter for the development of Angular projects.
It includes multiple useful features like Ahead-of-Time compilation, sample unit tests and
others. This is important, as these features enable immediate validating of the
correctness of the code. All aforementioned features increase the speed and quality of
the Guideliner User Interface development.

The Guideliner User Interface allows the person performing WUI evaluation to select
the category of guidelines for evaluation, trigger evaluation process and analyse
evaluation results (Figure 20). The usability evaluation process is initiated from the
Guideliner User Interface when user triggers the evaluation; Figure 21 illustrates the
steps of the usability evaluation process. Initially, a user selects the category of usability
guidelines (e.g. Mobile usability or WCAG guidelines) and the URL of WUI to be
evaluated. Figure 20 presents a screenshot of the view containing the sets of guidelines
to be evaluated such as mobile usability guidelines, WCAG guidelines and usability
guidelines. After selecting the category of usability guidelines to be evaluated, the
guidelines corresponding to the selected category appear. Each guideline contains title,
description and success criteria. Then, user enters the URL of the web application to be

1 https://github.com/angular/angular2-seed

75

evaluated and initiates the evaluation process by clicking Evaluate User Interface button.
On the click, the Guideliner User Interface calls WUI Evaluation Component via REST
providing the category of usability guidelines being evaluated and URL as input
parameters. Based on the category provided Usability Evaluation Component calls
Ontology Processing Engine to retrieve corresponding usability guidelines to be
evaluated. Afterwards, WUI Evaluation Component performs the evaluation, and then
calls Reporting Component to generate the usability evaluation report in JSON format
that is sent back to the Guideliner User Interface; the Guideliner User Interface visualizes
and structures the report to make it easier to read, highlighting the required information
including the failed and passed usability guidelines (Figure 22). Violated guidelines are
highlighted in red colour; passed guidelines in green colour. The progress bar above
shows the ratio of failed and passed tests. Evaluation results provide full information of
evaluated guideline including name, code, and description.

Figure 21. Steps of usability evaluation with the Guideliner.

Clicking the link Open Failure Report (Figure 22) opens a dialogue window containing
a detailed view about detected problems: a screenshot, element text and the type
(e.g. link, button, input) of the element violating the guideline. Figure 23 provides an
example of the dialogue window that contains a human-readable explanation of the
failure reason including expected and actual value. Explanation of violation informs WUI
developers about the usability issue, emphasizing which characteristics should be
changed and how much it should be changed to satisfy the usability guideline.
The screenshot is optional for the evaluation report as it is not always possible to depict
the element violating the guidelines. In particular, WUI elements that violate guidelines
that cover the consistency and validity of HTML code in general do not contain images
(but they contain HTML code snippet with incorrect element). On the contrary, WUI
elements that violate guidelines evaluating the visual characteristic of WUI always
contain a screenshot of the failed element making it easier to understand the reason for
failure. HTML code snippet may not be useful when visual usability guidelines are
violated as the violation can be caused by CSS styles or may be caused by multiple HTML
elements.

76

Figure 22. Screenshot from the Guideliner User Interface – an excerpt contains an example of a
passed and a failed usability evaluation result.

Figure 23. Screenshot from the Guideliner User Interface – a dialog presenting additional
information about a failed guideline.

4.6 Performance Testing and Optimization of the Guideliner Tool
In order to understand what operations can potentially slow down the evaluation
process or even crash the Guideliner tool, performance testing, which is a process of
measuring and calculating performance metrics of implemented software [121],
was carried out. Also, performance evaluation allows to detect operations that are not
thread-safe and affect parallel evaluation of different elements of the same WUI.
The next aspects were considered to evaluate the performance of the Guideliner:
resource intensive operations, response time of the system in case of parallel requests,
and high load on components.

77

To evaluate the performance of the Guideliner XRebel1 was used. XRebel is a tool for
analysing the performance metrics of the application including slow methods, resource
problems, hidden exceptions, slow database queries and other aspects affecting the
performance of the application. The advantage of XRebel over other existing solutions
(e.g. AppDynamics2, Plumbr3) for monitoring performance is that it detects performance
issues already during development whereas other solutions are concentrating on finding
performance defects during the testing phase. XRebel analyses the flow of system and
detects the operations that consume the most resources (e.g. time, memory).
Afterwards, XRebel returns these operations as candidates for performance issues.
XRebel was temporarily integrated into the Guideliner with a purpose to identify the
performance issues (Figure 16).

The purpose of the performance testing was to answer the following questions:
1. What are the operations that slow down the evaluation process?
2. Can the time consumed for usability evaluation by the Guideliner be decreased?
In order to analyse the performance of the Guideliner, ten WUIs from different areas,

different target users, complexity and design were selected. The purpose of the selection
was to include heavy-weight applications that contain multiple images, advertisements
and interaction components as well as light-weight applications with just a few images
and some text. The data collected in this experiment was also used for the author’s
research presented in [122] that focused on evaluation of the Guideliner capabilities.
The following web applications and portals were selected for probation conducted
28.06.2018:

 Republic of Estonia Road Admission Portal4, which has the same design
template as all other ministry web pages of the Republic of Estonia.

 E-government Portal5 being the primary gateway to the online governmental
services in Estonia.

 Government Real Estate Portal6 providing public sector real estate services.
It was selected as its WUI does not contain many elements enabling to analyse
the results for performance tests on WUI with smaller number of elements on
the screen.

 Government information system management portal7 containing repositories
for public e-government services. It was selected to diversify WUI based on
target users as the main visitors of that portal are the online service providers
and the developers who are integrating with Estonian online services.

 Estonian Research Information System8 providing information about Estonian
researchers and their research activities and projects. The portal was selected
as a representative of the academic field delivering mostly structured data.

1 https://zeroturnaround.com/software/xrebel
2 https://www.appdynamics.com
3 https://plumbr.io
4 https://www.mnt.ee/eng
5 https://www.eesti.ee/en
6 http://www.rkas.ee/en
7 https://riha.eesti.ee/riha/main
8 https://www.etis.ee/?lang=ENG

78

 Republic of Estonia Information System Authority1 responsible for the
development and maintenance of X-Road and www.eesti.ee portal. It was
selected as it is one of the main public sector IT units of Estonia.

 Estonian News Portal Delfi2 being one of the most visited online news portals in
Estonia. It was selected because of the number of visits, the frequency of
content update and the amount of content on the screen.

 National Aeronautics and Space Administration (NASA) web page3 providing
information about America’s space agency. It was selected as it is one of the
most popular science web sites that was awarded multiple times as a highly
ranked scientific website4.

 CNN news portal5 is a popular news website with high daily visitors rate and
update frequency.

 BBC news portal6 providing latest news and headlines being in TOP 10 most
visited web sited in the UK.

The selected WUIs were evaluated with the Guideliner. A series of experiments were
carried out where for each of the selected website WUI, the evaluation was carried out
six times: three times before the performance optimization and three times after the
identified performance problems were resolved. The results of the evaluation between
series varied in the range of five percent – as a result, the author concluded that because
of the small deviation the number of experiments was sufficient, as the only external
factor to influence the results was the Internet connection speed; the speed of WUI
processing depends only on how fast the WUI is being loaded and how fast Selenium
retrieves the elements for processing. All the experiments were carried out on the same
platform, on the same machine, and under the same conditions. The Internet connection
speed was stable during the whole experiment varying between 75 – 85 Mbps measured
by a special script developed for that purpose, which was periodically calling (every ten
seconds) SpeedOf.Me API7 (service for measuring connection speed) and documenting
the connection speed.

Overall, a series of 60 experiments were carried out. A special Java program was
developed that was iterating over all URLs of websites selected for the experiment and
was calling Guideline Core REST API to evaluate the conformance of WUI to usability
guidelines. After each experiment, the total evaluation time and XRebel performance
monitoring report were stored by developed Java program.

The performance evaluation reports produced by XRebel were parsed after each
evaluation for further analysis of results. Figure 24 outlines the results of Guideliner
evaluation, measured with the metric processed guidelines per second (gps) before and
after the code optimization. After the initial evaluation, the code was optimized for the
most time and resource intensive operations based on the XRebel evaluation results to
decrease the execution time of those operations. The metric gps was chosen because it

1 https://www.ria.ee/en
2 http://www.delfi.ee
3 https://www.nasa.gov
4https://solarsystem.nasa.gov/news/419/nasa-web-sites-social-media-honored-in-2018-webby-
awards/
5 http://edition.cnn.com
6 https://www.bbc.co.uk
7 https://speedof.me/api.html

79

clearly outlines the Guideliner processing speed in the unit of time, indicating the average
processing throughput.

The evaluation results returned by XRebel pointed out eleven methods in the source
code of the Guideliner that required more time for execution in comparison with other
executed methods during the evaluation. The following methods of the Guideliner
implementation showed extremely poor results during the evaluation:
1. Operations for making screenshots of the elements violating usability guidelines

(method: Screenshoter.makeScreenshot; average execution time: 700 milliseconds).
To optimize the operation, the screenshot of the whole WUI was taken before the
evaluation and cached; in case the violated element was detected the cached
screenshot was used to make the image of the violated element. Overall, the time
of making a screenshot has decreased in average 50% after optimization.

2. Opening browser window for each evaluated usability guideline (method:
WebDriver.get(url); average execution time: 2100 milliseconds). To solve that
problem, the browser windows was opened before the WUI evaluation and was
closed only after the full evaluation was finished.

3. Operations for evaluating the distance between elements (methods:
ButtonAdaptor.evaluateDistance(), LinkAdaptor.evaluateDistance(); with average
execution time: 300 milliseconds). To decrease the evaluation time, the coordinates
of elements were cached locally and not retrieved from Selenium API every time

4. Operation for evaluating contrast rate (method: ContrastEstimator.estimate();
average execution time: 200 milliseconds). The contrast rate was calculated based
on the time-consuming image-processing methods. Instead, the HTML and CSS
based method was used being around 20% more efficient with the same evaluation
accuracy.

Figure 24. Guideliner performance testing results before and after code optimization.

After the performance problems were fixed, the same experiment was conducted
once again (blue columns in Figure 24 represent the evaluation results). The results
showed that the response time of certain methods decreased by around 50%.

80

For example, operation for taking and storing the screenshot of element violating the
guidelines had taken around 700 milliseconds. After the screenshot making logic was
reviewed and moved to the asynchronous thread, screenshot making time has decreased
to around 350 milliseconds. Overall, as expected the average processing gps increased
after the performance optimization as shown in Figure 24 (refer to blue column).
In particular, the tangible shift in absolute numbers of gps was measured for WUI with
smaller number of elements. For example, RKAS gps increased from 1.6 to 3.3 gps
whereas CNN gps increases from 0.2 to 0.3 gps. Nevertheless, the increase in percentage
or relative numbers is homogeneous between all WUI.

While exploring the correspondence, the correspondence between gps and the
number of HTML elements on WUI was detected. Obviously, the evaluation time
depends on the content size, amount and size of graphics, size of CSS and JavaScript files,
and overall amount of HTML elements on WUI. As such, it was observed, that the gps
rate was higher for WUI with smaller number of HTML elements on the screen – for RKAS
(contains 318 HTML elements) 1.68 gps, whereas for CNN the same indicator was 0.22
(contains 1478 HTML elements). In this experiment, the number of elements on the page
was measured with Selenium WebDriver. As every HTML element of the WUI being
evaluated needs to be checked, the amount of different HTML elements is in clear
correlation with the total evaluation time (Figure 24). Such trend becomes even more
considerable when visual usability guidelines are evaluated for the reason that the
evaluation of the element size, distance between element or the contrast of elements
are more resource-intensive than evaluation of HTML-specific guidelines that are based
on parsing of HTML code.

Overall, the performance testing indicated certain methods in the source code of the
Guideliner that required more time for execution in comparison with other executed
methods during the evaluation. The performance of identified resource-consuming
methods was improved based on the performance test results and re-evaluated with
repeated performance tests. Also, the correspondence between gps and the number of
HTML elements on WUI was detected: it was observed that the gps rate was higher for
WUI with smaller number of HTML elements on the screen. The next step is to compare
the Guideliner with other tools based on wider range of characteristics.

4.7 Guideliner and Other Similar Tools
Software verification is an important part of software engineering, which is responsible
for guaranteeing safe and reliable performance of the software systems that the
economy or society relies on [123]. From the perspective of the Guideliner, software
verification process proves that the Guideliner is capable of evaluating different types of
web applications (e.g. entertainment portals, public sector portals etc.) effectively
regardless of the WUI technology. Despite the fact that the Guideliner supports
HTML/CSS/JavaScript based WUI, the frameworks used for WUI development and the
methods used for composing and formalising the structure of WUI HTML/JavaScript/CSS
code can potentially affect the accuracy of the evaluation process. In general, there are
two types of software verification: dynamic (experimentation) and static verification.
The latter covers static verification methods such as following code conventions,
patterns and software metrics. Dynamic code verification, in its turn, is performed during
software runtime verifying that the software behaves in an expected way.

Current Section concentrates on dynamic verification of the Guideliner tool with the
purpose to find deviations in its behaviour when the conformance to usability guidelines

81

for different WUIs is evaluated. Different types of deviations can be detected such as
slow response time, errors occurred during evaluation or missing fields in response
(e.g. missing status of evaluation, missing error description or missing name of element
that violates the guideline). The dynamic verification of the Guideliner was carried out to
answer the following questions:

 How efficient in terms of guidelines being evaluated, and time needed for
evaluation is the Guideliner for automatic evaluation of WUI conformance to
usability guidelines in comparison to other similar tools?

 How frequently the usability guidelines captured by the usability ontology for
the Guideliner are violated in comparison with other similar tools?

 How homogeneous are the Guideliner evaluation results in terms of detected
usability issues in comparison to other similar tools?

For Guideliner verification, ten top world universities, and ten top European
universities based on the QS World University ranking1, as well as six Estonian public
universities were selected for the experiment. The QS World University ranking evaluates
the popularity of universities according to various metrics including their academic
reputation, employer reputation, faculty ratio and citation per faculty. University web
pages were selected for the experiment as they generally serve a wide range of users
including people from different countries and also people with disabilities; university
web pages are used by students, academic personnel, researchers, and general public.
In addition, European public universities are affected by EU legislation acts that
encourage EU web applications to follow WCAG guidelines (in the USA, in its turn, Section
508 is recommended to be followed). Also, university web pages are quite popular by
visit rate for example the amount of all visits (user sessions) to Harvard University web
page is in average 30 million2 per month. In total 21 universities were filtered out for the
experiment as some European universities were also within the list of top world
universities.

The selected university web pages were tested on three different levels: start page,
a subpage, and a page with a form that has at least five input fields. In general, users
navigate to a web page from the start page that is why the usability of start page has a
critical impact on the impression users get and was one of the page types included in the
experiment. A subpage was selected randomly – the only criterion was that this page
should not contain an error message. In general, subpages contain the same header,
footer and navigation layout (that is why subpages have similar problems as start pages)
but they also contain information (e.g. longer text articles of information) that people
are searching for. For that reason, subpages need to follow also different usability
guidelines (e.g. content-centric guidelines) that may not be the case for the start page.
In case of a page with a form, conformance to form-specific usability guidelines must be
evaluated. The page with a form can have a simpler structure than the start page but
forms contain input fields that should be properly structured to guarantee users are able
to fill in the forms correctly. Overall, the motivation of the page selection scheme was to
include different types of pages for the evaluation set as to cover various usability
guidelines. This schema of page selection enables to validate the behaviour of evaluation
tools with different types of pages and to compare the number of usability problems
detected by tools in different use cases.

1 https://www.topuniversities.com/qs-world-university-rankings/methodology
2 https://www.similarweb.com/website/harvard.edu

82

The complexity of web applications has not been considered before the experiment.
For example, a web page containing long text and small number of elements can
potentially violate fewer usability guidelines because of design simplicity. The test data
selection is enough for the analysis as the purpose of evaluation is to compare the
Guideliner with other tools (not to compare university WUI with each other) from the
perspective of performance, detected violations, homogeneity of results etc. Overall, 63
web pages were selected for the evaluation (the complete list of these pages is presented
in Appendix 6).

In addition to the Guideliner, six publicly available tools for automated usability
evaluation were selected for the verification experiment: two freeware evaluation tools
(Wave and AChecker) and four commercial tools (Powermapper, Tenon, DynoMapper
and TotalValidator). The selection of tools was based on the next criteria:
1. The tool must support accessibility guidelines;
2. The tool must contain at least 50 guidelines;
3. The tool must be downloaded or used online without additional build steps;
4. The selection of tools must contain both freeware as well as commercial tools;
5. The tool must have English user interface.

Support for the accessibility guidelines is crucial as they improve the quality of WUI
for user including users with disabilities. Accessibility standards contain around 70
accessibility guidelines, and around 50 of them are considered as more critical (e.g.
WCAG Level AAA guidelines are not considered critical to follow) – for that reason
criterion of 50 guidelines was used. Another important aspect of criteria is that the
selected tool should be available online without additional build steps as additional build
steps could potentially decrease the quality of build, and as a result the quality of the
experiment. Both freeware and commercial tools were selected for the experiment to
diversify the selection and to take into the comparison of tools from different areas.
The English user interface is an inevitable requirement as the purpose was to compare
the tools that can be used world widely rather than the tools made for a specific country.
The Guideliner is a freeware tool that meets all aforementioned requirements.

In Section 4.1 two different lists of tools for automated usability evaluation were
presented: W3C and the list presented by Timbi-Sisalima et al. in. Despite the fact that
there are many different tools for usability evaluation presented by the aforementioned
lists, most of them did not satisfy the selection criteria, missing either one or many
features required. All tools listed in Section 4.1 support accessibility guidelines, though
the number of supported guidelines did not satisfy the evaluation criteria. Some tools
were not accessible online; some tools were quite unstable throwing multiple
exceptions. Also, few tools were not internationalized for the English user interface. For
instance, Examinator1 presented in [115] did not have English version of UI; Nu Checker2
did not support enough accessibility guidelines. Also, commercial tools were included in
the current evaluation as some of them provided trial version for the short period of time
that was enough to conduct the evaluation. As a result, six tools out of 116 were selected
for the experiment: AChecker, Wave, TotalValidator, PowerMapper, DynoMapper and
Tenon. The selection was partly based on the Timbi-Sisalima et al. [115] who filtered out
most efficient tools from the W3C list that are feasible for automated usability tests. Also,
the author decided to include Wave that evaluates contrast rate of elements. AChecker,

1 www.examinator.ws
2 https://validator.w3.org/nu/

83

TotalValidator, Tenon PowerMapper and DynoMapper were selected randomly from the
list as most of selected tools provided the same functionality according to their
documentation.

Wave and AChecker were selected as being widely used freeware tools for automated
usability evaluation. For instance, Wave was used for the evaluation of Estonian public
sector web applications in 2013 and 2015 [28] carried out by Ministry of Economic Affairs
and Communication. AChecker has been used for evaluating WUI usability of India
university web pages [124]. TotalValidator was selected because of rich functionality and
clear evaluation reports. PowerMapper is a commercial tool that evaluates the widest
variety of usability aspects including Search Engine Optimization (SEO) and compatibility
with different browsers. This tool is used for example by Bank of America, eBay and
Microsoft. Tenon is the only selected commercial tool that concentrates mostly on
accessibility guidelines (used by Kaplan and The Paciello Group). DynaMapper differs
from the other selected usability evaluation tools by providing the possibility to create
web cards and to evaluate the whole web application and not just a single page.
The chosen set of the tools covers various aspects of WUI usability evaluation (such as
accessibility, usability, SEO optimization) and allows to compare the Guideliner to these
tools based on the amount and types of guidelines, format of evaluation results and
interfacing options. The analysis of these selected tools is not the aim of this study; the
tools will be used as a benchmark toolset for the Guideliner verification.

The comparison of the guidelines supported by the tools used for the Guideliner tool
verification is presented in Table 3. All tools support HTML-specific accessibility
guidelines (e.g. described by WCAG and Section 508). There are only a few tools that
support visual usability guidelines (e.g. Wave supports only visual guidelines for checking
the contrast ratio). From the perspective of the number of the guidelines supported,
Guideliner supports 98 guidelines that is less than PowerMapper (150 guidelines),
AChecker (152 guidelines) and TotalValidator (115 guidelines) and more than Wave
(80 guidelines), Tenon (74 guidelines) and DynoMapper (89 guidelines). Tools contain
more guidelines than WCAG (contains around 70 guidelines) as many guidelines in WCAG
are mapped into multiple automated guidelines. For example, WCAG guideline1 “H44:
Using label elements to associate text labels with form controls” is divided into 18
automated guidelines in case of AChecker as every input element (e.g. text, checkbox,
password or file inputs) forms its own guideline.

Appendix 7 provides a detailed comparison of characteristics of the selected
benchmark tools. Most of the tools do not support adding custom usability guidelines;
only AChecker and Guideliner are extendable with new guidelines. The Guideliner is the
only tool that allows evaluating the conformance to mobile usability guidelines. Other
tools are limited only to desktop guidelines. The potential reason can be that screen
reader is mostly used on desktop devices rather than on mobile devices that is why
mobile platforms are not in the scope of the tools.

The author compared the tools based on the metrics presented by Timbi-Sisalima
et al. in [115] in order to show that all tools satisfy the criteria of selection and that all of
them have similar functionality in terms of the number and types of supported
guidelines. The results of comparison showed that Tenon and DynoMapper support
similar set of metrics. Wave, TotalValidator and AChecker support the same metrics but
both of them are not commercial products giving additional point in the presented

1 https://www.w3.org/TR/WCAG20-TECHS/H44.html

84

matrix. The same number of points also gets PoweMapper (despite that it is commercial
product) supporting usability guidelines. The Guideliner, in addition, supports visual
usability guidelines and allows defining custom usability guidelines. Appendix 8 shows
the matrix of association of the tools with the metrics they support.

Usability tests with the selected benchmarking tools and the Guideliner were
conducted during the period from 12.12.2017 to 03.05.2018 using all seven
aforementioned tools for automated usability evaluation. A total of 441 usability tests
were conducted. All tests were executed manually providing the URL of the web page for
the evaluation as a parameter. The tools provided evaluation results in different format
such as CSV, PDF, pictograms or as a list. For further analysis and to unify the evaluation
results they were aggregated to Microsoft Excel.

Table 3. Comparison of the guidelines supported by the tools used for the Guideliner verification.

Tool Supported Types
of Guidelines

Number of
Supported
Types of

Guidelines

Number of visual
usability guidelines

supported

Number of
guidelines
covered by

tool
Wave ARIA

HTML
Section 508
WCAG 2.0

4 3 80

Powermapper HTML/HTML5
Section 508

Usability.gov
WCAG 2.0

SEO

5 5 150

AChecker BITV 1.0
Section 508
Stanca Act

WCAG

4 n/a 152

Tenon BITV 1.0
Section 508
Stanca Act

WCAG

4 n/a 74

DynoMapper Section 508
WCAG 2.0

2 n/a 89

TotalValidator HTML
Section 508
WCAG 2.0

3 n/a

115

Guideliner Usability.gov
Visual usability

WCAG 2.0

3 43 98

Overall, less than 4% of tests (17 tests out of 441) of the experiment finished with an

exception during the experiment (refer to Appendix 9 Total sum of detected violations
of tool for automated usability evaluation column failed tests). The primary reason for
these failures was preconfigured Robot Exclusion Standard (robots.txt) in the root
directory of the evaluated websites that some tools followed for the evaluation
(e.g. Powermapper); the causes of other failures were not identifiable.

85

Now, turning to the verification experiment goals, the first question to be answered
during the verification experiment was the evaluation efficiency in terms of the
guidelines processing speed. The evaluation efficiency was measured by two metrics:
the number of evaluated guidelines per second (gps), and the number of guideline
violations captured per second (vps). The metrics gps and vps were introduced to enable
the comparison of the results of different tools on an equal basis. The metric gps shows
how many guidelines the tool evaluates in the unit of time. The value of the gps is that it
directly measures the tool performance as the more guidelines the tool evaluates during
the unit of time, the better performance the tool has. The metric vps was used to
measure the number of violations tools detects in the unit of time. To collect the data
for both metrics, the number of distinct guideline violations, number of total violations
and evaluation time were recorded during every experiment conducted to evaluate a
specific page from the page set with a selected tool. The metric guidelines per second of
each tool gps(t) (t stands for the tool) was calculated based on Equation 1 where N(t,g)
(t stands for tool and g stands for guideline) is the total number of the guidelines that
tool supports and T(t) (t stands for tool) is WUI evaluation time of the tool. Table 4 shows
the results for gps for each tool and indicates how the Guideliner performs compared to
the benchmark tools. For example, the average performance of the Guideliner compared
to AChecker on Start Page is 17%, which means that the Guideliner is almost five times
slower (4.6 times) than the AChecker to which it is compared to. The reason for that is
the Guideliner’s support for visual usability guidelines that are more resource intensive
than HTML-based guidelines.

 () = (,)() (1)

Table 4. Results of gps of the Guideliner compared to the benchmark tools.

Page type Average gps with Standard Deviation Guideliner Performance %

Tool Start page Sub-page Form Start
page

Sub-
page Form

AChecker 3.9 ± 6.3 5.2 ± 17.1 5.4 ± 7.8 17 17 22
DynoMapper 1.3 ± 3.3 1.1 ± 3.8 1.3 ± 4.4 53 84 89
Powermapper 6.0 ± 17.5 6.9 ± 18.3 4.7 ± 3.1 11 13 25
Tenon 6.9 ± 5.8 10.5 ± 18.7 12.9 ± 34.5 10 9 9
TotalValidator 6.4 ± 4.3 7.8 ± 5 9.1 ± 5.8 11 11 13
Wave 11.7 ± 21.5 13.2 ± 23.1 7.5 ± 3.2 6 7 16
Guideliner 0.7 ± 0.6 0.9 ± 0.8 1.2 ± 0.9 100 100 100
Average 6.0 ± 9.8 7.5 ± 14.3 6.8 ± 9.8 11 12 17

The results show that most of the tools evaluate in average 5 – 10 guidelines per

second, with an exception of DynoMapper which is able to evaluate in average 1 – 2
guidelines per second. Also, the results show wide variation in standard deviations of
average gps. The reason for the wide variation in standard deviations is a big difference
in evaluation times. For example, the minimum evaluation time for PowerMapper was
4 seconds whereas the maximum was 88. Nevertheless, for tools like TotalValidator and
the Guideliner standard deviation was smaller. There is not a clear answer why the

86

evaluation time was diverse between different pages for the same tool as the author
does not have access to the source code of other tools.

The average gps for the Guideliner remained modest compared to other tools.
The reason relies on its support to visual and mobile usability guidelines that require
more resource-intensive operations (such as evaluation the distance, height, and width
of elements) and take more time during each evaluation. This ability, unfortunately,
slows down the evaluation speed. The Guideliner gps improves around 70% if checking
of visual and mobile usability guidelines is omitted.

Let us now analyse the results of the metric vps. The metric violations per second
vps(t) (t stands for the tool) was calculated based on Equation 2 where N(t,v) (t stands
for tool and v stands for the number of violations detected on WUI) is the total number
of detected violations and T(t) (t stands for tool) is WUI evaluation time of the tool.
Average number of violations on the start page, sub-page and page with a form were
documented. Table 5 shows the results of vps for each tool and indicates how the
Guideliner performs compared to the benchmark tools. For example, the average
Guideliner violation detection performance compared to DynoMapper on the start page
is 425% which means that the Guideliner detects around four times (4.25) more
violations per second than DynoMapper to which it is compared to. The results show that
most of the tools detect in average 1 – 5 violations per second, with the exception of
Wave and Tenon which are able to detect in average 5 – 10 violations per second.
The average vps for the Guideliner was average between all tools showing higher
performance than AChecker, DynoMapper and PowerMapper and lower performance
then Tenon, TotalValidator and Wave.

 () = (,)() (2)

Table 5. Results of vps of the Guideliner compared to the benchmark tools.

Page Type Average vps with Standard Deviation Guideliner Performance %

Tool Start page Sub-page Form Start
page

Sub-
page Form

AChecker 1.1 ± 0.9 1.1 ± 1.0 2.1 ± 1.8 265 270 162

DynoMapper 0.7 ± 0.6 0.6 ± 0.5 1.0 ± 1.5 425 530 331

Powermapper 2.4 ± 1.7 1.3 ± 0.8 1.5 ± 1.1 126 240 226

Tenon 5.1 ± 4.9 6.8 ± 7.7 6.5 ± 4.8 60 44 53

TotalValidator 3.2 ± 1.9 3.2 ± 3.3 12.9 ± 39.2 96 96 26

Wave 10.6 ± 6.4 8.8 ± 8.9 8.4 ± 5.5 29 34 41

Guideliner 3.0 ± 2.2 3.0 ± 2.2 3.4 ± 3.6 100 100 100

Average 3.9 ± 2.7 3.6 ± 3.7 5.4 ±9 78 81 63

The second question the experiment sought answer to was to evaluate the frequency

of violation of the supported usability guidelines. The frequency of violation of the
guidelines was measured by metric: frequency of violation (fov). The metric frequency of
violation fov(t) (t – stands for the tool) was calculated based on Equation 3 where N(t,d)
(t stands for tool and d stands for the distinct detected usability guidelines) shows the
number of distinct violations of usability guidelines and G(t) (t stands for the tool) shows

87

the total number of supported guidelines. The metric was measured as the total amount
of guidelines supported by the tool may be misleading because there can be the
guidelines that are always passed by most WUI. The metric fov was introduced to enable
the comparison of the results of different tools on an equal basis. Table 6 shows the
results for fov analysis for each tool and indicates how the Guideliner performs compared
to the benchmark tools. For example, the average Guideliner performance compared to
AChecker on the start page is 539% which means that the relation of total number of
distinct violations of usability guidelines to the total number of guidelines is 5.39 time
higher for the Guideliner than AChecker to which it is compared to. The results show the
average violation frequency between all the tools is around seven. The average fov for
the Guideliner exceeds the average of all other tools around 2.6 times. Overall, the
aforementioned results mean that Guideliner violation frequency is highest between all
benchmark tools. Such results were achieved by including visual common and mobile
usability guidelines that were violated more often than accessibility guidelines.
 () = (,)() (3)

Table 6. Results of fov of the Guideliner compared to the benchmark tools.

Page Type Average fov with Standard Deviation Guideliner Performance %

Tool Start page Sub-page Form Start
page

Sub-
page Form

AChecker 2.9 ± 2.4 2.7 ± 2.3 3.6 ± 2.9 539 605 626

DynoMapper 9.8 ± 6 10.2 ± 9.2 12.2 ± 8.9 158 176 164

Powermapper 8.8 ± 7.3 5.5 ± 4.7 6.8 ± 6.2 283 195 302

Tenon 5.0 ± 3.1 4.8 ± 2.9 5.3 ± 3.2 364 344 345

TotalValidator 4.5 ± 3.2 3.7 ± 3.4 10.0 ± 30.1 192 379 451

Wave 10.4 ± 6.5 9.4 ± 13.6 7.5 ± 4.4 257 167 178

Guideliner 17.3 ± 3.9 16.7 ± 3.8 19.2 ± 6.0 100 100 100

Average 6.9 ± 4.8 6.0 ± 6.0 7.6 ± 9.3 255 250 276

The third purpose of the experiment was to compare how homogeneous are the
Guideliner evaluation results in comparison to the selected benchmark tools in terms of
the detected usability issues. Appendix 9 shows the raw data of number of violations
grouped by university WUI and the tool. As this data is not comparable due to different
tools having a different set of guidelines they are based on, the author normalized the
data by introducing the concept of violation coverage which indicates the
correspondence of distinct guideline violations to the total amount of guidelines
supported by the tool. Firstly, the violation coverage of the tool for each university WUI
VC(u,t) (u stands for university WUI and t stands for the tool) was calculated based on
the Equation 4 where N(u,t) is the number of distinct violation detected by the tool for
each university WUI and N(g) (g stands for the guideline) is the number of guidelines the
tool supports. Secondly, the minimum (t), maximum (t) and average

(t) violation coverages per tool were calculated finding the minimum, maximum,
average value within the range of VC(u, t) of each tool (refer to Equation 5-7).

88

(,) = (,)() ; (4)

 () = ([(,)]) ; (5)

 () = ([(,)]) ; (6)

 () = ([(,)]) ; (7)

Table 7 shows the results of the analysis of minimum, maximum and average violation

coverages per tool and indicates how the Guideliner performs compared to the
benchmark tools. The results in Table 7 show that the Guideliner has highest violation
coverage within all the tools. In addition, the Guideliner minimum and maximum
violation coverages are higher than the same metric for other tools. Appendix 9 Table
Minimum, Maximum and Average Violation Coverages complements the data presented
in Table 7 by adding additional granulation by university WUI enabling to compare the
Guideliner performance in the scope of each WUI in the experiment. The results clearly
outline that the Guideliner minimum coverage is higher for all WUI than the minimum
over all tools, while the maximum performance is more than zero in most cases meaning
that the Guideliner showed the highest maximum coverage between all tools.
The average Guideliner coverage results are also not homogeneous with average results
of all tools exceeding the average coverage results between all tools multiple times.
Overall, the maximum, minimum and average results of the Guideliner violation coverage
show mostly in all cases better performance than the result of the same metrics of other
tools. Aforementioned results mean that the Guideliner having fewer guidelines
described than some other tools (e.g. PowerMapper, AChecker) is still able to detect
more violations. The reason for such performance is that the Guideliner contains usability
guidelines that are not supported by other tools but at the same time that are violated
as often as accessibility guidelines.

Table 7. Results of vc of the Guideliner compared to the benchmark tools.

Violation coverage Guideliner vs Benchmark tool

Min Max Average Guideliner
min %

Guideliner
max %

Guideliner
average %

Wave 0.02 0.28 0.09 ±0.06 522 88 194

PowerMapper 0.02 0.18 0.07 ±0.04 544 143 252

Achecker 0.01 0.11 0.03 ±0.02 1240 229 582

DynoMapper 0.10 0.20 0.09 ±0.05 108 124 198

Tenon 0.01 0.09 0.05 ±0.03 805 266 350

TotalValidator 0.01 0.29 0.09 ±0.05 1251 86 342
Guideliner 0.11 0.25 0.18 ±0.03 100 100 100

Overall, the verification evaluation of the Guideliner tool proved that the Guideliner is

functionality-wide mature tool that can be used for automated usability evaluation as an
alternative to the existing software. The comparison of characteristics of the tools
showed that the Guideliner is the only tool that in addition to HTML-specific guidelines
evaluates also visual usability guidelines. On the one hand, from the perspective of

89

evaluation speed, the Guideliner falls below the average level because of its supports for
visual and mobile usability guidelines that require more resource intensive operations.
On the other hand, verification evaluation demonstrated that support for visual usability
guidelines allow the Guideliner to detect more violations on WUI than other tools.
Thus, the verification evaluation proved that the Guideliner is comparable to the
alternative tools for automated usability evaluation showing higher than average results
for violation coverage and frequency of violation. The experiments presented in current
Section were obtained in the process of tight cooperation and supervision of a master
student the author was supervising [125].

4.8 Limitations of the Guideliner
Multiple research works advice to combine various usability evaluation approaches
pointing out that there is no "silver bullet" solution capable of evaluating every aspect of
WUI [46] [67]. For that reason, usability evaluation should not rely only on one method.
To design a highly usable WUI the combination of multiple evaluation methods (such as
user testing, card sorting, heuristic evaluation etc.) should be used. The proposed
Guideliner tool is capable of evaluating the conformance of WUI to a set of predefined
usability guidelines. Nevertheless, it cannot entirely substitute manual evaluations and
user tests as it is practically impossible to simulate human-specific characteristics as
human sense as stated in [49]. In comparison with other similar tools (refer to Section
4.7 for more details), the speed of evaluating usability guidelines is considered as the
main Guideliner limitation (as it showed poorer results than all other tested tools).

The Guideliner supports HTML 4 and 5, CSS 3 (providing backwards compatibility with
previous versions) and JavaScript-based WUIs. It does not require additional adoptions
allowing evaluation of any WUI without extra configurations. The only technological
limitation is that WUIs requiring specific environments to run (e.g. Flash and Java
Applets) are not supported by the tool. The reason for this is that the Guideliner uses
Selenium WebDriver to process WUI (Figure 16). Selenium WebDriver supports only
HTML, JavaScript and CSS based WUIs. To run a Flash web application, the Adobe Flash
Player1 is required containing the embedded environment for injecting Flash Web
applications into the browser. Java Applets, on the other hand, require Java Runtime
Environment (JRE) to run an applet or web application. In fact, both technologies are
deprecating in favour of HTML 5 due to their age and security issues, and both require
additional plugins in browsers to be installed.

The Guideliner is in an active development (available on Github2), and to make it
widely used, the source code should be refactored and additional predefined usability
guidelines from e-commerce, banking, search engine optimization (SEO) domains added
to Ontology Repository, making the Guideliner more valuable for e-commerce.
All aforementioned improvements are considered as topics for further research.

1 https://get.adobe.com/flashplayer/
2 https://github.com/guideliner

90

4.9 Chapter Summary
Automated usability evaluation is an emerging approach to optimise labour-intensive
and time-consuming process of manual usability evaluation. It is achieved through the
use of tools capable of automated evaluation of WUI against the conformance to
usability guidelines.

In this chapter, the Guideliner – a tool for automated evaluation of WUI conformance
to usability guidelines was proposed. The Guideliner tool uses usability ontology
(introduced in Section 3.4) as a source of usability guidelines. Ontology processing engine
is used to transform usability guidelines described in ontology into corresponding Java
objects. The Selenium-based WUI evaluation component checks the conformance of WUI
to the usability guidelines and returns the report as a result of evaluation. The solution
proposed in this Chapter has been published in [12].

The main contribution of this Chapter is a method for usability evaluation prevailing
over analogue solutions such as Mauve, AChecker etc. The novelty of proposed method
is that it is overcoming the limitations of existing solutions (that are limited only to the
evaluation of HTML-specific usability guidelines) evaluating both HTML centric
accessibility guidelines as well as visual usability guidelines that are evaluated on finally
rendered WUI designed especially for mobile platform as well as guidelines specific for
desktop devices only. The proposed solution is capable of evaluating most HTML, CSS
and JavaScript-based web applications; the only limitation is that WUIs requiring specific
environments to run (e.g. Flash and Java Applets) are not supported by the method.
The Guideliner contains 20 mobile usability guidelines, 23 common usability guidelines
(applicable both to mobile and desktop devices) and 55 accessibility guidelines.
Altogether the Guideliner covers 98 usability guidelines; support for more guidelines can
be obtained by describing more guidelines in the usability ontology.

In order to evaluate the Guideliner and compare its performance to other usability
evaluation tools, a total of 441 usability tests were conducted. The experiment results
showed that the Guideliner detected more usability issues than other tools. Also, the
comparison of tools’ characteristics showed that the Guideliner is the only tool that in
addition to HTML-specific guidelines evaluates also visual usability guidelines. Because
of the support for resource-intensive visual usability guidelines the Guideliner falls below
the average from the perspective of evaluation speed. Overall, the comparison of the
Guideliner tool to the benchmark tools proved that the Guideliner provides sufficient
functionality for automated usability evaluation showing better results for some of the
verification criteria.

91

5 Usability Evaluation within WUI Development
Usability evaluation is a method for identifying specific problems with usability of
products [9]. As a process, it is laborious and costly in terms of human resources and
time. If some of this work could be done automatically in early development phases of
WUI using knowledge and best practices from web usability domain, then usability
problems could be identified as they occur during the development process and solved
immediately – saving time and cost on the necessity to re-develop an ill-designed WUI
with poor usability. Automatic usability evaluation during WUI development would
economize time and cost of using human experts and testers wherever possible, and
contribute to and stimulate production of high-quality user interfaces.

This chapter addresses the problem of how to effectively evaluate web user interfaces
usability and cross-platform compatibility during their development, in particular within
software implementation phase with minimal cost and time. Two case studies will be
presented.

5.1 Introduction
Web user interfaces are very fastidious to the modifications as even a small change in
some style or colour scheme, alteration of layout (e.g. decreasing the position between
the content and corresponding title), or addition of elements can cause new usability
issues (for instance, changing the colour of a link text, making it lighter or darker, can
potentially lead to severe usability problems regarding contrast). According to WCAG
guidelines documented in [32], the contrast ratio between the letters and the
background that is immediately behind the letter should be kept above 4.5. Violating this
guideline leads to lower usability for target users including people with (eye-) disabilities.
Each modification during development can potentially introduce new issues of usability,
and in the worst case severely lower the usability of a WUI. Discovering poor usability as
early as possible – during development – makes fixes less costly than finding and fixing
them in later phases of development (e.g. after launch/going live). To bring usability
evaluation into WUI development requires an approach that will provide subsequent
feedback to WUI developers. The latter is one of the aims of the Guideliner tool
presented in this thesis.

A typical WUI development process consists of the next six iterative phases: planning,
analysis, design, implementation, testing and maintenance [17]. Planning, analysis and
design phases are responsible for gathering the right requirements, prioritizing them and
formalising for the WUI development. Certain inspection evaluation methods such as
heuristic evaluation and cognitive walkthrough can be applied already during the design
phase when the initial prototypes and mock-ups are evaluated by usability experts. WUI
code writing occurs during the implementation phase when developers establish or
modify WUI source code according to the requirements set in the planning phase.
Afterwards, during the testing phase, it is ensured that the result of the development is
exactly the same as it was planned, and that the WUI after modifications is usable and
user-friendly. In general, inspection and empirical usability evaluation occur during the
testing phase when WUI is finalised for the release. Nevertheless, fixing usability
problems during the testing phase is more time-consuming than correcting the same
issues during the implementation phase as research has proven [126] [127].

Multiple research works have concentrated on investigating the cost of changes and
the cost of fixing the bugs in software during different phases of software development

92

[126] [127] [128]. Boehm [126] published statistics about the cost of software changes
on different software phases based on the TRW Automotive and IBM projects.
The results showed that the cost of change or bug fixing increases with every consecutive
phase of software development. To fix an error or defect in requirements is relatively
cheap in comparison to fixing the same error during acceptance testing or during
software maintenance phase. Of course, in case of larger software projects,
the difference in cost is more considerable than for smaller software projects. Similar
conclusions were also presented by McConnel [127], who claims that finding the defects
during the initial phases of software development decrease the cost of project around
10 – 100 times in comparison with the situation when they are detected and fixed during
the acceptance testing. Tassey [128] investigated the economic impact of an inadequate
infrastructure of software testing in the U.S. The results of the study showed that most
of the bugs (40% of all bugs) are detected during testing and fixing the defects found
during the testing is around two times more expensive (Figure 25: p – 8p show relative
average cost per bug) than fixing defects found during the implementation phase of
development. These findings serve as a motivation for concentrating on automated
usability evaluation particularly during the coding or implementation phase of WUI
development that decreases the average cost per bug in average two times in
comparison with the testing phase.

Figure 25. Software testing costs shown by where bugs are detected [129].

Commonly, WUI usability is not tested with each minor change separately but rather
checked when all functionality for a release is finalised. It introduces a gap between the
moment usability defect is detected and the moment when it was introduced by
developers into the product. The motivation of the current Chapter is to address the
latter gap and propose a method of evaluating WUI conformance to usability guidelines
during the implementation phase of WUI development process. The real benefit of
automated usability evaluation during the implementation phase is increased quality of
WUI achieved by immediate feedback to developers on found usability issues. Usability

93

evaluation during the implementation phase allows to identify usability defects and
issues as they occur allowing to save time and cost on necessity to re-develop the WUI.
Also, this would save time and cost of using human experts and testers wherever
possible, stimulating development of high-quality user interfaces. Automated detection
of usability issues during the implementation phase enables to focus during the testing
phase on the issues that cannot be automatically detected.

While Chapter 4 focused on presenting the Guideliner – a tool for automated usability
evaluation using the Guideliner User Interface component for initiating the process of
automated evaluation, this Chapter concentrates on exploiting the Guideliner Core
within a development IDE for automated usability evaluation during the implementation
phase of WUI development.

The rest of this chapter is organized as follows. Firstly, usability evaluation during
different phases is discussed. Then, the Guideliner integration into implementation
phase of WUI development and Continuous Integration Process are presented. Finally,
use cases of the Guideliner integration into RIA (Republic of Estonia Information System
Authority) WUI development process and to the Kühne + Nagel IT Service Centre AS
intranet web application development process are demonstrated.

5.2 Usability Evaluation during WUI Development Process
A typical software development process today is an iterative process (e.g. Scrum1)
consisting of planning, analysis, design, implementation, testing and maintenance [17].
User Interface development also follows the aforementioned phases (Figure 26)
containing specific activities for (W)UI development during each phase:

1. Planning, Analysis, Design phases – determining the goals of the iteration or the
whole project and allocating the resources needed to achieve the solution.
In general, the output of these phases is a set of stories to be implemented.
The initial WUI prototype is usually be created and evaluated during these phases.

2. Implementation – part of software development process when the software,
including (W)UI, is being coded according to the specification defined; it can also
include writing automatic developer tests.

3. Testing – ensures that changes introduced during the implementation phase of
(W)UI development meet their objectives, and that newly developed features do
not decrease usability of WUI. Functional WUI testing is not in scope of current
thesis as current thesis is concentrating only on usability evaluation during testing
phase of WUI development.

4. Maintenance – contains operations for maintaining the application in a
production environment including post-implementation reviews.

The duration and complexity of each phase can be different depending on the selected
development methodology. In case of an agile methodology, there are shorter and
flexible iterations during the development cycle than in case of a waterfall model when
the development process flows in one direction long and requirements cannot evolve
dramatically during WUI development.

1 https://www.scrum.org/resources/what-is-scrum

94

Figure 26. Phases of software development process.

Most existing methods for usability evaluation fall into design and testing phases.
For example, heuristic evaluation, cognitive walkthrough and user tests can be initially
conducted on mock ups or even paper prototypes to receive initial feedback on the
preliminary design. Afterwards, when WUI has been developed according to the mock
ups, in the testing phase WUI is evaluated using various methods including heuristic
evaluation, user tests, eye tracking, expert review etc. The only usability evaluation
occurring during the implementation phase is WUI developer review when the developer
evaluates usability (of developed functionality) based on his knowledge in the domain of
usability evaluation [122].

In general, during the implementation phase of WUI development, developers write
code that satisfies the requirements; they add new elements to WUI or modify existing
elements on the screen according to business requirements. In addition to modifying the
code of WUI, developers cover the functionality with automated unit and functional WUI
tests. WUI functional tests (black-box testing which checks the software behaves as
defined in specification) facilitate the evaluation of application quality automatically
providing the feedback about the status of the application.

In general, WUI developers do not have enough expertise and competency to evaluate
usability of WUI as their main responsibility is functional development of WUI,
e.g. dividing design into components, writing front-end code and covering code with
tests. The general lack of competence in usability domain is the reason why usability
evaluation should also be automated. The automation of usability evaluation should be
done in a way so even developers without a good usability evaluation experience would
understand the cause of detected problems and the way problems should be fixed as
eventually, developers are the main consumers of automation of usability evaluation
during the implementation phase. Descriptive usability evaluation result will help
developers to avoid introducing the same usability defects again as they understand the
reason of problem.

Typical WUI development paradigm requires usability testing to be conducted by
usability experts and quality assurance (QA) specialists to be included in testing phase.
(as shown in Figure 27). Usability testing can be conducted automatically using tools
designed for automated usability evaluation or manually involving usability experts and
potential users. The principal shortcoming of usability evaluation during testing phase is

95

that usability defects identified should be reported and sent back to developer to be
fixed. This, however, introduces a delay between the moment when WUI was changed
and the moment the developer receives feedback on errors, increasing total time of
development and as a result also cost of the fix and the project.

Figure 27. Phases of WUI development process highlighting the missing activity
(Automated WUI Usability Testing) during the implementation phase.

The current Chapter addresses the aforementioned delay in the feedback on usability
evaluation, proposing a solution that enables automated usability evaluation already
during the implementation phase of WUI development. Figure 27 highlights the missing
activity Automated WUI Usability Testing during the implementation phase of WUI
development process. An approach to evaluate usability during the implementation
phase will be introduced in Section 5.3 with more details.

As stated earlier, there is a gap between the moment usability defect is detected and
the moment it was introduced into product. The reason why automatic usability
evaluation is not part of the implementation phase is the lack of proper tools for
automated usability evaluation during this implementation phase. There are existing
solutions that can be used during testing but there are obstacles (e.g. these tools require
special environment to run and they cannot be executed together with unit or functional
tests) preventing them to be used during implementation phase of WUI development.
Implementation phase of WUI development is code-centric while testing phase of WUI
is concentrating on WUI testing using various methods and tools that increase the
efficiency and accuracy of evaluation such as user tests and tools for automatic usability
evaluation. Existing tools for automated usability evaluation fall into the category of tools
suitable for testing phase being development process-centric rather than code-centric.

Overall, usability is evaluated rather during the testing phase than during the
implementation phase of WUI development process. The following sections are
concentrating on problems of implementation-time usability evaluation.

5.3 Guideliner Integration into WUI Implementation Phase
The benefit of conducting usability evaluation during the implementation phase of WUI
development is that detected defects of usability can be fixed immediately – saving time
and cost on the necessity to re-develop a WUI with poor usability. The purpose of current
Section is to enhance the Guideliner with the possibility of immediate usability evaluation

96

during implementation phase of WUI development. A part of this enhancement is
achieved by enabling integration of the Guideliner tool with integrated development
environments (IDE).

The main beneficiaries of implementation-time automatic usability evaluation are
WUI developers as the feedback provided by evaluation results informs the developers
on how the changes they introduced comply with usability guidelines. Existing
solutions for implementation-time code evaluation (e.g. WUI unit tests (Karma1, Jasmin2)
or functional tests (PhantomJS, Selenium)) are architecturally designed as
environment-agnostic pluggable components that can be used as a part of IDE.

Originally, the Guideliner was designed as a separate web application (Section 4.3)
addressing testing phase of WUI development. In order to bring it into the use already in
the implementation phase, the Guideliner needs to be integrated with an IDE and
thereby should be distributed as a pluggable component. As an outcome of further
development of the Guideliner tool, the primary deliverable for WUI developers
community is an artifact distributed as a dependency for dependency management tool
(e.g. Maven3, Gradle4 or Ivy5), which provides an API for executing usability tests on the
local or remote machine; and contains Guideliner Core compiled and packaged as a Java
Archive (JAR) required by dependency management tools. The advantage of distributing
the Guideliner via the dependency management tool is that it can be easily plugged into
an existing project.

Introducing the Guideliner into the implementation phase requires some prior
configuration of the Guideliner by WUI developers so that usability tests are executed
together with other WUI tests. Figure 28 shows high level architecture of the Guideliner
(described in Section 4.3) complemented with Testing Module that provides Java API
which makes it possible to use the Guideliner also within an IDE. The Testing Module
contains Integration Testing Component that provides an abstraction for creating and
executing automated usability tests. Testing Module and Guideliner Core form together
Java Archive (JAR) that is integrated into IDE. Overall, the described architecture of the
Guideliner enables triggering evaluation process from IDE by the mean of JAVA API.

The purpose of the automated usability tests enabled by Guideliner as well as
automated WUI unit and functional tests is to check certain characteristics of WUI.
Test asserts the actual values of evaluated characteristics (in the context of usability
evaluation, characteristics are the properties of WUI elements such as the colour, size,
font of the elements) with the expected ones. There are a few frameworks available for
asserting the actual results with expected ones. The most popular testing frameworks
are JUnit6 and TestNG7. JUnit has been used as a framework for composing automated
usability evaluation tests for the research described in this Chapter because of the
author’s proficiency in that framework. In fact, JUnit and TestNG serve the same purpose
and have similar syntax. JUnit can be easily replaced with any other alternative as the
developed library is test framework agnostic.

1 https://karma-runner.github.io/2.0/index.html
2 https://jasmine.github.io
3https://maven.apache.org
4 https://gradle.org
5 http://ant.apache.org/ivy
6 http://junit.org/junit4
7 http://testng.org/doc

97

JUnit tests can be run from the command line as well as from an IDE. There are many
IDEs available either freeware like Eclipse1 and NetBeans2, and commercial software such
as IntelliJ IDEA3 (it has freeware version but with limited functionality). Every
aforementioned IDE provides sufficient functionality for showing clear and concise visual
output of evaluation results of automated tests. The IntelliJ IDEA has been used for the
research described in this Chapter because of the author’s experience with it,
nevertheless, it can be substituted by any alternative IDE with no effect on productivity.

Figure 28. High level architecture of the Guideliner complemented with Testing Component.

The evaluation of WUI can be triggered directly from IDE visual user interface or
command line (e.g. using Maven or Gradle commands). There are two options available
how to configure the Guildeliner usability tests: reuse a predefined set of usability
guidelines or define a new set. Besides selecting the guidelines for evaluation, the
Guideliner also allows configuring the tests with additional parameters: webURL (URL of
web application to be evaluated), browserType (type of web browser such as Chrome)
and browserWindowSize. The aforementioned parameters make it possible to perform
the evaluation of WUI using different browsers with various browser windows size.
When the parameters are set, the evaluation can be started. An example of IntelliJ IDEA
evaluation results is presented in Figure 29 showing the full integration of the Guideliner
tests into the IDE. The Test results shown in Figure 29 contain the testing method being
executed – testMobileUsabilityGuidelines and in brackets corresponding usability
guideline evaluated and the time evaluation took. The green circle in front of each
usability evaluation result means that the test passed, the orange circle highlights failed

1 https://www.eclipse.org
2 https://netbeans.org
3 https://www.jetbrains.com/idea

98

tests. The tests can be executed all together, or only a selection of tests carried out.
The integration provides value especially for developers as they can run all the task
(programming and testing) conveniently in the same environment, without the need to
switch software. With this approach, WUI usability tests can be initiated easily with one
click in IDE.

Figure 29. Automated Usability Evaluation Results for Estonian Research Information System
https://www.etis.ee (extract from IntelliJ IDEA).

In order to obtain the descriptive reason for failure described in the evaluation results,
the failed usability test should be selected and clicked. After selecting the failed usability
test, a new window appears (Figure 30) containing all WUI elements that violate selected
usability guideline. The view contains the next information: text of the element that
violates the guidelines, type of the element, screenshot name and the violation reason
containing the expected value of characteristic being evaluated and the actual value
extracted from WUI. This detailed information helps developers to identify elements of
WUI that violates usability guidelines, and to understand the cause of these test failures,
allowing to introduce necessary fixes in the implementation phase already.

Figure 30. An additional description provided for failed usability guideline for https://www.etis.ee
(extract from IntelliJ IDEA).

Overall, to integrate the Guideliner into implementation phase of WUI development
process, the Guideliner has been further developed to provide an API for executing
usability tests on the local or remote machine either executed from command line or
from IDE. Integration of automated usability evaluation into IDE allows initiating
automated usability tests from the same environment where developers design other
tests such as WUI functional tests. With this development, usability defects can be
detected during the implementation phase of WUI development that makes the fixes
less time and resource consuming.

99

5.4 Guideliner in Continuous Software Integration Process
Continuous Integration (CI) as defined by Fowler and Foemmel in [129] is “a software
development practice where members of a team integrate their work frequently, usually
each person integrates at least daily - leading to multiple integrations per day.
Each integration is verified by an automated build (including test) to detect integration
errors as quickly as possible“. The importance of CI is that it reduces the cost and the risk
of delivering software with defects supporting more frequent incremental build of an
application. CI is established based on the development timeline [130]. In general,
all activities of CI process like building an application and running automated tests
(including usability evaluation tests) are configured and run automatically every time
developer commits the code to code repository. Under this approach, every modification
of WUI is automatically evaluated against a set of usability guidelines informing the
developer in case some usability guidelines are violated. One of the purposes of current
thesis is to automate usability evaluation that is why fitting the Guideliner into the CI
process is beneficial as it checks the conformance of WUI to usability guidelines during
the WUI deployment to the staging environment. While Section 5.3 introduced
Guideliner Testing Component that is compatible with IDE, the purpose of current Section
is to show how the Guideliner Testing Component can be reused during the CI process.

A sample development pipeline of CI is presented in Figure 31 consisting of Version
Control Server, Integration Server responsible for building the application and running
automated tests, and Application Server where the software is deployed. In order to
execute Guideliner-based usability tests together with other automated tests, the project
should be built first. The automated tests include WUI code unit tests, integration tests
testing the behaviour of a component or the integration between a set of components,
and functional WUI tests verifying that WUI behaves in a way it is expected. Using the
Guideliner as a part of the CI pipeline complements the list of automated tests with
automated usability tests that check the conformance of WUI to predefined usability
guidelines.

The internal process of WUI evaluation workflow with the Guideliner as part of CI
containing main evaluation activities is described on Figure 32. Initially, developers
modify code of WUI and commit modified files to the remote code repository.
Then, integration server component that is listening for modifications of the code
captures the code modification event. Afterwards, integration server checks out code of
application, builds the project and triggers the process of automatic evaluation checking
whether WUI is accessible from the browser and whether there is a predefined set of
guidelines to be processed. Then, the evaluation of WUI is performed according to the
predefined usability guidelines. Finally, depending on the evaluation results, the
evaluation status is set to ‘passed’, if WUI conforms to all usability guidelines, and the
application is deployed to the stage environment. In all other cases, the evaluation status
is set to ‘failed’ and the report providing failed usability tests and corresponding reasons
for failures are provided to the developer running the tests.

Figure 31. A sample development pipeline of continuous integration.

Figure 32. Activity diagram for WUI evaluation workflow.

In
te

gr
at

io
n

Se
rv

er
G

ui
de

lin
er

UI
De

ve
lo

pe
r

Modify code of WUI
locally

Commit modified
code to the remote

codebase

Capture the code
modification event

Is web application
accessible from the

browser

Terminate
evaluation

Initiate automated
usability

evaluation

Is set of usability guidelines
defined

Evaluate WUI
conformance to

usability guidelines

Did usability evaluation
pass?

Set the evaluation
status to passed

Set the
evaluation status

to failed

Send usability
evaluation report

to developer

No

Yes

Yes

No

No

Yes

101

To sum up, the Guideliner automated WUI usability tests can be integrated into CI
process together with other types of automated tests such as WUI unit and functional
tests. Applying the Guideliner-based usability testing during CI process verifies that every
WUI modification deployed to the staging environment conforms to set usability
guidelines.

5.5 Integration Use Cases
In order to validate the proposed method of implementation-time automatic usability
evaluation of WUI, and to verify that it is suitable under real development conditions,
the Guideliner was introduced to the development and CI processes at the Estonian
Information Systems Authority (RIA) and Kühne + Nagel IT Service Centre AS (K+N), both
interested in improving their development processes.

5.5.1 Integration into RIA WUI Development Process
Estonian Information Systems Authority (RIA) coordinates the development and
administration of the Estonian State Portal (ESP)1 – the gateway to eEstonia. ESP contains
approximately 100 subpages including various pages for citizens and entrepreneurs.
The WUI of ESP is extremely critical to be flawless as it provides services for all inhabitants
of Estonia. Following web usability guidelines for critical portals is important as it is used
by people with different experience and skills in using various WUIs, and also by people
with disabilities.

The primary motivation for integrating automated usability and accessibility
evaluation to RIA’s development process from the author’s point of view is to ensure that
the Guideliner can be a beneficial tool within real development environment. From the
perspective of RIA, the motivation is carried by the necessity to ensure the conformance
of ESP’s WUI to WCAG. ESP follows Directive (EU) 2016/2102 of the European Parliament
and of the Council of 26 October 2016 [131] on the accessibility of websites and mobile
applications of public sector bodies. The main purpose of the directive is to encourage
all governmental applications to be more accessible by people with disabilities increasing
the importance of following WCAG standard guidelines.

RIA is responsible for developing and maintaining the governmental gateway portal
ESP, also known as eesti.ee portal. The portal is a primary gateway to public information
and service in Estonia. It is a secure Internet environment that the residents of Estonia
use to access the state’s information systems and portals. The main reason why the
Estonian State Portal was selected for the research is because it is the most popular
public governmental portal with more than 40 mln. visits per year [2]. Figure 33
demonstrates the view of the ESP home page containing the most popular sections of
the web application. The WUI of the ESP is based on HTML, CSS and JavaScript
technologies and is designed using responsive web design approach. It means that the
positions of elements, their size and design vary across the devices ensuring high usability
on every device.

Despite the fact that there are multiple existing solutions for checking the
conformance to WCAG standard (e.g. AChecker2, Mauve3 and TotalValidator4), there is
no standard commonly available solution that can suit entirely RIA’s development

1 https://www.eesti.ee/en
2 https://achecker.ca/checker/index.php
3 http://mauve.isti.cnr.it
4 https://www.totalvalidator.com

102

process model. For instance, AChecker, Mauve and TotalValidator are distributed as
standalone web applications requiring a separate environment to run (e.g. AChecker
requires Apache server with preinstalled PHP environment). RIA uses TotalValidator for
periodical inspection of WUI compliance to usability guidelines. TotalValidator is
distributed as a browser extension and usability experts use it during the pre-release
testing to make sure that new functionality does not violate WCAG guidelines.
Nevertheless, RIA’s WUI development team moves towards full automation of the
development process and they find that their current approach to automated usability
evaluation (manual execution of usability tests with TotalValidator) does not comply with
the RIA development process requiring that the tool for automated usability evaluation
is built and run as a part of continuous integration process. RIA development team’s
vision is that usability evaluation is executed automatically every time developers
commit changes to the source code of an application. Inability to fully automate usability
evaluation is the main disadvantage of the current RIA setup.

Figure 33. Screenshot of the Estonian State Portal eesti.ee containing the most popular sections of
the web application (accessed 27.03.2018).

The Guideliner as an implementation-time usability evaluation tool addresses the
discussed disadvantage and enables to fully automate usability evaluation process
through integration into development and CI process described in Sections 5.3 and 5.4.

RIA carries out different types of usability tests in different phases of WUI
development process. Figure 34 presents the usability evaluations conducted during
different RIA development phases. Plurastic walkthrough, Heuristic evaluation and User
tests are conducted manually during the Design phase; White box testing performed by
developer is the only type of usability testing performed during the Implementation
phase; Testing Phase is covered by TotalValidator accessibility tests and Expert usability
review; during the Maintenance phase Google Analytics and Plumbr interaction based
tests are used. The Guideliner usability tests marked with dashed-line rectangles on
Figure 34 complement the Implementation and Testing phases of RIA WUI usability tests
with automated usability Tests. The Guideliner usability tests during the Implementation
phase allow executing usability tests on the developer’s local environment. In addition,
the Guideliner is integrated into the testing phase of WUI development performing

103

usability evaluation of WUI after each deployment on staging environment. These
improvements are aimed to detect usability defects before manual usability evaluation.

RIA is a governmental company and it does not have its own development team.
All changes made to the ESP are done by partner companies. The development process
with partner companies (RIA has multiple different partners) can be different between
the partners but in common it is organised in an agile way consisting of iterations that
include planning, implementation, testing and releasing. In order to decide how to
integrate the Guideliner into RIA’s development process, RIA development process was
reviewed in cooperation with RIA UX architects and WUI testing team. The development
process is optimized with CI that automates the process of application building, running
automated WUI tests and releasing the application to the staging environment). Figure
35 presents the Implementation phase of the WUI development process. According to
RIA development process, developers develop WUI on local machines. After the
development is finished, they commit modified code to the remote code repository,
afterwards, the changes are merged to the shared branch and the Integration Server is
notified about changes in code base. Then, the integration server checks out application
source code, initiates the build, and performs WUI code unit tests. When all functionality
for release is finalised by partner companies, RIA’s testing teams perform release testing.

Figure 34. Usability tests carried out in different phases of the RIA WUI development process, and
the fitting of the Guideliner tests into it.

Overall, based on the analysis of the development process, the process was suitable
for the Guideliner to be integrated as a command line library into the implementation
phase of the project together with other tests including function WUI tests and unit tests.
Figure 35 highlights the step Run the Guideliner automated usability tests that was
introduced to RIA’s WUI development process with the addition of the Guideliner.
The new step allows automatically to check the conformance of WUI to usability
guidelines on the local environment as well as on the integration server.

One of the purposes of the Guideliner integration into the RIA development process
was to investigate whether the Guideliner can be integrated into the existing project
without major affection to the existing development process. The results of the
integration to RIA’s WUI development process proved that the Guideliner can be
integrated as an additional activity (run automated usability tests) without any major
modification of existing process activities.

The Guideliner usability tests integration into RIA development process was possible
as RIA already used Selenium-based WUI functional tests and had infrastructure ready
for such tests. For the projects that do not contain Selenium-based tests,
the infrastructure (e.g. browser for Selenium tests) needs also to be configured, though,

104

the configuration is quite trivial. In addition to infrastructure configuration, integration
server requires also alteration to run the Guideliner usability tests.

Another purpose of the Guideliner integration was to estimate its viability. As was
mentioned before, RIA has contracts with partner companies to handle ESP
development, which makes estimating the Guideliner economic benefit for RIA not so
straightforward. At the moment of the Guideliner integration, RIA was in the process of
changing its partner companies and organising a new public procurement. The change of
development partner did not allow to conduct a long-time experiment, and it was
decided to evaluate the economic benefit indirectly in cooperation with RIA’s team
(UX architect and Testing Lead) relying on their expertise and previous practice.
RIA verifies the usability of developed WUI functionality when the partner company has
finished the implementation and handed it over for evaluation. In case usability problems
are detected, the development partner company is informed about the problems they
need to address and provide fixes for.

Figure 35. Implementation phase of WUI development process at RIA.

105

In order to evaluate the Guideliner integration benefit indirectly, the publications
addressing bug fix price on different software development phases were analysed.
The authors of different research works [128] [132] [133] agree that around 35% - 55%
of the total software costs goes on testing, and that fixing the bug in implementation
phase is in average 50% cheaper than detecting and fixing the same bug during the
implementation phase. For that reason, these authors suggest to build testing process in
a way that enables to detect defects as soon as possible. Before the Guideliner was
integrated to RIA it took nine steps to detect and to fix a usability problem as Table 8
demonstrates (commit the code, make pull request, merge the code, deploy to staging
environment, perform the usability testing, document the problem, send it back to
developer, create branch and fix the problem). Together with RIA experts, the thesis
author defined a weight of each step in RIA development process that shows the relative
human resource consumption on each of the 9 steps. For instance, the weight of 45%
means that it takes 45% of the time to finish the step Perform usability testing step.
The most time-consuming step is usability evaluation as it is done manually and requires
review of functionality from the perspective of usability, whereas most other steps
require minor human effort. After the Guideliner integration, three steps that were
executed manually (steps 5, 6, 7) are now fully automated and do not require human
expert input anymore. As a result, the total weight of the next three steps: perform
usability testing, document the problem and send it back to the developer decreased
from 60% to 20%. The decrease was prompted by the improvements in time estimation
that dropped by 40%. Based on the expert knowledge of RIA experts, it was concluded
that the integration of the Guideliner could decrease the evaluation time around 40%.

Table 8. Steps to detect and fix usability problem in RIA.

Step Weight Type
1 Commit the code 5% manual
2 Make pull request 5% automatic
3 Merge the code 10% manual
4 Deploy to staging environment 5% automatic
5 Perform usability testing 45% manual
6 Document the problem 10% manual
7 Send it back to developer 5% manual
8 Create branch 5% automatic
9 Fix the problem 10% manual

Figure 36 shows the average relative price of fixing the problem before and after the

Guideliner integration according to the methodology presented before. It also highlights
the shift in time of possible defect detection. Such improvement is accompanied by the
decrease in the number of steps to be performed to detect and to fix a usability defect.

106

Figure 36. Average relative price for fixing the bugs found by the Guideliner during the
implementation phase and during the release testing phase.

The economic benefit for RIA’s development partner companies is that the usability

defects detected by the Guideliner during the implementation phase will be fixed with
smaller amount of steps (according to the estimations presented in [128] the price of a
fix decreases up to 50%) than detecting the same problems during the testing phase.
With such improvement, RIA usability testing team, in its turn, can concentrate on
detecting more severe usability problems that cannot be automatically detected and
require manual labour, delegating simple ones to the Guideliner.

Overall, the Guideliner automated usability tests were integrated into RIA
implementation and testing phases of WUI development. The Guideliner integration
obviated the need for manual usability evaluation with TotalValidator used before the
Guideliner integration, and that was triggered manually as it was installed as a browser
plugin. With the integration of the Guideliner, the automated usability evaluation is fully
automated along with WUI functional and WUI code unit tests. The analysis of
integration and its evaluation with RIA experts showed that the potential time, and as a
result, the cost of fixing the bug detected with the Guideliner during the implementation
phase could in average be 40% less expensive than if found manually during the testing
phase. Next, the cooperation with RIA is continuing with encouraging RIA partner
software development companies (companies that develop WUI for RIA applications) to
integrate the Guideliner into their development process to assure that their code
conforms to the accessibility and usability guidelines.

The integration of Guideliner into RIA’s development process presented in current
Section is a result obtained in the process of cooperation and supervision of a master
student the author was supervising [134].

5.5.2 Integration into Kühne + Nagel WUI Development Process
Kuehne + Nagel (K+N) was the second organization into whose development process the
Guideliner was introduced to test its viability. Kuehne + Nagel is a global transport and
logistics company with headquarters in Switzerland. The company is focusing on
providing IT-based logistics solutions for sea freight and air freight forwarding, contract
logistics, and overland businesses. Kuehne + Nagel established an IT development centre

107

in Tallinn in 2012 with a name Kühne + Nagel IT Service Centre AS, and signed a
cooperation agreement with Tallinn University of Technology with the purpose to
develop new solutions in the IT area.
 The purpose of the Guideliner integration into Kühne + Nagel IT Service Centre AS WUI
development process was to ensure that the Guideliner provides enough functionality
for integration into real WUI development process. In addition, the goal of the
integration was to analyse how the Guideliner integration would economize the time
spent on usability evaluation.

The web application under study in case of Kühne + Nagel IT Service Centre AS is the
Customer Identification Program (CIP) that provides the functionality for managing
customers of the company. The purpose of the web application is to deliver the
information about company customers to all concerned departments. CIP is an internal
application that must be used strictly inside the company’s internal network that is why
the discussions about various features, views and data the application contains is strictly
limited herein. One of the main reasons why CIP was selected for the Guideliner
integration into the WUI development process is to test and verify the Guideliner for the
project at the beginning of a development phase. At the time of the Guideliner
integration, CIP WUI development was at the initial stage suiting entirely the purpose of
the integration.

The WUI of CIP is based on the technologies fully supported by the Guideliner – HTML,
CSS and JavaScript technologies being developed with Angular 4 JavaScript Framework1.
The custom application specific CSS style theme was developed based on Bootstrap 42.
Figure 37 shows the screenshot of CIP view made on Test Environment containing
detailed information of a selected customer. At the time of evaluation, the application
contained more than 15 various views.

As far as CIP is a business critical web application, all main WUI business workflows
are covered with automated functional tests triggered and executed automatically after
each commit verifying that the business workflow has not been affected by the changes
to the WUI code. The evaluation of usability is not automated but rather manually
reviewed by product owner, QA and developers when the feature is released to the
staging environment; there is no evaluation of every modification of WUI conducted –
this is the gap that the Guideliner addresses in K+N case providing the possibility to
evaluate usability automatically after each modification of WUI. CIP has already existing
functional Selenium based tests that are triggered and executed after every commit to
the WUI code base. The existing testing model is extendable and provides an easy way
to integrate the Guideliner.

K+N WUI development process from the technical perspective is similar to the RIA
process discussed in Section 5.5.1. According to CIP WUI development process (Figure
35) at K+N, developers write code on their local machines, afterwards, they run WUI
functional tests locally before committing modified code to the remote repository and if
tests pass they commit changes to the remote repository. Then, the built is triggered on
integration server where the application is built and tests are executed automatically.
Afterwards, the application is deployed to the application server where QA verifies the
changes done by developers. Usability testing occurs on application server after the
whole release functionality is finalized.

1 https://angular.io/
2 https://getbootstrap.com

108

Figure 37. Screenshot of Customer Identification Program (CIP) containing detailed information
about the customer (accessed 27.06.2017).

As was mentioned before, the CIP existing testing model that consists of automated
code unit tests and WUI functional tests is extendable. The testing model was extended
with additional type of tests – the Guideliner usability tests. The purpose of the Guideliner
usability tests is to make sure that code modifications did not break the conformance of
WUI to usability guidelines. Also, CIP WUI development process (see Figure 35) was
affected – before deployment of CIP WUI to staging environment the conformance of
WUI to usability guidelines is verified automatically: in case usability guidelines are
violated, application will not be deployed to staging environment.

After the Guideliner was integrated into the development process, four developers
from a team, who were mostly concentrating on the WUI development process,
participated in the experiment. Developers were obliged to execute the Guideliner
usability tests every time before they commit the code to the remote repository.
The experiment lasted for 20 working days. During that period 17 tasks for WUI changes
were resolved; 89 commits were done to the remote repository.

Developers were obliged to run the Guideliner usability tests before committing to the
remote repository. The Guideliner detected 129 violations during the experiment for 17
tasks. All violations detected by the Guideliner in CIP were fixed. In rare cases, usability
violations were detected by Guideliner on the staging environment but only in cases
when developers did not run usability tests locally. That was the case when developers
were fixing WUI bugs and wanted to deploy the fix as quickly as possible missing the
execution of functional and usability tests. The integration of the Guideliner also
encouraged team members to propose new CIP specific usability guidelines for the
Guideliner. Proposed usability guidelines were based on their expert knowledge of
detecting similar usability issues within different views of CIP.

109

CIP team follows Scrum-based process with two-week Sprint intervals. At the end of
the Sprint, all tasks resolved during the Sprint were deployed to the production
environment. After the experiment was finished, the benefits of the Guideliner usability
tests were analysed from the perspective of time saved for detecting and fixing usability
guidelines. Before the Guideliner was introduced to the development process,
the process of handling usability defect consisted of the next steps done by QA: assign
task, understand the change, detect the problem, document the problem, send it back
to the developer, and the next steps done by developer: understand the problem, create
the branch, make code review, deploy to test and inform QA). After the Guideliner was
integrated, the usability defects were detected automatically after the code was
committed to the remote repository before they reached QA, and developers were
notified immediately about the introduced usability defects.

A QA engineer was asked to perform ten manual usability evaluations and to calculate
the time required to detect and document found usability defects. The average time to
detect and document usability defects was in average 27 minutes (Table 9); on average,
two violations were detected during each evaluation. The same metrics (evaluation time
and the number of detected violations) were also measured with the Guideliner. As the
Guideliner performs the evaluation automatically, the average execution time of the
Guideliner usability tests was in average 10 minutes (Table 9). The average number of
detected usability guidelines by the Guideliner was also two. The usability issues detected
by the Guideliner and by QA engineer were mostly overlapping with very few exceptions.

The experiment showed that the Guideliner detected certain usability defects that
were missed by QA engineer. For example, the Guideliner reported the violation of
usability guideline that defines the minimum distance between elements on WUI even
when the distance between elements was few pixels smaller than allowed; QA engineer
missed the violation as it is not straightforward to detect such violation manually.
The experiment also showed that in certain cases the usability defects reported by QA
engineer were not detected by the Guideliner as these guidelines were not defined in the
Guideliner. For example, QA engineer detected that some labels of the buttons were not
consistent between applications. It is complex to detect such violation automatically as
the labels of the buttons depend on the context where they are used.

Based on the calculation presented before, the Guideliner detects usability defects
60% faster than an average human evaluator. Moreover, the Guideliner detects the
problems before QA starts the process of usability evaluation meaning that QA gets more
time for other activities, such as severe interaction-based usability problems that cannot
be detected automatically by usability evaluation tools.

Overall, the purpose of the Guideliner integration was to ensure that it is suitable for
the project that follows short (two-week) cycle software development process. The main
difference with RIA’s case is that RIA covered only technical owner role, and the
development was done by partner companies. In contrary, CIP team covers both roles:
technical owner of the project as well as a team that develops the project. Covering both
roles allowed measuring the minimal time spent on usability problem detection before
and after the Guideliner integration. Measurement results showed that after the
Guideliner was integrated the time spent on usability problem detection decreased by
approximately 60%. Both, RIA and KN integration use cases showed that the Guideliner
integration into WUI development process enables immediate feedback for the
developers decreasing the usability evaluation time around 40% - 60%.

110

Table 9. Result of QA manual usability evaluation.

Attempt
nr.

Manual
Evaluation Time
(minutes)

Number of
Usability
Defects
Reported

Automated
Evaluation
Time
(minutes)

Number of
Usability
Defects
Reported by
Guideliner

1 23.50 4 11.20 5
2 22.45 0 8.78 1
3 25.90 0 9.45 0
4 25.49 2 13.98 1
5 24.34 3 11.45 4
6 27.83 0 10.09 0
7 32.56 3 8.68 4
8 30.63 4 11.58 2
9 31.34 0 11.43 0

10 28.45 5 8.34 4

5.6 Chapter Summary
Due to rapidly changing business requirements, WUI design and structure are almost
always in continuous development to meet new requirements. Changes to WUI should
be done with extreme caution as every even minor change of WUI can potentially lead
to severe usability problems [12]. That is why immediate evaluation of WUI conformance
to usability guidelines and subsequent feedback to WUI developer becomes another
critical demand in WUI development and in particular during the implementation and
coding phase of the WUI. Usability evaluation during the implementation phase of WUI
development addresses the gap between the moment usability defect has been detected
and the moment when it has been introduced by developer. Immediate usability
evaluation is important because finding usability problems early in the implementation
phase makes the fix less costly than found later.

This chapter focused on executing automatic WUI usability evaluation enabled by the
Guideliner during WUI implementation phase as a part of its development process.
Usage of the Guideliner was included into development process steps and the Guideliner
Core was integrated into integrated development environment extending the
capabilities of the original Guideliner. The approach was evaluated on two organizations
and their software development processes – Estonian Information Systems Authority
and Kühne + Nagel IT Service Centre AS. The primary motivation of the Guideliner
evaluation was to ensure that Guideliner can be a beneficial tool within real development
environment and that it suits for different WUI development processes. For this purpose,
the Guideliner integration into the WUI software development process of
aforementioned organisations was evaluated. The analysis of integration into RIA WUI
development process showed that the cost of fixing the bug detected with the Guideliner
during the implementation phase is in average 40% less than if found during the testing
phase. Also, the measurement results showed that after the Guideliner was integrated
the cost of detection of usability issues for KN has decreased by 60%.

111

Overall, the purpose of the Chapter was to integrate the Guideliner into IDE enabling
automated usability evaluation already during the implementation phase of WUI
development. The results of the experiment showed that the benefit of the Guideliner
integration into implementation phase of WUI development is immediate feedback for
the developers on the detected usability defects that decrease the cost of fixing usability
defects.

The use cases of integration the Guideliner in real WUI development processes
confirmed the effectiveness and usefulness of it. Using the Guideliner for
implementation-time usability evaluation is not limited to any development process but
can be exploited in any HTML-based WUI development. The solution proposed in this
Chapter has been published in [13].

113

6 Conclusions and Future Work

„The details are not the details. They make the design. “
Sir Charles O. Eames1

The proliferation of the Internet, development of hardware and software, and the
advances in technologies for content delivery has led to a situation where the Web can
be accessed not only from desktop computers but on a multitude of different platforms
including laptops, tablets and smartphones, all of which have become an indispensable
part of our lives. However, this has also raised challenges for web user interface usability
evaluation, encouraging developers and researchers to find new and cost-efficient
approaches for immediate implementation-time usability evaluation, including
computer-aided usability evaluation

This thesis has focused on modelling custom usability guidelines for automatic
usability evaluation and on the automatic evaluation of WUI conformance to usability
guidelines during both WUI implementation and WUI testing phases.

6.1 Conclusions
Current dissertation brings forward automated WUI usability evaluation. The dissertation
analyses the methods used to formalise usability guidelines and proposes usability
ontology to overcome the limitations of existing approaches such as inability to define
visual usability guidelines. Another contribution of the thesis is a method for usability
evaluation prevailing over analogue solutions. The novelty of proposed method is that it
is overcoming the limitations of existing solutions (that are limited only to the evaluation
of HTML-specific usability guidelines) evaluating both HTML centric accessibility
guidelines as well as visual usability guidelines that are evaluated on finally rendered WUI
designed especially for mobile platform as well as guidelines specific for desktop devices
only. Finally, the thesis concentrates on automated usability evaluation during the
implementation phase of WUI development addressing the gap between the moment
usability defect is detected and the moment when it was introduced by developer.
Immediate usability evaluation is important because finding usability problems early in
the implementation phase makes the fix less costly than found later. The primary
outcome of the dissertation is the tool for automated web user interface usability
evaluation called the Guideliner. The Guideliner incorporates research outcomes of
current thesis including established usability ontology for capturing usability domain
knowledge, a novel method for automatic usability evaluation of visual usability
guidelines as well as HTML-centric guidelines, and implementation time usability
evaluation.

Current thesis concentrates on unresolved problems in usability evaluation such as
the inability to evaluate visual characteristics of WUI and insufficient support for
implementation-time usability evaluation. Aforementioned shortcomings are the
motivation for current research that distinguishes the research presented in current
thesis from the research works of other researchers in this area who are mostly

1 Charles Ormond Eames (1907–1978), American designer who made significant historical
contributions to the development of modern architecture and furniture.

114

concentrated on the automated evaluation of WUI conformance to HTML-centric
guidelines during the testing phase of WUI development.

The main contributions of the thesis are as follows:
 Establishment of the structure of and the usability ontology to capture

usability domain knowledge and to formalise usability guidelines in
machine-processable and human-readable format (RT3). The usability
ontology contains predefined set of usability guidelines and also allows
defining additional custom usability guidelines based on the established
usability domain knowledge, thus it is extendible.

 A novel method for evaluating visual characteristics of WUI based on usability
guidelines is introduced (RT4). The novelty of that method relies on that it
evaluates WUI conformance to usability guidelines on the finally rendered
result (after page has finished its loading and all scripts have been run).
In addition to evaluating HTML code based guidelines, it also allows
evaluating WUI visual characteristics such as position of elements on the
screen, the distance between the elements, presence, the length of scrolling
and the contrast rate of elements.

 A method for immediate evaluation of WUI conformance to usability
guidelines during the implementation phase of WUI development (RT2).
It addresses the problem of how to effectively and efficiently evaluate web
user interfaces usability during their development, in particular within the
implementation phase with minimal cost and time. Such enhancement
allows fixing usability defects early in the development making the fix
cheaper and less time-consuming than found later.

 A tool for automated usability evaluation called the Guideliner, which is
based on the aforementioned established methods (RT1, RT2).
The Guideliner uses usability ontology as a source of usability guidelines;
it evaluates finally rendered WUI assessing HTML-based usability guidelines
and guidelines covering visual characteristics of WUI, and is applicable both
at the final established WUI evaluation phase (traditional approach), and for
evaluating WUI conformance to set usability criteria during WUI
implementation phase (novel method introduced in the thesis).
The distinctiveness of the Guideliner consists of implementation-time
automated usability evaluation and in automated evaluation of multiple
visual characteristics of WUI.

The Guideliner is applicable to any HTML, CSS and JavaScript-based WUI and does not
depend on any WUI development process. In order to prove its efficiency for real
development environment, the Guideliner has been applied to the public sector portal
and to the internal web application. The results of the integration confirmed the viability
and the effectiveness of the Guideliner in terms of implementation-time usability
evaluation.

There are no restrictions to exploit the Guideliner in other areas such as online
banking, e-commerce applications and social network web applications; this is possible
due to the extendibility of the Guideliner to define any web application specific usability
guidelines using designed usability ontology.

The economic benefit gained from the Guideliner for automated usability evaluation
is considerable. In general, cost of change or bug fixing increases with every following
phase of software development. The Guideliner delivers the ability to detect usability

115

defects during implementation phase of WUI development whereas traditionally
usability is evaluated during the testing phase. Implementation-time usability evaluation
allows fixing usability issues immediately after detection reducing the cost of fixing.

Another benefit gained from the Guideliner is automated evaluation of visual usability
guidelines of finally rendered WUI that increases the coverage of usability problems
handled by automated usability evaluation. It means that usability evaluation performed
during testing phase can be concentrated on more severe usability problems that cannot
be automatically detected such as certain interaction-based usability problems
delegating simpler ones to the Guideliner.

To the best of the author’s knowledge, the new methods presented and discussed in
current thesis were not presented at the time usability evaluation studies were started.

By its contribution, the dissertation has addressed two problems: implementation-time
efficient automated evaluation of WUI conformance to HTML centric accessibility
guidelines as well as to visual usability guidelines (that are evaluated on finally rendered
WUI). Another topic addressed in dissertation is usability ontology as a unified way of
formalising usability domain knowledge through various aspects, being both human- and
machine-readable.

6.2 Future Work
The primary research area of the thesis is automated usability evaluation. Various
directions can be taken to advance the research described in this dissertation further:

First, extend existing predefined sets of usability guidelines with e-commerce, online
banking and social network specific usability guidelines. With such development, the tool
will be applicable to more WUIs.

Second, add additional predefined usability guidelines from e-commerce, banking,
search engine optimization and image processing domains. For example, it is possible to
evaluate the correctness of alternative text using image content analysis and detection
services. Such enhancement will increase the variety of usability characteristics that can
be evaluated automatically.

Third, continue cooperation with RIA to encourage RIA partner software development
companies (companies that develop WUI for RIA applications) to integrate the Guideliner
into their development process to assure that their code conforms to the accessibility
and usability guidelines.

Fourth, increase the popularity of the Guideliner in the area of usability evaluation by
introducing it at conferences and workshops, presentations) for WUI developers, and
promoting it on GitHub.

Fifth, the formation of the Guideliner community by increasing the number of
contributors and end users. As a result, more people will be involved in the Guideliner
development and its exploitation.

Sixth, continuation of academic research in the field of automated usability evaluation
by involving master students in the further development of the Guideliner and presenting
the outcomes on scientific conferences.

The research presented in this dissertation has established a basis for further studies
on automated implementation–time usability evaluation as well as automated
evaluation of WUI visual characteristics.

116

References

[1] Ofcom, “Adults’ media use and attitudes report,” Ofcom, 2014.
[2] “The State Portal eesti.ee in numbers (2016),” 2016. [Online]. Available:

https://www.eesti.ee/eng/topics/business/riigiportaali_abi/partnerile_1/eesti_
ee_2016_aasta_statistika. [Accessed 26 97 2018].

[3] A. McCartney, M. Funk, J. Mercay and H. Marmy, “System and method for
dynamically publishing XML-compliant documents,” Google Patents, 2002.

[4] A. Andrews, J. Offutt and R. Alexander, “Testing web applications by modeling
with FSMs,” Software & Systems Modeling, vol. 4, no. 3, pp. 326-345, 2005.

[5] Y.-F. Li, P. Das and D. Dowe, “Two decades of Web application testing—A survey
of recent advances,” Information Systems, vol. 43, pp. 20-54, 2014.

[6] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke and S. Raghavan, “Searching the
web,” ACM Transactions on Internet Technology (TOIT), vol. 1, no. 1, pp. 2-43,
2001.

[7] E. DIn, “Ergonomic requirements for office work with visual display terminals
(VDTs),” International Organization for Standardization, vol. 11, 1998.

[8] J. Nielsen and H. Loranger, Prioritizing web usability, Pearson Education, 2006.
[9] J. Dumas, J. Dumas and J. Redish, A practical guide to usability testing, Intellect

books, 1999.
[10] A. G. Schiavone and F. Paterno, “An extensible environment for guideline-based

accessibility evaluation of dynamic Web applications,” Universal access in the
information society, vol. 14, no. 1, pp. 111-132, 2015.

[11] G. Gay and C. Q. Li, “AChecker: open, interactive, customizable, web accessibility
checking,” in Proceedings of the 2010 International Cross Disciplinary Conference
on Web Accessibility (W4A), Raleigh, 2010.

[12] J. Marenkov, T. Robal and A. Kalja, “A Framework for Improving Web Application
User Interfaces Through Immediate Evaluation.,” in Databases and Information
Systems IX, Amsterdam, 2016.

[13] J. Marenkov, T. Robal and A. Kalja, “A Tool for Design-Time Usability Evaluation
of Web User Interfaces,” in Advances in Databases and Information Systems,
Cham, 2017.

[14] J. Marenkov, T. Robal and A. Kalja, “A Study on Immediate Automatic Usability
Evaluation of Web Application User Interfaces,” in International Baltic
Conference on Databases and Information Systems, Cham, 2016.

[15] A. Dingli and J. Mifsud, “Useful: A framework to mainstream web site usability
through automated evaluation,” International Journal of Human Computer
Interaction (IJHCI), vol. 2, no. 1, p. 10, 2011.

[16] A. Dingli and S. Cassar, “An intelligent framework for website usability,”
Advances in Human-Computer Interaction, vol. 2014, p. 5, 2014.

[17] A. Zuo, J. Yang and X. Chen, “Research of agile software development based on
formal methods,” in International Conference on Multimedia Information
Networking and Security, Nanjing, 2010.

117

[18] J. Nielsen, Usability engineering, Elsevier, 1994.
[19] A. Abran, A. Khelifi, W. Suryn and A. Seffah, “Usability meanings and

interpretations in ISO standards,” Software quality journal, vol. 11, no. 4,
pp. 325-338, 2003.

[20] J. Fisher, J. Bentley, R. Turner and A. Craig, “SME myths: if we put up a website
customers will come to us-why usability is important,” in eIntegration in action:
18th Bled eConference, Bled, Slovenia, June 6-8, 2005, Bled, 2005.

[21] C. Flavián, G. Miguel and G. Raquel , “The role played by perceived usability,
satisfaction and consumer trust on website loyalty,” Information &
management, vol. 43, no. 1, pp. 1-14, 2006.

[22] D.-H. Byun and G. Finnie, “Evaluating usability, user satisfaction and intention to
revisit for successful e-government websites,” Electronic government, an
international journal, vol. 8, no. 1, pp. 1-19, 2010.

[23] C. Downing and C. Liu, “Assessing web site usability in retail electronic
commerce,” in Proceedings of the 35th Annual Computer Software and
Applications Conference (COMPSAC), Munich, 2011.

[24] “Accessibility, Usability, and Inclusion: Related Aspects of a Web for All,” W3C,
06 05 2016. [Online]. Available: https://www.w3.org/WAI/intro/usable.
[Accessed 23 06 2018].

[25] F. Adebesin, P. Kotze and H. Gelderblom, “The complementary role of two
evaluation methods in the usability and accessibility evaluation of a non-
standard system,” in Proceedings of the 2010 Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists,
Bela Bela, 2010.

[26] “Web Accessibility,” European Commision, 2010. [Online]. Available:
http://ec.europa.eu/ipg/standards/accessibility/index_en.htm. [Accessed 09 05
2018].

[27] “Interoperability of the State Information System,” Ministry of Economic Affairs
and Communication.

[28] “Avaliku sektori veebilehtede vastavus WCAG 2.0 nõuetele 2015. aastal,”
Majandus- ja Kommunikatsiooniministeerium, 2015.

[29] S. Smith and J. Mosier, Guidelines for designing user interface software, Bedford:
Mitre Corporation, 1986.

[30] P. Kara, A. Schade and J. Nielsen, “Intranet Usability Guidelines: Findings from
User Testing of 42 Intranets,” 2014.

[31] R. Budiu and J. Nielsen, User experience for mobile applications and websites:
design guidelines for improving the usability of mobile sites and apps, DMIT,
2015.

[32] “Mobile Web Best Practices 1.0,” W3C, 29 07 2008. [Online]. Available:
https://www.w3.org/TR/mobile-bp/. [Accessed 06 05 2018].

[33] A. Wessels, M. Purvis and S. Rahman, “Usability of Web Interfaces on Mobile
Devices,” in Proceedings of the Eighth International Conference on Information
Technology: New Generations, Las Vegas, 2011.

118

[34] J. Marenkov, T. Robal and A. Kalja, “A study on effective knowledge reuse in
multi-platform web applications user interfaces,” in Management of Engineering
and Technology (PICMET), Portland, 2015.

[35] W. Quesenbery, “Building a better style guide,” in Proceedings of UPA, 2001.
[36] D. Kim, “An investigation of the effect of online consumer trust on expectation,

satisfaction, and post-expectation,” Information Systems and E-Business
Management, vol. 10, no. 2, pp. 219-240, 2012.

[37] M. Abdeldayem, “A study of customer satisfaction with online shopping:
evidence from the UAE,” International Journal of Advanced Media and
Communication, vol. 4, no. 3, pp. 235-257, 2010.

[38] L. Kantner, D. H. Sova and S. Rosenbaum, “Alternative methods for field usability
research,” in Proceedings of the 21st annual international conference on
Documentation, New York, 2003.

[39] M. Vuolle, M. Tiainen, T. Kallio, T. Vainio, M. Kulju and H. Wigelius, “Developing
a questionnaire for measuring mobile business service experience,” in
Proceedings of the 10th international conference on Human computer
interaction with mobile devices and services, Amsterdam, 2008.

[40] B. Leporini, F. Paterno and A. Scorcia, “Flexible tool support for accessibility
evaluation,” Interacting with computers, vol. 18, no. 6, pp. 869-890, 2006.

[41] C. Cuadrat Seix, M. S. Veloso and J. J. R. Soler, “Towards the validation of a
method for quantitative mobile usability testing based on desktop eyetracking,”
in Proceedings of the 13th International Conference on Interaccion Persona-
Ordenador, New York, 2012.

[42] nd
usability testing: case study,” in International Conference on Internationalization,
Design and Global Development, Berlin, 2011.

[43] Y.-J. Lee and C.-J. Lin, “Evaluation and satisfaction survey on the interface
usability of online publishing software,” Mathematical Problems in Engineering,
vol. 2014, no. 10, p. 10, 2014.

[44] G. Brône, B. Oben and T. Goedemé, “Towards a more effective method for
analyzing mobile eye-tracking data: integrating gaze data with object recognition
algorithms,” in Proceedings of the 1st international workshop on pervasive eye
tracking & mobile eye-based interaction, New Yor, 2011.

[45] S. Cheng, “The research framework of eye-tracking based mobile device usability
evaluation,” in Proceedings of the 1st international workshop on pervasive eye
tracking & mobile eye-based interaction, New York, 2011.

[46] M. Ivory and M. Hearst, “The state of the art in automating usability evaluation
of user interfaces,” ACM Computing Surveys (CSUR), vol. 33, no. 4, pp. 470-516,
2001.

[47] J. O. Bak, K. Nguyen, P. Risgaard and J. Stage, “Obstacles to usability evaluation
in practice: a survey of software development organizations,” in Proceedings of
the 5th Nordic conference on Human-computer interaction: building bridges,
Lund, 2008.

[48] A. Häkli, Introducing user-centered design in a small-size software development
organization, Helsinki: Helsinki University of Technology, 2005.

119

[49] K. Norman and E. Panizzi, “Levels of automation and user participation in
usability testing,” Interacting with computers, vol. 18, no. 2, pp. 246-264, 2005.

[50] M. H. Blackmon, P. Polson, M. Kitajima and C. Lewis, “Cognitive walkthrough for
the web,” in Proceedings of the SIGCHI conference on human factors in
computing systems, Minneapolis, 2002.

[51] T. Hollingsed and D. Novick, “Usability inspection methods after 15 years of
research and practice,” in Proceedings of the 25th annual ACM international
conference on Design of communication, El Paso, 2007.

[52] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings
of the SIGCHI conference on Human factors in computing systems, Seattle, 1990.

[53] H. Al-Khalifa, B. Al-Twaim and B. AlHarbi, “A heuristic checklist for usability
evaluation of Saudi government mobile applications,” in Proceedings of the 18th
International Conference on Information Integration and Web-based
Applications and Services, Singapore, 2016.

[54] O. Al Osaimi and A. AlSumait, “Usability Guidelines for Arab E-government
Websites,” World Acad. Sci. Eng. Technol. Int. J. Soc. Behav. Educ. Econ. Bus. Ind.,
vol. 7, no. 12, pp. 3159-3162, 2013.

[55] N. Al-Wabil, “Usability of mobile applications in Saudi higher education:
An exploratory study,” in International Conference on Human-Computer
Interaction, Cham, 2015.

[56] A. de Lima Salgado, S. S. Rodrigues and R. P. Fortes, “Evolving Heuristic
Evaluation for multiple contexts and audiences: Perspectives from a mapping
study,” in Proceedings of the 34th ACM International Conference on the Design
of Communication, New York, 2016.

[57] E. De Kock, J. Van Biljon and M. Pretorius, “Usability evaluation methods: Mind
the gaps,” in Proceedings of the 2009 annual research conference of the south
african institute of computer scientists and information technologists,
Vanderbijlpark, 2009.

[58] L. Kuparinen, J. Silvennoinen and H. Isomäki, “Introducing usability heuristics for
mobile map applications,” in Proceedings of the 26th International Cartographic
Conference, Dresden, 2013.

[59] R. Yáñez Gómez, D. Cascado Caballero and J.-L. Sevillano, “Heuristic evaluation
on mobile interfaces: A new checklist,” The Scientific World Journal, vol. 2014,
2014.

[60] F. Patterno and A. G. Schiavone, “The role of tool support in public policies and
accessibility,” IX Interactions, vol. 22, no. 3, pp. 60-63, 2015.

[61] M. Arrue, M. Vigo and J. Abascal, “Including heterogeneous web accessibility
guidelines in the development process,” in Engineering Interactive Systems,
Berlin, Springer, 2008, pp. 620-637.

[62] N. S. M. Yusop, J. Grundy and R. Vasa, “Reporting usability defects: do reporters
report what software developers need?,” in Proceedings of the 20th
international conference on evaluation and assessment in software engineering,
Limerick, 2016.

120

[63] A. Følstad, L. Effie and H. Kasper , “Analysis in practical usability evaluation:
a survey study,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Austin, 2012.

[64] A. Johnston and M. Pickrell, “Designing for technicians working in the field:
8 usability heuristics for mobile application design,” in Proceedings of the 28th
Australian Conference on Computer-Human Interaction, Launceston, 2016.

[65] M. McCloskey, H. Loranger and J. Nielsen, Teenagers (ages 13-17) on the Web,
Nielsen Norman Group, 2013.

[66] R. Atterer, M. Wnuk and A. Schmidt, “Knowing the user's every move: user
activity tracking for website usability evaluation and implicit interaction,” in
Proceedings of the 15th international conference on World Wide Web,
Edinburgh, 2006.

[67] G. Saadawi, E. Legowski, O. Medvedeva, G. Chavan and R. Crowley, “A method
for automated detection of usability problems from client user interface events,”
in AMIA Annual Symposium Proceedings, 2005.

[68] J. Grigera, A. Garrido and J. M. Rivero, “A tool for detecting bad usability smells
in an automatic way,” in International Conference on Web Engineering, Cham,
2014.

[69] K. Kappel, M. Tomitsch, T. Koltringer and T. Grechenig, “Developing user
interface guidelines for DVD menus,” in CHI'06 Extended Abstracts on Human
Factors in Computing Systems, Montréal, 2006.

[70] J. Coelho, C. Duarte, P. Biswas and P. Langdon, “Developing accessible TV
applications,” in The proceedings of the 13th international ACM SIGACCESS
conference on Computers and accessibility, Dundee, 2011.

[71] V. Moshnyaga, “Guidelines for developers of smart systems,” in 8th International
Conference on Intelligent Systems (IS), Sofia, 2016.

[72] A. Sanchez, O. Starostenko, E. Castillo and M. Gonzalez, “Generation of usable
interfaces for mobile devices,” in Proceedings of the 2005 Latin American
conference on Human-computer interaction, Cuernavaca, 2005.

[73] M. Evans, “Challenges in developing research-based Web design guidelines,”
IEEE transactions on professional communication, vol. 43, no. 3, pp. 302-312,
2000.

[74] A. Hussain and E. Ferneley, “Usability metric for mobile application: a goal
question metric (GQM) approach,” in Proceedings of the 10th international
Conference on information integration and Web-Based Applications & Services,
New York, 2008.

[75] G. Conti and E. Sobiesk, “Malicious interface design: exploiting the user,” in
Proceedings of the 19th international conference on World wide web, Raleigh,
2010.

[76] C. M. Bailey and C. D. Seals, “Evaluation of Web Usability Guidelines for Teens,”
in Proceedings of the SouthEast Conference, Kennesaw, 2017.

[77] O. Machado and M. Pimentel, “Heuristics for the assessment of interfaces of
mobile devices,” in Proceedings of the 19th Brazilian symposium on Multimedia
and the web, Salvador, 2013.

121

[78] B. Shneiderman and M. Leavitt, Research-based web design and usability
guidelines, U.S. Deptartment of Health and Human Ser, 2006.

[79] “Ecommerce User Experience,” Nielsen Norman Group, 2016.
[80] L. Chittaro, “Designing visual user interfaces for mobile applications,” in

Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems, Pisa, 2011.

[81] R. Alsalamen and G. Shahin, “Screen size effect on usability of Arabic forms for
smartphones,” in International Conference on New Trends in Computing
Sciences, Amman, 2017.

[82] A. de Lima Salgado and A. P. Freire, “Heuristic evaluation of mobile usability:
A mapping study,” in International Conference on Human-Computer Interaction,
Cham, 2014.

[83] R. Inostroza, C. Rusu, S. Roncagliolo and V. Rusu, “Usability heuristics for
touchscreen-based mobile devices: update,” in Proceedings of the 2013 Chilean
Conference on Human-Computer Interaction, Temuco, 2013.

[84] J. Varsaluoma, “Scenarios in the heuristic evaluation of mobile devices:
emphasizing the context of use,” in International Conference on Human Centered
Design, Berlin, 2009.

[85] E. Bertini, T. Catarci, S. Gabrielli, S. Kimani and G. Santucci, “Appropriating
heuristic evaluation for mobile computing,” International Journal of Mobile
Human Computer Interaction, vol. 1, no. 1, pp. 20-41, 2009.

[86] A. Bruun and J. Stage, “New approaches to usability evaluation in software
development,” Journal of Systems and Software, vol. 105, no. C, pp. 40-53, 2015.

[87] M. Bakaev, T. Mamysheva and M. Gaedke, “Current trends in automating
usability evaluation of websites: Can you manage what you can't measure?,” in
11th International Forum on Strategic Technology, Novosibirsk, 2016.

[88] Y.-C. Lin, C.-H. Yeh and C.-C. Wei, “How will the use of graphics affect visual
aesthetics? A user-centered approach for web page design,” International
Journal of Human-Computer Studies, vol. 71, no. 3, pp. 217-227, 2013.

[89] D. Kieras, “Model-based evaluation,” The Human-Computer Interaction:
Development Process, pp. 294-310, 2009.

[90] F. Au, S. Baker, I. Warren and G. Dobbie, “Automated usability testing
framework,” in Proceedings of the ninth conference on Australasian user
interface, Wollongong, 2008.

[91] S. Dixit and V. Padmadas, “Automated Usability Evaluation of Web Applications,”
in Proceedings of the International Congress on Information and Communication
Technology, Singapore, 2016.

[92] L. Goncalves, L. Vasconcelos, E. Munson and L. Baldochi, “Supporting adaptation
of web applications to the mobile environment with automated usability
evaluation,” in Proceedings of the 31st Annual ACM Symposium on Applied
Computing, Pisa, 2016.

[93] M. Speicher, A. Both and M. Gaedke, “Ensuring web interface quality through
usability-based split testing,” in International Conference on Web Engineering,
Cham, 2014.

122

[94] N. Fernandes, N. Kaklanis, K. Votis, D. Tzovaras and L. Carricco, “An analysis of
personalized web accessibility,” in Proceedings of the 11th Web for All
Conference, Seoul, 2014.

[95] A. Beirekdar, J. Vanderdonckt and M. Noirhomme-Fraiture, “A framework and a
language for usability automatic evaluation of web sites by static analysis of
HTML source code,” in Computer-Aided Design of User Interfaces III, Dordrecht,
Springer, 2002, pp. 337-348.

[96] Y. Takata, T. Nakamura and H. Seki`, “Accessibility verification of WWW
documents by an automatic guideline verification tool,” in Proceedings of the
37th Annual Hawaii International Conference on System Sciences, Big Island,
2004.

[97] J. Ladry, P. Palanque, E. Barboni and D. Navarre, “Model-based usability
evaluation and analysis of interactive techniques,” in Proceedings of the 5th
International Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI 2010), Aachen, 2010.

[98] S. Humayoun and Y. Dubinsky, “MobiGolog: formal task modelling for testing
user gestures interaction in mobile applications,” in Proceedings of the 1st
International Conference on Mobile Software Engineering and Systems,
Hyderabad, 2014.

[99] N. Liyanage and K. Vidanage, “Site-ability: A website usability measurement
tool,” in Sixteenth International Conference on Advances in ICT for Emerging
Regions (ICTer), Negombo, 2016.

[100] W. A. R. Isa, M. Yusoff and D. A. A. Nordin, “Evaluating the usability of homestay
websites in malaysia using automated tools,” in International Conference on Soft
Computing in Data Science, Singapore, 2015.

[101] R. Abdullah and K. T. Wei, “Usability measurement of Malaysia online news
websites,” International Journal of Computer Science and Network Security, vol.
8, no. 5, pp. 159-165, 2008.

[102] E. Friess, “Discourse variations between usability tests and usability reports,”
Journal of Usability Studies, vol. 6, no. 3, pp. 102-116, 2011.

[103] “Web Content Accessibility Guidelines,” W3C, 22 05 2018. [Online]. Available:
http://www.w3.org/WAI/intro/wcag . [Accessed 14 06 2018].

[104] “Web Content Accessibility Guidelines (WCAG) 2.0,” W3C, 11 12 2008. [Online].
Available: https://www.w3.org/TR/WCAG20/. [Accessed 28 07 2018].

[105] “Understanding SC 2.4.2,” W3C, 2016. [Online]. Available:
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-
title.html . [Accessed 26 07 2018].

[106] R. Bailey, C. Barnum, J. Bosley, B. Chaparro and J. Dumas, Research-Based Web
Design & Usability Guidelines, Washington, 2006.

[107] M. Klein, D. Fensel, F. Van Harmelen and I. Horrocks, “The relation between
ontologies and XML schemas,” Electronic Trans. on Artificial Intelligence, vol. 6,
no. 4, 2001.

[108] T. Gruber, “Toward principles for the design of ontologies used for knowledge
sharing?,” International journal of human-computer studies, vol. 43, no. 5-6,
pp. 907-928, 1995.

123

[109] L. Yu, A developer’s guide to the semantic Web, Springer Science & Business
Media, 2011.

[110] J. Xiong, C. Farenc and M. Winckler, “Towards an ontology-based approach for
dealing with web guidelines,” in International Conference on Web Information
Systems Engineering, Berlin, 2008.

[111] J. Borges, I. Morales and N. Rodríguez, “Guidelines for designing usable world
wide web pages,” in Proceedings of the CHI '96 Conference Companion on Human
Factors in Computing Systems, Vancouver, 1996.

[112] “Mobile Overview Report,” scientiamobile, 2018.
[113] T. Robal, J. Marenkov and A. Kalja, “Ontology design for automatic evaluation of

web user interface usability,” in Management of Engineering and Technology
(PICMET), Portland, 2017.

[114] F. Lizano, M. Sandoval, A. Bruun and J. Stage, “Is usability evaluation important:
the perspective of novice software developers,” in Proceedings of the 27th
International BCS Human Computer Interaction Conference, London, 2013.

[115] C. Timbi-Sisalima, C. Amor, S. Oton, J. Hilera and J. Aguado-Delgado,
“Comparative Analysis of Online Web Accessibility Evaluation Tools,” in
Information Systems Development: Complexity in Information Systems
Development (ISD2016 Proceedings), Katowice, 2016.

[116] W. Hürsch and C. Videira Lopes, Separation of Concerns, 1995.
[117] “OWL 2 Web Ontology Language Structural Specification and Functional-Style

Syntax,” W3C, 11 12 2012. [Online]. Available: https://www.w3.org/TR/owl2-
syntax/. [Accessed 05 05 2018].

[118] M. Horridge and S. Bechhofer, “The owl api: A java api for owl ontologies,”
Semantic Web, vol. 2, no. 1, pp. 11-21, 2011.

[119] D. Tsarkov and I. Horrocks, “FaCT++ description logic reasoner: System
description,” in International Joint Conference on Automated Reasoning,
Heidelberg, 2006.

[120] N. Snellman, A. Ashraf and I. Porres, “Towards automatic performance and
scalability testing of rich internet applications in the cloud,” in 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, Oulu, 2011.

[121] -driven performance evaluation for service
engineering,” Emerging Web Services Technology, vol. 2, pp. 171-185, 2008.

[122] J. Marenkov, T. Robal and A. Kalja, “Design-Time Web Usability Evaluation with
Guideliner,” Complex Systems Informatics and Modeling Quarterly, no. 15,
pp. 90-109, 2018.

[123] D. Beyer, “Status report on software verification,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, Berlin, 2014.

[124] A. Ismail and K. Kuppusamy, “Accessibility of Indian universities’ homepages:
An exploratory study,” Journal of King Saud University-Computer and
Information Sciences, vol. 30, no. 2, pp. 268-278, 2016.

[125] K. Kert, Automatic Website Usability Evaluation, Tools and their Comparison,
Tallinn: Tallinna Tehnikaülikool, 2018.

124

[126] B. Boehm, Software engineering economics, Prentice-hall Englewood Cliffs,
1981.

[127] S. McConnell, Code complete, Pearson Education, 2004.
[128] G. Tassey, “The economic impacts of inadequate infrastructure for software

testing,” U.S Department of Commerce, 2002.
[129] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works, vol. 122,

p. 14, 2006.
[130] J. Humble and D. Farley, Continuous delivery: reliable software releases through

build, test, and deployment automation, Pearson Education, 2010.
[131] “Directive (EU) 2016/2102 of the European Parliament and of the Council of 26

October 2016 on the accessibility of the websites and mobile applications of
public sector bodies (Text with EEA relevance),” 2016.

[132] D. Levine, J. Mason and J. Hadley, “Software development and quality
assurance,” Computer security handbook, pp. 1-39, 2012.

[133] J. Tan, K. Otto and K. Wood, “Relative impact of early versus late design decisions
in systems development,” Design Science, vol. 3, pp. 777-780, 2017.

[134] R. Roben, Automation of Usability Evaluation Based on the Example of Republic
of Estonia Information System Authority, Tallinn: Tallinn University of
Technology, 2018.

125

Acknowledgements
I would like to express my appreciation to all people who advised and helped me during
PhD studies.

More specifically, I wish to thank my supervisor doctor Tarmo Robal for giving advice,
support, cooperation during my PhD studies, and for giving me opportunity and
encouraging me to bring the research work to completion.

I would like to offer special thanks to professor Ahto Kalja (deceased 22.10.2018),
who, although no longer with us, continues to inspire by his example and dedication to
the academic world he served over the course of his career.

I would like to thank everyone I worked together with during my PhD studies,
especially the whole team at the Department of Computer Systems. I would like to show
my appreciation to Dr. Margus Kruus for an excellent cooperation in dealing with
administrative issues.

I am grateful to Dr. Hele-Mai Haav from Department of Software Science at Tallinn
University of Technology for her consultation on research topics.

Also, I would like to thank professor Maarja Kruusmaa for providing valuable feedback
about my research during regular evaluations organized at the School of Information
Technologies.

I would like to thank Kristi Kert and Raido Roben for conducting usability experiments
and inspiring with some ideas for future research.

Additionally, I would like to thank development and testing team of the Information
System Authority of the Republic of Estonia for their valuable ideas and practical
suggestions for the Guideliner development.

I would also like to express thanks to all my friends and colleagues unmentioned here.
Finally, I would like to thank my family for their understanding and support during my

PhD studies. Thank you!

126

Abstract
Automatic Implementation-Time Usability Evaluation for Web
User Interfaces
The evaluation of newly established or revamped web user interfaces and assurance that
they conform to usability guidelines should not be resource-consuming and laborious
task that many companies are attracted to skip. Instead, it should be a cost- and
time-efficient step of development applied as a custom practice, especially when
software gets developed according to agile methods consisting of short and flexible
iterations with frequent releases to production. Yet, usability evaluation is still not
optimized in a way that it can be automated excluding the involvement of usability
experts into the evaluation. Automated cost- and time-efficient usability evaluation is
one of the driving forces of this thesis.

Overall, current dissertation is focusing on the problem of automated usability
evaluation during the implementation phase of WUI development, including visual
characteristics of WUIs – a feature missing in tools available today.

Firstly, usability ontology to capture usability domain knowledge and to formalise
usability guidelines in machine-processable and human-readable format was
established. Usability ontology contains predefined set of usability guidelines and also
allows defining additional custom usability guidelines based on the established usability
domain knowledge.

Secondly, a method for evaluating visual characteristics of WUI based on usability
guidelines is introduced. The novelty of that method is that it evaluates WUI
conformance to visual as well as HTML-centric usability guidelines on the finally rendered
result (after page finished its loading and all scripts have been applied).

Thirdly, a tool for automated usability evaluation called the Guideliner was designed.
The Guideliner evaluates WUI conformance to usability guidelines during
implementation phase of WUI development. It addresses the problem of how to
effectively evaluate web user interfaces usability during their development, in particular
within the implementation phase with minimal cost and time. The Guideliner evaluates
finally rendered WUI assessing HTML-based usability guidelines and guidelines covering
visual characteristics of WUI, and is applicable both at the final established WUI
evaluation phase (traditional approach) and for evaluating WUI conformance to set
usability criteria during WUI implementation phase (novel method introduced in the
thesis).

The methods introduced in the thesis can be exploited for any HTML, JavaScript, and
CSS based web user interface without restrictions. Usability evaluations conducted on
various local and international web applications have proved that proposed methods are
efficient and complete enough to evaluate usability of majority of web user interfaces.

127

Lühikokkuvõte
Veebi kasutajaliidese kasutatavuse automaatne hindamine
realisatsioonifaasis
Erinevate nutiseadmete ja veebiplatvormide rohkus tänapäeval on toonud endaga kaasa
mitmeid muutusi veebirakendustes ja nende loomises. Üha enam pööratakse tähelepanu
ja pannakse arenduse käigus rõhku kasutajate erinevatele vajadustele, et tagada
kasutajate rahulolu, ja pikas perspektiivis tagada veebirakenduse edu ja kestus.
Kasutatavuse reeglite jälgimine veebi kasutajaliideste disainimisel on üks olulisematest
edu võtmetest ja ka nõuetest kasutajaliidestele. Samas on kasutatavuse testimine kogu
arendusprotsessi jooksul küllalt kulukas. Osa kasutatavuse testimisest, mida tehakse
inimese poolt on aga võimalik teostada automaatselt arvutiprogrammide abiga
erinevates tarkvara arendusfaasides. Kasutatavuse automaatse kontrollimise eelis on
tema odavus, ja kui seda läbi viia tarkvara arendusfaasis, võimaldab see täiendavalt anda
otsest tagasisidet arendajatele leitud kasutatavuse probleemide kohta kohe peale
kasutajaliidese koodi loomist või muutmist. Selline lähenemine omakorda vähendab vea
ülesleidmise aega ja kokkuvõttes ka kasutatavuse vigade parandamise maksumust.

Käesolev doktoritöö keskendub veebi kasutajaliideste kasutatavuse automaatse
testimise võimalustele ja probleemidele, sealhulgas uurides kasutatavuse automaatse
hindamise võimalikkust tarkvara arendusfaasis. Teiseks uudsuseks olemasolevate
vahendite kõrval on kasutatavuse visuaalsete aspektide automaatne hindamine, mis on
pikalt olnud antud valdkonnas probleemiks puudulike tarkvaralahenduste tõttu.

Töö käigus on loodud raamistik, mis muudab oluliselt kasutajaliidese
arendusprotsessi, kuna kasutajaliideste automaatne valideerimine kasutatavuse reeglite
suhtes toimub kasutajaliideste varajases arendusetapis. Selline parandus lubab
kasutatavuse vigu tuvastada ja parandada varakult tarkvara loomise käigus, mis
omakorda vähendab paranduse kulukust võrreldes vea avastamisega mõnes hilisemas
arendusetapis, näiteks lõpptestimisel.

Teiseks tähtsaks saavutuseks on kasutatavuse reeglite esitamise viis, kasutades selleks
ontoloogiat, mis võimaldab kasutatavuse reegleid esitleda nii inimloetavalt kui ka
masintöödeldaval kujul. Töö käigus on loodud ontoloogia disain ja ka kasutatavuse
ontoloogia automaatselt hinnatavatele reeglitele.

Kolmandaks saavutuseks loodud raamistiku juures on visuaalsete karakteristikute
hindamise meetod. Meetodi uudsus seisneb selles, et hindamisprogramm suudab
hinnata kasutajaliidese vastavust kasutatavuse reeglitele lõppkasutajale esitatava kuva
suhtes, st. kui kõik stiililaadid ja skriptid lehe kujundamiseks on oma töö lõpetanud. Lisaks
HTML koodi spetsiifilistele reeglitele oskab loodud hindamisprogramm Guideliner
hinnata kasutajaliidese visuaalseid omadusi nagu näiteks elemendi positsioon lehel,
kaugus erinevate elementide vahel, lehekülje kerimise olemasolu aga ka elementide
kontrastsust tausta suhtes.

Doktoritöö käigus loodud raamistikku saab kasutada erinevatel veebitehnoloogiatel
nagu HTML, JavaScript ja CSS põhinevatel kasutajaliidestel. Läbiviidud testid tõestasid, et
välja töötatud metoodika ja arendatud hindamisvahendi Guideliner abil on edukalt
võimalik hinnata veebilehe vastavust kasutatavuse reeglitele ja tuvastada kasutatavuse
probleeme.

129

Appendixes

131

Appendix 1 Example of Usability Guideline Structure
Example 1.
Example of usability guideline definition and presentation derived from Research-Based
Web Design & Usability Guidelines presented in [78].

Example 2.
Example of usability guideline presented by Jakob Nielsen in Top 10 Guidelines for
Homepage Usability 1

1 https://www.nngroup.com/articles/top-ten-guidelines-for-homepage-usability/

132

Example 3.
Example of usability guidelines presented by Google1

1 https://developers.google.com/web/fundamentals/accessibility/accessible-styles

133

Appendix 2 Main Concepts of the Usability Ontology
Outline of established usability ontology describing the GuidelineElement concept and its
descendant classes: excerpt from the Protégé ontology editor

134

Appendix 3 Usability Guidelines Used for the Research
To compose the list of usability guidelines for the research, the author analysed
recommendations in scientific publications [29] [111], WCAG [103] and Section 508
guidelines1, Research-Based Web Design [106] and Usability Guidelines from U.S. Dept.
of Health and Human Services [78], and supplemented with recommendations from the
Nielsen Norman Group [8] [31] [65]. Moreover, evidence-based user experiences and
usability research works have been inspected [30] [31]. The appendix presents examples
of usability guidelines that can be evaluated automatically grouped by the category
(mobile usability guidelines, common usability and common accessibility guidelines).

Excerpt from mobile usability guidelines (4 of 20 guidelines are presented)

Identifier: 1
Guideline: A label should be placed above the input field

Description:

Left-aligned or right-aligned labels decrease usability on
mobile devices as small screen size leave very little space
for the input field. Label located above the input allows to
make input field screen-wide

Condition: Check that label is located above the input
Platform: Mobile
Category: Form
Source: Google HCI
Relative Importance: 4
Strength of Evidence: 4

Identifier: 2
Guideline: A scroll is one directional

Description:

Ensure that the scrolling is one directional. It should be
one directional in both landscape and portraits screen
orientation. Mixing two scrolling on the same page
increases the complexity and disorientation decreasing
the overall satisfaction with mobile web application.

Condition: Check that only one scroll horizontal or vertical is available
at the same time

Platform: Mobile
Category: UI Page
Source: Mobile Usability Research
Relative Importance: 5
Strength of Evidence: 5

Identifier: 19
Guideline: All links should be 48 CSS pixels wide

Description:

The average size of finger pad is approximately 10
millimetres for adults. The minimal recommended size of
tap target is about seven millimetres that are roughly
equal to 48 CSS pixels.

Condition: Check that links width is not less than 48px
Platform: Mobile
Category: Link

1 https://www.section508.gov

135

Source: Google HCI, Android HCI
Relative Importance: 4
Strength of Evidence: 4

Identifier: 20
Guideline: Radio buttons should be vertically-stacked

Description:

Due to the limited screen size on mobile devices, it could
be complicated to fit radio buttons vertically. Also,
vertically-stacker radio button could be processed faster
by users then located horizontally

Condition: Check that there are no radio buttons on the same line
Platform: Mobile
Category: Radio Button
Source: Venture Harbour HCI
Relative Importance: 5
Strength of Evidence: 4

Excerpt from common accessibility guidelines (4 of 55 guidelines are presented)

Identifier: 21
Guideline: Language should be defined in HTML code

Description:
Primary language of the web page should be defined in
HTML code. When language is defined assistive
technologies can process it more precisely

Condition: Lang attribute of HTML tag should exist and should not be
empty

Platform: All
Category: Accessibility
Source: WCAG 2.0
Relative Importance: 5
Strength of Evidence: 5

Identifier: 22
Guideline: Text equivalents is defined for every image on the screen

Description:

All images have alternative text defined. People with
visual or certain cognitive disabilities cause screen readers
that process alternative text for describing the content of
the image.

Condition: Each img tag has an attribute alt defined
Platform: All
Category: Accessibility
Source: WCAG 2.0
Relative Importance: 5
Strength of Evidence: 5

Identifier: 72

Guideline: Link alternative text should be different from the link text
itself

Description: When alt attribute of link has the same value as a link text
then screen readers read out the same text link text twice

Condition: Check that link text and link alt attribute have different
value

Platform: All

136

Category: Accessibility
Source: WCAG 2.0
Relative Importance: 4
Strength of Evidence: 4

Identifier: 73
Guideline: Every page has title attribute

Description: The purpose of title attribute is to identify the location
without the need to identify the whole content of the page

Condition: Check that title tag is defined and is not empty
Platform: All
Category: Accessibility
Source: WCAG 2.0
Relative Importance: 5
Strength of Evidence: 4

Excerpt from common usability guidelines (4 of 23 guidelines are presented)

Identifier: 74
Guideline: Select lists should contain more than 7 options

Description:

In order to see results of select list, the user should click
on the select list. So, in case there are less than 7 options
available it is more beneficial to use radio buttons, so users
immediately scan how many options they have.

Condition: Check that select list has more than 7 option
Platform: Desktop/Mobile
Category: Select List
Source: Baymard Institute UX Research
Relative Importance: 4
Strength of Evidence: 3

Identifier: 75
Guideline: Radio button label should be clickable

Description: Radio button target area should be enlarged with a label
or words associated with it.

Condition: Check that when radio button label is clicked, radio button
becomes selected

Platform: Desktop/Mobile
Category: UI Page
Source: UX Planet Research
Relative Importance: 4
Strength of Evidence: 4

Identifier: 97

Guideline: Buttons background colour should have proper contrast
rate

Description:

Buttons should not blend in with its surrounding content
as, in common, they are used to perform certain actions
and should be bright enough in comparison with
surrounding content

Condition: Check that the contrast rate of button and the content
surrounding is more than 4:51

Platform: Desktop/Mobile

137

Category: Button
Source: Prototype usability research
Relative Importance: 4
Strength of Evidence: 4

Identifier: 98
Guideline: Web UI response time should not be more that 3 seconds

Description: Usability research show that around 40% of users abandon
web site that takes more than 3 seconds to load.

Condition: Check that with connection speed of 50Mbps web
application load time is not more than 3 seconds

Platform: Desktop/Mobile
Category: UI Page
Source: Nielsen Norman Group Research
Relative Importance: 4
Strength of Evidence: 4

138

Appendix 4 Guideliner Software Architecture
Class Diagram of the Guideliner

The class diagram shows the abstraction of the Guideliner architecture. It contains
main classes of the Guideliner Core including Reporting Component service
(ReportingService), Ontology Processing Engine services (OntologyProcessingEngine,
OntologyRepository) and WUI Evaluation Component services
(UsabilityEvaluationService, GuidelineEvaluationService, AbstractAdapter and its child
classes). Also the domain objects: UsabilityGuideline and EvaluationResult are presented.
The purpose of the class diagram is to show how the primary concepts of the Guideliner
on the code level.

OntologyProcessingEngine

+ findAllCategoriesOfUsabilityGuidelines(): List<String>
+ findUsabilityGuidelinesByCategory(char): List<UsabilityGuideline>
+ reloadOntology()
+ retrieveUsabilityGuidelineByName(char): UsabilityGuideline

UsabilityEvaluationService

+ evaluate(char, char): List<EvaluationResult>

AbstractAdaptor

+ execute(GuidelineElement): EvaluationResult

LinkAdaptor ButtonAdaptor InputAdaptor

UsabilityEvaluationController

+ evaluate(char): List<EvaluationResult>
+ evaluateByCategory(char, char): List<EvaluationResult>

NAdaptor

UsabilityGuidelinerController

+ getCategoriesOfUsabilityGuidelines(): List<String>
+ getUsabilityGuidelinesByCategory(char): List<Guideline>

OntologyRepository

+ loadOntology(): List<UsabilityGuideline>
+ reloadOntology(): List<UsabilityGuideline>

ReportingService

+ generateReport(): EvaluationResult

GuidelineEvaluationService

+ evaluate(UsabilityGuideline)

FailedElement

- description: char
- id: int
- pathToElement: char
- text: char
- type: char

EvaluationResult

- description: char
- elementType: char
- evaluationTime: char
- guidelineCode: char
- guidelineDescription: char
- guidelineName: char
- id: int
- result: char
- URL: char

UsabilityGuideline

- code: char
- color: Color
- contentLength: int
- contrast: Contrast
- description: char
- distance: Distance
- height: Height
- url: URL
- width: Width

ButtonUsabilityGuideline NUsabilityGuidelineLinkUsabilityGuidelineInputUsabilityGuideline

contains

139

Appendix 5 Usability Evaluation Report Based on EARL
This appendix presents an example of automated usability evaluation report based on
EARL. The EARL report (generated by the Guideliner) shows that WUI
(https://www.etis.ee/Portal/Projects/Index?searchType=detailed) conformance was
evaluated to two usability guidelines: 24-IdentifySelectedInput (evaluation passed) and
27-RadioButtonsShouldBeVerticallyStacked (evaluation failed).

<rdf:RDF xmlns:earl="http://www.w3.org/WAI/ER/EARL/nmg-strawman#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dct="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <earl:TestSubject rdf:ID="evaluatedWebPages">
 <dct:title xml:lang="en">Web Page being evaluated</dct:title>
 <dct:hasPart
rdf:resource="https://www.etis.ee/Portal/Projects/Index?searchType=detailed"/>
 </earl:TestSubject>
 <earl:Software rdf:about="http://validator.w3.org/about.html#"
rdf:ID="automatedUsabilityAssertor">
 <dct:title xml:lang="en">Automated Web Usability Evaluation Tool</dct:title>
 <dct:hasVersion>1.9.1</dct:hasVersion>
 <dct:description xml:lang="en">A tool for automated usability evaluation checking
the conformance of web UI to the predefined set of guidelines
 </dct:description>
 </earl:Software>
 <earl:Assertion rdf:ID="assertion1">
 <earl:assertedBy rdf:resource="#automatedUsabilityAssertor"/>
 <earl:subject rdf:resource="#evaluatedWebPages"/>
 <earl:testcase rdf:resource="#24-IdentifySelectedInputTestCase"/>
 <earl:result rdf:resource="#24-IdentifySelectedInputTestResult"/>
 </earl:Assertion>
 <earl:Assertion rdf:ID="assertion2">
 <earl:assertedBy rdf:resource="#automatedUsabilityAssertor"/>
 <earl:subject rdf:resource="#evaluatedWebPages"/>
 <earl:testcase rdf:resource="#27-RadioButtonsShouldBeVerticallyStackedTestCase"/>
 <earl:result rdf:resource="#27-RadioButtonsShouldBeVerticallyStackedTestResult"/>
 </earl:Assertion>
 <earl:TestCase rdf:about="http://www.w3.org/TR/WCAG20-TECHS/H36" rdf:ID="24-
01_IdentifySelectedInputTestCase">
 <dct:title xml:lang="en">(24-IdentifySelectedInput) Identify selected
inputs</dct:title>
 <dct:description xml:lang="en">User should be easily able to identify what has been
selected to make the experience better. Show the selected link by highlighting it with
different colour or something similar or viable
 </dct:description>
 </earl:TestCase>
 <earl:TestResult rdf:ID="24-IdentifySelectedInputTestResult">
 <earl:outcome rdf:resource="http://www.w3.org/WAI/ER/EARL/nmg-strawman#pass"/>
 </earl:TestResult>
 <earl:TestCase rdf:about="http://www.w3.org/TR/WCAG20-TECHS/H36" rdf:ID="27-
01_RadioButtonsShouldBeVerticallyStackedTestCase">
 <dct:title xml:lang="en">(27-RadioButtonsShouldBeVerticallyStacked) Radio buttons
should be vertically-stacked</dct:title>
 <dct:description xml:lang="en">Vertically-stacking radio buttons
 (and checkboxes) makes them faster to process compared to a horizontal layout.
 </dct:description>
 </earl:TestCase>
 <earl:TestResult rdf:ID="27-RadioButtonsShouldBeVerticallyStackedTestResult">
 <earl:outcome
 rdf:resource="http://www.w3.org/WAI/ER/EARL/nmg-strawman#fail" />
 <dc:description rdf:parseType="Literal">
 <div xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
Radio button with labels Beginning, Fuzzy and Precise and vertically stacked.
 </div>
 </dc:description>
 </earl:TestResult>
</rdf:RDF>

140

Appendix 6 WUIs Used for Guideliner Verification
The appendix lists the websites and particular pages that were used for the Guideliner
verification. The following notation is used below to identify start page (S), subpage (P),
and a webpage with a form (F) for the websites involved in the study.

World universities (10)
1. Massachusetts Institute of Technology
S: http://web.mit.edu/
P: http://gradadmissions.mit.edu/
F: http://student.mit.edu/catalog/archive/fall/extsearch.cgi
2. Stanford University
S: https://www.stanford.edu/
P: https://www.stanford.edu/academics/
F: https://www.gsb.stanford.edu/faculty-research/centers-initiatives/ces/research/search-
funds/primer
3. Harvard University
S: https://www.harvard.edu/
P: https://www.harvard.edu/students
F: https://connects.catalyst.harvard.edu/profiles/search/people
4. University of California
S: http://www.caltech.edu/
P: http://www.caltech.edu/content/undergrad-education
F: https://directory.caltech.edu/search/advanced_search
5. University of Cambridge
S: https://www.cam.ac.uk/
P: https://www.undergraduate.study.cam.ac.uk/applying
F: https://www.student-funding.cam.ac.uk
6. University of Oxford
S: http://www.ox.ac.uk/
P: https://www.ox.ac.uk/research/divisions?wssl=1
F: https://www.ox.ac.uk/funnelback/search?wssl=1
7. London’s Global University
S: https://www.ucl.ac.uk/
P: http://www.ucl.ac.uk/research/excellence/funding
F: https://ucl-primo.hosted.exlibrisgroup.com/primo72explore/search
8. Imperial College London
S: https://www.imperial.ac.uk/
P: http://www.imperial.ac.uk/clinical-trials-unit/collaborations/
F: http://www.imperial.ac.uk/collegedirectory/
9. University of Chicago
S: https://www.uchicago.edu/
P: https://www.uchicago.edu/academics/
F: https://directory.uchicago.edu/
10. ETH Zurich – Swiss Federal Institute of Technology Zurich
S: https://www.ethz.ch/en.html
P: https://www.ethz.ch/en/doctorate/registration-admission.html
F: https://wohnen.ethz.ch/index.php?act=searchoffer

Europe universities (10)
1. University of Cambridge
S: https://www.cam.ac.uk/
P: https://www.undergraduate.study.cam.ac.uk/applying

141

F: https://www.student-funding.cam.ac.uk
2. University of Oxford
S: http://www.ox.ac.uk/
P: https://www.ox.ac.uk/research/divisions?wssl=1
F: https://www.ox.ac.uk/funnelback/search?wssl=1
3. London’s Global Universities
S: https://www.ucl.ac.uk/
P: http://www.ucl.ac.uk/research/excellence/funding
F: https://ucl-primo.hosted.exlibrisgroup.com/primo-explore/search?vid=
UCL_VU2&mode=advanced&sortby=rank
4. Imperial College London
S: https://www.imperial.ac.uk/
P: http://www.imperial.ac.uk/clinical-trials-unit/collaborations/
F: http://www.imperial.ac.uk/collegedirectory/
5. ETH Zurich – Swiss Federal Institute of Technology Zurich
S: https://www.ethz.ch/en.html
P: https://www.ethz.ch/en/doctorate/registration-admission.html
F: https://wohnen.ethz.ch/index.php?act=searchoffer
6. Technical University of Lausanne
S: https://www.epfl.ch/
P: https://studying.epfl.ch/student_desk
F: https://infoscience.epfl.ch/search?ln=en&p=test&f=title&ext=collection%3AARTICLE
7. University of Edinburgh
S: https://www.ed.ac.uk/
P: https://www.ed.ac.uk/staff
F: https://www.ed.ac.uk/student-funding/search-
cholarships?field_study_level_tid=1&term_node_tid_depth=All&term_node_tid_depth_1=All
8. King’s College London
S: https://www.kcl.ac.uk/
P: https://www.kcl.ac.uk/innovation/research/index.aspx
F: https://www.kcl.ac.uk/study/Search-results.aspx
9. The London School of Economics and Political Science
S: http://www.lse.ac.uk/
P: http://www.lse.ac.uk/accounting/Home.aspx
F: http://www.lse.ac.uk/student-life/accommodation/search-accommodation?from_serp=1
10. Paris University École normale supérieure (ENS)
S: http://www.ens.fr/
P: http://www.ens.fr/en/academics/admissions
F: http://www.ens.fr/en/les-laboratoires-sciences

Estonian universities (6)
1. Tallinn University of Technology
S: https://www.ttu.ee/
P: https://www.ttu.ee/teaduskond/infotehnoloogia-teaduskond/doktoriope-33/
F: https://www.ttu.ee/?id=30052
2. Tallinn University
S: https://www.tlu.ee/en
P: https://www.tlu.ee/en/research/Scholars
F: http://www.tlu.ee/en/Conference-Centre/Inquiry-for-organising-an-event
3. Estonian Academy of Arts
S: https://www.artun.ee/en/admissions/welcome
P: https://www.artun.ee/en/studies/
F: https://www.artun.ee/en/oppimine/kalender/
4. Estonian University of Life Sciences

142

S: https://www.emu.ee/en/
P: http://pk.emu.ee/en/
F: https://www.emu.ee/about-the-university/events/kalender/2017-11
5. Tartu University
S: https://www.ut.ee/et
P: https://www.ut.ee/en/research
F: https://elurikkus.ut.ee/search_er2.php?lang=eng
6. Estonian Academy of Music and Theatre
S: http://www.ema.edu.ee/en/
P: http://www.ema.edu.ee/en/continuing-education/organisation-of-courses/
F: http://www.ema.edu.ee/en/studies/curricula/courses-subject-catalogue/

143

Ap
pe

nd
ix

 7
 C

om
pa

ris
on

 o
f t

he
 B

en
ch

m
ar

k
To

ol
s u

se
d

fo
r t

he
 G

ui
de

lin
er

 V
er

ifi
ca

tio
n

Ch
ar

ac
te

ris
tic

W

av
e

Po
w

er
m

ap
pe

r
AC

he
ck

er

Te
no

n
D

yn
oM

ap
pe

r
To

ta
lV

al
id

at
or

G

ui
de

lin
er

HT
M

L-
sp

ec
ifi

c
gu

id
el

in
es

W
CA

G
 2

.0

Se
ct

io
n

50
8

HT
M

L
AR

IA

CS
S

W
CA

G
 2

.0

Se
ct

io
n

50
8

HT
M

L/
HT

M
L5

U

sa
bi

lit
y.

go
v

HT
M

L
sy

nt
ax

W
CA

G
 1

.0

W
CA

G
 2

.0

Se
ct

io
n

50
8

St
an

ca
 A

ct

BI
TV

 1
.0

W
CA

G
 1

.0

W
CA

G
 2

.0

Se
ct

io
n

50
8

St
an

ca
 A

ct

BI
TV

 1
.0

W
CA

G
 2

.0

Se
ct

io
n

50
8

W
CA

G
 2

.0

Se
ct

io
n

50
8

HT
M

L
CS

S
XH

TM
L

W
CA

G
 2

.0

Vi
su

al
 u

sa
bi

lit
y

gu
id

el
in

es

Co
nt

ra
st

Co

m
pa

tib
ili

ty

SE
O

N

ot

su
pp

or
te

d
N

ot

su
pp

or
te

d
N

ot
 su

pp
or

te
d

Co
nt

ra
st

Sc
ro

lli
ng

Po

sit
io

n
Lo

ca
tio

n
Co

nt
ra

st

Di
st

an
ce

Si

ze

N
um

be
r o

f
gu

id
el

in
es

80

15

0
15

2
74

89

11

5
98

En
vi

ro
nm

en
t

(W
eb

, d
es

kt
op

,
ot

he
r)

W
eb

Br

ow
se

r
Ex

te
ns

io
n

W
eb

De

sk
to

p
W

eb

W
eb

W

eb

W
eb

Br

ow
se

r E
xt

en
sio

n
W

eb

Co
m

m
an

d
lin

e

W
ay

s o
f d

ef
in

in
g

cu
st

om
 g

ui
de

lin
es

(if

 a
va

ila
bl

e)

N
on

e
N

on
e

Ta
bl

e-
ba

se
d

ap
pr

oa
ch

N

on
e

N
on

e
N

on
e

O
nt

ol
og

y

Re
po

rt
in

g
in

te
rf

ac
e

HT
M

L
RE

ST

HT
M

L
RE

ST
 (H

TM
L,

 P
N

G
,

CS
V,

 X
M

L)

HT
M

L
RE

ST

EA
RL

HT
M

L
RE

ST

HT
M

L
RE

ST

HT
M

L
RE

ST

RE
ST

EA

RL

Co
m

m
er

ci
al

/F
re

e
w

ar
e

W
eb

 is
 fr

ee

AP
I i

s
co

m
m

er
ci

al

Co
m

m
er

ci
al

 (w
ith

30

 d
ay

s t
ria

l)
Fr

ee
w

ar
e

Co
m

m
er

ci
al

(w

ith
 1

5
da

ys

tr
ia

l)
Co

m
m

er
ci

al

Fr
ee

w
ar

e
(B

as
ic

)
Co

m
m

er
ci

al
 (P

ro
)

Fr
ee

w
ar

e

144

Appendix 8 Comparison of Features of Automated Usability
Evaluation Tools
The matrix of associations of the tools is shown where “1” means that the tool supports
characteristic and “0” means that the tool does not support the characteristic. The metrics
presents the important characteristics that should be satisfied by the tools for automated
usability evaluation to be competitive.

Characteristic Wave Power
Mapper

AChec
ker Tenon Dyno

Mapper
Total

Validator
Guide
liner

API (e.g. REST, SOAP) 1 1 1 1 1 1 1
User Interface for
Evaluation 1 1 1 1 1 1 1

Online Availability 1 1 1 1 1 1 0
Accessibility
Guidelines 1 1 1 1 1 1 1

Usability Guidelines 0 1 0 0 0 0 1
Visual usability
guidelines 0 0 0 0 0 0 1

Extendibility with new
guidelines 0 0 1 0 0 0 1

License type
commercial(0)/free(1) 1 0 1 0 0 1 1

145

Appendix 9 Results of Usability Evaluation
Table 1. Total sum of detected violations by tools for automated usability evaluation
The table shows the result of the Guideliner verification: total number of detected
violations for each tool grouped by the type of usability guidelines. The results
demonstrate that the Guideliner in additional to accessibility guidelines detected similar
number of violations of mobile usability guidelines and smaller number of violations of
common usability guidelines.

 Accessibilit

y
Compatibil

ity SEO Usability Mobile
usability

Failed
tests

Wave 3306 – – – – 1
Powermapper 1365 48 166 893 – 4

Achecker 2355 – – – – 2
Tenon 2309 – – – – 6

DynoMapper 2386 – – – – 1
TotalValidator 3742 – – – – 3

Guideliner 3457 – – 1145 3860 0

Table 2. Number of violations grouped by university WUI and the tool
The table shows total number of violations detected on each university WUI by the tools.
The table shows raw data that was captured during the verification of the Guideliner.

University

Tools

Nr.

W
av

e

Po
w

er
M

ap
pe

r

Ac
he

ck
er

Dy
no

M
ap

pe
r

Te
no

n

To
ta

lV
al

id
at

or

Gu
id

el
in

er

1 London’s Global University 53 84 25 65 22 20 185
2 University of Edinburgh 49 36 50 60 14 114 239
3 University of California 140 126 79 75 35 69 299
4 Stanford University 66 29 49 58 35 62 390
5 Imperial College London 117 92 62 59 87 53 371
6 King’s College London 241 62 83 80 173 90 551
7 University of Chicago 204 91 81 112 43 28 415
8 University of Oxford 83 193 62 63 45 70 517
9 Tartu University 157 176 59 0 105 25 515

10 Tallinn University 170 155 142 124 135 89 335
11 Estonian Academy of Arts 32 56 159 146 105 167 219

12 The London School of Economics and
Political Science 270 220 47 159 108 64 404

13 Estonian Academy of Music and Theatre 248 112 187 264 53 40 216
14 Massachusetts Institute of Technology 141 30 170 151 83 234 341
15 University of Cambridge 397 135 98 96 288 281 429

146

University

Tools

Nr.

W
av

e

Po
w

er
M

ap
pe

r

Ac
he

ck
er

Dy
no

M
ap

pe
r

Te
no

n

To
ta

lV
al

id
at

or

Gu
id

el
in

er

16 Harvard University 137 146 107 120 93 141 638

17 Paris University École normale
supérieure (ENS) 108 47 40 143 47 1501 602

18 Technical University of Lausanne 213 184 73 116 73 85 402

19 ETH Zurich – Swiss Federal Institute of
Technology Zurich 146 169 101 116 160 169 304

20 Estonian University of Life Sciences 119 96 437 142 258 161 449
21 Tallinn University of Technology 215 233 244 237 347 279 641

 Total 3306 2472 2355 2386 2309 3742 8462

Table 3. Minimum, Maximum and Average Violation Coverages
The table demonstrates the violation coverage for the 6 benchmark tools grouped by the
university WUI. Also, the table compares the results of the Guideliner with the benchmark
tools. The result clearly outline that the Guideliner minimum coverage is higher for all
WUI, while the maximum coverage is defined as 100% in most cases meaning that the
Guideliner showed the highest maximum coverage between all tools. The average
Guideliner coverage results are also not homogeneous with average results of all tools
exceeding the average coverage results between all tools multiple times.

Nr. University

Violation coverage for the 6
benchmark tools

Guideliner

Min Max Avg

Violatio
n

coverag
e

Min % Max % Average
%

1 London’s Global
University 0.01 0.11 0.04±0.03 0.11 1151.7% 100 % 158.74

2 The university of
Edinburgh 0.01 0.17 0.05±0.05 0.17 1133.33% 100% 238.12

3

California
Institute of
Technology

(Caltech)

0.02 0.15 0.06±0.05 0.15 582.45% 100% 158.68

4 Stanford
University 0.02 0.2 0.05±0.07 0.20 1207.29% 100% 274.19

5 Imperial College
London 0.02 0.16 0.06±0.05 0.16 791.84% 100% 161.92

147

Nr. University

Violation coverage for the 6
benchmark tools

Guideliner

Min Max Avg

Violatio
n

coverag
e

Min % Max % Average
%

6 Kings College
London 0.02 0.21 0.09±0.07 0.21 760.11% 100% 129.87

7 University of
Chicago 0.01 0.16 0.06±0.05 0.16 1308.16% 100% 153.99

8 University of
Oxford 0.02 0.17 0.07±0.06 0.17 888.78% 100% 162.14

9 University of
Tartu 0.10 0.19 0.07±0.07 0.19 93.88% 100% 190.20

10 Tallinn University 0.03 0.17 0.09±0.05 0.17 422.73% 100% 88.10

11 Estonian
Academy of Arts 0.02 0.15 0.07±0.05 0.15 618.37% 100% 119.81

12
London School of

Economics and
Political Science

0.02 0.17 0.09±0.06 0.17 1030.03% 100% 90.81

13

Estonian
Academy of
Music and

Theatre

0.02 0.20 0.08±0.08 0.17 897.45% 14.23% 117.77

14
Massachusetts

Institute of
Technology

0.02 0.18 0.08±0.05 0.18 726.53% 100% 127.76

15 University of
Cambridge 0.03 0.28 0.11±0.09 0.19 623.81% 32.77% 67.17

16 Harvard
University 0.03 0.20 0.09±0.06 0.2 591.99% 100% 125.90

17
Paris University
École normale

supérieure (ENS)
0.01 0.29 0.11±0.11 0.21 1502.72% 27.24% 96.04

18
Technical

University of
Lausanne

0.02 0.14 0.08±0.05 0.14 606.58% 100% 79.86

19

ETH Zurich –
Swiss Federal

Institute of
Technology

Zurich

0.03 0.16 0.08±0.04 0.16 448.82% 100% 92.59

20
Estonian

University of Life
Sciences

0.06 0.19 0.1±0.05 0.19 235.56% 100% 90.31

148

Nr. University

Violation coverage for the 6
benchmark tools

Guideliner

Min Max Avg

Violatio
n

coverag
e

Min % Max % Average
%

21 Tallinn University
of Technology 0.06 0.25 0.15±0.07 0.25 309.91% 100% 71.00

149

Curriculum vitae

Personal data
 Name: Jevgeni Marenkov
 Date of birth: 09.07.1988
 Place of birth: Estonia
 Citizenship: Estonian
Contact data
 E-mail: jevgeni.marenkov@ttu.ee
Education

2013 – … PhD in Information and Communication Technology, Tallinn
University of Technology

2010 – 2012 MSC in Computer Engineering, Tallinn University of
Technology (cum laude)

2007 – 2010 BSC in Computer Engineering, Tallinn University of Technology
(cum laude)

 2004 – 2007 Tallinna Kesklinna Vene Gümnaasium
Language competence
 English Fluent
 Estonian Fluent
 Russian Native
Professional employment
 2014 – … Kühne + Nagel IT Service Centre AS, Software Engineer
 2013 – 2014 Helmes AS, Software Engineer
 Scientific work
 Reviewer East-European Conference on Advances in Databases and

Information Systems (ADBIS 2017, ADBIS 2016)
 Reviewer 12th International Baltic Conference on Databases and

Information Systems (Baltic DB&IS’2016)
Defended theses

2012 Master of Science in Computer Engineering, Implementation
of Business Rules using Aspect Oriented Programming. TUT,
supervisor: lector Raul Liivrand

 2010 Bachelor of Business Information Systems, UML and SysML
comparison based on the information system of security
company. TUT, assoc. professor Erki Eessaar

Main Areas of Scientific Work
Web user interfaces, web usability evaluations, automated usability evaluation, web
usability guidelines, and software development

150

Elulookirjeldus

Isikuandmed
 Nimi: Jevgeni Marenkov
 Sünniaeg: 09.07.1988
 Sünnikoht: Eesti
 Kodakondsus: Eesti
Kontaktandmed
 E-post: jevgeni.marenkov@ttu.ee
Hariduskäik

2013 – ... Doktorantuur, Info- ja kommunikatsioonitehnoloogia,
Tallinna Tehnikaülikool

2010 – 2012 Tehnikateaduste magister (M.Sc.), Tallinna Tehnikaülikool
(cum laude)

 2007 – 2010 Tehnikateaduste bakalaureus (B.Sc.), Tallinna Tehnikaülikool
(cum laude)

 2004 – 2007 Keskharidus, Tallinna Kesklinna Vene Gümnaasium
Keelteoskus
 Inglise keel Kõrgtase
 Eesti keel Kõrgtase
 Vene keel Emakeel
Teenistuskäik
 2014 – ... Kühne + Nagel AS, Tarkvara arendaja
 2013 – 2014 Helmes AS, Tarkvara arendaja
Teadustegevus

Retsenseerimine East-European Conference on Advances in Databases and
Information Systems (ADBIS 2017, ADBIS 2016)

Retsenseerimine 12th International Baltic Conference on Databases and
Information Systems (Baltic DB&IS’2016)

Kaitstud lõputööd
2012 Magistritöö, Ärireeglite Realiseerimine Aspekt Orienteeritud

Programmeerimise Abil: lektor Raul Liivrand
 2010 Bachelor Business Information Systems, UML ja SysML

võrdlemine turvafirma infosüsteemi baasil, dotsent Erki
Eessaar

Teadustöö põhisuunad
Veebi kasutajaliides, veebi kasutatavuse hindamine, automatiseeritud kasutatavuse
hindamine, veebi kasutatavuse suunised ja tarkvara arendus

	Blank Page

