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1 Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC) was published
recently in summer 2021 regarding the current scientific research related to climate
change [1]. The main take-aways from this report are of great concern for the current
energy policy of the whole world:
1. “Itis unequivocal that human influence has warmed the atmosphere, ocean
and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere
and biosphere have occurred.” [1]
2. “The scale of recent changes across the climate system as a whole —and the
present state of many aspects of the climate system — are unprecedented
over many centuries to many thousands of years.” [1]
3. “Human-induced climate change is already affecting many weather and
climate extremes in every region across the globe.” [1]

There are no more doubts that the human interference with the world climate due to
high amounts of released CO2 did not cause a multitude of consequences we have to
deal with now and in the future. To reduce the CO2 emissions and slow down this
process, the Paris Agreement was already introduced in 2015 [2]. All parties agreed to
limit the global warming below 2 °C, preferably 1.5 °C, compared to pre-industrial levels
by reducing the greenhouse gas emissions permanently in the long-term. However,
the IPCC predicts in their report that the 2 °C limit will barely cope with the progress of
climate change and that the goal of 1.5 °C or less should be achieved as some
consequences are already irreversible [1]. The facts presented about Europe include [1]:

e  Temperatures will rise regardless of future levels of global warming.

e The frequency and intensity of hot extremes has increased and will continue
increasing regardless of greenhouse gas emission development.

e The frequency of cold spells and frost days will decrease regardless of
greenhouse gas emission development.

To cope with the climate change, the European Union (EU) has communicated
“The European Green Deal” [3], which includes short- and long-term objectives. Goals
for 2030 are greenhouse gas emission cuts of at least 40%, renewable energy share of at
least 32% and increased energy efficiency of at least 32.5%. The goal for 2050 for the EU
is to be climate neutral. [3]

To achieve the targets regarding the renewable energy share and energy efficiency,
a more specific Directive was released by the EU to describe specific goals for target
technologies [4]. In this context, there is a multitude of EU funded projects, e.g.,
in the Horizon 2020 framework. These projects, such as the NetZeroCities [5], Decarb
City Pipes 2050 [6], or FinEst Twins [7], aim to achieve the set goals with research on the
future design of technologies, their interoperability and feasibility. An important part of
the future design of the electrical grid is the construct of a “Smart City” composed of
many smaller Smart Grids working in tandem.

For this multi-microgrid design structure, it is generally agreed to use CO2 neutral
technologies as much as possible. This means that current technologies and policies are
researched and advanced to overcome challenges in the context of microgrids. The current
standard for new buildings is nearly zero energy buildings (nZEB) [8], including renewable
energy source integration and often storage technologies to achieve very high energy

13



performance. From the greenhouse gas emission point of view, this increase of
renewable energy sources is remarkable; from a technical point of view, this poses
challenges, especially due to the volatile energy production [9]. To balance the energy
demand with the energy supply, load scheduling is a viable option by implementing
different demand side management (DSM) [10] or energy flexibility [11] related
strategies.

This balancing of many distributed generation (DG) units with many small scheduled
loads and storage systems involves a large number of devices with a complex control
structure. It is inevitable that some device or control error will happen, leading to
mismatches and blackouts. However, the renewable energy sources are not only the root
cause for this challenge, but they are the solution as well: with DG units in microgrids,
it is possible with a storage system for energy buffering to continue operation of a
microgrid in islanded mode during a blackout [12]. So far, most of the research regarding
control strategies for DG units, energy storage systems (ESS) and load scheduling with
DSM are focussed on grid-connected operation [13], [14], [15], as the microgrid will be
connected to the main grid most of the time. Thus, further research regarding the
islanded operation mode is necessary.

As it is essential to develop these new control concepts and achieve market readiness
as quick as possible to reach the set greenhouse gas emission goals, modern research
and development approaches are commonly used. Instead of the traditional process
from design to testing to building, modelling and analyses are carried out before
prototyping a system [16]. Within this modelling and analysing process, approaches are
changing from traditional designs and simulations to machine learning (ML) aided
designs [17] with real time [18] and power hardware in the loop (PHIL) simulations [19]
due to increasing availability and cheaper computational resources.

As it is not enough for a system to be adopted by the wide public if it works only from
a technical point of view, social and financial feasibility aspects need to be considered as
well [20]. These can include user comfort, data privacy issues, or return of investment as
examples. [21]

This thesis aims to contribute to the presented research field in the following way:
a topology for microgrid systems is proposed and analysed. The microgrid is designed
with CO2 reductions in mind, using ESSs and renewables as the only energy source.
To control these devices, islanded and grid-connected control strategies are researched
and developed, focussing on the islanded operation. ML as well as PHIL real time
simulations are used for modelling and validation purposes. This technical analysis is
complemented with social and financial feasibility investigations. General content of this
PhD research is summarized in Figure 1.1.

i ¥ mm oy -
- @ ﬂ
y 1 1 % °
MICROGRID ~ RENEWABLE FOCUS ON ML- PHIL-REAL  FINANCIAL/SOCIAL

TOPOLOGY GENERATION ISLANDED MODE  INTEGRATION TIME TESTS INVESTIGATIONS,

Figure 1.1: General content of this thesis
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1.1 Thesis objectives

The main objective of this work is to research and develop object models with improved
accuracy and control strategies for hybrid energy storage systems to improve security of
supply and financial feasibility of residential microgrids.

The secondary aim is to analyse the investment return time and end user’s privacy
and comfort requirements with the developed control strategies to increase the users’
general acceptance level and provide recommendations for microgrid designers,
microgrid and building managers, and homeowners in the development of microgrid

systems.

1.2 Hypotheses

The main hypotheses of this thesis are:

Using PV-systems with hybrid energy (battery, flywheel) storages and home
appliances as supporting thermal storages could be a feasible and flexible
topology for improving the security of supply and financial feasibility of typical
residential microgrids.

The novel methodology, which synthesizes space heating models by training a
neural network with input data from civil engineering thermal building
simulations, will create space heating object models more efficiently. This is
achieved by reducing the active time and effort for manual modelling and
simplifying space heating object models in electrical engineering software with
a high level of detail by more than 50%.

Using space heating models created with the novel methodology based on
neural networks will reduce the computational time for microgrid simulations
by more than 50% compared to a co-simulation with civil engineering software
and will reduce the mean power error by more than 3% compared to a
linearized space heating model.

Using a combination of different (improved and novel) control strategies could
increase the battery storage system cyclic lifetime by more than 5% and the
islanded operation duration by more than 2%, and simultaneously reduce the
energy costs by more than 5% and the necessary battery storage capacity by
more than 3%.

The methodology for evaluation of social acceptance for microgrid developers,
which considers the user comfort and privacy concerns, will improve the
development and planning quality of residential area microgrids through higher
satisfaction of end-users.

The complex methodology for microgrid development, which will consider
security of supply, social acceptance and financially oriented control strategy
decisions, could reduce the investment return time of the proposed system to
less than 15 years.
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1.3 Research tasks

The main research tasks of this thesis are:

Analysis and classification of common microgrid components and control
strategies to develop mathematical object models and design the
corresponding simulations

Research, development, and improvement of mathematical object models for
use in microgrid simulations. This includes energy storage systems (ESSs),
a renewable energy source and loads.

Validation of the ESS object models for increased model accuracy and microgrid
simulation quality to develop different control strategies

Research and development of control strategies for security of supply and
financial feasibility improvements

Investigation and analysis of user comfort, privacy concerns, and financial
feasibility of the proposed system and control strategies to increase the users’
general acceptance level and to give recommendations for the development
and design of microgrid systems

1.4 Contribution and dissemination

This thesis presents a comprehensive view with an interdisciplinary research focus on
microgrid systems. Contributions were made in the field of electrical engineering with
the cooperation of civil engineering, law and social sciences, and information
technologies. The work is aimed at microgrid designers, microgrid and building
managers, and homeowners for guidance in the development of new and existing
microgrid systems.

Scientific novelties:

A methodology for synthesizing neural network-based space heating object
models from simulated data sets of existing thermal building models in civil
engineering software was developed, which reduced the simulation
computational time by 85% while increasing the model accuracy by 5.7%.

A combination of improved and novel control strategies was developed,
which increased the cyclic lifetime of the battery storage system by 19% and
the islanded operation duration by more than 3%, and simultaneously
reduced the energy costs by more than 10% and the necessary battery
storage capacity by 4%.

A user comfort definition methodology was developed to specify the comfort
requirements of end users regarding the control decisions for a hybrid energy
(battery, flywheel, thermal) storage system in islanded and grid-connected
operation mode.
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Practical novelties:

e A user comfort aspect-based decision tree for selection of the best control
strategy to increase user satisfaction was developed to be used by microgrid
development and design engineers.

e A mapping of user privacy concerns between technical and legal aspects was
developed as an applicable tool for control and data management engineers
to develop microgrid systems with increased social acceptance.

e A complex microgrid development methodology and a decision tree for
microgrid design engineers considering technical, social and financial control
strategy decisions was developed to reduce the investment return rate for
microgrid systems.

This thesis comprises results of research published in 9 international publications,
including 7 international scientific conferences and 2 international peer-reviewed journals.
Additionally, the topic was introduced and presented in 3 doctoral schools. Other
researchers’ interest in the presentations and results has shown the relevance and
importance of the topic.

The knowledge gained in this work supports the research of ZEBE Center of Excellence
for zero energy and resource efficient smart buildings and districts (TAR16012), PUT1680
“Power Electronics Based Energy Management Systems for Net Zero Energy Buildings”,
PSG409 “New generation dynamic sizing methods for heating and cooling systems in
intermittently operated buildings”, MOBTP88 “Climate impact on the energy balance and
cost-optimal design solutions of office buildings in Europe”, and the FinEst Centre for
Smart Cities (VFP19031 / 856602). Knowledge from this work could additionally be applied
in an expertise for Enefit (Eesti Energia AS), the Al4Cities project with Fusebox OU, and
an expertise for GridlO.

This dissertation is supported by 4 master theses with focus on flywheel and battery
storage systems, which were supervised during the doctoral studies.
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2 State of the art

The need for balancing demand and supply within the microgrid is increasing due to
renewable energy sources that are eco-friendlier than the previously used main energy
sources. This creates challenges for grid planners and designers because the existing grid
cannot be completely changed immediately to serve as a perfect infrastructure for
renewables.

One promising solution to gradually adjust the electricity grid to the new needs is
so-called microgrids. These microgrids can be designed and operated in various ways and
need to be integrated into the existing energy markets. Within these microgrids,
the current regulations and technology regarding buildings are nearly zero energy
buildings (nZEB). These buildings try to minimize their electrical energy needs by
integrating renewable energy sources, demand side management (DSM) strategies and
storage systems within the building energy management. One relevant kind of
schedulable load for DSM applications is common household thermal energy storages
(TES), such as freezers, water heaters and space heating, as they can store a certain
amount of energy for limited time in the form of heat. To gain knowledge about
microgrid systems, there is a need for simulations and tests with accurate models and
control strategies. This can be achieved with ML, which gained popularity lately, and PHIL
setups. These structures, devices and methodologies are presented in the following
sections.

2.1 Microgrids

As mentioned, the need for electricity is increasing while the CO2 emissions must be
reduced to fulfil the goal of the Paris Agreement [2]. To cope with these challenges, more
and more renewable energy sources must be integrated into the existing electricity grid.
The volatile nature of many of those renewable technologies creates a greater need for
balancing the demand and supply than before, as recent events already show that the
existing grid is quite fragile [22], [23], [24]. One solution to this challenge is splitting up
the existing grid into microgrids, which can be managed independently [25].

No unanimous agreement upon the definition of a microgrid has been reached.
However, it is often defined as “a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries, which act as a single controllable
entity with respect to the grid. A microgrid can connect and disconnect from the grid to
enable it to operate in both grid-connected and islanded-modes” [26]. This means:

e that different small power plants, energy storages and controllable demand
are connected and controlled as a unit.

e that microgrids are interlinked to each other and share power, if necessary
(grid-connected operation), but if a disturbance occurs, they can separate
themselves (islanded operation).

Thus, microgrids will play an essential role in the future design of the electric power
and energy systems. To get a better overview on microgrids, the listed aspects have been
analysed in the literature presented in the following subsections in more detail:

e Topologies and design of microgrids

e  Operation modes of microgrids

e Technical challenges in microgrids

e  Energy markets and advanced metering infrastructure (AMI)
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A general topology for a microgrid is depicted in Figure 2.1.
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Figure 2.1: General microgrid topology

2.1.1 Topologies and design

Microgrids can generally be categorized into three mayor topologies: AC-, DC- or hybrid
microgrids [27]. AC- and hybrid microgrids can be designed with one single phase or as a
three-phase system.

AC microgrids, as the most common topology, typically consist of distributed
generation (DG) units (PV, wind turbines, fuel cell etc.), an AC switch, battery energy
storage systems (BESS), and (bidirectional) converters. There is an AC connection
between the utility grid and AC microgrid. This AC grid is connected to the DG units,
which have (bidirectional) converters to connect to their DC buses. The loads are
supplied via the AC grid. [28]

A typical AC microgrid is shown in Figure 2.2.
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Figure 2.2: AC microgrid topology
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DC Microgrids include PV generation systems, DC/DC converters, bidirectional
converters, BESSs, DC loads, and AC loads. The PV system is connected through a DC/DC
converter to the DC bus as well as to the DC loads, BESSs. The AC loads are supplied by
the bidirectional converters. [28]

The Topology for a typical DC microgrid is shown in Figure 2.3.
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Figure 2.3: DC microgrid topology

Comparison of AC and DC microgrid topologies shows that the number of AC/DC
converter can be reduced in a DC microgrid. The AC loads are supplied by the bidirectional
converter, which can lead to improvements in power distribution reliability and power
quality. [28]

Hybrid Microgrids combine the advantages of both AC and DC architectures, as two
networks are combined in the same distribution grid [29]. With this, it is possible to
integrate both AC and DC based DGs, energy storage systems (ESS) and loads. [30].
An example topology of a hybrid microgrid is shown in Figure 2.4. The hybrid inverter can
be designed like the energy router presented in [29].
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Figure 2.4: Hybrid microgrid topology
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As the presented topologies already show, a microgrid contains several components
for different purposes:
e DG units
e ESS
e (Controllable) loads

Electricity is produced with DG units [31], including, for example, wind-, PV-, or
hydropower, which can be integrated depending on the environmental and geological
circumstances. These renewable energy sources will be analysed in more detail in section
2.2.1.

In the design of a microgrid, the supply reliability and controllability of the selected
power sources must be considered: PV- and wind power are volatile power sources,
for example, while diesel generators are reliable with constant power output, if needed.
Wind turbines [22] or hydropower plants [32] are only controllable in the direction of
low power supply, while a diesel generator on the other hand can be controlled in both
directions. Unfortunately, most of the reliable and fully controllable power sources are
not renewable and should therefore be avoided in the design of new microgrids
according to the Paris Agreement [2]. An overview of the typical microgrid power sources
is given in Figure 2.5.

Reliable

I Microgrid power sources

Volatile

Figure 2.5: Microgrid power sources [33]

As shown in [31], ESS is typically a part of a microgrid. It is preferable over backup
power plants with fuels from renewable sources, as its efficiency is higher. There are two
operation modes for ESS:

e Charging —if the demand for energy is smaller than the produced energy
e Discharging —if the demand is higher than the supply

More details about the possible storage systems are presented in section 2.2.2.

The loads are evidently important in the microgrid context as well, as they have been
subject to extensive research recently in terms of flexibility and demand side management
(DSM) [10] [14]. These concepts work as follows:

e DSM: If a lot of energy is available, the demand is increased. If less energy is
available, the demand is reduced.

e  Flexibility: Demand-side flexibility is defined as the capability of consumption
modification in response to control (penalty) signals and is recognized
officially [34], [11].
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More details about controllable loads are presented in section 2.2.3. An overview of
the advantages and disadvantages of the different microgrid topologies is given in Table

2.1

Table 2.1: Advantages and disadvantages of different microgrid topologies [28], [27], [33]

Microgrid
AC °

DC °

Hybrid .

Advantages

DG units can be integrated in
the current utility grid

It is possible to apply
conventional operational
concepts for power flux
control, protection devices,
fault detection etc.

No need for synchronization
of DG units

Absence of frequency and
phase dependences among AC
generators

Higher overall efficiency due
to fewer interface converters
and no circulation of reactive
current in the network

Better integration of DC-based
units

No need for synchronization
of generation and storage
systems depending on the
connection bus

Voltage transformation can be
performed on AC-side
transformers or DC-side

Disadvantages

Need for synchronization of
DG units

Control and operation more
challenging in islanded mode

Higher initial cost due to
general lack of code
recognition and efficiency
metric recognition
Problems with certification
and code compliance

Protection devices for DC-
based networks need more
research

Lower reliability than AC
microgrids due to the
interface power converter
Management of hybrid
microgrids can be more
complex due to AC- and DC-
bus

Microgrids can be designed as single-phase or three-phase systems: single-phase
microgrids, on the one hand, operate at 230 V phase-to-ground voltage. They are
becoming more popular as BESS and single-phase hybrid inverters are becoming
cheaper. Single-phase microgrids are typically used for small households in a remote
location. Three-phase microgrids, on the other hand, operate at 400 V phase-to-phase
voltage. The advantages for these are: firstly, the ability to integrate larger renewable
energy sources and secondly, the possibility to supply three-phase and single-phase
consumers. However, the complexity for a three-phase control system is higher.
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2.1.2 Operation modes

As previously mentioned, microgrids can operate in two different modes: grid-connected
mode and islanded mode. Some microgrids can operate in both modes constantly or
temporarily and depending on the installed devices even switch between the modes
seamlessly. In the following, these operation modes are explained for AC-, DC- and hybrid
microgrids.

In the islanded mode, an AC microgrid operates without being connected to the utility
grid, only using its energy storage systems and DGs [28]. In the grid-connected mode,
it is connected to the utility grid: The photovoltaic system generates electricity, which is
fed to the public grid. Alternatively, the microgrid can be connected to the utility grid but
instead of feeding the produced electricity into the power grid, it is stored in an energy
storage. This is often used as a backup system in weaker supply networks or in off-grid
mode to ensure greater security of supply. The connected systems are more common in
industrialized countries, while the backup systems are used more in emerging or
developing countries. [35]

For DC microgrids, DC loads are supplied by the PVs and AC loads by the bidirectional
converter in the islanded mode. In case of lower energy demand than generation,
surpluses will be used to charge the storage devices. Vice versa, if the energy
consumption of the loads is higher than the generation, the ESS will be supplying power
to balance the shortage. If the ESS is completely discharged, the system will switch to the
on-grid mode to charge the batteries. [28]

An overview of the operation mode schematics is presented in Figure 2.6.

(A) MICROGRID: GRID-CONNECTED OPERATION (B) MICROGRID: ISLANDED OPERATION

I |
%SWITCH | | }#I SWITCH
I

|
ACGRID et | I ACGRID
" Amm 1
| I I 11T\
1 =T 1
|

Figure 2.6: Schematic of the grid-connected (A) and the islanded (B) operation mode for a microgrid

2.1.3 Technical Challenges
There are many challenges to be faced when designing or implementing a microgrid.
These include a lack of scalable prototype installations, a lack of unified general microgrid
metrics, regional regulations, cyber-security concerns etc. The most relevant technical
challenges include [36], [37]:

e Power quality

e Control strategies

e Energy management

e  Stability and reliability

e  Protection
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Power quality is extremely important due to the volatile power supply of many
renewable energy sources, transition between microgrid operation modes, high reactive
power, and nonlinear loads. It is possible to utilize BESS, a flywheel energy storage
system (FESS), or other filters to improve the power quality in microgrids. [36], [37]

Control strategies can influence the power quality or minimize costs with DSM. Multiple
control strategies for different devices with multiple objectives can be implemented.
(36], [38]

The energy management system (EMS) must coordinate the control strategies for
efficient and stable operation of the microgrid. This includes managing power flows of
DG units and ESS, often making use of load and generation forecasts. [36], [39]

Stability and reliability concern grid synchronization, transition between operation
modes, unpredictable frequency deviations etc. [36], [37]

Protection is of critical importance in all electrical power systems. On the one hand,
the microgrid should be able to isolate from the main grid during faults. On the other
hand, this creates problems as the short circuit capacity is different in the grid-connected
and the islanded mode. Traditional overcurrent protection devices may not react in this
case and adaptive protection systems need to be considered. [36], [37]

Important standards regarding these points for planning, designing, and modernizing
microgrids are [36]:

e |EEE 1547: Criteria and requirements for interconnection of DERs with the main

grid

e EN 50160: Voltage characteristics of electricity supplied by public electricity
networks

e |EC61000: General conditions or rules necessary for achieving electromagnetic
compatibility

e |EEE C37.95: Protective relaying of utility-consumer interconnections

2.1.4 Energy markets and advanced metering infrastructure

Large parts of the European transmission system are connected and synchronized. There
are five regional groups: Continental Europe, Nordic, United Kingdom, Ireland, and Baltic.
Within these groups, the frequency is synchronized. To trade between the regional
groups, several DC interconnections have been established. [40]

Within these regional groups, there are one or multiple transmission system operators
(TSO) responsible for the transmission system stability and power flow on high voltage
level. For the medium and low voltage distribution, different distribution system
operators ensure the power quality regionally. A list of TSOs and selected distribution
system operators (DSO) for Estonia (EE) [41] and Germany (DE) is shown in Table 2.2.

Table 2.2: TSOs and DSOs in Germany and Estonia

Country TSOs DSOs
DE TransnetBW Kempten (Allgdu) regional:

TenneT AllgduNetz GmbH & Co. KG

Amprion Kaufbeuren regional:

50Hertz Transmission Vereinigte Wertach Elektrizitaitswerke GmbH
EE Elering 95% of Estonia: Elektrilevi OU
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Grid operators need to control the frequency and voltage stability within the grid.
To engage power plant operators and microgrid operators into providing these ancillary
services, a special market with incentives has been established. This market includes
scheduling and dispatch, reactive and voltage control, operating reserves, and frequency
control. Smaller microgrids or customers can be accumulated to a virtual power plant.
The structure for the frequency control and voltage control reserve is shown in Figure
2.7. The reaction time and delivery duration determine in which category a power plant
or a microgrid can be marketed. [40]

W
h

(1 30s 2min 15min 1h Time
Figure 2.7: Basic schematic of primary, secondary and tertiary control reserve [40]

Participation in the ancillary service market is generally possible even with small plants
as they can be included as a virtual power plant. However, there are rules and regulations
that need to be fulfilled. For example, in [42], small hydropower plants were investigated
for their participation in the ancillary service market for the abovementioned DSO
“Vereinigte Wertach Elektrizitatswerke GmbH” in Germany. Due to regional restrictions,
the only financially and technically feasible possibility to take part in the market was the
installation of a large programmable load. The system would be viable if the heat
dissipation of the load is used for district heating. Otherwise §1 EnWG [43] is not met as
heat dissipation without further utilization is not eco-friendly. This example shows that
regional regulations can create additional challenges.

The general electricity market is structured as follows: quick balancing corrections are
made within the ancillary service market. There is the intraday market for hourly
corrections within the day and a day-ahead spot market for rough corrections of
electricity demand or supply one day in advance. Long-term contracts for electricity
dispatch and trade are the cheapest way to buy electricity but the planning must be done
days or weeks ahead. [40]

Within this existing market structure, new programmes like demand response and
flexibility programmes are established by the TSOs and DSOs to engage prosumers, nZEB
communities and microgrid owners more in the electricity market with corresponding
incentives to balance the increased amount of volatile renewable energy production.
One possibility in this case is, for example, a time of use tariff where the customer pays
the real time, hourly or 15-min based electricity market price. The installation of
renewable energy sources is often encouraged with governmental funding or similar
processes [40].

To establish a bidirectional communication between utilities and prosumers, the AMI
was designed [44], [45], [46], [47], [48]. It includes all relevant technologies to provide
services for customers, suppliers and DSOs/TSOs, including automated meter reading,
billing, information provision, event management, device configuration etc.
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Typically, the AMI is composed of smart meters (SM), hierarchically disposed
communication networks, meter data management systems (MDMS), and head-end
systems (HES). The HES, as the central data system, is responsible for the coordination of
the data exchange in its complete service area. The communication network includes
home area networks (HAN), wide area networks (WAN), and the utility network with
MDMSs as meter data concentrators, respectively as gateways. Compared to traditional
energy meters, SMs provide enhanced metering capabilities, data communication and
optional auxiliary functions [49], [50], [51]. They are the coupling points of users to the
AMI. SMs are essential data sources for analytics as they can be used to report, measure
and monitor loading conditions, power quality metrics and power flows.

Considering this structure, the AMI reveals several surfaces for intrusion or other
forms of cyber-attacks, as identified in [52], which are presented in Table 2.3.

Table 2.3: Surfaces for intrusion and cyber-attacks of the AMI [53]

Surface Description

HAN The consumer side of the AMI. A consumer gateway acts as a
bridge between the smart meter and the consumer’s home
devices.

SM The primary point of data collection for power grid energy
consumption. Physical access to the meter is considered a
vulnerable attack surface.

SM data A hardware computing device aggregating real-time data from

collector multiple smart meters and providing a data collection and
management point for the utility; an integral part of the MDMSs

AMI The network along with used communication interfaces linking

communication
interfaces and
network

AMI

the smart meter and the SMDCs. The AMI communications
network exists alongside the power grid and can be scaled to
serve millions of smart meters.

The communication links and protocols utilized by the AMI

communication
protocols and
software

HES The AMI management platform at the utility installation providing
data warehousing for collected data and centralized management

of the AMI

2.2 Typical renewable generation and storage systems in residential
microgrids

Nearly zero energy buildings (nZEB) are an important part of microgrids. These buildings
aim to accomplish a nearly zero energy balance. Therefore, most nZEBs utilize on-site
energy generation and storage systems, which can be integrated into a microgrid as DG
units.

To accomplish the energy goal set out by the Paris Agreement [2], the European Union
has imposed a directive that requires since the end of 2020 that all new buildings should
comply with the nZEB standards [8]. The chosen definition for an nZEB in this directive is
“a building that has a very high energy performance. The nearly zero or very low amount
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of energy required should be covered to a very significant extent by energy from
renewable sources, including energy from renewable sources produced on-site or
nearby” [3].

As previously mentioned, the DG units in microgrids and nZEBs must be coordinated
effectively to balance the control and demand. Renewable energy sources, such as PV-
and wind power, are fluctuating and volatile, while being controllable in one direction
only. Therefore, different renewable energy sources are reviewed in subsection 2.2.1.

Microgrids and especially standalone nZEBs tend to have small inertia due to their
smaller size compared to conventional large grids, increasing the importance of proper
balancing of supply and demand. This can be further aggravated in weaker microgrids
and nZEB that have a suboptimal power infrastructure. To effectively balance production
and consumption, an ESS is a viable solution. The chosen storage technology should be
able to supply or draw power quickly to react to fast changes in the grid parameters,
especially in the islanded operation. Different storage technologies are analysed and
presented in section 2.2.2. These ESSs can be supported by household appliances, as
shown in section 2.2.3.

Another term, which is often being used in the context of nZEBs, is a “prosumer”.
Prosumers are members of the energy market which produce energy but are also
customers who are consuming energy. Their share increased in the last years noticeably,
and it is expected to continue to rise with around 4% per year until 2030 [54].
The preferred DG unit of prosumers is PV-systems and some of them have their own
energy storage system, increasing their energy independence from the grid further.

2.2.1 Renewable energy sources
The most common renewable generation sources installed in microgrids are PV-systems,
wind turbines or small hydropower plants. These DG units have different requirements
and properties. Thus, the selection of the energy production must be tailored to the
specific microgrid. The DG units in microgrids can be classified by [36]:

e Availability

e  Output characteristics (AC, DC)

e  Controllability

e Connection interface

e  Power flow control

PV-systems, wind turbines and hydropower plants have common drawbacks, as they
are dependent on the geographical location; they are volatile and only uncontrollable in
one direction.

PV-systems are a popular installation in nZEBs, as mentioned before. PV-systems have
the advantage of easy scalability and lower dependency on the geographical location
compared to wind- or hydropower. For example, a solar powered boat travelled around
the world from 2010-2012 [55]. However, there are aspects that need to be considered
before installing a PV-system in a microgrid:

e Due to easy scalability, PV-systems can usually be installed in residential
areas without disturbance of other residents.

e  PV-systems are preferably installed in places that have a large amount of
clear and sunny days per year, have a high direct normal radiation, are on
high altitudes (natural cooling) and have low amounts of shading and dirt
collection. [56]
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e PV-installations have a lifetime of more than 20 years. Long-term
measurements have shown a degradation of 0.11% per year in high altitudes
(3450 m a.s.l.) or 0.57% per year on 1270 m a.s.l. However, it must be noted
that these old installations are thicker and more durable than newer panels
that are available today. [56]

e Dirt on and faults with PV-panels need to be detected and removed to avoid
further damage. Thermal imaging can be used for this purpose. [56]

e  PV-panels provide a DC voltage that needs to be converted to AC for most
installations.

There are basically four different types of wind turbines available: lift- or drag-type
turbines. Each of those types can be designed as a vertical or horizontal axis turbine.
These types have different efficiencies and applications and can be realized with different
numbers of blades. The size of the blades and hub influences the efficiency as well.
The type of those turbines generally depicted would be a 3-blade horizontal axis lift-type
wind turbine. [57]

However, it can be noticed that the spread of wind power systems is weak in many
countries. The problem in many regions is low acceptance due to a “ruined landscape”.
That might be true if large wind parks are considered, but carefully planned wind turbines
do not harm the landscape. The key to success is the communication with the residents
to find a solution that is suitable for everyone. [58]

In general, the following aspects are relevant for the implementation of wind turbines:

e The location needs to be chosen carefully, as the wind profile is to be
observed to achieve good efficiency. In complex terrain, this assessment can
be complicated. Maintainability should be considered as well if placed at
hardly accessible places. [59]

e The residents in the region need to be included in the planning process for a
higher chance of acceptance. [58]

e Regional laws and restrictions need to be considered, including flora, fauna,
optical disturbances, and noise pollution. [58]

There are different types of hydropower plants: large (>10 MW), small and hidden
hydropower plants. Additionally, hydropower can be distinguished into run-of-river
plants and plants with a storage reservoir. Traditionally, hydropower plants are extremely
dependent on the location, as they can only be placed near a river. Another technology
is placing turbines in wastewater systems. The successful placement depends on the
wastewater quality. [32]

Generally, the following aspects need to be considered regarding implementation of
hydropower plants for microgrids:

e Asuitable river or wastewater system is required. [32]

e Placing a hydropower station can interfere with the flora and fauna
considerably if a reservoir is created. [32]

e Depending on the size, different turbine types, such as Francis, Kaplan or
Pelton turbines are most efficient. [32], [42]

e Region regulations might be established regarding the interference with flora
and fauna through water waves or similar matters. This can limit the control
possibilities. [42]
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e To increase the eco-friendliness, fish or beaver passes may be necessary at
additional costs. [32], [42]

Table 2.4 summarizes the comparison of the presented renewable energy sources
based on the mentioned classification criteria. The feasibility in urban areas is the biggest
advantage of the PV-systems, making them the commonly used technology for nZEBs.
As this advantage is highly likely to prevail in future, PV-systems will be used as the object
of investigation in this work. However, the knowledge gained about the control strategies
will be transferable to microgrids with other renewable sources.

Table 2.4: Comparison of renewable energy source characteristics [36], [60]

Characteristics PV-System Wind Hydro
Availability Dependent on geographical location
Output DC AC AC
Controllability Only output power reduction

Power electronics Power electronics

Typical Synchronous or
interface converter converter induction generator
(DC-DC-AC) (AC-DC-AC)
Power flow MPPT, DC link MPPT, pitch and link
Controllable
control voltage control voltage control
Feasibility in High Very low Low

urban areas

2.2.2 Storage systems

ESS can collect energy, store the energy, and release the energy again. These three
processes are called charging, storing, and discharging [61]. Each of these processes has
a certain efficiency n due to heating or friction losses. The output energy is always smaller
than or equal to the input energy (2.1):

Eout = Ein * UESS,charge * NEgss,store * UESS,discharge (2-1)

where: Eour: Output energy [Wh]; Ein: Input energy [Wh]; nx: Efficiency of device x [%].

These efficiencies in combination with other properties, like calendric lifetime, cyclic
lifetime, capacity, or reaction time, are important characteristics to consider for the
choice of an ESS for a certain application. The main function of ESS in the microgrids is
balancing of energy demand and supply [62]. In islanded mode, in particular, the
generated power from DG units needs to be matched to load demands immediately to
ensure stable operation. The ESS capacity must therefore be sufficient to mitigate the
volatile renewable generation unbalances on request. Furthermore, the transition
between islanded and grid-connected mode should be run seamlessly by the ESS. [63]

An overview of the classification of different ESSs is given in Figure 2.8, and a comparison
of different storage systems is shown in Table 2.5.

29



Energy storage
systems

Figure 2.8: Overview of energy storage systems [33]

Table 2.5: Comparison of energy storage technologies [64]
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As seen in the table, lithium-ion based BESSs have the highest efficiency while showing
very low self-discharge rates. Additionally, their costs are lower than for most other
technologies. Due to these advantages, BESSs are the best generally feasible technology
for nZEBs as a medium-term storage system and will be discussed in more detail in the
next chapter. FESSs, on the other hand, have lower efficiency and higher self-discharge
rate. But they achieve very high numbers of charging and discharging cycles. The costs
for a FESS are much lower compared to supercapacitors with similar strengths. Based on
that, FESSs are the most feasible technology for short-term energy adjustments in nZEBs.
Therefore, they are investigated in more detail in the following sections as well.
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2.2.2.1 Battery energy storage system

BESSs are electrochemical storage systems where the energy is stored as chemical
energy. Common battery types are lead acid, nickel, or lithium based. The most widely
used battery in smartphones, electric cars, and buildings is the lithium-ion battery [65],
[66].

The self-discharge rate during the storing state depends on several parameters, like
the electrolyte material, temperature, or the state of charge (SOC). The behaviour of
aging for BESSs can be defined by aging over time and aging per cycle. The aging over
time, or so-called “calendric lifetime”, is influenced by temperature and SOC. The cyclic
lifetime is influenced by the charging and discharging rate, temperature, SOC and
discharge depth [61]. A lower number of charging cycles will reduce these aging effects
and increase the durability of the BESS. In this regard, battery diagnostics are necessary
to observe and maintain reliability, prevent catastrophic failures, and predict the end of
battery lifetime. So far there is no quick method to test everything with certainty as a
battery can be compared to a living organism. To estimate the state of health (SOH) of a
battery, test methods presented in [67] could be used.

For example, the state of life indicator (SOLI) estimates the battery life by counting
the total coulombs a battery can deliver in its life. A new battery starts at 100%; delivered
coulombs decrease the number until the allotment is spent and a battery replacement is
imminent. The full scale is set by calculating the coulomb count of 1 cycle based on the
manufacturer’s specifications (V, Ah) and then by multiplying the number with the given
cycle count.

According to [68], battery lifetime can be prolonged by:

1. Reducing stress with moderate two- to three-hour-charge rather than an
ultra-fast charge within less than one hour
Prevent harsh and erratic discharges
Rather charge a battery more often than draining a battery fully
Prevent unfavourable temperature conditions: extreme cold and high heat
Checking small- to mid-sized batteries with a full charge/discharge cycle on a
battery analyser
6. Maximizing battery life by slight overdimensioning to cover unknowns and

emergencies

ukhwnN

2.2.2.2 Flywheel energy storage system
A FESS converts electrical energy into rotational energy and vice versa. For the conversion,
an electrical drive is used that is connected to a rotational mass. The energy is stored in
the rotating mass. Charging is the acceleration of the rotational mass, rotation at a
certain velocity means storing the energy, and decelerating the rotational mass is the
discharging process.
A basic schematic of a FESS is depicted in Figure 2.9:
e The electrical drive is connected to an inverter. It can either be a three-phase
asynchronous or synchronous induction motor, or a DC motor.
e Additionally, FESSs can have a fan to cool the electric drive.
e Theinverter increases, holds, or decreases the rotational speed of the drive.
e The shaft connects the rotational mass and the drive. It must withstand high
torques from the drive and rotational mass inertia.
e The mass is fixed with bearings to the chamber to reduce vibrations.
e The chamber itself is completely closed for modern FESS for safety reasons.
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Figure 2.9: Schematic of a FESS [64], [69]

FESSs are scalable for applications from small consumer systems [69] to large grid
applications [70]. They are most useful for applications with high power demand for short
durations occurring in a cyclic nature. Therefore, FESS can be used for power quality
applications [71] as an uninterruptable power supply [71], or for power smoothing [72].
Capacity and maximum power delivery can be scaled by arranging multiple FESS in banks
[71], [73]. The advantages of FESSs compared to other storage systems are [74], [75], [76]:

e High power density

e High energy density (high-speed flywheels)
e No capacity degradation over time

e Long lifetime: more than 10° charge cycles
e  Short recharge time

e Simple SOC estimation

e Low maintenance cost

e Manufactured without rare materials

e Scalable technology

Disadvantages are [74], [75], [76]:
e Low energy capacity
e Low energy density (low-speed flywheels)
e High self-discharge
e High investment cost

The potential of FESS is limited to short-term energy storage applications due to its
high self-discharge rate of 3% to 20% per hour [61]. The reason for the self-discharge of
FESSs is mainly friction: mechanical friction at the bearings and air friction on the
rotational mass. Measures that can be taken are:

1. Using magnetic bearings instead of ball bearings reduces the mechanical
friction.
2. Applying a vacuum in the chamber reduces the air friction.
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Both of these measures improve the self-discharge of FESS significantly. Based on the
basic equations describing a FESS, (2.2) and (2.3), the stored rotational energy,
respectively the energy density, can be increased by:

e Increasing the rotational speed
e Design changes at the rotational mass to increase the inertia

Eror = E * ] * w? 2.2)

J= Z m; * 18 (2.3)

where: Er:: Rotational energy [J]; J: Inertia [kg m?]; w: Rotational speed [rad/s];
m: Mass [kg]; r: Radius [m].

FESS rotational masses can be manufactured from different materials, like steel, titan,
or fiber-reinforced plastics. The latter is a relatively new technology for FESS, which
increases the potential energy storage compared to steel. Another benefit of reinforced
plastics is their behaviour if the rotational mass breaks due to a malfunction: masses out
of steel build a dangerous bullet, while the reinforced plastics shatter into lighter, less
dangerous pieces [61].

ABB, Amber Kinetics or Beacon POWER produce FESSs. Several grid scale FESSs
operate in Asia and the USA. Recently, Siemens Energy announced to install the world’s
largest FESS for grid stabilization in Ireland [77].

2.2.3 Home appliances and buildings as TES

As mentioned before, one possibility to balance the volatile renewable energy
production is to adjust the load side. This process is called DSM or demand response;
the total amount or potential for changing the load at a given time is investigated in
flexibility analyses.

Grid utilities usually provide lucrative offers for customers to engage in such flexibility
or demand response programmes. Within this framework, different devices and loads in
a typical dwelling can be scheduled [78]. However, this scheduling needs to be done
carefully not to reduce the user comfort [79]. Scheduling a washing machine or a
dishwasher needs actively participating users to prepare the device and have a flexible
policy for finishing the job, e.g., folding laundry whenever the device is ready.

Another group of schedulable devices available in most households that influences
the users’ habits much less are freezers, water heaters or space heating systems. These
devices cannot just be scheduled but are used as TESs as well. This provides additional
energy storage without additional investments into systems like supercapacitors [80] or
batteries [81]. The mentioned TESs are even more relevant, considering that such
appliances can compose 50% of the electrical energy consumption in buildings [82],
as shown in Figure 2.10. A relatively long lifetime of 10-20 years [83] of such devices is
convenient for users as well.
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Figure 2.10: Share of household loads; purple: TESs; grey: other [82]

2.2.3.1 Freezers and water heaters

In many publications, freezers and water heaters are studied regarding to scheduling
algorithms like in [84], or the performance and feasibility of implementing control as in
[85]. Other publications consider a model predictive scheduling method for freezers or
water heaters based on the day-ahead or real-time market prices, which leads to cost
reductions [86], [87]. Even though the TESs do not influence the user comfort level as
much as some other devices, it should still be considered in the control algorithm design.
Different boundaries due to user comfort considerations can influence the performance
of such algorithms, as shown in [79].

The studies in [10] and [88] addressing the performance and feasibility aspects of DSM
algorithms for freezers and water heaters consider the user comfort as well. In their
analysis of a grid-connected system, the focus is on price-based control methods. This
increases the cost savings of the system, which is important as many microgrids operate
most of the time with a grid connection. Few papers consider the possibility to increase
the power quality in the off-grid mode with TESs or other scheduled loads [89]. Grid
backup or diesel generators are often used in such investigations [90], which is not
desirable due to CO2 emissions, as mentioned earlier. In [91], a simple scheduling
algorithm is presented for a water heater and battery storage reductions of about
15-25% for a PV-powered off-grid building including BESS. A power quality control
strategy for water heaters investigated in [92] implemented peak load shaving for a
grid-connected system.

In summary, freezers and water heaters can be scheduled in a DSM-manner to achieve
electricity cost reductions of about 5-30% [86], [10]. Additionally, some publications
show power quality and reliability improvements with such devices. In an islanded
microgrid scheduling, these loads with a sophisticated algorithm can be used to reduce
the battery capacity, ensuring stable operation while providing potential cost reductions
for an expensive BESS [93].

34



2.2.3.2 Space heating of buildings
To develop thermal freezer and water heater models for DSM simulations, knowledge in
electrical engineering and thermal engineering is necessary. Modelling a building
thermally for electrical microgrid simulations is an even more interdisciplinary approach,
where expert knowledge in civil engineering is mandatory to create a detailed model as
well. As a result, there are typically three different kinds of models:
1. Complex control strategies with simplified thermal models from the electrical
engineering domain
2. Complex thermal models with simple control strategies from the civil
engineering domain
3. Co-simulations between different modelling software as a cooperation of
both domains

Complex Control Strategies: Several authors present simplified thermal models for
heating demand estimation, like [94], where a minimalistic model of space heating is
used. Space heating is modelled as a certain percentage of the overall energy
consumption, and on that basis, a price-based control strategy is proposed. In [95],
a multi-agent system is used for DSM control strategies. The model for space heating is
a simple aggregated model in that case. A DSM approach for assessing the flexibility of
heat pumps is shown in [96], using simple thermal models for the houses and heat
pumps.

Complex Thermal Models: Publications that show accurate thermal models typically
do not consider DSM-related electrical control strategies, or only in a limited way.
As an example, in [97], a linear time-series model based on historical measurement data
is presented. The model shows good results while being computationally light. However,
there are no considerations about DSM control methods. Similarly, a detailed thermal
model of a building is shown in [98], but DSM strategies are not considered for the
control. Other publications, such as [99], [100], present very accurate models of heat
pumps or buildings, but the proposed control strategies are quite simple. In this case,
the full flexibility potential cannot be achieved and the simple pre-charging for peak
shaving does not show the anticipated results.

Based on discussions with civil engineers, the development and modelling of space
heating objects will take more than 100 hours, depending on the level of detail and
modelling software. In this regard, Matlab and other electrical engineering software is
not recommended for fast development of detailed thermal building models and will
increase the effort and time for development.

Co-Simulations: If complex DSM control strategies are to be connected with complex
thermal models, co-simulations can be a powerful tool. Since civil engineering software
often does not provide a good framework for complex DSM control strategies and
electrical engineering software has limited tools for thermal models, implementations of
both aspects in one software can be very time-consuming in both cases. Co-simulations
bring both simulators together [101] and use the complexity and detail of each
simulation. To implement a co-simulation, the functional mock-up interface (FMI) or
functional mock-up units (FMU) can be used. These are supported by multiple simulators,
including Matlab or Python [102]. Another possibility is presented in [103], where the
control is modelled in Modelica, while the building is simulated in EnergyPlus. The SimAPI
software platform can be used to connect the building model and control, as shown in
[104]. A comprehensive overview of co-simulation with fundamental disadvantages,
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like slow speed and limited compatibility, is shown in [105]. The following drawbacks
apply, for example, to the above-mentioned publications about co-simulations:

e Additional overhead for coordinating and synchronizing

e Initialization of some simulators for each macro time step

e Limited communication and data exchange between simulators

e Complicated implementation in real-time simulations

Thus, existing articles in literature typically cover complex control strategies for DSM

with space heating but are lacking complex thermal models by relying on simplified
temperature difference based or aggregated models. Vice versa, publications with
complex space heating models provide detailed models in the thermal domain, but the
control strategies are limited by using fixed set point (FSP) control or other simple
methods, given that a DSM related control is considered at all. Co-simulations as an
alternative have other limitations, including connection, communication, and
compatibility issues with an additional communications overhead that can slow down
those simulations. This indicates a need for a new methodology with complex thermal
models in combination with DSM related control strategies.

2.2.3.3 User comfort

As mentioned, TESs have a lower influence on the user comfort than some other scheduled
household appliances. However, especially for space heating, special attention is to be
given to the temperature related user comfort definition and implementation.
Comfortable temperature settings are different for every person. In some publications,
the researchers use certain preferred or fixed temperature ranges and limits that are
typically based on standards, as shown in [106] or [107]. But these limits do not take into
account the temperature fluctuations within the limits, which can already disrupt the
comfort for some people. Additionally, there are no specific definitions for the user
comfort in the temporary islanded operation of a microgrid. Thus, both of these aspects
should be considered in this work.

2.3 Machine learning applications in microgrids

In recent years, artificial intelligence has gained increased attention in all fields of
research. In particular, machine learning methods have many use-cases in the field of
electrical engineering. One reason for this is the increasing number of smart meters and
the related availability of recorded data. There are several applications for machine
learning, as shown in [17]. The most relevant applications for machine learning regarding
microgrids are:
e  Forecast of residential loads [108] in connection with flexibility considerations
[109] or load modelling [110]
e  Forecast of renewable energy sources, like PV- [111] or wind power [13]
e  Blackbox modelling of complex objects like [97]
e  Control purposes, like general energy management [112], power flow control
[113], or bidding strategies [114]
e Disaggregation of SM data to improve recommendations and control of home
energy management systems or ambient assisted living [115]

These applications are discussed in more detail in the following sections.
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2.3.1 Forecasting and prediction with machine learning

For forecasting loads and renewable energy production, different methods have been
researched and developed based on time series analysis methods and more recently on
machine learning algorithms. Compared to complex machine learning algorithms, ARIMA
or linear regression models [116], [117], [118] are quicker to implement and calculate,
thus providing advantages with simple problems.

More complex problems may be solved with a machine learning based regression
model, as shown in [109] more efficiently. Additionally, such a method can be used online
and in real time. Long short-term memory networks are very well suited for specific
forecasts [119], [120], [118] where short- and long-term components are relevant.

A very popular machine learning technique intended not just for predictions of load
and renewable production patterns, but also in terms of general approach, is neural
networks [121], [118]. This technique can be used for long- and short-term load
predictions as well. Figure 2.11 shows an example of the forecast of the hourly energy
consumption for Estonia, using linear and NN-based predictions.

NN-based Load Forecast for the Estonian Grid
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Figure 2.11: Load forecast for the Estonian grid [118]

In this regard, black-box object modelling is a more specific approach of forecasting.
In general forecasting tasks, environmental influences, like temperature or weather, are
used to estimate a general output, e.g., irradiation or energy consumption, with ML.
Additionally, the model is intended for calculations of each time step of a simulation,
for example, instead of forecasting the whole load profile at once.

Object modelling does not use just environmental parameters, but also, for example,
object internal values or correlations as input data for the ML. This can increase the
complexity of the input data set. The output of the ML algorithm is a very specific object
variable, like voltage, current or a temperature change, that can be used for calculations
in the next time step of a simulation, e.g., as part of an input for the same ML model.
The training and use of such an ML-based object model is depicted in Figure 2.12.
The model can only be used within the trained limits and has a lower accuracy than the
original model or system used for creating the ML input data.
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Specifically, to exemplify modelling a space heating system, an approach similar to the
one presented in [97] could be used. The authors use a time series algorithm to create a
black-box model with measurement data. Instead of using measurement data, it is also
possible to create data sets from simulations with accurate models, like [98]. In this case,
even more measurement variables are available that can be used for the model training.
This results in more complex data sets that can be learnt more accurately by the ML
instead of time series methods. The trained algorithm then acts as a black-box model in
microgrid simulations with electrical engineering software. Additionally, machine
learning based black-box models of microgrid devices, like space heating, can be integrated
more easily into real time simulations of microgrids [18] than co-simulations due to the
limitation to one simulation environment, as analysed in more detail in Chapter 3.
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Figure 2.12: Training and use of ML-based object model

2.3.2 Control and coordination with machine learning
Coordination in a microgrid does not only include the specific control task for one object,
but multiple control objectives for multiple devices [122]. NNs on the one hand, as well
as other supervised and unsupervised machine learning methods, cannot be used directly
for control purposes. They can only be included for specific tasks in other control and
coordination methods. Reinforcement learning, on the other hand, is a specific machine
learning technique for control that can be directly used [123]. A basic reinforcement
learning based control system works as shown in Figure 2.13. The reinforcement learning
process works as follows:
e The reinforcement learning agent interacts with the environment by taking
actions.
e The agent follows a certain policy to take actions.
e The agent observes the environment and gains rewards that are used for
learning.

ENVIRONMENT

Figure 2.13: Typical reinforcement learning based control
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Extending the control capabilities of reinforcement learning to implement machine
learning (ML)-based coordination tasks in microgrids results in three main methods, as
depicted in Figure 2.14.

Reinforcement Learning
Model Predictive Control

Figure 2.14: Machine learning based coordination methods

Machine Learning for
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Multi-agent reinforcement learning strategies are presented in [124], [125] and [126].
For such coordination approaches, a multi-agent structure is used with reinforcement
agents for devices and management.

Deep reinforcement learning is presented in [127], [128] and [129]. This kind of control
is using deep artificial neural networks with multiple layers instead of more simple ones
inside the reinforcement learning agent to achieve more complex coordination tasks.

Another coordination method is model predictive control including ML-based
prediction. Model predictive control itself is not related to machine learning but it is a
common control strategy [130]. However, there is a special kind of model predictive
control that uses machine learning predictions to determine control decisions. For
example, in [131], a recurrent neural network is used for day-ahead predictions that
influence the control decisions directly.

Regarding all these ML-based coordination methods, it can be summarized that
they are an emerging topic as there are certain limitations to be studied in detail to
have a robust and efficient coordination architecture. Advantages of these methods
are a decreased need for information about underlying structures, which can be an
important reason for deciding the coordination method, considering privacy concerns
of users. Thus, this work will focus mainly on the implementation of more robust
control strategies and consider ML-based control strategies as a promising option for
future developments.

2.3.3 Disaggregation with machine learning

To gain additional information for different applications in microgrids, disaggregation of
load profiles can be used. This process is called non-intrusive load monitoring (NILM).
Applications of NILM include home energy management systems, ambient assisted
living, recommender systems and fault diagnostics [132]. The goals of these applications
are different, like power on/off detection, power estimations [133] or predictions for
more efficient home energy management [134]. The basic process of NILM is shown in
Table 2.6.

The NILM process is quite independent of the used ML methods, like neural networks
(NN) or support vector machines. The amount, resolution and details of the collected
data, the amount of auxiliary data measurements, and the disaggregation purpose differ
between presented methods in the literature. Some publications use different public
data sets [135] for their NILM training and tests whereas other publications rely on their
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own measurement data, which can complicate performance comparisons. Considering
the size of the public data sets, the amount of processed data is large for most of the
NILM methods, which can raise privacy concerns of users about the collected data and
their use.

Sometimes additional data measurements are used in publications to improve the
NILM results. These additional measurements can be voluntary user feedback [136],
classifying the user activities [137], or the use of cameras, motion sensors and
smartphone apps for tracking [138]. Other additional proposed features for a better user
experience are smartphone applications [139], cloud-based monitoring features [115],
or novelty detection for new appliances [140]. However, none of those papers consider
privacy or cyber-security in any way.

Table 2.6: NILM process stages [132], [53]

Stage Description

Metering Data is collected from smart meters and sometimes
additional measurement equipment, typically with a low
frequency (including current, voltage and power data).

Event detection Events are detected within the data sets (e.g., an appliance
changed its state ).

Feature extraction Every appliance has a certain load signature and features, by
which it can be distinguished from others.

Classification Loads are identified by a classification procedure to
determine the times or periods a device was operating.

Analysis of For each specific application, the classification can be

classification analysed to draw conclusions.

2.4 Power hardware in the loop and real time simulations

There are different methodologies to test models and hardware components, like model
validation tests etc. The following three types should be distinguished [19]:

1. Software in the loop tests: These are solely run on a virtual device under test
(DUT).

2. Classical hardware in the loop tests: A hardware DUT is used and the
communication between the simulation environment and the DUT is
performed in real time. No high power is running through the DUT, and
signals are not measured under real time conditions.

3. Power hardware in the loop (PHIL) tests: A real time test bench is used, where
the DUT is analysed under real conditions. During the test, high power is
running through the DUT and real physical signals are measured.

In this context, the terms “real time simulation” and “real time simulator” are commonly
used. A real time simulator, by definition, is capable of executing a computer simulation
or model at the same rate as an actual physical system. For example, if a kettle needs 1
minute to heat the water reservoir, it needs 1 minute in the simulation. This gives the
advantage that physical devices can interact with simulated models and vice versa.
However, complex systems, including devices with high sample rates, can quickly reach
the computational limits regarding the real time requirement. [141], [18]
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An example of a PHIL setup is depicted in Figure 2.15. In this example, the load profile
and BESS are simulated by the real-time capable PLC. Thus, they are not part of the DUT.
The FESS control algorithm runs on the PLC as well and interacts with the simulated
models in real-time. The PLC is controlling the inverter, which is connected to the
induction motor of the flywheel energy storage and to the grid.

BESS
Model

Load

Profile N I II

FESS Control
Algorithm

\.Q.’ Control Signal

g Power Flow

Figure 2.15: PHIL example schematic [64]

There are four main benefits of implementing PHIL technologies [142]:
e  Faster and cheaper development due to digital twins
e High fidelity simulation results
e  Easy to add or modify simulated devices
e Ability to simulate scenarios that are hard-to-achieve in the real world

The main drawbacks are:
e Theinaccuracy of the simulation due to time delays of calculations and signal
transmission
e The potential instability of the simulation

The advantages of PHIL setups outweigh their disadvantages, making PHIL systems
increasingly popular and better available [143]. Due to differences of DUTs and test
scenarios, the PHIL hardware setup is to be chosen carefully to develop a stable setup.
The DUT can be any device, like a resistive load, a PV-inverter, an energy storage system
(ESS), or even a complete microgrid system [143], [144]. Examples of PHIL setups are:

1. FREAPHIL Setup inJapan [145]: The PHIL components are a diesel generator,
PV-system, BESS, load, and measurement devices. The microgrid controller
is simulated.

2. AIT PHIL-Setup in Austria [146]: The PHIL components are a programmable
load, power amplifier and BESS. A digital twin of the BESS is simulated.
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3. Test bench for PHIL simulation of a PowerCorner device [147]: The PHIL
components are a power amplifier, A/D and D/A converters, sensors and
inverters. PV-system and an energy storage device are simulated.

As microgrid systems can quickly become very complex with multiple different
components that have different control needs, the setup of a completely physical
testbench for a microgrid may prove a time-consuming and expensive project. A lot of
development time and costs for the communication between different controllers of
microgrid components can be reduced with a PHIL-setup and expanding such a system
with more components is easier as well. Thus, a PHIL-setup for the validation of some
models and control strategies of this work will be developed.

2.5 Conclusions

From this comprehensive review of the state of the art, regarding multiple structures,
devices and methodologies, the following conclusions can be drawn:

e As DC microgrid systems are not yet standardized, e.g., regarding voltage
levels, there could be future-related uncertainties using a DC or hybrid
microgrid modelling. Thus, an AC microgrid topology is of higher interest for
this investigation.

e  Grid-connected operation with participation in energy markets should be
considered in the investigation, as the AC microgrid will be operating most of
the time with a main grid connection. However, due to the high future
penetration of renewables, islanded operation should be the focus for the
control strategies in this work to improve security of supply.

e Since the current standard for new buildings and renovations is nZEBs, a
typical configuration of such a building should be modelled for the microgrid.

e Thisincludes PV-system for power supply, as it is the most common and most
feasible renewable energy source for such applications and storage systems
to implement a suitable EMS.

e For the storage system, a BESS is the optimal choice considering capacity,
power rating and feasibility.

e The drawback of BESSs is their lifetime, so a FESS should be added for peak
shaving and load levelling to reduce stress on the BESS and increase the cyclic
lifetime.

e Common household TESs should support the other ESS.

e TESs’ impact on the user comfort is to be investigated for the control
strategies in different operation modes.

e  PHIL real time simulations are used for faster development and validations.

e  Machine learning methods can be used for model development.

e Additionally, due to the ML approach, it is relevant to investigate privacy
concerns of potential users towards the proposed systems.

On this background, the microgrid topology shown in Figure 2.16 is proposed for the
investigation. The PV-system, load, BESS, FESS and TESs need to be modelled first, as
presented in the next chapter, in order to validate them and develop control strategies
for achieving the aim of security of supply and financial feasibility improvements as a
basis for recommendations.
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PROPOSED MICROGRID TOPOLOGY FOR INVESTIGATION
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Figure 2.16: Topology of the proposed microgrid system for investigation
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3 Research and development of object models for microgrid
components

To simulate a microgrid, it is necessary to have object models of all the relevant
components and apply control strategies to those models. In this chapter, the relevant
object models and used profiles are presented. These include the patterns for PV-systems,
thermal and electrical load patterns, FESS, BESS, and common household TESs. The applied
control strategies are addressed in Chapter 5.

The FESS and BESS models have several simplifications to ensure a fast calculation
speed at reasonable accuracy, as shown in Chapter 4. The TESs, freezer, water heater
and space heating are modelled based on linearized equations. A space heating model
has a much higher complexity than a freezer or water heater model. This leads to more
than 100 hours of manual model development and simplifications if a detailed model is
developed in electrical engineering software. Therefore, methodology for a space heating
model based on neural networks was created. The error and accuracy analysis to
determine the model quality is shown for these models in Chapter 4 as well.

Several profiles were integrated into microgrid simulations to be able to test the
implemented scenarios. These profiles can act as object models or as inputs for object
models. The following profiles were included:

e  PV-system measurements

e Electrical load patterns

e  Various consumption resp. thermal load patterns
e Occupancy patterns

These profiles are partly measured data and partly artificially generated data.
The following subsections describe the different profiles in detail.

3.1 PV-system profile

Two PV-system measurement profiles with different resolutions and for different locations
were used as PV-system models. One profile was measured in Estonia and the other in
Southern Germany.

The Laastu Talu OU PV-system is a larger installation with 668 PV-panels and an output
peak power of 177 kWp. It is located in northern Estonia, south of Tallinn. The available
dataset was measured from 17" to 24" September 2019 with a resolution of 1 min [33],
[148]. An example day of this profile is shown in Figure 3.1.

Laastu Talu OU PV-system profile (234 September2019 example day)
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Figure 3.1: Example day from the measured PV-system profile in Estonia
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The second PV-profile used was measured in southern Germany by Allgdunetz GmbH
& Co. KG. It contains data from 17% to 22" July 2019 with a resolution of 1 s [64]. As an
example, data from 19% July is shown in Figure 3.2.

Allgdunetz PV-system profile (19t July 2019 example day)
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Figure 3.2: Example day from the measured PV-system profile in southern Germany

For different applications and tests, the PV-profiles need to be scaled in size
accordingly. This scaling factor [149], [33] can be calculated as shown in (3.1):

Pyearty (3.1)
Gen
Scaling Factor = —r
PPeak
where: Py,q,,: Yearly power consumption [kWh/a]; Genr,,: Typical regional solar

generation [KWh/kWp]; Pp.q: Unscaled peak power of PV-installation [kWp].

For example, Genr,, can be obtained from PVGIS [150]. The typical regional solar
generation values for the locations of the PV-systems are:
e Estonia: 864 kWh/kWp
e Southern Germany: 1000 kWh/kWp

3.2 Thermal and electrical load profiles

There are multiple thermal and electrical load profiles that have been used for different
investigations in this work. This was necessary because the modelled laboratory
equipment used for verification is dimensioned for different system sizes. Therefore,
accordingly sized load profiles should be used for validation tests and simulations. Within
reasonable limits, it is possible to transfer the results to larger or smaller sized systems
[149].

An overview of the used load profiles with relevant parameters and related
applications within this work is presented in Table 3.1.
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Table 3.1: Overview of load profiles with relevant parameters [148], [151], [152], [153], [154]

Description Type @ Sizing At Time Values Application
NRG-Building M Larger 1 20 h El FESS model
building sec and control
validation
Measured 3-room M Household / 5 1 El, W,  TES control,
apartment Apartment min | week F Water heater
validation
Generated single G Detached 1 1 El FESS + BESS
family house single family min | year control
house
8 generated G Household / 5 1 El, W,  TES control
households with Apartment min  week F
different

occupancies
M: Measured; G: Generated; El: Electricity Consumption; W: Water Consumption; F: Food Consumption.

The NRG-Building profile was measured on the Tallinn University of Technology
campus. The measurement was done for the NRG-Building starting from April 37, 2019,
10:00, until April 4%, 2019, 6:00. The measurement resolution was 1 s during that
timeframe. This load profile shows the power fluctuations of a university building
(c.f. Figure 3.3). Thus, it is suitable for the flywheel model and control validation where
such power fluctuations should be balanced.
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Figure 3.3: Example segment of the measured NRG-Building load profile

The measured apartment profile [151] represents a typical dwelling, as mentioned in
section 3.4. It is a 67.4 m?, 3-room apartment in the Kristiine district in Tallinn, Estonia.
The measurements for different appliances, hot water and food consumption, space
heating, and total electrical energy consumption were conducted from 22" February
2010 until 28" February 2010. It was occupied by 2 adults and 2 children during the
measurements. The time resolution for all measurements was 5 minutes. This profile was
used in the work for the research of TES control algorithms and in the verification on the
water heater model. The total electricity load, and food and hot water consumption
profiles as thermal loads are shown in Figure 3.4.
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Figure 3.4: Measured total energy, food and hot water consumption

The generated single family house profile [148] and the eight generated household
profiles [152], [153] with different occupancies were created using LoadProfileGenerator
[155]. This is a software developed for a doctoral thesis at Chemnitz University of
Technology in 2016 and is still being maintained and improved by the creator. The quality
of the generated profiles has been assessed and validated, showing adequate similarity
to measured profiles [156]. The load profile generation is based on an occupant
behaviour model. This means that not just the electrical load profile, but also hot water
usage, space heating, and cooking (food consumption) patterns are created and can be
used. For the correct behaviour of the occupants regarding the weather, an outside
temperature profile for Helsinki of the year 2017 from the Finnish Meteorological
Institute was applied during the profile creation [157]. Helsinki has similar weather
conditions as Tallinn, thus the profile for Helsinki can be used for this purpose.

The generated single family house profile [148] represents a family with 2 children.
One adult is working, one is staying at home and the children go to school. The profiles
were generated for a whole year with 1 minute time steps. The electricity load profile for
one example day is shown in Figure 3.5.

The eight generated households (i-viii) represent the dwelling occupancies as depicted in
Table 3.2. These occupancy profiles have been selected to represent typical occupancy
scenarios for dwellings. This selection was based on the statistics of the Federal Statistics
Office of Germany [158]. The selection criteria and shares according to [158] are shown in
Table 3.3. These profiles were used to investigate the influence of different household
occupancies on the performance of different control algorithms for TESs.
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Load Profile: Single family house (15t January example day)
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Figure 3.5: Example day from a single family house load profile

Table 3.2: Description of generated occupancy profiles with average electrical energy consumption
per day [152], [153]

Household i i iii iv v vi vii viii
Working 2 1 - - - 1 - -
Studying - - 1 - - - 3 -
Unemployed - - - 2 - 1 - -
Retired - - - - 1 - - 2
Children - - - 2 - 2 - -
z 2 1 1 4 1 4 3 2

El. Consumption [kWh/d] | 9.82 4.18 2.15 14.63 2.58 13.10 9.22 5.85

Table 3.3: Occupancy profile selection criteria with typical shares [152], [153]

Number of people per dwelling

Number of people Share Represented in household
1 42% ii, iii, v
2 33% i, vii
3 12% vii
4 9% iv, vi
Number of children per dwelling
Number of children Share Represented in household
0 72% i, i, iii, v, vii, viii
lor2 25% iv, vi
Number of people working per dwelling
Number of people Share Represented in household
0 34% iii, iv, v, vii, viii
1 36% ii, vi
2 26% i
Employment status of the person with the main income per dwelling
Employment status Share Represented in household
Retired 36% v, Viii
Employed 48% i, ii, vi
Other 16% iii, iv, vii
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These profiles have different consumption patterns, which is due to different
occupations; some people are at work, at school, at university or retired. This does not
only change the electric energy consumption directly but also the water heating and
space heating load. The electric energy consumption patterns for one week for different
households (i-viii) are shown in Figure 3.6.

1800 — —

wF Mon Tue | Wed Thu Fri Sat | Sun|

1400

1200

24 48 72 96 120 144 168
Time [h]

Figure 3.6: Electric energy consumption in households i-viii for 1 week [152], [153]

3.3 BESS and FESS model

The BESS and FESS models are based on existing objects and products. The FESS was
modelled based on a device available in a laboratory at Tallinn University of Technology.
The BESS is based on different datasheets from available lithium-ion batteries. The details
about the models are shown in the following subsections.

3.3.1 FESS model with basic converter control

The FESS was modelled using Matlab/Simulink with the Simscape Electrical library [154],
[159]. The model is based on the Rosseta Technik GmbH T3-15 FESS [69] with Unidrive
SP2403 motor- and grid-side converters, located in Tallinn University of Technology.
The relevant parameters for modelling are shown in Table 3.4.

Table 3.4: FESS parameters [159]

FESS Parameters Value

Nominal Power 15 kVA

Energy Capacity 300 kWs

Speed Range 500 - 6000 rpm
DC-link Capacitance 500 pF

DC-link Voltage 700V

Inverter Switching Frequency 16 kHz

LC Filter Parameters Value

Filter Inductance 6.2 mH

Filter Capacitance 3 uF
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The modelled flywheel system includes an asynchronous machine, bidirectional AC-DC
converters, a DC-link capacitor, and a LC filter at the front end.
The working principle of the flywheel storage system is shown in Figure 3.7.
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Figure 3.7: Schematic of flywheel storage system model control [154], [159]

The grid-side converter was used to exchange energy between the DC-link and the
grid using current control. Due to the energy exchange with the grid, the voltage of the
DC-link starts to increase or decrease. The resulting objective for the motor-side
converter was to maintain the DC-link voltage within acceptable levels by supplying
energy to or from the induction motor of the flywheel.

3.3.1.1 Current control

The power smoothing control, which is discussed in section 5.1, provides active (Py.y)
and reactive (Qr.r) power control references to the current control block. The current
control used the Clarke and Park transform [160] to convert the reference values from
abc- to dg-domain. With the dg-domain reference values it is possible to calculate the
output currents references of the grid-side converter using the grid voltage. A Pl controller
was used for minimizing the measured current and current reference difference.
Considering the inductance from the LC-filter, the voltage difference signal of the Pl
controller and the measured voltage values, dg-voltage reference signals could be
generated. This can be transformed back to apf-domain and used to implement a space
vector pulse width modulation for switching the grid side converter transistors [161].

The schematic of the current control block is shown in Figure 3.8.
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Figure 3.8: Flywheel current control block [154], [159]
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3.3.1.2 DC-link voltage control

With the measured rotational speed w,, and the DC-link voltage Up, the torque (Tr.)
and flux (¥, ,..r) references for the field-oriented control can be calculated [162].
Therefore, two Pl controllers, one to minimize the DC voltage difference and the other
to minimize the rotational speed error, were used. The flux reference was calculated
using the nominal flux and the nominal and measured rotational speed, as described in
[163].

The DC-link voltage control schematic is shown in Figure 3.9.
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Figure 3.9: Flywheel DC-voltage control block [154], [159]

3.3.1.3 Field-oriented control

Since the rotor flux in the simulated model was not measured directly but estimated
through the stator current, an indirect field-oriented control was implemented. With
knowledge about the induction motor parameters, it is possible to derive the rotor flux
W, , as shown in (3.2) [163]:

d R\ (LR
alp‘r =- (L_r) ¥+ ( L )lds (3.2)

where: R,.: Rotor resistance; L,: Rotor inductance; L,,: mutual inductance; i : flux
forming current.

The control of the induction machine torque and flux can be decoupled by regulating
the torque forming current i, and the flux forming current iy independently. The flux
forming stator current reference iy .. could be evaluated using a Pl controller by
minimizing the error between the reference flux ¥,.r and the estimated flux. The torque
forming current i;, o can be calculated using (3.3) [163]:

i — E LrTref
gsref = 3 anm'IUr (3.3)

where: T,..¢: Torque reference; L,: Rotor inductance; L,,: mutual inductance; W,:
rotor flux; n,: number or motor poles pairs.

The stator voltage Uy e, Uq ey references are evaluated within the current
controller block by minimizing the error between measured and reference stator
currents, using Pl controllers. Space vector pulse width modulation is used to generate
switching for motor side converter transistors.

An overview of the field-oriented control block is shown in Figure 3.10.
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Figure 3.10: Flywheel field-oriented control block [154], [159]

3.3.2 BESS model

The model for the BESS is a simplified basic model based on [151], [164]; an extended
model has been developed in [33], [148]. The model represents a lithium-ion based
battery resp. battery cells, including a controller modelled on the datasheets of existing
products.

The basic model of the battery itself consists of a SOC value and charging and
discharging efficiencies. Based on the charging, respectively discharging current, the
corresponding efficiencies, and the battery’s nominal capacity, the SOC of the BESS can
be calculated for each time step i (3.4):

Nea * At * Iccl (l) (3-4)

CBat,nom

S0Cpq: (i) = SOCpe (i —1) +

where: SOCsar: State of charge of the battery; nc: Charging resp. discharging efficiency
[%]; At: Time step duration [h]; lca: Charging (>0) and discharging (<0) current [A]; Caat,nom:
Nominal battery capacity [Ah].

Additionally, the self-discharge rate, which is relevant for long-term simulations [165],
and a temperature dependence, which is relevant in environments with changing
temperatures [166], have been added in the extended model presented in [33].

Lithium-ion batteries have a self-discharge rate of 5% within the first 24 hours and
then 1-2% per month. This will remain reasonably steady throughout the service life.
However, elevated temperatures and full SOC will cause an increasing self-discharge, as
shown in Table 3.5. The self-discharge is implemented in the model with a linear
approximation, which is shown in more detail in [33].

Table 3.5: Self-discharge per month for different temperatures and SOCs [165]

Temperature 0°C 25°C 60 °C
SOoC=1 6% 20% 35%
SOC=0.5 2% 4% 15%
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A BESS is affected by temperature changes as well, as the battery ages faster at higher
temperatures and loses storage capacity temporarily at low temperatures. The simulations
in this work were not conducted for such long-term timeframes that the aging due to
temperature had to be considered. Thus, just the temporary capacity reduction due to
lower temperatures is implemented in the model. The capacity retention at different
temperatures is shown in Figure 3.11. [166]
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Figure 3.11: Battery capacity retention at different temperatures

The modelled batteries are based on the following available products, and their
brochures and datasheets:
e  Victron Energy LFP Smart Batteries (Nominal Capacity: 50 Ah - 300 Ah) [167]
e KOKAM SLPB120255255 (Nominal Capacity: 75 Ah) [168]
e  KROS-H-2-222 (Nominal Capacity: 300 Ah) [169]

3.4 Freezer, water heater and simplified space heating model

The following simplified object models are based on the models presented in [10]. They
use linear approximations for the temperature differences during the time step. Using
such simplified models will reduce the calculation time compared to simulations with
more detailed models, which is an important measure, especially for medium or large
microgrid simulations. The accuracy resp. errors of these simplified models are
determined and evaluated in the model validation in Chapter 4.

3.4.1 Freezer model

The freezer model is based on [10] and uses the temperature differences due to freezing,
food exchange and ambient temperature for each time step i. All details about the model
are shown in [151]. Since this model was developed for a chest type freezer,
the temperature loss due to door opening was not considered in [10]. According to [170],
this is an important parameter for the modelling of upright type refrigerators and
freezers, which amounts to about 9 Wh for each door opening. Therefore, an additional
temperature change due to door opening when exchanging food with an upright freezer
is included in the freezer calculation (3.5) [151], [10]:

Ti+1) =T — de‘reeze @ - deood @ - ATamp Ok deoor(i) (3.5)

where: dTfeeze: Temperature change due to freezing [°Cl; dTfoq: Temperature change
due to food exchange [°C]; dTams: Temperature change due to ambient losses [°C]; dTdoor:
Temperature change due to door opening [°C].
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The temperature changes can be calculated as shown in (3.6)-(3.9) [151], [10]:

dereeze D =B =At= Pel,f * COPf * Vi (3.6)
. m; (i) ) . (3.7)
ATrpoq () = | =——— | * (T () — T,
4 d( ) <V0bject * Px ( ( ) fC)
dTamb (l) = .B * At * o * (Ti - Tamb) (3-8)
deoor(i) = ﬁ * Edoor—loss * di (3-9)

where: At: Time step duration [h]; Pey: Electrical power of freezer [W]; COPs
Coefficient of performance of freezer; yi: Freezing/Heating status {0;1}; px: Density of
material x [kg/m?3]; Tf corrected: Corrected food temperature [°C]; Voject: Volume of object
[m3]; cpiz Specific heat capacity of ice [J/kgK]; Edoor-ioss: Energy loss for each door opening
[Wh]; d;: freezer door opened {0; 1}.

The coefficients a and B are shown in (3.10)-(3.11) [10]:

a= UObject * AObject (3.10)

1 (3.11)
VObject * Py * Cpx

B =

where: Uopject: U-value of the object [W/m?K]; Aosject: Surface area of the object [m?];
Vobject: Volume of the object [kg].

To use the specific heat coefficient of ice for the whole temperature spectrum of the
food, the corrected food temperature T¢ corrected for food warmer than 0 °C must be obtained
with (3.12) [151]. For food below 0 °C, Tt corrected €quals the actual food temperature
Tf_actual.

(mi * Cpi * T(l)) + (mi * Cpw * (_Tffactual)) (3.12)
m; * Cpi

Tf,corrected =T —
where: T qactuar: Actual food temperature [°C].

3.4.2 Water heater model

The water heater model is similar to the freezer model and is based on [10] as well.
All the details of the model were presented in [151]. It uses the temperature changes
due to heating with the heating element, exchange of water and ambient losses.
The temperature of the water inside the boiler at the end of the time step is calculated
asin (3.13) [151], [10]:

T(l + 1) = T(l) + dTh (l) - chold?water (l) - dTamb (l) (3.13)

where: dTh: Temperature change due to heating [°C]; dTcoid_water: Temperature change
due to water exchange [°C]; dTamb: Temperature change due to ambient losses [°C].
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The temperature changes can be calculated in the following way (3.14)-(3.16) [151],
[10]:

dT, (i) = B * At * Popwn * N * Vi (3.14)
. Vi _ (3.15)
chold?water(l) = % * (T(l) - Twaterjnput)
Object
AT gy (1) = B * At % a % (T(D) = T gy (3.16)

where: nwa: Efficiency of water heater [%].

3.4.3 Simplified space heating model

The model for space heating and space cooling is similar to the freezer and water heater
models; it is shown in detail in [151]. It was developed with equations, modelling
techniques and typical values described by the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) [171]. Since space heating is more
complex to model than a water heater, there are more temperature influences for each
time step i to calculate. These include the ventilation, occupancy, and sunlight irradiation
through windows. The temperature for the next time step can be calculated as shown in
(3.17) [151]:

T +1) =T(®) +dTh(D) — dTyene (1) = ATamp (D) + dTocc (D) (3.17)

+ dTrad (l)

where: dTh: Temperature change due to heating or cooling [°C]; dTvent: Temperature
change due to ventilation [°C]; dTams: Temperature change due to ambient losses [°C];
dTocc: Temperature change due to room occupancy [°C]; dTras: Temperature change due
to sun irradiation through windows [°C].

The temperature changes can be described with equations (3.18)-(3.22) [151]:

dTy (i) = B * At * Py * COPg * y, (3.18)
Vi (3.19)
dTvent(i) = * (T(l) - Tamb)
VObject
AT gy (1) = B * At % a % (T(D) = T gy (3.20)
dTOCC(i) = ki * PPerson * At * ﬁ (3-21)
dTrad(i) = Pel,solar * At * ﬁ (3.22)

where: ki: Number of people in the room; Prerson: Typical heating power of one person
[w].

Two different models were implemented based on this simplified space heating

model. The first model is a simple room, which is modelled according to the civil
engineering based simple room model shown in section 3.5.1. The second model is based
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on a measured apartment located in the Kristiine district in Tallinn, Estonia, as presented
in section 3.2. This apartment was selected due to several reasons:
e Measured electricity consumption data including separate devices was
available for this apartment
e Measured food and hot water consumption data was available for this
apartment
e The dwelling with 67.4 m? represents a typical dwelling for Germany/Estonia

The average dwelling size is 92.3 m? in Germany [158] and 66.7 m? in Estonia [172].
This includes family houses as well as apartments. Since the majority of people live alone,
about 40% [173], the dwelling size per person should be considered as well. This is
44.8 m?in Germany [158] and 30.5 m? in Estonia [174]. Thus, the 67.4 m? apartment can
be considered a typical dwelling. The modelling parameters to calculate the heating gains
and losses for this apartment are shown in Table 3.6.

Table 3.6: Modelling variables for simplified space heating of an apartment

Variable Value

Floor area 67.4m?

Roof area 67.4m?

Wall area 42.4 m?

Window area (each direction) 7.2m2/4.7m?/0m?/0 m?
Cooling power 2000 W

Heating power 2000 W

U-value windows 0.6 W/m3K

Relative volume of furniture 5%

Room height 2.5m

U-value of wall insulation 27.0 W/m2K
U-value of other wall materials 5.6 W/m?3K

Surface azimuth (each direction) 90° /180°/-90°/0°
Thickness of insulation 0.1m

Thickness of other wall materials 0.25m

3.5 Neural network-based space heating model

The neural network-based space heating models were created with an approach
different from the previously described models. Pre-existing civil engineering models of
a building created with IDA-ICE modelling software were used to create comprehensive
datasets. These datasets could be used to train a neural network to behave like the
IDA-ICE object model of the building within the defined limits. All details about the
methodology were presented in [175].

With this methodology (c.f. Figure 3.12), it is possible to use building models from any
civil engineering modelling software if the datasets from the simulation can be saved in
a common file format. Additionally, the neural network model can be trained in any
software which supports machine learning techniques like Matlab or Python. This provides
more flexibility than co-simulations where certain communication standards must be
met by both simulators.
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Figure 3.12: Methodology overview of the neural network-based space heating model

The creation of suitable datasets and training of the neural network model are
described in more detail in the following subsections.

3.5.1 Description of used civil engineering models

The existing building models used for the creation of the datasets are modelled with
IDA-ICE modelling software from Equa. It shows compliance with CEN standards EN
15255-2007, EN 15265-2007 and EN 13791, and with ASHRAE standard 140-2004 [176].
Three civil engineering models are used in this work. All of them have been described
and validated in previous publications. The 3D-models are shown in Figure 3.13:

Figure 3.13: 3D view of used IDA-ICE building models; left: simple room; centre: control centre; right:
single family house
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3.5.1.1 Simple room

The first model is a simple room, which was chosen to represent a single room of a
private house or an apartment building. It was previously published and validated in two
conference papers [177], [178]. It used a 400 W electric radiator for heating, which was
sized according to the Estonian heating design standard [179], including an added 20%
power margin for safety. The thermostat was operating at 21 °C with a +/- 1 °C dead
band. The implemented room was equipped with balanced heat recovery ventilation and
the usage profiles for appliances, lights, and people were modelled as established for
energy calculation of the apartment buildings by the Estonian law [180]. The Estonian
test reference year data was used as weather data for this model [181]. This model was
used for direct performance comparisons between the simplified space heating model,
the civil engineering space heating model and the neural network-based space heating
model.

3.5.1.2 Control centre
The second model is a control centre of the Energy Campus Wildpoldsried, which is
located in the city of Wildpoldsried, Germany. Several measurements with the real object
were done between 215 November and 3™ December 2019 in free-floating state and
with an electric heater operated at 1300 W. [182]
The following data was logged:
e Temperature at several positions within and outside the control centre with
four EL-USB-2 EH / Temp Data Loggers
e Qutside temperature, global irradiation, air pressure, humidity, dew point,
wind speed, and wind direction from a nearby weather station
e  Power consumption of all active devices (including the electric heater) with
portable power meters

With these measurements and the available construction data of the control centre,
the IDA-ICE model could be created. With the free-floating measurements, the envelope
could be calibrated and the heater measurement could be used to check the heat-up
performance. The result of the calibration is shown in Figure 3.14. The average absolute
error of the model compared to the measured data is 1.61 °C. This error is within the
acceptable range, especially as the error during the independent test period is lower at
1.00 °C. Thus, the model is correctly calibrated and can be used for further research.
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Figure 3.14: Air temperature behaviour of the IDA-ICE model compared to the measurements [182]
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3.5.1.3 Single family house

The third model is a small single family house with one floor and a detached roof. It was
used previously in a sample project for redefining the cost-optimality level of nearly zero
energy buildings (nZEBs) for new residential buildings in Estonia [183]-[188]. The model
development, validation and use are published in [189] and [190]. Like the simple room
model, it uses the Estonian test reference year weather data [181]. The model is divided
into 11 thermal zones/rooms (c.f. Figure 3.15) and is heated by underfloor heating at
100 W/m?2. Each zone is controlled by a separate thermostat. All rooms except the attic
were equipped with balanced heat recovery ventilation.

Figure 3.15: Floor plan of the single family house with area sizes; doors: blue; windows: light grey

As this model was intended to be used for flexibility simulations with variable set
points for the thermostats, it was necessary to change the standard usage profiles for
appliances, lights, and people to more realistic stochastic profiles. Like this, the created
datasets will show more complexity regarding, e.g., the temperature set points or
occupancy, which is necessary for a more dynamic behaviour and complexity of the
neural network-based model.

To generate the occupancy profiles, the ProccS web tool [191] was used. It was
developed, tested, and validated for a doctoral thesis at the Technical University of
Denmark [192]. The profiles were generated for a family of two adults with one child.
The adults go to work and the child to kindergarten/school [193]. The profiles were
generated twice and the bathroom profile from the second run was used for the WC and
the profile of the living room for the office. This introduces an error because up to five
people can be in the house simultaneously; however, this can be even more realistic
considering visiting guests. Rooms that are not often used (laundry room, technical
room, corridor, hall) have no occupancy and are typically not heated specifically. Thus,
they are excluded from the dataset creation.

3.5.2 Creation of comprehensive datasets with civil engineering models

To get the training datasets for the machine learning algorithm, it is necessary to do
simulations with each model and log the relevant parameters. To obtain enough training
data, the simulation period was chosen to be one year with 1 min output time step.
This time step is small enough compared to the larger time constant of space heating
systems. The whole year needs to be simulated to include different environmental
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situations, like day/night, summer/winter, weather effects, etc. Otherwise, the neural
network model will be limited to a certain season or weather conditions later.

To exemplify the single family house, the variables shown in Table 3.7 are logged.
The room-based variables are only logged for the 7 relevant rooms with active heating
and occupancy, as mentioned in the previous subsection.

Table 3.7: Variables for the neural network training dataset of a single family house [175]

General variables Room-based variables
* Dry-bulb temperature [°C] * Mean air temperature [°C]
¢ Relative humidity of air [%] * Heating energy [W]*
¢ Direction of wind ¢ Ventilation [W]*
 Speed of meteorological wind [m/s] e Infiltration and openings [W]*
e Direct normal radiation [W/m?] e Occupancy (Number of People)
e Diffuse radiation on horizontal surface = Energy losses [W]*
[W/m?] e Internal wall energy exchange [W]*

* Equipment heat energy [W]*
¢ Windows and solar gains [W]*
¢ Cooling energy [W]*

e Lighting energy [W]*

*sensible heat gains/losses

3.5.3 Development and training of neural network-based models
The following methodology was used for synthesizing the NN-based space heating model
from the IDA-ICE simulation datasets.

The dataset needed to be pre-processed to be in the correct format for the neural
network training. The neural network training parameters had to be chosen to achieve a
model with good accuracy without over- or underfitting. Then the neural network model
could be trained and tested. If the accuracy was not good enough, then the neural
network training parameters had to be changed and the training had to be repeated.
The process is shown in Figure 3.16 and described in more detail in the following
subsections.

NN Parameters

IOPTIMIZE:

SET
fr=PRE-PROCESSP> 'NPU“DOUTPUT»m_TRANSFORm*m
= ——

Error/Accuracy NN Based Model
Check Function

Raw Data Processed Data NN Training

Figure 3.16: Overview of the neural network training process
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3.5.3.1 Dataset pre-processing
First, it was required to add the temperature difference between the current and the
previous time step to the dataset (3.23).

AT@) =T(@{+1)=T() (3.23)

where: T'(i): Mean air temperature of time step i [°C]; T (i + 1): Mean air temperature
of time step i+1 [°C]; AT (i): Temperature difference between time step i and i+1 [°C].

Second, the weather data had to be changed. The source weather data that IDA-ICE
was using was hourly data and therefore needed to be converted to minutely data.
Typically, the values would be interpolated. But since the other variables in the IDA-ICE
training data were based on the hourly weather values, it was more reasonable to
duplicate the hourly values for each minute within the hour.

In a third step, the datasets needed to be normalized as this usually yields better
results in the accuracy of the model because the influence of large fluctuating numbers
dominating smaller numbers can be reduced. The input and target data for the neural
network model were generated using (3.24) and (3.25).

Xclata (i: k) - #(k)

Haaranorn (10 = =55 (3.24)
Toaa D) = 1 3.25
Tdata,norm(i, l) = % ( )

where: Xia¢qnorm (i, k): Normalized input data of time step i and variable k;
Xaata (i, k): Input data of time step i and variable k; Tyg1q norm (i, 1): Normalized target
data of time step i and variable |; Ty,., (i, 1): Target data of time step i and variable I; u:
mean value of variable k resp. |; o: standard deviation of variable k resp. .

3.5.3.2 Neural network training
To select and optimize the training parameters for the neural network model, the following
error and accuracy metrics were considered:

e Root mean square error (RMSE) of the mean air temperature (3.26)

e  RMSE of the heating power per square meter (3.27)

e Mean heating power difference (3.28)

e Percent of time steps with correctly estimated heating power (3.29)

RMSE; = ‘}M((TCE -1? (3.26)

where: yi: Mean value; T, Civil engineering model mean air temperature [°C]; T: Test
model mean air temperature [°C].
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w((Pee — PY)

ARoom

where: u: Mean value; Pg: Civil engineering model heating power [W]; P: Test model
heating power [W]; Agyom: Room area [m?].

1(Peg) — u(P)

b= u(Pcg)

*100% (3.28)

TSA = u(APg) *100% (3.29)
where: TSA: time step accuracy; APz (i) = 1if P (i) — P(i) = 0; otherwise 0.

For a distinct representation of error metrics, one total error metric (Errorrytq;) is
derived [194]. A weighting factor based on the importance of each error and accuracy
metric for the overall use of the model was added. Since the model is included in an
electric simulation, the temperature accuracy is less important. The most important
values are the root mean square error and mean error for the power, resulting in the
biggest weights. Additionally, the following limits and optimum values were chosen for
the mapping to percentage values (c.f. Table 3.8):

Table 3.8: Error metric limits, optima, mapping factors and weighting factors [194]

Error Limit Optimum Mapping factor Weighting factor
0 0 0.1

RMSEy 0.7°C o°c 1— RMSE; * —— 1/10
Lbnilt

RMSEp 300 W ow 1 — RMSE, + —— 4/10
. _ Limit

P 10 % 0% 1—|P]| 3/10

TSA 90 % 100 % TSA 2/10

The limit value should be mapped to 90% and the optimum to 100%. The resulting
total error metric can be calculated as follows (3.30) [194]:

E ! (1 RMSE 01) +(4 1 — RMSE, + —> )
=|[—=* - , —— — % - * ————
TT0Trotal = |{ 79 T*0.7°C 10" ¢ P * 3000

3 _ 2
+ (E* (1- |P|)> + <E* TSA)] +100%

(3.30)

The most important training parameters for the selected algorithm are the number of
neuron and layers, and the maximum number of epochs. The selected sizes for the hidden
layers of the neural network models need to be chosen according to the complexity of the
training data. As a rule of thumb, a good starting point for finding the optimum number of
neurons can be chosen as 2/3 the size of the input layer. For the second hidden layer,
half the size of the first hidden layer is commonly chosen. The optimum number of
neurons can then be found by decreasing or increasing their number slowly and checking
the corresponding accuracy of the model. In this stage, it is essential to make sure that
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the model is neither underfitting with too few neurons nor overfitting with too many.
From the training set, a ratio of 60% was used for training, 20% for cross-validation and
20% for testing. Fitting, cross-validation, and prediction tests were done internally within
the Matlab training function. To be able to use the GPU computing capabilities, a scaled
conjugate gradient algorithm [195], [196] had to be chosen as the other available
algorithms are not compatible with GPU computing.

Table 3.9 shows the results obtained using the previously described metrics for a
model with 17 input variables and different numbers of neurons for each layer.

Table 3.9: Results for different numbers of neurons per layer [194]

Neurons [12 6] [14 7] [26 13]

Test 1.1 1.2 13 2.1 2.2 2.3 3.1 3.2 3.3

RMSEr[°C] 3*10° |0.71 0.67 2.81 4*10°* 0.66 3.99 0.50 3.42
RMSEp[W] 407 288 288 406 533 267 247 308 278

P [%] 53.73 -1.16 135 48.02 100.00 -4.87 13.00 -9.59 8.01

TSA [%] 96.27 98.13 98.13 96.27 93.59 98.39 98.62 97.85 98.26
Epochs 4243 803 909 2981 4146 1449 4407 1483 4190
Errorrotal -5*10° 94.83 94.83 76.04 -5*10° 94.08 87.27 92.29 89.12

These results demonstrate that the rule of thumb number for neurons with 12 in the
first hidden layer and 6 in the second hidden layer gives the best total error metrics,
as marked in bold in the table. It is evident as well that the best results are achieved with
a lower number of training epochs. The typical behaviour where the validation error
increases as the overfitting starts does not apply to the model, which can be the case for
some datasets [197], [198]. Thus, the training cannot be stopped automatically. To select
a suitable number to limit the epochs, it is necessary to look at the validation
performance of the training. A too high number of epochs can be chosen for training to
see the point where overfitting due to overtraining starts, as shown in Figure 3.17.

Best Validation Performance is 8.2354e-06 at epoch 3493

Train

Validation
Test
. 102 Best
3
IS The model transitions
:’ from a good-fitto an
2 10° overfit state
A1}
o
[
2
o]
g 10"
§ L
c
©
=
10° c
k—/ \)
10—6 L

0 500 1000 1500 2000 2500 3000
3493 Epochs

Figure 3.17: Evaluation of performance: Overfitted model [194]
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The figure shows that the performance of the model reaches a good stable level at
around 500 epochs. This will be referred to as the underfit marker. At around 1500 epochs,
the overfitting transition due to overtraining starts, as marked by the purple circle.
At this point, the model does not learn a general applicable solution anymore but learns
the responses by heart. The maximum number of epochs should be limited between
those two markers. To be sure not to overfit the model, a value of around 1/3 the
difference between the over- and underfit marker is chosen: 850 epochs for this model.

Therefore, the chosen parameters for the model are:

e Neurons: Depending on input variables; according to the rule of thumb
e  Maximum number of epochs: 1/3 the difference between the over- and
underfit marker

The neural network model sizes are shown in Table 3.10 and visualized for the single
family house in Figure 3.18.

Table 3.10: Neural network model sizes for different space heating models

Model Input Hidden Hidden Output Epochs
Variables Layer 1 Layer 2 Variables

Simple room 17 10 5 1 850

Control center 11 6 3 1 800

Single family 17 12 6 1 850

house each room

=)

1 1
Input Layer: Hidden Layer 1: Hidden Layer 2: Ouput Layer:
17 Variables 12 Neurons 6 Neurons 1 Variable

Figure 3.18: Visualization of neural network model used for each room of the single family house

The other training parameters of the training algorithm [195] do not necessarily need
to be optimized as the variations between training with the same parameters have higher
influence on the accuracy than the change of the parameters. An overview is presented
in [194].
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The training is much more stable when applying the optimized parameters, reducing
the need for repeated trainings, as shown in Table 3.11. This can be seen by the
comparison with the total error values for Test 1.1 presented in Table 3.9, where the
training shows extremely bad results. Choosing a too large number of neurons and
epochs does not improve the model, as it will regularly overfit (c.f. Table 3.9, Table 3.11).

Table 3.11: Comparison of optimized parameters to wrongly chosen parameters: mean total error
values for multiple trainings

Evaluation criterion [%] Mean Errorrotal value
Optimized parameters: 92,03
Doubled neuron number; 5000 epochs 89,16

After the optimized training, the neural network model is converted and saved to a
Matlab function instead of a neural network object. This has the advantage of higher
compatibility, for example, if Matlab is used in combination with other software and
higher calculation speed. The disadvantage is that the neural network cannot be
additionally trained later with more input data but needs to be retrained completely.
Applying this methodology to an existing civil engineering model to create a space
heating model for a microgrid simulation can be achieved within 8 hours of active work
for pre-processing and parameter adjustments. Additional computational time for
pre-simulation and NN training in the background depends on the model size and detail
and can take multiple hours. However, this does not account for active modelling time
as it can be done in the background without supervision. This is a huge reduction by
around 90% of active modelling time compared to more than 100 hours, as estimated by
civil engineers.

3.6 Conclusions

To simulate the proposed system based on the conclusions of Chapter 2, models for the
PV-system and loads, FESS and BESS, and TESs are necessary. For each of those models,
either a measured profile or an object model has been presented. In summary, the
following can be concluded for the used PV-system and load profiles used as input data
for the simulations:
e  Forthe PV-system model, measured profiles with resolutions of 1 minute and
1 second for Estonia and southern Germany were used. These PV-profiles
were scaled to the specific application.
o Different load profiles for electrical and thermal loads were measured and
artificially generated according to the foreseen simulated scenarios.
To improve the results of the simulations, different dwelling occupancy
profiles based on demographic statistics were selected to investigate the
general applicability of the developed control algorithms in Chapter 5.

The energy storage systems were modelled with different methodologies. The following
conclusions can be drawn from the modelling methodologies:
e The FESS model is modelled based on the available FESS at Tallinn University
of Technology to enable validations of the model and control strategies with
the physical object in Chapters 4 and 5.
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e The BESS model is simplified to the basic function of a changing SOC.
The behaviour is based on datasheet values. To improve this simple model,
self-discharge and temperature dependent charge retention were
implemented additionally.

e The freezer and water heater TES model are linear approximation models for
the temperature changes inside the devices. Such models have been used in
literature with similar microgrid level simulations with satisfying accuracy.
To improve the freezer model, the additional losses during the door opening
process of an upright-type freezer were added.

e The same approach was taken for the thermal model of a building. However,
the literature analysis in Chapter 2 and the multitude of influences that need
to be represented by a space heating model suggest that this model will not
be accurate enough.

e Toreduce the development and active modelling time and effort for detailed
space heating objects, a novel methodology for the creation of NN-based
space heating models was developed. With the correct pre-processing of
data and training parameter selection, a NN-based space heating model that
can be used as an object model in the microgrid simulations could be created.
The active modelling time can be reduced with this methodology by around
90% from more than 100 hours to around 8 hours.

These models need to be validated next to ensure a good accuracy for the
development of control strategies in Chapter 5, which will be the basis for the social
and financial investigations in Chapter 6 and the microgrid development related
recommendations in Chapter 7.
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4 Validation of mathematical object models for storage
systems

To get more insight into the quality of the presented modelled objects, it is necessary to
validate the models and quantify the errors and accuracy. This is needed for the control
strategy development in Chapter 5. Therefore, different validation methods are used for
the different storage system models, as shown in more detail in the following
subsections.

In the context of microgrid simulations, errors for the different storage systems should
be kept within certain limits to ensure a valid simulation result. For the BESS, FESS and
TESs, the mean error should be below 10%. For more complex models like space heating,
a slightly higher error of up to 12% can be acceptable as well.

4.1 Validation of BESS and FESS models

The BESS and FESS models will introduce certain errors into the simulations. To decide
whether the models are accurate enough and modelled properly, the following
validation tests were conducted:

e Validation against measurement data

e  Repeatability test of measurement data

4.1.1 Validation of FESS model

To be able to validate the flywheel model and later the corresponding control scenarios,
it was necessary to modernize the available setup in the laboratory of Tallinn University
of Technology.

Therefore, the existing PLC was replaced with a new Software-PLC, the Siemens AG ET
200SP Open Controller 2. This PLC enables real time simulations with Matlab in a PHIL
setup. In this first step, the flywheel was connected to the PLC, but it is possible to
connect more devices in future. The PHIL arrangement is depicted in Figure 2.15, a more
detailed overview schematic for the validation is shown in Figure 4.1 and details about
the implementation of the setup are presented in [64].

Grid connection

F=S"" "1~ EPAGmbH:
H I Unidrive SP 2403
I ~NS 1
1 1 Digital
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1 : other Devices
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I Control signals Program code
=== i— | PLC |i Il PC |1
1 ~ i (R 1 [ 1
1 1 Siemens AG: PC with MATLAB
- I_1 ET 200SP - simulink
Ir""""'i Open Controller 2
1 ]
1 1
1 1
1 1
1 : Rosseta Technik GmbH:
{ | FESST3-15

Figure 4.1: Schematic of the modernized flywheel validation setup [64]
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With this setup it was possible to validate the FESS model and the implemented
software power controller. The first test is a repeatability analysis, as shown in the next
subsection, followed by a round trip efficiency validation.

4.1.1.1 Repeatability analysis

To know the accuracy of the flywheel power controller, a ramp shown in Figure 4.2 is
applied. This charging and discharging test was performed for five times to analyse the
deviation from the set ramp.
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Figure 4.2: Flywheel storage repeatability profile [64]

The results for the power differences between set power and measured power are
shown in Table 4.1. The RMSE is below 100 W across the whole spectrum and the other
error metrics are small too. Thus, the power controller is working accurately.

Table 4.1: Results of flywheel storage repeatability [64]

Test 1st 2nd 3rd 4th 5th Overall
Average -1.63W 0.25W 0.58W 0.00W 0.26W -0.09W
Median  -4.68W -0.83W -3.40W -7.14W -5.46W -3.97W

RMSE 94.06W 96.66W 98.25W 95.57W 100.91W

4.1.1.2 Validation of round trip efficiency

The round trip efficiency typically shows how efficiently the storage system works. It is a
good indicator for the model and setup quality as this value has been measured by the
manufacturer and is available in the device documentation. Additionally, the simulation
can be compared with the actual setup.

To get comparable results, the test is to be done as follows: first, the flywheel is at
standstill. It is then charged with the maximum power of 15 kW until it is fully charged.
Immediately after that, the flywheel is completely discharged with the maximum power
of 15 kW. The consumed energy for charging and retrieved energy from discharging can
then be compared to get the overall efficiency. The process is shown in Figure 4.3.

68



100

Power (kW]

Figure 4.3: Flywheel storage round trip efficiency test

In total, 375 kWs are charged in the test run while 269 kWs are discharged. This results
in a round-trip efficiency of 71.8% for the flywheel storage system, which is slightly lower
than the provided value of 77.6% in the datasheet [69], which can indicate that a
maintenance resp. balancing of this old device could be necessary. The modelled
flywheel shows a slightly higher round trip efficiency value of 80.2%. The results are
shown in Table 4.2.

Table 4.2: Efficiency errors of flywheel storage round trip

Round Trip Efficiency / Error Datasheet Simulation Test

Datasheet 77.6% -2.6% +5.8%
Simulation +2.6% 80.2% +8.4%
Test -5.8% -8.4% 71.8%

These error values concerning the FESS model are within the acceptable range of less
than 10%. The developed model for the FESS at Tallinn University of Technology can be
used in the intended microgrid simulations.

4.1.2 Validation of BESS model

The battery models could be validated against measured data. The corresponding
lithium-ion battery measurements were obtained from [199] and the batteries were
modelled as shown in section 3.3 with their datasheet values.

The measurement data contained four lithium-ion battery data sets. The batteries
were tested with different operational profiles for charging, discharging and impedance
with detailed explanations of the methodology. The measured values for charging and
discharging are:

e Voltage_measured: Battery terminal voltage [V]

e  Current_measured: Battery output current [A]

e Temperature_measured: Battery temperature [°C]

e  Current_charge: Current measured at load [A]

e Voltage charge: Voltage measured at load [V]

e Time: Time vector for the cycle [s]

e  (Capacity: Battery capacity [Ah] for discharge until 2.7 V
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Based on the methodology description and available measurements, the battery
storage model was tested with suitable simulations. Comparison of the simulation results
to the measured values shows that the charging current error is 11.6% and the
discharging current error is 6.4%. Since these are errors for charging and discharging at
maximum current, they will be smaller at partial load. Therefore, the BESS model has an
acceptable accuracy, even though the charging current error is higher than the aimed
10% limit.

4.2 Validation of TES models

It is necessary to know the errors that are introduced into the simulation by each of the
TES models. Thus, it is possible to decide if the models are accurate enough for the
intended purpose and whether they are modelled correctly. The following validation
methods are used for the simplified TES models:

e Design of experiment (DoE)

e Simulation with standardized conditions

e Validation against civil engineering models

e Validation against measurement data

e Uncertainly analysis

The validation details of the implemented storage system models are shown in the
following subsections.

4.2.1 Validation of freezer model

The approach to verify the freezer object model is the following. First, the influence of
the most significant parameters is confirmed with the design of the experiment (DoE)
analysis. Second, simulations according to the requirements of the European Union
commission delegated regulation (EU) No 1060/2010 with varied initial conditions are
conducted. This can be used to analyse the error including the uncertainty.

4.2.1.1 Design of experiment for freezer model validation

Significant parameters based on typical implementations of a freezer model are the
ambient temperature and the exchange of content in the freezer compartment [10].
To test if both of these values are significant in the simulation of the object model as
well, a 22 factorial design was considered, as shown in Table 4.3. The high value for the
ambient temperature is 23 °C, the low value 17 °C. The high and low values for the food
exchange are 0.02 kg/5min and 0 kg/5min.

Table 4.3: Design of experiment: 22 factorial design for freezer verification

Experiment Tamb = Xa mi = Xb

El 23°C 0.02 kg/5min
E2 17 °C 0.02 kg/5min
E3 23°C 0 kg/5min

E4 17 °C 0 kg/5min
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The results for experiments E1-E4 are shown in Table 4.4.

Table 4.4: Results for experiments E1-E4

Tamb/mi 0.02kg/5min Okg/5min
23 °C E1=526.50 Wh E3 =470.25 Wh
17 °C E2 = 456.75 Wh E4 = 400.50 Wh

With those values it is possible to apply a simple regression model (4.5) using equations
(4.1) - (4.4):

Do + P4+ 5 +pap = E1 =526.50 (4.1)
Po —Pa+Pp —Pap = E2 =456.75 (4.2)
Po +Pa— P — Pap = E3 = 470.25 (4.3)
Po —Pa — Pp + Pap = E4 = 400.50 (4.4)

Y =Po t+ PaXa + PpXp + PapXaXp (4.5)

= 463.500 + 34.875x, + 28.125x, + 0.000x,x;

Using the sum of squares it is possible to determine the contribution of the two
parameters (c.f. Table 4.5).

Table 4.5: Sum of squares for freezer parameters

Sum of Equation Contribution % Contribution
squares

SST 4% (py% +pg?+pap?) | 8029.1250 100

SSA 4% (pg?) 4865.0625 61

SSB 4 % (pg?) 3164.0625 39

SSAB 4 % (pap?) 0.0000 0

This shows that both parameters have significant influence on the simulation. In this
case, the influence of the ambient temperature is higher than the food exchange rate.
Both parameters are independent of each other due to the modelling.

4.2.1.2 Simulations with standardized conditions
The European Union commission delegated regulation (EU) No 1060/2010 [200]
describes the standardized test parameters that need to be met to determine the official
energy consumption values for a freezer for the EU energy label. Applying the same
conditions to a simulation, which are typically applied in an experiment to the real object,
will create comparable results for error analysis.
The simulation uses the following conditions:

e The set point is fixed to -18 °C

e The time step is 5 min

e  The duration of the simulation is 24 h

e The food exchange is 3 times 0.3 kgin 24 h

e The temperature of the replacement food is 25 °C

e The ambient temperature is 25 °C

e The food exchange pattern is shifted 5 min for each simulation
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With these simulations, a mean energy consumption of 442.9531 Wh/day with a
standard deviation of 2.0144 Wh/day can be obtained. The uncertainty of the repeated
simulations is of type A [201] and can be calculated like this (4.6):

_ standard deviation _ 2.0144 Wh/day
J# of simulations V288

= 0.1187Wh/day

ur (4.6)

Matlab is calculating with 16 digits. The power consumption is in a range of 3 digits
before the decimal point, leaving 13 digits after the decimal point. This yields the following
uncertainty of type B [201] (4.7):

semi range (0.0000000000001Wh/day)/2 (4.7)
UpmaTLAB = NG = NG
= 0.00000000000003Wh/day

The combined uncertainty can be obtained with equation (4.8) [201]:

Utotal = v/ Upwr? + Unarrap? = 0.1187Wh/day (4.8)

Using a coverage factor k=2 for a confidence level of 95% vyields that the freezer
object model operates according to this simulation with a power consumption of
442.9531 +/-0.2374 Wh/day. This corresponds to 161.677 +/- 0.0866 kWh/a compared
to 174 kWh/a, as shown in the technical data for the selected freezer model [202].
This is an error of about 7%, which is acceptable for the microgrid simulations in this
work, as it is below the chosen 10% error limit.

4.2.2 Validation of water heater model

The model for the water heater has been verified with a DoE analysis and measurements.
For this purpose, the hot water consumption for a water heater in an apartment with the
corresponding electrical energy consumption has been measured. The installed water
heater in the apartment has a volume of 200 | and a power of 2100 W. All relevant
parameters for the installed water heater are set according to the datasheet [203].

4.2.2.1 Design of experiment for water heater model validation

Typical models of water heaters show that the significant parameters are the ambient
temperature and the water exchange [10]. A 22 factorial design for the DoE of the water
heater model can be used to confirm the relevance of these, using the parameters shown
in Table 4.6.

Table 4.6: Design of experiment: 22 factorial design for water heater verification

Experiment Tamb = Xa Vi=Xp

El 26 °C 0.51/5 min
E2 10 °C 0.51/5 min
E3 26 °C 0l/5 min
E4 10 °C 0l/5 min
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The ambient temperature changes for this DoE analysis are chosen more extremely
than for the freezer, which is mostly placed in the basement with milder temperature
changes. Despite that, the DoE analysis for the water heater shows that the ambient
losses have a much lower influence on the model than the water exchange (c.f. Table
4.7). This is the result of better thermal design of a water heater without larger openings
compared to a freezer, where the door is a strong thermal bridge, causing more ambient
losses.

Table 4.7: Sum of squares for freezer parameters

Sum of squares = Contribution % Contribution
SST 497 x 10 100

SSA 0.13 * 10° 3

SSB 4.84 % 10° 97

SSAB 0 0

4.2.2.2 Validation against measurement data

The measurements for the hot water and electrical energy consumption were done for
1 week with a 5 min time step. The resulting hot water pattern could then be applied
to a simulation with the same ambient temperature that was present during the
measurements. The average electrical power error of the simulated water heater is less
than 6% compared to the measurements. This is well below the 10% error limit that was
selected for the intended microgrid simulations.

4.2.3 Validation of the simplified space heating model

Since the simplifications for the simplified space heating model are extensive, it is
necessary to determine whether the degree of abstraction is too high for the intended
use in microgrid simulations.

Therefore, two validation methods were chosen to obtain quantitative error and
accuracy values: First, the model was validated against the previously described civil
engineering model of the simple room. Secondly, the model was compared to the
measured data from the described 3-room apartment located in the Kristiine district in
Tallinn.

4.2.3.1 Validation against civil engineering model
The simplified space heating model was validated against the simple room IDA-ICE model
described in section 3.5. As mentioned, the civil engineering model had been validated
previously. Thus, the additional error of the simplified space heating model, which is the
test model in this case, could be verified against that model. A one-week simulation with
one-minute time step was implemented for both models with the same environmental
parameters as shown in Table 4.8. For the simulation results, the error and accuracy
metrics from section 3.5 could be used for evaluation of the simplified space heating
model:

e Root mean square error (RMSE) of the mean air temperature (3.26)

e  RMSE of the heating power per square meter (3.27)

e Mean heating power difference (3.28)

e  Percent of time steps with correctly estimated heating power (3.29)
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Table 4.8: Environmental and model parameters for simplified space heating model validation
against civil engineering simulation

Parameter Value

Ambient air temperature 0.5°C

Temperature set point 21°C

Solar irradiation Yes

Heating power 400 W

Structural dimensions and windows According to civil engineering model
Occupancy According to civil engineering model

The results for the error and accuracy metrics are the following:
e RMSEr 0.92°C
e RMSEp: 27.63 W/m?
e P:83%
o TSA:63.54%

The error metrics are quite high and the accuracy is quite low, as the simulation errors
for the civil engineering model need to be added as well. Those are around 5% according
to [176], lifting the mean power error to 13.3%. Additionally, this model is quite simple
compared to a regular apartment model, resulting in even higher expected errors for
more complex rooms. The temperature RMSE is within a reasonable margin, the mean
heating power error and heating power RMSE are too high, and the TSA is too low.
The model is not within the 10% error margin, nor is it within the extended 12% error
limit for complex models. Thus, the model can be useful for first general tests with
different control algorithms, but the results should be verified with a more detailed
model to ensure the correct behaviour of the control strategies in a specific case.

4.2.3.2 Validation against measurement data
Additionally, the simplified model was validated against the measurement data of the
apartment in Kristiine district in Tallinn, as described in section 3.2. The validation time
covers the complete week of the measurement data.

The model uses the parameters according to the conditions of the measurements
presented in Table 4.9.

Table 4.9: Environmental and model parameters for simplified space heating model validation
against measurements

Parameter Value

Ambient air temperature Fluctuating between -8 °C and +2 °C
Temperature set point 22 °C

Solar irradiation Yes

Heating power 230 W

Structural dimensions and windows According to apartment dimensions
Occupancy According to apartment measurements

Unfortunately, the temperature in the apartment was not measured; thus, it is only
possible to calculate the electrical power error between the model and the measurements.
Due to the higher complexity of this model compared to the simple room model in the
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previous validation, the mean power error increased in this test to 24%. This confirms,
on the one hand, that the error increases with a more complex model, and on the other
hand, that this simple modelling technique can only be used to get first indications about
the behaviour of space heating for a general building. Thus, as mentioned before, the
model can be only used for first control algorithm tests, but there is a need to verify the
control strategy with a more detailed model for a specific case.

4.2.4 Validation of neural network space heating model

The neural network-based space heating model has been validated against the
corresponding civil engineering models and against measurement data from the control
center of the Energy Campus Wildpoldsried located in the city of Wildpoldsried,
Germany. Like this, the different used models were all validated, and the errors of the
different models can be compared. Additionally, an uncertainty analysis with the single
family house model was conducted to see the stability of the neural network based
models as a modelling quality indicator.

4.2.4.1 Validation against civil engineering model
For the validation of the neural network-based models, the error and accuracy metrics
from section 3.5 could be used. The evaluation is presented in more detail in [175].
*Root mean square error (RMSE) of the mean air temperature (3.26)
*RMSE of the heating power per square meter (3.27)
*Mean heating power difference (3.28)
ePercent of time steps with correctly estimated heating power (3.29)

As described in more detail in [175], a simple simulation with the neural network-based
model is created. Input data for a whole year with the different values are used as shown in
Table 3.7. The simulation has a 1-min time step. The temperature calculated by the
model for the end of a time step is used as input for the next time step. The resulting
error metrics for this validation are shown in Table 4.10.

Table 4.10: Comparison of error and accuracy metrics between the neural network-based models
and the civil engineering models [175]

Model TSA[%] P [%] RMSE, [Kz] RMSE; [°C]
m

Simple room (Simple Model)  63.54 8.3 27.63 0.92

Simple room (NN Model) 98.92 2.6 3.13 0.30

Single family house (NN 94.56 6.1 16.93 0.85

Model): Average of 7 rooms

It can be observed that the accuracy and error metrics for the NN-based simple room
model are much better than those for the simple space heating model of the simple
room. The errors are lower, and the TSA is higher. For example, the mean power error is
5.7% lower. This clearly shows the superior modelling quality of the NN-based model
over the simplified space heating model. The error metrics for the much more complex
single family house model are better than the simple space heating model of a simple
room. However, the more complex model shows slightly worse error metrics than the
less complex simple room model. This indicates that a simplified model of the single
family house would perform worse than the simplified simple room model.
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Thus, improved space heating models are necessary to get more accurate simulation
results. The mean air temperature validation result is shown visually for the single family
house in Figure 4.4 and the related power consumption graph in Figure 4.5.

Mean Air Temperature for Single Family House Bedroom Model

Mean Air Temperature [*C]

Neural Network Mode! Temperature Data

‘ IDA-ICE Mode! Temperature Data

16 L L L T T T I I I I
0 05 1 15 2 25 3 35 4 45 5

Time Step 105

Figure 4.4: Mean air temperature comparison between civil engineering simulation and test
simulation for single family house bedroom model in the test simulation with zoom-in [175]

Electrical Power for Single Family House Bedroom Model
I T AN T T T
IDA-ICE Model Temperature Data

Neural Network Model Temperature Data

Power [W]
_—

Time Step 0 °

Figure 4.5: Power data comparison between civil engineering simulation and test simulation for
single family house bedroom model (Calculated power data is shown in the negative y-direction)
with zoom-in [175]

The high model quality for the NN-based models can be seen in both graphs, as the
temperature and power consumption are close to the results for the civil engineering
model. This is especially visible in the zoomed-in graphs on the right. Additionally,
the model accuracy stays on the same level throughout the whole simulation of 1 year,
as seen on the overview graphs on the left.

In summary, the NN-based space heating model for the more complex single family
house does not quite reach the 10% error limit, but is well within the extended 12% error
margin for complex models.
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4.2.4.2 Validation against measurement data

Validation of the NN-based models against civil engineering models gives a good
indication about the model quality. To have a comprehensive validation of the models,
they need to be directly compared to measurements. Therefore, the control centre
model of the Energy Campus Wildpoldsried was developed. With this model, it is possible
to compare the NN-based model, the civil engineering model and the real object with
each other and analyse the errors. Figure 4.6 shows the visual result for the comparison
of the three models. The same input parameters that were measured for the real object

have been used for the simulations. The NN-based model has been synthesized from the
civil engineering model as described before.

40 —

IDA ICE Model
35 - ,‘r‘\m A Neural Network Model | |
/ e Measured Data
A\ v,
30} /j =7 |

/r |
25 I/

Temperature [*C]
n
151
T

|
10000
Time step

Figure 4.6: Model validation of neural network and IDA ICE control centre models with measured
data

It can be observed that the temperature calculations for the two simulated models
are closer to each other than to the measured data. This shows that the errors between

the models are lower than to the real object. This is confirmed by the error calculations
shown in Table 4.11.

Table 4.11: Error comparison between measurement and control centre models

Errors NN vs. IDA ICE NN vs. IDA ICE vs.
Measurement Measurement

RMSE [°C] 0.32 2.95 2.94

Mean Temperature 1.93 4.98 7.05

error [°C]

The presented error metrics show error differences between the NN-based model and
the civil engineering model. The errors between the civil engineering model and the
measurements are much higher. The NN-based model presents higher error metrics as
well. Interestingly, the RMSE is very similar to the civil engineering model, while the mean
temperature error is even lower. This does not mean that the NN-based model is more
accurate than the civil engineering model. Rather the errors between the measurements
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and the civil engineering model, and the error between the civil engineering model and
the NN-based model cancel each other out to a certain degree for the tested input data.
With different input data, the results can differ. The NN-based model is within the set
error margins and can therefore be used in the intended microgrid simulations.

To classify the results in relation to the other NN-based models, the temperature
RMSE for the control centre, simple room and single family house model can be
compared as shown in Table 4.12. The complexity of the control centre is slightly higher
than the simple room model, which can be seen in the RMSE as well. The single family
house model is more complex, as indicated by the higher RMSE, and the expected errors
towards a real object should be considered higher than with the control centre
consequently.

Table 4.12: Error comparison between NN-based models and civil engineering models

NN Based Control Centre Simple Room Single Family House
Models Model Model Model
RMSE [°C] 0.32 0.30 0.85

4.2.4.3 Validation with uncertainly analysis

Additionally, an uncertainty analysis was conducted as a model quality indicator.
Therefore, multiple short simulations were run with the NN-based space heating model
of the single family house, using a simulation time of 10 days with 1 min time steps.
For each of the simulations, the initial parameters were varied slightly for each of the
7 rooms included in the model. This results in a total number of simulations of 1921,
which can be used for the uncertainty analysis of the electrical power consumption of
the space heating model, as this is the most relevant parameter for the intended purpose
of the model. Based on the standard deviation between those simulations, the uncertainty
could be calculated using (4.9):

standard deviation (4.9)

Uny =

\/number of simulations

The Matlab calculation uncertainty can be neglected in this case as Matlab calculates
with 16 digits, as mentioned in section 4.2.1. This would result in an additional uncertainty,
which is multiple magnitudes smaller than the space heating model uncertainty.

The standard deviation for the single family house model was 1.25% and as a result,
the uncertainty of the model is 0.03% in these test simulations. This assures, on the one
hand, the stability of the proposed modelling method and guarantees, on the other hand,
the ability to handle small differences within the operational limits of the model.

4.3 Conclusions

The object models developed in Chapter 3 needed validation to obtain quantitative
results for error metrics. This ensures good accuracy levels and a correct behaviour of
the models for the control strategies that are developed next. For this purpose,
validations with a PHIL setup against measurement data with standardized test
conditions and against other detailed models were implemented. To ensure a good
quality and accuracy of the simulations, a maximum mean error margin of 10% for most
object models was chosen. As space heating models are much more complex due to all
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the external influences than the other object models, an extended maximum error limit
of 12% was chosen for the complex space heating models.

For the FESS model, validation with a PHIL setup was chosen, as the device is physically
available at Tallinn University of Technology.

e A repeatability analysis to ensure the validity and stability of the other
validation results showed that the system is working properly.

e The error margin for the round trip efficiency test was 8.4% between the
measured object and the simulated model, which is well below the set 10%
error margin. The error between the simulation and datasheet value is much
smaller. This indicates that the physical object needs maintenance to reach
the original measured efficiency level.

The BESS model was validated against measurement data. The mean discharging
current error at maximum discharging rate was 6.4%, which is below the 10% error goal.
The result for the mean charging current error at maximum charging rate was 11.6%. This
is above the set 10% error limit. However, it can be considering that the battery will not
be charged and discharged with the maximum allowed rate:

1. .. because the battery is charging and discharging according to the load
needs, which are typically lower than the maximum allowed current level

2. ... because the BESS should be slightly over-dimensioned to increase the
lifetime, as discussed in Chapter 2

3. ... because the control strategies should be designed to achieve a long

lifetime by avoiding high currents

This means that the current error will be lower and within the set error margins most
of the time.

The TESs were validated with the following results:

e The freezer model was validated according to standardized test conditions.
The simulation was implemented exactly as the experimental setup used for
obtaining the datasheet values. The mean power error obtained was 7%,
which is below the set goal of a maximum of 10%.

e The water heater was validated against measurement data from the
apartment in Kristiine district in Tallinn. The mean error was 6%, well below
the set limit of 10%.

e The simplified space heating model was validated against the more accurate
civil engineering model and against the measurement data from the
measured apartment in Kristiine district in Tallinn. As expected, after adding
the additional simulation error from the civil engineering model of 5%,
the overall error for the simplified space heating model was 13.3% for the
simple room. The error compared to the measured model was 24%, which is
too high as well. Thus, the model can be used for first tests with control
strategies, but the results should be verified with a more detailed model to
ensure the correct behaviour of the control algorithms.

e The NN-based space heating model was validated against the civil
engineering models and measurement data. The civil engineering model for
this validation was the complex single family house model. Between the civil
engineering model and the NN-based model, the mean power error was
6.1%, resulting in a total error of 11.1% if the civil engineering software error
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is added. This value is slightly above the target of 10% maximum error, but
since this is a complex model, the 12% error margin can be applied; thus, the
model is accurate enough. The second validation against measured data of
the control centre model confirmed that, showing an even lower mean
power error of 5%, which is well below the set limit. The improvement of the
mean power error compared to the simplified space heating model is 5.7%.

The error rates for all the storage system models are summarized in Table 4.13. FESS,
BESS, freezer, water heater, and the NN-based space heating model can clearly be used
for the development of control strategies, whereas the simplified model should be used
for first general investigations.

Table 4.13: Overview of all object model errors

Object model Mean error Acceptable (10% / 12%
limit)

FESS 8.4% Yes / Yes

BESS 6.4% - 11.6% Barely / Yes

Freezer 7% Yes / Yes

Water heater 6% Yes / Yes

Simplified space heating >13.3% No / No

NN-based space heating 5%-11.1% No / Yes

Additionally, during these validation tests, the simplified space heating model could
be compared to the NN-based model further, as shown in Table 4.14. The tests showed
not just different accuracy results, but also different calculation times and, as analysed
in Chapter 2, different compatibilities. The reduction of calculation time during the
microgrid simulation between a co-simulation and the NN-based model is 85%.
Considering that in microgrid simulations, the simulations are repeated multiple times
with different control strategies, the NN-based space heating model is most useful for
the investigation of control strategies. Pre-training and data set creation is only necessary
once and the reduction of calculation time and the compatibility issue compared to a
co-simulation are therefore significant. As mentioned, the simplified model is only
suitable for first general investigations on the control strategies, which is confirmed as
the model is quickly calculated and highly compatible but has low accuracy.
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Table 4.14: Overview of advantages and disadvantages for different space heating models in

microgrid simulations [175]

Model
Simple model

Civil engineering
model (e.g.,
with co-
simulation)

NN- based
model

Advantages

Fast to calculate during
simulation (~3-min
calculation time for
complete single family
house*)

No pre-training

Highly compatible (part of
the microgrid simulation)
Very good accuracy

No pre-training

Fast to calculate during
simulation (~3-min
calculation time for
complete single family
house*)

Good accuracy within set
limitations

Highly compatible (part of
the microgrid simulation)

*Intel Core i7 4770K CPU; Nvidia GeForce GTX 980Ti GPU
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Disadvantages

Low Accuracy

High computational effort
and slow during simulation
(~20-min calculation time
for complete single family
house*)

Compatibility problems
between simulators
Pre-training (~6 min per
room*) and creation of
datasets (~20 min for
complete single family
house*)



5 Research and development of control strategies for
residential microgrids

In Chapter 2, the BESS, FESS and TES selected for investigations have been modelled and
validated in Chapters 3 and 4. As a next step, control strategies for these storage systems
need to be researched and developed to give recommendations and investigate the
related user requirements and financial feasibility. In this regard, the BESS and FESS need
to work with different control strategies than the TESs to cooperate efficiently and
achieve the security of supply and financial feasibility improvement goals. The main goals
in this regard are:

1. Increase of islanded operation duration (Security of supply parameter)

2. Increase of the cyclic lifetime of the BESS (Financial parameter)

3. Minimization of energy costs (Financial parameter)

4. Minimization of BESS capacity (Financial and security of supply parameter)

The first two goals, the cyclic lifetime and security of supply improvement, can be
achieved with the FESS and BESS. The cyclic lifetime is a financial parameter, which
influences the re-investment costs of the system when the BESS needs to be exchanged.
The security of supply can be improved due to a prolonged islanded operation time with
the additional FESS storage capacity. This is investigated in section 5.1.

The minimization of energy costs can be achieved with the TESs. In this case, the
thermal energy is saved and released according to the electricity price in a real time price
market scenario, as shown in section 5.2.

Minimizing the BESS capacity will reduce the investment costs for the system. This can
be achieved by scheduling the TESs and therefore adjusting the consumption profile to
the production, which can also increase the islanded operation duration. The development
of these islanded control algorithms is described in section 5.3.

The latter two control strategies are dependent on the occupancy of the investigated
dwelling as the thermal and electrical consumption patterns change. With this
investigation, conclusions about the general applicability of the different algorithms can
be drawn as shown in section 5.4.

5.1 Cyclic lifetime and security of supply improvement with FESS and
BESS

As mentioned before, the primary goal of the FESS control system is to improve the
power quality by reducing peaks and dips, which can help to increase the BESS lifetime
as the number of charging and discharging cycles can be reduced with such a control.
The control for the BESS itself is load following as it is the responsible device in the
islanded operation to maintain voltage and frequency. As the FESS adds a small
additional storage capacity to the system, the security of supply can be improved as well
due to a longer islanded operation duration. The simulation topology is shown in Figure
5.1.
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SIMULATION TOPOLOGY FOR INVESTIGATION

FESS BESS LOAD PV-SYSTEM

Y TR

| ISLANDED
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Figure 5.1: Simulation topology for islanded BESS and FESS investigation

5.1.1 FESS control

As mentioned in section 3.3, there is a power smoothing control implemented for the
FESS. To smooth the load, a variety of different low pass filters can be used. As a first
implementation, a moving average filter was selected, as shown in Figure 5.2. This
control was implemented to change the active power reference for the current controller
since the power smoothing operation is related to the active power.

PGrid Prcjf'
&»
Moving

» Average
Filter >

Figure 5.2: Schematic of FESS moving average control [154]

The length for this moving average filter was chosen to be 30 and 60 seconds. This
length effects strongly how much the load profile is smoothed and therefore, how much
stress will be put on the FESS. If the length chosen is too low, the profile will not be
smoothed much, and the peaks and dips will remain. If the length chosen is too long,
then the flywheel might not be able to work for extended time as it will be fully charged
or discharged. The results for the power smoothing scenario for a small islanded
microgrid are shown in Figure 5.3. The start-up phase for the flywheel in the first 30 s has
been cut in the graph.

As the figure shows, the load in the microgrid is smoothed well with the moving
average filter. The flywheel is balancing the peaks and dips in this simulation. However,
it can be observed that the the rotational speed of the FESS is decreasing over time. This
is an indication that the moving average filter length might be already too long for
permanent operation of the selected flywheel. But it should also be mentioned that the
selected flywheel, which is modelled based in the device in the laboratory, is an old
device with lower efficiency and low capacity. A more modern FESS could perform better
with this filter length.
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Figure 5.3: Main grid to microgrid power supply with and without power smoothing, FESS power
and FESS rotational speed [154]

To verify these results, the same load profile is tested with the PHIL setup of the FESS.
The result is shown in Figure 5.4.
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Figure 5.4: Load smoothing with FESS PHIL-setup moving average control with the test profile [64]

Like the results of the simulation in Figure 5.3, the real time simulation with the PHIL
setup shows a smoothed load profile. The time resolution for the real time simulation is
higher, which can be seen in the discretized graph for the original load profile. However,
in this profile, a delay for the FESS power adjustment can be seen, as the controller and
physical system have a certain reaction time constant. The FESS power controller has to
adapt the set signal to the output signal. A more detailed graph for this delay is shown in
Figure 5.5.
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Figure 5.5: Detailed load smoothing with FESS PHIL-setup moving average control with the FESS
power graph [64]

These peaks from the reaction time of the FESS controller can be positive and
negative, but they are typically smaller in amplitude than the original step from the load
signal that was sampled at 1 Hz. To see if the response of the flywheel can be optimized,
a Butterworth filter was implemented additionally. The two different filter impulse
responses are shown in Figure 5.6.
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Figure 5.6: Impulse response for moving average and Butterworth filters [64]

The Butterworth filter is designed as a second order filter with a sampling frequency
of 1 Hz and a cut-off frequency of 1/60 Hz. As shown in the figure, the moving average
filter reacts first to the impulse and stays constant till the impulse passes the full filter.
The Butterworth filter reacts less aggressively to the impulse but after some seconds, its
response overshoots the moving average response. It is the first filter that starts to
decrease and align to zero. However, the slope of the moving average filter reaches zero
first. These properties of the Butterworth filter lead to a much better smoothing result.
This can be seen even more detailed in the slope gradient of the smoothed load profile
in Figure 5.7. The slope gradient is much smaller and smoother, which ensures a better
power quality and more potential to reduce the charging and discharging cycles for the
BESS.
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Power slope gradient [Wis]

Figure 5.7: Power slope gradient for moving average and Butterworth filters with the test load
profile [64]

A second implemented control algorithm is to charge the FESS in case the produced
power from the PV-system exceeds the maximum charging power for the BESS.
The charged energy can then be used to charge the BESS when the produced PV-power
is reduced again. This can be implemented as shown on the flowchart in Figure 5.8.

Phat,charge = Phat,max
&&
Prv > Pioad+Phat,max

Y

N SOCress < 1

Y
A 4 4 A 4

FESS Power Smoothing

FESS Power Retention Charge FESS
Control

Figure 5.8: High PV-system production control strategy for FESS



5.1.2 BESS control

As the BESS is the grid forming device in the islanded operation mode, it needs to work
in a load following way. This means that it needs to control the frequency and voltage for
the microgrid according to the current load by charging and discharging the battery cells.
Therefore, the following control principles have been implemented for the simulations
[28], [38].

The integrated battery controller is assumed to limit the batteries SOC to a maximum
value of 0.9 and a minimum value of 0.2 to reduce the degradation of the battery [68].
The inverter control model for the BESS reduces its basic working principle in the
simulations [28], [38]:

e The inverter is modelled as an efficiency value.
e The typical inverter behaviour in the islanded mode is defined with the limits
stated in grid standard EN 50160 in the following way:
> Thefrequency in the islanded microgrid is kept constant in any case.
» The voltage in the islanded microgrid is limited to the nominal root-
mean-square (RMS) voltage of 230 V (VN) and cannot be exceeded.
Thus, the energy production needs to be reduced.
» Consequently, if the energy production cannot supply the demand,
the voltage will drop and the microgrid will shut down in the
islanded mode operation.

5.1.3 Results of cyclic lifetime and security of supply improvement control

As shown in [24], different scenarios with an islanded microgrid including a FESS and BESS
were simulated. The islanded microgrid consists of the generated single family house
load profile, the scaled Laastu Talu OU PV-system profile, the FESS model, and the BESS
model. The first scenario was simulated without the FESS power smoothing control.
The second scenario includes the moving average power smoothing control for the FESS.
The simulation runs for 24 h even if the battery cannot maintain stable islanded
operation anymore. The BESS SOC during the simulations is shown in Figure 5.9.
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Figure 5.9: BESS SOC of an islanded microgrid system with and without supporting FESS for power
smoothing; (A) Increase of islanded operation time with special case; (B) Increase of islanded
operation time with typical cases [33], [24]
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As indicated in the figure, the islanded operation time can be increased by more than
10 h 30 min or 50% because in the selected special case (Figure 5.9, (A)), a large dip was
compensated by the flywheel. At around 10 hours of operation, the load of the single
family house was draining the BESS below its minimum SOC because the sun was not
shining strong enough for the PV-system to produce enough energy. With other load and
PV-system profiles, there might appear similar cases where the islanded operation time
is increased massively.

The increase of the islanded operation time without such a special case can be
estimated from the figure as well (Figure 5.9, (B)). At the end of the simulation, the points
in time when the final minimum SOC value is reached can be compared, assuming that
the dip below the minimum SOC right after hour 10 did not take place. In this case, the
increase would be around 45 min or 3%.

Based on the number of charging and discharging cycles within this 24-h simulation,
it can be estimated by how much the cyclic lifetime can be increased with this control
strategy. This estimation can be done using the maximum number of cycles given by the
manufacturer’s datasheet for the BESS (5.1). This estimation can be compared to the SOLI
test described in section 2.2.2.

Ncycles,24h * 365 (5.1)
tBat,cyclic -

N cycles,max

where: tgatcycic: Cyclic lifetime for BESS [a]; Neycles24n: Number of cycles in 24 h;
Neycles,max: Maximum number of cycles according to the datasheet.

This estimation incudes the simplification of counting the partial cycles and adding
them up to full cycles, even though they are less damaging for the BESS than full cycles
[68]. The calculated cyclic lifetime values with the corresponding cycles per year and
maximum islanded operation times are shown in Table 5.1.

Table 5.1: BESS cyclic lifetime estimation and maximum islanded operation time for microgrid
system with and without FESS power smoothing [33], [24]

Scenario Cycles/Year Cyclic Lifetime Maximum
islanded operation
time

Without FESS 542 83a 10 h 22 min

With FESS moving @ 455 99a 20 h 55 min

average control

This reduced number of cycles per year by around 16% leads to an increase of the
cyclic lifetime by 19% for the BESS, which is related to an increased service life of the
battery with longer periods before re-investments for replacement devices. Of course,
the microgrid is not operating in the islanded mode permanently, but these results apply
to a very similar maximum self-consumption BESS control strategy in the grid-connected
mode as well.

For the second control approach regarding improved energy use and self-consumption,
which is especially useful during the islanded operation, a real time simulation with the
PHIL setup was used. A combined load and PV-system profile and a BESS model were
implemented in Matlab and the response of the real FESS was measured and included in
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the microgrid simulation in real time. In this scenario, the produced power during the
daytime of the PV-system is exceeding the maximum charging power for the BESS. In this
case, the FESS is charged with the excess-energy. The load profile power, BESS charging
power and FESS power are shown in Figure 5.10, including the stored FESS energy. In the
last few minutes, the energy stored in the FESS is used to charge the BESS even more for
later use of the energy when the PV-production is lower. In this case, more than 200 kWs
could be additionally stored. However, due to the low efficiency of the old FESS system,
about 90% of the excess energy is lost due to high self-discharge of the device. A more
modern device could show more significant results with an improved performance and
efficiency.
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Figure 5.10: Flywheel and battery storage control with PHIL setup for exceeding the PV-power
scenario [25]

5.2 Energy cost minimization with TESs

In the grid-connected operation, the TES has to work with an energy cost minimization
control strategy to reduce the cost for energy exchange to and from the grid.
The price-based control algorithms depend on the real time electricity price or
day-ahead electricity prices. Example price patterns have been obtained from the
Nord Pool website [77] for the corresponding times and dates of the other used profiles.
The simulation topology is shown in Figure 5.11.

SIMULATION TOPOLOGY FOR INVESTIGATION
-_—e e e = .

LOAD + THERMAL STORAGES

|
U il A £
|

|
|
= Simplified Model |
|
|

/S\
APARTMENT MODEL:
! GRID-CONNECTED KRISTIINE DISTRICT

ACGRID _-—— o Em Em e e o = = .

Figure 5.11: Simulation topology for grid-connected TES investigation
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5.2.1 Price-based control algorithm description
The general working principle of the price-based control algorithms is the following:
if the electricity price is high, then it is required to choose a low consumption set point:
e  For heating devices, a low temperature set point
e  For cooling devices, a high temperature set point
If the electricity price is low, a higher consumption set point can be chosen:
e  For heating devices, a high temperature set point
e  For cooling devices, a low temperature set point
In total, 7 different price-based algorithms have been implemented based on [85],
[84] and [10]. The algorithms are shown in Table 5.2.

Table 5.2: Price-based control algorithm description; Cooling = Freezer; Heating = Water heater and
space heating [10], [85], [84]

#  Description of set point calculation algorithm
. . — Tset,max_Tset,min
A Cooling: Tser = Tset,min + Cuser * (Pr — Priyip) * S
Prmax—Prmin
. T =T i
Heating: Tset = Tset max ~ Cuse‘r * (PI‘ - Prmin) ¥ —SEUmEX__Setinin
’ Prmax—Prmin

. |Tsetmax—Tgoall
B Cooling: Ty, = Tyoat + Cuser * (PT — Pryyg) » ——mx—9940
Pryev
. [Tset, min_Tgoall
Heating: Tser = T, -C * (Pr—Pr *—
8 Lser goal user ( avg) Prgev
C Tset,max_Tgoal

Cooling: Tger =T, + C, * (Pr — Pr *
8 Iset goal user ( avg) Prmax—Pavg

. Tset,min_Tgoal
Heating: Tsor = Tgoal — Cyser * (Pr — Pravg) *

Prmin—Pravg
. Tsetmax—Tgoal

P Cooling: Tser = Tyoar + Cuser * (Pr — Prpp) * —selmax goal
Prmax—Prayvg

i Tset,min_Tgoal

Heating: Tser = Tgoal — Cyger * (Pr — Prp;p) = Pro —Prav..
Prmin—Pravg

E I _ _ Tsetmax—Tset,min
Cooling: Tser = Tgoar + Cuger * (Pr Pravg) M ———
Tset,max_Tset,min

Heating: Tser = Tyoar — Cuser * (Pr - Pravg) *

Prmax=Prmin

. . _ Tset,max_Tset,min
F Cooling: Tset = Tgoar + Cuser * (Pr — Prpp) » —=—=——=22
Prmax—Prmin
. Tset -T .
Heating: Tset = Tgoal - Cuser * (PI‘ - Prmin) ¥ —SCmEX _SCUI
Prmax—Prmin
G  Cooling:
Pr = Pravg - Tset = Tset,max ; Otherwise — Tset = Tset,min ;
Heating:

PF 2 Pravg - Tset = Tset,min ; OtherWlSG = Tset = Tset,max ;

where: Tset: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C];
Tsetmax: Maximum set point temperature [°C]; Tgoar: Goal temperature [°C]; Cuser: User
comfort related scaling factor; Pr: Current electricity price [€/kWh]; Prmin: Minimum
electricity price [€/kWh]; Prma:: Maximum electricity price [€/kWh]; Prayg: Average
electricity price [€/kWh]; Prqev: Electricity price deviation [€/kWh].
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All these algorithms have slightly different methods for choosing the set point
between the minimum and maximum consumption. The selection is based on different
quantities related to the electricity price. As an additional scaling factor, Cuser is
introduced. For most simulations, the factor is set to 1. If the factor is selected higher,
the set point variation is more aggressive and should reduce the user comfort. If it is
chosen lower than 1, the set point variation is less aggressive and the user comfort should
increase. The results for the scaling of this factor are presented in more detail in [38].
The general relation between the chosen set point and the electricity price is shown for
all the algorithms in the example of the water heater model in Figure 5.12. It can be seen
that the algorithms have different linear and non-linear behaviour, which causes
different results regarding the cummulative price and the user comfort based on the
temperature selection.

Minimum Price (Min+Max)/2 Average Price Maximum Price
85
80 Maximum Set Point
75
g
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15
Price [€)

Figure 5.12: Price-based control algorithm visualization: Example with the water heater [30]

5.2.2 Results of price-based control algorithms

Typical cost reductions with such price-based algorithms are in a range of 5-30% [10],
[85]. For 1-week simulations with each of the algorithms the cost reductions presented
in Table 5.3 could be achieved. The simulation focuses on the TESs. The BESS, FESS and
PV-system are not considered in this case to have results comparable to the previously
presented scientific literature. More detailed influences from changing different
parameters have been published in [38]. As it can be seen, these values are within the
same range as other published scientific work. However, these studies did not consider
space heating as the thermostatically controllable load that has the biggest potential for
cost saving as the results clearly show. The combined case with all 3 TESs shows lower
relative cost savings than the case with only space heating because the freezer and water
heater show lower cost reductions. This results in lower total relative cost savings
compared to a fixed set point control. In general, algorithms D and F show the best
performance for most cases.
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Table 5.3: Cost reductions for price-based control algorithms compared to FSP control [38]

# Freezer Water heater Simplified Space Combined
heating
A -5% -7% -13% -8%
B -14% -9% -13% -10%
o -10% -9% -15% -10%
D -11% -19% -22% -20%
E -14% -10% -15% -11%
F -11% -19% -22% -19%
G -15% -6% -2% -5%

So far, these control algorithms have only been applied to one specific household
configuration. It is required to determine the influence of different household
occupancies well, to find out which control algorithm is the most efficient in different
occupancy cases. This is shown in section 5.4. Additionally, the magnitude of the
influence of different space heating model complexities on the results needs to be
determined. Then it is possible to confirm the conclusions about the accuracy of the
space heating model from Chapter 4 and improve the reliability of the results, as shown
in the next section.

5.2.3 Comparison of space heating model complexities

As mentioned in Chapter 4, the space heating model complexity has an influence on the
model accuracy. Therefore, it was concluded in that chapter that it is reasonable to use
the simplified space heating model only for first general investigations and a more
complex model for a specific case. To confirm and strengthen those conclusions, the
influence of the different models on the control strategies needs to be determined.
Therefore, the simplified space heating model is compared to the civil engineering model
regarding the performance with the price-based algorithms presented in the previous
sections. The simulation topologies are depicted in Figure 5.13.
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Figure 5.13: Simulation topologies for investigation of space heating model complexity with the
simplified (A) and civil engineering (B) models

The selected model is the control centre of the Energy Campus Wildpoldsried.
As published in more detail in [57], the selected timeframe for the simulation with
price-based control algorithms was from November 22" until December 2", 2019,
with the corresponding prices from the Nord Pool Website [77]. The same price-based
algorithms A-G and FSP control were used with each model. For an easier comparison,
in Table 5.4, the qualitative cost reductions of each model and algorithm are compared
to the FSP control.
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Table 5.4: Comparison of cost savings of the civil engineering and the simplified space heating
model for the price-based algorithms A-G [57]

Algorithm Cost Reduction with Civil Cost Reduction with Simplified
Engineering Model Model

A - +

B -

C -

D ++ ++

E + +

F ++ ++

G 0 0

++ highest; + high; 0 none; - lower; -- lowest;

The results of the simulations show that the models behave similarly for algorithms
D-G. The cost reductions are comparable between the models. However, it can clearly
be seen that with different models, algorithms A-C behave differently. With the more
detailed civil engineering model, they show worse performance than the FSP control
while with the simplified model, they show cost reductions. This shows that the model
complexity has an influence on the performance of the control algorithms, which leads
to the same conclusion as in chapter 4. The simplified space heating model should only
be used for a first general investigation. For accurate analysis in a specific case, a complex
space heating model is necessary. However, as the system in this work is not a specific
planned microgrid, the general results from the simplified space heating model will be
sufficient as a basis for the financial feasibility analysis in chapter 6.

Additionally, the NN-based space heating model of the single family house is
investigated in more detail regarding the behaviour with small control variations.
This will show whether it is necessary to run multiple slightly different simulations to
achieve a more accurate forecast of the system behaviour to improve the choice of the
price-control algorithm financially. Therefore, flexibility analysis is implemented with a
large number of simulations, which is possible even with the more complex NN-based
model, as shown in section 4.3. Each simulation has a length of 240 h, and the total
number of simulations is 481. The available set points are the following:

e Lowset point of 21 °C
e Regular set point of 22 °C
e High set point of 23 °C

The simulations are then conducted with the topology shown in Figure 5.14 according
to the following process [80]:
e Inthe 1% simulation, each hour has the regular set point of 22 °C.
e In the 2™ simulation, the first hour has a lower set point of 21 °C while the
other hours are set to the regular set point of 22 °C
¢ Inthe 3"simulation, the second hour has a lower set point of 21 °C while the
other hours are set to the regular set point of 22 °C

e Inthe 481 simulation, the last hour has a higher set point of 23 °C while the
other hours are set to the regular set point of 22 °C
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SIMULATION TOPOLOGY FOR INVESTIGATION
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Figure 5.14: Simulation topology for investigations of space heating model behaviour

With these simulations it is possible to analyse the intra-interval and long-term
flexibility with the space heating model. Consequently, the behaviour of the complex
space heating model can be investigated with such a simple control strategy.
The intra-interval flexibility using the NN based single family house model is shown in
Figure 5.15. The graph shows the energy consumption within each hour for each selected
set point.

Intra-interval Flexibility on Hourly Basis

Energy [kWh]

Interval [hour)

Figure 5.15: Intra-interval flexibility for 240 h on an hourly basis [80]

As expected, the energy consumption within each interval is higher if a high set point
is chosen, lower if a lower set point is chosen, and inbetween for the regular set point.
If the cumulated energy consumption over the whole 240-h-simulation is investigated,
the results look different, as shown in Figure 5.16. This long-term flexibility is shown for
each of the changed intervals in the graph. It can be observed that when selecting a high
set point in one interval, it does not necessary lead to an overall higher energy
consumption, like for interval 91. Vice versa, if a low set point is chosen for one interval,
it does not necessary lead to a lower overall energy consumption, like for interval 57.
This indicates that space heating is a very complex system that does not always behave
as expected. Therefore, to make accurate predictions in a specific case, a numerous
slightly varied simulations are necessary. This is only possible with an accurate model
that can be calculated with low computational effort, like the proposed NN based model.
Thus, it is recommended in the case of a specific planned microgrid to run multiple
variations of the control strategy simulations with an NN-based space heating model for
more accurate estimations of the space heating behaviour and control strategy
performance that can be expected. More details about the setup of the simulations and
a more detailed result analysis have been published in [80].

94



Long-term Flexibility on Hourly Basis
T

170

165

) | |

' B 1 ‘M']W\k/ W V - T
us | ! W ”‘ ‘\/ \ “\ 4

Energy [kWh]
T

140 ! | 4

135 I L I I
0 50 100 150 20

Interval [hour]

Figure 5.16: Long-term flexibility for 240 h on an hourly basis [80]

5.3 BESS capacity minimization with TESs

In the islanded operation mode, the TESs need to be controlled with a different control
strategy as the electricity price is not relevant without power exchange to and from the
grid. Therefore, other available values of the microgrid components need to be used as
a reference to adjust the temperature set point of the TESs in an optimal and efficient
way to minimize the necessary BESS capacity and therefore the investment costs for the
system. The simulation topology is depicted in Figure 5.17.
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Figure 5.17: Simulation topology for islanded TES investigation

5.3.1 Islanded control algorithm description
There are two different devices available within the proposed microgrid structure that
can be used as reference points for the set point selection:

1. PV-system

2. BESS

The FESS is not a good reference as it works quite arbitrarily in power smoothing
operation and has lower relevance for the long-term islanded operation due to its high
self-discharge rate. Similarly, the load is not a suitable reference point on its own as it
does not give any information about the stored or available energy in the microgrid.
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The general working principle of the PV-power-based control algorithms is the following.
If the available PV-power is high, then it is required to choose a high consumption set point:
e  For heating devices, a high temperature set point
e  For cooling devices, a low temperature set point

If the available PV-power is low or 0, a low consumption set point must be chosen:
e For heating devices, a low temperature set point
e  For cooling devices, a high temperature set point

Firstly, 7 different PV-power-based algorithms have been implemented, like the
price-based algorithms presented in section 5.2. More details have been published in
[28], [38]. An overview of these algorithms is shown in Table 5.5.

Table 5.5: PV-power-based control algorithm description; Cooling = Freezer; Heating = Water
heater and space heating [28]

# | Description of set point calculation algorithm

A C00|Il’lg2 Tset = Tset max ~ Cuser * (PWI' - Permin) ¥ X __SCLIIL
! Pwrmax—Pwrpin
. Tset =T i
Heating: Tser = Tset,min + Cuser * (PWr — Pwryy;y) * _SELTAY__selmin
’ PWrmax—PwWrpin
B H . — |Tset,min_Tgoal|
Cooling: Tgor = Tgoqr — Cyser * (Pwr - Pwravg) * — Pwrgey
. |Tset,max_Tgoal|
Heating: Tgor = Tgoqr + Cuger * (Pwr - Pwravg) * T pwrgy
€ Cooling:Tyer = Tyoa1 — Cuser * (PWr — Pwrayg) « setmin~Tgoal
8ilset = goal user avg Prmin—Pravg
. _ Tset,max_Tgoal
Heatlng. Tset = Tgoal + Cuser * (PWF - Pwravg) * m
D . — _ _ . Tsetmin—Tgoal
C00|mg- Tset - Tgoal Cuser * (PWI' l:)ermm) * PWI'min—PWrayg
. _ Tset,max_Tgoal
Heatlng. Tset = Tgoal + Cuser * (PWF - Pwrmin) * m
E P _ _ _ Tsetmax—Tset,min
Cooling: Tgpr = Tgoqr — Cyser * (Pwr Pwravg) * P E—————
. . — Tset,max_Tset,min
Heating: Tset = Tgoal + Cuser * (PWI' - PWran) * m
F P _ _ _ . Tsetmax—Tset,min
Cooling: Tser = Tgoar — Cyser * (PWr — Pwryyp) * I ——
. . — Tset,max_Tset,min
Heating: Tset = Tgoal + Cuser * (PWI' - Pwrmin) * m
G Cooling:
Pwr = Pwrayg = Teer = Tsetmin ; Otherwise = Tser = Tsetmax ;
Heating:

Pwr = Pwr,yg = Tser = Tsetmax ; Otherwise = Tgor = Tsetmin ;

where: Tset: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C];
Tsetmax: Maximum set point temperature [°C]; Tgoar: Goal temperature [°C]; Cuser: User
comfort related scaling factor; Pwr: Current power [W]; PWrmin: Minimum power [W];
PWrmax: Maximum power [W]; Pwravg: Average power [W]; Pwrgev: Power deviation [W].
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As with the price-based algorithms, all these algorithms have slightly different
methods, choosing the set point between the minimum and maximum consumption as
well. The selection is based on different quantities related to the available PV-power
instead of the electricity price. The user comfort, respectively the aggressivity of the set
point variation, Cuser is included in these algorithms as well but it is set to 1 for most of
the simulations. The results for the scaling of this factor are presented in more detail in
[38]. The visual representation for all the algorithms with the example of the water
heater model is shown in Figure 5.18. The algorithms show linear and non-linear
behaviour according to their general working principles, which leads to different results
in the energy consumption adjustment during islanded operation.
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Figure 5.18: PV-power-based control algorithm visualization: Example with the water heater [29]

Secondly, four additional algorithms were implemented, as shown in Table 5.6.
Algorithm H is indirectly related to the battery SOC. As mentioned in section 5.1,
the stability of the microgrid can be determined by the voltage as the frequency is
assumed to be kept constant in any case. Algorithm H uses this property, as the set point is
chosen as the goal set point if the microgrid voltage is not dropping to the minimum
desired voltage. This only happens if the SOC of the BESS is reaching the minimum while a
powerful load is active. The other three algorithms are directly related to different BESS
SOC properties. Algorithm J includes the user comfort scaling factor as the price- and
PV-power-based algorithms.

The algorithms show linear and non-linear behaviour with the set point selection,
as shown with the example of the water heater model in Figure 5.19. This leads to
different energy consumption adjustments than with the PV-power-based
algorithms and therefore, to other overall performance results.
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Table 5.6: SOC-based control algorithm description; Cooling = Freezer; Heating = Water heater and

space heating [28]

# Description of set point calculation algorithm
H Cooling: Tgoy = Tgoal;lf Vme < VMG,min then Ty, = Tset,max
Heating: Tg,; = Tgoal;hc Vme < VMG,min then Ty, = Tset,‘min

| Cooling: SOCgq; = SOCRatmin + 0.2 = Tyer = Tyour;
Otherwise = Tgor = Tsetmax ;
Heating: SOCgq; = SOCgatmin + 0.2 = Tser = Tyoar;
Otherwise — Tgor = Tsetmin
J Cooling:

_ Tset,max_Tset,min
Tset - Tset,max - Cuser * (SOCBat - SOCBat,min) *

DODBat,max

Heating:

_ Tset,max_Tset,min
Tset - Tset,‘min + Cuse‘r * (SOCBat - SOCBat,‘min) *

DODBat,max

K Cooling: SOCgqe = (1 + SOCBat,min)/2 = Tser = Tset,max ;
Otherwise = Tgor = Tsermin

Heating: SOCgq; = (1 + SOCpatmin)/2 = Tser = Tset,min ;
Otherwise = Tsor = Tsetmax ;

where: Tser: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C];
Tsetmax: Maximum set point temperature [°Cl; Tgoa: Goal temperature [°C]; Vivs: Microgrid
voltage [V]; Vv min: Minimum desired microgrid voltage [V]; Cuser: User comfort related
scaling factor; SOCsa:: SOC of BESS; SOCsat,min: Minimum acceptable SOC of BESS;

DODsat,max: Maximum DOD of BESS.

Minimum SOC + 0.2

Minimum SOC (Max+Min)/2

Maximum SOC

Maximum Set Point
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Figure 5.19: SOC-based control algorithm visualization: Example with the water heater [29]
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5.3.2 Results of islanded control algorithms

The simulations in the islanded mode were designed to find the minimum BESS capacity
for the microgrid to be able to operate for 1 week in the islanded mode. The simulations
include the BESS and PV-system, while the FESS is not included to reduce the simulation
complexity and use a larger time step of 5 min. This time step is sufficient for the TESs as
they have a large time constant for reactions and minimum switching cycle times of
several minutes. Compressors in heat pumps and freezers have minimum run (typically
3 min) and pause times (30 s to 15 min), as shown in datasheets [206], [207], [208]. This
was confirmed in correspondence with heat pump manufacturers and measurements of
a Sharp heat pump. The results for each of the PV-power-based algorithms in comparison
to a FSP control are presented in Table 5.7. More detailed influences from changing
different parameters have been published in [38].

Table 5.7: Minimum BESS capacity for PV-power-based control algorithms compared to FSP control
[38]

# | Freezer Water heater Simplified Space Combined
heating

A 0% -1% 0% -12%
B 0% -21% 0% -30%
o 0% -25% -24% -35%
D 0% -21% +3% -36%
E 0% -1% 0% -12%
F 0% -21% 0% -30%
G 0% -25% -24% -35%

The freezer alone does not provide a reduction in the BESS capacity, as seen in the
table. The energy consumption of the freezer itself is relatively low, while it cannot store
the energy for extended amounts of time. This results in low amounts of energy that can
be stored and shifted, which has a small influence on the minimum required BESS
capacity. Another significant result can be seen with algorithm D and the space heating
model. This leads to a higher required minimum BESS capacity than with the FSP control.
One reason for this is the complexity of the space heating model, where small influences
can make large differences, as described in more detail in section 5.4. Another reason is
the possibility of having a small influence at the wrong time, as presented in section 5.1,
where a small change at a BESS SOC dip can result in huge differences. The BESS capacity
reductions with the combined use of all 3 TESs show impressive margins of more than
1/3 of BESS capacity reduction. This presents generally a huge potential to operate
microgrids in the islanded mode more efficiently. The simulation results for the
SOC-based control algorithms are shown in Table 5.8.

For the freezer model as well as the water heater, the SOC-based control seems to
work better than the PV-power-based one. Space heating results are like in the
PV-power-based control but there is no case of a necessary BESS capacity increase.
The results for the combined case are in the same range as with the PV-power-based
algorithms. Thus, in general the same BESS capacity reductions seem to be achievable
with a slight advantage for the SOC-based algorithms considering single devices.
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Table 5.8: Minimum BESS capacity for SOC-based control algorithms compared to FSP control [38]

# | Freezer Water heater Simplified Space Combined
heating

H 0% -15% 0% -18%

| -3% -30% 0% -27%

J -3% -31% -30% -35%

K 0% -36% -4% -30%

So far, the control strategies for the TESs have only been applied to one specific
household configuration and the influence of different household occupancies needs to
be determined to find out which control algorithm is the most efficient in general or
under a specific occupancy case. This is shown in the following section.

5.4 Cost and capacity minimization with different dwelling occupancies

The dwelling occupancy is an important parameter for the simulation of the household,
which can influence the results for the TES control strategies. This applies to the
previously described energy cost minimization control strategy as well as to the BESS
capacity minimization control strategy. This additional investigation improves the
understanding of the already obtained results and enables conclusions about the general
applicability or case specific use of the different presented and developed algorithms
from sections 5.2 and 5.3.

The described models of the measured 3-room apartment in Kristiine district in Tallinn
or the single family house described in section 3.5.1 can be occupied by different
demographic groups, such as young families, elderly people or students. These people
have different daily schedules as they go working, studying, or for example, to a bingo
game.

These different activities at different times have direct influence on the energy
consumption. TV sets are turned on at different times, computers are used during home
office times, and time preferences regarding cooking are different. This changes the
electricity profile for the same physical object, as devices are actively turned on or off.
Additionally, these different habits influence the thermal load of the freezer, water
heater and space heating. Every person inside the apartment is emitting heat, which
changes the space heating energy consumption. People are eating and cooking at
different times, influencing the amount of food they put in and take out of the freezer.
Different people have different personal hygiene patterns, influencing the amount of
water that needs to be heated for hot showers or baths. The overall electricity
consumption depends strongly on the number of people living in the household, as
shown in Figure 3.6. To investigate the influence of these differences, the previously
described households i-vii are used in simulations where the different presented
algorithms are applied:

1. For price-based algorithms A-G
2. For PV-power-based algorithms A-G
3. For SOC-based algorithms H-K

100



Figure 5.20 shows the simulation topologies for these investigations.
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Figure 5.20: Simulation topologies for investigations of dwelling occupancy influence on price-
based (A) and islanded (B) control algorithm performance

First, the price-based simulations are implemented with the following conditions:
e Used models: Freezer, water heater, simplified space heating, and thermal-
and electrical patterns for household i-vii
e Simulation time is 1 week with a time step of 5 min
e  Prices are taken from the Nord Pool Webpage [77]
e  Price-based algorithms A-G and the FSP control are implemented

The results for these simulations are shown in Figure 5.21. More details about the
simulations have been published in [30].
Cost differences for price-based algorithms A-G
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Figure 5.21: Electricity cost differences for algorithms A-G in households i-viii in percent compared
to FSP control

The results show that there are not always cost reductions with algorithm G. With
some households, the costs are increased compared to FSP control, which is not
desirable. The reason for this is the binary behaviour of the algorithm. As it can be seen
in Figure 5.12 and Table 5.9, the algorithm does not have a goal set point and can only
change between maximum and minimum consumption set point.
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The best cost savings are achieved for households i, ii, iii, and v. These are the
households with a low number of occupants. The algorithms are working better for a
lower number of occupants as they put a lower total thermal load on the devices.

The most significant observation is the extremely good cost reduction for algorithms
D and F for all households. These algorithms are scaling between minimum consumption
and goal set point instead of minimum and maximum consumption set point like the
other algorithms, as shown in Figure 5.12 previously. The consequences of this behaviour
will be analysed in more detail in section 6.1.1. To simplify and summarize the results for
all households, a qualitative cost reduction classification shown in Table 5.9 is used.

Table 5.9: Qualitative cost savings classification with description for goal set point operation for
price-based algorithms A-G [30]

Algorithm Goal Set Point Operation Cost Savings
A (Max. Price + Min. Price)/2 +
B Average Price +
C Average Price +
D Minimum Price ++
E Average Price +
F Minimum Price ++
G Never 0

++ highest; + high; 0 none; - lower; -- lowest;

Second, the PV-power-based simulations are implemented with the following
conditions:

e Used models: Freezer, water heater, simplified space heating, basic BESS,
PV-system pattern, and thermal and electrical patterns for household i-vii

e Simulation time is 1 week with a time step of 5 min

e  PV-power-based algorithms A-G and the FSP control are implemented

e Asinsection 5.3, the simulation searches for the minimum BESS capacity for
stable 1 week operation of the microgrid

Additional information about the simulations has been published in [29]. As a reference,
the minimum BESS capacities for the households with a FSP control are shown in Table
5.10. The households with more occupants, and consequently a higher electricity
consumption, need a larger BESS capacity, even though they are living in the same
physical object. In comparison, the relative minimum BESS changes for each household
and algorithm are presented in Figure 5.22.

Table 5.10: Minimum battery storage capacities for households i-viii with a fixed set point control
[29]

Household i ii iii | iv v vi vii viii
Battery Capacity [kWh] 57 13 06 96 08 16.8 13.8 114
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Battery storage capacity change:
Islanded algorithms A-G
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Figure 5.22: Battery capacity differences for islanded algorithms A-G in households i-viii in percent
compared to FSP control [29]

It is significant that the minimum BESS capacity cannot be reduced for all households
with the PV-power-based algorithms. For households iv, vi, vii, and viii, the BESS
capacity must be increased. The same holds for household i with algorithm D or F. Closer
investigations on the households show that those are the households with higher energy
consumptions. Since the simulations are based on the same physical objects, it can be
concluded that the behaviour origins from the PV-system. The PV-system size has been
scaled to the largest household consumption. The PV-power-based algorithms cannot
scale well in this situation as they only work well if the PV-system is over-dimensioned
for the household.

It can be seen as well that algorithms D and F show the worst performance regarding
BESS capacity reduction. This is the opposite behaviour compared to the price-based
algorithms. Since the PV-power-based algorithms are based on the inverted logic of the
price-based algorithms, algorithms D and F can only scale between maximum
consumption and goal set point, as can be seen in Figure 5.18. For household iii, with the
lowest energy consumption, all algorithms work extremely well and achieve BESS capacity
reductions around 50%.

Third, the SOC-based simulations are implemented with the following conditions:

e Used models: Freezer, water heater, simplified space heating, basic BESS,
PV-system pattern, and thermal- and electrical patterns for households i-vii

e Simulation time is 1 week with a time step of 5 min

e SOC-based algorithms H-K and FSP control are implemented

e Asinsection 5.3, the simulation searches for the minimum BESS capacity for
stable 1 week operation of the microgrid

More details about the implementation and results have been published in [29].

The relative minimum BESS changes for each household and algorithm compared to FSP
control shown in Table 5.10 are presented in Figure 5.23.
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Battery storage capacity change:
Islanded algorithms H-K
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Figure 5.23: Battery capacity differences for islanded algorithms H-K in households i-viii in percent
compared to FSP control [29]

It can be observed that no algorithm creates BESS capacity increases for any
households. This is a very positive result regarding the stability and reliability of those
algorithms. It can be seen as well that for households with lower energy consumption
the best results can be achieved. This is related to the PV-system over-sizing, as mentioned
before. A larger PV-system compared to the energy consumption enables more control
freedom for the algorithms. Further, the extremely simple algorithm H shows good
performance for households ii, iii and v. Algorithm K presents good results for all
households and is the most constant overall even though it does not always show the
best result for the household. The BESS capacity reductions that can be achieved are
around 4-70%.

5.5 Conclusions

The modelled and validated storage systems need to be controlled with different control
strategies to achieve certain defined goals. Therefore, different simulations with control
strategies for the storage systems have been developed and tested. The following four
goals for the control strategies were investigated:

1. Increase of islanded operation duration (Security of supply parameter)

2. Increase of the cyclic lifetime of the BESS (Financial parameter)

3. Minimization of energy costs (Financial parameter)

4. Minimization of BESS capacity (Financial and security of supply parameter)

From the cyclic lifetime and security of supply improvement control strategy with the
BESS and FESS, the following main conclusions can be drawn:

e  The BESS cyclic lifetime can be improved by around 19% with a cycle reduction
of 16%.

e The islanded operation time for the microgrid could be improved by up to
50%. This result, however, is not generally applicable, as the FESS managed
to bridge a short power shortage.

e Anincrease of around 3% in the islanded operation time is a general applicable
value.
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The energy cost minimization control strategy for the TESs achieved the following:

The cost reductions are in a range around 5%-30%.

The highest cost reductions could be achieved with algorithms D and F for all
different tested dwelling occupancies.

Comparing the cost reductions between the simplified and a more complex
space heating model showed different results for some algorithms. Thus,
the conclusion from Chapter 4 is confirmed that the simplified model should
only be used for a general investigation and a complex model is needed for
better accuracy and recommendations in a specific case.

With the TESs it was also possible to achieve the minimization of the BESS capacity:

The minimum required BESS capacity for the islanded operation could be
reduced by 10-36%.

The results for the PV-power-based algorithms showed that they seem to
work only with dwelling occupancies where the PV-production is over
dimensioned compared to the household’s energy consumption. This is not
a desirable behaviour.

The SOC-based algorithms showed more stable results with BESS capacity
reductions in all cases around 4-70%.

In this regard, for low-budget upgrades of existing systems, algorithm H can
be recommended as it needs no additional communication, while algorithm
K should be used in all other cases due to the most stable performance.

The results and conclusions from these investigations are used in the next chapter as
a basis for studying user requirements and as input for the financial feasibility analysis.
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6 Analysis of social and financial feasibility

Since the proposed setup is technically feasible, as shown in the previous chapters,
additional investigations are required to cover financially and socially relevant aspects as
well. If a system is not financially feasible, then the interest in the technology will be low
despite its technical feasibility. Additionally, it should be considered whether the system
has the potential to be accepted by the designated users. Therefore, the following
sections will investigate the social acceptability and financial feasibility in more detail.

6.1 Social acceptance analysis

A technology that is not acceptable for the potential customers has a small chance of
widespread use and will stay a niche product [209]. Therefore, an analysis regarding the
social acceptability of the proposed setup has been done. Two main factors were selected
for this investigation: the potential concerns regarding the user comfort interference and
the users’ privacy concerns. If these concerns can be reduced, the technology has a higher
potential for general acceptance.

6.1.1 Concerns regarding user comfort interference

The user comfort is an important acceptance parameter. If the user comfort is reduced,
the technology is unlikely to be adopted. As the state-of-the-art analysis in chapter 2
showed, it is first necessary to define the user comfort for the different devices and
operation modes. Then the limits need to be determined and selected based on certain
standards. Afterwards, additional boundaries for evaluation can be chosen.

For the grid-connected operation, the temperatures of the TESs are the measurements
for user comfort. The control algorithms for the TESs are influencing the temperature set
points of the freezer, water heater and space heating. As mentioned in chapter 5,
maximum and minimum set points for the algorithms can be set. Users can change the
settings in case the standard values are not fitting and out of their comfort range.
Additionally, a preferred goal set point inbetween can be selected. This is especially
important for the space heating control, as people feel comfortable at slightly different
temperatures [210]. The comfort interference for changing the temperature set point of
the freezer and water heater is very low if it is done within reasonable limits. The user
typically cannot determine the difference between 60 or 70 °C hot water temperature,
as it is mixed with cold water during a shower anyway. Similarly, the temperature
difference between -21 and -20°C in the freezer compartment does not cause the frozen
food to go bad immediately.

Revisiting the simulations from section 5.4, the indoor air temperature development
for the different price-based control algorithms during the simulation can be visualized
as shown in Figure 6.1.
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Figure 6.1: Indoor air temperature results for price-based set point calculation algorithms A-G and
a fixed set point for the civil engineering space heating model [57]

As space heating can influence the comfort feeling of humans much easier, a difference
of 1-2 °C can already cause discomfort [210]. The indoor air temperature graphs show a
temperature range of 4 °C. The goal set point selected by the user would be 22 °C,
the same as the FSP control. If 22 °C is the prefect temperature, larger variations from
this value can be considered as a reduced user comfort. In this regard, mean temperature
deviations from this goal set point are considered a large discomfort as well.
The user comfort for the grid-connected system is therefore defined as:
o “More and larger temperature fluctuations and mean temperature
deviations of the room temperature equal less user comfort.”

It can be observed in the figure that algorithms D and F are always below the goal set
point. This creates a large discomfort. Algorithm G is switching between the extreme
values, which is not desirable in terms of user comfort either. Algorithms A, B and C are
fluctuating between the maximum and minimum, creating only a small comfort
reduction compared to an FSP. Algorithm E behaves similarly, but it tends to vary less
than algorithms A, B and C, reducing the user comfort less consequently.

These findings in relation to the cost reductions for each algorithm, as presented in
Chapter 5, are summarized in Table 6.1.

Table 6.1: Cost savings and user comfort classification for price-based algorithms A-G

Algorithm User Comfort Cost Reductions with Detailed Model
A + -

B + -

C + -

D - ++

E +(+) +

F - ++

G - 0

FSP ++ 0

++ highest; + higher; 0 none; - lower; -- lowest;
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The table reveals that algorithms D and F, which provide the highest electricity cost
reductions, create the highest user discomfort. Algorithm G does not show any benefits
over an FSP control. Algorithms A, B and C do not reduce the user comfort significantly,
but do not provide cost savings with space heating either. Algorithm E shows good
performance in cost reductions and additionally has a small impact on the user comfort.
Thus, algorithm E would be the preferred algorithm if the user comfort is prioritized over
cost reductions.

For islanded operation, the thermal user comfort plays a much smaller role, as stable
operation of the microgrid is more important. If the microgrid management cannot
maintain stable operation, it must turn off the energy supply during islanded operation,
which causes a larger discomfort for the user than a temperature deviation. Therefore,
the temperature related user comfort of the islanded set point control algorithms does
not need to be investigated as detailed as for the grid-connected operation. Thus, a
longer islanded operation time and therefore better security of supply is the main
measurement for user comfort in the islanded operation mode.

The user comfort for the islanded operation mode is defined as:

e “Alonger islanded operation duration improves the user comfort more than
fluctuations of the room temperature reduce it as a blackout is a much larger
inconvenience for the user.”

Considering this, it is evident that the FESS and BESS control strategy in section 5.1,
which shows that such a control can prolong the islanded mode operation by 3%-50%,
improves the user comfort significantly by increasing the security of supply. Following
the results presented in section 5.3.2, the performance of the islanded TES control needs
to be evaluated as well. Considering the SOC-based algorithms H and K, it is evident that
the user comfort from the temperature comfort point of view is reduced. However,
the results show that the necessary BESS capacity could be reduced, respectively,
the islanded operation time could be increased with the same BESS capacity. Since this
is more important than the temperature comfort, the overall user comfort for this
control strategy is improved. Thus, the FESS and BESS, and the islanded TES control
strategy should be implemented for improved user comfort in islanded operation mode.
These aspects are summarized in Table 6.2.

Table 6.2: User comfort classification for islanded control strategies

Control Strategy Results Overall User Comfort
Without FESS Rggular Islanded Operation 0

Time

. Increased Islanded Operation

FESS Power Smoothing Time (3%-50%) ++

Optimal Temperature with
TESs: FSP Regular Islanded Operation 0

Time
TESs: SOC-based Rgduced Temperature Comfort

with Increased Islanded +

Algorithm H/K
gorithm H/ Operation Time

++ large increase; + small increase; 0 regular level;
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In Chapter 5, a user comfort scaling factor was introduced for some of the price-based
and islanded algorithms. If the factor is selected higher, the set point variation is more
aggressive, reducing the user comfort. If it is chosen lower than 1, the set point variation
is less aggressive, and the user comfort increases. The results for the investigation of this
user comfort-based scaling show inconclusive results for values larger than 1. The user
comfort gains with values lower than 1 are quite low, while the performance regarding
BESS capacity reduction and cost saving drops sharply. Therefore, the user comfort
scaling factor was set to 1 for all other simulations. The basic control selection
considering the user comfort should be made based on the algorithm. The user comfort
scaling is more suitable for small optimization adjustments in a specific case. The results
for the other user comfort scaling factors compared to a scaling factor of 1 can be
summarized as shown in Table 6.3.

Table 6.3: Relative cost savings with different user comfort scaling factors; Cuser = 2: more
aggressive scaling; Cuser = 0.5: less aggressive scaling

Algorithm type Scalable algorithms Cuser =2 Cuser = 0.5
Price-based A D,F + -
CE - -
PV-power-based A B,CD,EF + -
SOC-based J - -

+ better performance; - worse performance;

As a side aspect of user comfort, it can be noted that the islanded BESS and FESS
control strategy, in combination with the TES control in islanded mode, reduces the size
of the necessary BESS and prolongs its lifetime, as shown in Chapter 5. This increases the
sustainability of such a system because less rare materials need to be used to produce
BESSs in case they are not already in use in the microgrid as a second life. Many users
welcome this higher environmental friendliness and feel more comfortable additionally.

6.1.2 Concerns regarding privacy

Data privacy concerns regarding the proposed system in this work may seem to be
neglectable on first sight if the system is designed for just one household. The whole
control can be implemented in a local home energy management system. Additionally,
traditional, robust algorithms are used for control, which do not collect data.

However, if the system is designed for a multi household building or even multiple
buildings, there will be a dataflow between the households. This can already create
concerns with some users. Multiple buildings can be considered a microgrid if they have
a common point of coupling or are connected on the same feeder. In this case, the local
DSO is already involved in the microgrid design. The next step would be the
interconnection of multiple microgrids to form a so-called smart city. In this case, data
will be transferred across multiple layers, like the already existing AMI. A common AMI
configuration as described in chapter 2 with the AMI surfaces that can lead to privacy
concerns is shown in Figure 6.2. Thus, the scalability of the proposed system can raise
user concerns regarding their privacy.
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Figure 6.2: Common AMI configuration, based on [53]

Another aspect that can create data privacy related concerns is the further
development of such systems. The proposed system is using mostly traditional, robust
control algorithms with a low amount of processed data. As shown in Chapter 2, machine
learning is becoming more common in the microgrid context. Additional data input from
machine learning methods, like PV-power production predictions and load predictions,
can be beneficial for optimizing the control strategies further. For example, model
predictive control or reinforcement learning control can be implemented instead of
traditional algorithms. Most user concerns will be raised in this regard with the analysis
of their load patterns. Non-intrusive load monitoring (NILM) is a technique that is based
on machine learning. It can disaggregate the load profile of a smart meter to learn
switching patterns for single devices. This can be used to determine the users’ behaviours
on the one hand; on the other hand, it is extremely useful to optimize the control of
schedulable devices.

To determine the privacy concerns that could be raised with the proposed system,
the AMI related user concerns were identified in literature. The results can be transferred
to a large-scale version of the proposed system. The identified concerns are shown in
Table 6.4.

Consecutively, asit is a likely that the proposed system will be optimized in future with
predictions, the most concerning technique, NILM, is analysed step by step regarding the
identified concerns. As mentioned in Chapter 2, the used data sets in different NILM
publications are quite large. This means that a lot of training data is used for the machine
learning methods to get good results at accuracy. An overview of the data set sizes is
presented in Table 6.5.
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Table 6.4: Residential user concerns regarding the AMI and ML algorithms [53], [47], [51], [49],

(81], [82], [83], [84], [45], [85]

Concern

Privacy

Price discrimination
Denial of consumer
services

Target to excessive
advertisements
Identification of home
appliances

Exhibition of user
habits and lifestyle
Exhibition of illnesses
and disabilities
Personification of
anonymous data
Cyber Security
Disconnection of home
appliances

Burglary, arson,
vandalism etc.
Attractive target to
burglary

Target to kidnapping

Denial of personal
mobility

Description

Variance in consumer pricing based on consumer profile
Denied access to consumer services due to unsuitable
consumer profile

Increased advertisements, since consumer identified as
target group by consumer profile

Unwanted identification of individual home appliances
through NILM

Exposure of sensitive data regarding consumer habits
through NILM

Exposure of sensitive health data through NILM

The personification of data deemed to be collected
anonymously through ML algorithms

The manipulation of demand response (DR) programs
through the tampering of ML training and input data
Increased threat through occupancy information gained
by NILM

Increased likelihood of burglary due to identification of
attractive appliances through NILM

Possibility to use NILM for identifying persons in
vulnerable situations

The manipulation of DR programs through the tampering
of ML training and input data to deny charging of electric
vehicles

Table 6.5: Overview of training data sets with literature examples [CSW]

Dataset

Pecan Street

REDD

UK-DALE

ECO

BLUED

Challekere Campus
Private Dataset
Private Dataset

Publication

[133], [87], [88]
[88], [115], [90]
[115], [137], [237]
[238], [239]

Duration/Resolution

4 years / 1 minute

2-4 weeks / <=4 seconds
655 days / <=6 seconds
8 months / 1 second

1 week / <=1 seconds [140]
7 days / 2 minutes [139]
1 months / 10 seconds [138]
1 month / 30 minutes [136]

Analysing the sizes of the used data sets and the presented accuracy of the
disaggregation shows that there is a correlation between the data set size and the
accuracy, as with nearly all ML methods. The more data, including additional
measurements, like mentioned in Chapter 2, the better the accuracy of the NILM process.
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This leads to a tendency of using as much data as possible, raising concerns regarding the
users’ privacy.

To complement the analysis, the corresponding legal documents that are relevant in
this regard have been mapped to the identified concerns regarding whether:

e ..thecurrent EU legislation protects the prosumer’s data and privacy rights,
using [240], [241]
e .. the EU regulatory framework addresses the prosumer’s concerns in the

area of cyber-security, using [240], [241], [242], [243]

The results are presented in Table 6.6. It is intended to be used as a tool to guide the
future development of the proposed system and to avoid complications regarding
privacy concerns from a legal and users’ point of view. The tool can be used during the
development of an application that makes use of NILM or operates at any surface of the
AMI to determine cyber-security and data privacy requirements that need to be
prioritized. This is transferrable to the microgrid development as well. A flowchart is
presented in Figure 6.3 to provide an example for the use of the developed tool. More
details were published in [53].

Start

Relevant prosumer
concerns

Relevant GDPR / CIA
Triad articles for
further design

Figure 6.3: Flowchart for the use of the provided tool

Evaluating the proposed and investigated system in this work with the tool showed
no privacy concerns because there is no data stored or analysed with the implemented
control algorithms. However, the cyber-security concerns apply here as in nearly all
cyber-physical systems. As mentioned before, this can change if the system is extended
to multiple households or uses data analysis-based control or prediction methods.
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Table 6.6: Mapping of ML angles via prosumer concerns based on relevance: Technical and legal
views [53]

Prosumer Concerns
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6.2 Financial feasibility analysis

To complement the social and technical analysis, a financial investigation is needed. Even
if a system works technically well and has a general social acceptance, it still needs
financial feasibility to be successful on the market. This investigation is divided into two
parts:
e Ageneral financial analysis of the complete proposed system with BESS, FESS
and TESs
e Additional investigations regarding FESS and the separate influence of each
of the TESs

Based on these two investigations, it is possible to give recommendations about the
microgrid design from the financial point of view.

6.2.1 Financial investigation for the complete proposed system

An important metric from the investment point of view is the time until the invested
money is completely recovered, and the implemented system shows profits compared
to regular operation without the added devices. This return of investment time is the
comparison basis for different control strategies in the grid-connected mode and
should be below 10 years considering the component lifetimes. As mentioned earlier,
the islanded control methods can be applied in the grid-connected operation for
maximum self-consumption as well. The price-based control strategies are relevant for
times when electricity is needed from the main grid. In the first step, the current average
supply interruption times per year should be evaluated to estimate the share of the
islanded operation per year.

The System Average Interruption Duration Index (SAIDI) is the average outage
duration for each customer, measured in minutes per year. The average SAIDI values for
Estonia and Germany for the year 2020 are shown in Table 6.7. As the table shows,
the current supply interruption levels make a very low share of the whole year. Thus,
these interruptions have a neglectable average impact on the financial calculations for
such a system. But supply interruptions can have a very high case specific value, e.g.,
for microgrids with hospitals or other service providers that must not be interrupted at
all.

Table 6.7: Disturbance metrics for DE and EE for 2020 [226], [227]

Country SAIDI 2020 [minutes/year] Share of the year [%]
DE 2.11 0.0004
EE 157.9 0.03

Thus, for the financial analysis, different self-consumption levels will be investigated,
which make use of the described islanded control methods. The system that is investigated
financially consists of all the described components with their related financial aspects.
This includes FESS, BESS, PV-system, and TESs. The different aspects that are relevant for
the financial investigation are listed in Table 6.8.

These aspects include consumption and production values, component dimensioning
values, component costs, installation costs, electricity prices, subsidy rates, and other
values from the technical calculations.
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Table 6.8: Considered aspects for financial analysis of a hybrid storage system for a typical single

family house

Aspect Unit  Single Description / Details
Family
House
Power consumption kWh/ | 3987.97
year
Typical regional solar generation  kWh/ 864 Based on PVGIS [150]
EE kWp
Total generated PV-power per w 819446 24 Sep. of the Laastu Talu OU
day PV-profile
Min. basic required PV-system kWp 4.62
output
Surcharge for losses (25%) kWh/ 997 BESS self-discharge and other
year losses [149]
Power consumption with kWh/ 4985
surcharge year
Min. required PV-system output | kWp 5.77
with surcharge
Required energy generation per | kWh 13.66
day
kW per day kW 819
Power of one PV-module Wp 330 Typical value between 300 Wp
—-400 Wp
Area of one PV-module mn2 2 Typical area of PV-module
Required amount of PV-modules | pcs 17
Required total roof area m~2 29.37
Electricity price DE (2021) EUR/ 0.33  End of 2021 prices [228]
kWh
Electricity price EE (2021) EUR/ 0.14  End of 2021 prices [229]
kWh
BESS capacity kWh 3.88  Example: Kokam
SLPB120255255 [168]
BESS costs per kWh EUR/ 1000 Beginning of 2022 average end-
kWh user price [230]
BESS costs total EUR 3880
FESS capacity kWh 10 Minimum offered by e.g.,
Energiestro [231]
FESS costs per kWh EUR/ 250 2021 Estimation [232], [233]
kWh
FESS costs total EUR 2500
Price of one PV-module EUR 150 Beginning of 2022 average
prices [234]
Price for all PV-modules EUR 2623
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PV-inverter costs EUR 1574  50%-60% of module costs

(Beginning 2022) [235]

Small parts EUR 1000 Cables etc.
Installation and commissioning EUR 900 Medium installation effort [230]
(BESS+FESS+PV-system)
Control system for TESs EUR 100  Small devices, e.g., Raspberry
Pi, Cables, ...
Installation and commissioning EUR 100 Low installation effort
(TESs)
BESS capacity reductions (Max. % 15%  SOC-based Algorithm K;
reduced BESS capacity for new Average for different dwelling
systems) occupancies
BESS capacity reductions % 4% SOC-based Algorithm H;
(Reduced BESS capacity for Average for different dwelling
existing systems) occupancies
Consumption reductions % 4% Price-based Algorithm E;
(Comfort oriented) Average for different dwelling
occupancies
Consumption reductions (Price % 17%  Price-based Algorithm D/F;
oriented) Average for different dwelling
occupancies
Subsidy rate DE EUR/ | 0.0653 Value for 22 April 2022 [236]
kWh
Subsidy rate EE EUR/ @ 0.0537 [237]
kWh
Additional renewable support EUR 0 Programmes are regional and
programmes temporary = Not included

The financial analysis will be carried out for the following cases to compare the main
control strategies during grid-connected operation with differently dimensioned

systems:

Case 1: Typical grid-connected operation with regular dimensioning of
components leads to approx. 38% self-consumption [149].

Case 2: It is assumed that at least 80% self-consumption can be achieved with
BESS in maximum self-consumption operation mode for reduced PV-system
size (like islanded operation).

Case 3: Itis assumed that at least 80% self-consumption can be achieved with
TESs and reduced BESS capacity in maximum self-consumption operation
mode for reduced PV-system size (like islanded operation).

Case 4: It is assumed that the PV-system and BESS are 50% too small to cover
the self-consumption. Additional energy is consumed from the grid.

Case 5: It is assumed that the PV-system and BESS are 50% too small to cover
the self-consumption. The TESs work with price-based control algorithms D/F
for the consumed energy from the grid.
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The benefits for extended islanded operation, which depend on the microgrid
consumers, are not considered, and can be added for each case additionally. These are
reduced loss of revenue due to devices and computers not working and other cases.
Details for the component dimensioning for the cases are shown in Table 6.9.

Table 6.9: Changed aspects for self-consumption cases for financial analysis

Aspect Unit Casel Case2 Case3 Cased4 @ Case>S
Self-consumption rate % 38 80 80 100 100
PV-system output kWp 5.77 2.74 2.74 1.8 1.8
PV-system costs EUR 2623 1200 1200 600 600
BESS capacity kwh  3.88 3.88 3.30 1.6 1.6
BESS costs EUR 3880 3880 3300 1600 1600
Feed-in (Power) perday =W 508057 | 77847 77847 0 0
Feed-in (Energy) per day = Wh 8468 1297 1297 0 0
TES Algorithm - - - K - D/F
Self-consumption w 311389

(Power) per day

Self-consumption Wh 5190

(Energy) per day

To calculate the investment return time, it is necessary to consider the initial
investment cost and the yearly returns, as shown in Table 6.10. The initial investment
costs differ for the 5 presented cases due to the sizing of the BESS and PV-system.
The yearly returns contain the cost savings on electricity that would have to be bought if
there was no self-consumption. This value is smaller if electricity consumption from the
grid was necessary. Additionally, the yearly subsidy for feeding energy into the main grid
is added. These yearly returns depend on the country as the subsidy rates and electricity
prices differ.

The table shows that the investment return for Germany is the best for case 3 at 6
years. This means that the components are sized for a very high self-consumption rate
with as little main grid interaction as possible and optimized self-consumption control
methods for BESS, FESS and TESs. It includes medium investment costs and medium
investment return rates, which is the best compromise based on the German pricing
system. This is a good investment return time as it is smaller than the lifetime of the
installed components. The BESS capacity minimization strategy improves the return of
invest compared to case 2.

For Estonia, case 1 shows the fastest return of investment at 11.8 years. This is due to
the high subsidy rates compared to the electricity prices, where an over-dimensioned
system benefits from selling a lot of energy to the main grid. However, the investment
return time is quite high as it can be longer than the lifetime of the BESS system, which
means additional investments. This will be investigated in more detail in the following
subchapter. Independently, it can be observed from the results for case 2 and 3 that
using the BESS capacity minimization strategy can improve the return of investment
additionally and should therefore be applied to case 1 as well.
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Cases 4 and 5 show the worst investment return times for both countries. Thus,
the system components should rather be over-dimensioned than too small.

Table 6.10: Financial analysis of a hybrid storage system for a single family house

Unit Casel Case2 Case3 Case4 Case>5

Investment costs

Components (BESS, FESS, EUR 11677 9400 8818 6160 6160
PV-system, etc.)

Installation and EUR 1000 1000 1000 1000 1000
commissioning

Sum of investment costs: EUR 12677 10400 @ 9818 7160 7160

Yearly returns:

Consumption cost reduction | EUR 1563 1563 1563 977 1076
DE
Subsidy DE EUR 505 77 77 0 0

Yearly sum of returns DE: EUR 2067 1640 1640 997 1076

Consumption cost reduction | EUR 663 663 663 414 457
EE

Subsidy EE EUR 415 64 64 0 0
Yearly sum of returns EE: EUR 1078 727 727 414 457
Investment return DE Years 6.1 6.3 6.0 7.3 6.7
Investment return EE Years | 11.8 14.3 135 17.3 15.7

As shown in [33], the investment return time can be reduced by up to 50% depending
on the selected components, necessary investment cost and cost reductions for cases
with microgrids or complete settlements. This should be investigated in more detail in
the future work.

6.2.2 Financial investigation regarding flywheel and TESs
This general financial analysis does not provide enough details about the financially related
behaviour of the FESS and each of the TESs separately. To give better recommendations
from the financial point of view, the following aspects are investigated and presented
additionally:
e Investment return time behaviour with and without FESS
e  Financial analysis of the previously mentioned long-term prediction challenges
of space heating
e Consumption cost and BESS investment cost behaviour for each TES
separately

For the first additional financial analysis, it is assumed that the FESS does not
contribute as additional storage or self-consumption device but only supports the
lifetime of the BESS. The investment return-calculations with and without additional FESS
show the results presented in Figure 6.4 for the Estonian case and for the German case.
Based on [33], the BESS has a cyclic lifetime of 4500 cycles according to the datasheet
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[168] or 8.3 years with the proposed microgrid operation. After this time, the BESS needs
to be replaced. This can be increased using an additional FESS by 19% to 9.9 years, using
the calculation method presented in section 5.1. The FESS cyclic lifetime is around 10°
cycles or more with low maintenance costs, as mentioned in chapter 2. Therefore,
the replacement and maintenance costs can be neglected for the FESS for this
calculation. TESs have lifetimes of 10-20 years [164], but this is not considered as the
control does not shorten the lifetime and the device would have to be replaced
independent of the control system. The used investment return times are based on case
3 for DE and case 1 for EE, as these show the lowest investment return periods. Both
cases are recalculated without FESS to obtain the correct investment costs and
investment return times.
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Figure 6.4: Investment return calculations with re-investments for BESS for DE
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Figure 6.5: Investment return calculations with re-investments for BESS for EE

The figures show that from a purely financial point of view, it does not make sense to
include a FESS in the system as the return of investment costs is reached earlier without
FESS in both cases for DE and EE. However, in the case of Estonia, the investment curve
without the FESS nearly crosses the zero-line again after 17 years. The development of
storage system prices could lead to an actual crossing of the zero-line, making a system
with a FESS storage more attractive. The additional benefits for increased islanded
operation time and short-term storage are not taken into account in this financial
investigation.
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As mentioned in section 5.4, the behaviour of space heating can be challenging to
predict regarding the long-term behaviour. The long-term flexibility results presented in
Figure 5.16 show the following:

e The long-term energy consumption for 10 days is at 149 kWh, resulting in
costs of approximately 49€ in DE and 21€ in EE.

e With a higher set point as described, these costs can increase for the same
timeframe by 12%, respectively decrease by 9%, depending on the chosen
time of the changed set point.

e  For the same timeframe, changing the set point to a lower one can increase
the costs by 9%, respectively decrease them by 3%.

This behaviour strengthens the previously mentioned need for detailed models and
predictions of space heating for microgrid simulations for their financially and technically
efficient operation planning, which is recommended for accurate investigations in a specific
case.

To find out the influence of each of the three investigated common household TESs
on the financial investigations, a more detailed analysis of the reduction of consumption
costs and BESS investment costs is shown in Table 6.11. Different algorithms and
household occupancies are considered for averaging the numbers. It can be seen that
the water heater has the biggest share in both cases, followed by space heating with a
significantly smaller share. These modelled shares correspond to the shares presented in
Figure 2.10 well. The share of the freezer is low. Regarding the consumption cost
reductions, the freezer has the highest relative improvement but the impact of space
heating and especially the water heater is much higher in the end due to their
significantly higher price shares. For the case of the BESS capacity, regarding investment
cost reductions, the freezer influence is neglectable while the water heater and space
heating show a similarly high average impact. Thus, it can be concluded that the water
heater and space heating should be prioritized from a financial point of view as they have a
much higher influence on both types of costs.

Table 6.11: Influence on consumption costs and BESS investment for each TES [152], [153], [164]

TES Share of total Average Share of BESS Average
price reduction capacity use reduction
potential for potential for
price share BESS capacity
resp. costs
Freezer 2% 10% 1% 0%
Water heater 54% 7% 63% 20%
Space heating = 15% 7% 9% 20%
and cooling

As an example, the consumption costs for space heating are investigated in more
detail to see the influence of the different price-based algorithms on the example
previously shown in section 5.4 and section 6.1. The costs are shown in Table 6.12. In this
case, the price shares are slightly below the average shown in Table 6.11. With these
exact numbers, the recommendation from the financial point of view is to use algorithm
D or F, as indicated in previous chapters. Algorithm E presents less cost reductions but
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achieves around 1/3 of cost reductions compared to algorithm D or F. The other algorithms
are not desirable from a financial point of view.

Table 6.12: Cumulative costs and cost savings for price-based algorithms A-G for an electric heater

[182]

Algorithm

GO Mmoo O W >

FSP

Cumulative Costs [€] Difference compared to FSP Control

8.65 +1.3%
8.56 +0.2%
8.59 +0.6%
7.76 -9.1%
8.27 -3.2%
7.80 -8.7%
8.53 -0.1%
8.54

6.3 Conclusions

Based on the selected, modelled, and validated storage systems, control strategies were
developed and simulated in the previous chapters. Based on the results from the control

strategies,

it could be concluded that the proposed system is technically feasible.

Accordingly, it was necessary to evaluate the social acceptance and financial feasibility
of the system. The user comfort and privacy as social factors were investigated and
different financial analyses were made in this chapter to give recommendations for
choice of a control strategy in different scenarios.

Regarding the user comfort, the following conclusions can be made:

A novel method to evaluate the user comfort for the islanded and the
grid-connected operation was developed. The user comfort definitions are
based on temperature limits, temperature fluctuations, and security of
supply.

Temperatures of TESs can be directly noticed by the users. In this context,
it is most important to investigate space heating as users typically do not
notice smaller temperature deviations in frozen food or hot water supply.
The space heating simulations showed that the algorithms with the highest
cost reductions using price-based control, algorithm D and F, show the lowest
user comfort levels. These algorithms are recommended from a financial
point of view.

Algorithm E showed moderate cost reductions while maintaining a similar
user comfort level as a FSP control and is therefore the recommendation
from the user comfort point of view.

In temporary islanded mode operation, the user comfort is more determined
by having electricity at all than by discomfort due to temperature deviations.
Therefore, the algorithm with the best performance from the technical point
of view should be recommended, which is algorithm H for low budget
upgrade projects and algorithm K for all other cases, as mentioned in chapter
5.

The FESS control strategy providing 3-50% prolonged islanded operation time
provides increased user comfort in this regard as well.
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Since data collection is becoming more common today, investigations on possible user
concerns regarding their private data are more relevant. Therefore, the AMI infrastructure
was used as an example to analyse the user concerns.

e The concept of NILM has been investigated regarding the privacy concerns,
as this poses the most profound data collection technique. These investigations
showed 13 privacy and cyber-security related concerns of users for different
surfaces of the AMI and applications of NILM.

e The results were mapped to each other in a table, adding the corresponding
GDPR and CIA Triad articles for reference on mitigating the problems from a
legal point of view. This developed table should be used as a novel tool to
evaluate the users’ privacy concerns.

e Based on this tool, the proposed system poses low risk for privacy concerns,
as it is implemented on a household level as shown in the simulations, and
the used algorithms do not collect and store data about the user.

e If the system is expanded to the building, microgrid or even multi-microgrid
level, the data needs to flow through the different levels, as shown in Chapter
2, or if the control algorithms of the proposed system will be optimized with
additional data collection for predictions, the tool needs to be used to design
the system according to the relevant legal norms.

From a financial point of view, to estimate the average necessary yearly islanded
operation time, the SAIDI values for Germany and Estonia are used. Since the interruption
times are multiple magnitudes below 1%, there is no need to separately investigate the
islanded operation mode financially. Instead, the islanded control strategies are used for
maximum self-consumption in the grid-connected mode. Therefore, five different cases
were defined to represent different self-consumption and component dimensioning
situations:

e Case 1: Over-dimensioning of components with 38% self-consumption

e Case 2: Reduced PV-system size with 80% self-consumption

e C(Case 3: Reduced PV-system and BESS size with 80% self-consumption

e Case 4: PV-system and BESS are 50% under-dimensioned leading to
electricity consumption costs

e (Case 5: PV-system and BESS are 50% under-dimensioned with price-based
control algorithms for reduced electricity consumption costs

Considering the investment costs and investment returns for a system with all
components, the different cases showed the following results:

e  For Germany, case 3 shows the fastest investment return of 6 years which is
a good overall result as it is well below 10 years. Using the BESS capacity
minimizing control strategy for the TESs reduces the investment return time
compared to case 2 and should therefore be applied in any case.

e Relatively high subsidy rates lead to the best result with case 1 for Estonia
with 11.8 years. Independently, this could be additionally reduced with the
BESS capacity minimizing control strategy.

e The result of 11.8 years is too high as this exceeds the lifetime of some
components, which leads to re-investments and therefore even longer
investment return times. It should be below 10 years.
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Cases 4 and 5 have the slowest return rates. Thus, the components should be
rather over-dimensioned than under-dimensioned.

From a purely financial point of view, it is not recommended to use a FESS in the
system as the investment return rate is longer for the DE and EE case. Without a FESS,
the EE case manages to stay with re-investments below the maximum acceptable
investment return time of 15 years. Depending on the development of storage prices, a
system with a FESS might lead to a faster investment return in Estonia.

Investigating each TES financially showed the following:

The space heating model must be very detailed as the previously mentioned
prediction challenges can lead to strong undesirable financial differences.
The freezer has a low influence as a TES from a financial point of view. This is
valid for the energy consumption price reduction as well as the BESS
investment cost reduction.

Water heater and space heating have a much higher financial influence as
TESs and should therefore be preferred. This is valid for the energy
consumption price reduction as well as the BESS investment cost reduction.
Algorithm D and F show the highest energy consumption price reductions as
mentioned previously. The comfort-oriented control algorithm E shows
about 1/3 of these cost reductions while the other algorithms are not
desirable at all.

As an overview, a decision tree based on these financial investigation conclusions, is
shown in Figure 6.6.
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Figure 6.6: Investment-based decision tree

In the following chapter, these conclusions can be used in combination with the
findings from the previous chapters, to give comprehensive recommendations to
microgrid designers, microgrid and building managers, and homeowners regarding the
development of new and existing microgrid systems.
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7 Conclusions, recommendations and future work

Based on a state-of-the-art review, a microgrid system topology was proposed to
improve the security of supply and financial feasibility for the users. This system consists
of a BESS, FESS, and nZEBs with PV-systems and common household TESs. The proposed
system with the simulation framework is depicted in Figure 7.1.

PROPOSED MICROGRID TOPOLOGY FOR INVESTIGATION

SIMULATION-
FRAMEWORK

LOAD + PV-SYSTEM + THERMAL STORAGES

BESS IIII y Ar/%\\;é

% pcc/
acerip | switen
| nZEB2

I FESS

Figure 7.1: Proposed microgrid topology with simulation framework

The thermal and electrical load patterns and the PV-system could be modelled as
measured and artificially generated profiles. The BESS, FESS and TESs were modelled as
object models. These models were simplified to a reasonable level for microgrid
simulations, as e.g., detailed chemical or cell controller research for BESS is out of the
scope of this work. For most models, the set mean power error limit of 10%, respectively
12% for complex models, could be achieved during the object model validation.
The simplified space heating model could not reach the target and a second modelling
methodology was developed for a more accurate NN-based space heating model.
The improvements of the different modelling are presented in the next subchapter in
more detail.

For these validated models, different control strategies with different aims were
developed and simulated. An overview is shown in Table 7.1. For these different control
strategies, various control algorithms were researched, developed, and tested with
different scenarios. This investigation includes the technical performance as well as a
consideration of the user comfort and financial aspects. Relevant conclusions are shown
in section 7.2.

The complete technical investigation with social acceptance and financial feasibility
analyses was developed to give comprehensive recommendations to microgrid planners,
building and dwelling owners. Optimal solutions from each of those three viewpoints and
the overall recommendations are presented in section 7.3.

Lastly, recommendations for future work are described in section 7.4.
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Table 7.1: Devices used in software simulations with time steps and control aim

Object Models At Control aim

oFESS 1s ePower smoothing

oFESS Imin | eBESS lifetime improvement

oBESS elslanded operation duration increase
eFreezer 5min | eCost reduction

e\Water heater eMinimum BESS capacity reduction
oSimplified space heating

oFreezer 5min | eInfluence of occupancy

eWater heater
oSimplified space heating
eDifferent occupancy profiles

oSimplified space heating 1Imin | eInfluence of complex space heating models
oCivil engineering space

heating

oNN-based space heating Imin | eInfluence of complex space heating models

7.1 Modelling techniques for space heating

Space heating models for buildings are quite complex and time consuming to create. Civil
engineers are dedicated to developing detailed thermal models of buildings with a high
level of detail and complexity, using their own special software tools. These tools have
limit capabilities regarding electrical engineering control strategies. Integrating space
heating into electrical microgrid simulations turns into an interdisciplinary challenge,
where the most useful modelling technique needs to be determined for the intended
application. Three categories of modelling techniques could be identified in literature:
e Complex thermal models with limited electrical and control engineering
capabilities from the civil engineering domain
e Complex control strategies with strongly simplified thermal models for the
electrical power engineering domain
e Co-simulations with detailed thermal and control models but compatibility
problems and computational overhead

As this work is placed in the field of electrical power engineering, the first investigated
model was a simplified thermal model that uses linearized approximations for
temperature changes. Validating the accuracy of this model showed that the errors
introduced by such a simplified model were 3.3% higher than the set error limits for the
intended use in a microgrid simulation. However, such a model proved to be quick to
calculate, which is useful for repeated control optimization simulations typically used in
microgrid simulations. Second, co-simulations with a civil engineering model were
investigated. The advantage is good accuracy, however, there are compatibility problems
with time step width and communication combined with a high computational burden.
Thus, on the other hand, there is a need for a different modelling method that is accurate
enough for microgrid simulations, on the other hand, higher compatibility and lower
computational power than the existing methods can provide are required.

For the proposed novel ML-based model in this work, the following methodology was
developed:
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1. Apre-validated civil engineering model is used to create comprehensive data
sets that include all necessary information.

2. Thedatasets are pre-processed to fit the needs for the ML training algorithm.

3. Training parameters are chosen and optimized to avoid over- and
underfitting of the model.

4. The NN is trained with the pre-processed data.

5. The obtained NN object can be transformed into a function in Matlab, which
can be used as a space heating object model in microgrid simulations.

This methodology could reduce the active modelling and development time and effort
for a detailed space heating object in electrical engineering software by around 90% from
more than 100 hours to 8 hours. An overview of all three different space heating
modelling methods discussed in this work is shown in Figure 7.2.
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Figure 7.2: Comparison of space heating modelling and simulation

A disadvantage of the NN-based model is that the pre-simulation with the civil
engineering model and pre-training of the algorithm are necessary. This is a
time-consuming process (c.f. Table 4.14). However, the pre-simulation and pre-training
are only necessary once. Since there are typically multiple runs for microgrid simulations
for control optimization purposes, these one-time pre-calculations have a much lower
weight than the repeated high computation effort for every run of a co-simulation.
Further, the NN-based model cannot be more accurate than the civil engineering model
it is based on.

As an advantage, the NN-based model can be calculated as fast as the simplified model
during microgrid simulation and 85% faster compared to a very slow co-simulation
(c.f. Table 4.14). Simultaneously, the model shows a more than 5% higher accuracy than
the simplified model (c.f. Table 4.10).

Thus, comparisons show that the proposed NN-based model is the best compromise
of accuracy, calculation speed and compatibility. It achieves an error of less than 12%,
which was the set goal accuracy for such a complex model. Simulations with the
simplified and more detailed space heating model showed that the model accuracy
can have an influence on the control algorithm results. This is due to the high complexity
of building thermal dynamics where small changes can show their influences later.
This strengthens the necessity for the more accurate and quickly calculated NN-based
space heating model further.
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7.2 Control algorithm selection in different scenarios

The developed and validated models for the proposed system were simulated with
different control strategies for different scenarios. These scenarios have been
investigated from a technical, social, and financial point of view. The conclusions from
the respective chapters are connected and summarized in the following.

The occupancy of a dwelling can change due to, for example, a landlord renting out
an apartment to a different demographic group. The investigation showed that even with
different occupancies, there are specific algorithms for the TESs that seem to be
generally working better in all cases. For a price-based control situation, algorithms D
and F are providing the best cost reductions. However, if the user comfort is the main
priority, then algorithm E is the preferred solution for space heating, as it keeps the room
temperature within more comfortable limits. In the islanded control scenario, which is
also valid as a maximum self-consumption scenario in the grid-connected mode,
the PV-power based algorithms could not be recommended in general as they did not
show good results with households where the PV-system was not over-sized. However,
from the SOC-based control algorithms, algorithm K can be recommended for all
households, especially if it isimplemented in a new microgrid, where some communication
infrastructure can be added in the design stage. For existing microgrids, algorithm H
without communication needs is better suitable from an investment point of view. This
is valid for all TESs. Connecting these findings leads to the following decision tree
(c.f. Figure 7.3), which can be used for recommendations.
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Figure 7.3: User comfort-based decision tree for TES control algorithms

7.3 Recommendations for microgrid designers, building and dwelling
owners

To give suitable recommendations to microgrid designers, building and dwelling owners,
it is necessary to analyse all the conclusions from the technical, social, and financial
investigations. Based on this, it is possible to draw overall conclusions and formulate
recommendations. For a better overview and understanding, the recommended
decisions are visualized using a decision tree. This complete decision tree for the
selection of the components and control strategies is shown in Figure 7.4. As mentioned,
this decision tree is based on the conclusions and recommendations developed on the
proposed system in this work. The recommendations can be transferred to design or
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upgrade a microgrid, a smart building or a dwelling. Some additional remarks regarding
the three main branches of the decision tree are the following:

e The BESS and PV-system sizing is based on the financial conclusions presented
in Figure 6.6. As shown in section 5.4, the occupancy of an apartment
influences the sizing of components as well because the islanded control
algorithms for TESs work more effectively with an over-sized PV-system.
This means an additional benefit for case 1.

e With the TESs, it is required to determine whether a new microgrid is
designed or an existing one is upgraded to select an islanded control strategy.
Algorithm K shows better performance but needs some communication with
the BESS, while algorithm H does not need additional communication, thus
no additional investment.

e Adding a FESS to the system as proposed will improve the user comfort in the
islanded mode additionally, as the islanded operation time is improved by
3-50%. This can be of additional financial interest in microgrids where the
power supply must never be interrupted.
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Figure 7.4: Complete decision tree based on technical, financial and comfort decisions
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For further development of this decision tree and applying the findings to extended
systems, it is recommended to assess first the legal dimension with the provided tool
(c.f. Table 6.6). Figure 7.5 shows the recommended approach in a simplified way:

If data driven control strategies are implemented in the system, the legal
norms should be assessed based on the provided tool.

If the proposed system is extended to the building, microgrid or smart city
level, the legal norms should be assessed based on the provided tool as well.

e e e e e e e e = e = e = = e = = = = ——

Figure 7.5: User privacy tool use cases

7.4 Future work

To improve the developed models, control strategies and system topology, the following
aspects can be researched and developed further:

In addition to the FESS or as an alternative for the FESS, supercapacitors could
be investigated to optimize the proposed system technically or financially
further.

The developed PHIL-setup should be extended with additional components,
as intended in the initial design. This work has already been started by a
student under the author’s supervision.

The NN-based space heating model should be developed further with
different machine learning techniques to improve the accuracy. In addition,
models for different kinds of buildings, including larger residential buildings,
commercial buildings, etc., should be tested.

As the control strategies for the TESs and FESS are traditional and simple
approaches, they could be improved with reinforcement learning based
control, especially for the design in new microgrids with more
communication and data analysis possibilities.

The financial analysis can be calculated for more countries to provide better
country specific recommendations.

The financial benefits for different specific critical system examples that must
not be interrupted could be calculated to give more specific
recommendations on the financial benefit of the extended islanded
operation time.

The proposed system is investigated and modelled for the size of a single
family house. It should be extended to multi-household buildings, microgrids
or even smart cities to include aggregation challenges and influences. This
includes technical, social, and financial investigations.
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Abstract
Research and development of energy storage control
strategies for residential area microgrids

Due to the rising concerns regarding climate change, there are multiple national and
international agreements to reduce greenhouse gas emissions, e.g., the European Green
Deal. To achieve the goal of these agreements, the share of renewable energy sources
needs to be increased while reducing the dependence on fossil energy sources. This
transition can be accomplished with microgrids as they can balance demand and supply
of renewable generation already locally with demand side management strategies and
storage systems. For such microgrids, the control possibilities for hybrid energy storage
systems, including household appliances as supporting thermal storages, as well as the
related user acceptance and financial feasibility, need additional research, especially for
the islanded operation mode.

Thus, this work aims to research and develop object models with improved accuracy
and control strategies for hybrid energy storage systems to improve supply reliability and
financial feasibility in residential microgrids to provide recommendations for the
development of microgrids.

First, the current state of the art regarding smart grid topologies and components,
including building requirements, storage systems, energy sources, and modelling and
experimental setup design, like machine learning and hardware-in-the-loop-setups, was
investigated.

On these bases, it was possible to improve and develop object models for flywheel
energy storage, battery energy storage, and common household thermal storages,
namely freezer, water heater and space heating. For the space heating model, a novel
neural network-based methodology was developed to compensate either high
computational time or low accuracy of existing modelling techniques.

These models were then validated to ensure good accuracy levels for the microgrid
simulations with error rates for all object models below 12% mean error.

With the validated models, it was possible to develop control strategies for supply
reliability and financial feasibility improvements: The energy costs could be reduced by
more than 10% and the battery storage capacity, representing investment costs, by 4%.
Simultaneously, the battery storage cyclic lifetime could be increased by 19% and the
islanded operation duration as a supply reliability parameter by more than 3%.

Lastly, a social acceptance evaluation methodology and privacy mapping tool were
developed to address the user satisfaction and privacy concerns more effectively and
thereby improve the microgrid development and planning quality. A consecutive
financial analysis showed that the investment return time of the system is 6 years in
Germany and 13 years in Estonia for different component dimensioning strategies.

In conclusion, the set goals were achieved. Based on the technical, social, and financial
feasibility analyses discussed in this thesis it was possible to develop a decision tree as
an applicable guidance tool for recommendations on the design of microgrids to simplify
the work for microgrid planners and designers. The developed solutions will increase the
supply reliability and profitability of microgrids with renewable energy sources and
hybrid energy storage systems and ensure social acceptance in the development of
future microgrids.
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Liihikokkuvote
Energiasalvestite juhtimisstrateegiate uurimine ja
arendamine elamupiirkondade mikrovorkudele

Seoses kliimamuutustega on kasvuhoonegaaside heitkoguste vahendamine jarjest
olulisem, milleks on sélmitud mitmeid riiklikke ja rahvusvahelisi lepinguid, sh Euroopa
roheline kokkulepe. Lepingutes sdtestatud eesmarkide saavutamiseks tuleb suurendada
taastuvate energiaallikate osakaalu, vdahendades samaaegselt sGltuvust fossiilsetest
energiaallikatest. Seda Uleminekut toetavad nutikad mikrovorgud, kus on vdéimalik
juhuslikku taastuvenergia tootmist ja tarbimist tasakaalustada nutikate juhtimise
strateegiate ja salvestussiisteemidega. Selliste mikrovérkude puhul vajavad tdiendavat
uurimist hiibriid-energiasalvestussiisteemide juhtimine sh kodumasinate kui toetavate
soojussalvestite juhtimisvGimalused. Samuti mikrovérkude vaates olulisel koha
kasutajamugavuse hindamine, eriti saartalitluse puhul.

Kédesoleva t66 eesmark on uurida ja arendada tdiustatud objektide mudeleid ja
hibriid-energiasalvestite juhtimisstrateegiaid, et parandada elamupiirkondade
mikrovorkude varustuskindlust ja kulutdhusust. Lisaks analiilisitakse investeeringu-
tasuvust ning I6ppkasutaja privaatsus- ja mugavusndudeid, et tGsta sotsiaalse heakskiidu
taset ja anda soovitusi tulevaste mikrovérkude arendamiseks.

Esmalt viidi 1abi tehnika- ja teadustaseme hetkeolukorra kaardistus tarkvorgu
topoloogiate, komponentide, sh salvestussiisteemide, energiaallikate, objektide
mudelite, masinGppemudelite ja katseseadmete (PHIL) osas, et valjatootada raamistik
edasiste uuringute ja arendust66 jaoks. Anallilisi pGhjal tootati vélja ja taiustati hooratta,
akude ja kodumajapidamistes kasutatavate soojust salvestavate seadmete (stigavkilmik,
veeboiler, ruumikite) mudelid. Naiteks, ruumi kiittemudeli jaoks too6tati valja uudne
narvivorgupdhine metoodika, et kompenseerida olemasolevate modelleerimistehnikate
suurt ajamahukust voi madalat tapsust.

TO0 jargmises etapis mudelid valideeriti, et tagada mikrovGrgu simulatsioonide puhul
soovitud tdpsus ehk keskmine objektimudelite summaarne viga oleks alla 12%.
Valideeritud mudelite abil to6tati valja hiibriidsalvestuslahendusele juhtimisstrateegiad
varustuskindluse ja kulutdhususe parandamiseks, mille tulemusel oli vdimalik vahendada
energiakulusid enam kui 10% ja aku salvestusmahtu 4%. Samaaegselt vdimaldasid
juhtimisstrateegiad pikendada aku salvestamise tsuklilist eluiga 19% ja t66aega enam kui
3%.

TO0 viimases etapis tootati valja sotsiaalse heakskiidu hindamimetoodika, mille abil
saab tGhusamalt arvestada kasutaja rahulolu ja privaatsusprobleemidega ning seeldbi
parandada tulevaste mikrovorkude arendamise ja planeerimise kvaliteeti. Samuti
koostati investeeringu tasuvusanallilis, mis naitas, et slisteemi investeeringu tasuvusaeg
on sOltuvalt erinevate komponentide dimensioneerimisest Saksamaal 6 aastat ja Eestis
13 aastat.

Kokkuvotteks voib oOelda, et pistitatud eesmargid said tdidetud. Doktoritdéos
kasitletud tehniliste lahenduste, sotsiaalsete mdjude ja tasuvuse anallilsi baasil on
loodud mikrovorkude kavandamiseks ja soovituste andmiseks tooriist ehk otsustuspuu,
mis lihtsustab mikrovorkude planeerijate ja projekteerijate t66d. Valjatéétatud
lahendused vbGimaldavad parandada taastuvenergiaallikate  ja habriid-
energiasalvestuslahendustega mikrovdrkude varustuskindlust, tasuvust ning tagada
sotsiaalne heakskiit tulevaste mikrovérkude arendamisel.
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ARTICLE INFO ABSTRACT

Keywords: Balancing the energy production and consumption is a huge challenge for future smart grids. In this context,
MaChifle learning many demand-side management programs are being developed to achieve flexibility from different loads like
}Iw:deh“g e load space heating. As space heating models for flexibility simulations are an interdisciplinary field of work, complex
Mi::;m;?;atlc o2 civil engineering thermal models need to be combined with complex electrical engineering control simulations in
nZEB & different software frameworks. Traditionally used methods have shortcomings in one of those two domains as the
Smart city publications that provide complex control strategies for demand response are lacking complex thermal models

and vice versa. Co-simulations overcome this problem but are computationally expensive and have compatibility
limitations. Thus, the aim of this work is to develop a methodology for designing space heating/cooling models,
intended for positive energy district- or smart city simulations, which provide high accuracy at low computa-
tional expense. This could be achieved by synthesizing neural network object models from IDA-ICE civil engi-
neering models in Matlab. These machine learning models showed improvements of more than 30% in different
error metrics and a simulation time reduction of more than 80% compared to other methods, making them

suitable for use in microgrid simulations, including flexibility analyses.

1. Introduction

In recent years, the share of renewable energy production has been
increasing worldwide. This is a great development in terms of sustain-
ability and environmental friendliness. Nevertheless, a higher share of
renewables, which typically have a volatile and hardly predictable en-
ergy generation, leads to various challenges for grid operators as the
operational complexity increases [1]. Even with accurate production
predictions for photovoltaics (PV) or wind power systems [2], their
maximum production cannot be increased during high demand and vice
versa it would be a waste of energy to reduce their electricity production
if the demand is low.

Thus, it is necessary to extend the traditional balancing approach of
variable energy production to smart grids [3] with storage systems, like
battery storage systems (BESS) [4] or thermal storage systems [5], in
combination with demand-side management (DSM) applications [6], to
have a variable consumption as well [7]. All these DSM programs can be

used in future smart cities to achieve higher flexibility [8] of the system.
There are many devices in the residential sector, which can be controlled
in a DSM manner, like dishwashers, washing machines [9], water
heaters [10], or freezers [11]. More complicated to model, are heating,
ventilation, and air conditioning (HVAC) systems [12,13]. Since these
systems are relevant in the residential, commercial and industrial sec-
tors, they are amongst the biggest consumers of indoor electricity in the
EU [14], making them interesting investigation objects for DSM and
flexibility concepts. Modeling these systems is an interdisciplinary
approach, thus, there are typically 3 different kinds of models: Complex
control models with simplified thermal models, complex thermal models
with simple control strategies, or co-simulation between different
modeling software.

Complex Control Strategies: Several publications with simplified
thermal models for heating demand estimation can be found in litera-
ture, like [15], where the authors use a minimalistic model of space
heating. It is assumed to be a certain percentage of the overall energy
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consumption, and based on that, a price-based control strategy is pro-
posed. A multi-agent system with a simple aggregated model of the
space heating/cooling is used in Ref. [16] to show DSM strategies. In
Ref. [17] price-based control algorithms are shown depending on the
occupancy in the rooms. Nevertheless, the used thermal model is very
simplified. Similarly, in Ref. [18] a DSM approach for assessing the
flexibility of heat pumps is shown with simple thermal models for the
houses and heat pumps. Additionally [19], shows, that such DSM stra-
tegies are not limited to grid-connected systems but can be utilized in
(temporarily) islanded microgrids as well. The proposed thermal models
are simplified temperature-difference-based models.

Complex Thermal Models: Other papers present quite accurate
thermal models, but do not take into account the electrical control
strategies or only in a limited way. The authors of [20] for example have
a linear time-series model based on historical measurement data. This
model is computationally quite inexpensive and shows good results, but
there are no considerations about possible control strategies for DSM.
Similarly, authors of other publications, like [21], do not consider DSM
methods at all but can present very detailed thermal models. A very
detailed heat pump model is presented in Ref. [22], but the proposed
control strategies are quite simple and do not provide the full flexibility
potential, which could be achieved. The authors of [23] present detailed
thermal models of buildings. The proposed DSM control strategies
however are limited to a simple pre-charging of thermal storages for
expected peaks and do not show the anticipated results for peak
reduction without additional constraints. Similarly in Ref. [24] the
thermal model is quite accurate, but the control is quite static as it is
based on a day-ahead price pattern.

Co-Simulation: Another possibility to enable the simulation of
complex DSM control strategies with complex thermal models is the
application of co-simulation software. Civil engineering software often
does not provide sufficient tools to create a complex DSM control and
electrical engineering software has only limited capabilities for thermal
models, respectively, implementation of such is very time-consuming in
both cases. Thus, co-simulation is a viable solution to bring both simu-
lations together [25] and use the complexity and detail of each simu-
lator. One way for co-simulation is the functional mock-up interface
(FMI) or functional mock-up units (FMU) that are supported by some
simulators like Matlab or Python, like shown in Ref. [26]. Similarly, this
is presented in Ref. [27], where the building is modelled in EnergyPlus
and the control is modelled in Modelica. The building model and control
are connected in Ref. [28] with the SimAPI software platform to enable
co-simulation. A good overview of co-simulation is presented in
Ref. [29], where fundamental disadvantages of co-simulation, slow
speed and limited compatibility, are shown, which apply to the
above-mentioned publications [25-28] as well:

Additional overhead for coordinating and synchronizing
Initialization of some simulators for each macro time step
Limited communication and data exchange between simulators
Complicated implementation in real-time simulations

Thus, the publications that provide complex control strategies for
demand-side management with space heating/cooling are lacking
complex thermal models and rely on simplified temperature difference
based or aggregated models. Vice versa, articles presenting complex
space heating/cooling models can provide very detailed models in the
thermal domain, but the control strategies are limited to fixed setpoint
control or other simple methods if they are considered at all. In the field
of co-simulation, there are other limitations, like connection, commu-
nication, and compatibility issues. A communications overhead can slow
those simulations down as well.

Another trend in the field of smart grids apart from flexibility anal-
ysis is the use of machine learning methods due to the increasing number
of smart meters and their collected data. An overview of the different
possible applications of machine learning in smart grids is given in
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Ref. [30]. A very popular application is the forecasting of residential
loads, like shown in Ref. [31], often in the context of flexibility con-
siderations [32] or load modeling [33]. The second important applica-
tion is control, e.g. energy management in general [34], power flow
control [35], or bidding strategies [36]. But modeling a space heating
object with machine learning algorithms for DSM simulations has not
been researched in detail yet.

Considering this, the aim of this work is to develop a methodology
for designing space heating/cooling models, with high accuracy at low
computational expense which can be used for smart city simulations.
The novel proposed method for creating a space heating model in
electrical engineering software presented in Section 2 in this work is the
following: Since detailed measurement data, like in Ref. [37], is often
not available, simulation data from accurate models, like [21], is used
for training of a neural network (NN) to create an object model of space
heating. This pre-trained model is more accurate than a simplified
thermal model and can be calculated multiple times faster in a smart
grid simulation than a co-simulation, while providing a similar level of
complexity within its defined framework. An additional benefit is the
integration of the model into e.g. real-time simulations [38] without
additional changes to the Matlab model.

2. Material and methods

The final aim of the work is to develop a methodology for designing
space heating/cooling models intended for smart grid simulations,
which provide high accuracy and compatibility while being computa-
tionally light. This can be achieved by using a machine learning algo-
rithm to synthesize a space heating model from simulation data of an
accurate, pre-validated civil engineering model. Different time series
and machine learning-based algorithms, like multivariate adaptive
regression splines (MARS), linear regression, NN or gene expression
programming (GEP), could be used for this purpose, which will show
minor differences in their performance. Of those algorithms, the NN has
been selected to show the major differences in performance of this novel
modeling method compared to a simple white box model and co-
simulation because it is a commonly used algorithm. These NN-based
models can include rooms, apartments, or whole buildings for micro-
grid simulations using complex civil engineering models as a basis. To
achieve this, the following approach is taken in this work:

e In Section 2.1, the first stage of the approach is described. A suitable,
existing thermal model of a room, apartment or building, which can

Thermal Simulation of a
Room/Apartment/Building

Simulation Dataset

Machine Learning with
Neural Network

Optimize
Parameters

INTEGRATE

Microgrid Sivmulation for
Flexibility Analyses

Fig. 1. Generalized methodology overview.
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be implemented in any civil engineering software, is used as a
starting point to create datasets (c.f. Fig. 1: S I-a). In this case, the
room and building models are built in IDA ICE 4.8. SP1, Expert
edition [39]. It is a validated building energy simulation software
[40,41] using a numerical solver with a changing time step [42]. The
created datasets need to include all possible environmental in-
fluences to enable the development of a comprehensive machine
learning model. A suitable time step needs to be chosen for the data
as well as a general supported file format of the dataset. The datasets
can then be used as the input data for the training of the machine
learning algorithm (c.f. Fig. 1: S I-b).

The second stage (c.f. Fig. 1: SII), which is described in Section 2.2, is
the training and optimization of the neural network model. For
creating a neural network model, a suitable and commonly used
software in electrical engineering, like Python, could be used. In this
case, Matlab R2019a [43] with the Deep Learning [44] and Parallel
Computing [45] toolboxes is selected for the machine learning model
and microgrid simulation. Using the datasets from the first stage as
input for training, cross-validation, and test, it is possible to see the
accuracy of the created machine learning model. If the accuracy is
not high enough, then the parameters for the neural network can be
changed to optimize the model. If the accuracy is good, then the
machine learning model can be converted to a function and it be
integrated into an electrical microgrid simulation.

The generalized overview of the methodology is given in Fig. 1.
2.1. Creation of datasets with thermal models in IDA ICE software

The documentation of IDA ICE shows compliance to CEN standards
EN 15255-2007 and EN 15265-2007 and is validated against several
other standards such as CEN Standard EN 13791 and ASHRAE Standard
140-2004 [46], which is needed as a basis for properly validated civil
engineering models. Different existing and pre-validated IDA-ICE ob-
jects have been used in this work. The first one is a model of a simple
room, which was used to be able to compare it with a simple white-box
model. This white-box model has been developed based on temperature
differences in previous studies [11]. A model of a single-family house,
which represents a typical building in many suburbs, is used to compare
more complex room models of such a house to the model of the simple
room. This small house model is extended with more realistic stochastic
usage profiles to be able to create more comprehensive datasets, which
are necessary for flexibility simulations in Microgrids.

2.1.1. Simple room model

As the first civil engineering model, a simple room model was chosen
for representing a room of an apartment building or a private house. This
room model has been previously described and validated in two con-
ference papers [47,48].

An electric radiator of 400 W heats the room. The radiator has been
sized according to the Estonian heating design standard [49], with an
added 20% power for a safety margin. A thermostat with +1 °C
dead-band controls the radiator valve to maintain a constant air tem-
perature setpoint of 21 °C. The building has balanced mechanical heat
recovery ventilation, which is practically compulsory in new buildings
in Estonia to meet the energy performance requirements. The room
usage profiles (schedules for appliances, lights, and people) have been
modelled as foreseen for energy calculation of the apartment buildings
by the Estonian law [50].

2.1.2. Small house model

The house model represents a small single-family home with one
floor and a detached roof. This is one of the sample houses used for
redefining the cost-optimality level of nearly zero energy buildings
(nZEBs) for new residential buildings in Estonia [51]. The model has
been validated for the sample project and the documentation of the
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project is available online [52-56]. The building and its model have
been developed, validated and used by Simson et al. in several previous
studies [57,58]. The 100 m? large ground floor was modelled as 11
thermal zones (c.f. Fig. 2). The rooms have electric underfloor heating
(UFH) with 100 W/m? installed power. The power output of such a
system is several times higher than the needed power, but this is a
common solution as the UFH circuit is installed over the entire floor. The
electric UFH circuits were controlled by thermostats zone by zone. The
upper floor was modelled free-floating i.e. unheated and as one zone. All
rooms except the attic were equipped with balanced heat recovery
ventilation.

2.1.3. Small house model (stochastic)

In the stochastic cases, more realistic usage profiles are generated for
the rooms in the small house model. Stochastic profiles improve the
complexity of the machine learning model as well as providing data for
different setpoint- and temperature levels. This is necessary for simu-
lations with changing setpoints, like flexibility analyses. In the typical
case, the usage schedules were the same as in the simple room, but the
maximum powers were adapted so that the stochastic and typical sce-
narios had an equal annual sum of internal gains.

The occupancy profiles were generated in the ProccS web tool [59]
for a family of 2 adults and one child. This tool has been developed,
tested and validated in a doctoral thesis [60]. The profile generator
assumes that the adults go to work and the child to school/kindergarten
on weekdays [61]. The profiles were generated twice and used the
bathroom profile from the second run for the WC and the profile of the
living room for the office. This can result in up to five people in the
house, but this can be even more realistic considering guests. Rooms that
are not often used (laundry room, technical room, corridor, hall) have
no occupancy.

The lights are switched on when people are in the room and the
direct solar radiation outdoors is less than 150 W/m? on a plane normal
to solar rays. In bedrooms, additional off-times for lights were defined.
For the master bedroom, this is 12 p.m. to 6 a.m. and for the child
bedroom, it is 9.30 p.m. to 7 a.m. In the rooms that would not be used
often, standard light profiles were applied as in simple test room energy
calculation [50]. Standard profiles and powers were used for appliances
the same way as in the typical case for all rooms.

Room temperature setpoints were varied according to typical usage.
The setpoint was at 22 °C on weekdays from 6 to 8 a.m. and 5-9 p.m. and
on weekends from 8 a.m. to 10 p.m. At other times, the setpoint was set
to 18 °C to include nighttime temperature reductions for sleeping
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Fig. 2. Floor plan of the small house, doors are denoted with yellow, windows
with blue color, floor area of each room is noted, master bedroom geometry is
similar to the simple room model. (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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comfort and energy saving.

2.1.4. Creation of comprehensive datasets

To create a machine learning model in Matlab, a suitable dataset for
the training of the algorithm is necessary. Therefore, simulations with
each of the models, a simple room, a small house, and a small house
(stochastic) model, are conducted. To get a suitable amount of training
data, the simulation period is 1 year with a 1-min output time step. Since
the time constant for space heating systems is typically quite large, the 1-
min time step is sufficiently small to cover the dynamics of the heating
system. The period of 1 year ensures, that all the different environmental
situations are covered in the training data. This means cold temperatures
in winter, high temperatures in summer, day and night cycles, different
wind and irradiation conditions, heating/standby cycles of the heating
system, different occupancy situations, etc. are included. The relevant
variables for each of the models are presented in Table 1. For the small
house model and the small house (stochastic) model, only the 7 relevant
rooms (c.f. Table 6) with occupancy profiles are included. The other
rooms can be omitted to reduce the training time, as these rooms are
typically not occupied or actively heated in most households. Thus, they
do not have an active energy consumption for heating and their internal
influence on the other rooms will be automatically included in the
machine learning model.

2.2. Development of space heating models based on neural networks

In this section, the different developed machine learning models are
described. As the datasets from the simple room and the small house
model only contain data with a fixed setpoint, the resulting machine
learning models will also just represent this fixed setpoint and are
therefore just suitable for validation and error comparison purposes. In a
flexibility analysis, it is necessary to change the setpoint. This is possible
with the small house (stochastic) model dataset, as it contains data with
changing setpoints. The neural network model can learn the setpoint
changes as well as different setpoint- and indoor air temperature levels.
These small house (stochastic) machine learning models can be used in
microgrid simulations for flexibility analyses. The flowchart for the
whole process is shown in Fig. 3.

2.2.1. Proposed dataset pre-processing

To have suitable data for the training of the NNs, it is necessary to
import and pre-process the data stored in the IDA ICE simulation output
files and the weather-data file, which was used for the previous simu-
lations. The variables are shown in Table 1.

Table 1
Relevant variables for the machine learning model creation for each model, that
were logged in the dataset creation simulations.

General variables

e Dry-bulb temperature [°C]

e Relative humidity of air [%]

e Direction of wind

o Speed of meteorological wind [m/s]
o Direct normal radiation [W/m?]

o Diffuse radiation on horizontal surface [W/m?]
Room-based variables

e Mean air temperature [°C]

Heating energy [W]"

Ventilation [W]*

Infiltration and openings [W]"
Occupancy (Number of People)
Energy losses [W]*

Internal wall energy exchange [W]"
Equipment heat energy [W]"
Windows and solar gains [W]*
Cooling energy [W]*

Lighting energy [W]"

@ Sensible heat gains/losses.
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Import Simulation Data

I

’ Dataset Pre-Processing |

]

Set Machine Learning Training Parameters

]

‘ Train Neural Network

]

Generate Neural Network Model Function

!

| Test Neural Network Model |

‘ Optimize Training Parameters

Fig. 3. Flowchart for the development of the neural network models.

The temperature difference between the time steps is calculated (1),
which is necessary as the target vector respectively array for training the
machine learning model.

AT(i)=T(i+1) = T(i) (1)

Using: T(i): Mean air temperature of time step I [°C]; T(i + 1): Mean
air temperature of time step i+1 [°C]; and AT(i): Temperature difference
between time step i and i+1 [°C];

Additionally, the weather data needs to be added to the input data
array. After importing the hourly weather data, it is necessary to convert
the data into minute data to fit the time step of the heating-simulation
output files. Therefore, each value is duplicated 59 times to have one
value for each minute. Typically, a linear interpolation would be more
reasonable in this case and lead to better results. However, the model is
supposed to be useable in a real-time prediction context (e.g. 1 min/5
min/15 min ahead prediction) as well, where often hourly weather data
is available. In this case, there won’t be a linear interpolation between
the values and a model already trained with non-interpolated data will
be more suitable. In total, the input array contains the variables shown
in Table 1 and the target vector respectively array contains the tem-
perature differences for training the correct output of the NN. To reduce
the calculation time of the machine learning training, the variables,
which are 0 over the whole dataset, are removed.

The input and target data need to be added for all the rooms, which

Table 2
Selected neural network models.

Model Sub-model Description

Simple room - 1 NN model for the simple room

Small house 1 room 1 NN model for the living room
7 rooms 1 NN model for all 7 rooms
7 rooms, 7 NN models for 7 rooms (1 NN for each
separate room)

Small house 1 room 1 NN model for the living room

(stochastic) 7 rooms 1 NN model for all 7 rooms

7 rooms, 7 NN models for 7 rooms (1 NN for each
separate room)
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are represented by one machine learning model. For the simulations, the
chosen models are shown in Table 2.

As training with machine learning algorithms is more efficient with
normalized data, all the input and target variables are normalized (2),

3).

Xaara (i, k) — p(k)

o(k) @

Xatata, norm (i, k) =

Taara iy 1) — (1)
a(l)

Using: Xdata, norm (1, k): Normalized input data of time step i and vari-
able k; Xyuq(i,k): Input data of time step i and variable k; Tyata, norm (i, 1):
Normalized target data of time step i and variable k; Tyqu(i, I): Target
data of time step i and variable k; y: mean value of variable k resp. 1; and
o: standard deviation of variable k resp. I;

The detailed flowchart for this process is shown in Fig. 4.

Tata, nom (i, 1) = 3

2.2.2. Training of the neural network models
The selected sizes for the two hidden layer networks of the different
models are shown in Table 3 and the selected architecture is shown in

Import Simulation Data

}

Calculate Temperature Differences

l

Sort Data in Array

|

Import Weather Data

}

Process to 1min Data

!

Add Weather Data to Data Array

|

Normalize Data in Array

Fig. 4. Flowchart for dataset pre-processing.
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Fig. 5 on the example of the 1-room model of the small house (sto-
chastic). These values have been found with a structured optimization
and showed good results for the different models (c.f. Section 3): The
best starting point for finding the optimum number of neurons is chosen
as 2/3 the size of the input layer for the first hidden layer, and half the
size of the first hidden layer for the second hidden layer. The optimum
number can then be found by decreasing or increasing the number of
neurons slowly and checking if the accuracy of the model improved. If
the model is underfitting with too few neurons, the accuracy will be bad
as it cannot represent the data sufficiently. On the other hand, with an
overfit model, with too many neurons, the accuracy is bad as well,
because the model can only represent the training samples but not the
variations in the cross-validation and test data.

From the input training set, a ratio of 60% for training, 20% for cross-
validation and 20% for testing is selected. Fitting, cross-validation and
prediction tests are done internally within the Matlab training function.
To speed up the training of the machine learning model, GPU computing
is enabled. This only supports the scaled conjugate gradient algorithm
[62] for training. After training is finished the NN is saved as a separate
function, which can be used in other scripts. This function can be
calculated faster by Matlab and has better compatibility for use in
combination with other software, for example in real-time simulations.

2.2.3. Vadlidation of neural network models with test-simulations

To validate the machine learning model, the input data is loaded and
normalized again as described previously. The input dataset for each
time step is sent to the machine learning model to calculate the tem-
perature difference to the next time step (4). This temperature difference
is then added after denormalization to the mean air temperature of the
input data (5) and can be compared to the actual mean air temperature
T(i+1) of the next time step.

AT (1) = NN (Xaatasnorn (i) “

T+ 1)=T(3) + ( (Aiw(n * a) + ,4) (5)

Using: Af"nnm(i): normalized calculated temperature difference be-
tween time step i and i+1 [°C]; NN(): neural network function; T(i + 1):
Calculated mean air temperature for time step i+1 [°C];

Next, this calculated mean air temperature is normalized and re-
places the pre-simulated mean air temperature of time step i+1 in the
input data. Additionally, the same thermostatic 2-step controller like in
the pre-simulations with a+1 °C deadband is implemented to control the
heating of the rooms according to their calculated mean air temperature.
The output of this controller ({0; 1}) multiplied by the maximum
heating energy replaces the heating energy in the input data continu-
ously for each time step. Losses from that heating energy to e.g. the
ground, which never reach the room for heating, are already included in
the machine learning model, as it was trained with such data. This re-
sults in a simple simulation with the same framework as the pre-
simulations with the civil engineering model. Thus, these models can
directly be compared to each other in a quantitative way.

The selected comparison metrics are the following:

e Root mean square error (RMSE) of the mean air temperature (6)
e RMSE of the heating power per square meter (7)

e Mean heating power difference (8)

e Percent of time steps with correctly estimated heating power (9)

RMSE; = ﬂ((T - T)Z) )

Using: y: Mean value; T: Pre-simulated mean air temperature [°C]; T:
Calculated mean air temperature [°C];
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Table 3
Neural network layer sizes for the different models.
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Model Number of rooms Input Variables Neurons Hidden Layer 1 Neurons Hidden Layer 2 Target/Output Variables
Simple room 1 17 10 5 1
Small house 1 17 10 5 1

7 82 70 50 7
Small house (stochastic) 1 17 20 10 1

7 82 90 50 7

Hidden 1 Hidden 2 Output
Input Output
ey 1
20 10 1

Fig. 5. Neural network architecture for the 1-room model of the small house (stochastic).

u((-7))

ARoom

RMSEp = @)

Using: u: Mean value; P: Pre-simulated heating power [W]; P:
Calculated heating power [W]; Aggom: ROOm area [m?];

p MB) 7”(13)*1000/ @
T ’
TSA= u(AP)*100% ©

Using: TSA: time step accuracy; AP(i) = 1if P(i)— P(i) =
0; otherwise 0;

These metrics are compared for all models (simple room, small house
and small house (stochastic)), including their sub-models with the
different numbers of rooms (1 and 7 rooms). Additionally, a simplified
model of the simple room, based on the model in Ref. [11], is added to
the comparison. The temperature difference model can be described

with (10).

T(i+1)=T(i) + Ty(i) — Ten (i) —

Using: Ty: Temperature change due to heating [°Cl; Tyen: Tempera-
ture change due to ventilation [°C]; Tym: Temperature change due to
ambient losses [°C]; T,.: Temperature change due to room occupancy
[°Cl; Troq: Temperature change due to sun irradiation through windows
[*CL;

The calculation of these temperature difference values is shown in
detail in Ref. [11]. The values have been adapted to the same conditions
as the simple room model.

As an additional model quality indicator, an uncertainty analysis was
conducted. For this purpose, multiple simulations like the simulations
described for the evaluation of the error metrics were set up. The total
simulation time for each of the simulations were 10 days with 1min time
steps and for each of the simulations the initial parameters are varied
slightly for all 7 included rooms. This led to a total number of simula-
tions of 1921 with a simulation time of 10 days each. The uncertainty
analysis was carried out for the electrical power consumption of the
space heating model because that is the most relevant parameter for an
electrical power flow simulation. Therefore, the standard deviation be-
tween those 1921 simulations could be obtained and the uncertainty for
the neural network-based models could be calculated with (11):

Ty () + Toce (i) + Traa(i) (10)

standard deviation
Uy = e (1 1)
v/number of simulations

The uncertainty of the Matlab calculation itself can be neglected in

this case, as Matlab calculates with 16 digits, resulting in an additional
uncertainty several magnitudes smaller than the model uncertainty.

2.2.4. Documentation about input and output parameters and data for each
methodology step

All main steps of the methodology process are summarized in Table 4
in chronological order for a 1-room model of the small house (stochas-
tic). The input and output parameters and data are documented in the
table for each step of the proposed method.

3. Results

After training the different machine learning models and sub-models,
it is necessary to evaluate and compare them to estimate their perfor-
mance and errors. Based on this it is possible to select the best model to
use in a microgrid simulation. The uncertainty analysis for the neural
network-based space heating models shows a standard deviation of
1.25%. This corresponds to an uncertainty of 0.03% for these test sim-
ulations, which proves the stability of the proposed modeling method
and the ability to handle small differences within the operational limits
of the model.

3.1. Simple room model

The test simulation with error calculations is carried out for the
simple room model to have quantitative values for comparison with the
simplified model from Ref. [11]. The results of the temperature and
power calculations are shown in Fig. 6 and Fig. 7, and the errors are
shown in Table 5. The temperature and power graphs show good results,
which is confirmed by the error metrics. The time step accuracy (TSA) is
high, which means that the power is calculated correctly for most of the
time steps. The mean power is very close to the actual value with a 2.6%
error. Additionally, it can be seen that the machine learning model is
more accurate than the simplified model from Ref. [11], as all the error
metrics are better for the machine learning model.

3.2. Small house model

The temperature and power graphs for the small house model, 1
room sub-model are shown in Fig. 8 and Fig. 9. The error metrics are
included in Table 5. The living room is chosen, as it is a more complex
and larger room, and the bedroom is similar to the simple room. The
graphs and metrics show, that the models for both rooms of the small
house model show slightly worse performance than the simple room
machine learning model. To be able to compare the two machine
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Table 4
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Input and output documentation for each step of proposed methodology for a 1-room model of the small house (stochastic).

Main methodology process

Input data

Output data

Dataset creation, dataset pre-processing and neural network training
Simulation with civil engineering model & logging of relevant variables

Import dataset of 11 room-based variables

Calculate temperature changes between time steps & add create target
data array

Import weather data, convert it to 1min data & add it to input data array

Normalize data in arrays

Create and train NN

Convert NN-model to function

Validation of neural network models with test simulations

Import dataset of 11 room-based variables

Import weather data, convert it to 1min data & add it to input data array

Normalize data in arrays and remove temperature and power values
Evaluate each row of the input data array (+calculated temperature and

Pre-validated civil engineering model

3 files with 11 room-based variables with
525,600 1min time steps
11x525,600 target data array

1 file with 6 weather data variables with 8760 1h
time steps

11x525,600 input data array

17x525,600 input data array

1x525,600 target data array

17x525,600 normalized input data array
1x525,600 normalized target data array

1 neural network model with 17 inputs, 20
neurons in 1st hidden layer, 10 neurons in 2nd
hidden layer and 1 output

3 files with 11 room-based variables with
525,600 1min time steps

1 file with 6 weather data variables with 8760 1h
time steps

11x525,600 input data array

17x525,600 input data array

15x525,600 input data array

3 files with 11 room-based variables with
525,600 1min time steps

1 file with 6 weather data variables with 8760 1h
time steps

11x525,600 input data array

1x525,600 target data array

17x525,600 input data array

17x525,600 normalized input data array
1x525,600 normalized target data array

1 neural network model with 17 inputs, 20
neurons in 1st hidden layer, 10 neurons in 2nd
hidden layer and 1 output

1 NN-function with 17 input parameters and 1
output parameter

11x525,600 input data array

17x525,600 input data array

15x525,600 normalized input data array
17x525,600 output data array

power values) with the NN-function; calculate temperature and power
values for next time step with output from the previous row
evaluation

Evaluate errors of temperature and power variables in output array
compared to input data array

17x525,600 input data array e 4 error metrics
17x525,600 output data array

learning models directly, the same number of neurons was chosen for
both models (c.f. Table 3). The small house models are more complex
than the small room model and therefore the machine learning model
should have more neurons to efficiently learn from the dataset. The
performance metrics are still sufficient. The TSA is much higher than
with the simplified model and the mean power error is even better than
with the simple room machine learning model. The RMSE for the power
is higher for the small house models than for the simple room model but
better than the simplified model. This results in a higher absolute RMSE
with about the same relative error. The RMSE for the temperature is
twice as high.

The combined 7-room sub-model (c.f. Table 6) seems to have worse
error metrics than the 1-room model in Table 5. This suggests that a
higher number of rooms in one neural network model increases the
complexity and reduces the model accuracy.

Comparing the combined and separate 7-room sub-models for the
small house, the following observations can be made (c.f. Table 6):

e The TSA for the combined model is worse than with separate models

e The mean power error is significantly smaller for the separate models
compared to the combined model

e The RMSE for the power is lower for the separate models

e The RMSE for the temperature seems to be better for the combined
model.

A higher number of rooms as input data increases the complexity that
needs to be learnt by one neural network. This does not only lead to an
increased training time with a significant increase of neurons but also
reduces the overall accuracy of the space heating models of the rooms.

These observations suggest that the use of separate models for the
rooms is preferable, as all metrics for the electrical power are better,
which are more important in a microgrid simulation in the field of
electrical engineering than the exact temperature prediction.

3.3. Small house (stochastic) model

Comparing the small house (stochastic) 1-room sub-model to the
other 1-room models shows a good performance for this machine
learning model (c.f. Table 5). It is evident, that the error metrics are even
better than with the small house model. This is due to the increased
number of neurons that can represent this more complex model (c.f.
Table 3). The TSA is nearly as good as for the simple room machine
learning model and the mean power error is extremely low. The RMSE
for the power is higher for the small house (stochastic) models than for
the simple room model but better than the simplified model and the
small house model. The RMSE temperature value is between the simple
room and the small house model.

Comparing the 1- and 7-room sub-models, the same conclusion as
with the small house model can be drawn. The more rooms are included
in the model, the lower the TSA, mean power error, RMSE for power and
RMSE for temperature. The combined and separate 7-room sub-models
for the small house (stochastic) model show mostly the same behavior as
the corresponding small house models (c.f. Table 7). In the case of the
small house (stochastic) models, all error metrics are better for the
separate models compared to the combined one. Comparing the small
house (stochastic) models with the small house models (c.f. Table 6)
shows, that, apart from the mean power error, all metrics are better. It
can be concluded that the overall results for the small house (stochastic)
are better than for the small house. The selected number of neurons fits
better the selected data than in the case of the small house model. As
mentioned before, only the separate 7-room small house (stochastic)
models can be used for microgrid simulations.

4. Discussion, limitations and future work

The machine learning models themselves are showing good results.
The error metrics that have been presented (c.f. Table 8), clearly show
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Fig. 6. Mean air temperature for simple room model in the test simulation with zoom-in.
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Fig. 7. Power data comparison between pre-simulation data and test simulation for simple room model (Calculated power data is shown in the negative y-direction)

with zoom-in.

an improvement in accuracy for separate neural network models for
each room compared to other methods used in literature. The other
presented methods have been used for microgrid simulations with suf-
ficient accuracy, therefore, the developed neural network models are
suitable for microgrid simulations as well and even provide an
improvement in accuracy. The results for separate models for each room
of a building instead of one large neural network model for all rooms is
preferable as the accuracy is higher and training time resp. need for
computational resources for several small neural networks is less than
for one large neural network model (c.f. Table 8).

However, additional effort is necessary to create training data, train
the neural network models, and test and optimize them until they show
desirable results. This is clearly a disadvantage compared to the simple
models that are presented in other publications, like for example
aggregated models.

On the other hand, the computational effort and time for the
microgrid simulations can be reduced by a lot with the pre-trained
neural network models, as a co-simulation with a detailed thermal
model can take multiple amounts of those resources. This is especially

true if large simulations with multiple buildings and apartments are
done. The computational effort with accurate thermal models can be too
high. Then the neural network models present more accurate results
than aggregated models, while keeping the computational effort on
acceptable levels.

An overview of these advantages and disadvantages for the different
modeling methods is shown in Table 9.

As mentioned before, the presented neural network models have low
error margins. The accuracy compared to the simple model could be
improved by 35-89%, depending on the different error metrics. These
models were based on 1 year of 1-min simulation data. As with all
machine learning algorithms, increasing this amount of data can
improve the accuracy even more, but will as well increase the training
time. Depending on the application, this additional training and accu-
racy might be an advantage. Another advantage is the low runtime
during microgrid simulations. The neural network object models can be
calculated as fast as the simple model. This is a reduction of calculation
time of more than 80% compared to a co-simulation model without
overhead.
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Fig. 8. Mean air temperature for small house bedroom model in the test simulation with zoom-in.
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Table 5
Comparison of errors for all 1-room models.
Model TSA [%] P [%)] RMSE, [ KJ RMSE7 [°C]
m
Simple Room: Simple Model ~ 63.54 8.3 27.63 0.92
[11]
Simple Room: ML Model 98.92 2.6 3.13 0.30
Small House: Living room 95.84 2.1 19.36 2.13
Small House: Bedroom 85.80 0.1 29.56 2.29
Small House (Stochastic): 97.24 0.5 16.61 1.06
Living room
Small House (Stochastic): 97.65 0.7 15.33 0.99

Bedroom

The big disadvantage of the neural network object models is the one-
time dataset creation and pre-training, which amounts to about 62min.
This means that you can only gain a time advantage if you do 4 or more
microgrid simulations with this model compared to a co-simulation
without overhead. But usually, microgrid simulations need to be run

multiple times for control optimizations. The second disadvantage is
that the accuracy is lower than with a co-simulation.

Another limitation of the neural network-based models is the oper-
ational range. The model can only present reliable results within the
limits that it has been trained in. If the model has only been trained with
data for the summer season, then it cannot predict the behavior during
wintertime well. Thus, it is necessary to create suitable training data and
check the training data limits to determine the operational range for the
model.

The quality of the training data is essential for the quality of the
neural network prediction. Thus, to get a good NN-based model, the civil
engineering model needs to be properly pre-validated. The accuracy of
the neural network model is limited by the accuracy of the civil engi-
neering model and software that was used for the dataset creation.

For future work, the NN-based models need to be used in microgrid
and smart city simulations with other devices and different control
strategies, like reinforcement learning, to control the setpoints and do
for example flexibility analyses. Different types of neural networks and
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Table 6
Comparison of errors for combined and separate 7-room sub-models for the small house.
Small house 7 Rooms Living Room Office Kitchen Bedroom Child-Room Bathroom Toilet Average
TSA [%)] Combined 92.75 48.41 92.60 77.59 79.89 84.12 86.26 80.23
Separate 95.84 77.42 93.90 85.80 89.32 88.37 92.05 88.96
P [%] Combined 2.5 8.2 2.5 8.2 3.7 1.2 2.4 4.1
Separate 2.1 0.9 2.3 0.1 0.1 0.3 0.1 0.8
RMSEy [1 Combined 25.55 98.72 29.72 37.13 40.15 30.79 31.25 41.90
m? Separate 19.36 65.31 26.97 29.56 29.25 26.38 23.76 31.51
RMSE7 [°C) Combined 1.23 1.40 1.55 1.59 1.73 1.41 1.27 1.45
Separate 213 2.00 2.45 2.29 1.68 2.31 1.30 2.02
Table 7
Comparison of errors for combined and separate 7-room sub-models for the small house (stochastic).
Small house (stochastic) 7 Rooms Living Room Office Kitchen Bedroom Child-Room Bathroom Toilet Average
TSA [%)] Combined 91.07 92.32 88.37 96.47 91.28 87.30 92.83 91.38
Separate 97.24 93.53 92.75 97.65 96.86 91.59 92.16 94.56
P [%] Combined 22.6 50.5 46.3 59.8 0.2 9.7 121 28.7
Separate 0.5 11.4 0.1 0.7 7.6 3.4 6.1 6.1
RMSEp [K Combined 29.88 24.39 34.10 18.79 29.53 33.74 15.94 26.62
m2 Separate 16.61 10.30 26.92 15.33 17.73 15.25 16.49 16.95
RMSE; [C] Combined 1.45 1.03 1.33 1.26 1.29 0.84 0.78 1.14
Separate 1.06 0.56 1.17 0.99 0.72 0.37 1.27 0.85
Table 8 Table 9
Overview of error metrics for selected presented models. Overview of advantages and disadvantages for different modeling methods.
Model TSA [%] P (%) RMSE {W} RMSE7 [°C] Model Advantages Disadvantages
r 2
i Simplified white- e Fast to calculate during e Lower Accuracy
Simple room [11] 63.54 8.3 27.63 0.92 box model simulation (~3min
Simple room” 98.92 2.6 3.13 0.30 calculation time for
Small house 1 room 85.80 0.1 29.56 2.29 complete small house™)
(bedroom)” e No pre-training
7 rooms 80.23 4.1 41.90 1.45 e Highly compatible (part of
combined” the microgrid simulation)
7 rooms 88.96 0.8 31.51 2.02 Complex white- e Very good accuracy o High computational effort
separate” box models e No pre-training and slow during simulation
Small house 1 room 97.65 0.7 15.33 0.99 with co- (~20min calculation time
(stochastic) ~ (bedroom)* simulation for complete small house)
7 rooms 91.38 28.7 26.62 1.14 e Compatibility problems
combined” between simulators
7 rooms 94.56 6.1 16.93 0.85 Proposed o Fast to calculate during o Pre-training (~6min per
separate” machine simulation (~3min room”) and creation of
learning calculation time for datasets (~20min for

# Neural network model.

other time series and machine learning-based methods, like MARS or
GEP, will show performance differences and should be compared in
future work as well. Additionally, more buildings should be tested with
this modeling approach, including different heating systems like heat
pumps. Since there had to be some simplifications with the internal wall
energy exchange for the simulation, a prediction model based on a
neural network for the internal wall energy exchange should be added
for better accuracy.

5. Conclusions

Space heating is a suitable thermal storage that can be utilized for
flexibility or demand side management strategies. To run microgrid
simulations for these strategies, it is necessary to have accurate and
computationally inexpensive models for space heating. As this is an
interdisciplinary research field, complex models of civil engineering and
electrical engineering need to be brought together from different
simulation software to avoid too many simplifications in space heating
models. As co-simulation is often limited, this paper proposed a new
methodology of using machine learning models to convert the civil en-
gineering models into an electrical simulation framework.

An overview of the advantages and disadvantages of the different

10

based model complete small house”)
Good accuracy within
set limitations

Highly compatible (part
of the microgrid
simulation)

complete small house”)

2 Intel Core i7 4770K CPU; Nvidia GeForce GTX 980Ti GPU.

methods is shown in Table 9. The neural network object model could
improve the accuracy by more than 30% for all presented error metrics
compared to a simple model and reduce the simulation time by more
than 80% compared to a co-simulation without overhead. The big
disadvantage of dataset creation and pre-training is only relevant if less
than 4 microgrid simulations are done with the model.

Including multiple rooms in one neural network showed, that the
accuracy is decreasing with the number of rooms. Therefore, it is
advisable to create one machine learning model for each room of a
building rather than including all the rooms in one large model. Table 8
presents a quantitative overview, showing improvements for the pre-
sented metrics of 3% for the TSA up to 80% for the RMSEp for this
aspect.
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ABSTRACT

The widespread implementation of smart meters (SM) and the
deployment of the advanced metering infrastructure (AMI) provide
large amounts of fine-grained data on prosumers. Machine learning
(ML) algorithms are used in different techniques, e.g. non-intrusive
load monitoring (NILM), to extract useful information from
collected data. However, the use of ML algorithms to gain insight
on prosumer behavior and characteristics raises not only numerous
technical but also legal concerns. This paper maps electricity
prosumer concerns towards the AMI and its ML based analytical
tools in terms of data protection, privacy and cybersecurity and
conducts a legal analysis of the identified prosumer concerns within
the context of the EU regulatory frameworks. By mapping the
concerns referred to in the technical literature, the main aim of the
paper is to provide a legal perspective on those concerns. The
output of this paper is a visual tool in form of a table, meant to guide
prosumers, utility, technology and energy service providers. It
shows the areas that need increased attention when dealing with
specific prosumer concerns as identified in the technical literature.

Keywords
Machine Learning, GDPR, Cybersecurity, EU, Smart City, Smart
Grid

1. INTRODUCTION

Within the context of the Third Energy package and the latest Clean
Energy for all Europeans Package, the EU made the roll out of
smart meters (SM) mandatory to enable residential end-users a
better overview of their energy consumption and raise energy
efficiency [1]. However, the transformation of energy systems
raises various legal concerns, specifically in terms data protection,
privacy and cybersecurity [1]. While the deployment of SM allows
for real-time tracking of individual households’ energy
consumption, it might bear reverse effects on their autonomy and
potentially affect their fundamental rights in the areas of data
protection and privacy.

This is especially evident in applications such as pattern-
recognition and profiling which machine learning (ML) facilitates.
Latest increases in malicious cyber operations by state proxies
against states’ critical infrastructure or “essential services” [2],
which includes electricity grids, pose an additional challenge to the
application of SM.

Smart appliances and home energy management systems (HEMS)
are gaining popularity in smart grids in the EU. Renewable energy
sources of buildings are typically connected to a HEMS, which
shifts the building from a passive role as electricity consumer into
an active role as prosumer [3] [4]. To facilitate prosumer needs for
auxiliary electricity services, the distribution system operator (DSO)
is required to install SM.

Compared to legacy metering equipment, SMs enable improved
measurements at shorter sampling intervals and provide additional
functionality. Along with enhanced data collection and analysis
tools, SMs are part of the advanced metering infrastructure (AMI),
which is an essential component of modern electricity grids and
smart cities. The fine-grained measurements and increased amounts
of data enable the implementation of machine learning (ML) based
analytical tools for various purposes e.g. energy flexibility analysis
[5], non-intrusive load monitoring (NILM) [6] etc.

Although the analysis of AMI data enables efficient optimization
methods, it is also recognized to raise numerous privacy and
security issues [7], [8], [9]. Widespread use of ML algorithms
further increases end-user concerns, since technical publications
about machine learning approaches to NILM, e.g. Factorial Hidden
Markov Models (FHMM) [10] or Neural Networks (NN) [11],
rarely take privacy or cyber security aspects into account. Some
publications even suggest the breach of end-user privacy through
the implementation of additional occupancy monitoring measures
[12].

Against this backdrop, it is identified that there is a need to map
electricity prosumer concerns towards the AMI and its ML based
analytical tools and analyze how these concerns could be addressed
from a legal perspective with a view to raising ethical and legal
awareness about potential pitfalls of ML methods, specifically from
the perspective of accountability for potential data and
cybersecurity breaches. Taking the latest regulatory initiatives of
the EU in the areas of data protection, privacy and cybersecurity
into account, the General Data Protection Regulation (GDPR) in
particular, the paper is predicated on the assumption that the EU’s
approach towards the governance of new technologies such as SM
presents a unique case in addressing these concerns.

Having mapped prosumer concerns towards the AMI, a technical
analysis of the identified prosumer concerns in terms of the ML
based analytical tools is conducted. The concerns identified in the
technical literature are then analyzed from a legal perspective. For



this purpose, pertinent EU legislative frameworks and deliverables
by the European Commission’s Smart Grid Task Force 2 (SGTF)
are consulted [13], [14]. The authors suggest a visual tool in form
of a table to provide guidance to prosumers, utility, technology and
energy service providers for identifying and addressing prosumer
concerns mapped in the technical literature.

The terms prosumer and active customer are applied
interchangeably in this paper. The latter term is defined in
Electricity Directive (ED), Art. 2(8) [15]. This paper treats
prosumers and active customers as a special category of consumers.

The paper is organized as follows: The analysis of general user
concerns for AMI are presented in Section 2. In Section 3 the
technically relevant concerns are identified and then connected to
relevant regulatory frameworks in Section 4. Finally, the
conclusions with general recommendations are presented in
Section 5.

2. Analysis of user concerns for AMI and ML

in general

The AMI is a common application of electricity smart grids, which
spreads across all its fields and domains and integrates relevant
technologies for bidirectional communication between utilities and
prosumers [16], [17], [18], [19], [20]. The AMI provides services
for customers, suppliers and network operators and is used for
automated meter reading, billing, information provision, event
management, device configuration etc. A common configuration of
the AMI is depicted on Figure 1. Common components of the AMI
include SMs, hierarchically disposed communication networks,
Meter Data Management Systems (MDMS) and Head-End
Systems (HES). The HES is a central data system for exchanging
data of various meters in its service area. The communication
network of the AMI is primarily divided into three sections: home
area networks (HAN), wide area networks (WAN), and the utility
network. The MDMSs act as meter data concentrators and as
gateways between the WAN and utility network. SMs are the
coupling points of users into the AMI, which provide enhanced
metering capabilities, data communication and optional auxiliary
functions, e.g. the adjustment of energy use based on cost and

availability [21], [22], [23]. SMs are used to report, measure and
monitor power quality metrics, as well as loading conditions and
power flows, which make them essential operational components
and data sources for analytics.

The availability to utilize ML algorithms on fine-grained data at
different parts of the AMI raises numerous concerns for residential
prosumers. A literature survey was carried out to gain insight into
the concerns of electricity end-users regarding the AMI and ML
based analytical tools and more prominent concerns are outlined in
Table 1. Additional concerns of electricity prosumers, which do not
utilize ML algorithms, include theft of data, eavesdropping, denial
of ICT services, compromise of data integrity, hijacking of home
appliances, energy theft, tampering of SMs and denial of power.

To address individual concerns, it is necessary to identify their
origin. The AMI is a complex technological system, which reveals
several surfaces for intrusion or other forms of cyber-attacks. For
the classification of the origin of prosumer concerns, surfaces for
cyber-attacks in the AMI, identified in [24], are adopted. The
following surfaces of the AMI for cyber-attacks are distinguished
in Table 2.

=
. — HES
e
==
UTILITY
NETWORK

MDMS

Figure 1. Common AMI configuration.

Table 1. Residential prosumer concerns regarding the AMI and ML algorithms [19], [20], [23], [25], [26], [27], [28], [29], [30]

Prosumer concern | Description | 1D

Privacy

Price discrimination Variance in consumer pricing based on consumer profile Pl

Denial of consumer services Denied access to consumer services due to unsuitable consumer profile P2

Target to excessive advertisements Increased advertisements, since consumer identified as target group by consumer profile | P3

Identification of home appliances Unwanted identification of individual home appliances through NILM P4

Exhibition of user habits and lifestyle | Exposure of sensitive data regarding consumer habits through NILM P35

Exhibition of illnesses and disabilities | Exposure of sensitive health data through NILM P6

Personification of anonymous data The personification of data deemed to be collected anonymously through ML algorithms | P7

Cyber Security

Disconnection of home appliances The manipulation of demand response (DR) programs through the tampering of ML Cl
training and input data

Burglary, arson, vandalism etc. Increased threat through occupancy information gained by NILM Cc2

Attractive target to burglary Increased likelihood of burglary due to identification of attractive appliances through C3
NILM

Target to kidnapping Possibility to use NILM for identifying persons in vulnerable situations C4

Denial of personal mobility The manipulation of DR programs through the tampering of ML training and input data | C5
to deny charging of electric vehicles




Table 2. Surfaces of AMI

Abbr. Description

HAN the consumer side of the AMI. A consumer
gateway acts as a bridge between the smart
meter and the consumer’s home devices

SM the primary point of data collection for power
grid energy consumption. Physical access to the
meter is considered a vulnerable attack surface

SM data a hardware computing device aggregating real-

collector time data from multiple smart meters and

(SMDC) providing a data collection and management
point for the utility. An integral part of the
MDMSs

AMI the network along with used communication

comm. interfaces linking the smart meter and the

interfaces SMDCs. The AMI communications network

and exists alongside the power grid and can be

network scaled to serve millions of smart meters

AMI the communication links and protocols utilized

comm. by the AMI

protocols

and

software

HES the AMI management platform at the utility
installation. Provides data warchousing for
collected data and centralized management of
the AMI

An estimation about the relevance of each listed surface regarding
each individual problem is provided in Table 8. To evaluate the user
concerns stemming from increased use of ML algorithms in the
AML, the technical process enabling such actions needs to be
studied.

3. Analysis of technical process of ML in AMI
and identification of related prosumer

concerns
The basic process behind the disaggregation of load patterns from
smart meter data, or NILM, is shown in Table 3.

It is the same for all different proposed ML methods, like FHMMs,
NNs or Support Vector Machines, the main differences can be
found in the amount, resolution and detail of the collected data, the
amount auf auxiliary data measurements of additional information,
and the way the obtained data is intended to be used after the
identification of the loads.

3.1 Differences in data collection

For many publications on NILM different public datasets are used.
A detailed overview of the differences is shown in [31]. Some
publications rely on their own measurement data, which makes
comparisons of the performance more difficult. Table 4 shows an
overview of the used datasets in selected recent publications.

If a typical percentage of 60-70% of the datasets was used for the
training of the ML algorithms, it can be seen from Table 4 that in
most publications the data amount is large. Months and years of
training data with small resolutions of less than Smin, thus high
detail on the time of the energy consumption, are used. Only few
datasets contain less than a month of data and/or a resolution of

more than Smin. It should be noted that none of these technical
papers discuss privacy concerns about the collected data and their
use.

3.2 Additional data acquisition and

additionally proposed features

Some of the recent publications on NILM present the use of some
additional data measurements to improve the disaggregation results.
In [32] an additional voluntary user feedback about the
disaggregated data is added. Authors of [12] propose the use of
cameras, motion sensors and smartphone apps, to track the
occupancy of the household. An additional smartphone application
is developed in [33] to display the results to the prosumers in a
structured way. In [10] a cloud based on-line monitoring approach
is presented. The authors of [34] show a novelty detection function
for their ML method for new appliances. Future research of [35]
includes classifying the prosumer activities for better accuracy and
in [36] the authors’ future goal is to influence the prosumers’
behavior to increase energy efficiency. Privacy and cyber security
are not discussed in any of these publications.

3.3 Comparison based on metrics

Since the metrics for measuring the accuracy of the different NILM
methods is not unified and the publications use different datasets
for training and testing of their proposed methods, direct
comprehensive comparisons can be more difficult. Additionally,
different devices in the datasets result in different accuracies.

Table 3. NILM process stages [37]

Stage Description

Metering Data is collected from smart meters and
sometimes additional measurement
equipment, typically with a low frequency
(including current, voltage and power data)

Event Events are detected within the data sets: e.g.

detection an appliance changed its state

Feature Every appliance has a certain load signature

extraction and features, by which it can be
distinguished from others

Classification | Load identification by a classification
procedure to determine the times or periods a
device was operating

Analysis of Based on the application the NILM-process

classification is used for, the classification can be analyzed

Table 4. Overview of training datasets

Dataset Duration/Resolution | Publication
Pecan Street 4Y/1min [38], [39], [40]
REDD 2-4W/<=4s [10], [36], [40]
UK-DALE 655D/<=6s [35], [41], [10]
ECO 8M/1s [11],[42]
BLUED IW/<=1s [34]
Challekere 7D/2min [33]

Campus

Private Dataset 1M/10s [12]

Private Dataset 1M/30min [32]




Measuring privacy is not unified as well. It usually has qualitative
and quantitative aspects which makes it difficult to use some simple
scoring system. Literature proposes either complicated quantitative
methods or qualitative methods for privacy evaluation [43].

Therefore, a simplified scoring system has been developed to
provide a rough overview of the correlation between the accuracy
of ML methods and their privacy. The framework is not based on
specific standards but aims to provide a quick categorization of ML
techniques for NILM.

The privacy score is designed to have 6 levels from -10 to -35. The
best achievable privacy score is -10 and the worst is -35. The
privacy level is estimated by the amount of used data for training
the algorithm and additional data acquisition methods. A low
amount of used data is considered to have a lower impact on the
prosumers’ privacy. Therefore, the score is -5. If the used amount
of data is higher, then the score is -10. The threshold for this is
chosen to be 1 month of data. Many prosumers do not like their data
to be processed in a cloud, so this gives an additional score of -5.
Additional occupancy monitoring with cameras is considered a
huge violation of privacy and therefore gets an additional score of

-10.

The accuracy of the ML methods is usually shown as an accuracy
value (ACC) or F1 score (F1). The two values are shown with
different colors in Figure 2 as they are being calculated differently
and therefore cannot be compared directly.

The metrics are shown in Table 5 and the simple privacy score in
connection with a simplified accuracy and F1 score is shown in
Figure 2.

As a result for the general process of NILM, the two figures show
clearly that the accuracy of the NILM methods is directly correlated
to the reduction of privacy. A higher amount of data that can be
used as a training set improves the accuracy of ML methods but
reduces the privacy and of the prosumer as more data is stored.
Additional available data can also improve the accuracy but for the
example of occupancy monitoring [12] it reduces the privacy level.

Table 5. Privacy metrics for comparison

Measure Privacy Score Otherwise
Dataset < 1 Month -5 -10
Resolution of Data -5 -10
> 5min
Occupancy -10 0
Monitoring
Cloud Processing -5 0
50% 100%
-5 ACC F1
-10 [32]
-15 [36][34]
-20 [11][40](35][42]  [41][39](38]
25 [10] [12]

Privacy Score

Figure 2. ACC and F1 score compared to proposed privacy
score for selected publications.

3.4 Proposed applications for NILM

NILM methods are used for different purposes and applications in
Smart Grids. HEMS, ambient assisted living (AAL), recommender
systems (RS) and fault diagnostics (FD) are the most common
implementations [37]. The goal and purpose of NILM is different
for each of these applications. Sometimes power on/off detection
or power estimations are necessary [38], sometimes predictions for
more efficient home energy management are needed [44].
Sometimes the goal is a recommendation on more efficient energy
consumption or faults and unusual behavior can be detected in the
ambient assisted living context [37]. For all these specific
applications the privacy and cyber security concerns are identified
individually, based on the stages of the NILM ML process
considering implementation on different surfaces of AMI. This is
shown in Table 8.

4. Legal view on concerns identified in
technical literature: The EU regulatory

framework

Against the backdrop of the concerns identified in the technical
literature, the following analysis is geared to address two questions:
How does current EU legislation protect the prosumer’s data and
privacy rights? How does the EU regulatory framework address the
prosumer’s concerns in the area of cybersecurity? For the first
dimension, GDPR [45] and ED [15] are consulted; for the second,
GDPR [45], ED [15], the NIS Directive (NIS) [2] and the
Cybersecurity Act (CA) [46].

4.1 Data protection and privacy

Since SM help aggregate vast amounts of personal data of
prosumers, data protection is a prevalent concern. As of 25 May
2018, GDPR governs the processing of an EU citizen’s personal
data. Potential personal data breaches by controllers or processors
ensuing from the processing of a natural person’s data can fall
within the scope of GDPR [45].

This paper applies the definition of SM stipulated in ED, which
establishes common rules for the EU internal market for electricity
[15]. ED also includes the protection of prosumer rights and in the
context of this paper is to be read together with GDPR [15], [45].
In this regard, a SM is defined as “an electronic system that is
capable of measuring electricity fed into the grid or electricity
consumed from the grid, providing more information than a
conventional meter, and that is capable of transmitting and
receiving data for information, monitoring and control purposes,
using a form of electronic communication”[15].

Pursuant to Art. 4(1) of GDPR, prosumers in private households
can be considered “natural persons”, thus falling within the scope
of “data subjects” [45]. In this case, any information processed by
SM, which helps identify a natural person directly or indirectly by
an identifier such as name, an identification number, location data,
an online identifier or by other identifiers pertaining to the physical,
psychological, genetic, mental, economic, cultural or social identity
of that natural person, classifies as “personal data” [45].

ML generates profiles of prosumers. Without obtaining granular
consent for the processing of personal data for “one or more
specific purposes” in electronic communication or in form of an
electronic or written contract from the data subject, GDPR renders



processing of personal data generally illegal, except for situations
allowed by law (Art. 6(1)(c-f); Art. 23(1)) [45]. The preconditions
of receiving consent are stipulated in Art. 6(1), Art. 7 and Art. 12
[45]. Recital 32 clarifies consent as “a clear affirmative act
establishing a freely given, specific, informed and unambiguous
indication of the data subject’s agreement to the processing of
personal data” [47]. Against this backdrop, the controller would be
required to explain the prosumer in an electronic or written contract
“using clear and plain language” for which purposes SM gather
personal data and which measures are taken by the operator to
safeguard the prosumer’s rights in compliance with the GDPR [45].

GDPR Art. 5 is instrumental in understanding the key principles
regarding the processing of personal data. Without respecting these
principles, SM would infringe upon the prosumer’s autonomy (for
an overview of GDPR principles, see Table 6) [45].

GDPR makes a distinction between data controllers (Art.
4(7):"natural or legal person, public authority, agency or other body
which, alone or jointly with others, determines the purposes and
means of the processing of personal data”) and data processors (Art.
4(8):"natural or legal person, public authority, agency or other body
which processes personal data on behalf of the controller”) [45],
where different obligations for each of these two actors are set out
in Art. 24-43 (for an overview of the rights of the data subject and
the obligations of the controller and processor, see Table 7). The
multitude of actors involved in the design and operation of the
smart grid system, however, complicates a clear identification of
both data controller and data processor, thus posing challenges in
terms of the attribution of duties and ensuing accountability
requirements set out by GDPR [45] and ED [15] (for an overview
of potential operators, consider [13], p. 9).

Table 6. Data protection and privacy (I). GDPR: Principles

[45]
Principles Article
Lawfulness, fairness and transparency 5(1)(a)
Purpose limitation 5(1)(b)
Data minimisation 5(1)(c)
Accuracy S5(1)(d)
Storage limitation 5(1)(e)
Integrity and confidentiality S
Accountability 5(1)(g)

Table 7. GDPR: Rights of the data subject and obligations of
the controller and processor [45]

Rights Article(s)
Transparent information, 12
communication and

modalities

Information and access to 13;14;15

personal data
Rectification and Erasure 16;17;18;19;20
Right to object and automated | 21;22

individual decision-making

Obligations Article
Responsibility of the 24
Controller

Processor 28
Security of processing 32

GDPR Art. 22 (“Automated individual decision-making, including
profiling”) [45] presents a key prosumer right by obligating data
controllers to implement measures that allow data subjects to
intervene in automated decision-making procedures. In the context
of this paper, this implies that a prosumer is granted the right to
contest any automated decision facilitated by SM that entailed legal
consequences for the data subject. However, the complexity of
actors raises questions in terms of identifying and establishing
accountability for GDPR breaches in cases such as denial of
services, target to excessive advertisements or exhibition of
prosumer habits and lifestyle. This could equally apply to scenarios
in which e.g. electricity bills are sent out automatically to the
prosumer based on potentially flawed data processed by SM, which
result in e.g. price discrimination (for a legal view on all identified
prosumer concerns, see Table 8). It follows that national
supervisory authorities play a central role in identifying operators
and processors to be able to allocate their legal responsibilities in
the smart grid.

4.2 Cybersecurity

According to GDPR Art. 5(1)(f), personal data must be processed
in a manner which ensures appropriate security [45]. Here, security
is mainly understood as the controller’s duty to implement
mechanisms which can appropriately mitigate a “personal data
breach”, more precisely “accidental or unlawful destruction, loss,
alteration, unauthorized disclosure of, or access to, personal data
transmitted, stored or otherwise processed” [45]. In the context of
this paper, the term security refers to the security of personal data
processed by SM in smart grids. Since this process takes place in
the information and communication technology environment, the
security of data would be generally governed by the framework of
cybersecurity. Hence, NIS [2] and the latest adoption of CA [46]
are instrumental in understanding how data security applies to SM.
Consequently, cybersecurity forms one part of the understanding of
security spelled out in ED, which refers to “security” as the
“security of supply and provision of electricity and technical safety
[15].

2

Art. 2(1) of CA defines cybersecurity as “activities necessary to
protect network and information systems, the users of such systems,
and other persons affected by cyber threats’” [46]. SM can be
considered network and information systems. This can be deduced
from NIS Art. 4(1), which delineates the parameters of “network
and information systems” [2]. A threat against i.a. SM is described
as “any potential circumstance, event or action that could damage,
disrupt or otherwise adversely impact” (Art. 2(8), CA) these
systems [46].

Cyberthreats against network and information systems in energy
systems can be mitigated provided operators/processors of personal
data are able to secure “the ability of network and information
systems to resist, at a given level of confidence, any action that
compromises the availability, authenticity, integrity or
confidentiality of stored or transmitted or processed data or the
related services offered by, or accessible via, those network and
information systems” (NIS Art. 4(2)) [2].

The terms availability, authenticity, integrity and confidentiality
are initially derived from the concept of the “CIA Triad”
[[definitions of C,ILA based on [48]],[49]]. Applying the general
understanding of these terms individually to the operation of SM,



operators/processors of data (i) are obliged to prevent disclosure of
data to unauthorized third parties in this process (confidentiality)
and (i) to secure that the information contained in the data and
gathered by SM is not altered in transit from the prosumer to the
operator/processor, thus remaining authentic (integrity and
authenticity) [2]. (iii) Additionally, according to NIS it is
incumbent upon national authorities to establish mechanisms that
can protect against e.g. distributed denial of service attacks
conflicting i.a. with the principle of availability of data (availability)

[21.

It is worthwhile mentioning that NIS creates mechanisms for the
identification of operators of essential services (OES), which
includes energy operators (NIS Directive, Art. 4(4), Art. 5(2),
Annex 2) [2]. By the same token, NIS Art. 1(2)(e) obliges OES to
inform a National Competent Authority (NAS) about potential
cybersecurity incidents, broadly defined in NIS Art. 4(7) as “any
event which has an actual adverse effect on the security of network
and information systems” [2]. Establishing accountability for data
breaches in SM remains problematic due to the great diversity of
actors in the smart grid. Hence, the role of all relevant actors needs
to be clearly identified and the list of actors continuously updated
by NAS to understand for which actions and at what stages an
operator/processor can incur responsibility for potential
cybersecurity breaches outlined in Table 8.

SGTF2 suggests the implementation of a Network Code on
cybersecurity (c.f. Figure 3). It advocates for a minimum baseline
protection [14]. In accordance with ISO/IEC 27001:2013, it would
entail duties for operators to continuously adjust the cybersecurity
mechanisms to be able to anticipate and identify cybersecurity
threats against their infrastructure [14]. For this purpose, SGTF2
additionally recommends operators to utilize the EU cybersecurity
certification scheme [14], [46].

5. Conclusions

When developing an application that makes use of NILM or
operates at any surface of the AMI, cybersecurity and data
protection and privacy needs to be considered, which can be done
using the GDPR and following the CIA triad. This paper presents a
tool in the form of a table (Table 8) that can be used to identify key
sections of the GDPR and the CIA triad in order to prioritize
respective activities when developing or implementing technology.
A sample workflow is presented in Figure 4 to provide an example
for the use of the provided table.

border and risk
- Early wamning system for all energy stakeholder utilizing
an Malware Information Sharing Platform (MISP)

Energy System Operator

- Baseline protection for all energy - C
system operators

« Advanced cybersecurity requirements
for operators of essential services

Energy System
Operator

Baseline Protoction

charging

Figure 3. SGTF network code on cybersecurity [14].

AMI surface based Application based

Approach?

v

Identify surface of AMI Identify application of NILM

TABLE VIl |

—T

v v

Identify highly relevant and

relevant concernes for the
NILM stage analyzed

[ |
v

Identify highly relevant and
relevant sections of the GDPR
for data privacy and protection

v

Identify highly relevant and
relevant aspects of the CIA
Triad for cybersecurity

Figure 4. Workflow for using Table 8 to determine to filter
more important sections of the GDPR and CIA triad for a
specific implementation.

Identify highly relevant and
relevant concerns

Implementations of ML methods for NILM rarely consider privacy
aspects of prosumers. The identified prosumer concerns are
relevant for all stages of the NILM process, considering possible
implementations on different AMI surfaces, and depend on the
proposed application in a HEMS, AAL, recommender systems or
fault diagnostics context. Future research activities include the
validation of the developed workflow and proposed mapping using
real-life use-cases of ML applications in the electric smart grid.

6. Recommendations

Although all surfaces of the AMI are relevant when addressing
concerns of residential prosumers, some of them stand out. The
HANs and SM are components of the AMI, which are highly
relevant for all distinguished privacy and cyber-security concerns
of residential prosumers. Utilities and manufacturers are
encouraged to emphasize and promote cyber-security and privacy
aspects of SM, while end-users are advised to secure their HANs
by applying suitable measures and secure technologies. Utility
companies are advised to provide insight into their HESs, since it
is regarded as a component of the AMI, which is highly relevant in
terms of end-user privacy.

Bearing the novelty of SM technology in mind, both the designers
of SM and operators of the smart grid system are well advised to
ponder how the principle of “data protection by design” underlying
the GDPR framework can be fulfilled [45].



A Data Protection Impact Assessment (DPIA), laid down in GDPR
Art. 35 [45], provides a suitable tool to address the prosumer
concerns mapped in this paper. This mechanism makes it
mandatory for operators to assess any data security, privacy or
cybersecurity risk which is “likely to result in a high risk to the
rights and freedoms of natural persons” [13], [45]. Ideally, this
procedure is to be carried out prior to the wide-scale application of
a new technology, which makes use of personal data. In general, a
DPIA can be described as an accountability mechanism and “a
process for building and demonstrating compliance” with GDPR
[13]. This mechanism would help operationalize the policymakers’
expectations towards SM for the benefit of the climate and the
protection of the rights of the prosumer.

were reaffirmed in the EU Commission White Paper on AI [51].
While these requirements chime with the IEEE Global Initiative on
Ethics of Autonomous and Intelligent Systems [52], the authors
recommend further research towards the operationalization of the
seven key requirements, proposed by the High-Level Expert Group
on Al, in electric smart grids.
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Abstract— Due to an increasing share of renewable energy
sources the balancing of energy production and consumption is
getting a lot of interest considering future smart grids. In this
context, many investigations on demand-response programs are
being conducted to achieve flexibility from different energy
storages and loads. As space heating is an important schedulable
load for flexibility simulations, there are different modelling
approaches due to its interdisciplinary nature. Models can be built
from the civil engineering or electrical engineering point of view,
depending on the computational expense and accuracy level.
Scheduling optimizations need a lot of simulations, preferably
with computationally light models. Thus, this work will use a
computationally light neural network load prediction model for
space heating which is based on a detailed civil engineering model.
Simulations with different scheduling times were conducted to see
the long- and short-term effects of the demand response action.
Results show, that applying the same demand response action at
different times results in different behaviors of the system resp.
energy consumption, which requires further studies for
developing optimized scheduling methods.

Keywords— Flexibility, Space Heating, Microgrid, nZEB, Smart
City, Demand Response

1. INTRODUCTION

Due to several national and international legislations and
programs, the share of renewable energy production is
increasing constantly. This is great in terms of sustainability and
environmentally friendliness, but it leaves challenges to the
distribution system operators. Several of these renewable energy
sources, like photovoltaic systems [1] or wind turbines [2], are
volatile and need to be balanced with the energy demand for grid
stability [3]. Adjusting the energy demand with e.g. energy
storage systems [4], is called demand side management or
energy system flexibility, which is a officially recognized
concept in power systems [5], [6].

On the one hand, there is the possibility to add storage
systems like batteries [7] or flywheels [8], or combine different
systems to hybrid storages [9] for balancing and power quality
improvement [10] on the demand side. On the other hand, the
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project Finest Twins (grant No. 856602).

Helmuth Biechl
Institute of Electrical Power Systems (IEES)
University of Applied Sciences Kempten
Kempten, Germany
& Department of Electrical Power Engineering and Mechatronics
Tallinn University of Technology
Tallinn, Estonia

energy consumption can be directly influenced, which reduces
the need for such storage systems. Different household devices
[11], like freezers [12], ventilation systems [13], water heaters
[14] or space heating [15], can be scheduled to change the
energy demand temporarily.

The latter, space heating, makes up for a high share of
residential loads [16], but it is of an interdisciplinary nature. This
means that there are modelling approaches from different
directions.

From the electrical engineering point of view, there are
usually simplified models with limited or no thermal modelling.
An aggregated model for space heating is presented in [17]. The
space heating model is based on simple temperature differences.
[18] proposes a simplified white-box model for space heating
which is based on temperature differences during the timesteps
as well. These are both computational light models, which could
be used for flexibility analysis and scheduling optimizations, but
the accuracy is significantly lower than with accurate civil
engineering models.

From the civil engineering point of view, there are detailed
thermal models with high computational effort. [19] presents a
detailed model of a heat pump but does not include detailed
demand response or flexibility investigations. Similarly in [20]
the thermal model is very detailed for the control center. This
reduces the usability for flexibility scheduling optimizations as
the computational effort would be high.

There are several publications considering the scheduling
optimization of various devices. Authors of [21] propose a
particle swarm optimizations while [22] wuses different
individual scheduling methods. Both publications show
simplified models for the schedulable loads.

Therefore, this work will focus on the use of a machine
learning algorithm for load prediction [23] of the space heating
model with better accuracy than a simple white box model. With
this model the scheduling of space heating flexibility can be
analyzed considering short- and long-term effects by applying
different scheduling methods and times to create a basis for
developing scheduling optimizations in future work.
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The paper is organized as follows: The methodology is
presented in Section II. Section III shows the results of the
simulations. Finally, the results in brief with conclusions are
presented in Section IV.

II. METHODOLOGY

The final aim of the work is to investigate the short- and
long-term influences of space heating flexibility on energy
consumption compared to a fixed set point control. In this case,
a computationally light space heating model for a building needs
to be used to investigate multiple scenarios, which could be used
for optimizations in the scheduling. This will also enable the
scaling of this methodology from a single building to microgrid
or smart city level with reasonable computational effort. The
used methodology is as follows:

*  Inthe first step, an existing model of a building is used
to train a simple neural network model to predict the
energy consumption of the heating system of this
building (c.f. Fig. 1: S 1)

*  Inthe second stage (c.f. Fig. 1: S II), the space heating
model based is integrated into a microgrid simulation.
For simplification, the focus in this work is set on the
flexibility from the space heating model, and therefore
the other microgrid components are considered to
provide no flexibility and work on a fixed schedule.
Thus, the schedulable part of the microgrid is solely the
space heating model.

The overview of the methodology is given in Fig. 1.

As mentioned above, for the flexibility simulations, an
existing building model in IDA-ICE software is used. This
building model represents a small single-family house with one
floor and a detached roof. It is one of the sample houses used for
a residential nZEBs project in Estonia [24]. The building and its
model have been developed and used by Simson et al. in several
previous studies [25]. Based on simulation data from this model,
a simple neural network model is trained in Matlab to predict the
space heating energy consumption of the building based on the
selected setpoint. The detailed methodology for the neural
network model is presented in [26].

R
‘ m1d
‘I\[..

INTEGRATE

Thermal Simulation of a
Room/Apartment/Building

Simulations for Flexibility
Analysis

ACHIEVE

Flexibility from Space
Heating / Cooling

Fig. 1. Methodology Overview

Compared to a simple white box model as shown in [18],
the accuracy is improved: The mean power value error is
reduced from 8% to 6% and the root mean square error for the
power prediction is reduced from 28 W/m? to 17 W/m?2. The
calculation time is the same for the neural network and white
box model, which is about 15% of the calculation time for the
original detailed building model. Thus, the neural network
model is used for flexibility simulations. A flowchart for these
flexibility simulations is shown in Fig. 2.

After the input data was imported, one of the 3 types of
flexibility simulations were done in Matlab:

*  Changing the setpoint for 1 day
. Changing the setpoint for 1 hour
. Changing the setpoint for 15 min

The 1-day setpoint change could be used for rough day-
ahead or several days ahead flexibility planning. Changing the
setpoint for 1 hour can be suitable for tertiary control purposes
or intraday corrections. The 15 min setpoint change is useful for
more dynamical flexibility systems. Setpoint changes on less
than 15 min basis are not considered in this investigation, as time
constants and duty cycles of heating systems are usually high
and additional constraints for example minimum run- and pause-
times for heat pumps need to be considered in the control
additionally.

The setpoints for the rooms have 3 settings and are always
controlled simultaneously for all rooms:

. High: 23°C
. Normal: 22°C
. Low: 21°C

Depending on the type of simulation (day, hour, 15min), one
simulation for changing the setpoint for one interval
(day/hour/15min) to high resp. low setting, while leaving it at
normal for the rest of the simulation, is conducted. This is done
for each interval through the number of days/hours/quarter hours
(c.f. TABLE I) that are simulated. Additionally, one simulation
only with the normal setpoint is conducted. This results in a total
number of simulations for each room of 2 times the number of
intervals plus the additional normal setpoint simulation.

In the post-processing, the obtained temperature and power
data are separated into the high, low and normal setpoint results
to show the flexibility that can be obtained between the different
settings of the thermostat for each interval (day, hour, 15min).

To see the flexibility that can be achieved by changing the
setpoints from normal to a high or low setting, two different
metrics are shown. One is intra-interval flexibility, which shows
the maximum, normal, and minimum energy consumption that
can be achieved within one interval. This is especially
interesting for the distribution system operators for
implementing DSM programs. The second is long-term effect of
this flexibility, which shows the total energy consumption over
all intervals if the setpoints for one interval were set too high or
low. This is of more interest to the consumers as they can see
how their total energy consumption will be affected in a long-
term perspective.
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The previously described intra interval and long-term
flexibility metrics will show more exact results on effects:

For the 90 day simulation with 1-day intervals, it can be seen,
that the intra-interval flexibility is not the same for every day, as
the heating demand varies over time as shown in Fig. 5. In Fig.
6, it is evident, that the long-term flexibility mostly corresponds

TABLE L. NUMBER OF INTERVALS FOR EACH FLEXIBILITY SIMULATION
TYPE
Type Number of Intervals | Number of
simulations per room

1-day intervals 90 days 181

1-hour intervals 240 hours (=10 days) 481

15-min intervals 960 quarter hours 1921

(=10 days)

III. RESULTS

For the 90 day simulation, the simulation intervals are shown
in Fig. 3 for the moving low setpoint and Fig. 4 for the moving
high setpoint. The number of the simulation interval corresponds
to the number of the day on which the setpoint was changed to
low resp. high, while the setpoint for the remaining days was set
to normal. It can be clearly seen, that the energy consumption is
lower for days with a low setpoint and higher for days with a
high setpoint. The setpoint change seems to have a minor effect
on immediately following days in most cases. For the first few
simulation intervals, a larger effect on the following days can be
noticed. This shows the complexity of predicting the flexibility
of a space heating system.

to the intra-interval and does not have too much influence. Only
for day 47, it can be seen that the overall energy consumption
for 90 days is even lower with the high setpoint than with a
normal one.

Using setpoint changes on an hourly basis in the 240 hour
simulations shows, that reducing the temperature setpoint to the
low setting often does not reduce the energy consumption by a
lot (c.f. Fig. 7). In the contrary, if the setpoint is increased by
1°C to the high setting, the energy consumption can be increased
by a larger margin. Looking at the long-term flexibility of the
hourly setpoint changes in Fig. 8 shows, that there are some
visible effects. Sometimes the total energy consumption for the
10-day period can be higher than with a normal setpoint, even
though the low setpoint was chosen (e.g. hour 57). On the other
hand, the total energy consumption may be lower when a high
setpoint is chosen (e.g. hour 91).
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Fig. 3. Energy consumption for different simulation intervals with low setpoint. The number of the simulation interval corresponds to the day with a low setpoint
while other days have a normal setpoint; e.g.: For simulation interval 50, only day 50 has a low setpoint.
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Fig. 4. Energy consumption for different simulation intervals with high setpoint. The number of the simulation interval corresponds to the day with a high setpoint
while other days have a normal setpoint; e.g.: For simulation interval 50, only day 50 has a high setpoint.

As 15 minutes is a typical framework for DSM programs,
simulations on such a basis are done as well. The intra-interval
flexibility shows the same behavior like with a 1-hour basis (c.f.
Fig. 9). It is easier to increase the power consumption during an
interval than reduce it. The long-term flexibility shown in Fig.
10 is similar to the one of the hourly-interval simulations as well.
It is evident, that changing the setpoint to low or high can have

a positive or negative effect on the long-term energy
consumption. For example at 200 quarter hours there is a higher
long term energy consumption with the low setpoint than the
other setpoints and at around 880 quarter hours the high setpoint
leads to a lower long term energy consumption than other
setpoints.
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Fig. 6. Long-term flexibility for 90 days on a daily basis
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Fig. 10. Long-term flexibility for 960 quarter hours on a 15-min basis

IV. CONCLUSIONS

To achieve flexibility with a demand-side management
control strategy, different devices can be used like space heating.
As this is an interdisciplinary research field, complex models of
civil engineering and electrical engineering need to be brought
together. To investigate different flexibility scenarios, which
could be used for scheduling optimizations, a computationally
light space heating model is advisable. This will also enable the
simulation of larger microgrids and smart cities with reasonable
computational effort. The chosen simple neural network model
showed around 2% better accuracy compared to a simple white
box model, while reducing the computational time by around
85% compared to a detailed civil engineering model, which
makes it suitable for the chosen kind of simulation.

The flexibility simulations with the space heating model
showed, that it is easier to increase the energy consumption
during a certain interval than to reduce it. On a short term view
all simulations show that a lower setpoint can but does not have
to lead to temporary lower energy consumption. For each day
there is a different amount of flexibility available. Especially for
space heating applications, this is a crucial part of flexibility
prediction, as it cannot be assumed that the flexibility is the same
for each day. This is also true for hours and quarter hours. On
average, the energy consumption within an interval (day, hour,
quarter hour) can be reduced by more than 30% and increased
by 100% or more. To plan flexibility such a model can quickly
provide better estimations than an aggregated model.

Considering the long-term energy consumption, it should be
noted that lowering the setpoint for a certain interval does not
necessarily result in lower overall energy consumption. This is
also known as the rebound effect because the system will need
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additional energy to get back to the regular setpoint. Contrary to
that, increasing the setpoint during one interval does not
necessarily increase the total long-term energy consumption.
With a lower setpoint energy consumption of -4% up to +9% are

possible with a

tendency to negative values. Energy

consumption with a higher setpoint can be between -9% and
+12% with a tendency to positive values.

mu

For future work, these simulations should be extended to
Itiple buildings and include other schedulable loads as well,

like water heaters or freezers, to get flexibility predictions for
microgrids or smart cities which can be used for scheduling

opt
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Abstract— Alternative energy sources are becoming more
important to ensure the supply of adequate and reliable energy.
This forecloses environmental damage by outdated power plants
and fossil fuel stocks, which are finite and have to be produced
laboriously. Thus, energy management strategies for an islanded
smart grid with combined energy storage systems, namely
flywheel and battery storage, have been investigated in this paper.
Mathematical models for these storage systems were developed in
Matlab by analysing typical parameters and characteristics and
were derived from simplified equations. Other microgrid
components, the load profile, and photovoltaic (PV) system, were
based on existing measurement data. Various control algorithms
based on the battery’s state of charge (SOC), load profile, and
available PV power were developed in this paper. The simulations
were done for a detached house and settlement for different
scenarios including control strategies with and without different
flywheel control algorithms. Finally, a reduction of the battery
cycles and an increase of maximum off-grid mode time was
achieved.

Keywords—flywheel, battery storage, energy management
system, SOC, microgrid, islanded mode, smart grid

I. INTRODUCTION

Power failures and long-term power failures due to natural
disasters are no more uncommon [1]. Stocks of fossil fuels such
as oil, coal and gas are finite and increasingly difficult to
produce, and more and more environmental damage is being
established [2]. Coal and gas-fired power plants for power
generation distribute electricity many miles through often
outdated infrastructure, which increases the error rate
immensely [2]. In this situation, the development of sustainable
and distributed energy sources and their integration into the
energy grids is essential and will be an important part of the
emerging Smart Cities of the future. These Smart Cities will be
comprised of multiple Smart Grids respectively microgrids.

An integrated energy system comprising interconnected
loads and distributed energy storage (DES), which can operate
grid-connected or in islanded mode is defined as a microgrid [3].
A common simple residential microgrid model is based on a
load profile, PV and battery storage. Additional flywheel energy
storage systems in microgrids can be used for power smoothing
of fluctuating loads, as a backup alternative to improve the
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reliability in energy supply and to reduce the use of diesel
generators to reduce carbon emissions, which has been
researched already in [4], [5], [6] and [7]. The study in [8]
presents an approach, where battery and vacuum insulated tank
is used, to cover both the electricity and heating demand and to
increase the renewable energy share for detached house.

Different energy management systems (EMS) for
microgrids have been presented in literature [9]. The authors of
[10] and [11] for example have shown an energy management
solution which facilitates the optimum and economic control of
energy flow throughout a microgrid system with different loads.
In [12] the optimal power scheduling method for demand
response in the home energy management system is developed
by combining the real-time pricing (RTP) and inclining block
rate (IBR) model. By combining those methods, the power
scheduling method, the reduction in electricity cost and power
peak-to-average ratio could be improved. The performance and
feasibility of thermal storages in households were presented in
[13]. The EMS for an off-grid solar-powered system is
investigated by [14].These studies contain mainly the price-
based control to maximize the efficiency and utility of different
loads.

In [15] an EMS in islanded mode is examined, where
thermal storages are used to support the battery energy storage
system (BESS) for longer off-grid mode time. However, the
lifetime of battery storage is not taken into account. Similarly in
[16], a microgrid battery storage management system was
investigated to reduce the running costs by optimal scheduling
of storage systems. This paper includes the next-day forecasted
load, generation profiles, and spot electricity prices without the
battery charging cycles. Energy management strategy of
islanded microgrid based on power flow control was
investigated in [17] to adjust the SOC of battery and control
battery storage systems to avoid over-charging and over-
discharging and their frequent transition between charge and
discharge.

In [18] and [19] the authors present a mathematical model of
a battery energy storage system considering all the electrical
detail of the system. In [20] the fundamental methods of how to
determine the state of charge (SOC) of lithium-ion (Li-Ion)
batteries based on two different equivalent circuit diagrams were
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shown. Another battery storage model was developed in Matlab
Simulink in [21].

The focus in this paper is on the efficient control of energy
storage depending on available power generation of the PV
system and the different load profiles to reduce the charge cycles
and increase the off-grid mode time. To find efficient control
strategies, sufficient models of energy storage needs to be set up.

Previous mentioned papers do not consider the reduction of
charge cycles and increasing off-grid mode time of the battery
for residential microgrid. Therefore, we implemented in this
paper, the usage of different control strategies for energy storage
in an islanded microgrid on the battery’s state of charge, load
profile, and available PV power. The control strategies will be
done for a management system in a detached house and
settlement. Therefore, simplified mathematical models of
battery and flywheel storage systems are used. The flywheel
energy storage is integrated for short term load leveling to
reduce charging cycles for the battery storage for increased
battery life as well as to increase off-grid mode time, which leads
to the reduction of raw material for the need of battery systems,
which is beneficial for the environment.

This paper is organized as follows: Section II describes the
modeling of microgrid components and different control
strategies. In Section III the simulation results of the modeled
system are shown, followed by the conclusion in Section IV.

II. SYSTEM MODELING

For system modeling a common model of a residential
microgrid with battery and flywheel as energy storage, load
profile, and PV system as the only power source is used. All
those models will be described in the following. The models
were created in Matlab (m.file) as a function with certain input
and output parameters.

A. Mathematical object models
Battery storage:

The following simplified battery storage model was created
to be able to follow better their dynamic responses [22]. The
battery model was based on the state of charge (SOC) of the
battery model due to battery initial state of charge (SOCyy;t),
charge / discharge current (1,4 ), battery capacity (Cpqee) and
efficiency (1) during the time (t). The SOC at a certain time step
(dt) could be obtained as follows (1) [22, 23].

SOC(E) = SOC, + [in » 22 o gt 1)
Chatt

Where I, was positive for charging the battery and
negative for discharging. The maximum charging and
discharging currents depend on the battery’s capacity, on the
temperature as well as on the manufacturer’s specifications in
the data sheet. For simplification, the battery internal
temperature, prediction of the output voltage, estimation of
power loss as well as the aging of the battery were neglected. All
batteries are affected by self-discharge. The self-discharge rate
of Li-lon battery is about 5 percent within the first 24 hours and
up to 2 percent per month afterwards. Under normal
circumstances, the self-discharge of the Li-lon battery is
reasonably steady throughout its service life, but full state-of-

charge and elevated temperature can cause an increase. Table 1
displays the change of self-discharge rate per month of Li-ion
batteries with rising temperature and state-of-charge [23].

These values are estimated with linear function
approximation to be able to include them in the battery model.
Due to different SOC, the linear function was expanded with
some factors and interpolation. The self-discharge of the battery
is calculated as follows:

sS1=Ty*m+c 2
m=kx*S0C 3)
c=1xS0C 4)

where  s1 — self-discharge proportion depending on the
temperature and SOC

Tmp — actual ambient temperature, °C

m — slope at various SOC, 1/°C

¢ — is the y-value in which the line intersects the
y-axis

k — the estimated slope of the linear
approximation

[ — estimated factor where the line intersects the
y-axis

The total self-discharge rate of the battery model is described
as

dsoc = —((s1+ (s2 * S0C)) = dt) (5)

dSOC — total self-discharge rate of the
Lithium-Ion battery

51— self-discharge rate depending on temperature
and SOC

52 — self-discharge rate of Li-Ion battery in

the first 24 hours

dt — time step, h

where

This is included as a function in Matlab, where the specific
self-discharge rate will be chosen depending on the current
temperature and SOC value.

With the rising temperature, not only the self-discharge will
be affected but also the aging of the maximum storage capacity,
which should also be considered in the battery model. Therefore,
the maximum available storage capacity is defined as a function
in Matlab, where the input is the current ambient temperature
and output the maximum available capacity. The current
capacity retention will be chosen by the current ambient
temperature. The complete Matlab code structure of the
simplified battery model is illustrated in a block diagram in Fig.
1.

TABLE L. SELF-DISCHARGE PER MONTH OF LI-ION AT VARIOUS
TEMPERATURES AND STATE-OF-CHARGE [20]
State-of-charge 0°C 25°C 60°C
Full charge 6% 20% 35%
40-60% charge 2% 4% 15%
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Fig. 1. Matlab code structure of battery model.

Flywheel storage:

Flywheel energy storages are used for power smoothing in
smart buildings [4]. Since this work is considering a hybrid
energy storage solution, a simplified model of a flywheel was
created. The formulas in [4], were transposed for the created
flywheel model. The simplified flywheel model is also based on
the flywheels SOC value. For that, the current angular velocity
(w) depending on the current SOC will be computed as shown
in equation (6).

w = \/(SOCinit * (Wrglax - Wﬁlin)) + Wrznin (6)

Where SOC;,;; — initial value of SOC of flywheel (0...1,
where 1= full charged, and 0 = discharged)
Wipnin — minimum angular velocity (lower limit of
the usable speed range), rad/s
Wpax — Maximum angular velocity (upper limit of
the usable speed range), rad/s

The angular velocity of the flywheel (wy), will be detected
with the input parameter Ef, which is defined from the flywheel

control model.
Efxeffx2 7
Wf = —xe] X ( )

Ef — output energy of flywheel, kWh
ef f — flywheel efficiency, %
J — the inertia of the flywheel, kgm?

where

Afterward the new angular velocity (Wy,,,) is determined,
which is the difference between the current angular velocity
based on the current SOC value and the angular velocity of the
flywheel (8). If the output energy of the flywheel is negative wy
will be negative (—wy), otherwise positive (+wy).

Wnew = W — Wy (8)

where Wy, - newly determined angular velocity, rad/s

w — current angular velocity, rad/s

wy —angular velocity of the flywheel, rad/s

The resulting new SOC of the flywheel will be then
calculated as follows:

_ Whew=Whin
S0Cnew = e —_ )
where  SOC,,,, — new value of flywheel state-of-charge
Wyew — Newly determining angular velocity, rad/s
Wipnin — minimum angular velocity (lower limit of
the usable speed range), rad/s

Wpax — Maximum angular velocity (upper limit of
the usable speed range), rad/s

Load profile:

The load profiles for the residential microgrid were
generated with Load Profile Generator Software, to have load
profiles with a suitable timestep and for a suitable object size
[24]. Two different load profiles for different residential
microgrid applications, a detached house, and settlement, were
generated. The load profile of a detached house was generated
for a family with two children with an annual power
consumption of 3987,97 kWh [24]. The annual power
consumption of a settlement was generated for 61 different
households like families, couples, singles, shared apartments,
and retired couples, which was 197 MWh/year. The simulations
of the load profiles can be found in [25].

PV system:

Instead of modeling a whole PV system in Matlab, one-
minute measurement data of an existing station in Laastu Talu
OU, Norava in Estonia were used. The Station contained 668 PV
panels, which are divided between 6 inverter - 2 with 20 kVA
and 4 with 30 kVA. The Station had a combined output power
of 177 kWp. For particular applications such as a detached house
or settlement, the existing PV plant is either too large or too
small. Therefore, the used PV system was scaled and simulated
accordingly in [25]. The scaled PV output power is 5.77 kWp
for a detached house and 286 kWp for a settlement application.

B. Control and simulation strategies

The goal of this work is to develop simplified control
strategies for energy storages in an islanded microgrid to extend
operation time and to reduce charging cycles for the battery
storage (incl. lifetime). This has the additional benefit of
reducing the amount of raw material needed for battery
production. The importance of battery management and control
systems were described in [25]. The safe and efficient
functioning while meeting different requirements of battery
storage systems is depending on the proper control of the
system.

The battery control is based on the charging and discharging
current of the battery. Each battery system has specific
conditions and limitations in terms of depth of discharge (DOD),
charging speed, charging, and discharging to adverse ambient
temperatures [26]. These requirements are similar within the
battery family and can be extended to almost all batteries in use.
The limitations of the used battery control model are shown in
Table 2.
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TABLE II. BATTERY CONTROL MODEL LIMITATIONS TABLE III. FLYWHEEL CUSTOM CONTROL ALGORITHMS
Algorith ipti
State-of-charge Set new current value [A] gortim Method . D?scnp tm‘n
Charging/ Discharging flywheel
_ storage aligns of the trendline, which
SOC> 0.9 AND I>0 Inew =0 is the slope of PV and load profile
Trendline of PV (=mpv and mload)
SOC <= 0.2 AND 1<0 Inew =0 A and load profile
If mpv > mload, then charging
Tamb <=10 AND >0 Inew = min(Inew, 0.3 * Imax)
If mpv < mload, then discharging
Tamb >=30 AND [>0 Inew = min(Inew, 0.5 * Imax) Average If mpvavg > mlf)adavg, then
L charging
B historical values
1<0 Inew = max(Inew, -Imax) of PV and load
If mpvavg < mloadavg, then
profile > .
B discharging
>0 Inew = max(Inew, Imax) Current load = Ploadnew;
Adjusting Current PV_powcr = Ppvnew;
flvwheel on the P_temponew=Ploadnew-Ppvnew
The battery control model is defined to stop charging or C szm PV and
discharging if the maximum or minimum SOC is reached. It is load values IfP_temponew <0, then charging
better to charge a battery more often than draining it fully. ip = 0. then dischared
Therefore, the SOC limitations are set to a maximum of 90% —temponew > 0, then discharging
. o . . If time between
and a minimum of 20% [27]. The maximum charging current of
" ; A . 8am - 7pm and Ppvnew > Ploadnew,
the battery at different ambient temperatures was appointed due Controlling then charging
to given available operating temperatures and specifications in D flywheel within
defined .
the datasheet. . If time between 8am - 7pm and
timeframe
) . Ppvnew < Ploadnew, then
The flywheel model was controlled in two different ways to discharging

be able to compare the results of a moving average (MA) and a
custom controlled flywheel.

The power of the MA controlled flywheel is resulting by
subtracting the MA value of the historical load profiles from the
measured power draw of the load at the current time step (10).
The MA value is defined as the sum of the historical load profile
values divided by their length. For the moving average control
simulation, two different lengths of moving average (30 and 60
Py, qq) Were used, which was also used in [4] for comparison.

. o ke Ploaa®
Pf(l) = Pioaa () — % (10)

where P (i) —power of flywheel at timestep i, W

P,,qq (1) — power of load at timestep i, W
N — length of MA

The output energy of the flywheel system results simply by
multiplying the output power (Pf) with the time step, which
operates then as the input of the flywheel model.

The moving average control of the flywheel is established
quite simple, without charging the flywheel or considering the
supplied PV power. To be able to control the microgrid more
effectively, a custom control strategy was developed. This
contains 4 different algorithms, which control the flywheel
depending on the current generated PV power and load profile.
The 4 algorithms, which were derived are listed in Table 3.

The flyhwheel model compensates for a small portion of the
load demand and then the battery model automatically
compensates the rest. Therefore, no additional communication
between the two controllers is necessary.

C. Case study

Since this work is based on an islanded microgrid the
frequency is considered to be kept constant in any case. The
nominally mains voltage is at 230 V + 10% at 50 Hz. For the
following case studies, it is assumed that the system includes an
inverter, which is controlling the exceeding nominal voltage and
keeps it constant. The system voltage is calculated in (11) by
dividing the total power by the total ac current of the system.
The total power is the summation of the power of all power
sources, including the battery while discharging.

P_tot
I_tot

V_sys =

(an
where V_sys — system voltage, V

P_tot — total power of all power sources and
battery while discharging, W

I tot — total ac current of the system, A

For the case study three different scenarios were defined,
which will be chosen by activating or deactivating a certain
flywheel control model with the specific control algorithm. An
overview of the simulation scenarios is given in Table 4. The
simulation scenarios were conducted for a detached house as
well as for a settlement microgrid system. The simulation results
of both applications with the different scenarios are described in
the next chapter.

The first scenario is including the simulation of a microgrid
by considering only the load profile, PV, and battery control
system. This is created as a base scenario to be able to compare
the battery storage behaviour when using different control
systems and the additional energy storage system flywheel.
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TABLE IV. SIMULATION SCENARIOS

Scenario . N
Number Activated appliances Control models
1 Battery Only battery control
2 Battery Battery control
Flywheel Flywheel MA control
3 Battery Battery control
Flywheel Flywheel custom control

III. RESULTS

The simulations were done for a detached house as well as
for a settlement simulation with all three simulation scenarios.
The results are presented in Table 5 with all simulated scenarios
and control algorithms. The scenario numbers are listed in the
first column. The chosen applications detached house (D) and
settlement (S) is in the second column. The best result for the
detached house application could be achieved with the scenario
3 algorithm D, with 360 battery charge cycles and off-grid mode
time 21h 22min. The maximum off-grid time with 21h 25min
could be reached with scenario 3 and algorithm A for the
settlement application. The battery charge cycle was 382 cycles.
Additionally, the cycle lifetime could be increased up to over 10
years for both applications. The cycle lifetime of the battery is
the result of the division of the maximum cycle lifetime of the
battery, which was taken from the datasheet and the calculated
cycles per year (12).

Max.cycle lifetime of battery
Calculated cycles per year

Cycle lifetime [year] =

These are theoretical values, which are based on given
values in the datasheet. For verification, these should be
practically tested. Another important aspect that needs to be
considered is the financing of the project. The financial anaylsis
is briefly discussed in [25].

TABLE V. OVERVIEW SIMULATION RESULTS
Scenario | Model | Algorithm S;Lf,lgﬁ Itgtfrl: e g ’:{’I‘ "f"fz
Yyear [vear]
D - 542 8.3 10h 22min
! S - 403 11 20h 58min
MA 30 496 9 20h 48min
P MA 60 455 9.9 20h 55min
? MA 30 403 11 21h 12min
s MA 60 403 11 20h 58min
A 378 11.9 21h 06min
P D 360 12.5 21h 22min
’ A 382 11.7 21h 25min
s D 384 11.7 21h 07min

D = detachted house; S = Settlement; MA30 /60 = Moving average length
30 or 60; Different Algorithms = A, B, C, D (c.f. Table III).
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For comparison the SOC behaviour of the base scenario and
scenario 3 is shown in Figure 2. The initial SOC value of battery
and flywheel were set to 1 (=full charged). It is assumed that the
battery and flywheel is fully charged from the previous day. It
can be seen that the battery in scenario 3 is less charged and
discharged compared to scenario 2.The maximum off-grid time
is defined as the maximum uninterrupted time, where the system
voltage is between the maximum and minimum defined voltage
limitation. For the base scenario of detached house simulation,
an off-grid time of 10h 22min could be achieved. By using
scenario 3 with algorithm D for the same application, voltage
drops at 10h 23min could be removed and the maximum off-grid
time increased up to 21h 22min. The maximum off-grid time
applies from midnight. Thus, it is verified that the proposed
control method results in better off-grid mode time, charge
cycles and battery lifetime. The simulations for the settlement
application can be seen in [25].

IV. CONCLUSION

In this paper, control strategies for energy storage in an
islanded microgrid were investigated. Therefore, simplified
mathematical models of battery and flywheel storage systems
were used. The emphasis of the work was to integrate a flywheel
model for short term load leveling to reduce charging cycles for
the battery storage for increased battery lifetime and off-grid
mode time. This could be achieved with the development of
control strategies and algorithms for different applications such
as detached houses and settlements. The best results could be
achieved for both applications with scenario 3, which contains
the custom control. By using algorithm D for the detached house
and algorithm A for the settlement, the charge cycles of the
battery could be reduced up to 360 and 382 cycles. The
maximum off-grid time for a detached house and settlement
simulation could be increased up to 21h. Finally, it could be
achieved a reduction of the battery cycles up to 34% for the
detached house and 5.4% for the settlement application. The
maximum off-grid mode time of the system could be increased
almost the entire day both applications compared to a system
with only a battery storage system. In future work, the practical
verification of the achieved values should be investigated.
Furthermore, the economics should be evaluated with such
algorithms.
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Abstract— Due to the increasing share of volatile renewable
energy sources, like photovoltaics (PV) and wind energy in nearly
Zero Energy Buildings (nZEB), there is an increasing need for
demand-side management (DSM) or demand response (DR)
programs to balance the production and consumption in the grid.
The flexibility that can be obtained for smart grids from such DR
methods is not limited to appliances like water heaters or
dishwashers but can also be achieved with space heating and air-
conditioning. In such an interdisciplinary investigation, often one
part is simplified, in this case, typically either the thermal models
or the implemented DR strategy are very detailed. In this work, a
detailed thermal model of a control center is obtained and
calibrated in IDA ICE building-modelling software with
measurements from a test site in Germany. Afterward, several
price-based load matching algorithms are applied to the model to
see the possible flexibility exploitation with the thermal capacity
of this small building. Not all investigated algorithms show good
performance but some of them show promising results. Thus, this
model can be used for DR methods and should be extended to
work with more DSM strategies and provide ancillary services.

Keywords— Flexibility, Smart City, nZEB, Thermal Storage,
Space Heating, Demand Response, Nanogrid

1. INTRODUCTION

As the share of renewable energy production is increasing
worldwide, with some countries already having renewable
energy shares of 30% and more, the operational complexity for

the electrical power grid increases accordingly. This
development  creates  despite its  sustainability and
environmental friendliness several challenges for grid

operators. The volatility and unpredictability of the renewable
energy sources, like photovoltaics (PV) or wind power, which
are popular to be installed in nearly Zero Energy Buildings
(nZEB), can create imbalances between energy production and
consumption. This makes the planning of energy production
especially complicated to prevent mismatches and therefore
unstable energy supply for the customers. One concept to
tackle this problem is to use demand response techniques [1],
which aim to adapt the load by scheduling certain household
devices. Such demand response (DR) or demand-side
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Energy and Resource Efficient Smart Buildings and Districts ZEBE, grant 2014-
2020.4.01.15-0016 funded by European Regional Development Fund; and
supported by the European Commission through the H2020 project Finest Twins
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management (DSM) methods, which are an important part of
smart grids and smart cities, can be applied on many different
devices in a household, for example, freezer, water heater [2],
or other appliances like dishwashers [3]. These DR and DSM
concepts can increase the flexibility [4] of the system, which is
an officially recognized concept in power systems [5], [6],
which helps to improve the balance between energy production
and consumption. Like this, it is possible to react to unexpected
changes and more efficiently plan the energy generation and
use.

Additionally, it is not just possible to use various appliances
in a household for DR. The thermal capacity of the whole
building, meaning the space heating, air conditioning [7], and
ventilation systems [8] can be used for DSM.

In this context, several publications present a complex DR
control approach but use simplified thermal models to estimate
the electrical energy demand of the heating systems for
example. In [9] the authors propose a price-based control
strategy with a minimalistic model of the space heating,
assuming it to be a certain percentage of the energy
consumption. The authors of [10] show possible DSM
strategies with space heating /cooling with a multi-agent
system. They are using a simple aggregated model for their
research. [11] presents a DSM approach with a simplified
thermal model for houses. From that, the flexibility of the
system is assessed and the heat pumps are controlled in a DR
scheme. Similarly, in [12] different load matching control
algorithms are used to optimize the system in a DSM manner.
A simplified thermal model based on temperature differences
due to different influences is used to estimate the electrical
consumption.

On the other hand, there are publications, which consider a
very detailed thermal model but use a simple control strategy.
The heat pump model presented in [13] is very detailed. The
demand response control strategy presented is comparably
simple. The thermal models of buildings presented in [14] are
quite detailed but the demand response methods are limited
somehow and do not show the anticipated results. Several other
publications like [15] show very detailed thermal models but
do not consider DR or DSM methods at all.



Therefore, this work aims to create a detailed thermal
model of a control center, which is part of a nanogrid with PV-
installations and home battery energy storage systems. This
thermal model should provide good performance based on
comparisons with measurements of the real object. It is then
being used with different price-based load matching algorithms
to achieve an efficient demand response control of the space
heating in the control center. The model is additionally already
created in a way that it can be used for more detailed future
investigations on the nanogrid with more demand-side
management methods and providing ancillary services to the
grid.

The paper is organized as follows: The methodology,
including the measurements, modeling, calibration, and
simulation setup, is presented in Section II. Section III shows
the results of the simulations. Finally, the results in brief with
conclusions are presented in Section V.

II. METHODOLOGY

The control center is part of the Energy Campus
Wildpoldsried in the city of Wildpoldsried in southern
Germany. It is part of University of Applied Sciences
Kempten, Germany. The work of this paper is a cooperation
between Tallinn University of Technology and University of
Applied Sciences Kempten.

A. Control Center Measurements

To obtain the necessary data to model the control center
and calibrate the model, measurements were needed.
Therefore, four temperature sensors were used, three of which
were placed inside the control center and one outside. The
temperature sensors on the inside were placed on different
heights and different positions in the room (c.f. Fig. 1). The
sensor outside was placed in a wind and weather protected
place. Several days were measured from the 21 Nov. 2019
until 25" Nov. 2019 with a free-floating control center, where
all heat sources were turned off, and from 25" Nov. 2019 until
27" Nov. 2019 with an electric heater inside the control center.
The power consumption of the electric heater was measured
with a portable power meter.

An additional free-floating measurement with three sensors
on the outside and 1 sensor on the inside was conducted to see
the influence of the outside sensor placement on the
measurements. The used temperature sensors were EL-USB-2
EH / Temp Data Loggers.

Additionally, during the measurements, the data of a nearby
weather station was stored. It contained measurements for the
outside temperature, global irradiation, air pressure, humidity,
dew point, wind speed and wind direction.

Thermal imaging of the electric heater was done as well, to
see the heat dissipation of the used device. The electric heater
from EUROM was operated at 1300 W during the thermal
imaging and during the measurement time (c.f. Fig. 2).

B. Control Center Model and Calibration

The container was modeled in IDA ICE 4.8 building
simulation software. The floorplan and 3D model pictures of

the container are shown in Fig. 3. The constructions and
window parameters were inputs given by the container
producer. The small corridor after the external door was not
modeled as the corridor door to the room was kept open during
the whole experiment. The climate data from the closest
weather station were used as boundary conditions.

To calibrate the model, the parameter values for infiltration,
power emitted by the computers, and the furniture arca were
varied. These values were chosen as no information about these
was available. As reliable wind direction data was missing,
infiltration was set to constant. Although maximum computer
power was known, the computers did not work on nominal
power the whole time. As the profile of usage was not
measured, the computer power was also assumed to be
constant. The furniture is modeled in IDA ICE as a capacity
with a heat transfer coefficient of 6 W/(m?K). The area of the
furniture is the furniture surface facing the room air where the
heat is transferred.

The quality of the model was assessed by the average
absolute error between the simulated and measured air
temperatures in the room. IDA ICE models the room with
ideally mixed air so there is one air temperature in the room.
The simulated temperature was compared to the average
temperature measured by the sensors.

Parametric analysis was carried out first for the free-
floating periods to calibrate the envelope and then for the
period with an electrical heater to check the heat-up
performance. The results were adapted in the simulation of the
whole experiment period. The found values for the varied
parameters are 0.05 1/ssm” of infiltration rate per external
surfaces, 80 W power of the computers, and 26 m? of furniture
area.

EL-USB-2 EH / Temp Data Logger placed on top of a shelf

Fig. 1.
L
Fig. 2. EUROM electric heater placed in the middle of the control center
for calibration measurement
H\l |
I
-

Fig. 3. The container model in IDA ICE with floorplan on the left and 3D

view on the right. The compass is shown for orientation in both pictures
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Ideal heater and cooler were set to achieve the initial state
of the container. The setpoint value of the cooler was set to 0.1
degrees higher than the heater’s and the latter was estimated by
minimizing the average absolute error during the first free-
heating period. The lowest error was achieved while aiming for
a temperature between 3.75 °C and 3.85 °C, although the initial
measured temperature was 8.2 °C. This was probably because
the pre-simulation conditioning of the model is constant but the
actual behavior is dynamic.

The resulting temperature behavior is compared to the
average measured temperature in Fig. 4. The average absolute
error for the whole period was 1.61 °C, for the three periods the
errors were 1.92 °C, 2.08 °C and 1.00 °C. The error in the
heating period is mostly caused by a small shift in time and the
moment around the time when heating was turned off. The air
temperature in the room drops drastically in a very short time.
It is not clear whether the door was opened for a longer time or
is this an error in the measurement.

The error during the first period shows that either the initial
state was not estimated ideally or the heat capacity or heat loss
of the container is modeled too low. The calibration during the
last period is almost ideal as in reality the temperatures are not
ideally mixed and the energetically effective temperature of the
measured period is not known. As the general behavior of the
container is close to the average measurements, the achieved
result is suitable for the following work.

C. Price-based Load Matching Algorithm Control

Different price-based load matching algorithms were
implemented in this model to see the responsiveness of the
control center to set point based control strategies. Therefore,
the electric heaters were controlled with a thermostatic two-
step controller. In the first step, a fixed setpoint value of 22°C
was selected with a 1°C deadband. This will be the basic
benchmark for comparison with the other control strategies.

To have prices with smaller fluctuations than the spot
market prices, the hourly day-ahead prices of the Nordpool
database [16] for Estonia were obtained for the setpoint control
algorithms. The prices without additional fees and taxes from
November 22" until December 2™, 2019 were used for the
setpoint calculation (c.f. Fig. 5). The seven different price-
based setpoint calculation algorithms (A-F) were based on [2],
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The behavior of the air temperature in the simulation compared to the average of measurements. The vertical orange lines separate the three different
periods — Ist free-floating, electric heating, and 2nd free-floating period

[17] and [18]. The algorithms are shown in TABLE I. Their
performance has been positively evaluated under different
occupancy- and other considerations for simple models of a
freezer, water heater and space heating for a household in an
apartment [19] and [20]. The pre-calculated setpoints for each
algorithm were created as an input look-up table for the set
point of the thermostatic controller in the IDA-ICE
simulations. The parameters for the setpoint calculation
algorithms and the two-step thermostatic control are shown in
TABLE II. The minimum (Pr_min), maximum (Pr_max) and
average (Pr avg) price, and the price deviation (Pr dev) are
calculated from the Nordpool prices for each day. Each
simulation was done in the timeframe of Nov. 22" until Dec.
2md2019.

TABLE L. DESCRIPTION OF PRICE-BASED SET POINT CALCULATION
ALGORITHMS [2],[17],[18]
Algorithm | Description of set point calculation algorithm
A Tset, = Tset,mi
Tt = Tactmas = (Pr = Priy) o S5t
Tsetmin — 1
B Tsc: = Tyout — (Pr _ Pravg) " | set;min gnall
Pryev
C Tetmin — Tgoat

Teet = Tyoar — (Pr—P

e = Ty = (Pr—Pry ) oo

D _ Tsetmin — T,gnal
Mot = Ty = P = Pri) e e

setmax T et,min

Toer =T, (Pr— Pray) 4
= - - *
set goal r I'avg Prmux _ Prm]’n

setmax — !setmin
Prmux - prmin
G Pr > Pravg = Ter = Tset‘min ;

Otherwise = Ty = Toermax

Toer = Tgnal = (Pr—Pryy) =

TABLE II. PARAMETERS FOR SETPOINT CALCULATION ALGORITHMS
Parameter Symbol | Value
Maximum Set Point Teetimax | 24 [°C]
Minimum Set Point Toetmin | 20 [°C]
Goal Set Point Tyout 22 [°C]
Two-step Controller Deadband - 1[°C]
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Fig. 5. Nordpool hourly day-ahead prices without additional fees and
taxes for November 22" until December 24,2019

III. RESULTS

The setpoint calculation algorithms show slightly different
behavior for the selected price pattern. The results for the
indoor air temperature can be seen in Fig. 6. The +/- 0.5°C
deadband is not reached in the shown curves because the data
was plotted with a smoothing filter to better compare the
behavior of the different algorithms.

Algorithm A, B and C show similar behavior with only
slightly different setpoint selection. They vary between the
maximum and minimum setpoint. This behavior considers
both, user comfort and price orientation.

Algorithm D and F vary between the minimum and goal set
point. This means that the setpoint is selected more price-
oriented than user comfort-oriented. This was also found in

[19].

Algorithm E selected set points between the minimum and
the maximum. But it tends to select less extreme set points,
which tend to be closer to the goal set point than the ones
selected by algorithms A, B and C. This provides both, user
comfort and price orientation.

Algorithm G switches between the maximum and
minimum setpoint as expected. For the selected set point
boundaries this might not be a comfortable temperature
behavior for the user as the temperature differences are quite
high.

To see which algorithm shows the best price-oriented
results, the hourly price multiplied with the consumption due to
heating for each hour were cumulated to see the price
development over time, which is shown in Fig. 7. The final
values for the cumulative costs are additionally shown in
TABLE IIL

At the end of the simulation time algorithms A, B and C
show higher energy consumption costs than the fixed setpoint
control. This is an unexpected result. Closer examination
shows, that the cumulative costs show strong increases during
the price peaks at around hours 7910 and 7920 and this
difference only slightly decreases until the end of the
simulation. The behavior is similar for algorithm G, which
shows final cumulative costs around the costs of the fixed
setpoint control. Even though day-ahead prices with typically

smaller fluctuations than spot prices were used for the
simulations, the selected algorithms seem to show undesirable
behavior for price peaks with this more detailed space heating
model.

Algorithm D and F show the best price-oriented
performance as expected. The cumulative energy consumption
costs are the lowest. The two price peaks do not seem to have a
big impact on these algorithms either.

The cumulative costs for algorithm E are lower than for a
fixed set point control but higher than with algorithm D or F.
The price peaks do not affect this algorithm much. Thus, this
algorithm shows the best performance in total, considering user
comfort and price orientation.

The user comfort and cost reductions for each algorithm are
shown in TABLE III. As can be seen, the algorithms show
different results with the simple space heating model from [19]
compared to this model. Algorithms A, B and C provide cost
reductions with the simple model, whereas the cumulative
costs are higher with the IDA-ICE-model. As mentioned
before, this is caused by the price peaks of the used price
pattern, which are for a different time period than the ones of
the simple model. Nevertheless, such an algorithm should work
with all different possible price-patterns similarly good and
always provide cost reductions or at least price parity with a
fixed setpoint control.

IV. CONCLUSIONS

The modeled control center in IDA ICE software was
suitable for the use with nanogrid simulations after the initial
calibrations. The model showed the expected behavior in
comparison to the measurements and could therefore be used
for the setpoint algorithm control simulations.

Different load matching control algorithms were
implemented to investigate the behavior of space heating as a
thermal storage with such a model. To generate set points for
the two-step thermostatic control, prices from the Nordpool
database could be used.

Not all algorithms showed preferable behavior. Algorithms
A; B and C even increased the consumption costs than a fixed
set point control while providing average user comfort.
Algorithm G provided a lower user comfort while achieving
about the same cumulative costs like a fixed set point control.
Thus, these implementations provide no benefits while adding

TABLE III. USER COMFORT COMPARED TO A FIXED SETPOINT (FSP)
CONTROL AND COST REDUCTION COMPARISON BETWEEN THIS MODEL AND THE
SIMPLE MODEL FROM [19]

Algorithm User Cumulative Cost Cost Reduction
Comfort Costs [€] Reduction in [19]
A 0 8.65 - +
B 0 8.56 - +
C 0 8.59 - +
D -- 7.76 ++ ++
E 0 8.27 + +
F - 7.80 ++ ++
G - 8.53 0 0
FSP 0 8.54 0 0

++ highest; + high; 0 none; - lower; -- lowest;
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Fig. 7. Cumulative costs for setpoint calculation algorithms A-G and a fixed set point
complexity in this application case. Algorithms D and F
reduce consumption costs at the cost of lower user comfort. For REFERENCES

some users, this might be the preferred control method to
achieve maximum cost reductions. Overall, algorithm E shows
the best compromise of the two considerations. The
consumption costs can be reduced while maintaining user
comfort. Therefore, this is the preferred control strategy to
control space heating based on market prices.

The results of the simulations show that such a thermal
model can be used for research and development of flexibility-
oriented control strategies, as the models show similar results
like simple thermal models that have been used before.
However, the more complex models also reveal problems of
some of these algorithms to work efficiently with space
heating, which were not noticed with the simple model before.
Therefore, more complex models need to be taken into account
for further research.

In future work, this model needs to be extended to more
common heating devices such as heat pumps, and control
strategies for islanded nanogrids or ancillary services should be
taken into account. Using a thermal model of a complete
apartment block could be useful for aggregated simulations as
well.
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Abstract—Emergence of concepts such as smart grids and
smart cities has led to a more closely monitored and managed
power systems. As such, the power production is shifting
towards more distributed generation consisting of renewable
energy sources whose fluctuating nature complicates the
balancing of supply and demand. Demand response methods
have been employed to smooth the power needs by shifting loads
to when there is a surplus of production. In this paper, power
smoothing of fluctuating loads using a flywheel storage system
is investigated for a small grid connected microgrid. A model of
a low speed flywheel system is developed with a current control
of the grid-side converter and field-oriented control of the
motor-side converter. A moving average filter is used for power
smoothing in a small microgrid. The performance of power
smoothing could be adjusted by varying the length of the time
window of moving average filter. An 81.9 % reduction in RMSE
of grid power fluctuations was accomplished showing that
flywheel storage can be successfully used to smoothen microgrid
power.

Keywords—flywheel energy storage system, power smoothing,
microgrid, smart grid, smart city, model

I. INTRODUCTION

Due to the rising concerns over the global environmental
issues, a change in the paradigm of how the electrical energy
is being produced and transported to the consumers has been
seen. The power production is moving from the employment
of few large-scale power plants to a more distributed
generation (DG) closer to the consumers [1]. Smart cities have
been discussed as prospective future urban areas, where
production and consumption are closely monitored resources
and managed efficiently [2]. Because of this, a rapid increase
in the usage of renewable energy sources (RES) has been seen.
The increase of renewables however aggravates the problem
of energy production and consumption balancing due to the
inherently fluctuating nature of renewable sources, such as
solar and wind power. Additionally, different demand
response (DR) methods have been developed that work based
on market prices [3] or for example PV-power measurements
[4]. Nevertheless, these scheduling methods are often not
enough to balance the production sufficiently, in fact, they
might result in a simultaneous turn on of devices thus causing
sharp peaks in the power draw. These imbalances can cause
disturbances in the electrical grids that manifest as deviations
from the nominal grid frequency. To alleviate this, power
smoothing techniques could be employed by the utilization of
energy storage systems (ESS), such as battery energy storage
systems (BESS) [5] or flywheel energy storage systems
(FESS). Power smoothing for frequency regulation is
performed for high frequency changes in power flow by
charging the ESS when there is an excess of power and
discharging when there is a deficit of power. This can be
applied in islanded mode as well as in grid-connected mode
like other balancing techniques, e.g. demand response with
thermal storages [6], [7].
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Power smoothing methods can be divided into methods
that rely on ESS and methods that don’t. Often battery,
flywheel or supercapacitor based storage systems are utilized
for power smoothing due to their fast reaction speed. ESS
based power smoothing methods can be used to reduce
fluctuation of grid consisting of many various producers and
consumers with different profiles. On the other hand, power
smoothing methods that don’t use ESS are usually specific for
the producer at hand. For example, wind power output can be
smoothened by methods of increasing the rotor inertia, pitch
angle control or DC-link voltage control [8].

Flywheel systems are electromechanical energy storage
systems that store energy in a rotating mass. This energy can
be transferred by either accelerating or decelerating the
flywheel. Flywheel systems can operate over the course of
millions of charge cycles, compared to BESS that are limited
to around 1000 to 5000 charge cycles. However, the weakness
of flywheel systems is that their self-discharge is much higher
compared to BESS, 5-15 %/h compared to 0.1-0.2 %/day [9].
From these characteristics it could be concluded that the
optimal applications of flywheel systems are high power,
cyclic applications that require constant power exchange with
the grid, such as power smoothing. Supercapacitors on the
other hand are preferable for high-power short-term energy
storage, but they do not provide high enough storage capacity
for microgrid applications and are more expensive than other
mentioned storage systems [10].

The application of a FESS for power smoothing has been
researched previously. The authors of [11] investigate a PV
and flywheel hybrid system in a non-residential building that
is controlled to minimize the electricity price and to reduce
peak power exchange with the grid through load leveling daily
consumption. Continuous power smoothing in a PV and
flywheel hybrid system using a moving average control is
explored by [12]. The authors of [13] propose a hybrid energy
storage system with a flywheel, a lead acid battery storage and
a PV system, where the self-sufficiency of the system was
increased from 36.8 % to 51.9 % with the addition of a FESS.
Voltage and frequency regulation using a FESS was
investigated by [14] in the case of sudden loss of generation.
Power output smoothing of wind turbines using a FESS has
also been proposed by [15], who employed a second order
adaptive notch filter. Similarly, the authors of [16] used a
flywheel storage for frequency regulation of wind turbine
generator (WTG) using a fuzzy PI control.

In this paper, the usage of FESS for power smoothing in a
small microgrid with fluctuating loads is investigated using
Matlab/Simulink simulations. The paper is organized as
follows: Section II shows the methodology. The scenarios and
results of simulations are presented in Section III. Finally, the
results in brief with conclusions are presented in Section IV.



II. MODEL DESCRIPTION

A. Object Model of the FESS

The flywheel system was modeled using Matlab/Simulink
software. The object model of the FESS was constructed using
premade components from the Simscape Electrical library.
The modeled flywheel consisted of an asynchronous machine,
bidirectional AC/DC converters, DC-link capacitor and a LC
filter at the front end. The flywheel system was modeled based
on a 15 kVA FESS located in Tallinn University of
Technology. The model parameters are presented Table 1.

B. Control of the FESS

Flywheel systems compose of two back-to-back
bidirectional AC/DC converters. To facilitate a smooth energy
flow between the flywheel and the grid, both of these
converters need to be operated, however the objective of
controlling them is different. The working principle of the
modeled FESS is presented in Fig. 1. The Grid-Side Converter
(GSC) is used to exchange energy between the DC-link and
the grid. In this work, the GSC was controlled to output the
commanded power from the FESS using the Current Control.
As the energy is being transferred to or from the DC-link, its
voltage starts to either increase or decrease. From this, the
objective of controlling the Motor-Side Converter is to
maintain the DC-link voltage within acceptable levels by
supplying energy to or from the flywheel. The DC-link
Voltage Control is used to generate the torque Ty..f and flux
W,y references for the Field Oriented Control (FOC). While
the Power Smoothing Control is used to generate active Py..f
and reactive Q. power references for the Current Control
based on the power smoothing algorithm employed.

C. Current Control of Grid-Side Converter

Current control method is used in this work to control the
power output of the GSC. This method entails a Park
transformation of three-phase grid voltages u,;,. and currents
igpe from their natural abc reference frame into
synchronously rotating dq reference frame forms uy, and
igq - The instantaneous active and reactive power in dq
reference frame can be expressed with (1) and (2) [17].
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Fig. 2. Current Control model of grid-side converter [19].
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These power equations can be simplified by aligning the
grid voltage with the rotating reference frame reducing the
voltage ug = 0, turning the power equations to (3) and (4).
From this it can be seen that by regulating the currents i; and
iq the active and reactive power output of the GSC can be
controlled independently from each other.

3
P = Ualq

3)

3 .

Q = —2uqi, @

The current control model used in this work is shown in

Fig. 2. Based on the active and reactive power reference

values Ppor, Qrer and measured grid voltage u, the output
current references iy ref, iq_ref can be calculated.

TABLE L FESS OBJECT MODEL PARAMETERS [18] [19]
FESS Parameters Symbol Value
Power P, 15kVA
Energy Capacity Efw 300 kWs
Speed Range Np,, 500 — 6000 rpm
DC-link Capacitance Cpc 500 puF
DC-link Voltage Upc 700 V
Inverter Switching Frequency fow 16 kHz
LC Filter Parameters Symbol Value
Filter Inductance L; 6.2 mH
Filter Capacitance Cr 3 uF
Pn/
P 5 Pov:ﬁr Current | L | Grid-side
> et | €., Control Converter
e
8 S AN
— lin| el "
U Voltage y | Oriented LL I\éOtor_SIde
—L< 5| Control - Control onverter

D Control algorithm
D Physical system

Induction
Motor

Fig. 1. Working principle of control of the modeled FESS.

EI Physical system



The difference between measured current output ig, i,
and calculated reference values is fed into a PI controller that
tries to minimize them by outputting a voltage difference
from the measured grid voltages uy, u, needed to facilitate
that current flow. The iyw,L; and i;w,L; are decoupling
components, where w, is grid frequency in rad/s and L; is
inductance of LC filter inductor. The final voltages
Uqg_refs Uq rey are transformed to af8 stationary reference
frame for the Space Vector Pulse Width Modulation
(SVPWM) that generates the switching for the GSC.

D. DC-link Voltage Control

The DC-link Voltage Control aims to regulate the DC-link
voltage by managing the energy flow between the flywheel
and the DC-link capacitor. This involves regulating the
rotational speed of the flywheel. DC-link voltage can be raised
by decelerating the flywheel and increased by accelerating it.
The model for DC-link Voltage Control is presented in Fig. 3.
The inputs of this control are the measured DC-link voltage
and rotational speed of the flywheel. A PI controller is used to
minimize the difference between measured voltage Up¢ meas
and the nominal DC-link voltage of Upc rof =700 by
outputting a new reference speed w,.;. Another PI controller
minimizes the speed error between the measured speed wy,,
and reference speed by outputting a torque reference Ty..f
needed to change the rotational speed.

An induction machine was used in this work as a
motor/generator unit. For operations above the nominal speed,
a flux weakening has to be employed. Based on the measured
rotational speed a flux reference ¥, was calculated using (5)
[20], where ¥,,,,,, 1s nominal flux, w,,,,, 1S nominal rotational
speed and w,,.,s Measured rotational speed of the induction
machine. The generated torque and flux references of DC-link
Voltage Control are forwarded for the FOC that is used to
generate switching of the MSC transistors.

E. Field-Oriented Control of Motor-Side Converter

Energy exchange between the flywheel and the DC-link
capacitor is handled by MSC. Field-Oriented Control (FOC)
is used in this work for that purpose, its model is shown in Fig.
4. This type of FOC is specifically called Indirect Field-
Oriented Control (IFOC), because the rotor flux ¥, is not
measured directly; it is estimated through the measurement of
stator current iz and by knowing the parameters of the
induction motor. Rotor flux can be derived by solving the first
order differential equation shown in (6) [20].

S= = () () i ©

With FOC, the control of induction machine torque and
flux can be decoupled by regulating the torque forming current
iqs and the flux forming current iys independently. The flux
forming stator current reference igs ,o; can be evaluated using
a PI controller by minimizing the error between the reference
flux ¥,..r and the estimated flux. The torque forming current
igs_rey can be calculated using (7) [20].
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The stator voltage Ug o5, Uq rer references are evaluated
by the Current Controller block by minimizing the error
between measured and reference stator currents using PI
controllers. SVPWM is used again to generate the switching
for MSC.
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Fig. 3. Model of DC-link Voltage Control.
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Fig. 4. Field-Oriented Control model of motor-side converter.
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Fig. 6. Working principle of Power Smoothing Control.

III. CASE STUDY — POWER SMOOTHING SIMULATION

A. Microgrid Description

The microgrid topology used in the simulation of this work
is presented in Fig. 5. It consists of a 15 kVA FESS, a variable
load and a step-down transformer to connect to a 6 kV medium
voltage grid. The power profile for the variable load was
constructed from one second power measurement of the NRG
building in Tallinn University of Technology and can be seen
in Fig. 7(a) as grid power without power smoothing. Two
simulations are performed: with and without FESS. Without
FESS, the outside grid supplies the power for the load. The
objective of employing a FESS in this paper is to use it for
smoothing out the high frequency changes in power draw.

B. Power Smoothing Control Model

The working principle of power smoothing is presented
in Fig. 6. A moving average filter was used to smooth out
high frequency changes in the power flow. The difference in
the measured active power Pg,;q and moving average filter
output was used as a reference setpoint P,.; for the active
power output of the FESS. This way, high frequency changes
in power draw were compensated by the FESS and low
frequency changes by the grid. Reactive power reference was
set as 0.

C. Results

At the beginning of the simulation the flywheel was
precharged by accelerating it to a speed of about 4400 rpm. At
simulation time t = 30 s, variable load was connected to the
grid. Simulation results are presented in Fig. 7, where (a)
shows grid power draw with and without power smoothing,
(b) shows the supplied power by the flywheel and (c) the
rotational speed of the flywheel. It can be seen that when
power smoothing is performed with the FESS the grid power
draw fluctuations are much smaller, they are compensated by
the flywheel, as seen by the sharp drops in the rotational speed
attimes t = 50 s and t = 110 s when sharp peaks in the load
are witnessed. Root Mean Squared Value (RMSE) was used
to assess the effectiveness of power smoothing. Without
power smoothing the RMSE value was 1030 W. Power
smoothing was tested with two different time windows for the
moving average. For a 30 second time window a RMSE value
of 312 W, a 69.7 % drop was seen, and for a time window of
60 seconds a RMSE value of 186 W, a 81.9 % drop was
observed.
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IV. CONCLUSIONS

In this work, power smoothing of variable load of a
micrigrid using a FESS was investigated. Power smoothing
can be employed for fluctuating loads and producers with
stochastic nature such as PV-systems or wind farms. Power
smoothing with FESS helps to ensure stable grid operation by
reducing variations in grid power draw. This as a result can
help to improve the stability of grid frequency, especially in
microgrids, as they tend to have smaller inertia. A 15 kVA
flywheel system with a capacitance of 300 kWs was modeled.
One second measurements of the NRG building in Tallinn
University of Technology were used as a load profile. Power
smoothing was simulated in a small microgrid with FESS,
variable load and a grid connection. The models presented in
this work can also be used for power smoothing of fluctuating
producers. The aim of the simulation was to use FESS to
compensate higher frequency changes in load and to allow
grid to supply low frequency power. In this work, a moving
average filter was used for the power smoothing control.
Depending on the length of the time window the performance
of power smoothing could be adjusted. Root Mean Squared
Value (RMSE) was used to assess the effectiveness of power
smoothing. Without power smoothing the RMSE value of the
load profile was 1030 W. A RMSE value of 312W, 69.5 %
drop was observed with a 30 second time window and a
RMSE value of 186 W, 81.9 % drop was seen with a 60 second
time window. Larger time windows improve the performance
of the power smoothing, however it increased the power flow
between the FESS.

In the future work, adjustment of power smoothing
performance based on the state of charge should be
investigated.
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Abstract— Due to an increasing use of renewable energy
sources in the power grid, it is of high importance to balance
supply and demand for grid utilities and microgrid operators. If
there are mismatches in the balancing, microgrids with islanded
operation capabilities would be preferrable. In islanded mode,
nearly zero energy buildings commonly use a stand-alone
photovoltaics power supply with a battery storage. A battery
storage is expensive and the capacity in case of off-grid operation
depends on the electricity consumption of the dwelling’s
occupants. Using thermostatically controlled appliances like a
freezer, water heater and space heating as additional storage
systems can reduce the capacity of the battery storage system or
increase the operation time in islanded mode for a fixed battery
size. This paper analyzes the battery capacity dependency both on
the control algorithms for the thermal storages and on the
occupancy of the dwelling. Possible battery reductions for
different selected occupancies are presented in this work by
comparing the simulation results of different load matching
algorithms to each other and between the different occupancies.
The analysis of those results enables recommendations on the most
suitable algorithm for most occupancy scenarios of an existing
dwelling with respect to a minimized battery capacity. This can be
particularly useful, for example, for dwelling and apartment
owners who are renting out dwellings.

Keywords— thermal storage, thermostatically controlled load,
islanded mode, demand response, microgrid, occupant behavior

1. INTRODUCTION

Growing population and higher living standards create a
need for higher demand for electric energy all around the world.
In this high electricity demand, the share of renewable energy
sources is in constant increase. The provided volatile electric
power of those renewable energy sources needs increasing
attention [1]. Some studies even consider scenarios with a 100%
renewable energy generation market [2]. This development
forces grid utilities and microgrid operators to keep the
frequency and power levels stable and within their limits, which
can be established with a sufficient control of supply and
demand.

Grid utilities can control the power system energy supply by
changing the output generation of power plants. For the demand
side, customers can be offered lucrative proposals by grid
utilities to engage in the demand side management (DSM)
programs.
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Dwellings provide different typical loads to be scheduled in
a demand side management manner [3]. Some of the
schedulable devices available in most households can be used as
thermal storages for DSM, like a freezer, water heater or space
heating/cooling. As these appliances can compose 50% of
electrical energy consumption in buildings [4], they are the main
focus of this paper.

The scheduling of loads, including a water heater as a
thermostatically controlled load, is reported in [5]. This general
approach gains cost reductions with a real time price based
control. Performance and feasibility of different price based load
shaping algorithms for thermal storages are shown in [6].
Possible power resp. cost reductions are presented and compared
for different algorithms. The user comfort is taken into account.
The studies in [7] propose a simple scheduling algorithm for a
water heater. The off-grid building system also includes a PV-
system and a battery storage. One of the results in this paper
demonstrates changes in the battery capacity according to the
annual energy consumption of households. The proposed simple
shifting algorithm for the water heater battery storage enables
reductions of about 15-25%.

The study in [8] uses thermal- and battery storages to
improve grid friendliness. The power/voltage quality is shown
to be influenced by the battery storage size. But all scenarios
presented in this article are conducted for a grid connected
system. In another article [9], energy and cost savings in an
isolated grid were achieved with a demand response approach.
Renewable energy sources are included in the model as well.
However, the authors focus on washing-, drying machines and
dishwashers for scheduling instead of thermal storages. Changes
of battery storage system capacity are neglected. Therefore,
energy storing possibilities in the proposed system are not
analyzed.

The studies above cover mainly technical problems resp.
influences on the components. Another aspect that needs to be
discussed is the user impact on those systems. In [10] the authors
show that the occupant behavior influences the comfort level
and energy consumption of users. A smart zoning approach is
shown to reduce the energy consumption. Other articles on
occupant behavior, for instance [11], overlook the influence of
price based control algorithms. Focus is on occupant behavior
and on the evaluation of its effect on the energy performance of
a building. Several devices are accounted for in the study. The
influence of occupant behavior on the energy consumption of a



building in general is proven. Nevertheless, influences on load
matching control strategies are not investigated.

The studies reviewed above suggest that the thermal storages
can be scheduled in a DSM-manner with typical cost savings of
about 5-30%. According to other studies shown, the power
quality can be improved using such devices. Similar to [12],
combining those two aspects and scheduling the loads with a
sophisticated algorithm in an islanded system can help reduce
the battery capacity necessary to ensure stable operation even
more than a simple load shifting presented in [7]. In the paper,
the focus is on an islanded system and the corresponding battery
reduction possibilities.

However, the aim of this study is not merely to reduce this
battery storage capacity but rather analyzing the influence of
different dwelling occupancies on the possible battery capacity
reductions based on different control algorithms. This enables
finding control strategies for different household occupancies
that work with the lowest battery storage system capacity. This
does not only provide the possibility to operate in islanded mode
for longer periods but can also help dwelling owners to estimate
the performance of such a system for different occupancies of
existing dwellings. Additionally, it can help in the next step to
optimize the control of not just one household, but expand the
investigation to apartment building level and give
recommendations for improving the power/voltage quality and
battery storage investment costs for all tenants of a building.
Later such a system can be expanded to microgrid level with
aggregated loads.

This paper is organized as follows: Section II describes the
modeling of the different objects and components, and the
methodology of the simulation and control strategies in detail,
followed by the simulation results in Section III. Conclusions
and recommendations are presented in Section IV.

II. SYSTEM MODELING

To recommend suitable control strategies and estimate
possible battery reductions, a model of a suitable system is
necessary. There are three common household thermal storage
systems: a freezer, a water heater and space heating. The
mathematical object models of these three systems are described
in this section. For islanded operation, simple PV-power source
and battery storage system models are needed as well. All these
models are based on datasheets of typical devices. Specific
control strategies, including PV-power and SOC based load
matching algorithms, are presented. The different occupancies
of an existing dwelling and other inputs that are needed for the
simulation are described.

A. Mathematical object models

The freezer model is based on the temperature changes due
to food exchange (Tfood), ambient losses (Tamb,loss) and
freezing (Tfreeze) during the time step. The cabinet temperature
at the end of the time step (Tnext) could be obtained from the
temperature at the beginning of the time step (T1) as follows (1)
(6], [12] :

Tnext = Ti - Tf‘reeze - Tfood - Tamb,loss (1)

The model for the water heater is similar. The temperature
of the water inside the boiler at the end of the time step (Tnext)

was obtained from the temperature at the beginning of the time
step (T1) and the temperature changes during the time step due
to heating (Theating), water exchange (Tcw) and ambient losses
(Tamb,loss) (2) [6], [12]:

Tnext = Ti + Theating - Tcw - Tamb,loss (2)

The space heating/cooling model is based on the temperature
changes during the time step due to heating/cooling (Thc) with
the heat pump resp. electrical heater, the ambient air exchange
(Tair), ambient losses through outside walls and windows
(Tamb,loss), people in the room (Tp), and sun irradiation
through the windows (Tsun). The temperature at the end of the
time step (Tnext) was obtained from the temperature at the
beginning of the time step (T1) as follows [6], [12] (3):

Tnext = Ti + Thc - Tair - Tumb,loss + Tp + Tsun (3)

Unlike the very accurate battery model shown in [13], it was
sufficient in this work for both the battery storage and the PV-
system model to be reduced to their basic working principles.
As a result, comparisons of two systems with exactly the same
conditions, except for a different control strategy for the thermal
storages, were obtained. Thus, small errors occurring due to the
simplified models had a minor influence on the results as they
occurred in both systems and therefore could be omitted. For the
PV-model, datasheet values and maximum power point
calculations were used. The ambient conditions for the model
were similar to those described in [14]. The resulting irradiation
(Eres) on the photovoltaics panels was calculated from the direct
(Eb), diffuse (Ed) and reflective (Er) irradiation values (4).
Those irradiation values were calculated according to [15] based
on typical irradiation data for Tallinn, Estonia [16]:

Eres = Eb + Ed + Er (4)

The short circuit current (ISC) depending on the irradiation
can be derived from the datasheet (5) [17]:
1
sc = % * Eres (5)
The current (Impp) in the maximum power point (MPP) is

approximately at 85% (mppappr) of the short circuit current
value (6) [17]:

Impp = mppappr * ISC (6)
The respective voltage (Vmpp) in the MPP is provided by
the datasheet (7) [17]:

_ offsetmpp (7)

o =
PP Moy —~Impp

The maximum available power (Pmpp) for a given
irradiance is the product of the voltage and current in the MPP

(3):
Powp = Tnpp * Vo ®)

The battery storage model is represented by a capacity and a
state of charge (SOC) value. The charging efficiency (nc) for a
Lithium-lon battery is approximately 98% [18]. The discharging
efficiency (nd) for the model was obtained from datasheet
values according to the battery’s capacity (Cbat) with a
numerical value equation (9) [18]:
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& ( Cm) +1.055

&)

The current (I) can be calculated according to the magnitude
of the charging / discharging power (Pi) and the charging
(Vcharge) and discharging (Vbat) voltage (10):

Pi

Na = —

P
14

if Pp>0:1= ;if Pp<0:] = (10)
Vcharge

The new SOC of the battery (SOCnew) after the time step

with a step width of At is calculated depending on the

charging/discharging mode and the SOC at the beginning of the

time step (SOCold) (11):

_ (Socnld*cbat*vbat)+(I*Vcharge)*At*Uc .

if P, > 0:S0Cppny =
¢ Cbut)*VEzat )
. S0Co1d*Cpat*V +(I+V, *Atx
lf Pi < 0: SOCneW — old*Chat*Vbat bat Nd
Chat*Vpat

i
bat

(an
The ambient conditions are fixed similar to [14]. It is
assumed that the battery is placed in a controlled environment,

including a constant ambient temperature. The modeling is
shown in more detail in [12].

To achieve a simple and clear structure, the models of the
thermal storages (1)-(3), PV-system (4)-(8) and battery storage
(9)-(11) were embedded in a system model in this paper. This
model includes a simplified PV-inverter and a battery controller.
The connections between the components were assumed to have
neither losses nor parasitic elements. The ambient conditions
were fixed for all the devices and simulations and the thermal
storages did not influence each other. Sizing and dimensions for
the freezer, water heater and space heating were the same for
every simulation, which enabled comparisons and the
representation of an existing dwelling. The control model and
input data for these object models are shown in the next section.

B. Control and simulation strategies

In the islanded mode, the frequency was considered to be
kept constant in any case. The voltage was limited. If the energy
production exceeded the consumption, the average PV-power
would be reduced. If the consumption exceeded the energy
production, the voltage would show a drop. The battery
controller automatically charged resp. discharged the battery
storage, depending on the available PV-power and the energy
consumption of the household. If the voltage drop exceeds the
defined limits, a real system will shut down as a protection
precaution. To model this, the simulation was aborted in this
case. The PV-system and battery storage were assumed to be
independent systems that are not controlled by the set point
calculation algorithms for the thermal storages.

Depending on the energy consumption and supply, it was
determined whether the system was operating stable or shutting
down for protection. The smallest battery capacity that enables
stable system operation for the duration of one week was
considered as the minimum battery capacity.

The chosen thermal storages are typically controlled by a
thermostatic 2-step control with a fixed set point. A 2-step
control where the set point was calculated with different
algorithms was used for all other simulations. Those algorithms
were based on the available PV-power or the battery’s SOC.
This enabled comparisons between the fixed set point control

2543

and the PV-power and SOC based control algorithms to obtain
a battery capacity reduction in percent.

Seven different PV-power based set point calculation
algorithms (A-G) [6], [19], [20] described in detail in [12] were
applied. Both linear and nonlinear algorithms were used. They
were modified price based set point calculation algorithms,
which can be used in the islanded mode to work with the PV-
power instead of the electricity price by inverting them. For
example, for a water heater, the set point should be high when
the price is low; on the other hand, it should be low when the
PV-production is low and vice versa. The algorithms are shown
in TABLE I and visualized in Fig. 1. The user comfort (Cuser)
for all simulations was set to 1.

TABLE I. PV-POWER BASED SET POINT CALCULATION ALGORITHMS (AL) [6],
[19], [20]; COOLING = FREEZER AND SPACE COOLING; HEATING = WATER
HEATER AND SPACE HEATING

AL |Description of set point calculation algorithm
A ine- — Tset,max—Tset;min
COOlmg- Tset = Tset,max - Cuser * (PW]" - PWrmin) * PWImax—PWrmin
o _ Tsetmax—Tset,min
Heating: Tyor = Teumin + Cuser * (PWI = Pwry,) » preimesseunis
B P _ |Tset,min—Tgoall
Cooling: Tser = Tyoar — Cuser * (Pwr - Pwrmavg) A e—
. _ |Tset,max—Tgoall
Heating: Tser = Tgoar + Cuser * (Pwr - Pwrmavg) T e
C s _ Tset,min—Tgoal
Cooling: Tser = Tyoar — Cuser * (Pwr - Pwrmavg) * [——
P _ Tset,max—Tgoal
Heating: Tser = Tgoar + Cuser * (Pwr - Pwrmavg) * [———
D . _ Tset,min—Tgoal
Cooling: Tser = Tgoar = Cuser * (PWI — Pwrpy;p) * F——
. _ Tsetmax—Tgoal
Heating: Tser = Tgoq + Cuser * (PWr — Pwrpyip) [————
E S _ _ _ Tsetmax—Tset,min
Cooling: Tser = Tgoar — Cuser * (Pwr Pwrmavg) Rr——
Heating: T... = T, +C « (P _p " Tset,max—Tset,min
cating: Iser = lgoal user wr Wrmavg) PWI'max—PWrmin
F S _ Tsetmax—Tset,min
Cooling: Tser = Tyoar — Cuser * (PWr — Pwry) * ——
o — Tset,max—Tset,min
Heating: Tser = Tgoq + Cuser * (PWr — Pwrpyip) rr————
G |Cooling:
Pwr > l)"Vrmavg = Tset = Tsetmin ; Otherwise = Toor = Toetmax ;
Heating:
Pwr > l)Wrmavg = Tser = Tsetmax; Otherwise > Ty = Tsetmin ;
(Min+Max)/2
Minimum PV-power || (Max-Avg) PV-power Average PV-power || Maximum PV-power
85 f
1
80 Py Maximum Set Point
7%
g
E 70 e Goal Set Point
]
&
65 7/
60 Minimum Set Point
55
0 01 0.2 03 04 0.5 0.6 0.7 08 09 1
PV-power [W]
Fig. 1. Set point calculation for a water heater with algorithms A-G for an

example PV-power range of 0-1 W with an assumed average PV-power of 0.6
w.



Algorithm H was solely voltage based. This means that it
switched the thermal storages to minimum consumption set
point if the system voltage dropped to the minimum acceptable
voltage level to prevent a system shutdown. Otherwise it
operated at the fixed set point resp. goal set point level.
Algorithms I-K are based on the SOC of the battery storage
system. They are linear and nonlinear. Algorithms H-K are
presented in TABLE II and visualized in Fig. 2. The user
comfort (Cuser) for all simulations was set to 1.

C. Case study

For all simulations, a system with a freezer, water heater and
space heating/cooling was considered. These devices were
controlled in each household. The time frame for each
simulation was one week in summer, starting at Monday 00:00
a.m. with a time step of 5 min. The patterns for the apartment
electricity, food and warm water consumption and patterns of
people in the room were used for one week.

Different predefined household occupancies implemented in
LoadProfileGenerator [21] were selected and categorized to
eight groups to represent some typical occupancy scenarios for
dwellings.

To select representative household occupancies, statistics of
the Federal Statistical Office of Germany have been analyzed.
TABLE 1II shows selection criteria, their share and the
corresponding household, which they are represented by in this
work. Descriptions of the chosen household occupancies of this
work are shown in TABLE V.

The average dwelling size is 92.3 m? in Germany [22] and
66.7 m* in Estonia [23]. Family houses are included in those
numbers. To find a more suitable dwelling size for an average
apartment building the average dwelling size per person can be
considered. Those are 44.8 m? in Germany [22] and 30.5 m* in
Estonia [24]. Considering that the majority of people in Estonia
and Germany, about 40% [25], are living alone, a dwelling with
a size of 67.4 m* was selected to represent a typical dwelling.

Their electricity, water and food consumption per day were
different. With the LoadProfileGenerator software, the
electricity consumption patterns were created with the
corresponding room occupancy and hot water consumption
patterns. Thus, these patterns were artificial profiles based on a
behavioral model. According to [26], the artificially created load
profiles show adequate similarity to measured load profiles.
Additionally, the simulations in this work were validated with
measured profiles for a similar occupancy of a similar dwelling.
The results agreed well to those of a corresponding artificial
profile.

The daily electricity consumption of the chosen household
occupancies and their descriptions are shown in TABLE V. The
values are presented without the thermal storages. The 5-min
power consumption patterns of the different households for one
week are presented in Fig. 3. As seen from the table and the
figure, each kind of occupancy of the dwelling is featured by a
different electricity consumption. For households with working
or studying occupants, electricity consumption on workdays is
lower as they spend less time at home than on the weekend.
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TABLE II. VOLTAGE AND SOC BASED SET POINT CALCULATION ALGORITHMS
(AL); COOLING = FREEZER AND SPACE COOLING; HEATING = WATER HEATER
AND SPACE HEATING

AL |Description of set point calculation algorithm

H |Cooling: Tser = Tyom
Heating: Tser = Tgoat

I |Cooling: SOC =SOC i, + 0.2 = Tgor = Tyoq;Otherwise - Ty, =

Tset,max B
Heating: SOC > SOC i, + 0.2 = Tgop = Tgoq,Otherwise - Ty, =
Tsetmin H
. T = ;
V- |Cooling: Toor = Teetmax = Cuser * (SOC = SOy » 7oetmex Tsttimin
E DODax
. T - .
Heating: Tee, = Tyetmin + Cuser * (SOC — SOCyyyy) » m2etmaxTsctmin
ma;
K |Cooling: SOC = (1 + SOCin)/2 = Tser = Tsetmax ;
Otherwise — Tgor = Tsetmin ;
Heating: SOC = (1 + SOCpnin)/2 = Tser = Tsetmin ;
Otherwise = Tsor = Tser max :
Minimum SOC + 0.2
Minimum SOC (Max+Min)/2 Maximum SOC
85
80 Maximum Set Point
75
g ;
En ; ; Goal Set Point
= 1
& 1 : —
65 =t |
i —
1
60 L . Minimum Set Point

0 0.1 0.2 0.3 04 05 06 07 08 0.
socC

©

Fig. 2. Set point calculation for a water heater with algorithms H-K based
on the SOC.
TABLE III: SELECTION CRITERIA, THEIR SHARE AND THEIR
REPRESENTATION IN THE SELECTED HOUSEHOLDS
Number of people per dwelling
Represented in
Number of people Share household
1 42% il, iii, v
2 33% i, vii
3 12% vii
4 9% iv, vi
Number of children per dwelling
Number of children Share Represented in
household
0 72% 1, i, il v, Vii, viii
lor2 25% iv, vi
Number of people working per dwelling
Represented in
Number of people Share household
0 34% iii, iv, v, Vii, viii
1 36% i, vi
2 26% i
Employment status of the person with the main income per dwelling
Represented in
Employment status Share household
Retired 36% v, viil
Employed 48% 1,11, vi
Other 16% iil, 1v, vil




TABLEIV. OCCUPANCY DESCRIPTION FOR THE DIFFERENT
HOUSEHOLDS AND THEIR AVERAGE ELECTRICITY CONSUMPTION PER DAY
Household i il | il | v v vi | vii | viii

Working 2 1 - - - 1 - -
Studying - - 1 - - - 3 -
Unemployed - - - 2 - 1 - -
Retired - - - - 1 - - 2
Children - - - 2 - 2 - -
) 2 1 1 4 1 4 302
ElL C ption [KWh/d] 9.82/4.18/2.15/14.63]/2.58/13.10/9.225.85

1800

Mo

Tu We

1600
1400
1200

1000

Time (]

Fig. 3. 5-min power consumption data for households i-viii for one week.

The energy consumption of household vi is very high at the
beginning of the week because the working family member
stayed at home due to illness. The peaks for household iv are
especially high on weekends. The reason is that most family
members spend much time at home and only one child goes to
school. Different sleeping habits of the people in the different
households lead to slightly varying minimum electricity
consumptions at night. Other variables in the simulations, like
size of the water heater or area and orientation of the apartment,
were not changed for different occupancy profiles to have a solid
base for comparison. Energy consumption, water and food
consumption patterns were different for each of these
households to compare and analyze the performance of the
chosen algorithms in different environments. This enables
recommending a good control strategy for different occupancy
situations. The PV-system size was chosen to be 7.65 kWp. It
was the same size for all household occupancies to simulate an
existing dwelling with already installed PV-system. Thus, it was
chosen oversized for the lower energy consumption households.

The simulations worked as follows: A simulation started
with the battery capacity of 10Ah and a SOC of 100%. If the
voltage during the simulation was below 85% of the reference
voltage for more than two time steps, all parameters were reset
and the simulation restarted with a larger battery capacity. These
voltage boundaries are based on the EN 50160:2010 grid norm
to ensure stable operation. Before completion, the simulation
inspected the end-SOC. If it was lower than the start-SOC, the
simulation would restart with that end-SOC as the new start-
SOC value. This ensured that the islanded system was able to
maintain stable operation for more than one week. It was based
on the assumption that the household profiles used in the
simulations represented a typical or in the best case, a profile
slightly higher than average. The lowest battery capacity that
passed the simulation and could provide a constant SOC was
considered the minimum possible capacity.
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The example below explains the procedure that was used to
obtain the results. It was necessary to obtain two simulation
results to receive the battery capacity reductions for household
i1 with algorithm K. First, a simulation with household ii and the
thermal storages with a fixed set point control was conducted to
obtain a value for the minimum battery capacity. A second
simulation was done with the same thermal storages, the same
household profile and the same size PV-system. In this
simulation, the thermal storages were controlled by algorithm K.
A second value for the minimum battery capacity was obtained
and could be compared to the first value to calculate a percent
value for the reduction of the battery capacity. The procedure
had to be repeated for each household and each algorithm to
receive all the results. It was required to do the fixed set point
simulation once for each household. Since the absolute battery
capacities resp. electricity costs were compared for the same
household profile and the reductions are relative values, it was
possible to compare these reductions in percent not just between
the different algorithms but also between the different
households.

A total of 96 simulations were conducted for the 8-
occupancy patterns, each with 11 set point calculation
algorithms and fixed set point control. The results of those
simulations are presented in the next section.

III. RESULTS

The minimum battery capacity results with a fixed set point
control for the households are shown in TABLE V.

The results presented in Fig. 4 suggest that reductions in
battery capacity do not appear in any conditions. For the PV-
power based algorithms, high reductions in battery capacity
occur in low electricity consumption households like iii or v.

In high electricity consumption households there is mainly
an increase in the necessary battery capacity. The reason might
be that the PV-system was of the same size for all tested
households. During the day there are phases when both the PV-
production and the consumption are high. When additional
consumption from shifting the thermal storages is added to that
period without considering the battery’s SOC, then as a result,
energy consumption is higher than production. This leads to a
shutdown and a larger battery is needed. Contrary with low
consumption households like ii and v, the highest battery
reduction of all algorithms is achieved. In general, an
observation is that algorithm A usually shows the best results
whereas the performance of algorithms D and F is the lowest.

The voltage based algorithm H is a simple algorithm; its
advantage is that only a voltage measurement in the system is
necessary. This means that there is no need to interface the
controller with the battery storage or PV-system. The results for
this algorithm (cf. Fig. 5) show that it works best with low
consumption households. But more importantly, it always
shows battery capacity reduction or at least the same battery
capacity like with a fixed set point. It only interferes when the
system tends to become unstable instead of permanently
changing the set point. It does not show the best results, neither
does it show bad results. Reducing the battery capacity by up to
27% is a good result for this simple algorithm.



The SOC based algorithms I-K (cf. Fig. 5) show better
performance with low electricity consumption households due
to more available PV-power. Reductions can be up to 73% in
household iii. This value is extremely high probably because of
an unfortunate timing coincidence between the fixed set point
control and the battery state of charge. Because most algorithms
manage to surpass this problem, the battery reduction percentage
is higher here. The reductions for the other households between
1% and 39% are more likely to be achieved during regular
operation. The reduction in battery capacity with SOC based
algorithms might not always be the highest possible, like seen
for household ii or v, but it did not lead to an increase in
necessary battery capacity in these simulations. Possible
reductions are usually higher with SOC based algorithms.
Algorithm K usually shows the best performance except for
household v. Algorithm 1 performs better than J for higher
consumption households while J performs better with lower
consumption households.

Example results for the battery’s state of charge and the
temperature change for the water heater with a fixed set point
and algorithm K for household ii are shown in Fig. 6. It can be
seen that for values of the SOC higher than 0.6, the temperature
set point of the water heater is set to the maximum value. If the
SOC is below 0.6, then the minimum consumption set point is
chosen. Even though the temperature in the water heater is often
higher than with a fixed set point control, the battery storage
capacity can be reduced by more than 1/3 (cf. Fig. 5). The state
of charge of the smaller battery does not differ significantly from
the SOC of the larger battery storage needed for a fixed set point
control. As can be seen, for the set point algorithm control, there
is a ripple in the SOC and temperature curves for the transition
phase at a SOC of 0.6. Because the battery is charging while the
water heater is on the minimum consumption set point, the
algorithm will switch to maximum consumption set point when
reaching the SOC of 0.6. This causes the battery to discharge if
the available power from the PV-system is not sufficient. The
battery discharges until its SOC reaches 0.6 and the algorithm
switches to minimum consumption set point for the water heater.
Now the available PV-power is sufficient for charging the
battery and the SOC will increase again. This circle is repeated,
causing these ripples in the SOC and temperature curves. This
behavior is undesirable and needs to be optimized for future
work.

Battery reduction results in [12] show values in the range of
15-25% for a simple water heater shifting algorithm depending
on the household’s overall energy consumption. These
simulations show possible battery reductions for the system with
multiple thermal storages and SOC or voltage based algorithms
of up to 39%, excluding the special case of household iii. This
is in the same range of possible battery reduction. Results for the
PV-power based algorithms are in a wide range between high
increase and high reduction of battery capacity. In the case of
battery capacity reduction, the results are similar to those in the
paper mentioned above.

TABLE V.MINIMUM BATTERY STORAGE CAPACITIES FOR THE DIFFERENT
HOUSEHOLDS WITH A FIXED SET POINT CONTROL

[Household
[Battery Capacity [kWh]

[ 3 [ [ [av ] v [ vi [ vii [ vii]
[5.7]13]06]9.6]08] 168 | 138 | 11.4]

Household idii ivovovi il viii
40%
30%
20%
10%
0%
-10%
-20%
-30%
-40%
-50%
-60%
-70%

idd

Difference

Battery Storage Capacity

HA B mC mD WmE mF HG

Fig. 4. Battery capacity differences for algorithms A-G in households i-

viii in percent compared to a fixed set point.
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Fig. 5. Battery capacity differences for algorithms H-K in households i-
viii in percent compared to a fixed set point.
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Fig. 6. SOC of the battery storage and temperature of the water heater for

household ii with a fixed set point and algorithm K for 1 week.

In general, the results of the simulations are presented as
battery capacity reductions. If the necessary battery capacity for
permanent stable operation is smaller, then the operation time
for a fixed battery storage capacity is longer. The same is valid
for other seasons. If there is less PV-power available during
winter time, the building or microgrid can operate longer in
islanded mode. All algorithms that achieve smaller necessary
battery capacities in the simulations enable longer islanded
operation time with fixed battery- and PV-system sizes. Thus,
recommendations based on the results also apply to the case of
prolonging the off-grid operation with a fixed battery storage
capacity or during other seasons.
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IV. CONCLUSIONS

Thermal storages like a freezer, water heater and space
heating/cooling can be scheduled in a DSM-manner to improve
the power quality. Sophisticated set point algorithms applied to
those thermal storages in an islanded system can help reduce the
battery capacity necessary to ensure stable operation. Different
load matching control algorithms for thermal storages were
investigated to analyze the influence of different dwelling
occupancies on the possible battery storage capacity. The set
point calculation algorithms were based on photovoltaic power,
voltage and the battery’s state of charge. Artificially generated
load profiles for different dwelling occupancy scenarios were
used. The PV-power based algorithms did not show preferable
behavior. Results for these algorithms ranged between high
increase and high reduction of battery capacity. High increase
applies especially if the PV-system is small compared to the
household electricity consumption. The voltage based algorithm
showed constant good results of up to 27% reduction while
being simpler to implement than other proposed control
strategies. It is suitable especially for lower consumption
households. With the SOC based algorithms, higher battery
reductions of up to 39% could be achieved, while also never
increasing the necessary battery capacity.

Therefore, the preferred control strategy for off-grid
operation would be voltage or SOC based set point control. Best
performance for all different dwelling occupancies was shown
by algorithm K. PV-power based control can achieve better
results but only in a system with an oversized PV-system.

In the future work, it is required to focus on the effect of
aggregation, for example, in an apartment building with multiple
households or even in a complete microgrid.
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Abstract—Necessary balancing of supply and demand due to
an increasing amount of renewable energy sources in the grid
can be achieved with demand side management (DSM) resp.
scheduling loads like a freezer, a water heater or space heating.
Engaging in DSM with such controlled thermal storages can be
lucrative for customers to reduce their electricity costs with
small impact on their comfort. This paper proves that the height
of those savings depends not just on the control algorithms but
also on the occupancy of the dwelling. Simulations with object
models of the scheduled appliances show the performance of
different price based set point calculation algorithms.
Estimation of possible savings for the different selected
occupancies is achieved in this work by comparison of the
simulation results of different load matching algorithms to each
other and between the different occupancies. This enables
recommendations on the selection of the algorithm depending
on the occupancy of an existing dwelling with respect to
maximum possible electricity cost savings. This can come in
handy for example for dwelling and apartment owners who are
renting out dwellings.

Keywords—thermal storage, thermostatically controlled load,
price based control, demand response, microgrid, object model,
occupant behavior

I. INTRODUCTION

More and more renewable energy sources in the grid force
distribution system and also micro grid operators to establish
a sufficient control of supply and demand to keep frequency
and power levels stable and within their limits. For the demand
side grid utilities can to provide lucrative offers for customers
to engage in the demand side management (DSM). There are
different loads in a typical dwelling that can be scheduled [1].
Some of these schedulable devices, can be used as thermal
storages for DSM, like freezer, water heater or space
heating/cooling. Unlike ultracapacitors [2] or batteries [3] for
example, those energy storages are already commonly
available in households. Thus, this paper focuses on such
appliances as they can compose 50% of the electrical energy
consumption in buildings [4], can be used as an energy storage
and do not interfere with the user comfort too much.

Several papers present scheduling models/algorithms, like
[5]. The performance and feasibility of the algorithm for a
water heater is not shown in detail since the whole system is
considered in this project and not separate appliances.
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Other articles focus on the performance and feasibility for
a single appliance. In [6] the implementation of a load shaping
algorithm on the example of a water heater is shown. A
payback period based on the algorithms performance is
estimated to show the feasibility of such a control strategy. In
[7] the authors present a model predictive scheduling method
for freezers based on the day ahead market prices. The model
is compared to measurements and shows good similarity.
Applying the proposed algorithm shows cost reductions.

But all those papers, including [6], [8], [9], are focused on
price based control for one appliance, like a water heater or a
freezer. The authors of [8] show a general approach on
scheduling loads based on real time prices. They include a
water heater as such a schedulable load and present possible
cost reductions. The performance of different price based load
shaping algorithms is shown in [9]. A freezer and a water
heater are controlled with and without pre-freezing / -heating.
Possible power resp. cost reduction are presented and
compared for the different algorithms. The appliances are
investigated separately.

To have a better view on the total possible cost saving
multiple devices should be taken into account. Papers which
consider multiple thermostatically controlled devices usually
focus on one control algorithm. An aggregated control for
multiple thermostatically controlled devices is shown in [10].
Using a market price based control the electricity costs could
be reduced compared to a fixed set point control. The authors
of [11] use the definition of “equivalent storage capacity” to
describe the thermostatically controlled loads. Space heating /
cooling, water heater and refrigerating appliances are taken
into account and an aggregator is used. A comparison to a
battery storage for scheduling consumption is made
considering investment costs.

In [12] it is shown that the occupant behavior has an
influence on the energy consumption and comfort level of
users. A smart zoning approach is used to reduce the energy
consumption. Other articles investigate the occupant behavior
but do not consider the influence on price based control
algorithms. In [13] the authors attempt to evaluate the effect
of occupant behavior on the energy performance of a building.
Different devices are taken into account for this study. It is
shown that the occupant behavior influences the energy
consumption of a building in general. But possible influences
on price based control are not shown.



This work takes into account thermal storage control
strategies for multiple devices in one household in grid
connected operation to reduce electricity costs. Comparing
different set point calculation algorithms provides a base for
recommendations on improving control strategies for different
household consumption patterns resp. different dwelling
occupancies. Thus, in an existing dwelling it should be
possible to estimate the possible cost savings on electricity
prices based on its occupancy. This can also help in a next step
to optimize the control of not just one household, but expand
the investigation to apartment building level and give
recommendations on improving the electricity costs for all
tenants of the building. Later such a system can be expanded
to microgrid level with aggregated loads.

The paper is organized as follows: The mathematical
object models, methodology and control strategies are pre-
sented in the Section II. Section III shows the results of the
different simulations. Finally, the results in brief with conclu-
sions and recommendations are presented in Section I'V.

II. SYSTEM MODELING

To give recommendations on suitable control strategies
and possible cost savings it is necessary to model a suitable
system. Commonly, there are three household thermal storage
systems: a freezer, a water heater and space heating. This
section describes mathematical object models of these three
systems. These models are based on datasheets of typical
devices. Specific control strategies, including price based load
matching algorithms, are presented. Other parameters and
input data for the simulations, which include the different
occupancies of an existing dwelling, are described.

A. Mathematical Object Models

First, The freezer model is based on the temperature
changes due to food exchange (To0d), ambient losses (Tamb,loss)
and freezing (Tfeere) during the time step. The cabinet
temperature at the end of the time step (Thex;) could be
obtained from the temperature at the beginning of the time
step (T;) as follows (1) [9], [14] :

Tnext = Ti - Tfreeze - Tfaod - Tamb,loss (1)

The model for the water heater was similar. The
temperature of the water inside the boiler at the end of the time
step (Tnext), Was obtained from the temperature at the
beginning of the time step (T;) and the temperature changes
during the time step due to heating (Theaing), Water exchange
(Tew)and ambient losses (Tamb,ioss) (2) [9], [14]:

Tamb,loss (2)

The space heating/cooling model is based on the
temperature changes during the time step due to heating/
cooling (Tn) with the heat pump resp. electrical heater, the
ambient air exchange (T,r), ambient losses through outside
walls and windows (Tamb,loss), people in the room (Tp) and sun
irradiation through the windows (Tsu). The temperature at the
end of the time step (Thex;) Was obtained from the temperature
at the beginning of the time step (T;) like follows [9], [10] (3):

Tnext = Ti + Thc - Tair - Tamb,lass + Tp + Tsun (3)

Tnext = Ti + Theating - Tcw -

In this paper to achieve a simple and clear structure,
models (1)—(3) were combined to one system model. For all
the connections between the components there were neither
losses nor parasitic elements taken into account. The ambient

conditions for the devices were fixed for all simulations and
the thermal storages did not influence each other. Freezer,
water heater and space heating had the same sizing and
dimensions for every simulation to represent an existing
dwelling and make comparisons possible. These object
models needed a control model and input data which is shown
in the next section.

B. Control Strategies

For all simulations in this work, a system with a freezer,
water heater and space heating/cooling was considered. All
these devices were controlled in each household. Thermostatic
2-step control with a fixed set point is the typical way to
control the thermal storages. Such a 2-step control was used
for all other simulations as well. But for those the set point
was calculated with different algorithms according to the price
signal. According to the price (Ps) and electrical energy
consumption (Eg) during each time step, an average
electricity price per day (Pavg ) can be calculated (4):

1
Pavg a = 7 1'22%6 Py * Eqy (4)

To determine the performance of different set point
calculation algorithms, the average price per day was
compared to a fixed set point control. The result of this
comparison is an electricity cost difference in percent.

Seven different price based set point calculation
algorithms (A—G) [5], [6], [9] were implemented which are
shown in more detail in [14]. Both linear and nonlinear
algorithms were used. All algorithms are shown for the
example of a water heater in Fig. 1. The algorithms in detail
are shown in Table I. The user comfort (Cuser) is set to 1 for all
simulations.

C. Case Study

Each simulation was for one week, starting at Monday
00:00 a.m. with a time step of 5 min. Apartment electricity,
food and warm water consumption patterns as well as the
pattern of people in the room represented one week.

The thermal storages operated according to their set point
and the price was calculated according to day-ahead market
price hourly data from the Nord Pool Elspot database for
Estonia [15].
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Fig. 1. Set point calculation for a water heater with algorithms A-G for an
example price range of 1-2 € with an assumed average price of 1.6 €.



TABLE 1.

PRICE BASED CONTROL ALGORITHMS [5], [6], [9]; COOLING = FREEZER AND SPACE COOLING;

HEATING = WATER HEATER AND SPACE HEATING

Algorithm Description of set point calculation algorithm
A 3 . —_ Tset,max_Tset,min
COOhng Tser = Tset,min + Cuser * (Pr— l:)rmin) * P pro:
Tmax~FTmin
L — Tsetmax—Tset,min
Heating: Tset - Tset,max - Cuser * (PI‘ - l:)rmin) * Pr. Pr.:
max min
B P _ |Tsetmax—T goall
Cooling: Tser = Tgoal + Cuser * (PI‘ - Prmavg) * T
ev
H 4 . T — T C P P |Tset,min_Tgoal|
eating: set = lgoal = Cuyser * ( r— rmavg) * Pracy
C s _ Tset,max—Tgoal
Cooling: Tset = Tgoar + Cuger * (Pr - Prmavg) o
Prmax—Prmavg
. . — Tset,min_Tgoal
Heating: Tser = Tgoal — Cyser * (Pl‘ - Prmavg) * Pro —Prooo
’'min~FImavg
D . . _ Tset,max_Tgual
Cooling: Tset = Tgoar + Cuser * (Pr — Prypn) * _
Prmax—Prmavg
. . Tset,min_Tgoal
Heating: Tser = Tgoal — Cuser * (Pr— Prmin) * _
Prmin—Prmavg
E LS, — Tset,max—Tsetmin
Cooling: Toet = Tgoar + Cuser * (Pr = Prypgyg) » =i —seumin
max min
L — Tset,max—Tset,min
Heating: Tser = Tgoal — Cuser * (PI‘ - Prmavg) O ———
Prmax=Prmin
F 3 . —_ Tset,max_Tset,min
COOhng- Tset - Tgoal + Cuser * (PI‘ - Prmin) i ——
Prmax=Prmin
Heating: T. =T —-C * (Pl" — Pr.. ) % Tsetmax—Tset,min
g: set — ‘goal user min Pr. —Pro;
max min
G Cooling: Pr = Priavg = Toer = Tseymax ; Otherwise = Toor = Toepmin ;
Heating: Pr =Priyavg = Tset = Tsetmin ; Otherwise = Toor = Toepmax ;

Different household occupancies were selected from the
predefined ones implemented in LoadProfileGenerator [16]
and categorized to 8 groups. They represent some typical
occupancy scenarios for dwellings. Their electricity consump-
tion per day as well as water and food consumption were
different. The electricity consumption patterns with the
corresponding room occupancy and hot water consumption
patterns were created with the LoadProfileGenerator software.
This means that they were artificial profiles based on a
behavioral model. In [17] it is reported that the load profiles
show good similarity to the measured load profiles.

Additionally, the simulations were validated with meas-
ured profiles for a similar occupancy of a similar dwelling and
similar results compared to the corresponding artificial profile
could be obtained. To show the influence of different seasons,
patterns and ambient conditions were available for summer
and winter time. This included the occupancy, electricity
consumption, day-ahead prices and for example the ambient
temperatures.

The chosen household occupancies with their daily elec-
tricity consumption without the thermal storages for the
summer conditions are shown in Table II and the 5 min power
consumption patterns for 1 week for summer conditions are
presented in Fig. 2.

As seen from the table and the figure, the electricity
consumption is different for each kind of occupancy of the
dwelling. For the households where the occupants are working
or studying, the electricity consumption for the weekends is
higher as they spend more time at home. Household vi has a
very high energy consumption at the beginning of the week as
the working family member is sick and stays at home. There
are very high peaks for household iv which are even higher at

the weekend. This is due to the fact that only one child is going
to school and the other family members spend a lot of time at
home. Depending on the different sleeping habits for the
people of the different households the time of the minimum
electricity consumption at night varies slightly. To have a
solid base for comparison, other variables in the simulations,
like size of the freezer or volume of the apartment, were not
changed for different occupancy profiles.

The energy consumption patterns as well as the water and
food consumption were different for each of these households.
Thus, the performance of the chosen algorithms in different
environments could be compared and analyzed. This enables
recommendations concerning a good control strategy for
different occupancy situations.A total of 128 simulations were
conducted for the 8 occupancy patterns, each with 7 price
based algorithms and fixed set point control and at summer/
winter conditions.

TABLE II. OCCUPANCY DESCRIPTION FOR THE DIFFERENT
HOUSEHOLDS (HH) WITH THEIR RESPECTIVE AVERAGE ELECTRICITY
CONSUMPTION PER DAY (EL. CONSUMPTION)

HH Description COnSSE:;‘lp tion
i Couple; both working 9.82 kWh/d
ii Single; working 4.18 kWh/d
iii Student; studying 2.15 kWh/d
iv Family; 2 children; both unemployed 14.63 kWh/d
v Single; retired 2.58 kWh/d
vi Family; 2 children; 1 working and 1 unemployed | 13.10 kWh/d
vii | Flat sharing Students; 3 studying 9.22 kWh/d
viii | Couple; both retired 5.85 kWh/d
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Fig.2. 5 min power consumption data for households i-viii for the duration of 1 week in summer conditions.

III. SIMULATION RESULTS

All simulations were developed and conducted in Matlab
R2018b. For these grid connected simulations the price based
control strategies show the following results for the different
household occupancy profiles. These results are also shown in
Table III and Table IV. Additionally, an overview of the
different algorithms is presented in Table V.

In general, it can be noted that algorithms D and F achieve
the best results compared to the other price based algorithms.
This seems to be due to the operating range of these
algorithms. The set point mostly changes between the goal set
point and the minimum consumption set point, which
represents the lowest user comfort. Other algorithms use the
whole range between the minimum and maximum
consumption set point. The higher energy consumption during
low price periods due to the higher consumption set point
cannot be stored long enough with other algorithms to reduce
energy costs in high price periods sufficiently. The result is a
higher overall average electricity price per day. Therefore,
Algorithms A, B, C and E usually have a lower performance.
Nevertheless, compared to a fixed set point control they
always provide cost saving opportunities.

The worst performance is shown by algorithm G which
sometimes even increases the electricity costs. The reason for
this behavior is the simple 2 step implementation of this
algorithm. If the price is higher than the average price, the
minimum consumption set point is chosen and otherwise the
maximum consumption set point. Like explained previously,
the higher energy consumption during low price periods
cannot be stored long enough to reduce costs during high price
periods sufficiently. Since there are only two states for the set
point in this algorithm, the influence of this effect is even
higher because the maximum consumption set point is chosen
for longer time and is not decreasing for slightly higher prices.

In contrast the algorithm will also stay at the minimum
consumption set point at high price periods for longer time
than with other algorithms. Depending on the use of the
thermal storage (e.g. food exchange or water exchange),
which is different for each of the household occupancies, this
can lead to a higher electricity price.

For example: The price is slightly below the average price.
This means the thermal storage is with algorithm G at the
maximum consumption set point whereas the fixed set point
control is at the goal set point. If somebody in the dwelling is
taking a shower now, heating up the exchanged water will take
more energy because the water heater is at the maximum set
point compared to the goal set point with a fixed set point
control. On the other hand, it is vice versa if the electricity
price is slightly higher than the average price and a lot of
energy and electricity costs can be saved. If this negative
example is more likely than the positive one for a certain
household occupation, then the electricity costs can be even
higher than with a fixed set point control. Additionally, the
thermal storage will be at maximum consumption set point for
a longer time where the ambient losses are highest. This
cannot be compensated with the extended periods at the
minimum consumption set point where these losses are lower
as ambient losses are not changing in a linear way with the
temperature difference. All of that can lead higher electricity
costs compared to a fixed set point control, like shown in
Table IIT and Table IV. Household i for example shows cost
reductions of up to 21% compared to a fixed set point control.
This is achieved by algorithms D and F in winter conditions.
The worst result is presented by algorithm G in summer
settings which increases the costs by 1%. The other algorithms
are showing reductions around 3-5%. Similar patterns can be
observed for all other households as well.



TABLE III. COST DIFFERENCES FOR ALGORITHMS A-G IN
HOUSEHOLDS I-VIII IN PERCENT FOR SUMMER CONDITIONS

TABLE IV. COST DIFFERENCES FOR ALGORITHMS A-G IN
HOUSEHOLDS I-VIII IN PERCENT FOR WINTER CONDITIONS

Householﬁlgorithm A B ¢ b E ¥ G Househo?(:gorithm A B ¢ D E

i —1% | 3% | 3% [~16% | —4% i 5% | 4% | 5% 5%

ii 5% | 6% | -8% 8% ii 5% | 3% | 5% -5%

il -1% | 3% | 5% —5% il 4% | 2% | 3% —5%

iv 4% | 7% | 8% 8% v 4% | 3% | 3% 3%

v —1% | 2% | 4% [-16% | —4% v 3% | 0% | 3% 3%

vi 2% | 4% | —5% |-14% | 5% |-13% | —2% i 3% | —1% | —2% l—16%| —2%

vii 2% | 3% | 4% [=14%| —5% |=13%| 2% Vi 3% | 1% | —2% I=16%| —2%

viii 2% | 3% | <4% |=13%| —5% [=13%| —2% i 2% | 2% | 2 I -

TABLE V. CLASSIFICATION OF ALGORITHMS A-G
Algorithm Goal Set Point Operation Algorithm Scaling and Shifting Sacv(i)lsltgs C(?ns;(l;r ¢

A (Max. Price + Min. Price)/2 Max. and Min. Price scaling + 0
B Average Price Price deviation scaling; Avg. Price shifting + 0
C Average Price Min. and Avg. Price scaling + 0
D Minimum Price Min. and Avg. Price scaling ++ -
E Average Price Max. and Min. Price scaling; Avg. Price shifting + 0
F Minimum Price Min. Price and (Max. Price + Min. Price)/2 scaling ++ -
G Never 2 point (min/max); Avg. Price shifting 0 0

++ highest; + high, 0 medium; — low

Algorithm G always shows the worst results which mark
the minimum values. Increase of electricity costs of up to 6 %
can be observed. D and F always present the maximum
reduction values. The other algorithms are usually in a range
of 1%-8% of cost reductions. Another observation that can be
made is that with higher household occupancy the cost savings
tend to be a smaller percentage of the whole energy costs. This
is due to the fact that there are more people living in the
household which raises the electricity consumption and also
water and food consumption. This creates less flexibility for
the algorithms to optimize the electricity consumption
according to the price pattern. More people means more
disturbances for the thermal storages, like water exchange.
The thermal storages need to restore the temperature set point
and during that time there is less possibility for scheduling.
There is no significant difference between summer and winter
conditions. As a validation it can be mentioned that previous
research [6], [9] typically presents cost savings for single
appliances like freezer or water heater between 5%-30%
range. The different appliances show different performances
with the algorithms, so the combined cost reduction is smaller
than with a single appliance.

IV. CONCLUSIONS

Different price based set point calculation algorithms have
been presented to reduce the electricity costs in grid connected
operation. To analyze the performance of these algorithms for
different household occupancies, a system with a freezer,

water heater and space heating/cooling was used. The load
profiles for the different occupancies were generated on a
behavioral model.

From the presented algorithms it can be concluded that
algorithm D and F show the highest cost savings. This is due
to longer operation times at low consumption set points than
the other algorithms or a fixed set point control. This behavior
can be observed for all selected household occupancies. It is a
trade-off with the user comfort, but the algorithms keep the set
point within the user defined minimum and maximum
acceptable values.

In general, the cost savings tend to be higher the smaller
the energy consumption and number of occupants is due to
higher flexibility for the algorithms. For low energy
consumption households that savings can be up to 23% and
for higher energy consumption households cost reductions up
13% and more are shown. Therefore, the recommended load
matching set point algorithms for such a thermal storage
control system are D or F for all dwelling occupancies with
expected savings of 13%-23% depending on the occupancy of
the dwelling.

Recommendation for future works is to reduce the number
of simplifications of the object models to improve the
accuracy. Further, the effect of aggregation for example in an
apartment building with multiple households or even a
complete microgrid needs to be investigated.
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This paper investigates the use of common thermal storage systems for demand side management in off-grid
situations for nearly zero energy buildings. Typical parameters and characteristics were analyzed to develop
mathematical models for freezers, water heaters and space heating/cooling. The models used in this work are
based on simplified equations derived from differential equations. Simplified models of a battery storage and a
PV-system have been added. Models for the thermal storages, PV-system and battery storage were merged to one
system model. All models and simulations were designed and conducted with Matlab. Various pre-defined price
based set point calculation algorithms were modified to work with the off-grid system based on the system’s
voltage and available PV-power. Voltage and battery’s state of charge based algorithms are developed in this
work. In a system with a freezer, water heater and space heating/cooling that is powered by a PV-system only, a
possible battery storage capacity reduction of up to 50% with PV-power based and up to 36% with SOC based
algorithms compared to the same system with fixed set point thermostatic control could be achieved.

Additionally, the capacity could even be reduced by up to 18% by solely reacting to voltage drops.

Introduction

The world’s need for electric energy is constantly increasing. This is
a result of growing population and higher living standards all around
the world. To serve this high demand on electric power, it is necessary
to focus more and more on renewable energy sources, providing vola-
tile electric power. [1] Some studies even consider scenarios with a
100% renewable energy generation market [2].

This forces the grid utilities and also micro grid operators to es-
tablish a sufficient control of supply and demand to keep frequency and
power levels stable and within their limits.

Grid utilities can influence the energy supply side by taking part in
control power and energy market with their power stations. The power
generation of these power plants will be changed according to the en-
ergy demand to balance the grid.

For the demand side, it is possible for grid utilities to provide lu-
crative offers for customers to engage in so-called demand side man-
agement (DSM). There are different loads in a typical dwelling that can
be scheduled [3]. Often this scheduling reduces the user comfort [4],
depending on the devices. Some of these schedulable devices, that are
available in most households, can be used as thermal storages for DSM,
like freezer, water heater or space heating/cooling. Additional energy

* Corresponding author.

storage capacity can be utilized this way without investing into other
additional storage systems like ultracapacitors [5] or batteries [6]. This
paper focuses on such appliances as they can compose 50% of the
electrical energy consumption in buildings [7].

There are several papers that present scheduling models/algo-
rithms, like [8], and some also focus on their performance and feasi-
bility [9]. In [10] the authors present a model predictive scheduling
method for freezers based on the day ahead market prices. The authors
of [11] schedule loads, including a water heater, based on real time
prices. This approach enables cost reductions. But most of these papers
do not take into account a user comfort level, which also influences the
performance of such algorithms like presented in [4].

In [12] the performance and feasibility aspects are studied and the
user comfort is considered. The authors of [13] consider those aspects
in their investigation as well. Still all those papers are focused on price
based control, thus improving cost savings in a power grid connected
system. Only few papers can be found on using thermal storages or
scheduling other loads to increase the power quality in off-grid mode
[14]. Grid backup or diesel generators are often used in such in-
vestigations [15]. In [16] the authors include a simple scheduling al-
gorithm for a water heater and one result shows changes in the ne-
cessary battery capacity according to the annual energy consumption of
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Nomenclature Si Effect of Solar Irradiation on Windows: off/on {0,1}
SOC State of Charge
Ay (Surface) Area of Object x [m?] SOCin  Minimum desired State of Charge of the Battery System
a Coefficient: U,*A, [W/K] Tamb Ambient Temperature [°C]
B Coefficient: 1/(Vy*cp,) [K/J] Tamb,loss Temperature Change due to Ambient Losses [K]
COP Coefficient of Performance Tew Temperature Change due to Water Fluctuation [K]
Cpx Specific Heat Capacity of x [Jkg 'K~ !] T¢ Temperature of exchanged Food [°C]
Cuser User Comfort/Scaling for Algorithm Te Corrected Temperature of exchanged Food [°C]
DOD,.x Maximum desired Depth of Discharge of the Battery Trood Temperature Change due to Food Exchange [K]
System Threeze Temperature Change due to Freezing Power [K]
DSM Demand Side (Energy) Management Tgoal Goal Temperature for Algorithm (User defined) [°C]
At Time Step Width [h] The Temperature Change due to Heating/Cooling [K]
Nx Efficiency of Appliance x [%] Theating ~ Temperature Change due to Heating Element [K]
k; Number of People in the Room during Time Step i T; Temperature of Appliance/Room at Beginning of Time
m; Mass of exchanged Food during Time Step i [kg] Step i [°C]
nZEB Nearly Zero Energy Building Thext Temperature of Appliance at End of Time Step i [*C]
P, Rated Electrical Power for Cooling of the Heat Pump [W] Tpeople ~ Temperature Change due to People in the Room [K]
Peif Steady State Electrical Power of Freezer [W] Tset Set Point Temperature for next Time Step [°C]
Py Rated Electrical Power for Heating of the Heat Pump [W] Tset,max ~ Maximum Set Point Temperature (User defined) ["C]
Proax Maximum Rated Power of Freezer/Heater [W] Tset,min ~ Minimum Set Point Temperature (User defined) [°C]
Pperson  Heat Dissipation of an Adult during 1 Hour [W] Tsunraa  Temperature Change due to Solar Radiation [°C]
PV Photovoltaics Twindow Temperature Change due to Opened Windows [K]
Pwr Available Electrical Power during Time Step [W] Uy U-value of Object x [W m™2 K™']
Pwrgey  Electrical Power Deviation within Calculation Window V; Volume of Air/Water Fluctuation during Time Step i [m?]
[W] Vimax Volume of Air in the Apartment/House [m®]
PWrnavg Average Electrical Power within Calculation Window [W] Vi Nominal Voltage [V]
Pwrpn.x Maximum Electrical Power within Calculation Window Vwood Volume of Wood (Furniture) in the Apartment/House
[W] Vi Maximum Volume of Appliance x [m?]
PWrpi,  Minimum Electrical Power within Calculation Window Vimax  Freezing Volume in kg per 24 h [1/kg]
[W] Vi Status of the Appliance: off/on {0,1}
RMS Root-mean-square Z; Status of the Heat Pump: Cooling/Heating {0,1}

a household. They used a PV-powered off grid building in Australia
with a battery storage system. Even with this simple shifting algorithm
they present battery storage reductions of about 15-25%.

The authors of [12] focus on a single appliance under investigation
only, like a water heater or a freezer. For a price based control approach
this is suitable as the cost savings can be added up. In an off-grid system
this is not possible as the total energy consumption of the household has
to be taken into account.

In [17] the authors investigate a power quality control strategy for
water heaters. There is a maximum peak load for the water heaters
implemented to increase the power quality but all considerations are
done for a grid-connected system and other components or an off-grid
system are not taken into account.

The authors of [18] present a model for residential buildings with
space heating/cooling but they do not take into account an off-grid
system or scheduling algorithms. In [19] a similar modelling approach
is shown with additional PV-system and battery storage system. Such
systems are important for off-grid investigations. Increasing the self-
consumption of the households and investigations on battery storage
and PV-system size are presented. However, that paper focuses on the
battery control strategy and does not take an off-grid situation into
account. A peak shaving scheduling model for air conditioning is shown
in [20]. Since the focus is on reducing peak loads, the thermal model of
the building for the air conditioning as well as the rest of the micro grid
infrastructure is not taken into account in this model. In [21] different
control strategies for heating, ventilation and cooling systems are in-
vestigated considering the reduction of load peaks. The focus is put on
the energy consumption of the space heating/cooling systems and other
components of a micro grid are not taken into account. One of the
strategies presented in [22] shows a load scheduling by using the
thermal inertia of a building. The load peak of the heat pump could be
shifted with a set point regulation method. The investigation is in the

context of industrial micro grids though and does not consider other
devices or off grid situations. The authors of [23] present a stochastic
model based control to increase the power reliability with the HVAC
system. The control selects on of two different set points for each op-
eration mode of the HVAC system according to the temperature and
battery status.

Using a battery for power quality purposes is shown in [24]. Control
methods for a battery storage system to reduce peak loads in the grid
with positive results are presented. Load scheduling and the use in a
small micro grid is not addressed in this article.

In [25] an approach to use thermal- and battery storages to improve
grid friendliness is presented. The possible influence on the power
quality is shown to depend on the battery storage size. But for all sce-
narios the system is connected to the grid.

A micro grid with PV-system and battery storage is investigated in
[26]. But the focus of interest is put on the battery storage system de-
sign regarding its sizing in such a system and does not take into account
a scheduling algorithm for thermal storages. In [27] a technology free
modelling approach is shown for a micro grid. The authors include
many technologies and also consider load shifting for different appli-
ances in the model. But it is a grid connected simulation, thus battery
reductions due to scheduling algorithms are not considered. The au-
thors of [28] investigate energy and cost savings in an isolated grid
including renewable energy sources with a demand response approach.
However, they only consider washing-, drying machines and dish-
washers for scheduling and no thermal storages. The impact on battery
storage systems is not taken into account as well.

The optimization of sizing various components in a micro grid are
shown in [29]. This includes wind turbines, PV-system and battery
storage. But the authors do not take into account the influence of
scheduling loads on the sizing of the components.

The previously mentioned papers suggest that the thermal storages
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can be scheduled in a DSM-manner. Cost savings of about 5-8% [10]
resp. up to 30% [12] are presented. Other presented papers show the
possibility of power quality improvements with such devices. So it
should as well be possible with suitable control strategies to optimize
the power quality of an islanded system, which is powered by a PV-
system only for example. Other publications suggest simple scheduling
algorithms to improve the power reliability in islanded operation.
Scheduling the loads with a sophisticated algorithm can help reduce the
battery capacity that is needed to ensure stable operation even more
than a simple load shifting like presented in [16]. This will result in
potential cost reductions, as battery storage is still expensive [30].

Thus, this paper does not focus on price based control of thermal
energy storages, but takes into account an off-grid system and the
corresponding voltage based control model including the influence of a
user comfort level for the majority of algorithms under investigation.
Set point calculation algorithms for off-grid operation are developed in
this work. These algorithms control different thermal storages that in-
fluence the whole islanded system rather than just the energy con-
sumption of one appliance itself. Thus, the results are based on the
whole system evaluation instead of a single device’s energy consump-
tion. The off-grid system used in this work is powered by a PV-system
only and has a mandatory battery storage which is a common config-
uration for nearly zero energy buildings (nZEBs). It simulates a micro
grid that is in off grid mode for example during a fault ride through
situation.

The previously mentioned thermal storages under investigation are
relevant in typical Estonian and German dwellings because of their high
share of energy consumption [7] and long lifetime of 10-20 years [31].
This is convenient for the user, as the devices do not have to be swit-
ched out that often. This makes these appliances interesting objects of
investigation. As this paper aims to get a first insight into the scale of
possible battery capacity resp. investment cost reductions, the models
used here are simplified to keep the computational calculation time and
power low.

This paper is organized as follows. Section “System Modeling” de-
scribes the models and simulations scenarios. Section “Simulation
Results” presents and discusses the results of the simulations and fi-
nally, conclusions are presented in “Conclusions”.

System modeling

The object models are based on simplified equations. The correct
function of the models is verified subsequently to avoid mistakes in the
modeling. All the models have been developed using Matlab. Specific
parameters for the different models are taken from datasheets of typical
household devices (c.f. Table 1).

Mathematical object models
Several simplifications in the modeling make the following pre-

conditions necessary for the thermal storage object models:
For the freezer:

The freezer is always completely full. Food is replaced immediately.
This has an effect on the total thermal capacitance, especially if the
freezer is opened often. It is a sufficient simplification as most
people keep their freezers full and open them rarely.

The thermal capacitance of the freezer itself is neglected. Since the
thermal capacitance of the food is much higher, a small error in the
total thermal capacitance is introduced.

The food is assumed to behave like water resp. ice. Most groceries
have a high water content and the error in the specific heat capacity
is small.

The food is uniform. The overall food temperature will increase if
food is replaced.

Door opening losses are very small with a chest-type freezer and
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therefore they are not considered.

For the water heater:

The water heater is always completely full. Water is replaced im-
mediately. As a result the mean water temperature of the whole
water heater will decrease.

The thermal capacitance of the water heater itself is neglected. The
thermal capacitance of the water is much higher, thus the error
introduced in the total thermal capacitance is small.

The water is uniform. The overall water temperature in the water
heater will decrease if hot water is used.

For space heating/cooling:

Space heating/cooling is performed with a heat pump. Space
heating can be switched to an electric heater. This is necessary be-
cause the efficiency of the heat pump can be low in winter time.
The thermal capacitance of the walls is neglected. This introduces an
error to the total thermal capacitance.

People in the room are modeled as heat sources. The thermal energy
is distributed uniformly in the whole apartment.

Furniture is considered to be wood and uniform. The temperature of
the whole furniture is changing and differences of the thermal ca-
pacitance of different furniture materials is neglected. This in-
troduces an error to the total thermal capacitance.

Solar heat gain through windows is based on typical irradiation data
of the region.

Freezer model

The freezer model is based on [12]. The U-value of the freezer (Up) is
calculated using datasheet values. If the replacement food temperature
is higher than 0°C, the specific heat coefficient of water has to be
considered. To be able to use the specific heat coefficient of ice for the
whole temperature spectrum, it is required to calculate a corrected food
temperature for the food warmer than 0°C (1) [12]:

(m; * cpi x T) + (Mg x cpy x (= T¢))

Te=T—
e m; % Cpi

@™

Otherwise, Ty, is equal to Ty.
The coefficients a (3) and 8 (4) enable calculation of the coefficient
of performance (COP) of the freezer (2) [12]:

cop;

(WT;") & (=18A°C — Tpps) + B # 24h # @ % (—18A°C — 20A°C)

B # 24h * Byy % (=1)

@

a= U * A 3)
1

T Ve @

Vi, max is the amount of food with a temperature of 25 °C that can be

Table 1
Datasheet values for household appliance models.

Freezer [32] Water heater [33]

Surface Area 5.86 m* Surface Area 2.493m?
Average Annual Power Consumption 174 kWh Rated Power 4.5kW
Rated Power 120W Volume 1501
Freezing Volume 2861

Freezing Capacity 22kg/24h

Temperature Rise Time 25h
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frozen within 24 h to a temperature of —18 °C, without a change in
the cabinet temperature. The ambient temperature is considered
20°C.

Trzs is the corrected food temperature for Ty;=25°C and
T, = —18°C.

P, s is the electrical power of the freezer.

Now it is possible to calculate all the temperature changes during
the time step (5)-(7) [12]:

Tfrccze =B x At % El,f * COPf * Y 5)
m
Tfood = (*‘) # (T — Tp)
14 (O]
Tamb,toss = B % At ot % (T} — Tymp) 7)

With these temperature changes, the cabinet temperature at the end
of the time step (T,x) can be obtained as follows (8) [12]:

Thext = Ti — Tfreeze — Tfood — Tamb,loss 8

Water heater model

The mathematical model of the water heater is similar to that pro-
posed in [12].

a (9) and B (10) were calculated as follows [12]:

a = Upn * Awn (C)]
_ 1
Vo % Cpw (10)

Uy, is the U-value of the water heater. A pre-calculated value of
0.4Wm™2K~! was used. A,y is the surface area of the tank.

The temperature changes during the time step can be calculated as
follows (11)-(13) [12]:

nearing=ﬁ*At*PmaX*nwh*yi (11)
Vi

Tow = | — | # (G — Toy)

=)+ - .

Tamb,toss = B % At ot % (T} — Tymp) (13)

Puax is the rated heating power and 7, is the heating efficiency given in
the datasheet.

The output variable T, representing the temperature of the water
inside the boiler at the end of the time step, is obtained with the tem-
perature changes (14) [12]:

Thee = Ti + Thealing = Tow = Tamb,loss (14)

Space heating/cooling model

The model for space heating/cooling was developed similar to the
water heater and freezer models. With some additions, it is possible to
create a mathematical model that can show the behavior of space
heating/cooling in the same fashion as in the other thermal storage
models.

The heat dissipation of an adult during 1h (Ppeson) Was set ac-
cording to [34]. Maximum air and wood volumes (Vmax, Vwood) were
calculated with areas of floor and roof and the height of the room. The
maximum air fluctuation during one time step was set to the maximum
air volume. To obtain a more exact U-value of the outside walls, the A.-
values or insulating capacities of bricks and insulation with their
thicknesses t were used. A ventilation model is omitted for simplifica-
tion. Instead a volume of air is assumed to be replaced through an open
window. Values for these parameters are presented in Table 2

The variables a (15) and 8 (16) were obtained as follows:

o = Uyan * (Awall — ZAwindaw) + Ulvindow * ZAwindow (15)
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1

Vinax * iy * Cpoair + Vivood * Pyood * Cp,wood

f (16)
using the densities (p,) and c,, values of air and wood.

In the case of space heating, a does not only depend on one mate-
rial, but on walls and windows, so it is necessary to take both into
account. The variable f only takes air and furniture in the room into
account. Furniture is assumed to be made of wood. The thermal capa-
citance of the walls is not taken into account although it has con-
siderable influence on the temperature in long-term durations. But for
time steps of 5 min, the influence is much smaller than the temperature
change due to opened windows.

The solar irradiation power due to the windows depends on the
window areas and the resulting irradiation values. Direct beam, diffuse
and reflective irradiation were taken into account, The calculation in-
cludes longitude and latitude values together with clear sky average
irradiation data at noon [35]. In addition, a normal distribution model
is applied to match the clear sky irradiation data to measured values in
[36].

Typical values for a heat pump are COP = 1.0 at —18°C and
COP = 3.5 at 10 °C. With these values, it is possible to make a linear
approximation and limit the COP to a maximum of 4.5 and a minimum
of 0.5. Because the COP is also affected by the difference of T. and Ty, it
is necessary to include a lift effect as described in [37]. In [38] a second
order polynomial as an approximation for measured data was shown to
be sufficient. If there is a low for COP for the heat pump in winter
settings, it is possible to use electric heaters in the model instead.

The temperature changes during time step i can be calculated as
(17)-(21) [12,34]:

Tpeopte = ki * Pperson * AL % B 17
Vi

Tindow = (Vm:lx) # (T = Tamp) as)

Tamb,toss = B * At s ot % (T} — Tomp) (19)

Taunrad = Botar * At % B 5 5; (20)

The = B At % (zi % Pp+ ((zi = 1)  (=1)) * B) * CORy * (1)

The temperature changes due to the number of people (Tpeope), the
air fluctuation of opened windows or ventilation system (Tywindow),
ambient losses through the walls and windows (Tgmp,0s5), the solar ir-
radiation through the windows (Tyn,req) and the heating/cooling with
the heat pump (Th.).

The temperature at the end of the time step (Ty.x) can be calculated
as shown in (22):

Thext = Ti + The — Tindow — 7:zml:u,loss + Tpcuple + Tsun,md (22)

Simplified electrical models

Both the battery storage and the PV-system model were reduced to
their basic working principles. These simplifications are sufficient, as
those electrical components do not represent the central elements of
this investigation. All results are represented as a comparison between

Table 2

Parameters of space heating/cooling model.
Parameter Value
Pperson 140 W [34]
Vinax 168.5m*
Viwood 5%
Uwindow 0.6 W/(m*K)
Nbrick 0.037 (m K)/W
Ainsulation 0.18 (mK)/W
torick 0.25m
tinsulation 0.1m
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two systems with exactly the same conditions except a different control irradiation based on calculations presented in [34]. The irradiation
strategy for thermal storages. Thus, small errors occurring due to the is then adjusted with a correction factor to fit measured values.
simplified models have a minor influence on the results as they occur in e The PV-model itself uses datasheet values to obtain the maximum
both systems and therefore can be omitted. PV-power at the maximum power point according to the irradiation
In summary, the following conditions apply to the electrical models: similar to [39].
e Ambient conditions are fixed for the PV-model like described in
e The solar irradiation is based on typical irradiation data for the [39].
region obtained from [35]. It considers direct, diffuse and reflective e The battery storage model is represented by a capacity and a state of

Ti,F’ mi,F’ -yi,F’ Ti,WH’ Vi,WH’ Y i WH ’Ti,SP’ vi,SP’ Y isp’ day, hour, P HH

System model I

SOC, Voltage, P,,, T

next,F’

T

next,WH’ Tnext,SP

Fig. 1. Simplified system model schematic.
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charge (SOC) value with charging and discharging efficiencies based
on datasheet values [40] from Lithium-Ion (Li-Ion) batteries. This
simple modelling is sufficient as the main interest lies in the possible
reduction of battery capacity in a system with the same conditions
except a different thermal storage control. Thus, lifetime, remaining
capacity, temperature changes etc. are not necessary to consider in
the model.

Ambient conditions are fixed for the battery storage model.
Inverter and battery controller are modeled within the complete
system model.

The overall PV-system model has a similar approach like presented
in [19]. Like described in [41] there are many influences on the actual
PV-power generation, so a simple model will be sufficient as the results
of the simulations are only going to be compared to each other. The
battery storage system has the same simple approach like [19] suggests
and a more accurate model is for not needed for this work and would
only increase computation time.

Model verification

The correct behavior of each previously described model was ver-
ified with different simulations. Each test simulation showed the be-
havior of one influencing parameter, like ambient losses, people in the
room or solar irradiation.

Additionally, the models were verified against measured data. This
shows the error that is introduced to the simulations by each model.

For the freezer model, a simulations according to the requirements
of the European Union commission delegated regulation (EU) No 1060/
2010 with varied initial conditions was conducted. The average energy
consumption in the simulations was 162 kWh/a. The EU energy label
states a measured value of 172 kWh/a. This results in an error of 5.8%.

The power consumption of a water heater and the corresponding
water consumption was measured for 1 week with a time step of 5 min.
The same water consumption pattern was applied to the water heater
simulation model. Comparing the average power consumption of the
measured water heater with the simulation showed an error of 5.9%.

The space heating/cooling model was verified against an accurate
simulation model, which was created with IDA Indoor Climate and
Energy (IDA ICE). The documentation of IDA ICE [42] shows an overall
error of less than 5% for the software according to CEN standards EN
15255-2007 and EN 15265-2007. The error of the average energy
consumption of the space heating/cooling model compared to the IDA
ICE model was 8.3%. This results in an overall error of the space
heating/cooling model of less than 13.3%.

The battery storage model was verified against measured data from
a Li-lon battery. The charging current error was 11.6% and the dis-
charging current error was 6.4%.

It is not necessary to quantify the error for the supplied power of the
PV-system model. This is due to the volatile power supply of the system,
which depends on many unpredictable effects, like clouds, that have a
higher influence on the resulting power supply than a modeling error.
Additionally, the model is, like mentioned in the previous section,
based on historical data, which deliver a sufficient estimation of the
irradiation magnitude depending on the season. Lastly, the exact
magnitude of the delivered PV-power has no influence on the set point
calculation algorithms, as they are scaled between the maximum and
minimum delivered PV-power.

Complete system model

To achieve a simpler and clearer structure, all previously described
models were combined to one system model. This model also includes a
simplified PV-inverter and battery controller. For all the connections
between the components there are neither losses nor parasitic elements
taken into account.

In the off-grid mode, the PV-inverter works as follows. The fre-
quency is considered to be kept constant in any case. The voltage is
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limited to the nominal root-mean-square (RMS) voltage of 230V (Vy).
It cannot be exceeded. If the battery is charged and the PV-system
produces more energy than the household consumes, the average PV-
power during the time step will be reduced. As this is a very simplified
model, it is not specified in the simulation how the PV-power is re-
duced. The battery storage automatically charges resp. discharges, de-
pending on available PV-power and energy consumption of the
household. Thus, if the battery is discharged and the PV-system does
not provide enough power, the modeled system shows a voltage drop. If
this voltage drop exceeds the defined limits, the simulation will be
aborted, because the real system would shut down completely as a
protection precaution.

A specific DC-AC converter between the battery/PV-system and the
other components was omitted for simplification. It is not needed for
such an energy simulation and the error added to the results will be
sufficiently small.

For this complete system model, it is also assumed that the PV-
system and battery storage are independent systems, which are not
controlled by the algorithms developed in this work. These algorithms
only deal with the control of the thermal storages. A schematic of the
complete system model is shown in Fig. 1.

In summary, the following pre-conditions apply to the complete
system for all simulations:

e The ambient conditions of the freezer model are fixed during the
simulation. The freezer is assumed to be placed inside the building,
where the temperature is kept constant.

The ambient conditions of the water heater model are fixed during
the simulation. The water heater is assumed to be placed inside the
building, where the temperature is kept constant.

The ambient conditions of the space heating/cooling model are
fixed during the simulation except the ambient temperature, in-
cluding the solar irradiation. It depends on the winter/summer
settings. There is no shading from trees or other houses due to dif-
ferent sun angles or window shades/curtains that are closed.

The thermal storage models do not influence each other thermally as
they are assumed to be placed in separate locations.

The ambient conditions of the PV-system and battery storage are
fixed during the simulation. The battery is assumed to be in a con-
trolled environment with constant temperature and there is no
shading from other houses or trees on the PV-panels.

Connections between the components are considered ideal which is
applicable for such an energy simulation.

The off-grid system only has the PV-system and battery storage as a
power source. This is a common configuration in nZEBs.

The number of PV-modules is fixed.

The frequency of the off-grid system is fixed in any case. This is the
assumed working principle of the inverter.

The voltage of the off-grid system is limited. If there is more energy
production than consumption, the average PV-power is reduced. If
there is more consumption than energy production, the voltage is
considered to show a drop.

Safety margins for the battery capacity calculations are neglected.
As the results are a comparison of two values, the safety margin
would be added in both cases resulting in the same ratio.

Simulation and control strategies
For off-grid situation, the following scenarios apply:
® Freezer
e Water heater
e Space heating/cooling

e All previous appliances

All these scenarios are conducted without grid connection. To do
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comparisons, each one is completed once at summer and once at winter
settings for:

® Fixed set point thermostatic control
e Voltage and PV-power based algorithms 0-6 resp. 0-7
e Voltage (and SOC) based algorithms 8-11

The simulation can be conducted with winter settings or with
summer settings. This affects some parameters, like the ambient tem-
perature or the number of PV-modules. A simulation is one week with
winter or summer settings. As a time step At = 1/12[h] (=5 min) was
chosen. Apartment electricity (cf. Fig. 2), food (cf. Fig. 3) and warm
water consumption patterns (cf. Fig. 4) represent one week.

People are in the apartment from 0:00-9:00 and 17:00-24:00 on
workdays and the whole day on weekends (cf. Fig. 5).

The windows are opened for 10 min twice a day (cf. Fig. 6).

The off-grid simulations work the following way:

A simulation starts with the smallest battery capacity of 10Ah and a
SOC of 100%.

If the voltage during the simulation is below the reference voltage
minus 15% for more than two time steps, all parameters are reset
and the simulation restarts with a 10Ah larger battery capacity. The
voltage boundaries are based on the EN 50160:2010 grid norm to
ensure stable operation.

Before completion, the simulation checks if the SOC at the end is
lower than the SOC at the beginning. If it is lower, the simulation
restarts with that SOC value again. This ensures that the off-grid
system is able to maintain stable operation for more than one week.
It is based on the assumption that the household profile used in the
simulation represents a typical or in best case, a profile slightly
higher than average.

If the simulation runs 4 times with decreasing SOC, it will also pass
as a stable configuration.

The lowest battery capacity that passes the simulation and can
provide a constant SOC represents the minimum possible capacity.
Then the control switches to a more accurate step width of 1Ah steps
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to receive values that are more exact.

Thermostatic control with a fixed set point

The thermostatic control with a fixed set point is the easiest way to
operate a freezer, water heater and space heating/cooling. This kind of
control is also typical for the components and therefore will be used to
create reference values for the comparison with the voltage based
control.

The freezer has a fixed set point of 18 °C, the water heater of 60 °C
and for space heating/cooling it is set to 20 °C. It is a two-step control or
bang-bang control. Fig. 7 shows this control for cooling applications
like the freezer or space cooling resp. for heating applications like the
water heater and space heating. This control was used for all simula-
tions. For the voltage based control the set point was recalculated ac-
cording to the algorithm.

Voltage based control for off-grid system

Twelve off-grid algorithms were implemented to calculate set points
for the thermostatic control. These algorithms are based on power,
voltage and state of charge values that are available from the other
system components. The results were then compared to the fixed set
point thermostatic control. The initial values of the voltage based
control simulations were the same as in the thermostatic control sce-
narios with a fixed set point. The block scheme of the control model,
which will be explained in this chapter is also shown in Fig. 8 for the
freezer.

All the off-grid algorithms had the following nonlinear condition
implemented: If the grid-voltage in the off-grid system is dropping
below the limit of 85% of the nominal voltage (Vy), the minimum en-
ergy consumption set point was chosen. Otherwise the set point was
calculated according to the available PV-power (Algorithm 0-7) or SOC
(Algorithm 9-11). The voltage drop reaction itself can be visualized like
shown in Fig. 9. In the marked area, the set point is calculated ac-
cording to PV-power or SOC based algorithms. It can be near the
maximum or near the minimum set point.

The first eight algorithms (Algorithm 0-7) are modified price based
control algorithms as proposed in [8,9,12]. Instead of the price, the

| i W i

j

24 48 72

96 120 144 168

Time [h]

Fig. 2. Power consumption of the example household without the thermal storages for winter and summer simulations.
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Fig. 5. Number of people in the apartment for winter and summer simulations.

basis for calculation was the estimated maximum power the PV-system
could provide. To make the algorithms work properly, they have to be
adapted because their behavior has to be exactly the opposite. If the
available power is high, the consumed power should be high whilst in
the price based control, a low price leads to high consumption.
Algorithm 7 represents a mixed approach with the best algorithms 0-6
for each appliance in a system with all three of them activated.

Algorithm 8 is a simple voltage drop reaction. If the voltage is
stable, it operates at the fixed or goal set point, otherwise at the
minimum or maximum in the case of cooling (cf. Fig. 9).

Algorithm 9 is a SOC limit-based control algorithm. If the battery’s
state of charge drops below a certain value, it switches from the fixed or
goal to the minimum (heating) resp. maximum (cooling) set point.
Algorithm 10 changes the set point according to the SOC of the battery
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Fig. 7. 2-step control for cooling resp. heating applications.

in a linear way. A similar approach like in algorithm 0. Algorithm 11
switches between the minimum and the maximum set point according
to the battery’s state of charge, comparable to algorithm 6.

Most of these algorithms take into account a user comfort level
variable Cys, that modifies the behavior of the algorithm slightly to fit
the users’ needs. (Cyse; = 0: highest comfort; Cyer > 0: lower comfort)

These algorithms are shown in Tables 3 and 4.

Simulation results

Algorithms 3 and 5 show poor results, whereas algorithm 0, 1 and 6
perform best. Algorithm 7, as a combination of the best algorithms for
each thermal storage alone, shows the best results here. In off-grid
mode and for an on-grid system with weak electrical installations, to
prevent simultaneous turn-ons, it might be better to use different al-
gorithms for different thermal storages to increase the power quality.
This also applies for the control of a whole nZEB instead of just one
apartment.

The SOC based algorithms also show good results. With number 9,
10 and 11, it is possible to reduce battery storage by 27-36%. This is
around 1/3. In summer settings, algorithm 10 even shows the best
overall results. This is an important finding, as the value for the max-
imum available PV-power might not be obtainable, whereas the SOC-
state always is. Further, these algorithms do not depend on the energy
source of the microgrid.

Another important conclusion can be drawn from the results of al-
gorithm 8. Just by switching to the minimum set point if the voltage
starts dropping, it is possible to reduce the battery capacity by up to
18%. That is a very good result, as this algorithm only relies on the
voltage measurement and needs no additional measurements in a real
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system. It is totally independent of the system configuration whether
there is a PV-system, wind turbines, a battery storage, a flywheel or any
other component.

The results for the freezer show low reductions for the battery sto-
rage of less than 5%. This applies to all algorithms. The energy con-
sumption of the freezer is fairly low, compared to the remaining
household’s energy consumption and therefore, the scheduling of the
device has a small impact on the necessary battery capacity.

For the freezer and the water heater the results for winter and
summer settings are very similar. The different algorithms show mostly
the same behavior which leads to similar battery reduction values. For
space heating/cooling there are huge differences between summer and
winter settings and simultaneously small differences between most of
the different algorithms. Space heating shows much less battery capa-
city reduction potential than space cooling. This depends on the geo-
graphical selection of the ambient conditions. In Estonia there is a small
need for space cooling since it is a northern country. Vice versa the
winters are cold and the need for space heating is high. Thus, there is
more flexibility in scheduling the space cooling compared to space
heating. Space cooling is scheduled more efficiently by the algorithms,
yielding higher battery reductions for summer time.

Results of a system with a water heater show a similar behavior to
the system with all three thermal storages. The best algorithms for the
water heater are usually the best algorithms for the system with all
three appliances. The water heater’s share of the total energy con-
sumption is the most significant, leading to a high influence on the
battery storage capacity reduction.

For space heating/cooling it can be observed, that algorithm 10
shows the best results for SOC based algorithms whereas algorithm 9
and 11 seem to show the worst results of all algorithms. The result for
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Fig. 8. Simplified control scheme (freezer example).

space cooling with algorithm 11 in summer settings is unusual. Due to a
coincidence between the algorithm set point calculation, the power
consumption and the SOC of the battery system, the minimum capacity
increased. Such coincidences can happen any time, also with fixed set
point control. For that reason, safety margins are typically added to the
minimum battery capacity. The same effect can be seen for space
heating in the opposite direction with algorithm 10 in winter settings.

Further, it can be observed that large savings in systems with one
thermal storage each do not necessarily lead to large savings in a system
with all three of them and vice versa.

Simulations for the off-grid algorithms determine the results shown
in Tables 5 and 6 for a user comfort level of 1.0. The values in the tables
show the percentage of the reduction of the battery storage for the
complete household compared to the fixed set point thermostatic con-
trol.

During the simulations, the voltage level can go very low within
5min and a real system would have shut down in that state already,
while the simulation passed successfully. For future work, it is required
to select a smaller time step for the voltage calculation. Then it can
represent a real system more accurately.
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There are only few scientific papers that deal with thermal storages
in off-grid situations and even less concerning battery reductions.
Battery reduction results presented in [16] show values in the range of
15-25% for a simple water heater shifting algorithm depending on the
households overall energy consumption. These simulations show pos-
sible battery reductions for a system with a water heater only of
10-38%, excluding the solely voltage based algorithm 8, which is ba-
sically a fixed set point control. Since there is a lack of other results
presented in literature concerning battery storage capacity reductions
with thermal storages in off-grid mode, the quality of the results has to
be estimated in other ways. Performing price based simulations with
the same initial conditions and the models yield cost savings in the
range of 5-28%. Other scientific articles like [9] and [12] typically
present savings between 5 and 30%, which is in the same range. Since
the investigation of battery storage reduction and cost reductions is
similar in many ways, the performance of the algorithms can also be
roughly compared. The PV-power based algorithms show reductions
between 3 and 50% whilst the price based algorithms they were derived
from show 5-28% cost savings resp. 5-30% in other literature. This is a
wider range of values for the off-grid simulations due to dependencies
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Fig. 9. Voltage drop reaction visualization for heating and cooling appliances.

Table 3
Voltage and PV-power based control algorithms [8,9,12]; Cooling = Freezer
and space cooling (summer); Heating = Water heater and space heating
(winter).

Number Description of set point calculation algorithm
0 . Tset,max —~ Tset, min
Cooling: Tser = Tet,max = Cuser * (PWI' — PWimin) - h
‘Wimax — PWimin
. Tset,max — Tset, min
Heating: Tset = Tset,min + Cuser * (PWr — PWijp) % ————————
8" Lset set,min user * ( min) Pwimax — PWimin
1 . ITset,min — Tgoat!
Cooling: Tser = Tgoal — Cuser * (PWI' — PWlinayg) * P
ITset,max — Tgoal!
Heating: Tyt = Tyoal + C, # (Pwr — Pwry )k —
8: Tser goa user mavg, Pwidey
2 . Tset,min — Tgoal
Cooling: Tier = Tgoal — Cuser * (PWr — PWrmayg) * Prnin — Prmavg.
e Tset,max — Tgoal
Heating: Tyt = Tgoal + Cuser * (PWr — PWiinayg) * Potmax - Poimang
3 . Tset,min — Tgoal
Cooling: Tyer = Tgoal — Cuser * (PWr — PWrinin) * m
. Tset,max — Tgoal
Heating: Tyt = Tgoal + Cuser * (PWr — PWiinin) * m
4 . Tset,max — Tset, min
Cooling: Tyer = Tgoal — Cuser * (PWr — PWrnayg) * BT —
. Tset,max — Tset, min
Heating: Tser = Tgoal + Cuser * (PWI' — PWlinayg) * o —
5 Cooling: Ty = T, c Pwr — Pwr: Tset,max — Tset, min
ooling: Iset = Igoal — Cuser * (Pwr — Tmin) * “Pwimax — PWimin
. Tset,max — Tset,min
Heating: Tyer = Tgoat + Cuser * (PWr — PWiipin) * o —
6 Cooling: PWr > PWimayg = T, = Tset,min;Otherwise — Ter = Tset,max;
Heating: PWr > PWhnavg = T, = Tset, max;Otherwise — Tyt = Tset,min;
7 Determines a predefined combination of algorithms for scenario with

freezer, water heater and space heating/cooling combined.

on more variables, but they are still on the same level, suggesting le-
gitimate results for the simulations.

Additionally the results showed that less comfort for the user
(Cuser > 0) results in a higher possible battery capacity reduction. A
comfort value of 0.5 performs about 5-25% worse than a value of 1.0
but still shows better results than a fixed set point control. Cyser = 2.0
can perform up to 20% better than Cg, = 1.0. A user comfort level of 0
is equivalent to a fixed set point control.

Comparing this to the values in [12] shows similar results. The
values presented suggest worse performance at a level of 0.5 of about
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Table 4
Voltage and SOC based control algorithms; Cooling = Freezer and space
cooling (summer); Heating = Water heater and space heating (winter).

Number Description of set point calculation algorithm
8 Cooling: Tyer = Tgoal
Heating: Tyer = Tyoal
9 Cooling:
SOC 2 SOCmin + 0.2 = Tyt = Tyoar;Otherwise — Tyer = Tset,max;
Heating:
SOC > SOCpin + 0.2 = Tyt = TyoarOtherwise — Tyt = Tset,min;
10 Cooling: Tt = Tema = Cuser * (SOC = SOCpiy) 5 o Tctmin
max
Heating: Toee = Tetmin + Cuser # (SOC — SOCyyy) 5 x> Tetumin
max
11 Cooling:
SOC > (1 + SOCmin)/2 = Tier = Tset,max;Otherwise = Tier = Tset,min;
Heating:

SOC > (1 + SOCmin)/2 = Tier = Tset,min;Otherwise — Ter = Toet,max;

0-15% compared to 1.0. A user comfort value of 2.0 also performs up to
20% better. Running price based simulations with the models in this
work shows worse performance of up to 20% (Cyser = 0.5) resp. better
performance up to 10% (Cyser = 2.0). Those are similar results. Con-
cerning the comparison between price based algorithms and off-grid
algorithms, there are small differences, but the results are still in a si-
milar range of values. This suggests that the obtained values from the
simulations are valid.

Conclusions

For a typical household in an nZEB, a freezer, a water heater and
space heating resp. cooling can be used as thermal storages for demand
side management.

A fixed set point thermostatic control simulation for every scenario
is necessary to obtain a basis for comparison with other control stra-
tegies. The scenarios include off-grid situations for a system with each
thermal storage alone in a household, and a system using all three of
them. Different price based algorithms proposed in literature were used
as a basis to develop off-grid algorithms, depending on different input
parameters. Results for the off-grid control are as follows.

Using algorithms based on power, voltage and SOC measurements
shows useful results for off-grid systems. Since the freezer has low
power consumption, the difference to the fixed set point control is
negligible. For the other appliances, the SOC based algorithms show
good performance similar to those based on PV-power. However, SOC
values are usually available whereas the PV-power does not necessarily
have to be, so a SOC based control is preferable. Further, a simple
voltage drop based algorithm, which is switching to minimum energy
consumption set points, can already reduce the size of the battery sto-
rage.

The results also show that there is a higher potential in battery
capacity reduction for space cooling in summer than it is for space
heating in winter for a northern country with mild summers and cold
winters. The influence of the water heater is very high due to its large
share of the total energy consumption of the dwelling. Therefore, it is
the most important appliance to consider when scheduling thermal
storages in off-grid operation.

Coincidences between the algorithm set point calculation, the
power consumption and the SOC of the battery system can happen for
any scenario, which might lead to an increase in the necessary battery
capacity. For that reason, safety margins are typically added to the
minimum battery capacity.

The recommendation for off-grid systems is the use of SOC based
algorithms, or just a voltage based one. Battery capacity reductions by
around 1/3 could be achieved. The impact of the user comfort level can
be up to 25% of battery storage reduction, which is a significant value.
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Table 5
Battery capacity reductions with different PV-power based algorithms in comparison with thermostatic control with a fixed set point

Algorithm | Summer settings Winter settings

Freezer | Water All Freezer | Water | Space | All
Heater Heater | H/C

0 -4% -3% -6%

1 0% -3% -6%

2 0% -3% -6% -17%

3 -4% -3% -15% -6% -7%

4 -4% -3% -6% -14%

5 -4% -3% -6% -9%

6 0% -3% -6%

7 (0) (0) (@)
Table 6

Battery capacity reductions with different SOC based algorithms in comparison with thermostatic control with a fixed set point.

Algorithm | Summer settings Winter settings
Freezer | Water | Space | All Freezer | Water | Space | All
Heater | H/C Heater | H/C
8 0% -1% 0% -12% | 0% -15% 0% -18%
9 0% -21% 0% -3% 0%
10 0% -25% -24%
11 0% -21%

In addition, the user comfort influences the possible battery capacity
reduction significantly and should therefore be taken into account.

During this work, many simplifications had to be made. As future
work, tests to verify the results of this work are planned, object models
will be optimized and the time step width of the simulation has to be
reduced to obtain results that are more accurate.
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The latest report of the Intergovernmental Panel on Climate Change (IPCC) was published recently in summer 2021 regarding the current scientific research related to climate change [1]. The main take-aways from this report are of great concern for the current energy policy of the whole world:

1. “It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred.” [1] 

2. “The scale of recent changes across the climate system as a whole – and the present state of many aspects of the climate system – are unprecedented over many centuries to many thousands of years.” [1] 

3. “Human-induced climate change is already affecting many weather and climate extremes in every region across the globe.” [1] 



There are no more doubts that the human interference with the world climate due to high amounts of released CO2 did not cause a multitude of consequences we have to deal with now and in the future. To reduce the CO2 emissions and slow down this process, the Paris Agreement was already introduced in 2015 [2]. All parties agreed to limit the global warming below 2 °C, preferably 1.5 °C, compared to pre-industrial levels by reducing the greenhouse gas emissions permanently in the long-term. However, 
the IPCC predicts in their report that the 2 °C limit will barely cope with the progress of climate change and that the goal of 1.5 °C or less should be achieved as some consequences are already irreversible [1]. The facts presented about Europe include [1]:

· Temperatures will rise regardless of future levels of global warming.

· The frequency and intensity of hot extremes has increased and will continue increasing regardless of greenhouse gas emission development.

· The frequency of cold spells and frost days will decrease regardless of greenhouse gas emission development.



To cope with the climate change, the European Union (EU) has communicated 
“The European Green Deal” [3], which includes short- and long-term objectives. Goals for 2030 are greenhouse gas emission cuts of at least 40%, renewable energy share of at least 32% and increased energy efficiency of at least 32.5%. The goal for 2050 for the EU is to be climate neutral. [3] 

To achieve the targets regarding the renewable energy share and energy efficiency, 
a more specific Directive was released by the EU to describe specific goals for target technologies [4]. In this context, there is a multitude of EU funded projects, e.g., 
in the Horizon 2020 framework. These projects, such as the NetZeroCities [5], Decarb City Pipes 2050 [6], or FinEst Twins [7], aim to achieve the set goals with research on the future design of technologies, their interoperability and feasibility. An important part of the future design of the electrical grid is the construct of a “Smart City” composed of many smaller Smart Grids working in tandem. 

For this multi-microgrid design structure, it is generally agreed to use CO2 neutral technologies as much as possible. This means that current technologies and policies are researched and advanced to overcome challenges in the context of microgrids. The current standard for new buildings is nearly zero energy buildings (nZEB) [8], including renewable energy source integration and often storage technologies to achieve very high energy performance. From the greenhouse gas emission point of view, this increase of renewable energy sources is remarkable; from a technical point of view, this poses challenges, especially due to the volatile energy production [9]. To balance the energy demand with the energy supply, load scheduling is a viable option by implementing different demand side management (DSM) [10] or energy flexibility [11] related strategies. 

This balancing of many distributed generation (DG) units with many small scheduled loads and storage systems involves a large number of devices with a complex control structure. It is inevitable that some device or control error will happen, leading to mismatches and blackouts. However, the renewable energy sources are not only the root cause for this challenge, but they are the solution as well: with DG units in microgrids, 
it is possible with a storage system for energy buffering to continue operation of a microgrid in islanded mode during a blackout [12]. So far, most of the research regarding control strategies for DG units, energy storage systems (ESS) and load scheduling with DSM are focussed on grid-connected operation [13], [14], [15], as the microgrid will be connected to the main grid most of the time. Thus, further research regarding the islanded operation mode is necessary.

As it is essential to develop these new control concepts and achieve market readiness as quick as possible to reach the set greenhouse gas emission goals, modern research and development approaches are commonly used. Instead of the traditional process from design to testing to building, modelling and analyses are carried out before prototyping a system [16]. Within this modelling and analysing process, approaches are changing from traditional designs and simulations to machine learning (ML) aided designs [17] with real time [18] and power hardware in the loop (PHIL) simulations [19] due to increasing availability and cheaper computational resources.

As it is not enough for a system to be adopted by the wide public if it works only from a technical point of view, social and financial feasibility aspects need to be considered as well [20]. These can include user comfort, data privacy issues, or return of investment as examples. [21] 

This thesis aims to contribute to the presented research field in the following way: 
a topology for microgrid systems is proposed and analysed. The microgrid is designed with CO2 reductions in mind, using ESSs and renewables as the only energy source. 
To control these devices, islanded and grid-connected control strategies are researched and developed, focussing on the islanded operation. ML as well as PHIL real time simulations are used for modelling and validation purposes. This technical analysis is complemented with social and financial feasibility investigations. General content of this PhD research is summarized in Figure 1.1.



[image: ]

[bookmark: _Ref91500830][bookmark: _Toc102474706]Figure 1.1: General content of this thesis

[bookmark: _Toc102474625]Thesis objectives

[bookmark: _Hlk97898730]The main objective of this work is to research and develop object models with improved accuracy and control strategies for hybrid energy storage systems to improve security of supply and financial feasibility of residential microgrids. 

[bookmark: _Hlk98949048]The secondary aim is to analyse the investment return time and end user’s privacy and comfort requirements with the developed control strategies to increase the users’ general acceptance level and provide recommendations for microgrid designers, microgrid and building managers, and homeowners in the development of microgrid systems.

[bookmark: _Toc102474626]Hypotheses

[bookmark: _Hlk97896442]The main hypotheses of this thesis are:

· Using PV-systems with hybrid energy (battery, flywheel) storages and home appliances as supporting thermal storages could be a feasible and flexible topology for improving the security of supply and financial feasibility of typical residential microgrids.

· The novel methodology, which synthesizes space heating models by training a neural network with input data from civil engineering thermal building simulations, will create space heating object models more efficiently. This is achieved by reducing the active time and effort for manual modelling and simplifying space heating object models in electrical engineering software with a high level of detail by more than 50%.

· Using space heating models created with the novel methodology based on neural networks will reduce the computational time for microgrid simulations by more than 50% compared to a co-simulation with civil engineering software and will reduce the mean power error by more than 3% compared to a linearized space heating model.

· Using a combination of different (improved and novel) control strategies could increase the battery storage system cyclic lifetime by more than 5% and the islanded operation duration by more than 2%, and simultaneously reduce the energy costs by more than 5% and the necessary battery storage capacity by more than 3%.

· The methodology for evaluation of social acceptance for microgrid developers, which considers the user comfort and privacy concerns, will improve the development and planning quality of residential area microgrids through higher satisfaction of end-users. 

· The complex methodology for microgrid development, which will consider security of supply, social acceptance and financially oriented control strategy decisions, could reduce the investment return time of the proposed system to less than 15 years. 






[bookmark: _Toc102474627]Research tasks

The main research tasks of this thesis are:

· Analysis and classification of common microgrid components and control strategies to develop mathematical object models and design the corresponding simulations

· Research, development, and improvement of mathematical object models for use in microgrid simulations. This includes energy storage systems (ESSs), 
a renewable energy source and loads.

· Validation of the ESS object models for increased model accuracy and microgrid simulation quality to develop different control strategies 

· Research and development of control strategies for security of supply and financial feasibility improvements 

· Investigation and analysis of user comfort, privacy concerns, and financial feasibility of the proposed system and control strategies to increase the users’ general acceptance level and to give recommendations for the development and design of microgrid systems



[bookmark: _Toc102474628]Contribution and dissemination

This thesis presents a comprehensive view with an interdisciplinary research focus on microgrid systems. Contributions were made in the field of electrical engineering with the cooperation of civil engineering, law and social sciences, and information technologies. The work is aimed at microgrid designers, microgrid and building managers, and homeowners for guidance in the development of new and existing microgrid systems.



Scientific novelties:

· A methodology for synthesizing neural network-based space heating object models from simulated data sets of existing thermal building models in civil engineering software was developed, which reduced the simulation computational time by 85% while increasing the model accuracy by 5.7%. 

· A combination of improved and novel control strategies was developed, which increased the cyclic lifetime of the battery storage system by 19% and the islanded operation duration by more than 3%, and simultaneously reduced the energy costs by more than 10% and the necessary battery storage capacity by 4%.

· A user comfort definition methodology was developed to specify the comfort requirements of end users regarding the control decisions for a hybrid energy (battery, flywheel, thermal) storage system in islanded and grid-connected operation mode.






Practical novelties:

· A user comfort aspect-based decision tree for selection of the best control strategy to increase user satisfaction was developed to be used by microgrid development and design engineers.

· A mapping of user privacy concerns between technical and legal aspects was developed as an applicable tool for control and data management engineers to develop microgrid systems with increased social acceptance. 

· A complex microgrid development methodology and a decision tree for microgrid design engineers considering technical, social and financial control strategy decisions was developed to reduce the investment return rate for microgrid systems.



This thesis comprises results of research published in 9 international publications, including 7 international scientific conferences and 2 international peer-reviewed journals. Additionally, the topic was introduced and presented in 3 doctoral schools. Other researchers’ interest in the presentations and results has shown the relevance and importance of the topic. 

The knowledge gained in this work supports the research of ZEBE Center of Excellence for zero energy and resource efficient smart buildings and districts (TAR16012), PUT1680 “Power Electronics Based Energy Management Systems for Net Zero Energy Buildings”, PSG409 “New generation dynamic sizing methods for heating and cooling systems in intermittently operated buildings”, MOBTP88 “Climate impact on the energy balance and cost-optimal design solutions of office buildings in Europe”, and the FinEst Centre for Smart Cities (VFP19031 / 856602). Knowledge from this work could additionally be applied in an expertise for Enefit (Eesti Energia AS), the AI4Cities project with Fusebox OÜ, and an expertise for GridIO.

This dissertation is supported by 4 master theses with focus on flywheel and battery storage systems, which were supervised during the doctoral studies.

[bookmark: _Toc102474629]State of the art

The need for balancing demand and supply within the microgrid is increasing due to renewable energy sources that are eco-friendlier than the previously used main energy sources. This creates challenges for grid planners and designers because the existing grid cannot be completely changed immediately to serve as a perfect infrastructure for renewables. 

One promising solution to gradually adjust the electricity grid to the new needs is 
so-called microgrids. These microgrids can be designed and operated in various ways and need to be integrated into the existing energy markets. Within these microgrids, 
the current regulations and technology regarding buildings are nearly zero energy buildings (nZEB). These buildings try to minimize their electrical energy needs by integrating renewable energy sources, demand side management (DSM) strategies and storage systems within the building energy management. One relevant kind of schedulable load for DSM applications is common household thermal energy storages (TES), such as freezers, water heaters and space heating, as they can store a certain amount of energy for limited time in the form of heat. To gain knowledge about microgrid systems, there is a need for simulations and tests with accurate models and control strategies. This can be achieved with ML, which gained popularity lately, and PHIL setups. These structures, devices and methodologies are presented in the following sections. 

[bookmark: _Toc102474630]Microgrids 

As mentioned, the need for electricity is increasing while the CO2 emissions must be reduced to fulfil the goal of the Paris Agreement [2]. To cope with these challenges, more and more renewable energy sources must be integrated into the existing electricity grid. The volatile nature of many of those renewable technologies creates a greater need for balancing the demand and supply than before, as recent events already show that the existing grid is quite fragile [22], [23], [24]. One solution to this challenge is splitting up the existing grid into microgrids, which can be managed independently [25]. 

No unanimous agreement upon the definition of a microgrid has been reached. However, it is often defined as “a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries, which act as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected and islanded-modes” [26]. This means: 

· that different small power plants, energy storages and controllable demand are connected and controlled as a unit.

· that microgrids are interlinked to each other and share power, if necessary (grid-connected operation), but if a disturbance occurs, they can separate themselves (islanded operation).



Thus, microgrids will play an essential role in the future design of the electric power and energy systems. To get a better overview on microgrids, the listed aspects have been analysed in the literature presented in the following subsections in more detail:

· Topologies and design of microgrids

· Operation modes of microgrids

· Technical challenges in microgrids

· Energy markets and advanced metering infrastructure (AMI)

A general topology for a microgrid is depicted in Figure 2.1.
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[bookmark: _Ref90885000][bookmark: _Toc102474707]Figure 2.1: General microgrid topology

[bookmark: _Toc102474631]Topologies and design

Microgrids can generally be categorized into three mayor topologies: AC-, DC- or hybrid microgrids [27]. AC- and hybrid microgrids can be designed with one single phase or as a three-phase system.

AC microgrids, as the most common topology, typically consist of distributed generation (DG) units (PV, wind turbines, fuel cell etc.), an AC switch, battery energy storage systems (BESS), and (bidirectional) converters. There is an AC connection between the utility grid and AC microgrid. This AC grid is connected to the DG units, which have (bidirectional) converters to connect to their DC buses. The loads are supplied via the AC grid. [28] 

A typical AC microgrid is shown in Figure 2.2.
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[bookmark: _Ref90885012][bookmark: _Toc102474708]Figure 2.2: AC microgrid topology



DC Microgrids include PV generation systems, DC/DC converters, bidirectional converters, BESSs, DC loads, and AC loads. The PV system is connected through a DC/DC converter to the DC bus as well as to the DC loads, BESSs. The AC loads are supplied by the bidirectional converters. [28] 

The Topology for a typical DC microgrid is shown in Figure 2.3.



[image: ]

[bookmark: _Ref90885792][bookmark: _Toc102474709]Figure 2.3: DC microgrid topology

Comparison of AC and DC microgrid topologies shows that the number of AC/DC converter can be reduced in a DC microgrid. The AC loads are supplied by the bidirectional converter, which can lead to improvements in power distribution reliability and power quality. [28] 

Hybrid Microgrids combine the advantages of both AC and DC architectures, as two networks are combined in the same distribution grid [29]. With this, it is possible to integrate both AC and DC based DGs, energy storage systems (ESS) and loads. [30]. 
An example topology of a hybrid microgrid is shown in Figure 2.4. The hybrid inverter can be designed like the energy router presented in [29].
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[bookmark: _Ref91011815][bookmark: _Toc102474710]Figure 2.4: Hybrid microgrid topology

As the presented topologies already show, a microgrid contains several components for different purposes:

· DG units

· ESS

· (Controllable) loads



Electricity is produced with DG units [31], including, for example, wind-, PV-, or hydropower, which can be integrated depending on the environmental and geological circumstances. These renewable energy sources will be analysed in more detail in section 2.2.1. 

In the design of a microgrid, the supply reliability and controllability of the selected power sources must be considered: PV- and wind power are volatile power sources, 
for example, while diesel generators are reliable with constant power output, if needed. Wind turbines [22] or hydropower plants [32] are only controllable in the direction of low power supply, while a diesel generator on the other hand can be controlled in both directions. Unfortunately, most of the reliable and fully controllable power sources are not renewable and should therefore be avoided in the design of new microgrids according to the Paris Agreement [2]. An overview of the typical microgrid power sources is given in Figure 2.5.





[bookmark: _Ref90888276][bookmark: _Toc102474711]Figure 2.5: Microgrid power sources [33] 

As shown in [31], ESS is typically a part of a microgrid. It is preferable over backup power plants with fuels from renewable sources, as its efficiency is higher. There are two operation modes for ESS:

· Charging – if the demand for energy is smaller than the produced energy

· Discharging – if the demand is higher than the supply 



More details about the possible storage systems are presented in section 2.2.2. 

The loads are evidently important in the microgrid context as well, as they have been subject to extensive research recently in terms of flexibility and demand side management (DSM) [10] [14]. These concepts work as follows: 

· DSM: If a lot of energy is available, the demand is increased. If less energy is available, the demand is reduced. 

· Flexibility: Demand-side flexibility is defined as the capability of consumption modification in response to control (penalty) signals and is recognized officially [34], [11].



More details about controllable loads are presented in section 2.2.3. An overview of the advantages and disadvantages of the different microgrid topologies is given in Table 2.1.



[bookmark: _Ref90893947][bookmark: _Toc102474781]Table 2.1: Advantages and disadvantages of different microgrid topologies [28], [27], [33] 

		Microgrid

		Advantages

		Disadvantages



		AC

		· DG units can be integrated in the current utility grid 

· It is possible to apply conventional operational concepts for power flux control, protection devices, fault detection etc.



		· Need for synchronization of DG units

· Control and operation more challenging in islanded mode



		DC

		· No need for synchronization of DG units

· Absence of frequency and phase dependences among AC generators 

· Higher overall efficiency due to fewer interface converters and no circulation of reactive current in the network



		· Higher initial cost due to general lack of code recognition and efficiency metric recognition 

· Problems with certification and code compliance 



		Hybrid

		· Better integration of DC-based units

· No need for synchronization of generation and storage systems depending on the connection bus

· Voltage transformation can be performed on AC-side transformers or DC-side



		· Protection devices for DC-based networks need more research

· Lower reliability than AC microgrids due to the interface power converter

· Management of hybrid microgrids can be more complex due to AC- and DC- bus







Microgrids can be designed as single-phase or three-phase systems: single-phase microgrids, on the one hand, operate at 230 V phase-to-ground voltage. They are becoming more popular as BESS and single-phase hybrid inverters are becoming cheaper. Single-phase microgrids are typically used for small households in a remote location. Three-phase microgrids, on the other hand, operate at 400 V phase-to-phase voltage. The advantages for these are: firstly, the ability to integrate larger renewable energy sources and secondly, the possibility to supply three-phase and single-phase consumers. However, the complexity for a three-phase control system is higher.



[bookmark: _Toc102474632]Operation modes

As previously mentioned, microgrids can operate in two different modes: grid-connected mode and islanded mode. Some microgrids can operate in both modes constantly or temporarily and depending on the installed devices even switch between the modes seamlessly. In the following, these operation modes are explained for AC-, DC- and hybrid microgrids.

In the islanded mode, an AC microgrid operates without being connected to the utility grid, only using its energy storage systems and DGs [28]. In the grid-connected mode, 
it is connected to the utility grid: The photovoltaic system generates electricity, which is fed to the public grid. Alternatively, the microgrid can be connected to the utility grid but instead of feeding the produced electricity into the power grid, it is stored in an energy storage. This is often used as a backup system in weaker supply networks or in off-grid mode to ensure greater security of supply. The connected systems are more common in industrialized countries, while the backup systems are used more in emerging or developing countries. [35] 

For DC microgrids, DC loads are supplied by the PVs and AC loads by the bidirectional converter in the islanded mode. In case of lower energy demand than generation, surpluses will be used to charge the storage devices. Vice versa, if the energy consumption of the loads is higher than the generation, the ESS will be supplying power to balance the shortage. If the ESS is completely discharged, the system will switch to the on-grid mode to charge the batteries. [28] 

An overview of the operation mode schematics is presented in Figure 2.6. 
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[bookmark: _Ref90895160][bookmark: _Toc102474712]Figure 2.6: Schematic of the grid-connected (A) and the islanded (B) operation mode  for a microgrid 

[bookmark: _Toc102474633]Technical Challenges

There are many challenges to be faced when designing or implementing a microgrid. These include a lack of scalable prototype installations, a lack of unified general microgrid metrics, regional regulations, cyber-security concerns etc. The most relevant technical challenges include [36], [37]:

· Power quality

· Control strategies

· Energy management

· Stability and reliability

· Protection




Power quality is extremely important due to the volatile power supply of many renewable energy sources, transition between microgrid operation modes, high reactive power, and nonlinear loads. It is possible to utilize BESS, a flywheel energy storage system (FESS), or other filters to improve the power quality in microgrids. [36], [37] 

Control strategies can influence the power quality or minimize costs with DSM. Multiple control strategies for different devices with multiple objectives can be implemented. [36], [38] 

The energy management system (EMS) must coordinate the control strategies for efficient and stable operation of the microgrid. This includes managing power flows of DG units and ESS, often making use of load and generation forecasts. [36], [39] 

Stability and reliability concern grid synchronization, transition between operation modes, unpredictable frequency deviations etc. [36], [37] 

Protection is of critical importance in all electrical power systems. On the one hand, the microgrid should be able to isolate from the main grid during faults. On the other hand, this creates problems as the short circuit capacity is different in the grid-connected and the islanded mode. Traditional overcurrent protection devices may not react in this case and adaptive protection systems need to be considered. [36], [37] 

Important standards regarding these points for planning, designing, and modernizing microgrids are [36]:

· IEEE 1547: Criteria and requirements for interconnection of DERs with the main grid

· EN 50160: Voltage characteristics of electricity supplied by public electricity networks

· IEC 61000: General conditions or rules necessary for achieving electromagnetic compatibility

· IEEE C37.95: Protective relaying of utility-consumer interconnections

[bookmark: _Toc102474634]Energy markets and advanced metering infrastructure

Large parts of the European transmission system are connected and synchronized. There are five regional groups: Continental Europe, Nordic, United Kingdom, Ireland, and Baltic. Within these groups, the frequency is synchronized. To trade between the regional groups, several DC interconnections have been established. [40] 

Within these regional groups, there are one or multiple transmission system operators (TSO) responsible for the transmission system stability and power flow on high voltage level. For the medium and low voltage distribution, different distribution system operators ensure the power quality regionally. A list of TSOs and selected distribution system operators (DSO) for Estonia (EE) [41] and Germany (DE) is shown in Table 2.2.



[bookmark: _Ref91180886][bookmark: _Toc102474782]Table 2.2: TSOs and DSOs in Germany and Estonia

		Country

		TSOs

		DSOs



		DE

		TransnetBW 

TenneT 

Amprion 

50Hertz Transmission

		Kempten (Allgäu) regional: 

AllgäuNetz GmbH & Co. KG 

Kaufbeuren regional: 

Vereinigte Wertach Elektrizitätswerke GmbH 



		EE

		Elering

		95% of Estonia: Elektrilevi OÜ







Grid operators need to control the frequency and voltage stability within the grid. 
To engage power plant operators and microgrid operators into providing these ancillary services, a special market with incentives has been established. This market includes scheduling and dispatch, reactive and voltage control, operating reserves, and frequency control. Smaller microgrids or customers can be accumulated to a virtual power plant. The structure for the frequency control and voltage control reserve is shown in Figure 2.7. The reaction time and delivery duration determine in which category a power plant or a microgrid can be marketed. [40] 
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[bookmark: _Ref91184293][bookmark: _Toc102474713]Figure 2.7: Basic schematic of primary, secondary and tertiary control reserve [40] 

Participation in the ancillary service market is generally possible even with small plants as they can be included as a virtual power plant. However, there are rules and regulations that need to be fulfilled. For example, in [42], small hydropower plants were investigated for their participation in the ancillary service market for the abovementioned DSO “Vereinigte Wertach Elektrizitätswerke GmbH” in Germany. Due to regional restrictions, the only financially and technically feasible possibility to take part in the market was the installation of a large programmable load. The system would be viable if the heat dissipation of the load is used for district heating. Otherwise §1 EnWG [43] is not met as heat dissipation without further utilization is not eco-friendly. This example shows that regional regulations can create additional challenges.

The general electricity market is structured as follows: quick balancing corrections are made within the ancillary service market. There is the intraday market for hourly corrections within the day and a day-ahead spot market for rough corrections of electricity demand or supply one day in advance. Long-term contracts for electricity dispatch and trade are the cheapest way to buy electricity but the planning must be done days or weeks ahead. [40] 

Within this existing market structure, new programmes like demand response and flexibility programmes are established by the TSOs and DSOs to engage prosumers, nZEB communities and microgrid owners more in the electricity market with corresponding incentives to balance the increased amount of volatile renewable energy production. One possibility in this case is, for example, a time of use tariff where the customer pays the real time, hourly or 15-min based electricity market price. The installation of renewable energy sources is often encouraged with governmental funding or similar processes [40].

To establish a bidirectional communication between utilities and prosumers, the AMI was designed [44], [45], [46], [47], [48]. It includes all relevant technologies to provide services for customers, suppliers and DSOs/TSOs, including automated meter reading, billing, information provision, event management, device configuration etc. 

Typically, the AMI is composed of smart meters (SM), hierarchically disposed communication networks, meter data management systems (MDMS), and head-end systems (HES). The HES, as the central data system, is responsible for the coordination of the data exchange in its complete service area. The communication network includes home area networks (HAN), wide area networks (WAN), and the utility network with MDMSs as meter data concentrators, respectively as gateways. Compared to traditional energy meters, SMs provide enhanced metering capabilities, data communication and optional auxiliary functions [49], [50], [51]. They are the coupling points of users to the AMI. SMs are essential data sources for analytics as they can be used to report, measure and monitor loading conditions, power quality metrics and power flows.

Considering this structure, the AMI reveals several surfaces for intrusion or other forms of cyber-attacks, as identified in [52], which are presented in Table 2.3. 



[bookmark: _Ref90900829][bookmark: _Toc102474783]Table 2.3: Surfaces for intrusion and cyber-attacks of the AMI [53] 

		Surface 

		Description



		HAN

		The consumer side of the AMI. A consumer gateway acts as a bridge between the smart meter and the consumer’s home devices.



		SM

		The primary point of data collection for power grid energy consumption. Physical access to the meter is considered a vulnerable attack surface.



		SM data collector

		A hardware computing device aggregating real-time data from multiple smart meters and providing a data collection and management point for the utility; an integral part of the MDMSs



		AMI communication interfaces and network

		The network along with used communication interfaces linking the smart meter and the SMDCs. The AMI communications network exists alongside the power grid and can be scaled to serve millions of smart meters.



		AMI communication protocols and software

		The communication links and protocols utilized by the AMI



		HES

		The AMI management platform at the utility installation providing data warehousing for collected data and centralized management of the AMI





[bookmark: _Toc460831047][bookmark: _Toc517344499][bookmark: _Toc102474635]Typical renewable generation and storage systems in residential microgrids

Nearly zero energy buildings (nZEB) are an important part of microgrids. These buildings aim to accomplish a nearly zero energy balance. Therefore, most nZEBs utilize on-site energy generation and storage systems, which can be integrated into a microgrid as DG units.

To accomplish the energy goal set out by the Paris Agreement [2], the European Union has imposed a directive that requires since the end of 2020 that all new buildings should comply with the nZEB standards [8]. The chosen definition for an nZEB in this directive is “a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including energy from renewable sources produced on-site or nearby” [3].

As previously mentioned, the DG units in microgrids and nZEBs must be coordinated effectively to balance the control and demand. Renewable energy sources, such as PV- and wind power, are fluctuating and volatile, while being controllable in one direction only. Therefore, different renewable energy sources are reviewed in subsection 2.2.1. 

Microgrids and especially standalone nZEBs tend to have small inertia due to their smaller size compared to conventional large grids, increasing the importance of proper balancing of supply and demand. This can be further aggravated in weaker microgrids and nZEB that have a suboptimal power infrastructure. To effectively balance production and consumption, an ESS is a viable solution. The chosen storage technology should be able to supply or draw power quickly to react to fast changes in the grid parameters, especially in the islanded operation. Different storage technologies are analysed and presented in section 2.2.2. These ESSs can be supported by household appliances, as shown in section 2.2.3.

Another term, which is often being used in the context of nZEBs, is a “prosumer”. Prosumers are members of the energy market which produce energy but are also customers who are consuming energy. Their share increased in the last years noticeably, and it is expected to continue to rise with around 4% per year until 2030 [54]. 
The preferred DG unit of prosumers is PV-systems and some of them have their own energy storage system, increasing their energy independence from the grid further.

[bookmark: _Toc102474636]Renewable energy sources

The most common renewable generation sources installed in microgrids are PV-systems, wind turbines or small hydropower plants. These DG units have different requirements and properties. Thus, the selection of the energy production must be tailored to the specific microgrid. The DG units in microgrids can be classified by [36]:

· Availability

· Output characteristics (AC, DC)

· Controllability

· Connection interface

· Power flow control



PV-systems, wind turbines and hydropower plants have common drawbacks, as they are dependent on the geographical location; they are volatile and only uncontrollable in one direction.

PV-systems are a popular installation in nZEBs, as mentioned before. PV-systems have the advantage of easy scalability and lower dependency on the geographical location compared to wind- or hydropower. For example, a solar powered boat travelled around the world from 2010-2012 [55]. However, there are aspects that need to be considered before installing a PV-system in a microgrid:

· Due to easy scalability, PV-systems can usually be installed in residential areas without disturbance of other residents.

· PV-systems are preferably installed in places that have a large amount of clear and sunny days per year, have a high direct normal radiation, are on high altitudes (natural cooling) and have low amounts of shading and dirt collection. [56] 

· PV-installations have a lifetime of more than 20 years. Long-term measurements have shown a degradation of 0.11% per year in high altitudes (3450 m a.s.l.) or 0.57% per year on 1270 m a.s.l. However, it must be noted that these old installations are thicker and more durable than newer panels that are available today. [56] 

· Dirt on and faults with PV-panels need to be detected and removed to avoid further damage. Thermal imaging can be used for this purpose. [56] 

· PV-panels provide a DC voltage that needs to be converted to AC for most installations.



There are basically four different types of wind turbines available: lift- or drag-type turbines. Each of those types can be designed as a vertical or horizontal axis turbine. These types have different efficiencies and applications and can be realized with different numbers of blades. The size of the blades and hub influences the efficiency as well. 
The type of those turbines generally depicted would be a 3-blade horizontal axis lift-type wind turbine. [57] 

However, it can be noticed that the spread of wind power systems is weak in many countries. The problem in many regions is low acceptance due to a “ruined landscape”. That might be true if large wind parks are considered, but carefully planned wind turbines do not harm the landscape. The key to success is the communication with the residents to find a solution that is suitable for everyone. [58] 

In general, the following aspects are relevant for the implementation of wind turbines:

· The location needs to be chosen carefully, as the wind profile is to be observed to achieve good efficiency. In complex terrain, this assessment can be complicated. Maintainability should be considered as well if placed at hardly accessible places. [59] 

· The residents in the region need to be included in the planning process for a higher chance of acceptance. [58] 

· Regional laws and restrictions need to be considered, including flora, fauna, optical disturbances, and noise pollution. [58] 



There are different types of hydropower plants: large (>10 MW), small and hidden hydropower plants. Additionally, hydropower can be distinguished into run-of-river plants and plants with a storage reservoir. Traditionally, hydropower plants are extremely dependent on the location, as they can only be placed near a river. Another technology is placing turbines in wastewater systems. The successful placement depends on the wastewater quality. [32] 

Generally, the following aspects need to be considered regarding implementation of hydropower plants for microgrids:

· A suitable river or wastewater system is required. [32] 

· Placing a hydropower station can interfere with the flora and fauna considerably if a reservoir is created. [32] 

· Depending on the size, different turbine types, such as Francis, Kaplan or Pelton turbines are most efficient. [32], [42] 

· Region regulations might be established regarding the interference with flora and fauna through water waves or similar matters. This can limit the control possibilities. [42] 

· To increase the eco-friendliness, fish or beaver passes may be necessary at additional costs. [32], [42] 



Table 2.4 summarizes the comparison of the presented renewable energy sources based on the mentioned classification criteria. The feasibility in urban areas is the biggest advantage of the PV-systems, making them the commonly used technology for nZEBs. 
As this advantage is highly likely to prevail in future, PV-systems will be used as the object of investigation in this work. However, the knowledge gained about the control strategies will be transferable to microgrids with other renewable sources.



[bookmark: _Ref91172210][bookmark: _Toc102474784]Table 2.4: Comparison of renewable energy source characteristics [36], [60]

		Characteristics

		PV-System

		Wind

		Hydro



		Availability

		Dependent on geographical location



		Output

		DC

		AC

		AC



		Controllability

		Only output power reduction



		Typical interface

		Power electronics converter 

(DC-DC-AC)

		Power electronics converter 

(AC-DC-AC)

		Synchronous or induction generator



		Power flow control

		MPPT, DC link voltage control

		MPPT, pitch and link voltage control

		Controllable



		Feasibility in urban areas

		High

		Very low

		Low







[bookmark: _Toc102474637]Storage systems

ESS can collect energy, store the energy, and release the energy again. These three processes are called charging, storing, and discharging [61]. Each of these processes has a certain efficiency η due to heating or friction losses. The output energy is always smaller than or equal to the input energy (2.1):



		

		[bookmark: _Ref91064531](2.1)





where: Eout: Output energy [Wh]; Ein: Input energy [Wh]; ηx: Efficiency of device x [%]. 



These efficiencies in combination with other properties, like calendric lifetime, cyclic lifetime, capacity, or reaction time, are important characteristics to consider for the choice of an ESS for a certain application. The main function of ESS in the microgrids is balancing of energy demand and supply [62]. In islanded mode, in particular, the generated power from DG units needs to be matched to load demands immediately to ensure stable operation. The ESS capacity must therefore be sufficient to mitigate the volatile renewable generation unbalances on request. Furthermore, the transition between islanded and grid-connected mode should be run seamlessly by the ESS. [63] 

An overview of the classification of different ESSs is given in Figure 2.8, and a comparison of different storage systems is shown in Table 2.5. 





[bookmark: _Ref91066110][bookmark: _Toc102474714]Figure 2.8: Overview of energy storage systems [33] 



[bookmark: _Ref91093617][bookmark: _Toc102474785][bookmark: _Ref91093611]Table 2.5: Comparison of energy storage technologies [64] 

		Storage

		Li-Ion battery

		Vanadium redox battery

		Fuel cell

		Pumped hydro 

		Compressed air

		Supercapacitor

		FESS



		Efficiency [%]



		90-97

		70-79

		34-51

		70-82

		70

		90-95

		83-93



		Self-discharge [%/day]

		0.008-0.041

		0.3

		0.03

		0-0.5

		-

		0.004-0.013

		72-100



		Cycles [n]



		400-6000

		7000-15000

		-

		12800-33000

		-

		1Mio.

		>1Mio.



		Costs



		++

		+++

		+++

		++

		++

		+++

		+





+ low; ++ medium; +++ high; - not available;



As seen in the table, lithium-ion based BESSs have the highest efficiency while showing very low self-discharge rates. Additionally, their costs are lower than for most other technologies. Due to these advantages, BESSs are the best generally feasible technology for nZEBs as a medium-term storage system and will be discussed in more detail in the next chapter. FESSs, on the other hand, have lower efficiency and higher self-discharge rate. But they achieve very high numbers of charging and discharging cycles. The costs for a FESS are much lower compared to supercapacitors with similar strengths. Based on that, FESSs are the most feasible technology for short-term energy adjustments in nZEBs. Therefore, they are investigated in more detail in the following sections as well. 

Battery energy storage system

BESSs are electrochemical storage systems where the energy is stored as chemical energy. Common battery types are lead acid, nickel, or lithium based. The most widely used battery in smartphones, electric cars, and buildings is the lithium-ion battery [65], [66]. 

The self-discharge rate during the storing state depends on several parameters, like the electrolyte material, temperature, or the state of charge (SOC). The behaviour of aging for BESSs can be defined by aging over time and aging per cycle. The aging over time, or so-called “calendric lifetime”, is influenced by temperature and SOC. The cyclic lifetime is influenced by the charging and discharging rate, temperature, SOC and discharge depth [61]. A lower number of charging cycles will reduce these aging effects and increase the durability of the BESS. In this regard, battery diagnostics are necessary to observe and maintain reliability, prevent catastrophic failures, and predict the end of battery lifetime. So far there is no quick method to test everything with certainty as a battery can be compared to a living organism. To estimate the state of health (SOH) of a battery, test methods presented in [67] could be used. 

For example, the state of life indicator (SOLI) estimates the battery life by counting the total coulombs a battery can deliver in its life. A new battery starts at 100%; delivered coulombs decrease the number until the allotment is spent and a battery replacement is imminent. The full scale is set by calculating the coulomb count of 1 cycle based on the manufacturer’s specifications (V, Ah) and then by multiplying the number with the given cycle count.

According to [68], battery lifetime can be prolonged by:

1. Reducing stress with moderate two- to three-hour-charge rather than an ultra-fast charge within less than one hour

2. Prevent harsh and erratic discharges

3. Rather charge a battery more often than draining a battery fully

4. Prevent unfavourable temperature conditions: extreme cold and high heat

5. Checking small- to mid-sized batteries with a full charge/discharge cycle on a battery analyser 

6. Maximizing battery life by slight overdimensioning to cover unknowns and emergencies

Flywheel energy storage system

A FESS converts electrical energy into rotational energy and vice versa. For the conversion, an electrical drive is used that is connected to a rotational mass. The energy is stored in the rotating mass. Charging is the acceleration of the rotational mass, rotation at a certain velocity means storing the energy, and decelerating the rotational mass is the discharging process. 

A basic schematic of a FESS is depicted in Figure 2.9: 

· The electrical drive is connected to an inverter. It can either be a three-phase asynchronous or synchronous induction motor, or a DC motor. 

· Additionally, FESSs can have a fan to cool the electric drive. 

· The inverter increases, holds, or decreases the rotational speed of the drive.

· The shaft connects the rotational mass and the drive. It must withstand high torques from the drive and rotational mass inertia. 

· The mass is fixed with bearings to the chamber to reduce vibrations. 

· The chamber itself is completely closed for modern FESS for safety reasons.

[image: Ein Bild, das Text enthält.
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[bookmark: _Ref91079579][bookmark: _Toc102474715]Figure 2.9: Schematic of a FESS [64], [69] 

FESSs are scalable for applications from small consumer systems [69] to large grid applications [70]. They are most useful for applications with high power demand for short durations occurring in a cyclic nature. Therefore, FESS can be used for power quality applications [71] as an uninterruptable power supply [71], or for power smoothing [72]. Capacity and maximum power delivery can be scaled by arranging multiple FESS in banks [71], [73]. The advantages of FESSs compared to other storage systems are [74], [75], [76]:

· High power density

· High energy density (high-speed flywheels)

· No capacity degradation over time

· Long lifetime: more than 105 charge cycles

· Short recharge time

· Simple SOC estimation

· Low maintenance cost

· Manufactured without rare materials

· Scalable technology



Disadvantages are [74], [75], [76]:

· Low energy capacity

· Low energy density (low-speed flywheels)

· High self-discharge

· High investment cost



The potential of FESS is limited to short-term energy storage applications due to its high self-discharge rate of 3% to 20% per hour [61]. The reason for the self-discharge of FESSs is mainly friction: mechanical friction at the bearings and air friction on the rotational mass. Measures that can be taken are:

1. Using magnetic bearings instead of ball bearings reduces the mechanical friction. 

2. Applying a vacuum in the chamber reduces the air friction.



Both of these measures improve the self-discharge of FESS significantly. Based on the basic equations describing a FESS, (2.2) and (2.3), the stored rotational energy, respectively the energy density, can be increased by: 

· Increasing the rotational speed

· Design changes at the rotational mass to increase the inertia 
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where: Erot: Rotational energy [J]; J: Inertia [kg m²]; ω: Rotational speed [rad/s]; m: Mass [kg]; r: Radius [m]. 



FESS rotational masses can be manufactured from different materials, like steel, titan, or fiber-reinforced plastics. The latter is a relatively new technology for FESS, which increases the potential energy storage compared to steel. Another benefit of reinforced plastics is their behaviour if the rotational mass breaks due to a malfunction: masses out of steel build a dangerous bullet, while the reinforced plastics shatter into lighter, less dangerous pieces [61]. 

ABB, Amber Kinetics or Beacon POWER produce FESSs. Several grid scale FESSs operate in Asia and the USA. Recently, Siemens Energy announced to install the world’s largest FESS for grid stabilization in Ireland [77].

[bookmark: _Toc102474638]Home appliances and buildings as TES

As mentioned before, one possibility to balance the volatile renewable energy production is to adjust the load side. This process is called DSM or demand response;  
the total amount or potential for changing the load at a given time is investigated in flexibility analyses. 

Grid utilities usually provide lucrative offers for customers to engage in such flexibility or demand response programmes. Within this framework, different devices and loads in a typical dwelling can be scheduled [78]. However, this scheduling needs to be done carefully not to reduce the user comfort [79]. Scheduling a washing machine or a dishwasher needs actively participating users to prepare the device and have a flexible policy for finishing the job, e.g., folding laundry whenever the device is ready. 

Another group of schedulable devices available in most households that influences the users’ habits much less are freezers, water heaters or space heating systems. These devices cannot just be scheduled but are used as TESs as well. This provides additional energy storage without additional investments into systems like supercapacitors [80] or batteries [81]. The mentioned TESs are even more relevant, considering that such appliances can compose 50% of the electrical energy consumption in buildings [82], 
as shown in Figure 2.10. A relatively long lifetime of 10-20 years [83] of such devices is convenient for users as well.



[image: ]

[bookmark: _Ref90972821][bookmark: _Toc102474716]Figure 2.10: Share of household loads; purple: TESs; grey: other [82] 

Freezers and water heaters 

In many publications, freezers and water heaters are studied regarding to scheduling algorithms like in [84], or the performance and feasibility of implementing control as in [85]. Other publications consider a model predictive scheduling method for freezers or water heaters based on the day-ahead or real-time market prices, which leads to cost reductions [86], [87]. Even though the TESs do not influence the user comfort level as much as some other devices, it should still be considered in the control algorithm design. Different boundaries due to user comfort considerations can influence the performance of such algorithms, as shown in [79]. 

The studies in [10] and [88] addressing the performance and feasibility aspects of DSM algorithms for freezers and water heaters consider the user comfort as well. In their analysis of a grid-connected system, the focus is on price-based control methods. This increases the cost savings of the system, which is important as many microgrids operate most of the time with a grid connection. Few papers consider the possibility to increase the power quality in the off-grid mode with TESs or other scheduled loads [89]. Grid backup or diesel generators are often used in such investigations [90], which is not desirable due to CO2 emissions, as mentioned earlier. In [91], a simple scheduling algorithm is presented for a water heater and battery storage reductions of about 
15-25% for a PV-powered off-grid building including BESS. A power quality control strategy for water heaters investigated in [92] implemented peak load shaving for a 
grid-connected system. 

In summary, freezers and water heaters can be scheduled in a DSM-manner to achieve electricity cost reductions of about 5-30% [86], [10]. Additionally, some publications show power quality and reliability improvements with such devices. In an islanded microgrid scheduling, these loads with a sophisticated algorithm can be used to reduce the battery capacity, ensuring stable operation while providing potential cost reductions for an expensive BESS [93].



Space heating of buildings

To develop thermal freezer and water heater models for DSM simulations, knowledge in electrical engineering and thermal engineering is necessary. Modelling a building thermally for electrical microgrid simulations is an even more interdisciplinary approach, where expert knowledge in civil engineering is mandatory to create a detailed model as well. As a result, there are typically three different kinds of models: 

1. Complex control strategies with simplified thermal models from the electrical engineering domain 

2. Complex thermal models with simple control strategies from the civil engineering domain

3. Co-simulations between different modelling software as a cooperation of both domains



Complex Control Strategies: Several authors present simplified thermal models for heating demand estimation, like [94], where a minimalistic model of space heating is used. Space heating is modelled as a certain percentage of the overall energy consumption, and on that basis, a price-based control strategy is proposed. In [95], 
a multi-agent system is used for DSM control strategies. The model for space heating is a simple aggregated model in that case. A DSM approach for assessing the flexibility of heat pumps is shown in [96], using simple thermal models for the houses and heat pumps. 

Complex Thermal Models: Publications that show accurate thermal models typically do not consider DSM-related electrical control strategies, or only in a limited way. 
As an example, in [97], a linear time-series model based on historical measurement data is presented. The model shows good results while being computationally light. However, there are no considerations about DSM control methods. Similarly, a detailed thermal model of a building is shown in [98], but DSM strategies are not considered for the control. Other publications, such as [99], [100], present very accurate models of heat pumps or buildings, but the proposed control strategies are quite simple. In this case, 
the full flexibility potential cannot be achieved and the simple pre-charging for peak shaving does not show the anticipated results. 

Based on discussions with civil engineers, the development and modelling of space heating objects will take more than 100 hours, depending on the level of detail and modelling software. In this regard, Matlab and other electrical engineering software is not recommended for fast development of detailed thermal building models and will increase the effort and time for development.

Co-Simulations: If complex DSM control strategies are to be connected with complex thermal models, co-simulations can be a powerful tool. Since civil engineering software often does not provide a good framework for complex DSM control strategies and electrical engineering software has limited tools for thermal models, implementations of both aspects in one software can be very time-consuming in both cases. Co-simulations bring both simulators together [101] and use the complexity and detail of each simulation. To implement a co-simulation, the functional mock-up interface (FMI) or functional mock-up units (FMU) can be used. These are supported by multiple simulators, including Matlab or Python [102]. Another possibility is presented in [103], where the control is modelled in Modelica, while the building is simulated in EnergyPlus. The SimAPI software platform can be used to connect the building model and control, as shown in [104]. A comprehensive overview of co-simulation with fundamental disadvantages, 
like slow speed and limited compatibility, is shown in [105]. The following drawbacks apply, for example, to the above-mentioned publications about co-simulations: 

· Additional overhead for coordinating and synchronizing

· Initialization of some simulators for each macro time step

· Limited communication and data exchange between simulators

· Complicated implementation in real-time simulations

Thus, existing articles in literature typically cover complex control strategies for DSM with space heating but are lacking complex thermal models by relying on simplified temperature difference based or aggregated models. Vice versa, publications with complex space heating models provide detailed models in the thermal domain, but the control strategies are limited by using fixed set point (FSP) control or other simple methods, given that a DSM related control is considered at all. Co-simulations as an alternative have other limitations, including connection, communication, and compatibility issues with an additional communications overhead that can slow down those simulations. This indicates a need for a new methodology with complex thermal models in combination with DSM related control strategies.

User comfort

As mentioned, TESs have a lower influence on the user comfort than some other scheduled household appliances. However, especially for space heating, special attention is to be given to the temperature related user comfort definition and implementation. Comfortable temperature settings are different for every person. In some publications, the researchers use certain preferred or fixed temperature ranges and limits that are typically based on standards, as shown in [106] or [107]. But these limits do not take into account the temperature fluctuations within the limits, which can already disrupt the comfort for some people. Additionally, there are no specific definitions for the user comfort in the temporary islanded operation of a microgrid. Thus, both of these aspects should be considered in this work.

[bookmark: _Toc102474639]Machine learning applications in microgrids

In recent years, artificial intelligence has gained increased attention in all fields of research. In particular, machine learning methods have many use-cases in the field of electrical engineering. One reason for this is the increasing number of smart meters and the related availability of recorded data. There are several applications for machine learning, as shown in [17]. The most relevant applications for machine learning regarding microgrids are:

· Forecast of residential loads [108] in connection with flexibility considerations [109] or load modelling [110] 

· Forecast of renewable energy sources, like PV- [111] or wind power [13] 

· Blackbox modelling of complex objects like [97] 

· Control purposes, like general energy management [112], power flow control [113], or bidding strategies [114] 

· Disaggregation of SM data to improve recommendations and control of home energy management systems or ambient assisted living [115] 



These applications are discussed in more detail in the following sections.

[bookmark: _Toc102474640]Forecasting and prediction with machine learning

For forecasting loads and renewable energy production, different methods have been researched and developed based on time series analysis methods and more recently on machine learning algorithms. Compared to complex machine learning algorithms, ARIMA or linear regression models [116], [117], [118] are quicker to implement and calculate, thus providing advantages with simple problems. 

More complex problems may be solved with a machine learning based regression model, as shown in [109] more efficiently. Additionally, such a method can be used online and in real time. Long short-term memory networks are very well suited for specific forecasts [119], [120], [118] where short- and long-term components are relevant. 

A very popular machine learning technique intended not just for predictions of load and renewable production patterns, but also in terms of general approach, is neural networks [121], [118]. This technique can be used for long- and short-term load predictions as well. Figure 2.11 shows an example of the forecast of the hourly energy consumption for Estonia, using linear and NN-based predictions.
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[bookmark: _Ref90914582][bookmark: _Toc102474717]Figure 2.11: Load forecast for the Estonian grid [118] 

In this regard, black-box object modelling is a more specific approach of forecasting. In general forecasting tasks, environmental influences, like temperature or weather, are used to estimate a general output, e.g., irradiation or energy consumption, with ML. Additionally, the model is intended for calculations of each time step of a simulation, 
for example, instead of forecasting the whole load profile at once. 

Object modelling does not use just environmental parameters, but also, for example, object internal values or correlations as input data for the ML. This can increase the complexity of the input data set. The output of the ML algorithm is a very specific object variable, like voltage, current or a temperature change, that can be used for calculations in the next time step of a simulation, e.g., as part of an input for the same ML model. 
The training and use of such an ML-based object model is depicted in Figure 2.12. 
The model can only be used within the trained limits and has a lower accuracy than the original model or system used for creating the ML input data.

Specifically, to exemplify modelling a space heating system, an approach similar to the one presented in [97] could be used. The authors use a time series algorithm to create a black-box model with measurement data. Instead of using measurement data, it is also possible to create data sets from simulations with accurate models, like [98]. In this case, even more measurement variables are available that can be used for the model training. This results in more complex data sets that can be learnt more accurately by the ML instead of time series methods. The trained algorithm then acts as a black-box model in microgrid simulations with electrical engineering software. Additionally, machine learning based black-box models of microgrid devices, like space heating, can be integrated more easily into real time simulations of microgrids [18] than co-simulations due to the limitation to one simulation environment, as analysed in more detail in Chapter 3.

[image: ]

[bookmark: _Ref91226932][bookmark: _Toc102474718]Figure 2.12: Training and use of ML-based object model

[bookmark: _Toc102474641]Control and coordination with machine learning

Coordination in a microgrid does not only include the specific control task for one object, but multiple control objectives for multiple devices [122]. NNs on the one hand, as well as other supervised and unsupervised machine learning methods, cannot be used directly for control purposes. They can only be included for specific tasks in other control and coordination methods. Reinforcement learning, on the other hand, is a specific machine learning technique for control that can be directly used [123]. A basic reinforcement learning based control system works as shown in Figure 2.13. The reinforcement learning process works as follows:

· The reinforcement learning agent interacts with the environment by taking actions.

· The agent follows a certain policy to take actions.

· The agent observes the environment and gains rewards that are used for learning.





[bookmark: _Ref90918849][bookmark: _Toc102474719]Figure 2.13: Typical reinforcement learning based control 

Extending the control capabilities of reinforcement learning to implement machine learning (ML)-based coordination tasks in microgrids results in three main methods, as depicted in Figure 2.14.



[bookmark: _Ref90915012][bookmark: _Toc102474720]Figure 2.14: Machine learning based coordination methods 

Multi-agent reinforcement learning strategies are presented in [124], [125] and [126]. For such coordination approaches, a multi-agent structure is used with reinforcement agents for devices and management. 

Deep reinforcement learning is presented in [127], [128] and [129]. This kind of control is using deep artificial neural networks with multiple layers instead of more simple ones inside the reinforcement learning agent to achieve more complex coordination tasks.

Another coordination method is model predictive control including ML-based prediction. Model predictive control itself is not related to machine learning but it is a common control strategy [130]. However, there is a special kind of model predictive control that uses machine learning predictions to determine control decisions. For example, in [131], a recurrent neural network is used for day-ahead predictions that influence the control decisions directly. 

Regarding all these ML-based coordination methods, it can be summarized that 
they are an emerging topic as there are certain limitations to be studied in detail to 
have a robust and efficient coordination architecture. Advantages of these methods 
are a decreased need for information about underlying structures, which can be an important reason for deciding the coordination method, considering privacy concerns 
of users. Thus, this work will focus mainly on the implementation of more robust 
control strategies and consider ML-based control strategies as a promising option for future developments.

[bookmark: _Toc102474642]Disaggregation with machine learning

To gain additional information for different applications in microgrids, disaggregation of load profiles can be used. This process is called non-intrusive load monitoring (NILM). Applications of NILM include home energy management systems, ambient assisted living, recommender systems and fault diagnostics [132]. The goals of these applications are different, like power on/off detection, power estimations [133] or predictions for more efficient home energy management [134]. The basic process of NILM is shown in Table 2.6.

The NILM process is quite independent of the used ML methods, like neural networks (NN) or support vector machines. The amount, resolution and details of the collected data, the amount of auxiliary data measurements, and the disaggregation purpose differ between presented methods in the literature. Some publications use different public data sets [135] for their NILM training and tests whereas other publications rely on their own measurement data, which can complicate performance comparisons. Considering the size of the public data sets, the amount of processed data is large for most of the NILM methods, which can raise privacy concerns of users about the collected data and their use.

Sometimes additional data measurements are used in publications to improve the NILM results. These additional measurements can be voluntary user feedback [136], classifying the user activities [137], or the use of cameras, motion sensors and smartphone apps for tracking [138]. Other additional proposed features for a better user experience are smartphone applications [139], cloud-based monitoring features [115], or novelty detection for new appliances [140]. However, none of those papers consider privacy or cyber-security in any way.



[bookmark: _Ref90920955][bookmark: _Toc102474786]Table 2.6: NILM process stages [132], [53] 

		Stage

		Description



		Metering

		Data is collected from smart meters and sometimes additional measurement equipment, typically with a low frequency (including current, voltage and power data).



		Event detection

		Events are detected within the data sets (e.g., an appliance changed its state ).



		Feature extraction

		Every appliance has a certain load signature and features, by which it can be distinguished from others.



		Classification

		Loads are identified by a classification procedure to determine the times or periods a device was operating.



		Analysis of classification

		For each specific application, the classification can be analysed to draw conclusions.





[bookmark: _Toc102474643]Power hardware in the loop and real time simulations

There are different methodologies to test models and hardware components, like model validation tests etc. The following three types should be distinguished [19]: 

1. Software in the loop tests: These are solely run on a virtual device under test (DUT). 

2. Classical hardware in the loop tests: A hardware DUT is used and the communication between the simulation environment and the DUT is performed in real time. No high power is running through the DUT, and signals are not measured under real time conditions.

3. Power hardware in the loop (PHIL) tests: A real time test bench is used, where the DUT is analysed under real conditions. During the test, high power is running through the DUT and real physical signals are measured. 



In this context, the terms “real time simulation” and “real time simulator” are commonly used. A real time simulator, by definition, is capable of executing a computer simulation or model at the same rate as an actual physical system. For example, if a kettle needs 1 minute to heat the water reservoir, it needs 1 minute in the simulation. This gives the advantage that physical devices can interact with simulated models and vice versa. However, complex systems, including devices with high sample rates, can quickly reach the computational limits regarding the real time requirement. [141], [18] 

An example of a PHIL setup is depicted in Figure 2.15. In this example, the load profile and BESS are simulated by the real-time capable PLC. Thus, they are not part of the DUT. The FESS control algorithm runs on the PLC as well and interacts with the simulated models in real-time. The PLC is controlling the inverter, which is connected to the induction motor of the flywheel energy storage and to the grid. 
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[bookmark: _Ref90910556][bookmark: _Toc102474721]Figure 2.15: PHIL example schematic [64]

There are four main benefits of implementing PHIL technologies [142]:

· Faster and cheaper development due to digital twins

· High fidelity simulation results

· Easy to add or modify simulated devices

· Ability to simulate scenarios that are hard-to-achieve in the real world



The main drawbacks are:

· The inaccuracy of the simulation due to time delays of calculations and signal transmission 

· The potential instability of the simulation



The advantages of PHIL setups outweigh their disadvantages, making PHIL systems increasingly popular and better available [143]. Due to differences of DUTs and test scenarios, the PHIL hardware setup is to be chosen carefully to develop a stable setup. The DUT can be any device, like a resistive load, a PV-inverter, an energy storage system (ESS), or even a complete microgrid system [143], [144]. Examples of PHIL setups are:

1. FREA PHIL Setup in Japan [145]: The PHIL components are a diesel generator, PV-system, BESS, load, and measurement devices. The microgrid controller is simulated.

2. AIT PHIL-Setup in Austria [146]: The PHIL components are a programmable load, power amplifier and BESS. A digital twin of the BESS is simulated.

3. Test bench for PHIL simulation of a PowerCorner device [147]: The PHIL components are a power amplifier, A/D and D/A converters, sensors and inverters. PV-system and an energy storage device are simulated.

As microgrid systems can quickly become very complex with multiple different components that have different control needs, the setup of a completely physical testbench for a microgrid may prove a time-consuming and expensive project. A lot of development time and costs for the communication between different controllers of microgrid components can be reduced with a PHIL-setup and expanding such a system with more components is easier as well. Thus, a PHIL-setup for the validation of some models and control strategies of this work will be developed. 

[bookmark: _Toc102474644]Conclusions

From this comprehensive review of the state of the art, regarding multiple structures, devices and methodologies, the following conclusions can be drawn:

· As DC microgrid systems are not yet standardized, e.g., regarding voltage levels, there could be future-related uncertainties using a DC or hybrid microgrid modelling. Thus, an AC microgrid topology is of higher interest for this investigation. 

· Grid-connected operation with participation in energy markets should be considered in the investigation, as the AC microgrid will be operating most of the time with a main grid connection. However, due to the high future penetration of renewables, islanded operation should be the focus for the control strategies in this work to improve security of supply. 

· Since the current standard for new buildings and renovations is nZEBs, a typical configuration of such a building should be modelled for the microgrid. 

· This includes PV-system for power supply, as it is the most common and most feasible renewable energy source for such applications and storage systems to implement a suitable EMS. 

· For the storage system, a BESS is the optimal choice considering capacity, power rating and feasibility. 

· The drawback of BESSs is their lifetime, so a FESS should be added for peak shaving and load levelling to reduce stress on the BESS and increase the cyclic lifetime. 

· Common household TESs should support the other ESS.

· TESs’ impact on the user comfort is to be investigated for the control strategies in different operation modes. 

· PHIL real time simulations are used for faster development and validations.

· Machine learning methods can be used for model development.

· Additionally, due to the ML approach, it is relevant to investigate privacy concerns of potential users towards the proposed systems. 



On this background, the microgrid topology shown in Figure 2.16 is proposed for the investigation. The PV-system, load, BESS, FESS and TESs need to be modelled first, as presented in the next chapter, in order to validate them and develop control strategies for achieving the aim of security of supply and financial feasibility improvements as a basis for recommendations.
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[bookmark: _Ref91230883][bookmark: _Toc102474722]Figure 2.16: Topology of the proposed microgrid system for investigation



[bookmark: _Toc102474645]Research and development of object models for microgrid components

To simulate a microgrid, it is necessary to have object models of all the relevant components and apply control strategies to those models. In this chapter, the relevant object models and used profiles are presented. These include the patterns for PV-systems, thermal and electrical load patterns, FESS, BESS, and common household TESs. The applied control strategies are addressed in Chapter 5.

The FESS and BESS models have several simplifications to ensure a fast calculation speed at reasonable accuracy, as shown in Chapter 4. The TESs, freezer, water heater and space heating are modelled based on linearized equations. A space heating model has a much higher complexity than a freezer or water heater model. This leads to more than 100 hours of manual model development and simplifications if a detailed model is developed in electrical engineering software. Therefore, methodology for a space heating model based on neural networks was created. The error and accuracy analysis to determine the model quality is shown for these models in Chapter 4 as well. 

Several profiles were integrated into microgrid simulations to be able to test the implemented scenarios. These profiles can act as object models or as inputs for object models. The following profiles were included:

· PV-system measurements

· Electrical load patterns

· Various consumption resp. thermal load patterns

· Occupancy patterns

These profiles are partly measured data and partly artificially generated data. 
The following subsections describe the different profiles in detail.

[bookmark: _Toc102474646]PV-system profile

Two PV-system measurement profiles with different resolutions and for different locations were used as PV-system models. One profile was measured in Estonia and the other in Southern Germany. 

The Laastu Talu OÜ PV-system is a larger installation with 668 PV-panels and an output peak power of 177 kWp. It is located in northern Estonia, south of Tallinn. The available dataset was measured from 17th to 24th September 2019 with a resolution of 1 min [33], [148]. An example day of this profile is shown in Figure 3.1. 
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[bookmark: _Ref87525089][bookmark: _Toc102474723]Figure 3.1: Example day from the measured PV-system profile in Estonia

The second PV-profile used was measured in southern Germany by Allgäunetz GmbH & Co. KG. It contains data from 17th to 22nd July 2019 with a resolution of 1 s [64]. As an example, data from 19th July is shown in Figure 3.2.
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[bookmark: _Ref87525212][bookmark: _Toc102474724]Figure 3.2: Example day from the measured PV-system profile in southern Germany

For different applications and tests, the PV-profiles need to be scaled in size accordingly. This scaling factor [149], [33] can be calculated as shown in (3.1):



		

		[bookmark: _Ref87538949](3.1)





where: : Yearly power consumption [kWh/a]; : Typical regional solar generation [kWh/kWp]; : Unscaled peak power of PV-installation [kWp].



For example,  can be obtained from PVGIS [150]. The typical regional solar generation values for the locations of the PV-systems are:

· Estonia: 864 kWh/kWp

· Southern Germany: 1000 kWh/kWp

[bookmark: _Toc102474647]Thermal and electrical load profiles

There are multiple thermal and electrical load profiles that have been used for different investigations in this work. This was necessary because the modelled laboratory equipment used for verification is dimensioned for different system sizes. Therefore, accordingly sized load profiles should be used for validation tests and simulations. Within reasonable limits, it is possible to transfer the results to larger or smaller sized systems [149]. 

An overview of the used load profiles with relevant parameters and related applications within this work is presented in Table 3.1. 





[bookmark: _Ref81899297][bookmark: _Toc102474787]Table 3.1: Overview of load profiles with relevant parameters [148], [151], [152], [153], [154] 

		Description

		Type

		Sizing

		∆t

		Time

		Values

		Application



		NRG-Building

		M

		Larger building

		1 sec

		20 h

		El

		FESS model and control validation



		Measured 3-room apartment

		M

		Household / Apartment

		5 min

		1 week

		El, W, F

		TES control, Water heater validation



		Generated single family house

		G

		Detached single family house

		1 min

		1 year

		El

		FESS + BESS control



		8 generated households with different occupancies

		G

		Household / Apartment

		5 min

		1 week

		El, W, F

		TES control 





M: Measured; G: Generated; El: Electricity Consumption; W: Water Consumption; F: Food Consumption.



The NRG-Building profile was measured on the Tallinn University of Technology campus. The measurement was done for the NRG-Building starting from April 3rd, 2019, 10:00, until April 4th, 2019, 6:00. The measurement resolution was 1 s during that timeframe. This load profile shows the power fluctuations of a university building 
(c.f. Figure 3.3). Thus, it is suitable for the flywheel model and control validation where such power fluctuations should be balanced. 
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[bookmark: _Ref90461081][bookmark: _Toc102474725]Figure 3.3: Example segment of the measured NRG-Building load profile

The measured apartment profile [151] represents a typical dwelling, as mentioned in section 3.4. It is a 67.4 m², 3-room apartment in the Kristiine district in Tallinn, Estonia. The measurements for different appliances, hot water and food consumption, space heating, and total electrical energy consumption were conducted from 22nd February 2010 until 28th February 2010. It was occupied by 2 adults and 2 children during the measurements. The time resolution for all measurements was 5 minutes. This profile was used in the work for the research of TES control algorithms and in the verification on the water heater model. The total electricity load, and food and hot water consumption profiles as thermal loads are shown in Figure 3.4.
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[bookmark: _Ref81930163][bookmark: _Toc102474726]Figure 3.4: Measured total energy, food and hot water consumption

The generated single family house profile [148] and the eight generated household profiles [152], [153] with different occupancies were created using LoadProfileGenerator [155]. This is a software developed for a doctoral thesis at Chemnitz University of Technology in 2016 and is still being maintained and improved by the creator. The quality of the generated profiles has been assessed and validated, showing adequate similarity to measured profiles [156]. The load profile generation is based on an occupant behaviour model. This means that not just the electrical load profile, but also hot water usage, space heating, and cooking (food consumption) patterns are created and can be used. For the correct behaviour of the occupants regarding the weather, an outside temperature profile for Helsinki of the year 2017 from the Finnish Meteorological Institute was applied during the profile creation [157]. Helsinki has similar weather conditions as Tallinn, thus the profile for Helsinki can be used for this purpose. 

The generated single family house profile [148] represents a family with 2 children. One adult is working, one is staying at home and the children go to school. The profiles were generated for a whole year with 1 minute time steps. The electricity load profile for one example day is shown in Figure 3.5.

The eight generated households (i-viii) represent the dwelling occupancies as depicted in Table 3.2. These occupancy profiles have been selected to represent typical occupancy scenarios for dwellings. This selection was based on the statistics of the Federal Statistics Office of Germany [158]. The selection criteria and shares according to [158] are shown in Table 3.3. These profiles were used to investigate the influence of different household occupancies on the performance of different control algorithms for TESs.



[bookmark: _Ref81914809][bookmark: _Toc102474727]Figure 3.5: Example day from a single family house load profile

[bookmark: _Ref81901145][bookmark: _Toc102474788]Table 3.2: Description of generated occupancy profiles with average electrical energy consumption per day [152], [153]

		Household

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii



		Working

		2

		1

		-

		-

		-

		1

		-

		-



		Studying

		-

		-

		1

		-

		-

		-

		3

		-



		Unemployed

		-

		-

		-

		2

		-

		1

		-

		-



		Retired

		-

		-

		-

		-

		1

		-

		-

		2



		Children

		-

		-

		-

		2

		-

		2

		-

		-



		Σ

		2

		1

		1

		4

		1

		4

		3

		2



		El. Consumption [kWh/d]

		9.82

		4.18

		2.15

		14.63

		2.58

		13.10

		9.22

		5.85







[bookmark: _Ref81903060][bookmark: _Toc102474789]Table 3.3: Occupancy profile selection criteria with typical shares [152], [153]

		Number of people per dwelling



		Number of people

		Share

		Represented in household



		1

2

3

4

		42%

33%

12%

9%

		ii, iii, v

i, vii

vii

iv, vi



		Number of children per dwelling



		Number of children

		Share

		Represented in household



		0

1 or 2

		72%

25%

		i, ii, iii, v, vii, viii

iv, vi



		Number of people working per dwelling



		Number of people

		Share

		Represented in household



		0

1

2

		34%

36%

26%

		iii, iv, v, vii, viii

ii, vi

i



		Employment status of the person with the main income per dwelling



		Employment status

		Share

		Represented in household



		Retired

Employed

Other

		36%

48%

16%

		v, viii

i, ii, vi

iii, iv, vii





These profiles have different consumption patterns, which is due to different occupations; some people are at work, at school, at university or retired. This does not only change the electric energy consumption directly but also the water heating and space heating load. The electric energy consumption patterns for one week for different households (i-viii) are shown in Figure 3.6.
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[bookmark: _Ref89436608][bookmark: _Toc102474728]Figure 3.6: Electric energy consumption in households i-viii for 1 week [152], [153]

[bookmark: _Toc102474648]BESS and FESS model

The BESS and FESS models are based on existing objects and products. The FESS was modelled based on a device available in a laboratory at Tallinn University of Technology. The BESS is based on different datasheets from available lithium-ion batteries. The details about the models are shown in the following subsections.

[bookmark: _Toc102474649]FESS model with basic converter control

The FESS was modelled using Matlab/Simulink with the Simscape Electrical library [154], [159]. The model is based on the Rosseta Technik GmbH T3-15 FESS [69] with Unidrive SP2403 motor- and grid-side converters, located in Tallinn University of Technology. 
The relevant parameters for modelling are shown in Table 3.4. 



[bookmark: _Ref81571397][bookmark: _Toc102474790]Table 3.4: FESS parameters [159] 

		FESS Parameters

		Value



		Nominal Power

		15 kVA



		Energy Capacity

		300 kWs



		Speed Range

		500 – 6000 rpm



		DC-link Capacitance

		500 



		DC-link Voltage

		700 V



		Inverter Switching Frequency

		16 kHz



		LC Filter Parameters

		Value



		Filter Inductance

		6.2 mH



		Filter Capacitance

		3 





The modelled flywheel system includes an asynchronous machine, bidirectional AC-DC converters, a DC-link capacitor, and a LC filter at the front end. 

The working principle of the flywheel storage system is shown in Figure 3.7. 
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[bookmark: _Ref81826266][bookmark: _Toc102474729]Figure 3.7: Schematic of flywheel storage system model control [154], [159]

The grid-side converter was used to exchange energy between the DC-link and the grid using current control. Due to the energy exchange with the grid, the voltage of the DC-link starts to increase or decrease. The resulting objective for the motor-side converter was to maintain the DC-link voltage within acceptable levels by supplying energy to or from the induction motor of the flywheel. 

Current control

The power smoothing control, which is discussed in section 5.1, provides active () and reactive () power control references to the current control block. The current control used the Clarke and Park transform [160] to convert the reference values from abc- to dq-domain. With the dq-domain reference values it is possible to calculate the output currents references of the grid-side converter using the grid voltage. A PI controller was used for minimizing the measured current and current reference difference. Considering the inductance from the LC-filter, the voltage difference signal of the PI controller and the measured voltage values, dq-voltage reference signals could be generated. This can be transformed back to αβ-domain and used to implement a space vector pulse width modulation for switching the grid side converter transistors [161].

The schematic of the current control block is shown in Figure 3.8.
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[bookmark: _Ref81834107][bookmark: _Toc102474730]Figure 3.8: Flywheel current control block [154], [159]

DC-link voltage control

With the measured rotational speed  and the DC-link voltage , the torque () and flux () references for the field-oriented control can be calculated [162]. Therefore, two PI controllers, one to minimize the DC voltage difference and the other to minimize the rotational speed error, were used. The flux reference was calculated using the nominal flux and the nominal and measured rotational speed, as described in [163].

The DC-link voltage control schematic is shown in Figure 3.9.
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[bookmark: _Ref81834210][bookmark: _Toc102474731]Figure 3.9: Flywheel DC-voltage control block [154], [159]

Field-oriented control

Since the rotor flux in the simulated model was not measured directly but estimated through the stator current, an indirect field-oriented control was implemented. With knowledge about the induction motor parameters, it is possible to derive the rotor flux  , as shown in (3.2) [163]:



		

		[bookmark: _Ref81841705](3.2)





where: : Rotor resistance; : Rotor inductance; : mutual inductance; : flux forming current.



The control of the induction machine torque and flux can be decoupled by regulating the torque forming current  and the flux forming current  independently. The flux forming stator current reference  could be evaluated using a PI controller by minimizing the error between the reference flux  and the estimated flux. The torque forming current  can be calculated using (3.3) [163]:



		

		[bookmark: _Ref81841761](3.3)





where:: Torque reference; : Rotor inductance; : mutual inductance; : rotor flux; : number or motor poles pairs.



The stator voltage  references are evaluated within the current controller block by minimizing the error between measured and reference stator currents, using PI controllers. Space vector pulse width modulation is used to generate switching for motor side converter transistors.

An overview of the field-oriented control block is shown in Figure 3.10.
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[bookmark: _Ref81834267][bookmark: _Toc102474732]Figure 3.10: Flywheel field-oriented control block [154], [159]

[bookmark: _Toc102474650]BESS model

The model for the BESS is a simplified basic model based on [151], [164]; an extended model has been developed in [33], [148]. The model represents a lithium-ion based battery resp. battery cells, including a controller modelled on the datasheets of existing products. 

The basic model of the battery itself consists of a SOC value and charging and discharging efficiencies. Based on the charging, respectively discharging current, the corresponding efficiencies, and the battery’s nominal capacity, the SOC of the BESS can be calculated for each time step i (3.4):

		

		[bookmark: _Ref90289038](3.4)





where: SOCBat: State of charge of the battery; ηcd: Charging resp. discharging efficiency [%];  Δt: Time step duration [h]; Icd: Charging (>0) and discharging (<0) current [A]; CBat,nom: Nominal battery capacity [Ah]. 



Additionally, the self-discharge rate, which is relevant for long-term simulations [165], and a temperature dependence, which is relevant in environments with changing temperatures [166], have been added in the extended model presented in [33]. 

Lithium-ion batteries have a self-discharge rate of 5% within the first 24 hours and then 1-2% per month. This will remain reasonably steady throughout the service life. However, elevated temperatures and full SOC will cause an increasing self-discharge, as shown in Table 3.5. The self-discharge is implemented in the model with a linear approximation, which is shown in more detail in [33].



[bookmark: _Ref90291919][bookmark: _Toc102474791]Table 3.5: Self-discharge per month for different temperatures and SOCs [165]

		Temperature

		0 °C

		25 °C

		60 °C



		SOC = 1

		6%

		20%

		35%



		SOC = 0.5

		2%

		4%

		15%







A BESS is affected by temperature changes as well, as the battery ages faster at higher temperatures and loses storage capacity temporarily at low temperatures. The simulations in this work were not conducted for such long-term timeframes that the aging due to temperature had to be considered. Thus, just the temporary capacity reduction due to lower temperatures is implemented in the model. The capacity retention at different temperatures is shown in Figure 3.11. [166] 
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[bookmark: _Ref90292739][bookmark: _Toc102474733]Figure 3.11: Battery capacity retention at different temperatures 

The modelled batteries are based on the following available products, and their brochures and datasheets:

· Victron Energy LFP Smart Batteries (Nominal Capacity: 50 Ah - 300 Ah) [167]

· KOKAM SLPB120255255 (Nominal Capacity: 75 Ah) [168]

· KROS-H-2-222 (Nominal Capacity: 300 Ah) [169]

[bookmark: _Toc102474651]Freezer, water heater and simplified space heating model

The following simplified object models are based on the models presented in [10]. They use linear approximations for the temperature differences during the time step. Using such simplified models will reduce the calculation time compared to simulations with more detailed models, which is an important measure, especially for medium or large microgrid simulations. The accuracy resp. errors of these simplified models are determined and evaluated in the model validation in Chapter 4. 

[bookmark: _Toc102474652]Freezer model

The freezer model is based on [10] and uses the temperature differences due to freezing, food exchange and ambient temperature for each time step i. All details about the model are shown in [151]. Since this model was developed for a chest type freezer, 
the temperature loss due to door opening was not considered in [10]. According to [170], this is an important parameter for the modelling of upright type refrigerators and freezers, which amounts to about 9 Wh for each door opening. Therefore, an additional temperature change due to door opening when exchanging food with an upright freezer is included in the freezer calculation (3.5) [151], [10]:



		

		[bookmark: _Ref72246046](3.5)





where: dTfreeze: Temperature change due to freezing [°C]; dTfood: Temperature change due to food exchange [°C]; dTamb: Temperature change due to ambient losses [°C]; dTdoor: Temperature change due to door opening [°C]. 

The temperature changes can be calculated as shown in (3.6)-(3.9) [151], [10]:



		

		[bookmark: _Ref89414184](3.6)



		

		(3.7)



		

		[bookmark: _Ref89414190](3.8)



		

		[bookmark: _Ref72246324](3.9)





where: Δt: Time step duration [h]; Pel,f: Electrical power of freezer [W]; COPf: Coefficient of performance of freezer; yi: Freezing/Heating status {0;1}; ρx: Density of material x [kg/m³]; Tf_corrected: Corrected food temperature [°C]; VObject: Volume of object [m³]; cpi: Specific heat capacity of ice [J/kgK]; Edoor-loss: Energy loss for each door opening [Wh]; .



The coefficients α and β are shown in (3.10)-(3.11) [10]:



		

		[bookmark: _Ref89415087](3.10)



		

		[bookmark: _Ref89415141](3.11)





where: UObject: U-value of the object [W/m²K]; AObject: Surface area of the object [m²]; VObject: Volume of the object [kg]. 



To use the specific heat coefficient of ice for the whole temperature spectrum of the food, the corrected food temperature Tf_corrected for food warmer than 0 °C must be obtained with (3.12) [151]. For food below 0 °C, Tf_corrected equals the actual food temperature Tf_actual.



		

		[bookmark: _Ref89419147](3.12)





where: Tf_actual: Actual food temperature [°C]. 

[bookmark: _Toc102474653]Water heater model

The water heater model is similar to the freezer model and is based on [10] as well. 
All the details of the model were presented in [151]. It uses the temperature changes due to heating with the heating element, exchange of water and ambient losses. 
The temperature of the water inside the boiler at the end of the time step is calculated as in (3.13) [151], [10]: 



		

		[bookmark: _Ref72928307](3.13)





where: dTh: Temperature change due to heating [°C]; dTcold_water: Temperature change due to water exchange [°C]; dTamb: Temperature change due to ambient losses [°C]. 





The temperature changes can be calculated in the following way (3.14)-(3.16) [151], [10]:

		

		[bookmark: _Ref89423688](3.14)



		

		(3.15)
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where: ηwh: Efficiency of water heater [%]. 

[bookmark: _Toc102474654]Simplified space heating model

The model for space heating and space cooling is similar to the freezer and water heater models; it is shown in detail in [151]. It was developed with equations, modelling techniques and typical values described by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [171]. Since space heating is more complex to model than a water heater, there are more temperature influences for each time step i to calculate. These include the ventilation, occupancy, and sunlight irradiation through windows. The temperature for the next time step can be calculated as shown in (3.17) [151]:
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where: dTh: Temperature change due to heating or cooling [°C]; dTvent: Temperature change due to ventilation [°C]; dTamb: Temperature change due to ambient losses [°C]; dTocc: Temperature change due to room occupancy [°C]; dTrad: Temperature change due to sun irradiation through windows [°C].



The temperature changes can be described with equations (3.18)-(3.22) [151]:
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		(3.19)



		

		(3.20)



		

		(3.21)
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where: ki: Number of people in the room; PPerson: Typical heating power of one person [W].



Two different models were implemented based on this simplified space heating model. The first model is a simple room, which is modelled according to the civil engineering based simple room model shown in section 3.5.1. The second model is based on a measured apartment located in the Kristiine district in Tallinn, Estonia, as presented in section 3.2. This apartment was selected due to several reasons: 

· Measured electricity consumption data including separate devices was available for this apartment

· Measured food and hot water consumption data was available for this apartment

· The dwelling with 67.4 m² represents a typical dwelling for Germany/Estonia



The average dwelling size is 92.3 m² in Germany [158] and 66.7 m² in Estonia [172]. This includes family houses as well as apartments. Since the majority of people live alone, about 40% [173], the dwelling size per person should be considered as well. This is 
44.8 m² in Germany [158] and 30.5 m² in Estonia [174]. Thus, the 67.4 m² apartment can be considered a typical dwelling. The modelling parameters to calculate the heating gains and losses for this apartment are shown in Table 3.6.



[bookmark: _Ref89425567][bookmark: _Toc102474792]Table 3.6: Modelling variables for simplified space heating of an apartment

		Variable

		Value



		Floor area

		67.4 m²



		Roof area

		67.4 m²



		Wall area

		42.4 m²



		Window area (each direction)

		7.2 m² / 4.7 m² / 0 m² / 0 m²



		Cooling power

		2000 W



		Heating power

		2000 W



		U-value windows

		0.6 W/m²K



		Relative volume of furniture

		5%



		Room height

		2.5 m



		U-value of wall insulation

		27.0 W/m²K



		U-value of other wall materials

		5.6 W/m²K



		Surface azimuth (each direction)

		90° / 180° / -90° / 0°



		Thickness of insulation

		0.1 m



		Thickness of other wall materials

		0.25 m





[bookmark: _Toc102474655]Neural network-based space heating model

The neural network-based space heating models were created with an approach different from the previously described models. Pre-existing civil engineering models of a building created with IDA-ICE modelling software were used to create comprehensive datasets. These datasets could be used to train a neural network to behave like the 
IDA-ICE object model of the building within the defined limits. All details about the methodology were presented in [175].

With this methodology (c.f. Figure 3.12), it is possible to use building models from any civil engineering modelling software if the datasets from the simulation can be saved in a common file format. Additionally, the neural network model can be trained in any software which supports machine learning techniques like Matlab or Python. This provides more flexibility than co-simulations where certain communication standards must be met by both simulators. 





[bookmark: _Ref87423359][bookmark: _Toc102474734]Figure 3.12: Methodology overview of the neural network-based space heating model

The creation of suitable datasets and training of the neural network model are described in more detail in the following subsections.

[bookmark: _Toc102474656]Description of used civil engineering models

The existing building models used for the creation of the datasets are modelled with 
IDA-ICE modelling software from Equa. It shows compliance with CEN standards EN 15255-2007, EN 15265-2007 and EN 13791, and with ASHRAE standard 140-2004 [176]. Three civil engineering models are used in this work. All of them have been described and validated in previous publications. The 3D-models are shown in Figure 3.13:
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[bookmark: _Ref81472623][bookmark: _Toc102474735]Figure 3.13: 3D view of used IDA-ICE building models; left: simple room; centre: control centre; right: single family house



Simple room 

The first model is a simple room, which was chosen to represent a single room of a private house or an apartment building. It was previously published and validated in two conference papers [177], [178]. It used a 400 W electric radiator for heating, which was sized according to the Estonian heating design standard [179], including an added 20% power margin for safety. The thermostat was operating at 21 °C with a +/- 1 °C dead band. The implemented room was equipped with balanced heat recovery ventilation and the usage profiles for appliances, lights, and people were modelled as established for energy calculation of the apartment buildings by the Estonian law [180]. The Estonian test reference year data was used as weather data for this model [181]. This model was used for direct performance comparisons between the simplified space heating model, the civil engineering space heating model and the neural network-based space heating model. 

Control centre 

The second model is a control centre of the Energy Campus Wildpoldsried, which is located in the city of Wildpoldsried, Germany. Several measurements with the real object were done between 21st November and 3rd December 2019 in free-floating state and with an electric heater operated at 1300 W. [182]

The following data was logged:

· Temperature at several positions within and outside the control centre with four EL-USB-2 EH / Temp Data Loggers

· Outside temperature, global irradiation, air pressure, humidity, dew point, wind speed, and wind direction from a nearby weather station

· Power consumption of all active devices (including the electric heater) with portable power meters



With these measurements and the available construction data of the control centre, the IDA-ICE model could be created. With the free-floating measurements, the envelope could be calibrated and the heater measurement could be used to check the heat-up performance. The result of the calibration is shown in Figure 3.14. The average absolute error of the model compared to the measured data is 1.61 °C. This error is within the acceptable range, especially as the error during the independent test period is lower at 1.00 °C. Thus, the model is correctly calibrated and can be used for further research. 
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[bookmark: _Ref81556701][bookmark: _Toc102474736]Figure 3.14: Air temperature behaviour of the IDA-ICE model compared to the measurements [182]

Single family house 

The third model is a small single family house with one floor and a detached roof. It was used previously in a sample project for redefining the cost-optimality level of nearly zero energy buildings (nZEBs) for new residential buildings in Estonia [183]–[188]. The model development, validation and use are published in [189] and [190]. Like the simple room model, it uses the Estonian test reference year weather data [181]. The model is divided into 11 thermal zones/rooms (c.f. Figure 3.15) and is heated by underfloor heating at 
100 W/m². Each zone is controlled by a separate thermostat. All rooms except the attic were equipped with balanced heat recovery ventilation. 





[bookmark: _Ref81477869][bookmark: _Toc102474737]Figure 3.15: Floor plan of the single family house with area sizes; doors: blue; windows: light grey

As this model was intended to be used for flexibility simulations with variable set points for the thermostats, it was necessary to change the standard usage profiles for appliances, lights, and people to more realistic stochastic profiles. Like this, the created datasets will show more complexity regarding, e.g., the temperature set points or occupancy, which is necessary for a more dynamic behaviour and complexity of the neural network-based model. 

To generate the occupancy profiles, the ProccS web tool [191] was used. It was developed, tested, and validated for a doctoral thesis at the Technical University of Denmark [192]. The profiles were generated for a family of two adults with one child. The adults go to work and the child to kindergarten/school [193]. The profiles were generated twice and the bathroom profile from the second run was used for the WC and the profile of the living room for the office. This introduces an error because up to five people can be in the house simultaneously; however, this can be even more realistic considering visiting guests. Rooms that are not often used (laundry room, technical room, corridor, hall) have no occupancy and are typically not heated specifically. Thus, they are excluded from the dataset creation. 

[bookmark: _Toc102474657]Creation of comprehensive datasets with civil engineering models

To get the training datasets for the machine learning algorithm, it is necessary to do simulations with each model and log the relevant parameters. To obtain enough training data, the simulation period was chosen to be one year with 1 min output time step. 
This time step is small enough compared to the larger time constant of space heating systems. The whole year needs to be simulated to include different environmental situations, like day/night, summer/winter, weather effects, etc. Otherwise, the neural network model will be limited to a certain season or weather conditions later. 

To exemplify the single family house, the variables shown in Table 3.7 are logged. 
The room-based variables are only logged for the 7 relevant rooms with active heating and occupancy, as mentioned in the previous subsection. 



[bookmark: _Ref81558807][bookmark: _Toc102474793]Table 3.7: Variables for the neural network training dataset of a single family house [175]

		General variables

		Room-based variables





		• Dry-bulb temperature [°C]

• Relative humidity of air [%]

• Direction of wind

• Speed of meteorological wind [m/s]

• Direct normal radiation [W/m²]

• Diffuse radiation on horizontal surface [W/m²]



		• Mean air temperature [°C]

• Heating energy [W]*

• Ventilation [W]*

• Infiltration and openings [W]*

• Occupancy (Number of People)

• Energy losses [W]*

• Internal wall energy exchange [W]*

• Equipment heat energy [W]*

• Windows and solar gains [W]*

• Cooling energy [W]*

• Lighting energy [W]*







*sensible heat gains/losses

[bookmark: _Toc102474658]Development and training of neural network-based models

The following methodology was used for synthesizing the NN-based space heating model from the IDA-ICE simulation datasets.

The dataset needed to be pre-processed to be in the correct format for the neural network training. The neural network training parameters had to be chosen to achieve a model with good accuracy without over- or underfitting. Then the neural network model could be trained and tested. If the accuracy was not good enough, then the neural network training parameters had to be changed and the training had to be repeated. 
The process is shown in Figure 3.16 and described in more detail in the following subsections.







[bookmark: _Ref90374061][bookmark: _Toc102474738]Figure 3.16: Overview of the neural network training process



Dataset pre-processing

First, it was required to add the temperature difference between the current and the previous time step to the dataset (3.23).



		

		[bookmark: _Ref81561185](3.23)





where: : Mean air temperature of time step i [°C]; : Mean air temperature of time step i+1 [°C]; : Temperature difference between time step i and i+1 [°C].



Second, the weather data had to be changed. The source weather data that IDA-ICE was using was hourly data and therefore needed to be converted to minutely data. Typically, the values would be interpolated. But since the other variables in the IDA-ICE training data were based on the hourly weather values, it was more reasonable to duplicate the hourly values for each minute within the hour. 

In a third step, the datasets needed to be normalized as this usually yields better results in the accuracy of the model because the influence of large fluctuating numbers dominating smaller numbers can be reduced. The input and target data for the neural network model were generated using (3.24) and (3.25).



		

		[bookmark: _Ref81561994](3.24)



		

		[bookmark: _Ref81562001](3.25)





where: : Normalized input data of time step i and variable k; : Input data of time step i and variable k; : Normalized target data of time step i and variable l; : Target data of time step i and variable l; : mean value of variable k resp. l; : standard deviation of variable k resp. l.

Neural network training

To select and optimize the training parameters for the neural network model, the following error and accuracy metrics were considered:

· Root mean square error (RMSE) of the mean air temperature (3.26)

· RMSE of the heating power per square meter (3.27)

· Mean heating power difference (3.28)

· Percent of time steps with correctly estimated heating power (3.29)



		

		[bookmark: _Ref82420235](3.26)





where: : Mean value; : Civil engineering model mean air temperature [°C]; : Test model mean air temperature [°C].




		

		[bookmark: _Ref82420241](3.27)





where: : Mean value; : Civil engineering model heating power [W]; : Test model heating power [W]; : Room area [m²].



		

		[bookmark: _Ref82420246](3.28)







		

		[bookmark: _Ref82420252](3.29)





where: : time step accuracy; .



For a distinct representation of error metrics, one total error metric () is derived [194]. A weighting factor based on the importance of each error and accuracy metric for the overall use of the model was added. Since the model is included in an electric simulation, the temperature accuracy is less important. The most important values are the root mean square error and mean error for the power, resulting in the biggest weights. Additionally, the following limits and optimum values were chosen for the mapping to percentage values (c.f. Table 3.8):



[bookmark: _Ref87433992][bookmark: _Toc102474794]Table 3.8: Error metric limits, optima, mapping factors and weighting factors [194]

		Error

		Limit

		Optimum

		Mapping factor

		Weighting factor



		

		0.7 ⁰C

		0 ⁰C

		

		1/10



		

		300 W

		0 W

		

		4/10



		

		10 %

		0 %

		

		3/10



		

		90 %

		100 %

		

		2/10







The limit value should be mapped to 90% and the optimum to 100%. The resulting total error metric can be calculated as follows (3.30) [194]: 



		

		[bookmark: _Ref87433738](3.30)







The most important training parameters for the selected algorithm are the number of neuron and layers, and the maximum number of epochs. The selected sizes for the hidden layers of the neural network models need to be chosen according to the complexity of the training data. As a rule of thumb, a good starting point for finding the optimum number of neurons can be chosen as 2/3 the size of the input layer. For the second hidden layer, half the size of the first hidden layer is commonly chosen. The optimum number of neurons can then be found by decreasing or increasing their number slowly and checking the corresponding accuracy of the model. In this stage, it is essential to make sure that the model is neither underfitting with too few neurons nor overfitting with too many. From the training set, a ratio of 60% was used for training, 20% for cross-validation and 20% for testing. Fitting, cross-validation, and prediction tests were done internally within the Matlab training function. To be able to use the GPU computing capabilities, a scaled conjugate gradient algorithm [195], [196] had to be chosen as the other available algorithms are not compatible with GPU computing. 

Table 3.9 shows the results obtained using the previously described metrics for a model with 17 input variables and different numbers of neurons for each layer.



[bookmark: _Ref87438900][bookmark: _Toc102474795]Table 3.9: Results for different numbers of neurons per layer [194] 

		Neurons

		[12 6]

		[14 7]

		[26 13]



		Test

		1.1

		1.2

		1.3

		2.1

		2.2

		2.3

		3.1

		3.2

		3.3



		RMSET [⁰C]

		3*103

		0.71

		0.67

		2.81

		4*103

		0.66

		3.99

		0.50

		3.42



		RMSEP [W]

		407

		288

		288

		406

		533

		267

		247

		308

		278



		 [%]

		53.73

		-1.16

		1.35

		48.02

		100.00

		-4.87

		13.00

		-9.59

		8.01



		TSA [%]

		96.27

		98.13

		98.13

		96.27

		93.59

		98.39

		98.62

		97.85

		98.26



		Epochs

		4243

		803

		909

		2981

		4146

		1449

		4407

		1483

		4190



		ErrorTotal

		-5*103

		94.83

		94.83

		76.04

		-5*103

		94.08

		87.27

		92.29

		89.12







These results demonstrate that the rule of thumb number for neurons with 12 in the first hidden layer and 6 in the second hidden layer gives the best total error metrics, 
as marked in bold in the table. It is evident as well that the best results are achieved with a lower number of training epochs. The typical behaviour where the validation error increases as the overfitting starts does not apply to the model, which can be the case for some datasets [197], [198]. Thus, the training cannot be stopped automatically. To select a suitable number to limit the epochs, it is necessary to look at the validation performance of the training. A too high number of epochs can be chosen for training to see the point where overfitting due to overtraining starts, as shown in Figure 3.17.



[image: ]

[bookmark: _Ref87439199][bookmark: _Toc102474739]Figure 3.17: Evaluation of performance: Overfitted model [194] 

The figure shows that the performance of the model reaches a good stable level at around 500 epochs. This will be referred to as the underfit marker. At around 1500 epochs, the overfitting transition due to overtraining starts, as marked by the purple circle. 
At this point, the model does not learn a general applicable solution anymore but learns the responses by heart. The maximum number of epochs should be limited between those two markers. To be sure not to overfit the model, a value of around 1/3 the difference between the over- and underfit marker is chosen: 850 epochs for this model. 

Therefore, the chosen parameters for the model are:

· Neurons: Depending on input variables; according to the rule of thumb

· Maximum number of epochs: 1/3 the difference between the over- and underfit marker

The neural network model sizes are shown in Table 3.10 and visualized for the single family house in Figure 3.18.



[bookmark: _Ref87449878][bookmark: _Toc102474796]Table 3.10: Neural network model sizes for different space heating models

		Model

		Input Variables

		Hidden Layer 1

		Hidden Layer 2

		Output Variables

		Epochs



		Simple room

		17

		10

		5

		1

		850



		Control center

		11

		6

		3

		1

		800



		Single family house each room

		17

		12

		6

		1

		850
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[bookmark: _Ref87449879][bookmark: _Toc102474740]Figure 3.18: Visualization of neural network model used for each room of the single family house

The other training parameters of the training algorithm [195] do not necessarily need to be optimized as the variations between training with the same parameters have higher influence on the accuracy than the change of the parameters. An overview is presented in [194]. 

The training is much more stable when applying the optimized parameters, reducing the need for repeated trainings, as shown in Table 3.11. This can be seen by the comparison with the total error values for Test 1.1 presented in Table 3.9, where the training shows extremely bad results. Choosing a too large number of neurons and epochs does not improve the model, as it will regularly overfit (c.f. Table 3.9, Table 3.11).



[bookmark: _Ref87435421][bookmark: _Toc102474797]Table 3.11: Comparison of optimized parameters to wrongly chosen parameters: mean total error values for multiple trainings

		Evaluation criterion [%]

		Mean ErrorTotal value



		Optimized parameters: 

		92,03



		Doubled neuron number; 5000 epochs

		89,16







After the optimized training, the neural network model is converted and saved to a Matlab function instead of a neural network object. This has the advantage of higher compatibility, for example, if Matlab is used in combination with other software and higher calculation speed. The disadvantage is that the neural network cannot be additionally trained later with more input data but needs to be retrained completely. Applying this methodology to an existing civil engineering model to create a space heating model for a microgrid simulation can be achieved within 8 hours of active work for pre-processing and parameter adjustments. Additional computational time for 
pre-simulation and NN training in the background depends on the model size and detail and can take multiple hours. However, this does not account for active modelling time as it can be done in the background without supervision. This is a huge reduction by around 90% of active modelling time compared to more than 100 hours, as estimated by civil engineers.

[bookmark: _Toc102474659]Conclusions

To simulate the proposed system based on the conclusions of Chapter 2, models for the PV-system and loads, FESS and BESS, and TESs are necessary. For each of those models, either a measured profile or an object model has been presented. In summary, the following can be concluded for the used PV-system and load profiles used as input data for the simulations:

· For the PV-system model, measured profiles with resolutions of 1 minute and 1 second for Estonia and southern Germany were used. These PV-profiles were scaled to the specific application.

· Different load profiles for electrical and thermal loads were measured and artificially generated according to the foreseen simulated scenarios. 
To improve the results of the simulations, different dwelling occupancy profiles based on demographic statistics were selected to investigate the general applicability of the developed control algorithms in Chapter 5. 



The energy storage systems were modelled with different methodologies. The following conclusions can be drawn from the modelling methodologies: 

· The FESS model is modelled based on the available FESS at Tallinn University of Technology to enable validations of the model and control strategies with the physical object in Chapters 4 and 5. 

· The BESS model is simplified to the basic function of a changing SOC. 
The behaviour is based on datasheet values. To improve this simple model, self-discharge and temperature dependent charge retention were implemented additionally. 

· The freezer and water heater TES model are linear approximation models for the temperature changes inside the devices. Such models have been used in literature with similar microgrid level simulations with satisfying accuracy. 
To improve the freezer model, the additional losses during the door opening process of an upright-type freezer were added. 

· The same approach was taken for the thermal model of a building. However, the literature analysis in Chapter 2 and the multitude of influences that need to be represented by a space heating model suggest that this model will not be accurate enough. 

· To reduce the development and active modelling time and effort for detailed space heating objects, a novel methodology for the creation of NN-based space heating models was developed. With the correct pre-processing of data and training parameter selection, a NN-based space heating model that can be used as an object model in the microgrid simulations could be created. The active modelling time can be reduced with this methodology by around 90% from more than 100 hours to around 8 hours.



These models need to be validated next to ensure a good accuracy for the development of control strategies in Chapter 5, which will be the basis for the social 
and financial investigations in Chapter 6 and the microgrid development related recommendations in Chapter 7.

[bookmark: _Toc102474660]Validation of mathematical object models for storage systems

To get more insight into the quality of the presented modelled objects, it is necessary to validate the models and quantify the errors and accuracy. This is needed for the control strategy development in Chapter 5. Therefore, different validation methods are used for the different storage system models, as shown in more detail in the following subsections.

In the context of microgrid simulations, errors for the different storage systems should be kept within certain limits to ensure a valid simulation result. For the BESS, FESS and TESs, the mean error should be below 10%. For more complex models like space heating, a slightly higher error of up to 12% can be acceptable as well. 

[bookmark: _Toc102474661]Validation of BESS and FESS models

The BESS and FESS models will introduce certain errors into the simulations. To decide whether the models are accurate enough and modelled properly, the following validation tests were conducted: 

· Validation against measurement data

· Repeatability test of measurement data

[bookmark: _Toc102474662]Validation of FESS model

To be able to validate the flywheel model and later the corresponding control scenarios, it was necessary to modernize the available setup in the laboratory of Tallinn University of Technology. 

Therefore, the existing PLC was replaced with a new Software-PLC, the Siemens AG ET 200SP Open Controller 2. This PLC enables real time simulations with Matlab in a PHIL setup. In this first step, the flywheel was connected to the PLC, but it is possible to connect more devices in future. The PHIL arrangement is depicted in Figure 2.15, a more detailed overview schematic for the validation is shown in Figure 4.1 and details about the implementation of the setup are presented in [64]. 



[image: ]

[bookmark: _Ref90369464][bookmark: _Toc102474741]Figure 4.1: Schematic of the modernized flywheel validation setup [64]

With this setup it was possible to validate the FESS model and the implemented software power controller. The first test is a repeatability analysis, as shown in the next subsection, followed by a round trip efficiency validation.

Repeatability analysis

To know the accuracy of the flywheel power controller, a ramp shown in Figure 4.2 is applied. This charging and discharging test was performed for five times to analyse the deviation from the set ramp. 





[bookmark: _Ref90371447][bookmark: _Toc102474742]Figure 4.2: Flywheel storage repeatability profile [64]

The results for the power differences between set power and measured power are shown in Table 4.1. The RMSE is below 100 W across the whole spectrum and the other error metrics are small too. Thus, the power controller is working accurately.



[bookmark: _Ref90371584][bookmark: _Toc102474798]Table 4.1: Results of flywheel storage repeatability [64]

		Test

		1st 

		2nd 

		3rd 

		4th 

		5th 

		Overall



		Average

		-1.63W

		0.25W

		0.58W

		0.00W

		0.26W

		-0.09W



		Median

		-4.68W

		-0.83W

		-3.40W

		-7.14W

		-5.46W

		-3.97W



		RMSE

		94.06W

		96.66W

		98.25W

		95.57W

		100.91W

		





Validation of round trip efficiency

The round trip efficiency typically shows how efficiently the storage system works. It is a good indicator for the model and setup quality as this value has been measured by the manufacturer and is available in the device documentation. Additionally, the simulation can be compared with the actual setup.

To get comparable results, the test is to be done as follows: first, the flywheel is at standstill. It is then charged with the maximum power of 15 kW until it is fully charged. Immediately after that, the flywheel is completely discharged with the maximum power of 15 kW. The consumed energy for charging and retrieved energy from discharging can then be compared to get the overall efficiency. The process is shown in Figure 4.3.



[image: ]

[bookmark: _Ref90372550][bookmark: _Toc102474743]Figure 4.3: Flywheel storage round trip efficiency test 

In total, 375 kWs are charged in the test run while 269 kWs are discharged. This results in a round-trip efficiency of 71.8% for the flywheel storage system, which is slightly lower than the provided value of 77.6% in the datasheet [69], which can indicate that a maintenance resp. balancing of this old device could be necessary. The modelled flywheel shows a slightly higher round trip efficiency value of 80.2%. The results are shown in Table 4.2.



[bookmark: _Ref87370806][bookmark: _Toc102474799]Table 4.2: Efficiency errors of flywheel storage round trip 

		Round Trip Efficiency / Error

		Datasheet

		Simulation

		Test



		Datasheet

		77.6%

		-2.6%

		+5.8%



		Simulation 

		+2.6%

		80.2%

		+8.4%



		Test

		-5.8%

		-8.4%

		71.8%







These error values concerning the FESS model are within the acceptable range of less than 10%. The developed model for the FESS at Tallinn University of Technology can be used in the intended microgrid simulations.

[bookmark: _Toc102474663]Validation of BESS model

The battery models could be validated against measured data. The corresponding lithium-ion battery measurements were obtained from [199] and the batteries were modelled as shown in section 3.3 with their datasheet values.

The measurement data contained four lithium-ion battery data sets. The batteries were tested with different operational profiles for charging, discharging and impedance with detailed explanations of the methodology. The measured values for charging and discharging are:

· Voltage_measured: Battery terminal voltage [V]

· Current_measured: Battery output current [A]

· Temperature_measured: Battery temperature [°C]

· Current_charge: Current measured at load [A]

· Voltage_charge: Voltage measured at load [V]

· Time:	 Time vector for the cycle [s]

· Capacity: Battery capacity [Ah] for discharge until 2.7 V

Based on the methodology description and available measurements, the battery storage model was tested with suitable simulations. Comparison of the simulation results to the measured values shows that the charging current error is 11.6% and the discharging current error is 6.4%. Since these are errors for charging and discharging at maximum current, they will be smaller at partial load. Therefore, the BESS model has an acceptable accuracy, even though the charging current error is higher than the aimed 10% limit. 

[bookmark: _Toc102474664]Validation of TES models

It is necessary to know the errors that are introduced into the simulation by each of the TES models. Thus, it is possible to decide if the models are accurate enough for the intended purpose and whether they are modelled correctly. The following validation methods are used for the simplified TES models:

· Design of experiment (DoE)

· Simulation with standardized conditions

· Validation against civil engineering models

· Validation against measurement data

· Uncertainly analysis



The validation details of the implemented storage system models are shown in the following subsections.

[bookmark: _Toc102474665]Validation of freezer model

The approach to verify the freezer object model is the following. First, the influence of the most significant parameters is confirmed with the design of the experiment (DoE) analysis. Second, simulations according to the requirements of the European Union commission delegated regulation (EU) No 1060/2010 with varied initial conditions are conducted. This can be used to analyse the error including the uncertainty. 

[bookmark: _Ref72138276]Design of experiment for freezer model validation

Significant parameters based on typical implementations of a freezer model are the ambient temperature and the exchange of content in the freezer compartment [10]. 
To test if both of these values are significant in the simulation of the object model as well, a 2² factorial design was considered, as shown in Table 4.3. The high value for the ambient temperature is 23 °C, the low value 17 °C. The high and low values for the food exchange are 0.02 kg/5min and 0 kg/5min.



[bookmark: _Ref71886168][bookmark: _Toc72138424][bookmark: _Toc102474800]Table 4.3: Design of experiment: 2² factorial design for freezer verification

		Experiment

		Tamb = xa

		mi = xb



		E1

		23 °C

		0.02 kg/5min



		E2

		17 °C

		0.02 kg/5min



		E3

		23 °C

		0 kg/5min



		E4

		17 °C

		0 kg/5min













The results for experiments E1-E4 are shown in Table 4.4.

[bookmark: _Ref71888147][bookmark: _Toc72138425][bookmark: _Toc102474801]Table 4.4: Results for experiments E1-E4

		Tamb/mi

		0.02kg/5min

		0kg/5min



		23 °C

		E1 = 526.50 Wh

		E3 = 470.25 Wh



		17 °C

		E2 = 456.75 Wh

		E4 = 400.50 Wh







With those values it is possible to apply a simple regression model (4.5) using equations (4.1) - (4.4): 

		

		[bookmark: _Ref71903917](4.1)



		

		(4.2)



		

		(4.3)



		

		[bookmark: _Ref71903925](4.4)



		

		[bookmark: _Ref71903906](4.5)





Using the sum of squares it is possible to determine the contribution of the two parameters (c.f. Table 4.5).

[bookmark: _Ref71905055][bookmark: _Toc72138426][bookmark: _Toc102474802]Table 4.5: Sum of squares for freezer parameters

		Sum of squares

		Equation

		Contribution

		% Contribution



		SST

		

		8029.1250

		100



		SSA

		

		4865.0625

		61



		SSB

		

		3164.0625

		39



		SSAB

		

		0.0000

		0







This shows that both parameters have significant influence on the simulation. In this case, the influence of the ambient temperature is higher than the food exchange rate. Both parameters are independent of each other due to the modelling. 

[bookmark: _Ref72135709]Simulations with standardized conditions

The European Union commission delegated regulation (EU) No 1060/2010 [200] describes the standardized test parameters that need to be met to determine the official energy consumption values for a freezer for the EU energy label. Applying the same conditions to a simulation, which are typically applied in an experiment to the real object, will create comparable results for error analysis. 

The simulation uses the following conditions: 

· The set point is fixed to -18 °C

· The time step is 5 min

· The duration of the simulation is 24 h

· The food exchange is 3 times 0.3 kg in 24 h

· The temperature of the replacement food is 25 °C

· The ambient temperature is 25 °C

· The food exchange pattern is shifted 5 min for each simulation

With these simulations, a mean energy consumption of 442.9531 Wh/day with a standard deviation of 2.0144 Wh/day can be obtained. The uncertainty of the repeated simulations is of type A [201] and can be calculated like this (4.6): 



		

		[bookmark: _Ref71883965](4.6)







Matlab is calculating with 16 digits. The power consumption is in a range of 3 digits before the decimal point, leaving 13 digits after the decimal point. This yields the following uncertainty of type B [201] (4.7):



		

		[bookmark: _Ref71884027](4.7)







The combined uncertainty can be obtained with equation (4.8) [201]:



		

		[bookmark: _Ref71884402](4.8)







Using a coverage factor k=2 for a confidence level of 95% yields that the freezer 
object model operates according to this simulation with a power consumption of 442.9531 +/-0.2374 Wh/day. This corresponds to 161.677 +/- 0.0866 kWh/a compared to 174 kWh/a, as shown in the technical data for the selected freezer model [202]. 
This is an error of about 7%, which is acceptable for the microgrid simulations in this work, as it is below the chosen 10% error limit.

[bookmark: _Toc102474666]Validation of water heater model

The model for the water heater has been verified with a DoE analysis and measurements. For this purpose, the hot water consumption for a water heater in an apartment with the corresponding electrical energy consumption has been measured. The installed water heater in the apartment has a volume of 200 l and a power of 2100 W. All relevant parameters for the installed water heater are set according to the datasheet [203].

Design of experiment for water heater model validation

Typical models of water heaters show that the significant parameters are the ambient temperature and the water exchange [10]. A 2² factorial design for the DoE of the water heater model can be used to confirm the relevance of these, using the parameters shown in Table 4.6. 



[bookmark: _Ref81571843][bookmark: _Toc102474803]Table 4.6: Design of experiment: 2² factorial design for water heater verification

		Experiment

		Tamb = xa

		Vi = xb



		E1

		26 °C

		0.5l/5 min



		E2

		10 °C

		0.5l/5 min



		E3

		26 °C

		0l/5 min



		E4

		10 °C

		0l/5 min





The ambient temperature changes for this DoE analysis are chosen more extremely than for the freezer, which is mostly placed in the basement with milder temperature changes. Despite that, the DoE analysis for the water heater shows that the ambient losses have a much lower influence on the model than the water exchange (c.f. Table 4.7). This is the result of better thermal design of a water heater without larger openings compared to a freezer, where the door is a strong thermal bridge, causing more ambient losses.



[bookmark: _Ref81382779][bookmark: _Toc102474804]Table 4.7: Sum of squares for freezer parameters

		Sum of squares

		Contribution

		% Contribution



		SST

		

		100



		SSA

		

		3



		SSB

		

		97



		SSAB

		

		0





Validation against measurement data

The measurements for the hot water and electrical energy consumption were done for 1 week with a 5 min time step. The resulting hot water pattern could then be applied 
to a simulation with the same ambient temperature that was present during the measurements. The average electrical power error of the simulated water heater is less than 6% compared to the measurements. This is well below the 10% error limit that was selected for the intended microgrid simulations. 

[bookmark: _Toc102474667]Validation of the simplified space heating model

Since the simplifications for the simplified space heating model are extensive, it is necessary to determine whether the degree of abstraction is too high for the intended use in microgrid simulations.

Therefore, two validation methods were chosen to obtain quantitative error and accuracy values: First, the model was validated against the previously described civil engineering model of the simple room. Secondly, the model was compared to the measured data from the described 3-room apartment located in the Kristiine district in Tallinn.

Validation against civil engineering model

The simplified space heating model was validated against the simple room IDA-ICE model described in section 3.5. As mentioned, the civil engineering model had been validated previously. Thus, the additional error of the simplified space heating model, which is the test model in this case, could be verified against that model. A one-week simulation with one-minute time step was implemented for both models with the same environmental parameters as shown in Table 4.8. For the simulation results, the error and accuracy metrics from section 3.5 could be used for evaluation of the simplified space heating model:

· Root mean square error (RMSE) of the mean air temperature (3.26)

· RMSE of the heating power per square meter (3.27)

· Mean heating power difference (3.28)

· Percent of time steps with correctly estimated heating power (3.29)

[bookmark: _Ref82420354][bookmark: _Toc102474805]Table 4.8: Environmental and model parameters for simplified space heating model validation against civil engineering simulation

		Parameter

		Value



		Ambient air temperature

		0.5 °C



		Temperature set point

		21 °C



		Solar irradiation

		Yes



		Heating power

		400 W



		Structural dimensions and windows

		According to civil engineering model



		Occupancy

		According to civil engineering model







The results for the error and accuracy metrics are the following:

· RMSET: 0.92 °C

· RMSEP: 27.63 W/m²

· : 8.3%

· TSA: 63.54%



The error metrics are quite high and the accuracy is quite low, as the simulation errors for the civil engineering model need to be added as well. Those are around 5% according to [176], lifting the mean power error to 13.3%. Additionally, this model is quite simple compared to a regular apartment model, resulting in even higher expected errors for more complex rooms. The temperature RMSE is within a reasonable margin, the mean heating power error and heating power RMSE are too high, and the TSA is too low. 
The model is not within the 10% error margin, nor is it within the extended 12% error limit for complex models. Thus, the model can be useful for first general tests with different control algorithms, but the results should be verified with a more detailed model to ensure the correct behaviour of the control strategies in a specific case.

Validation against measurement data

Additionally, the simplified model was validated against the measurement data of the apartment in Kristiine district in Tallinn, as described in section 3.2. The validation time covers the complete week of the measurement data.

The model uses the parameters according to the conditions of the measurements presented in Table 4.9.



[bookmark: _Ref82422810][bookmark: _Toc102474806]Table 4.9: Environmental and model parameters for simplified space heating model validation against measurements

		Parameter

		Value



		Ambient air temperature

		Fluctuating between -8 °C and +2 °C



		Temperature set point

		22 °C



		Solar irradiation

		Yes



		Heating power

		230 W



		Structural dimensions and windows

		According to apartment dimensions



		Occupancy

		According to apartment measurements







Unfortunately, the temperature in the apartment was not measured; thus, it is only possible to calculate the electrical power error between the model and the measurements. Due to the higher complexity of this model compared to the simple room model in the previous validation, the mean power error increased in this test to 24%. This confirms, on the one hand, that the error increases with a more complex model, and on the other hand, that this simple modelling technique can only be used to get first indications about the behaviour of space heating for a general building. Thus, as mentioned before, the model can be only used for first control algorithm tests, but there is a need to verify the control strategy with a more detailed model for a specific case. 

[bookmark: _Toc102474668]Validation of neural network space heating model 

The neural network-based space heating model has been validated against the corresponding civil engineering models and against measurement data from the control center of the Energy Campus Wildpoldsried located in the city of Wildpoldsried, Germany. Like this, the different used models were all validated, and the errors of the different models can be compared. Additionally, an uncertainty analysis with the single family house model was conducted to see the stability of the neural network based models as a modelling quality indicator.

Validation against civil engineering model

For the validation of the neural network-based models, the error and accuracy metrics from section 3.5 could be used. The evaluation is presented in more detail in [175].

•	Root mean square error (RMSE) of the mean air temperature (3.26)

•	RMSE of the heating power per square meter (3.27)

•	Mean heating power difference (3.28)

•	Percent of time steps with correctly estimated heating power (3.29)



As described in more detail in [175], a simple simulation with the neural network-based model is created. Input data for a whole year with the different values are used as shown in Table 3.7. The simulation has a 1-min time step. The temperature calculated by the model for the end of a time step is used as input for the next time step. The resulting error metrics for this validation are shown in Table 4.10. 



[bookmark: _Ref90537595][bookmark: _Toc102474807]Table 4.10: Comparison of error and accuracy metrics between the neural network-based models and the civil engineering models [175]

		Model

		

		

		

		



		Simple room (Simple Model)

		63.54

		8.3

		27.63

		0.92



		Simple room (NN Model)

		98.92

		2.6

		3.13

		0.30



		Single family house (NN Model): Average of 7 rooms

		94.56

		6.1

		16.93

		0.85







It can be observed that the accuracy and error metrics for the NN-based simple room model are much better than those for the simple space heating model of the simple room. The errors are lower, and the TSA is higher. For example, the mean power error is 5.7% lower. This clearly shows the superior modelling quality of the NN-based model over the simplified space heating model. The error metrics for the much more complex single family house model are better than the simple space heating model of a simple room. However, the more complex model shows slightly worse error metrics than the less complex simple room model. This indicates that a simplified model of the single family house would perform worse than the simplified simple room model. 

Thus, improved space heating models are necessary to get more accurate simulation results. The mean air temperature validation result is shown visually for the single family house in Figure 4.4 and the related power consumption graph in Figure 4.5.
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[bookmark: _Ref90538820][bookmark: _Toc102474744]Figure 4.4: Mean air temperature comparison between civil engineering simulation and test simulation for single family house bedroom model in the test simulation with zoom-in [175] 
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[bookmark: _Ref90538826][bookmark: _Toc102474745]Figure 4.5: Power data comparison between civil engineering simulation and test simulation for single family house bedroom model (Calculated power data is shown in the negative y-direction) with zoom-in [175]

The high model quality for the NN-based models can be seen in both graphs, as the temperature and power consumption are close to the results for the civil engineering model. This is especially visible in the zoomed-in graphs on the right. Additionally, 
the model accuracy stays on the same level throughout the whole simulation of 1 year, as seen on the overview graphs on the left.

In summary, the NN-based space heating model for the more complex single family house does not quite reach the 10% error limit, but is well within the extended 12% error margin for complex models.

Validation against measurement data

Validation of the NN-based models against civil engineering models gives a good indication about the model quality. To have a comprehensive validation of the models, they need to be directly compared to measurements. Therefore, the control centre model of the Energy Campus Wildpoldsried was developed. With this model, it is possible to compare the NN-based model, the civil engineering model and the real object with each other and analyse the errors. Figure 4.6 shows the visual result for the comparison of the three models. The same input parameters that were measured for the real object have been used for the simulations. The NN-based model has been synthesized from the civil engineering model as described before. 
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[bookmark: _Ref90539889][bookmark: _Toc102474746]Figure 4.6: Model validation of neural network and IDA ICE control centre models with measured data

It can be observed that the temperature calculations for the two simulated models are closer to each other than to the measured data. This shows that the errors between the models are lower than to the real object. This is confirmed by the error calculations shown in Table 4.11.



[bookmark: _Ref90540248][bookmark: _Toc102474808]Table 4.11: Error comparison between measurement and control centre models

		Errors

		NN vs. IDA ICE

		NN vs. Measurement

		IDA ICE vs. Measurement



		RMSE [°C]

		0.32

		2.95

		2.94



		Mean Temperature error [°C]

		1.93

		4.98

		7.05







The presented error metrics show error differences between the NN-based model and the civil engineering model. The errors between the civil engineering model and the measurements are much higher. The NN-based model presents higher error metrics as well. Interestingly, the RMSE is very similar to the civil engineering model, while the mean temperature error is even lower. This does not mean that the NN-based model is more accurate than the civil engineering model. Rather the errors between the measurements and the civil engineering model, and the error between the civil engineering model and the NN-based model cancel each other out to a certain degree for the tested input data. With different input data, the results can differ. The NN-based model is within the set error margins and can therefore be used in the intended microgrid simulations.

To classify the results in relation to the other NN-based models, the temperature RMSE for the control centre, simple room and single family house model can be compared as shown in Table 4.12. The complexity of the control centre is slightly higher than the simple room model, which can be seen in the RMSE as well. The single family house model is more complex, as indicated by the higher RMSE, and the expected errors towards a real object should be considered higher than with the control centre consequently. 



[bookmark: _Ref90543770][bookmark: _Toc102474809]Table 4.12: Error comparison between NN-based models and civil engineering models

		NN Based Models

		Control Centre Model

		Simple Room Model

		Single Family House Model



		RMSE [°C]

		0.32 

		0.30

		0.85





Validation with uncertainly analysis

Additionally, an uncertainty analysis was conducted as a model quality indicator. Therefore, multiple short simulations were run with the NN-based space heating model of the single family house, using a simulation time of 10 days with 1 min time steps. 
For each of the simulations, the initial parameters were varied slightly for each of the 
7 rooms included in the model. This results in a total number of simulations of 1921, which can be used for the uncertainty analysis of the electrical power consumption of the space heating model, as this is the most relevant parameter for the intended purpose of the model. Based on the standard deviation between those simulations, the uncertainty could be calculated using (4.9):



		

		[bookmark: _Ref90028196](4.9)





The Matlab calculation uncertainty can be neglected in this case as Matlab calculates with 16 digits, as mentioned in section 4.2.1. This would result in an additional uncertainty, which is multiple magnitudes smaller than the space heating model uncertainty.

The standard deviation for the single family house model was 1.25% and as a result, the uncertainty of the model is 0.03% in these test simulations. This assures, on the one hand, the stability of the proposed modelling method and guarantees, on the other hand, the ability to handle small differences within the operational limits of the model.

[bookmark: _Toc102474669]Conclusions

The object models developed in Chapter 3 needed validation to obtain quantitative results for error metrics. This ensures good accuracy levels and a correct behaviour of the models for the control strategies that are developed next. For this purpose, validations with a PHIL setup against measurement data with standardized test conditions and against other detailed models were implemented. To ensure a good quality and accuracy of the simulations, a maximum mean error margin of 10% for most object models was chosen. As space heating models are much more complex due to all the external influences than the other object models, an extended maximum error limit of 12% was chosen for the complex space heating models.

For the FESS model, validation with a PHIL setup was chosen, as the device is physically available at Tallinn University of Technology. 

· A repeatability analysis to ensure the validity and stability of the other validation results showed that the system is working properly. 

· The error margin for the round trip efficiency test was 8.4% between the measured object and the simulated model, which is well below the set 10% error margin. The error between the simulation and datasheet value is much smaller. This indicates that the physical object needs maintenance to reach the original measured efficiency level.

The BESS model was validated against measurement data. The mean discharging current error at maximum discharging rate was 6.4%, which is below the 10% error goal. The result for the mean charging current error at maximum charging rate was 11.6%. This is above the set 10% error limit. However, it can be considering that the battery will not be charged and discharged with the maximum allowed rate: 

1. … because the battery is charging and discharging according to the load needs, which are typically lower than the maximum allowed current level

2. … because the BESS should be slightly over-dimensioned to increase the lifetime, as discussed in Chapter 2

3. … because the control strategies should be designed to achieve a long lifetime by avoiding high currents 



This means that the current error will be lower and within the set error margins most of the time.



The TESs were validated with the following results:

· The freezer model was validated according to standardized test conditions. The simulation was implemented exactly as the experimental setup used for obtaining the datasheet values. The mean power error obtained was 7%, which is below the set goal of a maximum of 10%. 

· The water heater was validated against measurement data from the apartment in Kristiine district in Tallinn. The mean error was 6%, well below the set limit of 10%.

· The simplified space heating model was validated against the more accurate civil engineering model and against the measurement data from the measured apartment in Kristiine district in Tallinn. As expected, after adding the additional simulation error from the civil engineering model of 5%, 
the overall error for the simplified space heating model was 13.3% for the simple room. The error compared to the measured model was 24%, which is too high as well. Thus, the model can be used for first tests with control strategies, but the results should be verified with a more detailed model to ensure the correct behaviour of the control algorithms. 

· The NN-based space heating model was validated against the civil engineering models and measurement data. The civil engineering model for this validation was the complex single family house model. Between the civil engineering model and the NN-based model, the mean power error was 6.1%, resulting in a total error of 11.1% if the civil engineering software error is added. This value is slightly above the target of 10% maximum error, but since this is a complex model, the 12% error margin can be applied; thus, the model is accurate enough. The second validation against measured data of the control centre model confirmed that, showing an even lower mean power error of 5%, which is well below the set limit. The improvement of the mean power error compared to the simplified space heating model is 5.7%.



The error rates for all the storage system models are summarized in Table 4.13. FESS, BESS, freezer, water heater, and the NN-based space heating model can clearly be used for the development of control strategies, whereas the simplified model should be used for first general investigations. 



[bookmark: _Ref91351102][bookmark: _Toc102474810]Table 4.13: Overview of all object model errors

		Object model

		Mean error

		Acceptable (10% / 12% limit)



		FESS

		8.4%

		Yes / Yes



		BESS

		6.4% - 11.6% 

		Barely / Yes



		Freezer

		7%

		Yes / Yes



		Water heater

		6%

		Yes / Yes



		Simplified space heating

		>13.3%

		No / No



		NN-based space heating

		5% - 11.1%

		No / Yes







Additionally, during these validation tests, the simplified space heating model could be compared to the NN-based model further, as shown in Table 4.14. The tests showed not just different accuracy results, but also different calculation times and, as analysed in Chapter 2, different compatibilities. The reduction of calculation time during the microgrid simulation between a co-simulation and the NN-based model is 85%. Considering that in microgrid simulations, the simulations are repeated multiple times with different control strategies, the NN-based space heating model is most useful for the investigation of control strategies. Pre-training and data set creation is only necessary once and the reduction of calculation time and the compatibility issue compared to a 
co-simulation are therefore significant. As mentioned, the simplified model is only suitable for first general investigations on the control strategies, which is confirmed as the model is quickly calculated and highly compatible but has low accuracy. 























[bookmark: _Ref91351377][bookmark: _Ref91513320][bookmark: _Toc102474811]Table 4.14: Overview of advantages and disadvantages for different space heating models in microgrid simulations [175]

		Model

		Advantages

		Disadvantages



		Simple model

		· Fast to calculate during simulation (~3-min calculation time for complete single family house*)

· No pre-training

· Highly compatible (part of the microgrid simulation)

		· Low Accuracy



		Civil engineering model (e.g., with co-simulation)

		· Very good accuracy 

· No pre-training

		· High computational effort and slow during simulation (~20-min calculation time for complete single family house*)

· Compatibility problems between simulators



		NN- based model

		· Fast to calculate during simulation (~3-min calculation time for complete single family house*)

· Good accuracy within set limitations

· Highly compatible (part of the microgrid simulation)

		· Pre-training (~6 min per room*) and creation of datasets (~20 min for complete single family house*)





*Intel Core i7 4770K CPU; Nvidia GeForce GTX 980Ti GPU



[bookmark: _Toc102474670]Research and development of control strategies for residential microgrids

In Chapter 2, the BESS, FESS and TES selected for investigations have been modelled and validated in Chapters 3 and 4. As a next step, control strategies for these storage systems need to be researched and developed to give recommendations and investigate the related user requirements and financial feasibility. In this regard, the BESS and FESS need to work with different control strategies than the TESs to cooperate efficiently and achieve the security of supply and financial feasibility improvement goals. The main goals in this regard are:

1. Increase of islanded operation duration (Security of supply parameter)

2. Increase of the cyclic lifetime of the BESS (Financial parameter)

3. Minimization of energy costs (Financial parameter)

4. Minimization of BESS capacity (Financial and security of supply parameter)



The first two goals, the cyclic lifetime and security of supply improvement, can be achieved with the FESS and BESS. The cyclic lifetime is a financial parameter, which influences the re-investment costs of the system when the BESS needs to be exchanged. The security of supply can be improved due to a prolonged islanded operation time with the additional FESS storage capacity. This is investigated in section 5.1. 

The minimization of energy costs can be achieved with the TESs. In this case, the thermal energy is saved and released according to the electricity price in a real time price market scenario, as shown in section 5.2. 

Minimizing the BESS capacity will reduce the investment costs for the system. This can be achieved by scheduling the TESs and therefore adjusting the consumption profile to the production, which can also increase the islanded operation duration. The development of these islanded control algorithms is described in section 5.3. 

The latter two control strategies are dependent on the occupancy of the investigated dwelling as the thermal and electrical consumption patterns change. With this investigation, conclusions about the general applicability of the different algorithms can be drawn as shown in section 5.4.

[bookmark: _Toc102474671]Cyclic lifetime and security of supply improvement with FESS and BESS

As mentioned before, the primary goal of the FESS control system is to improve the power quality by reducing peaks and dips, which can help to increase the BESS lifetime as the number of charging and discharging cycles can be reduced with such a control. The control for the BESS itself is load following as it is the responsible device in the islanded operation to maintain voltage and frequency. As the FESS adds a small additional storage capacity to the system, the security of supply can be improved as well due to a longer islanded operation duration. The simulation topology is shown in Figure 5.1.
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[bookmark: _Ref91423014][bookmark: _Toc102474747]Figure 5.1: Simulation topology for islanded BESS and FESS investigation

[bookmark: _Toc102474672]FESS control

As mentioned in section 3.3, there is a power smoothing control implemented for the FESS. To smooth the load, a variety of different low pass filters can be used. As a first implementation, a moving average filter was selected, as shown in Figure 5.2. This control was implemented to change the active power reference for the current controller since the power smoothing operation is related to the active power.
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[bookmark: _Ref90462230][bookmark: _Toc102474748]Figure 5.2: Schematic of FESS moving average control [154]

The length for this moving average filter was chosen to be 30 and 60 seconds. This length effects strongly how much the load profile is smoothed and therefore, how much stress will be put on the FESS. If the length chosen is too low, the profile will not be smoothed much, and the peaks and dips will remain. If the length chosen is too long, then the flywheel might not be able to work for extended time as it will be fully charged or discharged. The results for the power smoothing scenario for a small islanded microgrid are shown in Figure 5.3. The start-up phase for the flywheel in the first 30 s has been cut in the graph.

As the figure shows, the load in the microgrid is smoothed well with the moving average filter. The flywheel is balancing the peaks and dips in this simulation. However, it can be observed that the the rotational speed of the FESS is decreasing over time. This is an indication that the moving average filter length might be already too long for permanent operation of the selected flywheel. But it should also be mentioned that the selected flywheel, which is modelled based in the device in the laboratory, is an old device with lower efficiency and low capacity. A more modern FESS could perform better with this filter length.
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[bookmark: _Ref90463427][bookmark: _Toc102474749]Figure 5.3: Main grid to microgrid power supply with and without power smoothing, FESS power and FESS rotational speed [154]

To verify these results, the same load profile is tested with the PHIL setup of the FESS. The result is shown in Figure 5.4.
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[bookmark: _Ref90471610][bookmark: _Toc102474750]Figure 5.4: Load smoothing with FESS PHIL-setup moving average control with the test profile [64]

Like the results of the simulation in Figure 5.3, the real time simulation with the PHIL setup shows a smoothed load profile. The time resolution for the real time simulation is higher, which can be seen in the discretized graph for the original load profile. However, in this profile, a delay for the FESS power adjustment can be seen, as the controller and physical system have a certain reaction time constant. The FESS power controller has to adapt the set signal to the output signal. A more detailed graph for this delay is shown in Figure 5.5.
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[bookmark: _Ref90472082][bookmark: _Toc102474751]Figure 5.5: Detailed load smoothing with FESS PHIL-setup moving average control with the FESS power graph [64]

These peaks from the reaction time of the FESS controller can be positive and negative, but they are typically smaller in amplitude than the original step from the load signal that was sampled at 1 Hz. To see if the response of the flywheel can be optimized, a Butterworth filter was implemented additionally. The two different filter impulse responses are shown in Figure 5.6.
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[bookmark: _Ref90472623][bookmark: _Toc102474752]Figure 5.6: Impulse response for moving average and Butterworth filters [64]

The Butterworth filter is designed as a second order filter with a sampling frequency of 1 Hz and a cut-off frequency of 1/60 Hz. As shown in the figure, the moving average filter reacts first to the impulse and stays constant till the impulse passes the full filter. The Butterworth filter reacts less aggressively to the impulse but after some seconds, its response overshoots the moving average response. It is the first filter that starts to decrease and align to zero. However, the slope of the moving average filter reaches zero first. These properties of the Butterworth filter lead to a much better smoothing result. This can be seen even more detailed in the slope gradient of the smoothed load profile in Figure 5.7. The slope gradient is much smaller and smoother, which ensures a better power quality and more potential to reduce the charging and discharging cycles for the BESS.
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[bookmark: _Ref90473022][bookmark: _Toc102474753]Figure 5.7: Power slope gradient for moving average and Butterworth filters with the test load profile [64]

A second implemented control algorithm is to charge the FESS in case the produced power from the PV-system exceeds the maximum charging power for the BESS. 
The charged energy can then be used to charge the BESS when the produced PV-power is reduced again. This can be implemented as shown on the flowchart in Figure 5.8.







[bookmark: _Ref90488889][bookmark: _Toc102474754]Figure 5.8: High PV-system production control strategy for FESS

[bookmark: _Toc102474673]BESS control

As the BESS is the grid forming device in the islanded operation mode, it needs to work in a load following way. This means that it needs to control the frequency and voltage for the microgrid according to the current load by charging and discharging the battery cells. Therefore, the following control principles have been implemented for the simulations [28], [38].

The integrated battery controller is assumed to limit the batteries SOC to a maximum value of 0.9 and a minimum value of 0.2 to reduce the degradation of the battery [68]. The inverter control model for the BESS reduces its basic working principle in the simulations [28], [38]: 

· The inverter is modelled as an efficiency value.

· The typical inverter behaviour in the islanded mode is defined with the limits stated in grid standard EN 50160 in the following way:

· The frequency in the islanded microgrid is kept constant in any case. 

· The voltage in the islanded microgrid is limited to the nominal root-mean-square (RMS) voltage of 230 V (VN) and cannot be exceeded. Thus, the energy production needs to be reduced.

· Consequently, if the energy production cannot supply the demand, the voltage will drop and the microgrid will shut down in the islanded mode operation.

[bookmark: _Toc102474674]Results of cyclic lifetime and security of supply improvement control

As shown in [24], different scenarios with an islanded microgrid including a FESS and BESS were simulated. The islanded microgrid consists of the generated single family house load profile, the scaled Laastu Talu OÜ PV-system profile, the FESS model, and the BESS model. The first scenario was simulated without the FESS power smoothing control. 
The second scenario includes the moving average power smoothing control for the FESS. The simulation runs for 24 h even if the battery cannot maintain stable islanded operation anymore. The BESS SOC during the simulations is shown in Figure 5.9. 
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[bookmark: _Ref90477059][bookmark: _Toc102474755]Figure 5.9: BESS SOC of an islanded microgrid system with and without supporting FESS for power smoothing; (A) Increase of islanded operation time with special case; (B) Increase of islanded operation time with typical cases [33], [24]

As indicated in the figure, the islanded operation time can be increased by more than 10 h 30 min or 50% because in the selected special case (Figure 5.9, (A)), a large dip was compensated by the flywheel. At around 10 hours of operation, the load of the single family house was draining the BESS below its minimum SOC because the sun was not shining strong enough for the PV-system to produce enough energy. With other load and PV-system profiles, there might appear similar cases where the islanded operation time is increased massively. 

The increase of the islanded operation time without such a special case can be estimated from the figure as well (Figure 5.9, (B)). At the end of the simulation, the points in time when the final minimum SOC value is reached can be compared, assuming that the dip below the minimum SOC right after hour 10 did not take place. In this case, the increase would be around 45 min or 3%. 

Based on the number of charging and discharging cycles within this 24-h simulation, 
it can be estimated by how much the cyclic lifetime can be increased with this control strategy. This estimation can be done using the maximum number of cycles given by the manufacturer’s datasheet for the BESS (5.1). This estimation can be compared to the SOLI test described in section 2.2.2.



		

		[bookmark: _Ref90481777](5.1)





where: tBat,cyclic: Cyclic lifetime for BESS [a]; Ncycles,24h: Number of cycles in 24 h; Ncycles,max: Maximum number of cycles according to the datasheet.



This estimation incudes the simplification of counting the partial cycles and adding them up to full cycles, even though they are less damaging for the BESS than full cycles [68]. The calculated cyclic lifetime values with the corresponding cycles per year and maximum islanded operation times are shown in Table 5.1.



[bookmark: _Ref90481778][bookmark: _Toc102474812]Table 5.1: BESS cyclic lifetime estimation and maximum islanded operation time for microgrid system with and without FESS power smoothing [33], [24]

		Scenario

		Cycles/Year

		Cyclic Lifetime

		Maximum islanded operation time



		Without FESS

		542

		8.3 a

		10 h 22 min



		With FESS moving average control

		455

		9.9 a

		20 h 55 min







This reduced number of cycles per year by around 16% leads to an increase of the cyclic lifetime by 19% for the BESS, which is related to an increased service life of the battery with longer periods before re-investments for replacement devices. Of course, the microgrid is not operating in the islanded mode permanently, but these results apply to a very similar maximum self-consumption BESS control strategy in the grid-connected mode as well.

For the second control approach regarding improved energy use and self-consumption, which is especially useful during the islanded operation, a real time simulation with the PHIL setup was used. A combined load and PV-system profile and a BESS model were implemented in Matlab and the response of the real FESS was measured and included in the microgrid simulation in real time. In this scenario, the produced power during the daytime of the PV-system is exceeding the maximum charging power for the BESS. In this case, the FESS is charged with the excess-energy. The load profile power, BESS charging power and FESS power are shown in Figure 5.10, including the stored FESS energy. In the last few minutes, the energy stored in the FESS is used to charge the BESS even more for later use of the energy when the PV-production is lower. In this case, more than 200 kWs could be additionally stored. However, due to the low efficiency of the old FESS system, about 90% of the excess energy is lost due to high self-discharge of the device. A more modern device could show more significant results with an improved performance and efficiency. 
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[bookmark: _Ref90487819][bookmark: _Toc102474756]Figure 5.10: Flywheel and battery storage control with PHIL setup for exceeding the PV-power scenario [25]

[bookmark: _Toc102474675]Energy cost minimization with TESs

In the grid-connected operation, the TES has to work with an energy cost minimization control strategy to reduce the cost for energy exchange to and from the grid. 
The price-based control algorithms depend on the real time electricity price or 
day-ahead electricity prices. Example price patterns have been obtained from the
Nord Pool website [77] for the corresponding times and dates of the other used profiles. The simulation topology is shown in Figure 5.11.
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[bookmark: _Ref91423243][bookmark: _Toc102474757]Figure 5.11: Simulation topology for grid-connected TES investigation



[bookmark: _Toc102474676]Price-based control algorithm description

The general working principle of the price-based control algorithms is the following: 
if the electricity price is high, then it is required to choose a low consumption set point:

· For heating devices, a low temperature set point

· For cooling devices, a high temperature set point

If the electricity price is low, a higher consumption set point can be chosen:

· For heating devices, a high temperature set point

· For cooling devices, a low temperature set point

In total, 7 different price-based algorithms have been implemented based on [85], [84] and [10]. The algorithms are shown in Table 5.2.



[bookmark: _Ref89845999][bookmark: _Hlk89847259][bookmark: _Toc102474813]Table 5.2: Price-based control algorithm description; Cooling = Freezer; Heating = Water heater and space heating [10], [85], [84]

		#

		Description of set point calculation algorithm



		A

		Cooling: 		

Heating: 	



		B

		Cooling: 		

Heating: 	



		C

		Cooling: 		

Heating: 	



		D

		Cooling: 		

Heating: 	



		E

		Cooling: 		

Heating: 	



		F

		Cooling: 		

Heating: 	



		G

		Cooling:
	

Heating: 
	







where: Tset: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C]; Tset,max: Maximum set point temperature [°C]; Tgoal: Goal temperature [°C]; Cuser: User comfort related scaling factor; Pr: Current electricity price [€/kWh]; Prmin: Minimum electricity price [€/kWh]; Prmax: Maximum electricity price [€/kWh]; Pravg: Average electricity price [€/kWh]; Prdev: Electricity price deviation [€/kWh].



All these algorithms have slightly different methods for choosing the set point between the minimum and maximum consumption. The selection is based on different quantities related to the electricity price. As an additional scaling factor, Cuser is introduced. For most simulations, the factor is set to 1. If the factor is selected higher, the set point variation is more aggressive and should reduce the user comfort. If it is chosen lower than 1, the set point variation is less aggressive and the user comfort should increase. The results for the scaling of this factor are presented in more detail in [38]. The general relation between the chosen set point and the electricity price is shown for all the algorithms in the example of the water heater model in Figure 5.12. It can be seen that the algorithms have different linear and non-linear behaviour, which causes different results regarding the cummulative price and the user comfort based on the temperature selection.
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[bookmark: _Ref89846023][bookmark: _Toc102474758]Figure 5.12: Price-based control algorithm visualization: Example with the water heater [30]

[bookmark: _Toc102474677]Results of price-based control algorithms

Typical cost reductions with such price-based algorithms are in a range of 5-30% [10], [85]. For 1-week simulations with each of the algorithms the cost reductions presented in Table 5.3 could be achieved. The simulation focuses on the TESs. The BESS, FESS and PV-system are not considered in this case to have results comparable to the previously presented scientific literature. More detailed influences from changing different parameters have been published in [38]. As it can be seen, these values are within the same range as other published scientific work. However, these studies did not consider space heating as the thermostatically controllable load that has the biggest potential for cost saving as the results clearly show. The combined case with all 3 TESs shows lower relative cost savings than the case with only space heating because the freezer and water heater show lower cost reductions. This results in lower total relative cost savings compared to a fixed set point control. In general, algorithms D and F show the best performance for most cases.




[bookmark: _Ref90562477][bookmark: _Toc102474814]Table 5.3: Cost reductions for price-based control algorithms compared to FSP control [38]

		#

		Freezer

		Water heater

		Simplified Space heating

		Combined



		A

		-5%

		-7%

		-13%

		-8%



		B

		-14%

		-9%

		-13%

		-10%



		C

		-10%

		-9%

		-15%

		-10%



		D

		-11%

		-19%

		-22%

		-20%



		E

		-14%

		-10%

		-15%

		-11%



		F

		-11%

		-19%

		-22%

		-19%



		G

		-15%

		-6%

		-2%

		-5%







So far, these control algorithms have only been applied to one specific household configuration. It is required to determine the influence of different household occupancies well, to find out which control algorithm is the most efficient in different occupancy cases. This is shown in section 5.4. Additionally, the magnitude of the influence of different space heating model complexities on the results needs to be determined. Then it is possible to confirm the conclusions about the accuracy of the space heating model from Chapter 4 and improve the reliability of the results, as shown in the next section.

[bookmark: _Toc102474678]Comparison of space heating model complexities

As mentioned in Chapter 4, the space heating model complexity has an influence on the model accuracy. Therefore, it was concluded in that chapter that it is reasonable to use the simplified space heating model only for first general investigations and a more complex model for a specific case. To confirm and strengthen those conclusions, the influence of the different models on the control strategies needs to be determined. Therefore, the simplified space heating model is compared to the civil engineering model regarding the performance with the price-based algorithms presented in the previous sections. The simulation topologies are depicted in Figure 5.13.
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[bookmark: _Ref91423652][bookmark: _Toc102474759]Figure 5.13: Simulation topologies for investigation of space heating model complexity with the simplified (A) and civil engineering (B) models

The selected model is the control centre of the Energy Campus Wildpoldsried. 
As published in more detail in [57], the selected timeframe for the simulation with 
price-based control algorithms was from November 22nd until December 2nd, 2019, 
with the corresponding prices from the Nord Pool Website [77]. The same price-based algorithms A-G and FSP control were used with each model. For an easier comparison, 
in Table 5.4, the qualitative cost reductions of each model and algorithm are compared to the FSP control.

[bookmark: _Ref90572915][bookmark: _Toc102474815]Table 5.4: Comparison of cost savings of the civil engineering and the simplified space heating model for the price-based algorithms A-G [57]

		Algorithm

		Cost Reduction with Civil Engineering Model

		Cost Reduction with Simplified Model



		A

		--

		+



		B

		-

		+



		C

		-

		+



		D

		++

		++



		E

		+

		+



		F

		++

		++



		G

		0

		0





++ highest; + high; 0 none; - lower; -- lowest;



The results of the simulations show that the models behave similarly for algorithms 
D-G. The cost reductions are comparable between the models. However, it can clearly be seen that with different models, algorithms A-C behave differently. With the more detailed civil engineering model, they show worse performance than the FSP control while with the simplified model, they show cost reductions. This shows that the model complexity has an influence on the performance of the control algorithms, which leads to the same conclusion as in chapter 4. The simplified space heating model should only be used for a first general investigation. For accurate analysis in a specific case, a complex space heating model is necessary. However, as the system in this work is not a specific planned microgrid, the general results from the simplified space heating model will be sufficient as a basis for the financial feasibility analysis in chapter 6. 

Additionally, the NN-based space heating model of the single family house is investigated in more detail regarding the behaviour with small control variations. 
This will show whether it is necessary to run multiple slightly different simulations to achieve a more accurate forecast of the system behaviour to improve the choice of the price-control algorithm financially. Therefore, flexibility analysis is implemented with a large number of simulations, which is possible even with the more complex NN-based model, as shown in section 4.3. Each simulation has a length of 240 h, and the total number of simulations is 481. The available set points are the following:

· Low set point of 21 °C

· Regular set point of 22 °C

· High set point of 23 °C



The simulations are then conducted with the topology shown in Figure 5.14 according to the following process [80]:

· In the 1st simulation, each hour has the regular set point of 22 °C. 

· In the 2nd simulation, the first hour has a lower set point of 21 °C while the other hours are set to the regular set point of 22 °C

· In the 3rd simulation, the second hour has a lower set point of 21 °C while the other hours are set to the regular set point of 22 °C

· …

· In the 481st simulation, the last hour has a higher set point of 23 °C while the other hours are set to the regular set point of 22 °C
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[bookmark: _Ref91423867][bookmark: _Toc102474760]Figure 5.14: Simulation topology for investigations of space heating model behaviour 

With these simulations it is possible to analyse the intra-interval and long-term flexibility with the space heating model. Consequently, the behaviour of the complex space heating model can be investigated with such a simple control strategy. 
The intra-interval flexibility using the NN based single family house model is shown in Figure 5.15. The graph shows the energy consumption within each hour for each selected set point. 
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[bookmark: _Ref90577113][bookmark: _Toc102474761]Figure 5.15: Intra-interval flexibility for 240 h on an hourly basis [80]

As expected, the energy consumption within each interval is higher if a high set point is chosen, lower if a lower set point is chosen, and inbetween for the regular set point. 
If the cumulated energy consumption over the whole 240-h-simulation is investigated, the results look different, as shown in Figure 5.16. This long-term flexibility is shown for each of the changed intervals in the graph. It can be observed that when selecting a high set point in one interval, it does not necessary lead to an overall higher energy consumption, like for interval 91. Vice versa, if a low set point is chosen for one interval, it does not necessary lead to a lower overall energy consumption, like for interval 57. This indicates that space heating is a very complex system that does not always behave as expected. Therefore, to make accurate predictions in a specific case, a numerous slightly varied simulations are necessary. This is only possible with an accurate model that can be calculated with low computational effort, like the proposed NN based model. Thus, it is recommended in the case of a specific planned microgrid to run multiple variations of the control strategy simulations with an NN-based space heating model for more accurate estimations of the space heating behaviour and control strategy performance that can be expected. More details about the setup of the simulations and a more detailed result analysis have been published in [80]. 
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[bookmark: _Ref90577472][bookmark: _Toc102474762]Figure 5.16: Long-term flexibility for 240 h on an hourly basis [80]

[bookmark: _Toc102474679]BESS capacity minimization with TESs

In the islanded operation mode, the TESs need to be controlled with a different control strategy as the electricity price is not relevant without power exchange to and from the grid. Therefore, other available values of the microgrid components need to be used as a reference to adjust the temperature set point of the TESs in an optimal and efficient way to minimize the necessary BESS capacity and therefore the investment costs for the system. The simulation topology is depicted in Figure 5.17.
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[bookmark: _Ref91423244][bookmark: _Toc102474763]Figure 5.17: Simulation topology for islanded TES investigation

[bookmark: _Toc102474680]Islanded control algorithm description

There are two different devices available within the proposed microgrid structure that can be used as reference points for the set point selection:

1. PV-system

2. BESS



The FESS is not a good reference as it works quite arbitrarily in power smoothing operation and has lower relevance for the long-term islanded operation due to its high self-discharge rate. Similarly, the load is not a suitable reference point on its own as it does not give any information about the stored or available energy in the microgrid. 





The general working principle of the PV-power-based control algorithms is the following. If the available PV-power is high, then it is required to choose a high consumption set point:

· For heating devices, a high temperature set point

· For cooling devices, a low temperature set point



If the available PV-power is low or 0, a low consumption set point must be chosen:

· For heating devices, a low temperature set point

· 	For cooling devices, a high temperature set point



Firstly, 7 different PV-power-based algorithms have been implemented, like the 
price-based algorithms presented in section 5.2. More details have been published in [28], [38]. An overview of these algorithms is shown in Table 5.5.



[bookmark: _Ref90557896][bookmark: _Toc102474816]Table 5.5: PV-power-based control algorithm description; Cooling = Freezer; Heating = Water heater and space heating [28]

		#

		Description of set point calculation algorithm



		A

		Cooling: 		

Heating: 	



		B

		Cooling: 		

Heating: 	



		C

		Cooling:		

Heating: 	



		D

		Cooling: 		

Heating: 	



		E

		Cooling: 		

Heating: 	



		F

		Cooling: 		

Heating: 	



		G

		Cooling: 


Heating: 








where: Tset: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C]; Tset,max: Maximum set point temperature [°C]; Tgoal: Goal temperature [°C]; Cuser: User comfort related scaling factor; Pwr: Current power [W]; Pwrmin: Minimum power [W]; Pwrmax: Maximum power [W]; Pwravg: Average power [W]; Pwrdev: Power deviation [W].

As with the price-based algorithms, all these algorithms have slightly different methods, choosing the set point between the minimum and maximum consumption as well. The selection is based on different quantities related to the available PV-power instead of the electricity price. The user comfort, respectively the aggressivity of the set point variation, Cuser is included in these algorithms as well but it is set to 1 for most of the simulations. The results for the scaling of this factor are presented in more detail in [38]. The visual representation for all the algorithms with the example of the water heater model is shown in Figure 5.18. The algorithms show linear and non-linear behaviour according to their general working principles, which leads to different results in the energy consumption adjustment during islanded operation.
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[bookmark: _Ref90559626][bookmark: _Toc102474764]Figure 5.18: PV-power-based control algorithm visualization: Example with the water heater [29]

Secondly, four additional algorithms were implemented, as shown in Table 5.6. Algorithm H is indirectly related to the battery SOC. As mentioned in section 5.1, 
the stability of the microgrid can be determined by the voltage as the frequency is assumed to be kept constant in any case. Algorithm H uses this property, as the set point is chosen as the goal set point if the microgrid voltage is not dropping to the minimum desired voltage. This only happens if the SOC of the BESS is reaching the minimum while a powerful load is active. The other three algorithms are directly related to different BESS SOC properties. Algorithm J includes the user comfort scaling factor as the price- and 
PV-power-based algorithms.

The algorithms show linear and non-linear behaviour with the set point selection, as shown with the example of the water heater model in Figure 5.19. This leads to different energy consumption adjustments than with the PV-power-based algorithms and therefore, to other overall performance results. 






[bookmark: _Ref90560046][bookmark: _Toc102474817]Table 5.6: SOC-based control algorithm description; Cooling = Freezer; Heating = Water heater and space heating [28]

		#

		Description of set point calculation algorithm



		H

		Cooling: 		;	If  then 

Heating: 	;	If  then 



		I

		Cooling: 		


Heating: 	




		J

		Cooling: 	
	

Heating: 
	



		K

		Cooling: 		

Heating: 	







where: Tset: Chosen set point for TES [°C]; Tset,min: Minimum set point temperature [°C]; Tset,max: Maximum set point temperature [°C]; Tgoal: Goal temperature [°C]; VMG: Microgrid voltage [V]; VMG,min: Minimum desired microgrid voltage [V]; Cuser: User comfort related scaling factor; SOCBat: SOC of BESS; SOCBat,min: Minimum acceptable SOC of BESS; DODBat,max: Maximum DOD of BESS. 
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[bookmark: _Ref90560784][bookmark: _Toc102474765]Figure 5.19: SOC-based control algorithm visualization: Example with the water heater [29]



[bookmark: _Toc102474681]Results of islanded control algorithms

The simulations in the islanded mode were designed to find the minimum BESS capacity for the microgrid to be able to operate for 1 week in the islanded mode. The simulations include the BESS and PV-system, while the FESS is not included to reduce the simulation complexity and use a larger time step of 5 min. This time step is sufficient for the TESs as they have a large time constant for reactions and minimum switching cycle times of several minutes. Compressors in heat pumps and freezers have minimum run (typically 3 min) and pause times (30 s to 15 min), as shown in datasheets [206], [207], [208]. This was confirmed in correspondence with heat pump manufacturers and measurements of a Sharp heat pump. The results for each of the PV-power-based algorithms in comparison to a FSP control are presented in Table 5.7. More detailed influences from changing different parameters have been published in [38]. 



[bookmark: _Ref90564551][bookmark: _Toc102474818]Table 5.7: Minimum BESS capacity for PV-power-based control algorithms compared to  FSP control [38]

		#

		Freezer

		Water heater

		Simplified Space heating

		Combined



		A

		0%

		-1%

		0%

		-12%



		B

		0%

		-21%

		0%

		-30%



		C

		0%

		-25%

		-24%

		-35%



		D

		0%

		-21%

		+3%

		-36%



		E

		0%

		-1%

		0%

		-12%



		F

		0%

		-21%

		0%

		-30%



		G

		0%

		-25%

		-24%

		-35%







The freezer alone does not provide a reduction in the BESS capacity, as seen in the table. The energy consumption of the freezer itself is relatively low, while it cannot store the energy for extended amounts of time. This results in low amounts of energy that can be stored and shifted, which has a small influence on the minimum required BESS capacity. Another significant result can be seen with algorithm D and the space heating model. This leads to a higher required minimum BESS capacity than with the FSP control. One reason for this is the complexity of the space heating model, where small influences can make large differences, as described in more detail in section 5.4. Another reason is the possibility of having a small influence at the wrong time, as presented in section 5.1, where a small change at a BESS SOC dip can result in huge differences. The BESS capacity reductions with the combined use of all 3 TESs show impressive margins of more than 1/3 of BESS capacity reduction. This presents generally a huge potential to operate microgrids in the islanded mode more efficiently. The simulation results for the 
SOC-based control algorithms are shown in Table 5.8.

For the freezer model as well as the water heater, the SOC-based control seems to work better than the PV-power-based one. Space heating results are like in the 
PV-power-based control but there is no case of a necessary BESS capacity increase. 
The results for the combined case are in the same range as with the PV-power-based algorithms. Thus, in general the same BESS capacity reductions seem to be achievable with a slight advantage for the SOC-based algorithms considering single devices. 





[bookmark: _Ref90567775][bookmark: _Toc102474819]Table 5.8: Minimum BESS capacity for SOC-based control algorithms compared to FSP control [38]

		#

		Freezer

		Water heater

		Simplified Space heating

		Combined



		H

		0%

		-15%

		0%

		-18%



		I

		-3%

		-30%

		0%

		-27%



		J

		-3%

		-31%

		-30%

		-35%



		K

		0%

		-36%

		-4%

		-30%







So far, the control strategies for the TESs have only been applied to one specific household configuration and the influence of different household occupancies needs to be determined to find out which control algorithm is the most efficient in general or under a specific occupancy case. This is shown in the following section.

[bookmark: _Toc102474682]Cost and capacity minimization with different dwelling occupancies

The dwelling occupancy is an important parameter for the simulation of the household, which can influence the results for the TES control strategies. This applies to the previously described energy cost minimization control strategy as well as to the BESS capacity minimization control strategy. This additional investigation improves the understanding of the already obtained results and enables conclusions about the general applicability or case specific use of the different presented and developed algorithms from sections 5.2 and 5.3. 

The described models of the measured 3-room apartment in Kristiine district in Tallinn or the single family house described in section 3.5.1 can be occupied by different demographic groups, such as young families, elderly people or students. These people have different daily schedules as they go working, studying, or for example, to a bingo game.

These different activities at different times have direct influence on the energy consumption. TV sets are turned on at different times, computers are used during home office times, and time preferences regarding cooking are different. This changes the electricity profile for the same physical object, as devices are actively turned on or off. Additionally, these different habits influence the thermal load of the freezer, water heater and space heating. Every person inside the apartment is emitting heat, which changes the space heating energy consumption. People are eating and cooking at different times, influencing the amount of food they put in and take out of the freezer. Different people have different personal hygiene patterns, influencing the amount of water that needs to be heated for hot showers or baths. The overall electricity consumption depends strongly on the number of people living in the household, as shown in Figure 3.6. To investigate the influence of these differences, the previously described households i-vii are used in simulations where the different presented algorithms are applied:

1. For price-based algorithms A-G

2. For PV-power-based algorithms A-G

3. For SOC-based algorithms H-K




Figure 5.20 shows the simulation topologies for these investigations.
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[bookmark: _Ref91423401][bookmark: _Toc102474766]Figure 5.20: Simulation topologies for investigations of dwelling occupancy influence on price-based (A) and islanded (B) control algorithm performance

First, the price-based simulations are implemented with the following conditions:

· Used models: Freezer, water heater, simplified space heating, and thermal- and electrical patterns for household i-vii

· Simulation time is 1 week with a time step of 5 min

· Prices are taken from the Nord Pool Webpage [77] 

· Price-based algorithms A-G and the FSP control are implemented



The results for these simulations are shown in Figure 5.21. More details about the simulations have been published in [30].
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[bookmark: _Ref90631528][bookmark: _Toc102474767]Figure 5.21: Electricity cost differences for algorithms A-G in households i-viii in percent compared to FSP control

The results show that there are not always cost reductions with algorithm G. With some households, the costs are increased compared to FSP control, which is not desirable. The reason for this is the binary behaviour of the algorithm. As it can be seen in Figure 5.12 and Table 5.9, the algorithm does not have a goal set point and can only change between maximum and minimum consumption set point.

The best cost savings are achieved for households i, ii, iii, and v. These are the households with a low number of occupants. The algorithms are working better for a lower number of occupants as they put a lower total thermal load on the devices.

The most significant observation is the extremely good cost reduction for algorithms D and F for all households. These algorithms are scaling between minimum consumption and goal set point instead of minimum and maximum consumption set point like the other algorithms, as shown in Figure 5.12 previously. The consequences of this behaviour will be analysed in more detail in section 6.1.1. To simplify and summarize the results for all households, a qualitative cost reduction classification shown in Table 5.9 is used.



[bookmark: _Ref90634090][bookmark: _Toc102474820]Table 5.9: Qualitative cost savings classification with description for goal set point operation for price-based algorithms A-G [30]

		Algorithm

		Goal Set Point Operation

		Cost Savings



		A

		(Max. Price + Min. Price)/2

		+



		B

		Average Price

		+



		C

		Average Price

		+



		D

		Minimum Price

		++



		E

		Average Price

		+



		F

		Minimum Price

		++



		G

		Never

		0





++ highest; + high; 0 none; - lower; -- lowest;



Second, the PV-power-based simulations are implemented with the following conditions:

· Used models: Freezer, water heater, simplified space heating, basic BESS, 
PV-system pattern, and thermal and electrical patterns for household i-vii

· Simulation time is 1 week with a time step of 5 min

· PV-power-based algorithms A-G and the FSP control are implemented

· As in section 5.3, the simulation searches for the minimum BESS capacity for stable 1 week operation of the microgrid



Additional information about the simulations has been published in [29]. As a reference, the minimum BESS capacities for the households with a FSP control are shown in Table 5.10. The households with more occupants, and consequently a higher electricity consumption, need a larger BESS capacity, even though they are living in the same physical object. In comparison, the relative minimum BESS changes for each household and algorithm are presented in Figure 5.22.



[bookmark: _Ref90635332][bookmark: _Toc102474821]Table 5.10: Minimum battery storage capacities for households i-viii with a fixed set point control [29]

		Household

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii



		Battery Capacity [kWh]

		5.7

		1.3

		0.6

		9.6

		0.8

		16.8

		13.8

		11.4
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[bookmark: _Ref90635581][bookmark: _Toc102474768]Figure 5.22: Battery capacity differences for islanded algorithms A-G in households i-viii in percent compared to FSP control [29]

It is significant that the minimum BESS capacity cannot be reduced for all households with the PV-power-based algorithms. For households iv, vi, vii, and viii, the BESS 
capacity must be increased. The same holds for household i with algorithm D or F. Closer investigations on the households show that those are the households with higher energy consumptions. Since the simulations are based on the same physical objects, it can be concluded that the behaviour origins from the PV-system. The PV-system size has been scaled to the largest household consumption. The PV-power-based algorithms cannot scale well in this situation as they only work well if the PV-system is over-dimensioned for the household. 

It can be seen as well that algorithms D and F show the worst performance regarding BESS capacity reduction. This is the opposite behaviour compared to the price-based algorithms. Since the PV-power-based algorithms are based on the inverted logic of the price-based algorithms, algorithms D and F can only scale between maximum consumption and goal set point, as can be seen in Figure 5.18. For household iii, with the lowest energy consumption, all algorithms work extremely well and achieve BESS capacity reductions around 50%. 

Third, the SOC-based simulations are implemented with the following conditions:

· Used models: Freezer, water heater, simplified space heating, basic BESS, 
PV-system pattern, and thermal- and electrical patterns for households i-vii

· Simulation time is 1 week with a time step of 5 min

· SOC-based algorithms H-K and FSP control are implemented

· As in section 5.3, the simulation searches for the minimum BESS capacity for stable 1 week operation of the microgrid



More details about the implementation and results have been published in [29]. 
The relative minimum BESS changes for each household and algorithm compared to FSP control shown in Table 5.10 are presented in Figure 5.23.
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[bookmark: _Ref90635658][bookmark: _Toc102474769]Figure 5.23: Battery capacity differences for islanded algorithms H-K in households i-viii in percent compared to FSP control [29]

It can be observed that no algorithm creates BESS capacity increases for any households. This is a very positive result regarding the stability and reliability of those algorithms. It can be seen as well that for households with lower energy consumption the best results can be achieved. This is related to the PV-system over-sizing, as mentioned before. A larger PV-system compared to the energy consumption enables more control freedom for the algorithms. Further, the extremely simple algorithm H shows good performance for households ii, iii and v. Algorithm K presents good results for all households and is the most constant overall even though it does not always show the best result for the household. The BESS capacity reductions that can be achieved are around 4-70%. 

[bookmark: _Toc102474683]Conclusions

The modelled and validated storage systems need to be controlled with different control strategies to achieve certain defined goals. Therefore, different simulations with control strategies for the storage systems have been developed and tested. The following four goals for the control strategies were investigated:

1. Increase of islanded operation duration (Security of supply parameter)

2. Increase of the cyclic lifetime of the BESS (Financial parameter)

3. Minimization of energy costs (Financial parameter)

4. Minimization of BESS capacity (Financial and security of supply parameter)



From the cyclic lifetime and security of supply improvement control strategy with the BESS and FESS, the following main conclusions can be drawn:

· The BESS cyclic lifetime can be improved by around 19% with a cycle reduction of 16%.

· The islanded operation time for the microgrid could be improved by up to 50%. This result, however, is not generally applicable, as the FESS managed to bridge a short power shortage.

· An increase of around 3% in the islanded operation time is a general applicable value.

The energy cost minimization control strategy for the TESs achieved the following:

· The cost reductions are in a range around 5%-30%.

· The highest cost reductions could be achieved with algorithms D and F for all different tested dwelling occupancies.

· Comparing the cost reductions between the simplified and a more complex space heating model showed different results for some algorithms. Thus, 
the conclusion from Chapter 4 is confirmed that the simplified model should only be used for a general investigation and a complex model is needed for better accuracy and recommendations in a specific case.



With the TESs it was also possible to achieve the minimization of the BESS capacity:

· The minimum required BESS capacity for the islanded operation could be reduced by 10-36%.

· The results for the PV-power-based algorithms showed that they seem to work only with dwelling occupancies where the PV-production is over dimensioned compared to the household’s energy consumption. This is not a desirable behaviour.

· The SOC-based algorithms showed more stable results with BESS capacity reductions in all cases around 4-70%.

· In this regard, for low-budget upgrades of existing systems, algorithm H can be recommended as it needs no additional communication, while algorithm K should be used in all other cases due to the most stable performance.



The results and conclusions from these investigations are used in the next chapter as a basis for studying user requirements and as input for the financial feasibility analysis.

[bookmark: _Toc102474684]Analysis of social and financial feasibility

Since the proposed setup is technically feasible, as shown in the previous chapters, additional investigations are required to cover financially and socially relevant aspects as well. If a system is not financially feasible, then the interest in the technology will be low despite its technical feasibility. Additionally, it should be considered whether the system has the potential to be accepted by the designated users. Therefore, the following sections will investigate the social acceptability and financial feasibility in more detail. 

[bookmark: _Toc102474685]Social acceptance analysis

A technology that is not acceptable for the potential customers has a small chance of widespread use and will stay a niche product [209]. Therefore, an analysis regarding the social acceptability of the proposed setup has been done. Two main factors were selected for this investigation: the potential concerns regarding the user comfort interference and the users’ privacy concerns. If these concerns can be reduced, the technology has a higher potential for general acceptance. 

[bookmark: _Toc102474686]Concerns regarding user comfort interference

The user comfort is an important acceptance parameter. If the user comfort is reduced, the technology is unlikely to be adopted. As the state-of-the-art analysis in chapter 2 showed, it is first necessary to define the user comfort for the different devices and operation modes. Then the limits need to be determined and selected based on certain standards. Afterwards, additional boundaries for evaluation can be chosen. 

For the grid-connected operation, the temperatures of the TESs are the measurements for user comfort. The control algorithms for the TESs are influencing the temperature set points of the freezer, water heater and space heating. As mentioned in chapter 5, maximum and minimum set points for the algorithms can be set. Users can change the settings in case the standard values are not fitting and out of their comfort range. Additionally, a preferred goal set point inbetween can be selected. This is especially important for the space heating control, as people feel comfortable at slightly different temperatures [210]. The comfort interference for changing the temperature set point of the freezer and water heater is very low if it is done within reasonable limits. The user typically cannot determine the difference between 60 or 70 °C hot water temperature, as it is mixed with cold water during a shower anyway. Similarly, the temperature difference between -21 and -20°C in the freezer compartment does not cause the frozen food to go bad immediately. 

Revisiting the simulations from section 5.4, the indoor air temperature development for the different price-based control algorithms during the simulation can be visualized as shown in Figure 6.1.



[image: ]

[bookmark: _Ref90643885][bookmark: _Toc102474770]Figure 6.1: Indoor air temperature results for price-based set point calculation algorithms A-G and a fixed set point for the civil engineering space heating model [57]

As space heating can influence the comfort feeling of humans much easier, a difference of 1-2 °C can already cause discomfort [210]. The indoor air temperature graphs show a temperature range of 4 °C. The goal set point selected by the user would be 22 °C, 
the same as the FSP control. If 22 °C is the prefect temperature, larger variations from this value can be considered as a reduced user comfort. In this regard, mean temperature deviations from this goal set point are considered a large discomfort as well. 

The user comfort for the grid-connected system is therefore defined as:

· “More and larger temperature fluctuations and mean temperature deviations of the room temperature equal less user comfort.”



It can be observed in the figure that algorithms D and F are always below the goal set point. This creates a large discomfort. Algorithm G is switching between the extreme values, which is not desirable in terms of user comfort either. Algorithms A, B and C are fluctuating between the maximum and minimum, creating only a small comfort reduction compared to an FSP. Algorithm E behaves similarly, but it tends to vary less than algorithms A, B and C, reducing the user comfort less consequently. 

These findings in relation to the cost reductions for each algorithm, as presented in Chapter 5, are summarized in Table 6.1.



[bookmark: _Ref90645378][bookmark: _Toc102474822]Table 6.1: Cost savings and user comfort classification for price-based algorithms A-G

		Algorithm

		User Comfort

		Cost Reductions with Detailed Model



		A

		+

		--



		B

		+

		-



		C

		+

		-



		D

		--

		++



		E

		+(+)

		+



		F

		--

		++



		G

		-

		0



		FSP

		++

		0





++ highest; + higher; 0 none; - lower; -- lowest;





The table reveals that algorithms D and F, which provide the highest electricity cost reductions, create the highest user discomfort. Algorithm G does not show any benefits over an FSP control. Algorithms A, B and C do not reduce the user comfort significantly, but do not provide cost savings with space heating either. Algorithm E shows good performance in cost reductions and additionally has a small impact on the user comfort. Thus, algorithm E would be the preferred algorithm if the user comfort is prioritized over cost reductions.

For islanded operation, the thermal user comfort plays a much smaller role, as stable operation of the microgrid is more important. If the microgrid management cannot maintain stable operation, it must turn off the energy supply during islanded operation, which causes a larger discomfort for the user than a temperature deviation. Therefore, the temperature related user comfort of the islanded set point control algorithms does not need to be investigated as detailed as for the grid-connected operation. Thus, a longer islanded operation time and therefore better security of supply is the main measurement for user comfort in the islanded operation mode. 

The user comfort for the islanded operation mode is defined as:

· “A longer islanded operation duration improves the user comfort more than fluctuations of the room temperature reduce it as a blackout is a much larger inconvenience for the user.”



Considering this, it is evident that the FESS and BESS control strategy in section 5.1, which shows that such a control can prolong the islanded mode operation by 3%-50%, improves the user comfort significantly by increasing the security of supply. Following the results presented in section 5.3.2, the performance of the islanded TES control needs to be evaluated as well. Considering the SOC-based algorithms H and K, it is evident that the user comfort from the temperature comfort point of view is reduced. However, 
the results show that the necessary BESS capacity could be reduced, respectively, 
the islanded operation time could be increased with the same BESS capacity. Since this is more important than the temperature comfort, the overall user comfort for this control strategy is improved. Thus, the FESS and BESS, and the islanded TES control strategy should be implemented for improved user comfort in islanded operation mode. These aspects are summarized in Table 6.2.



[bookmark: _Ref96507264][bookmark: _Toc102474823]Table 6.2: User comfort classification for islanded control strategies

		Control Strategy

		Results

		Overall User Comfort



		Without FESS

		Regular Islanded Operation Time

		0



		FESS Power Smoothing

		Increased Islanded Operation Time (3%-50%)

		++



		TESs: FSP

		Optimal Temperature with Regular Islanded Operation Time

		0



		TESs: SOC-based Algorithm H/K

		Reduced Temperature Comfort with Increased Islanded Operation Time

		+





++ large increase; + small increase; 0 regular level;



In Chapter 5, a user comfort scaling factor was introduced for some of the price-based and islanded algorithms. If the factor is selected higher, the set point variation is more aggressive, reducing the user comfort. If it is chosen lower than 1, the set point variation is less aggressive, and the user comfort increases. The results for the investigation of this user comfort-based scaling show inconclusive results for values larger than 1. The user comfort gains with values lower than 1 are quite low, while the performance regarding BESS capacity reduction and cost saving drops sharply. Therefore, the user comfort scaling factor was set to 1 for all other simulations. The basic control selection considering the user comfort should be made based on the algorithm. The user comfort scaling is more suitable for small optimization adjustments in a specific case. The results for the other user comfort scaling factors compared to a scaling factor of 1 can be summarized as shown in Table 6.3.



[bookmark: _Ref90649353][bookmark: _Toc102474824]Table 6.3: Relative cost savings with different user comfort scaling factors; Cuser = 2: more aggressive scaling; Cuser = 0.5: less aggressive scaling

		Algorithm type

		Scalable algorithms

		Cuser = 2

		Cuser = 0.5



		Price-based

		A, D, F

		+

		-



		

		C, E

		-

		-



		PV-power-based

		A, B, C, D, E, F

		+

		-



		SOC-based

		J

		-

		-





+ better performance; - worse performance;



As a side aspect of user comfort, it can be noted that the islanded BESS and FESS control strategy, in combination with the TES control in islanded mode, reduces the size of the necessary BESS and prolongs its lifetime, as shown in Chapter 5. This increases the sustainability of such a system because less rare materials need to be used to produce BESSs in case they are not already in use in the microgrid as a second life. Many users welcome this higher environmental friendliness and feel more comfortable additionally.

[bookmark: _Toc102474687]Concerns regarding privacy 

Data privacy concerns regarding the proposed system in this work may seem to be neglectable on first sight if the system is designed for just one household. The whole control can be implemented in a local home energy management system. Additionally, traditional, robust algorithms are used for control, which do not collect data.

However, if the system is designed for a multi household building or even multiple buildings, there will be a dataflow between the households. This can already create concerns with some users. Multiple buildings can be considered a microgrid if they have a common point of coupling or are connected on the same feeder. In this case, the local DSO is already involved in the microgrid design. The next step would be the interconnection of multiple microgrids to form a so-called smart city. In this case, data will be transferred across multiple layers, like the already existing AMI. A common AMI configuration as described in chapter 2 with the AMI surfaces that can lead to privacy concerns is shown in Figure 6.2. Thus, the scalability of the proposed system can raise user concerns regarding their privacy.







[bookmark: _Ref90653008][bookmark: _Toc102474771]Figure 6.2: Common AMI configuration, based on [53] 

Another aspect that can create data privacy related concerns is the further development of such systems. The proposed system is using mostly traditional, robust control algorithms with a low amount of processed data. As shown in Chapter 2, machine learning is becoming more common in the microgrid context. Additional data input from machine learning methods, like PV-power production predictions and load predictions, can be beneficial for optimizing the control strategies further. For example, model predictive control or reinforcement learning control can be implemented instead of traditional algorithms. Most user concerns will be raised in this regard with the analysis of their load patterns. Non-intrusive load monitoring (NILM) is a technique that is based on machine learning. It can disaggregate the load profile of a smart meter to learn switching patterns for single devices. This can be used to determine the users’ behaviours on the one hand; on the other hand, it is extremely useful to optimize the control of schedulable devices. 

To determine the privacy concerns that could be raised with the proposed system, 
the AMI related user concerns were identified in literature. The results can be transferred to a large-scale version of the proposed system. The identified concerns are shown in Table 6.4. 

Consecutively, as it is a likely that the proposed system will be optimized in future with predictions, the most concerning technique, NILM, is analysed step by step regarding the identified concerns. As mentioned in Chapter 2, the used data sets in different NILM publications are quite large. This means that a lot of training data is used for the machine learning methods to get good results at accuracy. An overview of the data set sizes is presented in Table 6.5.





[bookmark: _Ref90899385][bookmark: _Toc102474825]Table 6.4: Residential user concerns regarding the AMI and ML algorithms [53], [47], [51], [49], [81], [82] , [83], [84], [45], [85] 

		Concern

		Description



		Privacy



		Price discrimination

		Variance in consumer pricing based on consumer profile



		Denial of consumer services

		Denied access to consumer services due to unsuitable consumer profile



		Target to excessive advertisements

		Increased advertisements, since consumer identified as target group by consumer profile



		Identification of home appliances

		Unwanted identification of individual home appliances through NILM



		Exhibition of user habits and lifestyle

		Exposure of sensitive data regarding consumer habits through NILM



		Exhibition of illnesses and disabilities

		Exposure of sensitive health data through NILM



		Personification of anonymous data

		The personification of data deemed to be collected anonymously through ML algorithms



		Cyber Security



		Disconnection of home appliances

		The manipulation of demand response (DR) programs through the tampering of ML training and input data



		Burglary, arson, vandalism etc.

		Increased threat through occupancy information gained by NILM



		Attractive target to burglary 

		Increased likelihood of burglary due to identification of attractive appliances through NILM



		Target to kidnapping

		Possibility to use NILM for identifying persons in vulnerable situations



		Denial of personal mobility

		The manipulation of DR programs through the tampering of ML training and input data to deny charging of electric vehicles







[bookmark: _Ref90923377][bookmark: _Toc102474826]Table 6.5: Overview of training data sets with literature examples [CSW]

		Dataset 

		Duration/Resolution

		Publication



		Pecan Street

		4 years / 1 minute

		[133], [87], [88] 



		REDD

		2-4 weeks / <=4 seconds

		[88], [115], [90] 



		UK-DALE

		655 days / <=6 seconds

		[115], [137], [237] 



		ECO

		8 months / 1 second

		[238], [239] 



		BLUED

		1 week / <=1 seconds

		[140] 



		Challekere Campus 

		7 days / 2 minutes

		[139] 



		Private Dataset 

		1 months / 10 seconds

		[138] 



		Private Dataset 

		1 month / 30 minutes

		[136] 







Analysing the sizes of the used data sets and the presented accuracy of the disaggregation shows that there is a correlation between the data set size and the accuracy, as with nearly all ML methods. The more data, including additional measurements, like mentioned in Chapter 2, the better the accuracy of the NILM process. This leads to a tendency of using as much data as possible, raising concerns regarding the users’ privacy.

To complement the analysis, the corresponding legal documents that are relevant in this regard have been mapped to the identified concerns regarding whether:

· … the current EU legislation protects the prosumer’s data and privacy rights, using [240], [241] 

· … the EU regulatory framework addresses the prosumer’s concerns in the area of cyber-security, using [240], [241], [242], [243] 



The results are presented in Table 6.6. It is intended to be used as a tool to guide the future development of the proposed system and to avoid complications regarding privacy concerns from a legal and users’ point of view. The tool can be used during the development of an application that makes use of NILM or operates at any surface of the AMI to determine cyber-security and data privacy requirements that need to be prioritized. This is transferrable to the microgrid development as well. A flowchart is presented in Figure 6.3 to provide an example for the use of the developed tool. More details were published in [53].







[bookmark: _Ref91060930][bookmark: _Toc102474772]Figure 6.3: Flowchart for the use of the provided tool

Evaluating the proposed and investigated system in this work with the tool showed no privacy concerns because there is no data stored or analysed with the implemented control algorithms. However, the cyber-security concerns apply here as in nearly all cyber-physical systems. As mentioned before, this can change if the system is extended to multiple households or uses data analysis-based control or prediction methods.

[bookmark: _Ref90654778][bookmark: _Toc102474827]Table 6.6: Mapping of ML angles via prosumer concerns based on relevance: Technical and legal views [53]

		

		Prosumer Concerns



		

		Price discrimination

		Denial of prosumer services

		Target to excessive advertisements

		Identification of home appliances

		Exhibition of user habits and lifestyle

		Exhibition of illnesses and disabilities

		Personification of anonymous data

		Disconnection of home appliances

		Burglary, arson, vandalism etc.

		Attractive target to burglary

		Target to kidnapping

		Denial of personal mobility



		Technical

		Surfaces of AMI

		Home Area Network



		0

		0

		++

		++

		++

		++

		++

		++

		++

		++

		++

		++



		

		

		Smart Meter



		+

		0

		+

		++

		++

		++

		++

		+

		++

		++

		++

		++



		

		

		Smart Meter Data Collector

		0

		0

		++

		+

		+

		+

		+

		+

		+

		+

		+

		+



		

		

		AMI Networks



		0

		0

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+



		

		

		AMI Protocols



		0

		0

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+



		

		

		Head-End Management System

		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		Applications of NILM

		Home Energy Management System

		a

		a, e

		a, e

		c

		e

		0

		a, e

		a, b, c, d, e

		d, e

		c, d

		d, e

		a, b, c, d, e



		

		

		Ambient Assisted Living

		0

		

		

		0

		

		e

		

		

		

		

		

		



		

		

		Recommender System

		a

		

		

		c

		

		0

		

		

		

		

		

		



		

		

		Fault Diagnostics



		0

		

		

		0

		

		0

		

		

		

		

		

		



		Legal

		Data Protection and Privacy (I)

		GDPR Art. 5(1)(a)



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 5(1)(b)



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 5(1)(c)



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 5(1)(d)



		+

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+



		

		

		GDPR Art. 5(1)(e)



		+

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+

		+



		

		

		GDPR Art. 5(1)(f)



		+

		+

		+

		++

		++

		++

		+

		++

		++

		++

		++

		++



		

		

		GDPR Art. 5(1)(g)



		++

		++

		++

		++

		++

		++

		++

		++

		++

		++

		++

		++



		

		Data Protection and Privacy (II)

		GDPR Art. 12



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 13, 14, 15



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 16, 17, 18, 19, 20

		++

		++

		++

		+

		+

		+

		+

		0

		0

		0

		0

		0



		

		

		GDPR Art. 21, 22



		++

		++

		++

		++

		++

		++

		++

		0

		0

		0

		0

		0



		

		Data Protection and Privacy (III)

		GDPR Art. 24



		++

		++

		++

		++

		++

		++

		++

		++

		++

		++

		++

		++



		

		

		GDPR Art. 28



		++

		++

		++

		++

		++

		++

		++

		+

		+

		+

		+

		+



		

		

		GDPR Art. 32



		+

		+

		+

		++

		++

		++

		+

		++

		++

		++

		++

		++



		

		Cyber-security: 

CIA Triad

		Confidentiality 



		0

		0

		0

		0

		0

		0

		0

		0

		++

		++

		++

		0



		

		

		Integrity/Authenticity

		0

		0

		0

		0

		0

		0

		0

		++

		0

		0

		0

		0



		

		

		Availability



		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		++





++ = highly relevant; + = relevant; 0 = not relevant/applicable; a = Metering NILM stage; b = Event detection NILM stage; c = Feature extraction NILM stage; d = Classification NILM stage; e = Analysis of classificationα NILM stage


[bookmark: _Toc102474688]Financial feasibility analysis

To complement the social and technical analysis, a financial investigation is needed. Even if a system works technically well and has a general social acceptance, it still needs financial feasibility to be successful on the market. This investigation is divided into two parts: 

· A general financial analysis of the complete proposed system with BESS, FESS and TESs

· Additional investigations regarding FESS and the separate influence of each of the TESs 



Based on these two investigations, it is possible to give recommendations about the microgrid design from the financial point of view.

[bookmark: _Toc102474689]Financial investigation for the complete proposed system 

An important metric from the investment point of view is the time until the invested money is completely recovered, and the implemented system shows profits compared to regular operation without the added devices. This return of investment time is the comparison basis for different control strategies in the grid-connected mode and 
should be below 10 years considering the component lifetimes. As mentioned earlier, the islanded control methods can be applied in the grid-connected operation for maximum self-consumption as well. The price-based control strategies are relevant for times when electricity is needed from the main grid. In the first step, the current average supply interruption times per year should be evaluated to estimate the share of the islanded operation per year.

The System Average Interruption Duration Index (SAIDI) is the average outage duration for each customer, measured in minutes per year. The average SAIDI values for Estonia and Germany for the year 2020 are shown in Table 6.7. As the table shows, 
the current supply interruption levels make a very low share of the whole year. Thus, these interruptions have a neglectable average impact on the financial calculations for such a system. But supply interruptions can have a very high case specific value, e.g., 
for microgrids with hospitals or other service providers that must not be interrupted at all. 



[bookmark: _Ref96940526][bookmark: _Toc102474828]Table 6.7: Disturbance metrics for DE and EE for 2020 [226], [227] 

		Country

		SAIDI 2020 [minutes/year]

		Share of the year [%]



		DE

		2.11

		0.0004



		EE

		157.9

		0.03







Thus, for the financial analysis, different self-consumption levels will be investigated, which make use of the described islanded control methods. The system that is investigated financially consists of all the described components with their related financial aspects. This includes FESS, BESS, PV-system, and TESs. The different aspects that are relevant for the financial investigation are listed in Table 6.8. 

These aspects include consumption and production values, component dimensioning values, component costs, installation costs, electricity prices, subsidy rates, and other values from the technical calculations. 




[bookmark: _Ref97114607][bookmark: _Toc102474829]Table 6.8: Considered aspects for financial analysis of a hybrid storage system for a typical single family house

		Aspect

		Unit

		Single Family House

		Description / Details



		Power consumption

		kWh/year

		3987.97

		



		Typical regional solar generation EE

		kWh/kWp

		864

		Based on PVGIS [150]



		Total generated PV-power per day

		W

		819446

		24th Sep. of the Laastu Talu OÜ PV-profile



		Min. basic required PV-system output

		kWp

		4.62

		



		Surcharge for losses (25%)

		kWh/year

		997

		BESS self-discharge and other losses [149]



		Power consumption with surcharge

		kWh/year

		4985

		



		Min. required PV-system output with surcharge

		kWp

		5.77

		



		Required energy generation per day

		kWh

		13.66

		



		kW per day

		kW

		819

		



		Power of one PV-module

		Wp

		330

		Typical value between 300 Wp – 400 Wp 



		Area of one PV-module

		m^2

		2

		Typical area of PV-module



		Required amount of PV-modules

		pcs

		17

		



		Required total roof area

		m^2

		29.37

		



		Electricity price DE (2021)

		EUR/ kWh

		0.33

		End of 2021 prices [228]



		Electricity price EE (2021)

		EUR/ kWh

		0.14

		End of 2021 prices [229]



		BESS capacity

		kWh

		3.88

		Example: Kokam SLPB120255255 [168]



		BESS costs per kWh

		EUR/ kWh

		1000

		Beginning of 2022 average end-user price [230]



		BESS costs total

		EUR

		3880

		



		FESS capacity

		kWh

		10

		Minimum offered by e.g., Energiestro [231]



		FESS costs per kWh

		EUR/ kWh

		250

		2021 Estimation [232], [233]



		FESS costs total

		EUR

		2500

		



		Price of one PV-module

		EUR

		150

		Beginning of 2022 average prices [234]



		Price for all PV-modules

		EUR

		2623

		



		PV-inverter costs

		EUR

		1574

		50%-60% of module costs (Beginning 2022) [235]



		Small parts

		EUR

		1000

		Cables etc.



		Installation and commissioning (BESS+FESS+PV-system)

		EUR

		900

		Medium installation effort [230]



		Control system for TESs

		EUR

		100

		Small devices, e.g., Raspberry Pi, Cables, ...



		Installation and commissioning (TESs)

		EUR

		100

		Low installation effort



		BESS capacity reductions (Max. reduced BESS capacity for new systems)

		%

		15%

		SOC-based Algorithm K; Average for different dwelling occupancies



		BESS capacity reductions (Reduced BESS capacity for existing systems)

		%

		4%

		SOC-based Algorithm H; Average for different dwelling occupancies



		Consumption reductions (Comfort oriented)

		%

		4%

		Price-based Algorithm E; Average for different dwelling occupancies



		Consumption reductions (Price oriented)

		%

		17%

		Price-based Algorithm D/F; Average for different dwelling occupancies



		Subsidy rate DE

		EUR/ kWh

		0.0653

		Value for 22 April 2022 [236]



		Subsidy rate EE

		EUR/ kWh

		0.0537

		[237]

		Additional renewable support programmes

		EUR

		0

		Programmes are regional and temporary  Not included







The financial analysis will be carried out for the following cases to compare the main control strategies during grid-connected operation with differently dimensioned systems: 

· Case 1: Typical grid-connected operation with regular dimensioning of components leads to approx. 38% self-consumption [149]. 

· Case 2: It is assumed that at least 80% self-consumption can be achieved with BESS in maximum self-consumption operation mode for reduced PV-system size (like islanded operation).

· Case 3: It is assumed that at least 80% self-consumption can be achieved with TESs and reduced BESS capacity in maximum self-consumption operation mode for reduced PV-system size (like islanded operation).

· Case 4: It is assumed that the PV-system and BESS are 50% too small to cover the self-consumption. Additional energy is consumed from the grid.

· Case 5: It is assumed that the PV-system and BESS are 50% too small to cover the self-consumption. The TESs work with price-based control algorithms D/F for the consumed energy from the grid.






The benefits for extended islanded operation, which depend on the microgrid consumers, are not considered, and can be added for each case additionally. These are reduced loss of revenue due to devices and computers not working and other cases. Details for the component dimensioning for the cases are shown in Table 6.9.



[bookmark: _Ref97049998][bookmark: _Toc102474830]Table 6.9: Changed aspects for self-consumption cases for financial analysis

		Aspect

		Unit

		Case 1

		Case 2

		Case 3

		Case 4

		Case 5



		Self-consumption rate

		%

		38

		80

		80

		100

		100



		PV-system output

		kWp

		5.77

		2.74

		2.74

		1.8

		1.8



		PV-system costs

		EUR

		2623

		1200

		1200

		600

		600



		BESS capacity

		kWh

		3.88

		3.88

		3.30

		1.6

		1.6



		BESS costs

		EUR

		3880

		3880

		3300

		1600

		1600



		Feed-in (Power) per day

		W

		508057

		77847

		77847

		0

		0



		Feed-in (Energy) per day

		Wh

		8468

		1297

		1297

		0

		0



		TES Algorithm

		-

		-

		-

		K

		-

		D/F



		Self-consumption (Power) per day

		W

		311389



		Self-consumption (Energy) per day

		Wh

		5190







To calculate the investment return time, it is necessary to consider the initial investment cost and the yearly returns, as shown in Table 6.10. The initial investment costs differ for the 5 presented cases due to the sizing of the BESS and PV-system. 
The yearly returns contain the cost savings on electricity that would have to be bought if there was no self-consumption. This value is smaller if electricity consumption from the grid was necessary. Additionally, the yearly subsidy for feeding energy into the main grid is added. These yearly returns depend on the country as the subsidy rates and electricity prices differ.

The table shows that the investment return for Germany is the best for case 3 at 6 years. This means that the components are sized for a very high self-consumption rate with as little main grid interaction as possible and optimized self-consumption control methods for BESS, FESS and TESs. It includes medium investment costs and medium investment return rates, which is the best compromise based on the German pricing system. This is a good investment return time as it is smaller than the lifetime of the installed components. The BESS capacity minimization strategy improves the return of invest compared to case 2.

For Estonia, case 1 shows the fastest return of investment at 11.8 years. This is due to the high subsidy rates compared to the electricity prices, where an over-dimensioned system benefits from selling a lot of energy to the main grid. However, the investment return time is quite high as it can be longer than the lifetime of the BESS system, which means additional investments. This will be investigated in more detail in the following subchapter. Independently, it can be observed from the results for case 2 and 3 that using the BESS capacity minimization strategy can improve the return of investment additionally and should therefore be applied to case 1 as well.

Cases 4 and 5 show the worst investment return times for both countries. Thus, the system components should rather be over-dimensioned than too small.



[bookmark: _Ref97120279][bookmark: _Toc102474831]Table 6.10: Financial analysis of a hybrid storage system for a single family house

		

		Unit

		Case 1

		Case 2

		Case 3

		Case 4

		Case 5



		Investment costs

		

		

		

		

		

		



		Components (BESS, FESS, PV-system, etc.)

		EUR

		11677

		9400

		8818

		6160

		6160



		Installation and commissioning 

		EUR

		1000

		1000

		1000

		1000

		1000



		Sum of investment costs:

		EUR

		12677

		10400

		9818

		7160

		7160



		Yearly returns:

		

		

		

		

		

		



		Consumption cost reduction DE

		EUR

		1563

		1563

		1563

		977

		1076



		Subsidy DE

		EUR

		505

		77

		77

		0

		0



		Yearly sum of returns DE:

		EUR

		2067

		1640

		1640

		997

		1076



		Consumption cost reduction EE

		EUR

		663

		663

		663

		414

		457



		Subsidy EE

		EUR

		415

		64

		64

		0

		0



		Yearly sum of returns EE:

		EUR

		1078

		727

		727

		414

		457



		Investment return DE

		Years

		6.1

		6.3

		6.0

		7.3

		6.7



		Investment return EE

		Years

		11.8

		14.3

		13.5

		17.3

		15.7







As shown in [33], the investment return time can be reduced by up to 50% depending on the selected components, necessary investment cost and cost reductions for cases with microgrids or complete settlements. This should be investigated in more detail in the future work. 

[bookmark: _Toc102474690]Financial investigation regarding flywheel and TESs 

This general financial analysis does not provide enough details about the financially related behaviour of the FESS and each of the TESs separately. To give better recommendations from the financial point of view, the following aspects are investigated and presented additionally:

· Investment return time behaviour with and without FESS

· Financial analysis of the previously mentioned long-term prediction challenges of space heating 

· Consumption cost and BESS investment cost behaviour for each TES separately 



For the first additional financial analysis, it is assumed that the FESS does not contribute as additional storage or self-consumption device but only supports the lifetime of the BESS. The investment return-calculations with and without additional FESS show the results presented in Figure 6.4 for the Estonian case and for the German case. Based on [33], the BESS has a cyclic lifetime of 4500 cycles according to the datasheet [168] or 8.3 years with the proposed microgrid operation. After this time, the BESS needs to be replaced. This can be increased using an additional FESS by 19% to 9.9 years, using the calculation method presented in section 5.1. The FESS cyclic lifetime is around 105 cycles or more with low maintenance costs, as mentioned in chapter 2. Therefore, 
the replacement and maintenance costs can be neglected for the FESS for this calculation. TESs have lifetimes of 10-20 years [164], but this is not considered as the control does not shorten the lifetime and the device would have to be replaced independent of the control system. The used investment return times are based on case 3 for DE and case 1 for EE, as these show the lowest investment return periods. Both cases are recalculated without FESS to obtain the correct investment costs and investment return times.



[image: ]

[bookmark: _Ref97055236][bookmark: _Toc102474773]Figure 6.4: Investment return calculations with re-investments for BESS for DE 
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[bookmark: _Toc102474774]Figure 6.5: Investment return calculations with re-investments for BESS for EE 

The figures show that from a purely financial point of view, it does not make sense to include a FESS in the system as the return of investment costs is reached earlier without FESS in both cases for DE and EE. However, in the case of Estonia, the investment curve without the FESS nearly crosses the zero-line again after 17 years. The development of storage system prices could lead to an actual crossing of the zero-line, making a system with a FESS storage more attractive. The additional benefits for increased islanded operation time and short-term storage are not taken into account in this financial investigation. 

As mentioned in section 5.4, the behaviour of space heating can be challenging to predict regarding the long-term behaviour. The long-term flexibility results presented in Figure 5.16 show the following:

· The long-term energy consumption for 10 days is at 149 kWh, resulting in costs of approximately 49€ in DE and 21€ in EE.

· With a higher set point as described, these costs can increase for the same timeframe by 12%, respectively decrease by 9%, depending on the chosen time of the changed set point.

· For the same timeframe, changing the set point to a lower one can increase the costs by 9%, respectively decrease them by 3%. 



This behaviour strengthens the previously mentioned need for detailed models and predictions of space heating for microgrid simulations for their financially and technically efficient operation planning, which is recommended for accurate investigations in a specific case.

To find out the influence of each of the three investigated common household TESs on the financial investigations, a more detailed analysis of the reduction of consumption costs and BESS investment costs is shown in Table 6.11. Different algorithms and household occupancies are considered for averaging the numbers. It can be seen that the water heater has the biggest share in both cases, followed by space heating with a significantly smaller share. These modelled shares correspond to the shares presented in Figure 2.10 well. The share of the freezer is low. Regarding the consumption cost reductions, the freezer has the highest relative improvement but the impact of space heating and especially the water heater is much higher in the end due to their significantly higher price shares. For the case of the BESS capacity, regarding investment cost reductions, the freezer influence is neglectable while the water heater and space heating show a similarly high average impact. Thus, it can be concluded that the water heater and space heating should be prioritized from a financial point of view as they have a much higher influence on both types of costs. 



[bookmark: _Ref97029272][bookmark: _Toc102474832]Table 6.11: Influence on consumption costs and BESS investment for each TES [152], [153], [164] 

		TES

		Share of total price

		Average reduction potential for price share

		Share of BESS capacity use

		Average reduction potential for BESS capacity resp. costs



		Freezer

		2%

		10%

		1%

		0%



		Water heater

		54%

		7%

		63%

		20%



		Space heating and cooling

		15%

		7%

		9%

		20%







As an example, the consumption costs for space heating are investigated in more detail to see the influence of the different price-based algorithms on the example previously shown in section 5.4 and section 6.1. The costs are shown in Table 6.12. In this case, the price shares are slightly below the average shown in Table 6.11. With these exact numbers, the recommendation from the financial point of view is to use algorithm D or F, as indicated in previous chapters. Algorithm E presents less cost reductions but achieves around 1/3 of cost reductions compared to algorithm D or F. The other algorithms are not desirable from a financial point of view.

[bookmark: _Ref97030627][bookmark: _Toc102474833]Table 6.12: Cumulative costs and cost savings for price-based algorithms A-G for an electric heater [182] 

		Algorithm

		Cumulative Costs [€]

		Difference compared to FSP Control



		A

		8.65

		+1.3%



		B

		8.56

		+0.2%



		C

		8.59

		+0.6%



		D

		7.76

		-9.1%



		E

		8.27

		-3.2%



		F

		7.80

		-8.7%



		G

		8.53

		-0.1%



		FSP

		8.54

		---





[bookmark: _Toc102474691]Conclusions

Based on the selected, modelled, and validated storage systems, control strategies were developed and simulated in the previous chapters. Based on the results from the control strategies, it could be concluded that the proposed system is technically feasible. Accordingly, it was necessary to evaluate the social acceptance and financial feasibility of the system. The user comfort and privacy as social factors were investigated and different financial analyses were made in this chapter to give recommendations for choice of a control strategy in different scenarios. 

[bookmark: _Hlk97196188]Regarding the user comfort, the following conclusions can be made: 

· A novel method to evaluate the user comfort for the islanded and the 
grid-connected operation was developed. The user comfort definitions are based on temperature limits, temperature fluctuations, and security of supply. 

· Temperatures of TESs can be directly noticed by the users. In this context, 
it is most important to investigate space heating as users typically do not notice smaller temperature deviations in frozen food or hot water supply. 

· The space heating simulations showed that the algorithms with the highest cost reductions using price-based control, algorithm D and F, show the lowest user comfort levels. These algorithms are recommended from a financial point of view.

· Algorithm E showed moderate cost reductions while maintaining a similar user comfort level as a FSP control and is therefore the recommendation from the user comfort point of view. 

· In temporary islanded mode operation, the user comfort is more determined by having electricity at all than by discomfort due to temperature deviations. Therefore, the algorithm with the best performance from the technical point of view should be recommended, which is algorithm H for low budget upgrade projects and algorithm K for all other cases, as mentioned in chapter 5. 

· The FESS control strategy providing 3-50% prolonged islanded operation time provides increased user comfort in this regard as well. 

Since data collection is becoming more common today, investigations on possible user concerns regarding their private data are more relevant. Therefore, the AMI infrastructure was used as an example to analyse the user concerns. 

· The concept of NILM has been investigated regarding the privacy concerns, as this poses the most profound data collection technique. These investigations showed 13 privacy and cyber-security related concerns of users for different surfaces of the AMI and applications of NILM. 

· The results were mapped to each other in a table, adding the corresponding GDPR and CIA Triad articles for reference on mitigating the problems from a legal point of view. This developed table should be used as a novel tool to evaluate the users’ privacy concerns. 

· Based on this tool, the proposed system poses low risk for privacy concerns, as it is implemented on a household level as shown in the simulations, and the used algorithms do not collect and store data about the user. 

· If the system is expanded to the building, microgrid or even multi-microgrid level, the data needs to flow through the different levels, as shown in Chapter 2, or if the control algorithms of the proposed system will be optimized with additional data collection for predictions, the tool needs to be used to design the system according to the relevant legal norms. 



From a financial point of view, to estimate the average necessary yearly islanded operation time, the SAIDI values for Germany and Estonia are used. Since the interruption times are multiple magnitudes below 1%, there is no need to separately investigate the islanded operation mode financially. Instead, the islanded control strategies are used for maximum self-consumption in the grid-connected mode. Therefore, five different cases were defined to represent different self-consumption and component dimensioning situations:

· Case 1: Over-dimensioning of components with 38% self-consumption 

· Case 2: Reduced PV-system size with 80% self-consumption

· Case 3: Reduced PV-system and BESS size with 80% self-consumption

· Case 4: PV-system and BESS are 50% under-dimensioned leading to electricity consumption costs

· Case 5: PV-system and BESS are 50% under-dimensioned with price-based control algorithms for reduced electricity consumption costs



Considering the investment costs and investment returns for a system with all components, the different cases showed the following results: 

· For Germany, case 3 shows the fastest investment return of 6 years which is a good overall result as it is well below 10 years. Using the BESS capacity minimizing control strategy for the TESs reduces the investment return time compared to case 2 and should therefore be applied in any case.

· Relatively high subsidy rates lead to the best result with case 1 for Estonia with 11.8 years. Independently, this could be additionally reduced with the BESS capacity minimizing control strategy.

· The result of 11.8 years is too high as this exceeds the lifetime of some components, which leads to re-investments and therefore even longer investment return times. It should be below 10 years.

· Cases 4 and 5 have the slowest return rates. Thus, the components should be rather over-dimensioned than under-dimensioned.

From a purely financial point of view, it is not recommended to use a FESS in the system as the investment return rate is longer for the DE and EE case. Without a FESS, the EE case manages to stay with re-investments below the maximum acceptable investment return time of 15 years. Depending on the development of storage prices, a system with a FESS might lead to a faster investment return in Estonia. 

Investigating each TES financially showed the following:

· The space heating model must be very detailed as the previously mentioned prediction challenges can lead to strong undesirable financial differences. 

· The freezer has a low influence as a TES from a financial point of view. This is valid for the energy consumption price reduction as well as the BESS investment cost reduction.

· Water heater and space heating have a much higher financial influence as TESs and should therefore be preferred. This is valid for the energy consumption price reduction as well as the BESS investment cost reduction.

· Algorithm D and F show the highest energy consumption price reductions as mentioned previously. The comfort-oriented control algorithm E shows about 1/3 of these cost reductions while the other algorithms are not desirable at all.



As an overview, a decision tree based on these financial investigation conclusions, is shown in Figure 6.6.
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[bookmark: _Ref97131540][bookmark: _Toc102474775]Figure 6.6: Investment-based decision tree 

In the following chapter, these conclusions can be used in combination with the findings from the previous chapters, to give comprehensive recommendations to microgrid designers, microgrid and building managers, and homeowners regarding the development of new and existing microgrid systems.

[bookmark: _Toc102474692]Conclusions, recommendations and future work

Based on a state-of-the-art review, a microgrid system topology was proposed to improve the security of supply and financial feasibility for the users. This system consists of a BESS, FESS, and nZEBs with PV-systems and common household TESs. The proposed system with the simulation framework is depicted in Figure 7.1.
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[bookmark: _Ref91411781][bookmark: _Toc102474776]Figure 7.1: Proposed microgrid topology with simulation framework

The thermal and electrical load patterns and the PV-system could be modelled as measured and artificially generated profiles. The BESS, FESS and TESs were modelled as object models. These models were simplified to a reasonable level for microgrid simulations, as e.g., detailed chemical or cell controller research for BESS is out of the scope of this work. For most models, the set mean power error limit of 10%, respectively 12% for complex models, could be achieved during the object model validation. 
The simplified space heating model could not reach the target and a second modelling methodology was developed for a more accurate NN-based space heating model. 
The improvements of the different modelling are presented in the next subchapter in more detail. 

[bookmark: _Hlk97196303]For these validated models, different control strategies with different aims were developed and simulated. An overview is shown in Table 7.1. For these different control strategies, various control algorithms were researched, developed, and tested with different scenarios. This investigation includes the technical performance as well as a consideration of the user comfort and financial aspects. Relevant conclusions are shown in section 7.2. 

The complete technical investigation with social acceptance and financial feasibility analyses was developed to give comprehensive recommendations to microgrid planners, building and dwelling owners. Optimal solutions from each of those three viewpoints and the overall recommendations are presented in section 7.3. 

Lastly, recommendations for future work are described in section 7.4. 




[bookmark: _Ref91414418][bookmark: _Toc102474834]Table 7.1: Devices used in software simulations with time steps and control aim

		Object Models

		Δt

		Control aim



		· FESS

		1s

		· Power smoothing



		· FESS

· BESS

		1min

		· BESS lifetime improvement

· Islanded operation duration increase



		· Freezer 

· Water heater

· Simplified space heating

		5min

		· Cost reduction

· Minimum BESS capacity reduction



		· Freezer

· Water heater

· Simplified space heating

· Different occupancy profiles

		5min

		· Influence of occupancy



		· Simplified space heating

· Civil engineering space heating

		1min

		· Influence of complex space heating models



		· NN-based space heating

		1min

		· Influence of complex space heating models





[bookmark: _Toc102474693]Modelling techniques for space heating

Space heating models for buildings are quite complex and time consuming to create. Civil engineers are dedicated to developing detailed thermal models of buildings with a high level of detail and complexity, using their own special software tools. These tools have limit capabilities regarding electrical engineering control strategies. Integrating space heating into electrical microgrid simulations turns into an interdisciplinary challenge, where the most useful modelling technique needs to be determined for the intended application. Three categories of modelling techniques could be identified in literature:

· Complex thermal models with limited electrical and control engineering capabilities from the civil engineering domain

· Complex control strategies with strongly simplified thermal models for the electrical power engineering domain

· Co-simulations with detailed thermal and control models but compatibility problems and computational overhead



As this work is placed in the field of electrical power engineering, the first investigated model was a simplified thermal model that uses linearized approximations for temperature changes. Validating the accuracy of this model showed that the errors introduced by such a simplified model were 3.3% higher than the set error limits for the intended use in a microgrid simulation. However, such a model proved to be quick to calculate, which is useful for repeated control optimization simulations typically used in microgrid simulations. Second, co-simulations with a civil engineering model were investigated. The advantage is good accuracy, however, there are compatibility problems with time step width and communication combined with a high computational burden. Thus, on the other hand, there is a need for a different modelling method that is accurate enough for microgrid simulations, on the other hand, higher compatibility and lower computational power than the existing methods can provide are required.

For the proposed novel ML-based model in this work, the following methodology was developed:

1. A pre-validated civil engineering model is used to create comprehensive data sets that include all necessary information.

2. The data sets are pre-processed to fit the needs for the ML training algorithm.

3. Training parameters are chosen and optimized to avoid over- and underfitting of the model.

4. The NN is trained with the pre-processed data. 

5. The obtained NN object can be transformed into a function in Matlab, which can be used as a space heating object model in microgrid simulations.



This methodology could reduce the active modelling and development time and effort for a detailed space heating object in electrical engineering software by around 90% from more than 100 hours to 8 hours. An overview of all three different space heating modelling methods discussed in this work is shown in Figure 7.2.
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[bookmark: _Ref91511066][bookmark: _Toc102474777]Figure 7.2: Comparison of space heating modelling and simulation

A disadvantage of the NN-based model is that the pre-simulation with the civil engineering model and pre-training of the algorithm are necessary. This is a 
time-consuming process (c.f. Table 4.14). However, the pre-simulation and pre-training are only necessary once. Since there are typically multiple runs for microgrid simulations for control optimization purposes, these one-time pre-calculations have a much lower weight than the repeated high computation effort for every run of a co-simulation. Further, the NN-based model cannot be more accurate than the civil engineering model it is based on. 

As an advantage, the NN-based model can be calculated as fast as the simplified model during microgrid simulation and 85% faster compared to a very slow co-simulation 
(c.f. Table 4.14). Simultaneously, the model shows a more than 5% higher accuracy than the simplified model (c.f. Table 4.10).

Thus, comparisons show that the proposed NN-based model is the best compromise of accuracy, calculation speed and compatibility. It achieves an error of less than 12%, which was the set goal accuracy for such a complex model. Simulations with the simplified and more detailed space heating model showed that the model accuracy 
can have an influence on the control algorithm results. This is due to the high complexity of building thermal dynamics where small changes can show their influences later. 
This strengthens the necessity for the more accurate and quickly calculated NN-based space heating model further.

[bookmark: _Toc102474694]Control algorithm selection in different scenarios

The developed and validated models for the proposed system were simulated with different control strategies for different scenarios. These scenarios have been investigated from a technical, social, and financial point of view. The conclusions from the respective chapters are connected and summarized in the following. 

The occupancy of a dwelling can change due to, for example, a landlord renting out an apartment to a different demographic group. The investigation showed that even with different occupancies, there are specific algorithms for the TESs that seem to be generally working better in all cases. For a price-based control situation, algorithms D and F are providing the best cost reductions. However, if the user comfort is the main priority, then algorithm E is the preferred solution for space heating, as it keeps the room temperature within more comfortable limits. In the islanded control scenario, which is also valid as a maximum self-consumption scenario in the grid-connected mode, 
the PV-power based algorithms could not be recommended in general as they did not show good results with households where the PV-system was not over-sized. However, from the SOC-based control algorithms, algorithm K can be recommended for all households, especially if it is implemented in a new microgrid, where some communication infrastructure can be added in the design stage. For existing microgrids, algorithm H without communication needs is better suitable from an investment point of view. This is valid for all TESs. Connecting these findings leads to the following decision tree 
(c.f. Figure 7.3), which can be used for recommendations.
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[bookmark: _Ref97198451][bookmark: _Toc102474778]Figure 7.3: User comfort-based decision tree for TES control algorithms

[bookmark: _Toc102474695]Recommendations for microgrid designers, building and dwelling owners

To give suitable recommendations to microgrid designers, building and dwelling owners, it is necessary to analyse all the conclusions from the technical, social, and financial investigations. Based on this, it is possible to draw overall conclusions and formulate recommendations. For a better overview and understanding, the recommended decisions are visualized using a decision tree. This complete decision tree for the selection of the components and control strategies is shown in Figure 7.4. As mentioned, this decision tree is based on the conclusions and recommendations developed on the proposed system in this work. The recommendations can be transferred to design or upgrade a microgrid, a smart building or a dwelling. Some additional remarks regarding the three main branches of the decision tree are the following:

· The BESS and PV-system sizing is based on the financial conclusions presented in Figure 6.6. As shown in section 5.4, the occupancy of an apartment influences the sizing of components as well because the islanded control algorithms for TESs work more effectively with an over-sized PV-system. 
This means an additional benefit for case 1.

· With the TESs, it is required to determine whether a new microgrid is designed or an existing one is upgraded to select an islanded control strategy. Algorithm K shows better performance but needs some communication with the BESS, while algorithm H does not need additional communication, thus no additional investment.

· Adding a FESS to the system as proposed will improve the user comfort in the islanded mode additionally, as the islanded operation time is improved by 
3-50%. This can be of additional financial interest in microgrids where the power supply must never be interrupted. 







[bookmark: _Ref97199052][bookmark: _Toc102474779]Figure 7.4: Complete decision tree based on technical, financial and comfort decisions 

[bookmark: _GoBack]For further development of this decision tree and applying the findings to extended systems, it is recommended to assess first the legal dimension with the provided tool 
(c.f. Table 6.6). Figure 7.5 shows the recommended approach in a simplified way:

· If data driven control strategies are implemented in the system, the legal norms should be assessed based on the provided tool.

· If the proposed system is extended to the building, microgrid or smart city level, the legal norms should be assessed based on the provided tool as well.
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[bookmark: _Ref97199784][bookmark: _Toc102474780]Figure 7.5: User privacy tool use cases

[bookmark: _Toc102474696]Future work

To improve the developed models, control strategies and system topology, the following aspects can be researched and developed further:

· In addition to the FESS or as an alternative for the FESS, supercapacitors could be investigated to optimize the proposed system technically or financially further. 

· The developed PHIL-setup should be extended with additional components, as intended in the initial design. This work has already been started by a student under the author’s supervision. 

· The NN-based space heating model should be developed further with different machine learning techniques to improve the accuracy. In addition, models for different kinds of buildings, including larger residential buildings, commercial buildings, etc., should be tested. 

· As the control strategies for the TESs and FESS are traditional and simple approaches, they could be improved with reinforcement learning based control, especially for the design in new microgrids with more communication and data analysis possibilities.

· The financial analysis can be calculated for more countries to provide better country specific recommendations.

· The financial benefits for different specific critical system examples that must not be interrupted could be calculated to give more specific recommendations on the financial benefit of the extended islanded operation time.

· The proposed system is investigated and modelled for the size of a single family house. It should be extended to multi-household buildings, microgrids or even smart cities to include aggregation challenges and influences. This includes technical, social, and financial investigations.
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Research and development of energy storage control strategies for residential area microgrids

Due to the rising concerns regarding climate change, there are multiple national and international agreements to reduce greenhouse gas emissions, e.g., the European Green Deal. To achieve the goal of these agreements, the share of renewable energy sources needs to be increased while reducing the dependence on fossil energy sources. This transition can be accomplished with microgrids as they can balance demand and supply of renewable generation already locally with demand side management strategies and storage systems. For such microgrids, the control possibilities for hybrid energy storage systems, including household appliances as supporting thermal storages, as well as the related user acceptance and financial feasibility, need additional research, especially for the islanded operation mode. 

Thus, this work aims to research and develop object models with improved accuracy and control strategies for hybrid energy storage systems to improve supply reliability and financial feasibility in residential microgrids to provide recommendations for the development of microgrids.

First, the current state of the art regarding smart grid topologies and components, including building requirements, storage systems, energy sources, and modelling and experimental setup design, like machine learning and hardware-in-the-loop-setups, was investigated. 

On these bases, it was possible to improve and develop object models for flywheel energy storage, battery energy storage, and common household thermal storages, namely freezer, water heater and space heating. For the space heating model, a novel neural network-based methodology was developed to compensate either high computational time or low accuracy of existing modelling techniques. 

These models were then validated to ensure good accuracy levels for the microgrid simulations with error rates for all object models below 12% mean error. 

With the validated models, it was possible to develop control strategies for supply reliability and financial feasibility improvements: The energy costs could be reduced by more than 10% and the battery storage capacity, representing investment costs, by 4%. Simultaneously, the battery storage cyclic lifetime could be increased by 19% and the islanded operation duration as a supply reliability parameter by more than 3%. 

Lastly, a social acceptance evaluation methodology and privacy mapping tool were developed to address the user satisfaction and privacy concerns more effectively and thereby improve the microgrid development and planning quality. A consecutive financial analysis showed that the investment return time of the system is 6 years in Germany and 13 years in Estonia for different component dimensioning strategies.

In conclusion, the set goals were achieved. Based on the technical, social, and financial feasibility analyses discussed in this thesis it was possible to develop a decision tree as an applicable guidance tool for recommendations on the design of microgrids to simplify the work for microgrid planners and designers. The developed solutions will increase the supply reliability and profitability of microgrids with renewable energy sources and hybrid energy storage systems and ensure social acceptance in the development of future microgrids.
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Energiasalvestite juhtimisstrateegiate uurimine ja arendamine elamupiirkondade mikrovõrkudele

Seoses kliimamuutustega on kasvuhoonegaaside heitkoguste vähendamine järjest olulisem, milleks on sõlmitud mitmeid riiklikke ja rahvusvahelisi lepinguid, sh Euroopa roheline kokkulepe. Lepingutes sätestatud eesmärkide saavutamiseks tuleb suurendada taastuvate energiaallikate osakaalu, vähendades samaaegselt sõltuvust fossiilsetest energiaallikatest. Seda üleminekut toetavad nutikad mikrovõrgud, kus on võimalik juhuslikku taastuvenergia tootmist ja tarbimist tasakaalustada nutikate juhtimise strateegiate ja salvestussüsteemidega. Selliste mikrovõrkude puhul vajavad täiendavat uurimist hübriid-energiasalvestussüsteemide juhtimine sh kodumasinate kui toetavate soojussalvestite juhtimisvõimalused. Samuti mikrovõrkude vaates olulisel koha kasutajamugavuse hindamine, eriti saartalitluse puhul.

Käesoleva töö eesmärk on uurida ja arendada täiustatud objektide mudeleid ja hübriid-energiasalvestite juhtimisstrateegiaid, et parandada elamupiirkondade mikrovõrkude varustuskindlust ja kulutõhusust. Lisaks analüüsitakse investeeringu- tasuvust ning lõppkasutaja privaatsus- ja mugavusnõudeid, et tõsta sotsiaalse heakskiidu taset ja anda soovitusi tulevaste mikrovõrkude arendamiseks.

Esmalt viidi läbi tehnika- ja teadustaseme hetkeolukorra kaardistus tarkvõrgu topoloogiate, komponentide, sh salvestussüsteemide, energiaallikate, objektide mudelite, masinõppemudelite ja katseseadmete (PHIL) osas, et väljatöötada raamistik edasiste uuringute ja arendustöö jaoks. Analüüsi põhjal töötati välja ja täiustati hooratta, akude ja kodumajapidamistes kasutatavate soojust salvestavate seadmete (sügavkülmik, veeboiler, ruumiküte) mudelid. Näiteks, ruumi küttemudeli jaoks töötati välja uudne närvivõrgupõhine metoodika, et kompenseerida olemasolevate modelleerimistehnikate suurt ajamahukust või madalat täpsust.

Töö järgmises etapis mudelid valideeriti, et tagada mikrovõrgu simulatsioonide puhul soovitud täpsus ehk keskmine objektimudelite summaarne viga oleks alla 12%. Valideeritud mudelite abil töötati välja hübriidsalvestuslahendusele juhtimisstrateegiad varustuskindluse ja kulutõhususe parandamiseks, mille tulemusel oli võimalik vähendada energiakulusid enam kui 10% ja aku salvestusmahtu 4%. Samaaegselt võimaldasid juhtimisstrateegiad pikendada aku salvestamise tsüklilist eluiga 19% ja tööaega enam kui 3%.

Töö viimases etapis töötati välja sotsiaalse heakskiidu hindamimetoodika, mille abil saab tõhusamalt arvestada kasutaja rahulolu ja privaatsusprobleemidega ning seeläbi parandada tulevaste mikrovõrkude arendamise ja planeerimise kvaliteeti. Samuti koostati investeeringu tasuvusanalüüs, mis näitas, et süsteemi investeeringu tasuvusaeg on sõltuvalt erinevate komponentide dimensioneerimisest Saksamaal 6 aastat ja Eestis 13 aastat. 

Kokkuvõtteks võib öelda, et püstitatud eesmärgid said täidetud. Doktoritöös käsitletud tehniliste lahenduste, sotsiaalsete mõjude ja tasuvuse analüüsi baasil on loodud mikrovõrkude kavandamiseks ja soovituste andmiseks tööriist ehk otsustuspuu, mis lihtsustab mikrovõrkude planeerijate ja projekteerijate tööd. Väljatöötatud lahendused võimaldavad parandada taastuvenergiaallikate ja hübriid-energiasalvestuslahendustega mikrovõrkude varustuskindlust, tasuvust ning tagada sotsiaalne heakskiit tulevaste mikrovõrkude arendamisel.
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Load Profile: Single family house (1st January example day)
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