
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Giorgi Zeikidze 194437IVSB

Evaluating and Remediating the Performance
Impact of Vulnerability Management Software

at Pipedrive

Bachelor Thesis

Supervisor: Kristian Kivimägi
MsC

Co-Supervisor: Kieren Niĉolas Lovell
Lt CDR

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Giorgi Zeikidze 194437IVSB

Pipedrive turvanõrkuste haldustarkvara
jõudluse mõju hindamine ning parandamine

Bakalaureusetöö

Juhendaja: Kristian Kivimägi
MsC

Kaasjuhendaja: Kieren Niĉolas Lovell
Lt CDR

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Giorgi Zeikidze

16.05.2022

3

Abstract

Vulnerability management is a continues process, to keep up with the demands of modern
cyber-space the process requires improvement with each iteration. Given work is an in
depth analysis of yet another improvement of vulnerability management at Pipedrive.
Granted that existing vulnerability detection solution is limited in functionality, imple-
mentation of hybrid model of vulnerability assessment was proposed. This required
deployment of Nessus agent, in-house solution of Tenable.io, the provider of company’s
vulnerability management software. In the scope of the thesis Nessus agent installation
automation was developed and performance of the agent was tested. Initial tests provided
unacceptable results in terms of memory use, creating the need of workaround in form of
memory limitation using systemd. Proof of concept was designed and deployed in one
of infrastructure regions. Trail on the region scale was unsuccessful, the effective way to
limit the performance impact remains to be discovered.

4

List of abbreviations and terms

API Application Programming Interface
CPU Central Processing Unit
IDE Integrated Development Environment
IOT Internet Of Things
VM Virtual Machine
CLI Command Line Interface
CRM Customer Relationship Management
K8s Kubernetes
IaaC Infrastructure as a Code
LTS Long Term Support
IaaS Infrastructure as a Service
SOC Service Organization Controls
SLA Service Level Agreement
OOM Out off Memory

5

Table of Contents

1 Introduction . 8
2 Background Information . 10

2.1 IT Infrastructure in Pipedrive . 10
2.1.1 Infrastructure Engineering Practices 10
2.1.2 Networking Infrastructure . 12

2.2 Standards and Frameworks . 12
2.2.1 ISO27001 . 12
2.2.2 SOC . 13
2.2.3 CMMI . 15

3 Problem Statement and Assignment . 17
4 Methodology . 19

4.1 Vulnerability Assessment Approaches 19
4.1.1 Scanner-based Approach . 19
4.1.2 Agent-based approach . 20
4.1.3 Hybrid approach . 21

4.2 Understanding Linux Services . 21
4.3 Testing Ground . 22
4.4 Kubernetes . 22

5 Practical Implementation . 23
5.1 Installation Process of Nessus Agent . 23
5.2 Measuring Resource Use . 24
5.3 Analysis of the Agent . 24
5.4 Limiting the Memory Use . 24
5.5 Implementing the Limit on Regional Level 25

6 Summary . 26
Bibliography . 27
Appendix 1 – Non-exclusive license for reproduction and publication of a graduation

thesis . 29
Appendix 2 – Disclaimer . 30

6

List of Figures

1 Agent vs. Scanner vs. Hybrid. 21

2 The installation script for Nessus agent. 23
3 Enable performance accounting in systemd. 24
4 Memory throughout initial scan. 25
5 Enable performance accounting in systemd. 25

7

1 Introduction

Many of the recent happenings in the world have proven that Cyber-attacks pose a severe
threat to organizations. It has become especially simple to carry out those due to various
publicly and privately available tools with incredibly low complexity of usage. Cyber-
attacks can have many different consequences, including financial losses, reputational
damage, and loss of customer trust. In some cases, they might also lead to regulatory
investigations and fines. One of the many reasons for cyber-attacks is unmitigated vul-
nerabilities. The word vulnerability can have many different meanings. By the broadest
definition, vulnerability refers to the state of being exposed. From a security perspective,
vulnerability resembles something that can be exploited by outside forces or actors to
sidestep our defenses, be it a breach in stronghold walls allowing the enemy in or a door
left unlocked allowing a criminal inside. While in the field of information technology,
vulnerability means "A flaw or weakness in a computer system, its security procedures,
internal controls, or design and implementation, which could be exploited to violate the
system security policy, as defined by Park Foreman[1]."

Almost any business today is either directly or indirectly affected by these vulnerabilities
that carry a risk for normal day-to-day operations. One of the recent studies suggests that
in 2019, 60 percent of data breaches could have been prevented by timely patching of
vulnerabilities. [2] Due to the constantly increasing number of vulnerabilities nowadays,
it has become impossible to patch all of them. To address this issue, a separate field
of vulnerability management has been developed. Vulnerability management is not a
standalone technology, it is a combination of processes and practices aiming to identify,
classify and mitigate risks connected to existing vulnerabilities. Due to the complexity of
this approach, it is mainly aimed at organizations and government bodies. [1]

The broader objective of this paper is to improve vulnerability management inside Pipedrive.
Pipedrive is an IT company founded in 2010 in Estonia. The company follows the software
as a service monetization model, offering a CRM solution. The main focus of the software
has always been simplicity and ease of use. Its intuitive design and kanban-based approach
to sales make Pipedrive a very compelling product for small to medium businesses and
startups. Currently, the company serves more than 100 000 different customers worldwide.
Each subscribed customer can have many users (or seats as Pipedrive calls it). Most of the
clientele are other businesses that have some or all employees using the tool, making the
total number of software users more than a million.[3]

8

It should be no surprise that a company with this amount of user data takes the risk of
vulnerabilities seriously. Therefore it constantly introduces new advancements to the
existing vulnerability management program. Therefore, the primary goal of the thesis
is to improve the current state of vulnerability management at Pipedrive, achieving a
higher level of security. Principles and solutions provided in the research can be used to
implement similar solutions in companies with modern infrastructure architecture that
focus on observability and reliability.

The main objectives throughout the given work will be evaluating the performance of
vulnerability checking solutions and their impact on mission-critical infrastructure as
well as mitigating this impact. The author assumes at least a limited understating of
Linux system administration topics and general knowledge of Unix/Linux concepts. This
research aims to outline the factors that need to be accounted for, before implementing
vulnerability management software in a business-critical environment. It also provides a
guide to alleviating some of the negative effects.

9

2 Background Information

2.1 IT Infrastructure in Pipedrive

To understand the solutions offered in this paper it is of vital importance for readers
to understand the inner workings of Pipedrive’s IT infrastructure. One of the major
reasons for successful growth is the company’s persistent and sustainable scaling. The
infrastructure department is the organizational body directly responsible for keeping the
services’ performance consistent during the growth of the user base and the features that
the software offers. Different teams under the infra umbrella work on various internal
services to keep the end product running smoothly.

2.1.1 Infrastructure Engineering Practices

Growth and scaling of the product is directly enabled by cloud based architecture, but
not every cloud infrastructure is built equally, being cloud based does not automatically
guarantee scalability or sustainability of growth. To keep the network latency low in
different geographic areas, ensure high availability of the product and the company operates
multi-cloud, multi-region infrastructure. Number of these regions is ever increasing, there
are currently more than twenty different regions, including four live ones currently running
the main application and several more are being built. To keep up with the non-trivial size
of the infrastructure below mentioned tools and practices are used.

Cloud Services Providers

As mentioned above infrastructure of Pipedrive is deployed on cloud, mainly on two
providers: AWS and Rackspace. Rackspace is where the bigger part of the regions of
Pipedrive’s infrastructure reside. Resources there are managed using Openstack, an open
source cloud computing platform developed by Rackspace and NASA[4]. Amazon’s is
another IaaS provider for Pipedrive. While not as many regions are deployed there, it
still houses some of our mission critical environments. AWS has its own property cloud
management system accessible via different APIs and tools.

10

Infrastructure as a Code Approach

Infrastructure as a code is an approach to infrastructure automation that makes use of
software development principals. In code desired state of infrastructure, condition of
machine or configuration of system is described in declarative format. Then the code is
rolled out through unattended processes whilst being validated.[5] IaaC approach plays
crucial role in many of the modern practices of development, including DevOps, CI/CD,
cloud computing, microservice based architecture and etc.

This approach brings many benefits:[5]

■ Automating processes, especially complex ones lowers the chance of human error
being introduced in system.

■ Time of the engineers is no longer wasted on manual procedures, making the size of
the infrastructure non-issue.

■ By lowering the cost of change to almost nonexistent, changes become routine,
testing becomes easy, this in turn lowers the chance of error and improves speed of
improving mistakes whenever they may occur.

■ Prototyping is easier so less risks are taken and less time is spent on planning
meetings.

■ Having state of infrastructure mostly or fully visible as code.

Infrastructure as a Code Tools

Terraform is an infrastructure provisioning tool created by Hashicorp. It has integration for
most cloud computing platform APIs including above-mentioned Openstack and AWS. As
the allocation process of computing resources is not related to the thesis, a deeper analysis
of the software will be omitted.

Chef-infra, is a configuration automation solution[6] and the main tool currently used for
infrastructure management at Pipedrive. Chef-infra is the oldest one of many tools offered
by its respective company and is commonly referred as just Chef[7]. The tool follows
server-client based model where the configuration code is uploaded from the chef-server
to chef-clients on the managed machines.[6]

Ansible is another configuration management tool. It is also a runner up for the role of go
to solution in Pipedrive’s infrastructure, there is also an ongoing migration happening of

11

infra-team’s code-base from Chef to Ansible but the project is still at early stages so as of
now both tools are being used. There are also certain parts of the infrastructure managed
solely with Ansible.

Container orchestration engine Kubernetes is another IaaC tool and crucial part of
Pipedrive’s infrastructure, but containerization technologies are outside the scope of the
research, reason for this will be addressed in upcoming chapters.

Operating Systems

For simplicity and consistency all of the company’s managed infrastructure runs on Debian
based systems, predominantly Ubuntu LTS. Thus all the solutions described further in
this work should be assumed to be running on Ubuntu 20.04. The solutions provided here
in terms of code work on this OS, in case of other Linux distributions or other Unix like
operating systems some discrepancies might be experienced. Even still general principals
and practices remain applicable.

2.1.2 Networking Infrastructure

Another major part of the IT infrastructure is the networking, including both, our office
networks and networks of our deployment. These networks are managed by our networking
team, including DevNetOps and Network Engineers. While network analysis is a major
part of vulnerability management process, the current state of the network awareness
is above satisfactory. Thus it falls outside the scope of the work being done here. It
is also worth to consider that network analysis falls outside of the authors abilities and
responsibilities.

2.2 Standards and Frameworks

In the field of cyber-security it is general understood that being security and proving that
you are secure at two different challenges, with equally different aims. While achieving
security is not a small challenge by itself, proving it is on another level of complexity and
with the complexity arises the need for structure. Such structures come in the form of
standards and frameworks.

2.2.1 ISO27001

To tackle complex issue of prove of security Pipedrive, like many other organizations opted
for ISO27001 certification[8]. ISO 27001 is the international standard that provides the

12

specification for an information security management system or ISMS. This is a systematic
approach consisting of people processes and technology that helps you protect and manage
all the organization’s information through risk management. An ISMS, particularly one
that conforms to ISO 27001 can help organizations comply with a host of laws including
the high profile general data protection regulation commonly referred to as the GPPR and
the network and information systems regulations also known as the MIS regulations. [9]

ISO 27001 focuses on protecting three key aspects of information, also known as CIA
triad:

■ Confidentiality.
■ Integrity.
■ Availability.

Confidentiality means that the information is not available or disclosed to unauthorized
people entities or processes. Integrity means that the information is complete and accurate
and protected from corruption. Availability means that the information is accessible and
usable as and when authorized users require it.[9]

ISO 27001 is one of the most popular information security standards in the world, with the
number of certifications growing by more than four hundred and fifty percent in the past ten
years. T he standard has been designed to help organizations manage their security practices
consistently and cost-effectively. its technology and vendor neutral and is applicable to
all organizations, irrespective of their size type or nature. ISO 27001 is the mainstay of
the ISO 27000 series a family of mutually supporting information security standards that
together provide a globally recognized framework for best practice information security
management. these standards help organizations keep their information assets secure by
offering a set of specifications codes of conduct and best practice guidelines to ensure
strong information security management.[9]

2.2.2 SOC

Other certification that the company has is SOC 2 and SOC 3. [10]

SOC was developed in 2011, by the American Institute of Certified Public Accountants,
as a replacement for Statement on Auditing Standards. SOC 2 defines the criteria for
managing customers data based on the five service principles:[11]

■ Security.
■ Availability.

13

■ Processing integrity.
■ Confidentiality.
■ Privacy.

SOC 2 and SOC 3 reports are unique per body being certified and are in line with specific
business practices. Each organization designs its own controls to comply with one or
more of the trust principles. The First principle, security refers to the protection of system
resources against unauthorized access. Access controls help prevent potential system
abuse theft or unauthorized removal of data, misuse of software, and improper alteration or
disclosure of information. IT security tools such as network and web application firewalls,
two-factor authentication and intrusion detection software are useful in preventing security
breaches that can lead to unauthorized access of systems and data.[11]

The availability principle refers to the accessibility of the managed service as stipulated by
the SLAs. As such, the minimum acceptable performance level for systems availability
is set by both parties. This principle doesn’t address system functionality and usability
but does involve security related criteria that may affect availability, monitoring network
performance and availability, site fail-over, security incidents handling are critical in this
context. [11]

The processing integrity principle addresses whether the system achieves its purpose: does
it deliver the right data, at the right price, at the right time? Accordingly, data processing
must be complete, valid, accurate, timely and authorized. However, processing integrity
does not necessarily imply data integrity. If data contains error prior to being input into the
system, detecting them is not usually the responsibility of the processing entity. Monitoring
of data processing coupled with quality assurance procedures can help ensure processing
integrity. [11]

Confidentiality - data is considered confidential if access and disclosure is restricted. This
may include data that’s only intended for company personnel, or its business plans, or
intellectual property, it might be financial data. Encryption is an important control for
protecting confidentiality during transmission. Network and application firewalls together
with rigorous access controls can be used to safeguard information being processed or
stored on a computer system. [11]

And finally the privacy principle addresses the system’s collection, use, retention disclosure
and disposal of personal information in conformity with an organization’s privacy policy,
as well as within the criteria that’s set by SOC 2.[11]

14

Unlike SOC 2 report which is restricted use only SOC 3 is a general use report, usually
available on company’s site, including at Pipedrive.[10, 11] SOC 3 report does not provide
controls and only includes limited control details in description.[11]

2.2.3 CMMI

Improvement of organisational processes is another complicated topic that requires a
systematic approach to navigate. While CMMI is not really aimed at security related
processes it still provides much needed structure to orient by. More abstracted view of the
challenge gives much needed perspective to understand the context of the problem.

According to CMMI when it comes to the continues processes there are 5 different stages
of maturity:[12]

1. Initial
2. Managed
3. Defined
4. Quantitatively Managed
5. Optimizing

At initial stage the process is very chaotic, tasks are performed ad hoc, there is no defined
structure, no procedures in place. In such environment success depends on the abilities of
the team at hand and outcomes vary vastly depending on their competence.[12] This maps
nicely to security processes in general, at this stage internal processes for vulnerability
management are usually non-existent. These process require vast investment time and
resources to be established which is not possible in chaotic environment. Audits at this
point are strictly external, performed once a quarter or yearly.

Improving on this the managed stage has planed, policy based approach. Still, most of
the processes are manual and reactive. Teams at this stage become more disciplined, less
dependant on the individuals skill, leading to better time management.[12] In the scope of
security this is where the internal process vulnerability management comes into play.

Defined stage is logical evolution of the second stage, here processes while similar to the
stage two become proactive rather then reactive. At this point processes, tools and methods
are well established. [12] This is where the automation usually comes into the picture. In
case of vulnerability management at this stage of maturity most of the menial processes
should be automated. Response procedures should be well organized and understood.

Pipedrive’s vulnerability management process falls somewhere between stage two and

15

three, given thesis being another step towards the third stage. Considering this stages four
and five are less relevant to this work, thus they’ll be defined more briefly:

■ Quantitatively Managed - this is where the mitigation steps and responses get
automated.

■ Optimizing - the cutting edge of security, the processes of discovery and response
are being improved actively.

16

3 Problem Statement and Assignment

The Transitional period from a start-up to an enterprise organization is associated with a
vast amount of challenges along with legal and financial responsibilities. The year 2021
was the beginning of Pipedrive’s transition into an enterprise, which led to the restructuring
of the information security team. The main result of those changes was a set of new
requirements for the information security team.

Pipedrive has already been certified with System and Organization Controls (SOC) 2
and 3 along with ISO27001:2013 [10][8]. Despite the fact that these certifications have
proven the security, availability, processing integrity, confidentiality, and privacy of the
system[13], their effect is not permanent. These require to be maintained over time,
which involves continuous improvement of the information security process. In addition,
as these certifications do not necessarily fulfill their requirements, some refinements
were requested by third parties, such as cyber insurance. One of the subjects of the
discussion has been SLA for vulnerability remediation. Due to these circumstances, there
has been a great emphasis on this topic from the stakeholders’ side. Therefore, currently,
Pipedrive’s information security team is actively working on increasing the efficiency of
the vulnerability management system.

The ultimate goal of this paper is to contribute toward increasing the maturity of the
vulnerability management system within Pipedrive. This will be achieved by researching
and implementing the best practices of venerability detection. The main flaws of the
current system have been discussed with the information security team and the criteria for
the success have been established.

The current vulnerability detection relies on a Nessus scanner with limited capabilities. For
patch auditing the scanner uses a local user, access to this user is currently provided via ssh
(asymmetric key authentication), this provides ssh access from the Nessus machine to any
asset that is being scanned, and due to the obvious security problems with this approach
the dedicated Nessus user has only limited permissions. This limitation in access often
provides false positives and leaves a reasonable suspicion that some vulnerabilities remain
undetected.

To further increase the effectiveness of vulnerability scanning and address above mentioned
security risk, the implementation of a hybrid model of vulnerability detection was suggested

17

by the information security team. The resulting system will use the Nessus scanner
and Nessus agent for assessing different types of vulnerabilities. Scanners are already
implemented in the company’s mission-critical systems, but when it comes to the agents
there are several problems that remain to be addressed:

The footprint of the agent software has not been studied. The impact of the security audit
on the systems needs to be measured and considerations need to be made so that running
these checks does not impact end-users in any noticeable way. Pipedrive’s main objective
is to provide its clients with satiable service.

The focus of this work is to improve on the existing approach for auditing by examining
the viability of the hybrid architecture. The tasks undergone are:

■ Creation of installation and configuration automation for Nessus agent.
■ Estimation of the baseline resource use of the agent.
■ Investigation of the likely impact on mission-critical services.
■ Addressing the performance problems detected to achieve the robustness of the

approach.

18

4 Methodology

4.1 Vulnerability Assessment Approaches

When it comes to the architecture of the Vulnerability assessment there are five principal
approaches[1]:

■ Scanning
■ Passive assessment
■ Agents
■ Hybrid
■ Inference

Of these five the inference and the passive assessment are beyond this thesis’s scope, still
the brief description is in order. Inference method employs data analysis techniques on
data obtained through means outside of the security measures[1]. Snyk currently used at
Pipedrive can be considered as such a tool. Passive assessment also relies on something
that already existing, in this case notwork security appliances, this appliances can be used
to analyze the traffic to detect vulnerabilities[1]. Other three approaches are important part
of this work and as such will be described in more detail below.

4.1.1 Scanner-based Approach

To understand rationale behind hybrid model being preferred over scanning, it is useful to
understand the method. Scanner is a software that generates network packets to actively
engage the targets in order to detect their presence and vulnerabilities.[1] This emulates
the standard behaviour of the malicious actor[1] that got access to the network - Port
enumeration, the primary method of reconnaissance. Scanner is deployed on a regular
machine connected to the network being scanned.

The existing approach is employing Nessus scanner, the software is provided by Tenable.io
vulnerability detection system. This approach does have its benefits: Currently the scanners
are already deployed in all of the live regions. It would save human resources, addressing
the problem of developing the installation and configuration automation as well as going
through the process of the deployment. Remote scans are less intrusive in terms of the
impact on the operation of the host being scanned, they are less likely to cause instability

19

and require no in depth analysis of the process as the commands that are used for the
probing of the installed processes are available in history of the user that was used to run
them.

Considering this agents might hardly seem like the improvement but scanners come with
their own inherent problems to consider: Firstly and most importantly the security risks
related to the direct shell access that is required for the scanner based patch auditing.
Granting ssh access from a single server to every server is a risk that can not easily be
overlooked. Especially when the requirements are either a root access or the comparable
permissions granted per-file or per-command bases, using chmod/chown1 and sudoers2file
respectively. Such permissions carry a risk of privilege escalation attack, therefore such
access is better avoided.

Another problem occurs as a result of the above described per-command/per-file
workaround. The need raises to automate sudoers and file permissions changes on
the machines that are being scanned. While the operating systems are the same across the
board with machines serving a very different purpose from one another this configuration
becomes almost unmanageable. Furthermore each update of the agent or the introduction
of the new plugin or type of scan will require rigours testing to adjust the permissions to
the new configuration.

4.1.2 Agent-based approach

Agent is as software ran on the machine that is being scanned, it runs with the sufficient
privileges to perform the necessary check, they are linked to the management solution and
provide required data for assessing vulnerabilities on the system.[1]

This mode of operating on the machine being scanned completely negates scanners biggest
flaw, ssh authentication as the roles are reversed and it’s now the client who initiates the
connection. With this benefit however come the flaws as well, agent is a service running
on the system that is mission critical and its impact on stability of such machines can have
a disastrous impact on the business.

Nessus agents also lack the ability to do network scanning, the agent performs rudimentary
checkup of open port using net on the machine it’s ruining on, while this eliminates the
unnecessary open ports issue on the hosting machine, visibility of other hosts on network,
for example networking equipment is none. This also relates to another major flaw of the

1The commands adjust the ownership of the file in Linux system
2This file is used to grant administrative privileges, to the user, it can also grant permissions to run certain

commands as root

20

agents, they have no way to discover rogue hosts - machines that should not be on network
but are. This could be a machine not properly taken down by the engineer or an attacker
introduced agent used to gain access to internal network. In both cases noticing such a host
is of crucial importance.

4.1.3 Hybrid approach

Hybrid means a combination of two things. this could mean any combination of the
approaches. So for the clarity’s sake, the hybrid model that this thesis addresses is the
combination of Nessus agent and Nessus scanner. With this comparison matrix it becomes

Figure 1. Agent vs. Scanner vs. Hybrid.

self evident that the hybrid model is superior compared to two alternatives, but the question
of performance impact of the agent still stands.

4.2 Understanding Linux Services

To measure the resource use of the service it is important to understand what service
is. Service in operating systems case is generally something that runs in a background,
automatically. It is also worth to mention that the definitions here will be in scope of the
systemd, which is more or less a standard for modern Linux distributions. systemd is
initialization system, it initializes the operating system during boot and continues managing
system processes and services afterwards.[14]

21

Services for systemd exist as service unit file. These files have the extension of ".service"
and are typical configuration files. It consists of one or several processes, a service can also
be a combination of several other sub-services. Processes under the service are combined
in a control group. control group usually referred as cgroup is a process organization
mechanism inherent to Linux kernel.[15] While cgroup is not a part of systemd, its
functionality still plays an integral role in the process of the service management.[14]

4.3 Testing Ground

The initial idea was to try out the agent in testing environment, but this proved harder than
expected. Providing connection from testing environment to live servers is an unnecessary
risk. Testing setup requires licence for tenable products and other non-trivial setup and
while a trail license can be obtained process is cumbersome. Luckily a new live region,
referred as PDX, was recently built. Currently there are some tests being done by different
teams to guarantee proper function of all services, only after this testing stage will the
region be open to customers. Testing stage usually takes one to two weeks, this provides a
suitable environment for testing the agents. Consequently a decision was made to do initial
deployment of the Nessus agents there.

4.4 Kubernetes

As already mentioned auditing containers is outside of the scope of this research; Thus
the Kubernetes nodes will be treated as typical machines and no work will be done inside
Kubernetes clusters. Reasons for this are twofold:

While the pods do in fact operate as a typical Linux machine, evaluating and patching
software for a container requires work with the image and a configuration file, not with
CLI of an actual machine like it would in a typical Linux VM.

There are already some checks in place for images that are deployed to Kubernetes, mostly
done by Snyk software that scans the company’s git repositories including docker files and
evaluates them, but discussing this solution also falls outside the scope of the research.

22

5 Practical Implementation

5.1 Installation Process of Nessus Agent

Automating the installation of the Nessus agent is not a trivial process. Unlike typical Linux
package, the agent is not available through the package manager. Nessus has no private
repository and their binaries are not hosted on public ones due to the licensing. Approach
offered from Tenables official site is not quite suitable for a large scale architecture as
mentioned in their own documentation [16]

Alternative offered by the Information Security team was a short script2 that makes an
API call to Tenable cloud with a specific license key, response is a script that downloads,
installs and configures the agent automatically.

curl -H \
’X-Key: ${LICENCE_KEY}’\
’https://cloud.tenable.com/install/agent?name=\
${AGENT_NAME}&groups=Servers,${REGION_DOMAIN}’| bash

Figure 2. The installation script for Nessus agent.

But after some discussion it was decided that running proprietary scripts from a third party,
even if this third party is an official provider should still be avoided, thus the decision
was made to distribute the package from our own storage solution using chef and ansible
(configuration management tools).

Another peculiarity of the installation process is the linking, or how it fails. If the agent was
uninstalled form the machine its unique identifiers, defined per machine are not removed
form tenable cloud, in such case the registration fails, to avoid

Nessus documentation warns against installing agents on a large scale infrastructure all
at the same time, this could cause a network congestion, while they are talking about
thousands of machines, it’s still worth to consider the effect of all machines upgrading at
the same time. [16]

23

5.2 Measuring Resource Use

There are countless ways to measure the resource use of the process on Linux but deriving
the service level measurement from this is somewhat of a complex challenge. Thus to
measure with the least amount of complexity and get the result that is easily readable
systemd’s accounting property was used. Commands: The output was ingested in the bash

systemctl set-property nessusagent CPUAccounting=yes
systemctl set-property nessusagent IPAccounting=yes
systemctl set-property nessusagent MemmoryAccounting=yes

Figure 3. Enable performance accounting in systemd.

script, streaming the time series data to JSON file, which was later visualised using Python
three’s matplotlib and pandas libraries.

Usually when performance is being measured it is worth to consider the idiosyncrasy
of different environments, but with the environment being fully virtual, with the same
architecture and the same operating system disparities are not likely. Thus the cloud
environment of the tests is not relevant to the outcome.

5.3 Analysis of the Agent

Initial observation on several machines revealed that in certain cases Nessus agents use
around 350 megabytes of memory while not actively performing an audit. Impact of such
high RAM utilisation can become a major problem for smaller machines, especially ones
with 4 gigabytes of memory and is still noticeable with 8 or even 16 gigabytes. This is
huge increase compared to 40 megabytes Tenable documentation describes [17]. Memory
use during the scan became even more noticeable.

5.4 Limiting the Memory Use

With systemd being as useful as it was with the performance measurement, it was only
logical to depend on the service to limit the agents memory use with systemd configuration.
For testing purpose the drop-in configuration was used, created via the command below.[18]
]

This limits the memory use allowed to the processes in this services cgroup and in case the
process exceeds the limit it is killed by the OOM killer.[18]

24

Figure 4. Memory throughout initial scan.

systemctl set-property nessusagent MemoryMax=50M

Figure 5. Enable performance accounting in systemd.

The thought process behind this decision was as follows:

■ 50M should be enough as the idle service is specified to be using around 40M[17]
■ In case the OOM killer kills the service it can be restarted by service config using

"restart=on-abort" property it has by default.[14, 18]
■ Even if the agent restart fails the audit scan can easily be re-initiated, yet the

performance problem will be resolved.

The check using this solution was performed on two different hosts, on three separate
instances with all three of them succeeding to report back to Tenable.

5.5 Implementing the Limit on Regional Level

After the success on a single machine the limit was implemented on the region wide scale
where it failed miserably. The limit was increased first to 100 and later to 200 megabytes,
yet the outcome was not changed. With OOM killer killing the service again and again.
This accumulated the errors from several hundred machines which were forwarded to
live log aggregating solution, effectively denying company’s internal service. As the
implication of this incident the trails will no longer continue in PDX or any other live
region.

25

6 Summary

Tasks undertaken throughout the work demonstrate that with the existing state of the affairs
Nessus agent is not ready to be deployed in any of the live regions.

Few important takeaways from the undergone processes are:

Nessus documentation while very vast is also somewhat limited and outdated. Agents
default configuration does not manage to mitigate the impact on underlying system. This
calls for the use of external tools to limit achieve this, in given case systemd did not show
it self as such tool.

Testing in live environments is dangerous and can have a disastrous impact, even if the live
region is not hosting clients and their data, such approach is always better avoided.

With these considerations the new testing environment needs to be developed to proceed
with the testing of the hybrid model.

26

Bibliography

[1] Park Foreman. Vulnerability Management. Auerbach Publications, 2010.

[2] Costs and Consequences of Gaps in Vulnerability Response. Tech. rep. Ponemon
Institute. URL: https://media.bitpipe.com/io_15x/io_152272/
item_2184126/ponemon-state-of-vulnerability-response-

.pdf.

[3] "Accessed: 10-05-2022. URL: https://www.pipedrive.com/about.

[4] Juan Angel Lorenzo del Castillo, Kate Mallichan, and Yahya Al-Hazmi. “Open-
Stack Federation in Experimentation Multi-cloud Testbeds”. In: 2013 IEEE 5th

International Conference on Cloud Computing Technology and Science. Vol. 2.
2013, pp. 51–56. DOI: 10.1109/CloudCom.2013.103.

[5] Kief Morris. Infrastructure as code: managing servers in the cloud. " O’Reilly
Media, Inc.", 2016.

[6] "Accessed:11-05-2022. URL: https://docs.chef.io/chef_overview/.

[7] "Accessed:11-05-2022". URL: https : / / docs . chef . io / platform _
overview/.

[8] "Accessed: 27-04-2022". URL: https://www-cms.pipedriveassets.
com / documents / ISO - IEC - 27001 - 2013 - Certificate - MRAS -

Pipedrive-v12.22.2021-1.pdf.

[9] Ahmad Nurul Fajar, Hendy Christian, and Abba Suganda Girsang. “Evaluation of
ISO 27001 implementation towards information security of cloud service customer
in PT. IndoDev Niaga Internet”. In: Journal of Physics: Conference Series. Vol. 1090.
1. IOP Publishing. 2018, p. 012060.

[10] "Accessed: 27-04-2022". URL: https://www-cms.pipedriveassets.
com/documents/Pipedrive-2021-SOC-3-Final-Report-1.pdf.

[11] Vickie Choe, David Taylor, and Aleksei Brizhik. “SOC 2 breakdown: a five-part
guide to understanding the service organization controls 2 report and its benefits”.
In: Internal Auditor 69.1 (2012), pp. 54–59.

[12] CMMI Product Team. “CMMI for Development, version 1.2”. In: (2006).

[13] "Accessed:10-05-2022". URL: https://www.ssae-16.com/soc-2/.

[14] Donald A Tevault. Linux Service Management Made Easy with systemd. English.
2022. ISBN: 9781801815031.

27

https://media.bitpipe.com/io_15x/io_152272/item_2184126/ponemon-state-of-vulnerability-response-.pdf
https://media.bitpipe.com/io_15x/io_152272/item_2184126/ponemon-state-of-vulnerability-response-.pdf
https://media.bitpipe.com/io_15x/io_152272/item_2184126/ponemon-state-of-vulnerability-response-.pdf
https://www.pipedrive.com/about
https://doi.org/10.1109/CloudCom.2013.103
https://docs.chef.io/chef_overview/
https://docs.chef.io/platform_overview/
https://docs.chef.io/platform_overview/
https://www-cms.pipedriveassets.com/documents/ISO-IEC-27001-2013-Certificate-MRAS-Pipedrive-v12.22.2021-1.pdf
https://www-cms.pipedriveassets.com/documents/ISO-IEC-27001-2013-Certificate-MRAS-Pipedrive-v12.22.2021-1.pdf
https://www-cms.pipedriveassets.com/documents/ISO-IEC-27001-2013-Certificate-MRAS-Pipedrive-v12.22.2021-1.pdf
https://www-cms.pipedriveassets.com/documents/Pipedrive-2021-SOC-3-Final-Report-1.pdf
https://www-cms.pipedriveassets.com/documents/Pipedrive-2021-SOC-3-Final-Report-1.pdf
https://www.ssae-16.com/soc-2/

[15] "Accessed:12-05-2022". URL: https://www.kernel.org/doc/html/
latest/admin-guide/cgroup-v2.html.

[16] Nessus Agent Large Scale Deployment Guide. "Last Revised: March 31, 2022",
"Accessed: 27-04-2022". URL: https://docs.tenable.com/other/
nessusagent/Nessus_Agent_Large_Scale_Deployment_Guide.

pdf.

[17] "Accessed: 28-04-2022". URL: https://docs.tenable.com/generalrequirements/
Content/NessusAgentHardwareRequirements.htm.

[18] "Accessed:11-05-2022". URL: https://www.freedesktop.org/software/
systemd/man/systemd.service.html#.

28

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://docs.tenable.com/other/nessusagent/Nessus_Agent_Large_Scale_Deployment_Guide.pdf
https://docs.tenable.com/other/nessusagent/Nessus_Agent_Large_Scale_Deployment_Guide.pdf
https://docs.tenable.com/other/nessusagent/Nessus_Agent_Large_Scale_Deployment_Guide.pdf
https://docs.tenable.com/generalrequirements/Content/NessusAgentHardwareRequirements.htm
https://docs.tenable.com/generalrequirements/Content/NessusAgentHardwareRequirements.htm
https://www.freedesktop.org/software/systemd/man/systemd.service.html#
https://www.freedesktop.org/software/systemd/man/systemd.service.html#

Appendix 1 – Non-exclusive license for reproduction and publi-
cation of a graduation thesis1

I, Giorgi Zeikidze

1. Grant Tallinn University of Technology free license (non-exclusive license) for
my thesis "Evaluating and Remediating the Performance Impact of Vulnerability
Management Software at Pipedrive", supervised by Kristian Kivimägi
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

16.05.2022

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

29

Appendix 2 - Disclaimer

Given work is done in collaboration with Archil Kristinashvili, thus Introduction, back-
ground, general problem statement and general summary chapters will be the same.

30

	Introduction
	Background Information
	IT Infrastructure in Pipedrive
	Infrastructure Engineering Practices
	Networking Infrastructure

	Standards and Frameworks
	ISO27001
	SOC
	CMMI

	Problem Statement and Assignment
	Methodology
	Vulnerability Assessment Approaches
	Scanner-based Approach
	Agent-based approach
	Hybrid approach

	Understanding Linux Services
	Testing Ground
	Kubernetes

	Practical Implementation
	Installation Process of Nessus Agent
	Measuring Resource Use
	Analysis of the Agent
	Limiting the Memory Use
	Implementing the Limit on Regional Level

	Summary
	Bibliography
	Appendix 1 – Non-exclusive license for reproduction and publication of a graduation thesis
	Appendix 2 – Disclaimer

