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Abstract 

According to estimates, the future IoT will accommodate around 50 billion nodes by the 

year 2025. The deployment of billions of these IoT nodes in hardly accessible areas 

demand for deploy-and-forget type installations where batteries pose a single greatest 

threat to the vision of a sustainable IoT. Replacing and disposing of billions of batteries 

is not only impractical and costly in terms of maintenance but is also a severe threat to 

the resources of our planet. That is why battery-less IoT nodes are considered as the 

next crucial step towards a sustainable IoT. 

Battery-only designs are not an option since their limited lifetimes require expensive 

maintenance. Energy-Driven Systems (EDS), that are powered from energy harvesting 

sources, seem to offer an alternative and promising solution for the realization of 

battery-less IoT nodes. However, since the Harvested Power (HP) from miniaturized 

harvesting sources is generally low and unstable, an HP-node cannot operate in the 

same way as a battery-powered system. Hence, it is crucial to optimize the IoT nodes, 

both from the hardware and software perspectives, so as to efficiently utilize the 

scarcely available and highly unpredictable harvested energy. 

With such an aim to utilize the harvested energy from various ambient energy sources in 

an efficient manner, this thesis combines the techniques of transient computing, 

approximate computing and energy/data prediction models so as to reduce the energy 

consumptions and prolong the life-time of the nodes.   

These techniques are applied in a test-bed consisting of two nodes that combine Texas 

Instruments MSP-EXP430FR5739 kits (FRAM-based micro-controllers) with CC2500 

radio module evaluation kits. Building upon the Compute Through Power Loss utility, 

the various techniques are implemented for different cases, which illustrate their 

potential in terms of power, memory, and communication efficiency. 

Our experimental results show that the accuracy lost due to incorporation of 

approximations depend on the nature of the data and the number of approximated bits. 
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In case of data that is represented only in lower order bits, a 1-bit approximation gives a 

mean percentage error of 11.11%. However, in case of data that can be represented in 

higher order bits, a 1-bit approximation gives a mean percentage error of 1.06%, and a 

2-bits approximation gives a mean percentage error of 6.11%. Our results also show that 

the number of radio transmissions could be reduced by 10%, 20%, and 30% through the 

incorporation of approximations.  

This thesis is written in English and is 64 pages long, including 5 chapters, 23 figures 

and 13 tables. 
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Annotatsioon 
Juhu- ja lähendarvutus passiivsetel mikrokontrolleritel 

Hinnangute kohaselt sisaldab tuleviku IoT (asjade Internet) aastaks 2025 umbes 50 

miljardit sõlme. Nende miljardite IoT-sõlmede kasutuselevõtt raskesti 

juurdepääsetavates piirkondades nõuab paigalda-unusta (deploy-and-forget) seadmeid, 

kus akud on suurimaks ohuks jätkusuutliku IoT visioonile. Miljardite akude asendamine 

ja hävitamine ei ole mitte ainult ebapraktiline ja kulukas, vaid see kujutaks endas ka 

tõsist ohtu meie keskkonnale. Seepärast peetakse passiivsete IoT-sõlmede arendust 

järgmiseks oluliseks sammuks jätkusuutliku asjade Interneti suunas. 

Ainult akutoitel põhinev disain ei ole vastuvõetav, kuna piiratud kasutusiga nõuab 

kulukat hooldust. Energiasäästlikud süsteemid (EDS - Energy-Driven Systems), mis 

töötavad energia lõikuse (energy harvesting) allikatel, näivad pakkuvat alternatiivset ja 

paljutõotavat lahendust passiivsete IoT-sõlmede realiseerimiseks. Kuna aga väikesest 

energia lõikuse seadmest pärinev kogutud energiatase (HP-Harvested Power) on üldiselt 

madal ja ebastabiilne, ei saa HP-sõlm töötada samamoodi nagu akutoitega süsteem. 

Seega on ülioluline optimeerida IoT-sõlmede riist- ja tarkvara, et tõhusalt ära kasutada 

raskesti kättesaadavat ja äärmiselt ettearvamatut kogutud energiat. 

Käesolev töö ühendab juhu- ja lähendarvutusmeetodeid ning energia ja andmete 

prognoosimudelite tehnikaid, et vähendada IoT-sõlmede energiatarvet ning pikendada 

nende eluiga. 

Neid meetodeid rakendatakse kahest sõlmest koosneval testplatvormil, mis sisaldab 

FRAM-põhiseid mikrokontrollereid (Texas Instruments MSP-EXP430FR5739) ja 

raadio-arendusmoodulit (CC2500). Tuginedes juhuarvutuse võtetele (CPTL - Compute 

Through Power Loss) rakendatakse mitmeid tõhusaid võimsuse ja mälu kasutamise ning 

kommunikatsiooni tehnikaid.  

Katsetulemused näitavad, et lähendusarvutuste tõttu kaotatud täpsus sõltub andmete 

iseloomust ja bit-lähenduse sügavusest. Juhul kui andmed on esitatud ainult nooremates 

bittides, siis 1-bitine lähendus annab  keskmiseks veaks 11,11%. Kuid andmete puhul, 
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mis on esitatud vanemates bittides,  annab 1-bitine lähendus keskmise vea 1,06% ja 2-

bitine lähendus annab keskmiseks veaks 6,11%. Tulemused näitavad, et 

lähendusvõtteid kasutades saab raadioside aega vähendada 10%, 20% ja 30%. 

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 64 leheküljel, 5 peatükki, 23 

joonist, 13 tabelit. 
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1 Introduction and Motivation 

Thanks to rapid advances in the design processes of semiconductor electronics, the 

power consumption of embedded IoT devices has reduced significantly. However, the 

demand for long-term deployments and virtually unlimited lifetimes of IoT devices is 

still at large and the energy consumption of existing IoT devices is considered as one of 

the most crucial issues in today’s IoT and WSN (Wireless Sensor Networks) 

applications.  

Today’s battery-powered IoT devices are resource limited; they cannot sustain their 

power for longer periods of time and need battery recharges and/or replacements so as 

to sustain themselves for longer periods of time. The power management of such 

battery-powered IoT nodes is a challenge so as to efficiently utilize the power of 

batteries for longer periods of time without any need for recharge or replacements. 

However, battery-only designs do not appear to be sustainable on the long term since 

their limited lifetimes require expensive maintenance.  

As an alternative to battery-powered systems, Energy-Driven Systems (EDS) are 

powered from ambient energy sources and offer promising solutions for the realization 

of battery-less IoT nodes [1]. EDS can be used in conjunction with existing battery-

powered systems, or they can replace the existing battery-powered systems with stand-

alone Energy Harvesting (EH) sources. Replacing the battery with the EH source leads 

to battery-less or energy autonomous devices also referred to as Internet of Battery-less 

Things (IoBT). 

EH sources transform the energy absorbed from the ambient sources (e.g. solar, thermal, 

air) in the environment to electrical power, which is then converted to direct current 

(DC) for powering up the sensor/IoT nodes. EH sources usually produces irregular 

power due to time-based deviations in the environment such as wind speed, time of the 

day, availability of light, changes of temperature and weather conditions [2]. This 

uncertainty in the availability of energy from the ambient sources raises new challenges 

in the development of reliable energy efficient sensor nodes. For example, solar cell 
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power production variations are not only limited to the 24-hour cycle in the solar energy 

but also depends on the sensitivity, position and orientation of the cells; similarly, wind 

power source deviations occur because of the changes in the speed and direction of 

wind. As per the variations and even temporary unavailability of the EH sources, there 

can be substantial interruptions in the execution of the IoT end device and will not be 

able to operate as a battery-powered system where the power is constant for as long as 

the battery is alive.  

Various techniques such as Transient Computing (TC) [2], Approximate Computing  

(AC) [3], and Energy/Data Prediction models (E/DP) [4] have been proposed in the 

literature not only to optimize the Energy-driven (battery-less) IoT nodes both from the 

hardware and software perspectives, but also to cover the intrinsic issues of EH sources. 

Also from the hardware perspective, Non-Volatile Memories (NVM) based 

architectures (i.e., Ferroelectric RAM (FRAM) and Magnetoresistive (MRAM)) are 

currently in use to achieve power and performance efficiency as compared to flash 

memory based approaches [5]. 

Flash memory uses bit-cells that need to be erased in order to rewrite a logic 0 or 1 to it 

and this erase operation requires higher voltage due to which it is more energy 

consuming and also presents asymmetric read and write operation timings, which 

complexifies latency in the system. On the other hand, FRAM uses polarization on the 

ferroelectric capacitor to distinguish between the logic states and does not require erase 

operation. FRAM also uses destructive read with an instantaneous write operation due 

to which there is no latency or overhead in the system. Additionally, FRAM has 10 

orders of magnitude higher endurance than the approximate endurance of 105 

erase/write cycles of the flash memory [6]. 

With a motivation to design an FRAM-based IoT node that could possibly sustain the 

frequent power losses and variations of ambient energy sources and efficiently utilize 

the available energy, this thesis combines the techniques of TC and AC along with 

prediction/DP models to prolong their life time and paves the way towards self-

sustainable and maintenance free battery-less IoT nodes.  
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1.1 Problem Statement 

As discussed earlier, improvements at the software and hardware ends are required to 

gain more energy efficiency. This becomes more challenging due to limited hardware 

resources of the IoBT devices and the irregular power supply from the ambient energy 

source.  

In this thesis several techniques such as TC, AC and DP are used to increase the lifetime 

of the IoT end devices.  This MSc thesis is part of a research effort conducted at 

Thomas Johann Seebeck Department of Electronics. In [7], a working prototype 

combining an FRAM-based node, TC, and EP has been implemented on a Texas 

Instruments MSP430FR5739 microcontroller and CC2500 radio module. The key idea 

is illustrated in Figure 1. 

 

 
Figure 1. Illustration of the available energy and communication states at different Vcc (voltages). The 
communication states are decided based on the predicted energy; saving and restoring state and data of 
the microcontroller is enabled thanks to the FRAM technology and the CTPL library. Figure inspired 
from [7]. 

Figure 1 illustrates how an EH source powers a node comprising a Texas Instrument 

MSP430FR5739 microcontroller combined with a CC2550 RF module. The next energy 
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level is predicted and the node communicates with its peer (which has the same 

hardware combination) until the voltage prediction level drops to a configurable 

threshold level (here 2.9 V). Below the 2.9V threshold, the node stops communicating. 

The node then takes a snapshot (in the non-volatile FRAM) of the current state of the 

microcontroller and hibernates when VCC further drops to the 2.5V transient computing 

threshold level. If the voltage level further drops to the so-called no energy threshold 

level of 1.9 V, the node is not operating. When the energy is back and the voltage rises 

above 1.9 V, the processor restores the state where it was when TC triggered. Finally, 

above 2.9 V the node turns on its radio again and proceeds with the communication. EP 

is used to anticipate significant power losses (to properly terminate the communication 

between the nodes) and very short power losses (to avoid unnecessary save and restore 

steps).   

The existing setup provides a suitable platform towards battery-less nodes. However, 

there is room for further improvements; thus, the main purpose of this thesis is to 

augment the existing setup with techniques that would allow increasing the power, 

memory, and communication efficiency of the system. As a novelty of this thesis, 

software based approximate computing (AC) techniques [3] is introduced in the system 

to increase the amount of information that can be transmitted within the available 

bandwidth. Moreover, Line-P prediction model, previously used for EP, is now used for 

DP (in particular detecting if information is changing); this, in turns, allows making 

decisions regarding whether or not to transfer information. 

To achieve the above, the following goals have been defined: 

• Analyze the existing system architecture and source code; 

• Identify AC opportunities in the existing system and implement them; 

• Define and implement a data prediction mechanism; 

• Define a transmission control strategy based on data prediction and implement 

it; 

• Analyze the results in terms of power, memory, and communication efficiency. 
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1.2 Organization of the thesis 

The rest of this thesis is organized as follows. Chapter 2 presents the background 

information on NVMs, EDS, TC, AC and DP. Chapter 3 presents the experimental 

setup, including the hardware platform and the various software modules used and 

developed. Chapter 4 presents the results in terms of current consumption, TC, DP, AC, 

and radio control. Chapter 5 concludes the work and suggest a few perspectives.
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2 Background 

This chapter aims to study the different techniques to comprehend the range of 

approaches for EH IoT nodes. It also shows the overview of the state of the art literature 

of different techniques including the challenges towards the sustainable EH IoT 

technologies.  

As discussed earlier, several techniques such as TC, AC, and EP can be used to reduce 

the cost and increase the energy efficiency of the IoT devices. In TC, the energy buffer 

is removed, and the load is directly connected to the energy supply but as the source is 

subject to variations, it makes the system more unstable, meaning that if the power is 

not sufficient for the load then it will turn off and when the power is restored again then 

the system starts back from the beginning. As a solution to this problem, snapshots of 

the state of the system are taken at periodic checkpoints to NVM; they can restore the 

system from the same checkpoint at a later time when the energy will be available [8]. 

However, inflexible, periodic checkpoints in the system creates an overhead. In order to 

remove the overhead created by the unused checkpoints, EP can be used to predict the 

energy using historical data and thus reducing the number of unnecessary checkpoints. 

Moreover AC can used to reduce the energy consumed for the communication between 

the nodes and introduce error tolerant systems.  

2.1 Non-Volatile Memories 

NVMs are a type of memories that retains data after losing power. In computers, a 

Read-Only Memory (ROM) is such a NVM, but as the name suggests, it is only 

readable, and the data can be written only once. In embedded systems, the embedded 

code and data records can be stored in the ROM. ROM can be categorized into mask 

read only memories, which are PROM (Programmable Read-Only Memory), EPROM 

(Electrically Programmable Read-Only Memory), and EEPROM (Electrically Erasable 

and Programmable Read-Only Memory).  

The other main type of memory is volatile memory, the most common one being called 

Random Access Memory (RAM) and as the name suggests, RAM loses its data if the 
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power is turned off. RAM can perform both read and write operations and can be further 

divided into two sub categories called SRAM (Static RAM) and DRAM (Dynamic 

RAM). 

The main difference between SRAM and DRAM is that after each write operation, 

SRAM keeps data as long as power is available, while the data needs to be refreshed 

(i.e. overwritten) in DRAM.  

2.1.1   Available NVMs 

There are different types of NVMs but in most of them, an NVM cell is based on a 

MOS (Metal-Oxide Semiconductor) transistor having a source, drain, control gate and a 

floating gate. Charges are stored and retained in the floating gate when the power is 

removed. All floating gate memories have same cell structure [9].  

Due to the data retaining strength of NVMs, they are used in most of the consumer 

products. Flash memory is the mostly used NVM; flash memory uses a memory cell 

allowing high reliability and low power consumption. As NVM is developing, new 

technologies and types of NVMs are emerging day by day.  

2.1.1.1 Flash memory 

In 1980, Toshiba’s then factory manager Dr Fujjo Masuoka invented Flash memory [9] 

and proposed it for the first time in 1984 [10]. It is commonly used in computers and 

other electronic devices for the storage of important data that needs to be saved if the 

power is removed. Flash memory has the advantage of removing the unwanted clusters 

of data without removing the memory chip.  

Flash memories uses large memory cells which are grouped in blocks comprising of 

memory arrays. Charging the floating gate in the transistor can program these blocks. 

2.1.1.2 FeRAM/FRAM (Ferro electric Random-Access Memory) 

FRAM is another kind of widely used NVM as they preserve data even in the absence 

of power supply signal. A ferroelectric capacitor is used as a storage element in each 

memory cell that stores a logic state based upon electric polarization of the capacitor. 

The non-volatility nature of the FRAM comes due to using ferroelectric material as the 

dielectric of the cell’s capacitor. The memory cell is composed of ferroelectric capacitor 

and an access transistor, which stores logical data ‘0’ or ‘1’ depending on the electrical 
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polarization state of the ferroelectric capacitor. Ferroelectricity is a physical property 

where a spontaneous polarization of the electric dipoles is generated by applying 

external voltage to electric dipoles arranged in the ferroelectric material [9]. 

FRAMs are generally classified into two types; one type operates by detecting a change 

in charge amount stored in the ferroelectric capacitor and the second type operates by 

detecting a change in the resistance of a semiconductor due to spontaneous polarization 

of the ferroelectric material. 

The applied voltage across the ferroelectric capacitor polarizes the ferroelectric material 

according to the direction of an electric field. FRAM features are high speed, low power 

consumption and high rewriting. A general comparison of the common RAM types is 

given in Table 1.  

Table 1. Comparison of FRAM with other memory products. Table inspired by [9]. 

Memory 
Products 

*1 
SRAM 

*2 
DRAM 

*3 EEPROM *4 FLASH *5 
FeRAM 

Memory type Volatile 
backup 

Volatile Non-volatile Non-volatile Non-
volatile 

Read cycle (ns) 12 70 200 70 110 

Internal write 
voltage (V) 

3.3 3.3 20 (supply 
voltage 3.3V) 

12 (supply 
voltage 3.3V) 

3.3 

Write cycle 12 ns 70 ns 3 ms 1 s 110 ns 

Data write Overwrite Overwrite Erase + Write Erase + Write Overwrite 

Data erase Unnecess
ary 

Unnecess
ary 

Byte (64 byte 
page) 

Sector (8K / 
16K /32K /64K) 

Unnecessar
y 

Endurance ( # of 
rewrites) 

Infinite Infinite 1E5 1E5 1E10 to 
1E12 

Stand-by 
current (uA) 

7 1000 20 5 5 

Read operation 
current (mA) 

40 80 5 12 4 

Write operation 
current (mA) 

40 80 8 35 41 

                                                
 
1 Note *1: 512K x 8bit, *2: 2M x 8bit, *3: 8K x 8bit, 4: 1M x 8bit, *5: 8K x 8bit 
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As shown in Table 1, all the other available memories have drawbacks: for instance, 

DRAM and SRAM are fast but volatile, also SRAM are comprised of large cell sizes. 

EEPROM and Flash are non-volatile but slow and have lower write speeds. On the 

other hand, FRAM is faster and consumes less energy than the other available and low-

cost memories, which makes it more suitable for low power applications as targeted in 

this work.  

2.1.2 Emerging Non-Volatile Memories  

Due to the limitations of the aforementioned memories, there is a dire need for high 

speed, high write endurances and small size. Some of the emerging NVMs are 

Magnetoresistive Random Access Memory (MRAM), Conductive Bridge Random 

Access Memory (CBRAM), Phase Change Random Access Memory (PRAM), Silicon-

Oxide-Nitride-Oxide-Silicon (SONOS), Resistive Random-Access Memory (RRAM), 

Racetrack memory, Nano Random Access Memory (NRAM). These memories are 

under research to make it more feasible to implement them in IC technologies. MRAM 

is non-volatile, fast, consume very little power and are not prone to write cycle 

limitations. MRAM uses magnetic orientations to retain data in its cells. Nowadays 

MRAM is also available on the market; as shown in Table 2, it has higher speed than 

FeRAM but due to higher price it is not considered feasible for low cost, low power 

application devices. Table 2 shows the differences and comparison of the available 

memories in the industry.  

Table 2 Comparison of available NVMs. Table inspired by [9]. 

 MRAM  SRAM DRAM Flash FeRAM 

Read Speed Fast Fastest Medium Fast Fast 

Write Speed Fast Fastest Medium Low Medium 

Array Efficiency Med/High High High Med/Low Medium 

Future Scalability Good Good Limited Limited Limited 

Cell Density Med/High Low High Medium Medium 

Non-Volatility Yes No No Yes Yes 

Endurance Infinite Infinite Infinite Limited Limited 

Low Voltage Yes Yes Limited Limited Limited 

Complexity Medium Low Medium Medium Medium 
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Please note that this MSc thesis does not seek to gain a deep understanding of these new 

memories but rather presents an overview; the work presented later is based on already 

commercially available FRAM-based microcontroller from Texas Instrument. 

2.2 Energy Driven Systems 

EDSs can be categorized broadly into the following classes and subclasses.  

2.2.1 Transient Computing Systems (TCS) 

The word transient means lasting only for a short time and computing means to 

calculate or compute; so, combining both words gives us transient computing that 

means temporary or non-lasting computations. In the computing world, TCS is a generic 

term and refers to all those systems that are capable of providing correct operation 

despite experiencing frequent power losses [1] and is often used in combination with 

EH and NVM. 

To remove the hustle of charging or replacing the battery, interest is growing for 

powering the IoT devices from the ambient sources available in the surroundings. As 

discussed earlier, EH techniques have their challenges due to constrained and irregular 

supply and this irregular supply is the due to the variations in the surroundings. 

However, as a traditional approach, this issue can be resolved by adding an energy 

buffer such as super-capacitor between the source and the load and provides stable 

supply to the system. The disadvantage associated to the energy buffer is that it adds 

additional cost, weight and runtime for its charging and discharging [8]. 

As a solution to the aforementioned problem, TC can be used to directly power the 

system with the EH method and saves a snapshot of the microcontroller state when the 

system senses instability in the power. The system usually takes snapshot of the system 

after certain intervals of time and if the node dies due to power loss, it retains the 

snapshot and once the power is available, and the system resumes from the previous 

saved checkpoint.   

Scientists and researchers have developed several techniques in the recent years. Works 

done on TC have not been limited to the implementation processes but also includes the 

combination of other techniques, such as EP and AC. Several types of TC techniques 
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have been proposed so far which are used to optimize the available energy and take a 

snapshot of the system at certain stage before the power loss so it can be retained later at 

the availability of power source. TC techniques can be classified into generic TC 

systems, Power Neutral Systems (PNS) and Energy Neutral Systems (ENS). 

Power Neutral Systems (PNS): Directly coupled systems that adjust their performance 

and adapt themselves to the harvested power are called Power Neutral Systems (PNS). 

In Figure 2, the presence of a harvesting-aware computational load brings power-

neutrality into the system where a power conversion unit may or may not be present. 

Systems using Dynamic Routine Adjustment (DRA), Dynamic Frequency Scaling 

(DFS), or a combination of both, are examples of PNS [1].   

 

Figure 2. PNS’s energy subsystem architecture in TC. Figure inspired by [1]. 

Energy Neutral Systems (ENS): These systems add intermediate components such as 

power regulators, power conversions and energy storage between the harvester and the 

load to make it look like a battery to the load. The added components increase the 

complexity, cost, mass and volume of the system. All Energy-Management-Unit (EMU) 

based systems are ENS [1], as shown in Figure 3.  

 

Figure 3. ENS’s energy subsystem architecture in TC. Figure inspired by [1] 

These techniques are summarized in Table 3 and generic TC techniques are explained 
further. 
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Table 3. Classification of recent studies in EH powered IoT nodes 

Type 

Notable 
work	

Platfo
rm 

Main Idea	 Advantage
s 

Disadvantages Contributi
on to 
further 
developme
nt	

Generi
c 

Memento
s[11] 

Softwa
re 

- Check-
pointing at 
strategic points. 
Interruptible 
- Computations 
for running over 
EDS. 

- A step toward 
battery-less 
computations. 

- Improving 
the 
reliability 
of EH 
nodes 
- Adding 
flexibility 
- Increasing 
the 
integrity of 
EH- nodes 

- No energy 
consumption 
evaluation 
- High 
overhead in 
energy and 
storage 
- Manual entry 
of Trigger 
points 

- Prototype 

- Technique 

Hibernus 
[12] 

Hardw
are 

- One snapshot 
before power 
failure. 

- Switching 
between Active 
and Hibernate 
state 

- Simplicity 
to TCS 
- No 
manual 
placement 
of trigger 
points 
 

- No energy 
consumption 
evaluation 

- Frequent 
capturing of 
snapshots 
-Manual input 
of threshold 
voltage for 
Active and 
Hibernate state 

- Technique 
- Platform 

Compute 
through 
power 

loss 
(CTPL) 

utility by 
TI [13] 

Hardw
are 

- Hibernus like 
system 

- Open 
source 
- Simple 
- Available 
 

- No energy 
consumption 
evaluation 
-Only three 
levels 
available 
- Only works 
with 
MSP430FR 
microcontrolle
rs 

- Prototype 
- Platform 

QuickRe
call [6] 

Hardw
are 

- Using unified 
memory system.  
- FRAM is used 
as RAM while 

- High 
throughput 
for taking 
snapshot 

- Slower due 
to usage of 
FRAM 
- No usage of 

- Technique 

- Platform 
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RAM is not 
used.  

and restore. RAM 
- Usage of 
inflexible 
fixed voltage 
threshold. 

Hypnos 
[14] 
(Not 

complete 
TC) 

Hardw
are  

-Uses ultra low 
power mode. 
- No NVM is 
used and instead 
SRAM and 
super-capacitor 
is used  

- Extreme 
voltage scaling 

- Ultra low 
power sleep 
mode. 
- SRAM is 
used 

- Loss of data 
if no power is 
available for 
longer period 

- Prototype 
- Technique 

Power 
Neutral 
System
s (PNS) 

Dynamic 
Frequenc
y Scaling 

(DFS) 
[15] 

Hardw
are 

-Change the 
frequency of the 
microcontroller 
with respect to 
the available 
power 

- High 
throughput 
- High 
productivit
y 
- Increased 
execution 
time 

- Only 
compatible 
with 
processors 
having 
frequency 
scaling 
capability 

- Prototype 

- Platform 

Dynamic 
Routine 
Adjustme
nt (DRA) 
[16] 

 

Softwa
re 

- Modulating the 
sleep and wake 
up routine of the 
microcontroller 
with respect the 
available power 

- High 
throughput 
- High 
charging 
time of the 
capacitor 

- Increased 
overhead 
- Increased 
sleep times 

- Technique 

Hibernus
++ [17] 

Softwa
re 

- Adaptive 
system to take 
the snapshot 
only once before 
the power 
failure. 
- Characterise 
the system 
properties and 
behaviour  
- Intelligently 
adapts hibernate 
and restore 
thresholds. 

- 
Autonomou
s set up of 
thresholds 
for 
hibernate 
and restore. 
- Low 
snapshot 
overhead 
 

- Higher 
computation 
overhead than 
Hibernus 

- Prototype 
- Technique 
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Dynamic 
Tasks 

Scheduli
ng 

(Enhance
d 

Hibernus
++) [18] 

 

Softwa
re 

- Scheduling 
tasks based on 
the available 
power 

- Reducing 
communica
tion 
workload 

- Only 
simulations 
available 
- Higher 
overhead than 
Hibernus++ 

- Technique 

ENZYM
E [19] 

 

Softwa
re 

- Frequency 
modulation and 
routine 
adjustment 

- High 
throughput 
- High 
productivit
y 

Combined 
overhead of 
DRA and 
DFS. 
 

- Technique 

Energy 
Neutral 
System
s (ENS) 

Energy 
Manage

ment 
Unit 

(EMU) 
based 

EDS [20] 

Hardw
are 

-Useful when 
tasks operate at 
different 
voltage/energy 
levels.  

-Execution 
continues in 
parts  

-Bridging 
the gap 
between 
operating 
levels of 
source/load  

-Much efforts 
on the design 
of EMU rather 
than original 
problem -No 
evaluation of 
the EMU 
based energy 
consumptions  

-Prototype -
Architectur
e -Platform  
 

Dynamic 
Energy 
Burst 

Scaling 
(DEBS) 

[21] 
 

Hardw
are 

-Execution of 
program in 
chunks of tiny 
tasks  

-Useful 
when tasks 
operate at 
different 
voltage/ene
rgy levels.  
-Execution 
continues 
in parts  

-Hardware 
overhead -
Sustainability 
issues -No 
evaluation of 
the EMU 
based energy 
consumptions  

-Platform  

-
Architectur
e  
 

EMU+D
EBS+ED 

S [22] 

Hardw
are/So
ftware 

-Speed 
estimation 
application 
based on an 
EMU based 
EDS  

-A reliable 
platform -
Battery less 
System -No 
maintenanc
e -Green 
application  

-Accuracy is 
power depende
nt  
-Lack of 
energy models  
 

- 
Application 

The most “fundamental” techniques are explained further in what follows. 



28 

2.2.1.1 Mementos 

Mementos is the oldest and basic technique of TC in which checkpoints at strategic 

points are taken during execution, meaning that it regularly saves snapshots of the 

system state to the NVM that allows it to return to a previous checkpoint after power 

failure. Checkpoints are taken at strategic points, but periodically, which is considered 

as the drawback for the technique, as it increases time and overhead due to unnecessary 

checkpoints. 

This technique has two parts, one is a set of program transformation passes and the 

other one is a so-called compact library. The former is used to insert energy-

measurement code at control points and the latter provides state check pointing and 

recovery functions. It can be integrated to the application using standard means. The 

goal of the Mementos design is to automatically resume and suspend the program 

without external intervention. The main principles of Mementos includes that it can be 

developed in any NVM hardware (although it has been evaluated using only Flash 

memory for experiments) and does not require any special hardware except voltage 

measurement in order to measure the voltage of the energy buffer. Voltage 

measurement circuitry is generally available on all devices operated on energy storage 

devices.  

The next principle is to argue about energy maximally during the run-time and 

minimally during the compile time. Reasoning about run-time energy availability at 

compile time was impossible due to variations in the energy sources. So, Mementos 

designs estimates energy at run time and insert energy checks at compile time.  

Mementos places trigger points and estimates the available energy, then it covers the 

main() function of the program with a code that restores execution from an available 

checkpoint.   

Mementos offers three different instrumentation strategies enabling it to instrument 

common structures to be compatible with any program. The following modes are used 

in order to support the instrumentation strategies. 

• Loop-latch mode: Loop-latch is a back edge that runs from the bottom to the top 

of the loop. Trigger points are placed at each loop-latch and check the input 

voltage level for each iteration of every loop in the program.   



29 

• Function-return mode: Trigger points are inserted after each function call, where 

Mementos checks the input voltage level each time the program returns from a 

function. 

• Timer-aided mode: This mode is used to reduce the frequency of check-pointing 

operations. This mode works with either the loop-latch or function-return mode. 

A hardware timer interrupt is inserted to set a flag at predefined intervals. Each 

trigger point checks the flag, if the flag is set then it proceeds for checking the 

voltage level. This mode is used to reduce excessive check-pointing and save 

energy. This energy saving make sure less energy is used in checking the voltage 

level that the run-time execution.  

A programmer can insert trigger points manually, instead of using the above mentioned 

instrumentation strategies, simply by including the header of the API provided by 

Mementos and placing the function calls without checking the input voltage level. An 

ADC is used to compare the input voltage against a predefined threshold [11]. If the 

input voltage is deemed to be failing (Vcc < threshold VTH), a snapshot of the system is 

saved to NVM. Regular polling of Vcc is required for this purpose that results in 

multiple snapshots being saved if Vcc fluctuates near the threshold and increases the 

time overhead of the performance of the system [23]. The frequency of the trigger 

points enables the ability of Mementos to precisely complete a checkpoint.  

The drawback of this technique is that it uses (slow) flash memory and has a very high 

overhead due to excessive check-pointing [11]. 

2.2.1.2 Hibernus 

Hibernus is the second technique proposed for TC. It is a refinement of Mementos. This 

approach saves the snapshot of the complete system to the NVM only once immediately 

before the system power failure. This technique uses FeRAM, as it is faster than Flash 

memory and easily integrated into low power application. FeRAM is exploited upon a 

power failure: it is used to store the microcontroller’s state snapshot by using the energy 

left in the microcontroller’s decoupling capacitance. Contrary to Mementos, Hibernus 

does not use any trigger points and has two states, i.e. active and hibernating states. 

Active state is when the input voltage is higher than the restore voltage (VR) and 

hibernating state is that when the threshold voltage (VH) is higher than the input voltage.  
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In the original paper [23], Hibernus is implemented on a Texas Instruments FRAM-

based MSP430 microcontroller and the internal comparator of the microcontroller is 

used to continuously check the input voltage and sends hardware interrupt if it crosses 

either hibernate or restore thresholds. Inside the interrupt service routine, a function is 

called to store the snapshot of the volatile memory and the registers into the non-volatile 

FeRAM, the check-pointing is set, and the system will enter into deep sleep mode. The 

energy stored in the decoupling capacitance of the microcontroller is used to save the 

snapshot of the system before going to deep sleep. This allows it to have low threshold 

voltage (VH), resulting in increased active period of the main program. While 

determining VH, the time needed to charge the decoupling capacitor is considered in 

order to have enough energy for saving the snapshot before a complete power loss.  The 

flowchart shown in Figure 4 illustrates the Hibernus approach. 

 
Figure 4. Flowchart illustrating the principle of Hibernus. Flowchart inspired by [23]. Hibernus stops the 
program normal operation if the supply is lower than Vh and goes to sleep after taking a snapshot. Once 
power is again available, it checks the snapshot if taken successfully and restore the state.  

Hibernus avoids excessive check-pointing and as a result, this technique is more energy 

and time efficient. This technique can make the system hibernate at any point during the 

execution of an application and is transparent to the programmer. The content of all 

registers and volatile memory are copied to the NVM in order to save a snapshot. The 

energy required, Eσ, to save a snapshot is calculated using Equation 1. 

Eσ =nαEα +nβEβ       [24]                                                                                                                 (1) 
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where nα is the size of the RAM in bytes and nβ is the number of bytes used by the 

registers, Eα and Eβ are the required energies for copying each RAM and register byte to 

the NVM, respectively. The microcontroller active voltage range lies between Vmin and 

Vmax. Given the total capacitance 𝐶, Equation 2 can be used to determine the energy 

Eδ stored in the microcontroller’s decoupling capacitor between a given voltage V and 

Vmin [24]. 

Eδ= ((V2−V 
min

2)/2). 𝐶   [24]                                                             (2) 

After determining the stored energy in the decoupling capacitor, the threshold voltage 

(VH) can be determined in order to ensure that the snapshot is saved completely.  

According to the authors of [12], the capacitance of the microcontroller is 16µF, the size 

of RAM in bytes is 1024, and the size of registers is 512 bytes. Moreover, Eα is 4.2 nJ 

and Eβ is 2.7 nJ in case of FeRAM. Substitution of the given data in Equation 1 gives 

that 5.7 µJ (Eσ) is consumed to store a snapshot of the system. To make sure that a 

complete snapshot is taken then the expression Eσ ≤ Eδ needs to be true. As the 

MSP430FR5739 works from Vmin = 1.9 V to Vmax = 3.6 V, using Eσ = Eδ and using 

Equation 2 gives the voltage as 2.17 V; to allow Vcc, an hysteresis is added by setting VR 

higher than 2.17 V.  

2.2.1.3 QuickRecall 

The next TC technique used as a solution to the problems of EH is QuickRecall [2]. 

This technique allows the FRAM to be utilized as RAM and thus the system works as a 

“unified memory system”, i.e. the RAM itself is not used and only FeRAM is used as a 

unified memory.  

In order to take a snapshot, the program needs to save the states of the processor and 

program to the NVM before a power failure. Previously, checkpointing was introduced 

and the application checked the input voltage level either periodically or at desired 

locations, which delays program execution and introduces additional overhead to the 

application. QuickRecall is designed in such a way that a checkpoint is triggered if there 

is a drop in the input voltage, meaning that the checkpoint is taken only if there is a 

forthcoming power loss; this results in the removal of the delay in the normal execution 

of program due to checkpointing. It is crucial for this kind of technique that the 
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checkpointing needs to be successfully completed before the complete power loss. For 

this, QuickRecall chooses an appropriate trigger voltage (Vtrig) to interrupt the program 

and start the checkpointing.  

To check the input voltage level, the microcontroller’s General Purpose Input Output 

(GPIO) pins are connected to an external comparator, which is then configured with a 

predetermined trigger voltage (Vtrig). The comparator checks the input voltage (Vcc) and 

compares it with the trigger voltage (Vtrig). If Vcc is smaller than Vtrig, it sends the signal 

output to the microcontroller [25].  

To take a complete snapshot, the system needs to store the state of the program, 

processor and configuration of the registers of various peripherals. All the mentioned 

states need to be retained and recalled as a function of the availability of power. The 

system needs to checkpoint periodically and store the contents of the RAM and the 

registers, which introduces checkpointing overhead. By definition, checkpointing 

overhead is the time needed to the snapshot of the system before a power-loss and 

wake-up overhead is the time taken by the system to restore on the availability of 

power. According to [25], the checkpointing and wake-up overhead of the techniques 

presented in the previous subsections are higher as compared to that of QuickRecall. 

MSP430FR5739 has internal non-programmable supply voltage supervisor (SVS) that 

monitors Vcc using comparator and its output proctors the program execution window 

[25]. For the MSP430FR5739, the value of Vtrig is required to be higher than values for 

SVSoff and SVSon. The typical values for SVSoff and SVSon  are 1.88V and 1.93V, 

respectively. Moreover, 2.0V is required for the safe operation of FeRAM. The 

capacitor discharge equation and the storage time enabled the calculation of Vtrig.  Vtrig 

was calculated as 2.0003V for the successful completion of checkpoint [25]. 

In the software, after taking the snapshot, a flag is set to check later if a checkpoint is 

stored or not. During the booting process, the program checks the flag. If the flag is set, 

then it initialises all the peripherals and checks if Vcc is higher than Vtrig, then the system 

restores the core registers, clears the flag and executes the main program. The flowchart 

shown in Figure 5 shows the software structure of this technique [25]. 
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Figure 5. Flowchart illustrating the software flow of QuickRecall. Flowchart inspired by [25]. After the 
start-up, QuickRecall checks the checkpoint flag and if the flag was set, it boots the processor and 
initializes the microcontroller. It waits for Vcc to go above Vtrig and then restores SR (Stack Register), 
GPR (General Purpose Register), SP (Stack Pointer) and if the flag is not set then the system goes through 
normal boot.  

A disadvantage of QuickRecall is that it relies on the processor for the use of FeRAM as 

a unified memory and by doing so, it introduces significant timing overhead and 

consumes more energy in write operation than with SRAM.  Moreover, it uses a fixed 

and inflexible threshold voltage (VH) to take the snapshot. An additional overhead varies 

depending on the application due to initialization of the microcontroller and the 

peripherals [26]. 
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2.2.1.4 Hibernus++ 

After considering the drawbacks of the previous techniques, a new technique was 

proposed to increase the efficiency of the system. The main goal of this technique was 

to reduce the overhead and increase the accuracy of system. Hibernus++ is the advanced 

version of Hibernus [17]. In particular, it has the ability to self calibrate and adapt the 

threshold and restore voltages in response to the load properties and source dynamics. In 

this technique the system characterises the hardware in order to set the threshold voltage 

(VH). This characterisation is done to increase the active time and reduce energy 

wastage. 

The flowchart shown in Figure 6 shows the working mechanism of the Hibernus++ 

technique. 

 

Figure 6. Working mechanism of the Hibernus++. Figure inspired from [17]. Hibernus++ self calibrates 
to find the threshold voltage if a snapshot was not saved previously, otherwise it restores the previous 
state. 
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When power is available, the system checks if it was calibrated or not. If the system was 

not calibrated previously, then it evaluates the rate of voltage drop in case of sudden 

power loss by running the calibration routine. During this routine, the system sets the 

threshold voltage (VH) to sleep. The system then checks the input power and tests if the 

power is sufficient for the sustainability of the system in active mode. If the input power 

is not sufficient then the system goes to sleep until the voltage reaches a sustainable 

value. The system checks if there was a previous attempt to take a snapshot; if the 

previous attempt failed, then it increases VH by 0.1 V and starts the execution from the 

beginning. If the system snapshot was taken successfully, then the system restores and 

continues normal operation until the input voltage drops below the threshold voltage 

(VH). If the input voltage goes below the threshold voltage then the system stores the 

snapshot and goes to sleep. If the input voltage recovers before going below the 

operating voltage of the microcontroller (Vmin), and the contents of the volatile memory 

are not lost, then the system resumes its operation without the need to restore the data 

from the snapshot, otherwise the system restores from the previous successful snapshot.  

As discussed earlier, check-pointing and polling increases the overhead. To reduce the 

overhead caused by checkpointing, Hibernus++ uses an adaptive approach, i.e. the 

system stores a snapshot only if the power loss is imminent. This approach involves the 

risk of losing all the data if a snapshot is not successful and the system needs to start 

computation from the beginning.  

Hibernus++ uses self-calibration routine to determine the threshold voltage at run-time 

in order to enable the system to take a snapshot using the energy stored in the 

decoupling capacitance of the microcontroller. Similar to Hibernus, an interrupt is 

configured to save a snapshot if the voltage goes below the threshold voltage. 
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Figure 7. Self-calibration of the threshold voltage VH. Flowchart inspired by [17]. Hibernus ++ begins 
self-calibrating during the start up and tries to save the snapshot if Vcc is at the initial level. If the attempt 
fails, the program increases the threshold voltage until a snapshot is taken successfully. 

The flowchart shown in Figure 7 shows the process of determining VH using self-

calibration routine. As shown, the system waits for the input voltage to reach the 

calibration voltage. Once both voltages are matched then the system disconnects the 

source using a switch and saves a snapshot the FeRAM. Then the system checks the 

input voltage and reconnects the source and closes the self-calibration routine.  

2.2.1.5 Compute Through Power Loss (CTPL) 

Texas Instruments (TI) provides the Compute Trough Power Loss (CTPL) software 

utility library as FRAM utilities for its low power FRAM-based MSP430FRXXXX 

microcontroller series. CTPL is a Hibernus-like approach and uses voltage thresholds to 

save the state of the CPU and its peripherals to the FRAM NVM before the loss of 

power. Once power is back, it restores the CPU and its peripherals and the program 

resumes from the point where it executed last. Comparator D of the microcontroller is 

used to trigger the interrupt in the program. This library can be integrated into the 

program and sometimes avoids the intensive start-up routine when it starts from the 

resume state. 
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CTPL stores the CPU states, key peripherals and stack from RAM to FRAM. After the 

availability of power, CTPL checks if an image was taken successfully and the program 

shall resume from the image or execute the C start-up routine. The C start-up routine is 

the C compiler runtime library which executes prior to the main() function. If the 

program needs to execute from the image, then the state of the CPU, key peripherals 

and stack are restored, which avoids the C start-up routine re-initialisation and saves 

significant amount of energy. The flowchart of CTPL is shown in Figure 8.  

 

Figure 8. Working mechanism of CTPL. Figure inspired by [13]. CTPL checks if a snapshot was taken 
and then restores the state; if a snapshot was not taken then it will go through initialisation process and 
once the voltage drops below threshold then it takes the snapshot 

The voltage thresholds for saving the state of the program are configurable. This can be 

chosen based on the system requirement of the application to provide enough energy for 

safe shutdown. The voltage measurement ability of the ADC10_B is used to measure 

VCC with a sampling rate of 1 kHz. Also, the built-in comparator in the 

MSP430FRXXXX can be used with an external voltage divider to provide a reference 

voltage on Pin P1.5 and trigger the CTPL in case the voltage drops below the threshold. 
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mode “LPM.5x”.  After entering LPM.5x, it waits for the device to enter a Brownout 

reset (BOR) if there is loss of power [27].  

The main disadvantage of CTPL is that it is designed for TI MSP430 FRAM-based 

microcontrollers and is not compatible with other platforms [27]. Moreover, its 

weakness is that if the voltage decrease rate is higher than 4.8 V/s, then the system will 

not detect the power loss and the snapshot will not be taken [7]. 

2.3 Energy Prediction 

Unlike battery operated IoT systems, it is impossible for a battery-less system to 

quantify the amount of available energy at a given time. As of today’s research, the 

energy consumption of the radio module in a node is higher than other operations 

including sensing or computing. EP of the EH is new paradigm to in order to control the 

radio or take other decisions based on the predicted energy. Researchers have proposed 

several EP models in the recent years for EH [4]. These models depend on different 

parameters such as time of the day, weather and historical data. One of the EP models 

proposed in our department is LINE-P EP model. 

2.3.1 LINE-P EP Model 

Line-P is a lightweight and near to accurate energy prediction model. This model has 

three classes and uses results of approximation and sampling theory [4]. Line-P takes 

into account the smooth variations and also the rapid fluctuations of the historic data 

and then predicts the short term and long term energy. In this model, sampling operators 

in Equation (26) of [4] are used to define three predictors.  

According to [4] LINE-P has three cases which are divided based on different levels of 

memory overheads and accuracy. It has been claimed by the author of [4] that LINE-P 

predictions are more accurate if the fluctuations on the source are smoother. 

The first and third cases of LINE-P use energy information from one of the previous 

days and take the previous samples from the same day to predict the next value. 

However, unlike other cases and models, the second case works only with the previous 

samples from the same day. This case is beneficial if the data from previous days are 

not available. As this case does not require the data from the previous days, it is more 
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memory efficient than the other prediction cases or models. However, according to [4], 

the Mean Square Error (MSE) and Mean Average Error (MAE) of Case II is higher than 

the other two cases of the same model.  

The equation that represents class II of Line-P EP model is as is as per Equation 3. 

 (SPREDII;af) (j) = 𝑎𝑘 𝑓(𝑗− 𝑘)!
!!!  [4]                                                               (3) 

Where j is the next time slot, m is the number of historic slots and 𝑎𝑘 is the coefficient 

and its values are derived in [4] as per (4), 

𝑎 = 0,0,0,0,0,0,0, !
!
, !"
!"
, !
!
,− !

!
,− !

!
,− !

!"
 [4]                                            (4) 

To make a single prediction, six samples are taken at different time intervals. For 

example, to predict the value for the next second, then the data from the previous six 

seconds are considered with different weightage to give the prediction value. The 

weightage of the intervals are derived in [4] and remain constant.  

This prediction model was given for the prediction of energy, but if the variations of the 

data are smooth, then this could possibly be used for the prediction of other types of 

data.  

2.3.2 Other Models 

Other EP models include fixed parameter weighting factor (FPWF) and Adaptive 

Neural Network (ANN) based EP models. FPWF based energy prediction models are 

Exponential Weighted Moving Average (EWMA) [28], Weather Conditioned Moving 

Average (WCMA) [28], Accurate Solar Energy Allocation (ASEA) [29], Q-learning-

based solar energy prediction (QL-SEP) [30], Pro-Energy (PROfile Energy Prediction 

Model for solar and wind energy harvesters) [31].  

EWMA uses the information from previous days combined with historical average of 

the data to predict the energy. This model is suitable for consistent weather and longer 

slots. 
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WCMA is the advanced form of EWMA and uses the mean value of the energy of the 

current and previous day to predict the energy for short term. This model is more 

accurate and less computationally complex. 

ASEA is proposed considering short-term conditions and unpredictable weather. This is 

based on the ratio between the real harvested energy and the predicted value. Although 

this model does not require as many historical data, according to its authors it produces 

less accurate predictions than WCMA [4]. 

Pro-Energy (PROfile Energy prediction model) uses the historic data from the past days 

to predict energy. This prediction model is designed for solar and as well as for wind 

energy harvesting sources. This model compares the current conditions with the past 

days and predicts the energy using the most similar day from the stored data. 30 minute 

data interval time slots are taken for Pro-Energy [31]. The results obtained from Pro-

Energy predictions are 60% better than that of EWMA and WCMA. Later on, Pro-

Energy with variable-length timeslots (Pro-Energy VLT) of 30, 60, and 90 minutes was 

introduced to increase the accuracy and reduce the memory and energy overhead [32]. 

QL-SEP also uses the data of the past days and the most recent weather conditions from 

the current day. In this model, the day is divided equally into slots. This model also uses 

EWMA. A daily ratio (DR) parameter is also introduced which is the energy average 

and shows if the energy increases or decreases in the slots. According to its authors, 

QL-SEP produces better prediction values than EWMA, ASEA and Pro-Energy [30]. 

However, this model is designed for longer slots and if the condition changes rapidly, 

then the model will not produce accurate predictions and involve higher computations 

than the other models [4].  

IPro-Energy is also based on Pro-Energy and compensates the inconsistencies in the 

weather conditions [32]. This model has low requirement for the storage of data and is 

less complex. Based on the results provided by its author, the predictions are more 

accurate for IPro-Energy as compared to Pro-Energy [33].  

Several ANN based models are also available for the short-term predictions of energy. 

One of these models uses three to five months of sliding window for training the 

network and it was shown by its authors that the five months window produced the most 

accurate results [34]. However, this model is not suitable for low performance IoT 
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nodes due to its requirement of minimum 3 months historic data. Moreover, it is not 

adaptive and less reliable than EWMA and WCMA algorithms, as it needs a large 

sliding window for training [32]. 

2.4 Approximate Computing 

Another approach associated with the energy consumption is AC. In the AC approach, 

systems trade-off accuracy and energy efficiency. AC comprises a wide and open range 

of hardware and software based techniques to make the system energy efficient at the 

cost of accuracy. This approach exploits the tolerance level of the degradation in quality 

of the application. Several research papers proposing different types of AC techniques 

have been published recently, showing that AC is (again) a hot topic for research.  

A taxonomy of proposed AC techniques is presented in [3] which compared the AC 

techniques in terms of visibility, determinism and granularity.  

Visible AC techniques are those in which the errors are introduced during the execution 

of any specific instruction. These errors are architecturally visible, whereas invisible AC 

techniques introduce errors to the system silently which make the error detection and 

correction more challenging.  

Deterministic AC techniques are those for which if there is a constant error for every 

input at the same initial state, and if the error is not constant and there is more than one 

error. Due to unknown error, debugging and testing of non-deterministic techniques can 

be challenging. 

AC techniques can be termed as coarse-grained or fine-grained. If the number of 

dynamic instructions and data footprint are reduced, then the system is coarse-grained 

otherwise the technique is fine grained.  

Table 4 inspired from [3] compares different AC techniques based on visibility, 

determinism and granularity. 
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Table 4. Taxonomy of Approximate Computing, inspired by [3]. 

Software Technique Visibility Deterministic Coarseness 

Approximate GPU kernels Yes Yes Yes 

Approximate Synthesis Yes Yes Yes 

Algorithm Selection Yes Yes Yes 

Code Perforation Yes Yes Yes 

Lossy Compression/Packing Yes Yes Yes 

Parallel Pattern Replacement Yes Yes Yes 

Bit-width reduction Yes Yes No 

Float to fixed conversion Yes Yes No 

Approximate Parallelization Yes No Yes 

Statistical Query Yes No Yes 

Synchronisation Elision Yes No Yes 

Hardware Technique Visibility Deterministic Coarseness 

Digital Neutral Acceleration Yes Yes Yes 

Interpolated memorisation Yes Yes Yes 

Approximate Warp Deduplication Yes Yes Yes 

Bit-width reduction (Voltage scaling) Yes Yes No 

Clock Overgating Yes Yes No 

Load value Approximation Yes Yes No 

Approximate Cache Coherence Yes Yes No 

Instruction Memorisation Yes Yes No 

Precision Scaling Yes Yes No 

Logical Simplifications Yes Yes No 

Reduced-Precision FPU Yes Yes No 

Analog Neural Acceleration Yes No Yes 

Approx Processors Yes No No 

Voltage Overscaling Yes No No 

Stochasting Logic Yes No No 

Approx. PCM Multi Level Cells Yes No No 

SRAM Soft Error exposure Yes No No 

Approximate Value Deduplication No Yes Yes 
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Approx. PCM Failed Cells No No No 

Low Refreshed DRAM No No No 

AC has been used in different applications and it depends on the level of error resiliency 

of the application. The authors of [35] proposed an AC based method for addressing the 

security challenges in IoT. In this method, LSBs of 32 bit segments in IEEE754 format 

are replaced to hide information and produce tolerable error while MSBs is used for 

precise information, as illustrated in Figure 10.  

 
Figure 9. Security embedding in IEEE 754 Single-precision floating-point format. Figure based on [35]  

In [36] several AC techniques are surveyed based on the strategies used to implement it. 

As AC is wide spectrum and not exclusive to the strategies presented in Table 4. One of 

the strategies presented in [36] is Precision Scaling, which is also used in this thesis. 

Precision scaling presented in [36] is the strategy to reduce the bit-width and decrease 

the computations and storage overhead.  

The authors in [36] also surveyed a different paradigm of precision scaling called 

Dynamic Precision Scaling (DPS). DPS was experimented on physics based animation 

to improve its efficiency and find the minimum precision required at the design time. 

DPS detects the instability in simulations during runtime by measuring the change in 

energy between consecutive simulation steps and comparing it with a predefined 

threshold. The system restores maximum precision, if it detects instability during 

simulations. Then the system reduces the precision progressively and detects its 

minimum value until the system is stable. DPS gives different optimization 

opportunities to the system and leads to a hierarchical architecture at different levels for 

Floating Point Units (FPU) with different precisions. It was shown by the authors that 

the use of their technique increased the efficiency by up to 50% and performance by up 

to 55% as compared to the single level baseline FPUs [37].  
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The survey also referred to another application using precision scaling for accessing off-

chip data to save energy. Precision scaling was applied to clustering problem based on 

mixed model with a requirement of access to off-chip data. The precision scaling is 

reduced to eliminate the possibility of functional error by keeping the correct order of 

the distance of cluster and samples. The authors of the proposed technique showed by 

implementing the technique that there was energy saving between 40 to 60 percent with 

unnoticeable loss in accuracy with a model deviation of 0.3 from the accurate data [38]. 

As AC has wide and open spectrum, interested readers can find additional explanations 

in the survey by S. Mittal in [36] and the taxonomy of AC by T. Moreau et al. in [3].  

This chapter has presented some background information related to NVMs, EDS, TC, 

EP, and AC. With the understanding gained through the chapter, it is now possible to 

establish an experimental platform to evaluate those techniques and propose techniques 

for data approximation and radio control. This is described in the next chapter. 
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3 Experimental Setup 

In this chapter, TC, DP and AP are used to implement an application for a battery-less 

wireless node. A test bed is set up to characterize the system and analyze the behavior 

of the application. Moreover, techniques for data approximation and radio control are 

proposed. 

3.1 Hardware platform 

Initial experiments were conducted using the following apparatus to replicate the power 

consumption results obtained in [7].  

• Two FRAM based EXP-MSP430FR5739 boards. 

• CC2500 Low Power 2.4 GHz RF Transceiver. 

• FLUKE 123 industrial scopemeter to monitor the TC benchmark. 

• KEYSIGHT E3630A DC power supply 

• HEWLETT PACKARD 34401A Multimeter 

On of the two nodes (Node 1) was powered using an USB power supply and used as a 

sender. To power the second node (Node 2) from EH source, a supply setup as shown in 

Figure 10 could be used, but this was not used in these experiments. For EH source, a 

voltage regulator with a low pass filter needs to be used at the input to stabilize the 

voltage. A voltage divider is used to divide the voltage in half and input at pin P1.5 for 

triggering the CTPL in case of voltage drop. A voltmeter is used to monitor the output 

of voltage divider and a scopemeter was connected with CTPL benchmark pin P4.0 to 

monitor if CTPL is triggered. An ammeter was connected in series with Vcc for 

monitoring the current used by the node.  

The setup is as shown in the diagram in Figure 10.  
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Figure 10. Schematic diagram for experimental setup of two nodes communicating using SimpliciTI. This 
setup is used to replicate that of [7]. 

3.2 Software modules 

A simple peer-to-peer example provided by Texas Instruments (TI) was used to set up 

the communication. The example uses SimpliciTI, which is Texas Instruments 

proprietary low power radio frequency communication protocol [39]. Additionally 

FRAM utilities also provided by TI was used to enable TC in the system. A finite state 

machine was used in [7] to establish a network using TC and it was modified to the 

following, as shown in Figure 11. 

EH Source and 
regulatory circuit. 

Ammeter 

EXP-MSP430FR5739 with 
CC2500 Radio Module 

NODE 1 

EXP-MSP430FR5739 with 
CC2500 Radio Module 

NODE 2 
CCS Debugger and 

Power supply 

Voltmeter 

Voltage divider 

GND

Scopemeter 

P1.5 Vcc 

P4.0 

GND 

CCS Debugger 

JTAG USB 

DC Power 
Supply 

Solar Panel Voltage 
Regulator 

Low-pass filter 
(Fc=100Khz) 

GND

JTAG USB 

Vcc GND 



47 

 

Figure 11. Modified finite state machine for TC and AC.. Figure inspired from [7] 

As shown in Figure 11 the system initializes the radio device, CTPL library from 

FRAM utilities, internal temperature sensor and ADC. After initialization, the system 

monitors Vcc. If the energy is available, then the system collects the sensor data. After 

collecting the data, the system moves to compute state. The system performs all the 

computations in the compute state. Once the computations are done, the system 

monitors the voltage and if the energy is available, then the system tries to establish link 

with its peer. If the link fails, it jumps back to Vcc monitoring state and if the link is 

successful, it goes to communicate state. Once the state machine is in the communicate 

state, then it sends the packet and after sending the packet the state machine jumps to 

Vcc monitoring state. After monitoring the voltage and if the voltage drops below 2.9V, 

the radio ends the communication and goes to sleep mode and if the power is available, 

then the system collects the sensor data and goes to compute state and does the 

computations for approximate computing. 

3.2.1 CTPL Mechanism 

A high priority interrupt is used for Comparator D of MSP430FR5739 to trigger CTPL. 

If Vcc drops below 2.5 V, then the CTPL is triggered and CTPL_enterShutdown() 

function is called, as shown in Figure 12.  
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Figure 12. CTPLexecution flow and its integration with the developed program. Figure inspired by [27] 

The interrupt service routine (ISR) disables all the other interrupts and takes a snapshot 

of the system by saving the peripherals and CPU stack to FRAM. Once the snapshot is 

taken, the system enters into low power mode (LPM) and waits for the system to enter 

the brown out reset (BOR) or time out after the availability of power.  

At the availability of power, the system initializes the radio module and SPI interface to 

communicate with the radio module. After initialization, it calls the CTPL_init() 

function which restores the peripherals and CPU stack from the stored snapshot. After 

restoring the snapshot, the interrupts are enabled and enters to the state machine. 
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3.2.2 Proposed approximation of data 

Once the state machine enters the compute state, it processes the data and embeds the 

equivalent of an additional byte of information to the existing eight bytes of 

information, keeping the size of the packet constant. To do so, the system splits the 

source byte to be embedded into the packet bytes into bits. Then the LSB of each the 

packet bytes are replaced with the information from the source byte and the packet is 

made ready to be transmitted. The flowchart for this technique is shown in Figure 13.  

Figure 13. AC execution flow for the developed program 

 



50 

3.2.3 Proposed Radio Control using DP 

LINE-P data prediction is added to the application to predict the future data and controls 

the radio based on the predictions. For a temperature monitoring application, the 

algorithm then checks the previous prediction errors and whether the absolute error for 

previous two predictions is less than 2 °C. It also checks if the difference between the 

current data and the predicted data is less than 2 °C. If both conditions are true, then the 

system put the radio to sleep and monitors the new data and Vcc. The system continues 

to collect the data and do the predictions and once the absolute predictions error is 

higher than 2 °C, or if three consecutive transmissions are missed, then the status of 

radio is set to awake and resumes transmissions. 

3.3 Challenges 

During the implementation process, several challenges have been encountered that 

include issues with hardware as well as software. 

3.3.1 Hardware related issues 

Initially it has been tried to implement the system and replicate the results from [7]. This 

was not possible as there were current leaking issues with the available off the shelf 

MSP430FR5739 microcontrollers. The main challenge was to identify the issue; 

however, using the trial and error method it was identified. To resolve this problem new 

devices were ordered which was time consuming. 

3.3.2 Software related issues 

To identify the hardware related issues, it was recommended to update the software and 

implement the project on a different system. But the new compiler and software were 

incompatible with our application. 

It was advised that maybe the issues are due to software. It was tried to start the project 

from scratch. However, different sorts of issues including incompatibility of the 

platforms, unavailability of the peer-to-peer example for MSP430FR5739 and lack of 

support from TI for SimliciTI protocol using MSP430FR5739 rendered this approach 

impossible. Due to these issues, it was recommended to use the available system 

instead. 
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This chapter has presented the experimental setup used in this thesis, including the 

CTPL implementation and modifications made the state machine of the application. 

Moreover, data approximation and radio control techniques have been proposed. The 

next chapter presents the results, which have been obtained with this setup. 
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4 Results 

Despite the previously-mentioned challenges, it was finally possible to produce the 

desired results in line with the objective of this thesis. This chapter presents theresults 

obtained based on the experiments that have been carried out using the experimental 

setup explained in the previous chapter. 

4.1 Current consumption 

Experiments were conducted to characterize the power consumption of one node in 

different states of the application. To find out the power consumption, the input current 

and voltage to the node were recorded at different states. It was noted that when the 

radio is in sleep mode, the maximum current drew by the node was 14 mA, while the 

node drew 20 mA when communicating with its peer. With a 3 V supply voltage, this 

translate to 42 mW and 60 mW, respectively. The characterization of the application 

with respect to power is shown in Table 5.  

Table 5. Power Consumption of MSP430FR5739 plus CC2500 radio module in different states of the 
application 

State Current (average) Voltage Power 

Idle 2 mA 3 V 6 mW 

Computations  14 mA 3 V 42 mW 

Linking 20 mA 3 V 60 mW 

Communicating 20 mA 3 V 60 mW 

4.2 TC Results  

TC results were replicated based on the work in [5]. Figures 14 and 15 show that the 

CTPL utility is triggered when the source voltage level goes below 2.5 V where the 

CPU state (PC, SP, GPR, Stack, Registers, etc.) is saved to the FRAM memory and 

retained for as long as the power is not available. Once the power is available again, the 

CPU state is resumed and processor starts working from the point where it stopped due 

to power loss. It can be seen from Figure 14 that CTPL was triggered when the power 
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loss happened (tested by manually decreasing the voltage using the power supply knob) 

and after the once the power was resumed, the CTPL Benchmark pin P4.0 toggled as 

shown. 

 

Figure 14. Triggering of CTPL utility in case of voltage drop 

When the reference input voltage at P1.5 was removed, the system triggered CTPL and 

then checked that the input voltage was available. As a result, the benchmark pin (P4.0) 

was toggling as shown in Figure 15.  

 

Figure 15. Triggering of CTPL utility (benchmark pin P4.0) in case of removing the reference input 
voltage at pin P1.5 
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4.3 DP results 

The dataset of the New York city wind-speed [40] was fed into the proposed data 

prediction algorithm (a slightly adapted version of LINE-P EP model). The selected 

data was recorded on 29/10/2012 starting from 8:00 am and collected for each hour. The 

six hours data was fed into our model to predict the future 1-hour data, as shown in 

Figure 16. 

 

Figure 16. Wind-speed data versus predicted data using the slightly adapted LINE-P energy prediction 
model 

Figure 16 shows the predicted results (in red) from the proposed technique along with 

the real data (in blue) for the wind speed in NY City. The results show that the predicted 

values are very close to the real values. However, minor errors do exist in the predicted 

values. Table 5 presents the MSE, MAE and MPE measured for both the real values of 

data and predicted ones. As the wind speed ranges from 0-100 km/h and in some 

instants the prediction errors are very high, so the MSE value of the whole dataset is 

68.74, as shown in Table 6. Considering the variations in the dataset, the obtained MAE 

is 5.76% and the obtained MPE is 19.5%. The error value is higher as it is due to 

squaring the individual errors and is amplified because of a few outliers.  

Table 6. MSE, MAE and MPE for DP of wind-speed 

Mean Squared Error (MSE) 68.74 

Mean Absolute Error (MAE) 5.76 

Mean Percentage Error (MPE) 19.5% 
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In the second case, a dataset of the daily temperature data of the city of Rome [41] was 

taken into account to be used in our DP model. Figure 17 presents the values of the real 

temperature values (in blue) and the predicted temperature values (in red). In this case 

the difference between the real and predicted values are visibly higher as the data range 

is small (0 to 16) and the variations are also higher.  

 

Figure 17. Temperature data versus predicted data using LINE-P energy prediction 

Table 7 lists the MSE, MAE and MPE between the real and predicted values. As the 

temperature ranges from 0 to 16 in one day, the MSE value of the whole dataset is 

lower. Considering the variations in the dataset, the obtained MAE is 1.66 and the 

obtained MPE is 21.0%.  

Table 7. MSE, MAE and MPE of DP for temperature in Rome 

Mean Squared Error (MSE) 4.58 

Mean Absolute Error (MAE) 1.66 

Mean Percentage Error (MPE) 21.0% 
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4.4 AC results 

In what follows, the results from incorporating approximate computing into the existing 

platform are presented. Our results illustrate that the benefits of exploiting approximate 

computing techniques into the existing platform are two folds. Firstly, more data can be 

incorporated into the existing data packet at the cost of losing a certain amount of 

accuracy. Secondly, the numbers of transmissions that are needed to transfer a certain 

amount of data from the sender to the receiver are reduced, at the cost of transmitting 

less accurate data. Both of these concepts are explained in the following. 

Incorporating AC in a single packet for adding extra information to be sent as part 

of a single transmission  

Initially, a single transmission was taken into account where a packet that is composed 

of 8 bytes of data is transmitted from the sender to the receiver. In the first case, the 

LSB of each of the 8 bytes of the data packet, i.e. 8 bits in total, are combined to enable 

the equivalent of an additional byte to be sent as part of the existing data of the packet. 

This can be seen in Figure 18. Reducing the data width of each byte by 1 bit frees 

12.5% of the total packet payload for the extra information to be carried at the cost of 

reduced accuracy. The maximum accuracy loss is in the range of ±1 for any integer 

data. 

Figure 18. Enabling the equivalent of 1 additional byte of information by approximating the single LSB 
of the 8 bytes of a packet, whereby the additional information bits are substituted to the approximated 
bits.  
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In the second case, the first two LSBs of each of the 8 bytes of the packet (i.e. 16 bits in 

total) were combined to enable the equivalent of an additional 2 bytes of information to 

be sent as part of the existing data of the packet. This is shown in Figure 19. The price 

for targeting 2 bits in each byte of the original 8-byte packet is that the data reduces 2 

bits of its accuracy but an extra payload of 25% is freed for the extra information to be 

transmitted as part of the existing data. The maximum accuracy loss for a 2 bit 

reservations is in the range of ±3 for any integer data. 

Figure 19. Enabling the equivalent of 2 additional bytes of information by approximating 2 LSB bits in 
each of the original 8 bytes of a packet, whereby the additional information bits are substituted to the 
approximated bits. 

In the third case, the first three LSBs of each of the 8 bytes of the packet (i.e. 24 bits in 

total) were combined to enable the equivalent of an additional 3 bytes of information 

that can be sent as part of the existing data of the packet. In this case the accuracy is 

further reduced but payload to transfer extra data is increased. Assuming that the 

application cannot tolerate more loss of accuracy, no further approximations are 

performed so as not to decrease the accuracy any further. 

Table 8 summarizes this whole concept of exploiting the existing payload of a single 

packet transmission by substituting the bits in the existing packet for sending additional 

information as part of the existing data. It is clear that as the number of substituted bits 

in each packet increases, the payload for extra information also increases but the 

accuracy drops accordingly.  
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Table 8. Added information through approximation and loss of accuracy in a single transmission 

Added information through approximation (in a single transmission scenario) 

Pac
ket 
Size 

Approxim
ated bits 
per Byte 

Added  
information 
per Packet 

Max Error 
occurrence    
(in 
integer) 

# of 
trans
missi
ons 

% of 
informatio
n per 
packet  

Power 
consumed per 
transmission 

8 
Byte
s 

0 0 Byte 0 

1 

100.0% 20 mA * 3.3 V = 
66 mW 

1 
1 Byte  

(approximated) 
±1 112.5% 

20 mA * 3.3 V = 
66 mW 

2 2 Bytes 
(approximated) 

±3 125.0% 20 mA * 3.3 = 
66 mW V 

3 3 Bytes 
(approximated) 

±7 137.0% 20 mA * 3.3 V = 
66 mW 

Incorporating AC in a multi node scenario where the data size and the number of 

transmissions required to send this data is taken into account 

In the second scenario, the number of transmissions from each device were taken into 

account by targeting the amount of data that is transmitted from the sender to the 

listener. No significant gains could be achieved by considering only a single 

transmission of 8 bytes of a packet. However, the number of transmissions could be 

reduced significantly if large chunks of data is taken into account. Let us consider a case 

where 80 bytes of data is to be sent from the sender to the listener such that 10 

transmissions are needed for all the data to be sent where each packet can carry 8 bytes 

of data.  

If the LSB of each byte of 80 bytes of this data is targeted, a total of 80 bits, i.e. the 

equivalent of an additional 10 bytes of data can be incorporated within the existing data 

size. So, out of 80 bytes of this data, the equivalent of 10 bytes are incorporated within 

the existing space, reducing the whole data size to 70 bytes at the cost of reducing the 

accuracy of the data bits by 12.5%. And to send 70 bytes of less accurate data with the 

same packet size of 8 bytes, only 9 transmissions are needed in total. Similarly, if 800 

bytes of data is considered, the transmissions could be reduced from 100 to 90 and so 

on. Table 9 summarizes these details with the actual number of transmissions needed for 

transmitting 100% of accurate data along with reduced number of transmissions for 

reduce-accuracy data and the corresponding percentage of accuracy loss.  
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The last column of Table 9 shows that these reduced number of transmissions are a 

multiple of the transmitting nodes when a multi-node scenario is taken into account. So, 

if a single device is to transmit 8K bytes of data in a single day, and if we can reduce 

100 transmissions through approximating the data, so in 1000 such devices that transmit 

8K bytes of data each, the total number of transmissions are reduced by 10K, which is 

expected to have a significant impact on the overall network efficiency in terms of 

energy and bandwidth. 

Table 9. Reducing the number of transmissions through approximation 

Reduced number of transmissions through approximation  

Transmiss
ion Data 

Approxim
ated bits 
per byte 

Added 
informatio
n per 
packet 

Number 
transmissio
ns per 
device 

Percentage of 
reduced 
transmissions 
per device 

Reduced number 
of transmissions 
in a multi node 
scenario 

8 Bytes  

0 0 

1 
No reductions 
possible in a 
single packet 

NA 
1 1 byte 

2 2 bytes 

3 3 bytes 

80 Bytes 

0 0 10 0% No. of Devices  

*  
transmissions/Dev
ice 

1 10 bytes 9 10% 

2 20 bytes 8 20% 

3 30 bytes 7 30% 

800 Bytes 

0 0 100 0% No. of Devices  

*  
transmissions/Dev
ice 

1 100 bytes 90 10% 

2 200 bytes 80 20% 

3 300 Bytes 70 30% 

8000 Bytes 

0 0 1000 0% No. of Devices  
*  

transmissions/Dev
ice 

1 1000 Bytes 900 10% 

2 2000 Bytes 800 20% 

3 3000 Bytes 700 30% 

 

The dataset of the New York city wind-speed of section 3.2.2 [40] was incorporated 

with a single bit (LSB) approximation for transmission from the sender to the listener. 

The results obtained at the listener were then analyzed. Figure 18 summarizes the results 

of original data vs. the approximated data. The graph shows that the approximated data 
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is almost identical to the original data as the two curves overall each other, i.e. the 

approximated graph is hidden behind the graph of original data.  

 

Figure 20. 1 bit approximation of the wind speed dataset of NY city (The real data and the 1 bit 
approximation curves overlap each other). 

Table 10 also depicts high accuracy since the values of the MSE, MAE and MPE are 

quite low.  

Table 10. MSE, MAE and MPE of approximated wind speed data of NY City 

Mean Squared Error (MSE) 0.33 

Mean Absolute Error (MAE) 0.33 

Mean Percentage Error (MPE) 1.06% 

 

Similarly, the temperature dataset of the Rome city of section 3.2.2 [41] was 

incorporated with a single bit (LSB) approximation for transmission. The results 

obtained at the listener are summarized in Figure 21. The graphs shows that with 1 bit 

approximation the accuracy losses are higher for this data set as compared to the 

previous one.  This is also depicted from the values of MSE, MAE and MPE as 

summarized in Table 11.  

Table 11. MSE, MAE and MPE of approximated temperature data of Rome City 

Mean Squared Error (MSE) 0.74 

Mean Absolute Error (MAE) 0.66 

Mean Percentage Error (MPE) 11.11% 
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Figure 21. 1bit approximation of the Temp dataset of Rome city 

Next, the incorporation of 2 bits approximation in the New York city wind-speed of 

section 3.2.2 [40] and the temperature dataset of the Rome city of section 3.2.2 [41] is 

summarized in Figure 22 and Figure 23 where the values of MSE, MAE and MPE are 

summarized in Table 12 and Table 13. The accuracy slightly decreases for both 

datasets, as expected.  

 

Figure 22. 2 bit approximation of the Wind dataset of the NY city. A few more differences between the 
real and approximated curves can be seen as compared to the previously shown 1 bit approximation. 
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Table 12. MSE, MAE and MPE of 2 bit Approximated Wind speed data of NY City 

Mean Squared Error (MSE) 2.61 

Mean Absolute Error (MAE) 1.36 

Mean Percentage Error (MPE) 6.11% 

Similarly, the comparison of 2 bit approximation of the temperature data from Rome 

and the original temperature data is shown in Figure 23, while the MSE, MAE and MPE 

are shown in Table 13.  

 

Figure 23. 2 bit approximation of the Temperature dataset of Rome. A few more differences between the 
real and approximated curves can be seen as compared to the previously shown 1 bit approximation. 

 

Table 13. MSE, MAE and MPE of 2 bit Approximated temperature data of Rome 

Mean Squared Error (MSE) 2.79 

Mean Absolute Error (MAE) 1.25 

Mean Percentage Error (MPE) 20.32% 

4.5 Results with radio control 

In the next set of experiments, DP was used to control the radio transmissions. In this 

experiment, one packet of information, including information type, temperature data, 

current time (3 bytes), current voltage level, talker ID and next predicted data, was sent.  

0	

2	

4	

6	

8	

10	

12	

14	

16	

Te
m
pe

ra
tu
re
	in
	C
en

tig
ra
de

	

Time	

Temperature data and 2 bit approximation 

Original	Temperature	

2	bit	approximated	data	



63 

In the proposed technique, radio transmissions are controlled by the value of the current 

prediction and absolute error of the two previous predictions. If the absolute error of the 

two previous predictions and the difference between the prediction and the current value 

is less than 2, then the system will send the current data and put the radio into sleep 

mode. The peer uses the same algorithm and will go to sleep. If consecutively three 

packets are not transmitted, then the fourth packet will be transmitted unconditionally. 

The temperature dataset was used for the experiments to see the effects of the radio 

control strategy with DP. It was noted that out of 63 packets, only 48 transmissions 

were done, saving a total of 15 transmissions. This means that the total numbers of 

transmissions were reduced by 23.8%.  

This strategy works well with the data in which variations are smooth or the data is 

consistent meaning that the predictions accuracy is high. If there are numerous 

variations then this strategy is not useful due to possibility of losing new data.   

4.6 Observations  

The following points were observed during the experiments and analysing the results. 

1. The approximation error depends on the data scale. If the scale is large, e.g. in 

case of wind speed for NY city (0-100 km/h), the MPE with 1 bit approximation 

was 1.06%, and with 2-bit approximation, the MPE was 6.11%. If the scale is 

small, e.g. in case of temperature in Rome for the month of January (0-15 °C), 

the MPE with 1 bit approximation was 11.11% while the MPE for 2 bit 

approximation was 20.32%. It was observed that with smaller scale the MPE is 

irrelevant as it is scale dependent. 

2. The MAE for 1 bit approximation and 2 bit approximation of the temperature 

data from Rome was 0.66 and 1.25 °C, respectively. Similarly, the MAE for 1 

bit and 2 bit approximations of wind speed of NY City were 0.33 and 1.36 km/h.  

It was observed that the MAE for 2 bit approximation was 1.25 °C. The 

maximum error for 1 bit approximation could be ±1 while for 2-bit 

approximation it could be ±3.  

3. The DP was used on the temperature data of Rome and wind speed of NY and it 

was observed that there were drastic changes in some occasions and the 
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predictions were not as accurate as expected. Due to these variations, the MSE 

for wind speed was 68.74 due to squaring the individual error and it was 

observed that in this scenario, the MSE becomes irrelevant, while the MAE was 

only 5.76 km/h meaning that the absolute error was not high, and more often it 

was in the range of acceptable numbers as can be seen in Figure 16. The MSE 

for the temperature data was 4.58 and it was due to the smaller scale of the data 

but the data prediction model also showed that the MAE was 1.66 °C for 

predictions. It was observed that the model is more suitable for the data with 

smoother variations.  

4. It was also observed that in both datasets, a reduction of 12.5% in number of 

transmission for 1 bit and 25% reduction in number of transmissions for 2-bit 

approximation was achieved. 

5. Radio control results showed that there were additional 23.8% reductions in the 

number of transmissions for the temperature data but this reductions depends on 

the accuracy of DP, for example in case of wind speed, a 5 km/h difference was 

kept in mind but even with 5 km/h error tolerance, there were no reductions in 

the number of transmissions due to high variations in the data predictions. 

6. With these results it was noted that the approximation techniques combined with 

data DP makes that the systems error is visible, deterministic and coarse grained 

with the loss of packets due to errors in data predictions.  
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5 Summary and Perspectives 

With an aim to efficiently utilize the energy obtained from various energy harvesting 

sources, the techniques of transient computing and approximate computing were 

combined with the data and energy prediction models so as to exploit the harvested 

power in a much efficient and effective way so as to prolong the life-time of a battery-

less energy-driven wireless node. These mentioned techniques were applied to a test-

bed consisting of two nodes that combine Texas Instruments’ FRAM based MSP-

EXP430FR5739 micro-controllers with CC2500 radio modules that communicate with 

each other through the Texas Instruments’ SimpliciTI protocol.  

To exploit the transient computing capability, the Compute Through Power Loss utility 

of the TI’s FRAM based microcontrollers were utilized. On top of that, two 

approximate computing techniques were incorporated into the SimpliciTI protocol at 

different levels so as to increase the utilization of its existing bandwidth. To further 

exploit the number of transmissions, the data and energy prediction models were used in 

the best possible way to reduce the energy consumptions during transmissions.    

Based on the obtained experimental results, it was concluded that transient computing 

can play an important role in enabling battery-less energy harvesting nodes where the 

power is not stable and continuous. To further reduce the power consumption of energy 

harvesting nodes, approximate computing offers much potential at the cost of accuracy 

loss. This thesis results show that the accuracy lost due to incorporation of 

approximations depend on the nature and type of data that these nodes have to deal 

with. The accuracy of the data is also dependent on the number and position of the 

approximated bits. For example, the data that can be represented only in lower order bits 

(in binary), a 1-bit approximation leads to 11.11% of MPE, whereas for the data that can 

be represented in higher order bits (in binary), a 1 bit approximation gives an MPE of 

1.06% only. The results also illustrate that the number of transmissions could be 

reduced by 10%, 20%, or even 30% through incorporation of approximations but again 

at the loss of accuracy.  
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Overall, the work presented in this thesis illustrates that it is feasible to combine 

transient computing, approximate computing, and data prediction for reducing the 

overall energy consumption of the wireless nodes.  

The work and results invite further research and development in line with the used 

approaches.  

Firstly, the implemented techniques could be evaluated on more use-cases with various 

constraints and error tolerance levels. In addition, the CC2500 RF module could be 

replaced by a e.g. Quectel BG96 radio module to enable transient computing, 

approximate computing and data prediction on larger scale network such as NB-IoT. 

Secondly, energy prediction itself (in addition to data prediction) could be used to 

improve the decision-making process regarding both transmission and computation.  

Thirdly, more advanced (and thus more adaptive) prediction models based on e.g. 

neural networks and their implementation requirements could be investigated. 
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Appendix 1 – Source-Code 

The complete source-code contains many files and hundreds of line of code, thus this 

appendix presents only extracts of the source-code, specifically some parts that have 

been modified or added for implementing the proposed techniques and application.  

case	COMPUTE	:	 //	 Energy	 is	 available	 for	 the	 least-energy	
consuming	task	i-e	Computations.	
									 //	while(1)			//for	debugging	
	
												//	{	
											 	 computedone=1;	
											 	 temp=readTemperature();		

//updateDataMessage_approx()									
											 	 //updateDataMessage();	
	
#ifdef	Data_Prediction	
	
	 	 percent_error=historical_data_length;				
//	percent_error	here	is	just	used	as	a	flag	and	it	is	not	actually	an	
error	
	
											 	 updateDataMessagewithdp();	
	
											 	 if(percent_error!=(historical_data_length-1))	
											 	 {	
											 	 	 computedone=0;	
											 	 	 State	=	ENERGY_MONITORING;	
	
											 	 	 break;	
	
											 	 }			 	 	
	
#endif	
	
	 	 updateDataMessage_approx();	
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													 //uart_send();	
	
											 	 	 //for(j=0;j<100000;j++)		//added	by	SIK	
	
											 	 	 //	 temp=rand()*8.55;	
	
												//			}	
	
											 	 State	=	ENERGY_MONITORING;	
	
																break;	
	
	
void	updateDataMessagewithdp()	
	
{	
	
	 updateTime(&time);	
	
	 //vcc_level		 =	 (uint8_t)	
computeEnergyLevel(getVoltageADC10());	
	
	 temp	 	 =	readTemperature();	
	
	 data_msg_send[0]	 =	 0xFF;	
	
	 data_msg_send[1]	 =	 temp;	
	
	 data_msg_send[2]	 =	 time.sec;	
	
	 data_msg_send[3]	 =	 time.min;	
	
	 data_msg_send[4]	 =	 time.hour;	
	
	 data_msg_send[5]	 =	 vcc_level;	
	
	 data_msg_send[6]	 =	 ++talker_tid;	
	
	
	
#ifdef	Data_Prediction	
	
	 data_predictioncall();	
	
	 data_msg_send[7]	 =		 data_prediction1;	
	
//	 	
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	 if(((historicaldata_predictions[64-1]-
historical_data[historical_data_length-1])<<2)	 &&	
((historicaldata_predictions[64-2]-
historical_data[historical_data_length-2])<<2))	
	
	 	 {	
	
	 	 if	((temp-data_prediction1)<<2)	
	
	 	 	 isCommunicating	=	0;	
	
	 	 	 SMPL_Unlink(sLinkID1);	
	
	 	 	 SMPL_Ioctl(IOCTL_OBJ_RADIO,	 IOCTL_ACT_RADIO_SLEEP,	
0);	 //	Turn	off	the	radio	
	
	 	 	 radioAwake	=	0;	
	
	 	 }	
	
	 historical_data_length++;	
	
#endif	
	
}	
	
void	updateDataMessage_approx()	
	
{	
	
	 	 svalues.sbytedata	=	sbyte;	
	
	 	 sbit[0]=svalues.sbits.bit0;	
	
	 	 sbit[1]=svalues.sbits.bit1;	
	
	 	 sbit[2]=svalues.sbits.bit2;	
	
	 	 sbit[3]=svalues.sbits.bit3;	
	
	 	 sbit[4]=svalues.sbits.bit4;	
	
	 	 sbit[5]=svalues.sbits.bit5;	
	
	 	 sbit[6]=svalues.sbits.bit6;	
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	 	 sbit[7]=svalues.sbits.bit7;	
	
	 	 k=0;	
	
	 	 for	(j=1;j<8;j++)	{	
	
	 	 if(msg_test[j]!=254)	
	
	 	 {	
	
	 	 svalues.sbytedata=	 msg_test[j];	 	 	 //	 needs	 to	 be	 changed	
based	on	the	data	you	want	to	send	
	
	 	 svalues.sbits.bit0=sbit[j];	
	
	 	 msg_test[j]=svalues.sbytedata;	
	
	 	 }	
	
	 	 }	
	
	 	 sbyte=temparrayhc_added[kk+11];	
	
	 	 svalues.sbytedata	=	sbyte;	
	
	 	 sbit[0]=svalues.sbits.bit0;	
	
	 	 sbit[1]=svalues.sbits.bit1;	
	
	 	 sbit[2]=svalues.sbits.bit2;	
	
	 	 sbit[3]=svalues.sbits.bit3;	
	
	 	 sbit[4]=svalues.sbits.bit4;	
	
	 	 sbit[5]=svalues.sbits.bit5;	
	
	 	 sbit[6]=svalues.sbits.bit6;	
	
	 	 sbit[7]=svalues.sbits.bit7;	
	
	 	 for	(j=1;j<8;j++)	{	
	
	 	 if(msg_test[j]!=254)	
	
	 	 {	
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	 	 svalues.sbytedata=	 msg_test[j];	 	 	 //	 needs	 to	 be	 changed	
based	on	the	data	you	want	to	send	
	
	 	 svalues.sbits.bit1=sbit[j];	
	
	 	 msg_test[j]=svalues.sbytedata;	
	
	 	 }	 	 	
	
	 	 }	
	
}	
	
void	data_predictioncall()	
	
{	
	
#ifdef	Data_Prediction	
	
	
	 data_prediction1=(38)*(historical_data[historical_data_length-
1])+(94)*(historical_data[historical_data_length-
2])+(50)*(historical_data[historical_data_length-3])-
(38)*(historical_data[historical_data_length-4])-
(38)*(historical_data[historical_data_length-5])-
(6)*(historical_data[historical_data_length-6]);	
	
	 if(data_prediction1<=0)	//	To	avoid	negatives	values	
	
	 	 data_prediction1=0;	
	
	 else	
	
	 	 data_prediction1=data_prediction1/100;	 //	 /!\	 Loss	 of	
accuracy	
	
	 //test=64;	 	 //testing	
	
	 push_data(data_prediction1,	 historicaldata_predictions,	
historical_data_length);	
	
	 //push_data(data_prediction1,	historicaldata_predictions,	test);	
	
	 nb_data_prediction	++;	
	
	 historical_data_length++;	
	
	 //test++;	 	 //testing	
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	 //percent_error_previous=percent_error_avg;	
	
	 //percent_error=(abs((data_prediction1-
historical_data[historical_data_length-
1]))*100)/historical_data[historical_data_length-1];	
	
	 if	(percent_error_flag==0)	
	
	 {	
	 	 percent_error_avg=percent_error;	
	
	 	 percent_error_flag++;	
	
	 }	
	 else	
	 {	
	 percent_error_avg=(percent_error_previous+percent_error);	
	
	 	 percent_error_avg=(percent_error_avg/2);	
	
	 }	
#endif	
	
}	
	
	
void	savedata()	
	
{	
	
	 //Received_data2[kk]=svalues.sbytedata;	
	
	 for	(j=1;j<8;j++)	
	
	 {	
	
	 	 Received_data1[ii]=data_msg_receive[j];	
	
	 	 ii++;	
	
	 	 if(data_msg_receive[j]==254)	
	
	 	 	 {	
	
	 	 	 for	(j=1;j<50;j++)	
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	 	 	 SPIN_ABOUT_A_SECOND;	
	
	 	 	 //SMPL_Ioctl(	 IOCTL_OBJ_RADIO,	
IOCTL_ACT_RADIO_SLEEP,	0);	 //	Turn	off	the	radio	
	
	 	 	 }	
	
	 }	
	
	 kk++;	
	
	 if(kk==11	||	ii==70)	
	
	 {	
	
	 	kk=0;	
	
	 	ii=0;	
	
	 }	
	
}	
	
void	decode_Packet()	
	
{	
	
	 	 for	(j=1;j<8;j++)	
	
	 	 {	
	
	 	 svalues.sbytedata=	data_msg_receive[j];	
	
	 	 sbit[j]=svalues.sbits.bit0;	
	
	 	 //msg_test[j]=svalues.sbytedata;	
	
	 	 }	
	
	 	 	for	(j=1;j<8;j++)	
	
	 	 	{	
	
	 	 	svalues.sbytedata=	data_msg_receive[j];	
	
	
	 	 	sbit[j]=svalues.sbits.bit1;	



77 

	
	 	 	//msg_test[j]=svalues.sbytedata;	
	
	 	 	}	
	
	 	 	k=0;	
	
	 	 	svalues.sbits.bit0=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit1=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit2=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit3=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit4=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit5=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit6=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit7=sbit[k];	
	
	 	 	k++;	
	
	 	 	Received_data2[kk+11]=svalues.sbytedata;	
	
	 }	
	
	
	
	
	


