
7th Workshop on Bytecode Semantics,
Verification, Analysis and Transformation

Bytecode 2012

Tallinn, Estonia, 31 March 2012

Proceedings



7th Workshop on Bytecode Semantics,
Verification, Analysis and Transformation

Bytecode 2012

Tallinn, Estonia, 31 March 2012

Proceedings

Institute of Cybernetics at Tallinn University of Technology

Tallinn ◦ 2012



7th Workshop on Bytecode Semantics, Verification, Analysis and Transformation
Bytecode 2012
Tallinn, Estonia, 31 March 2012
Proceedings

Edited by Marieke Huisman

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia
http://www.ioc.ee/

These proceedings of Bytecode 2012 are final.

c© 2012 the editors and authors



Preface

This volume contains the proceedings of the Bytecode 2012 workshop, the
seventh Workshop on Bytecode Semantics, Verification, Analysis and Transfor-
mation, held in Tallinn, Estonia, on the 31th of March 2012 as part of ETAPS
2012.

Bytecode, such as produced by e.g., Java and .NET compilers, has become
an important topic of interest, both for industry and academia. The industrial
interest stems from the fact that bytecode is typically used for Internet and
mobile device applications (smart cards, phones, etc.), where security is a major
issue. Moreover, bytecode is device independent and allows dynamic loading of
classes, which provides an extra challenge for the application of formal methods.
Also the unstructuredness of the code and the pervasive presence of the operand
stack provide further challenges for the analysis of bytecode. This workshop
focuses on theoretical and practical aspects of semantics, verification, analysis,
certification and transformation of bytecode.

There were 6 submissions for the workshop. Each submission was reviewed
by at least 3 programme committee members. The committee decided to accept
5 papers. The programme also includes 3 invited talks by Jeff Foster, Diego
Garbervetsky, and James Hunt.

As the workshop chair, I would like to thank the program committee, whose
invaluable help and enthusiasm ensured the success of the event. We would also
like to thank all anonymous referees, for their hard work. Finally, Stefan Blom
helped out preparing the informal proceedings for the workshop.

February 2012 Marieke Huisman
University of Twente

Netherlands
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Using Bytecode Transformation to Retrofit Fine-Grained
Security Policies on Unmodified Android

Jeff Foster

University of Maryland, USA

Abstract. Google’s Android platform includes a permission model that pro-
tects access to sensitive capabilities, such as Internet access, GPS use, and tele-
phony. We have found that Android’s current permissions are often overly broad,
providing apps with more access than they truly require. This deviation from
least privilege increases the threat from vulnerabilities and malware. To address
this issue, we present a novel system that can replace existing platform permis-
sions with finer-grained ones. A key property of our approach is that it runs
today, on stock Android devices, requiring no platform modifications. Moreover,
we can retrofit our approach onto existing apps by transforming app bytecode
to access sensitive resources through a restricted interface. We evaluated our
approach on several popular, free Android apps. We found that we can replace
many commonly used ”dangerous” permissions with finer-grained permissions.
Moreover, apps transformed to use these finer-grained permissions run largely
as expected, with reasonable performance overhead.



Quantitative Analysis of Java/.Net-like Programs to
Understand Heap Memory Requirements

Diego Garbervetsky

University of Buenos Aires, Argentina

Abstract. There is an increasing interest in understanding and analyzing
the use of resources in software and hardware systems. Certifying memory con-
sumption is vital to ensure safety in embedded systems as well as proper adminis-
tration of their power consumption; understanding the number of messages sent
through a network is useful to detect performance bottlenecks or reduce com-
munication costs, etc. Assessing resource usage is indeed a cornerstone in a wide
variety of software-intensive system ranging from embedded to Cloud computing.
It is well known that inferring, and even checking, quantitative bounds is difficult
(actually undecidable). Memory consumption is a particularly challenging case
of resource-usage analysis due to its non-accumulative nature. Inferring memory
consumption requires not only computing bounds for allocations but also taking
into account the memory recovered by a GC. In this talk I will present some of
the work our group have been performing in order to automatically analyze heap
memory requirements. In particular, I will show some basic ideas which are core
to our techniques and how they were applied to different problems, ranging from
inferring sizes of memory regions in real-time Java to analyzing heap memory re-
quirements in Java/.Net. Then, I will introduce our new compositional approach
which is used to analyze (infer/verify) Java and .Net programs. Finally, I will
explain some limitations of our approach and discuss some key challenges and
directions for future research.



Bytecode and Safety-Critical Systems: Friend or Foe?

James Hunt

aicas GmbH, Germany

Abstract. New standards in avionics, codify the certification of systems
using object-oriented technology, interpretation, garbage collection, and formal
methods, provide an opportunity for using bytecode-based languages for safety-
critical development. The question remains, to what extent can bytecode be
used to support rather than inhibit the use of these langauges for safety-critical
development. Though experience seems to indicate that using bytecode-based
languages can ease the development of complex systems, the dynamic nature of
these languages complicates some conventional analysis. Certainly, efforts such
as BML can facilitate the application of formal analysis techniques, but more
could be done. This talk will discuss some of the problems involved and present
some ideas for furthering the utility of bytecode for safety-critical systems.



Conditional Termination of Loops over Arrays

Elvira Albert1, Samir Genaim1 and Guillermo Román-Dı́ez2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 DLSIIS, Technical University of Madrid (UPM), Spain

1 Introduction and Motivation

This paper presents a new method for proving (conditional) termination of byte-
code programs that contain loops over arrays. In this section, we intuitively ex-
plain the analysis and transformations underlying our approach. For the sake of
clarity, the examples in this section are written in Java, but our analysis will then
be developed at the bytecode level. Fig. 1 shows two common patterns which
pose new challenges to termination analysis of loops over arrays. Currently, nei-
ther Costa [4], Julia [8] or Aprove [7] can prove their (conditional) termination
(when the input is not given). Note that our problem is as difficult as handling
class fields [3]. This is because array elements can be accessed using multiple
references which are aliases and besides references to arrays can change.

Let us first focus on Pattern 1©. Proving its termination requires tracking
the value of a[i]. As proposed in [2], we can try to transform a[i] into a
ghost variable and then prove termination by relying on an array-insensitive
analysis (i.e., an analysis which does not give any special treatment to arrays).
The following two soundness conditions are required in order to soundly convert
a[i] into a local variable: (1) the array reference must point to the same location
during the whole execution of the loop (i.e., we cannot modify the value of a

within the loop) and (2) all accesses to the memory location pointed by a[i]

must be through the same reference, in this case a[i]. Observe that, we cannot
prove (without any assumption on the input) the latter condition as a and b

may refer to the same array and i might be equal to j.
Pattern 2© shows a simple example of circular array traversal. Due to their

better performance, circular arrays are frequently used for implementing data
structures (e.g., queues or buffers). Proving termination of loops that traverse
circularly arrays is challenging. First, depending on the last operation made over
the array, the index of the loop can be at any arbitrary position and non-linear
operations (e.g., modulo and if statements) are used to keep the index within
the array dimensions. Second, due to its circular structure, termination depends
on conditions on the contents of the array (i.e., array elements are typically
used in the guards). In order to automatically prove termination, the following
conditions must be guaranteed: (1) the searched element must have the same
value at each loop iteration. In the example, the value is stored in variable x

but, in general, it could be a constant (e.g., null, an integer value, etc.); (2)
the array must have an element that is equal to x; and (3) similar conditions to
those of pattern 1© must hold in order to be able to track the value of a[i].



Pattern 1© Program 3© Program 4©
while(a[i] > 0) {

a[i]--;

b[j]++;

}

while(g1 > 0) {

g1--;
g1++;

} // (a=b ∧ i=j)

while(g1 > 0){

g1--;
g2++;

} // (a6=b) ∨ (i 6=j)
Pattern 2© Program 5©

while(x 6= a[i]) {

i = (i + 1) % a.length;

}

while(x 6= a[i] && g 6= i &&

0 ≤ g < a.length) {

i = (i + 1) % a.length;

} // ∃g ∈ [0..a.length− 1]. a[g] = x}

Fig. 1. Common patterns (conditions for termination in comments)

This paper proposes the following approach to proving termination of loops
over arrays. (1) First, we develop a static analysis which allows us to obtain the
access paths to the arrays and array elements for each of the loops, as well as
constancy information on the variables of interest. As arrays are often accessed
using indexes that involve arithmetic expressions (e.g., a[i+1]), our abstract
domain contains elements for representing such expressions. Our analysis gen-
eralizes the reference constancy analysis of [2], which infers information only on
class fields, to consider arrays, integer variables and arithmetic expressions. (2)
By relying on the analysis information, we can automatically check if the condi-
tions for soundly transforming array accesses into ghost variables accesses hold.
If they unconditionally hold, the transformation is carried out and termination
is proven by an array-insensitive termination analysis. (3) It often happens that
the conditions do not hold. In such cases, we try to infer under which condi-
tions termination can be proven. The main idea here is to consider all possible
situations and prove their termination separately.

The second column of Fig. 1 shows the transformed programs for which ter-
mination analysis can be carried out by array-insensitive termination analyzer.
For Pattern 1©, we have generated two transformed programs 3© (assuming that
a=b and i=j) and 4© (for the other cases). In the former case, only one ghost
variable is needed as a[i]≡b[j] while, in the latter, as a[i]6≡b[j], we use g1
(resp. g2) to represent a[i] (resp. b[j]). Standard analysis successfully proves
termination of 4©, but not 3© since indeed in this case the loop might not termi-
nate. Finally, program 5© shows the transformation required to prove termination
of the circular array traversal. The main point is that it does not modify the
semantics when the precondition holds, while it simplifies the termination proof.

2 Intermediate Representation of Bytecode

We develop our analysis on an intermediate representation (IR) of bytecode [4].
A program in the IR consists of a set of procedures which are defined by means
of a set of (recursive) guarded rules, which adhere to the following grammar:

rule ::= p(x̄, ȳ) ← g, b1, . . . , bn g ::= true | x op y
op ::= > | < | ≤ | ≥ |= | 6= aop ::= + | − | ∗ | /
b ::= x:=exp | x[y]:=exp | q(x̄, ȳ) | assume(ϕ)

exp ::= x | null | n | x aop y | newarray(int, x) | length(x) | x[y]
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where p(x̄, ȳ) is the head of the rule; x̄ (resp. ȳ) are the input (resp. output)
parameters; g its guard, which specifies conditions for the rule to be applicable;
b1, . . . , bn the body of the rule; n an integer; x and y variables; x[y] the element
at position y of an array x, q(x̄, ȳ) a procedure call by value, newarray(int, x)
creates an array of x elements of type int, length(x) returns the length of the
array x. For the sake of simplicity, we consider only arrays of integers, but the
generalization to other types is direct. We adopt the Java Modeling Language
(JML) notation assume(ϕ) to indicate to the analyzer that condition ϕ can be
assumed to hold. A method m in a Java (bytecode) program is represented by
a set of procedures in the IR such that there is an entry procedure named m
and the remaining ones are intermediate procedures invoked only within m. The
translation of a program into the IR works by first building the control flow
graph (CFG) from the program, and then representing each block of the CFG
in the IR as a rule. The process is identical to [4], hence, we skip the technical
details of the transformation and just show the intuition by means of an example.

Example 1. The following IR are obtained from the code of pattern 1©:

while(〈a, b, i, j〉, 〈〉)←
s0:=a, s1:=i,

a©s0:=s0[s1],
whilec(〈a, b, i, j, s0〉, 〈〉).

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 ≤ 0.

whilec(〈a, b, i, j, s0〉, 〈〉)← s0 > 0,
s1:=a, s2:=i, s3:=a, s4:=i,

a©s3:=s3[s4], s3:=s3 − 1, s1[s2]:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,

b©s3:=s3[s4], s3:=s3 + 1, s1[s2]:=s3,
while(〈a, b, i, j〉, 〈〉).

It receives as input parameters two array references a and b and two integer
values i and j. The most important point to note is that the accesses to the
array are performed by pushing the values to the stack (which in the IR are just
local variables). E.g. the first three instructions in the body of procedure while

push the value of a[i] in the stack position s0.

3 Constancy Analysis for Bytecode

It is essential to use a semantic-based analysis (instead of just performing syn-
tactic checks), because, as we have seen in Ex. 1, at the bytecode level, array
elements are not manipulated directly, but rather pushed into the stack. Stack
positions are just standard variables at the IR level.

Abstract domain. The analysis is a dataflow analysis which assigns one of the
following symbolic values to each program variable at every program point:

– > and ⊥ represent any and none information
– null is used to indicate that a variable has the constant value null
– li represents the symbolic initial value of the i-th input parameter
– e represents a symbolic arithmetic expression over the input parameters li

and the integers
– li[e] represents a symbolic array reference, where e is a symbolic expression

as in the above element or >

3



We assume that symbolic expressions are given in some normal form. The above
values form an abstract domain D, in which the elements are ordered by a
relation v such that A v >, ⊥ v A, li[A] v li[>]. Using this order, the least
upper bound X t Y is equal to X (resp. Y ), if Y = ⊥ ∨X = Y (resp. X = ⊥);
li[>], if X = li[A] ∧ Y = li[B] ∧A 6= B; and > otherwise.

An abstract state is a mapping φ : V 7→ D where V is the set of variable
names. For integer variables, the abstract information states whether they keep
a constant value at this program point and what the value is (in particular, it
can be the value stored in an array element, the value of an initial parameter,
a constant integer, etc.). For reference variables, it states whether the reference
remains constant and the symbolic value of such reference. In the analysis, ma-
nipulating abstract values can result in abstract values not considered above,
namely >[A] that we consider as >, and li[lj [A]] that we consider as li[>].

Analysis. For simplicity, we present the analysis for a single simple loop Pk

with an entry procedure pk, such that its procedures form a strongly connected
component. In what follows we refer to such loop as a scope. The analysis is
a standard forward analysis which propagates the initial abstract state, which
maps the i-th input parameter to the symbolic value li, to the different pro-
gram points using the following transfer function, which describes the effect of
executing one instruction on a given abstract state φ:

Instruction transfer(b, φ) Instruction transfer(b, φ)
(1) x:=n φ[x 7→ n] (4) x:=newarray(int, y) φ[x 7→ >]
(1) x:=null φ[x 7→ null] (5) x:=y[z] φ[x 7→ φ(y)[φ(z)]]
(2) x:=y φ[x 7→ φ(y)] (6) x[y]:=exp remove(φ)
(3) x:=y op z φ[x 7→ φ(y) op φ(z)] otherwise φ

(1) it modifies φ such that x will have the abstract value n ∈ Z (resp. null);
(2) it modifies φ such that the abstract value of x will be equal to that of y;
(3) it applies (an abstract version of) the arithmetic operator to the abstract

values of y and z, and stores the result in x. The operator op keeps (a
normalized version of) the symbolic expression if both operands are symbolic
expressions over integers and li, otherwise it is >;

(4) it modifies φ such that x will have the value >. This can be refined, if
the instruction does not occur in a loop, to assign an abstract value that
corresponds to that allocation-site.

(5) it modifies φ such that x is mapped to the corresponding array element;
(6) as the array content has been modified, we have to eliminate the information

carried for all array elements from φ, since they might not be valid anymore.
This is done by remove(φ) which returns φ′ such that, for all x, φ′(x) = >
if φ(x) = li[A], and otherwise φ′(x) = φ(x);

Example 2. Fig. 2 shows to the left the IR of pattern 2© and to the right the
abstract states, computed by the analysis, for each program point. The most
relevant points are: (1) as variable i does not have a constant value during the

4



while(〈a, x, i〉, 〈i〉)←
s0:=a,
s1:=i,
s0:=s0[s1],
whilec(〈a, x, i, s0〉, 〈i〉).

whilec(〈a, x, i, s0〉, 〈i〉)← c©x = s0.
whilec(〈a, x, i, s0〉, 〈i〉)← c©x 6= s0,
s1:=i+ 1,
s2:=length(a),
i:=s1%s2,
while(〈a, x, i〉, 〈i〉).

{a→ l1, x→ l2, i→ >}
{a→ l1, x→ l2, i→ >, s0 → l1}
{a→ l1, x→ l2, i→ >, s0 → l1, s1 → >}
{a→ l1, x→ l2, i→ >, s0 → l1[>], s1 → >}
{a→ l1, x→ l2, i→ >, s0 → l1[>]}
{a→ l1, x→ l2, i→ >, s0 → l1[>]}
{a→ l1, x→ l2, i→ >, s0 → l1[>]}
{a→ l1, x→ l2, i→ >, s0 → l1[>], s1 → >}
{a→ l1, x→ l2, i→ >, s0 → l1[>], s1 → >, s2 → >}
{a→ l1, x→ l2, i→ >, s0 → l1[>], s1 → >, s2 → >}

Fig. 2. IR of Pattern 2 (left). Program point constancy information (right)

loop iterations, its abstract value is >; and (2) we have inferred at the points
marked by c© that the stack value s0 contains the value of an array element
l1[>]. Importantly, we keep the information that the reference to the array
remains constant (even if we lose the array index). Consider again the IR of
Pattern 1© in Ex. 1, assume that l1,l2,l3,l4 refer to, resp., the initial values of a,
b, i and j. Our analysis infers that the array accesses at program points a© are
done using the constant access l1[l3], and at program points b©, using l2[l4].

One could think of syntactically checking that constancy information instead of
developing a semantic-based analysis. However, there exist an enormous variety
of loops, ranging from the different shape of those implemented using recursion or
iteration, from the number of arrays that they access, the different array positions
accessed, etc. Besides, when inferring the information at the level of bytecode
(assuming that the source code is not available), it is even more complex due to
the use of stack variables as we have seen. Our analysis achieves automation of
syntactic checks and it generalizes w.r.t. the structure of the programs (e.g., it
allows us to handle iteration and recursion in a uniform way).

4 Automatic Transformation at Bytecode Level

In this section, we define two transformations for simple loops which are repre-
sented by a single scope (SCC in this case) and without calls to other scopes.
In future work, we will extend it to the case of nested loops. First, in Sec. 4.1,
we use the information inferred by the analysis of Sec. 3 in order to learn how
arrays are accessed. Then, in Sec. 4.2 we instrument the program with addi-
tional (ghost) variables which make some properties of the arrays explicit. In
turn, these properties become observable by existing termination analysis tools,
since now they are properties of local variables rather than of array elements.

4.1 Conditional Trackability

The information on how arrays are accessed in a given scope is obtained from
the analysis presented in Sec. 3 as follows.

5



Definition 1. For a scope Pk, the multiset of array read accesses R(Pk) is
{φij(y)[φij(z)] | bij ≡ x:=y[z] ∈ Pk}. The multiset of array write accesses
W (Pk) is defined similarly by considering write accesses instead of read accesses.

Intuitively, R includes accesses that are performed in scope Pk. Note that R
might contain multiple occurrence of syntactically identical elements. This is
important only when two syntactically identical elements involve >, since it
is not guaranteed that they are semantically identical, in other cases multiple
occurrence can be eliminated.

Example 3. Using the results of the constancy analysis in Ex. 2, for Pattern 2©,
the resulting read access set contains only one array access R(P2) = {l1[>]}
while the write access set is empty, W (P2) = ∅, because the array content is not
updated within the loop. Similarly, the read/write access sets for Pattern 1© are
R(P1) = W (P1) = {l1[l3], l2[l4]} since the array content is read and modified
using the references a[i] and b[j].

As mentioned before, in some of the transformations, our aim is to simulate some
aspects of array elements by replacing the array accesses with local variables.
This can be done only if we are able to precisely track the array modifications,
i.e., we can definitely tell which array elements are modified. This is not obvious
since (1) two local variables might point to the same array – alias; and (2) the
index of the accessed element is stored in a variable and thus it is not immediate
to know which element we are accessing or if we are always accessing the same
element. If the array is not modified, the problem is clearly much simpler.

Example 4. Consider Pattern 1© in Fig. 1. We cannot precisely track the write
accesses to the arrays (a or b) because the memory location accessed depends
on an aliasing condition: if a and b point to the same array, the content of such
array may be modified using both accesses, a[i] or b[j]. Furthermore, if i ≡ j,
both accesses are modifying exactly the same element of the array.

The above example shows that it is often not possible to track array updates un-
conditionally. Fortunately, since the elements of the read/write sets are given in
terms of the initial parameters l1, . . . , ln, one could try to provide preconditions
on those values such that array accesses become trackable.

Example 5. As it is shown in Ex.4, the trackability of array accesses and, as a
consequence, the number of ghost variables needed to track them depends on
some preconditions that are given in terms of the initial parameters. E.g. as-
suming the precondition l1 6= l2 ∨ l3 6= l4 over the read/write sets in Ex. 3,
{l1[l3], l2[l4]}, we will need two different ghost variables to safely represent these
array references, because they are pointing to different memory locations. How-
ever, if we assume that {l1 = l2 ∧ l3 = l4}, all accesses point to the same array
element, so we just need one ghost variable to track both array accesses.

For simplicity, we consider conditions in terms of linear constraints on the sym-
bolic initial values l1, ..., ln. In principle, any kind of conditions can be used as
far as they can be manipulated as in Def. 2. We write `1=`2 if `1 and `2 are
guaranteed to refer to the same memory location, and `1 6=`2 if not.

6



Definition 2 (conditional trackability). Given a precondition ψ and a scope
for Pk. We say that the array accesses in Pk are trackable w.r.t. ψ if R(Pk) ∪
W (Pk) can be partitioned into G1 ∪ · · · ∪Gm such that: (1) for each Gi we have
∀`1, `2 ∈ Gi.ψ |= `1 = `2; and (2) if W (Pk) 6= ∅, then for each two different Gi

and Gj we have ∀`1 ∈ Gi.∀`2 ∈ Gj .ψ |= `1 6= `2.

Example 6. Trackability can be checked by considering all possible equalities and
disequalities of the elements in R(Pk) ∪W (Pk). Consider the read/write access
sets obtained for Pattern 1©, in Ex.3, where R(P1) = W (P1) = {l1[l3], l2[l4]} and
l1, l2, l3, l4 refer, resp., to the initial value of variables a, b, i, j. The following
partitions are generated: (1) G1 = {l1[l3], l2[l4]} which gives us the precondition
ψ1 = {l1=l2∧l3=l4}, or if we refer to the source code variables, then ψ1 = {a=b∧
i=j}; (2) G1={l1[l3]}, G2={l2[l4]} which gives us the precondition ψ2={l1 6=l2 ∨
l3 6=l4} and equivalently, using the source code variables, ψ2={a 6=b ∨ i6=j}.

4.2 Transformation for Simple Loops

Pattern #1. The first pattern deals with programs in which arrays are both
read and modified in a given scope. For such cases, this transformation is appli-
cable when the array accesses can be tracked, possibly for a given precondition,
according to Def. 2. Thus, the first step is to synthesize conditions for which
array accesses are trackable, and then we apply this transformation for each one
of them. Given a scope Pk, and a precondition ψ such that it partitions the
read and write sets into G1 ∪ · · · ∪Gm, the transformation proceeds as follows:
(1) it introduces m new ghost variables g1, . . . , gm (one for each partition), and
adds them to each rule as input and output parameters; (2) each instruction
that reads/writes an array element is replaced with an equivalent one that uses
the corresponding ghost variable. This transformation allows tracking the val-
ues stored in some arrays by means of local variables. Thus, if the termination
argument of loop Pk depends on some array elements, there exists an equivalent
argument that uses the ghost variables and that can be observed by existing
array-insensitive termination analysis tools. Proving the universal termination
of the transformed program, implies the termination of the original w.r.t. ψ.

Example 7. For Pattern 1©, using the preconditions and partitions of Ex.6, we
generate two versions depicted in the first two columns of Fig. 3. The one in
the first column corresponds to ψ1, and has one ghost variable g1, and the one
in the second column corresponds to ψ2 and has two ghost variables g1 and g2.
Observe that the second version always terminates, while the first one might not
because both array accesses, a[i] and b[j], modify the same array location.
Therefore, using the transformed program, we can infer that the original program
terminates for the preconditions ψ2, i.e. {a 6= b ∨ i 6= j}.

Pattern #2. The second pattern deals with programs that use arrays as cyclic
data structures. Here, a common operation is to look for a position in the array
that is equal to (or different from) a given value x, assuming that the array
indeed includes such element. The point is that the program is written in a way

7



Pattern #1 (pre-cond. ψ1) Pattern #1 (pre-cond. ψ2) Pattern #2

while(〈a, b, i, j, g1〉, 〈g1〉)←
s0:=a, s1:=i, s0:=g1,
whilec(〈a, b, i, j, g1, s0〉,

〈g1〉).
whilec(〈a, b, i, j, g1, s0〉,

〈g1〉)← s0 ≤ 0.
whilec(〈a, b, i, j, g1, s0〉,

〈g1〉)← s0 > 0,
s1:=a, s2:=i, s3:=a, s4:=i,
s3:=g1, s3:=s3 − 1, g1:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,
s3:=g1, s3:=s3 + 1, g1:=s3,
while(〈a, b, i, j, g1〉, 〈g1〉).

while(〈a, b, i, j, g1, g2〉,
〈g1, g2〉)←

s0:=a, s1:=i, s0:=g1,
whilec(〈a, b, i, j, g1, g2, s0〉,
〈g1, g2〉).

whilec(〈a, b, i, j, g1, g2, s0〉,
〈g1, g2〉)← s0 ≤ 0.

whilec(〈a, b, i, j, g1, g2, s0〉,
〈g1, g2〉)← s0 > 0,

s1:=a, s2:=i, s3:=a, s4:=i,
s3:=g1, s3:=s3−1, g1:=s3,
s1:=b, s2:=j, s3:=b, s4:=j,
s3:=g2, s3:=s3+1, g2:=s3,
while(〈a, b, i, j, g1, g2〉,

〈g1, g2〉).

while(〈a, x, i, g〉, 〈i〉)←
s0:=a, s1:=i, s0:=s0[s1],
whilec(〈a, x, i, g, s0〉, 〈i〉).

whilec(〈a, x, i, g, s0〉, 〈i〉)←
x = s0

whilec(〈a, x, i, g, s0〉, 〈i〉)←
g = i.

whilec(〈a, x, i, g, s0〉, 〈i〉)←
assume(0 ≥ g),
assume(g > length(a)),
x 6= s0,
s1:=i+ 1, s2:=length(a),
i:=s1%s2,
while(〈a, x, i, g〉, 〈i〉).

Fig. 3. Resulting Bytecode after applying the transformations

that uses this assumption, i.e., it would not terminate if the assumption is not
satisfied before executing the loop. The challenge in such cases is to automatically
synthesize a precondition under which the program terminates.

Consider again Pattern 2©, we are looking for an element in the array that is
equal to x. Let us assume that we have an integer variable g such that 0 ≤ g <
a.length ∧ a[g] == x. Clearly, under this assumption, replacing the condition
x 6= a[i] by x 6= a[i] ∧ i 6= g does not change the termination behavior of this
loop. The termination of the program with the new condition can be proven using
existing termination analysis tools. At the level of the IR, the transformation is
applicable when the write set is empty, and proceeds as follows:

1. look for a procedure p, defined by two different rules, such that the guard of
one rule is x = y and the guard of the other rule is x 6= y;

2. use the result of the analysis of Sec. 3 to verify that x has a constant value
(i.e., either it is lj , an integer n or null), and that y refers to an array access
lk[>]. If this cannot be verified, then the transformation is not applicable;

3. figure out the index i to which lk[>] refers. Note that > here means that the
index cannot be expressed as a constant or in terms of l1, . . . , ln. However, it
can often be expressed using the value of a local variable If this step cannot
be carried out, then the transformation is not applicable.

4. add a ghost variable g to all input parameters of all rules in the given scope;
5. replace condition x 6= y by x 6= y ∧ g 6= i and the condition x = y by
x = y ∨ g = i. Add the assumption assume(0 ≤ g < length(a)) to both rules
of procedure p immediately after the condition.

This transformation guarantees that termination of the transformed program
implies termination of the original one w.r.t the following precondition: if the
loop entry condition is x 6= y (resp. x = y) then the array associated with lk has
an element that is equal to (resp. different from) the constant value of x (i.e.,
lj, n or null). Program 5© shows the transformation applied to Pattern 2©.
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Example 8. Program 2© in Fig. 1 matches condition in point (1) above. Then,
from the results gathered by the constancy analysis in Fig. 2, we can check that
x has the constant value l2 and s0 has the value l1[>], thus condition (2) holds.
Then, tracking the index of l1[>] we conclude that it is i. Therefore, we can
safely apply the transformation which results in the program showed in Fig. 3
whose termination is automatically proven (e.g., by COSTA).

5 Conclusions, Related and Future Work

We have outlined the main phases of an analysis to prove termination of loops
over arrays. The core of our approach is a constancy analysis which tries to infer
the (constant) memory locations of array elements. Such analysis has similarities
with previous reference constancy analyses (e.g., [2,1]). However, for handling
loops over arrays, we need to precisely track array indexes which often involve
arithmetic operations (e.g., it is common to access a[i+1]). We can then trans-
form those array accesses which are only read or always written from the same
reference location within the loop into local variables. The transformed program
can be then analyzed by an array-insensitive termination analyzer.

In an extended version of this paper, we plan to formally develop our analysis
for the full sequential Java bytecode, investigate its relation to recent techniques
for array sensitive analysis [5,6], and prove its correctness. We have concentrated
on arrays, but we believe that our results generalize to collections as found in
mainstream languages such as C# or Java. In future work, we will attempt
to generalize it to collections. We will also carry out a thorough experimental
evaluation to assess the efficiency and effectiveness of our approach.
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Abstract. We describe the design and implementation of BCT, a trans-
lator from Microsoft MSIL into Boogie, a verification language that in
turn targets SMT (Satisifiability-Modulo-Theories) solvers. BCT pro-
vides a vechicle for converting any program checker for the Boogie pro-
gramming language into a checker for a language that compiles to Mi-
crosoft’s .NET platform. BCT is methodology-neutral, precise in encod-
ing the operational semantics of the .NET runtime, and comprehensively
covers all features of .NET.

1 Introduction

Static analysis of programs is an increasingly important part of software engi-
neering. Advances both in the theory and implementations of static analysis have
made it feasible to apply to real-world programs techniques that had hitherto
been confined to toy examples. Analyses based on SMT (Satisfiability-Modulo-
Theories) solvers such as Z3 [7] and Yices [8], have become especially popular
because of the rich modeling capability, based on first-order logic, provided by
such solvers.

Programming languages also have evolved: modern object-oriented managed
languages provide a rich semantic environment to which such analyses can be
applied. In particular — given our environment — we are interested in the
static analysis of .NET programs. The .NET platform is a multi-lingual runtime
currently supporting popular languages, such as C#, VB, and F#. It is also the
platform used for Windows Phone applications. It uses a common intermediate
bytecode language, MSIL, [9], which all .NET compilers generate.

In order to use an SMT solver to perform static analysis of a program writ-
ten in a high-level language, the program (and the property to be verified) are
encoded as a first-order logic formula. There is a large semantic gap between
such different worlds. The Boogie verification system provides an intermediate
language (also called Boogie [12]) that makes it easier to bridge this gap. A
Boogie program is simple: it comprises a set of global procedures with a simple
type system encompassing boolean and integer values and maps (arrays with an
arbitrarily-typed domain). Everything else is encoded as user-defined datatypes,
functions, and axioms. The Boogie system generates the input for the solver via
a process known as verification condition generation.



Fig. 1: The translation pipeline showing the translation/compilation steps from
high-level (.NET) programming languages to the standard language used by
modern automatic theorem provers, SMTLib [5]. Note that Boogie refers to the
language and not the tool.

While a Boogie program is much closer to one written in a high-level program-
ming language, there is still a gap that must be filled. As shown in Figure 1, we
have created a bytecode translator, BCT, that translates .NET bytecode, i.e.,
MSIL, into the Boogie programming language. By using MSIL as our source
language, we can immediately apply any particular static analysis to programs
written in any .NET language, e.g., C#, VB, and F#.

1.1 Criteria for a translator

There are several essential criteria for a general bytecode translator. Our goal is
to have BCT fulfill all of them.

Comprehensive A general bytecode translator should cover all .NET features.
It should have a faithful and precise translation of reference and value types,
generics, subtyping, delegates, dynamic dispatch and exception handling.
Real programs use all of these features so a system that is unable to deal with
all of them would not be usable. Currently BCT handles all of these features
except for generics; we are currently working on designing a translation for
them.

Neutral A general translator should encode only the operational semantics of
the .NET runtime. It should not impose any particular verification method-
ology.

Standard As much as possible, a translator should use common, open, com-
ponents. Using such standard, reusable, components helps in assuring the
correctness of the translator itself. BCT is built on top of the Common Com-
piler Infrastructure [6], CCI, and uses the Boogie Programming Language as
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its target language. Not only are both open-source, but CCI uses the .NET
de-facto standard encoding for program specifications, Code Contracts for
.NET [3]. CCI also provides many needed components, such as recovering
boolean expressions from MSIL (which uses integers to encode booleans).

Flexible It is important that a translator is not overly constrained. It should
also be possible to modify certain aspects of the translation, e.g., injecting
certain assertions to encode a particular verification methodology, with mini-
mal effort, ideally, by supplying a binary component that is called at the right
moments during the translation. BCT meets this requirement by providing
support for both modular and whole-program analysis. This is especially
crucial for programs, such as mobile-phone applications, that make heavy
use of delegates, type-safe function pointers. A whole-program translation
can also encode dynamic dispatch, which makes it easier to determine the
target of a virtual method call. It also allows different heap representations:
we currently support representing it as a two-dimensional map (indexed by
object references and field names) or else as a set of one-dimensional maps,
one per field (and indexed by object references).

1.2 Related Work

A first version of a bytecode translator [1] from MSIL to Boogie was written as
part of the Spec# project [2]. Some of its shortcomings were:

– It used an ad-hoc encoding of contracts to persist method pre- and postcon-
ditions, object invariants, and non-null type information.

– It did not implement generics, value types, and exception handling.
– It implemented its own dataflow analysis for reconstructing booleans, man-

aged pointers, and type tokens rather than using a common component.
– It was monolithic in that it encoded the Spec# methodology [13, 4] as part

of the translation. While many options were added to control aspects of the
translation, it was difficult to achieve a methodology-free translation.

– It provided only a modular translation, which limited its ability to handle
delegates and dynamic dispatch.

BCT attempts to address all of these limitations of Spec#.
Lehner and Müller [11] describe a sound translation of a subset of Java byte-

code to Boogie.

1.3 Applications

There are already several analyses that are taking advantage of BCT in order
to analyze .NET programs. Poirot [14] is a static tool for helping programmers
detect and debug errors in concurrent and asynchronous systems; it uses BCT
as its .NET frontend. The GetMeHere project at Microsoft Research aims to
provide a symbolic debugging experience to the programmer, again using BCT
for its .NET front end. Both Poirot and GetMeHere use the Corral [10] verifier
to solve reachability queries on Boogie programs.
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2 The bytecode translator

In this section, we informally explain how BCT translates various features of
MSIL. For illustration purposes, we use C# syntax for the source code; how-
ever, remember that BCT’s input is actually the MSIL generated by the the
C# compiler. All types, methods, and fields are implicitly declared as public.
Although the translator does encode exceptional control flow as well as normal
control flow, only the latter is shown.

2.1 Reference types

We begin by explaining our translation for reference types. Figure 2 shows a class
A with two methods, Increment and IncrementSelf. The method Program.Main

allocates an object of type A and calls these methods in sequence. Note that al-
location is assumed to always succeed. The assertions in the program provide a
clue to the expected behavior.

class A {
int f;

static void Increment(A x) { x.f++; }

void IncrementSelf() { f++; }

static void Main() {
A a = new A();

Increment(a);
Contract.Assert(a.f == 1);

a.IncrementSelf();
Contract.Assert(a.f == 2);

}
}

Fig. 2: C# code

type Ref;
const unique null: Ref;
var $Alloc: [Ref]bool;
var F$A.f: [Ref]int;
procedure {:inline 1} Alloc() returns (x: Ref) {

assume $Alloc[x] == false && x != null;
$Alloc[x] := true;

}
procedure A.Increment$A(x$in: Ref) {

F$A.f[x$in] := F$A.f[x$in] + 1;
}
procedure A.IncrementSelf($this: Ref) {

F$A.f[$this] := F$A.f[$this] + 1;
}
procedure A.Main() {

var a_Ref, $tmp1: Ref;
call $tmp1 := Alloc();
call A.#default_ctor($tmp1);
assume $DynamicType($tmp1) == T$A();
a_Ref := $tmp1;
call A.Increment$A(a_Ref);
assert F$A.f[a_Ref] == 1;
call A.IncrementSelf(a_Ref);
assert F$A.f[a_Ref] == 2;

}

Fig. 3: Boogie code

Figure 3 shows relevant pieces of the Boogie code generated from the bytecode
of the program in Figure 3. (For instance, the default constructor for the class A
is not shown.) We model heap objects using maps, one for each field; for example,
field f is represented by the global map variable F$A.f.

The domain of F$A.f is the uninterpreted type Ref representing the set of
all object references. The range of F$A.f is the built-in Boogie type int used
for representing System.Int32, the type of field f.
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The translation of A.Main shows how object allocation is modeled. To ensure
that each allocated reference is distinct, BCT uses another map $Alloc; each call
to the allocator procedure Alloc returns a reference x such that Alloc(x) is false
before and true after the call. BCT generates a Boogie procedure representing the
default constructor which initializes each field-representing map at x to a null-
equivalent value. This constructor is called on the reference returned by Alloc

and assumed to be of the correct dynamic type. Other uses of the dynamic type
are shown in Section 2.3. The translation of the code in the Increment and
IncrementSelf procedures is straightforward; one interesting aspect is that the
self parameter in IncrementSelf is made explicit in the generated Boogie code.

2.2 Value types

In addition to built-in value types such as bool and int, MSIL allows defin-
ing custom value types called structs. The program in Figure 4 illustrates the
semantics of struct types. A is a struct type with a single field f. The static
method Increment takes a value x of type A and increments its f field. The
first three lines of Main indicate that struct types are indeed passed by value;
the side-effect on x.f in Increment leaves the value of a.f in Main unchanged.
However, as the next three lines show, the semantics is subtly different when a
method IncrementSelf is called on the struct value in a. In that case, the effect
is that a reference to the struct value is passed to the procedure. Thus, a struct
behaves like an object when it is a receiver of a method and otherwise behaves
as a value.

struct A {
int f;

static void Increment(A x) { x.f++; }

void IncrementSelf() { f++; }

static void Main() {
A a = new A();
Increment(a);
Contract.Assert(a.f == 0);
a.IncrementSelf();
Contract.Assert(a.f == 1);

}
}

Fig. 4: C# code

procedure A.Main()
{

var a_Ref: Ref;
var $tmp1: Ref;
call $tmp1 := Alloc();
call A.#default_ctor($tmp1);
assume $DynamicType($tmp1) == T$A();
a_Ref := $tmp1;
call A.#copy_ctor(a_Ref, $tmp2);
call A.Increment$A($tmp2);
assert F$A.f[a_Ref] == 0;
call A.IncrementSelf(a_Ref);
assert F$A.f[a_Ref] == 1;

}

Fig. 5: Boogie code

Just as for fields of reference types, BCT represents struct fields as maps.
We model structs as heap-allocated, just like objects. However, the treatment
of assignment is different; BCT creates a Boogie procedure modeling a copy
constructor for each struct. The copy constructor is used whenever a struct
value is assigned: either with an explicit assignment statement or when it is
passed as an argument to a method, as in A.Increment.
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2.3 Subtyping and dynamic dispatch

Figure 6 shows a program containing an abstract class A with two subclasses
B and C. We use this example to show how BCT translates calls to virtual
methods. BCT explicitly maintains the dynamic type of each allocated object
using the function $DynamicType. (We use a function instead of a map since
this information is not mutable.) The type itself is represented at the Boogie
level as an abstract datatype with one constructor per declared type in the
program. In Figure 7, we see the declaration of the abstract datatype Type and
its three constructors—T$A, T$B, and T$C. Each constructor is associated with
a membership testing function on elements of Type. For example, is#T$C(t)
returns true iff t is equal to T$C(). The subtype relation on types is captured
by the $Subtype predicate; we omit the axiomatization of this predicate from
this paper for space reasons.

abstract class A {
int f,g;
abstract void Increment();

}

class B : A {
override void Increment() { f++; }

}

class C : A {
override void Increment() { g++; }

}

class Program {
static void Increment(A a) {

Contract.Assert(a is B || a is C);
a.Increment();

}

static void Main() {
var b = new B();
Increment(b);
Contract.Assert(b.g == 0);
var c = new C();
Increment(c);
Contract.Assert(c.f == 0);

}
}

Fig. 6: C# code

type {:datatype} Type;
function {:constructor} T$A() : Type;
function {:constructor} T$B() : Type;
function {:constructor} T$C() : Type;

function $DynamicType(Ref) : Type;
function $Subtype(Type, Type) : bool;
procedure Program.Increment$A(a$in: Ref)
{

var a: Ref;
a := a$in;
assert(a != null && $Subtype($DynamicType(a), T$B()) ||

a != null && $Subtype($DynamicType(a), T$C()));

if (is#T$C($DynamicType(a)))
{

call C.Increment(a);
}
else if (is#T$B($DynamicType(a)))
{

call B.Increment(a);
}
else
{

call A.Increment(a);
}

}

Fig. 7: Boogie code

The translation of the method Program.Increment shows how the $Subtype
predicate is used to translate both conditionals related to type queries and virtual
calls. A virtual call is translated by testing for the dynamic type of the reference
and dispatch to the appropriate procedure based on the result. This is dependent
on doing a whole-program translation: a modular translation would contain a
call only to the static type of the receiver.
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2.4 Delegates

In MSIL, a delegate is a type-safe reference to a method; when the method
is an instance method, the delegate also contains a reference to the object on
which the method should be called. BCT uses algebraic datatypes to encode
the value of a delegate as a pair, as shown in Figure 9. Each method name is
modeled as a unique integer constant. $DelegateCons is the constructor and
$Method#DelegateCons and $Receiver#DelegateCons are the selectors that
return the method and the receiver object respectively. The translation of the
TakeAction method models the delegate call inside it with a call to the Boogie
procedure Program.Action.Invoke. This makes explicit the delegate dispatch.
The body of Program.Action.Invoke retrieves the method name from the del-
egate value and dispatches to the appropriate Boogie procedure. Note that our
translation of delegates depends on a whole-program analysis that calculates the
set of all methods that could potentially be present in a delegate variable of a
particular type.

class O {
int f;
void Set() { f = 42; }

}

class Program {
delegate void Action();

static bool flag = false;
static void SetFlag() {

flag = true;
}
static void TakeAction(Action a) { a(); }

static void Main() {
TakeAction(SetFlag);
Contract.Assert(flag);
O o = new O();
TakeAction(o.Set);
Contract.Assert(o.f == 42);

}
}

Fig. 8: C# code

type {:datatype} Delegate;
function {:constructor}
$DelegateCons($Method: int, $Receiver: Ref) : Delegate;

const unique O.Set: int;
const unique Program.SetFlag: int;

procedure Program.Action.Invoke(delegate: Delegate)
{

var method: int;
var receiver: Ref;

method := $Method#$DelegateCons(delegate);
receiver := $Receiver#$DelegateCons(delegate);
if (method == O.Set) {

call O.Set(receiver);
} else if (method == Program.SetFlag) {

call Program.SetFlag();
} else if (true) {

assume false;
}

}

Fig. 9: Boogie code

3 Conclusions

Space limitations prevent us from showing many other features of the trans-
lator. In addition to exceptions (mentioned in Section 2), we have left out the
translation for .NET’s concurrency features. There are several places where BCT
is currently incomplete: it ignores unsafe or unmanaged code, reflection, object
invariants, and modifies clauses.
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We are continuing to work on the translator. We would like to finish the
design and implementation of our generics translation. We are also designing a
plugin model to support domain-specific methodologies and program instrumen-
tations. We would also like to explore the translator’s use to verify code written
using Code Contracts. Since the project is open-source (as part of the Boogie
CodePlex site), we look forward to collaborating with others on it.
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Abstract. Lazy controllers are execution monitors which do not contin-
uously observe the behaviour of their target. Monitors are activated and
deactivated according to a scheduling strategy. When a lazy controller
is activated, it checks the current security state and, in case of a viola-
tion, terminates the execution. Otherwise, if the current execution trace
is safe, the monitor is suspended and its activation is scheduled again.
The inactivity period is computed by considering the risk that, from the
current state, the target can produce a security violation.
In this paper we present a prototype using existing logging API, i.e.,
the Commons Logging Package, for remotely watching the execution of
OSGi bundles. We claim that our solution can efficiently follow the target
system keeping under control the delay in detecting violations. Also, as
we use standard OSGi platform and facilities, we show that our monitors
can run under very realistic assumptions for bundle applications.

1 Introduction

Security monitors are commonly used for controlling that a target respects some
security requirements. Many authors proposed important contributions to the
theory and practice of security controllers, e.g., see [1,2,3,4,5]. All these ap-
proaches present security controllers that can guard program executions and
run reaction procedures. Several other proposals, e.g., see [6,7,8,9], also exploit a
verification step for supporting the synthesis and execution of security monitors.

Many of the most influential proposals for modelling security controllers,
e.g., see [1] and [10], rely on a continuous, step by step observation of the target
execution. Although this is a reasonable approach when monitoring the local

⋆ Work partially supported by EU-funded projects FP7-231167 Connect, FP7-257930
Aniketos, FP7-256980 NESSoS and by FP7-257876 SPaCIoS.

⋆⋆ Now at Dipartimento di Informatica, Sistemistica e Telematica, Univeristà di Gen-
ova, Italy.



execution of a program, it may be difficult or even impossible to implement the
same strategy when the target is expected to execute remotely, e.g., consider
the Software as a Service (SaaS) paradigm. Also, application monitoring usually
requires some modification to either the target program, e.g., code instrumen-
tation, or the execution platform, e.g., system calls wrapping. These techniques
do not fit with the remote execution scenario where the mobile code is digitally
signed and the execution platform must comply with standard specifications.

For these reasons, we presented a new class of security controllers, namely
lazy controllers [11]. Like standard controllers, lazy controllers watch their target
execution. However, unlike standard monitors, they can autonomously decide to
suspend the observations for a certain time span. Clearly, in this way, a lazy
controller could miss the observation of a security violation while it is suspended.

Hence, a crucial aspect of the applicability of lazy controllers is the defi-
nition and the calculation of the “risk” deriving from pausing the controller
guarding the target. A good scheduling for the observations can prevent unob-
served security violations, but there is no general, non-trivial way of finding such
a scheduling. Intuitively, minimizing the possibility of having a bad scheduling
is the main issue when using lazy controllers.

Being able to asynchronously control the target activity has some advantages.
In terms of performance and costs, for instance, the monitoring process can be
optimised by reducing the number of validity checks on the target behaviour.
Another important advantage is in terms of applicability. Indeed, our controllers
can be implemented by using existing facilities, while most other approaches use
ad-hoc solutions as discussed above. For instance, log auditing [12,13] is often
used to asynchronously check the last actions performed by a system.

In this paper we present an implementation of our lazy controllers for the
execution monitoring of Java OSGi bundles [14]. Intuitively, we remotely monitor
the execution of a bundle by inspecting its execution log. We assume bundles
to use the Common Logging API [15] for writing their execution log. Then, we
execute the lazy monitor on a different platform. The lazy monitor can request
to the bundle execution platform an instance of its log, i.e., a plain sequence
of security operations performed by the bundle. When a violation is discovered,
the monitor changes the status of its target from active to stopped.

We show that our method offers substantial advantages w.r.t. a standard
security monitor applying the same security policy. These advantages are mainly
in terms of performances, i.e., we produce a significantly lower overhead on the
system, and applicability, i.e., we can use our approach under very realistic
assumptions. As a matter of fact, every OSGi platform provides some logging
facilities to installed bundles.

The paper is structured as follows. In Section 2 we briefly introduce lazy con-
trollers and their features. In Section 3 we discuss our prototype implementation
and its behaviour and Section 4 concludes the paper.
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(Sleep)
ζ(C, h) = k k > 0

〈t, [|C|]0 ⊲ {|S|}h〉
·

−→lzy 〈t, [|C|]k ⊲ {|S|}h〉

(Mon)

ζ(C,h) = 0 t′ = t− h

〈t′, C ⊲ S〉
α

=⇒ 〈t′ + x,C′ ⊲ S′〉 h ≤ x

〈t, [|C|]0 ⊲ {|S|}h〉
α

−−→lzy 〈t′ + x, [|C′|]0 ⊲ {|S
′|}0〉

(Log)

〈t− h, S〉
a

−−→sys 〈t+ h′, S′〉 h′ = x− h

h ≤ x < h+ k C
ã

−−→up C′ k′ = k − h′

〈t, [|C|]k ⊲ {|S|}h〉
a

−−→lzy 〈t+ h′, [|C′|]k′ ⊲ {|S′|}0〉

(Wake)
k > 0 h′ = h+ k t′ = t+ k

〈t, [|C|]k ⊲ {|S|}h〉
·

−→lzy 〈t′, [|C|]0 ⊲ {|S|}h′ 〉

Fig. 1: The transition relation −→lzy⊆ D× T× D.

2 Lazy Security Controllers

We briefly recall the theory of lazy security controllers [11]. A security monitor
is a tuple (Σ, C,=⇒) where C is a set of states and =⇒ is a transition relation

triggered by Σ actions. We write C⊲S
α

=⇒ C′⊲S′ to denote that the composition
of a system in state S ∈ S, where S is the set of states of the target, with a
controller in state C performs a visible action α. The new system and controller
states are S′ and C′, respectively. Given a discrete/continuous time domain T a
lazy controller is defined as follows.

Definition 1 (Lazy Controller). A lazy controller is (Σ, C,=⇒,−→up, ζ) where:

– =⇒ ⊆ (T×C×S)×(Σ∪{·})×(T×C×S) is the active monitoring relation;

– −→up ⊆ C × Σ̃ × C is the update relation for unseen actions;

– ζ : C × T → T is the scheduling function.

Where Σ̃ = {ã | a ∈ Σ} is the set of unseen actions.

Relation −→up is the operational notion of activity logging: while the con-
troller is not observing the system, i.e., it is idle, every action a ∈ Σ performed
by the target is logged as unseen, i.e., it is ã and is freely performed by the
target. Instead, function ζ is used to schedule the observations over the exe-
cution of the target. We assume that the controller states and time allow for
the evaluation of such a sensitive information. In [11] the synthesis of lazy con-
trollers for non-deterministic timed systems with non-instantaneous actions and
for both discrete-time and continuous-time markovian probabilistic systems is
discussed. In each case the (analytical) probability that a lazy controller misses
the detection of a violation is given.

Let D be the set of all the configurations of the form T × C × T × S × T

and let A = Σ ∪ Σ̃ ∪ {·}. A Labelled Transition System (LTS) is a graph with
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states and labelled edges between states. States denote system configurations
and edges transitions from a configuration to another. The semantics of a lazy
controller is a LTS (D,A,−→lzy) where D is the set of states, A is the set of labels
and −→lzy⊆ D × A × D is the least transition relation defined by the inference

rules of Figure 1. The rules are given in the form premises

conclusion
, along the lines of the

Structural Operational Semantics approach [16]; here we informally comment on
the rules (see Fig. 1) and we refer the interested reader to [11].

– (Sleep) states that, if at time t the controller is active, denoted by [|C|]0,
and the next observation is scheduled at time t+ k, then the controller can
idle till that time, here denoted as [|C|]k. The transition label · means that
this derivation does not involve any action of the target

– (Mon) applies when the controller is actively following the target. As the
scheduler prevents the monitoring from becoming idle, i.e., ζ(C, h) = 0, any
action of the target started at t−h and completing at t−h+x is monitored.
Relation =⇒ characterizes this behaviour of the controller;

– (Log) states that, if the time is t and the controller has scheduled the next
observation at time t+k, then any action which the target S performs before
t+ k is not controlled, but simply logged by means of the derivations using
−→up transition. In this time-window a violation may happen, not being
detected up to time t+ k;

– (Wake) allows the controller to spend time autonomously and synchronously
with the target S.

Lazy controllers include standard security controllers at the semantic level,
as stated in the following theorem whose proof can be found in [11].

Theorem 1 ([11]). Let (Σ, C,=⇒) be a security controller, let (Σ, C,=⇒,−→up

, ζ) be the lazy security controller with −→up arbitrarily defined and ζ : C × T →
{0}. Then, for any target S ∈ S and time t ∈ T

〈t, C ⊲ S〉
ω

=⇒∗〈t′, C′ ⊲ S′〉 iff 〈t, [|C|]0 ⊲ {|S|}0〉
ω

−−→
∗

lzy 〈t′, [|C′|]0 ⊲ {|S
′|}0〉 .

In words, Theorem 1 says that, forcing a lazy controller to be always active,
i.e. ζ(C, t) = 0 for any C and t, we obtain the same enforcement process produced
by the corresponding security controller.

3 Prototype implementation and discussion

In this section we present our prototype and we discuss its behaviour and per-
formance. In order to run our prototype under realistic settings, we defined a
case study in which a service running on a remote OSGi platform is monitored.

Case study. We consider a simple medical prescription service infrastructure.
The system consists of four actors: (i) a prescription service, (ii) doctors, (iii)
pharmacies and (iv) a delivery service. Registered doctors can use the prescrip-
tion service to fill prescription forms for their patients and submit them to a
pharmacy or to the delivery service. Briefly, the program works as follows:
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2

add_med,
add_hiv

0 1

cancel

login

confirm, cancel

pharmacy,
deliver

Fig. 2: The prescription system FSM.

login, add_med,
pharmacy, deliver,
confirm, cancel

login, deliver
confirm, cancel

2

login, add_med,
add_hiv, pharmacy,

deliver, confirm,
cancel

0 1add_hiv

pharmacy

add_med,
add_hiv

Fig. 3: The privacy policy FSM.

1. initially, the system waits for users, i.e., doctors, to log in (login);
2. then the doctor can add one or more medicines (standard, i.e. add med, or

HIV-specific, i.e., add hiv) to the prescription;
3. finally, the doctor chooses between two modalities, either pharmacy or deliver,

which specify how the patient gets access to the medicines.

At each step, the doctor can cancel (cancel) the operation and, at the end, he
must confirm (confirm) the prescription. Figure 2 shows the finite state machine
(FSM) representing the prescription system.

In order to avoid privacy violations, HIV therapies must always be delivered
at the patient’s residence. The FSM of Figure 3 represents the privacy policy
described above. Briefly, the policy reaches the final state, i.e., detects a violation,
if a session in which add hiv has been invoked concludes with pharmacy.

Prototype structure. The OSGi bundle implementing the prescription service
mainly consists of a simple RMI interface. The interface declares a method for
each action labelling the FSM of Figure 2, e.g., deliver() for deliver. Each
method behaves according to its specification, e.g., add med() adds a medicine to
the current prescription, and writes a new entry in the log. Logging functionali-
ties are provided by an implementation of the org.apache.commons.logging.Log
interface that simply appends the given label and a timestamp to a text file.

The lazy controller is an external application, i.e., running on a different
platform w.r.t. the target service. At each control cycle, the monitor wakes up
and requests the (fragment since the last request of the) current log to the remote
platform. Then, the log trace is processed by the policy automaton in Fig. 3 to
check if a violation has occurred. In case of a violation, the monitor sends a
security error signal to the execution platform (here causing the target to be
reinitialised). On the other hand, if the observed trace is legal, the lazy monitor
just schedules the next control cycle and hibernates.

The scheduling function maps a pair of states p, for the target, and q, for
the policy, into a hibernation time tp,q ∈ R

+. We compute hibernation times be-
fore starting the monitoring process. In this way, we carry out the computation
only once and we store the pairs 〈(p, q), tp,q〉 in a two-column table. Hiberna-
tion times are computed using the procedure detailed in [11], starting from a
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description of the target system. Clearly, the behaviour of the system depends
on the users/doctors. We assume that standard behaviour is known, e.g., by
analysing the system execution. In our model we used two different descriptions:
Continuous Time (CTMC) and Discrete Time Markov Chains (DTMC). In par-
ticular, we use the following matrices for describing the standard execution of
the service:

R =

[
0 1/30 0
1 2/5 1/4
2 0 0

]
P =

[
0 1 0

1/20 17/20 1/10
0 0 1

]

The matrices describe the expected behaviour of the FSM of Figure 2. Matrix R
contains rates of state transitions, corresponding to the parameters of exponen-
tially distributed random variables, while P contains the probabilities of state
transitions. Intuitively, time rates define the expected number of state transi-
tions per second, e.g., R[1, 2] = 1/30 means that a transition from state 0 to
state 1 happens, on the average, every 30 seconds. Instead, the elements of P
describe the probability of moving from the current state to the next one, e.g.,
P [2, 3] = 1/10 means that state 3 has 1/10 probability to be the successor of 2.
Also, note that R and P can collapse the values for more than one transition in
a single value, e.g., P [2, 2] = 17/20 denotes both add med (Padd med = 4/5) and
add hiv (Padd hiv = 1/20) transitions.

Performance evaluation. The prescription service was developed with Eclipse
Helios SR2 and executed on OSGi platform Equinox 3.3. Log libraries have been
developed implementing the Apache Commons Logging API version 1.1.1.

We tested our system by automatically generating customer sessions of sev-
eral types. Customers access the system which is monitored using a lazy con-
troller. We synthesize the lazy controllers using the two matrices R and P in-
troduced above and considering four different risk factors, i.e., 0.01, 0.05, 0.1
and 0.2. Also, we compared our monitors with a lazy controller which uses a
scheduling function that returns the duration of the shortest path leading to a
violation from the current state, computed by means of the Dijkstra algorithm
(note that the relation between this scheduling function and the notion of “risk”
is not defined in general and, also, the scheduling times cannot be refined). For
this purpose, we considered the matrix R′ such that R′[i, j] = R[i, j]−1 (and
R′[i, j] = ∞ if R[i, j] = 0).

For the overhead analysis we considered customers that statistically behave
in a compliant way with respect to the original specification, i.e., the behavioural
matrices. The execution overhead is a measure of the computational effort due
to the monitoring activity in comparison with the computation of the target.
For the continuous time model we considered the activity time of the monitor
against the overall execution interval. Instead, for the discrete time model we
compared the number of controller synchronizations and the total number of
service invocations. Figure 4a shows the simulation output.

As expected, both the approaches increase their performance with the growth
of the risk threshold. Moreover, in general they perform better than the Dijk-
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Fig. 4: Monitoring performance evaluation.

stra algorithm-based solution (dashed line). Clearly, such version does not gain
advantage from the risk modification.

In order to test delays in violations detection, we executed our system with
clients that only emit illegal traces (in the sense of Figure 3). The violating
traces are generated using the same probabilities and rates of standard clients.
Figures 4b and 4c show the violation detection delays observed in our tests.

Note that the delays for CTMC and DTMC-based monitors have completely
different meanings and must be interpreted. Indeed, CTMC controllers work
under real time settings, i.e., the monitor is created for keeping under control the
time delay of a violation detection rather than the number of actions. Conversely,
DTMC controllers aim at minimising the number of actions after a violation.
However, it is interesting to compare the two models in both cases.

Finally, we also introduced an error factor for testing the stability of our
solution. In particular, we considered users that do not perfectly comply with
the given specifications, i.e. the matrices R and P . Interestingly, we found that
the performance and delay of our system are stable even with errors up to 30%.

4 Conclusion

We presented a prototype implementation of a monitoring environment using
lazy controllers for verifying the policy compliance of a remote execution. Our
technique schedules security checks during its execution rather than controlling
the target continuously. Although this generates a risk factor, it also extends
the applicability of security monitors to many real-world scenarios. Moreover,
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we have shown that the risk of a security violation can be analysed and kept
under control through the execution parameters of the controllers.

Lazy controllers are generated starting from the specification of a standard
security controller. Then we add time constraints to the application rules. In
this way, we can convert any existing security controller to a corresponding lazy
one. This amount to say that we can apply our solution to existing enforcement
environments without redesigning them.

Finally, we considered the performances of our prototype under several set-
tings and we showed execution statistics. The prototype was executed with re-
alistic setting and applied to a case study using OSGi technology. All the exper-
iments highlighted the flexibility and efficiency of our solution.
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Abstract. Modern multi-application smart cards based on the Java
Card technology can become an integrated environment where appli-
cations from different providers are loaded on the fly and collaborate
in order to facilitate lives of the cardholders. This initiative requires an
embedded verification mechanism to ensure that all applications on the
card respect the application interactions policy.
The Security-by-Contract (S×C) approach for loading time verification
consists of two phases. During the first phase the loaded bytecode is
verified to be compliant with the supplied contract. Then, during the
second phase the contract is matched with the smart card security policy.
In the paper we report about implementation of a S×C prototype, present
the memory statistics that justifies the potential of this prototype to be
embedded on an actual device and discuss the Developer S×C prototype
that can be run on a PC.

1 Introduction

Multi-application smart cards are an appealing business scenario for both smart
card vendors and smart card holders. Applications interacting on such cards can
share sensitive data and collaborate, while the access to the data is protected
by the tamper-resistant integrated circuit environment. In order to enable such
cards a security mechanism is needed which can ensure that policies of each
application provider are satisfied on the card. Though a lot of proposals for
access control and information flow policies enforcement for smart cards exist
[2, 7, 9], they fall short when the cards can evolve after issuance. The scenario of
a dynamic and unexpected post-issuance evolution of a card, when applications
from potentially unknown providers can be loaded or removed, is very novel.

For a dynamic scenario, traditionally, run-time monitoring is the preferred
solution. But smart cards do not have enough computational capabilities for
implementing complex run-time checks. Thus the proposal to adapt the Security-
by-Contract approach (initially developed for mobile devices [3]) for smart cards
appeared. In the Security-by-Contract (S×C) approach each application supplies

? This paper is a short version of [5]. It provides the high-level engineering aspects of
the research results.
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on the card its contract, which is a formal description of the application behavior.
The contract is verified to be compliant with the application code, and then the
system can ensure that the contract matches the security policy of the card.

The S×C framework deployed on the card ensures that all the loaded ap-
plications interact in compliance with the security policy of each application
provider. In comparison with the existing works aiming at enforcing application
interaction policies in a dynamic setting [4, 6], we improve the state of the art in
the following (1) the S×C prototype was implemented to be integrated with an
actual device, taking into account the memory usage restrictions, (2) we have
developed the full eco-system of the S×C verifier based on the standard Java
Card tools and specifications available, (3) we have implemented also a version
for developers that can be run on a Windows-based PC.

The rest of the paper is structured is follows. Section 2 contains a brief
overview of the Java Card technology and then we outline the S×C solution for
Java Card (Section 3) emphasizing the changes to the platform. The design and
implementation details are outlined in Section 4 For on-card prototypes small
memory footprint is a must, we therefore present the memory usage statistics (for
non-volatile memory and RAM) that demonstrates feasibility of the embedded
implementation (Section 5). We conclude with Section 6.

2 The Java Card Platform

Java Card is a popular middleware for multi-application smart cards that allows
post-issuance installation and deletion of applications. Application providers de-
velop applets (Java Card applications) in a subset of Java. Full description of the
Java Card language is provided in the official specifications [8]. Figure 1 presents
the architecture of an integrated circuit with the Java Card platform installed
and the application loading process. The architecture comprises several layers
including device hardware, an embedded operating system (native OS), the Java
Card run-time environment (JCRE) and the applications installed on top of it.
Important parts of the JCRE are the Java Card virtual machine (JCVM) (its
Interpreter part), the Installer, which is an entity responsible for post-issuance
installation and removal of applications and the Loader, that comprises a set of
API to access the loaded bytecode.

Applications are supplied on the card in packages. The source code of a pack-
age is converted by the application providers into class files and then into a CAP
file. The CAP file is, essentially, an optimized Java Card bytecode, it consists of
several efficiently organized components each carrying specific information. The
CAP file is transmitted onto a smart card, where it is processed and linked.

The interactions between applets from different packages are mediated by
the JCRE firewall. If two applets belong to different packages, their contexts are
different, and the Java Card firewall confines applet’s actions to its designated
context. Thus, normally, an applet can reach only objects belonging to its own
context. The only applet’s objects accessible through the firewall are methods
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Fig. 1. The Java Card architecture and the loading process. The white components and
data structures belong to the standard Java Card platform. The grey components and
data structures are additions introduced by the S×C scheme. The dashed lines denote
the changes to the loading process.

of specific shareable interfaces, also called services. A shareable interface is an
interface that extends javacard.framework.Shareable.

An application A implementing some services is called a server. An applica-
tion B that tries to call any of these services is called a client. A typical scenario
of service usage starts with a client’s request to the JCRE for a reference to
A’s object (that is implementing the necessary shareable interface). The firewall
passes this request to application A, which decides if the reference can be granted
or not. If the decision is positive, the reference is passed through the firewall and
is stored by the client for further usage. The client can now invoke any method
declared in the shareable interface which is implemented by the referenced ob-
ject. During invocation of a service a context switch will occur, thus allowing
invocation of a method of the application A from a method of the application
B. A call to any other method, not belonging to a shareable interface, will be
stopped by the Java Card firewall.

As all applet interactions inside one package are not controlled by the firewall
and due to the fact that a package is loaded in one pass, we consider that one
package contains only one applet and there is an one-to-one correspondence
between packages and applications. Another important assumption for us is that
packages do not implement shareable interfaces declared in other packages, this
assumption can in fact be guaranteed by the S×C framework.

Currently the services access control enforcement on Java Card is embedded
into the application code. Traditionally, the server will receive an AID (unique
application identifier) of the client requesting its service from the JCRE and
check that this client is authorized before granting it the reference to the object
(that can implement multiple services). Once the object reference is received,
the client can access all the services within this object and it can also leak the
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object reference to other parties. The S×C framework checks the authorizations
for each service access, thus the object reference leaks are no longer a security
threat. In Java Card the controls for checking the invocation context can also
be embedded directly in the code of each service. We argue that this approach
is not satisfactory, as the access control list of authorized clients can be updated
only through complete removal and reinstallation of the server applet. When
the server package is imported by other (client) packages on the card the server
removal is not possible. The embedded S×C verifier can enforce the same service
access control policies in a flexible fashion when each server can update its policy
without reinstallation.

In a CAP file all object types and methods are referred to by their tokens
which are used by the JCRE for on-card linking. A service s is identified as a
tuple 〈A, I, t〉, where A is the AID of the package providing the service s, I is a
token for a shareable interface where the service is defined and t is a token for
the method in the interface I. The correct service tokens can be obtained from
the Export file of a package (produced by the Converter) or from the CAP file.

The JCRE imposes some restrictions on method invocations in the applica-
tion bytecode. Only the opcode invokeinterface allows to perform the con-
text switch between two different packages. Thus, in order to collect all potential
service invocations we analyze the bytecode and infer from the invokeinterface
instructions possible services to be called. More details are available for the in-
terested reader in [5].

3 Security-by-Contract for Java Cards

In the Security-by-Contract scheme every application carries its contract em-
bedded into the CAP file. Let A.s be a service s declared in a package A. The
contract consists of two parts: AppClaim and AppPolicy. AppClaim specifies pro-
vided and invoked services (Provides and Calls sets correspondingly). We say that
the service A.s is provided if applet A is loaded and service s exists in its code.
Service B.m is invoked by A if A may try to invoke B.m during its execution.
The AppClaim will be verified for compliance with the bytecode (the CAP file).

The application policy AppPolicy contains authorizations for services access
(sec.rules set) and functionally necessary services (func.rules set). We say a ser-
vice is necessary if a client will not be functional without this service on board.
The AppPolicy lists applet’s requirements for the smart card platform and other
applications loaded on it. A functionally necessary service for applet A is the
one which absence on the platform will crash A or make it useless. For exam-
ple, a transport application normally requires some payment functionality to be
available. If a customer will not be able to purchase the tickets, she would prefer
not to install the ticketing application from the very beginning. It is required
that for every application A func.rulesA ⊆ CallsA. An authorization for a service
access contains the package AID of the authorized client and the service tokens.
The access rules have to be specified separately for each service and each client
that the server wants to grant access.
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Fig. 2. The Security-by-Contract workflow for loading.

Contracts are delivered on the card within Custom components of the CAP
files. CAP files carrying Custom components can be recognized by any Java Card
Installer, as the Java Card specs require. More details on the structure of the
Contract Custom component that we proposed are available in [5]. To ease the
contract creation we have developed the CAP Modifier tool with a user-friendly
graphical interface allowing to edit any section of the contract, save already
created contracts as files for future usage and embed the created contracts into
CAP files. The tool takes the CAP file generated with the standard Java Card
tools and appends the Contract Custom component within it, modifying the
Directory component of the CAP file accordingly (as the specification requires).

The S×C framework deployed on the card consists of two main compo-
nents integrated with the platform: the ClaimChecker and the PolicyChecker. The
ClaimChecker performs extraction of the contract and verifies that it is compli-
ant with the application code. Then the PolicyChecker ensures that the security
policy of the card, composed by all the contracts of currently loaded applica-
tions, is compliant with the contract. Another addition to the platform is the
PolicyStore component. The PolicyStore appears due to the fact that only com-
ponents implemented in Java Card (applets and the Installer) can allocate space
in EEPROM (mutable persistent memory), that is the only type of memory
suitable to store the security policy across the card sessions. The PolicyStore is
a class in the Installer. Figure 1 depicts the S×C prototype embedded into the
Java Card platform. Figure 2 summarizes the S×C workflow for loading, as the
most interesting case, emphasizing the role of each component.

4 Implementation of the S×C Prototype

We have implemented the S×C prototype in C, as it is a standard language for
smart card platform components implementation and the Loader API we had
knowledge of was written in C. The main components of the S×C prototype are:
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SxCInstaller. This component is an interface with the Installer. SxCInstaller
calls the ClaimChecker that in a positive case (contract and bytecode are compli-
ant) will return the address of the contract in the Contract Custom Component
of the CAP file being loaded. The SxCInstaller also comprises (for memory saving
reasons) the PolicyChecker component.

ClaimChecker. This component is called by SxCInstaller. It carries out the
check for the compliance between the contract and the CAP file. The check is
carried out after parsing the CAP file. We used a part of the standard Loader
API, called in the current paper CAPlibrary, that contains functions to access
the beginning and the length of each CAP file component. Using the functions
of the CAPlibrary library for CAP file parsing on-card, this component gets the
initial address of the components it needs from which it can eventually parse the
rest of the components. If the result is positive, the ClaimChecker will return the
address of the contract of the application in the Contract Custom component.

The ClaimChecker component has to establish that the services from ProvidesA
exist in package A and the services from CallsA are indeed the only services that
A can try to invoke in its bytecode. The goal of the ClaimChecker algorithm is to
collect each invokeinterface opcode with its parameters (the method t and
the Constant Pool index I). Then the collected set is compared with the set Calls
of the contract. We emphasize that operands of theinvokeinterface opcode
are known at the time of conversion into a CAP file and thus are available
directly in the bytecode. All methods of the application are provided in the
Method Component of the application’s CAP file, an entry for each method
contains an array of its bytecodes. Exported shareable interfaces are listed in
the Export component of the CAP file and flagged in the Class component.
The strategy for the ClaimChecker is to ensure that each service listed in the
Provides set is meaningful and no other provided services exist. More details of
the ClaimChecker algorithm can be found in [5].

Due to the lack of space we only present the security policy data structures
just to give a flavor of this part of the system. The security policy stored on the
card consists of the contracts of the currently loaded applications. A contract
in the form supplied on the card is a space-consuming structure (each AID can
occupy up to 16 bytes). Therefore we have resolved to store the security policy
on the card in a bit vectors format. The current data structure for security policy
assumes there can be up to 10 loaded applets, each containing up to 8 provided
services. Thus the security policy is a known data structure called Policy with
a fixed format, the bits are taking 0 or 1 depending if the applet is loaded or
the service is called/provided. The Mapping object maintains correspondence
between the number the applet gets in the on-card security policy structure
and the actual AID of the package, and between the provided service token and
the number of this service in the policy data structure. The other two objects
that are part of the on-card security policy are the MayCall list and WishList
list, containing the potential future authorizations, necessary for a case when
a loaded application carries a security rule for some application not yet on the
card and the services that are called by applications but are not yet on the
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card, because the server is not yet loaded, or because the current version of
the server does not provide this service correspondingly. The PolicyStore, being
written in Java Card, has to communicate the security policy to the PolicyChecker
component (the SxCInstaller) that will run the contract-policy compliance check.
This communication is implemented through usage of a native API.

The Developer S×C Prototype. The S×C prototype for experimenting on
a PC comprises the same components: the SxCInstaller, the ClaimChecker and the
PolicyStore, which in the Developer version is packaged as an applet. The com-
munication between the SxCInstaller and the PolicyStore applet is emulated by
using files. The S×CDeveloper prototype emulates deployment of the PolicyStore
applet on a card using the Java Card development kit from Oracle. For the pur-
poses of independent functionality testing we have implemented the CAPlibrary
library and the necessary Installer functionality following the JCRE specifica-
tions. The Developer prototype accepts as input CAP files with the contract
embedded into the Custom component by the CAP Modifier tool, runs the ver-
ification algorithms and outputs the results, notifying also which of the checks
failed during verification (if any, otherwise it reports successful loading of an
applet and updates the current security policy). Thus developers can create and
embed different contracts and try the verification process.

5 Evaluation

In this section we report the memory measurements of the prototype carried out
in the University of Trento. The details of the industrial evaluation performed
by Trusted Labs (commissioned by Gemalto) can be found in [1]. The most
important characteristics for an on-card component are RAM and non-volatile
memory (NVM) consumption. NVM space is required to store the prototype and
the necessary data (the security policy) across the card sessions. RAM memory
is used to store the temporary data while the verification is performed.

We have explored two metrics for the NVM usage estimations off-device: the
size of the object files in C compiled on a PC and the number of lines of code
(LOCs). The ClaimChecker component object file compiled with the MinGW
compiler tools occupies 6.5 KB, the ClaimChecker has 170 LOCs (.h + .c). The
SxCInstaller object file occupies 7.3 KB, this component includes 178 LOCs. The
PolicyStore applet CAP file (exact on-device measure) occupies 6KB.

RAM usage is also very important, as over-consumption of RAM by the
prototype can lead to the denial of service. The higher is the RAM consumption,
the lower is the level of interoperability of the prototype; because some cards
cannot provide a significant amount of RAM for the verifier which has to run in
the same time with the Installer. We have used a temporary array of 255 bytes
to store the necessary computation data. 255 bytes is a small temporary memory
buffer which ensures the highest level of interoperability for the prototype.
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6 Conclusions

In the paper we have presented the S×C prototype for the Java Card-based smart
cards. The prototype can be used to perform load time verification of Java Card
applets and enforce service access control policies in a flexible way. The proto-
type is integrated on the card with the Loader API which provides direct access
to the received bytecode. The prototype is able while parsing the bytecode to
extract the application contract and to compare it with the actual code of the
application. Then the received contract is transformed into the memory-efficient
on-card format and compared with the security policy of the device. The mem-
ory statistics demonstrates feasibility of embedding the proposed prototype on
an actual device. We have also developed the Developer S×C prototype that can
be demonstrated on a usual PC without actual device, all the on-card functions
necessary to process CAP files were implemented using the Java Card specifica-
tions.
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Abstract. With the large, and rapidly increasing, number of smart-
phones based on the Android platform, combined with the open nature
of the platform that allows “apps” to be downloaded and executed on
the smartphone, misbehaving and malicious (malware) apps is set to
become a serious problem. To counter this problem, automated tools
for analysing and verifying apps are essential. Further, to ensure high-
fidelity of such tools, we believe that it is essential to formally specify
both semantics and analyses.
In this paper we present the first (to the best of our knowledge) formal-
isation of the Dalvik bytecode language and formally specified control
flow analysis for the language. To determine which features to include
in the formalisation and analysis, 1,700 Android apps from the Android
Market were downloaded and examined.

1 Introduction

With over 100 million Android devices already activated, and in excess of 400,000
new activations every day, Android has become one of the most widespread
and fastest growing computing platforms for smartphones and tablet computers.
The combination of the wide distribution and the open nature of the Android
platform, where apps can be downloaded and installed not only from the official
Android Market but also from unknown, untrusted, and potentially malicious
third parties makes it obvious that tools are needed to ensure, and possibly
certify, that apps are well-behaved and do not access (and leak) information
or functionality not explicitly allowed and intended by the user. The problem
is further exacerbated by the often sensitive and private nature of information
stored on a smartphone as well as the potential for apps to (ab-)use services
that cost the user money, e.g., by secretly sending text messages to expensive
premium numbers [11].

In order to develop tools for highly trustworthy analysis and, especially, for
certification we believe it is necessary to have a formal underpinning of the target
platform and to show that the analyses are sound with respect to the formal-
isation. In this paper we first present a study of 1,700 Android apps, carried
out in order to determine what Dalvik instructions and language features are



most often used in typical apps. Based on the results of this study, we develop
a formal operational semantics for the Dalvik bytecode language [14]. We fur-
ther abstract the operational semantics into a formal control flow analysis for
the Dalvik bytecode language, intended both as the basis for further, more spe-
cialised analyses but also by itself for detecting potentially malicious actions,
e.g., leaking prviate information or surreptitiously calling expensive phone num-
bers. To the best of our knowledge, this is the first such formalisation of the
Dalvik bytecode language and a accompanying control flow analysis. Finally,
since our study revealed that more than half the apps examined used reflection,
we illustrate how the reflection API can be formalised and analysed.

While Android apps are generally developed in Java, compiled to Java byte-
code, and only then converted to Dalvik bytecode, we focus here on Dalvik
bytecode because it is the common executable format for all Android apps and,
therefore, offers the best opportunity for performing analyses as close to the code
actually executed as possible and we sidestep issues relating to decompiling and
reverse engineering apps, cf. [4].

1.1 Related Work

In [3] the tool ComDroid is described as a tool that performs “flow sensi-
tive, intraprocedural static analysis with limited interprocedural analysis” of
Dalvik bytecode programs. It is designed to analyse the communication between
Android applications through the so-called Intents, the Android equivalent of
events, and to find potential security vulnerabilities in the communication pat-
terns of applications. In [6] the ComDroid tool is used as a component of another
analysis tool, called Stowaway, that analyses API calls in applications to deter-
mine if they are over-privileged. In order to improve the precision and efficacy of
the analysis, Stowaway incorporates some analysis of the reflection features found
in Dalvik bytecode (through the java.lang.reflect library). Both ComDroid
and Stowaway are sophisticated analysis tools covering not only the Dalvik byte-
code language but also important parts of the API and the Android platform
itself. However, since the analyses are not actually specified in detail, neither
formally nor informally, it is impossible to evaluate the exact strengths and
weaknesses of the underlying analyses. Indeed, it is stated in [6] that Stowaway
makes a “primarily linear traversal” and that it “experiences problems with non-
linear control flow”. This emphasises the need for a formalisation of both the
Dalvik bytecode language as well as the control flow analysis.

In [4] Android applications are analysed by first recovering the Java source
through decompilation and then using the Fortify SCA static analysis tool to
detect potential security vulnerabilities. While the paper reports on impressive
results using this approach, it is also noted that it was not possible to recover
the source code for all the targeted applications and thus making analysis of
those applications impossible. Analysing directly at the bytecode sidesteps this
issue.

The approach described in [13] takes advantage of the fact that most, if not
all, Android applications are developed in Java and adapts the Julia framework
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for Java bytecode analysis to the specificities of the Java bytecode that results
from developing Android applications (before being converted to Dalvik byte-
code). The Julia framework is theoretically sound and well-documented, but the
described solution requires access to the Java bytecode version of an application
in order to analyse it.

2 Study of Apps

In order to identify which Dalvik bytecode instructions and which Java language
features are used in typical Android apps, we have collected and examined 1,700
of the most popular free apps from Android Market [7]. Notable features in-
clude code obfuscation, threading, reflection, native libraries, and dynamic class
loading. The apps were collected in November 2011 using Android 2.3.3 on a
Samsung Nexus S.

For efficiency reasons the Dalvik bytecode language contains several spe-
cialised variants of many common instructions, e.g., there are numerous variants
of the move instruction. For our study we have grouped instruction variants that
are semantically similar, e.g., most variants of the move instruction belong to the
same group. In the semantics (see Section 3) we use the same notion of grouping
to abstract and generalise the original 218 Dalvik bytecode instructions into a
set of 39 instructions.

In our study we found that, with the exception of the filled-new-array in-
struction, all types of Dalvik bytecode instructions are used in more than half the
studied apps. In particular, the instructions invoke-direct and return-void

are used in every app and even the most rare instructions, sparse-switch and
filled-new-array, are used in 69.7% and 22.3% of the studied apps, respec-
tively. The instructions that occur most frequently are invoke-virtual and
move-result, which are used more than 12 million times each in total in the
1,700 apps. In comparison, filled-new-array is used 1,930 times. For full de-
tails, see [10].

The observations made from studying the use of Java features are summarised
in Table 1 and are explained in detail below. For the study we have separated
code into developer code and library code. Developer code is code that lies within
the natural packages for the application. For an application company.app this
means all classes located directly in the packages /, /company/, /company/app/,
and any subpackages in /company/app/. Library code is everything else.

Code obfuscation, especially using ProGuard [5], is used to a large extent. We
searched for classes named “a” within apps in the data set, and used this
as an approximation to determine if an app contains any obfuscated code.
The same approach was used in [4] which found 36% of apps to include
obfuscated code. We found the class in 64.82% of the apps. Obfuscation has
legitimate uses and is recommended by Google [8], but makes it harder to
manually inspect the code.
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Table 1. Percentages of apps in our data set that use various features.

Feature Used by apps Hereof in libraries

Obfuscated source 64.82% -
Has native libraries 20.35% -
java/lang/Thread 90.18% 24.07%
java/lang/reflect 73.00% 55.92%
java/lang/ClassLoader 39.71% 81.19%
java/lang/Runtime;->exec 19.53% 80.44%

Native libraries, i.e., ARM shared object (.so) files, were included in 20.35%
of the apps we studied1. A previous study [4] found that of their 1,100 studied
apps from September 2010, only 6.45% included shared objects. We presume
the increased usage is because the Android NDK, released June 25, 2009,
has gained more widespread use in 2011.

Threading, as indicated by the use of monitors, i.e., the Java synchronized

keyword, was found in 88% of the apps. Furthermore, 90.18% of the apps
include a reference to java/lang/Thread. These observations are not conclu-
sive, but indicate that multi-threaded programming is wide-spread. However,
further studies are needed to substantiate the results.

Reflection is used extensively in Android apps for accessing private and hidden
classes, methods, and fields, for JSON and XML parsing, and for backward
compatibility [6]. We confirmed these observations by manual inspections.
Of the 940 apps studied in [6], 61% were found to use reflection, and using
automated static analysis they were able to resolve the targets for 59% of the
reflective calls. 73% of the apps in our data set use reflection. This indicates
that a formalisation of reflection in Dalvik is necessary to precisely analyse
most apps. We treat this in Section 5.

Class Loading Of the studied apps 39.71% contain a reference to the class
loader library, java/lang/ClassLoader, which means that the app can load
Dalvik executable (DEX) files and JAR files at runtime. Manual inspection
shows that some of these uses relate to IPC transport with the Android
Parcelable interface.

The Java method Runtime.exec() is used to execute programs in a separate
native process and is present in 19.53% of the apps. We manually inspected
some of these uses. Most of these do not use a hardcoded string as the argu-
ment to exec, but of those that do, we found execution of both the su and
logcat programs which, if successful, give the app access to run programs
as the super user on the platform or read logs (with private data [4]) from
all applications, respectively.

1 In addition, 15 apps included the ARM executable gdbserver.
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3 Operational Semantics

In this section we describe the formalisation of the Dalvik bytecode language
using operational semantics. With the exception of instructions related to con-
currency, we have formalised the full (generalised) instruction set and below we
present the semantic rules for a few interesting instructions. The approach is
inspired by a similar effort to formalising the Java Card bytecode language [15,
9].

To simplify our work, we have made a number of convenient, but minor,
generalisations, including: simplified type hierarchy to avoid dealing with bit-
level operations, except when absolutely necessary; “inlining” of the constant
pools for easier and more direct reference of strings, types, methods, and fields;
and finally an idealised program counter abstracting away the length of instruc-
tions. While none of these modifications change the expressive power of a Dalvik
application, they greatly simplify presentation and formalisation.

The study described in Section 2 impacted the formalisation in two major
ways: it was clear that all of the core bytecode language had to be formalised
and also that the reflection API had to be formalised. In order to ensure that
the formalisation correctly represents the Dalvik (informal) semantics, we based
the formalisation on the documentation for Dalvik [1], inspection of the source
code for the Dalvik VM in Android [2], tests of handwritten bytecode, and
experiments with disassembly of compiled Java code.

3.1 Program Structure and Semantic Domains

To facilitate the development of the formal semantics for Dalvik bytecode, it
is important to have a good formalisation of the program structure of apps.
Here we follow [15] and use domains equipped with accessor-functions, written
in an OO inspired notation. The Method domain is presented to illustrate this
approach:

Method = (name:MethodName)× (class:Class)×
(argType:Type∗)× (returnType:Type ∪ {void})×
(instructionAt:PC→ Instruction)×
(kind: {virtual, static, direct})×
(maxLocal:N0)× (handlers:N0 → ExcHandler)

The return type of a method m ∈ Method is denoted m.returnType. The function
argType is a sequence of the types of the arguments to the method. The func-
tion instructionAt maps to another function mapping locations in the method
(program counter values) to instructions. maxLocal is the number of the last
register used for local variables in the method (Dalvik uses registers instead of
an operand stack).

The next step in our formalisation is to define the semantic domains. Since
these are quite standard, and for lack of space, we only give a few examples. Local
registers are modelled simply as a map from register names to values using ⊥ to
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denote undefined register contents: LocalReg = (N0 ∪ {retval}) → Val⊥. Note
that a special register, the retval register, is used to transfer return values from
invoked methods.

Addresses are used to identify specific program points and are composed of
a method and a program counter value: Addr = Method × PC where PC = N0.
This gives a unique address for every instruction in a Dalvik program. We can
then define stack frames to contain a method and a program counter, i.e., an
address, and the local registers: Frame = Method × PC × LocalReg. This leads
to the following definition of call stacks as simply a sequence of frames except
that the top frame may be an exception frame representing an as yet unhandled
exception: CallStack = (Frame+ExcFrame)×Frame∗. An exception frame contains
the location of its corresponding exception object on the heap and the address of
the instruction that threw the exception: ExcFrame = Location×Method× PC.
We shall not go into further details with the semantic domains, merely refer
to [10] for the full definition.

3.2 Semantic Rules

We specify the semantics as a straightforward structural operational semantics
where each configuration comprises a static heap, a heap, and a call stack (as
defined above). To illustrate the semantics, we present the semantic rule for the
central invoke-virtual instruction:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class)
R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,

m′.maxLocal + 1 7→ v1, . . . ,m
′.maxLocal + arity(m′) 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

The function instructionAt is an access function on the Method domain that
identifies the instruction at a given location in a specified method. In the new
configuration, the static heap (S) and dynamic heap (H) are unchanged. The
instruction receives n arguments and the signature of the method to invoke.
The first argument v1 is a reference to the object on which the method should
be invoked. The location of the method is resolved using the auxiliary function
resolveMethod as explained below and this method is put into a new frame on
top of the call stack, with the program counter set to 0. A new set of local
registers, R′, is created, where the registers up to m′.maxLocal are mapped to
⊥Val such that they are initially undefined. The arguments are then mapped into
the next registers. Like Java, Dalvik implements dynamic dispatch. We define a
function to search through the class hierarchy for virtual methods (all non-static
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methods that are overridable or defined in interfaces):

resolveMethod(meth, cl) =
⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth / m ∧

m.kind = virtual

resolveMethod(meth, cl .super) otherwise

where meth / m is a predicate formalising when a method signature meth is
compatible with a given method m ∈ Method, i.e. when the names, argument
types and return types match.

Exceptions can be thrown either explicitly using the throw instruction, or
by the system in case of a runtime error, such as a null dereference. Exception
handlers have a type for the exceptions it may catch, a program counter value
pointing to the handler code, and program counter values defining the boundaries
of the region covered by the exception handler. Exceptions that are not handled
in the method where it is thrown are put on the call stack for the next method’s
exception handlers to try to handle. The throw instruction is defined as follows:

m.instructionAt(pc) = throw v
R(v) = locE 6= null cl = H(locE).class cl � Throwable

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈locE ,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

When the top frame is an exception frame and a handler is found, the following
rule applies (an analogous rule applies when no handler is found):

cl = H(locE).class findHandler(m, pc, cl) = pc′

A ` 〈S,H, 〈locE ,mE , pcE〉 :: 〈m, pc,R〉 :: SF 〉 =⇒
〈S,H, 〈m, pc′, R[retval 7→ locE ]〉 :: SF 〉

The auxiliary function findHandler finds the exception handler matching the
location in the method and the given exception class or ⊥ if no appropriate
handler is available.

4 Control Flow Analysis

In the following we give a very brief overview of the control flow analysis, which
is specified using flow logic [12]. In this approach an analysis is defined through a
number of flow logic judgements that specify what is required of an analysis result
in order to be correct. Details can be found in [12]. Many other frameworks for
program analysis exist, but the combination of a structural operational semantics
and flow logic has proven to be flexible and easy to use for both theoretical
developments as well as for implementation. A more detailed comparison with
other approaches is out of scope for this paper.

The abstract domains, used in the analysis to statically represent runtime
values, are based very closely on the underlying semantic domains. Similar to
the class object graphs in [16], we map all instances of a given class to one
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abstract class instance. In order to achieve sufficient precision, the analysis is
flow-sensitive, but only intra-procedurally. This yields an abstract domain for
local registers that tracks (abstract) values for every address in the program
(including a special address, denoted END, used to track return values from

methods): ̂LocalReg = Addr→ (Register∪{END})→ V̂al where V̂al is the domain
for abstract values, containing abstractions of primitive types, references and
classes. Similarly we can define the abstract domains for static and “ordinary”

heaps: ̂StaticHeap = Field→ V̂al and Ĥeap = Ref → (Ôbject+Ârray) respectively.

The overall domain for the analysis is then defined as Ânalysis = ̂StaticHeap ×
Ĥeap× ̂LocalReg.

We now illustrate flow logic judgements, starting with the judgement for
the move instruction: after a move instruction, the destination register contains
the value in the source register while all others are unchanged as signified by
the v{v} relation:

(Ŝ, Ĥ, R̂) |= (m, pc): move v1 v2
iff R̂(m, pc)(v2) v R̂(m, pc + 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc + 1)

The conditions are joined by an implicit conjunction. A solution for the anal-
ysis that satisfies the ordering specified by the flow logic judgements will be a
safe over-approximation of all possible values in every method. To satisfy the
conditions for the move instruction, the value of the destination register at the
following instruction must be the least upper bound of the old and the new value.

The flow logic judgement for the invoke-virtual instruction works as fol-
lows: For each possible object the method can be called on, the method is resolved
(by dynamic dispatch using the resolveMethod function from the semantics), the
arguments are transferred, and the retval register is updated with the return
value unless the return type of the method is void:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef cl) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc + 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc + 1)

Object references are modelled simply as classes, which is possible since these
are all known statically.

Two things can happen when an exception is thrown: If a local handler exists,
control is transferred to that handler with a reference to the exception object
in the retval register. If no local handler exists, the method aborts and the
exception is put on the call stack in an exception frame. The analysis will treat
this situation with the following auxiliary predicate:

HANDLE(R̂,Ê)((ExcRef clE), (m, pc )) ≡
findHandler(m, pc, clE) = pc′ ⇒ {(ExcRef clE)} v R̂(m, pc′)(retval)

R̂(m, pc) v{retval} R̂(m, pc′)

findHandler(m, pc, clE) = ⊥ ⇒ {(ExcRef clE)} v Ê(m)
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where the exception cache Ê abstracts the details of exceptions on the call stack
by storing them when no local handler is found. With the above predicate it is
now trivial to define the analysis for the throw instruction:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): throw v

iff ∀(ExcRef clE) ∈ R̂(m, pc)(v):
HANDLE(R̂,Ê)((ExcRef clE), (m, pc))

5 Reflection

As shown by our study, many apps use reflection and it is therefore important
to handle this in the formalisation and analysis. Below we show how a central
API method in the reflection library is formalised and analysed, namely method
invocation. Refer to [10] for further details.

Dynamic method invocation is done by calling the invoke() method on a
java.lang.reflect.Method object. This method is used by 84.3% of the apps
that use reflection. Modelling the semantics of this results in the following special
case for the invoke-virtual instruction:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth.name = Method.invoke R(v1) = loc1 loc1 6= null

o1 = H(loc1) o1.class � Method meth ′ = methodSignature(o1)
R(v2) = loc2 loc2 6= null o2 = H(loc2) R(v3) = loc3 a = H(loc3) ∈ Array
m′ = reflectResolveMethod(meth ′, o2.class) R′ = [0 7→ ⊥, . . . ,m′.maxLocal 7→ ⊥,
m′.maxLocal + 1 7→ a.value(0), . . . ,m′.maxLocal + a.length 7→ a.value(a.length− 1)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

Register v1 points to the Method object, v2 points to the receiver object, i.e., the
object on which the method is invoked, and v3 points to an array with the ar-
guments for the method. The rule uses two auxiliary functions: methodSignature
extracts the semantic method signature from a Method object and reflectResolveMethod
works like resolveMethod except that it ignores the method kind such that it
works on any method.

The flow logic judgement is similar to the one for invoke-virtual, with
another layer of indirection because the over-approximative analysis represents
sets of possible values in registers:

(Ŝ, Ĥ, R̂) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth.name = Method.invoke

∀(ObjRef cl) ∈ {cl | cl ∈ R̂(m, pc)(v1) ∧ cl � Method}:
∀meth ′ ∈ methodSignature(Ĥ(cl)):

∀(ObjRef cl ′) ∈ R̂(m, pc)(v2):
m′ = reflectResolveMethod(meth ′, cl ′)
∀1 ≤ i ≤ arity(meth ′):

∀(ArrRef a) ∈ R̂(m, pc)(v3):

Ĥ(ArrRef a) v R̂(m′, 0)(m′.maxLocal + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc + 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc + 1)
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In effect, the conditions of the basic invoke-virtual must be satisfied for each
method that can be resolved from each Method object reference in v1. Further-
more, the contents of each array referenced by v3 must be available in each
argument register for the current method being invoked.

This approach presents a problem: For the methodSignature function to
work, the Method object must be known statically and no classes must be
loaded or created dynamically. In the studied apps, the Method object is typi-
cally derived from a Class object using the getMethod() method which takes
the method name as a string argument. The Class object itself is also typi-
cally obtained from a string using the Class.forName() method. In many cases
we have determined that the string can be found statically. Of the apps that
use Method.invoke(), 18.9% use only local string constants for forName() and
getMethod() or get the Class and Method objects from the const-class Dalvik
instruction or simple API methods such as the getClass() instance method.

We discovered that many of the apps that we could not classify as using static
strings only used strings of unknown origin in a single case: A Google AdMob li-
brary for install referrer tracking. This library calls a number of BroadcastReceivers
and as a safe over-approximation, we expect to include this as a special case in
the analysis by letting it call all available broadcast receivers. With this addition,
we would be able to analyse the use of reflection in 36.7% of the apps.

The above numbers are based on primitive intra-procedural data tracking
and with the implementation of the analysis and its inter-procedural (but flow
insensitive) data flow, they should be improved.

6 Conclusion

In this paper we have shown excerpts of a formal semantics for the Dalvik byte-
code language and a formally specified control flow analysis, both based on the
results of a study of 1,700 Android apps. Also based on this study, we have iden-
tified reflection as a particularly important language feature (supported through
the java.lang.reflect API) to take into account when formalising semantics
and analysis.

In future work we will finish the formal proof of soundness for the analysis
(work in progress, currently a few cases have been proved) and also implement
a prototype of the control flow analysis, by systematically converting the flow
logic judgements into Prolog terms.
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