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ABSTRACT 

The number of Bitcoin users is exponentially growing. This growth is fuelling concerns over its 

potential adoption as an alternative currency and stable medium of exchange due to its price 

volatility. The primary aim of this thesis is to identify whether the Bitcoin market is efficient by 

testing the weak-form of the Efficient Market Hypothesis (EMH). 

 

To determine whether Bitcoin is weak-form market efficient, this thesis analyses the 1-minute 

weighted logarithmic closing price returns of Bitcoin over a full sample period and two additional 

sub-sample periods between the 1st of January 2014 -1st of January 2020 with data that is extracted 

from Kaggle. Five statistical tests are conducted to determine whether Bitcoin returns follow a 

sequence formed by a random walk. The tests are the following: the Ljung-Box test; the Runs test; 

the Cox-Stuart test; the Hurst test and finally the Variance Ratio test.  

 

The empirical findings suggest that the Bitcoin market at the 1-minute frequency is weak-form 

inefficient over the full sample period and two additional sub-sample periods but could be heading 

towards a path of efficiency based on the results of the Cox-Stuart and Hurst test.  

 

 

Keywords: Bitcoin, efficiency, efficient market hypothesis, cryptocurrency, blockchain, 

randomness 
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INTRODUCTION 

Digital currencies, the most popular of which is Bitcoin1 are seeing immense growth in users from 

relative obscurity over a decade ago. Global figures of cryptocurrency users exceed 200 million 

as of June 2021, and out of that figure, 114 million are Bitcoin owners (Wang 2021). Powered by 

blockchain, Bitcoin is transparent due to its distributed decentralised network, fast due to speedier 

processing and cheaper due to lower processing fees. The potential for Bitcoin to democratise and 

revolutionise Finance as an alternative currency for the unbanked masses, a keen interest in digital 

currencies and data science are primary motivators for choosing the topic of this thesis.  

 

A significant cause of concern about the usage of Bitcoin as an alternative currency is its price 

volatility. The volatility in Bitcoin prices questions its market efficiency because if it is an actual 

store of value, it would not exhibit such sharp movements in prices which is an indication that it 

might be in a speculative bubble (Urquhart 2016). Therefore, the main aim of this thesis is to 

explore whether the Bitcoin market is in the bubble phase. This is done by examining Bitcoin 

returns through the weak-form of the Efficient Market Hypothesis (EMH) developed by Eugene 

F. Fama (1970). A market is deemed efficient when prices fully reflect all information (Fama 

1970). According to the EMH, historical asset prices do not predict future asset prices in weak-

form efficient markets as prices follow a random walk.  

 

This thesis will attempt to answer the following research question: 

• Are Bitcoin returns weak-form efficient according to the Efficient Market Hypothesis 

(EMH)?  

Based on this research question, the following null hypothesis is developed: 

• Bitcoin price return follows a sequence formed by a random walk. 

 
1 Research by Urquhart (2016), Eross et al. (2019) and Nadarajah and Chu (2016) refer to Bitcoin with the uppercase 
"B", referring to the currency and not the payment protocol. In line with prior research, the author of this thesis also 
references Bitcoin with the uppercase "B" and refers to the currency instead of the payment protocol.  
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The logarithmic 1-minute weighted closing price returns of Bitcoin are studied over a full sample 

period and two additional sub-sample periods between the 1st of January 2014 to the 1st of January 

2020, using a dataset titled “Bitcoin Historical Data”, that has been extracted from Kaggle. The 

novelty of this thesis lies in the size of the observations within the dataset and the robustness of 

the statistical tests that are applied to determine randomness. Numerous research has been 

conducted on the EMH of Bitcoin. However, to the author's knowledge, there has been no research 

conducted thus far that has evaluated the efficiency or inefficiency of Bitcoin through the EMH, 

by analysing the returns at the 1-minute frequency using the same statistical tests. Data at this 

frequency provides more observations and a lower standard error which ensures a higher degree 

of accuracy 

 

Five different tests are used to answer the research question. With a self-developed code, the tests 

are conducted in data studio with the programming language R and are the following:  

1. Runs test/Wald-Wolfowitz Runs test: A non-parametric statistical test designed to detect 

if a data set follows a random process and is mutually independent (Wald, Wolfowitz 

1940).  

2. Ljung-Box test: A statistical test that determines whether any given data frames have 

correlations different from zero (Ljung, Box 1978).  

3. R/S Hurst: A test used to measure long-term memory of time series (Hurst 1951).  

4. Cox Stuart Test: A test for identifying trends within a data series. (Cox, Stuart 1955). 

5. Variance ratio test (Automatic Portmanteau): Performed to identify whether a data set 

follows a random walk (Lo, Mackinlay 1989). 

This Bachelor's thesis consists of three chapters. In the first chapter, the author provides an in-

depth theoretical understanding of Bitcoin and blockchain technology as well as examines the 

concept of efficiency through the EMH. The second chapter discusses the data and methodology 

applied, where the data used shall be presented along with the efficiency tests utilised to determine 

randomness. Lastly, the third chapter presents the results of the efficiency tests and provides further 

discussions and limitations of the findings before concluding. 
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1. BITCOIN AND EFFICIENT MARKET HYPOTHESIS (EMH) 

In this chapter, the author provides an overview of Bitcoin, the EMH and a review of studies on 

the efficiency of Bitcoin. The first sub-chapter focuses on Bitcoin, where a brief history of digital 

currencies shall be provided and a review of its functional and operational principles. In the second 

sub-chapter, the author summarizes the theoretical and empirical background of the Efficient 

Market Hypothesis (EMH), explains the different forms of efficiency within the EMH and an 

alternative theory for evaluating market efficiency. Finally, in the third and final sub-chapter, the 

author reviews the relevant empirical studies on the efficiency of Bitcoin from which the 

hypothesis of this thesis is drawn.  

1.1. Bitcoin 

Bitcoin was first introduced by Satoshi Nakomoto (2008) in his whitepaper “Bitcoin: A Peer-to-

Peer Electronic Cash System” and is a form of cryptocurrency or digital currency based on 

cryptographic proof instead of trust. The concept of digital currency far predates the existence of 

Bitcoin. Various research has paved the road toward creating Bitcoin and has been cited by 

Nakamoto (2008) as the source of technical inspiration. This includes Ralph Merkle (1980) 

through his work on public-key cryptography and the development of the Merkle Tree. Through 

the Merkle Tree, extensive dataset verification is enabled efficiently and secured via the 

mathematical method known as a Merkle root. Cited for their research on developing numerous 

elements of a timestamp verification system, Stuart Haber and Scott Stornetta (1991) are other 

researchers cited by Nakamoto (2008). 

 

However, an agreed consensus is that cryptocurrency has its primary roots in the dissertation of 

David Chaum (1982) on decentralised networks. Through his vault system, Chaum (1982) 

introduced the concept of having mutually suspicious individuals trusting each other without the 

need of an equally dubious third-party or middleman. This is done through secure physical vaults 

or encrypted servers that participate in constant exchanges that sign, record and finally broadcast 

each transaction it processes. In 1989 Chaum founded DigiCash, which is considered the world's 
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first digital currency that held the properties of physical cash (Pitta 1999). Conceptually, DigiCash 

and Bitcoin share similarities in their encryption. The author shall explain the technology that 

powers Bitcoin and how it functions in the subsequent sub-chapters.  

1.1.1. Blockchain 

The decentralisation of Bitcoin is enabled through blockchain, a decentralised distributed public 

ledger or database (Vigna, Casey 2016). This database is distributed to all participants through a 

peer-to-peer (P2P) network and is a large scale operational version of  David Chaum’s (1982) vault 

system. The decision-making process in a centralised, decentralised and distributed system differs. 

As the name suggests, in a centralised system, decisions are made by a single authority that has 

control over the entire decision-making process (Vergne 2020). In a decentralised system, 

however, the decision-making process is executed at multiple levels. On the other hand, in a 

distributed decentralised system such as blockchain, as shown in Figure 1 all participants own the 

same database and have an updated version of the database, much like a google sheet (Mehta et 

al. 2021, 36). 

 

 

Figure 1. Baran’s typology of communication networks 

Source: Vergne (2020, 4) 

Blocks containing information groups are continuously updated and synchronised throughout this 

distributed decentralised network. This enables every individual to access the same information, 

such as when new transactions have taken place, in complete anonymity through randomised 

usernames (Mehta et al. 2021, 56). Each block is stored in a linear chain that mathematically 

references one block to another and will continue to grow indefinitely (Vigna, Casey 2016, 194). 
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This mathematical referencing technique is “hashing”, a cryptographic process that feeds input 

data of any size, such as words and numbers, into an algorithm that generates unique strings of a 

fixed length that act as "fingerprints" (Mehta et al. 2021, 39). In the Bitcoin protocol or set of 

rules, the hash function that is extensively used is SHA-256, which enables new transactions to be 

written (Vigna, Casey 2016, 202). Bitcoin batches as many transactions into blocks, with each 

block having a unique hash that is partly connected to the block's hash before it, thus resulting in 

an ordered chain-like sequence (Vigna, Casey 2016).  

 

Besides being a means of verification, blockchain is also vital for Bitcoin and other 

cryptocurrencies as it solves the double-spending problem (Nakamoto 2008). The double-spending 

problem is whereby a single token could potentially be spent more than once. This problem, for 

instance, is not a problem for physical currency. This is because the exact Dollar or Euro note spent 

on a cup of coffee cannot be spent on something else. 

 

Blockchain has become synonymous with Bitcoin with the rise in its usage. Nevertheless, it should 

be noted that blockchain has its uses far beyond cryptocurrencies. While blockchain is mainly used 

for money transfers, its application has extended to securing medical information, supply chain 

management through smart contracts, and even delivering benefits to refugees in recent years 

through the building blocks program facilitated by the United Nations (Mehta et al. 202, 15).  

 

The use of blockchain is vital for the functioning of Bitcoin as discussed in this section. In the 

subsequent section, the author will provide an overview of how Bitcoin works by using blockchain 

technology.  

1.1.2. How Bitcoin works 

A transaction refers to the exchange of Bitcoin value on the blockchain between two parties. Unlike 

fiat currency, which depends on a bank or payment processor to process the transfer of funds, 

Bitcoin's method of exchanging funds is vastly superior because transaction costs are either lower 

or eliminated (Nakamoto 2008). It is also safer because the entire transaction process can be 

conducted anonymously. Individuals, in essence, act as their banks by facilitating transactions 

through a few simple clicks without the need to share their private information with any 

intermediary. The transaction process of Bitcoin involves four separate steps: transaction creation 

and signing, broadcasting, propagation and verification, and finally, validation (Nakamoto 2008).  
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Figure 2. Transaction process 

Source: Nakamoto (2008, 2) 

Transaction creation and signing via Bitcoin are done through a two-key authentication system 

and represent the largest component of the entire process. Each transaction consists of three main 

parts: input, an amount, and output (Nakamoto 2008). The input refers to the Bitcoin address of 

the sender, the amount relates to the amount that the sender aims to send, and the output relates to 

the address that will receive the Bitcoin. Individuals who wish to exchange funds can do so 

anonymously through the blockchain protocol that sends and receives payment information by 

directly linking individuals through a wallet, a public key as an identity and a private key, as shown 

in Figure 2. 

 

Creating a Bitcoin wallet can be done with ease, and numerous exists depending on the needs and 

level of authentication required by the user. Unlike physical wallets that hold fiat currency, these 

wallets do not contain Bitcoin. Instead, they have Bitcoin addresses (Mehta et al. 2021, 109). Each 

wallet contains a public key as well as a private key. Public keys are addresses that act as an 

account number that can be shared that enables a person to receive Bitcoins, and there are no limits 

on the number of public keys that can be owned (Mehta et al. 2021). 

 

On the other hand, a private key is like a password with a string of numbers and letters. Private 

keys act as digital signatures and proof of ownership of a blockchain address, which enables a 

person to send and eventually spend Bitcoins (Mehta et al. 2021, 39). Private keys are unique and 

are not shared. It is only known to the owner of the wallet. Losing the private key of a Bitcoin 

wallet would mean losing all the funds in it. After several attempts to determine the correct key, 

the wallet automatically seizes and encrypts its content forever without a recovery method. It is 
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estimated that around 20 per cent of the total supply of Bitcoin under circulation is lost (Popper 

2021).   

 

The second step in the transaction process is broadcasting. Once an individual enters the private 

key and signs a particular transaction, this transaction is sent for validation or broadcasted to the 

closest node on the Bitcoin network (Antonopoulos 2015). The third step is the verification and 

propagation process. Upon arriving at the nearest node, information is propagated into the network 

and verified by matching the private key with the corresponding public key (Decker, Wattenhofer 

2013). If this validation process is a success, it enters a memory pool and waits for miners, a 

loosely organised network of incentivised participants, to add it to subsequent blocks.  

 

The final step is validating a transaction. After a transaction is in the memory pool, miners pick up 

a transaction and group them into blocks. Each block has a limit to it. A limited number of 

transactions can be entered into a particular block. Depending on the exchange and the amount, 

three confirmations will be required before the data is added onto the blockchain and the Bitcoin 

can be spent (Antonopoulos 2015). Mining is essentially a process of confirming transaction 

requests by a decentralised consensus system. It is called mining because resources such as vast 

amounts of energy and computers with advanced processing power need to be expended. 

 

The consensus type used for Bitcoin and other cryptocurrencies such as Ethereum is the Proof of 

Work (POW), shown in Figure 3. This is where miners compete to solve complex mathematical 

problems/puzzles to create new blocks of transactions that exponentially increase in difficulty 

(Antonopoulos 2015).  

 

Figure 3: Proof-of-Work Process 

Source: Nakamoto (2008, 3) 
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As previously mentioned, mining is resource-intensive as it requires immense computing power 

and electricity. The Bitcoin system incentivises miners in two distinctly separate ways for 

expending their resources. The first way miners are incentivised is by generating the POW, which 

creates new blocks of transactions. By generating the POW, miners are rewarded with Bitcoins 

(Sompolinsky, Zohar 2017). The second way in which miners are rewarded is by facilitating 

transactions. As the number of transactions that can be inputted into a block is pre-defined, senders 

can add a transaction fee on top of the amount they are sending as an incentive for early inclusion 

in a block when there is a backlog of transactions waiting to be validated (Antonopoulos 2015, 

256). The limit in the supply of Bitcoin will mean that in the future, Bitcoin miners will only be 

rewarded by facilitating transactions as there will only be 21 million Bitcoins in supply (Ciaian et 

al. 2016). Known as a hard cap, the supply of Bitcoin has been limited through an algorithm 

encoded into its source code to restrict its supply to ensure its value growth. Known as Bitcoin 

halving, it has been suggested that this occurs as a way to make it a deflationary currency, which 

makes individual coins far more valuable (Nakamoto 2008). 

This section provided an overview of the functional and operational principles of Bitcoin. In the 

subsequent section, an overview of the progress of the adoption of Bitcoin as an alternative 

currency shall be discussed.  

1.1.3. Bitcoin as a potential alternative currency 

This section serves as a bridge for a smooth transition to the subsequent sub-chapter and aims to 

briefly provide an overview of the progress made in the adoption of Bitcoin as an alternative 

currency.  

 

An alternative currency is a medium of exchange that could be used in parallel with fiat currency 

(Appukuttan 2019). At the time of authoring this thesis, no major developed country has legally 

adopted Bitcoin or any other cryptocurrency as an alternative currency. In 2015, a decision by the 

European Court of Justice declared that Bitcoin transactions are exempt from Value Added Tax 

(VAT) under the provision concerning transactions relating to currency, banknotes and coins used 

as a legal tender (ECJ judgement C-264/14 point 6). While this judgment does not explicitly define 

Bitcoin as a legal currency, the court has categorised Bitcoin as a medium of exchange along with 

banknotes, and coins, thus exempting it from VAT. In 2021, El Salvador became the first sovereign 

nation to adopt Bitcoin as a legal tender along with the USD, which it had adopted as the de-facto 
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currency in 2001 (Arslanian 2021). Another sovereign nation, the Central African Republic, has 

announced that it would approve Bitcoin as an alternative legal tender (Browne 2022).  

 

As society is becoming more embracive of Bitcoin and other digital currencies, the case for 

examining the efficiency of Bitcoin prices becomes more vital to deepen an understanding on the 

possible existence of anomalies within the cryptocurrency market. This enables individuals, 

legislators, and economists to take precautionary actions if the Bitcoin market operates in a 

speculative bubble. In the following sub-chapter, the author shall provide an overview of the 

Efficient Market Hypothesis. 

1.2. Efficient Market Hypothesis (EMH) 

The Efficient Market Hypothesis (EMH) is a foundational principle of Finance. A market is 

efficient when it "fully reflects" all available information (Fama 1970). Research into the EMH 

can be split into three separate phases. The first phase consists of its conceptual construction in the 

1960s, mainly by Paul Samuelson (1965) and Eugene Fama (1965); the second is its empirical 

testability by Fama (1970). Finally, the third phase is where it becomes increasingly challenged as 

a theory in the 1980s and beyond. The third phase can be reflected more recently through Andrew 

Lo's (2004) work on the Adaptive Market Hypothesis (AMH), which provides an updated 

understanding of market efficiency, briefly touched upon in a section within this sub-chapter.  

1.2.1. Importance of the EMH 

In Finance, asset pricing determines how much individual investors decide to pay for a particular 

stock. Rational investors determine the price or market value of stock fairly or unfairly based on 

future earnings and the discount rate. The riskier the future earnings, the lower the market value 

and vice versa (Keshari et al. 2020). The rationality of evaluating investments in this manner 

brings us to market efficiency, which suggests that it is impossible to "beat the market" on a risk-

adjusted basis.  

 

A market that reflects all public information means that by the time an individual has an insight 

about a company, so do all other market participants. As a result, the price has already been 

adjusted, making it impossible for an individual to buy undervalued assets or sell them above their 

fair value (Chu et al. 2019, 222). According to Fama (1970), informational efficiency in a market 
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is due to competition, low transaction costs and readily available information. As new information 

is incorporated into the market, prices change quickly and randomly. Grossman and Stiglitz (1980) 

have shown that excessive returns will still, however,  exist if costs are attributed to gathering and 

processing information, which acts as a barrier. 

 

An efficient market ensures that asset prices are as fair as possible because it reflects the collective 

expectations of all participants in the market. Fama (1970), through his research, has identified 

three different subsets through the EMH. These are the weak-form, the semi-strong form and the 

strong form of efficiency. Each form of efficiency emphasises certain types of information instead 

of others. In the next section, the author shall explain the three different forms of efficiency in 

much more detail. 

1.2.2. The three forms of the EMH 

Different forms of efficiency have different types of information. There are three different types 

of information: unpublished private information, published public information and historical 

information (Kang et al. 2022).  

 

In weak-form efficient markets, publicly available historical information on the movements in 

prices, volume and earnings data cannot be used to predict its future direction through technical 

analysis (Malkiel 2003, 59). This is because the movements of future stock prices are random as 

it follows a random walk. As such, publicly available historical data does not provide any 

predictive power to an individual investor (Malkiel 2003, 59). Whether a market is weak-form 

efficient is dependent on whether returns are independently and identically distributed (Smith 

2012). Most efficiency studies on Bitcoin concern the weak-form of efficiency, which shall also 

be the case in this thesis.  

 

The semi-strong form of efficiency considers published past and current publicly available 

information such as annual reports, dividend announcements, stock splits and others (Kang et al. 

2022). This form of efficiency assumes that current stock prices adjust and adapt to the release of 

new public information. The adjustment occurs because the market anticipates it (Fama 1970). 

Fundamental analysis measures a stock's intrinsic value and can include many elements such as 

revenue, earnings, profit margins and other data that affect a stock's value. In addition to technical 

analysis, this form of efficiency suggests that fundamental analysis cannot predict the future 

movement of prices (Fama 1970).  
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The final form of efficiency that shall be discussed is the strong-form of efficiency. This form of 

efficiency incorporates unpublished private, published public and historical information (Degutis, 

Novickyte 2014). Fama (1970) asserts that even by insider trading or monopolistic access to 

information, individual investors cannot beat the market or realise an excess return in a strong-

form efficient market. Mutual funds are professionally managed investment funds. Fama (1970, 

412) studied mutual funds to determine if the performance of professionally managed funds could 

exceed the market line and found that in 89 out of 115 cases, the risk-adjusted returns of mutual 

funds over ten years were lower than the market line.  

 

Different forms of efficiency were discussed in this section. A core component of the weak-form 

of efficiency is the random-walk model which has its basis in the fair game model. Both these 

models shall be discussed in the next section.  

1.2.3. The random walk and fair game model 

A cornerstone of weak-form efficiency is that a random walk process forms prices. This process 

asserts that the ideation of a path is followed by a succession of random steps that cannot be 

predicted (Fama 1970). According to the random walk model, history does not repeat itself as 

future stock price projections, for instance, are uncorrelated with past data.  

 

The theoretical underpinnings of the random walk model span the academic disciplines of physics, 

mathematics, and Finance. Thermal collision with liquid molecules causes the erratic motion of 

pollen grains, known as the "Brownian motion" after Robert Brown (1828). The observation by 

Brown significantly furthered the inquiry of researchers into the random walk. In Finance, this 

stochastic process can trace its immediate roots in research on the movements of sound waves 

through heterogeneous materials by Lord Rayleigh (1880).  

 

After that, Karl Pearson (1905) introduced a formal concept of the random walk in a letter to the 

scientific journal Nature. Pearson sought to investigate the distribution of mosquitos. However, 

random walk as a basis for modern quantitative Finance can be traced back to mathematician Louis 

Bachelier (1900), who proposed it as a fundamental model for financial time series through his 

doctoral thesis “La Theorie de la Speculation”. More empirical work in the 1950s and 1960s 

suggested that prices move randomly. 

 



 16 

There are two fundamental assumptions of the random walk model. The first assumption is that 

successive price changes or returns are independent because a particular observation within a 

sequence is assumed to have no impact on subsequent observations. The second assumption is that 

price changes are identically distributed (Fama 1970). Both these assumptions are captured with 

the Equation 1 (Philips 1988, 244): 

 

                                                                                              (1) 

where 
𝑓      –  probability function,  
r!"#$ –  one-period percentage return, 
𝑡       –  time, 
Φ      –  the general symbol for the information set at time 𝑡. 
 

To investigate whether a time series follows a random walk, methods such as the R/S Hurt analysis, 

amongst others, have been used by the author to measure the long-term memory within a time 

series, i.e., the amount by which the series deviates from the random walk. 

 

The fair game model serves as the basis of the random walk model. The fair game model was 

developed by Paul Samuelson (1965), and it asserts that in a competitive market, prices reflect 

investor expectations and are expected to adapt to new information. Both Fama (1965) and 

Samuelson (1965) assert that randomness in stock market prices is due to the rationality of 

individuals that participate in it. Nevertheless, both researchers deviate in explaining randomness 

from the probabilistic models that they use. Samuelson introduces the Martingale model, whereas 

Fama uses the already well-established random walk model (Delcey 2019).  

 

Fama (1970) begins his study by stating that the EMH theory on efficiency is too broad, so it needs 

to be narrowed down to make the model testable. To make it testable, Fama states that the process 

of price formation needs to be specified. He suggests using the Capital Asset Pricing Model 

(CAPM) to compute the market equilibrium of prices. Differing theories have different methods 

of defining risk. Nevertheless, Fama (1970, 384) asserts that the formation of prices can be defined 

through the Equation 2: 

 

𝐸%𝑃'!,"#$(Φ&* = ,1 + 𝐸 /%r!,"#$(Φ&*01 P!" 

                                                                     (2) 
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where  
𝐸      –   expected value operator, 
𝑃'!,"#$ –  price of security j at t + 1, 
P!"     –   price of security j at time 𝑡, 
r!,"#$ –  one period percentage return at t + 1, 
Φ&     –  a general symbol for the information set is assumed to be "fully-reflected" at time 𝑡. 
 
Fama states that two assumptions can be made from Equation 2 thus far. The first assumption is 

that market equilibrium is described as an expected return. The second assumption is that the 

expected return fully reflects the relevant information set, illustrated in the formation of the price 

p!" (Fama 1970, 384). Combined, these assumptions lead to the statement that capital allocation is 

"fair game" and that it is impossible to beat the market.  

 

The EMH is the dominant theory in determining efficiency. However, there are alternate theories 

that examine efficiency. In the subsequent section, the author shall discuss the Adaptive Market 

Hypothesis (AMH), which combines numerous schools of thoughts.  

1.2.4. Alternative theory of efficiency 

The basic idea in Economics and Finance is that financial market prices are efficient and that 

people are rational actors. In the last decades, increasing numbers of research have challenged the 

EMH by asserting that markets are inefficient, and people are irrational, creating an opposing 

school of thought in the process.  

 

The Adaptive Market Hypothesis (AMH) by Andrew Lo (2004) provides a dynamic and 

evolutionary perspective of efficiency by bringing together principles from various disciplines 

such as ecology, neuroscience, and biology, amongst others that reconcile the two schools of 

thought, the school which supports EMH and the school which opposes EMH. According to the 

AMH, rational and irrational behaviour exists in the market. Most of the time, people are rational; 

however, on some occasions, people can also be irrational, which can lead to temporary 

inefficiencies in the markets. 

 

As opposed to EMH, which examines market efficiency from a static perspective, the AMH asserts 

that market efficiency varies at different periods due to the evolution of markets. Lo (2004), 

through his research, asserts that markets are sometimes rational and sometimes irrational. A core 

principle of the EMH is that expected returns depend on the level of risk that an individual takes. 
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This notion is significantly contrasted with the AMH, which asserts that consistent expected 

returns are expected by individuals who adapt to the evolving nature of market conditions (Chu et 

al. 2019). Conclusively, Lo (2017) argues that, for the most part, markets are efficient as it is hard 

to generate excess returns; nonetheless, on occasions, markets do reflect individual sentiment.  

1.3. Studies on the efficiency of Bitcoin 

The EMH has been researched extensively on various assets and commodities. Although the 

efficiency of Bitcoin and other cryptocurrencies is becoming more prevalent due to its infancy, 

there are still areas that need further examination. The aim of this sub-chapter is to provide a 

detailed overview of the empirical studies on the EMH of Bitcoin along with the tests used to 

determine randomness. The findings of several researchers on the EMH of the Bitcoin market are 

discussed in the following paragraphs and summarised in Table 1. 

 

Urquhart (2016) is the first to examine weak-form efficiency in the Bitcoin market and serves as 

the foundation for subsequent studies. The tests used by Urquhart include the following five: 

Ljung-Box test, Bartels test, Runs test, Brock-Deckhert-Scheinkman (BDS) test, automatic 

variance ratio (AVR) test and the R/S Hurst analysis. The entire sample period of this research 

study by Urquhart (2016, 82) was from the 1st of August 2010 to the 31st of July 2016. The first 

sub-sample period was from the 1st of August 2010 to the 31st of July 2013 and the second sub-

sample period was from the 31st of August 2013 to the 31st of July 2016. The research was split 

into further sub-sample periods to analyse if efficiency varies over time. The Ljung-Box 

hypothesis is rejected over the entire sample period and the first subsample period, thus indicating 

serial correlation. The Runs and Bartels test is subsequently rejected for all periods, suggesting 

serial correlation and therefore a lack of randomness.  

 

The AVR test also determines whether the return data follows a random walk. As the p-values were 

below the 0.05 significance level for the entire sample period and first sub-sample period, the null 

hypothesis is rejected, suggesting the non-randomness of successive values. The BDS determines 

the independence and distribution of a data sequence, and this test also rejects the null hypothesis 

for all sample periods. The final adopted test was the R/S Hurst test, which showed a pattern of 

negative correlation. Urquhart concludes that Bitcoin is becoming more efficient, as suggested by 

the results in the second subsample of the study (Urquhart 2016).   
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Table 1: Summary of literature review 

Author(s) 
(Year) 

Sample Size 
(N) 

Method Sample 
Period 

Main Findings 

Urquhart 
(2016) 

2183 Ljung and Box, 
Runs, Bartels, 
AVR, BDS, R/S 
Hurst analysis  
 

2010-2016 Mainly inefficient 
but moving 
towards 
efficiency. 

Nadarajah and 
Chu (2016) 

2191 Ljung and Box, 
Runs, Bartels, 
AVR, BDS, R/S 
Hurst analysis, 
Spectral Shape, 
Robustified 
Portmanteau, 
Generalized 
Spectral 
 

2010-2016 Weak-form 
efficient 

Zhang et al. 
(2018) 

1712 Same as Urquhart 
(2016), along 
with automatic 
portmanteau test, 
rank and sign 
variance ratio test, 
turning point test 
and wild-
bootstrapped 
AVR 

2013-2018 Mainly 
inefficient.  

Bariviera 
(2017) 

1434 R/S Hurst, DFA  
 

2011-2017 Mainly 
inefficient, but 
signs of moving 
towards 
efficiency 

Khuntia and 
Pattanyak 
(2018) 

2714 MDH 2010-2017 Utilized the 
AMH. Market 
efficiency evolves 
with time and 
validates AMH 

Source: Urquhart (2016), Nadarajah and Chu (2016), Zhang et.al (2018) and Bariviera (2017) 

 

Using Urquhart’s (2016) research as a foundation, Nadarajah and Chu (2016) also studied the 

efficiency of Bitcoin for the same period and the same form of market efficiency as well as the 

same frequency. However, unlike Urquhart, the tests were conducted using power transformation 

of the log returns by applying an odd integer power, asserting no loss of information in the process 
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(Nadarajah, Chu 2016). In addition to the tests by Urquhart (2016), Nadarajah and Chu (2016) 

used the spectral shape test, portmanteau test, and generalised spectral test for this study. Through 

the power transformation method of calculating returns, Nadarajah and Chu (2016) conclude that 

a weak form of efficiency is shown. The most comprehensive study and the largest of its kind has 

been conducted by Zhang et al. (2018), where a battery of efficiency tests from econometrics as 

well as econophysics have been employed to test for the inefficiency of not only Bitcoin but also 

other cryptocurrencies such as Ripple, Ethereum, NEM, Stellar, Litecoin, Dash, Monero and Verge 

at the daily frequency from the 28th of April 2013 to the 4th of January 2018. Besides some of the 

tests employed by Urquhart (2016) to test for randomness, this study employed the automatic 

portmanteau test, the Cox-Stuart test, the Mann-Kendall Rank test, Rank Score variance ratio test, 

Turning Point test, Variance Ratio test as well as the Wild-bootstrapped AVR test. The conclusion 

made by the authors of this research paper based on their findings is that every single 

cryptocurrency operates in inefficient markets.  

 

Bariviera (2017) examined the long memory of returns of Bitcoin at the daily frequency from the 

18th of August 2011 to the 15th of February 2017 with 1435 observations. Tests used in this study 

include the R/S Hurst analysis, using the sliding window methodology which expands or shrinks 

a subset and the Detrended-Fluctuation-Analysis (DFA) method. Between 2011 and 2014, 

Bariviera found signs of persistence in the time series of the study, meaning that one value of the 

data is closely related to the previous value. After 2014, however, Bariviera concludes that the 

market shows signs of being weak-form efficient, whereby the behaviour of the dataset seems to 

follow a white noise meaning zero autocorrelation (Bariviera 2017). Khuntia and Pattanayak 

(2018) were the first to study the evolution of the efficiency of Bitcoin through the Adaptive 

Market Hypothesis (AMH) which states that market efficiency evolves with time. This study offers 

contrasting results on the efficiency of Bitcoin. The study used the daily closing returns from July 

18th 2010 to December 21st 2017. A total of 2714 observations were analyzed mainly using the 

Martingale Difference Hypothesis (MDH) using the rolling window framework. Additionally, the 

Ljung-Box test is employed. Through the AMH, Khuntia and Pattanayak (2017) assert that 

speculators can exploit excess returns during periods of inefficiency in the Bitcoin market but this 

is not always the case, thus validating the AMH in the Bitcoin market.  

 

An overview of prior research using contrasting methods and theoretical frameworks to test for 

randomness has been discussed in this section. In the following chapter, the author provides a 

description of the dataset and research methodology used to answer the research question.  
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2. DATA AND METHODOLOGY 

In this chapter, the author provides a description of the dataset used and presents the various tests 

adopted to test for randomness and independence of Bitcoin returns for the weak-form of EMH. 

2.1. Data 

The dataset titled “Bitcoin Historical Data”2 utilised for this thesis has been extracted from Kaggle, 

an open-source online community for data scientists. This thesis examines the 1-minute weighted 

logarithmic closing price returns of Bitcoin over a full sample period and two additional sub-

sample periods between the 1st of January 2014 and the 1st of January 2020. The first sub-sample 

ranges from the 1st of January 2014 to the 1st of January 2017, and the second sub-sample ranges 

from the 1st of January 2017 to the 1st of January 2020. To calculate the weighted logarithmic price 

returns, Equation 3 is used: 

 

𝑅& = ln 9
𝑃&
𝑃&'$

: ∗ 100 

                                                                                                                  (3)  
where 
𝑅&   –   Bitcoin compound return in period t, 
𝑃&   –   Bitcoin price in period t, 
𝑃&'$–  Bitcoin price in period t-1. 
 
The dataset consists of almost every minute between the 1st of January 2014 and the 1st of January 

2020. Nevertheless, the author of this study found that specific timestamps are missing through 

cleaning the data. There are jumps possibly due to the exchange down or having other technical 

difficulties. The price of Bitcoin and other cryptocurrencies varies across platforms, limiting the 

 
2 The dataset has been compiled by Dr.Zielinski with the handle @Zielak on Kaggle, a data scientist with a background 
in neuroscience by scraping various exchanges. The dataset has the highest usability rating at 10. The usability rating 
considers several important factors, such the availability of references. More on the usability rating of Kaggle data 
sources can be found here https://www.kaggle.com/product-feedback/93922  
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ability to make a fair comparison. The weighted-closing price has been used instead of the closing 

price as it reflects prices obtained from numerous platforms; as such, it provides a higher degree 

of accuracy.  

2.1.1. Time series and descriptive statistics 

The logarithmically scaled time-series graph illustrated in Figure 4 through Microsoft Power BI 

shows the weighted average closing price of Bitcoin for the entire sample period at the 1- minute 

frequency ranging from the 1st of January 2014 to the 1st of January 2020. It has been 

logarithmically scaled to illustrate a wide range of values compactly to ensure that equal visual 

weight is given to equally relative changes. Between 2014 to early 2015, the weighted average 

Bitcoin price declined, reaching an all-time low for the sample period at $156.655 on the 14th of 

January 2015.  

 

 

Figure 4. Logarithmic Scaled time-series graph of weighted Bitcoin prices 
Source: Author’s visualisation based on data from Appendix 3. 

The weighted prices have been steadily growing, reaching an all-time high of $19,663.299 for the 

entire sample period on the 17th of December 2017 before rapidly declining to $5,949.997 on the 

6th of February 2018, representing an almost 70% decline in value from its previous high. Figure 

4 illustrates sharp increases and decline in Bitcoin price. When prices dramatically increase, 

individuals, stand to immensely gain. Nevertheless, there is a big chance that individuals could 

lose immense amounts of money, which questions whether Bitcoin could be a viable alternative 

currency that could serve as a store of value.  
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The descriptive statistics of the weighted logarithmic price returns of Bitcoin at the 1- minute 

frequency over the entire sample period and the two sub-sample periods, are reported in Table 2. 

Table 2. Descriptive statistics  

 
Sample 

Period 

N Mean Median SD Min Max Skewness Kurtosis 

01/01/2014 – 

01/01/2020 

2621848 

 

0.000087 0.000000 0.149 -9.787 11.768 -0.232 65.148 

01/01/2014 – 

01/01/2017 

1123849 

 

0.000028 0.000000 0.175 -7.722 6.391   -0.387 38.239 

01/01/2017 – 

01/01/2020 

1498838 

 

0.000134 0.000213 0.126 -9.787 11.768 0.102 114.828      

Source: Author’s calculation based on data from Appendix 3 

The entire sample period and the two sub-sample periods have standard deviations higher than the 

mean, suggestive of significant dispersions in the observations. A higher standard deviation than 

the mean is also shown in other studies examining Bitcoin's weighted closing price returns daily 

and at 5-minute intervals. For example, Urquhart (2016, 81) examined the daily closing price of 

Bitcoin between 2010 to 2016, and over his sample period, as well as two subsample periods, the 

standard deviation from Urquhart's study is much higher than the mean values. In a separate study 

that examined the returns of the 5-minute closing price of Bitcoin from 2014 to 2017, the standard 

deviation is once again much higher than the mean even when compared to the daily closing price 

(Eross et al. 2019, 76).  

 

Skewness indicates whether a dataset is concentrated on one side or the other. The values for 

skewness in Table 2 for the entire sample period and the first sub-sample period indicate that the 

data is slightly positively skewed as the mean is more than the median. On the contrary, the data 

is negatively skewed for the second sub-sample period as the median is more than the mean. 

Overall, as all the skewness values are between -0.5 and 0.5, the data is relatively symmetrical and 

within a similar range to the values indicated by Urquhart (2016,81) and Zhang et al. (2018, 661). 

 

The kurtosis values indicated in Table 2 for the entire sample period as well as the two sub-sample 

periods suggest that the distribution of the dataset is leptokurtic as it has a positive kurtosis value 
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above 3, thus resulting in a greater chance of positive or negative events. The distribution for all 

three periods has a higher peak with fatter and heavier tails than a normal distribution. This means 

that individuals that have bought Bitcoin are likely to experience occasional extreme positive or 

negative returns. The highest kurtosis is exhibited in the second sub-sample from 2017 to 2020. 

Based on the results of Table 2, it can be said that there are no anomalies for the full-sample period 

and the two sub-sample periods of returns when compared to prior research by Urquhart (2016, 

81), Zhang et al. (2018, 661) at the daily level and (Eross et al. 2019, 76) at the 5-minute frequency 

level. 

2.2. Methodology 

In total, over 2.6 million observations were used to determine whether the hypothesis that has been 

defined holds true or not, over an entire sample period and two additional subsample periods to 

analyze whether the efficiency level varies over time. Table 3 provides a summary of the 

hypotheses for the efficiency tests conducted.  

Table 3. Summary of hypotheses for the efficiency test3 

 
Test Name Null Hypothesis Alternative hypothesis 

Ljung-Box test No serial correlation. Serial correlation. 

Runs test Data follows a sequence of 
randomness. 

Data is not following a 
sequence of 
randomness. 

Cox-Stuart test Randomness against an 
upward and downward trend. 

Non-randomness. 

Variance ratio 
(Automatic 
Portmanteau) 

Martingale (sequence of 
randomness). 

Non-Martingale 
(sequence of non-
randomness). 

Source: Authors adaptation of Zhang et al. (2018, 662) 

A central tenet of the EMH is that prices are not predictable and are therefore random. The tests 

used in this study to test for the randomness mainly replicate Urquhart (2016) and Nadarajah and 

 
3 The Hurst test is denoted with the Hurst exponent. Values are categorised into one of three separate categories. A 
further explanation is provided in the paragraph discussing the Hurst exponent within this sub-chapter.  
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Chu (2016), where the Ljung and Box test (1978), Runs test (1940), and R/S Hurst (1951) analysis 

have been applied. In addition to that, the Cox-Stuart test and Variance Ratio test have been 

employed in this thesis, replicating Zhang et al. (2018).  

 

Autocorrelation can more formally be defined as the degree of similarity between observations in 

a time series. When analysing historical data, it is vital to test for autocorrelation to ensure that 

one observation is not correlated with another observation. To test for the autocorrelation of returns 

in this study, the Ljung-Box test has been employed. The Ljung-Box test is an improved version 

of the Box-Pierce test that statistically determines whether any given data frames have lag/delay 

different from zero.  

 

The null and alternative hypotheses can be stated as follows: 

H0: no serial correlation 

Ha: serial correlation 

 

Using the simplified equation by (Ljung, Box 1978), this test is conducted using the following test 

statistic as in Equation 4: 

 

𝑄 = 𝑛(𝑛 + 2)B ()!
"

*'+

,

+-$
                                                                                                                                               (4)         

where 
𝑛 –  is the number of observations, 
𝑘 –  is the lag, 
�̂�+.– sample autocorrelation at lag 𝑘, 
ℎ –  number of lags being tested. 
                                                                                                                                                                                                                                                                                                             
Rejecting the null hypothesis is indicative of serial correlation and linear dependence in a time-

series and as such violates one of the two principles of the random walk model and EMH.  

 

The second test performed is the Runs test, also known as the Wald and Wolfowitz runs test, the 

earliest and the most straightforward test for randomness. The runs test is non-parametric; the 

parameters are unknown and not fixed. Another attribute of non-parametric tests is that they do 

not need to meet certain assumptions or parameters, unlike many other hypothesis tests, which 

heavily rely on the assumption that the population follows a normal distribution. It is another test 

designed to detect non-randomness in a data series (Wald, Wolfowitz 1940).   
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The null and alternative hypotheses can be stated as follows: 

H0: Sequence of data is random 

Ha: Sequence of data is not random 

 

A rejection of the null hypothesis is indicative of non-randomness. The test statistic, as stated by 

(Wald, Wolfowitz 1940), is as follows in Equation 5: 

 

𝑍 = /'𝔼[/]
3[/]

                                                                                                                                     (5) 

where 
𝑅      –   represents the number of runs, 
𝔼[𝑅] –   is the expected number of runs 𝑅, 
𝜎[𝑅] –   is the standard deviation of the number of runs 𝑅. 
 
A “run” is a series of observations moving in the same direction. In a dataset where the values are 

random, the probability that a specific observation is higher or lower than the previous follows a 

binomial distribution. The sample sequence is given the symbol + if the return is above the median 

and – below the median. If it equals the median, the observation is discarded. Each run is a 

sequence with the same sign, and a run end when the sign changes.  

 

The Hurst test is another test for market efficiency. This test has been first proposed in 

hydrodynamics, particularly to determine the optimum dam size for the Nile River to regulate the 

annual discharge of rain by analysing over 800 years of data (Hurst 1951). 

The Hurst exponent values range from 0 to 1. A time series can be categorised into one of three 

distinct categories (Kroha, Skoula 2018, 374): 

• A value of H 0 ≤ 0.5 suggests anti persistence or negative autocorrelation, meaning that 

another decrease shall follow a decrease between values.  

• A value of H = 0.5 shows an actual random walk, meaning that, for example, the return of 

Bitcoin at a particular time is likely to increase or decrease with no memory of values that 

has preceded it in a time series. 

• A value of H 0.5 ≥ 1 indicates a time series with long-term positive autocorrelation, 

meaning that another high value will probably follow a high value. 
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The Hurst exponent is defined as a rescaled range (R/S analysis), a technique to determine the 

nature and magnitude of variability in a time series. The Hurst test can be defined and summarised 

with Equation 6 (Qian, Rasheed 2005, 2): 

 

𝔼 ,/(*)
6(*)

1 = 𝐶𝑛7                 (6) 

where 
𝔼        –        represents the expected value, 
𝑛        –        data points in a time series, 
𝑅(𝑛)  –        range of 𝑛 standard deviations from the mean, 
𝑆(𝑛)   –        sum of the 𝑛 standard deviations, 
𝐶        –        constant, 
𝐻			     –        known as the Hurst exponent. 
 
The Hurst exponent is the "index of dependence" or "index of long-range dependence" for time 

series. It quantifies the relative tendency of a time series either to regress strongly to the mean or 

to cluster in a direction (Hurst 1951). 

 

The Cox Stuart test is a test for identifying monotonic trends within a data series. Monotonic trends 

are increasing and decreasing trends. The basic principle of this method is that an upward trend is 

exhibited in a series of observations if the magnitudes of the later observations tend to be greater 

than the earlier observations (Cox, Stuart 1955). 

 

The null and alternative hypotheses can be stated as follows (Zhang et al. 2018): 

H0: Randomness against an upward and downward trend. 

Ha: Non-randomness. 

 

The test statistic can be denoted with the following abbreviated example by Yong (1991, 153) with 

Equation 7: 

𝑍 = (+	±:.<)':.<*
√:.<*

                 (7) 

where 
𝑘    –  refers to the number of observations of either negative or positive less observed signs, 
𝑛    –  numbers of pairs constructed, 
0.5 –  continuity adjustment factor, whereby the sign is plus if 𝑘 is less than n/2 and conversely 
minus if otherwise.  
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The assumption of normality in the data distribution is not a prerequisite for this test, which adds 

to the robustness of the test itself and makes it much more reliable. The method is based on the 

binomial distribution and differences in pairs of data series.  

 

Lastly, the Variance Ratio test introduced by Lo and Mackinlay (1989) is performed to identify 

whether the data series follows a random walk and is commonly used to determine whether a 

particular stock price exhibits autocorrelation. This test essentially tests for statistical differences 

between group means. The variance ratio test used in this study is the Automatic Portmanteau test 

for the Martingale difference hypothesis.  

 

The conventional variance ratio posits that the variance of increments of a random walk 𝑋𝑡 is 

linear; therefore, the variance of %𝑋& − 𝑋&'>* is q times the variance of (𝑋& − 𝑋&'$) as stated by 

Chen (2008).  

 

The null and alternative hypotheses can be stated as follows: 

H0: martingale 

Ha: non-martingale 

 

The variance ratio can be defined with the following simplified Equation 8 by Chen (2011,98):  

 

𝑉𝑅(𝑞) = 3"(>)
3"($)

                  (8) 

where 
𝜎.(𝑞) – refers to 1/q times the variance of %𝑋& − 𝑋&'>*, 
𝜎.(1) – refers to the variance of (𝑋& − 𝑋&'$). 
 

If a particular security price does follow a random walk, then it is stated that the ratio of the 

variances for the conventional variance ratio test should be equal to one. A higher than one figure 

would suggest a positive autocorrelation, and a figure below one would be suggestive of negative 

autocorrelation.  
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3. RESULTS AND LIMITATIONS 

In this chapter, the author examines and discusses the results of the various tests conducted to 

determine the randomness of the logarithmic returns of Bitcoin. In addition to that, the limitations 

of the findings in this thesis shall also be discussed within this chapter.  

3.1. Results 

Results of tests used to determine weak-form market efficiency for the full sample period and two 

sub-sample periods are reported in Table 4.   

Table 4. Test results of weak-form efficiency tests 

Data frame Ljung-Box Runs Cox-Stuart R/S Hurst Variance 
Ratio 

01/01/2014-01/01/2020 0.000 0.000 0.065 0.531 0.000 
01/01/2014-01/01/2017 0.000 0.000 0.001 0.503 0.000 
01/01/2017-01/01/2020 0.000 0.000 0.000 0.538 0.000 

Source: Author's calculations based on the dataset in Appendix 3 

The author tests the results for the Ljung-Box test against a significance value of 0.01 and rejects 

the null hypothesis since the p-values are less than the significance value. This advocates some 

degree of autocorrelation in the data series at the given lag of 1. For the full sample period and the 

first-subsample period, Urquhart (2016) reports similar results at the significance value of 0.05. 

Nevertheless, the Ljung-Box test in Urquhart (2016) fails to reject the null hypothesis for the 

second sub-sample period, with a p-value of 0.35, suggesting no autocorrelation. Zhang et al. 

(2018) also fails to reject the null hypothesis for the Ljung-Box test in a similar period for Bitcoin 

and Litecoin. On the other hand, Nadarajah and Chu (2016) found no autocorrelation using the 

simple power transformation method to calculate returns even for lags 1 to 10 for the exact 

timeframe as Urquhart (2016).  
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The runs test is the second test that is performed. For all three data frames, the p-value is much 

lower than the significance value of 0.01, and thus the null hypothesis of randomness is rejected. 

This suggests that the assumptions of randomness and no autocorrelation do not hold for this data 

series. The test results for the Runs test in Urquhart (2016) also report the same values. 

Nevertheless, both Zhang et al. (2018) and Nadarajah and Chu (2016) fail to reject the null 

hypothesis for all the periods as reported in Urquhart (2016). Based on prior research, the results 

of this test offer contradictory results due to different periods and different methods of calculating 

returns.  

 

The third test conducted is the Cox-Stuart test. The significance value that has been chosen is 0.01 

(a confidence level of 99%). The p-value of the full sample period is higher than 0.01, which is 

not statistically significant and indicates strong evidence for the null hypothesis, consequently 

rejecting the alternative hypothesis. The results of the first sub-sample period in Table 4 are 

important as the period in Table 4 overlaps with Zhang et al. (2018, 663), which also fails to reject 

the null hypothesis for this test with a p-value of 0.08 at a significance value of 0.05. On the 

contrary, for both the sub-samples, the p-values are statistically significant as it is less than 0.01. 

A significant trend is present in the data series for both the sub-sample periods and, as such, would 

suggest that the data is not random; therefore, the null hypothesis is rejected. 

 

The values of the Hurst exponent for this thesis are 0.531 for the entire sample period, 0.503 for 

the first sub-sample period and 0.538 for the second sub-sample period at the 0.01 significance 

level. The results of this test on the full sample period and the second sub-sample period suggest 

a long-term autocorrelation in the dataset and persistence, which violates a fundamental 

assumption of the random walk theory, which is that observations in a time series should not be 

closely related to a previous value. However, data for the first sub-sample is noteworthy as it 

indicates an entirely uncorrelated data series, thus failing to reject the null hypothesis.  

 

The R/S Hurst result in Table 4 is also important as it shows similarities with the results reported 

by Urquhart (2016) as both periods overlap. The R/S Hurst exponent values reported by Urquhart 

(2016, 82) show strong levels of anti-persistence. However, the second sub-sample period in 

Urquhart (2016, 82), from the 1st of August 2013 to the 31st of July 2016, reported a H value of 

0.406, very close to the value reported in the second-subsample period Table 4 by the author. Using 

the sliding window methodology, Bariviera (2017) reports contrasting results which suggest 
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positive autocorrelation with stronger evidence of persistence, as all values of the R/S Hurst 

exponent are above 0.6 

 

Lastly, the variance ratio is performed to identify whether the data series follows a random walk. 

Martingales refer to random variables with unpredictable future variations given the current 

information set (Mandelbrot 1966). The p-value for closing prices is less than 0.01, identifying a 

high degree of autocorrelation in the data series. Therefore, the null hypothesis that is suggestive 

of a martingale is rejected. The results in Table 4 significantly contrast that of Zhang et al. (2018, 

663), where there is strong evidence for the null hypothesis for Bitcoin and all the other 

cryptocurrencies examined, the only exemption being the cryptocurrency Verge. 

 

Based on the results of the findings reported in Table 4, it can conclusively be stated that the 

Bitcoin market is currently not weak-form efficient but could be heading towards a path of 

efficiency as suggested by the results of the R/S Hurst tests, and the Cox-Stuart test. There are two 

main reasons that could justify the inefficiency of Bitcoin. The first reason is the relative infancy 

of Bitcoin, and the second reason is the Herding behavior that is caused by existing and new market 

participants that are influenced by emotion rather than independent analysis. The Bitcoin market 

can be classified as an emerging market due to its number of users and market capitalization. Prior 

research has shown that in large emerging markets such as Brazil, Russia, India, China, and South 

Africa (BRICS), there are prominent signs of inefficiency (Majumder 2012). Utilizing industry-

wise data for BRIC markets, and examining market efficiency with the Hurst analysis, Majumder 

(2012) reports that equity market returns are serially correlated as values of the Hurst exponent are 

either above or below 0.5. Herding in Finance can broadly be defined as the imitation of an 

investor’s actions of others and could also explain the inefficiency of the Bitcoin market (Merli, 

Roger 2013). Using cross-sectional absolute deviation of returns (CSAD), Tomas et al. (2019) 

reports evidence of herding in the cryptocurrency market during market downturns which signals 

inefficiency.  

 

In this sub-chapter, the results of the tests were reported and discussed. In the subsequent sub-

chapter, the author shall discuss the limitations that have to be considered when interpreting the 

results of the findings.  
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3.2. Limitations 

This thesis mainly follows the methodology utilised by Urquhart (2016) and expands the study 

period to cover the years until 01/01/2020. An ideal test procedure for the author would have been 

to extract data at the 1-minute frequency from bitcoinaverage.com. The reason for doing so is 

because it is the same exchange used by (Urquhart 2016). However, access to the dataset used by 

Urquhart (2016) and other commonly used datasets from coinmarketcap.com, such as Zhang et al. 

(2018), is very costly4. The accuracy of the results could be further improved if the same dataset 

was used.  

 

The cryptocurrency market is in its infancy. The inclusion of additional cryptocurrencies such as 

Ethereum, Binance and others could have also provided a deeper analysis of the findings of the 

thesis. The main reason for not doing so for this thesis is the lack of available historical data for 

the selected frequency and time frame as newer cryptocurrencies such as Ethereum and Binance 

were introduced later.  

 

Another limitation to the results reported is that Urquhart (2016) and Zhang et al. (2018) do not 

provide much detail in the descriptions of the test procedures. Different tests require different 

parameters and specifications, such as determining increments for the R/S Hurst analysis. Tests 

were conducted based on the author’s knowledge of R, which may be calibrated differently than 

the test procedures used by Urquhart (2016) and other research. Consequently, the potential for 

inconsistency in the test procedures may cause differing results relative to Urquhart (2016) as well 

as other similar research. 

 

A theoretical limitation of the EMH is that it considers market efficiency as a static phenomenon. 

This significantly contrasts the AMH, which asserts that markets continuously evolve due to 

structural changes (Lo 2004). Unlike the stock market, which operates for a defined period,  the 

Bitcoin Market lacks supervision and works round the clock; as such, it is evolving exponentially 

faster. A lack of prior research on the efficiency of Bitcoin from the perspective of the AMH 

prompted the author to use the more established and dominant EMH as a theoretical framework.  

 
4 An API for 12 months of historical data on coinmarketcap.com costs $699 per month with limited functionality and 
$56 on bitcoinaverage.com for a single file download when authoring this thesis.  
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CONCLUSION 

This thesis examined whether the Bitcoin market is efficient by testing the weak-form of the 

Efficient Market Hypothesis (EMH). The data used in this thesis was extracted from Kaggle and 

mainly replicated the work of Urquhart (2016) and expanded to include additional tests as used in 

Zhang et al. (2018) with a larger dataset at a higher frequency. The 1-minute weighted logarithmic 

closing price returns of Bitcoin were examined over a full sample period and two additional sub-

sample periods between the 1st of January 2014 and the 1st of January 2020. 

 

To reiterate, the main research question of this thesis was: 

• Are Bitcoin returns weak-form efficient according to the Efficient Market Hypothesis?  

Based on the research question, the following hypothesis was put forth: 

• Bitcoin price return follows a sequence formed by a random walk. 

For a market to be weak-form efficient, returns must follow a random walk process. Therefore, the 

Ljung-Box test, Runs test, Cox-Stuart test, R/S Hurst test and Variance ratio test were employed 

to test if the Bitcoin market meets the two fundamental assumptions of the random-walk model, 

which are first, whether successive price changes or returns are independent and secondly whether 

price changes or returns are identically distributed.  

 

Based on the results of the tests that have been employed, Bitcoin returns are shown to be 

inefficient. Therefore, the null hypothesis is rejected at the 0.01 significance level for the entire 

sample period, the first sub-sample period and the second sub-sample period for the Runs test, the 

Ljung-Box test and the Variance ratio test. However, the full sample period of the Cox-Stuart test 

and the second-subsample R/S Hurst exponent fails to reject the null hypothesis at the 0.01 

significance level. Conclusively, it can be stated that the Bitcoin market is currently not weak-form 

efficient but might be heading towards a path of efficiency based on the results of the Cox-Stuart 

and Hurst test.  
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Bitcoin and cryptocurrencies, in general, are still in their infancy. Nevertheless, the popularity of 

digital currencies such as Bitcoin is soaring from relative obscurity over a decade ago when it was 

incepted. It is safe to state that Bitcoins usage has entered mainstream society. Whilst no large, 

developed country has adopted Bitcoin as a legal tender or alternative currency, sovereign nations 

such as El Salvador and, most recently, the Central African Republic have adopted it as a legal 

tender.  

 

Results of this thesis as well as prior and future research are vital to understanding the price 

movements of the Bitcoin market as they could potentially assist legislators and economists at a 

macro level in determining the viability of Bitcoin and perhaps other digital currencies as 

alternative currencies. The results of this thesis are also crucial to individuals who are keen on 

utilizing Bitcoin either as a store of value or a medium of exchange.  

 

In a couple of years, as the usage and number of Bitcoin users continue to grow, results on the 

efficiency of Bitcoin may be different. Researchers must continue the debate on the efficiency of 

Bitcoin and, in general, cryptocurrencies to uncover possible anomalies within the cryptocurrency 

market. A proposal for further research would be to include a more extensive testing period that 

will enable further comparisons with other well-established cryptocurrencies. As more data 

becomes available, another proposal for future research would be to analyse the efficiency of 

Bitcoin from the perspective of the AMH. 
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APPENDICES 

Appendix 1: Source code for efficiency tests 

library(tidyverse) 
library(patchwork) # To display 2 charts together 
library(hrbrthemes) 
library(lubridate) 
library(snpar) 
library(trend) 
library(vrtest) 
library(tseries) 
library(pracma) 
library(data.table) 
library(tseries) 
library(fBasics) 
library(reshape2) 
library(randtests) 
library(trend) 
 
options(scipen = 999) 
 
# Load the data using data.table 
price_data <- fread("bitstamp_cleaned.csv") 
 
# Split DateTime variable into 2 new variables, date and time  
price_data[, c("date", "time") := tstrsplit(DateTime, " ")] 
 
Calculate Returns and  Descriptive Statistics 
 
price_data[, btc_ret := log(price_data$Weighted_Price / 
dplyr::lag(price_data$Weighted_Price))*100] 
price_data <- price_data[-1,] 
 
basicStats(price_data$btc_ret) 
 
price_data[, date2 := mdy(as.character.Date(date))] 
price_data[, time2 := hms(time)] 
 
close_1 <- price_data[date2 >= "2014/1/1" & date2 <= "2020/1/1", "btc_ret"] 
close_2 <- price_data[date2 >= "2014/1/1" & date2 <= "2017/1/1", "btc_ret"] 
close_3 <- price_data[date2 >= "2017/1/1" & date2 <= "2020/1/1", "btc_ret"] 
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lapply(list(close_1$btc_ret, close_2$btc_ret, close_3$btc_ret), basicStats) 
 
price_data[, date_time_ := as.POSIXct(Unix_Timestamp, origin = "1970/01/01")] 
 
price_data[, date_time_ := date_time_ + hours(6)] 
 
setnames(price_data, c("Volume_(BTC)", "Volume_(Currency)"), c("volume_btc", 
"volume_currency")) 
 
plot_data <- price_data %>% select(date_time_, Close, volume_btc, date2, time2) 
 
 
Ljung-Box Test 
 
lapply(list(close_1, close_2, close_3), function(x) 
  Box.test(x, lag = 1, type = "Ljung-Box", fitdf = 0)) 
 
Runs test 
 
lapply(list(close_1, close_2, close_3), function(x) 
  snpar::runs.test(unlist(x), exact = FALSE)) 
 
 
Hurst test 
 
lapply(list(close_1, close_2, close_3), function(x) 
  hurstexp(x$btc_ret, d = floor(nrow(x)/50000))) 
 
Cox-Stuart Test 
 
lapply(list(close_1, close_2, close_3), function(x) 
  cox.stuart.test(x$btc_ret)) 
   
Variance Ratio test 
 
lapply(list(close_1, close_2, close_3), function(x) 
  vrtest::Auto.Q(x$btc_ret)) 
 
vrtest::Auto.Q(close_1$btc_ret) 

Appendix 2: Summary results 

Descriptive statistics: 
[1]] 
                   X...X.i 
nobs        2621848.000000 
NAs               0.000000 
Minimum          -9.786751 
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Maximum          11.767972 
1. Quartile      -0.045125 
3. Quartile       0.047473 
Mean              0.000087 
Median            0.000000 
Sum             228.309029 
SE Mean           0.000092 
LCL Mean         -0.000093 
UCL Mean          0.000268 
Variance          0.022222 
Stdev             0.149069 
Skewness         -0.232767 
Kurtosis         65.148350 
 
[[2]] 
                   X...X.i 
nobs        1123849.000000 
NAs               0.000000 
Minimum          -7.722283 
Maximum           6.390522 
1. Quartile      -0.046669 
3. Quartile       0.050244 
Mean              0.000028 
Median            0.000000 
Sum              30.960325 
SE Mean           0.000165 
LCL Mean         -0.000296 
UCL Mean          0.000351 
Variance          0.030589 
Stdev             0.174898 
Skewness         -0.387157 
Kurtosis         38.239221 
 
[[3]] 
                   X...X.i 
nobs        1498838.000000 
NAs               0.000000 
Minimum          -9.786751 
Maximum          11.767972 
1. Quartile      -0.044415 
3. Quartile       0.046175 
Mean              0.000134 
Median            0.000213 
Sum             200.544731 
SE Mean           0.000103 
LCL Mean         -0.000068 
UCL Mean          0.000336 
Variance          0.015938 
Stdev             0.126247 
Skewness          0.102204 
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Kurtosis        114.828089 
 
 
 
Ljung-Box  
 
[[1]] 
 
 Box-Ljung test 
 
data:  x 
X-squared = 28711, df = 1, p-value < 0.00000000000000022 
 
 
[[2]] 
 
 Box-Ljung test 
 
data:  x 
X-squared = 65097, df = 1, p-value < 0.00000000000000022 
 
 
[[3]] 
 
 Box-Ljung test 
 
data:  x 
X-squared = 12439, df = 1, p-value < 0.00000000000000022 
 
Runs 
 
[[1]] 
 
 Approximate runs rest 
 
data:  unlist(x) 
Runs = 1343754, p-value < 0.00000000000000022 
alternative hypothesis: two.sided 
 
 
[[2]] 
 
 Approximate runs rest 
 
data:  unlist(x) 
Runs = 596633, p-value < 0.00000000000000022 
alternative hypothesis: two.sided 
 
 
[[3]] 
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 Approximate runs rest 
 
data:  unlist(x) 
Runs = 746029, p-value = 0.00000003003 
alternative hypothesis: two.sided 
 
Cox-Stuart 
 
[1]] 
 
 Cox Stuart test 
 
data:  x$btc_ret 
statistic = 653992, n = 1310096, p-value = 0.06514 
alternative hypothesis: non randomness 
 
 
[[2]] 
 
 Cox Stuart test 
 
data:  x$btc_ret 
statistic = 280673, n = 558785, p-value = 0.0006156 
alternative hypothesis: non randomness 
 
 
[[3]] 
 
 Cox Stuart test 
 
data:  x$btc_ret 
statistic = 371030, n = 749246, p-value < 0.00000000000000022 
alternative hypothesis: non randomness 
 
Hurst 
 
Simple R/S Hurst estimation:         0.5308135  
Corrected R over S Hurst exponent:   0.5439876  
Empirical Hurst exponent:            0.5301213  
Corrected empirical Hurst exponent:  0.5156832  
Theoretical Hurst exponent:          0.5116384  
Simple R/S Hurst estimation:         0.5028798  
Corrected R over S Hurst exponent:   0.522745  
Empirical Hurst exponent:            0  
Corrected empirical Hurst exponent:  0  
Theoretical Hurst exponent:          0.5164273  
Simple R/S Hurst estimation:         0.5382099  
Corrected R over S Hurst exponent:   0.5407297  
Empirical Hurst exponent:            0.5297387  
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Corrected empirical Hurst exponent:  0.5138916  
Theoretical Hurst exponent:          0.5147399  
 
[[1]] 
[[1]]$Hs 
[1] 0.5308135 
 
[[1]]$Hrs 
[1] 0.5439876 
 
[[1]]$He 
[1] 0.5301213 
 
[[1]]$Hal 
[1] 0.5156832 
 
[[1]]$Ht 
[1] 0.5116384 
 
 
[[2]] 
[[2]]$Hs 
[1] 0.5028798 
 
[[2]]$Hrs 
[1] 0.522745 
 
[[2]]$He 
[1] 0 
 
[[2]]$Hal 
[1] 0 
 
[[2]]$Ht 
[1] 0.5164273 
[[3]] 
[[3]]$Hs 
[1] 0.5382099 
 
[[3]]$Hrs 
[1] 0.5407297 
 
[[3]]$He 
[1] 0.5297387 
 
[[3]]$Hal 
[1] 0.5138916 
 
[[3]]$Ht 
[1] 0.5147399 
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Variance Ratio Test 
 
+   vrtest::Auto.Q(x$btc_ret)) 
[[1]] 
[[1]]$Stat 
[1] 1637.44 
 
[[1]]$Pvalue 
[1] 0 
 
 
[[2]] 
[[2]]$Stat 
[1] 3590.862 
 
[[2]]$Pvalue 
[1] 0 
 
 
[[3]] 
[[3]]$Stat 
[1] 917.3935 
 
[[3]]$Pvalue 
[1] 0 
 
 
>  
> vrtest::Auto.Q(close_1$btc_ret) 
$Stat 
[1] 1637.44 
 
$Pvalue 
[1] 0 

Appendix 3: Dataset  

The dataset can be downloaded from Kaggle here but would need to be cleaned and prepped to be 

used in the data studio:  
https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data 
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