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1 Introduction

1.1 Background

The rapidly growing population and developing economies around the world are driving
energy utilization and demand growth. Especially the role of electric energy is growing.
Electric energy production though is one of the main contributing factors to global
greenhouse gas emissions. To reduce carbon dioxide emissions and provide additional
electric energy production, the world has witnessed a paradigm shift toward renewable
energy sources (RES) during the last recent decades. At the same time, advances in
technology now offer a variety of methods to achieve the same functions with lower
losses in the process. As the global warming and environmental impact leveraging have
been stated as a top priority by the leading global parties, both shift towards greener and
emission-free production of electrical energy is mandated by governments’ policies,
similarly, turn towards more efficient technologies is enforced. For example, the EU has
pressed for the Fit for 55 policy and many more energy efficiency directives imposed
through the European Commission (EC) [1].

Of the commercial energy consumption, one of the greatest increases is expected to
be in the global energy market where buildings share a huge 40% of the share of total
consumption [2]. According to recent research [2], [3], most of these buildings are more
than 50 years old and are quite energy inefficient. Therefore, an EC mandate for nearly
zero energy buildings (nZEBs) has been issued for more efficient energy utilization and
the inclusion of renewable energy sources (RES) in both private and public buildings.
These nZEBs would include smart energy management solutions to lower the dependency
on the energy supply from district grids and minimize the cost of energy utilization.

In recent times, the advancement of photovoltaic (PV) technology, their decreasing
costs, and the simple installation method have increased their usage [4], especially in
residential areas. Connected to a low-voltage AC grid, PV systems’ output power ratings
can range from kW in case of domestic usage and to MW in case of large-scale
commercial deployment [5]. Taking into account the average household energy demand,
these PV-based systems are quite efficient and useful for domestic energy supply.
However, it has been seen that the integration of these PV systems into the distribution
networks creates challenges [6].

The integration of large-scale photovoltaics into the distribution network may lead to
voltage stability issues and overloading of the distribution lines. Therefore, the hosting
capacity (HC) evaluation of the grid becomes very important. HC is usually defined as the
amount of PV power that can be added to the network without needing to upgrade the
network while the network can operate safely and reliably. The HC depends on many
indices and their corresponding limits, such as the installed throughput capacity of the
lines and supply transformed, PV installed power and control options, other electrical
loads on the line, local storage availability, etc. Increasing the HC of PV would most easily
be done through network reinforcement, this is a costly replacement of components.
Investment in network infrastructure on the other hand means more operating service
costs attached to the customer energy bill.

It is thus reasonable to consider options to increase the HC through the network
efficient localized control of PV, storage, load, and other equipment at the customer end.
Automated systems would be able to do this and take into account a high number of
variables, such as in-house power demand, hourly energy market price, estimated
renewable production availability, etc. It can be seen that much potential would be
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available in more dynamic and self-adjusting control. Especially artificial intelligence and
machine learning-based forecasting tools for load and energy generation can also be
useful in this regard as they can help in improved energy management.

1.2 Smart Grids Technologies

A classic electric power system has been an AC power grid (having a frequency of 50 or
60 Hz) built to operate relying on large-scale power plants. Large AC networks
incorporate main substations interconnected with longer extremely high voltage
transmission lines and short delivery spans at low voltages at distribution levels [7].
To ensure operating characteristics such as voltage level stability the control of the
transmission grid levels responsible for delivery of greater energy amounts has been
sophisticated and included very expensive equipment. On the other hand, the distribution
networks have been mostly low-controlled as implementing similar options using
equipment associated with transmission system control is unfeasible.

A series of improvements have been implemented to the methodology of AC network
management commonly known as Smart Grid (SG) technologies to increase efficiency
and operating capability. These methods are found at all levels of electrical networks,
and many have been proposed for distribution levels. The ideology behind SG is to
construct a power network along with information and communication technology (ICT)
services-enabled features (framework is shown in Figure 1.1 [8]). More efficient and
economical use of grid resources is available through keywords such as continuous
monitoring, demand-side management (DSM), forecasting of energy generation,
consumption, electrical grid self-awareness and self-healing, and many more [9], [10].

Application Interface

Information Technology

Smart Grids

Figure 1.1. The framework of smart grids with energy infrastructure and ICT

Even for the distribution and low-voltage levels, the SG methods offer benefits of
two-way fast communication, power flow information, advanced RES integration,
storage technologies, and online computing for smooth operation and preventing failure
or service unavailability in the grid. With the goal of making the energy infrastructure
more reliable and flexible, it also helps to decrease the maintenance costs of the utility
network and the energy consumption costs of the customers.

The currently designed local distribution networks are traditionally uncontrolled and
without a proper monitoring solution. SGs have been proposed for some time now,

but they have not been realized yet, in full spirit. DSM is usually looked at as a possible
solution, however, still everyday PV energy production can cause congestion in the



distribution network. The problem cannot be solved using only DSM methods. More
localized but wider-looking control of networks is required to solve these problems.
This means for example a domestic system with capabilities to include wider incentives
from the grid. This presents though a wider range of variables to consider. The advances
in the information technology (IT) interconnections enabled in SG and flexible algorithms
to handle the required data capacity bring more capabilities. Machine learning (ML) is
making its progress in network control and can be seen as a viable perspective tool for
these advanced systems.

1.3 Localized Energy Management System

There are several developments that basically require advanced energy management
functions to fulfil the operating goals. The EU-led Green Deal policies and energy
efficiency targets are well known. For example, efficiency targets the residential sector
[11] require all newly constructed buildings must be nZEBs [12]. These buildings should
be able to generate their energy and, therefore, have a very low dependency on the
electrical grid [13]. The sum of energy utilized on-site, and locally produced energy
accumulated for nZEBs should be zero or near zero at the end of the year. Buildings can
buy energy from the grid, but they have to generate energy in commercial form
themselves and sell it back to the grid. Looking into it in more detail, this outline greatly
reveals many challenges as well as opportunities on a household level to utilize the more
advanced energy management systems.

In the northern latitudes, meeting the nZEBs goals will require the deployment of RES
such as PV or small-power wind, battery energy storage systems (BESS), flexible power
electronic converters and control techniques to use these resources in an appropriate,
efficient and economical manner [14]-[16]. The winters can be extremely dark and
without sunlight for many days and indoor heating requirements will make the energy
consumption at its peak values. In summer, the weather can be sunny, and the
photovoltaic systems will be generating energy around their maximum potential;
however, summer load requirements are usually the lowest. This can create challenges
for the network operators to accommodate that high energy generation with minimum
self-utilization. The PV peak power curtailment can be a solution but with this, however,
the customers would lose a lot of money [Paper I]. If not limited, the high PV injection in
the distribution grid may cause overloading and voltage fluctuation in the grid, which is
problematic for both operator and customers.

The energy management systems (EMS) for nZEBs have received great interest
targeting reduction in energy costs while matching the household demand and supply of
RES [17]. Demand repose (DR) and DSM are mainly discussed to solve the challenges [18].
However, they alone cannot solve the problem of customer load shifting and neither the
congestion in networks caused by the RES installations [19]. Therefore, a robust real-time
algorithm [20], [21] is required to dynamically charge/discharge BESS while keeping the
economic numbers steady, increasing the hosting capacity (HC) of the network, and also
avoiding the congestion of the distribution network [22]-[24].

Moreover, machine learning-based (ML) residential load and PV energy generation
forecasting techniques incorporated in the EMS will provide additional functionality.
These forecasts could provide efficient control and scheduling for BESS
charging/discharging to provide users with added economic benefits and decreased
service costs from the grid. Forecasting is an especially demanding task toward the
proper energy management goals, as it refers to massive data processing. Taking into
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account the number of variables and scenarios needed for the complete EMS tasks range,
the forecasting thorough the ML, artificial intelligence (Al) and other flexible adaptive
algorithms provide an advantage

1.4 Research Problem and Scope of Thesis

The combination of PV-BESS is the most potent solution for residential houses and nZEBs
[25]. For the house owner, the target is to build these systems economically viable,
this is making the costs or payback periods as low as possible. The lowest cost to a
homeowner could be available through:

e The optimal installation cost of the local energy management system.

o Lowest cost of energy bought from the utility grid.

e Highest benefit from the energy sold to the grid.

e  Lowest service cost for using the grid.

A standalone local system that offers the same comfort as the power grid would have
an unmotivating cost. Even if the case of nZEBs, the energy management system will still
be connected to the local grid, the initial cost of PV and particularly BESS is still
remarkable even if further price decrease is expected [26]. Even only to meet the
domestic yearly energy usage, rather large PV units need to be installed. For the utility
grid, high PV system produced energy infeed can mean problems if all customers want
to supply the grid with PV produced energy at the same time. This could lead the utility
to costly upgrades and reinforcement of the components and lines to guarantee the
throughput. If not reinforced, the customer could not sell the PV-produced energy to the
grid, decreasing the income from PV energy production. On the other hand, grid
reinforcement investments effectively raise the utility service prices for customers.
Therefore, this raises a multivariate challenge on how to build up the local EMS to meet
the conditions of having the lowest cost to the homeowner.

Options are available then to include the BESS for more operations, such as storage of
low-cost energy from the grid during excess PV generation or low market price, for financial
profit. In turn, this would provide the benefit to the utility, as local energy load point is
added, and network load decreased. Further options could include EV charging control, as,
in the near future, the penetration of electric vehicles (EVs) is going to increase rapidly.

EVs are environmentally friendly if power to these vehicles is provided through RES
such as locally PV-produced energy, which also is comparatively much cheaper [27]-[30]
than buying charging energy from the grid. The EVs can potentially impose diverse
impacts on the distribution grid but also the local energy management system.
The integration of EV loads means that larger PV systems will be required to power their
local fully renewable charging. These higher rated PV installations can cause hosting
capacity issues in the grid as the electrical lines have a limited capacity and replacing
these lines with new higher capacity lines is not an easy task in terms of financial and
physical deployment. So having a high amount of PV to support charging EVs could cause
overloading of the lines and overvoltage problems [6], [31]-[33]. On the other hand, the
presence of a high number of loads of electric vehicles can increase the maximum loads
on the lines and the undervoltage in the electrical network [34], [35]. The problems
mentioned above can be eliminated to a large extent by the optimal design of the
PV-BESS system according to the limits and parameters of the network [36], [37].

The inclusion of the BESS can make sure that the excessive PV energy is stored in it
and not injected into the grid thus limiting congestion and overloading the network.
The BESS stored energy can then be used for residential loads or charging EVs. This method
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will not only decrease the dependency on the grid but also reduce the cost of electric
energy purchased from the utility. The goal of photovoltaic system-based energy is to make
users self-sufficient and decrease the costs of energy. However, by optimally using these
resources with smart control strategies, several targets can be achieved, including limiting
the PV power injected into the grid to minimize overloading and congestion, increasing
self-sufficiency, better DSM, and reduction in peak loads. This in turn can decrease the grid
service costs, as the utility would not need to make investments to provide a good level of
service. Therefore, one of the main targets in this thesis is to provide EMS viewpoint grid
utilization with the improvement of overall energy service availability capabilities as much
as possible and to guarantee an equally high quality of service to the users. Therefore,
this solution can be quite useful as it makes this system economically viable by reducing
the energy costs for the residential user and at the same time making sure that the
capability of the grid is increased, and the quality of service is not affected.

Additionally, the EMS can benefit from the knowledge of imminent upcoming RES
availability. This way more information will be available on the selection of best
strategies for BESS charging and discharging. There is a strong potential to estimate and
forecast the future capabilities and characteristics of the network operation. Within this
thesis, several pilot investigations have been presented to reflect the capabilities of the
tools. The use of ICT can be beneficial here and machine learning (ML) techniques make
a good tool for such purpose forecasting. Targets usable for the local EMS are considered
and analysis is done to determine the appropriate ML method to implement. It has been
shown that ML based forecasting methods are ready for the tasks of the EMS, considering
the capabilities in forecasting.

1.5 Hypotheses & Research Tasks

The main aim of this research work is to design and develop an EMS that will be capable
of reducing the electricity cost for the residential users and decreasing their dependency
on the electrical grid. At the same time, the EMS will be responsible for increasing the PV
penetration in the grid and ensuring reliable operation by minimizing the problems like
congestion and voltage fluctuation in the network. Moreover, the machine learning-based
residential load and PV energy generation techniques can add extra features and
functions in the EMS for better management of energy and cost reduction. Following are
the hypotheses and research tasks of this work:

Hypotheses:

- The EMS can help in increasing the PV penetration in the local grid without
reinforcements to the grid.

- EMS incorporating PV-BESS can help reduce energy purchase costs.

- The payback periods can be shorter than the expected component failure time
periods.

- Machine learning techniques could add extra functionalities and capabilities to
the EMS.

Research Tasks:
- Development of optimal EMS usage strategy.
- Energy cost minimization using optimization techniques.
- Localized congestion control strategies for increased hosting capacity.
- Additional capabilities using machine learning techniques
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1.6 Scientific Contributions and Novelty

The thesis provides the results of an investigation to build and operate a local electrical
energy management system in a least-cost configuration. The discussion includes novel
aspects of the burden of customer operation to the utility, such as impacting the utility
grid service and installation costs, but also the potentially imposed limitations on the grid
capacity availability can make up a critical portion of the costs to the property owner.
The novelty and scientific contribution of the thesis can be listed as follows:

1) Planning of domestic energy management system installation, given its
potential contribution to both domestic targets (nZEBs) but also utility support
to the renewable power sources high infeed. To provide the best possible
quality of service and increased throughput in the local distribution networks, a
localized congestion control strategy has been proposed. Different PV
installation scenarios have been considered and different control strategies
have been discussed and evaluated. The focus is to increase the penetration of
RES in distribution networks while limiting network congestion and minimizing
the economic impact on consumers. (Publication 1)

2) Estimation of the control capability of a domestic energy management system,
considering the usability of BESS for more flexible service. A heuristic algorithm
based on linear programming (LP) for the chagrining/discharging of BESS has
been developed. The algorithm incorporates the real-time values of domestic
electrical load, energy generation from RES, the status of BESS, and the market
electricity prices. The payback periods and economic benefits are calculated
using the proposed algorithm. (Publications Il & Il1)

3) More capable service proposals for further optimized and efficient
implementation of the local energy system are available through more detailed
data available on the expected energy production and loading. The forecasting
of the RES feed is discussed here as a prerequisite for more optimal sizing and
management of the BESS capabilities. Machine learning-based forecasting
algorithms have been studied to estimate the energy generation and availability
from PV (Publication IV), wind (Publication V), and the forecasting of residential
load. (Publication VI)

1.7 Outline of the Thesis

The thesis is structured as follows. Chapter 2 is related to the survey of related work. This
survey covers the energy management system components, battery optimization and
efficient control, and congestion control techniques in power distribution networks and
machine learning techniques for PV and wind energy forecasting. Chapter 3 is about the
BESS sizing and its optimal use for domestic users. The energy-cost reduction and BESS
control algorithms have been elaborated in detail here. The economic analysis using the
proposed algorithm has also been described here for the residential PV-BESS-EV system.
Chapter 4 gives an overview to increase the hosting capacity and decrease the congestion
in the local distribution networks. Control strategies are described here in detail. Chapter
5 gives an in-depth overview of the renewable energy cases of solar PV, wind, and
residential load. The development of forecasting algorithms along with the results are
discussed here Finally, Chapter 6 presents the conclusions and future work of this study.
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2 In-Depth Literature Analysis

2.1 Local Energy Management System Components

The optimal design of EMS for nZEBs requires efficient control algorithms along with the
required PV system design and BESS. The design of PV-BESS is a critical component as it
will significantly impact the payback period. The EMS also includes a net metering system
and smart control algorithm to gain monetary benefits by selling energy to the grid when
the market energy prices are higher and vice versa. During the last few years, many
studies have been conducted in different countries regarding the design of PV systems,
its feasibility and risk analysis, net metering solution and payback periods have been
calculated [15], [21], [38], [39]. Table 2.1 presents a detailed overview and comparison
of different studies conducted in recent years. Most of the studies are on the on-grid and
off-grid implementation of PV systems. The key indicators for the selection of these
studies are PV system designing, payback periods, bill reductions, net metering solutions,
energy forecasting and optimal PV angle calculations. The installation of PV systems is
highly dependent on the location of installation; therefore, this table presents a thorough
analysis of the variations of PV systems in different countries. Most studies have
incorporated many of these factors, but none have considered all of them together with
energy forecasting. A comparison of previous studies has also been presented.

Table 2.1. Comparison of previous studies

Survey  Country System  Optimal Payback Bill Bill
design angle for time reduction reduction
max. with net
power metering
output
[40] Cyprus \ X x x v
[41] Netherlands v X v X v
[42] USA v X X X v
[43] Brazil \ X X x v
[44] Chile v X X X v
[45] Pakistan X x x X v
[46] India X X v v v
[47] Palestine v v v X X
[48] Italy \ x x x v
[49] China x x \i \i \i
[50] Egypt v X X X X
[51] Australia Vv X ' X '
[52] Iran Vv v x x X
[53] Brazil Vv X X X x
[54] Finland Vv X ' ' '
[55] Turkey Vv X X X X
[56] Jordan \ x \' X x

The PV system installation requires certain criteria and standards to be fulfilled while
utilizing the full potential of the technology. The PV systems design and requirements in
Estonia are different from many other parts of the world. It needs continuous monitoring
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for the efficient use of the system. The PV system is able to generate power for 16-18
hours a day in summer, while around 5-6 hours a day in winter. The system also requires
protective devices to be installed on the AC/DC interfaces, such as energy routers and
inverters. According to Eesti Energia, the payback period for an around 10 kW PV-only
system is around 18 years [57].

One of the important criteria for conducting feasibility analysis and site selection for
the installation of a solar photovoltaic system is the solar radiation pattern of the area.
The parameters that need to be observed during the study of solar radiation patterns are
solarirradiance, and solar panel angles for elevation, declination, and incidence [4], [13].
The solar irradiance patterns are different parts of Estonia are almost similar and the
irradiance is high in the summertime lasts from April to August and is low in winter from
November to March [58]. The angle of incidence for the PV system can be calculated
using the methods described in [59]-[62]. The solar panel tilt angle § for Estonia is
computed to be 38° to 40° for fixed PV installations [63].

2.2 Residential Operation Optimization

The PV-BESS systems are convenient and easy to deploy but their initial cost and payback
periods are still high [64], [65]. The initial cost of especially BESS is comparatively high
and the usual operation of a residential BESS has limited operation cycles and its usual
life is around 5 years [66]. Therefore, the optimal sizing and operation of BESS are critical
as they will directly impact the initial and operational costs of the PV-BESS system.
Moreover, BESS needs to be utilized economically and efficiently to fully exploit its
potential. Numerous research studies have been conducted on the BESS size
optimization, BESS efficient control, increasing the life cycle of BESS and reducing the
overall energy cost using PV-BESS systems. The comparative analysis of the previous
studies on this topic is given in Table 2.2. These studies have tried to explore the
possibility of cost reduction, BESS size optimization, minimizing the peak load and energy
scheduling using BESS.

In the near future, the usage of electric vehicles will also increase, as the goal is to
have 50% of the vehicles on the road being electric vehicles by 2050 [67]. Most of these
electric vehicles will be charged at home as the number of charging stations is limited.
Therefore, the integration of PV-BESS-EV is very important, as it can reduce the energy
cost for use if it is designed properly. The successful use of PV-BESS can provide users
with clear economic benefits. Several studies have been conducted to optimize BESS
energy utilization taking into account PV energy generation and load. Numerous research
studies related to the integration of PV-BESS-EV are available. The impact of charging
from the PVs and the corresponding reduction of emissions are discussed in [68]. In these
studies, the impact of PV installation [69]—[71] and electric vehicles [72]-[75] on the grid
has been presented. The EV modeling [28], [76]—[78], EV charging on power quality [79]
and the control algorithm together with the economic analysis are given in [27],
[80]-[83]. Meanwhile, the possibility of using batteries from electric vehicles for
household loads is presented in [84].
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Table 2.2. Literature survey of PV-BESS optimization studies

Survey  Year Location Main Feature Algorithm
[85] 2013 us Minimize peak load LP
[86] 2016 us Minimize peak load Genetic Algorithm
[87] 2013 us Energy Cost reduction LP
[88] 2016 Switzerland Energy Cost reduction LP
[89] 2020 Iran Energy Cost reduction Teaching-Learning-
Based Optimization
[90] 2015 Korea Energy Cost reduction Markov decision
process
[91] 2019 Switzerland Energy scheduling lithium-ion battery
model
[92] 2010 Turkey PV/BESS size optimization Simulated Annealing
[93] 2020 us PV/BESS size optimization Monte Carlo
[94] 2018 Germany Energy Cost reduction LP
[95] 2017 China BESS size optimization Convex programming

2.3 Congestion Control & Hosting Capacity

The hosting capacity (HC) has been gaining importance for some time now, as it plays an
important role in delivering quality service to customers defined by the standards [96].
The level of HC depends on the risks that customers and network operators are willing
to take. Therefore, it depends on a variety of parameters, and it has been defined as the
maximum PV energy generation and a peak load of the feeder ratio [97], yearly PV energy
production and consumption [98], or then transformer rating [99]. The HC is also
dependent on the PV energy generation and the self-consumption of the residential user
[100]. Therefore, if users take the liberty to install as much PV as they can, this can be a
problematic situation for the network operators. The operation of the grid within the
limits of standardized power quality indexes becomes a problem. As one example,
distribution lines’ ampacity limits are exceeded [101]. Utility operators have to replace
these lines or use some smart grid (SG) driven solution to overcome the problems of
overloading and overvoltage, voltage unbalances and transformer overloading.

One of the most important parameters that limit the HC is the increase in line voltage.
Increased penetration of PV in LV networks can cause an overvoltage problem and it can
become extremely difficult for the grid to operate within the defined limits [102]. This
study concluded that the main reasons for this are the flow of the power in the opposite
direction and the disturbance in the reactive power balance. Most of the studies have
researched this problem in the medium voltage (MV) networks [103]-[105]. However,
rooftop photovoltaics have become more popular and will be even more due to the
concept of nZEBs and the increasing usage of electric vehicles (EV) [12]. Therefore,
the residential PV installation is mostly done in the LV network. This voltage rise can
occur when the PVs are producing at their peak generation hours, usually, in the middle
of the day, and at that time the residential load is lowest. Countries, where air
conditioners are used during the day, can have peak loads at the same time, so this is

21



not a big problem there. However, in other regions, this peak power injection causes
overvoltage in the network due to low load and power flow reversal.

Grid-connected photovoltaics were required to inject only active power with a unity
power factor, thus disturbing the balance of active and reactive power on some
occasions [106]. Many studies have proposed voltage control mechanisms in the inverter
and the substations to keep the operating voltage within limits. The voltage control
mechanisms based on the increase in reactive power demand from the substation and
the high-frequency switching inverter can reduce voltage fluctuations but increase
harmonics [107]. On-load tap changer (OLTC) and feeder control voltage capacitor banks
have also been proposed for the overvoltage problem [108], [109]. A demand response
method (DR) [110] and a battery energy storage system (BESS) [111], [112] have been
proposed to increase HC. Another important factor limiting the HC is the ampacity of the
distribution lines [113]. This is a much bigger problem in the urban networks as compared
to the voltage violation that is a major concern in rural and suburban networks [114].
Distribution lines have a fixed current rating, and PV injection above limits can overload
the lines [115]. In this case, the network operator may have to replace the distribution
line with a higher power transformer, a very costly solution.

2.4 Machine Learning

The RES energy availability is stochastic and difficult to model. The precision of energy
availability and load forecasting has a direct impact on economic analysis. Accurate
forecasting of RES can help better manage the energy demand and economic usage of
the grid [116], [117]. PV energy generation usually depends on the season and the area.
However, wind energy is highly stochastic [118], [119] and variations in energy output
make it more challenging to predict. Wind energy generation is dependent on weather,
season and location therefore accurate forecasting is difficult [120]. The economic
analysis is based on the forecasted future profit and the initial investment, thus making
the forecasting of energy an important task.

Mostly this kind of forecasting is carried out with the help of statistical tools [120],
e.g., probability distribution, moving average and autoregressive algorithms; however,
these algorithms have lower accuracy. Therefore, machine learning algorithms have seen
a growing increase in this energy forecasting application due to superior accuracy [121],
[122], [123]. Machine learning algorithm forecasting usually requires large data sets for
training. Training enables these algorithms to learn about the patterns and non-linearities
in the data. Therefore, usually larger data sets are required and sometimes these
algorithms need retaining as well to learn about new patterns or for increased accuracy
[121]. Therefore, the algorithm results are then tested and validated to confirm the
accuracy and whether retention is required or not. Forecasting models can be for short,
medium- and long-term forecasting [124]. Short-term means a few hours ahead to one
day, medium-term is for a few days to a few weeks and long term is between a few
months to a few years.

2.4.1 Solar Energy Forecasting

Several machine learning algorithms have been described for PV energy forecasting
[125]-[128]. The algorithms show a capability for accurate forecasting of around 90%
[129], [130]. Figure 2.1 shows a biometric visualization of the keywords used in research
papers published in the last five years on PV energy forecasting using machine learning
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techniques and keywords from 179 studies were used. The diagram shows that machine
learning-based forecasting has become more popular in the last five years. A survey of
machine learning (ML) and deep learning (DL) techniques for forecasting PV energy
generation is given in Table 2.3.

long short-term memory
solar power plants

extreme |earing machine

smart pawer grids deep lgarning

photovoltaic pawer generation

-
decision trees
prediction N A _ machine learning techniques
machn%armng
solar power - weather forecasting y,
SOI%rgy solar radiation
neuralpetworks ¢
photovoltaic

artificial intelligence

support vector machines

Figure 2.1. Bibliometric visualization for the keywords supplied by the author for PV energy forecasting
(Larger circle means more use of the keyword)

2.4.2 Wind Energy Forecasting

Similar to PV energy forecasting, machine learning techniques are also widely used in
wind energy forecasting. These models are usually used to predict wind speed and wind
energy generation. Many studies have been conducted on comparative analysis of
different machine learning algorithms such as support vector machine (SVM), random
forest (RF) k-nearest neighbor (KNN), and linear regression (LR) [131]—[133].
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Table 2.3. A survey of ML and DL techniques for PV energy forecasting

Survey Year Location Algorithms Forecasting
[127] 2020 South Korea RNN-LSTM 14 hours
[134] 2019 Pakistan ANN 1 day
[135] 2018 Taiwan BPNN 1 day
[136] 2017 South Korea Short Term 1 day

multivariate

Regression
[137] 2018 Germany Trees/Probabi 1 day

-listic

[138] 2021 Morocco CNN-LSTM 3 days
[139] 2021 China CNN-LSTM 1 day
[140] 2021 China LSTM 1 hour
[141] 2021 Italy LSTM 1 hour
[142] 2019 USA LSTM 1 day

Abbreviations: Back Propagation Neural Networks (BPNN)

Most of the studies found that SVM gives better forecasting also experimental
results [143] showed that SVM gave better predictions. Furthermore, artificial neural
network (ANN) based deep learning algorithms are gaining more attention as they
are more accurate as compared to machine learning algorithms [144], [145].
A detailed comparison of the previous studies on wind energy forecasting is given in

Table 2.4.

Table 2.4. A Survey of wind energy forecasting using machine learning techniques

Survey Country Year Proposed Data Forecasting Description of the
algorithm size duration proposed study
[146] USA 2019 Deep belief 3 years 1-24 A fuzzy-based hybrid
neural hours deep-belief neural
networks network predicts
robust features and
real-time variations.
[147] UK 2019 SVM, ANN 3 years 1 day ANN is more accurate
than SVM.
[148] Spain 2019 RNN-LSTM 1year 1-24 LSTM gives accurate
hours 24 h foresting with
10.43% RMSE.
[149] Germany 2015 RNN-LSTM 4 years 1 day LSTM gives better
forecasting.
[150] France 2020 Linear 2 years 6 hours ML algorithms give

regression

more accurate.




Table 2.4. Continued

Survey Country Year Proposed Datasize Forecasting Description of the
algorithms duration proposed study

forecasting than
statistical methods.

[151] Canada 2020 SVM, ANN 2 years 1 day A hybrid SVM-ANN
model outperforms
individual models.

[152] Estonia 2019 RNN-LSTM 1year 3 days LSTM gives 25% more
accurate than
statistical methods.

[153] Spain, 2020 TDCNN 4 years 1-24 TDCNN gives a lower
Canada hours RMSE forup to 24 h
before forecasting.

[154] Greece 2019 SVM/ANN 2.5 year 6-24 hours  SVM gives better 24 h
ahead forecasting
results than ANN.

[155] China 2019 RNN, KNN 3 years 1 day LSTM is 18.3% more
accurate than KNN and
SVM.

[156] Italy 2019 MLP 3 years 70 hours ANN based MLP gives

accurate forecasting
for 70 hours.

Abbreviations: Multilayer perceptron (MLP), Long Short-term memory networks (LSTM),
Two-stream deep convolutional neural networks (TDCNN), Mean absolute percentage error
(MAPE).

2.4.3 Residential Load Forecasting

Residential load forecasting is a challenging task as it depends on many variable factors
such as season, time, number of household appliances and their energy rating, together
with a greater dependency on occupants and their behaviours [121]. A single ML
forecasting method cannot provide a viable solution in all implementation situations;
therefore, these algorithms are selected and trained according to the datasets and the
variable factors included in the data. A detailed comparative analysis of different
machine learning and deep learning algorithms is given in [157]. The survey of related
machine learning and statistical algorithms used for load fore acting is given in Table 2.5.
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Table 2.5. A literature survey of load forecasting techniques

Survey Year Location Algorithms Forecasting
[158] 2012 USA SVM 1 hour
[159] 2013 Switzerland SVM 1 day
[160] 2009 USA KNN 10 hours
[161] 2013 France Statistical models 1 hour
[162] 2018 USA LSTM 1 day
[163] 2017 China LSTM 1 day
[164] 2019 France CNN, SVM 1 day
[165] 2020 China IRBDNN 1day
[166] 2021 Pakistan LSTM 1 day
[167] 2019 China LSTM 1day

Abbreviations: Iterative Resblocks Based Deep Neural Network (IRBDNN)

2.5 Chapter Summary

This chapter provides an in-depth literature review about EMS and its components,
operational optimization, congestion control strategies and an overview of machine
learning techniques. The main conclusions are as follows:

The EMS for residential homes will consist of a PV-BESS system and possibly
EVs. However, an efficient control strategy is required to make this system
economically viable. The initial deployment cost of these systems is high and
payback time is rather long, but optimization techniques can help in reducing
the energy cost and the payback can be lowered. Previously several
optimization algorithms have been proposed for cost reduction. However,
mostly these techniques lack optimized controlled algorithms to address the
challenges and the complexities of control, and stochasticity in PV energy
generation along with BESS and dynamic market electricity prices.

PV HC in distribution networks has gained importance as PV penetration is
increasing. However, large-scale PV installation creates problems in the
network in terms of overloading of lines along with the transformer and
overvoltage in the network. Many congestion control techniques, such as
peak power curtailment and DSM have been proposed. However, DSM alone
cannot solve these problems and usually grid reinforcements are needed.
On the other hand, power curtailment has economic implications. The localized
solution for these problems is missing without the requirement of grid
reinforcements.

Machine learning-based forecasting techniques are useful tools in power
system applications. In particular, neural network-based deep learning
algorithms can predict energy generation and electrical load more
accurately. However, some of these techniques require large historical data
sets.
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3 Residential Operation Improvement

The EMS for nZEBs discussed here will be incorporated into the domestic energy router
(ER) for the management and utilization of energy. The ER is primarily a power
electronics device that is similar to an inverter but with additional functionalities.
In future smart residential homes, AC and DC buses will be used separately for AC and
DC loads to save energy [168]. The ER will be responsible for both AC and DC conversion
from the RES or grid. The ER will be connected to RES, BESS, EV, and the local grid.
Therefore, this proposed EMS will be implemented in the ER for managing the energy
resources. The EMS will decide when to charge or discharge the BESS and sell or buy
energy from or to the grid considering the local market electricity prices. The concept of
a smart home with ER and EMS is depicted in Figure 3.1. Further details of the ER can be
found in [169].

Solar Panels

AC Grid

AC Socket ——
DC Socket

Energy Router

v Storage

E\,

Figure 3.1. The concept of a future home with EMS

Battery storage technologies have seen tremendous growth in recent years in
applications such as portable communication devices, EVs, industry and PV-based BESS
[35]. Lithium-lon (Li-ion) and Nickel Manganese Cobalt Oxide (NMC) are the most widely
used, however, Lithium Polymer (Li-Po) batteries are also gaining attraction [12]. At the
same time, the cost of BESS has decreased substantially due to the latest developments
in manufacturing technologies and bulk generation [170]. The cost of 1 kWh of BESS is
estimated at around 100 € [171]. However, there are still many limitations that require
improvements such as low usage cycle and limited life span. In the coming years is to
increase the BESS life cycle of the BESS to around 20 years [172].

In residential BESS, Li-ion batteries are preferred, as they do not require periodic
maintenance, are compact, and have relatively higher efficiency compared to other
batteries [173]. On the negative side, its useful life span is up to 5 years [174]. Therefore,
it becomes a challenging task to make their repayment time economically viable [175].
Usually, the government provides subsidies or lower tariffs to overcome this problem [94],
[176]. Therefore, choosing the appropriate battery size becomes very critical, as it will
directly affect the economic indicators.

Considering that the installed PV rating is greater than the residential household load,
the remaining energy can be stored in the BESS and later utilized for in-house usage.
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Similarly, if the PV is not generating energy, then BESS can be charged from the grid.
In addition, some of this stored energy can be sold later to the grid the same way as
excessive PV-generated energy is sold to the grid. This will result in more income by in
feeding energy to the grid. The margins when to buy energy or sell energy to the grid are
selected by the LP optimization method.

3.1 Battery Parameters

In this study, real-time load and PV data were measured on an hourly basis from a suburban
Estonian distribution network for one year. Figure 3.2 shows the layout of the grid with all
its connections. There are eight residential loads and three auxiliary loads in this network.
Th load 1 (small house), load 2 (medium-size house) and load 3 (apartment building) are
taken into account for the design of the BESS.
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Figure 3.2. The suburban distribution networks under consideration

The battery size is usually calculated based on the daily energy consumption, efficiency
and number of days for which BESS backup is required. The BESS size is calculated using
Eqgn. (3.1) [35]:

_ _ Epay
Epc = N*DoD*1000 * N (3.1)

Here, Eg is BESS capacity in kWh, I is the efficiency, N is the number of BESS backup,
depth of discharge is DoD and Epg,, is the daily average energy used. The peak load
value is not used here, as it occurs only a few times a year. The other important
parameter state of charge (SoC) of the BESS that specifies the stored energy in BESS is
calculated using Eqn. (3.2) [35]:

N*Pz*Kp*At

SoCyy1 = SoC, + (3.2)

Epc

where n represents the number of states, 4t is the sampling interval, K, indicates the
online and offline status (typically 0 or 1), and P, is the charging power in kW and it is
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calculated using Eqgn. (3.3) [35]. The BESS parameters and load profiles for all three cases

are described in Table 3.1.
_ BC*Vx0.15

p =20 (3.3)

Table 3.1. Load profiles & BESS parameters

Parameters Small house Medium house Apartment building

Average load (kW) 0.1 0.8 11.9
Peak load (kW) 19 6 36.7

Annual energy 741 6640 103860

consumption (kWh)

Rated PV power (kW) 5 10 20
Esc(kWh) 4 33 518
P, (kW) 0.6 5.4 86

3.2 The Proposed Heuristic Algorithm

The proposed method is realized as an algorithm considering data of load, PV energy
generation, and electricity prices on an hourly basis to charge or discharge the BESS.
The algorithm is designed in a simplified manner to reduce the overall energy cost for
residential users. The method aims to minimize the dependence and use of the grid
throughout the year. The algorithms used linear and convex optimization to find out the
most optimal charging and discharging electricity prices for the grid. The basic principle is
that if PV is generating more than the load then the BESS will be charged and if the load is
higher, the BESS will be discharged. Moreover, BESS will sell/buy energy from to/from the
grid if the prices are higher/lower than the specified threshold values. A detailed
description of this algorithm is given in Table 3.2.

3.3 Optimization Technique

The selection of electricity prices to buy and sell energy to the grid is a complicated
optimization problem. The market electricity price changes every hour in Estonia as it is a
member of the Nord Pool electricity market. In addition, there can be a huge fluctuation in
hourly prices [177]. In this study, the electricity prices of 2020 for the Estonian energy
market have been taken under consideration. The main objective is to minimize the overall
energy cost during the year and make it closer to a nZEBs. The objective function, along
with the constraints, is defined as follows:

Minimize f = LI, {CPIT" () * EDvig (£ + Copig (8) * ESel(6) + Cpai () *

grid grid
e (£) + Coay™ (8) * Efai(6) + Cy (8) * Epy (1)} (3.4)
Subject to
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Table 3.2. The proposed heuristic algorithm

Algorithm: Battery Charging & Discharging

Input: Load data, photovoltaic data, electricity price

1. Calculate battery Eg¢, P,
2. SoCmax=0.9 and SoCnin = 0.2
3. While (n <= 8760) %n is the number of hours
4. If PV >Load and 0.2 > SoC (n) > SoCnax then charge battery (But not above S0Cnmax)
5. Calculate SoC (n+1) and Pgat (n)
6. a=a+l %no. of charging hours with PV
7. elseif Load > PV and SoCmin > SoC (n) > SoCmax then discharge battery
(But not below SoCnin)
8. Calculate SoC (n+1) and Pgat (n)
9. b=b+1 %no. of discharging hours for internal use
10. else if Electricity Price < threshold value and SoC(n) < 0.5 then Charge battery from the
grid (But not above S0Cmax)
11. Calculate new SoC (n+1) and Pgat (n)
12. c=c+l %no. of charging hours with Grid
13. elseif Electricity Price > threshold value and SoC(n) > 0.4 then discharge battery to the
grid (But not below SoCmin)
14. Calculate SoC (n+1) and Pgat(n)
15. d=d+1 %no. of discharging hours to the grid
16. else
17. SoC (n+1) =SoC (n)
18. Pgat(n)=0
19. endif
20. n=n+l
21. end while
EPYT (1) — ESetb (6) — Egl (D) + EZ5(6) + Epy(6) = E, () (3.5)
—Efgr(t) + Efgi (£) < EL(6) (3.6)
EPia () — Egrig(t) < E(¢) (3.7)
—Eghy (6) + B (0) < Ejia () (338)
Egar(t) — Efar (8) < Ejai* () (3.9)
—E) () <0 (3.10)
—Egsin@®) <0 (3.11)
—Efg(t) <0 (3.12)
—Egii(t) <0 (3.13)
Epy (t) < Epy™*(0) (3.15)
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where f is the objective function, t is the number of hours, EJ'", (t) and E7; are electrical

energy purchased from and sold to the grid, respectively; ES", and E,‘fést are the charged

and discharged energy. Epy is the energy generated from PV, EJ** is the maximum energy

generated by PV, E; is the electrical energy consumption by the nZEBs; EJ.7" is the

maximum energy stored in the battery, N is 8760 (number of hours in one year). All energy

Cpur,u. Csell,u

values are in kWh. The cost of energy purchased from the gird is grid + Cgrid is the cost

of energy sold to the grid, Cim* is the cost of battery charging, C,féi'u is the cost of

discharging energy from the battery to the grid, C}, (t) is the cost of PV energy sold to the
grid. All unit costs are in cents per kWh. The hat symbol in the equation represents the
normalized values. The normalization values are calculated using Eqn. (3.16). Further
details on the operation of the algorithm can be found in [178].

Koy = ——2mean (3.16)

Xmax—Xmin

where the X,,,;, = 0 kWh.

3.4 The Impact of EMS

The EMS in nZEBs should be viable in financial terms to encourage others to incorporate a
similar solution in other conventional buildings. This makes the economic analysis of
PV-BESS-based nZEBs very important from a business perspective as well. Therefore,
an economic analysis was performed for all three cases in this study. Economic analysis
requires consideration of several parameters. One of the most important parameters is
the initial investment in solar PV and batteries. The investment cost Cpy, is calculated as
[23]:

i N
Cpy = C;’lv(t) * Prated * (ll(:;;)_l

(3.17)

where C}, (t) is the per-unit cost of PV, P44 is PV rated power, 1 is the number of years
(14"

a+in-1
Similarly, the initial cost of the BESS system is computed as [23]:

representing PV lifetime, and

is the net present cost as compared to investment.

_ chu i(a+)"
CBat - (Cbat (t) * EBC + CInv./Unit * P‘rated) m (3-18)
where CE™(t) is the unit cost for BESS charging, Ciny.junit is the inverter unit cost, Eg is
the maximum energy storing capacity of the BESS, 71 is battery lifetime, and % is the

ratio of present cost and the annual investment. The electrical load values from the Eqn.
(3.4) are also used here to balance the energy requirements of the nZEBs. The amount of
energy sold to and purchased from the grid is also used.

The price of a battery on the Estonian market is around 100 €/kWh and the price for PV
panels is around 400 €/kW [12], [57]. The cost of a 5-kW inverter is around 1000 €.
Table 3.3 shows the impact of PV-BESS based EMS for the whole year. The number of hours
of grid usage is significantly reduced for all three cases. Moreover, the BESS is used for
internal usage for around 40%-50% of the time for all three cases. A detailed economic
analysis for all three cases is given in Table 3.4.
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For case 1 and case 2, the net energy cost is negative, indicating the surplus energy sold
to the grid, but case 3 still has a positive net energy cost. The main reason is higher load
values as compared to the installed PV-rated power. The peak load for case 3 was 36 kW
and the installed PV is 20 kW. Thus, the energy available to charge the BESS is limited.
This scenario requires a high-rated power PV system.

Table 3.3. The Impact of PV-BESS based EMS

Small house Medium house  Apartment building
a (hours) 3131 1880 1035
b (hours) 433 313 157
c (hours) 179 337 621
d (hours) 3984 4422 4864
i (hour) 1391 2482 3325
2.8 5.95 36.71
Peak power drawn 19 24 229
from the grid (kW) 1.2 1.7 16.9
13 25 27.3
14 5.8 34.7
Peak power injected 4.9 98 12.7
into the grid (kW) 4.9 9.7 12.6
4.8 9.2 11.7

Abbreviations: a = no. of charging hours from PV, b = no. of discharging hours to grid,
¢ = no. of charging hours from the grid, d = no. of discharging hours for internal usage,
j =no. of total hours of grid usage

The same calculations with a 60-kW rated PV are shown in Table 3.4. With this rated PV,
the net energy cost is very close to zero and the users will have significant savings on their
energy bills. The payback periods for all cases are also presented in Table 3.4. The payback
periods for these PV-BESS systems are varying between 10 to 16 years. The payback periods
along with yearly savings are shown in Figure 3.3.

Table 3.4. The payback period for different cases

Small house Medium house Apartment building
Rated PV power(kW) 5 10 20 60
Cost of PV & inverter (€) 3000 6000 12000 36000
Cost of the battery (€) 400 3300 51800 51800
Total saving per year (€) 341 713 2363 5482
Payback period (years) 10 13 27 16
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Figure 3.3. Payback periods and yearly savings
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3.5 Case Study with Electric Vehicles (EV)

The same case study is now extended with the addition of the EV load. One EV load was
added for small house, 2 to 4 for medium houses and 10 EVs for apartment building. EV
load profiles are generated using an activity-based model presented in [76]. Now,
the peak loads are 4.6 kW, 14.4 kW, and 60 kW for cases 1,2, and 3, respectively.
The rest of the parameters were assumed identical including the PV and BESS sizes.
The payback periods for these PV-BESS-EV systems are shown in Table 3.5. The payback
period for these systems varies between 14 and 19 years. Here again for case 3, PV with
higher rated power is required. The values shown in the table are calculated with a
20 kW PV system for Case 3. Further details of this work can be found in [179].

Table 3.5. Payback periods for PV-BESS-EV systems

5000
4500
4000
3500
3000
2500
2000
1500
1000
500

Building (20 kW Building (60 kW

Euros

System PV Costof PV Cost of Total Payback
rated and BESS savings period
power inverter (€) peryear (years)
(kw) (€) (€
PV-BESS-EV 3000 400 377 9
Small PV-BESS 3000 400 341 10
house
PV-EV 5 3000 - 212 16
PV-BESS-EV 10 6000 3300 776 12
I\/rl1edium PV-BESS 10 6000 3300 713 13
ouse PV-EV 10 6000 - 315 19
PV-BESS-EV 20 12000 51800 2198 29
Apartment PV-BESS 20 12000 51800 1995 32
building PV-EV 20 12000 - 307 39

33



3.6 Chapter Summary

In this chapter, an EMS has been presented. An LP-based heuristic algorithm was
incorporated into the EMS to minimize the cost of energy utilization. The proposed
technique is analysed using the real-life residential load, PV energy generation and
market electricity prices data from an Estonian suburban grid. The data was recorded for
the whole year on an hourly basis. The simulation results of the algorithm show that the
energy utilization costs are significantly reduced. The payback period using the proposed
PV-BESS based EMS is found to be between 10 to 16 years. Furthermore, the possibility
of EVs integration with the EMS is also explored. The payback periods for PV-BESS-EV are
estimated to be further lower and vary between 9 to 12 years. The comparison of
different systems along with their payback periods is shown in Figure 3.4.

jf) B Small House B Medium House M Apartment Building
35
30
» 25
§ 20
15
10
- nll 1
0

PV-BESS-EV PV-BESS PV-EV

Figure 3.4. Comparison of payback periods for different systems
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4 Congestion Control & Hosting Capacity

The installation of PV systems is increasing and on one hand, these RES are good for the
environment, but they can create technical problems in the network. This penetration of
PV in higher numbers can cause overloading, congestion, and overvoltage problems
[179]. Usually, the PV panels are installed on the rooftop of the residential users and then
connected to the low voltage (LV) distribution network [6]. Therefore, the network
operator needs to be aware of the maximum HC of the network in particular locations or
distribution lines [180]. If HC levels are exceeded, the network cannot provide service
quality and ensure safety, therefore operation of supply services could even be halted.
The EMS proposed in this thesis including the BESS and a control algorithm can provide
a possible solution for these problems.

In this work, a practical network is considered which is a typical regional rural network.
This particular network is selected because in this rural network segment there are
fifteen residential users, and the length of the lines is average. Moreover, rural residential
users usually have the possibility to install large PV panels as extra space is available on
their premises as compared to residential homes in urban areas. These large PV
installations could cause overloading in the distribution lines and overvoltage in the
electrical network. The target here is to decrease the disruptions in network availability
and improve the quality of service for uses without additional grid reinforcements like
the replacement of distribution lines or transformers. Therefore, the focus is on the
employment of new methods. Here, it is presented that how a BESS and more adjusted
method for BESS control can benefit the grid services. It is shown based on the results
that these methods can increase the HC.

4.1 Case Study of Rural Grid

For investigation and verification of the proposed strategy, a feeder of 0.4 kV is observed
from an Estonian rural network. This 10 kV feeder was modelled in DIgSILENT Power
Factory 2022. The model discussed here includes the existing 10 kV line connection to
the substation, where a detailed 0.4 kV grid is laid out. The load profiles were provided
by AS Elektrilevi in the framework of the project LEEEE20025. This real-life data allows us
to model the system for simulations and perform power flow analysis and observe the
loading of the lines and voltage fluctuations. The single-line diagram of the network is
presented in Figure 4.1.

The detailed parameters of the line are presented in Table 4.1. The transformer rating
is 100 kVA, and the nominal value of the switch breaker is 100 A. The capacity of the
cable AXMKA 3x50, from the largest part of the line constructed, is 140 A. The sum of the
main fuses in the line is 345 A. Despite the relatively small consumption, at the
customers’ connection points, the main fuses vary from 10 A to 25 A in three phases.
Given these ratings, the possibility that customers install photovoltaic systems according
to the nominal fuse current is considered a first case. In such a case called Case 1 “Max
profit”, the total capacity of PV systems might be up to 238 kW (345 A) and the whole
grid will be overloaded. That is why it is considered that the PV system's nominal power
will be based on the nominal fuse, but a margin down. For example, if the connection
point has a contract for 25 A fuses, PV installed capacity will be 13.8 kW (20 A). This way,
the total installed capacity of all 15 PV systems is 189.1 kW. The list of installed loads and
PV systems rating are also presented in Table 4.1.
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Figure 4.1. The schematic diagram of the LV distribution network

For the simulation of PV system generation, the profiles used are based on one-year
measured data for an existing 600 kW PV system connected to the nearby substation.
The values were obtained for 1 kW and multiplied by the nominal installed capacity of
planning individual PV systems. The grid modeled in DigSILENT is shown in Figure 4.2.
Simulations shows, that in such a scenario, the grid faces several problems such as
overloading of lines and transformers, and overvoltage problem in most of the nodes.
Analyzing simulation results and the equipment data we can see that sections
VKS_F03_a, and VKS_F03_b have the highest load, and the cable rated current there is
140 A, the maximum hosting capacity for the line 96 kW which is near transformer
nominal value of 100 kVA.

Several solutions can be implemented in this case. For the overloading issue, grid
reinforcement; for voltage problems, the voltage control via smart inverters are the most
common approaches. The PV output curtailments and installation of BESS is also common
practice to reduce abnormal regimes. If the grid is remodelled with reinforcement to carry
on installed 189 kW, it is necessary to change the transformer to at least 200 kVA and
lines from AMKA 3x50+70 to AMKA 3x120+95. The implementation of voltage regulation
via inverters containing reactive power control (RPC) gives an improvement in voltage
profiles, but the loading of lines and transformers is significantly increased. This can be
explained by the increasing reactive power flow, which is used for voltage regulation.
If there is no grid reinforcement planned and the limitation of PV systems applies
uniformly, then we can see that each customer has to reduce the PV system output
power by about two times.
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Table 4.1. Grid parameters, rated PV powers, and the BESS sizes

Peak PV installed capacity (kW) Grid parameters
load Case Case Case Case Lines Cable Nom. Length
(kW) 1 2-1 2-2 3 type curren (m)
t (A)
L1 3.0 13.8 5.0 5.0 4.4 VKS AS-240 605 60
. . . . . F03_0
VKS AMKA.3
L2 4.8 11 6.8 6.8 6.0 F03.1  x35+50 115 342
VKS AMKA.3
L3 3.7 11 5.7 5.7 4.1 F03.2  x50470 140 44
VKS AMKA.3
L4 0.7 4.2 2.7 2.7 0.7 F03.3  x25435 90 23
VKS AMKA.3
L5 6.6 11 8.6 8.6 3.9 F03.4  x16+25 70 11
VKS AMKA.3
L6 5.8 13.8 7.8 7.8 4.4 F03.a  X50470 140 45
VKS AMKA.3
L7 3.1 13.8 5.1 5.1 2.7 FO3.b  Xx50+70 140 79
VKS AMKA.3
L8 3.4 13.8 5.4 5.4 4.1 FO3.c  X50+70 140 38
VKS AMKA.3
L9 2.2 13.8 4.2 4.2 2.1 F03.d  X50470 140 38
VKS AMKA.3
L10 2.3 13.8 4.3 4.3 2.1 F03_e  x50+70 140 44
VKS AMKA.3
L11 4.1 13.8 6.1 6.1 2.8 FO3_f X50+70 140 39
VKS AMKA.3
L12 1.3 13.8 33 33 1.6 FO3.g  x25+35 90 102
L13 3.4 13.8 5.4 5.4 3.9 - - - -
L14 4.0 13.8 6.0 6.0 13 - - - -
L15 4.2 13.8 6.2 6.2 5.2 - - - -

However, the less stressful cases for the grid are considered. In Case 2 named “Close
to maximum power”, the installed capacity of PV systems is based on the maximum
loads in nodes plus 2 kW. In Case 3 named “Net Zero” PV selection is based on annual
electric energy consumption and annual possible energy generation. The installed
capacities are presented in Table 4.1. Moreover, for case 2 and subcase 2.1 with one
additional large PV is connected to the substation directly to evaluate. In case 3 large PV
system is also connected to the substation for the same reason. PV installed maximum

output for Case 2.2 and Case 3 is 51.5 kW and 82.2 kW correspondingly.
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Figure 4.2. The grid under consideration modelled in DigSILENT

4.2 Strategies for Congestion Control

In this study, three different congestion control scenarios are taken into consideration.
The aim here is to find the best-case scenario with increased PV hosting capacity and
minimal congestion in the distribution network. The emphasis is also given on the local
control in the distribution network using BESS control, PV power curtailment, and not
using extra devices such as reactive power control and OLTCs. In the following, two levels
of battery control are considered:
- Trivial battery control — only user motivated BESS usage. Very simple and has
no connection to utility.
- HC motivated control — user manages but is aware of possible HC limitation
issues.

4.2.1 Trivial Battery Control (TBC)

In this first scenario, the BESS is installed with all residential users. The BESS capacity is
established using the Eqn. 3.1 [178]. BESS capacities for all four cases are listed in Table
4.2. The same BESS charging/discharging algorithm as described in the previous chapter
has been implemented. While these BESS capacities could be expected to shave off the
peak energy generation from the PV and reduce the congestion in the network, trivial
BESS control is actually not able to do this.

4.2.2 HC Motivated Control (HMC)

In the second scenario, the BESS is controlled mildly. The idea here is to use the surplus
of PV-generated energy at the peak generation hours and utilize it to charge the BESS.
The BESS in this scenario is set accordingly to be able to shave off the high peaks of energy
injection into the network. The previously applied BESS control algorithm is modified in
a way that the BESS is set to charge during the peak energy generation hours, usually in
the middle of the day. Then, the energy in BESS is sold in a higher amount to the grid in
the evening hours when the electricity prices are comparatively higher.
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Table 4.2. BESS capacities considered in the analysis

BESS Capacity (kWh)

Loads Case 1 Case 2.1 Case 2.2 Case 3
L1 42 16 16 14
L2 34 22 22 18
L3 34 18 18 14
L4 14 10 10 4
L5 34 26 26 12
L6 42 24 24 14
L7 42 16 16 10
L8 42 18 18 14
L9 42 14 14 8
L10 42 14 14 8
L11 42 20 20 10
L12 42 10 10 6
L13 42 18 18 12
L14 42 16 16 4
L15 42 20 20 16

The PV generation data and grid power flow analysis initially showed that the peak
overloading in the lines occurs in the middle of the day from 10 AM to 3 PM. This
corresponds to summer periods when the PV energy generation is at its peak and the
load is lowest. This process makes sure that the BESS capacity is available for energy
storage to meet the in-house the next day demand. Otherwise, the rest of the capacity
is used to support the PV peak shaving capabilities. Therefore, the algorithm only charges
BESS during these times during summer and discharges the BESS to sell energy to the
grid later in the evening, with greater intensity.

4.3 Results and Discussion

4.3.1 Technical Impact
Several solutions are implemented for Case 1. For the overloading issue, usually grid
reinforcement is required and for overvoltage problems, voltage control via smart
inverters is the most common approach. The PV output curtailment and installation of
BESS is also common practice to reduce abnormal regimes. The grid reinforcement for
the installed 189 kW would require a necessary replacement of the transformer for at
least 200 kVA rating and lines up-gradation from AMKA 3x50+70 to AMKA 3x120+95.
The implementation of voltage regulation via smart inverters gives an improvement in
overvoltage profiles, but the loading of lines and transformers is significantly increased
as demonstrated in [Paper I]. This can be explained by the increase in reactive power
flow which is used for voltage regulation. If there is no grid reinforcement planned and
the limitation of PV systems applies uniformly, usually each customer must reduce the
PV system about two times and must take an economical hit. Therefore, the scope of this
work was limited to reducing congestion with BESS installation and its efficient control.
The comparative analysis of different methods for case 1 is shown in Figure 4.3.

In the first case (Maximum profit), the installation of BESS can reduce the overvoltage
problem in the lines to 70%, however, the overloading in the lines is slightly increased.
The duration of abnormalities is still the same in both cases. The implementation of HMC
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in the BESS significantly decreases the overloading in the lines to 15% and 25% for the
transformer. In addition, there is a 25% improvement in the overvoltage problem as well.
However, such kind of control is still not enough to make grid operation stable. Additional
investigations with PV output curtailment and voltage regulation via smart inverters and
the results are presented in [Paper I]. The details of schemes used for Case 1 are given in
Table 4.3.

1400

M Transformer H Overvoltage M Line Oveloading

, 1200
5

2 1000
pro
9]

5 800
o]
£

2 600

400

0

PV + Curt. PV + BAT PV + BAT + RPC PV + Curt. + BAT

Figure 4.3. Comparison of different methods for Case 1

Table 4.3.Energy generation using different Techniques for Case 1

Utilization scheme E gen. (kWh) Utilization

PV 224106 100%
PV curtailment 156 874 70%
PV with BESS TBC 224106 100%
PV with BESS HMC 224106 100%
PV + RPC with BESS HMC 224 106 100%
PV curtailment with RPC and 214 099 96%
BESS HMC

Grid simulations were performed for all the cases and with three control scenarios of
BESS. The comparison of BESS control strategies for all the cases is given in Tables 4.4 to
4.7.

Table 4.4. Comparison of BESS control scenario for case 1

Without BESS BESS TBC BESS HMC
Count Max Count Max Count Max
(hours) values (hours) values (hours) values
Transf. overloaded 698 159 689 200 170 134
Lines, overloaded 556 159 558 176 84 119
Nodes, U>1.1 p.u. 1187 1.20 1154 1.24 880 1.18
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For Case 1 “Maximum profit” high penetration scenario, the installation of none
controlled batteries could create more problems for the grid. While the duration of the
abnormal operation is still almost the same, the fluctuation of voltage becomes higher
together with the overloading value for the transformer. The implementation of the HMC
technique shows better results for both overloading and overvoltage appearance and
their maximum values. However, such control is still not enough to improve grid
operation reliability. The author made additional investigations with PV output
curtailment and voltage regulation via smart inverters.

Table 4.5. Comparison of BESS control scenario for case 2.1

Without BESS BESS TBC BESS HMC
Count Max Count Max Count Max
(hours) values (hours) values (hours) values
Transf. overloaded 0 69 0 93 0 58
Lines, overloaded 0 62 0 82 0 52
Nodes, U>1.1 p.u. 304 1.12 21 1.12 0 1.09

For Case 2.1, the PV is installed close to the peak load power. The results show that
installation of BESS can significantly reduce voltage fluctuations and with the use of an
HMC technique, it can reduce the hosting capacity problem both in terms of overloading
and overvoltage.

Table 4.6. Comparison of BESS control scenario for case 2.2

Without BESS BESS TBC BESS HMC
Count Max Count Max Count Max
(hours) values (hours) values (hours) values
Transf. overloaded 211 117 254 141 0 99
Lines, overloaded 0 62 0 81 0 52
Nodes, U>1.1 p.u. 434 1.13 117 1.12 0 1.09

In Case 2.2, like Case 1, installation of BESS does not leverage the problems and
increases loading in the components. However, the overvoltage hours were reduced four
times as compared to the scenario without batteries. Here, the HMC strategy again
reduces all the major problems. For the net-zero energy (Case 3), the installation of BESS
even TBC can fix the voltage issue, but to reduce the load on the transformer the
implementation of an HMC strategy is necessary. A comparative analysis of the different
congestion control strategies is given in Figure 4.4.
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Table 4.7. Comparison of BESS control scenario for case 3

Without BESS BESS TBC BESS HMC
Count Max Count Max Count Max
(hours) values (hours) values (hours) values
Transf. overloaded 373 126 244 134 0 102
Lines, overloaded 0 42 0 46 0 28
Nodes, U>1.1 p.u. 704 1.15 0 1.09 0 1.07
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Figure 4.4. Comparison of different congestion control techniques

4.3.2 Economic Impact
The economic analysis using both BESS control strategies and with no BESS has also been
carried out for all the cases. The results of the economic analysis for all the 15 customers
are presented in Table 4.8. The results indicate that PV installations significantly reduce
the cost the energy for all the customers and the users can even earn money by selling
energy to the utility company. The negative cost values in the table show that more
finance was earned from energy sold to the grid rather than spent on buying from the
grid in the whole year.

In all four PV installation cases, all 15 users would be able to get financial gains.
In Case 1, as the installed PV-rated power is the highest, here users will earn more
money. The installation of BESS can further increase the revenue from selling this energy.
In the first control technique, the financial gains are the highest; however, in the BESS
HMC technique for congestion management, the gains are 8 to 15% higher. Also, there
is a significant economic loss when curtailment in PV injected power to the grid is
employed. Because using this method, there is any or every small curtailment in power
needed, and the electrical grid will be operational throughout the year with good quality
of service.

In Case 2.1 and Case 2.2, the economic numbers for all the customers again show a
negative cost. The decrease in financial gain varies from 9% to 19% for all the customers
employing a TBC strategy. However, BESS with HMC indicates the best results. For case 3,
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the economic numbers verify that it was a nZEBs case as the value to financial gains for
the users is not that high but only up to tens of euros. The BESS with HMC techniques
provides better economic numbers for all the 15 users in this case as well.

Table 4.8. Economic analysis for all simulation cases

User Case 1l Case 2.1 Case 2.2 Case 3

OC CPv CBl1 CB2 CPV (CBl1 (CB2 CPV (CBl1 CB2 CPV (Bl CB2

1 175 450 483 517 -64 -72 -86 -64 -72 -8 -35 -46 -52

2 85 532 574 606 -98 -120 -131 -98 -120 -131 -15 -22 -44

3 124 499 534 571 -138 -167 -185 -138 -167 -185 -9 -21 -49

4 64 552 595 628 -81 -94 -102 -81 -94 -102 -13 -17 -38

5 168 -457 491 524 -92 %% -102 -92 -96 -102 -18 -27 -64

6 55 557 604 -638 -168 -184 -198 -168 -184 -198 -7 -1 -39

7 207 420 452 487 93 -98 -107 -93 -98 -107 -41 -56 -66

8 246 -257 -279 307 91 93 -9 91 93 -95 -41 -54 -63

9 178 -322 347 -374 -87 -94 -109 -8 -94 -109 -18 -29 -59

10 29 -159 -171 -182 -87 -100 -108 -87 -100 -108 -4 -8 -38

11 162 -334 -363 -393 -223 -248 272 -223 -248 -272 -24 -35 -54

12 181 -445 478 -510 149 -192 -209 149 -192 -209 -30 -38 -61

13 115 505 -544 578 -105 -129 -144 -105 -129 -144 -14 -24 -49

14 172 453 487 -521 -88 -92 -101 -88 -92 -101 -24 -37 -60

15 87 530 571 -605 -98 -113 -125 -98 -113 -125 -13 -20 -44

*All the costs are in euros (€).

Abbreviations:

Accumulated cost of energy usage (0C),

CPV = Cost with only PV,

CB1= Cost with PV and BESS (Trivial battery control),
CB2= Cost with PV and BESS (HC motivated control)

4.4 Chapter Summary

The chapter presented the methods to increase the renewable penetration in the local
grid without disrupting its operation. The study incorporated a real-life case study of a
rural Estonian network for verification of the results. Several PV installation scenarios are
discussed here that include PV installations according to fuse rating (max. profit), peak
load and net-zero energy. The initial analysis of the PV installation presented severe
overloading of the lines and overvoltage in the network having values way above the
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defined standards. Techniques like PV power curtailment, RPC, inclusion of BESS and
BESS with HMC are explored as possible solutions. The results indicate that in max. profit
PV installation scenario the BESS with an advanced control is a must, but it will still
require some power curtailment and RPC. In the peak load and net energy PV installation
scenarios, BESS with HMC will solve both above-stated problems. The BESS with HMC is
done using the same EMS strategy defined in the previous chapter but with slight
modifications.
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5 Machine Learning for Energy Management System

5.1 Machine Learning Perspectives in EMS

The RES infeed energy generation forecast can help in efficient charging and discharging
schedule for the BESS that as a result will decrease the congestion in the local network.
Similarly, residential load forecasting would help in better management of the load and
reduction in electricity costs from the grid. Therefore, the incorporation of machine
learning applications can add another dimension to the efficient operation of the EMS.
Big data analytics applications are witnessing a rapid increase in machine learning and
deep learning techniques for application in many sectors including power systems. These
are also quite popular in forecasting applications like residential load forecasting [181],
transportation loads [182] and energy consumption. These machine learning techniques
can provide additional functionalities and capabilities for the EMS.

As shown in chapter 4, the HC improvements are significant if HC-oriented controlled
scheduling of BESS is implemented. However, that was achieved by the static control
method. Thus, it is obvious that this kind of control strategy would not necessarily be
optimal all over the year. The stochasticity in the daily energy RES infeed would require
more dynamic solutions regarding the BESS usage strategy. There is a need for tools to
make a forecast about the availability of RES energy generation. This energy forecast will
help in higher local energy usage and make the system more economical.

There are conventional machine learning techniques like linear regression, tree-based
regression, SVM, and deep learning neural network-based techniques like AR, NAR, CNN,
and RNN [183]. Recently, deep learning algorithms have gained more attention due to
their superior accuracy compared to traditional machine learning algorithms [183].
These algorithms are a subset of machine learning techniques that requires an even larger
data set and are having highly complex architecture, usually unreal network-based.
The other difference is that these algorithms continuously monitor and consider past
data before making future predictions and therefore better track nonlinearities in the
data [184]. These algorithms are usually classified as Artificial Neural Networks (ANN)
their layered based architecture is derived from the human brain. Several deep learning
and deep learning algorithms were considered and compared in the study [183];
however, RNN-LSTM was found to provide the most accurate forecast. Therefore,
RNN-LSTM is used here for the PV and wind energy and residential load forecasting case
studies based on the Estonian data sets.

5.1.1 Long Short-Term Memory Networks (LSTM)

LSTM belongs to the category of RNN. These algorithms keep the previous data stored in
the memory cell and use it in every iteration before making future predictions. For time
series analysis, dataset-based LSTM forecasting is very suitable. This algorithm uses a cell
architecture and stores the information to be used in the decision-making process.
The information in the cells is updated after every iteration. The architecture of the LSTM
algorithm is shown in Figure 5.1 [129]. LSTM consists of three layers, the first is the input
features and the number of steps. The second is the hidden state, and in between these
two layers, there is the third layer containing the memory cells, which is called the LSTM
layer. The stored data is used to perform sequence-by-sequence regression in a one-time
interval; then the data in the cells are updated and then it shifts to the next state.
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Figure 5.1. The architecture of LSTM

5.2 Case Study of Solar Energy

In Estonia, energy generation and consumption have a big gap here of around 200 MWh
to 600 MWh [177]. The energy demand is higher in winters having a peak value of around
1500 MWh and energy generation of around 1000 MWh [177]. Being a member of the
Nord Pool energy market [185], Estonia buys more energy from its neighboring countries
to overcome this deficit [177]. The energy generated in Estonia is mostly from fossil fuels,
however, the RES also has a significant and growing portion of the energy mix.
The distribution of RES and non-RES in Estonia is shown in Figure 5.2 [177]. The share of
renewable energy is around 30%, which is higher than the EU’s renewable energy
penetration goal [186]. The share of wind energy is around 11% and PV is around 1%.
However, in the coming year, the share of photovoltaic energy is expected to increase
rapidly further supported by increased deployment of nZEBs.

. A%
N

2,57%

0,83%

= Non-renewable (fossil) = biomass (including waste) = wind

solar = bio-degradable waste = biogas

Figure 5.2. Share of renewable and non-renewable energy in Estonia



The total installed capacity in Estonia is around 2337 MW according to the Estonian TSO
[187]. The PV installation in Estonia accumulates around 128 MW [187], 70 MW in Latvia,
and 120 MW in Lithuania [11]. Solar irradiance values on average in Estonia range from
900 to 1100 kWh/m? [186], [188]. However, the day times have a huge variation in
summer and winter between 18 to 20 hours and 5 to 7 hours, respectively [189].
The energy generation potential is not huge but still enough for residential homes and
buildings. Even the excess energy can be sold to the grid and customers can have some
monetary benefits. In the prospect of nZEBs, the extra energy generated in summer can
be sold to the grid and bought back in winter times.

5.2.1 Exploratory Data Analysis

In this study, a 10 kW PV system’s energy generation data measured in 2016 for the
whole year is used [190]. Data was measured in Tallinn, Pdrnu, Narva, and Saaremaa on
four different houses with a one-hour frequency. Data for all these four locations and
their moving average and moving standard deviation values are shown in Figure 5.3.
The figure shows that the energy generation in all regions is lower from November to
March while it is higher from April to October. Peak values are in June and July. Also,
the figure shows that Parnu and Saaremaa regions have a slightly higher energy
generation pattern than the other two regions.
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Figure 5.3. Statistical analysis of solar PV generation data for (a) Tallinn (b) Saaremaa, (c) Pédrnu (d)
Narva

For further data analysis, histogram analysis was conducted and then its values were
normalized to calculate the probability. The results are depicted in figure 5.4. The results
indicate that in the Saaremaa region, the probability of generating energy is even slightly
higher than in the Parnu region. For the 5.4 kW generation, the probabilities are 14%,
27%, 20%, and 20% in Tallinn, Saaremaa, Parnu, and Narva, respectively.

The autocorrelation analysis is a very important method to reflect the pattern in the
time series analysis that is useful for the selection of parameters for further regression
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analysis. The correlation analysis gives the number of lags that describe the dependency
of the signal’s current value on its previous values. Further details of this phenomenon
are given in [191]. These autocorrelation values do not depend on weather or season.
These numbers of lags are a useful input parameter for regression analysis with machine
learning techniques. The autocorrelation analysis is shown in Figure 5.5 with 72 lags,
indicating the dependence of the current data on the last 72 hours.
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Figure 5.4. Histogram of power generation for (a) Tallinn, (b) Saaremaa, (c) Pédrnu and (d) Narva

The autocorrelation value greater than 0.5 indicates higher dependence. All regions
show a periodic pattern, showing the dependence of specific-hour data on the previous
day's data on these specific hours, indicating long-term dependence. The periodic and
rapid changes in autocorrelation values also indicate the day and night patterns in the
solar data.

5.2.2 PV Energy Forecasting

RNN-LSTM algorithm is used here for energy forecasting. Due to its, deep neural network
architecture, it gives superior accuracy as compared to other algorithms [5], [129] [139].
The RNN-LSTM algorithm is trained to make a short-term to medium-term forecast [58].
Data was distributed in training and test data with a 90% and 10% distribution,
respectively. After running the simulation 50 times, 200 hidden layers are chosen with
the number of epochs to be 250. The algorithm is then used to make three days ahead
forecast separately for the last three days of June. A comparative analysis of actual
energy generation and forecast energy generation for 3 days is shown in Figure 5.6.
The forecasting results give an RMSE value of around 184 W and up to 92% accuracy.
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5.3 Case Study of Wind Energy

The share of wind energy is around 10% of the total energy mix in Estonia. However, this
share is increasing with every passing year due to environmental factors, energy security
and EU regulations. The installed capacity of wind energy sources in Estonia is around
300 MW and most of these wind turbines are installed on the coast of the Baltic sea
[193]. Meanwhile, 11 off-shore and 2 on-shore projects are also in the development
phase as part of the government plan to have 1800 MW by 2030 [193].
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5.3.1 Exploratory Data Analysis

The Estonian wind energy generation data set is used here with a one-hour frequency
and spanning from January 2011 to May 2019. Hourly wind power generation is highly
stochastic, a similar pattern is visible in this data set. The maximum, average and median
values in this data set are 273 MW, 76 MW, and 57 MW (hourly average power),
respectively. However, the standard deviation is around 62 MW which is a high value. In
the first step, the moving average and moving standard deviation are also calculated to
demonstrate the variation in the time series dataset. Wind energy generation data from
January 2018 to May 2019 are shown in Figure 5.7 along with moving average and
moving standard deviation values. This figure shows the stochastic nature of wind
energy, as there are no seasonal highs or low values. The moving average is
comparatively high from November to March, but still, in between, it shows lower values
and then again goes up.
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Figure 5.7. Generated power, moving average and moving std. deviation

The histogram analysis and probability density function (PDF) analysis are shown in
Figures 5.8(a) and 5.8(b), respectively. Figure 5.8(a) shows that the wind power ratings
are mostly below 50 MW and rarely does it go above 200 MW. Figure 5.8(b) shows the
probabilities which are calculated after the normalization of the number of occurrences.
These values are also showing the same pattern. The probability of getting less than
50 MW is greater than 40% and for 200 MW is less than 10%. This makes the accurate
forecasting of wind energy a very challenging task. Furthermore, the autocorrelation
analysis result is shown in Figure 5.8(c). Figure 5.8(c) shows a graph of 20-hour values
and indicates that the last 16-hour values have autocorrelation values higher than 0.5,
which means a higher dependency. The correlation values decrease after that.
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5.3.2 Wind Energy Forecasting

The Estonian TSO also forecasts wind energy generation on daily basis for 24 hours
ahead. The actual energy generation and the forecasting by TSO’s algorithm for May
2019 are shown in Figure 5.9. [194]. There are clear gaps in energy generation and
forecast energy. Sometimes, the variation is even greater than 50 MW. Therefore,
it highlights the need for more accurate forecasting.
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Figure 5.9. Actual and Forecasted wind power for May 2019

The Estonian wind energy generation data set was divided into three categories, 80%
data for algorithm training, 10% for testing, and 10% for the validation of results.
The simulation results for the multistep forecasting were generated. The forecasting
error results of the proposed RNN-LSTM algorithm along with actual energy generation
and TSO forecasting are depicted and compared in Figure 5.10.
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Figure 5.10. Forecast error of the TSO’s algorithm and LSTM forecasting

From the above figure, it is clear that the RNN-LSTM algorithm gives better forecasting
results. In terms of the RMSE value, the TSO algorithm provides a value of 25; however,
the RNN-LSTM algorithm results are around 15. The variations in TSO’s forecasting are
much higher, this forecasting algorithm predicts slow variations in the output but fails
in case of faster variations. The RNN-LSTM algorithm, on the other hand, predicts this
more dynamic variation in a better way; however, it sometimes fails in the case of very
slow variations. Therefore, a hybrid algorithm can be more beneficial here.

In this study, the size of the data set was varied from 12 months to 96 months.
However, the algorithm showed the same accuracy in terms of RMSE values after 24
months of data. The number of epochs, learning rate, and hidden states were also varied
to find the optimal solution. Further details of the simulation parameters and results can
be found in [183].

5.4 Case Study of Residential Load

In the study, the residential load dataset used was recorded in an Estonian household
[195]. The data was measured for one month with a one-minute frequency. The residential
home was a 67.8 m? flat housing four occupants and it included domestic appliances like
a dishwasher, electric stove, entertainment system, TV, microwave oven, vacuum
cleaner, etc [121]. The residential load along with its moving average and the standard
deviation is depicted in figure 5.11. Most of the time, the overall load value is lower than
1000 W. The load value rarely goes above 4000 W or higher. This usually occurs on the
weekend when all occupants are at home, or they are using heavy loads like washing
machine and dishwasher.

5.4.1 Residential Load Forecasting

In the analysis, comparative research has been conducted between different machine
learning and deep learning algorithms. The details of these algorithms can be found in
[157]. A comparison is to find out which algorithm is more capable of identifying the
linear and nonlinear patterns in the load data. The algorithms compared here are LR, TR,
LSTM, autoregressive neural network (AR), non-autoregressive neural network (NAR)
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output error (OE), and auto-neuro fuzzy integrated systems (ANFIS), SVM and its different
versions. The comparative analysis shows that the NAR, AR and cubic SVM are given good
forecasting results. However, the best results are given by the LSTM algorithm as it has
the lowest RMSE value. The forecasting results of RNN-LSTM are shown in Figure 5.12.
The comparative analysis of RMSE of values is given in Table 5.3.
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Figure 5.12. RNN-LSTM forecasting for residential load
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Table 5.1. Comparison of RMSE values

Algorithm Name RMSE Value Algorithm Name RMSE Value
Linear Regression 381 Non-Linear Regression 325
Tree-Based Regression 241 Gaussian SVM 234
Linear SVM 619 OE 167
Quadratic SVM 187 ANFIS 168
Cubic SVM 172 AR 169
RNN-LSTM 159 NAR 163

5.5 Chapter Summary

In this chapter, the possibility of ML techniques adding extra functionalities and
capabilities to the EMS has been explored. The forecasting applications of machine
learning techniques can help in the efficient operation of the EMS. Accurate PV energy
forecasting can help in better scheduling of BESS to avoid congestion and overvoltage
problems. Several ML and DL algorithms are designed and evaluated in this work.
The results indicate that the RNN-LSTM algorithm provides better forecasting capability
and lower RMSE values as compared to other techniques. Therefore, the RNN-LSTM
algorithm is used to develop a forecasting algorithm for 24 hours ahead of energy
generation. Similarly, algorithms for 24 hours ahead wind energy generation and
residential load forecasting have also been developed.
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6 Conclusions

The future energy supply grids will include a large portion of RES like wind and PV along
with an added load of EVs and capabilities of localized BESS. One of the most potent
solutions to provide an advantage in this mix is an enhanced active residential energy
management system (EMS). This EMS will efficiently manage all such resources relying
on the electrical load, market electricity prices, etc. The EMS proposed in this thesis will
be a subsystem of an energy router which is a flexibility providing power electronic unit.
This EMS will be connected to domestic RES, BESS, EV and the local grid.

Costs at this time for the BESS and PV installations are noticeably high. Therefore, one
of the main goals of EMS here is to decrease the energy usage costs from the grid and
maximize profits by selling extra energy to the grid. This way, it will help in decreasing
the payback period of the components needed, such as PV and BESS systems. BESS
installation along with PV, if not only used for local energy storage, can also help in
uninterrupted grid operations. However, this BESS operation needs optimization and an
efficient control algorithm for the aforementioned tasks. As the first step in this thesis,
a heuristic LP-based control strategy is developed to decrease the cost of energy in a
BESS-equipped system considering the nZEBs scenario. The BESS sizes were also varied to
find the appropriate case when the energy utilization hours from the grid are minimum,
PV energy is maximally used and the overall energy utilization in the whole year is at a
minimum. The economic analysis of these PV-BESS EMS indicated that for small
apartment and residential home the payback period is between 10 to 13 years.
The payback period for the large apartment building is around 27 years. This can be
further reduced to 16 years if a larger rated PV is installed with this building of 60 kW
rather than 20 kW. The inclusion of EVs with the EMS and their impact has also been
evaluated here. The payback periods for small and medium houses for PV-BESS-EV
systems were found to be between 10 to 12 years, even further increasing system
feasibility.

The second level approach in this thesis, a study is focused on different aspects to
increase the reliability of the grid upon high RES penetration in the electrical network.
The increased renewable penetration is easily promoted, but it can also create challenges
for the network operators. Bottlenecks can emerge in the LV grid creating overloading
and voltage fluctuation in the networks. Furthermore, if PV-BESS-EV integration can
increase hosting capacity (HC) it decreases the cost of energy service from the grid for
the residential users incorporating EMS. This is due to avoiding costly network upgrades.
For the described tasks, installation of BESS and control strategies are discussed to
reduce the effect of bidirectional power flows and resulting congestion problems while
increasing the HC of PV in LV networks.

The simulation results show that BESS with the proposed hosting capacity motivated
control (HMC) strategy can significantly improve the situation and reduce hours of
abnormal regimes. Most of the time, it reduces the problems except for the case in which
the PV penetration level is nearly at its peak. The proposed control was compared with
other methods available. The installation of BESS without congestion control might be
suitable in cases with lower PV penetration levels. In the case of the peak penetration
scenario of renewable sources at the customer side integrated with the LV, the line leads
to huge voltage fluctuations and overloading. The curtailment of the PV output reduces
these problems but leads to a 70% reduction in HC. The voltage regulation with smart
inverters employing RPC improves voltage profile but leads to overloading of the
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equipment due to increased reactive power flow. The installation of BESS with trivial
control in the considered case is not helping with the normalization of grid operations.
The implementation of proposed HMC for BESS however significantly reduces the loading
of lines and slightly reduces voltage fluctuation. And, together with RPC and slight
curtailment of the PV systems, the proposed HMC technique shows much better results
from the grid operation perspective together keeping the energy utilization ratio to 96%.
The knowledge of available RES energy infeed to the grid is of prime importance,
as it can help in better management of the resources and smooth operation of the
grid. Therefore, possibility of additional capabilities for the EMS with the incorporation
of ML and DL techniques has also been evaluated here. The accurate forecasting of
energy generation from RES and residential load is beneficial in demand and supply
management and impacts the power flows in the grid. In this thesis, case studies for PV
and wind energy forecasting along with residential load forecasting were conducted.
The case study for PV energy forecasting containing the four most populous regions of
Estonia was conducted. The results also showed that the RNN-LSTM algorithm made
good forecasting up to 92% for 24 hours ahead of PV energy generation. In addition,
a similar forecasting algorithm was also developed for wind energy forecasting.
The simulation results indicated that SVM, NAR, and RNN-LSTM could provide
respectively 10%, 25%, and 32% better match compared to TSO’s forecasting algorithm.
Moreover, a residential load forecasting algorithm has been developed for a day ahead
load forecast. The cast study of residential load showed that the RNN-LSTM algorithm
made good forecasting with 24 hours ahead load with a match rate of around 94%.
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7 Future work

For future work, the proposed energy management strategy can be implemented in the
energy router for a small residential home to verify its real-time performance testing and
measure the accuracy of the results. The energy router is being developed and built at
this time within another research project. The author of this thesis is looking forward to
testing the features described in this thesis to verify the achieved merits. Moreover,
it can be extended to any size of residential premises and its feasibility and payback
periods can be determined for real-life cases. The possibility of a small wind generator as
RES can be explored. This would add another dimension to the EMS and further increase
its capabilities.

With the real implementation of EMS, the potential of ML techniques for the
operation of EMS can be evaluated. ML-based RES energy generation forecasting
benefits would be observed for a longer period. Rather than the scheduled HMC control
for the BESS that showed good results, this ML RES forecasting-based charge/discharge
could provide even better results. The ML tools have already been designed and
implemented and the potential is clearly there. The EMS can make all these decisions
based on the residential load and energy generation forecasting. This can further
increase the efficiency of the EMS operation and the grid services in terms of reliability,
flexibility, and lower interruptions.

Moreover, a web-based application/mobile app is to be developed for the proposed
EMS. That application can include live monitoring of these energy parameters and their
future predictions in the software application. The parameters that could be included in
the application can be RES energy generation, residential load, market electricity prices,
BESS status, and the forecasting of RES energy and load using ML techniques. In addition,
the application would be able to give the users some options and guidelines to schedule
their energy utilization optimally. This can provide a convenient solution and enable the
residential users to further deploy and utilize the EMS efficiently.
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Abstract

Residential Energy Management System to Support Increased
Renewable Penetration

The deployment of nearly zero-energy buildings (nZEBs) using renewable energy
resources (RES) is expected to increase in the coming years. For residential users,
the combination of photovoltaic (PV) sources such as RES and battery energy storage
systems (BESS) is a potent and one of the most convenient solutions to reach nZEBs
targets. These systems are easy to install, environment friendly and can reduce the
customers’ energy utilization from the grid significantly. The main aim of this work is to
further reduce costs related to electric energy supply system use and installation for
residential users and make them self-reliable and less dependent on the electrical grid
by using PV-BESS based localized energy management system (EMS). The high initial
investment costs of PV & BESS, longer payback periods and the present electrical grid
infrastructure are still challenges in achieving these goals. The deployment of PV
integrated systems in large numbers can lead to energy delivery congestion and
overvoltage issues in the low voltage (LV) networks. Such problems are, for example,
possible to arise when the PV energy generation is near its peak and the domestic loads
are around their lowest value. This calls to increase the hosting capacity (HC) limits, i.e.,
levels of PV infeed operating when utility supply quality and reliability conditions are still
met.

The PV-BESS based EMS investigated in this thesis can serve as a solution to increase
the benefits to install and maintain the domestic energy management system.
The demand-side management (DSM) techniques previously proposed cannot alone
solve the challenges introduced above. As a novel multidimensional solution, EMS
proposed incorporates a PV-BESS system with an efficient usage strategy. For BESS size
optimization and an efficient BESS control algorithm/usage strategy, a heuristic
algorithm based on linear programming incorporating residential load, PV energy
generation, and market electricity prices is proposed ins this thesis. To evaluate the
outcome, real-time measured data of load, PV energy generation, electric energy market
prices and electric vehicle (EV) charging load data have been used. The proposed solution
to the optimization problem is using simplex and interior-point methods. The algorithm
motivates to charge and discharge the BESS on the optimized schedule and thereafter
decides to sell or buy energy from or to the grid based on the dynamic electricity market
prices. Techno-economic analysis of the different rated PV-BESS and PV-BESS-EV systems
has also been carried out to determine the feasibility of the system by calculating the
payback periods. The results indicate that different proposed configurations for EMS
under consideration are self-reliant to an increased extent and have a feasible nominal
payback period.

Furthermore, the proposed EMS has the potential to eradicate congestion and voltage
fluctuation in the electrical network. To evaluate the proposed local grid supporting
functionality, a wider view of the real-life rural LV network has been considered along
with the real-time load and PV energy generation measured data for the whole year.
Four different PV installations case studies have been made and investigated through the
power flow analysis. For evaluation of localized congestion control strategies for
maximizing the HC in the distribution network using the EMS, two different BESS
utilization techniques along with peak power curtailment, and reactive power control
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(RPC) are proposed. The results clearly indicate that power curtailment once the HC limits
are reached, is not a suitable solution both technically not economically. The BESS
incorporation significantly reduces the congestion; however, it cannot solve the
overvoltage problem fully in the case of large PV installations. A solution of BESS, RPC is
required to solve both these overvoltage problems. However, for PV installed according
to electric-energy net-zero yearly energy balance or in another case the peak loads of
respective users, grid could operate without major problems with the inclusion of BESS
with hosting capacity motivated control (HMC). The economic analysis for all the cases
has been carried out to verify the assumptions presented.

The information about the future RES energy generation is needed for the further
optimal EMS operation and can add extra capabilities for the customer. Therefore, in this
research work, several machine learning (ML) and deep learning (DL) algorithms are set
up and evaluated for residential load, PV and wind energy generation forecasting.
For the PV energy infeed forecasting, cases from regions of Estonia are considered with
a day-ahead target. This presents a successful case of the recurrent neural networks
based long-term short-memory network (RNN-LSTM) algorithm. Similarly, for the wind
energy availability forecasting, Estonian wind energy data set of up to eight years was
used and the forecasting results of eight different ML and DL algorithms are compared
for day-ahead values. The results indicate that RNN-LSTM provides the most
accurate forecasting in terms of the lowest root mean square (RMSE) values. Moreover,
the residential load forecasting algorithm based on LSTM is developed for a 24-hour
ahead load forecast. This load and RES energy forecast will be very beneficial for the EMS
in residential applications.
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Lihikokkuvote

Taastuvenergiaallikate kasutustihedust toetav
energiahaldussiisteem

Taastuvenergiaallikatel pShinevat energiatootmist rakendavate liginullenergiahoonete
(i.k near-zero energy building, nZEB) levik laieneb |3hiaastatel. Uks potentsiaalsemaid ja
mugavaimaid lahendusi nZEB tingimuste taditmiseks kodukasutajate jaoks on
paikesepaneelide, s.t fotogalvaaniliste (i.k photovoltaic, PV) taastuvenergiaallikate ja
akudel energiasalvestussiisteemide (i.k battery energy storage system, BESS)
kombinatsioon. Taolisi keskkonnasdastlikke siisteeme on lihtne paigaldada, ja need
vOimaldavad olulisel maaral vdhendada vorgust tarbitava energia kulu tarbija jaoks.
Kaesoleva t60 pohiliseks eesmargiks on pakkuda kodutarbijatele
elektrienergiavarustussiisteemi kasutuse ja paigaldusega seotud kulude vdahendamise
tdiendavaid voimalusi, rakendades paikesepaneelide ja akuseadmete kombinatsiooni
ning kohalikku energiahaldussiisteemi (i.k energy management system, EMS),
suurendades seeldbi kodutarbijate iseseisvust ja vaikesemat séltuvust valisvorgust. Siiski,
nimetatud eesmarkide saavutamiseks vajalike paikesepaneelide ja akusilisteemi
soetamiskulu on méarkimisvadrne ja tasuvusaeg pikk, teisalt vGib piiranguid tekitada ka
olemasolevate  elektrivérkude infrastruktuuri  valmidus.  Pédikesepaneelidega
integreeritud slsteemide intensiivse rakendamise korral vdivad tulemuseks olla
madalpinge jaotusvorkude energialilekande piirangud v&i ka Ulepinge esinemine.
Sellised probleemid vdivad ilmneda naiteks juhul, kui pdikeseenergiast toodetud
elektrienergia tootmisintensiivsus on tipuldhedane, aga kodutarbijate koormus
minimaalne. See tingib vajaduse suurendada jaotusvérkude pdikeseenergial tootavate
allikate kasutustihedusvoimekust (i.k hosting capacity, HC), s.t paikeseenergiaallikate
poolt sisestatava vGimsuse taset, mille korral jaotusvérgus on vdimalik tagada
varustuskindluse ja kvaliteedi nduded.

Antud  doktorit6ds uuritud pdikesepaneelidel ja  akuststeemil pdhinev
energiahaldussiisteem omab vdimekust, millega pakub kodukasutuseks paigaldatuna
tdiendavaid hivesid. Eelnevalt teadaolevad tarbimise juhtimise meetodid lksi toimides
ei ole vdimelised ulalloetletud valjakutseid lahendama. Valjapakutud uudne ja
mitmetasemeline energiahaldussiisteem tootab pédikesepaneelide ja akuslsteemi
kombinatsioonil ning rakendab tShusat talitlusstrateegiat. Akusiisteemi salvestusmahu
optimeerimiseks, samuti tohusaks aku juhtimisalgoritmi ja kasutusstrateegia
sisseseadmiseks kasutatakse heuristilist lineaarprogrammeerimise (i.k linear
programming) algoritmi, mis vGtab arvesse koduse energiatarbe, paikesepaneelide poolt
toodetava elektrienergia koguse, elektrituru hinna ja ka elektriauto laadimiskoormuse
andmed. Optimeerimiseks vadlja pakutud lahendus kasutab simpleks ja sisepunkti
meetodeid. Algoritm pakub akuseadme laadimiseks ja tihjendamiseks optimeeritud
ajalist plaani ning seejarel otsustab energia ostu voi mutigi vorku, kasutades diinaamilist
elektriborsi energiahinda. Stisteemi tasuvuse ja tasuvusaja hindamiseks, on labi viidud
tehnilis-majanduslik analliiis erinevatel vdimsustasemetel pdaikeseenergiaallikad-
akuseade ja paikeseenergiaallikad-akuseade-elektriauto kombinatsioonidele. Tulemused
nditavad, et erinevad pakutud energiahaldussiisteemi konfiguratsioonid on suurema
iseseisvusmaadraga ja omavad motiveerivat tasuvusaega.

Lisaks eeltoodule on vaadeldud valjapakutud energiahaldussiisteemi vdimekust
vahendada energialilekande piirangute ja pinge koikumiste vG&imalikku ulatust
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jaotusvorgus. Taolise kohalikku elektrivorku toetava funktsionaalsuse hindamiseks on
kasitletud tegeliku maapiirkonna elektrivérgu laiemat vaadet koos tegelike aastaste
koormusandmete ja paikeseenergial toimivate elektrienergiaallikate energiatoodangu
andmetega. Uuriti nelja erinevat paikesepaneelide paigaldise ndidet, kasutades
vOimsusvoo anallilsi. Kohalike elektrienergiavoogude labilaskevdéime haldamise
strateegiate anallilsiks ja kasutustihedusvGimekuse maksimaalseks kasvatamiseks
jaotusvorgus rakendati kahte erinevat akuseadme talitlusmeetodit, mida kooskasutati ja
vorreldi muude tuntud meetoditega, s.h reaktiivvdimsuse reguleerimine ja véimsustipu
piiramine. Tulemused néitavad selgelt, et vOimsuse piiramine kasutustihedusvdéimekuse
piirideni joudmisel ei ole sobilik tehniliselt ega majanduslikult. Lihtjuhtimisega
akuseadme rakendamine vahendab talitluspiiranguid oluliselt, kuid ei lahenda suurte
vOimsustega paikeseenergia allikatega kaasnevaid lilepinge probleeme. Tdiendavalt on
sellisel juhul vaja nii akuseadme kui ka reaktiivvéimsuse reguleerimisvoimekust. Samas,
kui pdikeseenergiaallika voimsus on valitud ldhtudes aastasest elektrienergia vorgust
tarbitava energia null tasakaalust vGi teisel juhul vastavalt kasutatava koormuse
tippvaartusele, voib elektrivork talitleda praktiliselt tdiendavate probleemideta, kui
akuseadet kasutatakse kasutustihedusvéimekust toetava juhtimisega. Koikide
kirjeldatud juhtumite puhul kasutatud eelduste kinnitamiseks on esitatud majanduslik
analis.

Eesmargiga tulevikus kasutajale tdiendavaid energiahaldussiisteemi optimeerimisega
seotud lisavGimalusi pakkuda, on vaja enam teavet eeldatava taastuvenergiaallikate
poolt toodetava energiahulga kohta. Seetdttu on kdesolevas uurimistods loodud ja
vaadeldud mitmeid masindppe (i.k machine learning) ja stivaGppe (i.k deep learning)
algoritme koduse elektrienergia tarbimise, pdikeseenergiaga ja tuuleenergiaga toodetud
energiahulkade ennustamise analuusiks. Pdikeseenrgiaallikate poolt genereeritud
energiahulga ennustamist vaadeldakse Eesti erinevate piirkondade kohta eesmargiga
saada pdev-ette andmeid. Nimetatud stsenaarium kirjeldab tulemusliku rekurrentse
narvivorgu (i.k recurrent neural network, RNN) pikaajalise lGhimaluga vorgu
(i.k RNN-LSTM) kasutusjuhtumit. Sellele sarnaselt rakendatakse tuuleenergia saadavuse
ennustamiseks kaheksa aasta pikkust andmemassiivi, ning rakendati kaheksa erineva
masindppe ja slivadppe algoritmi, et vBrrelda nende t66d padev-ette vaartuste leidmisel.
Tulemused nditavad ruutkeskmise vea vdartusele tuginevalt tdpseimat ennustust,
kasutades RNN-LSTM. Lisaks sellele, on arendatud LSTM-meetod kodutarbimise
ennustamiseks 24-ks tunniks. Kirjeldatud taastuvenergiaallikate saadavuse ja tarbimise
ennustamisega saab koduse energiahaldussisteemi rakendustes voimekust kasvatada.
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Abstract

Domestic photovoltaic (PV) installations are increasing their spread due to decreased cost, environmental friendliness, and
relatively easy installation. However, the massive domestic PV deployment can bring the LV network (LV) distribution network
to its sustained operating limits, as overvoltage and congestion can arise. The overvoltage problems can emerge due to reverse
power flows and congestion can be caused if the installed PV capacity is higher than the distribution line loading capacity. The
limitations of the LV networks arise especially during the seasons when domestic power demand is minimal, and PVs are generating
at their peak. The research presented here incorporates a real suburban LV network with fifteen residential users. The measured
load and PV generation data for one year are used to carry out power flow simulations. Several congestion leveraging strategies
such as battery energy storage system (BESS) incorporation, reactive power control (RPC), and curtailment of peaks are discussed.

© 2022 The Authors. Published by Elsevier Ltd.
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1. Introduction

The price of photovoltaic (PV) systems has decreased significantly in recent years [1]. The promotion of PV systems
deployment has also increased due to their lower carbon footprint, clean energy production, and the deployment of
nearly zero energy buildings (nZEBs) [2]. These rooftop PV installations are usually connected to the low voltage
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(LV) distribution network [3]. However, large-scale deployment of PV installations in LV networks can exceed the
hosting capacity (HC) of the distributed energy generation [4], advising caution not to impose limitations on network
service. For example, high reverse power flows and reactive power disturbances can cause an increase in the voltage
of'the lines [5]. Rather often demand response (DR) and demand-side management (DSM) techniques are proposed as
a solution, but they have also limitations to solve these LV grid problems [6].

The HC of the power lines is dependent on many factors such as installed PV rated power, load, load-to-feeder
ratio, transformer rating [7], etc. The situation becomes problematic for the network operator when residential users
install PV according to their own installed power targets, being often close to the point of common coupling (PCC)
breaker installed rating. Due to the simultaneous PV input from multiple customers, grid operators are then required
to upgrade transformers and distribution lines for uninterrupted grid operation according to the service quality
standards. Without expensive upgrades, there could be few options to avoid overvoltage, congestion, and overloading
problems in the network [8]. Overvoltage is a major concern for the grid operator and many solutions like reactive
power control (RPC), on-load tap changer (OLTCs) and capacitor banks have been proposed [9], [10]. Nowadays,
power electronics switching converters, such as PV inverters, capabilities are increasing. For example, many PV
inverters contain the RPC options. On the other hand, these can increase the harmonics in the network [11].

Overvoltage can be a greater issue in the suburban and rural grids, whereas in urban grids ampacity of lines is a
major problem [12]. Distribution lines have a specific load rating designed to sustain operation under expected end
customer loads and their coincidence expectations. However, excessive power from the multiple PV producers can
lead to the overloading of the line components. Instead of upgrading the most potentially overloaded lines, a costly
and time-consuming solution, several studies have proposed a BESS-based solution to overcome this problem [13].

This paper discusses different strategies for congestion control due to high PV infeed on the LV distribution
network. The objective of the research is to increase the HC in the distribution lines while minimizing the grid
congestion and overvoltage problem. A control strategy incorporating a BESS with a charging/discharging algorithm
including market energy prices has been proposed. In addition, the capabilities risen by the deployment of the RPC
technique have also been elaborated. The peak PV power curtailment has been discussed to refer to the impact of the
discussed methods.

2. Case Study of Suburban Grid

In this study, a line section of an Estonian suburban LV network containing a 0.4 kV distribution substation has
been considered. This network has fifteen residential users and a total of thirteen distribution line sections. The
schematic layout of the network is shown in Fig. 1. The load data of the residential users and the generation of
photovoltaic energy assigned are based on measurements for the entire year, with a 1-hour time-step.
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Fig. 1. Layout of the suburban grid under observation.



The transformer rating is 100 kVA and the rated value of the switch breaker is 100 A. The capacity of the cable
AXMKA 3x50, from the largest part of the line constructed, is 140 A. The sum of the main fuses ratings in the feeder
is 345 A. The assumption is that each customer installs PV according to the nominal values of the fuses, but slightly
less than these marginal loads. When the switch breaker is 25A then PV is rated at 20 A. For example, customer 1 has
a 3x25A connection, which means, that PV1 installed capacity would be 16 A or 11 kW. This way, the total installed
capacity of 15 PV systems is 189 kW. The PV generation profile is taken from the data measured for the existing PV
system connected to the nearby substation. The values were obtained by using the scaling factor, according to the
nominal installed capacity of planning individual PV systems. A detailed description of the grid parameters is given
in Table 1. The BESS sizes for all the residential users are calculated based on the peak load of the specific user using
the following equation [14]:

Epc = poptess * Na (1)
where the E. is the BESS capacity (kWh), I] is the BESS efficiency, N, represents the number of days for which the
BESS backup is required and is considered as 1 in our experimentation, DoD is the depth of discharge for the BESS,
and Ejg,, is the peak energy usage of the customer on a day throughout the year (kWh).

Table 1. Grid parameters, rated PV powers, and the BESS sizes

Load characteristics 1 9% BESS Parameters Grid parameters
N ame Average Peak load Rated power  Capacity Charging . . Nominal Length
in load (kW) (kW) (kW) (kWh) power Line section Type of cable current (m)
scheme (kW) (A)
L1 0.6 3.0 13.8 31 3.8 VKS F03_0 AS-240 605 60
L2 0.6 3.7 11 25 3.1 VKS F03_1 AMKA .3x35+50 115 342
L3 0.1 0.7 11 25 3.1 VKSF03 2 AMKA.3x50+70 140 44
L4 0.5 6.6 42 10 1.3 VKSF03 3  AMKA.3x25+35 90 23
L5 0.6 5.8 11 25 3.1 VKSF03 4  AMKA.3x16+25 70 11
L6 0.4 3.1 13.8 31 3.8 VKSF03_a  AMKA.3x50+70 140 45
L7 0.5 34 13.8 31 3.8 VKSF03_ b  AMKA.3x50+70 140 79
L8 0.3 22 13.8 31 3.8 VKSF03_ ¢  AMKA.3x50+70 140 38
L9 0.3 23 13.8 31 3.8 VKSF03 d  AMKA.3x50+70 140 38
L10 0.4 4.1 13.8 31 3.8 VKSF03_e  AMKA.3x50+70 140 44
L11 0.2 13 13.8 31 3.8 VKSF03_f  AMKA.3x50+70 140 39
L12 0.5 3.4 13.8 31 3.8 VKSF03_ g  AMKA.3x25+35 90 102
L13 0.2 4.0 13.8 31 3.8 - - - -
L14 0.7 42 13.8 31 3.8 - - - -
L15 0.8 4.8 13.8 31 3.8 - - - -

3. Congestion Control Strategies
3.1. Peak Power Curtailment

In this scheme, the maximum power generated by the PV panels is limited down to 70% and 50% [4], [13] to
overcome network congestion rather than cutting off the user off altogether. The peak power is generated usually in
the middle of the day and mostly in summer times when the residential loads are lowest. In this case, rather than
injecting all the generated power, only a specific percentage is allowed into the grid. In this way, the PV energy peak
is shaved off and as a result, the congestion in the network is leveraged as shown in Fig 2(a). On the negative side,
curtailing PV power will have an economic implication for all customers as the amount of energy sold to the grid will
be limited.



3.2. Reactive Power Control (RPC)

The RPC mechanism can help in avoiding overvoltage problems in the network. The grid integrated PV systems
most commonly inject active power into the grid and do not provide reactive power. However, due to power flow in
the opposite directions at different times, excessive active power infeed and weak cross-sections of the lines could
result in voltage fluctuations. The solution here is to use inverters with smarter functionality to absorb or generate
reactive power when necessary. However, incorporating RPC in solar inverters can provide decreased efficiency and
sometimes lead to increased harmonic distortions in the network. The results of RPC are shown in Fig. 2(b).
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Fig. 2. (a) PV power curtailment (b) Reactive Power Control

3.3. Congestion Control with BESS

The inclusion of a residential BESS with the PV system may be a viable solution to overcome congestion. The
main principle is to charge the BESS when PV is generating excessive energy and rather than injecting all the energy
into the grid, a significant portion of that energy is stored in the BESS. Later, that energy can be used for domestic
load or can be sold to the grid for monetary benefits. Therefore, this scheme can be feasible in terms of economic
numbers compared to curtailment. The details of the heuristic BESS control algorithm are described in [5], [14], the
flow chart of the algorithm is depicted in Fig. 2(a) and the results are given in Fig. 2 (b) for the load 15.
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4. Results & Discussions

The simulation results for the BESS profiles have been obtained using the heuristic algorithm implemented in
Matlab. Meanwhile, the power flow analysis is carried out in DIgSilent Power Factory 2022. The results of the
comparative analysis are shown in Table 2 presenting the total hour count for the whole year. The total number of
hours in year are 8760. The results are presented with the main evaluation outcome for the overloading of the lines
and the network supply transformer. The overvoltage implies the situation only when the endpoint voltage result is
higher than 1.1 p.u. (nominal voltage) values as described by the CENELEC - EN 50160 standard [15]. The standard
indicates that the voltage on any node in the distribution network must not be greater or less than 10% of the nominal
values but not more than 10 mins. The comparative analysis also shows the number times in which any of the nodes
had over voltage problem.

Table 2. Comparative analysis of all control strategies.

Condition Number of times Number Max. Number of times ~ Number of Max.
for all nodes of hours value for all nodes hours value
Only PV (Initial Case) PV + CURT. (6.9 kW)
T VKS, overloaded 698 698 159 0 0 84
Lines, overloaded 1,618 556 159 0 0 84
Nodes, U>1.1 p.u. 15919 1,187 12 14,334 1.212 1.14
PV + BESS PV + RPC + BESS
T VKS, overloaded 170 170 134 891 891 191
Lines, overloaded 84 84 119 1,748 796 175
Nodes, U>1.1 p.u. 5,868 880 1.18 2 2 1.10
PV CURT. (6.9 kW) + BESS PV CURT. (10 kW) + RPC + BESS
T VKS, overloaded 0 0 97 870 870 180
Lines, overloaded 0 0 92 1,065 575 170
Nodes, U>1.1 p.u. 1,539 360 1.14 0 0 1.10

The initial results indicate that the considered photovoltaic installations, operated without control, cause severe
overloading and overvoltage on the distribution lines for 556 and 1187 hours in the year, respectively. The peak
voltage value of 1.2 p.u violates the standard operating limits of the grid and it is entirely unacceptable to the operate
the grid. This is a major concern as it can cause problems in the residential appliances of the customers.

The PV curtailment to 50% peak power eliminates the overloading but still, the overvoltage problem exists. The
incorporation of BESS significantly lowers these numbers to 15% and 76% of the non-control values. In addition, the
peak values are reduced as well. The combination of BESS and RPC reduces the overvoltage, only to remain for a
span of 2 hours. However, the overloading of the lines and the transformer is increased, and the peak values are also
higher. BESS plus curtailment of PV generation to 6.9 kW (50%) per user can reduce the overloading to zero, but the
overvoltage is remaining for 360 hours.

5. Conclusions

Different options have been evaluated here to mitigate the congestion and overvoltage problems that can occur in
the LV distribution network due to the excessive PV installations by residential customers. Reaching the installation
power rating ceiling is more and more probable due to the encouragement by governments and environmental
organizations. Reaching the hosting capacity limits is more likely when the customers have the liberty to install as
much PV power as they desire and then connect it to the grid. At first glance, this is good for the environment and
customers in terms of monetary benefits. However, this can create a serious problem in the electrical grid, and it can
become difficult for the operator to keep the grid running within the limits defined in the standards. If the latter terms
are violated, no one can access the grid for PV infeed in any case, dismissing the initial noble intentions.



Requiring customers to reduce or turn off their photovoltaic injection to the grid would need to meet the same
service terms to all parties connected to the grid. Therefore, utilities would often prefer to upgrade and reinforce their
distribution line in most scenarios. However, the full upgrade would also likely impose limitations and is costly.
Therefore, in this study, some localized solutions for congestion control are proposed and their expected effects are
discussed. For example, if some specific high-PV infeed customers would be needed to provide specific functionality
in addition to the PV production capabilities, the utility could be leveraged from the most expensive upgrades. In such
a case, the higher PV infeed capability would also mean greater responsibility for the customer.

The results indicate that the reduction in PV generation power alone is not a good solution to congestion control.
The integration of BESS can drastically reduce this congestion drastically; however, it would not be sufficient to
eliminate overvoltage problems to acceptable margins. However, in conjunction with voltage control and slight
curtailment of the PV systems, the proposed algorithm shows much better results from the grid operation perspective
together with the utilization ratio at 96%. The economic implication of these schemes can be explored further in future
work.
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ABSTRACT Photovoltaic (PV) is a highly feasible solution for modern renewable energy-powered residen-
tial buildings in terms of deployment and cost reduction of utility bills. The installation of solar PV systems
along with optimal battery energy storage systems (BESS) size is the most popular energy cost minimization
solution and will continue to increase rapidly in the coming years considering the European Union (EU)
framework for nearly zero energy buildings (nZEBs). The current methods lack BESS size optimization and a
comprehensive solution to charge/discharge BESS from PV and the grid. The main goal is to be self-sufficient
and sustainable while having minimal dependence on the electrical grid. Therefore, this paper presents an
efficient energy management model and optimal size of the BESS as two key factors to effectively minimize
the total energy consumption cost of the nZEBs while having a minimum dependence on the grid. The energy
management system is developed using linear programming and solved using simplex and interior-point
methods. In addition, a heuristic algorithm is presented to determine the optimized charging and discharging
schedule for nZEBs. A detailed techno-economic analysis of the proposed system is conducted for the whole
year (covering all four seasons summer, winter, spring, and autumn) considering three common residential
building cases and three different electricity pricing methods. We determined that seasonal electricity pricing
is the favorable and economical option to schedule charging and discharging of BESS from the grid in several
terms such as, minimum total hours of grid usage, the maximum number of charging hours of BESS from the
solar PV system, maximum BESS discharging hours to sell energy, the minimum number of BESS charging
hours from the grid, maximum number of discharging hours for energy usage within nZEBs, maximum
revenue earned, and peak electrical load reduction for the grid.

INDEX TERMS PV systems, battery management systems, energy storage, linear programming, economic

analysis.

NOMENCLATURE LP Linear programming

A. ABBREVIATIONS MILP  Mixed integer linear programming
BESS  Battery energy storage systems MPC Model predictive control
CoE Cost of energy NMC  Nickel manganese cobalt oxide
DoD Depth of discharge NPC Net present cost
DR Demand response nZEBs Nearly zero energy buildings
DSM  Demand side management PV Photovoltaic
ER Energy router RES Renewable energy sources
EU European Union SoC State of Charge

Li-Ion Lithium-Ion

B. VARIABLES AND TERMS
The associate editor coordinating the review of this manuscript and n Efficiency

approving it for publication was Guangya Yang . n  Number of years

13012 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022



N. Shabbir et al.: Battery Size Optimization With Customer PV Installations and Domestic Load Profile

IEEE Access

N Number of days

CZZ;” Battery charging cost per unit

C;ZA[" Battery discharging cost per unit
Cffl:[” Per-unit energy purchase cost

C;fl{é’” Peer-unit energy selling cost

Cpy Per-unit PV energy selling cost

Cpar Cost of battery

Chw.junir  Per-unit inverter cost

Cpy Cost of PV

Epc Battery capacity [kWh]

Epay Average daily energy consumption [kWh]
ngl’, Energy received to the battery [kWh]
E;‘ZSI Energy supplied from the battery [kWh]
ngllé Energy sold to the grid [kWh]

Egzz, Energy purchased from the grid [kWh]
Er Electrical energy consumption [kWh]
Eje Max. energy from the battery [kWh]
Epy PV Generated Energy [kWh]

Egy Max. Energy from PV [kWh]

INV ;4iea  Rated inverter power [kW]

Pratea Rated PV power [kW]

P, Maximum charging power [kW]

I. INTRODUCTION
Buildings account for nearly 40% of the global energy con-
sumption, which accords them prominence in the energy
market [1]. According to studies, about 36% of buildings
in the European Union (EU) are older than 50 years and
are energy inefficient [1], [2]. Therefore, the EU framework
2010/31/EU and its amended version 2018/844/EU defined
the energy targets for 2050. As per this directive, all the newly
constructed buildings in the EU after 2020 must be nearly
zero-energy buildings (nZEBs) [3]. These buildings will be
powered through renewable energy sources (RES) while hav-
ing a minimal dependency on the grid [4]. Therefore, the
accumulated sum of energy consumption in the buildings will
need be near zero. However, RES at the grid-scale for nZEBs
requires efficient and smart energy management systems,
including photovoltaic (PV) systems, battery energy storage
systems (BESS), and power electronics equipment [5]—[7].
The optimal energy management in nZEBs designs has
been the subject of a substantial amount of research work.
In [8], the authors proposed a technique for optimal energy
management and better air quality within the building.
In another study, efficient energy usage employing demand
response (DR) and demand-side management (DSM) are
elaborated and implemented in smart buildings [9]. Although
the aforementioned methods are effective to a certain level,
they were lacking to address the problem of load shift-
ing concerning consumers’ behavior. Therefore, in [10], the
authors solved this problem using an efficient energy man-
agement system using RES for optimal self-consumption.
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As electricity is a major component in the energy con-
sumption share of any building; therefore, a comprehensive
energy management model is required to control and manage
the energy to certain levels required for nZEBs [11], [12].
A comprehensive energy management system must include
a detailed energy usage strategy, sufficient RES availabil-
ity, and optimal battery storage size. Furthermore, a robust
control algorithm to manage battery charging and charging
while minimizing dependence on the grid and maintaining
an accumulated annual energy level near zero [13]-[15].

In [16], linear programming (LP) algorithm was developed
for a photovoltaic-based energy management system to min-
imize peak electrical load. The forecasted PV and load data
were used in the development of this algorithm. In [17], the
authors further improved the performance of the proposed
model given in [18] by improving the accuracy of the fore-
casted data. Another probabilistic method for efficient energy
scheduling is proposed to reduce the cost of energy con-
sumption [19]. A new LP algorithm was proposed to predict
the usage schedule of electrical appliances while integrating
electricity price, BESS, and RES to develop an energy man-
agement model [20]. The authors used the model predictive
control (MPC) technique for the grid, RES, diesel generator,
and BESS of an electric vehicle. In [19], the authors used both
heuristic techniques and optimization methods to minimize
the peak load of the grid. LP and Markov chain models
were used to charge and discharge the battery. In [21], the
LP algorithm was also used to optimize energy and cost
management of energy generated from mixed sources, such
as solar, gas generator, and batteries.

The Monte Carlo method was used to determine uncertain-
ties in solar irradiance data for the BESS [22]. In [23], a Swiss
study used a genetic algorithm to optimize the operation of
a BESS for a residential building. Residential BESS was
made economically viable by using a self-sufficient photo-
voltaic system and a load shifting technique at the dynamic
energy price of the grid. The techno-economic analysis of a
grid-connected solar PV-based system including BESS was
presented in [24]. A learning-based optimization algorithm
was used to minimize the net present cost (NPC) and cost
of energy (CoE), the proposed technique was claimed to be
15.6% and 16.8% more efficient compared to the particle
swarm and the genetic algorithm, respectively. A study on
off-grid BESS optimization was conducted in the U.S. for
two different residential locations [25]. The mixed-integer
programming method was used to preschedule the load and
forecast the energy from solar PV using solar irradiance.
In another study, the cost and size of the BESS are opti-
mized using the heuristic method and stochastic gradient
for a campus area in Turkey. Both PV and wind were used
as RES with large battery banks, these results of energy
generation were initially optimized in a previous study by the
same authors [26]. The economic analysis of a grid-connected
PV system for residential users is also given in [27]. The
authors also calculated the initial investment and the payback
period.
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All the above-mentioned studies indicate that there is a
wide variety of algorithms for energy dispatch and manage-
ment in residential buildings to minimize the cost of energy
consumption. The energy generation system can contain a
grid-connected PV and a BESS. However, to achieve the goal
of nZEBs, the methods are still lacking the optimized size and
capacity of BESS and the charging/discharging of available
energy storage for internal usage or selling to the grid and
making it economically viable. To address this challenging
problem, the possible complexities are system designing,
control, and stochasticity in energy generation. Moreover,
if forecast data for electrical load and energy are used, there
is always the possibility of forecasting errors.

This study is part of an energy router (ER) based building
energy management system. The details of energy ER are
given in [28]. Taking into account aforementioned conditions,
the focus of this study is to optimize the size of the BESS
and design an efficient control algorithm to minimize grid
dependency and develop a self-sustained energy management
model for nZEBs. The main contributions of the paper are:

o A battery size estimation method is presented for grid-
connected BESS. To estimate the optimized size of the
BESS and the feasible rated PV system for different
residential buildings, the three most common cases of
residential buildings are considered, such as a small
flat/apartment, a medium-size residential home, and a
residential apartment building.

o A heuristic-based algorithm is developed for optimized
battery charging and discharging technique. The algo-
rithm incorporates real-time data traces of residential
load, PV energy generation, and electricity prices from
the Estonian energy market. The algorithm is designed
to minimize the usage of energy from the grid and
to make the whole system self-sustained and self-
sufficient. Moreover, the heuristics algorithm is tested
for three battery bank charging scenarios from the grid:
(a) price not applicable, (b) fix price, and (c) seasonal
price.

o A linear and convex model is developed for the energy
consumption cost minimization problem for the nZEBs.
The model is solved using a simplex algorithm and the
interior point method.

o A detailed techno-economic analysis of the proposed
methodology is conducted to determine the feasibility
of the proposed system. The analysis is carried out under
different variations, such as different load cases, differ-
ent BESS charging threshold prices, and BESS sizes.

The rest of the paper is structured as follows:
Section 2 describes the data profiles that include the details
of residential load cases, PV generation scenarios, and the
energy market prices in Estonia. Section 3 discusses the
estimation of battery size, battery charging/discharging algo-
rithm, and the optimization algorithm for the total energy
consumption cost of the nZEBs. Section 4 presents a detailed
economic analysis of the proposed method for the three
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electrical load cases. Section 5 discusses the results of the
study along with a detailed comparison with previous similar
studies. The paper is concluded in Section 6 along with future
research directions.

Il. DATA PROFILES

This section presents a detailed description of the real-time
residential electrical load dataset and real-time solar power
generation profiles for three different rated solar PV systems.

A. LOAD PROFILE

In this study, the real-time residential electrical load data from
the Estonian low-distribution network is used. The data was
measured and collected in a rural county in Estonia for a
whole year with a frequency of one hour. The schematic of the
grid is shown in Figure 1. This grid segment has 8 residential
loads and 3 auxiliary loads like lighting, pumping station and
heat station. In the study, three different residential electrical
load cases are under consideration: (a) case 1 (load 1): a small
flat/apartment with a limited number of appliances and hav-
ing an overall low load, (b) case 2 (load 3): aresidential house,
and (c) case 3 (load 7): a residential apartment building.
Table 1 enlists the statistical details for the aforementioned
three cases. From the collected data profile, it is illustrated
that the average electrical load for a small apartment is
0.08 kW, 0.76 kW for a residential household, and 11.9 kW
for the whole apartment building. The accumulated yearly
power consumption for all these cases is also presented in
Table 1.
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FIGURE 1. Sch ic diag of the distribution grid.

The hourly electrical load for all three cases is depicted
in figure 2. It is observed from Figure 2 (a) that in an hour,
the electrical load for case 1 rarely goes above 1 kW. There
are only seven instants in a whole year when the power
consumption surpasses 1 kW. Similarly, for Case 2, the peak
load (hourly average) is around 6 kW and it only happened
twice a year.
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TABLE 1. Load profile for three different residential electrical load cases.

TABLE 2. Load profiles for three cases with PV installation.

Case 1 Case 2 Case 3
Average load (kW) 0.08 0.76 11.9
Peak load (kW) 1.95 6 36.7
Median load (kW) 0.05 0.48 11.1
Annual energy 740 6640 103860
consumption (kWh)
Rated PV power 5 10 20
(kW)
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FIGURE 2. Yearly power usage for all three cases.

However, the average electrical load is around 0.76 kW is
considerably low compared to the peak load. As case 3 rep-
resents the energy consumption for a whole residential build-
ing; therefore, a seasonal trend of electrical load is clearly
visible in Figure 1(c), which is low in summers (May-August)
and high in winters (November - March) due to the heating
load, and due to this fact, the peak load occurs in winter.

B. PV PROFILE

Estonia lies in the northeastern part of the EU and this region,
the sunlight per day in summers is on average 16-18 hours
while in winters it reduces to on average 4-6 hours in a
day. Moreover, in Estonia, the solar irradiance intensity is
nearly the same across the country. Therefore, solar power
generation from PV installations in any part of Estonia does
not have a significant variation in output. However, it is still
highly dependent on the weather conditions. The solar PV
systems proposed in this study are 5 kW, 10 kW, and 20 kW
for case 1, case 2, and Case 3, respectively as mentioned in
Table 2 [27]. The solar power output for a 5 kW PV system
is shown in Figure 3.
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Case 1 Case 2 Case 3
Total Accumulated -5265 -5133 80074
Energy (kWh)
No. of Hours of energy 4989 6037 7163
utilization from the grid
No. of Hours of energy 3776 2723 1597
injection the grid
Peak power drawn from 1.95 6 36.7
the Grid (kW)
Peak power injected into 4.5 9.8 15.3
Grid (kW)
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FIGURE 3. Solar power generation throughout the year.

From figure 2, it is evident that solar energy generation is
high from March to September and low in the other months.
The accumulated energy with solar PV installation and the
respective residential electrical load is shown in figure 4.
From March to September, solar energy generation is mainly
greater while the electrical load is on the lower side; therefore,
the overall energy is in surplus and can be sold to the grid.
The maximum energy that can be sold to the grid is 4.5 kW,
9.6 kW and 15.2 kW, respectively, for the three load cases
discussed in Table 1.

In case 1 and case 2, with the installation of the roof-top PV
system, the dependency on the grid has fallen significantly in
terms of the number of hours throughout the year. Throughout
the year, the accumulated energy generated by the solar PV
system is accessible compared to the electrical load required,
as shown in Table 13. However, for case 3, the grid depen-
dency still exists as the electrical load is higher compared to
the installed PV system. Therefore, a larger rated PV system
is required for case 3 and reduces the accumulated energy
requirement from the grid by 22%, which is significant in
terms of economics as the energy bill is substantially reduced.
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FIGURE 4. Energy usage with solar PV installations.

A more detailed economic analysis of the cases is given in
section 4.

1ll. BATTERY ENERGY STORAGE SYSTEM (BESS)

In recent years, battery storage technologies have seen rapid
growth for the applications, such as PV-based storage sys-
tems, portable devices, industry, and electrical vehicles [29].
The most commonly used batteries are Lithium-Ion (Li-ion)
batteries and nickel manganese cobalt oxide (NMC) bat-
teries [3]. Over the years, due to advanced technological
developments and bulk generation, the cost of batteries has
been significantly reduced [30]. An estimated cost of battery
per kWh is around 100 € [31]. However, the life cycle and
limited usage cycle still required significant improvements.
It is expected that in the coming years, with the advancement
in technology new batteries will be available having a life
cycle of around 20 years [32].

Currently, most of the BESS installed with solar PV sys-
tems have Li-ion batteries for residential buildings. They
are preferred due to their lack of maintenance requirements,
compact size, and higher efficiency of more than 85% [33].
However, the practical life of these batteries is around 5 years
due to the limited number of charge/recharge cycles [34]. Due
to this fact, it is challenging in terms of economic viability as
the payback period of a Li-Ion battery cannot be compensated
for in 5 years [35]. Therefore, the installation of PV-based
BESS is usually supported by the government in Estonia in
terms of subsidy and reduced tariffs [36], [37]. However, opti-
mal battery size calculation is still needed to further minimize
operational costs.

A. BATTERY SIZE CALCULATION

The battery size calculation involves many important param-
eters, such as total energy used in a day, number of days
for which the backup from the battery is required, the
nominal voltage of the battery and the battery efficiency.
The following Eqn. (1) is used to calculate the battery
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capacity [29]:

_ EDay %
" 5% DoD % 1000

Here, Epc represents the battery capacity is kWh, 7 is the
battery efficiency, N is the number of autonomous days for
which the battery operation is required, DoD is the depth of
discharge for the battery, and Ep,, is the average daily energy
used. The battery size is usually calculated against the peak
load in a single day. However, as the peak load happens only
a few times during a year, the calculations for the battery
capacity can be made using the average load in a day or
median load value. Among the most important parameters in
BESS is the state of charge (SoC) of the battery. The SoC
indicates how much energy is stored in the battery. The SoC
is computed using Eqn. (2) [29]:

Epc N (1)

kP %K * st

SoCj41 = SoC,, + 2)

Epc
where n represents the number of states, st is the sampling
interval, K}, indicates the online and offline status (typically
0 or 1), and E; is the charging power in kW. The parameters
P is calculated as [29]:

BC %V %0.15
Pp=———
n

The proposed heuristic algorithm for battery charging and
discharging is evaluated on hourly real-time data traces of
electrical load and energy generation from the corresponding
rated PV system. The estimated battery sizes and the parame-
ters for all three cases described in table 1 are given in table 3.

3

TABLE 3. Parameters for the BESS.

Case 1 Case 2 Case 3
Egc (kWh) 4 33 518
P, (kW) 0.57 54 863
Efficiency (I1) 90%
DoD 0.6
Initial SoC 50%

B. HEURISTIC ALGORITHM FOR BATTERY CHARGING
AND DISCHARGING

If the energy generation from the solar PV system is greater
than the electrical load, then the battery will be charged.
Moreover, if the load is greater than the solar PV energy
generation, then the battery will be discharged to compensate
for the difference between solar PV energy and excessive
electrical load. In the second scenario, if the battery is charged
to a certain level and still the solar PV energy generation is
greater than the electrical load, then the extra energy will be
sold to the grid at a predefined cost. Similarly, the battery
can be charged from the grid if the electricity price is below a
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certain threshold value. Furthermore, if the electricity price is
greater than another defined threshold value, then the energy
stored in the BESS can be sold to the grid. A detailed descrip-
tion of the heuristic algorithm is given in table 4.

TABLE 4. The proposed algorithm.

Algorithm: proposed battery charging & discharging
Input: Load data, PV data, electricity price
1. Calculate battery Epc, E,
. S0Crmax = 0.9 and S0Cmin=0.2

3. While (n <8761)
%n is the number of hour

4. IfPV>Load and 0.2 > SoC (n) > SoCmax then charge
battery (But not above S0Cmax)

5. Calculate SoC (n+1) and Pgat (n)

6. a=a+l
%no. of charging hours with PV

7. else if Load > PV and S0Cmin > SoC (n) > SoCmax then
discharge battery (But not below S0Cumin)

8. Calculate SoC (n+1) and Pgat (n)

9. b=b+l1
%no. of discharging hours for internal use

10. else if Electricity Price < threshold value and SoC(n) <
0.5 then Charge battery from the grid
(But not above S0Cmax)

11. Calculate new SoC (n+1) and Pgat (n)

12. c=c+l
%no. of charging hours with Grid

13. else if Electricity Price > threshold value and SoC(n) >
0.4 then discharge battery to the grid
(But not below S0Cumin)

14. Calculate SoC (n+1) and Pgat (n)

15. d=d+1
%no. of discharging hours to the grid

16. else

17. SoC (n+1) = SoC (n)

18. Ppa(n)=0

19. endif

20. n=n+l

21. end while

C. LINEAR PROGRAMMING (FOR ENERGY COST
OPTIMIZATION)

The electricity pricing threshold selection for the charging
of BESS from the grid and utilization of BESS for grid
support is a tricky problem. In the Estonian energy market, the
real-time electricity price dynamically changes every hour.
Estonia is a member of the Nord pool which is a European
power market consisting of 16 countries with 360 companies
that trade in the power market [38]. Therefore, the elec-
tricity price depends on factors season, availability of RES,
demand, and supply thus there are many variations in the
electricity price. The real-time electricity price for Estonia
in 2020 is shown in figure 5, which clearly illustrates the
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FIGURE 5. Electricity prices Nord Pool (Estonia) in 2020.

dynamic behavior of the energy market. In figure 5, the peak
value for electricity is 0.25 €/kWh and the lowest value is
0.001 €/kWh. However, the average price range throughout
the year is 0.05 €/kWh [38].

Therefore, by keeping in view, the dynamic electricity pric-
ing, battery charging and discharging heuristics, solar power
generation, energy purchase from and sell to the grid, and
dynamic nature of energy consumption within the nZEBs, an
LP model is developed to minimize the total energy consump-
tion cost for the nZEBs. Moreover, the algorithm also decides
the optimized value of electricity for charging the battery
from the grid and discharging the battery to the grid. However,
as areliability constraint, battery cannot be charged more than
90% and discharged less than 20%. The battery management
constraints are defined in such a way that minimizes the
utilization of energy from the grid both for residential load
and battery charging while utilizing a maximum of solar PV
energy. Batteries are charged when the electricity price is low.
The excess energy in BESS is only sold to the grid when
the electricity price is high to make this system economically
viable.

The following linear and convex optimization function is
defined to minimize the net energy consumption cost for
any nZEBs considering the installed PV system, BESS, and
the electricity price constraints. The optimization problem is
defined as:

N
Minimize f =3 | Chit 1)« Dt () + Cle o)
x Bty (0 + Coga (0 Egly (0 + Cpa™ (1)

« Efly 0+ Cpy () % Epy (1)) @
Subject to Eb (1) — Egey (1) — Efy (1) + Efiy (1)
+ EPV () =EL (1) )
E{t (1) + EfS (1) < EL (1) ©)
;’;‘,; (t) —EXl () < EL(D) )
Eft (1) + Epis (1) < Epe™ (1) (8)
Efgy (t) = Epgy (1) < Epit™ (1) ©)
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- Eﬁ,’fi; <0 (10)
— Exlh() <0 (11
—E (1) <0 (12)
—Ef1) <0 (13)
— Epy (1) <0 (14)
Epy (1) < Ep¢* (1) (15)

where f is the objective function to be minimized that is
defined in the standard minimization form having equality
constraints, inequality constraints (all are in the form of less
than equal to) and bounds of the problem. Moreover, in the
aforementioned mathematical formulation ¢ is the time inter-
val [in an hour], ngrd (t) and E ‘Yff; (t) are electrical energy
purchased from and sold to the grid [kWh], respectively;
the Elffl'[ and Eg(i‘; are the electrical energy supply to and
received from the battery bank [kWh], respectively; the Epy
is the electrical energy supply by the installed PV system
[kWh]; Epy* is the maximum electrical energy that can be
taken from the PV system [kWh]; E}, is the electrical energy
consumption of the nZEB [kWh]; E;** is the maximum
energy that can be taken from the battery bank [kWh]; N is
the total number of hours in one year [8760]; Cgfi:,’“ (1) is
the per-unit electrical energy purchasing cost from the grid

[cents/ kWh]; Cg%” is the per-unit electrical energy sell cost

to the grid [cents/kWh]; C ;Z;" is the per-unit BESS charging
cost [cents/kWh]; C,‘i’;" is the per-unit BESS discharging cost
[cents/ kWh]; Cp,, (¢) is the per-unit cost incurred from the
PV system [cents/kWh]. The ‘“hat” symbol used with the
electrical energies in the optimization cost function denotes
the normalized values of the variables. The general formula
used for the normalization process is:

Xporw = m (16)
Ximax — Xmin
where the X,,;, = 0 kWh for every electrical energy.

The linear programming problem defined in Eqn. (4) is
solved using the simplex algorithm and interior point method.
Equation (5) is the equality constraint that represents the
energy balance between the energy sources (such as grid,
solar PV system, and battery bank) and the electrical load of
nZEBs. Equation (5) clearly indicates that the energy imbal-
ance between the electrical load of nZEBs and the power
generation of the solar PV system is maintained using the
energy purchased/sold from the grid and the charging/storage
of the battery bank. However, this decision is made by the
linear programming algorithm. Moreover, Eqn. (6) — Eqn. (9)
are the inequality constraints and from Eqn. (10) to Eqn. (15),
the bounds of the variables are defined.

The BESS charging is under consideration in three dif-
ferent electricity pricing scenarios from the grid: (a) price
not applicable, (b) fixed price, and (c) seasonal price. In the
price not applicable scenario, we eliminate the option of
BESS charging from the grid at any offered cost by the grid.
Equation (7) will ensure that the battery will never charge
from the grid. In fixed price scenario, we have the option to

13018

charge BESS from the grid provided the electricity cost is
less than a certain defined threshold field for the whole year.
In the seasonal price scenario, the electricity cost threshold
for BESS charging varies seasonally. Therefore, in the sec-
ond and third cases the equality constraints of Eqn. (7) are
ignored.

IV. RESULTS & DISCUSSIONS

This section presents the technical and economic impact of
BESS charging and discharging heuristic algorithm under
three different electricity pricing scenarios from the grid, such
as (a) price not applicable, (b) fix price, and (c) seasonal price.
Moreover, energy cost minimization model-based economic
analysis results are also discussed in detail. The implemen-
tation and simulation of the proposed algorithms are carried
out in MATLAB running on an Intel Core i7-9700 CPU
with 64 GB RAM.

A. TECHNO-ECONOMIC ANALYSIS OF BESS CHARGING
AND DISCHARGING

The first scenario includes no BESS charging from the grid
at all; however, the BESS can be discharged to empower the
grid, when the electricity cost is higher than 0.1 €/kWh (one
of the highest costs, 90 percentile). The only viable option for
BESS charging is from available PV energy. For the second
scenario, the BESS can be charged both from the grid and PV
system. However, the PV is the preferred source for BESS
charging while the battery can be charged from the grid only
if the electricity price is less than 0.01 €/kWh (one of the
lowest values). This price threshold is low compared to the
average electricity price, which is around 0.03 €/kWh during
the year. Battery energy can also be sold to the grid if the price
is greater than or equal to 0.06 €/kWh. The price threshold is
computed using the LP algorithm. These values were initially
obtained from the hit and trial method and later verified with
the LP algorithm, as they showed the same results.

For the third scenario, the prices for battery charg-
ing/discharging from/to the grid are varied on a seasonal
basis. These values of charging/discharging prices are again
obtained from the LP method. The battery charging prices
from the grid is less than 0.033 €/kWh, 0.024 €/kWh,
0.03 €/kWh and 0.038 €/kWh for winter, spring, sum-
mer, and autumn, respectively. Similarly, energy is sold to
the BESS grid when prices are higher than 0.061 €/kWh,
0.058 €/kWh, 0.065 €/kWh, and 0.072 €/kWh for winter,
spring, summer, and autumn, respectively. The electricity
prices for purchasing and selling have a difference of around
3 cents, which provides a significant margin for the nZEBs to
minimize total energy consumption cost. Moreover, we com-
puted the SoC for BESS for all three pricing scenarios and
plotted them in figure 6. In Figure 6, it is evident that SoC is
on the lower side in winters and high in summers because
in considered region (Estonia), total energy consumption
increases in winters due to the heating and lighting load along
with increased BESS utilization. Moreover, in Figure 6(c),
the variations in SoC are observed to be more compared to
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TABLE 5. A detailed analysis of BESS charging for three pricing scenarios from the grid for one year.

Season No Grid charging Grid charging on Grid charging on
fixed price seasonal price

Battery Size (%) - 100 100 100
i (hours) - 4752 4701 4627
a (hours) - 3163 3162 3131
b (hours) - 293 351 433
¢ (hours) - 0 83 179
d (hours) - 3330 3618 3984
Revenue earned (€) - 213.4 217 2194
Winter 1.95 1.95 284
Peak power drawn from Spring 0.80 1.34 1.86
the grid (kW) Summer 0.85 0.85 1.19
Autumn 039 0.66 133
Winter 0.95 095 140
Peak power injected into Spring 498 498 498
the grid (kW) Summer 4.96 4.96 4.96
Autumn 4.76 4.76 4.76

Terms: a = no. of charging hours from PV, b = no. of discharging hours to grid, ¢ = no. of charging hours from the grid, d = no. of

discharging hours for internal usage, j = no. of total hours of grid usage
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100 -( ) 9 ‘g 9

"

0 1000 2000 3000 4000 5000
(b) Fixed Price

6000 7000 8000
100

B W

T T T

0 S0 Y Mlhh“w‘m | L’

0 1000 2000 3000 4000 5000 6000 7000 8000
(c) Seasonal Price

Battery SoC (%)

100 T T

LU

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (Hours)

40 ff

FIGURE 6. SoC of battery for entire year under three pricing scenarios.

the other two, as the battery is charged and discharged more
times showing active status. Furthermore, there are not many
intervals where there is a stagnant line showing no activity.
Therefore, to compute the optimal economic impact of BESS,
a detailed analysis is conducted and tabulated in Table 4 in
terms of the number of hours of utilization, payback period,
and peak power drawn and injected into the grid.

In table 5, for the calculated optimal BESS size, the total
hours of grid usage are more for the price, not applicable
scenarios compared to the other two pricing scenarios when
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we opt not to charge BESS from the grid because the energy
is coming from a European market and the price can be high.
Similarly, the total number of BESS charging hours from the
solar PV system is greater for the first two scenarios com-
pared to the seasonal pricing scenario. Moreover, the number
of discharging hours of BESS for selling energy to the grid
is more for the seasonal pricing scenario while the number of
charging hours of BESS from the grid is also high for the
seasonal pricing scenario due to low and feasible seasonal
electricity cost offered for BESS charging and discharging.

Furthermore, the number of discharging hours of BESS for
energy usage within the nZEBs is also on the higher side for
the seasonal pricing scenario. Additionally, we computed the
total revenue earned for the nZEBs under all three pricing
scenarios and illustrate that the seasonal pricing scenario is
the most viable option. We concluded that offering seasonal
lower pricing for BESS charging from the grid and high
pricing for BESS discharging to the grid is financially viable
for BESS. However, the dependency of BESS on the grid also
increases, which is indicated by the high peak load values
from/ to the grid. Therefore, a tradeoff exists to optimize this
challenge.

In a similar manner as illustrated in Table 5, to study
the impact of increase and decrease in BESS size, we inde-
pendently varied the BESS size from 10% of the proposed
optimal value to 500% of the proposed value. Here, the size
100% indicates the theoretical battery size calculated using
Eqn. (1). This variation in BESS size is tested for the three
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TABLE 6. BESS size variation impact for case 1 (small flat/apartment).

Battery j a b [ d Peak Power drawn from grid Peak power injected into the grid
size (%) (hour) (hours) (hours) (hours) (hours) (kW) (kW)
Wt. Sp. Sum. Aut. Wt. Sp. Sum. Aut.
10 3429 3330 355 628 2274 1.95 0.99 1.26 0.94 0.95 4.98 4.96 4.76
25 2121 3482 401 374 3130 1.95 0.99 1.26 0.88 0.95 4.98 4.96 4.76
50 1605 3372 420 252 3615 1.95 1.32 1.26 0.79 0.95 4.98 4.96 4.76
75 1485 3257 429 211 3800 2.57 1.59 1.26 1.06 1.13 4.98 4.96 4.76
90 1447 3179 438 190 3886 2.73 1.75 1.08 1.22 1.29 4.98 4.96 4.76
100 1391 3131 433 179 3984 2.84 1.86 1.19 1.33 1.40 4.98 4.96 4.76
110 1271 3151 435 168 4071 2.84 1.86 1.19 1.33 1.40 4.98 4.96 4.76
120 1187 3163 441 162 4131 2.84 1.86 1.19 1.33 1.40 4.98 4.96 4.76
130 1185 3163 460 166 4118 2.84 1.86 1.19 1.33 1.40 4.98 4.96 4.76
150 1127 3173 460 148 4148 2.84 1.86 1.19 1.33 1.40 4.98 4.96 4.76
175 1089 3178 471 146 4162 2.84 1.89 1.14 1.33 1.40 4.98 4.96 4.76
200 1035 3188 500 152 4189 2.15 1.89 1.14 1.33 1.40 4.98 4.96 4.76
300 932 3204 526 143 4241 2.84 0.05 1.14 1.33 1.40 4.98 4.96 4.76
400 879 3205 548 147 4275 2.84 0.05 0.31 1.33 1.40 4.98 4.96 4.76
500 840 3206 580 157 4291 2.84 0.05 0.31 1.33 1.40 4.98 4.96 4.76

load cases, small apartment, residential house and residential
building, as discussed in section 2.1. The results of the BESS
variations for case 1, case 2, and case 3 are discussed in
tables 6, 7 and 8, respectively.

From these tables, it is concluded that with increasing
battery size, the value of ‘j° decreases, indicating a lower
dependency on the grid in the three cases. In addition, the
value of ‘d’ increases which shows that the battery is now
used more for internal usage. The number of charging hours
‘a’ shows a straight line around 110% for cases 1 and 2. More-
over, the battery discharging hours to grid ‘b’ also shows the
lowest value before starting to increase again. This represents
the optimal battery, and it also gives optimal values for other
parameters as well. As the battery size is increased further,
it may give good numbers, but affect the economic aspects
badly.

B. ECONOMIC ANALYSIS

Considering Vision 2030, the concept of nZEBs is grow-
ing rapidly across the EU. Therefore, a detailed economic
analysis of the installed energy management system of
nZEBs is mandatory from a business perspective. If the
energy management system is financially viable, it may
encourage other building operators to convert conventional
residential buildings and homes as nZEBs. Therefore, we
separately evaluate and discuss the PV-based BESS designs
for all three load cases. The economic analysis for a PV-
based BESS requires considering several parameters that are
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sequentially discussed in this section. First, the initial invest-
ment cost, Cpy for the solar PV system is computed using
Eqn. (17) [14]:

i(1 40y
(I+" =1
where Cp,, (¢) is the per-unit cost incurred by the solar PV
system, Prgeq is the ;ate@l power, n is the lifetime of PV
system in years, and % is the present cost compared to
the annual investment. Similarly, the initial investment cost
of the BESS system is calculated as [14]:

Cpv = Cpy (1) * Prated * an

" i(1 4 i)

Cpar = (C;L,a,u () * Epc + Crujunir * Prated) m
(18)

where C ZZ;" (r) is the per-unit cost of BESS charging,

Cinv.Unir 18 the inverter cost per unit, P4 is the rated power
of the inverter, n is the lifetime of the battery in years, and
% is the present cost compared to the annual invest-
ment. Moreover, considering every available energy source
to balance the electrical load of nZEBs, the energy balance
equation for nZEBs is computed using Eqn. (5). Furthermore,
the first two terms of Eqn. (4) are used to calculate the energy
purchasing and energy selling prices to the grid, respectively.

In the Estonian electricity market price of electricity is
dynamically changing every hour. Therefore, the sampling
time considered in this study is taken as 1 hour. The current
price of a battery in Estonian is around 100 €/kWh whereas
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TABLE 7. Impact of BESS size variation for case 2 (residential house).

Battery j a b ¢ d Peak power drawn from grid Peak power injected into the
size (%) (hour) (hours) (hours) (hours) (hours) (kW) grid (kW)
Wt. Sp. Sum. Aut. Wt. Sp. Sum.  Aut.
10 3863 2438 428 1541 1912 5.95 3.92 321 3.44 5.74 9.75 9.71 9.14
25 3016 2674 346 1087 2964 5.95 329 337 3.44 5.79 9.75 9.71 9.14
50 2947 1766 238 302 4111 5.95 2.59 3.62 2.67 5.79 9.75 9.71 9.14
75 2725 1842 281 298 4210 5.95 2.46 1.80 2.53 5.79 9.75 9.71 9.14
90 2588 1861 292 313 4332 5.95 2.38 1.73 2.53 5.79 9.75 9.71 9.14
100 2482 1880 313 337 4422 5.95 242 1.68 2.53 5.79 9.75 9.71 9.14
110 2425 1887 316 346 4478 5.95 242 1.68 2.53 5.79 9.75 9.71 9.14
120 2329 1904 313 341 4555 5.95 2.33 1.68 2.53 5.25 9.75 9.71 9.14
130 2303 1905 318 344 4578 5.95 2.33 1.68 224 5.79 9.75 9.71 9.14
150 2232 1915 345 370 4638 5.95 2.33 1.68 2.24 5.28 9.75 9.71 9.14
175 2136 1932 354 377 4715 5.95 2.33 1.68 2.02 5.28 9.75 9.71 9.14
200 2086 1942 373 393 4752 5.95 233 1.68 1.98 5.28 9.75 9.71 9.14
300 2012 1970 417 424 4785 5.95 2.33 1.68 1.98 5.28 9.75 9.71 9.14
400 1936 1990 443 443 4834 5.95 233 1.68 1.98 5.25 9.75 9.71 9.14
500 1912 1995 473 466 4846 5.95 2.33 1.68 1.98 5.25 9.75 9.71 9.14

the price of the PV system is around 0.4 €/W [3], [39].
Table 9 shows the economic analysis of all three load cases
with PV installation and without the BESS. With the instal-
lation of the PV system, the dependence on the grid is signif-
icantly reduced in all three load cases. For case 1 and case 2,
the energy purchase from the grid is zero for the whole year,
instead, the energy is in excess for a certain number of hours
and sold to the grid. However, in case 3, the electricity bill is
not zero but has been reduced by very significant, nearly 65%
margin. In case 3, the average and peak loads are 11.9 kW and
36.7 kW, respectively.

The BESS price for the under-discussion three load cases is
taken as 400 €, 3300 € and 51800 €, respectively depending
on their optimal BESS size calculation. Table 10 shows the
net cost of energy with the different BESS sizes for the three
load cases. The net price of energy usage is negative for both
case 1 and case 2, indicating that the energy was surplus
compared to the load requirements and was sold to the grid.
In addition, there is a direct relationship between the BESS
size and the net cost of energy. However, case 3 is presenting a
different scenario. The net energy price is still positive, which
means that the energy is still being used excessively from the
grid. This is because the BESS is designed with respect to
the high value of the load. The installed PV capacity for this
system is low and it must compensate for the load and charge
the BESS. Therefore, in most hours, after electrical load
compensation, very little energy is available for the BESS to
be charged to its full potential. The simulation results for PV
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systems with 30 kW, 40 kW, 60 kW, and 80 kW for case 3 are
shown in table 11.

The simulation results with higher-rated PV systems for
case 3 indicate that the net energy cost reduces significantly.
The grid dependency decreases, and the net energy cost is
surplus when the rating of the PV system is increased to
80 kW and 100 kW. The system will earn around 1800 euros
revenue for one year. The maximum power drawn from the
grid and injected into the grid is shown in table 12. The peak
load from the grid is decreasing and energy transferred to
the grid is increasing. The peak loads from the grid increase
2 to 4 times with the increase in BESS size.

The payback periods for all three load cases are shown
in Table 13. The cost calculations in this table include some
approximations in the prices of the inverters and batteries.

The installation cost and the cost of land in the case
of ground installation have not been included, the payback
period varies between 10 to 20 years for all three load cases.

The payback periods for case 1 and case 2 are around
10 and 13 years respectively, while for case 3 even with the
increase in the PV capacity it is between 16 to 27 years. The
cost of additional PV energy availability increases the total
savings, but the increased cost of PV and inverter size keep
the resultant payback period nearly the same.

V. COMPARISON WITH PREVIOUS STUDIES
Previously, many studies have been conducted on the opti-
mal designing of batteries, control algorithms, and economic

13021



IEEEACCGSS N. Shabbir et al.: Battery Size Optimization With Customer PV Installations and Domestic Load Profile

TABLE 8. Impact of the BESS size variation for case 3 (whole residential apartment building).

Battery j a b c d Peak Power drawn from grid Peak power injected into the grid
Size (%) (hours) (hours) (hours) (hours) (hours) (kW) (kW)
Wt. Sp. Sum. Aut. Wt. Sp. Sum. Aut.
10 3798 912 62 437 4425 3671 2204 16.97 2732 3463 1489 1513 12.87
25 3750 953 81 462 4438 3671 2216 16.97 2732 3463 1459 1449 13.63
50 3703 997 92 492 4460 3671 2242 16.97 2732 3463 1395  13.85 12.99
75 3549 1035 133 552 4595 3671 22.67 16.97 2732 3463 1331 1321 1235
90 3433 1035 151 592 4733 3671 2283 16.97 2732 3463 1292 12.82 11.96
100 3325 1035 157 621 4864 3671 2293 16.97 2732 3463 1267 1257 11.70
110 3228 1035 158 643 4982 3671 22.93 16.97 2732 3463 1267 1257 11.70
120 3163 1035 155 655 5062 3671 2293 16.97 2732 3463 1267 1257 11.70
130 3093 1035 158 670 5144 3671 2293 16.97 2732 3463 1267 1257 11.70
150 3033 1035 181 714 5225 3671 22.93 16.97 2732 3463 1267 1257 11.70
175 2915 1035 178 737 5369 3671 2293 16.97 2732 3463 1267 1257 11.70
200 2848 1035 202 782 5457 3671 2293 16.97 2732 3463 1267 1257 11.70
300 2616 1035 224 851 5736 3671 22.93 16.97 2732 3463 1267 1257 11.70
400 2498 1035 253 898 5872 3671 2293 16.97 2732 3463 1267 1257 11.70
500 2476 1035 285 936 5900 3671 2293 16.97 2732 3463 1267 1257 1170
TABLE 9. The economic analysis with only PV installation. TABLE 10. Battery sizes and net energy prices for the whole year.
Casel  Case2 Case 3 Battery Size Case 1 Case 2 Case 3
Annual energy consumption 740 6650 103859 (%) © © ©
(KWh) 10 -214.30 -220.42 2856.82
Approx. initial cost of PV 2000 4000 8000 25 -215.23 -220.52 2858.80
© 50 -216.65 -248.62 2134.57
Yearly energy price without 27.6 251.7 4810.5 75 -218.32 -250.81 1935.24
PV (€) 90 -218.97 -255.55 1781.46
Cost of energy taken from the - - 2620 100 -219.39 -261.12 1698.39
grid with PV (€) 110 -219.07 -263.09 1637.51
Cost of additional energy sold 213.4 220.4 - 120 -219.03 -262.79 1591.09
to the grid (€) 130 219.34 26431 1533.02
No. of hours of energy 4989 6035 7163 150 218.74 271.28 1363.27
utilization from the grid 175 218.86 274.82 1292.00
No. of hours of energy 3776 2752 1597 200 219.42 279.61 1102.60
injected into the grid 300 219.34 29124 852.68
400 219.65 -299.38 654.84
500 -220.30 -306.76 498.58
feasibilities as discussed earlier in Section 1. The study in *The negative price shows the surplus of energy sold to the grid. All
Greece found that BESS can reduce the cost of bills by 20% energy prices are in euros.

[40]. In [41], the economic analysis of PV paired with BESS
showed that the system can reduce 41% to 74% of the cost of
energy from the grid. The BESS alone can provide a 25% to

35% cost reduction in cost. 10 years for 70% threshold [42]. In [43], a study conducted
A Belgian residential data was used to develop a BESS in Japan indicated that PV-BESS can reduce the peak load of
sizing method based on voltage sensitivity. The BESS life was the grid to 1.1%. However, the value of the peak load varies

determined to be 15 years for 80% PV power threshold and by season. The payback period in the same study was found
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TABLE 11. Battery parameters with an increase in photovoltaic rating for case 3.

Rated PV Battery size j a b ¢ d let energy cost
Power (kW) (%) (hours) (hours) (hours) (hours) (hours) €)
30 100 2971 1384 172 536 4769 1384
40 100 2876 1470 198 490 4706 1006
60 100 2918 1502 260 451 4531 62
80 100 2962 1519 301 419 4397 -879
100 100 3014 1543 330 403 4276 -1794

TABLE 12. Peak loads with the increased PV rating for case 3.

Rated PV power Battery size Peak Power drawn From grid Peak power injected into the grid
(kW) (%) (kW) (kW)
Wt. Sp. Sum. Aut. Wt. Sp. Sum. Aut.
30 100 36.7 22.1 16.9 273 34.6 226 247 20.8
40 100 36.7 22.1 15.6 273 34.6 34.1 34.6 324
60 100 36.7 22.1 15.6 24.8 34.6 549 54.3 50.5
80 100 36.7 19.9 15.6 24.8 34.6 74.7 74.1 68.6
100 100 36.7 19.9 15.6 26.8 34.6 94.6 93.7 86.8
TABLE 13. The payback period for the three cases.
Case 1 Case 2 Case 3
Rated PV power(kW) 5 10 20 40 60 80
Cost of PV (€) 2000 4000 8000 16000 24000 56000
Cost of battery (€) 400 3300 51800 51800 51800 51800
Cost of PV invertor (€) 1000 2000 4000 8000 12000 16000
Net energy cost (€) -219.4 -261.1 1699 1005 62 -878
Total saving per year (€) 247 512.82 2612.11 3805.2 4748.9 5688.7
Payback period (Years) 10 13 27 20 16 16

to be 18 years. An optimal battery size tool was designed and
the payback of the BESS was found to be around 40 years [3].
However, the author reported that if there is a 10% increase
in the electricity sales cost to the grid, the payback time will
reduce by up to 10 years.

In comparison to the studies mentioned above, the results
presented in our study are more dynamic and cover a broader
aspect of BESS. The proposed LP algorithm for energy
cost minimization along with the optimized value of BESS
presents a viable economic analysis for nZEBs. The results
showed that the payback period of this PV and BESS system
is around 10 to 13 years. The first two cases showed that there
is no need to pay for energy at all and also that the domestic
users will sell excess energy to the grid with 5 and 10 kW
PV installations along with BESS. In the reduction in the
third case, the electricity cost is around 65% with 20 kW
PV-BESS.

VOLUME 10, 2022

VI. CONCLUSION

Optimal sizing of the BESS is an important prospect for
nZEBs. The inappropriate BESS size can have both technical
and economic implications. Similarly, the BESS requires an
efficient control algorithm for the optimal performance of
the battery. conversely, the BESS needs to be made econom-
ically feasible for the consumers to invest in it. Currently,
the price of BESS is very high; therefore, in many countries,
governments and grid operators offer several incentives to
consumers. However, the price of BESS is also expected to
drop in the coming years.

This study presents the findings to test different BESS
sizes for the three most common residential buildings based
on their electrical load and recommended rated PV systems.
The purpose is to find the optimal size of the BESS that is
technically viable and economically beneficial. For the three
different residential buildings, the real-time residential load
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data was taken from the Estonian low voltage distribution
network for a small apartment, a medium-sized household,
and a whole apartment building. Moreover, real-case data
for the corresponding three rated solar PV systems is also
measured and used. Based on these three electrical loads and
solar PV profiles, the theoretical size of the suitable BESS is
determined for each residential building. An effective heuris-
tic algorithm is proposed for the scheduling of BESS charging
and discharging under the influence of two energy sources,
such as solar PV system and grid.

Furthermore, we develop an LP model to compute the
total cost of energy consumption of the nZEBs considering
the viable electricity price of the grid, the available energy
of the solar PV system and the grid, the BESS charging
and discharging schedule, and the total electrical load of
the residential building. The LP model is optimized to min-
imize the total energy consumption cost for nZEBs. The
proposed LP model along with the heuristic algorithm for
BESS battery charging and discharging schedule is rigorously
tested by varying three different electricity pricing scenarios
and variable BESS sizes. In addition, a detailed comparative
analysis is conducted based on minimum utilization of the
grid, maximum charging of BESS from the solar PV system,
and maximum BESS discharging for internal usage. The
economic analysis of the proposed BESS for all three cases
with the implementation of the proposed algorithm indicates
that the payback time of small and medium-size residential
load scenarios varies from 10 to 13 years. The PV-BESS
will have a payback period of around 20 years for large
residential buildings if the PV size is small. However, it is
around 16 years when a larger PV system is installed.

For future works, the proposed algorithm will be imple-
mented in the energy router currently under development
for the energy management system for nZEBs. In this way,
the performance of the algorithm will be tested and verified
experimentally in a real-time application. Moreover, different
optimization algorithms can be investigated for this problem
to have a comparative analysis with the proposed one.
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Abstract: Photovoltaic (PV) systems along with battery energy storage systems (BESS) are an increas-
ing trend for residential users due to the increasing cost of energy and environmental factors. Future
sustainable grids will also have electric vehicles (EVs) integrated into these residential microgrids.
However, this large-scale deployment of EVs and PV systems could mean several problems in terms
of power quality, hosting capacity and as well economic implications. This paper aims to provide
input to more optimal design and management of domestic PV and BESS for residential users with
EVs. In this work, a measurement-based data set from a low-voltage distribution network in a
rural area has been used. Investigation sees different household and PV-EV penetration levels to
propose the BESS capacity and use cases. An economic analysis has been performed to check the
feasibility of the proposed systems. The payback period is found to be between 13 to 15 years of the
proposed systems.

Keywords: photovoltaic systems; electric vehicles charging; battery storage; battery size optimization;

economic analysis

1. Introduction

Electricity and transportation have been two of the most dominant sectors in the
contribution of greenhouse gases [1]. The deployment of renewable energy resources (RES)
such as photovoltaics (PV) in electrical grids is growing, and similarly, the usage of electric
vehicles (EVs) is also increasing, as these vehicles fall into the category of potentially
sustainable and green transposition systems [2-4]. Due to the expected preference for
comfortability, it is expected that the users will most often charge their electric vehicles at
home. Therefore, the integration of PV and EV in future sustainable distribution grids is of
key importance.

PV in conjunction with battery energy storage systems (BESS) is expected to be the
most popular RES solution in residential buildings and homes [5]. This system is usually
connected to the local grid to reach better utilization for energy produced on-site and,
if excessive energy is available from the photovoltaic, then it is sold to the grid. The
main purpose is to reduce electric energy costs and obtain benefits by selling energy.
However, large-scale photovoltaic and BESS installation can initially be costly, as the cost of
photovoltaic is around 400-1000 € /kW while batteries are still around 100 € per kWh [6,7].
Therefore, the optimal design of these systems is very important.

The PV generation in residential grids [8-10] and the impact of EV charging on the
residential grid have been discussed in [11-14]. While the benefits of PV and EV integration
have multiple benefits [15-18], the large-scale PV and EV deployment can also impose extra
challenges in the local grids. It is commonly discussed, that large-scale PV deployment with
same-time production could mean overloading and overvoltage in the network [19-22]. At
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the same time, the high penetration of electric vehicle loads can cause higher peak loads
and thus undervoltage in the network [23,24]. The time-wise distance of the PV production
peaks, and peak EV domestic charging load could mean cumulation of these issues listed.

A way to mitigate these problems is to include BESS, sized according to the network
design parameters and limits. The presence of BESS can ensure that PV energy generated
but not utilized on-site is not injected into the grid and this stored energy is used for
the charging of EVs. This way residential BESS can directly help to improve demand-
side management, increase self-consumption, reduce peak load, and reduce photovoltaic
consumption in the event of excessive energy generation [25]. One major problem that
hinders large-scale installations of the BESS is the initial investment cost, however, it is
expected to decrease over the coming years [26].

BESS provides financially and operation-wise optimal results when they are designed
closely corresponding to load requirements [27,28]. There are several studies available on
the optimal use of these BESSs to get maximum benefits. The most popular techniques are
linear programming optimization [29-32], genetic algorithm [33], particle swan optimiza-
tion [34,35], dynamic programming [11,36], convex programming [24,37] and mixed-integer
linear programming [38]. Many of the studies listed above used real-time photovoltaic and
load data to determine the optimal battery size for maximum reduction in electricity bills.

PV-BESS-EV integration has been investigated for residential users in numerous stud-
ies covering aspects of reduction in emissions of using EVs charged from the RES-based
residential grid [39] until operational details and structure. In [15,40-43], the architecture,
control algorithm, and their economical aspect are covered. The impact of EVs charging
from the grid on the network power quality is discussed in [44]. The EV modeling tech-
niques are presented in [16,45-47]. The utilization of EV batteries for domestic household
load has also been investigated in [48].

The main focus of this study is to investigate the economic feasibility of the PV-BESS-
EV system and EVs charging loads through it also considers the local market electric
energy prices. A residential data set for one year from an Estonian rural grid was taken
into consideration along with the PV generation data. The grid consists of eight different
domestic users which have been classified as small, medium, and large residential loads.
The resolution of the data is one hour. EV charging data is generated using a stochastic
model [45]. Finally, the initial economic analysis has been presented. The following are the
key points of this paper:

e APV production-oriented BESS has been proposed for the electrical load and EVs in a
residential household and eight different cases of small, medium and large scale have
been discussed.

e Alinear programming-based battery charging algorithm is used to target minimum
annual energy costs by reducing the number of grid usage hours.

e  The economic analysis of all the eight household cases with EVs along with variation
in the BESS size has also been carried out.

e  The payback period for all cases is estimated.

The paper is structured as follows: Section 2 presents residential load data profiles,
PV generation data, and EV data used for the context analysis. Section 3 explains the
methodology used in this research and gives the economic analysis of the proposed system.
Section 4 specifies the results and the corresponding discussion. Finally, the conclusion of
this research is presented in Section 5.

2. Data Profiles

This section is related to the detailed description of the data used in this study. The
recorded residential load and PV energy generation data originate from an Estonian rural
grid for a whole year (latitude: 58.2289). The time-resolution of the data was one hour. The
EV load profiles are generated based on a stochastic model based on travel activity.
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2.1. Load Profiles

The recorder electric load data from the low-voltage distribution network is analyzed
in this study. An hourly time-step of measurement was used to collect data in a rural
customer for an entire year. Figure 1 illustrates the grid layout and connection topology of
the low voltage grid segment under consideration. Eight residential loads are present in this
segment, as well as three auxiliary loads (pump station, street lighting, and local small-scale
heating plant). These residential electrical load cases constitute a small apartment/flat,
medium-size house, and residential apartment building. Table 1 presents the statistical
details for all eight cases. Using the measured data profiles, the peak electrical load for a
small apartment is between 1 to 4 kW (Cases 1, 4, 5, 8), for a household is 5 to 6 kW (Cases
2,5, 6) and an apartment building around 37 kW (Case 3). All these cases are summarized
in Table 1 as well as their accumulated annual energy consumption.

<

—

<

Heating Station

L4 L5 Pump Station L6 L7 L8
Figure 1. The layout of the low voltage distribution network.

Table 1. Load Profiles of eight different residential users (round up to 0.1).

Number of Peak Load Average Load Median Load 131213?2?

Load (kW) (kW) (kW) (KWh)
Case 1 1.9 0.1 0.1 741

Case 2 5.4 11 0.7 9056

Case 3 36.7 11.9 11.1 103,842

Case 4 22 0.3 0.2 2176

Case 5 2.7 0.3 02 1975

Case 6 5.1 0.7 0.5 6482

Case 7 5.9 0.7 0.5 6639

Case 8 4.1 0.4 0.3 3765

In contrast, the average electrical load is relatively low, e.g., 0.8 to 0.3 kW in all the
small apartments, which is rather low compared to the peak demand. However, for Case
3, it is around 12 kW considering a building total. The energy demand for the whole year
varies between 700 to 3800 kWh for small apartments, for medium houses, it is varying
between 6000 to 9000 kWh and for an apartment building, it is over 100,000 kWh.
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2.2. PV Profile

A summer day in (latitude: 58.2289) lasts on average over 16 h, while a winter day is
down to 4 to 5 h [22]. In this study, solar PV systems with capacities of 5 kW have been
proposed for a small residence, 10 kW for medium households, and 20 kW for a small
apartment building. Figure 2 represents the energy output of the 20 kW PV system for the
whole year, scaled from power at the measurement site.

20

Power (kW)
=)

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (Hours)

Figure 2. Energy generation from a 20 kW solar PV.

Based on Figure 2, it is clear that solar energy production is high between March and
September and low in the remaining months. As a result, the overall energy generation
during these months can be in surplus. The extra energy can be used to charge BESS and
EVs as well while the remaining energy can be sold to the grid.

2.3. EV Profiles

The EV data used in this study was generated from an EV usage model described
in [45]. It is an activity-based model (ABM) that incorporates several socioeconomic factors
which influence the travel behavior of an individual. The model generates a travel schedule
and based on that, the EV usage pattern is mapped and the load requirements for the grid
are defined. The model incorporated a National Traffic Survey (NTS) to obtain information
about user travel plans and categorize them. Then the probability distribution is used to
define the departure and arrival times for individual trips. Thereafter, the decision is made
to charge the battery of the EV or not based on the existing State of Charge (SOC) and the
traveling distance. Trips are also classified as work, shopping, school, vacation, business,
or any other activity.

In this study, there are eight different domestic household users as defined in Section 2.1.
Different numbers of electric vehicles are added to these residential users. These details are
shown in Table 2. The number of EVs ranges from 1 to 10. Small apartment and household
cases only have one EV and medium load cases have 2 to 4 EVs. As Case 3 is a residential
apartment building, therefore, 10 EVs are integrated with it. The one-year load profile of
case 1, case 2, and case 3 is also shown in Figure 3. The peak loads of cases 1, 2 and 3 are
4.6,15.4 and 60 kW, respectively. Further details of the other cases are given in Table 3.
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Table 2. Number of EVs in different households.

Number of Load Number of EVs Number of Load Number of EVs
Case 1 1 Case 5 1
Case 2 3 Case 6 2
Case 3 10 Case 7 4
Case 4 1 Case 8 1
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Figure 3. Comparison of small, medium and large scale cases.
Table 3. Load Profiles of eight different residential users with EVs integration.
Number of Peak Load Average Median Aé:):;if“;:‘)gny Installed PV
Load (kW) Load (kW)  Load (kW) P Power (kW)
(kWh)
Case 1 4.6 0.8 0.1 7250 5
Case 2 15.4 2.9 2.6 25,800 10
Case 3 60 16.4 15.4 143,725 20
Case 4 5.7 0.9 0.3 8686 5
Case 5 6.2 0.9 0.2 8485 5
Case 6 15.2 2.3 12 20,450 10
Case 7 16 2.3 1.7 20,610 10
Case 8 7.9 1.8 0.4 10,270 5

3. Methodology
3.1. Battery Energy Storage System (BESS)

In recent years, much effort and research have been put into battery storage technolo-
gies such as PV-based storage systems, electrical vehicles, and portable devices [24]. Over
the years, research in battery technology and bulk generation has drastically reduced the
prices and size of batteries [6]. This has resulted in the modern commonly used batteries of
Nickel Manganese Cobalt Oxide (NMC) and Lithium-Ion(Li-ion) batteries [49]. Currently,
the cost of a new battery is estimated to be around 100 € per kWh. It is also estimated
that with advancements in technology and recent studies, the life cycle of batteries will be

around 20 years [50].



Sustainability 2022, 14, 1079

60f 13

Currently, Li-ion batteries are the widely used batteries in conjunction with BESS
installed with solar PV systems. These are preferred mostly due to their compact size,
lack of maintenance, and higher efficiency, roughly more than 85% [51]. However, due
to their charge/recharge cycles, the practical life of these Li-ion batteries is estimated to
be around 5 years [52]. This is not feasible and challenging as the payback period for
these Li-ion batteries is not economically viable within 5 years. Therefore, these Li-ion
battery installations in conjunction with PV-based BESS systems are often supported by
government incentives in terms of reduced tariffs and subsidies [38]. However, to further
minimize operational costs, it is still needed to calculate the optimal battery size. This
includes several configurable parameters for the BESS system, which are shown in Table 4
for each case.

Table 4. Parameters of the BESS.

Number of Load Batteg‘gﬁl;aaty

Case 1 4

Case 2 41
Case 3 548
Case 4 10
Case 5 10
Case 6 35
Case 7 35
Case 8 20

The algorithm designed for charging and discharging PV-based BESS systems and
calculating battery size is shown in Figure 4. The algorithm is designed with the optimal
electric energy price value target and BESS charging is only done when it is needed and the
electric energy price is low. Whereas when the cost of electricity is high, batteries can be
discharged to inject power into the grid and be used for in-household purposes to keep the
cost of energy to a minimum. Further details of the algorithm can be found in [53,54].

PV & Load
data

. '

Battery Size Hourly Data
(Ah, Zp, Cp) (SoC of Battery)
T —
— —|7

N
Charge
@ -

Yes

E. Price < 0.1
20 < SOC < 90

Energy to
i

Internal
Usage

Discharge
battery

No PL< PV+2Zp I

20 < SoC < 90 Yes

Figure 4. The flowchart of the proposed algorithm.
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The impact on grid usage in terms of hours based on the designed algorithm for each
case is shown in Table 5. The number of hours ‘j” describes the total number of hours of
grid utilization in one year. The impact of battery size variation is also shown; it can be
seen that with the increase in battery size, the hours of power drawn from the grid have
reduced. The number of hours reduced vary for each case according to the scenarios as; in
case 7, the system with 50% battery size is already enough, so increasing the battery size
will not improve it any further. Therefore, it is also essential to calculate the optimal and
economical battery size for the implemented PV-based BESS systems.

Table 5. BESS size variation and impact on grid use.

Number Battery j a b c d
of Load Size (%) (hour) (hours) (hours) (hours) (hours)
50 2051 3040 292 286 3663
Case 1 100 1456 3139 400 248 4013
200 1237 3171 473 241 4120
50 3740 1616 248 395 3551
Case 2 100 3441 1701 310 441 3749
200 3125 1742 359 524 4058
50 3764 1690 227 416 3495
Case 3 50 3622 1002 96 489 4529
100 3214 1035 156 614 4969
200 2776 1035 205 769 5513
Case 4 100 2542 2400 335 383 3866
200 2178 2449 367 411 4177
50 2720 2372 254 330 3744
Case 5 100 2082 2495 344 320 4159
200 1724 2538 401 342 4439
50 3083 2002 261 347 3761
Case 6 100 2580 2173 341 347 4013
200 2231 2243 382 401 4305
50 2922 1770 242 305 4131
Case 7 100 2490 1879 322 347 4416
200 2084 1942 372 394 4756
50 2970 1818 273 349 4048
Case 8 100 2365 1999 338 352 4410
200 2001 2059 381 400 4719

j=no. of hours of grid usage, a = PV usage hours, b = Battery discharging hours to the grid, ¢ = Battery charging
hours from grid, d = Batter discharging hours for on-site usage.

Similarly, the peak power drawn from the grid and injected into the grid by the PV-
based BESS systems in each case is shown in Table 6. The table states the value for each
season of the year, and a comparison can be made to see the difference between different
seasons according to different battery sizes. It can be seen in Table 8 that the peak power
drawn from the grid and injected into the grid are not much different in the case of case
1 and case 4. Even for different battery sizes, both cases have net negative energy, which
states that the minimum battery size considered here is more than sufficient for those two
cases. Whereas in the scenario of case 3, the battery sizes and PV power rating are still far
from enough to reduce the difference significantly. Different scenarios for case 3 will be
further discussed in the later section.
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Table 6. Peak loads in the dependent season and variable BESS sizes.

Number of  Battery Size Peak Power Drawn from Grid Peak Power Injected into the Grid
Load (%) (kW) (kW)
Wt. Sp. Sum. Aut. Wt. Sp. Sum. Aut. Wt.
50 45 4.83 4.5 3.9 43 —4.9 —4.9 —4.7 45
Case 1 100 45 4.83 4.5 3.9 4.2 —4.9 —4.9 —4.7 45
200 45 4.37 4.2 3.8 4.2 —4.9 —4.9 —4.7 45
50 13.7 9.1 10 10 12.7 -9.7 -9.9 -9.6 13.4
Case 2 100 13.7 9.7 10 11.9 12.8 -9.7 -9.9 -94 13.4
200 13.7 9.6 10 10 12.8 -9.7 -9.9 -94 13.4
50 115.8 113.7 99.1 40.1 110 —75.2 —76.6 —73.6 115.5
Case 3 100 116.8 113.3 99.1 40.1 110 —75.2 —76.6 —75.5 116.7
200 113.7 113.3 99.1 40.1 110 —75.2 —76.6 —75.5 113.6
50 4.8 45 4.7 4.3 47 —4.9 —4.9 —4.4 4.8
Case 4 100 4.8 45 4.7 4.3 4.7 —4.9 —4.9 —4.6 4.8
200 4.8 3.7 4.6 4.8 4.7 —4.9 —4.9 —4.6 4.8
50 4.8 43 43 3.9 44 —4.8 —4.8 —4.6 4.8
Case 5 100 4.8 4.2 4.2 3.9 44 —4.8 —4.8 —4.6 4.8
200 51 3.6 4.2 3.7 44 —4.8 —4.8 —4.6 5
50 14.2 12 11.7 12.6 13.4 —9.6 —9.6 —8.6 14.2
Case 6 100 14.2 12 11.7 12.6 13.4 —9.6 —9.6 —8.6 14.2
200 14.2 12 11.7 12.6 13.4 —9.6 —9.6 —8.6 14.2
50 13.8 11.7 12.5 12.5 12.6 -9.7 -9.7 —8.8 13.8
Case 7 100 13.8 11.7 12.5 12.5 12.6 —9.7 -9.7 —8.8 13.8
200 13.8 11.7 12.5 12.5 12.6 -9.7 -9.7 —8.8 13.8
50 6.5 5.74 5.3 5.4 5.63 —4.8 —4.8 —4.6 6.5
Case 8 100 6.5 5.78 5.8 5.4 5.63 —4.8 —4.8 —4.6 6.5
200 6.5 5.78 5.8 5.4 5.63 —4.8 —4.8 —4.6 6.5

3.2. Economic Analysis

The energy management system has to be financially sound to motivate the imple-
mentation of the nZEB system. Here we evaluate the PV-based BESS design for the eight
different load cases. Economic analysis for PV-based systems depends on several parame-
ters, which are discussed in detail. This section will discuss the economic analysis of all
8 cases, along with the impact of the PV-based BESS system on the grid.

The electricity price on the electric energy stock market is provided with hourly steps.
For this reason, the observation time step considered in this study is also 1 h. Currently, the
price for a battery suitable for the BESS is around 100 €/kWh whereas, for PV, it is around
400 €/kW [55]. Table 7 shows the economic analysis for all 8 cases at different battery
sizes. As it can be seen that in all cases, the cost of electricity is significantly reduced after
integrating PV-BESS based system.

Table 7. Battery estimates and net energy cost for the year.

Accumulated Cost of

Accumulated Cost

Numberof Load  Battery Size (%) g oro0 from the Grid (€)  with PV-BESS-EV (€)

50 200 ~35.0

Case 1 100 200 450
200 200 ~56.6
50 793 289

Case 2 100 793 270
200 793 242
50 5237 3556

Case 3 100 5237 3130
200 5237 2565
50 246 44
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Table 7. Cont.

. Accumulated Cost of Accumulated Cost
Numberof Load  Battery Size (%) g o/o0 from the Grid (€)  with PV-BESS-EV (€)

Case 4 100 246 —16

200 246 —30

50 245 —5.3
Case 5 100 245 —-17

200 245 —-31

50 546 40.2
Case 6 100 546 33.2

200 546 16.1

50 875 374.2
Case 7 100 875 360.8

200 875 344.3

50 314 54
Case 8 100 314 50

200 314 41

The net usage of the prices after the integration of the BESS system has gone negative
in Case 1, regardless of the battery size. In comparison, it has reduced by approximately
50-90% in other cases. In most cases, this decrease is quite significant, whereas in Case 3, it
is only up to around 50%, which could be due to insufficient PV power and battery size.
This is discussed in more detail in the next section.

4. Discussion

As shown in Table 7, the net prices for electricity usage with a BESS system result in a
drastic decrease other than case 3, where the price is still high even if it is decreased. Case
3 is further taken into account and different power PV systems are implemented in case
3 to get the relevant study. This also proves that the optimal solution for a specific case
can be achieved by increasing PV or varying battery size and the net energy cost can be
reduced significantly. In Table 8, results are shown for two scenarios where the PV power is
increased to 40 kW and 60 kW. Net energy cost is also calculated for different battery sizes
in each case.

Table 8. Parameters for Case 3 with increased PV ratings.

Rated PV Battery Size ¢ (hours) a b c d Net Energy
Power (kW) (%) J (hours) (hours) (hours) (hours) Cost (€)
50 4131 1269 102 552 3810 2557.3
40 100 3505 1543 151 617 4178 2256.8
200 3151 1580 189 786 4626 1636.1
50 4088 1338 143 522 3713 1617.2
60 100 3314 1662 194 535 4125 1456
200 2689 1832 227 664 4676 943

As shown from Table 10, the net energy cost for most cases also decreases per the
increased power by increasing PV power. In the case where PV power is 100 kW, the net
energy cost goes negative. This shows that a good PV power source and a good battery
size should be selected for each case. Peak voltage variations for case 3 are also calculated
for each season with the increased PV power and battery size and are shown in Table 9.
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Table 9. Peak load variations for case 3 with increased PV ratings.

Rated PV Battesy Size Peak Power Drawn from Grid (kW) Peak Power Injected into the Grid (kW)
Power (kW) (%)
Wt. Sp. Sum. Aut. Wt. Sp. Sum. Aut.
50 113.9 113.3 99.1 40.1 110 —106.6 —-112.1 —103
40 100 115.8 113.3 99.1 40.1 110 —73.5 —104.1 —77.4
200 113.7 106.6 99.1 40.1 110 —73.5 —76.7 —77.4
50 113.7 102.6 99.1 40.1 110 —-111.9 —131.7 —113.4
60 100 115.5 109.8 95.6 40.1 110 —126.3 —131.6 —110.9
200 116.7 106.5 95.6 40.1 110 —126.3 —128.1 —76.7
From Table 9, it can be stated that the power injected into the grid increases with an
increase in PV power, while the increase in battery size does not make much of a positive
difference. For different seasons, the power drawn from the grid varies according to
consumption, but the power injected into the grid is overpowering the drawn power with
an increase in PV power. This also has a positive impact on the grid, as surplus power can
be utilized elsewhere. The payback period for PV is calculated and shown in Table 10.
Table 10. Payback periods for different BESS sizes.
Number of Battery Size (%) PV Rated Cost of PV and Cost of Total Savings Payback
Load Power (kW) Inverter (€) BESS (€) per Years (€) Period (years)
50 5 3000 200 235 14
100 5 3000 400 245 14
Case 1 200 5 3000 800 256 15
No EV (BESS 100%) 5 3000 400 245 14
No BESS 5 3000 - 241 12
50 10 6000 2100 506 16
100 10 6000 4100 524 19
Case 2 200 10 6000 8100 552 26
No EV (BESS 100%) 10 6000 4100 472 16
No BESS 10 6000 - 472 13
50 20 12,000 27,500 1680 24
100 20 12,000 54,900 2107 32
Case 3 200 20 12,000 109,800 2672 46
No EV (BESS 100%) 20 12,000 54,900 954 20
No BESS 20 12,000 - 954 13
50 5 3000 500 250 14
100 5 3000 1000 262 15
Case 4 200 5 3000 2000 275 18
No EV (BESS 100%) 5 3000 1000 241 13
No BESS 5 3000 - 241 12
50 5 3000 500 250 14
100 5 3000 1000 261 15
Case 5 200 5 3000 2000 275 18
No EV (BESS 100%) 5 3000 1000 241 13
No BESS 5 3000 - 241 12
50 10 6000 1800 506 15
100 10 6000 3500 513 19
Case 6 200 10 6000 7000 530 25
No EV (BESS 100%) 10 6000 3500 513 14
No BESS 10 6000 - 472 15
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Table 10. Cont.

Number of Battery Size (%) PV Rated Cost of PV and Cost of Total Savings Payback
Load Power (kW) Inverter (€) BESS (€) per Years (€) Period (years)
50 10 6000 1800 506 15
100 10 6000 3500 500 19
Case 7 200 10 6000 7000 514 25
No EV (BESS 100%) 10 6000 3500 514 14
No BESS 10 6000 - 472 13
50 5 3000 1000 260 15
100 5 3000 2000 264 19
Case 8 200 5 3000 4000 272 26
No EV (BESS 100%) 5 3000 2000 264 14
No BESS 5 3000 - 241 12

The payback period of PV and BESS integrated systems varies according to the imple-
mented PV power rating. Therefore, the payback period varies from 13 years to 40 years,
depending on the case and the PV-BESS system implemented. On average, the payback
period is around 13-15 years for each case depending on the BESS size variation, whereas
the specific payback periods can be seen from the table. The repayment period is calculated
based on the units saved plus the current electricity price in Estonia, which may vary with
time in the future, so this can be referred to as a rough estimate.

5. Conclusions

Worldwide use of electric vehicles will continue to increase in the coming years. On
the other hand, the load of EVs is high and they require more energy from the grid as
compared to other residential loads. Therefore, a PV-BESS and EV integrated system can be
a feasible, green, and more economical solution. However, the initial cost of the PV-BESS
system and the PQ issues generated by the higher number of PV-BESS-EV integration needs
some solution as well.

This paper concerns the economical and feasibility study of these integrated PV-BESS-
EV systems for residential users. The real-time residential load and PV data were used from
an Estonian distribution network, and EV load profiles generated via travel activity-based
stochastic modeling were added. The main aim here was to minimize the dependency on
the local electrical grid. Then the BESS size for these residential users was calculated and
a control algorithm was implemented to charge or discharge the BESS depending on the
load and availability of the PV energy. Moreover, the BESS size was also varied to find
the optimal economic numbers and the payback period. The payback period is around
13-15 years.

The results indicate that the proposed method gives a significant reduction in energy
bills and in one case the user will even earn money by selling extra energy to the grid. Two
cases have a nearly zero balance thus fulfilling the criteria of nZEBs. The other cases also
showed a significant drop in electricity bills varying from 45 to 80%.

For future work, the proposed energy management scheme can be implemented in a
real-time small residential network to measure the accuracy of the results. Moreover, it can
be extended to a bigger network and its feasibility and payback periods can be determined.
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ABSTRACT

The Baltic countries have good potential for solar photovoltaic (PV) energy generation, as on average
15 hours of sunlight is available in summer. Another potential option is to encourage the construction of
nearly zero-energy buildings (NZEBs) according to the EU framework. This study focuses on solar irra-
diance and energy generation potential in different regions of Estonia as a case study. Techno-economic
analysis of possible solutions to use differently rated domestic and commercial PV systems’ feasibility
and payback periods are presented. The results illustrate that all PV systems studied in the research are
self-sufficient while selling excess energy to the grid with a nominal payback period. Furthermore, for
short-term energy management, we developed an efficient deep learning-based forecasting algorithm.
Apart from the inherent non-linear nature of solar energy data, what makes forecasting particularly
challenging is to efficiently cope with the issue of data regression and random noise. The RNN-LSTM
algorithm is chosen for the prediction of solar energy. This is the first comprehensive report that can
encourage potential Estonian users to invest in solar PV systems and gain economic benefits. The results
presented in this study cover a broader perspective and are more useful keeping in mind the real market
situation of the Baltic countries.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

solar cell technology [1—4]. The global solar power generation was
between 120 and 140 GW in 2019, while China and Germany were

The electricity demand and associated prices have a substantial
impact on the economic activity of any country. Over the past
decade, policymakers are rapidly shifting towards environment-
friendly and cheap renewable energy resources (RES). Similarly,
in the last few years, the economy of Estonia has also been affected
by the gradual increase in the demand and supply gap. Therefore,
the Estonian government is taking initiatives to integrate more RES
into the national grid, which is still surpassing the European Union
(EU) framework of 32% energy production from RES until 2030.
Photovoltaic (PV) systems are one of the fastest-growing fields of
renewable energy (RE) in the world due to the advancement of

Abbreviations: PV, RES; RE, nZEBs; TSO, NCEP; ROI, RNN; LSTM, SM; NM, ARIMA;
ANN, KNN; ANFIS, CNN; BPNN, CAP, MAPE.
* Corresponding author.
E-mail address: noshab@taltech.ee (N. Shabbir).

https://doi.org/10.1016/j.energy.2022.124156
0360-5442/© 2022 Elsevier Ltd. All rights reserved.

the biggest manufacturers of solar PV systems [5]. Solar PV is the
lowest cost distributed RES for electricity generation with prices
expected to fall furthermore [6,7]. The concept of PV windows [8]
and nearly zero energy buildings (nZEBs) [9,10] is in the imple-
mentation phase and the interest in them is increasing with every
passing year. The nZEBs are defined as buildings that are capable of
producing almost the same amount of energy as their energy
consumption throughout the year [11—13]. According to the EU
framework, all newly constructed buildings in the EU must be
nZEBs [14,15]. These nZEBs will further increase domestic and
commercial PV installations.

China, USA, India, Japan, and Turkey are the five biggest pro-
ducers of solar energy in the world [16]. In the Baltic countries, the
total installed capacity of solar PV systems is 128 MW in Estonia
[17], 70 MW in Latvia and 120 MW in Lithuania [5]. The energy
production and consumption gap in Estonia is increasing every
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year. According to Elering, which is the Estonian transmission
system operator (TSO), the total installed capacity of various sour-
ces in Estonia is 3041 MW in 2020 [17]. In 2020, the share of con-
ventional and renewable energy was 46% and 54% [18], which is
already well ahead of the European Union's goal of renewable en-
ergy for 2020 [19]. The accumulated share of RE resources was 54%
biomass, 36% wind, 5% solar, 3% biodegradable waste, 1% hydro and
1% biogas [18]. The overall energy production in Estonia for 2020
was 23184 MWh, while the energy consumption was 45690 MWh.
Therefore, a clear demand and supply mismatch exists in Estonia.

In the year 2020, the average energy consumption in Estonia
was computed to be 905 MWh, while the energy production was
around 500 MWh, as shown in Fig. 1 [18]. As the geographical
location of Estonia is in the Baltic region; therefore, in winters, the
energy demand is higher and can reach up to 1400 MWh due to the
electrical load of heating equipment, while the energy generation is
around 800 MWh on average. Conversely, in a few months of
summer, the energy production is higher than energy consump-
tion. However, on average there exists a gap of around 500 MWh
during a year. Estonia, along with other Baltic states, such as Swe-
den, Finland, Norway and Denmark, is part of the Nordic electricity
exchange, which is regulated by Nord Pool [20]. Nord Pool offers an
electricity trade between different countries with a day ahead and
intraday market prices. The energy trade based on predicted de-
mand keeps the balance between demand and supply among the
partnering countries. The energy gap in Estonia is overcome by
importing energy from Finland and Latvia most of the time.
Therefore, an efficient energy forecasting method is vital for the
short-term energy management of Estonia, and the accuracy of
prediction is a major area of concern for the operators.

According to the report of the Estonian National Energy and
Climate Plan (NCEP 2030) [19], Estonia plans to reduce greenhouse
gas emissions by 80% by the end of 2050. Moreover, there is a goal
of 100% energy production from RE by 2030 for sustainable energy
needs. The report also highlighted the decrease and efficient use of
biomass and shale oil while focusing on locating optimal sites and
recommended more investment in offshore and onshore wind and
solar energy production.
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As per the EU framework of renewable energy, the Estonian
government started to invest heavily in the RE sector. The installed
capacity of wind energy in Estonia is around 329 MW [21] and solar
PV is 128 MW. As Estonia is in the northern part of Europe, the solar
irradiance is between 900 and 1100 kWh/m? [19,22]. Although this
PV potential is kept in view that winter in Estonia is much longer
compared to summer. Normal daytime in winter is around 6—7 h
and in summer it is around 18—20 h [23]. This solar potential is not
large, but it is still sufficient to supply small households and resi-
dential buildings. Customers can generate excess solar energy in
summer and sell it to the grid while buying more energy from the
grid in winter, which is closely related to the nZEBs framework. In
addition, the incorporation of battery energy storage technology
(BESS) can be used to store the extra generated energy that can be
utilized later of sold to the grid [24]. Moreover, according to the EU
requirement, all new buildings in 2021 should be nZEBs; therefore,
solar PV presents a good practical solution in Estonia.

The relationship between energy generation prediction accu-
racy and economic analysis is very important. As the economic
analysis is primarily based on the future income/profit of the pro-
posed PV system while keeping in view the initial investment cost.
Therefore, the accurate forecasting of energy generation will give
accurate numbers in terms of future income. Usually, statistical
algorithms are used for energy forecasting, however, these tools
lack precision [25,26]. In comparison, the ML and DL tools are more
accurate, and they give better results. Therefore, accurate energy
forecasting directly impacts the calculation of economic numbers.
In the last decade, various studies have been conducted on grid and
off grid PV solutions in many countries with a detailed analysis of
feasibility, risk factors, economic indicators and net metering so-
lutions [27—30]. Moreover, multiple machine learning-based fore-
casting methods have been used for PV energy generation
forecasting [31—34]. The reason for the wide use of machine
learning algorithms for forecasting is the capability and accuracy of
the models compared to statistical forecasting [35,36]. A biblio-
metric visualization of the authors supplied keywords from 179
impact factor journal articles published in the last five years related
to PV generation forecasting is given in Fig. 2. The image is created

Production

Time

Fig. 1. Energy generation and consumption of Estonia for 2020.
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Fig. 2. Bibliometric visualization for the author-supplied keywords, created with VOSviewer Software.

using VOSviewer software, where the large circles represent the
higher frequency of research articles on a specific topic or area.
Fig. 2 illustrates that the forecasting of solar energy generation is a
major area of concern while the majority of articles are using
different machine learning algorithms for improved accuracy and
reliability.

A detailed overview and comparative analysis of recent studies
are presented in Table 1. In Table 1, we emphasize tabulating all

Table 1
Comparison of our study with previous studies.

major studies conducted recently around the world, which focus on
complete system design to tackle the problem of demand-supply
management for on-grid and off-grid photovoltaic systems. The
key points discussed in all mentioned studies are the system
design, optimal PV angle calculations for maximum power point
tracking, optimal payback period, electricity bill reduction using
different metering techniques, and forecasting algorithms for
demand-response programs. However, the viability of these

Survey Country System Design Optimal angle for max. power output Payback Time Bill Reduction Bill Reduction with Net metering Energy Forecasting
[37] Cyprus v X X X v x
[38] Netherlands v/ X 4 X 4 x
[39] USA v X x x v x
[40] Brazil v x x x v x
[41] Ghana v x v x x x
[42] Chile v X x X v x
[43] Pakistan X x x X v x
[44] India x X v v v x
[45] Palestine v 4 v X x x
[46] Italy v x x x v x
[47] China X X v v v x
[48] Egypt v X x X x x
[49] Australia v X v X v x
[50] Iran v v x x x x
[51] Brazil v x x X x x
[52] Finland v X v v v x
[53] Thailand v v x x x x
[54] Brazil v x x x x x
[53] Thailand v x v x v x
[55] Palestine v x v x x X
[56] Turkey v X x X x x
[57] Brazil v x x X v x
[58] Jordan v X v X x x
[59] Jordan v X x x x x
[60] Pakistan v x v x v x
This article Estonia v v v v v v

w
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systems varies due to different geographical locations and different
regulations. These studies have offered a detailed analysis of
different PV systems, but none of them has included economic
analysis for domestic and commercial users based on machine
learning-based energy forecasting with net metering.

To the best of the authors’ knowledge, this study is the first of its
kind to propose different rated PV systems for residential and
commercial sectors, while presenting a thorough financial analysis
of PV installation in Estonia. Moreover, an efficient deep learning
algorithm is used for solar energy forecasting problems, which is an
essential part of short-term demand response problem design
incorporating domestic and commercial PV systems. Furthermore,
the viability of grid-connected PV systems in four different parts of
Estonia is discussed and evaluated to cover all counties and cli-
mates. The regions selected are Tallinn, which is the capital and
most populous city in the north, Saaremaa Island in the western
part, Parnu in the south and the third biggest city, and Narva
located in the east and the fourth biggest city in Estonia. These four
regions combined inhabit nearly 70% of the population of Estonia.
The calculations are made for three different rated PV systems for
the domestic, workplace, and commercial usage. The energy fore-
cast for the whole year is made using the proposed algorithm and
based on the forecasted data the economic analysis is made. The
solar radiation pattern in Estonia is similar in all regions; therefore,
the results of this study are extended to every city and region in
Estonia.

The outline of the article is given in Fig. 3, while the main key
points of the article are listed as:

e The feasibility and effectiveness of three different rated PV
systems for domestic, workplace and commercial usage are
discussed, and their installation impact is computed considering
the climate conditions and optimal PV panel angles of four
major cities/regions of Estonia.

The Long-Short Term Memory (LSTM) network of Recurrent
Neural Network (RNN) is tuned for a challenging solar energy
forecasting problem in order to efficiently deal with the issues of
fast varying data, severe nonlinearities, random uncertainties,
and time-dependent measurements. This is achieved by con-
ducting a detailed exploratory data analysis to carefully select
the input parameters for the RNN-LSTM model. Whereas a two-
layered RNN-LSTM model is optimized via the Adam algorithm
for accurate prediction of short-term solar energy forecasting.
The prediction horizon considered in the study is 3-day ahead or
72 h ahead.
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e The Return over Investment (ROI) is calculated keeping in view
the initial investments, governmental subsidy, and projected
returns. The payback period of the proposed solar PV in-
stallations varies from 8 to 18 years.

In an effort to closely replicate the practical financial dynamics
and to have more realistic findings with respect to the actual
setups of all three rated PV systems, we computed and analyzed
initial investment cost, subsidy and billing methods, payback
period, and impact of PV energy production on the national grid.

2. PV systems design

The PV system installation requires certain criteria and stan-
dards to be fulfilled while utilizing the full potential of the tech-
nology. The PV systems design and requirements in Estonia are
different from many other parts of the world. It needs continuous
monitoring for the efficient use of the system. The PV system is
required to generate power for 16—18 h a day in summer while
around 5—6 h a day in winter. The system also requires protective
devices to be installed on the AC/DC interfaces such as energy
routers and invertors.

One of the important criteria to conduct feasibility analysis and
site selection for solar PV system installation is the solar radiation
pattern of the area. The parameters that need to be observed during
the study of solar radiation patterns are solar irradiance, and solar
panel angles for elevation, declination, and incidence [61,62]. The
solar irradiance pattern for the four regions of Estonia is shown in
Fig. 4 [63]. It is evident from Fig. 4 that the irradiance is high in the
summertime lasts from April to August and is low in winter from
November to March. Moreover, the solar radiation pattern is nearly
similar in all four different regions of Estonia. Furthermore, the
intensity of solar radiation in all four areas is enough to achieve
high solar cell efficiency. The angle of incidence for the PV system is
calculated using the methods described in Refs. [64—67]. The solar
panel tilt angle g for Estonia is computed to be 38° to 40° for fixed
PV installations [68].

In this study, three different rated solar PV systems are
considered and evaluated: (a) The first system is for a small
household or an apartment with 12 kW of electrical load with an
approximate annual energy usage of 10000 kWh, (b) The second
system considered in this study is a small office or a small apart-
ment building with a 50 kW load with an approximate annual
energy usage of 55000 kWh and (c) Third is a commercial PV power
plant of 300 kW generation capability. Table 2 provides more
detailed information on the design parameters and capabilities of

Challengesin <=
PV Systems Section|
Mativation) Introduction Section IV
Literature Economic Analysis Initial Investments
Review Techno- Subsidy & Billings
Section Il Economic Payback Period
3kw PV System Design Analysis & SectionV
30 kW Energy Results & Discussions
300 kW Forecasting for
PV installations
Section Il in Estonia Section VII

Exploratory Data Energy Forecasting
Analysis

DL Forecasting

Conclusions

Fig. 3. Outline of the paper.
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Fig. 4. Solar Irradiance chart for different cities of Estonia.
Table 2
PV System design parameters.
Installation Method Gable Roof Flat Roof Ground Flat Roof Ground Ground
Available Area for Installation (m?) 85 85 85 300 340 1800
Annual Energy Consumption (kWh) 10000 10000 10000 55000 55000 -
No. of Panel 34 19 39 80 160 938
System Capacity (kW) 124 7 143 25.6 51.2 300
Annual Production (kWh) 12294 6396 14167 22843 49476 290051

all three rated PV systems. Similar to the European architecture of
residential houses and buildings, in Estonia, there exist two
different types of rooftops for a house or a small building, such as
flat or gable. Therefore, three different locations for PV panel
installation are considered in this study, such as flat roof installa-
tion, gable roof installation, and ground installation. All three PV
panel installation scenarios are further elaborated in Table 2.

In Table 2, it is evident that the maximum power generation is
achieved from the ground installation of PV panels, while the PV
panel installation on the gable roof in the small household is not
that far behind either. However, for the second-rated PV system
(medium scale, 30 kW), the difference is quite significant in terms
of the number of PV panel installations, system capacity, and
annual production, as illustrated in Table 2. The number of PV
panels in this description varies due to the variation in respective
rated power. In Estonia, the average area of gable roof for a common
residential home is 85 m? and a single 350 W PV panel takes on
average around 2.5 m? area [69]. Therefore, the average number of
PV panels on a gable roof is computed to be 34 with an installed PV
system capacity of 12.4 kW. Moreover, in Estonia, the average tilt
angle of a gable roof is usually 45°, which is sufficient for maximum
power point tracking in summers [70]. Similarly, for the same PV
panel power generation capacity, the number of panels that can be
installed on a flat roof household is reduced to be 19 with a rated
power of 7 kW on average [69]. The installation of solar panels on a
flat roof needs the adjustment of the tilt angle of the solar panels
that are necessary for maximum power point tracking. Therefore,
to provide a tilt angle, a hard frame must be attached to the solar

panels and due to this reason, the area required for the installation
of a single solar panel will increase and we will have fewer solar
panels installed on the flat roof. In comparison, the gable roof has a
default tilt angle and the installation of solar panel do not require a
tilted stand to be installed and we can apply solar panels straight off
the gable roof and therefore, the number of panels installed on the
gable roof is more than the flat roof with same free space available
for solar panel installation. The ground installation in the same area
will have a greater number of PVs installed and a higher rated
power of 14.3 kW. All these installation scenarios ate numbers have
been calculated using the online tool available at [69].

Fig. 5 describes the graphical representation of energy con-
sumption for every month along with the expected amount of
energy generation for a 12 kW system in a small household
considering all three locations of the PV system installation (gable,
flat and ground). Fig. 5 illustrates that the power consumption is
lower while the generation is higher in summer and vice versa in
winter. The energy generation and energy consumption gap is very
high in summer. Moreover, the energy generation for three
different types of PV installations is different. Gable and ground
installations are almost the same and a bit on the higher side, while
the PV system installed on the flat roof has lower energy generation
throughout the year.

A similar analysis is presented in Fig. 6, for energy generation
and consumption comparison for a 55000 kWh annual energy
usage-based small office building. From Fig. 6, we observed that the
energy generation from a flat roof is higher in November and
December. Moreover, in the months of May, June, and July the flat
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Fig. 9. Energy generation for 300 kW systems during the year in four different regions.

roof energy generation is greater than gable roof installations.

Furthermore, we evaluate and compare the energy generation
capability of a 12 kW solar PV system in all four regions of Estonia
and the results are presented in Fig. 7. Similarly, Fig. 8 and Fig. 9
show the energy generation results for 30 kW and 300 kW solar
PV systems, respectively. From all these figures, the energy gener-
ation pattern is higher from April to September and lower from
November to February in winter. The results presented in all three
figures show higher energy generation in Parnu and Saaremaa re-
gions compared to Tallinn and Narva. Moreover, the energy gen-
eration in Parnu is also a bit on the higher side compared to
Saaremaa.

It is also evident from the above figures that energy generation
in Tallinn and Narva is the lowest overall. However, in some months
it matches Tallinn's energy generation. The overall difference be-
tween these two regions is not much. Comparing the output of the
300 kW rated PV systems, it is observed that Parnu and Sareema
regions are better candidates for large-scale commercial in-
stallations. Small and medium scale PVs can be installed in all four
regions and there would not be a big difference in the output of
these systems.

3. PV energy forecasting using deep learning algorithm

Generally, energy forecasting is considered a regression-based
time series problem. Over the past two decades, the problem of
renewable energy forecasting has been addressed either using
statistical methods [14] or using different machine learning tech-
niques, such as auto-regressive integrated with moving average
(ARIMA), support vector machine (SVM), artificial neural network
(ANN), k-nearest neighbor (KNN), adaptive neuro-fuzzy inference
system (ANFIS) [41]. These algorithms work based on large his-
torical datasets and can incorporate different parameters as inputs
of the model. Due to high performance and accuracy, modern deep
learning algorithms, such as recurrent neural networks (RNN) and
convolution neural networks (CNN) are other widely used deep
learning algorithms in prediction problems. However, for any ma-
chine learning and deep learning algorithm, exploratory data
analysis of the problem is mandatory to carefully analyze and select
the input parameters of the model.

3.1. Exploratory data analysis

The PV generation data of a 12 kW PV system in four different
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Fig. 10. Statistical Analysis of solar PV generation data for (a) Tallinn (b) Saaremaa, (c) Parnu (d) Narva.

areas of Estonia was collected for this study. This section presents
the statistical analysis of the yearlong dataset gathered in 2016
from four local houses situated in Tallinn, Saaremaa, Parnu, and
Narva. Figure 1o shows two important statistical parameters, such
as moving average and moving standard deviation of the hourly
data gathered in all four regions throughout the year. From Fig. 10, It
is evident that in all four regions, the density of solar energy gen-
eration is higher from April to September. The maximum generated
power can go up to 8.5 kW in June. From October, the energy
generation value starts to drop significantly, and it remains the
same through winter until March, where the generation rarely goes
up to 1 kW. Moreover, in winter, there are many days when there is
no power available for the whole 24 h. Therefore, a clear bell-
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shaped curve is visible with a mean occurring around June or July.
The normalized histogram for the daily energy generated in
Fig. 11, indicates that the probability of power generation close to
3 kW is high in all regions. Moreover, the results indicate that the
probability of getting 15 kW in a day is higher in the Saaremaa
region than 12 kW. While in other regions, it is the opposite. Narva
region has a mostly high probability of power generation in the
lower values. In the Saaremaa region, the values are slightly high
compared to the Parnu region for high power output. For example,
the probabilities of generating 5.4 kW daily in Tallinn, Saaremaa,
Parnu, and Narva are around 14%,27%, 20%, and 20%, respectively.
For the time series prediction, first, we conducted an autocor-
relation analysis that indicates the regressive nature of the time
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Fig. 11. Histogram with respect to Power generation for (a) Tallinn, (b) Saaremaa, (c) Parnu (d) Narva.
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Fig. 12. Autocorrelation analysis.

series data. The analysis for the number of lags indicates the de-
pendency of a present data value on the previous values. The
autocorrelation analysis with 72 lags is shown in Fig. 12, which
indicates the autocorrelation of the current data sample value with
the previous 72 h. We defined a threshold of 0.5, which means 50%
dependency of the current data sample with the corresponding
sample [42]. In all four regions of Estonia. The high autocorrelation
value above 0.5 shows the high dependency with the past 5-h data.
In Fig. 12, a clear sinusoidal/periodic behavior is visible from the
autocorrelation graph as we can observe that the correlation value
is again higher than 0.5 with hours ranging from 22 to 28 and 46 to
52. These two intervals show the dependency of data samples on
similar hours of the previous day and the day before yesterday,
which indicates long-term data dependency. The autocorrelation
value of the solar PV energy generation changes rapidly and peri-
odically, which shows the dependency on day and night times. This
data analysis is useful in the design, estimation, and selection of
parameters for the deep learning forecasting algorithm.

3.2. Deep learning forecasting algorithm

The multiple layers in a deep structured neural network profi-
ciently extract the higher-level features from the raw input data
provided for training, and each layer level memorizes to transform
the provided input data into a more composite and abstracted way.
Deep learning structures consist of substantial credit assignment
path (CAP) depth, which is the transformations and from the input
of the model toward the output. The casual connections between
the inputs and outputs are described using CAPs. The CAP depth is
unlimited in the case of RNNs, in which the signal may distribute
more than once through a network layer. Better features extraction
than shallow structured neural models can be obtained using deep
models having CAP greater than two. Therefore, the extra layers are
quite proficient in learning and feature extraction more
proficiently.

The RNN is a class of ANNs where a directed graph along a

Table 3
A survey of ML and DL based forecasting techniques.

Survey Year Location Algorithms Forecasting
[74] 2019 Pakistan ANN 1 day

[75] 2018 Taiwan BPNN 1 day
[76] 2017 South Korea Short Term multivariate 1 day
[33] 2020 South Korea RNN-LSTM 14 h
[77] 2018 Germany Regression Trees/Probabilistic 1 day
[78] 2021 Morocco CNN-LSTM 3 days
[79] 2021 China CNN-LSTM 1 day
[80] 2021 China LSTM 1h
[81] 2021 Italy LSTM 1h
[82] 2020 China LSTM 1 day
[83] 2019 USA LSTM 1 day
This paper 2021 Estonia RNN-LSTM 1 day

Abbreviations: Back Propagation Neural Networks (BPNN).

temporal sequence is formed by the interconnection between
nodes. The temporal dynamic behavior is exhibited using inter-
connection schemes. RNNs are basically derived from a feedfor-
ward neural network (FF-NN). RNNs utilize their internal state to
proceed with the variable-length sequences of inputs. Tasks such as
connected handwriting recognition, segmentation, and speech
recognition can be proficiently performed using RNNs. RNN-LSTM
algorithm is used for the forecasting of energy. This algorithm is
selected as it gives better forecasting results for this type of time
series data set [35,71]. A survey of the ML and DL methods used in
various studies is given in Table 3.

In this study, the RNN-LSTM architecture is trained for short-
term PV energy generation forecasting [72,73]. The defects in the
original cyclic RNN can be successfully eliminated using the LSTM
training algorithm. LSTM is the most proficient and popular among
all other RNN training algorithms; therefore, we found it most
suitable for our solar PV energy forecasting data as the LSTM avoids
the vanishing gradient problem inherently associated with such
nonlinear time series data. The architecture of the LSTM algorithm is
shown in Fig. 13. The targeted prediction horizon is 3-days ahead to
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Fig. 14. 3-day ahead energy forecasting in summer.

gather a better and broader picture of the energy demand. The RNN-
LSTM architecture consists of a three-layered structure known as the
input layer, LSTM layer, and output layer. The initial state or LSTM
layer consists of a cell and after each iteration, the values in these
cells are either updated or deleted. In each iteration, a sequence-to-
sequence regression is performed to predict the future value.

In this study, all the simulations are performed in MATLAB 2020b
using a Core i7-9700 CPU with 64 GB of RAM. A 5-year dataset with
1-h frequency, from 2012 to 2016 of a 12 kW crystalline-based PV

system with 14% loss is used in the training of the RNN-LSTM fore-
casting model [63]. We use 90% of the data for training the RNN-
LSTM model, while the model is validated and tested on the
remaining 10% of data. Based on 50 run trails, the optimized number
of hidden layers is selected as 200 and the number of features is one.
The ADAM solver is used to train the model with 250 epochs. The 3-
day ahead forecasting results are obtained for both summer and
winter seasons, separately. Fig. 14 shows the 3-days ahead fore-
casting results in summer for the last three days of June in all four
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Fig. 16. 3-day ahead energy forecasting in winter.

regions. For the comparison purpose, the predicted results for the
last 3 days of June are plotted against the actual energy generation in
the last 3 days of June and the graphs for all four regions are shown
in Fig. 15. The overall RMSE value between the actual and forecasted
output in all four regions is 184.12 (8.03%), which indicates good
accuracy of the RNN-LSTM algorithm.

Similarly, Fig. 16 shows the energy forecasting for the last 3-days
of December. In December, for a 12 KW solar PV system, the average
energy generation in Tallinn, Saaremaa, Parnu, and Narva is around
45Wh, 26Wh, 31Wh, and 14Wh, respectively. The results can be
reciprocated and for more accurate results, the model can be
trained with the new dataset and then it can be used for more
precise forecasting results. Moreover, the comparison of actual and
forecasted energy production for the last 3-days of December is
given in Fig. 17.

1

4. Economic analysis

The economic analysis for all three rated solar PV systems for
residential and commercial purposes needs a detailed analysis of
the following: (a) initial investment analysis (b) subsidy and billing
(c) payback period, and (d) impact of electricity unit production on
grid.

4.1. Initial investment analysis

The initial cost of solar panels is computed for different available
installation methods, such as gable roofs, flat roofs, and ground
installation. The initial investment cost of the projected annual
production according to the local market of Estonia is given in
Table 4 [69].
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Fig. 17. Comparison of actual energy generation and forecasted energy in Winter.

Table 4

Initial investment for the three different rated PV systems.
PV System rating 12 kW 50 kW 300 kW
Installation method Gable Roof Flat Roof Ground Flat Roof Ground Ground
No. of panels 40 22 45 80 160 938
System capacity (kW) 12.8 7.04 144 25.6 51.2 300
Initial cost (k€) 134 8.5 14.7 231 393 154.4

4.2. Subsidy and billing is defined for this scenario. In Estonia, a subsidy of 5.37 cents per

kWh is given to prosumers who installed their PV stations before the

The billing analysis was conducted based on the unit price of end of 2020 by purchasing renewable energy from the TSO [18].
electricity, i.e., kWh in Estonia. In Estonia, the unit price of electricity Although the purchase price of TSO for renewable energy is 11% less
is a variable power market price; therefore, a general-purpose tariff compared to the sale price of renewable energy with the provided

Table 5

Sales prices of PV energy.
Time Sale Price per kWh (Euro) Purchase Price (11% less than the purchase price) Subsid per kWh (Euro) Final Purchase Price (Euro)
00:00 0.05 0.044 0.06 0.104
01:00 0.017 0.015 0.06 0.075
02:00 0.016 0.0145 0.06 0.0745
03:00 0.016 0.014 0.06 0.074
04:00 0.017 0.015 0.06 0.075
05:00 0.047 0.042 0.06 0.102
06:00 0.052 0.047 0.06 0.107
07:00 0.065 0.059 0.06 0.119
08:00 0.073 0.065 0.06 0.125
09:00 0.075 0.067 0.06 0.127
10:00 0.069 0.062 0.06 0.122
11:00 0.056 0.05 0.06 0.11
12:00 0.053 0.047 0.06 0.107
13:00 0.058 0.052 0.06 0.112
14:00 0.049 0.044 0.06 0.104
15:00 0.05 0.045 0.06 0.105
16:00 0.049 0.044 0.06 0.104
17:00 0.058 0.052 0.06 0.112
18:00 0.05 0.045 0.06 0.105
19:00 0.07 0.058 0.06 0.118
20:00 0.075 0.067 0.06 0.127
21:00 0.077 0.068 0.06 0.128
22:00 0.066 0.059 0.06 0.119
23:00 0.062 0.056 0.06 0.116
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subsidy, an investor was able to take advantage to gain some reve-
nue. As the electricity prices are variable in Estonia, Table 5 shows an
overview of the renewable energy sale price offered by TSO in a day
along with the purchase price for TSO for the same day.

4.3. Payback period

The payback period of a solar panel installation is another crit-
ical economic indicator. A typical payback period for the solar panel
installation may vary from 10 to 18 years. The payback period of the
different rated PV installations is shown in Fig. 18. However, for
end-users, gaining a handsome profit, in the long run, is guaran-
teed. All the small-scale PV installations have a payback period of
around 18 years. The large-scale PV installation has the lowest
payback period of around 10 years. However, there can be varia-
tions in the payback as it is calculated with the same tariff
throughout all the years, if the tariff changes the payback time can
increase.

In this study, a period of 25 years [61,69,84] is considered to
show the general gain after the installation, considering a specific
division of production between the own usage of the facility and
the sales portrayed, as shown in Table 6 [18]. The financial gain here
is shown after the breakeven point. The hourly electricity prices for
March 28, 2021 were taken into consideration and the final prices
are projected including the subsidy. This subsidy can vary with
every hour and compensate for the difference between the agreed
lowest offer and the market price. The estimated average price is
around 11 cents per kWh.

Another important factor in economic analysis is the profit-
ability index (PI) or the cost-benefit ratio. It gives information about
the feasibility of any project by calculating the ratio between initial
investment and the present value of future income. The value of PI
equal to 1 indicated the breakeven point, less than 1 means the
project won't be able to even cover up the cost of initial investment
and greater than 1 shows that it will show some profit. It is
calculated by using Eqn. (1) [84]. The calculated PI values are also
described in Table 6.

_ Net Present worth
" Initival Inverstment

(1)

Moreover, Fig. 19 shows the ROI over 25 years for all three rated
PV systems. The ROI is calculated using this equation:

20

No. of Years
S (] o]

~

Small (Gable) Small (Flat)
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Net Income + (Current Value — Original Value)

koI = Original value

*100  (2)

The annual deprecation is the solar PV is computed as:

v =PV (1 T i)" ®3)

100
where the CV is the current value, PV is the previous value, y% is the
annual depreciation rate, and n is the number of years.

4.4. Impact of PV energy production on the national grid

In this section, the impact of solar PV installations on the na-
tional grid of Estonia is projected. Here, different cases are
considered which include various installation scenarios based on
different rated PV systems. The number of small-scale installations
is varied between 100 and 10000, the medium-scale between 10
and 1000, and the large scale between 1 and 10. Later, the accu-
mulated energy generation throughout the year is calculated. These
projected calculations are given in Table 7. It can be seen from this
table that these PV installations can have a significant effect on the
national grid of Estonia. If there are 10000 small-scale, 1000 and 10
large-scale installations in one year, then they will be providing an
accumulative energy generation of 192 TWh. A similar number of
these installations every year will substantially reduce the overall
load on the national Estonian grid and will help in the reduction of
the demand and supply gap.

5. Results analysis and discussions

This study has been made for the four different regions of
Estonia, including the capital and two other populous regions.
These four regions are geographically the eastern, northern,
southern, and western parts of the country and are comprised of
more than 60% of the Estonian population. Therefore, this study
covers the aspects of solar energy generation and diversifying the
Estonian energy market, reducing its energy import bills,
improving energy forecasting, and directly reducing the carbon
footprint as well. The results of this study can be extended to the
other Nordic and Baltic countries of the region as they also have
quite a similar solar irradiance profile.

Three different scale PV systems are proposed and tested fore-
seeing the individual energy requirements of residential homes,
residential apartment buildings/Office buildings, and micro-PV

Small (Ground)

Medium (Flat) Medium (Ground) Large (Ground)

Fig. 18. The payback period for different PV installations.
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Table 6
Comparison of initial investments and financial gain.
PV System 12 kW 50 kW 300 kW
Installation Method Gable Roof Flat Roof Ground Flat Roof Ground Ground
System Capacity (kW) 128 7.04 144 256 51.2 300
Initial Cost (k€) 134 8.5 14.7 23.1 39.3 154.4.
Division of Production (Own usage % — Sales %) 27-73 43-57 24-76 54—-46 34-66 -
Financial Gain in 25 years (k€) 5.6 2.7 6.6 26.8 524 229.7
PI 142 1.32 1.45 2.16 233 249
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Fig. 19. Return over Investment for different rated PV systems.

Table 7
PV systems' impact on the grid.

Small (12 kW) Medium (50 kW) Large (300 kW) Annual Production (MWh)
100 10 1 2176

500 50 3 10301

1000 100 5 20312

5000 500 7 96343

10000 1000 10 191526

plants based on local investments. We proposed a 12 kW PV system
for residential homes, a 50 kW PV system for the apartment
building, and a 300 kW PV system for the installation of the com-
mercial PV plant. All three PV systems are tested and compared for
a gable roof, flat roof, and ground installation methods based on
annual energy generation. The comparative analysis of energy
generation illustrates that the generation is nearly the same in all
four regions; however, Narva remains slightly on the lower side
throughout the year followed by Tallinn. While Parnu and Saar-
emaa have similar energy generation and are slightly higher
compared to the other two regions due to better altitude positions
for solar PV generation.

Another important feature for the future prospect of PV system
installation in Estonia is to estimate solar power generation accu-
rately. As solar PV systems are expected to become a bigger part of
the electric power generation mix, the power system operators
require better visibility of how much solar power will produce.
Therefore, an optimal schedule can be devised to dispatch solar and
grid energy for demand-supply management of residential homes,
apartment buildings, and distributed microgrids. Improving solar

14

energy forecasts will allow more flexibility to adopt condition
changes while helping to minimize disruptions and the overall cost
of operation. Foreseeing the need, we implement a short-term
forecasting model for solar energy using RNN-LSTM deep-
learning algorithm. Only the use of an analytical method on time
series data cannot predict the exact future behavior. A detailed
exploratory data analysis is mandatory to understand the re-
lationships that exist in the time series data. Therefore, we
employed quantitative methods, such as moving average, moving
standard deviation, regression, and correlation analysis to find
similar patterns in the historical time series data of solar PV energy
generation. Based on detailed exploratory data analysis, we select
the input parameters to be considered in the RNN-LSTM short-term
forecasting model. The prediction horizon considered in our study
is 3-day ahead for short-term hourly demand scheduling of
generating units, economic analysis, and secure operation of
installed PV systems.

One of the major contributions of this study is to analyze the
long-term economic prospects of PV system installation. The study
includes initial investment, subsidy and billing, financial gains,
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payback period, and long-term impact on the national grid. For a
12 kW PV system, the initial investment cost per kW is computed to
be €1052, €1205, and €1025 for a gable roof, flat roof, and ground
installation, respectively. Moreover, for a 50 kW PV system, the
initial investment cost per kW is calculated as €900 and €768 for
flat roof and ground installation, respectively. Furthermore, for a
300 kW commercial PV plant, the per kW initial investment for
ground installation is €514. Currently, the TSO is offering 5.37
cents/kWh subsidy to renewable energy generator customers.
However, the TSO is purchasing renewable energy at an 11% sub-
sidized rate. Despite this fact, the overall per hour final purchasing
price per unit is reasonable, which is computed to be €0.10.

The payback period considered in the study is 25 years to
analyze ROI and long-term financial gain. For 12 kW PV systems,
flat roof installation is more feasible and easier than gable and
ground installation, but it will produce less electricity and most of
the small households in Estonia may not be having a flat roof.
Therefore, a ground or gable roof solution is a better option, they
will also generate more energy. The payback period is around 18
years. In the case of an apartment/office building, a flat roof with
300 m? PV installations with 25 kW capacity will have a payback
period of 12 years. However, the ground installations with 340 m?
and 50 kKW capacity will be having a payback period of 11 years, but
their profit margin in the next years will be significantly higher. For
the large-scale commercial PV system, the payback period is
around 9 years for a 300 kW rated system, but it will reach 2.5 times
the financial gain than its initial investment. These financial in-
dicators are given in Table 6.

5.1. Comparison of study with existing research work

Many studies have been conducted on the PV installation
methods, its impact on the national grid, calculation of payback
periods, effects of net metering and energy generation forecasting
in different parts of the world as mentioned earlier in Table 1. The
payback period of 5 kW PV systems in Turkey was found to be
varying between 7 and 14 years [84]. The study was conducted in
nine different provinces of Turkey. A similar study made in Saudi
Arabia found the payback period of 12 kW solar PV system to be
around 12 years in case of off grid installation and 8 years while
connected to the grid [85]. A study conducted in Australia found the
payback period of 16 years for a 3-kW residential PV system.
Moreover, a Moroccan study estimated that a 4-kW PV system has a
payback period of 12 years. The payback period was estimated to be
between 17 and 23 years in a study made in Jordan [58]. The
payback periods using net metering and different PV installation
scenarios gave a payback period between 8 and 16 years for a study
conducted in Pakistan [61]. Moreover, a study conducted in Estonia
considered eight different residential household scenarios along
with PV and Electric Vehicles (EV) installation [86]. The authors
investigated the potential of PV-BESS-EV integrated with grid and
computed the payback period to be between 16 and 20 years [86].
In comparison, the results of this study show the payback period
between 10 and 18 years. The payback period of small residential
PV is higher because the solar potential in Estonia is not that high
compared to the other regions in the Baltic Sea Area. In addition,
the winter in Estonia is very long with mostly dark days and very
little PV energy generation.

Moreover, many machine learning based forecasting studies
have been conducted in different parts of the world. The accuracy of
the forecasting results is usually measured in RMSE or mean ab-
solute percentage error (MAPE). The deep learning based hour-
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ahead PV energy forecasting algorithm gave RMSE value of
61 kW (7%) [4]. The PV energy forecasting was made using Artificial
Neural Networks (ANN) and the MAPE was estimated to be around
15% [74]. A study conducted in South Korea for a PV power plant
using LSTM algorithm concluded that the RMSE value is around 8%
and the MAPE is around 11%. A similar study for 24 h ahead PV
energy forecasting in China using LSTM technique showed that
RMSE value is around 9% [82]. The hybrid forecasting algorithm
based on LSTM and Genetic Algorithm (GA) gave an RMSE value of
1.118 kW (around 4%) for a 30 min ahead PV energy [80]. In com-
parsion, the results of our LSTM forecasting algorithm give an RMSE
values of 184 W (around 8%). This forecasting is relatively accurate
as the algorithm is generating forecasting values for 3-days ahead.

6. Conclusions and future works

This paper presents the feasibility, comprehensive analysis, and
broader picture of solar energy generation potential and prospects
in all different regions of Estonia, such as Tallinn, Saaremaa, Parnu,
and Narva. These regions cover around 70% population of Estonia.
The analysis of solar radiation patterns in all four regions of Estonia
for the summer and winter seasons reveals the feasibility of solar
power generation as the radiation pattern is nearly similar. In this
study, three different PV-rated systems for domestic and com-
mercial installations are discussed. These cases included a small
residential household, an office building and a small commercial PV
power plant. The PV installation methods like the flat roof, gable
roof and on-ground are also discussed here.

Moreover, the benefits of using accurate and effective PV energy
forecasting algorithms are mandatory to manage demand-supply
and short-term energy policymaking for the residential sector,
commercial buildings, and private micro-PV plants. The relation-
ship between energy generation prediction accuracy and economic
analysis is very important. As the economic analysis is primarily
based on the future income/profit of the proposed PV system while
keeping in view the investment cost. Therefore, we developed and
analyzed the RNN-LSTM algorithm for short-term PV energy fore-
casting over the prediction horizon of 3-days ahead. There is a huge
variation in solar energy generation during summer and winter
days. However, the proposed algorithm showed good forecasting
results both in the summer and winter seasons. The forecasting
results are evaluated based on the RMSE values.

Furthermore, a detailed economic analysis is conducted to
compute financial gains for potential investors in PV energy gen-
eration. The economic analysis is based on the initial investment of
the installation of PV systems, financial gain in 25 years, the
payback period, ROI and PI. The payback period in all small
households is around 18 years. However, the gable roof installation
gives better results as compared to flat roof PV installation. The
payback period for an office building/a small apartment building is
between 11 and 12 years and for a small commercial PV plant is 10
years. Moreover, all the cases show a positive and profitable PI
varying between 1.4 and 2.5.

Based on this conducted study, in the future, we will develop an
efficient energy management model and will compute the optimal
size of the battery energy storage system as a key factor to effec-
tively minimize the total energy consumption cost of the nearly
Zero Energy Buildings (nZEBs) while having a minimum depen-
dence on the grid. Moreover, a detailed techno-economic analysis
will be conducted for the whole year including all four weather
seasons, different residential buildings, and different electricity
pricing techniques.
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Abstract: Wind energy is featured by instability due to a number of factors,
such as weather, season, time of the day, climatic area and so on. Furthermore,
instability in the generation of wind energy brings new challenges to electric
power grids, such as reliability, flexibility, and power quality. This transition
requires a plethora of advanced techniques for accurate forecasting of wind
energy. In this context, wind energy forecasting is closely tied to machine
learning (ML) and deep learning (DL) as emerging technologies to create
an intelligent energy management paradigm. This article attempts to address
the short-term wind energy forecasting problem in Estonia using a historical
wind energy generation data set. Moreover, we taxonomically delve into the
state-of-the-art ML and DL algorithms for wind energy forecasting and
implement different trending ML and DL algorithms for the day-ahead
forecast. For the selection of model parameters, a detailed exploratory data
analysis is conducted. All models are trained on a real-time Estonian wind
energy generation dataset for the first time with a frequency of 1 h. The
main objective of the study is to foster an efficient forecasting technique
for Estonia. The comparative analysis of the results indicates that Support
Vector Machine (SVM), Non-linear Autoregressive Neural Networks (NAR),
and Recurrent Neural Network-Long-Term Short-Term Memory (RNN-
LSTM) are respectively 10%, 25%, and 32% more efficient compared to
TSO’s forecasting algorithm. Therefore, RNN-LSTM is the best-suited and
computationally effective DL method for wind energy forecasting in Estonia
and will serve as a futuristic solution.

Keywords: Wind energy production; energy forecast; machine learning

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided
BY the original work is properly cited.



1018 CMC, 2022, vol.72, no.1

1 Introduction

The worldwide energy demand is increasing with every passing year so is the environmental
pollution due to the brown energy generation from fossil fuels. Therefore, the uses of Renewable Energy
Resources (RES) like solar and wind have gained popularity due to lower carbon emissions. However,
wind energy generation is variable and unstable due to variations in wind speed [1,2]. The variable
nature of wind depends on geographical area, weather, time of day, and season. Therefore, predicting
wind power generation with 100% accuracy is a very difficult task [3]. However, this prediction is
highly important for the management of demand and supply in power grids and also has an economic
impact [4,5]. This prediction was usually made using statistical methods [6], such as moving average
and autoregressive, but the accuracy of the models was relatively low. Machine learning (ML) based
forecasting algorithms are a widely used tool due to their property to capture nonlinearities in the data
with high accuracy, but machine learning algorithms usually require a large dataset of formation to
develop an efficient forecasting model. These models are trained, validated, and tested; sometimes they
still require retraining to obtain more precise results [7]. The forecasting models are usually divided
into three categories, such as short-term forecasting (few minutes to 24 h), medium-term forecasting
(days-ahead to week-ahead), and long-term forecasting (month-ahead to year-ahead) [8]. In this study,
the real-time dataset of Estonian wind energy generation is used [9,10] for the development of these
forecasting models.

In the past, several research works have been developed using deep methods for wind speed
forecasting and wind power generation forecasting. A bibliometric visualization of the keywords used
in previous studies conducted in the past 5 years related to wind energy furcating has been made in
VOS viewer software and depicted in Fig. 1. The figure shows the keywords used in 238 articles in the
last five years related to wind energy forecasting. The forecasting of the wind speed in a university
campus in Switzerland is being made using the ridge regression technique [11]. In a similar study
[12], different ML algorithms like Support Vector Machine (SVM), K-Nearest Neighbor (KNN)
regression, and random forest are compared for the forecasting of wind speed and corresponding
energy generation for the day-ahead prediction horizon. A hybrid genetic algorithm and SVM-based
algorithm are developed and tested for under-learning and overlearning scenarios of forecasting to
determine the optimal solution [13]. A review of a supervised ML algorithm is made in [14]. In
another work, ANN-based algorithms are developed and simulated to predict wind energy generation
for grid stability [15]. A novel Cartesian genetic Artificial Neural Network (ANN) based algorithm
is also proposed for wind energy forecasting in [16], which includes Hybrid regression based on
SVM, Convolutional neural network (CNN), and singular spectrum analysis (SSA). The experimental
results showed that SVM gave better predictions [17]. In [18], Extreme Machine Learning (ELM)
algorithms have been used to forecast the wind speed for energy generation. A comparison of ELM,
Recurrent Neural Networks (RNN), CNN, and fuzzy models is also given in [19-22] and future
research directions are also explored. Tab. | provides a summary and comparison of the few known
research articles related to wind energy forecasting using ML algorithms including Self-adaptive
Evolutionary Extreme Learning Machine (SAEELM), Multilayer Perceptron (MLP), Random Forest
(RF), Linear Regression (LR), Extremely Randomized Trees (ET), Radial Basis Function Neural
Network (RBFNN), Gradient Boosting Algorithm (GBM), Tree Regression (TR), Long Short-Term
Memory Networks (LSTM), Two-stream Deep Convolutional Neural Networks (TDCNN), Mean
absolute percentage error (MAPE).
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Figure 1: Bibliometric visualization of the keywords used in previous studies, created using VOSviewer

Table 1: Comparison of proposed work with other studies on wind energy ML-based forecasting

Paper Algorithms Data size Duration Description

[18] ELM 4 months lh ELM has better accuracy for
multistep ahead forecasting.

[20] SVM 4 years 1 day Feature extraction based
SVM outperforms KNN.

[21] Randomizable 4 years 1 day Randomizable filter

filter classifier classifier gives better
forecasting and a lower
error compared to KNN.

[23] SVM, ANN 3 years 1 day ANN is found to be more
accurate than SVM.

[24] RNN-LSTM 1 year lh LSTM forecasting with
10.43% RMSE.

[25] SVM, KNN 4 years 1 day-1 month KNN algorithm
outperforms SVM, RT, and
ET.

[26] SVM, RBFNN 2 years 2h A hybrid model based on
SVM and RBFNN gives
only 6.84% MAPE.

[27] RNN-LSTM 4 years 1 day LSTM gives better
forecasting.

[28] DNN 10 years 1 day DNN gives better

forecasting compared to
SVM.

(Continued)
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Table 1: Continued

Paper Algorithms Data size Duration Description

[29] ANFIS 2 years lh ANFIS gives 2.25%, 3.35%
and 3.86% MAPE.

[30] Linear regression 2 years 6h ML algorithms give more

accurate forecasting
compared to statistical
methods.

[31] SVM, ANN 2 years 1 day A hybrid SVM-ANN model
outperforms individual
models.

[32] RNN-LSTM 1 year 3 days LSTM gives 25% more
accurate than statistical
methods.

[33] ARIMA, ELM 1 month 1 day Hybrid ARIMA-ELM gives
MAPE of 2.21%, 2.94%, and
3.2% for three different sites.

[34] TDCNN 4 years 1-24h TDCNN gives lower RMSE
for up to 24 h before
forecasting.

[35] GBM 3.75 years 21-45h The improvement in GBM
reaches on average 1% on
MAE and 0.9% on RMSE.

[36] SVM/ANN 2.5 year 6-24h SVM gives better 24 h ahead
forecasting results than
ANN.

[37] RNN, KNN 3 years 1 day LSTM is 18.3% more
accurate than KNN and
SVM.

[38] MLP 3 years 70 h ANN based MLP gives
accurate forecasting for 70
h.

Our work LR, TR, SVM, 2-8 years 24 h RNN-LSTM gives better

ANFIS, AR, forecasting compared to
ARIMA, NAR, LR, TR, SVM, ANFIS,
LSTM ARIMA, AR and NAR.

From all the above studies, it is clear that ML and DL algorithms are very useful in wind energy
forecasting. However, it is still a very difficult thing to make an accurate prediction and a universal
model is not possible. Therefore, every scenario requires a local dataset of wind speed, weather
information, and location. Each model needs to be customized, built, and then trained. This accurate
forecasting will help in the better management of demand and supply, smooth operation, flexibility
and reliability and as well as economic implication.

In this research, a comparison has been made between different machine learning and DL
forecasting algorithms for a day-ahead wind energy generation in Estonia. The historical data set
on one-year Estonian wind energy generation was taken from the Estonian Transmission System
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operator (TSO) called ELERING [9]. This historical data contains all of the above-stated factors that
affect wind energy generation. On the basis of this data, different forecasting algorithms are modeled,
trained, and compared.

The key contributions of this paper are summarized as follows:

e To address the problem of wind energy forecasting in Estonia, state-of-the-art ML and DL
algorithms are implemented and rigorously compared based on performance indices, such as
root mean square error, computational complexity, and training time.

e A detailed exploratory data analysis is conducted for the selection of optimal models’ parame-
ters, which proves to be an essential part of all implemented ML and DL algorithms.

e A total of six ML NAR and two DL algorithms are implemented, such as linear regression, tree
regression, SVM, ARIMA, AR, NAR, ANFIS, and RNN-LSTM. All implemented algorithms
are thoroughly compared with currently implemented TSO forecasted wind energy and our
proposed RNN-LSTM forecasting algorithm proves to be a more accurate and effective
solution based on performance indices.

The structure of the paper is shown in Fig. 2.
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Figure 2: Paper outline

2 Machine Learning Algorithms for Forecasting

The most common ML tool for forecasting is regression-based algorithms [19]. Regression-based
learning is categorized into supervised learning algorithms that use past data sets of the parameters
in the training of the model and then predict the future values of the parameters based on the
regressed time lag values of the parameters, where the number of lag selections is based on observation.
Moreover, the most used DL algorithms in time series prediction are RNN and CNN. In CNN, the
output only depends on the current input while in RNN, the output depends both on the current
and previous values that provide an edge to RNN in time series prediction. In this section, machine
learning and deep learning algorithms used in this study are elaborated.

2.1 Linear Regression

This simplest and most commonly used algorithm computes a linear relationship between the
output and input variables. The input variables can be more than one. The general equation for linear
regression is along with its details can be found in [7].
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2.2 Tree Regression

This algorithm deploys a separate regression model for the different dependent variables, as these
variables could belong to the same class. Then further trees are made at different time intervals for the
independent variables. Finally, the sum of errors is compared and evaluated in each iteration, and this
process continues until the lowest RMSE value is achieved. The general equation and the details of
the algorithm are described in [7].

2.3 Support Vector Machine Regression (SVM)

SVM is another commonly used ML algorithm due to its accuracy. In SVM, an error margin
called ‘epsilon’ is defined and the objective is to reduce epsilon in each iteration. An error tolerance
threshold is used in each iteration as SVM is an approximate method. Moreover, in SVM, two sets of
variables are defined along with their constraints by converting the primal objective function into a
Lagrange function. Further details of this algorithm are given in [7,39,40]:

2.4 Recurrent Neural Networks

The RNN is usually categorized as a deep-learning algorithm. The RNN algorithm used in this
paper is the Long Short-Term Memory (LSTM) [41]. In LSTM, the paths for long-distance gradient
flow are built by the internal self-loops (recurrences). In this algorithm, to improve the abstract for long
time series based different memory units are created. In conventional RNN, the gradient vanishing
problem is a restriction on the RNN architecture to learn the dependencies of the current value on long-
term data points. Therefore, in LSTM, the cell data are kept updated or deleted after every iteration
to resolve the vanishing gradient issue. The LSTM network in this study consists of 200 hidden units
that were selected based on the hit-and-trial method. After 200 hidden units, no improvement in the
error is observed.

2.5 Autoregressive Neural Network (AR-NN)

This algorithm uses feedforward neural network architecture to forecast future values. This
algorithm consists of three layers, and the forecasting is done iteratively. For a step ahead forecast,
only the previous data is used. However, for the multistep ahead, previous data and forecasted results
are also used, and this process is repeated until the forecast for the required prediction horizon is
achieved. The mathematical relationship between input and output is as follows [42]:

h n
V= wo—|—Zvvj.g(vvw—{—Zw,»J.y,1)+e, (1)

Jj=1

i=1
where w,; , w, (i,j=0,1,2,...,n,j=1,2, ..., h) are parameters for the model; » represents the
input nodes, / is the number of hidden nodes. In addition, a sigmoid function is used for the hidden

layer transfer function as defined in Eq. (2) [42].
1

sig (x) = HTp(—x) (2)

2.6 Non-Linear Autoregressive Neural Network

The Nonlinear Autoregressive Neural Network (NAR-NN) predicts the future values of the
time series by exploring the nonlinear regression between the given time series data. The predicted
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output values are the feedback/regressed back as an input for the prediction of new future values.
The NA-NN network is designed and trained as an open-loop system. After training, it is converted
into a closed-looped system to capture the nonlinear features of the generated output [43]. Network
training is done by the backpropagation algorithm mainly by the step decent or Levenberg-Marquardt
backpropagation procedure (LMBP) [44].

2.7 Autoregressive Integrated Moving Average (ARIMA)

This model is usually applied to such datasets that exhibit nonstationary patterns like wind energy
datasets. There are mainly three parts of the ARIMA algorithm. The first part is AR where the output
depends only on the input and its previous values. Eq. (3) defines an AR model for the p-order [45]:

yr:C+®1yr—l+ﬂ2yr—2+---“py/—p+et (3)

where ¢ is the number of lags, O is the coefficient of the lag, ¢ is the intercept term and €, is white
noise. MA is the second part that describes the regression error as a linear combination of errors at
different past time intervals. Eq. (4) [45] describes the MA as follows,

=€+ @ler—l + szet—z +... ijez—p (4)

The third part ‘T’ describes that the data have been updated by the amount of error calculated at
each step to improve the efficiency of the algorithm. The final equation of ARIMA is as follows [45]:

y1 =cC + @1)/:71 + gzy,,z + cen @,,y,,p + ®]€1,| + @26,,2"‘, ceey @,,G,,,, (5)

2.8 Adaptive Neuro-Fuzzy Inference System (ANFIS)

This algorithm is a hybrid of ANN and Fuzzy logic. In the first step, Takagi and Sugeno Kang’s
fuzzy inference modeling method is used to develop the fuzzy system interference [46]. The overall
model in this algorithm consists of three layers. The first and last layers are adaptable and can be
modified accordingly to the design requirements while this middle layer is responsible for the ANN
and its training. In the fuzzy logic interference system, the fuzzy logic structures and rules are defined.
Moreover, it also includes fuzzification and defuzzification as well.

This algorithm works on Error Backpropagation (EPB) model. The model employs Least Square
Estimator (LSE) in the last layer which optimizes the parameters of the fuzzy membership function.
The EBP reduces the error in each iteration and then defines new ratios for the parameters to obtain
optimized results. However, the learning algorithm is implemented in the first layer. The parameters
defined in this method are usually linear [46,47].

3 Exploratory Data Analysis

Estonia is a Baltic country located in the northeastern part of Europe. Most of its energy is
generated from fossil fuels, whereas the RESs are also contributing significantly. The distribution of
RES and non-RES energy gen is shown in Fig. 1. The average share of fossil fuels is around 70% for
the year 2019, while renewables are around 30% [9]. Although 30% is still higher as per the EU plan for
renewable integration in the grid by 2020 [9]. As per the 35% share in RE, wind energy is the second
most used resource in Estonia after biomass in 2019 [9], which makes it very important. The energy
demand in Estonia is usually high in winter and the peak value is around 1500 MWh, while the average
energy consumption is around 1000 MWh. Meanwhile, the average energy generation is around
600 MWh and the peak value is around 2000 MWh [9]. The demand and supply gap can vary between
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200 to 600 MWh and is almost the same throughout the year. This gap is overcome by importing
electricity from Finland, Latvia, and Russia if needed [9].

In Estonia, a total of 139 wind turbines are currently installed, mainly along the coast of the Baltic
Sea [10]. Fig. 3 shows the geographical location of the installed sites. The installed capacity of these
wind turbines is around 301 MW. In addition, there are 11 offshore and two offshore projects under
the development phase. The plan is to have 1800 MW of wind power generation by the year 2030
[10]. The current share of wind energy is only around 10% of the total energy generated in Estonia.
However, according to EU regulations, environmental factors, and self-dependency, this share will
increase rapidly in the future. Therefore, due to the stochastic nature of wind speed, accurate prediction
of wind power generation will be essential to manage demand and supply. A good and advanced
prediction technique is required for an accurate wind power generation prediction in Estonia. This
study provides a detailed and wide exploratory and comparative analysis for wind power generation
forecasting by employing multiple linear and nonlinear ML and Deep Learning (DL) techniques.

= Non-renewable (fossil) = biomass (including waste] = wind = solar = bio-degradable waste = biogas = hydro

Figure 3: Share of renewable and non-renewable energy in Estonia

The data set used in this article is the Estonian general data on wind energy generation from
1 January 2011 to 31 May 2019. The frequency of the data set is one hour. This data set for wind
energy generation is highly variable due to the weather conditions in Estonia. The maximum value
of wind energy production in the aforementioned period is nearly 273 MWh, the mean value is
76.008 MWh, the median is 57.233 MWh, and the standard deviation is 61.861 MWh. To demonstrate
the variable nature of the time series dataset for Estonian wind power generation, the moving average
and the moving standard deviation are the best tools to elaborate on this dynamic nature of the dataset.
Fig. 4 shows the wind energy production data along with the moving average and the moving standard
deviation from Jan. 2018 to May 2019. Itis clear from Fig. 4 that there are no clear peaks in wind energy
or low seasonal values. Wind energy production is variable throughout the whole year. As indicated
by the moving average, wind energy generation is high in winter (November to March), but even in
that time, its value drops for a few weeks and then again increases.

The histogram and the probability density function (PDF) of the data are shown in Fig. 5a, which
indicates that the wind energy production is below 50 MWh most of the time and its value rarely goes
above 250 MWh. The histogram data is now normalized to compute the actual probability of different
energy production values. The resultant probabilities are depicted in Fig. 5b. These probability values
also indicate the same analogy. For example, the probability of getting 100 MWh energy is around 20%
and 250 MWh is only around 3%. Therefore, the accuracy for the prediction of peak power generation
or above-average power generation is a challenging task. Further analysis of this data set is performed
using autocorrelation analysis. Fig. 5¢ shows the autocorrelation analysis of the data set.
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Figure 5: (a) Histogram (b) PDF of the data, (c) Autocorrelation analysis

In time-series analysis, the autocorrelation measure is a very useful tool to observe the regression
nature of the time-series data and provides a birds-eye view for the election of the number of lags if any
regression-based forecasting model is employed. It is the correlation of the signal with its delay version
to check the dependency on the previous values. In this graph, the lag of 20 h is shown, in which the lags
up to the previous 16 h have a regression value above 0.5 percent and after which it drops significantly
below 0.5. The confidence interval is identified by the calculated 26 values. The correlation decreases
slowly over time, which shows long-term dependency. The description of this observation is described
in [48]. However, the autocorrelation of wind energy generation does not decrease rapidly with weather
changes related to different seasons. This exploratory data analysis helps us to estimate design, and
parameter selection for all ML and deep-learning algorithms defined earlier.

4 Forecasting of Wind Energy

The Estonian wind energy dataset has been used in this research. The dataset is then divided into
training, testing and validation and the divisions of data are 80%, 10% and 10%, respectively. All these
simulations are carried out in Matlab2021a in a Windows 10 platform running on an Intel Core i7-9700
CPU with 64 GB RAM. Initially, the training data was converted into standard zero mean and unit
variance form to avoid convergence in the data. The same procedure was carried out for the test data
as well. The prediction features and response output parameter has also been defined for a multistep
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ahead furcating. The Estonian TSO is responsible for the forecasting of wind energy generation on
an hourly basis. Their prediction algorithm forecasts wind energy generation 24 h in advance. It also
generates the total energy production and the anticipated energy consumption. Fig. 6 shows the values
of wind energy production and the values forecasted by the TSO algorithm for May 2019 [49].
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Figure 6: Actual and projected generation of wind energy in May 2019

Most of the time, the actual energy generation is much higher than the forecast values. The gap
can go up to 70 MWh, which is too much. The forecasting algorithms need to be more accurate than
that. This variation can falsely tell the energy supplier to use alternative energy sources rather than
wind. This may be fossil fuel or any other resource, which will cost more to the supplier and eventually
the customer. This low accuracy allowed us to study, develop, and propose a comparatively suitable
forecasting algorithm for the prediction of wind power generation in Estonia.

In this study, the emphasis is on the accurate prediction of wind energy generation in Estonia.
Eight different algorithms based on machine learning and DL are simulated and tested using the
1-year wind energy generation data set for a day-ahead prediction horizon. The results of all employed
algorithms are compared based on RMSE values. Fig. 7 shows the comparison of actual wind energy
generation and the forecast wind energy generation of TSO for 31 May 2019. It is clear from the figure
that there is a substantial gap between the original and predicted values. The RMSE value for TSO
forecasting is 20.432. The forecasting of all algorithms is tested on the same day as shown in Fig. 8.
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Figure 7: Wind energy actual vs. forecasted generation on May 31
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Figure 8: Forecasting of different algorithms: (a) Linear regression; (b) Tree Regression; (¢c) SVM;
(d) ARIMA; (e) AR-NN; (f) ANFIS; (g) NAR-NN; (h) RNN-LSTM

5 Results and Discussions

The wind power generation data understudy has a highly nonlinear nature; therefore, a vast variety
of linear and nonlinear forecasting algorithms need to be tested to find an appropriate option. A
thorough comparative analysis is conducted to compare the accuracies of all forecasting algorithms
employed in this paper. Machine learning algorithms, such as linear regression, AR, ARIMA, and
tree-based regression, are not performed adequately, while SVM is given good forecast accuracy.

On the contrary, deep-learning algorithms, such as NAR and RNN, have a high degree of accuracy
compared to all other algorithms employed as the architectures for both algorithms have the capability
to capture nonlinear features of the data. However, the ANFIS also gives relatively low accuracy.
The ML algorithms are not showing accuracy as the data is highly non-linear and therefore the
ML algorithms do not perform better curve fitting and result in lower accuracy as compared to DL
methods.

DL models, in contrast, due to the ANN fitted the curve better and therefore gave more accurate
forecasting results. Thus, these results indicate that for this time series-based forecasting the efficiency
of DL methods is higher as compared to ML methods. The comparative analysis of ML algorithms
and DL algorithms based on the RMSE value is depicted in Tab. 2. In addition, to the best of the
author’s knowledge, this study is the first comprehensive comparative analysis between the know ML
and DL algorithms for wind power generation data in Estonia.

Furthermore, it is pertinent to mention that this energy forecasting topic has been under
investigation for decades. The main issue is still the accuracy of forecasting. The main focus is to
forecast wind energy on the basis of past data and not wind speed. Some researchers have tried to
develop some hybrid models as well. However, it is extremely difficult to compare the results of these
studies with our study as there are many parameters involved like the size of the dataset, location, time
span, and then the algorithm used.
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Table 2: Comparison between ML and DL algorithms

Algorithm name RMSE value Algorithm name RMSE value
Linear regression 37 AR 64
Tree-based regression 34 ARIMA 78
SVM 18 ANFIS 44
RNN-LSTM 13 NAR 16

In this study, the best results are shown by the RNN-LSTM algorithm. The algorithm consists
of 100 hidden units in the LSTM layer. This number of hidden units is obtained by the hit and trial
method, the numbers are varied from 20 to 250. The models showed the best results for 100 units
and after that, the results remained almost the same. It is using historical data only. Therefore, the
number of features is one and the response is also one. The training of the algorithm is carried out by
an ‘ADAM’ solver and the number of Epochs was also varied from 50-250 epochs. When the whole
data set passes through the back or forward propagation through the neural network then it is called
an Epoch. Learning rate is used to train the algorithm and when a certain number of Epochs are
passed then it is dropped to a certain value. The initial learning rate was defined as 0.005. The gradient
threshold is also one. The simulation parameters are described in Tab. 3.

Table 3: Comparison of the different parameters of the LSTM network

Data size No. of hidden  Epoch Learn rate drop Training time RMSE
(Years) states period

2 50 250 125 3:34 9.47

2 100 250 125 8:03 9.44

2 200 250 125 14:23 9.44

2 100 200 100 7:15 9.44

2 100 100 50 2:31 9.99

2 100 50 25 1:16 11.9

2 200 50 25 3:18 12.67
2 200 100 50 7:54 9.53

In order to make multistep predictions, the prediction function makes a forecast of a single time
step; and then updates the status of the network after each prediction. Now, the output of the first step
will act as the input for the next step. The size of the data is also varied and tested between 1 month
and 96 months to observe its impact on the forecasting algorithm. The simulation results show that
after the data size is more than 24 months, the performance of this algorithm does not affect. Almost,
the same RMSE value is obtained for 36, 60, and 96 months. The comparison is shown in Tab. 4. The
RMSE values and the corresponding training time are also shown in Tab. 4.
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Table 4: Comparison of training data size and RMSE of LSTM

Data size No. of hidden Epoch Learn rate drop Training time RMSE
(Months) states period

1 100 200 100 0:23 46.45
6 100 200 100 1:42 18.43
12 100 200 100 3:27 13.67
24 100 200 100 7:15 9.44
36 100 200 100 10:40 9.44
60 100 200 100 17:49 9.44
96 100 200 100 28:22 9.44

Fig. 9 shows the compression of actual wind energy production of TSO, the forecasted production
and our algorithm for May 2019. It is clear from the graph that RNN-LSTM is providing better
forecasts throughout the month. The RMSE value of the TSO furcating is 25.18 while the RNN
forecasting is 15.20 for the whole month. Fig. 10a shows the error of both the TSO forecasting
algorithm and the proposed RNN-LSTM algorithm. It is also clear from the graph that TSO’s
forecasting error is higher. The TSO’s algorithm predicts a small variation in output energy well
but fails when there are large fluctuations. On the other hand, RNN-LSTM is forecasting the large
functional well but sometimes does not work that well with continuous low values of energy prediction.
Therefore, a hybrid of both algorithms can be proposed here that will overcome both the low and high
fluctuation. The results are shown in Fig. 10b. The error in forecasting is also depicted here. The
error in forecasting is quite low now as is observed from the graph. The RMSE value for this hybrid
forecasting is 8.69.
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Figure 9: Comparison of wind energy actual generation, TSO’s and RNN based forecast for May 2019
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Figure 10: (a) Forecasting error of TSO’s algorithm and LSTM forecasting; (b) Average value of both
forecasting algorithms and error in average forecasting

6 Conclusions

In the past decade, ML and DL have become promising tools for forecasting problems. The highly
nonlinear behavior of weather parameters especially wind speed makes it a valid challenging problem
to use ML and DL algorithms for wind energy forecasting for smart grids. Moreover, an accurate
time-series forecasting algorithm can help provide flexibility in modern grids and have economical
and technical implications in terms of demand and supply management and for the study of power
flow analysis in power transmission networks. In this paper, six ML and two DL forecasting algorithms
are implemented and compared for Estonian wind energy generation data.

Wind energy accounts for approximately 35% of total renewable energy generation in Estonia.
This is the first attempt to provide an effective forecasting solution for the Estonian energy sector to
maintain power quality on the existing electricity grid. We target the day-ahead prediction horizon,
which is the normal practice for the TSO forecasting wind energy model. Real-time year-long wind
energy generation data are used for the comparative analysis of the ML and DL algorithms employed.
Moreover, the results of all employed models are also compared with the forecasting results of TSO’s
algorithm. The comparison of all ML and DL algorithms is based on performance indices, such
as RMSE, computational complexity, and training time. For example, the results for May 31, 2019,
illustrated that TSO’s forecasting algorithm has an RMSE value of 20.48. However, SVM, NAR, and
RNN-LSTM have lower RMSE values. The results conclude that SVM, NAR, and RNN-LSTM are
respectively 10%, 25%, and 32% more efficient compared to TSO’s forecasting algorithm. Therefore,
it is concluded that the RNN-LSTM based DL forecasting algorithm is the best-suited forecasting
solution among all compared techniques for this case.
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Abstract—Load forecasting has become a very important
parameter in modem power systems. These smart power systems
require flexibility, smooth operation, scalability, and better
demand-side management. Thus, making load forecasting is an
essential thing. However, accurate load forecasting is a very
challenging task as it involves variables such as the number of
devices in the residential household and their many types, time,
season, area, and occupants’ behavior. In this study, a
comparative analysis has been performed between different
machine learning and deep learning-based residential load
forecasting models. These models are trained based on the
dataset of an Estonian household and they are tested, and
forecasting has been made for a day-ahead load. Based on the
simulation results, it was observed that Recurrent Neural
Network (RNN) based algorithms give more accurate
forecasting as it showed the lowest lower Root Mean Square
Error (RMSE) value compared to other algorithms.

Index Terms—Residential Load, Load Forecasting, Machine
Learning, Deep Learning, Neural Networks

INTRODUCTION

The modern energy market has gone through a paradigm
shift. The number of distributed Renewables Energy
Resources (RES) is increasing with every passing year. The
world is slowly moving towards the goal of 100% energy
generation from renewable energy sources and smart grids [1],
[2]. Future grids aim to provide green, flexible, reliable, and
economical energy. However, on the downside, these
distributed RES create many serious Power Quality (PQ)
issues [3]. The energy generation from these RES is highly
dispersed and stochastic. Therefore, future smart grids require
a solution to Demand Side Management (DSM). This DSM
problem can be catered by the accurate forecasting of the
future load [4].

Residential load depends on many factors like the number
of loads inside the household, energy rating of the appliances,
number of residents, weather and season, time, and occupant’s
behavior (cultural aspects can have a significant effect) [5].
Therefore, a single forecasting algorithm cannot be a solution
in every scenario. Moreover, the data acquisition and
transmission of the household is quite a challenging task. The
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PUT1680, Estonian Center of Excellence on Zero Energy and Resource
Efficient Smart Buildings and Districts ZEBE, 2014-2020.4.01.15-0016
funded by European Regional Development Fund.
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larger number of devices and the high sampling frequency
need a large database. Then processing these data and making
some sense of them requires a lot of processing.

Forecasting can be short-term, medium-term, and long-
term. Many statistical and machine learning-based algorithms
have been described in the literature for load, energy
consumption, and energy forecasting applications. Statistical
forecasting techniques are easy and time convenient, but they
lack accuracy [3]. The comparison between statistical methods
and machine learning-based forecasting has been made in [6].
A performance evaluation of seven different machine learning
algorithms has been performed in [7] and the foresting results
of the Support Vector Machine (SVM) were found to be more
accurate. SVM-based machine learning algorithms give 75%
accuracy compared to statistical methods [4]. A similar study
has been carried out in New York to analyze and forecast the
residential load [8]. The forecast was made for up to 10 hours.
Short-term prediction was made in Texas using machine
learning [9]. The Nearest Neighboring algorithm is used in
[10] for residential load forecasting. The data was measured
using a sensor network and the simulation results showed a
forecasting accuracy of 90%.

A long-term residential load forecasting model for one
year was developed in [11]. The residential load consisted of
many household appliances like a heater, washing machine,
oven, etc. Long Short Term Memory (LSTM) that belongs to
the category of deep learning-based Recurrent Neural
Networks (RNN) was found to be more accurate for
residential load forecasting in [12]. Similarly, LSTM was also
found to be more accurate in [13]. Algorithms based on SVM,
Artificial Neural Networks (ANN), and Convolutional Neural
Networks (CNN) are proposed in [14]. In [15], a short-term
deep learning-based algorithm was also found to be more
accurate as it gave lower Root Mean Square Error (RMSE),
mean absolute error, and mean absolute percentage error. A
similar study for short-term residential load forecasting also
observed from simulation results that LSTM-based RNN
outperforms other machine learning-based algorithms [16].

From all the above-mentioned researchers, it is clear that
machine learning-based residential load forecasting is more
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accurate compared to statistical methods. However, the design
of such models requires much larger and more accurate past
measurement data sets. Larger data is required to train the
forecasting model, as residential loads have many types and
are highly variable. For the same reason, a single forecasting
algorithm is not a viable solution to be used in every scenario.
Each model will have its own merits, demerits, and forecast
period.

The remaining article is divided into the following
sections: Section II gives some theoretical information about
the machine learning algorithms used in this study. Section IIT
presents an exploratory analysis of the data used in this
research. Section IV contains the simulation results, and
finally, the conclusions are presented in Section V.

MACHINE LEARNING ALGORITHMS

Forecasting is similar to a regression problem. This
belongs to supervised machine learning that requires past data
sets and learns from them [3]. However, deep learning
algorithms, a subset of machine learning, are more complex
and require more computational time and larger datasets [5].
The neural network-based deep learning algorithm is known
as ANN. As their architecture is quite similar to a human
brain. The main two categories of ANN are CNN and RNN.

Linear Regression is the simplest and commonly used
machine learning algorithm. It just calculates the relationship
between the independent variable and the dependent variables
and then performs regression for forecasting [3]. Tree-based
regression is another algorithm that is based on linear
regression, but regression is performed on each branch. As a
different variable belongs to a different class. SVM-based
regression is quite popular and useful. In this method, an error
margin is defined at first and then with every iteration, it is
recalculated and updated to reduce the error until the threshold
value is achieved [3].

Autoregressive (AR) neural networks use a feed-forward
three-layered structure. For a single-step ahead forecast, only
the previous values are used. For multistep ahead forecasting,
both previous and forecasted values are used. The process
continues until the error is minimized. Non-Linear
Autoregressive Neural Network (NAR) uses a backward
propagation algorithm with nonlinear regression based on past
data. Initially, it is an open-loop system that is converted into a
closed-loop system after training. Auto-Regressive Integrated
Moving Average (ARIMA) is suitable for stationary non-
datasets. The first stage of this algorithm applies AR and the
second stage Moving Average (MA) is used. In the third step,
the error is reduced to improve the efficiency of the algorithm.
The Adaptive Neuro-Fuzzy Inference System (ANFIS)
consists of both ANN and fuzzy logic. The fuzzy logic is
applied using Takagi and Sugeno algorithm [17], which is also
based on three stages. Then, back error propagation is used in
the first layer that optimizes the parameters of the fuzzy logic
and Least Squares Estimator (LSE) in the third layer.

RNN belongs to the deep learning category. The RNN
LSTM algorithm is used here in this study. LSTM used
recurrence to build paths for long-distance gradient flows. The
network consists of cells or hidden units that store

information. In traditional RNN, only the current values are
stored, while the previous values are deleted [18]. In LSTM,
after every iteration, the cell data is updated while keeping the
previous values. The LSTM network used in this study has
200 units. This number was selected by the hit-and-trial
method, while varying the value between 50-300. After 200
units, the results were almost the same.

EXPLORATORY DATA ANALYSIS

The data set used in this study was measured in an
Estonian household located in Tallinn, Estonia. It was a 3-
room house built-in 2005. The area of this house is 67.8 m’.
Four people are residing in this house, two adults and two
kids.

Measurements were made in 2015 with a measurement
error of less than 5%. The data were measured for the months
of February and March, which is usually winter in Estonia.
The frequency of the measurement was one minute. There
were many different housed appliances, e.g., dishwasher,
vacuum cleaner, TV & stereo, heating units, refrigerator, and
washing machine. Individual load usage was measured and
then accumulated to calculate the overall load of the
household.

The electricity tariff in Estonia is usually higher in winter
between 7 and 11 AM and 8 AM and 12 PM in summer. The
use of electricity in Estonia is higher in winter compared to
summer due to the use of internal heating systems. In this
household, the normal electricity usage pattern is between 7
and 9 AM and then between 5 and 9 PM on weekdays. On the
weekends, the patron is different, the high usage is between 5
PM to 12 PM. The maximum load recorded during this period
was 6913 W. The load patterns for the whole duration along
with the moving average and the moving standard deviation
are shown in Figure 1. The moving average is around 1000 W
on weekdays and some weekends, it goes higher to 2500 W.
Figure 2 shows the histograms and the probability of
occurrence of each load value throughout the period.
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Figure 1. Data loaded with moving average and moving standard deviation
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Figure 2. Histogram and probability of occurrence of load values

From Fig. 2, it is clear that the high probabilities are in the
low load regions. This is an indication that it is late or that
residents are not present at home at that time. Rarely the load
value goes above 4000 W and mostly it is between 2000 to
3000 W indicating the normal device usage pattern.
Sometimes, the value goes above 4000 W and, in extremely
rare cases, above 6000W. This may be an indication of the
weekend and washing machines plus dishwasher are being
used as well for the regular loads. The further analysis of the
load is made by autocorrelation, which is shown in Fig. 3.

Autocorrelation gives useful observations in the regression
analysis for the selection of the number of lags in the time-
series analysis. In Fig. 3, the lag for 100 hours (roughly 4
days) is shown. The 72 hours value has a dependency of 0.5
or higher on the previous values. Even after that, it doesn’t
fall significantly but steadily. The confidence interval is
defined by 26 values. The slow decay of the correlation
shows the dependency on the previous data indicates the
long-term dependency. This observation is explained in more
detail in [19]. This data analysis helps to select the machine
learning and deep learning parameters of the algorithms
explained earlier.
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IV. SIMULATION RESULTS

Residential load forecasting depends on many variable
factors. Therefore, a comprehensive analysis of linear and
non-linear algorithms is required to identify a suitable load
forecasting model. In previous studies, linear algorithms [3]
and RNN based algorithms [5], [20] were tested. Here, they
are further compared with quadratic SVM, non-linear SVM,
AR, NAR, ARIMA, and ANFIS algorithms. These
simulations are performed on Matlab 2020b on the Windows
10 operating system using a Core 17-9700, 3 GHz processor
with 64 GB of ram. Every model was trained first, and then
forecasting was made for one day ahead. The simulation
results and a comparative analysis are shown in figure 4.
Table I describes all the RMSE values of the forecast results.
It can be seen from the figure that machine learning
algorithms like linear regression, tree-based progression, AR,
and ARIMA performed very poorly. Simple SVM did not give
good results as well. However, the cubic SVM gives better
accuracy and fits the curved well. The deep learning
algorithms NAR and RNN-LSTM fit the curve expectantly
well and therefore their forecasting results are more accurate.
The comparison of training time is made in Table II.

TABLE I. COMPARISON OF RMSE VALUES

Algorithm Time Algorithm Time
Name (sec) Name (sec)
Linear 2.49 Non-Linear 1.59

Regression Regression

Tree-Based 2.63 Gaussian 2.51

Regression SVM

Linear SVM 1.68 OE 0.88
Quadratic SVM 1.75 ANFIS 14.32

Cubic SVM 1.06 AR 0.92

RNN 33:27 NAR 4.06
TABLE 1. COMPARISON OF TRAINING TIME

Algorithm RMSE Algorithm RMSE
Name Value Name Value
Linear 381.15 Non-Linear 325.36

Regression Regression

Tree-Based 241.11 Gaussian 234.02

Regression SVM

Linear SVM 619.85 OE 167.34
Quadratic SVM 187.73 ANFIS 168.32
Cubic SVM 172.11 AR 169.54
RNN-LSTM 159.52 NAR 163.54
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Figure 4. Comparison of machine learning and deep learning algorithms

V. CONCLUSIONS

Residential load forecasting is very vital for a better DSM in
smart grids. The integration of more and more RES and nearly
zero energy buildings requires this forecasting for smooth
operation, flexibility, and reliability. The residential load is
dependent on many factors; therefore, its accurate forecasting
is a difficult task. Machine learning and deep learning
algorithms are used for such forecasting, as traditional
statistical algorithms lack consistency and accuracy. However,
these models require a very large historical dataset and
computational power.

In this article, residential load data from an Estonian
household are taken into account and ten different machine
learning and deep learning algorithms have been developed
for the 24 hours ahead forecast of the residential load. The
forecasting results of all these algorithms are compared in
terms of the RMSE value. The simulation results showed that
the RNN-LSTM algorithm has the lowest RMSE value among
all others. The NAR, AR and cubic SVM algorithms also have
a comparatively good forecast as well. Although, in terms of
the training time of the algorithm, RNN-LSTM has the worst
performance as the complex neural network calculations
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require lots of processing. It is almost eight times higher
than the next closest NAR algorithm. However, in this load
forecasting case, NAR and cubic SVM can also be very good
options, as their training time is much lower, and their
efficiency is quite high.

For future work, the data size can be increased, and the
load forecast of a week ahead can be made. In addition, the
current forecasting model is only based on historical data.
The algorithms can be enhanced by incorporating
temperature, humidity and other environmental factors which
can make it more accurate and detail.

REFERENCES

[1] T. Ahmad and H. Chen, “A review on machine learning forecasting
growth trends and their real-time applications in different energy
systems,” Sustain. Cities Soc., vol. 54, no. December 2019, p.
102010, 2020, doi: 10.1016/j.s¢5.2019.102010.

[2] M. Naveed Igbal, M. Jarkovoi, L. Kutt, and N. Shabbir, “Impact of
LED thermal stability to household lighting harmonic load current
modeling,” 2019, doi: 10.1109/PQ.2019.8818226.

[3] N. Shabbir, R. Ahmadiahangar, L. Kiitt, and A. Rosin,
“Comparison of Machine Learning Based Methods for Residential
Load Forecasting,” 2019 Electr. Power Qual. Supply Reliab. Conf.
2019 Symp. Electr. Eng. Mechatronics, pp. 1-4, 2019.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 19,2022 at 11:30:22 UTC from IEEE Xplore. Restrictions apply.



[4]

[3]

(6]

(7

(8]

9]
[10]

(1]

[12]

J. L. Viegas, S. M. Vieira, J. M. C. Sousa, R. Melicio, and V. M. F.
Mendes, “Electricity demand profile prediction based on household
characteristics,” Int. Conf. Eur. Energy Mark. EEM, vol. 2015-
Augus, pp. 0-4, 2015, doi: 10.1109/EEM.2015.7216746.

N. Shabbir, R. Amadiahangar, H. A. Raja, L. Kutt, and A. Rosin,
“Residential Load Forecasting Using Recurrent Neural Networks,”
Proc. - 2020 IEEE 14th Int. Conf. Compat. Power Electron. Power
Eng. CPE-POWERENG 2020, pp. 478-481, 2020, doi:
10.1109/CPE-POWERENG48600.2020.9161565.

H. X. Zhao and F. Magoules, “A review on the prediction of
building energy consumption,” Renew. Sustain. Energy Rev., vol.
16, no. 6, pp. 3586-3592, 2012, doi: 10.1016/j.rser.2012.02.049.

R. E. Edwards, J. New, and L. E. Parker, “Predicting future hourly
residential electrical consumption: A machine learning case study,”
Energy  Build., vol. 49, pp. 591-603, 2012, doi:
10.1016/j.enbuild.2012.03.010.

S. Humeau, T. K. Wijaya, M. Vasirani, and K. Aberer, “Electricity
load forecasting for residential customers: Exploiting aggregation
and correlation between households,” 2013 Sustain. Internet ICT
Sustain. Sustain. 2013, pp- 1-6, 2013, doi:
10.1109/SustainIT.2013.6685208.

CIGRE 719, “Power Quality and EMC issues with Future
Electricity Networks,” 2018.

M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman,
“Learning systems for electric consumption of buildings,” Proc.
2009 ASCE Int. Work. Comput. Civ. Eng., vol. 346, pp. 1-10,
2009, doi: 10.1061/41052(346)1.

K. Basu, V. Debusschere, and S. Bacha, “Residential appliance
identification and future usage prediction from smart meter,”
IECON Proc. (Industrial Electron. Conf., pp. 4994-4999, 2013,
doi: 10.1109/IECON.2013.6699944.

T. Hossen, A. S. Nair, R. A. Chinnathambi, and P. Ranganathan,
“Residential Load Forecasting Using Deep Neural Networks
(DNN),” 2018 North Am. Power Symp. NAPS 2018, 2019, doi:
10.1109/NAPS.2018.8600549.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)

W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-term
residential load forecasting based on resident behaviour learning,”
IEEE Trans. Power Syst., vol. 33, no. 1, pp. 2017-2018, 2018, doi:
10.1109/TPWRS.2017.2688178.

R. Rajabi and A. Estebsari, “Deep learning based forecasting of
individual residential loads using recurrence plots,” 20/9 IEEE
Milan PowerTech, PowerTech 2019, 2019, doi:
10.1109/PTC.2019.8810899.

Y. Hong, Y. Zhou, Q. Li, W. Xu, and X. Zheng, “A deep learning
method for short-term residential load forecasting in smart grid,”
IEEE  Access, vol. 8, pp. 55785-55797, 2020, doi:
10.1109/ACCESS.2020.2981817.

W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang,
“Short-Term Residential Load Forecasting Based on LSTM
Recurrent Neural Network,” IEEE Trans. Smart Grid, vol. 10, no.
1, pp. 841-851, 2019, doi: 10.1109/TSG.2017.2753802.

M. Jawad, A. Rafique, I. Khosa, I. Ghous, J. Akhtar, and S. M. Ali,
“Improving Disturbance Storm Time Index Prediction Using
Linear and Nonlinear Parametric Models: A Comprehensive
Analysis,” IEEE Trans. Plasma Sci., vol. 47, no. 2, pp. 1429-1444,
2019, doi: 10.1109/TPS.2018.2887202.

N. Shabbir, L. Kutt, M. Jawad, and M. N. Igbal, “Forecasting of
Energy Consumption and Production Using Recurrent Neural
Networks,” pp. 190-197, 2020, doi: 10.15598/acee.v18i3.3597.

T. Braun, M. Waechter, J. Peinke, and T. Guhr, “Correlated power
time series of individual wind turbines: A data driven model
approach,” J. Renew. Sustain. Energy, vol. 12, no. 2, 2020, doi:
10.1063/1.5139039.

N. Shabbir, R. Ahmadiahangar, L. Kutt, M. N. Igbal, and A. Rosin,
“Forecasting Short Term Wind Energy Generation using Machine
Learning,” 2019 IEEE 60th Annu. Int. Sci. Conf. Power Electr.
Eng. Riga Tech. Univ. RTUCON 2019 - Proc., pp. 2019-2022,
2019, doi: 10.1109/RTUCON48111.2019.8982365.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 19,2022 at 11:30:22 UTC from IEEE Xplore. Restrictions apply.



Curriculum vitae

Personal data

Name: Noman Shabbir
Date of birth: 26.02.1985
Place of birth: Lahore (Pakistan)
Citizenship: Pakistan
Contact data
E-mail: noshab@taltech.ee
Education
2018-2022 Tallinn University of Technology, Estonia — PhD Electrical Power
Engineering & Mechatronics
2007-2009 Blekinge Institute of Technology, Sweden — MS Electrical
Engineering
2003-2007 COMSATS University (Lahore campus), Pakistan — BS Computer
Engineering
Language competence
English Fluent
Urdu Fluent
Punjabi Fluent (Native)
Estonian Basic

Professional employment

2018-till date Doctoral Researcher, Tallinn University of Technology, Estonia
20162018 Assistant Professor, GC University Lahore, Pakistan
2010-2016 Lecturer, GC university Lahore, Pakistan

Honours & Awards

e 2021, XRP Ledger Trust Doctoral Scholarship, TalTech Development Fund.
2021, Best Presenter Award, 20th International Symposium TOPICAL PROBLEMS
IN THE FIELD OF ELECTRICAL AND POWER ENGINEERING: Tallinn, Estonia.
2021, IEEE Student and Young Professional (Paper Assistance). 2020 IEEE 19th
International Power Electronics and Motion Control Conference, Gliwice,
Poland.

e 2021, The Best Ambassador (3rd Position) of IEEE & IES, 2020 IEEE 19th

International Power Electronics and Motion Control Conference, Gliwice,
Poland

166



Elulookirjeldus

Isikuandmed
Nimi:
Slinniaeg:
Sinnikoht:
Kodakondsus:

Kontaktandmed
E-post:

Hariduskaik
2018-2022

2007-2009
2003-2007

Keelteoskus
Inglise keel
Urdu Keel
Pandzabi Keel
Eesti Keel

Teenistuskaik
2018-...
2016-2018
2010-2016

Autasud ja Auhinnad

Noman Shabbir
26.02.1985
Lahore (Pakistan)
Pakistani

noshab@taltech.ee

Tallinna Tehnikallikool, Eesti — PhD Elektroenergeetika ja
Mehhatroonika

Blekinge Tekniska Hogskola, Rootsi — MS Electrotehnika
COMSTAS Ulikool (Lahore Linnak), Pakistan — BS Arvutitehnika

Korgtase
Korgtase
Emakeel
Kesktase

Doktorant, Tallinna Tehnikatlikool, Eesti
Abiprofessor, GC University Lahore, Pakistan
Lektor, GC University Lahore, Pakistan

e 2021, XRP Ledger Trust doktoriGppe stipendium, TalTechi Arengufond.

e 2021, parima esineja auhind, 20. rahvusvaheline siimpoosion AKTUAALSED
PROBLEEMID ELEKTRI- JA ENERGEETIKAVALDKONNAS: Tallinn, Eesti.

e 2021, IEEE Student and Young Professional (Paper Assistance). 2020 IEEE 19th
International Power Electronics and Motion Control Conference, Gliwice, Poola.

e 2021, IEEE ja IES parim suursaadik (3. positsioon), 2020 IEEE 19. rahvusvaheline
jouelektroonika ja liikumisjuhtimise konverents, Gliwice, Poola.

167



ISSN 2585-6901 (PDF)
ISBN 978-9949-83-858-5 (PDF)



	List of Publications
	Author’s Contribution to the Publications
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background
	1.2 Smart Grids Technologies
	1.3 Localized Energy Management System
	1.4 Research Problem and Scope of Thesis
	1.5 Hypotheses & Research Tasks
	1.6 Scientific Contributions and Novelty
	1.7 Outline of the Thesis

	2 In-Depth Literature Analysis
	2.1 Local Energy Management System Components
	2.2 Residential Operation Optimization
	2.3 Congestion Control & Hosting Capacity
	2.4 Machine Learning
	2.4.1 Solar Energy Forecasting
	2.4.2 Wind Energy Forecasting
	2.4.3 Residential Load Forecasting

	2.5 Chapter Summary

	3 Residential Operation Improvement
	3.1 Battery Parameters
	3.2 The Proposed Heuristic Algorithm
	3.3 Optimization Technique
	3.4 The Impact of EMS
	3.5 Case Study with Electric Vehicles (EV)
	3.6 Chapter Summary

	4 Congestion Control & Hosting Capacity
	4.1 Case Study of Rural Grid
	4.2 Strategies for Congestion Control
	4.2.1 Trivial Battery Control (TBC)
	4.2.2 HC Motivated Control (HMC)

	4.3 Results and Discussion
	4.3.1 Technical Impact
	4.3.2 Economic Impact

	4.4 Chapter Summary

	5 Machine Learning for Energy Management System
	5.1 Machine Learning Perspectives in EMS
	5.1.1 Long Short-Term Memory Networks (LSTM)

	5.2 Case Study of Solar Energy
	5.2.1 Exploratory Data Analysis
	5.2.2 PV Energy Forecasting

	5.3 Case Study of Wind Energy
	5.3.1 Exploratory Data Analysis
	5.3.2 Wind Energy Forecasting

	5.4 Case Study of Residential Load
	5.4.1 Residential Load Forecasting

	5.5 Chapter Summary

	6 Conclusions
	7 Future work
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Lühikokkuvõte
	Appendix
	Curriculum vitae
	Elulookirjeldus
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page




		[bookmark: _Hlk101439055]TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

37/2022




		

Residential Energy Management System to Support Increased Renewable Penetration 









		NOMAN  SHABBIR



		



		[image: ]











		TALLINN UNIVERSITY OF TECHNOLOGY

School of Engineering 

Department of Electrical Power Engineering and Mechatronics 

This dissertation was accepted for the defence of the degree on 28/05/2022 



		Supervisor:







		Dr. Lauri Kütt

Department of Electrical Power Engineering and Mechatronics

School of Engineering 
Tallinn University of Technology 

Tallinn, Estonia





		

Opponents:

		

Associate Professor, João Martins, PhD
Department of Electrical and Computer Engineering 

Faculty of Science Technology
Universidade Nova de Lisboa 

Lisboa, Portugal


Associate Professor, Anna Mutule, Dr.sc.ing
Department of Power Systems Management and Optimization

Institute of Physical Energetics 

Riga Technical University, 

Riga, Latvia 





		



Defence of the thesis: 30/06/2022, Tallinn



		Declaration:

Hereby I declare that this doctoral thesis, my original investigation, and achievement, submitted for the doctoral degree at Tallinn University of Technology has not been submitted for doctoral or equivalent academic degree.



		Noman Shabbir

		



		[image: ]

		signature



		

Copyright: Noman Shabbir, 2022 

ISSN 2585-6898 (publication)

ISBN 978-9949-83-857-8 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9949-83-858-5 (PDF)



		TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ
37/2022



		Taastuvenergiaallikate kasutustihedust toetav energiahaldussüsteem





		NOMAN  SHABBIR



		



		[image: ]





















Contents
List of Publications	7
Author’s Contribution to the Publications	9
Abbreviations	10
Symbols	12
1 Introduction	13
1.1 Background	13
1.2 Smart Grids Technologies	14
1.3 Localized Energy Management System	15
1.4 Research Problem and Scope of Thesis	16
1.5 Hypotheses & Research Tasks	17
1.6 Scientific Contributions and Novelty	18
1.7 Outline of the thesis	18
2 In-Depth Literature Analysis	19
2.1 Local Energy Management System Components	19
2.2 Residential Operation Optimization	20
2.3 Congestion Control & Hosting Capacity	21
2.4 Machine Learning	22
2.4.1 Solar Energy Forecasting	22
2.4.2 Wind Energy Forecasting	23
2.4.3 Residential Load Forecasting	25
2.5 Chapter Summary	26
3 Residential Operation Improvement	27
3.1 Battery Parameters	28
3.2 The Proposed Heuristic Algorithm	29
3.3 Optimization Technique	29
3.4 The Impact of EMS	31
3.5 Case Study with Electric Vehicles (EV)	33
3.6 Chapter Summary	34
4 Congestion Control & Hosting Capacity	35
4.1 Case Study of Rural Grid	35
4.2 Strategies for Congestion Control	38
4.2.1 Trivial Battery Control (TBC)	38
4.2.2 HC Motivated Control (HMC)	38
4.3 Results and Discussion	39
4.3.1 Technical Impact	39
4.3.2 Economic Impact	42
4.4 Chapter Summary	43
5 Machine Learning for Energy Management System	45
5.1 Machine Learning Perspectives in EMS	45
5.1.1 Long Short-Term Memory Networks (LSTM)	45
5.2 Case Study of Solar Energy	46
5.2.1 Exploratory Data Analysis	47
5.2.2 PV Energy Forecasting	48
5.3 Case Study of Wind Energy	49
5.3.1 Exploratory Data Analysis	50
5.3.2 Wind Energy Forecasting	51
5.4 Case Study of Residential Load	52
5.4.1 Residential Load Forecasting	52
5.5 Chapter Summary	54
6 Conclusions	55
7 Future work	57
List of Figures	58
List of Tables	59
References	60
Acknowledgements	74
Abstract	75
Lühikokkuvõte	77
Appendix	79
Curriculum vitae	166
Elulookirjeldus	167


[bookmark: _Toc102043381][bookmark: _Toc102935106]List of Publications

The list of author’s publications, on the basis of which the thesis has been prepared:

I Shabbir, N.; Kütt, L.; Astapov, V.; Husev, O.; Ahmadiahanagr, R.; Kull, K.; Wen, F. (2022). Congestion Control Strategies for Increased Renewable Penetration of Photovoltaic in LV Distribution Networks, Energy Reports [Accepted for Publication] 

II Shabbir, N.; Kütt, L.; Astapov, V.; Jawad, M.; Allik, A; Husev, O. (2022). Battery Size Optimization with Customer PV Installations and Domestic Load Profile. IEEE Access, 10, 13012–13025. 

III Shabbir, N.; Kütt, L.; Daniel, K.; Astapov, V.; Raja, H.A.; Iqbal, M.N.; Husev, O. (2022). Feasibility Investigation of Residential Battery Sizing Considering EV Charging Demand. Sustainability, 14(3), 1079.

IV Shabbir, N.; Kütt, L.; Raja, H.A.; Jawad, M.; Allik, A; Husev, O. (2022). Techno-Economic Analysis and Energy Forecasting Study of Domestic and Commercial Photovoltaic System Installations in Estonia. Energy, 253, 124156. 

V Shabbir, N.; Kütt, L.; Jawad, M.; Husev, O.; Rehman, A.U. et al. (2022). Short-Term Wind Energy Forecasting Using Deep Learning-Based Predictive Analytics. 
CMC-Computers, Materials & Continua, 72(1), 1017–1033.

VI Shabbir, N.; Kütt, L.; Raja, H.A.; Ahmadiahangar, R.; Rosin, A.; Husev, O. (2021). Machine Learning and Deep Learning Techniques for Residential Load Forecasting: A Comparative Analysis. 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON): Riga, Latvia. IEEE. DOI: 10.1109/RTUCON53541.2021.9711741.



Other Publications: 

VII Shabbir, N.; Kütt, L.; Asad, B.; Jawad, M., Iqbal, M.N.; Daniel, K. (2021). Spectrum Analysis for Condition Monitoring and Fault Diagnosis of Ventilation Motor: A Case study. Energies, 14 (7), 1−16.

VIII Shabbir, N.; Kütt, L.; Alam, M.M.; Rossipuu, P.; Jawad, M.; Qureshi, M.B.; 
Ansari, A.R.; Nawaz, R. (2021). Vision Towards 5G: Comparison of Radio Propagation Models for Licensed and Unlicensed 5G Indoor Femtocells Sensor Networks. Physical Communication. DOI: 10.1016/j.phycom.2021.101371.

IX Shabbir, N.; Kütt, L.; Jarkovoi, M.; Iqbal, M.N.; Rassõlkin, A.; Daniel, K. (2021). 
An Overview of Measurement Standards for Power Quality. Agronomy Research, 19. DOI: 10.15159/AR.21.074. 

X Shabbir, N. (2021). Residential Load Forecasting Using Machine Learning Techniques: A Comparative Analysis, 20TH International Symposium TOPICAL PROBLEMS IN THE FIELD OF ELECTRICAL AND POWER ENGINEERING: 20th International Symposium TOPICAL PROBLEMS IN THE FIELD OF ELECTRICAL AND POWER ENGINEERING. Tallinn, Estonia, TalTech, 73−74.

XI Shabbir, N.; Usman, M.; Jawad, M.; Zafar, M.H.; Iqbal, M.N.; Kütt, L. (2020). Economic Analysis and Impact on National Grid by Domestic Photovoltaic System Installations in Pakistan. Elsevier Renewable Energy.10.1016 / j.renene.2020.01.114.

XII Shabbir, N.; Kütt, L.; Jawad, M.; Iqbal, M.N.; Ghahfaroki, P.S. (2020). FORECASTING OF ENERGY CONSUMPTION AND PRODUCTION USING RECURRENT NEURAL NETWORKS. Advances in Electrical and Electronic Engineering, 18 (3), 190−197. DOI: 10.15598/aeee.v18i3.3597.

XIII Ahmadiahangar, R.; Shabbir, N.; Rosin, A.; Kütt, L.; Palu, I.; Fushuan, W. (2020). Flexibility Enhancement for a Power System through Machine-learning based Electricity Demand Prediction. Electric Power Construction, (S), 38−44.

XIV Shabbir, N.; Ahmadiahangar, R.; Raja, H.A.; Kütt, L.; Rosin, A. (2020). Residential Load Forecasting using Recurrent Neural Networks. IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE - POWERENG 2020). Portugal.

XV Shabbir, N. (2020). Machine Learning and Deep Learning Techniques for wind Energy Forecasting. Proceedings of the 19th International Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology III”: 19th International Symposium “Topical Problems in the Field of Electrical and Power Engineering” and “Doctoral School of Energy and Geotechnology III”, Tartu, January 14 - 17, 2020. TalTech.

XVI Shabbir, N.; Ahmadiahangar, R.; Kütt, L.; Rosin, A. (2019). Comparison of Machine Learning Based Methods for Residential Load Forecasting. 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Hiiumaa, Estonia, June 12 - 15, 2019. IEEE, .10.1109 / PQ.2019.8818267.

XVII Shabbir, N.; Ahmadiahangar, R.; Kütt, L.; Iqbal, M.N.; Rosin, A. (2019). Forecasting Short Term Wind Energy Generation using Machine Learning. IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). Riga, Latvia. 

XVIII Shabbir, N.; Ahmadiahangar, R.; Kütt, L.; Iqbal, M.N.; Rosin, A. (2019). Wind Energy Forecasting using Recurrent Neural Networks. IEEE International Conference “Big Data, Knowledge and Control Systems Engineering” (BdKCSE’2019). Sofia, Bulgaria.  

XIX Shabbir, N; Hassan, S.R.; Iqbal, M.N.; Kütt, L.; Unbreen A. (2019). Comparative analysis of ZigBee based wireless sensor networks (WSNs). International Journal of Recent Technology and Engineering, 7 (6s), 980−984.

XX Shabbir, N. (2019). Advanced Sensors and On-line Measurements for Power Lines in Smart Grids. 18th International Symposium “TOPICAL PROBLEMS IN THE FIELD OF ELECTRICAL AND POWER ENGINEERING” and “Doctoral School of Energy and Geotechnology III. Toila, TalTech, 205−206.



9

[bookmark: _Toc102043382][bookmark: _Toc102935107]Author’s Contribution to the Publications 

Contribution to the papers in this thesis are:

Noman Shabbir is the primary author of this article. He generated the battery profiles, designed, and implemented the congestion control strategies and wrote the initial draft of the paper.  

Noman Shabbir is the primary author of the article. He designed and implemented the BESS optimization algorithm for minimizing cost and conducted simulations. 
He also wrote the initial draft of the paper.  

Noman Shabbir is the primary author of this article. He collected all the data, ran the simulation for PV-BESS-EV system and wrote the initial draft of the paper.  

Noman Shabbir is the primary author of the article. He gathered the data and designed the machine learning algorithms for PV energy forecasting and wrote the initial draft of the paper.  

Noman Shabbir is the primary author of the article. He implemented machine learning and deep learning algorithms for wind energy forecasting and carried out a comparative analysis. He also wrote the initial draft of the article.  

Noman Shabbir is the primary author of the article. He implemented the machine learning and deep learning algorithms for residential load forecasting and carried out the comparative analysis. He also wrote the initial draft of the article.  







[bookmark: _Toc102043383][bookmark: _Toc102935108]Abbreviations

		ANFIS

		Auto-neuro fuzzy integrated systems 



		ANN

		Artificial neural networks 



		AR

		Autoregressive neural networks 



		BESS

		Battery energy storage systems



		BPNN 

		Backpropagation neural networks
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		EU 	 
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		Photovoltaic



		RBFNN

		Radial basis function neural network 
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		Renewable energy sources



		RF

		Random forest 



		RNN

		Recurrent neural networks



		RMSE

		Root mean square error 



		RPC

		Reactive power control
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		SoC	 
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		Battery charging cost per unit 



		

		Battery discharging cost per unit



		

		Per-unit energy selling cost



		

		Per-unit energy selling cost



		

		Cost of battery 
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		Cost of PV
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		Time interval



		

		BESS efficiency 



		

		Solar panel tilt angle 
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The rapidly growing population and developing economies around the world are driving energy utilization and demand growth. Especially the role of electric energy is growing. Electric energy production though is one of the main contributing factors to global greenhouse gas emissions. To reduce carbon dioxide emissions and provide additional electric energy production, the world has witnessed a paradigm shift toward renewable energy sources (RES) during the last recent decades. At the same time, advances in technology now offer a variety of methods to achieve the same functions with lower losses in the process. As the global warming and environmental impact leveraging have been stated as a top priority by the leading global parties, both shift towards greener and emission-free production of electrical energy is mandated by governments’ policies, similarly, turn towards more efficient technologies is enforced. For example, the EU has pressed for the Fit for 55 policy and many more energy efficiency directives imposed through the European Commission (EC) [1].

Of the commercial energy consumption, one of the greatest increases is expected to be in the global energy market where buildings share a huge 40% of the share of total consumption [2]. According to recent research [2], [3], most of these buildings are more than 50 years old and are quite energy inefficient. Therefore, an EC mandate for nearly zero energy buildings (nZEBs) has been issued for more efficient energy utilization and the inclusion of renewable energy sources (RES) in both private and public buildings. These nZEBs would include smart energy management solutions to lower the dependency on the energy supply from district grids and minimize the cost of energy utilization. 

In recent times, the advancement of photovoltaic (PV) technology, their decreasing costs, and the simple installation method have increased their usage [4], especially in residential areas.  Connected to a low-voltage AC grid, PV systems’ output power ratings can range from kW in case of domestic usage and to MW in case of large-scale commercial deployment [5]. Taking into account the average household energy demand, these PV-based systems are quite efficient and useful for domestic energy supply. However, it has been seen that the integration of these PV systems into the distribution networks creates challenges [6]. 

The integration of large-scale photovoltaics into the distribution network may lead to voltage stability issues and overloading of the distribution lines. Therefore, the hosting capacity (HC) evaluation of the grid becomes very important. HC is usually defined as the amount of PV power that can be added to the network without needing to upgrade the network while the network can operate safely and reliably.  The HC depends on many indices and their corresponding limits, such as the installed throughput capacity of the lines and supply transformed, PV installed power and control options, other electrical loads on the line, local storage availability, etc. Increasing the HC of PV would most easily be done through network reinforcement, this is a costly replacement of components. Investment in network infrastructure on the other hand means more operating service costs attached to the customer energy bill.

It is thus reasonable to consider options to increase the HC through the network efficient localized control of PV, storage, load, and other equipment at the customer end. Automated systems would be able to do this and take into account a high number of variables, such as in-house power demand, hourly energy market price, estimated renewable production availability, etc. It can be seen that much potential would be available in more dynamic and self-adjusting control. Especially artificial intelligence and machine learning-based forecasting tools for load and energy generation can also be useful in this regard as they can help in improved energy management.     

[bookmark: _Toc102043335][bookmark: _Toc102043387][bookmark: _Toc102935112]Smart Grids Technologies  

A classic electric power system has been an AC power grid (having a frequency of 50 or 60 Hz) built to operate relying on large-scale power plants. Large AC networks incorporate main substations interconnected with longer extremely high voltage transmission lines and short delivery spans at low voltages at distribution levels [7]. 
To ensure operating characteristics such as voltage level stability the control of the transmission grid levels responsible for delivery of greater energy amounts has been sophisticated and included very expensive equipment. On the other hand, the distribution networks have been mostly low-controlled as implementing similar options using equipment associated with transmission system control is unfeasible.

A series of improvements have been implemented to the methodology of AC network management commonly known as Smart Grid (SG) technologies to increase efficiency and operating capability. These methods are found at all levels of electrical networks, and many have been proposed for distribution levels. The ideology behind SG is to construct a power network along with information and communication technology (ICT) services-enabled features (framework is shown in Figure 1.1 [8]). More efficient and economical use of grid resources is available through keywords such as continuous monitoring, demand-side management (DSM), forecasting of energy generation, consumption, electrical grid self-awareness and self-healing, and many more [9], [10].    
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Even for the distribution and low-voltage levels, the SG methods offer benefits of 
two-way fast communication, power flow information, advanced RES integration, storage technologies, and online computing for smooth operation and preventing failure or service unavailability in the grid. With the goal of making the energy infrastructure more reliable and flexible, it also helps to decrease the maintenance costs of the utility network and the energy consumption costs of the customers. 

The currently designed local distribution networks are traditionally uncontrolled and without a proper monitoring solution. SGs have been proposed for some time now, 
but they have not been realized yet, in full spirit. DSM is usually looked at as a possible solution, however, still everyday PV energy production can cause congestion in the distribution network. The problem cannot be solved using only DSM methods. More localized but wider-looking control of networks is required to solve these problems. 
This means for example a domestic system with capabilities to include wider incentives from the grid. This presents though a wider range of variables to consider. The advances in the information technology (IT) interconnections enabled in SG and flexible algorithms to handle the required data capacity bring more capabilities. Machine learning (ML) is making its progress in network control and can be seen as a viable perspective tool for these advanced systems. 

[bookmark: _Toc102043336][bookmark: _Toc102043388][bookmark: _Toc102935113]Localized Energy Management System 

There are several developments that basically require advanced energy management functions to fulfil the operating goals. The EU-led Green Deal policies and energy efficiency targets are well known. For example, efficiency targets the residential sector [11] require all newly constructed buildings must be nZEBs [12]. These buildings should be able to generate their energy and, therefore, have a very low dependency on the electrical grid [13]. The sum of energy utilized on-site, and locally produced energy accumulated for nZEBs should be zero or near zero at the end of the year. Buildings can buy energy from the grid, but they have to generate energy in commercial form themselves and sell it back to the grid. Looking into it in more detail, this outline greatly reveals many challenges as well as opportunities on a household level to utilize the more advanced energy management systems.

In the northern latitudes, meeting the nZEBs goals will require the deployment of RES such as PV or small-power wind, battery energy storage systems (BESS), flexible power electronic converters and control techniques to use these resources in an appropriate, efficient and economical manner [14]–[16]. The winters can be extremely dark and without sunlight for many days and indoor heating requirements will make the energy consumption at its peak values. In summer, the weather can be sunny, and the photovoltaic systems will be generating energy around their maximum potential; however, summer load requirements are usually the lowest. This can create challenges for the network operators to accommodate that high energy generation with minimum self-utilization. The PV peak power curtailment can be a solution but with this, however, the customers would lose a lot of money [Paper I]. If not limited, the high PV injection in the distribution grid may cause overloading and voltage fluctuation in the grid, which is problematic for both operator and customers.  

The energy management systems (EMS) for nZEBs have received great interest targeting reduction in energy costs while matching the household demand and supply of RES [17]. Demand repose (DR) and DSM are mainly discussed to solve the challenges [18]. However, they alone cannot solve the problem of customer load shifting and neither the congestion in networks caused by the RES installations [19]. Therefore, a robust real-time algorithm [20], [21] is required to dynamically charge/discharge BESS while keeping the economic numbers steady, increasing the hosting capacity (HC) of the network, and also avoiding the congestion of the distribution network [22]–[24]. 

Moreover, machine learning-based (ML) residential load and PV energy generation forecasting techniques incorporated in the EMS will provide additional functionality. These forecasts could provide efficient control and scheduling for BESS charging/discharging to provide users with added economic benefits and decreased service costs from the grid.  Forecasting is an especially demanding task toward the proper energy management goals, as it refers to massive data processing. Taking into account the number of variables and scenarios needed for the complete EMS tasks range, the forecasting thorough the ML, artificial intelligence (AI) and other flexible adaptive algorithms provide an advantage

[bookmark: _Toc102043337][bookmark: _Toc102043389][bookmark: _Toc102935114]Research Problem and Scope of Thesis 

The combination of PV-BESS is the most potent solution for residential houses and nZEBs [25]. For the house owner, the target is to build these systems economically viable, 
this is making the costs or payback periods as low as possible. The lowest cost to a homeowner could be available through:

· The optimal installation cost of the local energy management system.

· Lowest cost of energy bought from the utility grid.

· Highest benefit from the energy sold to the grid.

· Lowest service cost for using the grid.

A standalone local system that offers the same comfort as the power grid would have an unmotivating cost. Even if the case of nZEBs, the energy management system will still be connected to the local grid, the initial cost of PV and particularly BESS is still remarkable even if further price decrease is expected [26]. Even only to meet the domestic yearly energy usage, rather large PV units need to be installed. For the utility grid, high PV system produced energy infeed can mean problems if all customers want to supply the grid with PV produced energy at the same time. This could lead the utility to costly upgrades and reinforcement of the components and lines to guarantee the throughput. If not reinforced, the customer could not sell the PV-produced energy to the grid, decreasing the income from PV energy production. On the other hand, grid reinforcement investments effectively raise the utility service prices for customers. Therefore, this raises a multivariate challenge on how to build up the local EMS to meet the conditions of having the lowest cost to the homeowner.

Options are available then to include the BESS for more operations, such as storage of low-cost energy from the grid during excess PV generation or low market price, for financial profit. In turn, this would provide the benefit to the utility, as local energy load point is added, and network load decreased. Further options could include EV charging control, as, in the near future, the penetration of electric vehicles (EVs) is going to increase rapidly.    

EVs are environmentally friendly if power to these vehicles is provided through RES such as locally PV-produced energy, which also is comparatively much cheaper [27]–[30] than buying charging energy from the grid. The EVs can potentially impose diverse impacts on the distribution grid but also the local energy management system. 
The integration of EV loads means that larger PV systems will be required to power their local fully renewable charging. These higher rated PV installations can cause hosting capacity issues in the grid as the electrical lines have a limited capacity and replacing these lines with new higher capacity lines is not an easy task in terms of financial and physical deployment. So having a high amount of PV to support charging EVs could cause overloading of the lines and overvoltage problems [6], [31]–[33]. On the other hand, the presence of a high number of loads of electric vehicles can increase the maximum loads on the lines and the undervoltage in the electrical network [34], [35]. The problems mentioned above can be eliminated to a large extent by the optimal design of the 
PV-BESS system according to the limits and parameters of the network [36], [37].          

The inclusion of the BESS can make sure that the excessive PV energy is stored in it and not injected into the grid thus limiting congestion and overloading the network. 
The BESS stored energy can then be used for residential loads or charging EVs. This method will not only decrease the dependency on the grid but also reduce the cost of electric energy purchased from the utility. The goal of photovoltaic system-based energy is to make users self-sufficient and decrease the costs of energy. However, by optimally using these resources with smart control strategies, several targets can be achieved, including limiting the PV power injected into the grid to minimize overloading and congestion, increasing 
self-sufficiency, better DSM, and reduction in peak loads. This in turn can decrease the grid service costs, as the utility would not need to make investments to provide a good level of service. Therefore, one of the main targets in this thesis is to provide EMS viewpoint grid utilization with the improvement of overall energy service availability capabilities as much as possible and to guarantee an equally high quality of service to the users. Therefore, 
this solution can be quite useful as it makes this system economically viable by reducing the energy costs for the residential user and at the same time making sure that the capability of the grid is increased, and the quality of service is not affected.  

Additionally, the EMS can benefit from the knowledge of imminent upcoming RES availability. This way more information will be available on the selection of best strategies for BESS charging and discharging. There is a strong potential to estimate and forecast the future capabilities and characteristics of the network operation. Within this thesis, several pilot investigations have been presented to reflect the capabilities of the tools. The use of ICT can be beneficial here and machine learning (ML) techniques make a good tool for such purpose forecasting. Targets usable for the local EMS are considered and analysis is done to determine the appropriate ML method to implement. It has been shown that ML based forecasting methods are ready for the tasks of the EMS, considering the capabilities in forecasting.

[bookmark: _Toc102043338][bookmark: _Toc102043390][bookmark: _Toc102935115]Hypotheses & Research Tasks 

The main aim of this research work is to design and develop an EMS that will be capable of reducing the electricity cost for the residential users and decreasing their dependency on the electrical grid. At the same time, the EMS will be responsible for increasing the PV penetration in the grid and ensuring reliable operation by minimizing the problems like congestion and voltage fluctuation in the network. Moreover, the machine learning-based residential load and PV energy generation techniques can add extra features and functions in the EMS for better management of energy and cost reduction. Following are the hypotheses and research tasks of this work:



Hypotheses:

· The EMS can help in increasing the PV penetration in the local grid without reinforcements to the grid. 

· EMS incorporating PV-BESS can help reduce energy purchase costs. 

· The payback periods can be shorter than the expected component failure time periods.

· Machine learning techniques could add extra functionalities and capabilities to the EMS. 



Research Tasks: 

· Development of optimal EMS usage strategy. 

· Energy cost minimization using optimization techniques. 

· Localized congestion control strategies for increased hosting capacity. 

· Additional capabilities using machine learning techniques  

[bookmark: _Toc102043339][bookmark: _Toc102043391][bookmark: _Toc102935116]Scientific Contributions and Novelty 

The thesis provides the results of an investigation to build and operate a local electrical energy management system in a least-cost configuration. The discussion includes novel aspects of the burden of customer operation to the utility, such as impacting the utility grid service and installation costs, but also the potentially imposed limitations on the grid capacity availability can make up a critical portion of the costs to the property owner. The novelty and scientific contribution of the thesis can be listed as follows:



1. Planning of domestic energy management system installation, given its potential contribution to both domestic targets (nZEBs) but also utility support to the renewable power sources high infeed. To provide the best possible quality of service and increased throughput in the local distribution networks, a localized congestion control strategy has been proposed. Different PV installation scenarios have been considered and different control strategies have been discussed and evaluated. The focus is to increase the penetration of RES in distribution networks while limiting network congestion and minimizing the economic impact on consumers. (Publication I)

1. Estimation of the control capability of a domestic energy management system, considering the usability of BESS for more flexible service. A heuristic algorithm based on linear programming (LP) for the chagrining/discharging of BESS has been developed. The algorithm incorporates the real-time values of domestic electrical load, energy generation from RES, the status of BESS, and the market electricity prices. The payback periods and economic benefits are calculated using the proposed algorithm. (Publications II & III)

1. More capable service proposals for further optimized and efficient implementation of the local energy system are available through more detailed data available on the expected energy production and loading. The forecasting of the RES feed is discussed here as a prerequisite for more optimal sizing and management of the BESS capabilities. Machine learning-based forecasting algorithms have been studied to estimate the energy generation and availability from PV (Publication IV), wind (Publication V), and the forecasting of residential load. (Publication VI)

[bookmark: _Toc102043340][bookmark: _Toc102043392][bookmark: _Toc102935117]Outline of the Thesis 

The thesis is structured as follows. Chapter 2 is related to the survey of related work. This survey covers the energy management system components, battery optimization and efficient control, and congestion control techniques in power distribution networks and machine learning techniques for PV and wind energy forecasting. Chapter 3 is about the BESS sizing and its optimal use for domestic users. The energy-cost reduction and BESS control algorithms have been elaborated in detail here. The economic analysis using the proposed algorithm has also been described here for the residential PV-BESS-EV system. Chapter 4 gives an overview to increase the hosting capacity and decrease the congestion in the local distribution networks. Control strategies are described here in detail. Chapter 5 gives an in-depth overview of the renewable energy cases of solar PV, wind, and residential load. The development of forecasting algorithms along with the results are discussed here Finally, Chapter 6 presents the conclusions and future work of this study. 
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The optimal design of EMS for nZEBs requires efficient control algorithms along with the required PV system design and BESS. The design of PV-BESS is a critical component as it will significantly impact the payback period. The EMS also includes a net metering system and smart control algorithm to gain monetary benefits by selling energy to the grid when the market energy prices are higher and vice versa. During the last few years, many studies have been conducted in different countries regarding the design of PV systems, its feasibility and risk analysis, net metering solution and payback periods have been calculated [15], [21], [38], [39]. Table 2.1 presents a detailed overview and comparison of different studies conducted in recent years. Most of the studies are on the on-grid and off-grid implementation of PV systems. The key indicators for the selection of these studies are PV system designing, payback periods, bill reductions, net metering solutions, energy forecasting and optimal PV angle calculations. The installation of PV systems is highly dependent on the location of installation; therefore, this table presents a thorough analysis of the variations of PV systems in different countries. Most studies have incorporated many of these factors, but none have considered all of them together with energy forecasting. A comparison of previous studies has also been presented.  

[bookmark: _Toc102935188]Table 2.1. Comparison of previous studies

		Survey

		Country 

		System design 

		Optimal angle for max. power output

		Payback time 

		Bill 

reduction 

		Bill reduction with net metering 



		[40]

		Cyprus

		√

		×

		×

		×

		√



		[41]

		Netherlands

		√

		×

		√

		×

		√



		[42]

		USA

		√

		×

		×

		×

		√



		[43]

		Brazil

		√

		×

		×

		×

		√



		[44]

		Chile

		√

		×

		×

		×

		√



		[45]

		Pakistan

		×

		×

		×

		×

		√



		[46]

		India

		×

		×

		√

		√

		√



		[47]

		Palestine

		√

		√

		√

		×

		×



		[48]

		Italy

		√

		×

		×

		×

		√



		[49]

		China

		×

		×

		√

		√

		√



		[50]

		Egypt

		√

		×

		×

		×

		×



		[51]

		Australia

		√

		×

		√

		×

		√



		[52]

		Iran

		√

		√

		×

		×

		×



		[53]

		Brazil

		√

		×

		×

		×

		×



		[54]

		Finland

		√

		×

		√

		√

		√



		[55]

		Turkey

		√

		×

		×

		×

		×



		[56]

		Jordan

		√

		×

		√

		×

		×





The PV system installation requires certain criteria and standards to be fulfilled while utilizing the full potential of the technology. The PV systems design and requirements in Estonia are different from many other parts of the world. It needs continuous monitoring for the efficient use of the system. The PV system is able to generate power for 16-18 hours a day in summer, while around 5-6 hours a day in winter. The system also requires protective devices to be installed on the AC/DC interfaces, such as energy routers and inverters. According to Eesti Energia, the payback period for an around 10 kW PV-only system is around 18 years [57]. 

One of the important criteria for conducting feasibility analysis and site selection for the installation of a solar photovoltaic system is the solar radiation pattern of the area. The parameters that need to be observed during the study of solar radiation patterns are solar irradiance, and solar panel angles for elevation, declination, and incidence [4], [13]. The solar irradiance patterns are different parts of Estonia are almost similar and the irradiance is high in the summertime lasts from April to August and is low in winter from November to March [58]. The angle of incidence for the PV system can be calculated using the methods described in [59]–[62]. The solar panel tilt angle  for Estonia is computed to be 38o  to 40o  for fixed PV installations [63]. 

[bookmark: _Toc102043342][bookmark: _Toc102043395][bookmark: _Toc102935120]Residential Operation Optimization 

The PV-BESS systems are convenient and easy to deploy but their initial cost and payback periods are still high [64], [65]. The initial cost of especially BESS is comparatively high and the usual operation of a residential BESS has limited operation cycles and its usual life is around 5 years [66].  Therefore, the optimal sizing and operation of BESS are critical as they will directly impact the initial and operational costs of the PV-BESS system. Moreover, BESS needs to be utilized economically and efficiently to fully exploit its potential. Numerous research studies have been conducted on the BESS size optimization, BESS efficient control, increasing the life cycle of BESS and reducing the overall energy cost using PV-BESS systems. The comparative analysis of the previous studies on this topic is given in Table 2.2. These studies have tried to explore the possibility of cost reduction, BESS size optimization, minimizing the peak load and energy scheduling using BESS.   

In the near future, the usage of electric vehicles will also increase, as the goal is to have 50% of the vehicles on the road being electric vehicles by 2050 [67]. Most of these electric vehicles will be charged at home as the number of charging stations is limited. Therefore, the integration of PV-BESS-EV is very important, as it can reduce the energy cost for use if it is designed properly. The successful use of PV-BESS can provide users with clear economic benefits. Several studies have been conducted to optimize BESS energy utilization taking into account PV energy generation and load. Numerous research studies related to the integration of PV-BESS-EV are available. The impact of charging from the PVs and the corresponding reduction of emissions are discussed in [68]. In these studies, the impact of PV installation [69]–[71] and electric vehicles [72]–[75] on the grid has been presented. The EV modeling [28], [76]–[78], EV charging on power quality [79] and the control algorithm together with the economic analysis are given in [27], 
[80]–[83]. Meanwhile, the possibility of using batteries from electric vehicles for household loads is presented in [84]. 









[bookmark: _Toc102935189]Table 2.2. Literature survey of PV-BESS optimization studies

		Survey

		Year

		Location

		Main Feature 

		Algorithm



		[85]

		2013

		US

		Minimize peak load

		                LP



		[86]

		2016

		US

		    Minimize peak load

		Genetic Algorithm



		[87]

		2013

		US

		    Energy Cost reduction

		LP



		[88]

		2016

		Switzerland

		    Energy Cost reduction

		LP



		[89]

		2020

		Iran

		    Energy Cost reduction

		Teaching-Learning-Based Optimization



		[90]

		2015

		Korea

		Energy Cost reduction

		Markov decision process



		[91]

		2019

		Switzerland

		Energy scheduling 

		lithium-ion battery model



		[92]

		2010

		Turkey 

		PV/BESS size optimization

		Simulated Annealing



		[93]

		2020

		US

		   PV/BESS size optimization

		Monte Carlo



		[94]

		2018

		Germany

		Energy Cost reduction

		LP



		[95]

		2017

		China 

		BESS size optimization 

		Convex programming





[bookmark: _Toc102043343][bookmark: _Toc102043396][bookmark: _Toc102935121]Congestion Control & Hosting Capacity 

The hosting capacity (HC) has been gaining importance for some time now, as it plays an important role in delivering quality service to customers defined by the standards [96]. The level of HC depends on the risks that customers and network operators are willing to take. Therefore, it depends on a variety of parameters, and it has been defined as the maximum PV energy generation and a peak load of the feeder ratio [97], yearly PV energy production and consumption [98], or then transformer rating [99]. The HC is also dependent on the PV energy generation and the self-consumption of the residential user [100]. Therefore, if users take the liberty to install as much PV as they can, this can be a problematic situation for the network operators. The operation of the grid within the limits of standardized power quality indexes becomes a problem. As one example,  distribution lines’ ampacity limits are exceeded [101]. Utility operators have to replace these lines or use some smart grid (SG) driven solution to overcome the problems of overloading and overvoltage, voltage unbalances and transformer overloading.  

One of the most important parameters that limit the HC is the increase in line voltage. Increased penetration of PV in LV networks can cause an overvoltage problem and it can become extremely difficult for the grid to operate within the defined limits [102]. This study concluded that the main reasons for this are the flow of the power in the opposite direction and the disturbance in the reactive power balance. Most of the studies have researched this problem in the medium voltage (MV) networks [103]–[105]. However, rooftop photovoltaics have become more popular and will be even more due to the concept of nZEBs and the increasing usage of electric vehicles (EV) [12]. Therefore, 
the residential PV installation is mostly done in the LV network. This voltage rise can occur when the PVs are producing at their peak generation hours, usually, in the middle of the day, and at that time the residential load is lowest. Countries, where air conditioners are used during the day, can have peak loads at the same time, so this is 

not a big problem there. However, in other regions, this peak power injection causes overvoltage in the network due to low load and power flow reversal. 

Grid-connected photovoltaics were required to inject only active power with a unity power factor, thus disturbing the balance of active and reactive power on some occasions [106]. Many studies have proposed voltage control mechanisms in the inverter and the substations to keep the operating voltage within limits. The voltage control mechanisms based on the increase in reactive power demand from the substation and the high-frequency switching inverter can reduce voltage fluctuations but increase harmonics [107]. On-load tap changer (OLTC) and feeder control voltage capacitor banks have also been proposed for the overvoltage problem [108], [109]. A demand response method (DR) [110] and a battery energy storage system (BESS) [111], [112] have been proposed to increase HC. Another important factor limiting the HC is the ampacity of the distribution lines [113]. This is a much bigger problem in the urban networks as compared to the voltage violation that is a major concern in rural and suburban networks [114]. Distribution lines have a fixed current rating, and PV injection above limits can overload the lines [115]. In this case, the network operator may have to replace the distribution line with a higher power transformer, a very costly solution.      

[bookmark: _Toc102043344][bookmark: _Toc102043397][bookmark: _Toc102935122]Machine Learning 

The RES energy availability is stochastic and difficult to model.  The precision of energy availability and load forecasting has a direct impact on economic analysis. Accurate forecasting of RES can help better manage the energy demand and economic usage of the grid [116], [117]. PV energy generation usually depends on the season and the area. However, wind energy is highly stochastic [118], [119] and variations in energy output make it more challenging to predict. Wind energy generation is dependent on weather, season and location therefore accurate forecasting is difficult [120]. The economic analysis is based on the forecasted future profit and the initial investment, thus making the forecasting of energy an important task. 

Mostly this kind of forecasting is carried out with the help of statistical tools [120], e.g., probability distribution, moving average and autoregressive algorithms; however, these algorithms have lower accuracy. Therefore, machine learning algorithms have seen a growing increase in this energy forecasting application due to superior accuracy [121], [122], [123]. Machine learning algorithm forecasting usually requires large data sets for training. Training enables these algorithms to learn about the patterns and non-linearities in the data. Therefore, usually larger data sets are required and sometimes these algorithms need retaining as well to learn about new patterns or for increased accuracy [121]. Therefore, the algorithm results are then tested and validated to confirm the accuracy and whether retention is required or not. Forecasting models can be for short, medium- and long-term forecasting [124]. Short-term means a few hours ahead to one day, medium-term is for a few days to a few weeks and long term is between a few months to a few years.   

[bookmark: _Toc102043345][bookmark: _Toc102043398][bookmark: _Toc102935123]Solar Energy Forecasting 

Several machine learning algorithms have been described for PV energy forecasting [125]–[128]. The algorithms show a capability for accurate forecasting of around 90% [129], [130]. Figure 2.1 shows a biometric visualization of the keywords used in research papers published in the last five years on PV energy forecasting using machine learning techniques and keywords from 179 studies were used. The diagram shows that machine learning-based forecasting has become more popular in the last five years. A survey of machine learning (ML) and deep learning (DL) techniques for forecasting PV energy generation is given in Table 2.3. 
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[bookmark: _Toc97219317][bookmark: _Toc102935167]Figure 2.1. Bibliometric visualization for the keywords supplied by the author for PV energy forecasting (Larger circle means more use of the keyword) 

[bookmark: _Toc102043346][bookmark: _Toc102043399][bookmark: _Toc102935124]Wind Energy Forecasting  

Similar to PV energy forecasting, machine learning techniques are also widely used in wind energy forecasting. These models are usually used to predict wind speed and wind energy generation. Many studies have been conducted on comparative analysis of different machine learning algorithms such as support vector machine (SVM), random forest (RF) k-nearest neighbor (KNN), and linear regression (LR) [131]–[133].
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Table 2.3. A survey of ML and DL techniques for PV energy forecasting

		Survey

		Year

		Location

		Algorithms

		Forecasting



		[127]

		2020

		South Korea 

		RNN-LSTM

		14 hours 



		[134]

		2019

		Pakistan

		ANN

		1 day



		[135]

		2018

		Taiwan 

		BPNN

		1 day 



		[136]

		2017

		South Korea

		Short Term multivariate 

		1 day 



		

[137]

		

2018

		

Germany 

		Regression Trees/Probabi-listic 

		

1 day



		[138]

		2021

		Morocco 

		CNN-LSTM

		3 days 



		[139]

		2021

		China

		CNN-LSTM

		1 day  



		[140]

		2021

		China

		LSTM

		1 hour



		[141]

		2021

		Italy 

		LSTM

		1 hour



		[142]

		2019

		USA

		LSTM

		1 day 



		Abbreviations:  Back Propagation Neural Networks (BPNN)







    Most of the studies found that SVM gives better forecasting also experimental 
results [143] showed that SVM gave better predictions. Furthermore, artificial neural network (ANN) based deep learning algorithms are gaining more attention as they 
are more accurate as compared to machine learning algorithms [144], [145]. 
A detailed comparison of the previous studies on wind energy forecasting is given in Table 2.4.

[bookmark: _Toc102935191]Table 2.4. A Survey of wind energy forecasting using machine learning techniques

		Survey

		Country

		Year 

		Proposed 

algorithm

		Data size

		Forecasting duration

		Description of the proposed study 



		[146]

		USA

		2019

		Deep belief neural networks 

		3 years 

		1 – 24 hours

		A fuzzy-based hybrid deep-belief neural network predicts robust features and real-time variations.



		[147]

		UK

		2019

		SVM, ANN

		3 years

		1 day 

		ANN is more accurate than SVM.



		[148]

		Spain

		2019

		RNN-LSTM

		1 year

		1 – 24 hours

		LSTM gives accurate 24 h foresting with 10.43% RMSE.



		[149]

		Germany 

		2015

		RNN-LSTM

		4 years 

		1 day

		LSTM gives better forecasting.



		[150]

		France 

		2020

		Linear regression 

		2 years 

		6 hours 

		ML algorithms give more accurate







Table 2.4. Continued 

		Survey

		Country

		Year 

		Proposed 

algorithms

		Data size

		Forecasting duration

		Description of the proposed study 



		

		

		

		

		

		

		forecasting than statistical methods.



		[151]

		Canada

		2020

		SVM, ANN

		2 years 

		1 day

		A hybrid SVM-ANN model outperforms individual models.



		[152]

		Estonia 

		2019

		RNN-LSTM

		1 year

		3 days 

		LSTM gives 25% more accurate than statistical methods.



		[153]

		Spain, Canada

		2020

		TDCNN

		4 years 

		1 – 24 hours

		TDCNN gives a lower RMSE for up to 24 h before forecasting.



		[154]

		Greece 

		2019

		SVM/ANN

		2.5 year

		6-24 hours 

		SVM gives better 24 h ahead forecasting results than ANN.



		[155]

		China

		2019

		RNN, KNN

		3 years

		1 day

		LSTM is 18.3% more accurate than KNN and SVM.



		[156]

		Italy 

		2019

		MLP

		3 years 

		70 hours 

		ANN based MLP gives accurate forecasting for 70 hours.



		Abbreviations: Multilayer perceptron (MLP), Long Short-term memory networks (LSTM), 
Two-stream deep convolutional neural networks (TDCNN), Mean absolute percentage error (MAPE). 





 

[bookmark: _Toc102043347][bookmark: _Toc102043400][bookmark: _Toc102935125]Residential Load Forecasting 

Residential load forecasting is a challenging task as it depends on many variable factors such as season, time, number of household appliances and their energy rating, together with a greater dependency on occupants and their behaviours [121]. A single ML forecasting method cannot provide a viable solution in all implementation situations; therefore, these algorithms are selected and trained according to the datasets and the variable factors included in the data. A detailed comparative analysis of different machine learning and deep learning algorithms is given in [157]. The survey of related machine learning and statistical algorithms used for load fore acting is given in Table 2.5. 

















[bookmark: _Toc102935192]Table 2.5. A literature survey of load forecasting techniques

		Survey

		Year

		Location

		Algorithms

		Forecasting



		[158]

		2012

		USA

		SVM

		1 hour



		[159]

		2013

		Switzerland

		SVM

		1 day 



		 [160]

		2009

		USA

		KNN

		10 hours 



		[161]

		2013

		France 

		Statistical models

		1 hour



		[162] 

		2018

		USA

		LSTM

		1 day



		[163]

		2017

		China 

		LSTM

		1 day



		[164]

		2019

		France

		CNN, SVM

		1 day



		       [165]

		2020

		China

		IRBDNN

		1 day



		       [166]

		2021

		Pakistan

		LSTM

		1 day



		 [167]

		2019

		China 

		LSTM

		1 day



		Abbreviations:  Iterative Resblocks Based Deep Neural Network (IRBDNN)





[bookmark: _Toc102043348][bookmark: _Toc102043401][bookmark: _Toc102935126]Chapter Summary 

This chapter provides an in-depth literature review about EMS and its components, operational optimization, congestion control strategies and an overview of machine learning techniques. The main conclusions are as follows: 

· The EMS for residential homes will consist of a PV-BESS system and possibly EVs. However, an efficient control strategy is required to make this system economically viable. The initial deployment cost of these systems is high and payback time is rather long, but optimization techniques can help in reducing the energy cost and the payback can be lowered. Previously several optimization algorithms have been proposed for cost reduction. However, mostly these techniques lack optimized controlled algorithms to address the challenges and the complexities of control, and stochasticity in PV energy generation along with BESS and dynamic market electricity prices. 

· PV HC in distribution networks has gained importance as PV penetration is increasing. However, large-scale PV installation creates problems in the network in terms of overloading of lines along with the transformer and overvoltage in the network. Many congestion control techniques, such as peak power curtailment and DSM have been proposed. However, DSM alone cannot solve these problems and usually grid reinforcements are needed. 
On the other hand, power curtailment has economic implications. The localized solution for these problems is missing without the requirement of grid reinforcements. 

· Machine learning-based forecasting techniques are useful tools in power system applications. In particular, neural network-based deep learning algorithms can predict energy generation and electrical load more accurately. However, some of these techniques require large historical data sets.

[bookmark: _Toc102043402][bookmark: _Toc102935127]Residential Operation Improvement  

The EMS for nZEBs discussed here will be incorporated into the domestic energy router (ER) for the management and utilization of energy. The ER is primarily a power electronics device that is similar to an inverter but with additional functionalities. 
In future smart residential homes, AC and DC buses will be used separately for AC and DC loads to save energy [168]. The ER will be responsible for both AC and DC conversion from the RES or grid. The ER will be connected to RES, BESS, EV, and the local grid. Therefore, this proposed EMS will be implemented in the ER for managing the energy resources. The EMS will decide when to charge or discharge the BESS and sell or buy energy from or to the grid considering the local market electricity prices. The concept of a smart home with ER and EMS is depicted in Figure 3.1. Further details of the ER can be found in [169]. 
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[bookmark: _Toc102935168]Figure 3.1. The concept of a future home with EMS

Battery storage technologies have seen tremendous growth in recent years in applications such as portable communication devices, EVs, industry and PV-based BESS [35]. Lithium-Ion (Li-ion) and Nickel Manganese Cobalt Oxide (NMC) are the most widely used, however, Lithium Polymer (Li-Po) batteries are also gaining attraction [12]. At the same time, the cost of BESS has decreased substantially due to the latest developments in manufacturing technologies and bulk generation [170]. The cost of 1 kWh of BESS is estimated at around 100 € [171]. However, there are still many limitations that require improvements such as low usage cycle and limited life span. In the coming years is to increase the BESS life cycle of the BESS to around 20 years [172]. 

In residential BESS, Li-ion batteries are preferred, as they do not require periodic maintenance, are compact, and have relatively higher efficiency compared to other batteries [173]. On the negative side, its useful life span is up to 5 years [174]. Therefore, 
it becomes a challenging task to make their repayment time economically viable [175]. Usually, the government provides subsidies or lower tariffs to overcome this problem [94], [176]. Therefore, choosing the appropriate battery size becomes very critical, as it will directly affect the economic indicators.

Considering that the installed PV rating is greater than the residential household load, the remaining energy can be stored in the BESS and later utilized for in-house usage. Similarly, if the PV is not generating energy, then BESS can be charged from the grid. 
In addition, some of this stored energy can be sold later to the grid the same way as excessive PV-generated energy is sold to the grid. This will result in more income by in feeding energy to the grid. The margins when to buy energy or sell energy to the grid are selected by the LP optimization method. 

[bookmark: _Toc102043349][bookmark: _Toc102043403][bookmark: _Toc102935128]Battery Parameters 

In this study, real-time load and PV data were measured on an hourly basis from a suburban Estonian distribution network for one year. Figure 3.2 shows the layout of the grid with all its connections. There are eight residential loads and three auxiliary loads in this network. Th load 1 (small house), load 2 (medium-size house) and load 3 (apartment building) are taken into account for the design of the BESS. 
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    The battery size is usually calculated based on the daily energy consumption, efficiency and number of days for which BESS backup is required. The BESS size is calculated using Eqn. (3.1) [35]:    [bookmark: _Toc97219333][bookmark: _Toc102935169]Figure 3.2. The suburban distribution networks under consideration



               	                                                                (3.1)                                                                          

Here,  is BESS capacity in kWh,  is the efficiency,  is the number of BESS backup, depth of discharge is  and  is the daily average energy used. The peak load value is not used here, as it occurs only a few times a year. The other important parameter state of charge (SoC) of the BESS that specifies the stored energy in BESS is calculated using Eqn. (3.2) [35]: 

                                                                                     (3.2)                                                                

where  represents the number of states,  is the sampling interval,  indicates the online and offline status (typically 0 or 1), and  is the charging power in kW and it is calculated using Eqn. (3.3) [35]. The BESS parameters and load profiles for all three cases are described in Table 3.1.  

                                                                                                                  (3.3)                                                       

[bookmark: _Toc102935193]Table 3.1. Load profiles & BESS parameters

		Parameters 

		Small house

		Medium house

		Apartment building



		Average load (kW)

		0.1

		0.8

		11.9



		Peak load (kW)

		1.9

		6

		36.7



		Annual energy consumption (kWh)

		741

		6640

		103860



		Rated PV power (kW)

		5

		10

		20



		EBC (kWh)

		4

		33

		518



		Pz (kW)

		0.6

		5.4

		86





[bookmark: _Toc102043350][bookmark: _Toc102043404][bookmark: _Toc102935129]The Proposed Heuristic Algorithm 

The proposed method is realized as an algorithm considering data of load, PV energy generation, and electricity prices on an hourly basis to charge or discharge the BESS. 
The algorithm is designed in a simplified manner to reduce the overall energy cost for residential users. The method aims to minimize the dependence and use of the grid throughout the year. The algorithms used linear and convex optimization to find out the most optimal charging and discharging electricity prices for the grid. The basic principle is that if PV is generating more than the load then the BESS will be charged and if the load is higher, the BESS will be discharged. Moreover, BESS will sell/buy energy from to/from the grid if the prices are higher/lower than the specified threshold values. A detailed description of this algorithm is given in Table 3.2. 

[bookmark: _Toc102043351][bookmark: _Toc102043405][bookmark: _Toc102935130]Optimization Technique 

The selection of electricity prices to buy and sell energy to the grid is a complicated optimization problem. The market electricity price changes every hour in Estonia as it is a member of the Nord Pool electricity market. In addition, there can be a huge fluctuation in hourly prices [177]. In this study, the electricity prices of 2020 for the Estonian energy market have been taken under consideration. The main objective is to minimize the overall energy cost during the year and make it closer to a nZEBs.  The objective function, along with the constraints, is defined as follows: 



                                                                    (3.4)                                                 

Subject to

[bookmark: _Toc102935194]





Table 3.2. The proposed heuristic algorithm

		Algorithm: Battery Charging & Discharging 



		Input: Load data, photovoltaic data, electricity price

1. Calculate battery , 

2. SoCmax = 0.9 and SoCmin = 0.2

3. While (n <= 8760)                                                                          %n is the number of hours

4. If PV > Load and 0.2 > SoC (n) > SoCmax then charge battery (But not above SoCmax)

5. Calculate SoC (n+1) and PBat (n)

6. a = a +1                                                                                       %no. of charging hours with PV

7. else if Load > PV and SoCmin > SoC (n) > SoCmax then discharge battery                                       

 (But not below SoCmin)

8. Calculate SoC (n+1) and PBat (n)

9. b = b + 1                                                                  %no. of discharging hours for internal use   

10. else if Electricity Price < threshold value and SoC(n) < 0.5 then Charge battery from the grid (But not above SoCmax)

11. Calculate new SoC (n+1) and PBat (n)

12. c = c +1                                                                                    %no. of charging hours with Grid

13. else if Electricity Price > threshold value and SoC(n) > 0.4 then discharge battery to the grid (But not below SoCmin)

14. Calculate SoC (n+1) and PBat (n)

15. d = d +1                                                                             %no. of discharging hours to the grid

16. else 

17. SoC (n+1) = SoC (n)  

18. PBat (n) = 0

19. end if

20. n = n +1

21. end while







                                               (3.5)                                               

                                                                                                       (3.6)                                                   

                                                           (3.7)                                                                                                                                                                          (3.8)                                                                      

                                                          			         (3.9)                                                                 

                                                                                    			       (3.10)                                                                    

                                                                                                                                  (3.11)                                                                   

                                                                                   			       (3.12)                                                                    

                                                                                			       (3.13)                                                                     

                                                                                       			       (3.14)                                                                

                                                                          			       (3.15)                                                                   

where  is the objective function,   is the number of hours,  and  are electrical energy purchased from and sold to the grid, respectively;  and  are the charged and discharged energy.  is the energy generated from PV,  is the maximum energy generated by PV,  is the electrical energy consumption by the nZEBs;  is the maximum energy stored in the battery,  is 8760 (number of hours in one year). All energy values are in kWh. The cost of energy purchased from the gird is ;   is the cost of energy sold to the grid,   is the cost of battery charging,  is the cost of discharging energy from the battery to the grid,   is the cost of PV energy sold to the grid.  All unit costs are in cents per kWh. The hat symbol in the equation represents the normalized values. The normalization values are calculated using Eqn. (3.16). Further details on the operation of the algorithm can be found in [178].  

                                                                         			     (3.16)

where the .  

[bookmark: _Toc102043352][bookmark: _Toc102043406][bookmark: _Toc102935131]The Impact of EMS

The EMS in nZEBs should be viable in financial terms to encourage others to incorporate a similar solution in other conventional buildings. This makes the economic analysis of 
PV-BESS-based nZEBs very important from a business perspective as well. Therefore, 
an economic analysis was performed for all three cases in this study. Economic analysis requires consideration of several parameters. One of the most important parameters is 
the initial investment in solar PV and batteries. The investment cost  is calculated as [23]:  

                                                           			       (3.17)  

where  is the per-unit cost of PV,  is PV rated power,  is the number of years representing PV lifetime, and  is the net present cost as compared to investment. Similarly, the initial cost of the BESS system is computed as [23]: 

   			      (3.18)                    

where  is the unit cost for BESS charging,  is the inverter unit cost,  is the maximum energy storing capacity of the BESS,  is battery lifetime, and  is the ratio of present cost and the annual investment. The electrical load values from the Eqn. (3.4) are also used here to balance the energy requirements of the nZEBs. The amount of energy sold to and purchased from the grid is also used.   

The price of a battery on the Estonian market is around 100 €/kWh and the price for PV panels is around 400 €/kW [12], [57]. The cost of a 5-kW inverter is around 1000 €. 
Table 3.3 shows the impact of PV-BESS based EMS for the whole year. The number of hours of grid usage is significantly reduced for all three cases. Moreover, the BESS is used for internal usage for around 40%-50% of the time for all three cases. A detailed economic analysis for all three cases is given in Table 3.4. 

For case 1 and case 2, the net energy cost is negative, indicating the surplus energy sold to the grid, but case 3 still has a positive net energy cost. The main reason is higher load values as compared to the installed PV-rated power. The peak load for case 3 was 36 kW and the installed PV is 20 kW. Thus, the energy available to charge the BESS is limited. 
This scenario requires a high-rated power PV system.

[bookmark: _Toc102935195]Table 3.3. The Impact of PV-BESS based EMS

		

		Small house

		Medium house



		Apartment building



		a (hours)

		3131

		1880

		1035



		b (hours)

		433

		313

		157



		c (hours)

		179

		337

		621



		d (hours)

		3984

		4422

		4864



		j (hour)

		1391

		2482

		3325



		



Peak power drawn from the grid (kW)

		2.8

		5.95

		36.71



		

		1.9

		2.4

		22.9



		

		1.2

		1.7

		16.9



		

		1.3

		2.5

		27.3



		



Peak power injected into the grid (kW)

		1.4

		5.8

		34.7



		

		4.9

		9.8

		12.7



		

		4.9

		9.7

		12.6



		

		4.8

		9.2

		11.7



		Abbreviations:  a = no. of charging hours from PV, b = no. of discharging hours to grid, c = no. of charging hours from the grid, d = no. of discharging hours for internal usage, j = no. of total hours of grid usage  







The same calculations with a 60-kW rated PV are shown in Table 3.4. With this rated PV, the net energy cost is very close to zero and the users will have significant savings on their energy bills. The payback periods for all cases are also presented in Table 3.4. The payback periods for these PV-BESS systems are varying between 10 to 16 years. The payback periods along with yearly savings are shown in Figure 3.3. 

 

[bookmark: _Toc102935196]Table 3.4. The payback period for different cases

		

		Small house

		Medium house



		Apartment building



		Rated PV power(kW)

		5

		10

		20

		60



		Cost of PV & inverter (€)

		3000

		6000

		12000

		36000



		Cost of the battery (€)

		400

		3300

		51800

		51800



		Total saving per year (€)

		341

		713

		2363

		5482



		Payback period (years)

		10

		13

		27

		16





[bookmark: _Toc102042625]

[bookmark: _Toc102935170]Figure 3.3. Payback periods and yearly savings 

[bookmark: _Toc102043353][bookmark: _Toc102043407][bookmark: _Toc102935132]Case Study with Electric Vehicles (EV)

The same case study is now extended with the addition of the EV load. One EV load was added for small house, 2 to 4 for medium houses and 10 EVs for apartment building. EV load profiles are generated using an activity-based model presented in [76]. Now, 
the peak loads are 4.6 kW, 14.4 kW, and 60 kW for cases 1,2, and 3, respectively. 
The rest of the parameters were assumed identical including the PV and BESS sizes. 
The payback periods for these PV-BESS-EV systems are shown in Table 3.5. The payback period for these systems varies between 14 and 19 years. Here again for case 3, PV with higher rated power is required. The values shown in the table are calculated with a 
20 kW PV system for Case 3. Further details of this work can be found in [179]. 

[bookmark: _Toc102935197]Table 3.5. Payback periods for PV-BESS-EV systems

		

		System

		PV rated power (kW)

		Cost of PV and inverter (€)

		Cost of BESS (€)

		Total savings per year (€)

		Payback period (years)



		

Small house





Medium house





Apartment building

		PV-BESS-EV

		5

		3000

		400

		377

		9



		

		PV-BESS

		5

		3000

		400

		341

		10



		

		PV-EV

		5

		3000

		-

		212

		16



		

		PV-BESS-EV

		10

		6000

		3300

		776

		12



		

		PV-BESS

		10

		6000

		3300

		713

		13



		

		PV-EV

		10

		6000

		-

		315

		19



		

		PV-BESS-EV

		20

		12000

		51800

		2198

		29



		

		PV-BESS

		20

		12000

		51800

		1995

		32



		

		PV-EV

		20

		12000

		-

		307

		39





[bookmark: _Toc102043354][bookmark: _Toc102043408][bookmark: _Toc102935133]Chapter Summary 

In this chapter, an EMS has been presented. An LP-based heuristic algorithm was incorporated into the EMS to minimize the cost of energy utilization. The proposed technique is analysed using the real-life residential load, PV energy generation and market electricity prices data from an Estonian suburban grid. The data was recorded for the whole year on an hourly basis. The simulation results of the algorithm show that the energy utilization costs are significantly reduced. The payback period using the proposed PV-BESS based EMS is found to be between 10 to 16 years. Furthermore, the possibility of EVs integration with the EMS is also explored. The payback periods for PV-BESS-EV are estimated to be further lower and vary between 9 to 12 years. The comparison of different systems along with their payback periods is shown in Figure 3.4.   

  

[bookmark: _Toc102042628]

[bookmark: _Toc102935171]Figure 3.4. Comparison of payback periods for different systems



[bookmark: _Toc102043409][bookmark: _Toc102935134]Congestion Control & Hosting Capacity 

The installation of PV systems is increasing and on one hand, these RES are good for the environment, but they can create technical problems in the network. This penetration of PV in higher numbers can cause overloading, congestion, and overvoltage problems [179]. Usually, the PV panels are installed on the rooftop of the residential users and then connected to the low voltage (LV) distribution network [6]. Therefore, the network operator needs to be aware of the maximum HC of the network in particular locations or distribution lines [180]. If HC levels are exceeded, the network cannot provide service quality and ensure safety, therefore operation of supply services could even be halted. The EMS proposed in this thesis including the BESS and a control algorithm can provide a possible solution for these problems. 

In this work, a practical network is considered which is a typical regional rural network. 

This particular network is selected because in this rural network segment there are fifteen residential users, and the length of the lines is average. Moreover, rural residential users usually have the possibility to install large PV panels as extra space is available on their premises as compared to residential homes in urban areas. These large PV installations could cause overloading in the distribution lines and overvoltage in the electrical network. The target here is to decrease the disruptions in network availability and improve the quality of service for uses without additional grid reinforcements like the replacement of distribution lines or transformers. Therefore, the focus is on the employment of new methods. Here, it is presented that how a BESS and more adjusted method for BESS control can benefit the grid services. It is shown based on the results that these methods can increase the HC.

[bookmark: _Toc102043355][bookmark: _Toc102043410][bookmark: _Toc102935135]Case Study of Rural Grid 

For investigation and verification of the proposed strategy, a feeder of 0.4 kV is observed from an Estonian rural network. This 10 kV feeder was modelled in DIgSILENT Power Factory 2022. The model discussed here includes the existing 10 kV line connection to the substation, where a detailed 0.4 kV grid is laid out. The load profiles were provided by AS Elektrilevi in the framework of the project LEEEE20025. This real-life data allows us to model the system for simulations and perform power flow analysis and observe the loading of the lines and voltage fluctuations. The single-line diagram of the network is presented in Figure 4.1. 

The detailed parameters of the line are presented in Table 4.1. The transformer rating is 100 kVA, and the nominal value of the switch breaker is 100 A. The capacity of the cable AXMKA 3x50, from the largest part of the line constructed, is 140 A. The sum of the main fuses in the line is 345 A. Despite the relatively small consumption, at the customers’ connection points, the main fuses vary from 10 A to 25 A in three phases. Given these ratings, the possibility that customers install photovoltaic systems according to the nominal fuse current is considered a first case. In such a case called Case 1 “Max profit”, the total capacity of PV systems might be up to 238 kW (345 A) and the whole grid will be overloaded. That is why it is considered that the PV system's nominal power will be based on the nominal fuse, but a margin down. For example, if the connection point has a contract for 25 A fuses, PV installed capacity will be 13.8 kW (20 A). This way, the total installed capacity of all 15 PV systems is 189.1 kW. The list of installed loads and PV systems rating are also presented in Table 4.1.     
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For the simulation of PV system generation, the profiles used are based on one-year measured data for an existing 600 kW PV system connected to the nearby substation. The values were obtained for 1 kW and multiplied by the nominal installed capacity of planning individual PV systems. The grid modeled in DigSILENT is shown in Figure 4.2. Simulations shows, that in such a scenario, the grid faces several problems such as overloading of lines and transformers, and overvoltage problem in most of the nodes. Analyzing simulation results and the equipment data we can see that sections VKS_F03_a, and VKS_F03_b have the highest load, and the cable rated current there is 140 A, the maximum hosting capacity for the line 96 kW which is near transformer nominal value of 100 kVA.

Several solutions can be implemented in this case. For the overloading issue, grid reinforcement; for voltage problems, the voltage control via smart inverters are the most common approaches. The PV output curtailments and installation of BESS is also common practice to reduce abnormal regimes. If the grid is remodelled with reinforcement to carry on installed 189 kW, it is necessary to change the transformer to at least 200 kVA and lines from AMKA 3x50+70 to AMKA 3x120+95. The implementation of voltage regulation via inverters containing reactive power control (RPC) gives an improvement in voltage profiles, but the loading of lines and transformers is significantly increased. This can be explained by the increasing reactive power flow, which is used for voltage regulation. 
If there is no grid reinforcement planned and the limitation of PV systems applies uniformly, then we can see that each customer has to reduce the PV system output power by about two times. 
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		Peak load

 (kW)

		PV installed capacity (kW)

		Grid parameters



		

		

		Case 1

		Case 2-1

		Case 2-2

		Case 3

		Lines 

		Cable type  

		Nom. current (A)

		Length (m)



		L1

		3.0

		13.8

		5.0

		5.0

		4.4

		VKS F03_0

		AS-240

		605

		60



		L2

		4.8

		11

		6.8

		6.8

		6.0

		VKS F03_1

		AMKA.3x35+50

		115

		342



		L3

		3.7

		11

		5.7

		5.7

		4.1

		VKS F03_2

		AMKA.3x50+70

		140

		44



		L4

		0.7

		4.2

		2.7

		2.7

		0.7

		VKS F03_3

		AMKA.3x25+35

		90

		23



		L5

		6.6

		11

		8.6

		8.6

		3.9

		VKS F03_4

		AMKA.3x16+25

		70

		11



		L6

		5.8

		13.8

		7.8

		7.8

		4.4

		VKS F03_a

		AMKA.3x50+70

		140

		45



		L7

		3.1

		13.8

		5.1

		5.1

		2.7

		VKS F03_b

		AMKA.3x50+70

		140

		79



		L8

		3.4

		13.8

		5.4

		5.4

		4.1

		VKS F03_c

		AMKA.3x50+70

		140

		38



		L9

		2.2

		13.8

		4.2

		4.2

		2.1

		VKS F03_d

		AMKA.3x50+70

		140

		38



		L10

		2.3

		13.8

		4.3

		4.3

		2.1

		VKS F03_e

		AMKA.3x50+70

		140

		44



		L11

		4.1

		13.8

		6.1

		6.1

		2.8

		VKS F03_f

		AMKA.3x50+70

		140

		39



		L12

		1.3

		13.8

		3.3

		3.3

		1.6

		VKS F03_g

		AMKA.3x25+35

		90

		102



		L13

		3.4

		13.8

		5.4

		5.4

		3.9

		-

		-

		-

		-



		L14

		4.0

		13.8

		6.0

		6.0

		1.3

		-

		-

		-

		-



		L15

		4.2

		13.8

		6.2

		6.2

		5.2

		-

		-

		-

		-







     However, the less stressful cases for the grid are considered. In Case 2 named “Close to maximum power”, the installed capacity of PV systems is based on the maximum loads in nodes plus 2 kW. In Case 3 named “Net Zero” PV selection is based on annual electric energy consumption and annual possible energy generation. The installed capacities are presented in Table 4.1. Moreover, for case 2 and subcase 2.1 with one additional large PV is connected to the substation directly to evaluate. In case 3 large PV system is also connected to the substation for the same reason. PV installed maximum output for Case 2.2 and Case 3 is 51.5 kW and 82.2 kW correspondingly.
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[bookmark: _Toc97219335][bookmark: _Toc102935173]Figure 4.2. The grid under consideration modelled in DigSILENT
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In this study, three different congestion control scenarios are taken into consideration. The aim here is to find the best-case scenario with increased PV hosting capacity and minimal congestion in the distribution network. The emphasis is also given on the local control in the distribution network using BESS control, PV power curtailment, and not using extra devices such as reactive power control and OLTCs. In the following, two levels of battery control are considered:

· Trivial battery control – only user motivated BESS usage. Very simple and has no connection to utility.

· HC motivated control – user manages but is aware of possible HC limitation issues.

[bookmark: _Toc102043357][bookmark: _Toc102043412][bookmark: _Toc102935137]Trivial Battery Control (TBC)

In this first scenario, the BESS is installed with all residential users. The BESS capacity is established using the Eqn. 3.1 [178].  BESS capacities for all four cases are listed in Table 4.2. The same BESS charging/discharging algorithm as described in the previous chapter has been implemented. While these BESS capacities could be expected to shave off the peak energy generation from the PV and reduce the congestion in the network, trivial BESS control is actually not able to do this.

[bookmark: _Toc102043358][bookmark: _Toc102043413][bookmark: _Toc102935138]HC Motivated Control (HMC)

In the second scenario, the BESS is controlled mildly. The idea here is to use the surplus of PV-generated energy at the peak generation hours and utilize it to charge the BESS. The BESS in this scenario is set accordingly to be able to shave off the high peaks of energy injection into the network. The previously applied BESS control algorithm is modified in a way that the BESS is set to charge during the peak energy generation hours, usually in the middle of the day. Then, the energy in BESS is sold in a higher amount to the grid in the evening hours when the electricity prices are comparatively higher. 

[bookmark: _Toc102935199]Table 4.2. BESS capacities considered in the analysis 

		

		BESS Capacity (kWh)



		Loads

		Case 1

		Case 2.1

		Case 2.2

		Case 3



		L1

		42

		16

		16

		14



		L2

		34

		22

		22

		18



		L3

		34

		18

		18

		14



		L4

		14

		10

		10

		4



		L5

		34

		26

		26

		12



		L6

		42

		24

		24

		14



		L7

		42

		16

		16

		10



		L8

		42

		18

		18

		14



		L9

		42

		14

		14

		8



		L10

		42

		14

		14

		8



		L11

		42

		20

		20

		10



		L12

		42

		10

		10

		6



		L13

		42

		18

		18

		12



		L14

		42

		16

		16

		4



		L15

		42

		20

		20

		16





The PV generation data and grid power flow analysis initially showed that the peak overloading in the lines occurs in the middle of the day from 10 AM to 3 PM. This corresponds to summer periods when the PV energy generation is at its peak and the load is lowest. This process makes sure that the BESS capacity is available for energy storage to meet the in-house the next day demand. Otherwise, the rest of the capacity is used to support the PV peak shaving capabilities. Therefore, the algorithm only charges BESS during these times during summer and discharges the BESS to sell energy to the grid later in the evening, with greater intensity. 
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Several solutions are implemented for Case 1. For the overloading issue, usually grid reinforcement is required and for overvoltage problems, voltage control via smart inverters is the most common approach. The PV output curtailment and installation of BESS is also common practice to reduce abnormal regimes. The grid reinforcement for the installed 189 kW would require a necessary replacement of the transformer for at least 200 kVA rating and lines up-gradation from AMKA 3x50+70 to AMKA 3x120+95. 
The implementation of voltage regulation via smart inverters gives an improvement in overvoltage profiles, but the loading of lines and transformers is significantly increased as demonstrated in [Paper I]. This can be explained by the increase in reactive power flow which is used for voltage regulation. If there is no grid reinforcement planned and the limitation of PV systems applies uniformly, usually each customer must reduce the PV system about two times and must take an economical hit. Therefore, the scope of this work was limited to reducing congestion with BESS installation and its efficient control. The comparative analysis of different methods for case 1 is shown in Figure 4.3. 

In the first case (Maximum profit), the installation of BESS can reduce the overvoltage problem in the lines to 70%, however, the overloading in the lines is slightly increased. The duration of abnormalities is still the same in both cases. The implementation of HMC in the BESS significantly decreases the overloading in the lines to 15% and 25% for the transformer. In addition, there is a 25% improvement in the overvoltage problem as well. However, such kind of control is still not enough to make grid operation stable. Additional investigations with PV output curtailment and voltage regulation via smart inverters and the results are presented in [Paper I]. The details of schemes used for Case 1 are given in Table 4.3.

 

[bookmark: _Toc102935174]Figure 4.3. Comparison of different methods for Case 1

[bookmark: _Toc102935200]Table 4.3.Energy generation using different Techniques for Case 1

		Utilization scheme 

		E gen. (kWh) 

		Utilization



		PV

		224 106

		100%



		PV curtailment

		156 874

		70%



		PV with BESS TBC

		224 106

		100%



		PV with BESS HMC

		224 106

		100%



		PV + RPC with BESS HMC

		224 106

		100%



		PV curtailment with RPC and BESS HMC

		214 099

		96%







Grid simulations were performed for all the cases and with three control scenarios of BESS. The comparison of BESS control strategies for all the cases is given in Tables 4.4 to 4.7.

[bookmark: _Toc102935201]Table 4.4. Comparison of BESS control scenario for case 1 

		

		Without BESS

		BESS TBC

		BESS HMC



		

		Count (hours)

		Max values

		Count (hours)

		Max values

		Count (hours)

		Max values



		Transf. overloaded

		698

		159

		689

		200

		170

		134



		Lines, overloaded

		556

		159

		558

		176

		84

		119



		Nodes, U>1.1 p.u.

		1 187

		1.20

		1 154

		1.24

		880

		1.18





For Case 1 “Maximum profit” high penetration scenario, the installation of none controlled batteries could create more problems for the grid. While the duration of the abnormal operation is still almost the same, the fluctuation of voltage becomes higher together with the overloading value for the transformer. The implementation of the HMC technique shows better results for both overloading and overvoltage appearance and their maximum values. However, such control is still not enough to improve grid operation reliability. The author made additional investigations with PV output curtailment and voltage regulation via smart inverters. 
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		Without BESS

		BESS TBC

		BESS HMC



		

		Count (hours)

		Max values

		Count (hours)

		Max values

		Count (hours)

		Max values



		Transf. overloaded

		0

		69

		0

		93

		0

		58



		Lines, overloaded

		0

		62

		0

		82

		0

		52



		Nodes, U>1.1 p.u.

		304

		1.12

		21

		1.12

		0

		1.09





For Case 2.1, the PV is installed close to the peak load power. The results show that installation of BESS can significantly reduce voltage fluctuations and with the use of an HMC technique, it can reduce the hosting capacity problem both in terms of overloading and overvoltage. 
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		Without BESS

		BESS TBC

		BESS HMC



		

		Count (hours)

		Max values

		Count (hours)

		Max values

		Count (hours)

		Max values



		Transf. overloaded

		211

		117

		254

		141

		0

		99



		Lines, overloaded

		0

		62

		0

		81

		0

		52



		Nodes, U>1.1 p.u.

		434

		1.13

		117

		1.12

		0

		1.09





In Case 2.2, like Case 1, installation of BESS does not leverage the problems and increases loading in the components. However, the overvoltage hours were reduced four times as compared to the scenario without batteries. Here, the HMC strategy again reduces all the major problems. For the net-zero energy (Case 3), the installation of BESS even TBC can fix the voltage issue, but to reduce the load on the transformer the implementation of an HMC strategy is necessary. A comparative analysis of the different congestion control strategies is given in Figure 4.4. 













[bookmark: _Toc102935204]Table 4.7. Comparison of BESS control scenario for case 3 

		

		Without BESS

		BESS TBC

		BESS HMC



		

		Count (hours)

		Max values

		Count (hours)

		Max values

		Count (hours)

		Max values



		Transf. overloaded

		373

		126

		244

		134

		0

		102



		Lines, overloaded

		0

		42

		0

		46

		0

		28



		Nodes, U>1.1 p.u.

		704

		1.15

		0

		1.09

		0

		1.07







[bookmark: _Toc102935175]Figure 4.4. Comparison of different congestion control techniques 
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The economic analysis using both BESS control strategies and with no BESS has also been carried out for all the cases. The results of the economic analysis for all the 15 customers are presented in Table 4.8. The results indicate that PV installations significantly reduce the cost the energy for all the customers and the users can even earn money by selling energy to the utility company. The negative cost values in the table show that more finance was earned from energy sold to the grid rather than spent on buying from the grid in the whole year. 

In all four PV installation cases, all 15 users would be able to get financial gains. 
In Case 1, as the installed PV-rated power is the highest, here users will earn more 
money. The installation of BESS can further increase the revenue from selling this energy. In the first control technique, the financial gains are the highest; however, in the BESS HMC technique for congestion management, the gains are 8 to 15% higher. Also, there is a significant economic loss when curtailment in PV injected power to the grid is employed. Because using this method, there is any or every small curtailment in power needed, and the electrical grid will be operational throughout the year with good quality of service. 

In Case 2.1 and Case 2.2, the economic numbers for all the customers again show a negative cost. The decrease in financial gain varies from 9% to 19% for all the customers employing a TBC strategy. However, BESS with HMC indicates the best results. For case 3, 

the economic numbers verify that it was a nZEBs case as the value to financial gains for the users is not that high but only up to tens of euros. The BESS with HMC techniques provides better economic numbers for all the 15 users in this case as well. 
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		User

		 

		Case 1 

		Case 2.1

		Case 2.2

		Case 3



		

		OC 

		CPV 

		CB1

		CB2

		CPV

		CB1

		CB2

		CPV

		CB1

		CB2

		CPV

		CB1

		CB2



		1

		175

		-450

		-483

		-517

		-64

		-72

		-86

		-64

		-72

		-86

		-35

		-46

		-52



		2

		85

		-532

		-574

		-606

		-98

		-120

		-131

		-98

		-120

		-131

		-15

		-22

		-44



		3

		124

		-499

		-534

		-571

		-138

		-167

		-185

		-138

		-167

		-185

		-9

		-21

		-49



		4

		64

		-552

		-595

		-628

		-81

		-94

		-102

		-81

		-94

		-102

		-13

		-17

		-38



		5

		168

		-457

		-491

		-524

		-92

		-96

		-102

		-92

		-96

		-102

		-18

		-27

		-64



		6

		55

		-557

		-604

		-638

		-168

		-184

		-198

		-168

		-184

		-198

		-7

		-11

		-39



		7

		207

		-420

		-452

		-487

		-93

		-98

		-107

		-93

		-98

		-107

		-41

		-56

		-66



		8

		246

		-257

		-279

		-307

		-91

		-93

		-95

		-91

		-93

		-95

		-41

		-54

		-63



		9

		178

		-322

		-347

		-374

		-87

		-94

		-109

		-87

		-94

		-109

		-18

		-29

		-59



		10

		29

		-159

		-171

		-182

		-87

		-100

		-108

		-87

		-100

		-108

		-4

		-8

		-38



		11

		162

		-334

		-363

		-393

		-223

		-248

		-272

		-223

		-248

		-272

		-24

		-35

		-54



		12

		181

		-445

		-478

		-510

		149

		-192

		-209

		149

		-192

		-209

		-30

		-38

		-61



		13

		115

		-505

		-544

		-578

		-105

		-129

		-144

		-105

		-129

		-144

		-14

		-24

		-49



		14

		172

		-453

		-487

		-521

		-88

		-92

		-101

		-88

		-92

		-101

		-24

		-37

		-60



		15

		87

		-530

		-571

		-605

		-98

		-113

		-125

		-98

		-113

		-125

		-13

		-20

		-44



		*All the costs are in euros (€).

Abbreviations: 

Accumulated cost of energy usage (OC), 

CPV = Cost with only PV, 

CB1= Cost with PV and BESS (Trivial battery control), 

CB2= Cost with PV and BESS (HC motivated control) 
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The chapter presented the methods to increase the renewable penetration in the local grid without disrupting its operation. The study incorporated a real-life case study of a rural Estonian network for verification of the results. Several PV installation scenarios are discussed here that include PV installations according to fuse rating (max. profit), peak load and net-zero energy. The initial analysis of the PV installation presented severe overloading of the lines and overvoltage in the network having values way above the defined standards. Techniques like PV power curtailment, RPC, inclusion of BESS and BESS with HMC are explored as possible solutions. The results indicate that in max. profit PV installation scenario the BESS with an advanced control is a must, but it will still require some power curtailment and RPC. In the peak load and net energy PV installation scenarios, BESS with HMC will solve both above-stated problems. The BESS with HMC is done using the same EMS strategy defined in the previous chapter but with slight modifications. 

[bookmark: _Toc102043418][bookmark: _Toc102935143]Machine Learning for Energy Management System  
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The RES infeed energy generation forecast can help in efficient charging and discharging schedule for the BESS that as a result will decrease the congestion in the local network. Similarly, residential load forecasting would help in better management of the load and reduction in electricity costs from the grid. Therefore, the incorporation of machine learning applications can add another dimension to the efficient operation of the EMS. Big data analytics applications are witnessing a rapid increase in machine learning and deep learning techniques for application in many sectors including power systems. These are also quite popular in forecasting applications like residential load forecasting [181], transportation loads [182] and energy consumption. These machine learning techniques can provide additional functionalities and capabilities for the EMS. 

As shown in chapter 4, the HC improvements are significant if HC-oriented controlled scheduling of BESS is implemented. However, that was achieved by the static control method. Thus, it is obvious that this kind of control strategy would not necessarily be optimal all over the year. The stochasticity in the daily energy RES infeed would require more dynamic solutions regarding the BESS usage strategy. There is a need for tools to make a forecast about the availability of RES energy generation. This energy forecast will help in higher local energy usage and make the system more economical.   

There are conventional machine learning techniques like linear regression, tree-based regression, SVM, and deep learning neural network-based techniques like AR, NAR, CNN, and RNN [183].  Recently, deep learning algorithms have gained more attention due to their superior accuracy compared to traditional machine learning algorithms [183].  These algorithms are a subset of machine learning techniques that requires an even larger data set and are having highly complex architecture, usually unreal network-based. 
The other difference is that these algorithms continuously monitor and consider past data before making future predictions and therefore better track nonlinearities in the data [184]. These algorithms are usually classified as Artificial Neural Networks (ANN) their layered based architecture is derived from the human brain.  Several deep learning and deep learning algorithms were considered and compared in the study [183]; however, RNN-LSTM was found to provide the most accurate forecast. Therefore, 
RNN-LSTM is used here for the PV and wind energy and residential load forecasting case studies based on the Estonian data sets.   

[bookmark: _Toc102043364][bookmark: _Toc102043420][bookmark: _Toc102935145]Long Short-Term Memory Networks (LSTM)

LSTM belongs to the category of RNN. These algorithms keep the previous data stored in the memory cell and use it in every iteration before making future predictions. For time series analysis, dataset-based LSTM forecasting is very suitable. This algorithm uses a cell architecture and stores the information to be used in the decision-making process. 
The information in the cells is updated after every iteration. The architecture of the LSTM algorithm is shown in Figure 5.1 [129]. LSTM consists of three layers, the first is the input features and the number of steps.  The second is the hidden state, and in between these two layers, there is the third layer containing the memory cells, which is called the LSTM layer. The stored data is used to perform sequence-by-sequence regression in a one-time interval; then the data in the cells are updated and then it shifts to the next state.   
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[bookmark: _Toc102935176]Figure 5.1. The architecture of LSTM
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In Estonia, energy generation and consumption have a big gap here of around 200 MWh to 600 MWh [177]. The energy demand is higher in winters having a peak value of around 1500 MWh and energy generation of around 1000 MWh [177]. Being a member of the Nord Pool energy market [185], Estonia buys more energy from its neighboring countries to overcome this deficit [177]. The energy generated in Estonia is mostly from fossil fuels, however, the RES also has a significant and growing portion of the energy mix. 
The distribution of RES and non-RES in Estonia is shown in Figure 5.2 [177]. The share of renewable energy is around 30%, which is higher than the EU’s renewable energy penetration goal [186]. The share of wind energy is around 11% and PV is around 1%. However, in the coming year, the share of photovoltaic energy is expected to increase rapidly further supported by increased deployment of nZEBs.  







[bookmark: _Toc97219320][bookmark: _Toc102935177]Figure 5.2. Share of renewable and non-renewable energy in Estonia

     

The total installed capacity in Estonia is around 2337 MW according to the Estonian TSO [187]. The PV installation in Estonia accumulates around 128 MW [187], 70 MW in Latvia, and 120 MW in Lithuania [11]. Solar irradiance values on average in Estonia range from 900 to 1100 kWh/m2 [186], [188]. However, the day times have a huge variation in summer and winter between 18 to 20 hours and 5 to 7 hours, respectively [189]. 
The energy generation potential is not huge but still enough for residential homes and buildings. Even the excess energy can be sold to the grid and customers can have some monetary benefits. In the prospect of nZEBs, the extra energy generated in summer can be sold to the grid and bought back in winter times. 
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Description automatically generated]In this study, a 10 kW PV system’s energy generation data measured in 2016 for the whole year is used [190]. Data was measured in Tallinn, Pärnu, Narva, and Saaremaa on four different houses with a one-hour frequency. Data for all these four locations and their moving average and moving standard deviation values are shown in Figure 5.3. 
The figure shows that the energy generation in all regions is lower from November to March while it is higher from April to October. Peak values are in June and July. Also, 
the figure shows that Pärnu and Saaremaa regions have a slightly higher energy generation pattern than the other two regions. 

[bookmark: _Toc97219321][bookmark: _Toc102935178]Figure 5.3. Statistical analysis of solar PV generation data for (a) Tallinn (b) Saaremaa, (c) Pärnu (d) Narva

For further data analysis, histogram analysis was conducted and then its values were normalized to calculate the probability. The results are depicted in figure 5.4. The results indicate that in the Saaremaa region, the probability of generating energy is even slightly higher than in the Pärnu region. For the 5.4 kW generation, the probabilities are 14%, 27%, 20%, and 20% in Tallinn, Saaremaa, Pärnu, and Narva, respectively. 

The autocorrelation analysis is a very important method to reflect the pattern in the time series analysis that is useful for the selection of parameters for further regression analysis. The correlation analysis gives the number of lags that describe the dependency of the signal’s current value on its previous values. Further details of this phenomenon are given in [191]. These autocorrelation values do not depend on weather or season. These numbers of lags are a useful input parameter for regression analysis with machine learning techniques. The autocorrelation analysis is shown in Figure 5.5 with 72 lags, indicating the dependence of the current data on the last 72 hours. 
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[bookmark: _Toc97219322][bookmark: _Toc102935179]Figure 5.4. Histogram of power generation for (a) Tallinn, (b) Saaremaa, (c) Pärnu and (d) Narva

The autocorrelation value greater than 0.5 indicates higher dependence. All regions show a periodic pattern, showing the dependence of specific-hour data on the previous day's data on these specific hours, indicating long-term dependence. The periodic and rapid changes in autocorrelation values also indicate the day and night patterns in the solar data. 

[bookmark: _Toc102043367][bookmark: _Toc102043423][bookmark: _Toc102935148]PV Energy Forecasting 

RNN-LSTM algorithm is used here for energy forecasting. Due to its, deep neural network architecture, it gives superior accuracy as compared to other algorithms [5], [129] [139]. The RNN-LSTM algorithm is trained to make a short-term to medium-term forecast [58]. Data was distributed in training and test data with a 90% and 10% distribution, respectively. After running the simulation 50 times, 200 hidden layers are chosen with the number of epochs to be 250. The algorithm is then used to make three days ahead forecast separately for the last three days of June. A comparative analysis of actual energy generation and forecast energy generation for 3 days is shown in Figure 5.6. 
The forecasting results give an RMSE value of around 184 W and up to 92% accuracy.  
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[bookmark: _Toc97219323][bookmark: _Toc102935180]Figure 5.5. Autocorrelation analysis



[bookmark: _Toc97219325][bookmark: _Toc102935181]Figure 5.6. Comparison of actual and forecasted energy in summer





[bookmark: _Toc102043368][bookmark: _Toc102043424][bookmark: _Toc102935149]Case Study of Wind Energy 

The share of wind energy is around 10% of the total energy mix in Estonia. However, this share is increasing with every passing year due to environmental factors, energy security and EU regulations. The installed capacity of wind energy sources in Estonia is around 300 MW and most of these wind turbines are installed on the coast of the Baltic sea [193]. Meanwhile, 11 off-shore and 2 on-shore projects are also in the development phase as part of the government plan to have 1800 MW by 2030 [193]. 

[bookmark: _Toc102043369][bookmark: _Toc102043425][bookmark: _Toc102935150]Exploratory Data Analysis 

The Estonian wind energy generation data set is used here with a one-hour frequency and spanning from January 2011 to May 2019. Hourly wind power generation is highly stochastic, a similar pattern is visible in this data set. The maximum, average and median values in this data set are 273 MW, 76 MW, and 57 MW (hourly average power), respectively. However, the standard deviation is around 62 MW which is a high value. In the first step, the moving average and moving standard deviation are also calculated to demonstrate the variation in the time series dataset. Wind energy generation data from January 2018 to May 2019 are shown in Figure 5.7 along with moving average and moving standard deviation values. This figure shows the stochastic nature of wind energy, as there are no seasonal highs or low values. The moving average is comparatively high from November to March, but still, in between, it shows lower values and then again goes up. 



[image: ]

[bookmark: _Toc97219328][bookmark: _Toc102935182]Figure 5.7. Generated power, moving average and moving std. deviation



The histogram analysis and probability density function (PDF) analysis are shown in Figures 5.8(a) and 5.8(b), respectively. Figure 5.8(a) shows that the wind power ratings are mostly below 50 MW and rarely does it go above 200 MW. Figure 5.8(b) shows the probabilities which are calculated after the normalization of the number of occurrences. These values are also showing the same pattern. The probability of getting less than 
50 MW is greater than 40% and for 200 MW is less than 10%. This makes the accurate forecasting of wind energy a very challenging task. Furthermore, the autocorrelation analysis result is shown in Figure 5.8(c). Figure 5.8(c) shows a graph of 20-hour values and indicates that the last 16-hour values have autocorrelation values higher than 0.5, which means a higher dependency. The correlation values decrease after that.
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 [bookmark: _Toc97219329][bookmark: _Toc102935183]Figure 5.8. (a) Histogram (b) PDF of the data, (c) Autocorrelation analysis
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The Estonian TSO also forecasts wind energy generation on daily basis for 24 hours ahead. The actual energy generation and the forecasting by TSO’s algorithm for May 2019 are shown in Figure 5.9. [194]. There are clear gaps in energy generation and forecast energy. Sometimes, the variation is even greater than 50 MW. Therefore, 
it highlights the need for more accurate forecasting. 



[bookmark: _Toc97219330][bookmark: _Toc102935184]Figure 5.9. Actual and Forecasted wind power for May 2019

The Estonian wind energy generation data set was divided into three categories, 80% data for algorithm training, 10% for testing, and 10% for the validation of results. 
The simulation results for the multistep forecasting were generated. The forecasting error results of the proposed RNN-LSTM algorithm along with actual energy generation and TSO forecasting are depicted and compared in Figure 5.10. 



[bookmark: _Toc97219332][bookmark: _Toc102935185]Figure 5.10. Forecast error of the TSO’s algorithm and LSTM forecasting 

From the above figure, it is clear that the RNN-LSTM algorithm gives better forecasting results. In terms of the RMSE value, the TSO algorithm provides a value of 25; however, the RNN-LSTM algorithm results are around 15. The variations in TSO’s forecasting are much higher, this forecasting algorithm predicts slow variations in the output but fails 
in case of faster variations. The RNN-LSTM algorithm, on the other hand, predicts this more dynamic variation in a better way; however, it sometimes fails in the case of very slow variations. Therefore, a hybrid algorithm can be more beneficial here. 

In this study, the size of the data set was varied from 12 months to 96 months. However, the algorithm showed the same accuracy in terms of RMSE values after 24 months of data. The number of epochs, learning rate, and hidden states were also varied to find the optimal solution. Further details of the simulation parameters and results can be found in [183]. 

[bookmark: _Toc102043371][bookmark: _Toc102043427][bookmark: _Toc102935152]Case Study of Residential Load

In the study, the residential load dataset used was recorded in an Estonian household [195]. The data was measured for one month with a one-minute frequency. The residential home was a 67.8 m2 flat housing four occupants and it included domestic appliances like a dishwasher, electric stove, entertainment system, TV, microwave oven, vacuum cleaner, etc [121]. The residential load along with its moving average and the standard deviation is depicted in figure 5.11. Most of the time, the overall load value is lower than 1000 W. The load value rarely goes above 4000 W or higher. This usually occurs on the weekend when all occupants are at home, or they are using heavy loads like washing machine and dishwasher.  

[bookmark: _Toc102043372][bookmark: _Toc102043428][bookmark: _Toc102935153]Residential Load Forecasting 

In the analysis, comparative research has been conducted between different machine learning and deep learning algorithms. The details of these algorithms can be found in [157]. A comparison is to find out which algorithm is more capable of identifying the linear and nonlinear patterns in the load data. The algorithms compared here are LR, TR, LSTM, autoregressive neural network (AR), non-autoregressive neural network (NAR) output error (OE), and auto-neuro fuzzy integrated systems (ANFIS), SVM and its different versions. The comparative analysis shows that the NAR, AR and cubic SVM are given good forecasting results. However, the best results are given by the LSTM algorithm as it has the lowest RMSE value. The forecasting results of RNN-LSTM are shown in Figure 5.12. The comparative analysis of RMSE of values is given in Table 5.3. 
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[bookmark: _Toc102935186]Figure 5.11.  Load data with moving average and moving standard deviation
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[bookmark: _Toc102935187]Figure 5.12. RNN-LSTM forecasting for residential load 

[bookmark: _Toc102935206]Table 5.1. Comparison of RMSE values

		Algorithm Name

		RMSE Value

		Algorithm Name

		RMSE Value



		Linear Regression

		381

		Non-Linear Regression

		325



		Tree-Based Regression

		241

		Gaussian SVM

		234



		Linear SVM

		619

		OE

		167



		Quadratic SVM

		187

		ANFIS

		168



		Cubic SVM

		172

		AR

		169



		RNN-LSTM

		159

		NAR

		163





[bookmark: _Toc102043373][bookmark: _Toc102043429][bookmark: _Toc102935154]Chapter Summary 

In this chapter, the possibility of ML techniques adding extra functionalities and capabilities to the EMS has been explored. The forecasting applications of machine learning techniques can help in the efficient operation of the EMS. Accurate PV energy forecasting can help in better scheduling of BESS to avoid congestion and overvoltage problems. Several ML and DL algorithms are designed and evaluated in this work. 
The results indicate that the RNN-LSTM algorithm provides better forecasting capability and lower RMSE values as compared to other techniques. Therefore, the RNN-LSTM algorithm is used to develop a forecasting algorithm for 24 hours ahead of energy generation. Similarly, algorithms for 24 hours ahead wind energy generation and residential load forecasting have also been developed. 

[bookmark: _Toc102935155][bookmark: _Toc102043430]Conclusions 

The future energy supply grids will include a large portion of RES like wind and PV along with an added load of EVs and capabilities of localized BESS. One of the most potent solutions to provide an advantage in this mix is an enhanced active residential energy management system (EMS). This EMS will efficiently manage all such resources relying on the electrical load, market electricity prices, etc. The EMS proposed in this thesis will be a subsystem of an energy router which is a flexibility providing power electronic unit. This EMS will be connected to domestic RES, BESS, EV and the local grid. 

Costs at this time for the BESS and PV installations are noticeably high. Therefore, one of the main goals of EMS here is to decrease the energy usage costs from the grid and maximize profits by selling extra energy to the grid. This way, it will help in decreasing the payback period of the components needed, such as PV and BESS systems. BESS installation along with PV, if not only used for local energy storage, can also help in uninterrupted grid operations. However, this BESS operation needs optimization and an efficient control algorithm for the aforementioned tasks. As the first step in this thesis, 
a heuristic LP-based control strategy is developed to decrease the cost of energy in a BESS-equipped system considering the nZEBs scenario. The BESS sizes were also varied to find the appropriate case when the energy utilization hours from the grid are minimum, PV energy is maximally used and the overall energy utilization in the whole year is at a minimum. The economic analysis of these PV-BESS EMS indicated that for small apartment and residential home the payback period is between 10 to 13 years. 
The payback period for the large apartment building is around 27 years. This can be further reduced to 16 years if a larger rated PV is installed with this building of 60 kW rather than 20 kW. The inclusion of EVs with the EMS and their impact has also been evaluated here. The payback periods for small and medium houses for PV-BESS-EV systems were found to be between 10 to 12 years, even further increasing system feasibility. 

The second level approach in this thesis, a study is focused on different aspects to increase the reliability of the grid upon high RES penetration in the electrical network. The increased renewable penetration is easily promoted, but it can also create challenges for the network operators. Bottlenecks can emerge in the LV grid creating overloading and voltage fluctuation in the networks. Furthermore, if PV-BESS-EV integration can increase hosting capacity (HC) it decreases the cost of energy service from the grid for the residential users incorporating EMS. This is due to avoiding costly network upgrades. For the described tasks, installation of BESS and control strategies are discussed to reduce the effect of bidirectional power flows and resulting congestion problems while increasing the HC of PV in LV networks. 

The simulation results show that BESS with the proposed hosting capacity motivated control (HMC) strategy can significantly improve the situation and reduce hours of abnormal regimes. Most of the time, it reduces the problems except for the case in which the PV penetration level is nearly at its peak. The proposed control was compared with other methods available. The installation of BESS without congestion control might be suitable in cases with lower PV penetration levels. In the case of the peak penetration scenario of renewable sources at the customer side integrated with the LV, the line leads to huge voltage fluctuations and overloading. The curtailment of the PV output reduces these problems but leads to a 70% reduction in HC. The voltage regulation with smart inverters employing RPC improves voltage profile but leads to overloading of the equipment due to increased reactive power flow. The installation of BESS with trivial control in the considered case is not helping with the normalization of grid operations. The implementation of proposed HMC for BESS however significantly reduces the loading of lines and slightly reduces voltage fluctuation. And, together with RPC and slight curtailment of the PV systems, the proposed HMC technique shows much better results from the grid operation perspective together keeping the energy utilization ratio to 96%.

The knowledge of available RES energy infeed to the grid is of prime importance, 
as it can help in better management of the resources and smooth operation of the 
grid. Therefore, possibility of additional capabilities for the EMS with the incorporation of ML and DL techniques has also been evaluated here. The accurate forecasting of energy generation from RES and residential load is beneficial in demand and supply management and impacts the power flows in the grid. In this thesis, case studies for PV and wind energy forecasting along with residential load forecasting were conducted. 
The case study for PV energy forecasting containing the four most populous regions of Estonia was conducted. The results also showed that the RNN-LSTM algorithm made good forecasting up to 92% for 24 hours ahead of PV energy generation. In addition, 
a similar forecasting algorithm was also developed for wind energy forecasting. 
The simulation results indicated that SVM, NAR, and RNN-LSTM could provide respectively 10%, 25%, and 32% better match compared to TSO’s forecasting algorithm. Moreover, a residential load forecasting algorithm has been developed for a day ahead load forecast. The cast study of residential load showed that the RNN-LSTM algorithm made good forecasting with 24 hours ahead load with a match rate of around 94%.



[bookmark: _Toc102935156]Future work 

For future work, the proposed energy management strategy can be implemented in the energy router for a small residential home to verify its real-time performance testing and measure the accuracy of the results. The energy router is being developed and built at this time within another research project. The author of this thesis is looking forward to testing the features described in this thesis to verify the achieved merits. Moreover, 
it can be extended to any size of residential premises and its feasibility and payback periods can be determined for real-life cases. The possibility of a small wind generator as RES can be explored. This would add another dimension to the EMS and further increase its capabilities. 

With the real implementation of EMS, the potential of ML techniques for the operation of EMS can be evaluated. ML-based RES energy generation forecasting benefits would be observed for a longer period. Rather than the scheduled HMC control for the BESS that showed good results, this ML RES forecasting-based charge/discharge could provide even better results. The ML tools have already been designed and implemented and the potential is clearly there. The EMS can make all these decisions based on the residential load and energy generation forecasting. This can further increase the efficiency of the EMS operation and the grid services in terms of reliability, flexibility, and lower interruptions.

Moreover, a web-based application/mobile app is to be developed for the proposed EMS. That application can include live monitoring of these energy parameters and their future predictions in the software application. The parameters that could be included in the application can be RES energy generation, residential load, market electricity prices, BESS status, and the forecasting of RES energy and load using ML techniques. In addition, the application would be able to give the users some options and guidelines to schedule their energy utilization optimally. This can provide a convenient solution and enable the residential users to further deploy and utilize the EMS efficiently.
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Residential Energy Management System to Support Increased Renewable Penetration

The deployment of nearly zero-energy buildings (nZEBs) using renewable energy resources (RES) is expected to increase in the coming years. For residential users, 
the combination of photovoltaic (PV) sources such as RES and battery energy storage systems (BESS) is a potent and one of the most convenient solutions to reach nZEBs targets. These systems are easy to install, environment friendly and can reduce the customers’ energy utilization from the grid significantly. The main aim of this work is to further reduce costs related to electric energy supply system use and installation for residential users and make them self-reliable and less dependent on the electrical grid by using PV-BESS based localized energy management system (EMS). The high initial investment costs of PV & BESS, longer payback periods and the present electrical grid infrastructure are still challenges in achieving these goals. The deployment of PV integrated systems in large numbers can lead to energy delivery congestion and overvoltage issues in the low voltage (LV) networks. Such problems are, for example, possible to arise when the PV energy generation is near its peak and the domestic loads are around their lowest value. This calls to increase the hosting capacity (HC) limits, i.e., levels of PV infeed operating when utility supply quality and reliability conditions are still met.

The PV-BESS based EMS investigated in this thesis can serve as a solution to increase the benefits to install and maintain the domestic energy management system. 
The demand-side management (DSM) techniques previously proposed cannot alone solve the challenges introduced above. As a novel multidimensional solution, EMS proposed incorporates a PV-BESS system with an efficient usage strategy. For BESS size optimization and an efficient BESS control algorithm/usage strategy, a heuristic algorithm based on linear programming incorporating residential load, PV energy generation, and market electricity prices is proposed ins this thesis. To evaluate the outcome, real-time measured data of load, PV energy generation, electric energy market prices and electric vehicle (EV) charging load data have been used. The proposed solution to the optimization problem is using simplex and interior-point methods. The algorithm motivates to charge and discharge the BESS on the optimized schedule and thereafter decides to sell or buy energy from or to the grid based on the dynamic electricity market prices. Techno-economic analysis of the different rated PV-BESS and PV-BESS-EV systems has also been carried out to determine the feasibility of the system by calculating the payback periods. The results indicate that different proposed configurations for EMS under consideration are self-reliant to an increased extent and have a feasible nominal payback period. 

Furthermore, the proposed EMS has the potential to eradicate congestion and voltage fluctuation in the electrical network. To evaluate the proposed local grid supporting functionality, a wider view of the real-life rural LV network has been considered along with the real-time load and PV energy generation measured data for the whole year. Four different PV installations case studies have been made and investigated through the power flow analysis. For evaluation of localized congestion control strategies for maximizing the HC in the distribution network using the EMS, two different BESS utilization techniques along with peak power curtailment, and reactive power control (RPC) are proposed. The results clearly indicate that power curtailment once the HC limits are reached, is not a suitable solution both technically not economically. The BESS incorporation significantly reduces the congestion; however, it cannot solve the overvoltage problem fully in the case of large PV installations. A solution of BESS, RPC is required to solve both these overvoltage problems. However, for PV installed according to electric-energy net-zero yearly energy balance or in another case the peak loads of respective users, grid could operate without major problems with the inclusion of BESS with hosting capacity motivated control (HMC). The economic analysis for all the cases has been carried out to verify the assumptions presented. 

The information about the future RES energy generation is needed for the further optimal EMS operation and can add extra capabilities for the customer. Therefore, in this research work, several machine learning (ML) and deep learning (DL) algorithms are set up and evaluated for residential load, PV and wind energy generation forecasting. 
For the PV energy infeed forecasting, cases from regions of Estonia are considered with a day-ahead target. This presents a successful case of the recurrent neural networks based long-term short-memory network (RNN-LSTM) algorithm. Similarly, for the wind energy availability forecasting, Estonian wind energy data set of up to eight years was used and the forecasting results of eight different ML and DL algorithms are compared for day-ahead values. The results indicate that RNN-LSTM provides the most 
accurate forecasting in terms of the lowest root mean square (RMSE) values. Moreover, the residential load forecasting algorithm based on LSTM is developed for a 24-hour ahead load forecast. This load and RES energy forecast will be very beneficial for the EMS in residential applications.
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Taastuvenergiaallikate kasutustihedust toetav energiahaldussüsteem

Taastuvenergiaallikatel põhinevat energiatootmist rakendavate liginullenergiahoonete (i.k near-zero energy building, nZEB) levik laieneb lähiaastatel. Üks potentsiaalsemaid ja mugavaimaid lahendusi nZEB tingimuste täitmiseks kodukasutajate jaoks on päikesepaneelide, s.t fotogalvaaniliste (i.k photovoltaic, PV) taastuvenergiaallikate ja akudel energiasalvestussüsteemide (i.k battery energy storage system, BESS) kombinatsioon. Taolisi keskkonnasäästlikke süsteeme on lihtne paigaldada, ja need võimaldavad olulisel määral vähendada võrgust tarbitava energia kulu tarbija jaoks. Käesoleva töö põhiliseks eesmärgiks on pakkuda kodutarbijatele elektrienergiavarustussüsteemi kasutuse ja paigaldusega seotud kulude vähendamise täiendavaid võimalusi, rakendades päikesepaneelide ja akuseadmete kombinatsiooni ning kohalikku energiahaldussüsteemi (i.k energy management system, EMS), suurendades seeläbi kodutarbijate iseseisvust ja väikesemat sõltuvust välisvõrgust. Siiski, nimetatud eesmärkide saavutamiseks vajalike päikesepaneelide ja akusüsteemi soetamiskulu on märkimisväärne ja tasuvusaeg pikk, teisalt võib piiranguid tekitada ka olemasolevate elektrivõrkude infrastruktuuri valmidus. Päikesepaneelidega integreeritud süsteemide intensiivse rakendamise korral võivad tulemuseks olla madalpinge jaotusvõrkude energiaülekande piirangud või ka ülepinge esinemine. Sellised probleemid võivad ilmneda näiteks juhul, kui päikeseenergiast toodetud elektrienergia tootmisintensiivsus on tipulähedane, aga kodutarbijate koormus minimaalne. See tingib vajaduse suurendada jaotusvõrkude päikeseenergial töötavate allikate kasutustihedusvõimekust (i.k hosting capacity, HC), s.t päikeseenergiaallikate poolt sisestatava võimsuse taset, mille korral jaotusvõrgus on võimalik tagada varustuskindluse ja kvaliteedi nõuded.

Antud doktoritöös uuritud päikesepaneelidel ja akusüsteemil põhinev energiahaldussüsteem omab võimekust, millega pakub kodukasutuseks paigaldatuna täiendavaid hüvesid. Eelnevalt teadaolevad tarbimise juhtimise meetodid üksi toimides ei ole võimelised ülalloetletud väljakutseid lahendama. Väljapakutud uudne ja mitmetasemeline energiahaldussüsteem töötab päikesepaneelide ja akusüsteemi kombinatsioonil ning rakendab tõhusat talitlusstrateegiat. Akusüsteemi salvestusmahu optimeerimiseks, samuti tõhusaks aku juhtimisalgoritmi ja kasutusstrateegia sisseseadmiseks kasutatakse heuristilist lineaarprogrammeerimise (i.k linear programming) algoritmi, mis võtab arvesse koduse energiatarbe, päikesepaneelide poolt toodetava elektrienergia koguse, elektrituru hinna ja ka elektriauto laadimiskoormuse andmed. Optimeerimiseks välja pakutud lahendus kasutab simpleks ja sisepunkti meetodeid. Algoritm pakub akuseadme laadimiseks ja tühjendamiseks optimeeritud ajalist plaani ning seejärel otsustab energia ostu või müügi võrku, kasutades dünaamilist elektribörsi energiahinda. Süsteemi tasuvuse ja tasuvusaja hindamiseks, on läbi viidud tehnilis-majanduslik analüüs erinevatel võimsustasemetel päikeseenergiaallikad-akuseade ja päikeseenergiaallikad-akuseade-elektriauto kombinatsioonidele. Tulemused näitavad, et erinevad pakutud energiahaldussüsteemi konfiguratsioonid on suurema iseseisvusmääraga ja omavad motiveerivat tasuvusaega.

Lisaks eeltoodule on vaadeldud väljapakutud energiahaldussüsteemi võimekust vähendada energiaülekande piirangute ja pinge kõikumiste võimalikku ulatust jaotusvõrgus. Taolise kohalikku elektrivõrku toetava funktsionaalsuse hindamiseks on käsitletud tegeliku maapiirkonna elektrivõrgu laiemat vaadet koos tegelike aastaste koormusandmete ja päikeseenergial toimivate elektrienergiaallikate energiatoodangu andmetega. Uuriti nelja erinevat päikesepaneelide paigaldise näidet, kasutades võimsusvoo analüüsi. Kohalike elektrienergiavoogude läbilaskevõime haldamise strateegiate analüüsiks ja kasutustihedusvõimekuse maksimaalseks kasvatamiseks jaotusvõrgus rakendati kahte erinevat akuseadme talitlusmeetodit, mida kooskasutati ja võrreldi muude tuntud meetoditega, s.h reaktiivvõimsuse reguleerimine ja võimsustipu piiramine. Tulemused näitavad selgelt, et võimsuse piiramine kasutustihedusvõimekuse piirideni jõudmisel ei ole sobilik tehniliselt ega majanduslikult. Lihtjuhtimisega akuseadme rakendamine vähendab talitluspiiranguid oluliselt, kuid ei lahenda suurte võimsustega päikeseenergia allikatega kaasnevaid ülepinge probleeme. Täiendavalt on sellisel juhul vaja nii akuseadme kui ka reaktiivvõimsuse reguleerimisvõimekust. Samas, kui päikeseenergiaallika võimsus on valitud lähtudes aastasest elektrienergia võrgust tarbitava energia null tasakaalust või teisel juhul vastavalt kasutatava koormuse tippväärtusele, võib elektrivõrk talitleda praktiliselt täiendavate probleemideta, kui akuseadet kasutatakse kasutustihedusvõimekust toetava juhtimisega. Kõikide kirjeldatud juhtumite puhul kasutatud eelduste kinnitamiseks on esitatud majanduslik analüüs.

Eesmärgiga tulevikus kasutajale täiendavaid energiahaldussüsteemi optimeerimisega seotud lisavõimalusi pakkuda, on vaja enam teavet eeldatava taastuvenergiaallikate poolt toodetava energiahulga kohta. Seetõttu on käesolevas uurimistöös loodud ja vaadeldud mitmeid masinõppe (i.k machine learning) ja süvaõppe (i.k deep learning) algoritme koduse elektrienergia tarbimise, päikeseenergiaga ja tuuleenergiaga toodetud energiahulkade ennustamise analüüsiks. Päikeseenrgiaallikate poolt genereeritud energiahulga ennustamist vaadeldakse Eesti erinevate piirkondade kohta eesmärgiga saada päev-ette andmeid. Nimetatud stsenaarium kirjeldab tulemusliku rekurrentse närvivõrgu (i.k recurrent neural network, RNN) pikaajalise lühimäluga võrgu 
(i.k RNN-LSTM) kasutusjuhtumit. Sellele sarnaselt rakendatakse tuuleenergia saadavuse ennustamiseks kaheksa aasta pikkust andmemassiivi, ning rakendati kaheksa erineva masinõppe ja süvaõppe algoritmi, et võrrelda nende tööd päev-ette väärtuste leidmisel. Tulemused näitavad ruutkeskmise vea väärtusele tuginevalt täpseimat ennustust, kasutades RNN-LSTM. Lisaks sellele, on arendatud LSTM-meetod kodutarbimise ennustamiseks 24-ks tunniks. Kirjeldatud taastuvenergiaallikate saadavuse ja tarbimise ennustamisega saab koduse energiahaldussüsteemi rakendustes võimekust kasvatada.
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Payback period 	Small House (5 kW PV)	Medium House (10 kW PV) 	Apartment Building (20 kW PV) 	Apartment Building (60 kW PV) 	10	13	27	16	Yearly savings 	Small House (5 kW PV)	Medium House (10 kW PV) 	Apartment Building (20 kW PV) 	Apartment Building (60 kW PV) 	245	513	2612	4749	

Years





Euros 









Small House 	PV-BESS-EV	PV-BESS	PV-EV	9	10	17	Medium House 	PV-BESS-EV	PV-BESS	PV-EV	12	13	19	Apartment Building 	PV-BESS-EV	PV-BESS	PV-EV	29	32	39	

Years 









Transformer 	PV 	PV + Curt.	PV + BAT	PV + BAT + RPC	PV + Curt. + BAT	698	0	170	891	0	Overvoltage 	PV 	PV + Curt.	PV + BAT	PV + BAT + RPC	PV + Curt. + BAT	1187	1212	880	2	360	Line Oveloading	PV 	PV + Curt.	PV + BAT	PV + BAT + RPC	PV + Curt. + BAT	556	0	84	796	0	

Number of hours









Transformer 	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	698	0	211	244	689	0	254	244	170	93	141	0	Overvoltage 	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	1187	304	434	704	1154	21	117	0	880	0	0	0	Line Oveloading	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	1	2.1	2.2000000000000002	3	556	0	0	0	558	0	0	0	84	0	0	0	Without BESS                   BESS (TBC)                    BESS (HMC)  





Number of hours 









[PERCENTAGE]

Non-renewable (fossil)	biomass (including waste)	wind	solar	bio-degradable waste	biogas	hydro	4500933.7059792299	1138810.0048697696	691675.39001500013	54096.954886999971	51274.09338000002	40096.324696999996	21616.217052	

Original	4.5089999999999998E-2	4.3991099999999994	5.2208099999999993	6.3080999999999996	6.3097199999999996	6.0163199999999994	5.2088400000000004	6.0099300000000007	6.6302100000000008	7.0491599999999996	7.2352800000000004	7.4115900000000003	6.4746900000000007	6.5421900000000006	2.3109299999999999	8.0099999999999998E-3	0	0	0	0	0	0	3.1859999999999999E-2	1.1339999999999999E-2	2.4733800000000001	0.73475999999999997	6.1333199999999994	6.2787600000000001	6.3577800000000009	6.0570900000000005	5.515200000000001	4.1574600000000004	1.82934	0.64259999999999995	0.47529000000000005	0.43109999999999998	0.19368000000000002	7.1550000000000016E-2	5.5799999999999999E-3	0	0	0	0	0	0	0	3.3299999999999996E-2	2.82186	4.6794599999999997	6.1701300000000003	6.6350699999999998	6.7057199999999995	6.4531800000000006	6.224219999999999	6.0157799999999995	6.2712899999999987	6.5987999999999989	6.3931500000000003	7.2503099999999998	6.3402299999999991	6.858719999999999	5.2342200000000005	1.0634400000000002	0	0	0	0	0	0	0	3.4110000000000001E-2	Forecasting	0.85944563369154003	1.3224085030327619	5.5041752790141603	5.2879697021008498	6.7357087559851205	5.8918309404359697	5.63240050982367	4.9434748987787094	5.9619645524306097	7.0071552105485102	7.3787250988929607	7.0496012965439698	6.8527047686416811	5.8629964401692103	2.9849195705746472	-0.43381221711620105	-2.3271482059861563E-2	5.6737392884230797E-2	-2.3750057845907582E-2	-1.0838713819654559E-2	-5.7036889626062695E-2	-0.10082734694298359	0.11976950288055539	5.3980790173455903E-2	1.9234847734579168	4.2344568336569699	1.94866116778902	7.3092886370259293	4.4346248660605196	7.8778311060138595	3.9285349913641805	5.7728284957048501	3.1992664154016301	2.8146754321239449	1.5452252581739399	1.3748828076431581	0.80017040544717299	1.3264906184584411	0.79480497730322708	-6.0309630757253103E-2	2.2211803779125612E-3	4.4129177771555395E-2	6.7869226429552801E-2	8.10473733649512E-2	5.6922114481234798E-2	6.3342115520446194E-3	2.9265040494295468E-2	0.12294393193166669	4.7050682591653494	8.5645650996509985	8.0546209585950592	7.5332837459193902	6.6046454594676911	6.3162992201702108	6.1656146255823607	6.2357735884907104	6.6167335171126496	7.0300619252069705	6.8310949696307999	7.2071720649421493	6.3970882540264808	5.5744603781762105	2.9223759294038727	7.1515893538277392E-2	0.33677085115905903	0.39107127174117895	0.20072424514855439	0.13641516016239569	6.0743919304943092E-2	0.1225075561422585	7.3042204039381498E-2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	Hours


kW
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