
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IDK40LT

Artjom Tsarajev 050520IABB

MARKDOWN-BASED FLAT-FILE CMS

PERFORMANCE COMPARISON ON LOW-

POWER COMPUTERS

Bachelor’s thesis

Supervisor: Jekaterina Tšukrejeva

 Master’s degree

 Assistant

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IDK40LT

Artjom Tsarajev 050520IABB

MARKDOWN’IL PÕHINEVATE

SISUHALDUSSÜSTEEMIDE JÕUDLUSE

VÕRDLUS MADALA

VOOLUTARBIMISEGA ARVUTITEL

bakalaureusetöö

Juhendaja: Jekaterina Tšukrejeva

 Magistrikraad

 Assistent

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Artjom Tsarajev

23.05.2016

4

Abstract

The purpose of this work is to analyse and compare the performance of flat-file content

management systems on low-power computers with various hardware specifications.

The objective is to determine whether such hardware is a viable option for hosting

websites that generate web content from specifically formatted text files and find out the

bottlenecks of such solutions as well as an approximate workload that these systems can

handle, so that unnecessarily complex server setups can be replaced with lightweight

alternatives if workload requirements are not demanding.

This work is aimed at finding out if it is reasonable to dynamically generate web pages

or statically generated systems should be preferred, whether the web server software is

better optimized for certain hardware architectures, as well as how the CPU speed, the

number of CPU cores, RAM size or the network interface speed influence the

performance of different CMS-s.

In the course of this work it was determined that both Raspberry Pi systems in question

were capable of running an instance of Apache web server with a flat-file CMS on top

of it. They have managed to provide response times of up to 3 seconds within the local

area network for a given set of files. They could handle the load of up to 64

simultaneous requests. This proves these setups can be utilized for small working

environments where complex functionality is not required, e.g. a corporate intranet web

server, a personal blog or similar.

This thesis is written in English and is 73 pages long, including 7 chapters, 24 figures

and 4 tables.

5

Annotatsioon

Markdown’il põhinevate sisuhaldussüsteemide jõudluse võrdlus madala

voolutarbimisega arvutitel

Selle töö eesmärgiks on analüüsida ja võrrelda populaarsete tekstifailipõhiste

sisuhaldussüsteemide jõudlust madala voolutarbimisega arvutitel. Lõpptulemuseks on

arusaam, kas selliseid arvuteid saab kasutada tekstifailidest genereeritavate veebilehtede

majutamiseks, mis on selliste lahenduste pudelikaelad ning mis koormusele nad vastu

peavad.

Selle töö tulemuseks on vastused sellistele küsimustele, nagu:

 Kas on mõttekas genereerida veebilehte dünaamiliselt või tuleks kasutada

staatilisi lehte?

 Kas veebiserverite tarkvara on paremini optimeeritud teatud

riistvaraarhitektuuride jaoks?

 Kuidas mõjutab jõudlust protsessori kiirus?

 Kuidas mõjutab jõudlust operatiivmälu suurus?

 Kuidas mõjutab jõudlust võrguadapter?

 Kuidas mõjutab kiirust protsessori tuumade arv?

Selle töö käigus oli avastatud, et mõlemad testis olevad Raspberry Pi süsteemid olid

võimelised jooksutama Apache veebiserveri koos tekstifailipõhise

sisuhaldussüsteemiga. Nad olid suutelised serveerida lokaalse võrgu kaudu teatud

tekstifailidest dünaamiliselt genereeritud veebilehte 3 sekundi piires. Nad said hakkama

kuni 64 samaaegsete ühendustega. See tõestab seda, et selliseid süsteeme saab kasutada

väikestes töökeskkondades, kus nõudmised funktsionaalsusele ei ole väga kõrged,

näiteks firmasisene uudisteportaal, personaalne blogi vms.

6

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 73 leheküljel, 7 peatükki, 24

joonist, 4 tabelit.

7

List of abbreviations and terms

CMS Content management system

DBMS Database management system

CPU Central processing unit

RAM Random-access memory

8

Table of contents

1 Introduction ... 12

1.1 Background and problem.. 12

1.2 Challenge .. 13

1.3 Methodology ... 13

1.4 Overview .. 14

2 Flat-file content management systems .. 15

2.1 CMS candidates .. 15

2.2 Final contenders .. 19

3 ARM architecture .. 21

3.1 Hardware choice ... 21

4 Test methodology and lab setup .. 23

4.1 Sample dataset .. 23

4.2 Operating system .. 24

4.3 Web server .. 24

4.4 Network equipment .. 25

4.5 CPU load... 25

4.6 Memory usage .. 25

4.7 Network monitoring ... 25

4.8 CMS performance monitoring and stress testing ... 25

5 Performance results ... 26

5.1 CPU performance ... 26

5.2 Network performance ... 26

5.3 Memory usage .. 27

5.4 Canonical performance ... 28

5.5 Bludit .. 28

5.6 HTMLy ... 28

5.7 Mecha ... 29

5.8 Phile .. 29

5.9 Pico ... 30

9

5.10 PuppyCMS.. 30

5.11 Singularity .. 30

5.12 Yellow .. 31

6 Performance graphs ... 32

6.1 1024 .. 32

6.2 Gpl .. 35

6.3 Communist.. 39

6.4 Alice.. 43

6.5 Jungle .. 47

6.6 Sherlock .. 51

7 Summary .. 56

References .. 59

Appendix 1 – Performance results ... 61

10

List of figures

Figure 1. Page loading times in Chrome for sample file “1024”. 32

Figure 2. Average loading times for sample file “1024” with concurrency of 1. 33

Figure 3. Average loading times for sample file “1024” with concurrency of 2. 34

Figure 4. Average loading times for sample file “1024” with concurrency of 4. 35

Figure 5. Page loading times in Chrome for sample file “gpl”. 36

Figure 6. Average loading times for sample file “gpl” with concurrency of 1. 37

Figure 7. Average loading times for sample file “gpl” with concurrency of 2. 38

Figure 8. Average loading times for sample file “gpl” with concurrency of 4. 39

Figure 9. Page loading times in Chrome for sample file “communist”. 40

Figure 10. Average loading times for sample file “communist” with concurrency of 1. 41

Figure 11. Average loading times for sample file “communist” with concurrency of 2. 42

Figure 12. Average loading times for sample file “communist” with concurrency of 4. 43

Figure 13. Page loading times in Chrome for sample file “alice”. 44

Figure 14. Average loading times for sample file “alice” with concurrency of 1. 45

Figure 15. Average loading times for sample file “alice” with concurrency of 2. 46

Figure 16. Average loading times for sample file “alice” with concurrency of 4. 47

Figure 17. Page loading times in Chrome for sample file “jungle”. 48

Figure 18. Average loading times for sample file “jungle” with concurrency of 1. 49

Figure 19. Average loading times for sample file “jungle” with concurrency of 2. 50

Figure 20. Average loading times for sample file “jungle” with concurrency of 4. 51

Figure 21. Page loading times in Chrome for sample file “sherlock”. 52

Figure 22. Average loading times for sample file “sherlock” with concurrency of 1. ... 53

Figure 23. Average loading times for sample file “sherlock” with concurrency of 2. ... 54

Figure 24. Average loading times for sample file “sherlock” with concurrency of 4. ... 55

11

List of tables

Table 1. Properties of the chosen CMS-s. .. 19

Table 2. Hardware specification of the chosen computer systems. 22

Table 3. Memory usage at different stages of testing. .. 27

Table 4. Initial loading times for file “1024” in Bludit. ... 29

12

1 Introduction

According to a research [1], over 25% of all websites available on the Internet are

powered by Wordpress, Joomla or other similar platforms. These traditional CMS-s

usually make use of a DBMS for backend storage, all of which require additional

management for security and performance reasons. In order to get the new features as

they are added in new versions of these CMS-s, the system needs to be updated as well.

This additional management includes, but is not limited to, performance monitoring,

checking for data corruption and backing up the data itself.

Flat-file CMS-s, on the other hand, generate website content from regular text files, as

long as they conform to the required syntax a particular CMS supports. Markdown [2]

language allows the files to be written in a manner that is easily readable while still

supporting basic text formatting. Markdown implementations [3] are also available for

numerous commonly used programming languages.

Low-power systems are generally considered a niche product when it comes to website

hosting. Hardware products like the Raspberry Pi [4] have made ARM-based devices

available to the wider audience due to their low cost and low entry barrier. They are

available in most of the countries around the world and there are a number of various

operating systems that can run on them. These ARM-based products also require as

little as 180mA to operate [5]. This makes them a viable computing platform for people

who care about the natural environment.

1.1 Background and problem

The problem the author will be trying to solve during the course of this work is

optimizing the infrastructure and operational costs of the existing system which consists

of several traditional database-backed CMS-s and x86 server architecture. The goal is to

find out whether it is worth investing in an ARM based solution to minimize operational

costs related to power consumption as well as making sure system resources are being

used adequately. It is absolutely clear that running a simple Apache+PHP+SQL instance

13

is not needed for a simple page that mostly serves static content. Neither is it reasonable

to set up a system that will stay idle most of the time due to low number of page

requests.

This work might be of interest to enterprises dealing with hosting websites for small to

medium-sized companies as well as independent companies looking to keep their

employees up-to-date with the latest internal information or just casual bloggers to

privately host their websites at a minimum cost.

1.2 Challenge

This work will answer the following questions for potential users:

 Is it worth switching from an existing CMS to a flat-file CMS? A flat-file CMS

does not require a backend database, which minimises the time for software

maintenance.

 Is ARM a viable architecture for hosting flat-file CMS-s? Low-power systems

can help save money by using less electricity. ARM hardware is relatively

cheap, no expensive server hardware needs to be purchased.

 What performance can be expected from such systems?

 What performance bottlenecks can be expected as demands grow?

1.3 Methodology

In order to address the aforementioned questions, we must determine whether and to

what extent:

 Statically generated web pages are faster than dynamically generated ones.

 RAM size influences system performance.

 CPU speed influences system performance.

 The network interface influences system performance.

14

 The number of CPU cores influences system performance.

 Certain software is better optimized for certain system architectures.

1.4 Overview

In chapter 2 we will get an overview of flat-file CMS-s and comment on the ones

chosen for testing.

In chapter 3 we will discuss the benefits of ARM architecture and describe the hardware

used for testing.

In chapter 4 the author will present the chosen methodologies for measuring system

performance.

In chapter 5 the author will present the results of different system performance

measurements as well as comment on observations made.

In chapter 6 the author will present graphs showing the performance of various CMS-s.

In chapter 7 the author will draw conclusions based on the results observed.

15

2 Flat-file content management systems

Content management systems can be basically divided into 2 major categories: the ones

that store their content in the form of databases and those that rely on regular text files.

Managing a CMS with a database backend inevitably means having a procedure in

place to perform service maintenance, updating, backing up as well as having to deal

with constant security vulnerabilities, security assessments and other routine tasks.

Newer versions of such content management systems require thorough investigation of

possible compatibility issues as well as other potential problems.

Content management systems that rely on text files as their backend storage, on the

other hand, require much less attention, being easily backed up using regular scripts,

requiring merely to conform to a certain standard file structure to be correctly rendered

for the end user. These characteristics make them a great choice for cases where the

main goal is to deliver the content itself, rather than to make the experience as

functionally and visually appealing as possible. Such systems are a perfect fit for

personal or corporate blogs in particular. If one were to post an article or a quick update

for system users, it is usually not critical to have all the functionality that regular

database-backed CMS-s offer.

2.1 CMS candidates

New flat-file CMS-s can appear at any point in time, so the author has decided to settle

on a list of flat-file CMS-s posted on GitHub [6].

To test the performance of flat-file CMS-s, the author has come up with certain criteria

that the CMS in question must satisfy. These requirements are specific to this work and

further research on the topic can include a wider variety of criteria. This work focuses

on CMS-s that satisfy the following requirements:

1. Source code must be available for download to identify the potential security or

performance issues. It is also essential if users decide to implement additional

16

functionality and make contributions to the project. The following CMS-s have

been discarded: Pulse CMS, Statamic.

2. Markdown support is required in order to compare performance based on the

same sample data. The sample set will include text files written in Markdown of

different size. The following CMS-s have been discarded: Flat Press, Flot, Get

Simple CMS, Mozilo, Nanote, PluXML, Pluck CMS, Razor CMS, Vodka,

WonderCMS, Nibbleblog.

3. The system must be self-hosted in order to test the performance on a fixed list of

hardware. The following CMS-s have been discarded: Dodger CMS.

4. The CMS must be an active project. In the context of this work, the author

considers a CMS active, if the latest version was released after 02.03.2015. The

following CMS-s have been discarded:

 Dropplets (release 1.6.2.6 08.09.2013)

 Feindura (release 2.0.7 30.09.2014)

 Nibbleblog (release 3.7.1c 06.11.2013) (Markdown support version)

5. The project website must clearly list system requirements and software

dependencies along with installation instructions. In case all documented

requirements have been satisfied, the CMS should work without any additional

configuration. The following CMS-s have been discarded:

 Automad

Example pages are not working, documentation [7] was followed.

 Baun

“index.php” tries to install dependencies via external application

“composer”.

 Metalsmith

17

The software comes without any bundled plugins or templating engines, all

functionality must be implemented from scratch.

 Kirby

Displays a blank page, no errors observed, documentation [8] was followed.

 Monstra

“install.php” shows all requirements as satisfied, however,

“/install.php?action=install” displays a blank page after entering the setup

details, documentation [9] was followed.

 Sphido

Displays a blank page, no errors observed, documentation [10] was

followed.

6. The CMS works with PHP 5.4.3 (the one provided by Tiny Core Linux

apache2-mod-php5.tcz package). The following CMS-s have been discarded:

 Fansoro (requires PHP 5.5)

 Grav (requires PHP 5.5.9)

 Parvula (requires PHP 5.5)

7. The underlying technology has to be working on Tiny Core Linux (both ARM

and x86 ports). The following CMS-s have been discarded:

 Herbie

Works on x86 only, running on Raspberry Pi shows errors in German, no

English documentation available.

 Hugo

Starting the server results in error “panic: runtime error: invalid memory

address or nil pointer dereference”.

18

 Jekyll

Ruby extension has to be manually recompiled, according to Tiny Core

Linux forum [11].

 Middleman

Ruby extension has to be manually recompiled, according to Tiny Core

Linux forum [11]

 Nesta

Ruby extension has to be manually recompiled, according to Tiny Core

Linux forum [11]

 Hexo

While it is possible to run this CMS on a Raspberry Pi, the installation

procedure involves installing the “node.tcz” in “copy to fs” mode, which

makes it unpractical, as it only runs until the system is restarted. Once

restarted, it is not possible to run “node.tcz” in the same manner as usual, so

the Tiny Core Linux distribution image has to be copied to the SD Card once

again and manual repartitioning has to occur. The whole procedure is rather

time-consuming, so the CMS had to be disqualified. It is important to note,

that this was not an issue on x86 platform when booting into a LiveCD

environment.

 Urubu

The official installation instructions require “pip” package manager to

install. No manual installation instructions are provided. Tiny Core Linux

ARM port does not have this package available as of 10.05.2016.

 Wintersmith

While it is possible to run this CMS on a Raspberry Pi, the installation

procedure involves installing the “node.tcz” in “copy to fs” mode, which

makes it unpractical, as it only runs until the system is restarted. Once

19

restarted, it is not possible to run “node.tcz” in the same manner as usual, so

the Tiny Core Linux distribution image has to be copied to the SD Card once

again and manual repartitioning has to occur. The whole procedure is rather

time-consuming, so the CMS had to be disqualified. It is important to note,

that this was not an issue on x86 platform when booting into a LiveCD

environment.

2.2 Final contenders

The following flat-file CMS-s have been chosen for the final performance analysis.

Table 1 compares various properties of the chosen CMS-s.

Table 1. Properties of the chosen CMS-s.

Name Release number, date Notes

Bludit [12] 1.1.2 – 27.02.2016 Administrator account needs to be setup

initially.

HTMLy

[13]

2.7.4 – 24.01.2016 Administrator account needs to be setup

initially.

Mecha [14] 1.2.5 – 22.04.2016 Administrator account needs to be setup

initially.

Phile [15] 1.7.1 – 26.04.2016 No control panel available, files need to

be uploaded manually.

Pico [16] 1.0.2 – 16.03.2016 No control panel available, files need to

be uploaded manually.

PuppyCMS

[17]

2.0 – 17.03.2016 No control panel available, files need to

be uploaded manually.

Singularity

[18]

no release number, using

25.12.2015 GitHub commit

bbd9bb0

Singularity is notable for its size (42 lines

of code), as well as being contained in a

single PHP file. No control panel

available, files need to be uploaded

20

manually.

Yellow [19] 0.6.3 – 23.02.2016 Yellow is supposed to have an admin

panel, however, the author was unable to

access it, as the crypto library that

Yellow uses was not available on the

system. Nevertheless, sample files could

be added manually by uploading.

21

3 ARM architecture

The ARM processor architecture [20] has been around for nearly 30 years, however, it

only saw mass adoption with the introduction of smartphones and tablets. Devices built

using this architecture are usually preferred when low power usage is needed. ARM is a

reduced instruction set family of processors which deliver a moderate power-speed

ratio. Certain enterprise-grade server solutions have been introduced to the public, e.g.

HP ProLiant Moonshot [21]. However, the x86 architecture still dominates the server

market by a large margin [22].

One of the goals of this work is to minimise the cost of operating a traditional server

room. The current setup sports a complex air-conditioning system and occupies a

relatively large room. Traditional server hardware is costly, and in the case of hardware

failure, if failover is not properly implemented, a lot of systems can be rendered

unusable until the whole server or the faulty part is replaced. This problem becomes

bigger as more physical servers are used as virtual machine hosts. ARM hardware could

allow companies to have smaller server rooms with less money spent on cooling, have

better redundancy where cheap systems can be upgraded more often, or even have

mobile computing units consisting of multiple ARM servers. A similar concept was

introduced using traditional x86 hardware [23].

3.1 Hardware choice

While there are many devices built around ARM processors, ranging from smartphones

and tablets to enterprise-grade solutions, Raspberry Pi devices are by far the most

affordable and well-maintained systems available.

For these reasons, a known list of systems was chosen, including: Raspberry Pi 1 Model

B (ARMv6), Raspberry Pi 2 Model B (ARMv7) and an x86 PC with similar hardware

specifications. While Raspberry Pi 3 was introduced recently, the author decided it was

22

impractical to test out its performance due to the fact that it lacks full software support

at this point in time.

Related hardware specifications [24] for available systems are listed Table 2.

Table 2. Hardware specification of the chosen computer systems.

Device CPU RAM Network interface

Raspberry Pi 1

Model B

Broadcom BCM2835 700 MHz

Cores: 1

512 MB 10/100 Mbit/s (8P8C)

Raspberry Pi 2

Model B

Broadcom BCM2836 900 MHz

Cores: 4

1 GB 10/100 Mbit/s (8P8C)

X86 Pentium III 933MHz

Cores: 1

512 MB 10/100 Mbit/s

(Intel PRO/100)

23

4 Test methodology and lab setup

In order to get the most accurate results, certain decisions had to be made. These

included determining sample datasets that would be the same throughout the testing

phase, the base operating system that would provide the least amount of overhead while

still delivering the proper toolset, reasonably performing network equipment that would

not influence the speed tests, as well choosing functional monitoring tools.

4.1 Sample dataset

In order to test the performance of various CMS-s, a number of differently sized text

files was selected. This is important, because it will allow us to see how fast different

hardware solutions scale up, as well as give us insight into how well different content

generation algorithms and templating engines perform.

Sample data includes:

 Text file, 35 kB [25]. Beyond this point referred to as “gpl”.

 A dummy text file of size 1kB (beyond this point referred to as “1024”)

generated from the abovementioned file using the command:

$ head -c 1k < gpl-3.0.txt > 1024.txt

 Text file, 92 kB [26]. Beyond this point referred to as “communist”.

 Text file, 164 kB [27]. Beyond this point referred to as “alice”.

 Text file, 292 kB [28]. Beyond this point referred to as “jungle”.

 Text file, 581 kB [29]. Beyond this point referred to as “sherlock”.

24

4.2 Operating system

When dealing with low-power hardware systems it is critical to lower the consequences

of hardware bottlenecks to achieve better and more accurate results. To minimise the

impact of traditional storage media I/O limitations, Tiny Core Linux was selected as the

underlying base OS. The main thing that differentiates it from traditional Linux

distributions is that it is configured to execute all software components from RAM once

started. This means that in its default configuration, all parts of the operating system are

read from a persistent storage (HDD, SD card, etc.) and copied to RAM. This helps

achieve remarkable speeds and is extremely helpful during the tests as performance can

only be influenced by either the network interface, RAM or CPU speed. Furthermore,

the OS boots to the same configuration every time, so in case some form of content

caching is performed by any of the CMS-s, a system reboot will restore everything to its

original state. The principal diagram describing Tiny Core Linux boot process [30] is

available on the project’s website.

Another thing that makes Tiny Core Linux a perfect solution for the performance testing

is that it has been ported to x86, x86_64 as well as both ARMv6 and ARMv7

architectures, which allows one to compare CMS performance not only on different

Raspberry Pi revisions, but also on PC systems to get a rough estimate of performance

loss on low-power hardware.

4.3 Web server

Due to RAM limitations, Nginx was first considered as the underlying web server

component, because of its small memory footprint and good performance. However,

Tiny Core Linux’s php5.tcz package description [31] failed to provide PHP

configuration instructions for Nginx, so Apache with mod-php5 has been chosen instead.

Using FastCGI has been excluded as an option, because in order for it to work, all PHP

scripts had to be edited by adding a line to the top of the file. Although possible, the

author has a strong opinion that these manipulations were not required for the scope of

this work and can be carried out in later iterations once the best performing CMS-s are

determined to further optimise their performance.

25

4.4 Network equipment

To rule out the network equipment as the source of latency while requesting web pages,

all devices in question were connected to a 1 Gbit/s network switch. Raspberry Pi

systems both have 100 Mbit/s network adapters, so it is fair to say that the network

infrastructure is not a limiting factor during the testing phase.

4.5 CPU load

To examine the CPU load during the tests, top [32], a standard UNIX utility will be

used. It will allow us to observe momentary CPU load as well as the average load

during the testing.

4.6 Memory usage

In order to find out memory usage, free [33], again, a standard UNIX monitoring utility,

will be used. It will help us determine how much RAM is available at system boot, and

how much resources a particular CMS requires.

4.7 Network monitoring

Monitoring the network performance on the devices will be performed by IPTraf [34],

an interactive open source tool for monitoring network interface performance. It is

supposed to provide us with the statistics of the network interface such as its throughput

at any given time.

4.8 CMS performance monitoring and stress testing

To stress-test the systems in question we will be using an open source tool called

ApacheBench [35]. Apache JMeter [36] was also considered as an alternative, however,

initial tests showed similar results using both tools, so the author decided to use

ApacheBench for its easy scripting capabilities and immediate availability as part of the

Apache software package. It will allow us to specify the exact number of concurrent

connections we want to simulate as well as provide us with detailed output about the

test results.

26

5 Performance results

Tests showed that ApacheBench performance results were different from real-world

page loading times. For this reason, Google Chrome 50.0.2661.94m page loading times

are also included in the tables. It is important to note that these results show the loading

times with 1 concurrent connection only, and serve as just real-world performance

results for any given CMS and source file size.

5.1 CPU performance

Several observations have been made throughout the tests regarding CPU load.

While the initial tests to measure canonical performance passed very quickly, the CPU

load spiked for such short periods of time that the measurements could not be

considered reliable. At higher concurrency rates, the CPU load was reported between

80-90%.

During later tests of the actual CMS-s, the CPU load on Raspberry Pi 1 was

immediately above 90% for even the smallest sample file, so further testing was not

performed for stability and accuracy reasons.

The Raspberry Pi 2, on the other hand, was clearly taking advantage of its 4 CPU cores.

At concurrency rates of 1 and 2, the CPU load was reported as being 25% and 50%

respectively. CPU load went over 90% only in case of 4 concurrent connections. This

leads the author to believe that the Raspberry Pi 2 could be better suited for small

business environments, where there are several concurrent connections to a given web

resource.

5.2 Network performance

Conducting the network monitoring had to be cancelled, as running such

resource-intensive software on the Raspberry Pi systems resulted in instability and

27

software crashes. As a workaround, to rule out the network interface speed limits as a

factor that could influence test results, the x86 system was also equipped with a 10/100

Mbit/s network adapter.

Based on the CPU performance results, the author considers it unlikely that the network

interface could have been the bottleneck during the CMS testing process.

5.3 Memory usage

Table 3 shows memory consumption (MB) at different stages of testing. All data was

acquired by running the command “free -m” after certain steps.

Table 3. Memory usage at different stages of testing.

Stage Raspberry Pi 1 Raspberry Pi 2 X86

On boot Used 53 Used 59 Used 21

Apache started Used 74 Used 78 Used 65

Apache + data Used 75 Used 81 Used 67

Bludit + data Used 144 Used 168 Used 104

Htmly + data (1-4) Used 126 Used 145 Used 94

Mecha + data (1-5) Used 158 Used 180 Used 114

Phile + data Used 79 Used 84 Used 76

Pico + data Used 82 Used 87 Used 74

PuppyCMS + data Used 78 Used 83 Used 69

Singularity + data Used 77 Used 82 Used 66

Yellow + data Used 90 Used 95 Used 70

28

5.4 Canonical performance

The initial Apache sample page named index.html of size 55 B with the contents

“<html><body><h1>It works!</h1></body></html>” was chosen as a model for

measuring the loading times. Its loading time is considered the standard for Apache

performance on the given hardware in the course of this work. It is to show the network

and web server performance limitations of the lab setup.

After determining the maximum performance of the test setups, the sample files were

copied to the web server root folder and also tested to see the ideal performance for the

source files without any conversion or file generation taking place.

Canonical performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 1.

Canonical performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 2.

Canonical performance results for the x86 system are listed in Appendix 1. Table 3.

5.5 Bludit

One important observation is that the loading times of “gpl” were slower than the one of

a bigger file “communist”. This result was tested multiple times, however, each time

this peculiar behaviour was observed. The nature of this phenomenon is unknown to the

author and can be further investigated in later iterations of this work.

Bludit performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 4.

Bludit performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 5.

Bludit performance results for the x86 system are listed in Appendix 1. Table 6.

5.6 HTMLy

Upon initial page load for file “1024” in HTMLy, the loading times were very high.

Subsequent page loading times were much smaller, with caching disabled on the

browser side. This suggests that HTMLy performs internal optimisation which greatly

improves overall performance. Table 4 shows the initial loading times (ms) for file

“1024”.

29

Table 4. Initial loading times for file “1024” in Bludit.

 1024

Raspberry Pi 1 11330.000

Raspberry Pi 2 21440.000

x86 7240.000

When trying to add the last 2 sample files, the system was rendered completely

unusable, so the tests had to be conducted only for the first 4 sample files.

HTMLy performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 7.

HTMLy performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 8.

HTMLy performance results for the x86 system are listed in Appendix 1. Table 9.

5.7 Mecha

When trying to add the last sample file, the system was rendered completely unusable,

so the tests had to be conducted only for the first 5 sample files.

Mecha performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 10.

Mecha performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 11.

Mecha performance results for the x86 system are listed in Appendix 1. Table 12.

5.8 Phile

No particularly interesting observations were made while testing Phile. The results were

predictable, no anomalies found.

Phile performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 13.

Phile performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 14.

Phile performance results for the x86 system are listed in Appendix 1. Table 15.

30

5.9 Pico

One important observation is that the loading times of “gpl” were slower than the one of

a bigger file “communist”. This result was tested multiple times, however, each time

this peculiar behaviour was observed. The nature of this phenomenon is unknown to the

author and can be further investigated in later iterations of this work.

Pico performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 16.

Pico performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 17.

Pico performance results for the x86 system are listed in Appendix 1. Table 18.

5.10 PuppyCMS

As with Singularity, ApacheBench tool results were different from the actual complete

page load times. This is due to the fact that the pages were being loaded

asynchronously.

PuppyCMS performance results for the Raspberry Pi 1 are listed in Appendix 1. Table

19.

PuppyCMS performance results for the Raspberry Pi 2 are listed in Appendix 1. Table

20.

PuppyCMS performance results for the x86 system are listed in Appendix 1. Table 21.

5.11 Singularity

As with PuppyCMS, ApacheBench tool results were different from the actual complete

page load times. This is due to the fact that the pages were being loaded

asynchronously.

Singularity performance results for the Raspberry Pi 1 are listed in Appendix 1. Table

22.

Singularity performance results for the Raspberry Pi 2 are listed in Appendix 1. Table

23.

31

Singularity performance results for the x86 system are listed in Appendix 1. Table 24.

5.12 Yellow

No particularly interesting observations were made while testing Yellow. The results

were predictable, no anomalies found.

Yellow performance results for the Raspberry Pi 1 are listed in Appendix 1. Table 25.

Yellow performance results for the Raspberry Pi 2 are listed in Appendix 1. Table 26.

Yellow performance results for the x86 system are listed in Appendix 1. Table 27.

32

6 Performance graphs

The following graphs present the loading times of different CMS-s as well as canonical

performance for each individual sample data file. Results exceeding 10s have a negative

value to make the differences between relative results clearly visible. In cases where

tests have not been performed (predictable results exceeding 10s, software crashes due

to performance issues) the results are omitted. Due to the fact that the loading times

were growing at a steady and predictable pace beyond 4 simultaneous connections on

all tested platforms, the graphs only show the loading times in Chrome and

ApacheBench results for concurrency rates of 1, 2 and 4.

6.1 1024

Figure 1 shows page loading times in Chrome for all tested platforms.

Figure 1. Page loading times in Chrome for sample file “1024”.

-1000 0 1000 2000 3000 4000 5000 6000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

33

Singularity managed to perform better on both Raspberry Pi models compared to the

x86 system. Canonical performance on the x86 system was noticeably better. Raspberry

Pi 1 results are noticeably worse in almost all cases, except Singularity. Singularity is a

clear winner on both Raspberry Pi systems. HTMLy is the second fastest for the

Raspberry Pi systems. Pico and Phile outperformed PuppyCMS on the Raspberry Pi 2,

although they were slower on the Raspberry Pi 1.

Figure 2 shows average loading times (time per request, mean; ms) with concurrency of

1 for all tested platforms.

Yellow was the best-performing CMS after Singularity and PuppyCMS, for which the

results cannot be considered trustworthy for the reason described in 5.10 and 5.11.

HTMLy performed better on the Raspberry Pi 2 compared to the x86 system. Bludit

performed nearly the same on the Raspberry Pi 2 and the x86 system. Raspberry Pi 1

results were noticeably worse in almost all cases.

Figure 3 shows average loading times (time per request, mean; ms) with concurrency of

2 for all tested platforms.

Figure 2. Average loading times for sample file “1024” with concurrency of 1.

-1000 0 1000 2000 3000 4000 5000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

34

Bludit performed almost twice as fast on the Raspberry Pi 2 compared to the x86

system. Mecha was also slower on the x86 system compared to the Raspberry Pi 2.

Phile performance was almost the same on the x86 system and the Raspberry Pi 2.

Raspberry Pi 1 results were noticeably worse in almost all cases.

Figure 4 shows average loading times (time per request, mean; ms) with concurrency of

4 for all tested platforms.

Figure 3. Average loading times for sample file “1024” with concurrency of 2.

0 2000 4000 6000 8000 10000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

35

Here we can already see the advantages of the 4 cores of the Raspberry Pi 2. Phile,

Yellow and Mecha perform better on the Raspberry Pi 2 compared to the x86 system,

whereas Mecha is almost twice as fast. Raspberry Pi 1 results were noticeably worse in

almost all cases.

6.2 Gpl

Figure 5 shows page loading times in Chrome for all tested platforms.

Figure 4. Average loading times for sample file “1024” with concurrency of 4.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

36

Figure 5. Page loading times in Chrome for sample file “gpl”.

HTMLy was the fastest performing CMS on the Raspberry Pi 2, while Singularity and

PuppyCMS were clear winners on the Raspberry Pi 1 with HTMLy not far behind. The

author has reasons to believe this is due to HTMLy’s internal optimisation mechanism

mentioned in 5.6. Singularity and PuppyCMS showed almost the same results on all

platforms. In the case of other CMS-s, the Raspberry Pi 1 performed noticeably worse.

Figure 6 shows average loading times (time per request, mean; ms) with concurrency of

1 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

37

Figure 6. Average loading times for sample file “gpl” with concurrency of 1.

HTMLy performed better on the Raspberry Pi 2 compared to the x86 system. In all

other cases, the x86 system was faster than the Raspberry Pi 2. Raspberry Pi 1 results

were noticeably worse in almost all cases.

Figure 7 shows average loading times (time per request, mean; ms) with concurrency of

2 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

38

Figure 7. Average loading times for sample file “gpl” with concurrency of 2.

Yellow, Phile, Mecha and Bludit performed better on the Raspberry Pi 2 compared to

the x86 system, Bludit results being noticeably better. Raspberry Pi 1 results were

noticeably worse in almost all cases.

Figure 8 shows average loading times (time per request, mean; ms) with concurrency of

4 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

39

Figure 8. Average loading times for sample file “gpl” with concurrency of 4.

Again, we can see the advantage of the 4 CPU cores of the Raspberry Pi 2. Yellow,

Pico, Phile, Mecha and Bludit perform noticeably (almost 2 times, except Pico) better

on the Raspberry Pi 2 compared to the x86 system. Raspberry Pi 1 results were

noticeably worse in almost all cases.

6.3 Communist

Figure 9 shows page loading times in Chrome for all tested platforms.

-2000 0 2000 4000 6000 8000 10000 12000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

40

Figure 9. Page loading times in Chrome for sample file “communist”.

HTMLy was the fastest performing CMS on the Raspberry Pi 2, with Singularity, Pico

and PuppyCMS not far behind. Singularity was the fastest performing CMS on the

Raspberry Pi 1, followed closely by PuppyCMS and HTMLy. Singularity and

PuppyCMS showed almost the same results on all platforms. In the case of other

CMS-s, the Raspberry Pi 1 performed noticeably worse.

Figure 10 shows average loading times (time per request, mean; ms) with concurrency

of 1 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

41

Figure 10. Average loading times for sample file “communist” with concurrency of 1.

HTMLy performed better on the Raspberry Pi 2 compared to the x86 system. In all

other cases, the x86 system was faster than the Raspberry Pi 2. Raspberry Pi 1 results

were noticeably worse in almost all cases.

Figure 11 shows average loading times (time per request, mean; ms) with concurrency

of 2 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

42

Figure 11. Average loading times for sample file “communist” with concurrency of 2.

Yellow, Phile, Mecha and Bludit performed better on the Raspberry Pi 2 compared to

the x86 system, Bludit results being noticeably better. Raspberry Pi 1 results were

noticeably worse in almost all cases.

Figure 12 shows average loading times (time per request, mean; ms) with concurrency

of 4 for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

43

Figure 12. Average loading times for sample file “communist” with concurrency of 4.

Again, we can see the advantage of the 4 CPU cores of the Raspberry Pi 2. Yellow,

Pico, Phile, Mecha and Bludit performed noticeably (over 2 times, except Pico) better

on the Raspberry Pi 2 compared to the x86 system. Raspberry Pi 1 results were

noticeably worse in all cases.

6.4 Alice

Figure 13 shows page loading times in Chrome for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

44

Figure 13. Page loading times in Chrome for sample file “alice”.

HTMLy was the fastest performing CMS on the Raspberry Pi 2, with Pico, Singularity

and PuppyCMS not far behind. Singularity was the fastest performing CMS on the

Raspberry Pi 1, followed closely by PuppyCMS and HTMLy. Singularity and

PuppyCMS showed almost the same results on all platforms. In the case of other CMS-

s, the Raspberry Pi 1 performed noticeably worse.

Figure 14 shows average loading times (time per request, mean; ms) with concurrency

of 1 for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

45

Figure 14. Average loading times for sample file “alice” with concurrency of 1.

HTMLy performed better on the Raspberry Pi 2 compared to the x86 system. In all

other cases, the x86 system was faster than the Raspberry Pi 2. Raspberry Pi 1 results

were noticeably worse in almost all cases.

Figure 15 shows average loading times (time per request, mean; ms) with concurrency

of 2 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

46

Figure 15. Average loading times for sample file “alice” with concurrency of 2.

Yellow, Pico, Phile, Mecha and Bludit performed better on the Raspberry Pi 2

compared to the x86 system, Bludit results being noticeably better. Raspberry Pi 1

results were noticeably worse in all cases.

Figure 16 shows average loading times (time per request, mean; ms) with concurrency

of 4 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

47

Figure 16. Average loading times for sample file “alice” with concurrency of 4.

Again, we can see the advantage of the 4 CPU cores of the Raspberry Pi 2. Yellow,

Pico, Phile, Mecha and Bludit performed noticeably (over 2 times, except Pico) better

on the Raspberry Pi 2 compared to the x86 system. Raspberry Pi 1 results were

noticeably worse in all cases.

6.5 Jungle

Figure 17 shows page loading times in Chrome for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

HTMLy

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

48

Figure 17. Page loading times in Chrome for sample file “jungle”.

PuppyCMS was the fastest performing CMS on the Raspberry Pi 2, closely followed by

Singularity and Pico. Singularity, on the other hand, was the fastest CMS on the

Raspberry Pi 1, followed by PuppyCMS. Singularity and PuppyCMS showed almost the

same results on all platforms. In the case of other CMS-s, the Raspberry Pi 1 performed

noticeably worse.

Figure 18 shows average loading times (time per request, mean; ms) with concurrency

of 1 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

49

Figure 18. Average loading times for sample file “jungle” with concurrency of 1.

Singularity performed better on the Raspberry Pi 2 compared to the x86 system. In all

other cases, the x86 system was faster than the Raspberry Pi 2. Raspberry Pi 1 results

were noticeably worse in almost all cases.

Figure 19 shows average loading times (time per request, mean; ms) with concurrency

of 2 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000

Canonical

Bludit

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

50

Figure 19. Average loading times for sample file “jungle” with concurrency of 2.

Yellow, Singularity, PuppyCMS, Pico, Phile, Mecha and Bludit performed better on the

Raspberry Pi 2 compared to the x86 system, Bludit results being noticeably better.

Raspberry Pi 1 results were noticeably worse in all cases.

Figure 20 shows average loading times (time per request, mean; ms) with concurrency

of 4 for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

51

Figure 20. Average loading times for sample file “jungle” with concurrency of 4.

Again, we can see the advantage of the 4 CPU cores of the Raspberry Pi 2. All CMS-s

performed almost 2 times better (except PuppyCMS and Singularity) on the Raspberry

Pi 2. Raspberry Pi 1 results were noticeably worse in all cases.

6.6 Sherlock

Figure 21 shows page loading times in Chrome for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000

Canonical

Bludit

Mecha

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

52

Figure 21. Page loading times in Chrome for sample file “sherlock”.

Singularity was the fastest performing CMS on all platforms. It also showed almost the

same results on all platforms. In the case of other CMS-s, the Raspberry Pi 1 performed

noticeably worse.

Figure 22 shows average loading times (time per request, mean; ms) with concurrency

of 1 for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

53

Figure 22. Average loading times for sample file “sherlock” with concurrency of 1.

Singularity and PuppyCMS performed better on the Raspberry Pi 2 compared to the x86

system. In all other cases, the x86 system was faster than the Raspberry Pi 2. Raspberry

Pi 1 results were noticeably worse in almost all cases.

Figure 23 shows average loading times (time per request, mean; ms) with concurrency

of 2 for all tested platforms.

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Canonical

Bludit

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

54

Figure 23. Average loading times for sample file “sherlock” with concurrency of 2.

All CMS-s performed better on the Raspberry Pi 2 compared to the x86 system, Bludit

results being noticeably better. Raspberry Pi 1 results were noticeably worse in all

cases.

Figure 24 shows average loading times (time per request, mean; ms) with concurrency

of 4 for all tested platforms.

-2000 0 2000 4000 6000 8000 10000

Canonical

Bludit

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

55

Figure 24. Average loading times for sample file “sherlock” with concurrency of 4.

All CMS-s performed better on the Raspberry Pi 2 compared to the x86 system.

Raspberry Pi 1 results were noticeably worse in all cases.

-1000 0 1000 2000 3000 4000 5000 6000 7000

Canonical

Bludit

Phile

Pico

PuppyCMS

Singularity

Yellow

x86

RPi 2

RPi 1

56

7 Summary

The goal of this work was to analyse the performance of flat-file CMS-s that have

Markdown support on low-power hardware to determine whether they are a viable

option for certain use cases.

Performance metrics, such as web page load times, CPU load and RAM usage were

analysed and compared on Raspberry Pi 1 Model B, Raspberry Pi 2 Model B and x86

systems. Overall system responsiveness under higher load was also examined.

Raspberry Pi 1 Model B could deliver reasonable performance only when serving static

files and pages. The smallest sample file loading times exceeded 1s for most CMS-s,

except Singularity. CPU load was over 90% throughout the tests, average load exceeded

1.00, meaning there were operations constantly waiting for CPU time. RAM usage

never exceeded 50%. Multiple concurrent requests often brought the system to a halt,

sometimes crashing the Apache web server.

Raspberry Pi 2 Model B clearly takes advantage of the 4 CPU cores. In the case of

Bludit, Mecha, Phile, Pico and Yellow the loading times are almost the same for 1, 2

and 4 concurrent connections to the same resource. In the case of HTMLy, PuppyCMS

and Singularity the smaller sample data surprisingly meant faster loading times for 4

concurrent connections compared to 1.

Raspberry Pi 2 Model B was slower than the test x86 system in most of the cases,

however, Raspberry Pi 2 managed to outperform x86 when using PuppyCMS with

larger sample files. The advantages of multiple cores could also be seen during

ApacheBench tests where Raspberry Pi 2 outperformed the x86 system in a lot of cases

as the number of concurrent requests grew.

Results by ApacheBench or JMeter did not match the loading times reported by the

Chrome web browser. In the case of PuppyCMS and Singularity, results varied by

orders of magnitude, so the author made his assumptions based on real-world results

57

from the browser. ApacheBench results were only considered in the context of

measuring relative performance with various numbers of concurrent connections.

The best-performing CMS turned out to be Singularity. It had the fastest loading times

for both ARM-based test systems. Those never exceeded 3.1s even for the largest

sample file. It managed to withstand all concurrency tests without crashing the systems

and not going above 10s for page loading times according to ApacheBench. Although

the results by ApacheBench cannot be considered trustworthy, they still suggest that

Singularity can serve up to 64 users simultaneously.

The difference between the fastest CMS and the canonical performance of the same

static files in the case of the Raspberry Pi 1 was 2-5 times, in the case of the Raspberry

Pi 2, the difference was 2-10 times, depending on the sample files.

Results observed clearly show that most of the tested flat-file CMS-s are not suitable in

conjunction with both Raspberry Pi models. Dynamic page loading and rendering from

text files requires a lot of CPU resources which the current generation of these products

can merely provide. CPU is the main system component impacting performance. With

the given hardware, static web pages or static site generators should be preferred.

Performance of at least 1 flat-file CMS (Singularity) can be considered adequate. The

author believes that this CMS-s can be used for small organisations where up to 64

people are accessing a given web resource simultaneously.

Results show that software used for web hosting is not optimised for ARM architecture.

In nearly all cases, a single-core x86 system outperformed a quad-core ARM system

with almost the same clock speed. The only cases where the Raspberry Pi 2 managed to

outperform the test x86 system were situations with multiple concurrent connections,

where 4 CPU cores of the Raspberry Pi 2 managed to split the workload to achieve

better results.

A topic for further study could be the performance impact of using the network interface

as a limiting factor. The same USB wireless adapter could be used to artificially limit

the network performance to mimic the real world scenario where latency is an issue to

see if overall system performance differences are distinguishable.

58

Another topic worth investigating would be to measure performance on more devices

with a wider choice of system architectures. ARM is a fast-evolving system architecture

and new devices are being manufactured constantly, to the point where it is impossible

to get one’s hands on all of them.

Lastly, results achieved in this work could be compared to similar setups where source

data is stored on a traditional storage device, e.g. spinning hard drive, solid-state drive,

USB flash drive, external USB hard drive.

59

References

[1] Usage Statistics and Market Share of Content Management Systems for Websites.

[WWW] http://w3techs.com/technologies/overview/content_management/all/ (28.03.2016)

(web article)

[2] Daring Fireball. [WWW] http://daringfireball.net/projects/markdown/ (28.03.2016)

(project website)

[3] Implementations. [WWW]

https://github.com/markdown/markdown.github.com/wiki/Implementations (28.03.2016)

(web article)

[4] Raspberry Pi. [WWW] https://en.wikipedia.org/wiki/Raspberry_Pi (28.03.2016) (web

article)

[5] FAQs. [WWW] https://www.raspberrypi.org/help/faqs/#powerReqs (28.03.2016) (project

website)

[6] Flat File CMS Systems. [WWW] https://github.com/ahadb/flat-file-cms (02.03.2016) (web

article)

[7] Automad / Installation. [WWW] http://automad.org/documentation/installation

(28.03.2016) (project website)

[8] Docs | Kirby [WWW] https://getkirby.com/docs (28.03.2016) (project website)

[9] GitHub - monstra-cms/monstra [WWW] https://github.com/monstra-cms/monstra

(28.03.2016) (project website)

[10] How to Install Sphido CMS [WWW] https://www.sphido.org/docs/setup (28.03.2016)

(project website)

[11] Ruby SSL issue => gem install not working [WWW]

http://forum.tinycorelinux.net/index.php/topic,18901.0.html (01.05.2016) (internet forum

thread)

[12] Bludit [WWW] http://www.bludit.com (01.05.2016) (project website)

[13] HTMLy [WWW] https://www.htmly.com/ (01.05.2016) (project website)

[14] Mecha [WWW] http://mecha-cms.com/ (01.05.2016) (project website)

[15] Phile [WWW] http://philecms.github.io/Phile (01.05.2016) (project website)

[16] Pico [WWW] http://pico.dev7studios.com/index.html (01.05.2016) (project website)

[17] PuppyCMS [WWW] http://puppycms.com (01.05.2016) (project website)

[18] Singularity [WWW] http://christophersu.net/2012/singularity-cms-single-php-file/

(01.05.2016) (project website)

[19] Yellow [WWW] http://datenstrom.se/yellow/ (01.05.2016) (project website)

[20] ARM architecture. [WWW] https://en.wikipedia.org/wiki/ARM_architecture (28.03.2016)

(web article)

[21] HP Extends Benefits of ARM Architecture into the Datacenter with New Servers. [WWW]

http://www8.hp.com/us/en/hp-news/press-release.html?id=1800094 (28.03.2016) (web

article)

http://www.bludit.com/
https://www.htmly.com/
http://mecha-cms.com/
http://philecms.github.io/Phile
http://pico.dev7studios.com/index.html
http://puppycms.com/
http://christophersu.net/2012/singularity-cms-single-php-file/
http://datenstrom.se/yellow/

60

[22] How big is the ARM Server Market? [WWW] http://armservers.com/2014/05/09/how-big-

is-the-arm-server-market/ (28.03.2016) (web article)

[23] Canonical's cloud-in-a-box: The Ubuntu Orange Box | ZDNet [WWW]

http://www.zdnet.com/article/canonicals-cloud-in-a-box-the-ubuntu-orange-box (web

article) (28.03.2016)

[24] Specifications [WWW] https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications

(28.03.2016) (web article)

[25] GNU General Public License, by Free Software Foundation, Inc. [WWW]

http://www.gnu.org/licenses/gpl-3.0.txt (web resource) (30.04.2016)

[26] The Communist Manifesto, by Friedrich Engels and Karl Marx [WWW]

http://www.gutenberg.org/ebooks/61.txt.utf-8 (web resource) (29.04.2016)

[27] Alice in Wonderland, by Lewis Carroll [WWW]

http://www.gutenberg.org/ebooks/11.txt.utf-8 (web resource) (29.04.2016)

[28] The Jungle Book, by Rudyard Kipling [WWW]

http://www.gutenberg.org/ebooks/236.txt.utf-8 (web resource) (29.04.2016)

[29] The Adventures of Sherlock Holmes, by Arthur Conan Doyle [WWW]

http://www.gutenberg.org/ebooks/1661.txt.utf-8 (web resource) (29.04.2016)

[30] The Core Project File Architecture Diagram [WWW]

http://www.tinycorelinux.net/arch_core.html (28.03.2016) (web article)

[31] php5.tcz.info [WWW] http://distro.ibiblio.org/tinycorelinux/7.x/x86/tcz/php5.tcz.info (web

resource) (28.04.2016)

[32] Unix Top [WWW] http://www.unixtop.org/ (28.03.2016) (project website)

[33] free [WWW] http://linuxcommand.org/man_pages/free1.html (28.03.2016) (web article)

[34] IPTraf [WWW] http://iptraf.seul.org/ (28.03.2016) (project website)

[35] ApacheBench [WWW] https://httpd.apache.org/docs/current/programs/ab.html

(01.05.2016) (project documentation)

[36] Apache JMeter [WWW] https://jmeter.apache.org/ (28.03.2016) (project website)

61

Appendix 1 – Performance results

Page loading time in Chrome (ms) and average loading times (time per request, mean;

ms) at a set concurrency rate for a given file

Appendix 1. Table 1. Canonical performance results for the Raspberry Pi 1.

 Index.html 1024 Gpl Communist Alice Jungle Sherlock

Chrome 163.000 210.000 193.000 439.000 616.000 867.000 1100.000

1 3.921 3.958 9.999 20.079 29.946 47.128 85.815

2 7.827 7.920 20.016 40.665 60.856 96.807 175.942

4 15.424 15.633 39.662 82.195 123.520 197.228 359.028

8 30.752 31.056 78.806 165.906 249.893 400.891 730.528

16 62.074 61.933 163.295 334.113 510.459 819.624 1486.285

32 123.709 124.414 317.694 669.175 1034.863 1698.177 3097.963

64 246.342 248.009 654.190 1360.230 2101.639 3485.763 6429.196

Appendix 1. Table 2. Canonical performance results for the Raspberry Pi 2.

 Index.html 1024 Gpl Communist Alice Jungle Sherlock

Chrome 176.000 213.000 202.000 216.000 225.000 241.000 300.000

1 1.510 1.604 4.420 9.428 15.480 26.477 51.069

2 1.842 1.852 6.938 16.085 28.354 50.038 99.162

4 2.732 2.737 12.725 31.877 56.131 99.998 198.294

62

8 5.309 5.093 24.856 63.676 112.177 199.980 396.594

16 10.035 9.721 49.930 127.303 224.402 399.973 793.201

32 19.481 18.904 100.589 254.817 449.456 800.164 1587.852

64 37.874 36.540 201.269 514.790 906.332 1604.974 3174.284

Appendix 1. Table 3. Canonical performance results for the x86 system.

 Index.html 1024 Gpl Communist Alice Jungle Sherlock

Chrome 51.000 44.000 57.000 149.000 72.000 417.000 1040.000

1 1.408 1.435 4.576 9.920 16.609 28.593 55.447

2 2.603 2.327 7.454 18.309 31.332 55.699 109.358

4 5.288 4.704 14.670 35.803 61.810 110.338 217.148

8 10.478 9.366 30.900 74.883 129.842 230.568 434.566

16 20.907 19.471 58.957 140.599 247.001 439.248 869.087

32 41.362 37.928 116.912 285.250 493.385 877.909 1736.909

64 82.653 78.957 222.911 582.506 986.700 1756.338 3475.994

Appendix 1. Table 4. Bludit performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 13490.000 14460.000 13120.000 14070.000 15400.000 20630.000

1 13049.802 13506.279 13131.593 13860.494 15322.296 18600.760

63

Appendix 1. Table 5. Bludit performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 4290.000 4860.000 4520.000 4960.000 5640.000 8560.000

1 3157.210 3659.125 3361.354 3590.727 4848.978 5015.075

2 3193.946 3715.348 3415.967 3299.221 4437.912 4624.222

4 3314.266 3880.645 3561.541 3059.802 5138.314 5244.526

8 6723.180 7703.823 7457.018 7392.622 10171.276 10750.880

Appendix 1. Table 6. Bludit performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 3150.000 3350.000 3620.000 3920.000 4230.000 6880.000

1 2794.164 3085.659 3002.012 3187.380 3512.433 4357.789

2 5774.391 6334.087 6078.844 6431.523 7079.384 8733.057

4 11499.210 12594.405 12071.331 12769.517 14053.689 17327.528

Appendix 1. Table 7. HTMLy performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 1020.000 1160.000 1390.000 1670.000 - -

1 1604.989 1684.909 1837.980 2033.974 - -

2 1130.384 1133.446 1160.068 1182.432 - -

4 2230.684 2283.334 2367.796 2407.297 - -

8 4525.462 4595.171 4642.380 4750.278 - -

64

16 9140.513 9166.981 9498.950 9459.302 - -

Appendix 1. Table 8. HTMLy performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 615.000 727.000 911.000 1050.000 - -

1 696.320 749.023 813.129 927.380 - -

2 167.312 171.896 184.016 197.743 - -

4 204.908 205.695 223.913 233.667 - -

8 392.040 419.672 402.561 431.335 - -

16 764.194 754.108 840.705 879.516 - -

32 1472.630 1550.656 1535.932 1627.803 - -

64 2895.844 2930.817 3024.697 3186.829 - -

Appendix 1. Table 9. HTMLy performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 404.000 603.000 837.000 1220.000 - -

1 845.923 928.500 1036.834 1199.214 - -

2 45.408 50.305 63.829 75.407 - -

4 91.820 80.490 93.571 119.346 - -

8 118.409 135.511 175.757 233.310 - -

16 238.887 270.823 350.782 465.322 - -

65

32 517.318 617.738 774.503 934.164 - -

64 1033.001 - - - - -

Appendix 1. Table 10. Mecha performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 5070.000 5850.000 6930.000 8100.000 10680.000 -

1 4701.224 5411.641 6377.527 7643.466 10144.167 -

2 9478.346 10836.940 13159.107 15978.517 20367.633 -

4 18610.161 22171.864 22429.440 - - -

Appendix 1. Table 11. Mecha performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 1740.000 2060.000 2770.000 3560.000 5110.000 -

1 1341.594 1758.286 2341.246 3128.568 4571.440 -

2 1404.859 1826.219 2391.985 3195.645 4650.884 -

4 1501.954 1929.005 2496.120 3311.143 4821.270 -

8 3235.962 3981.075 5105.142 6841.880 9743.696 -

16 6013.494 7930.762 10383.933 11050.843 17144.579 -

32 12136.629 11707.600 16793.717 24947.554 35419.833 -

Appendix 1. Table 12. Mecha performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

66

Chrome 1130.000 1380.000 1710.000 2290.000 3250.000 -

1 774.182 1016.962 1333.688 1826.653 2709.467 -

2 1632.324 2122.790 2773.339 3783.479 5513.278 -

4 3271.943 4265.582 5613.168 7618.242 11073.467 -

8 6617.060 8528.899 11229.778 - - -

16 13215.550 - - - - -

Appendix 1. Table 13. Phile performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 1670.000 3100.000 4620.000 7640.000 10690.000 21170.000

1 1514.824 2911.819 4393.444 7353.330 10479.915 20921.675

2 3038.053 5936.822 8808.748 14849.847 - -

4 6074.848 11749.802 27019.673 - - -

8 12327.940 - - - - -

Appendix 1. Table 14. Phile performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 612.000 1390.000 2220.000 3620.000 5420.000 10620.000

1 449.519 1186.649 1980.243 3348.901 5203.104 10457.217

2 485.702 1232.769 2033.578 3400.639 5331.597 10494.704

4 567.185 1347.868 2124.304 3508.220 5397.806 10708.401

67

8 1301.638 2728.472 4541.597 7127.078 11072.914 -

16 2408.064 5314.569 8976.370 14271.506 - -

32 5048.842 10793.538 - - - -

64 9722.676 - - - - -

Appendix 1. Table 15. Phile performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 318.000 815.000 1300.000 2190.000 3720.000 7370.000

1 235.458 689.848 1175.346 2067.588 3248.060 6525.354

2 469.672 1398.817 2387.945 4186.829 6526.008 13260.151

4 906.146 2760.938 4810.691 8369.440 - -

8 1783.860 5552.630 9654.746 - - -

16 5208.138 13425.999 - - - -

32 10351.199 - - - - -

Appendix 1. Table 16. Pico performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 1510.000 2540.000 2210.000 3170.000 5070.000 8730.000

1 1281.235 2291.115 1888.973 2616.150 3928.329 7119.776

2 2529.461 4648.785 3763.954 5350.594 8522.850 -

4 5108.066 9199.444 7558.922 10932.874 - -

68

8 10207.156 - - - - -

Appendix 1. Table 17. Pico performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 612.000 1260.000 1010.000 1350.000 2230.000 3930.000

1 368.011 869.172 557.334 773.167 1189.936 2150.499

2 392.653 893.836 591.954 822.789 1225.434 2226.003

4 445.185 926.091 648.380 873.300 1320.878 2384.520

8 1185.205 2197.875 1316.731 1769.776 2753.892 4920.685

16 2037.653 3891.512 2648.160 3670.706 5443.460 9516.163

32 3878.204 7812.589 5450.163 7247.537 10776.438 -

64 7402.073 - 10967.790 - - -

Appendix 1. Table 18. Pico performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 246.000 609.000 588.000 869.000 1640.000 3130.000

1 115.455 405.209 261.003 438.925 749.458 1473.864

2 226.944 810.414 518.176 892.661 1501.084 2978.355

4 421.738 1592.003 1020.431 1724.976 2946.427 5877.397

8 833.559 3191.139 2046.562 3434.066 5865.920 11796.916

16 1662.894 6380.652 4095.918 6888.757 13421.095 -

69

32 3400.850 13093.606 8505.353 16645.803 - -

64 6881.644 - - - - -

Appendix 1. Table 19. PuppyCMS performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 1030.000 1020.000 1090.000 1660.000 2110.000 8050.000

1 36.807 42.030 43.793 53.746 78.795 125.013

2 47.698 53.024 78.502 96.814 138.764 231.524

4 80.265 106.304 149.087 202.925 280.120 468.433

8 177.634 209.391 348.772 400.850 565.737 934.753

16 307.272 418.407 604.793 826.497 1155.967 1911.939

32 647.184 1023.812 1262.487 1627.969 2388.793 3948.129

64 1241.234 1743.603 2607.108 3538.699 4862.308 7971.302

Appendix 1. Table 20. PuppyCMS performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 730.000 1040.000 1050.000 1600.000 1770.000 3610.000

1 20.294 21.182 23.320 30.497 40.698 63.018

2 12.770 15.428 25.492 37.373 59.672 112.273

4 15.172 24.621 43.316 60.772 107.761 210.889

8 29.831 39.828 77.502 136.894 219.011 441.440

70

16 57.164 85.292 160.008 261.062 438.947 827.639

32 102.687 148.257 309.774 500.402 855.373 1651.920

64 196.751 264.091 615.763 995.747 1694.769 3295.828

Appendix 1. Table 21. PuppyCMS performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 565.000 1130.000 947.000 1570.000 2160.000 4220.000

1 3.473 6.487 12.746 21.142 35.900 69.383

2 6.361 11.671 25.311 41.111 71.385 137.416

4 13.009 23.732 48.244 79.067 139.055 273.002

8 25.826 46.074 94.562 157.069 278.336 546.323

16 51.586 93.359 187.461 314.379 558.647 1088.360

32 103.431 180.826 373.889 615.846 1066.274 2151.889

64 204.547 368.292 757.458 1200.917 2347.061 4176.617

Appendix 1. Table 22. Singularity performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 481.000 980.000 1000.000 1370.000 1860.000 2870.000

1 28.597 32.845 37.409 43.421 62.161 105.140

2 29.686 42.487 66.230 93.747 129.378 228.184

4 59.173 81.642 119.610 162.218 248.468 444.299

71

8 81.584 141.996 232.830 329.155 509.810 876.074

16 181.359 283.672 464.693 663.260 1029.899 1801.815

32 323.657 575.850 1096.926 1401.449 2123.480 3717.595

64 795.751 1195.784 2044.764 2855.282 4447.001 7718.801

Appendix 1. Table 23. Singularity performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 451.000 946.000 949.000 1400.000 1880.000 3030.000

1 16.474 14.987 20.892 25.133 36.976 64.583

2 11.146 13.066 22.473 33.507 54.071 107.374

4 9.604 19.432 36.571 60.240 105.601 210.047

8 18.613 36.361 73.464 135.939 211.302 412.920

16 34.295 69.882 150.595 240.695 422.084 819.244

32 67.663 134.579 291.911 491.297 833.462 1641.646

64 121.463 234.207 564.135 937.661 1671.033 3312.504

Appendix 1. Table 24. Singularity performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 562.000 904.000 945.000 1200.000 1850.000 3040.000

1 9.870 13.044 19.223 26.733 42.500 75.655

2 19.599 25.115 37.943 52.919 84.646 140.001

72

4 10.281 21.073 46.204 76.953 139.445 270.240

8 20.438 42.697 91.414 147.323 273.517 540.250

16 39.583 81.128 180.380 296.222 552.624 1084.044

32 79.951 157.712 360.280 569.932 1060.307 2142.142

64 162.222 318.781 723.385 1129.872 2176.017 4274.241

Appendix 1. Table 25. Yellow performance results for the Raspberry Pi 1.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 2510.000 4020.000 5850.000 8880.000 12470.000 24300.000

1 920.077 2385.459 4040.168 7209.563 10588.551 21879.445

2 1851.177 4806.730 8120.502 14550.867 - -

4 3634.216 9688.519 - - - -

8 7258.081 - - - - -

Appendix 1. Table 26. Yellow performance results for the Raspberry Pi 2.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 980.000 2030.000 2920.000 4530.000 6600.000 12730.000

1 263.940 1049.580 1908.517 3354.701 5314.745 10902.640

2 280.240 1065.788 1928.760 3367.860 5343.446 10991.489

4 318.803 1090.047 1986.378 3440.277 5397.017 11104.678

8 662.709 2208.256 3924.617 6933.566 10908.432 -

73

16 1308.930 4415.013 7993.736 13908.514 - -

32 2433.471 8762.435 - - - -

64 4704.002 - - - - -

Appendix 1. Table 27. Yellow performance results for the x86 system.

 1024 Gpl Communist Alice Jungle Sherlock

Chrome 312.000 950.000 1500.000 2540.000 4030.000 8630.000

1 94.204 585.111 1126.839 2084.608 3332.640 6899.007

2 169.693 1164.009 2259.424 4205.981 6706.179 13853.792

4 341.535 2350.066 4565.429 8463.421 - -

8 684.352 4723.680 9156.676 - - -

16 1363.500 9458.661 - - - -

32 2771.133 - - - - -

64 5678.244 - - - - -

