

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Sara Farooghian - 177783IVSB

HANDS-ON-SKILLS LAB ON OPEN-SOURCE INTRUSION
DETECTION SYSTEM(IDS)

Bachelor's Thesis

Supervisor: Kristian Kivimägi

Kieren Nicolas Lovell

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

 Infotehnoloogia teaduskond

Sara Farooghian - 177777IVSB

PRAKTILISTE OSKUSTE TÖÖTUBA - AVATUD
LÄHTEKOODIGA SISSETUNGIMISE TURVASÜSTEEMID

bakalaureusetöö

Juhendaja: Kristian Kivimägi

Kieren Nicolas Lovell

Tallinn 2020

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Sara Farooghian

18.05.2020

4

Abstract

Understanding and building a robust Intrusion Detection System (IDS) is an essential

part of the correct application of cybersecurity defence in any organization or personal

system. This paper proposes a hands-on-skill lab based on the IDS, which covers all

three stages of installation, configuration and intrusion detection of an IDS.

Initially, the research paper reviews the concept of IDS and compares some of the

commonly used IDSs called Snort, Suricata and Zeek through a side-by-side feature

comparison, literature study and from a sustainability perspective. Besides that, the

author reviews malware types, malware analysis techniques and malware statistics

reports published during 2019 to determine trending malware.

The lab is designed based on the result of the IDS and malware study. It includes five

stages: Initial lab environment configuration, Suricata installation, Suricata

configuration, rule creation for simulated DDoS attack, Emotet and Trickbot infection

investigation in a Linux-Based virtual environment.

This thesis is written in English and is 35 pages long, including seven chapters, three

figures and five tables.

5

Annotatsioon

Tõhusast sissetungimise süsteemist (edaspidi IDS Intrusion Detection System)

arusaamine ja selle ülesehitamine on oluline osa küberkaitsest, mistahes ettevõttes ja

organisatsioonis või ka isiklikuks kasutamiseks. Käesoleva lõputöö autor pakub välja

praktiliste oskuste töötoa, mis on pühendatud IDS-ile. Seal käsitletakse kõiki kolme

etappi - paigaldust, konfigureerimist ja tuvastust.

Töö esimeses osas annab autor ülevaate IDS-i käsitlustest ning võrreldakse kolme kõige

enim kasutatavaid IDS-e, mida nimetatakse Snort, Suricata ja Zeek. Autor võrdleb kõigi

kolme funktsioone, lisades juurde ka erinevatest allikatest saadud ülevaate ning

analüüsib kõigi kolme jätkusuutlikkuse väljavaadet. Lisaks sellele uurib töö autor

levinud pahavara tüüpe, pahavara analüüsimise tehnikaid ning statistilisi ülevaateid

aastast 2019, et tuua välja viimase aja trende, mis on seotud pahavaraga.

Töö uurimuslik osa ja pakutud töötuba on saadud autori poolt läbiviidud analüüsi

käigus. Analüüs hõlmas viite etappi: töötoa algfaasi oleku konfigureerimine, Suricata

paigaldamine, Suricata konfigureerimine, DDoS rünnaku korral kehtivate reeglite

määratlemine, Emoleti ja Trickboti nimeliste viiruste uurimine Linux-i keskkonnas.

Käesolev töö on kirjutatud inglise keeles ja hõlmab endas 35 lehekülge. Töös on seitse

peatükki, kolm joonist ja viit tabelit.

6

List of abbreviations and terms

API
APIDS
ARP
BSD
C&C
CFG
CGI
CIA
CPU
DDoS
DLL
DoS
DPU
GB
GPL
HIDS
HTTP
ICMP
IDS
IFT
IP
IPS
IPv6
ISO
ISP
KSN
LAN
MAC
MTU
NIC

Application Program Interface
Application Protocol-based Intrusion Detection System
Address Resolution Protocol
Berkeley Software Distribution
Command and Control
Control Flow Graph
Common Gateway Interface
Confidentiality and Integrity and Availability
Central Processing Unit
Distributed Denial of Service
Dynamic Link Libraries
Denial of Service
Data Protocol Unit
Gigabit
General Public License
Host-Based Intrusion Detection System
HyperText Transfer Protocol
Internet Control Message Protocol
Intrusion Detection System
Information Flow Tracking
Internet Protocol
Intrusion Prevention System
Internet Protocol version 6
International Organization for Standardization
Internet Service Provider
Kaspersky Security Network
Local-Area Network
Media Access Control
Maximum Transmission Unit
Network Interface Card

7

NIDS
NSM
OISF
Op-codes
OS
OSI
OSS
PCAP
PCRE
PDF
PERL
PIDS
RAM
RST
SCM
SLTT
SMB
SMPT
SQL
SSH
SSL
SSLBL
TCP
TLS
TOR
TOS
TTL

Network-Based Intrusion Detection System
Network Security Monitoring
Open Information Security Foundation
Operation Codes
Operating System
Open Systems Interconnection
Open-Source Software
Packet Capture
Perl Compatible Regular Expressions
Portable Document Format
Practical Extraction and Report Language
Protocol-based Intrusion Detection System
Random Access Memory
Reset
Software Configuration Management
State, Local, Tribal and Territorial
Server Message Block
Simple Mail Transfer Protocol
Structured Query Language
Secure Shell
Secure Sockets Layer
SSL Blacklist
Transmission Control Protocol
Transport Layer Security
The Onion Router
Type Of Service
Time To Live

8

Table of contents

1 Introduction 13
1.1 Problem Statement 14
1.2 Motivation 14

2 Theory Background 16
2.1 Network Structure 16
2.2 Intrusion Detection System 17

2.2.1 IDS Detection Techniques 18
2.2.2 IDS Evasion Techniques 18

2.3 Suricata’s Rules and Ruleset 19
2.3.1 Rules 19
2.3.1.1 Action 19
2.3.1.2 Header 20
2.3.1.3 Rule Options 20
2.3.2 Rulesets 20

2.4 Malware 21
2.4.1 Malware Types 21
2.4.1.1 Virus 21
2.4.1.2 Worm 22
2.4.1.3 Spyware 22
2.4.1.4 Rootkits 22
2.4.1.5 Malicious Cryptomining 22
2.4.1.6 Ransomware 23
2.4.2 Malware Analysis Techniques 23
2.4.2.1 Static Analysis 23
2.4.2.2 Dynamic Analysis 24

3 Related works 26

4 Methodology 27

5 Analysis 29
5.1 IDS Comparison and Evaluation 29

5.1.1 General Comparison 29
5.1.1.1 Snort 29
5.1.1.2 Suricata 30
5.1.1.3 Zeek (Bro) 31

9

5.1.1.4 General Comparison Summary 32
5.1.2 Literature Review 33
5.1.3 Sustainability of Open-source Tools 36

5.2 Malware Statistics 38
5.2.1 Proofpoint Q1 2019 38
5.2.2 Kaspersky lab 2019 38
5.2.3 M-Trends 2020 39
5.2.4 CheckPoint 2020 40
5.2.5 Static Reports Summary 40

6. Lab Environment 41
6.1 Lab Structure 42

6.1.1 Install Ubuntu in the VB and Verify Connectivity 42
6.1.2 Install Suricata and Suricata-Update 43
6.1.3 Configure Suricata with Basic Setting and Run Suricata 43
6.1.4 Simulate DDoS attack and Write a Rule 43
6.1.5 Replay the pcap file in Suricata and Wireshark and Analyze the Alerts 44

6.2 Lab Testing and Modification 44

7 Conclusion 46

References 48

Appendix 1 – Theory Background 53
1.1 OSI layers 53
1.2 Evasion techniques for IDS 55

1.2.1 Time-To-Live Manipulation 55
1.2.2 IDS MAC Address Attack 56
1.2.3 IP Fragmentation Attacks 56
1.2.4 Encryption 57
1.2.5 Polymorphic Blending Attack 57

1.3 Rules Options 58
1.3.1 Meta-settings 58
1.3.2 IP and TCP Keywords 58
1.3.3 ICMP Keywords 58
1.3.4 Payload Keywords 59
1.3.5 Flow Keywords 59
1.3.6 HTTP Keywords 59
1.3.7 File Keywords 59
1.3.8 SSL/TLS and SSH Keywords 59

Appendix 2 – Analysis 61
2.1 Malware Statistics Summary 61

10

2.2 Malware Case Study 62
2.2.1 Emotet 62
2.2.2 Trickbot 64

11

List of figures

Figure 1: IP packet structure
Figure 2: Suricata structure
Figure 3:Emotet infection

12

List of tables

Table 1. Feature comparison for IDS tools

Table 2. Evaluation of IDS tools

Table 3. Comparison of metrics of IDS tools

Table 4. Lab test

Table 5. Summary of trending malware based on report

13

1 Introduction

Cybersecurity Technologies I and II courses are for students in the first year master

program of cyber security curriculum in Tallinn University of Technology. Each course

consists of 32 hours of lectures and 32 hours of practice. The reason that the course is

split into two courses is that students may have different knowledge levels about the

topics covered in the course. Therefore Cybersecurity Technologies I covers basic

concepts and Cybersecurity Technologies II covers advanced concepts. Students must

take one of the courses according to their knowledge level.

The course’s goal is to provide an overview of adversary models, technologies used by

cybercriminals, incident lifecycle and quick overview of tools and tactics used in

different incident lifecycle stages based on recent research papers. The topics include

operating system (OS) security, malware, capabilities, information flow control,

language security, network protocols, hardware security and security in web

applications. The practice assignments include labs and projects that teach usage and

principles of technologies such as malware analysis, anonymizing principles, firewalls,

IDS and IPS configuration.

Cyber-attacks have been overgrowing during the last decade. Cyber-attacks are

increasing in number, complexity and even impact. They affect the public and private

sectors, individuals and even governments. Therefore, it is essential to have a defence

system that can protect the valuable data and systems from these attacks. Intrusion

Detection System (IDS) as a layer of defence has a vital role in strengthening the

defence system. Studies show that as of today, more than 50% of organizations have

IDS implemented as part of their security defence system [1]. Thus, it is important for

students to understand the technology of IDSs and how to use them effectively. Thus

the IDS is included in the cybersecurity technologies course and the purpose of this

work is designing a hands-on-skills lab based on IDS.

14

https://paperpile.com/c/pxO14y/swW0

1.1 Problem Statement

Hands-on-skills lab can significantly benefit all the different learners. The hands-on

approach to learning is the preferred method by many universities. Hands-on labs can

improve student’s problem-solving, thinking, and analyzing skills. IT professionals need

to have these skills to fulfill their daily tasks.

For the same reason, the cybersecurity technologies course relies on practical

assignments and labs as part of teaching. However, the current lab assignment for IDS is

the “Basic configuration of Suricata” from RangeForce. The RangeForce lab is good

and easy to use for students; it covers Suricata installation from the package, basic

configuration and a simple simulated attack. The RangeForce lab is sufficient for the

“Cybersecurity Technologies I” course, but it does not cover advanced concepts of IDS

and, more specifically, Suricata. Therefore a new lab is needed for the “Cybersecurity

Technologies II” course, which covers the IDS principle more.

1.2 Motivation

The main focus of this work is designing an easy to follow Hands-on-Skills lab on

open-source network-based intrusion detection systems. The goal is to design a lab that

covers main network IDS technology principles and concepts comprehensively and

straightforwardly while providing an in-depth understanding of the IDS technology.

Thus, the main objectives for the lab steps are covering:

● The installation process of the IDS from source files;

● Basic configuration options and the effect of each configuration option in overall

performance and outputs (logs);

● How the traffic inspection works and how to read logs and alerts through an

attack simulation;

● How rules are written and how rules work;

● Investigating an incident scenario based on a malicious traffic sample.

15

As requirements for the main objectives of the lab, two other questions arise that need to

be resolved:

1. What open-source network-based IDS is suitable for this lab?

2. Which malware is good to be used in the incident investigation of the lab?

16

2 Theory Background

This chapter first covers the basics of network, IDS technology, rules and malware

theory background which is important in making the lab and the rest of the paper

comprehensive.

2.1 Network Structure

The network infrastructure contains three categories of components:

● Devices;

● Media;

● Services.

An end device is either the source or destination of a message transmitted over the

network.

An address identifies each end device on a network; these addresses are the IPs.

Internet works based on IP protocol and data is transmitted in DPU (Data Protocol Unit)

in the network.

The data which needs to be transmitted on the internet goes through the seven layers of

the OSI model. In the sender device, the data journey starts from the application layer to

go all the way down to the physical layer (the lowest layer). After the data passes each

layer, some additional fields called headers would be added to the data package. After

the data reaches the lowest layer of the OSI model, it will be separated into packets and

transmitted to the destination. As the destination receives the packet, the packet again

goes through the OSI layer from the lowest layer to the highest layer. Each layer reads

their respective fields in the header and passes the packet to the higher layer [2].

The OSI model is covered in more details in the appendix 1.1.

The IP packet structure is shown in figure 1.

17

https://paperpile.com/c/pxO14y/Fpmu

4 8 12 16 20 24 28 32

Version Header
Length

Type of Service
(TOS)

Total Length

Identification flags Fragment offset

Time to Live (TTL) Protocols Checksum

Source address

Destination address

options padding

Data
Figure 1 - IP packet structure [2]

2.2 Intrusion Detection System

Intrusion detection system is a software that automates the process of monitoring the

computer devices or network activities and events (logs), analyzing them to detect

suspicious or malicious activities [3].

There are various types of IDS, including Host-based IDS (HIDS), Network-based IDS

(NIDS), Protocol-based Intrusion Detection System (PIDS), Application Protocol-based

Intrusion Detection System (APIDS) and Hybrid Intrusion Detection System.

A network-based IDS is an IDS that monitors and analyzes inbound and outbound

traffic to and from all the devices within the network based on the OSI packet content

and header data for suspicious behavior or real-time attacks. NIDS is located at crucial

points in the network to inspect traffic from all devices within the network.

Host-Based IDS is generally concerned with endpoint security, it runs on all the devices

within the network, having direct access to the host, it can monitor all the traffic from

and to the host on both external network (Internet) and internal network (Enterprise

network). This enables HIDS to be able to detect suspicious and malicious activities

missed by the NIDS. HIDS may be able to detect the malicious traffic originating from

the host, such as if the host attempts to spread malware to other devices within the

network [4].

18

https://paperpile.com/c/pxO14y/Fpmu
https://paperpile.com/c/pxO14y/AxnJ
https://paperpile.com/c/pxO14y/N2aM

2.2.1 IDS Detection Techniques

IDS can use different methods for detecting intrusion or malicious activity within the

network or in the host. Signature-based detection and anomaly-based detection are the

most common detection techniques.

A signature is a pattern that corresponds to a known threat. Signature-based detection is

the process of comparing signatures against detected events or logs to identify malicious

activities. Signature-based IDSs are great in detecting known attacks. However, they are

not very useful in detecting unknown attacks (zero-day attacks), or attacks using

evasion techniques [5].

Anomaly-based detection is more complicated compared to signature-based detection. It

does not rely on signatures to detect intrusion. Instead, it identifies unknown attacks

depending on the similar behavior of other intrusions.

An IDS using anomaly-based detection first develops profiles representing the normal

behavior of a network or host (modeling the normal behavior) through monitoring the

characteristics of typical activity for a pre-defined period of the time. Anomaly-based

IDS can find malicious activities by comparing the definition of the standard profiles

against observed detected events or logs. Anomaly-based detection methods are very

effective at detecting previously unknown threats [5].

2.2.2 IDS Evasion Techniques

The primary purpose of IDS is to predict the network's state and the devices within the

network. This enables IDS to predict how a device responds to different network events

like receiving traffic. IDS evasion techniques aim to prevent the IDS from predicting

the state of devices and desynchronize the IDS and devices in the network.

The attacker can intrude into the system using the insertion or evasion technique. It is

insertion if an attacker creates network traffic that is received and processed, but the

host does not receive it. It is evasion if the network traffic is received and processed by

the host, but IDS does not receive the traffic (IDS is not aware of the traffic) [6].

IDS evasion techniques are explained in more detail in Appendix 1.2.

19

https://paperpile.com/c/pxO14y/0BQZ
https://paperpile.com/c/pxO14y/0BQZ
https://paperpile.com/c/pxO14y/AIK6

2.3 Suricata’s Rules and Ruleset

Rules have a very important role in the signature-based IDS like Suricata. The IDS

detection engine checks the traffic against the rule and if the traffic matches the rule,

take an action as defined in the rule. Rulesets are a group rule that can be added to the

IDS as a whole instead of writing each rule one by one.

This section introduces the rule and rulesets available for Suricata briefly.

2.3.1 Rules

A rule consists of the following:

● The action, that determines what happens when the signature matches;

● The header, defining the protocol, IP addresses, ports and direction of the rule;

● The rule options, defining the specifics of the rule [7].

2.3.1.1 Action

Defines the action that is taken if the signature matches, the action can be:

1. Pass - stops scanning the packet and skips to the end of all rules (only for the

current packet).

2. Drop - This only applies in IPS/inline mode, and the packet will not be sent any

further. Drawback: The receiver does not receive a message of what is going on,

resulting in a time-out (certainly with TCP). Suricata generates an alert for this

packet.

3. Reject - With reject action both receiver and sender receive a reject message (an

RST packet is sent).

4. Alert - When a signature that has a rule with Alert action matches, an alert is

generated which is visible to system admin. however, the traffic is treated as

non-dangerous traffic and passes [7].

20

https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP

2.3.1.2 Header

The header consists of protocol, source and destination IP and port address and direction

of the packet:

Action Protocol Source_IP Source_port Direction -> Destication_IP

Destination_port

The header of the rule is checked against the IP addresses and port addresses of the

packet headers and the protocol, and if they match, depending on the rule options (if the

rule options also match), the specified action in the rule will be taken [7].

2.3.1.3 Rule Options

Rule options are enclosed in the parenthesis and are separated by semicolon.

There are two types of rule options, the one consisting of keyword and setting, and the

ones that only consist of keyword.

keyword; setting;

keyword;

There are broad categories of rule options that can be used in the rule. Some of the

commonly used rule options are: meta-settings keywords, protocol based keywords like

HTTP, IP, TCP and SSH, file keywords, flow keywords and more [7].

The rule options are covered in more details in the appendix 1.3.

2.3.2 Rulesets

It is possible to add the rules for inspection and alerting manually; however, it is

recommended to use rule management tools for managing the rules in Suricata.

There are several tools available for rule management, such as Scirius from

StamusNetworks which is a web interface that handles the rules file and updates

associated files [8], PulledPork is a PERL based tool for Suricata and Snort rule

management that can determine the installed IDS version and automatically download

21

https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/wnM9

the latest rules. Pulledpork only works with the Emerging Threat Open and Pro version

[9].

Suricata-update is python-based rule management for Suricata from OISF for

downloading and managing rules. It is the official rule management tool for Suricata

[10].

There are several commercial and non-commercial rulesets from different vendors

available for Suricata.

● Emerging threats: A non-commercial which is a great anti-malware ruleset;

● Trafficid: identifying and classifying traffic;

● ssl-fp-blacklists: A project of abuse.ch to detect malicious SSL connections, by

identifying and blacklisting SSL certificates used by botnet C&C servers.

SSLBL identifies JA3 fingerprints that help to detect & block malware botnet

C&C communication on the TCP layer [11].

2.4 Malware

Malware, also known as malicious content, is a software or firmware that enters the

information system with intentions of performing an unauthorized action or process that

negatively affect Confidentiality, Integrity, or Availability (CIA) of an information

system [12]. Malware can be written with the goal of mass infection, as previously seen

with “Wanna Cry” or they might be written to infect particular targets as previously

seen with Stuxnet.

2.4.1 Malware Types

Malware has different types. Some of the common types of malware are explained in

the following sections.

2.4.1.1 Virus

A malicious computer code or program that intends to copy itself and infect a host

without an authorized user’s permission by attaching itself to a legitimate program to

execute its code. The virus can potentially damage the infected host by disrupting the

system or damaging data [13].

22

https://paperpile.com/c/pxO14y/D8KN
https://paperpile.com/c/pxO14y/kEc4
https://paperpile.com/c/pxO14y/CxNi
https://paperpile.com/c/pxO14y/VgA6
https://paperpile.com/c/pxO14y/VvbX

2.4.1.2 Worm

A worm can be defined as a malicious computer code or algorithm that can replicate

and propagate and use the network to spread itself. Worms can destructively consume

the infected system or network resources [14].

2.4.1.3 Spyware

Spyware is unwanted software that gains access to the user's device by the goal of

stealing internet usage data and sensitive data like credit card or bank account

information, personal information, login credentials. The stolen data later relays to

advertisers, data firms, or external users.

Some types of spyware can install additional software or change some of the device's

settings.

Spywares are one of the most common cyber threats; devices can easily get affected,

while it is difficult to identify them.

There are four main types of spywares: Adware, Trojan horse, Tracking cookies, and

Keyloggers [15].

2.4.1.4 Rootkits

A set of malicious computer programs or tools used by an attacker to get root access to

a computer system and maintain the access and attacker's activities hidden from the

authorized system user [15].

2.4.1.5 Malicious Cryptomining

Malicious cryptomining is also known as crypto-jacking or drive-by mining.

Cryptominers are usually delivered via a trojan to the victim system and it allows

attackers to use the victim device’s resources to mine cryptocurrencies like Bitcoin and

Ethereum. Cryptominers do not have the same destructive effect as other malware types

like Ransomware, but they consume victim system resources for the attacker's benefit

[16].

23

https://paperpile.com/c/pxO14y/jAoA
https://paperpile.com/c/pxO14y/cSjj
https://paperpile.com/c/pxO14y/Skpg

2.4.1.6 Ransomware

The goal of ransomware is gaining access to a user's device, taking control of the device

by encrypting the device partially or fully with a key typically known only by the

attacker, to demand something to give the access back. The demand is usually money

transfer through cryptocurrency, as they are not traceable. There is usually a time limit

for users to pay the demand. Otherwise, the file will be deleted permanently.

Ransomware uses similar methods as other types of malware, like using network hiding

tools like TOR. Ransomware is relatively simple for attackers, the payouts are high, and

it is not easy to mitigate.

The most effective method against ransomware is a regular backup of the system.

Ransomware is not a new malware, ransomware has been around for almost three

decades by now, but it started increasing by the emergence and growth of

cryptocurrency as it makes the money transfer untraceable [17].

2.4.2 Malware Analysis Techniques

The purpose of malware analysis is to understand the malware better, to strengthen the

defense against malware.

Malware can be of two types, obfuscated and non-obfuscated ones. The obfuscated

malware is more sophisticated to be analyzed as the malware’s author hides the

malicious executable file using different methods.

There are three main approaches for malware analysis: static analysis, dynamic analysis,

hybrid analysis. The main difference between static and dynamic analysis is that static

analysis is done without executing the malware and dynamic analysis is performed by

executing the malware and investigating the functionality of the malware [18].

2.4.2.1 Static Analysis

Static analysis examines the executable file without executing the malware to determine

whether it is malicious or not. This consists of investigating the functions and libraries

that are used by the executable file. Finding the linked libraries and functions are among

the most useful methods to gather information about the malware.

24

https://paperpile.com/c/pxO14y/WpMO
https://paperpile.com/c/pxO14y/vf99

Static analysis can be used to extract a detection pattern for the malware, and this

detection pattern can be extracted based on API calls, string signature, control flow

graph (CFG) and opcode (operation codes) frequency [19].

API stands for Application Programming Interface, it is a set of definitions and

protocols for building and integrating applications. The API calls can reveal the

behavior of programs and therefore can be used in malware detection [20].

Malware's strings can reveal the attacker's goal and intentions by carrying critical

semantic information. Therefore they can be good indicators for malicious or suspicious

programs [21].

A Control Flow Graph (CFG) is a directed graph-based representation of a program's

code, where the code blocks are presented by nodes and control flow paths by edges.

CFG can be used in the analysis of a PE file and extract the program structure, which

can be used in malware detection [22].

Op-codes (Operation codes) are numeric codes that represent the instructions that show

the actual operation performed by the CPU to execute or run a program [23]. Testing

opcode frequency or calculating the similarity between opcode sequences can be used

for extracting the pattern for malware analysis and detection.

Besides these, other less complicated features can also be used in static malware

analysis like file size and function length, network features and executables file hashes.

2.4.2.2 Dynamic Analysis

The dynamic analysis may also be called behavioral analysis. In the dynamic analysis,

the executable file is executed in a safe environment [24]. The executable should be

executed in an environment without an anti-virtual machine and anti-emulator

techniques as some of the malware can detect these environments and not show

malicious activity.

Compared to static analysis, the dynamic analysis is more effective and can detect

known and unknown malware. Additionally, obfuscated and polymorphic malware can

not evade dynamic analysis.

Function call monitoring, function parameter analysis, and information flow tracking

are typical dynamic analysis techniques [19].

25

https://paperpile.com/c/pxO14y/2LCk
https://paperpile.com/c/pxO14y/X2Cp
https://paperpile.com/c/pxO14y/431R
https://paperpile.com/c/pxO14y/bxCy
https://paperpile.com/c/pxO14y/z4tm
https://paperpile.com/c/pxO14y/neQZ
https://paperpile.com/c/pxO14y/2LCk

A function call is the line of the code that calls the functions. Functions can provide

crucial information about the overall behavior of the program. Function call monitoring

tracks all the functions using hook functions. Hook functions capture the functions calls,

implements the analysis procedure, performs tasks like logging target program

execution, observes intermediary function calls and analyzes various inputs and outputs

[25].

Function parameter analysis can also be used in the static analysis by estimating the set

of possible values for the function. dynamic parameter analysis monitors the actual

values passing to the function, as the function is being called, and monitors the values

that the function returns when it finishes. Analyzing the function's parameters and

grouping the functions can provide a detailed insight into the program's behavior.

Information Flow Tracking (IFT), also referred to as Taint Analysis, monitors the

programs and investigates how the program processes the data. IFT focuses on

monitoring the propagation of data (Labeled or trained) while the program is executed

[26].

26

https://paperpile.com/c/pxO14y/lOTT
https://paperpile.com/c/pxO14y/sM9Z

3 Related Works

There are various sources that provide virtual labs and assignments on Intrusion

Detection Systems (IDS).

Cisco has a series of 3 labs on the firewall and IDS based on Snort, which starts by

covering the virtual lab environment's preparation in the first lab, introduction to the

firewall rules, and IDS signature in the second lab. The third lab allows students to

perform and investigate an SQL injection attack [27]. Although the lab is good as it

covers alerts, rules and incident investigation, it does not cover the installation phase of

the tools nor the configuration. The first lab is mostly setting up the virtual environment,

which is mainly related to network knowledge than the IDS.

There are also other platforms such as Cybrary and Linux Academy hand-on labs

scenario, or virtual environment, which mostly cover similar situations of introduction

to logs and alerts, rules and signatures, and incident investigation. However, they often

do not include the initial installation and configuration.

There are also some smaller security exercises that cover incident investigation

scenarios, usually based on malicious traffic samples, such as the

Malware-Traffic-Analysis website [28], Network Forensics Puzzle Contest [29]and

Lincoln Laboratory of Massachusetts Institute of Technology datasets [30]. These also

cannot be considered a complete lab as they are not specifically designed based on IDS

and they are more of individual security practices.

Wayne State University has its dedicated firewall and IDS lab, which is designed based

on Snort [31]. The lab starts with preparing the virtual machine, followed by Snort

installation from the source files. Afterward, the students are introduced to Snort

configuration and rule file locations and write a new rule and add it to the Snort's rule

file. Then trigger an alert for the newly added rule by sending an ICMP packet to the

device running the IDS (by pinging the device from a Windows host). The lab finishes

by answering the set of questions related to the lab. While the lab introduces the IDS

technology well and is comprehensive, it also does not cover more advanced

27

configuration and incident investigation exercises. Besides, it does not provide a rich

knowledge of theory through lab steps.

Like Wayne State University, Cyber Security Education Consortium has an IDS lab

based on Security Onion and Snorby. In the same way, the lab starts with setting up and

configuring the virtual environment, followed by Security Onion installation and

configuration, and simple rule management is covered step by step. The last part of the

lab is replaying sample traffic (Pcap file) and investigating the alerts [32]. Even though

the lab has great step by step instructions, it still does provide a great theory knowledge,

and it is more focused on what to do rather than why doing a specific action or

configurations.

The approach in this paper is partially similar to Wayne State University, by covering

the initial IDS installation from the source files, configuration, rule management and

alerts. However, to ensure that all the objectives of this work are satisfied, the lab

designed through this work would have more steps, including steps on advanced

configuration and incident investigation.

28

4 Methodology

The lab design process is divided into 7 steps:

● Determine the IDS that the lab is designed based on what satisfies the defined

criteria in the problem statement section;

● Define the lab sections and high-level overview of the labs;

● Determine the malware to be used in the incident investigation scenario;

● Determine the traffic sample for the incident investigation scenario;

● Define the installation and configuration of the IDS following the official

documentation and website;

● Design the incident investigation scenario using the sample traffic and define the

questions for the incident investigation scenario;

● Test the lab.

To determine the backbone IDS for the lab, a group of popular open-source

network-based IDS were chosen. First, each IDS’s features were compared based on

their respective documentation, secondly reviewed literature that has studied and

compared the IDS, and finally the sustainability of the IDS was considered.

The general flow of the lab and steps take into consideration the installation,

configuration, logs, alerts, attack detection, and investigation aiming to cover all the

major aspects of the IDS.

The lab aims to also emphasize on how the infection with the malicious program

happens in the incident investigation step, and malicious program behavior, as the

CyberSecurity Technology course also covers malware analysis. Therefore the malware

that satisfies the defined criteria in the problem statement of this paper is determined by

studying and reviewing the reports and statistics published by security organizations and

companies. The main criteria as already defined for the sample traffic is the number of

generated alerts and the total size of the file.

29

The installation and configuration steps are defined based on the official documentation

and each command and step purpose is explained in detail or the link for optionally

more reading is provided in the lab.

The incident investigation scenario is focused on the reading and understanding of the

alerts and correlating the alerts to the traffic and investigating the malware delivery and

analysis.

In the end, the lab was tested with a group of students with a different level of

background knowledge on Cybersecurity and IDS. Each student provides the consumed

time for completing the lab, positive points, negative points and recommendations.

30

5 Analysis

This section’s goal is to cover the pre-objectives of the lab design, which is determining

the IDS, and the malware for the incident investigation.

5.1 IDS Comparison and Evaluation

This section aims to compare three popular open-source NIDS to determine the IDS to

be used in the lab. It first reviews and compares the 3 IDSs based on their features

according to their official documentation. Then review the research papers and

literature, and finally compare them from a sustainability perspective.

5.1.1 General Comparison

This section reviews Snort, Suricata, Zeek and provides a side-by-side comparison of

the three IDSs.

5.1.1.1 Snort

Snort is an open-source network intrusion detection system (NIDS), that can perform

real-time traffic inspection and packet logging on IP networks, as well as protocol

analysis and content searching/matching.

Thus Snort can detect a variety of attacks and probes, such as buffer overflows, stealth

port scans, CGI attacks, SMB probes, and OS fingerprinting attempts [33] [34].

The original founder of Snort, Sourcefire, was founded in 2001 by Martin Roesch.

Cisco acquired Sourcefire on October 7, 2013. Snort's mission is to combine open

source roots with proprietary innovation to deliver the most effective and

comprehensive real-time network defense solutions [35].

Talos is a group of leading-edge network security experts and the largest group

dedicated to discovering, assessing, and responding to the latest threats. Talos is

31

https://paperpile.com/c/pxO14y/GY1j+jh8l
https://paperpile.com/c/pxO14y/12Mu

supported by the Snort community and writes the official Snort ruleset, the Snort

Subscriber Rule Set [36].

Snort can be configured to run in three modes:

● Sniffer mode: Reads the packets of the network, displays the packets in a

continuous stream on the console screen;

● Packet Logger mode: logs the packets;

● NIDS mode: Performs detection and analysis of network traffic. (most complex

and configurable mode).

In the NIDS mode, Snort reads the configuration from the snort.conf file and applies the

rules configured in the "snort.conf" file to each packet to decide if, based on the rule

type in the rule file, an action should be taken. One drawback of Snort is that it is not an

application-aware IDS [37].

5.1.1.2 Suricata

Suricata is a free and open-source IDS that supports multi-threaded processing and is

capable of real-time intrusion detection (IDS), inline intrusion prevention (IPS),

network security monitoring (NSM) and offline pcap processing [38].

Suricata covers more protocols of the application layer, and it supports hashing and file

extraction and Lua scripting, which can be used to modify outputs and even create

complex and detailed signature detection logic [38].

The Suricata project and code is owned and supported by the Open Information Security

Foundation (OISF) [38].

Suricata has several “building blocks”, which are threads, thread-modules, and queues.

Suricata is multi-threaded, which means that multiple threads are active at once.

A thread-module is a part of the functionality. Suricata has four thread modules:

 Packet acquisition: Reads packets from the network

Decode and stream application layer: Decodes the packets and inspects the

application

Detection: Compares signatures and can be run in multiple threads.

Outputs: Processes all the alarms

32

https://paperpile.com/c/pxO14y/4Wqn
https://paperpile.com/c/pxO14y/SL1Z
https://paperpile.com/c/pxO14y/lE5P
https://paperpile.com/c/pxO14y/lE5P
https://paperpile.com/c/pxO14y/lE5P

Figure 2. Suricata structure [39]

Packets will be processed only by one thread at the time. However, a thread can process

more than one packet at the same time. A thread can have one or more thread-modules,

but only one thread module can be active at the time. Runmode is the way threads,

modules, and queues are arranged together [39].

Suricata has three run-modes:

workers: Is the recommended runmode as balancing happens in the hardware or

driver, which means packets are managed by NIC/driver to make sure they are

properly balanced over Suricata’s processing threads.

autofp: Is good for pcap file processing and in case of certain IPS setups. In

autofp, there are one or more capture threads that capture the packet and do the

packet decoding. After this, the packet is passed on to the flow worker threads.

single: Is suitable for use in development. Single runmode is similar to worker

runmode with the difference that it works with only the single packet processing

thread [40].

5.1.1.3 Zeek (Bro)

Zeek, formerly known as Bro, primarily works as a security monitor tool that can

perform an in-depth inspection of the traffic and look for suspicious activity. However,

Zeek is also able to perform a wide range of traffic analysis tasks, including

non-security tasks analysis, for example, performance measurements and help with

33

https://paperpile.com/c/pxO14y/uQOO
https://paperpile.com/c/pxO14y/NaTm

troubleshooting [41]. Zeek also logs all the network's activity in high-level terms. Zeek

is aware of the application layer, and therefore the application layer transcripts are also

included in the log files. Zeek logs are organized in a tab-separated manner, which

enables post-processing with external tools. Zeek provides built-in functionality for a

range of analysis and detection tasks, including file extraction from HTTP sessions,

interfacing to external registries for malware detection, identifying popular web

applications, SSL brute-forcing, SSL certificate validation [41].

Zeek is a traffic analysis platform that is fully customizable and extensible, it supports

the traditional signature-based detection methodology, but its strong scripting language

can enable other detection approaches like semantic misuse detection, anomaly

detection, and behavioral analysis on high-speed and high-volume networks.

Architecturally Zeek has two main components, event engine (or core) and policy

script interpreter. Event engine reduces the incoming packets into more high-level

events. Moreover, these high-level events reflect network activity in policy-neutral

terms [42].

However, Zeek is single-threaded, to overcome this limitation, Zeek introduces the

clusters. Clusters help to spread the load on several cores. Tap components split the

traffic packets, make a copy of the packet for the inspection, frontend splits traffic into

many streams or flows to be sent to the worker's components for the protocol analysis.

The manager is the component that ensures the centralized log, events, or data [43].

5.1.1.4 General Comparison Summary

Table 1 shows the side-by-side comparison of Snort, Suricata, and Zeek.

As it is also shown in the table, all three IDS have very similar features. They all

support real-time inspection, IPv6, capture accelerators, and offline analysis. However,

Suricata and Zeek are capable of handling considerably more traffic than Snort.

Besides, Suricata supports multi-thread inception, which can have a great effect on its

performance. Overall, Suricata seems to be a better option for a small to medium

organization as it supports both IDS and IPS, high network throughput, and multi-thread

inspection.

34

https://paperpile.com/c/pxO14y/SokC
https://paperpile.com/c/pxO14y/SokC
https://paperpile.com/c/pxO14y/sCQK
https://paperpile.com/c/pxO14y/yE6i

Features Snort Suricata Zeek

Real Time Yes Yes Yes

Throughput 1GB 10GB+ 10GB+

IPS capability Yes Yes No

Threats Single-Threat Multiple-Threat Single-Threat

Installation Simple, also
available from
packages

Simple, also

available from

packages

Simple, also

available from

packages

IPv6 Support Yes Yes Yes

Capture accelerators Yes (PF-Ring) Yes (PF-Ring) Yes (PF-Ring)

offline analysis Yes Yes Yes

License GNU GPL v.2 GNU GPL v.2 BSD

Table 1. Feature comparison for IDS tools

5.1.2 Literature Review

M. Hänninen has provided an overall evaluation of three open-source IDSs, Snort,

Suricata, and Zeek, to find the best solution among them based on the evaluation

criteria, which were:

● Security performance out of the box, without a significant work effort;

● Credibility;

● Integration options.

One evaluation criteria is performance out of the box, most of the configuration has

been kept in the default state during all the tests. The study has four sub-areas:

1. How well do the IDS detect the variety of network attacks using built-in scripts;

2. How much effort does the configuration of the IDS require;

3. How well is the IDS maintained and developed;

4. What kind of alert outputs are supported.

The study is conducted in a lab environment consisting of three target servers, two

clients, all in the same network with NIDS solutions listening traffic in promiscuous

35

mode. Listening to the traffic in promiscuous mode provides an identical test setting for

all three IDS solutions in all the performed tests. Scoring is on a scale of 1-3. Three

points are given to the best solution, two to the second-best and one point to the last

one. Adding the score of all the tests, the best solution based on defined criteria is

Suricata, and the author's conclusion is to a small and medium enterprise, Suricata

seems the best option [44].

J. White, T. Fitsimmons and J. Matthews study both default and "out of the box"

performance of different versions of Snort and Suricata, investigate alternative

configuration and performance improvement and examine them based on scaled

resources like CPU cores while focusing on performance and scalability. The study

results show that even though both Snort and Suricata may present substantial problems

with scalability, Suricata outperforms Snort even in a single core where it was that Snort

should perform better. Suricata also shows lower memory usage and CPU utilization.

The research also resulted in some changes to Suricata, as OISF has been very open to

communication [45].

M. Pihelgas studies the advantages and disadvantages of the three popular IDSs Snort,

Suricata, and Zeek. It compares the IDS performance using dropped packets, memory

usage, and CPU usage metrics in 3 approaches:

● Default OS and IDS configuration;

● Optimized IDS configuration;

● Modified or replaced packet capture module.

The results show that all 3 IDS are able to handle 100Mbit/s network traffic by default

configuration, however, with optimized configuration, both Zeek and Suricata were able

to handle 1000Mbit/s. Zeek had way less memory usage from a memory usage

perspective than Suricata; however, from the CPU usage perspective, Suricata has the

most efficient performance [46].

G. Khalil studies and compares Suricata, Snort, and Zeek through existing literature and

concludes that Suricata and Zeek can be used in networks with 10 GB throughput or

more, while Snort is suitable with 1GB throughput. It also suggests that Snort is most

suitable for commercial organizations as it has community support and a wide user base.

Suricata is the best fit for organizations with high throughputs like ISPs, and Zeek is

36

https://paperpile.com/c/pxO14y/GJZD
https://paperpile.com/c/pxO14y/C7jw
https://paperpile.com/c/pxO14y/yGiw

excellent for research purposes due to its support for high throughput and powerful

scripting support [47].

Table 2 shows the evaluation factors from each research reviewed above in more detail.

Overall Suricata represents the best result as all the studied research papers also showed.

The green cells in table 2 show the best result in each row.

Research Evaluation Factors Snort Suricata Zeek

Markku Hänninen
2019

Network attack monitoring 1 3 2

Configuration 3 3 1

Software maintenance and

development

1 3 3

Alert Outputs 3 3 1

J. White, T.
Fitsimmons, andJ.
Matthews

Scalability (PPS) 252,896 258,912 -

M. Pihelgas Throughput (Optimized IDS
configuration) (Mbits/s)

100 100 100

Throughput (Optimized IDS

configuration) (Mbits/s)

- 1000 1000

CPU ~12.5 Lowest ~12.5

Memory (Mib)* 2125 6500 2700

G. Khalil Throughput (GB) 1 10 10

Best for commercial
organization

ISPs Research
purposes

Table 2. Evaluation of IDS tools

*The average memory usage of all the experiments

37

https://paperpile.com/c/pxO14y/5sub

5.1.3 Sustainability of Open-source Tools

Open-source software (OSS) is software with its source code released under a license in

which the copyright holder allows users to study, change and distribute the software to

anyone and for any purpose [48].

Open-source software may be developed in a collaborative public manner; it is a

prominent example of open collaboration. While this makes open source projects

appealing and exciting, the sustainability of the open-source tool is an important point to

be considered before starting to use them.

The open-source guide defines a project as open source when “anybody can view, use,

modify, and distribute” the project for any purpose [49]. As this definition suggests, the

developer’s contributions are a significant factor in open-source project continuity.

Weinstock, C & Hissam’s study also confirms that a potential developer pool and

dedicated developer community is an essential factor for successful open-source

software projects [50].

J. Gamalielsson and B. Lundell study the long-term sustainability of the open-source

software and software communities involving a fork. By considering developer’s

commitment as the main factor in the long-term sustainability of an open-source project,

they investigate the LibreOffice project, together with the OpenOffice.org project

(LibreOffice project is a fork of OpenOffice.org) and Apache OpenOffice projects, and

it presents the results from an analysis of first-hand experiences from contributors in the

LibreOffice community. It provides insights concerning challenges related to the

long-term sustainability of open-source software communities. The insights are based

on the analysis of:

● Characterization of the three projects consisting of the history and governance of

the projects, the release history, and commits to the SCM and contributing

committers over time;

● Developer’s commitment by considering developer’s commitment level in the

different projects under different governance regimes;

38

https://paperpile.com/c/pxO14y/xoEr
https://paperpile.com/c/pxO14y/8I5P
https://paperpile.com/c/pxO14y/Z7oU

● Retention of committers by considering the recruitment of committers over time,

the retirement of committers over time, the distribution of commits for

committers contributing to different combinations of projects, and the temporal

commitment patterns between projects for committers.

The analysis suggests various factors that may cause developers to lose interest in the

projects based on reasons like vendor dominance, copyright assignment, lack of

influence, lack of fun, and bureaucracy in the project and factors that keep the

developers committed to the project as freedom and proper licensing, and personal and

emotional attachments. It also shows that it is the most successful project in terms of

indicating long-term sustainability due to its success in recruiting and retaining new

contributors to its community and establishing sustainable communities [51].

In a more informal approach, S. Wilson suggests code activity, releases, user

community, longevity, and ecosystem as the effective factors on sustainability that are

investigatable using a web search [52].

Table 3 shows the data extracted from the git for Snort, Suricata, and Zeek. All three

IDSs’ communities show good contributions and commitment to the projects. Therefore

none of these projects are showing signs of non-sustainability.

Metrics Snort Suricata Zeek

Lines of code 323K 392K 148K

Current contributors 13 37 47

Last commit 3 days ago (as of
26.04.2020)

3 days ago (as of
26.04.2020)

5 months ago (as
of 26.04.2020)

Number of commits 4245 10947 9970

Users on open hub 87 16 9
Table 3. IDS comparison based on git data

39

https://paperpile.com/c/pxO14y/XQrd
https://paperpile.com/c/pxO14y/6qrB

5.2 Malware Statistics

This section reviews malware statistics reports published for 2019 and provides an

insight into how malware has been growing and changing.

5.2.1 Proofpoint Q1 2019

Proofpoint publishes quarterly reports that highlight not just the threats but useful

takes-aways and methodologies from them based on its database of analyzed emails,

social media posts, and malware samples. The goal of the report is to provide actionable

knowledge for readers. In the first quarter of 2019, ransomware has been absent in the

email-based threats as Emotet has 82% of malicious content. For the web-based threat,

Coinhove crypto mining has increased in January and almost zeroed in March. The

majority of fraudulent domains had an SSL certificate, which leads to a false sense of

security to end users encountering these domains online and in email attacks [53].

5.2.2 Kaspersky lab 2019

In the 2019 report from Kaspersky, banking malware, crypto-ransomware, miners,

web-based attacks, and local threat categories are studied. Banking malware,

crypto-ransomware, miners statistics are based on data from users of Kaspersky

Security Network (KSN), a distributed antivirus network that works with various

anti-malware protection components and agreed to provide their information from

between November 2018 to October 2019. For each category, the number of users being

attacked, the geography of the attacks, and the top malware signature is studied [54].

Web-based attack statistics are derived from web antivirus components that protect

users from attempts to download malicious objects from a malicious/infected website or

server. It shows geographic information on the countries which the attacks originated

from, that had the highest risk of infection, and trending malicious programs.

After the first scan of the system, local threat categories include objects detected on user

computers by Kaspersky’s file antivirus. These derive from the result of analysis of the

statistical data based on antivirus scans of files on the hard drive, and the results of

scanning various removable data storages attached [54].

40

https://paperpile.com/c/pxO14y/2GEp
https://paperpile.com/c/pxO14y/Gi9Y
https://paperpile.com/c/pxO14y/Gi9Y

5.2.3 M-Trends 2020

FireEye M-Trends yearly reports are based on the FireEye Mandiant investigations of

targeted attack activity conducted between October 1, 2018, and September 30, 2019.

Besides attack statistics on the trending malware, the report also provides an analysis of

the source of the detected attacks, dwell time, targeted industries, threat techniques, and

further related case studies.

Overall, it looks like attackers are growing more adept at working on hybrid

environments, which are a combination of cloud architectures and on-premise services,

while the attack techniques and tactics do not change dramatically.

Analysis of the dwell time of 56 for 2019 compared to the 78-day global median dwell

time for 2018, shows we are getting better in detecting attacks. Back in 2011, the

variable of dwell time was 416 days. These trends could be due to organizations

developing their detection programs, leading to faster detection, which can also be due

to changes in attacker behaviors. Mandiant experts have seen a continued rise in

disruptive attacks (such as ransomware and cryptocurrency miners), which often have

shorter dwell times than other types.

FireEye often examines the malware family using a disassembler, or decompile tools

through a process called reverse engineering, however, the fact of belonging to the same

malware family does not necessarily mean that malware within the same family have

identical codes.

Based on malware statistics, 41% of the malware families seen this year were never

seen before. This also shows that 59% of attacks are using techniques that are known to

us.

Moreover, 70% of the samples identified belonged to one of the five most frequently

seen families, which are based on open source tools with active development [55].

41

https://paperpile.com/c/pxO14y/zKVF

5.2.4 CheckPoint 2020

CheckPoint's yearly research reviews the previous year’s cyber incidents and gathers

key insights about the cyber threat landscape. It first reviews the timeline of major cyber

events of 2019 and projection of 2020 and upcoming events like the Olympics of Japan

and evolving technologies like 5G. It offers recommendations for security best practices

by focusing on prevention rather than detection and remediation.

A critical takeaway from the timeline of 2019 can be that no organization, regardless of

their size and mission, would be an exception in the criminal's eyes, and the attacks can

be spread throughout an entire nation with highly destructive impact.

Statistics from 2019 also show that 28% of all organizations worldwide were

subject to botnet infection. Malware statistics based on the CheckPoint ThreatCloud

Cyber Threat Map between January and December 2019 show an overall scope of each

malware category and trending malware families globally and by region.

Most categories of trending malware families on the global and regional levels are very

close to each other, and there are a few cases where regional lists differ.

Even though the numbers and statistics give us a contentful picture of the threat

landscape, it is important to note that numbers and diagrams are not the whole story, as

the ransomware category has a relatively small share between malware categories, but

they have a severe impact on businesses and nations [56].

5.2.5 Static Reports Summary

The statistics reports are based on data collected by different institutes using different

methods, as a result the trending malwares list differs in each report. However there are

malware families that are reported by all like Trickbot, Emotet, Dridex, Ramnit and

Trickster. Emotet is one of the malware that has been trending for a few years and one

interesting point about Emotet is that it is often used to deliver other types of malware

as an example Trickbot and IcedID. Thus, the lab incident scenario will be based on

Emotet and Trickbot infection, in order to introduce how these two malware work. The

summary statistics from the reports are presented in table 4 in appendix 2.

42

https://paperpile.com/c/pxO14y/I9RA

6. Lab Environment

The lab environment is Ubuntu 18.04, a Linux distribution OS installed in a virtual

environment. The use of a virtual environment is not compulsory, and it can be a

student's preferred one; however, this lab's instructions are based on the Oracle Virtual

Box.

In case the virtual environment used by the student is anything except the Oracle Virtual

Box, the main known significant difference currently that may occur is the name of the

network interface being different from the one mentioned in the lab. Students can clarify

the name of the network interface using ifconfig.

The network interface runs in the promiscuous mode to introduce the promiscuous

mode during the lab, as it is necessary for the IDS's real-world deployment, as

promiscuous mode enables the IDS to be able to capture all the packet transmitted in the

network the IDS is protecting. If the device is not running in promiscuous mode, it only

captures the packets which have the IDS's IP address, but it will not receive the packets

that are being transmitted by other devices within the network.

The minimum hardware requirement for the Ubuntu installation in the virtual

environment: RAM: 4GB, Hard Disk: 25GB, CPU: 2GHz dual-core processor.

As the study in the chapter "5.1 IDS comparison and evaluation" suggested, the lab is

designed based on Suricata.

The malware that is used in the incident investigation scenario has been chosen

according to "5.2 Malware Statistics". In the lab, the student gets a traffic sample that is

infected with Emotet and Trickbot and investigates the incident.

The completed lab file is available here, And the lab structure is explained in detail in

the following section.

43

https://drive.google.com/file/d/1FsryXqCiQEceaoGK61HgxGI0hvVOA7NK/view?usp=sharing

6.1 Lab Structure

The lab is structured in 5 sections that cover each step of the preparation of the virtual

environment, details for the installation of IDS from the source, step-by-step

configuration, writing a rule for the simulated DDoS attack followed by predetermined

questions, investigation of a traffic sample infected with a malware.

Through the lab, each step is explained in detail or an external link is given for further

study to ensure that theory concepts are also covered.

6.1.1 Install Ubuntu in the VB and Verify Connectivity

This step covers the installation and setup of the virtual environment to perform the lab

on.

This step is optional as any Suricata-compatible Unix operating system can be used, and

it is recommended to set up a virtual machine using the methods described as a means to

perform the lab in a neutral, tested environment from scratch so that:

● It does not cause any damage to the system being used, as a virtual machine

initialized just for executing this lab can easily be wiped/deleted, and all changes

occur only inside the virtual system;

● It is the exact same environment that was used to create and test the lab, thus

greatly diminishing the chances of any result deviation from the expected result

defined in the lab instructions;

● Has no software interference or significant system environment differences that

can interfere with the installation and usage of Suricata, as the Ubuntu system is

initialized from scratch and vanilla installation is used (as in, all the software

included in the system are the default ones shipped with the system that are

known not to cause any interference).

This step also outlines the installation of some pre-required tools that will be needed

throughout the lab and verifying that this information can be acquired, namely the

network configuration with ifconfig command.

44

6.1.2 Install Suricata and Suricata-Update

This step regards the installation of Suricata and programs required to install and run

Suricata and Suricata IDS itself, by downloading to extraction and compiling from

source, that is, building Suricata into the system from the compilation of the publicly

available source files.

Furthermore, the Suricata-update is installed, which is the official Suricata rule

management and basic rule management with the Suricata update.

The rulesets enabled in this step are Emerging threats, Trafficid, and ssl-fp-blacklists.

6.1.3 Configure Suricata with Basic Settings and Run Suricata

This step details the initial configuration and setting up of Suricata for it to run in the

system as a background process.

Initially, the IP address of the machine needs to be determined by the student.

The configuration in this step is defining the $HOME_NET with the IP address of the

previously determined device, Output types, and the network interface that Suricata

listens to.

Outputs types: Fast.log, HTTP logs, DNS logs, eve.json.

Not all of these outputs are needed for this lab, and configuring these logs is to

introduce the outputs.

Also, testing the configuration for a check against errors and setting up the necessary

procedure to run Suricata as a background app, by enabling the "systemctl" file

provided with Suricata source to the Ubuntu system and editing it to be allowed to run.

Running Suricata for the first time and verifying it is running as intended.

6.1.4 Simulate DDoS Attack and Write a Rule

The goal of this step is to cover how rules are written, how the rule matches the traffic,

and alerts are generated. First, using hping, DDoS traffic is generated. The student

should write the rule that matches the traffic, add this rule to the rule folder and run

Suricata and view the generated alert based on the generated traffic.

45

The rule is not given in the lab, and the rule needs to be written based on the guides and

tips provided in the instruction.

6.1.5 Replay the pcap File in Suricata and Wireshark and Analyze the Alerts

This step has a more advanced scenario than the last step.

The main task for this lab is to replay sample traffic, which is infected with Emotet and

Trickbot in Suricata, and investigate the traffic.

Several predetermined questions are associated with the infected traffic that need to be

answered. These questions include the source of the infection, the infected host, the

malicious activities.

Besides, a simple malware analysis task is also included in this part, by extracting the

executables file and studying their associated hash.

6.2 Lab Testing and Modification

The lab has been tested, ran, and re-ran by three colleagues that volunteered to test it

and execute it from beginning to end and asked to assess a few points regarding the

execution of the lab from a third-view referential, such as:

● The approximate time required to complete the lab (not including answering the

questions) ;

● Possible problems that may have been encountered during the execution;

● Overall feedback of positive and negative aspects of it and recommendations for

improvements.

46

 Defina Nathan Romaine

Duration (Mins) 120 100 110

Error encountered [27968] 30/4/2020 --
21:57:21 -
(tm-threads.c:2087)
<Error>
(TmThreadCheckThr
eadState) --
[ERRCODE:
SC_ERR_FATAL(1
71)] - thread
W#01-eth0 failed

Suricata did not
start with ‘sudo
systemctl restart
suricata’

‘make’ failed

User
error?/Fixed?

User error instruction changed
to include the fix

more likely user
error. The fix is
included in the file
now

Recommendation - More explanation
about the log
location
- dns output
- Network interface

- Explaining the
configuration of
the systemctl
startup file in case
the system does not
recognize the
parameters
provided in the
default file from
suricata

- clarify if students
can choose the
their preferred
virtual environment

Table 4. Lab test

47

7 Conclusion

This paper proposed a comprehensive and easy to follow virtual lab for the

Cybersecurity Technologies II course, which introduces students to network-based IDS

and simple malware analysis.

It first provided a review of the three popular open-source network-based IDS

comparisons to determine the backbone IDS. The comparison work is done by

side-by-side comparison, literature review and from a sustainability perspective. On the

side-by-side comparison Suricata, being multi-thread and supporting 10GB of

throughput, is ahead of Snort and Zeek for this work. Same as the side-by-side

comparison, the literature review also suggests Suricata as the best option for this work.

Furthermore, this work also reviews the malware statistics reports of trending malware

from 2019 to 2020 which shows Emotet and Trickbot among the most spread malware

in 2019 and even previous years, and common scenario of Emotet used for delivering

other malware including Trickbot to the target device.

The lab, which is a virtual Ubuntu 18.0, covers all steps from setting up the

environment, installing and configuring Suricata and testing it against a simulated

DDoS attack and investigating an incident scenario based on sample traffic infected

with Emotet and Trickbot. Each part of the lab includes a step-by-step and detailed

structure and explanation of the reason to make sure the student gains in-depth

knowledge while completing the lab. Besides, the external link and resources have been

suggested for the lab to support students that may not have background knowledge

about the topic or may be interested in more in-depth knowledge. The questions

included in the lab challenge the student’s knowledge at the end of the lab and can be

used to evaluate the student’s takeaways by completing the lab.

Three volunteers tested the lab and based on the feedback provided, it takes 100 mins to

120 mins to complete the lab, the lab steps are clear and comprehensive. As it was also

stated on this paper, the signature-based detection method used by Suricata is not very

effective on the zero-day attacks, thus the possible future work can focus on IDS that

uses anomaly-based detection.

48

References

[1] CyberEdge Group, “2019 Cyberthreat Defense Report,” 2019, [Online]. Available:
https://www.imperva.com/resources/reports/CyberEdge-2019-CDR-Report-v1.1.pdf.

[2] J. R. Vacca, Computer and Information Security Handbook, vol. 1200. 2013.
[3] K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention Systems (IDPS),”

NIST Special Publication 800-94, 02.2007, [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf.

[4] M. Rouse, “Intrusion detection system (ids),” TechTarget, 02.2020.
https://searchsecurity.techtarget.com/definition/intrusion-detection-system.

[5] K. Scarfone and P. Mell, Computer and Information Security Handbook. Springer, Berlin,
Heidelberg, 2010.

[6] P. Gibbs, “Intrusion Detection Evasion Techniques and Case Studies,” SANS Institute, Jan.
2017, [Online]. Available:
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-tech
niques-case-studies-37527.

[7] “4.1. Rules Format — Suricata 4.1.0-dev documentation.”
https://suricata.readthedocs.io/en/suricata-4.1.4/rules/intro.html (accessed May 14, 2020).

[8] S. Networks, scirius. Github.
[9] M. Shirk and PulledPork Team, pulledpork. Github.
[10] OISF, “7. Rule Management — Suricata 5.0.2 documentation.” Accessed: May 15, 2020.

[Online]. Available:
https://suricata.readthedocs.io/en/suricata-5.0.2/rule-management/index.html.

[11] OISF, suricata-intel-index. Github.
[12] “malware - Glossary | CSRC,” Computer Security Resource Center.

https://csrc.nist.gov/glossary/term/malware (accessed May 10, 2020).
[13] “virus - Glossary | CSRC,” Computer Security Resource Center.

https://csrc.nist.gov/glossary/term/virus (accessed May 10, 2020).
[14] “worm - Glossary | CSRC,” Computer Security Resource Center.

https://csrc.nist.gov/glossary/term/worm (accessed May 10, 2020).
[15] “rootkit - Glossary | CSRC,” Computer Security Resource Center.

https://csrc.nist.gov/glossary/term/rootkit (accessed May 10, 2020).
[16] “What is Malware?,” Malwarebytes. https://www.malwarebytes.com/malware/ (accessed

May 10, 2020).
[17] Industrial Control Systems Emergency Response Team (ICS-CERT) Advanced Analytical

Laboratory (AAL), “Malware Trends,” National Cybersecurity and communications
Integration Center, 10.2016, [Online]. Available:
https://www.us-cert.gov/sites/default/files/documents/NCCIC_ICS-CERT_AAL_Malware

49

http://paperpile.com/b/pxO14y/swW0
https://www.imperva.com/resources/reports/CyberEdge-2019-CDR-Report-v1.1.pdf
http://paperpile.com/b/pxO14y/swW0
http://paperpile.com/b/pxO14y/Fpmu
http://paperpile.com/b/pxO14y/Fpmu
http://paperpile.com/b/pxO14y/Fpmu
http://paperpile.com/b/pxO14y/AxnJ
http://paperpile.com/b/pxO14y/AxnJ
http://paperpile.com/b/pxO14y/AxnJ
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf
http://paperpile.com/b/pxO14y/AxnJ
http://paperpile.com/b/pxO14y/N2aM
http://paperpile.com/b/pxO14y/N2aM
http://paperpile.com/b/pxO14y/N2aM
https://searchsecurity.techtarget.com/definition/intrusion-detection-system
http://paperpile.com/b/pxO14y/N2aM
http://paperpile.com/b/pxO14y/0BQZ
http://paperpile.com/b/pxO14y/0BQZ
http://paperpile.com/b/pxO14y/0BQZ
http://paperpile.com/b/pxO14y/0BQZ
http://paperpile.com/b/pxO14y/AIK6
http://paperpile.com/b/pxO14y/AIK6
http://paperpile.com/b/pxO14y/AIK6
http://paperpile.com/b/pxO14y/AIK6
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-techniques-case-studies-37527
https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-techniques-case-studies-37527
http://paperpile.com/b/pxO14y/AIK6
http://paperpile.com/b/pxO14y/TIgP
https://suricata.readthedocs.io/en/suricata-4.1.4/rules/intro.html
http://paperpile.com/b/pxO14y/TIgP
http://paperpile.com/b/pxO14y/wnM9
http://paperpile.com/b/pxO14y/wnM9
http://paperpile.com/b/pxO14y/wnM9
http://paperpile.com/b/pxO14y/D8KN
http://paperpile.com/b/pxO14y/D8KN
http://paperpile.com/b/pxO14y/D8KN
http://paperpile.com/b/pxO14y/kEc4
http://paperpile.com/b/pxO14y/kEc4
https://suricata.readthedocs.io/en/suricata-5.0.2/rule-management/index.html
http://paperpile.com/b/pxO14y/kEc4
http://paperpile.com/b/pxO14y/CxNi
http://paperpile.com/b/pxO14y/CxNi
http://paperpile.com/b/pxO14y/CxNi
http://paperpile.com/b/pxO14y/VgA6
http://paperpile.com/b/pxO14y/VgA6
http://paperpile.com/b/pxO14y/VgA6
https://csrc.nist.gov/glossary/term/malware
http://paperpile.com/b/pxO14y/VgA6
http://paperpile.com/b/pxO14y/VvbX
http://paperpile.com/b/pxO14y/VvbX
http://paperpile.com/b/pxO14y/VvbX
https://csrc.nist.gov/glossary/term/virus
http://paperpile.com/b/pxO14y/VvbX
http://paperpile.com/b/pxO14y/jAoA
http://paperpile.com/b/pxO14y/jAoA
http://paperpile.com/b/pxO14y/jAoA
https://csrc.nist.gov/glossary/term/worm
http://paperpile.com/b/pxO14y/jAoA
http://paperpile.com/b/pxO14y/cSjj
http://paperpile.com/b/pxO14y/cSjj
http://paperpile.com/b/pxO14y/cSjj
https://csrc.nist.gov/glossary/term/rootkit
http://paperpile.com/b/pxO14y/cSjj
http://paperpile.com/b/pxO14y/Skpg
http://paperpile.com/b/pxO14y/Skpg
http://paperpile.com/b/pxO14y/Skpg
https://www.malwarebytes.com/malware/
http://paperpile.com/b/pxO14y/Skpg
http://paperpile.com/b/pxO14y/Skpg
http://paperpile.com/b/pxO14y/WpMO
http://paperpile.com/b/pxO14y/WpMO
http://paperpile.com/b/pxO14y/WpMO
http://paperpile.com/b/pxO14y/WpMO
http://paperpile.com/b/pxO14y/WpMO
https://www.us-cert.gov/sites/default/files/documents/NCCIC_ICS-CERT_AAL_Malware_Trends_Paper_S508C.pdf

_Trends_Paper_S508C.pdf.
[18] R. Sihwail, K. Omar, and K. A. Z. Ariffin, “A Survey on Malware Analysis Techniques:

Static, Dynamic, Hybrid and Memory Analysis,” 01.2018, [Online]. Available:
https://www.researchgate.net/publication/328760930_A_survey_on_malware_analysis_tec
hniques_static_dynamic_hybrid_and_memory_analysis.

[19] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A Survey,”
Journal of Information Security, vol. 5, no. 2, pp. 56–726, Apr. 2014, Accessed: May 10,
2020. [Online].

[20] “What is an API?,” Red Hat.
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
(accessed May 10, 2020).

[21] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A Survey on Malware Detection Using Data
Mining Techniques,” ACM Computing Surveys, vol. 50, no. 3, pp. 1–40, Jun. 2017.

[22] Z. Li, “Control Flow Graph Based Attacks,” 09.2014, [Online]. Available:
https://www.diva-portal.org/smash/get/diva2:762870/FULLTEXT01.pdf.

[23] W. B. Ribbens, Understanding Automotive Electronics, vol. 710. 2017.
[24] G. A. N. Awad and N. B. I. Ithnin, “Survey on Representation Techniques for Malware

Detection System,” vol. 14, no. 11), pp. 1049–1069, Nov. 2017, Accessed: May 16, 2020.
[Online].

[25] W. Aman, “A FRAMEWORK FOR ANALYSIS AND COMPARISON OF DYNAMIC
MALWARE ANALYSIS TOOLS,” International Journal of Network Security & Its
Applications, 09.2014, [Online]. Available: https://arxiv.org/pdf/1410.2131.pdf.

[26] M. Egele, T. Schole, E. Kirda, and C. Kruegel, “A Survey on Automated Dynamic
Malware Analysis Techniques and Tools,” 2010, [Online]. Available:
https://publications.sba-research.org/publications/malware_survey.pdf.

[27] “Cisco Networking Academy Builds IT Skills & Education For Future Careers,” Network
Academy. http://www.netacad.com (accessed May 03, 2020).

[28] “Malware-Traffic-Analysis.net - Traffic Analysis Exercises,” Malware Traffic Analysis.
http://malware-traffic-analysis.net/training-exercises.html (accessed May 03, 2020).

[29] “Puzzles! – Network Forensics Puzzle Contest,” Forensics Contest.
https://forensicscontest.com/puzzles (accessed May 03, 2020).

[30] “2000 DARPA Intrusion Detection Scenario Specific Datasets.”
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datase
ts (accessed May 03, 2020).

[31] F. Zhang, “Lab 8: Firewall & Intrusion Detection Systems,” Wayne State University,
[Online]. Available:
http://webpages.eng.wayne.edu/~fy8421/19sp-csc5290/labs/lab8-instruction.pdf.

[32] R. Hamilton, “Lab 11 Configure an Intrusion Detection System (IDS) for a Control
System,” Cyber Security Education Consortium, Jul. 2014, [Online]. Available:
https://www.nationalcyberwatch.org/ncw-content/uploads/2016/03/ControlSystemsSecurit
yLab11.pdf.

[33] “What is Snort?,” Snort. https://www.snort.org/faq/what-is-snort (accessed May 09, 2020).
[34] Cisco, “SNOR Users Manual 2.9.16.” Apr. 08, 2020, [Online]. Available:

50

https://www.us-cert.gov/sites/default/files/documents/NCCIC_ICS-CERT_AAL_Malware_Trends_Paper_S508C.pdf
http://paperpile.com/b/pxO14y/WpMO
http://paperpile.com/b/pxO14y/vf99
http://paperpile.com/b/pxO14y/vf99
https://www.researchgate.net/publication/328760930_A_survey_on_malware_analysis_techniques_static_dynamic_hybrid_and_memory_analysis
https://www.researchgate.net/publication/328760930_A_survey_on_malware_analysis_techniques_static_dynamic_hybrid_and_memory_analysis
http://paperpile.com/b/pxO14y/vf99
http://paperpile.com/b/pxO14y/2LCk
http://paperpile.com/b/pxO14y/2LCk
http://paperpile.com/b/pxO14y/2LCk
http://paperpile.com/b/pxO14y/2LCk
http://paperpile.com/b/pxO14y/X2Cp
http://paperpile.com/b/pxO14y/X2Cp
http://paperpile.com/b/pxO14y/X2Cp
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
http://paperpile.com/b/pxO14y/X2Cp
http://paperpile.com/b/pxO14y/X2Cp
http://paperpile.com/b/pxO14y/431R
http://paperpile.com/b/pxO14y/431R
http://paperpile.com/b/pxO14y/431R
http://paperpile.com/b/pxO14y/431R
http://paperpile.com/b/pxO14y/bxCy
https://www.diva-portal.org/smash/get/diva2:762870/FULLTEXT01.pdf
http://paperpile.com/b/pxO14y/bxCy
http://paperpile.com/b/pxO14y/z4tm
http://paperpile.com/b/pxO14y/z4tm
http://paperpile.com/b/pxO14y/z4tm
http://paperpile.com/b/pxO14y/neQZ
http://paperpile.com/b/pxO14y/neQZ
http://paperpile.com/b/pxO14y/neQZ
http://paperpile.com/b/pxO14y/lOTT
http://paperpile.com/b/pxO14y/lOTT
http://paperpile.com/b/pxO14y/lOTT
http://paperpile.com/b/pxO14y/lOTT
http://paperpile.com/b/pxO14y/lOTT
https://arxiv.org/pdf/1410.2131.pdf
http://paperpile.com/b/pxO14y/lOTT
http://paperpile.com/b/pxO14y/sM9Z
http://paperpile.com/b/pxO14y/sM9Z
https://publications.sba-research.org/publications/malware_survey.pdf
http://paperpile.com/b/pxO14y/sM9Z
http://paperpile.com/b/pxO14y/xxPq
http://paperpile.com/b/pxO14y/xxPq
http://paperpile.com/b/pxO14y/xxPq
http://paperpile.com/b/pxO14y/xxPq
http://www.netacad.com/
http://paperpile.com/b/pxO14y/xxPq
http://paperpile.com/b/pxO14y/KRhX
http://paperpile.com/b/pxO14y/KRhX
http://paperpile.com/b/pxO14y/KRhX
http://malware-traffic-analysis.net/training-exercises.html
http://paperpile.com/b/pxO14y/KRhX
http://paperpile.com/b/pxO14y/Pvbj
http://paperpile.com/b/pxO14y/Pvbj
http://paperpile.com/b/pxO14y/Pvbj
https://forensicscontest.com/puzzles
http://paperpile.com/b/pxO14y/Pvbj
http://paperpile.com/b/pxO14y/Bwl0
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
https://www.ll.mit.edu/r-d/datasets/2000-darpa-intrusion-detection-scenario-specific-datasets
http://paperpile.com/b/pxO14y/Bwl0
http://paperpile.com/b/pxO14y/uYVc
http://paperpile.com/b/pxO14y/uYVc
http://paperpile.com/b/pxO14y/uYVc
http://paperpile.com/b/pxO14y/uYVc
http://webpages.eng.wayne.edu/~fy8421/19sp-csc5290/labs/lab8-instruction.pdf
http://paperpile.com/b/pxO14y/uYVc
http://paperpile.com/b/pxO14y/gUjE
http://paperpile.com/b/pxO14y/gUjE
http://paperpile.com/b/pxO14y/gUjE
http://paperpile.com/b/pxO14y/gUjE
https://www.nationalcyberwatch.org/ncw-content/uploads/2016/03/ControlSystemsSecurityLab11.pdf
https://www.nationalcyberwatch.org/ncw-content/uploads/2016/03/ControlSystemsSecurityLab11.pdf
http://paperpile.com/b/pxO14y/gUjE
http://paperpile.com/b/pxO14y/GY1j
http://paperpile.com/b/pxO14y/GY1j
http://paperpile.com/b/pxO14y/GY1j
https://www.snort.org/faq/what-is-snort
http://paperpile.com/b/pxO14y/GY1j
http://paperpile.com/b/pxO14y/jh8l

https://www.snort.org/.
[35] “What is the relationship between Snort and Cisco?,” Snort.

https://www.snort.org/faq/what-is-the-relationship-between-snort-and-cisco (accessed May
09, 2020).

[36] “What is the role of Talos?,” Snort. https://www.snort.org/faq/what-is-the-role-of-talos
(accessed May 09, 2020).

[37] Cisco, “SNORT Users Manual,” Snort. Accessed: Sep. 05, 2020. [Online]. Available:
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/.

[38] OISF, “Suricata User Guide — Suricata 5.0.2-dev documentation.” Accessed: May 09,
2020. [Online]. Available: https://suricata.readthedocs.io/en/suricata-5.0.2/.

[39] OISF, “8.1. Suricata.yaml — Suricata 5.0.2-dev documentation.” Accessed: May 09, 2020.
[Online]. Available:
https://suricata.readthedocs.io/en/suricata-5.0.2/configuration/suricata-yaml.html?highlight
=packet%20acquisition.

[40] OISF, “7.1. Runmodes — Suricata 5.0.2-dev documentation.” Accessed: May 09, 2020.
[Online]. Available:
https://suricata.readthedocs.io/en/suricata-5.0.2/performance/runmodes.html.

[41] “Introduction — Zeek User Manual v3.1.3.”
https://docs.zeek.org/en/current/intro/index.html (accessed May 09, 2020).

[42] “Introduction — Zeek User Manual v3.1.3.” Accessed: May 09, 2020. [Online]. Available:
https://docs.zeek.org/en/current/intro/index.html.

[43] “Cluster Architecture — Zeek User Manual v3.1.3.” Accessed: May 09, 2020. [Online].
Available: https://docs.zeek.org/en/current/cluster/index.html.

[44] M. Hänninen, “Open source intrusion detection systems evaluation for small and
medium-sized enterprise environments,” Master, School of Technology, 12.2019.

[45] J. S. White, T. Fitsimmons, and J. Matthews, “Quantitative Analysis of Intrusion Detection
Systems: Snort and Suricata,” in ResearchGate, Apr. 2013, vol. 8757, doi:
10.1117/12.2015616.

[46] M. Pihelgas, “A COMPARATIVE ANALYSIS OF OPENSOURCE INTRUSION
DETECTION SYSTEMS,” Master, Faculty of Information Technology, 2012.

[47] G. Khalil, “Open Source IDS High Performance Shootout,” SANS Institute, Feb. 2015,
[Online]. Available:
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performan
ce-shootout-35772.

[48] A. M. St. Laurent, Understanding Open Source and Free Software Licensing: Guide to
Navigating Licensing Issues in Existing & New Software. “O’Reilly Media, Inc.,” 2004.

[49] “Starting an Open Source Project,” Open Source Guides.
https://opensource.guide/starting-a-project (accessed May 09, 2020).

[50] C. B. Weinstock and S. A. Hissam, “Making lightning strike twice,” Perspectives on free
and open source software, pp. 93–106, 2005.

[51] J. Gamalielsson and B. Lundell, “Sustainability of Open Source software communities
beyond a fork: How and why has the LibreOffice project evolved?,” J. Syst. Softw., vol. 89,
pp. 128–145, Mar. 2014.

51

https://www.snort.org/
http://paperpile.com/b/pxO14y/jh8l
http://paperpile.com/b/pxO14y/12Mu
http://paperpile.com/b/pxO14y/12Mu
http://paperpile.com/b/pxO14y/12Mu
https://www.snort.org/faq/what-is-the-relationship-between-snort-and-cisco
http://paperpile.com/b/pxO14y/12Mu
http://paperpile.com/b/pxO14y/12Mu
http://paperpile.com/b/pxO14y/4Wqn
http://paperpile.com/b/pxO14y/4Wqn
http://paperpile.com/b/pxO14y/4Wqn
https://www.snort.org/faq/what-is-the-role-of-talos
http://paperpile.com/b/pxO14y/4Wqn
http://paperpile.com/b/pxO14y/4Wqn
http://paperpile.com/b/pxO14y/SL1Z
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
http://paperpile.com/b/pxO14y/SL1Z
http://paperpile.com/b/pxO14y/lE5P
http://paperpile.com/b/pxO14y/lE5P
https://suricata.readthedocs.io/en/suricata-5.0.2/
http://paperpile.com/b/pxO14y/lE5P
http://paperpile.com/b/pxO14y/uQOO
http://paperpile.com/b/pxO14y/uQOO
https://suricata.readthedocs.io/en/suricata-5.0.2/configuration/suricata-yaml.html?highlight=packet%20acquisition
https://suricata.readthedocs.io/en/suricata-5.0.2/configuration/suricata-yaml.html?highlight=packet%20acquisition
http://paperpile.com/b/pxO14y/uQOO
http://paperpile.com/b/pxO14y/NaTm
http://paperpile.com/b/pxO14y/NaTm
https://suricata.readthedocs.io/en/suricata-5.0.2/performance/runmodes.html
http://paperpile.com/b/pxO14y/NaTm
http://paperpile.com/b/pxO14y/SokC
https://docs.zeek.org/en/current/intro/index.html
http://paperpile.com/b/pxO14y/SokC
http://paperpile.com/b/pxO14y/sCQK
https://docs.zeek.org/en/current/intro/index.html
http://paperpile.com/b/pxO14y/sCQK
http://paperpile.com/b/pxO14y/yE6i
http://paperpile.com/b/pxO14y/yE6i
https://docs.zeek.org/en/current/cluster/index.html
http://paperpile.com/b/pxO14y/yE6i
http://paperpile.com/b/pxO14y/GJZD
http://paperpile.com/b/pxO14y/GJZD
http://paperpile.com/b/pxO14y/C7jw
http://paperpile.com/b/pxO14y/C7jw
http://paperpile.com/b/pxO14y/C7jw
http://paperpile.com/b/pxO14y/C7jw
http://dx.doi.org/10.1117/12.2015616
http://paperpile.com/b/pxO14y/C7jw
http://paperpile.com/b/pxO14y/yGiw
http://paperpile.com/b/pxO14y/yGiw
http://paperpile.com/b/pxO14y/5sub
http://paperpile.com/b/pxO14y/5sub
http://paperpile.com/b/pxO14y/5sub
http://paperpile.com/b/pxO14y/5sub
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
https://www.sans.org/reading-room/whitepapers/intrusion/open-source-ids-high-performance-shootout-35772
http://paperpile.com/b/pxO14y/5sub
http://paperpile.com/b/pxO14y/xoEr
http://paperpile.com/b/pxO14y/xoEr
http://paperpile.com/b/pxO14y/xoEr
http://paperpile.com/b/pxO14y/xoEr
http://paperpile.com/b/pxO14y/8I5P
http://paperpile.com/b/pxO14y/8I5P
http://paperpile.com/b/pxO14y/8I5P
https://opensource.guide/starting-a-project
http://paperpile.com/b/pxO14y/8I5P
http://paperpile.com/b/pxO14y/Z7oU
http://paperpile.com/b/pxO14y/Z7oU
http://paperpile.com/b/pxO14y/Z7oU
http://paperpile.com/b/pxO14y/Z7oU
http://paperpile.com/b/pxO14y/XQrd
http://paperpile.com/b/pxO14y/XQrd
http://paperpile.com/b/pxO14y/XQrd
http://paperpile.com/b/pxO14y/XQrd
http://paperpile.com/b/pxO14y/XQrd

[52] S. Wilson, “How to evaluate the sustainability of an open source project,” OSS Watch,
Nov. 12, 2013. http://oss-watch.ac.uk/resources/evaluatingsustainability (accessed May 09,
2020).

[53] “Cyber Security Threat Report Q1 2019 | Proofpoint,” Proofpoint, 2019.
https://www.proofpoint.com/us/resources/threat-reports/latest-quarterly-threat-research
(accessed May 10, 2020).

[54] AMR, “Kaspersky Security Bulletin 2019. Statistics,” Securelist, Dec. 12, 2019.
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475/ (accessed May 10,
2020).

[55] “M-Trends Cyber Security Trends | FireEye,” FireEye, 2020.
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html (accessed May
10, 2020).

[56] “Check Point’s 2019 Security Report - Check Point Software,” Check Point Software, Mar.
04, 2019. https://blog.checkpoint.com/2019/03/04/check-points-2019-security-report/
(accessed May 10, 2020).

[57] R. Miller, “The OSI Model: An Overview,” SANS Institute, Sep. 2001, [Online]. Available:
https://www.sans.org/reading-room/whitepapers/standards/osi-model-overview-543.

[58] ISO/IEC, “Information technology - Open Systems Interconnection - Basic Reference
Model: The Basic Model,” ISO/IEC, Nov. 1994, [Online]. Available:
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(
E).zip.

[59] N. Ahmad and M. Kashif Habib, “Analysis of Network Security Threats and
Vulnerabilities by Development & Implementation of a Security Network Monitoring
Solution,” Master, School of Engineering, 09.2010.

[60] F. Glossary, “What is Application Layer Security?,” F5.
https://www.f5.com/services/resources/glossary/application-layer-security.

[61] “What Is The OSI Model? | Cloudflare,” Cloudflare.
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-o
si/ (accessed May 04, 2020).

[62] billlattimer, “Windows Network Architecture and the OSI Model - Windows drivers,”
Microsoft, Apr. 20, 2017.
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-arc
hitecture-and-the-osi-model (accessed May 06, 2020).

[63] K. Holl, “SANS Security Essentials GSEC Practical Assignment v1.4b OSI Defense in
Depth to Increase Application Security” SANS Institute, 2003, [Online]. Available:
https://www.giac.org/paper/gsec/2868/osi-defense-in-depth-increase-application-security/1
04841.

[64] C. D. McLain, A. Studer, and R. P. Lippmann, “Making Network Intrusion Detection
Work With IPsec,” May 2007, Accessed: May 08, 2020. [Online]. Available:
https://www.researchgate.net/publication/235180223_Making_Network_Intrusion_Detecti
on_Work_With_IPsec.

[65] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Polymorphic Blending
Attacks,” 2006, [Online]. Available:
https://www.cc.gatech.edu/fac/Wenke.Lee/papers/usenix_security_2006.pdf.

52

http://paperpile.com/b/pxO14y/6qrB
http://paperpile.com/b/pxO14y/6qrB
http://paperpile.com/b/pxO14y/6qrB
http://paperpile.com/b/pxO14y/6qrB
http://oss-watch.ac.uk/resources/evaluatingsustainability
http://paperpile.com/b/pxO14y/6qrB
http://paperpile.com/b/pxO14y/6qrB
http://paperpile.com/b/pxO14y/2GEp
http://paperpile.com/b/pxO14y/2GEp
http://paperpile.com/b/pxO14y/2GEp
https://www.proofpoint.com/us/resources/threat-reports/latest-quarterly-threat-research
http://paperpile.com/b/pxO14y/2GEp
http://paperpile.com/b/pxO14y/2GEp
http://paperpile.com/b/pxO14y/Gi9Y
http://paperpile.com/b/pxO14y/Gi9Y
http://paperpile.com/b/pxO14y/Gi9Y
https://securelist.com/kaspersky-security-bulletin-2019-statistics/95475/
http://paperpile.com/b/pxO14y/Gi9Y
http://paperpile.com/b/pxO14y/Gi9Y
http://paperpile.com/b/pxO14y/zKVF
http://paperpile.com/b/pxO14y/zKVF
http://paperpile.com/b/pxO14y/zKVF
https://www.fireeye.com/current-threats/annual-threat-report/mtrends.html
http://paperpile.com/b/pxO14y/zKVF
http://paperpile.com/b/pxO14y/zKVF
http://paperpile.com/b/pxO14y/I9RA
http://paperpile.com/b/pxO14y/I9RA
http://paperpile.com/b/pxO14y/I9RA
http://paperpile.com/b/pxO14y/I9RA
https://blog.checkpoint.com/2019/03/04/check-points-2019-security-report/
http://paperpile.com/b/pxO14y/I9RA
http://paperpile.com/b/pxO14y/I9RA
http://paperpile.com/b/pxO14y/iE7u
http://paperpile.com/b/pxO14y/iE7u
http://paperpile.com/b/pxO14y/iE7u
https://www.sans.org/reading-room/whitepapers/standards/osi-model-overview-543
http://paperpile.com/b/pxO14y/iE7u
http://paperpile.com/b/pxO14y/tMmC
http://paperpile.com/b/pxO14y/tMmC
http://paperpile.com/b/pxO14y/tMmC
http://paperpile.com/b/pxO14y/tMmC
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://paperpile.com/b/pxO14y/tMmC
http://paperpile.com/b/pxO14y/Qf9d
http://paperpile.com/b/pxO14y/Qf9d
http://paperpile.com/b/pxO14y/Qf9d
http://paperpile.com/b/pxO14y/AkcP
http://paperpile.com/b/pxO14y/AkcP
http://paperpile.com/b/pxO14y/AkcP
https://www.f5.com/services/resources/glossary/application-layer-security
http://paperpile.com/b/pxO14y/AkcP
http://paperpile.com/b/pxO14y/3tkh
http://paperpile.com/b/pxO14y/3tkh
http://paperpile.com/b/pxO14y/3tkh
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
http://paperpile.com/b/pxO14y/3tkh
http://paperpile.com/b/pxO14y/Sc2W
http://paperpile.com/b/pxO14y/Sc2W
http://paperpile.com/b/pxO14y/Sc2W
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/windows-network-architecture-and-the-osi-model
http://paperpile.com/b/pxO14y/Sc2W
http://paperpile.com/b/pxO14y/Ob4k
http://paperpile.com/b/pxO14y/Ob4k
http://paperpile.com/b/pxO14y/Ob4k
http://paperpile.com/b/pxO14y/Ob4k
https://www.giac.org/paper/gsec/2868/osi-defense-in-depth-increase-application-security/104841
https://www.giac.org/paper/gsec/2868/osi-defense-in-depth-increase-application-security/104841
http://paperpile.com/b/pxO14y/Ob4k
http://paperpile.com/b/pxO14y/hKnP
http://paperpile.com/b/pxO14y/hKnP
https://www.researchgate.net/publication/235180223_Making_Network_Intrusion_Detection_Work_With_IPsec
https://www.researchgate.net/publication/235180223_Making_Network_Intrusion_Detection_Work_With_IPsec
http://paperpile.com/b/pxO14y/hKnP
http://paperpile.com/b/pxO14y/J40E
http://paperpile.com/b/pxO14y/J40E
https://www.cc.gatech.edu/fac/Wenke.Lee/papers/usenix_security_2006.pdf
http://paperpile.com/b/pxO14y/J40E

[66] OISF, “6. Suricata Rules — Suricata 5.0.2-dev documentation.” Accessed: May 18, 2020.
[Online]. Available: https://suricata.readthedocs.io/en/suricata-5.0.2/rules/index.html.

[67] “Emotet Malware | CISA,” Cybersecurity & Infrastructure Security Agency, Jan. 23, 2020.
https://www.us-cert.gov/ncas/alerts/TA18-201A (accessed May 17, 2020).

[68] “Resurgence of EMOTET Malware,” Trend Micro, Mar. 13, 2020.
https://success.trendmicro.com/solution/1118391-malware-awareness-emotet-resurgence
(accessed May 17, 2020).

[69] “Advisory: Trickbot,” National Cyber Security Center, Dec. 02, 2020.
https://www.ncsc.gov.uk/news/trickbot-advisory (accessed May 17, 2020).

[70] “Security Primer - TrickBot,” CIS, 09.2019.
https://www.cisecurity.org/white-papers/security-primer-trickbot/ (accessed May 17,
2020).

[68] “Emotet Malware | CISA,” Cybersecurity & Infrastructure Security Agency, Jan. 23, 2020.
https://www.us-cert.gov/ncas/alerts/TA18-201A (accessed May 17, 2020).

[69] “Resurgence of EMOTET Malware,” Trend Micro, Mar. 13, 2020.
https://success.trendmicro.com/solution/1118391-malware-awareness-emotet-resurgence
(accessed May 17, 2020).

[70] “Advisory: Trickbot,” National Cyber Security Center, Dec. 02, 2020.
https://www.ncsc.gov.uk/news/trickbot-advisory (accessed May 17, 2020).

[71] “Security Primer - TrickBot,” CIS, 09.2019.
https://www.cisecurity.org/white-papers/security-primer-trickbot/ (accessed May 17,
2020).

53

http://paperpile.com/b/pxO14y/CM5k
http://paperpile.com/b/pxO14y/CM5k
https://suricata.readthedocs.io/en/suricata-5.0.2/rules/index.html
http://paperpile.com/b/pxO14y/CM5k
http://paperpile.com/b/pxO14y/VFj2
http://paperpile.com/b/pxO14y/VFj2
http://paperpile.com/b/pxO14y/VFj2
https://www.us-cert.gov/ncas/alerts/TA18-201A
http://paperpile.com/b/pxO14y/VFj2
http://paperpile.com/b/pxO14y/LuIT
http://paperpile.com/b/pxO14y/LuIT
http://paperpile.com/b/pxO14y/LuIT
https://success.trendmicro.com/solution/1118391-malware-awareness-emotet-resurgence
http://paperpile.com/b/pxO14y/LuIT
http://paperpile.com/b/pxO14y/LuIT
http://paperpile.com/b/pxO14y/igMP
http://paperpile.com/b/pxO14y/igMP
http://paperpile.com/b/pxO14y/igMP
https://www.ncsc.gov.uk/news/trickbot-advisory
http://paperpile.com/b/pxO14y/igMP
http://paperpile.com/b/pxO14y/Q1Nu
http://paperpile.com/b/pxO14y/Q1Nu
http://paperpile.com/b/pxO14y/Q1Nu
https://www.cisecurity.org/white-papers/security-primer-trickbot/
http://paperpile.com/b/pxO14y/Q1Nu
http://paperpile.com/b/pxO14y/Q1Nu

Appendix 1 – Theory Background

1.1 OSI layers

The Interconnection Reference Model, more commonly known as the OSI model, was

first published in 1984 by the International Organization for Standardization (ISO). The

OSI reference model serves as an essential element of computer networking. The OSI

model's primary purpose is to provide standards for equipment manufacturers, so

different computer systems could communicate with each other. The OSI model defines

an abstract hierarchical model that logically splits the required functions to support

system-to-system communication [57] [58]. The OSI model is composed of the

following sections, in a top-down manner:

7. Application

The application layer is the top layer in the OSI model. Being defined as the layer

where the network meets end-user programs or application processes, and users

access network services. The application layer is the only layer that interacts with

the end-user; it serves as an interface with the OS and other applications. However,

client software does not belong to the application layer. HTTP and SMTP are

examples of application layer protocols [59].

Denial-of-Service attacks (DoS), HTTP floods, SQL injections, cross-site scripting,

parameter tampering, and Slowloris attacks are examples of application-layer

attacks [60].

6. Presentation

The presentation layer's primary job is to make the data received from the session

layer presentable to the application layer. This data may be encoded in a different

method that will need translation, it might be encrypted and needs decryption to be

readable by the application layer, or it might be compressed and needs

decompression.

54

In the other direction, the presentation layer might need to translate, encrypt or

compress data received from the application layer before sending it to the session

layer [61] [59].

5. Session

The session is known as the time between when the communication opens and

closes between the two devices. Opening the communication, ensuring it stays open,

allowing all the data transfer, and closing it is the session layer's responsibility.

The session layer can also set checkpoints in the data transfer to be able to resume

the data transfer in case of connection loss or disruption [61] [59].

4. Transport

The transport layer takes care of the end to end connection between two devices.

The transport layer breaks the data received from the session layer into smaller

pieces called segments and sends them to the network layer. On the other direction,

when the transport layer receives segments from the network layer, it reassembles

them together before sending them to the session layer.

The transport layer is also responsible for flow control, ensuring the optimal speed

of the transmission and error control, ensuring that received data is complete (in the

inter-network communications) [61] [59].

3. Network

The network layer has the responsibility of facilitating data transfer between two

different networks. The network layer breaks the segments received from the

transport layer into smaller pieces called packets and sends them to the data link

layer. On the way back, the packets are reassembled by the network layer into

segments and sent to the transport layer [59].

The network layer is also responsible for packet routing, finding the best physical

path for the packet to the destination based on network conditions, the priority of

service, and other factors [62].

55

https://paperpile.com/c/pxO14y/3tkh
https://paperpile.com/c/pxO14y/Qf9d
https://paperpile.com/c/pxO14y/3tkh
https://paperpile.com/c/pxO14y/Qf9d
https://paperpile.com/c/pxO14y/3tkh
https://paperpile.com/c/pxO14y/Qf9d
https://paperpile.com/c/pxO14y/Qf9d
https://paperpile.com/c/pxO14y/Sc2W

2. Data Link

The data link layer has the responsibility of facilitating data transfer between the

same networks. It receives the packets from the network layer, breaks them into

smaller pieces called frames, and sends them to the physical layer, on the way back

the received frames will be reassembled to packets and sent to the network layer.

Data link layer is also responsible for the intra-network communication flow control

and error control [62].

ARP spoofing, MAC Flooding, spanning tree attack are some of the threats for the

data link layer [63].

1. Physical

The physical layer converts the frames from the link layer to raw bit-streams sent

out via physical equipment like switches and wires. In the opposite direction, It also

converts the received bit-streams to the frames and sends them to the data link layers

[62].

1.2 Evasion techniques for IDS

The primary purpose of IDS is to predict the network's state and the devices within the

network. IDS evasion techniques aim to prevent the IDS from predicting the state of

devices and desynchronize the IDS and devices in the network [6].

1.2.1 Time-To-Live Manipulation

Time-To-Live (TTL) field in the Internet Protocol (IP) header represents the limit of

hops. The TTL value is set in the origin of the packet according to the packet

destination. When a router receives an IP packet, the router will decrement the TTL

value by one, if the resulting TTL value is zero, the router discards the packet, but if the

resulting TTL value is greater than zero, the router forwards the packet, according to its

routing table, to the next hop which could be another router or the final destination. If

the next hob is a router, the same procedure happens again until the packet reaches its

final destination.

56

https://paperpile.com/c/pxO14y/Sc2W
https://paperpile.com/c/pxO14y/Ob4k
https://paperpile.com/c/pxO14y/Sc2W
https://paperpile.com/c/pxO14y/AIK6

The synchronization of the IDS and the end hosts depend on a router being between the

IDS sensor and the end host, and TTL attacks are attacks that interrupt this

synchronization.

Attackers can determine hop counts to the router and end-host using network

reconnaissance tools. If TTL is equal to the number of hops of the router, the packet

gets examined by the IDS, but it does not reach the end host, desynchronizing the end

host and the IDS. NIDS that understands network topology can detect these attacks.

However, this requires additional processing resources [6].

1.2.2 IDS MAC Address Attack

On an Ethernet-based local area network (LAN), layer two switches usually forward

traffic based on the MAC address specified in the frame header to its designated host. In

this way, hosts only receive the frames addressed to them, and frames addressed for IDS

are only visible to IDS.

When IP traffic enters LAN, the IP header and payload gets encapsulated in the

Ethernet frame. If the IDS only examine the IP header and ignore the MAC address, it is

possible to perform MAC address attacks by sending an ethernet frame containing the

MAC address of the IDS and IP address of the end host, which means the IDS receive

the frame while the end host did not receive the frame; thus the IDS loses the

synchronization with the end host [6].

1.2.3 IP Fragmentation Attacks

LANs mostly use the Ethernet protocol as the data link layer protocol. Ethernet frames

can have a maximum size of 1518 bytes.

In the case of networks that use IP over ethernet, the Ethernet frame encapsulates IP

Packets that can be up to 65,535 bytes. The IP packets that exceed the ethernet frame

maximum size can be transmitted using IP fragmentation. IP fragmentation adds three

new fields to the header:

● Flags: Fragmentation allowance

● Offset: The fragment position in the reconstructed packet

● Identification: The packet that the fragment belongs to

57

IP fragmentation attacks have two types:

Reassembly Attacks are attacks in which IDS and end-host use different reassembly

methods for the overlapping fragmented packets received (IDS and end-host

desynchronization).

Do Not Fragment Attacks are possible in a network in which IDS positions itself

between two routers that use different MTUs.

MTU, the Maximum Transmission Unit, defines the largest amount of data (PDU) that

can transmit on a link. Routers examine the MTU of the link the packet should be sent

to and discard the packet if the packet size is larger than the link’s MTU, and the packet

does not have a fragment flag set. When the IDS is in between two routers with

different MTUs, IDS can not determine if the packet is discarded or received by the

destination (IDS and end-host desynchronization) [6].

1.2.4 Encryption

Hosts can communicate using IPsec or other forms of encryption; this would leave IDS

with no option to inspect the traffic unless the IDS gets the decryption keys [64]. The

encrypted traffic can contain malware and other malicious content.

Using a bitwise XOR function to encrypt is one of the methods used for encrypting

malware. Typical hardware architecture supports XOR encryption and is

computationally fast; however, in some cases, NIDS can decrypt the traffic.

Entropy measurements can be used for the IPSec encrypted traffic; compressed data can

have similar levels of entropy, leading to false positives [6].

1.2.5 Polymorphic Blending Attack

Signature-based IDS detects the attacks by comparing traffic to predefined patterns.

Attackers can use code transforming techniques like encryption, byte substitution, and

code obfuscation to create several instances of the same malware that look different but

perform the same malicious function to evade the IDS, which is called Polymorphic

Attack [65].

Anomaly-based IDS often can detect polymorphic attacks. They develop statistical and

heuristic profiles through the learning phase. The profile contains byte frequency

58

https://paperpile.com/c/pxO14y/AIK6
https://paperpile.com/c/pxO14y/hKnP
https://paperpile.com/c/pxO14y/J40E

distribution, byte sequence occurrence, packet lengths, and character distribution. The

IDS alerts as soon as the traffic patterns exceed the configured threshold.

Polymorphic blending attacks are attacks designed to evade the anomaly-based IDS by

matching the network profile. In order to perform polymorphic blending attacks, the

malware monitors the target network to develop a normal representative profile for the

network, once the profile is developed, the malware generates polyphonic instances

using techniques like byte padding and ciphering with different length keys between the

variants to blend and make the detection more difficult [6].

1.3 Rules Options

1.3.1 Meta-settings

Meta-settings do not affect Suricata's inspection; they affect the way Suricata reports

events by providing more information about the inspected packet.

Possible meta-settings are msg (message), sid (signature ID), rev (revision), gid (group

ID), classtype, reference, priority, metadata,target [66].

1.3.2 IP and TCP Keywords

IP keywords are properties that are related to IP or IP options in the header of the

packet, and it can be TTL (Time-to-live), ipopts, sameip, ip_proto, Id, geoip, fragbits (IP

fragmentation), fragoffset and tos [7].

TCP keywords are the options that can be set according to TCP protocol properties, and they

can be seq (TCP sequence number), ack (specific TCP acknowledgement number), and

window (specific TCP window size) [7].

1.3.3 ICMP Keywords

ICMP keywords are the options that can be set according to TCP protocol properties,

which can be itype (specific ICMP type/number), icode (ICMP code), icmp_id (ICMP

id-value), icmp_seq (ICMP sequence number) [7].

59

https://paperpile.com/c/pxO14y/AIK6
https://paperpile.com/c/pxO14y/CM5k
https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP

1.3.4 Payload Keywords

Payload keywords inspects the content of the packet’s payload, these options can be

content, nocase (distinction between upper and lower case), depth, startswith, offset,

distance, within, isdataat, dsize (size of the packet payload), replace, pcre (Perl

Compatible Regular Expressions) [7].

1.3.5 Flow Keywords

All packets having the same Tuple (protocol, source IP, destination IP, source-port,

destination-port), belong to the same flow and are internally connected.

The options that are based on the flow properties are: flowbits, flow (direction of the

flow), flowint, stream_size [7].

1.3.6 HTTP Keywords

HTTP keywords are HTTP protocol-based keywords that inspect the data transmitted

for HTTP packet, both request and response. These keywords can be HTTP Primer,

http_method, http_uri and http_raw_uri, urilen, http_protocol, http_cookie,

http_client_body and much more[7].

1.3.7 File Keywords

Suricata can extract files from the traffic. Several keywords can be set in a rule to match

different file properties. These keywords can be filename, file ext (file extension),

filemagic (libmagic information), filestore (store the file in disk), filemd5 (MD5

checksums), filesha1 (SHA1 checksums), filesha256 (SHA256 checksums) and filesize

[7].

1.3.8 SSL/TLS and SSH Keywords

Suricata have several keywords that can match the properties of TLS/SSL handshake, as

tls_cert_subject (TLS/SSL certificate Subject field), tls_cert_issuer (TLS/SSL certificate

Issuer field), tls_cert_serial (serial number in a certificate), tls_cert_fingerprint

(certificate’s SHA-1 fingerprint), tls_cert_expired, and ssl_version, tls.subject [7].

60

https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP
https://paperpile.com/c/pxO14y/TIgP

SSH keywords can match the properties of SSH connections, these keyboards ssh_proto

(SSH protocol), ssh_version, ssh.protoversion, ssh.software version [7].

61

https://paperpile.com/c/pxO14y/TIgP

Appendix 2 – Analysis

2.1 Malware Statistics Summary

Checkpoint

Malware Category:
Crypto Miners 38%
Botnet 28%
Mobile Malware 27%
Banking 18%
Infostealer 18%
Ransomware 7%

Banking Trojans:
Trickbot 32%
Ramnit 19%
Ursnif 8%
Danabot 6%
Dridex 6%
Qbot 3%
other 26%

Info stealer:
Lokibot 17%
AgnetTesla 16%
Hawkeye 14%
Formbook 12%
Pony 9%
Nanocore 8%
Other 33%

Overall top families:
Emotet 18%
Jsecoin 15%
XMRig 14%
Cryptoloot 14%
Coinhive 12%
Trickbot 11%
Lokibot 10%
Agent Tesla 10%
Hawkeye 8%
Formbook 7%

Cryptomining:
Jsecoin 22%
XMRig 21%
Cryptoloot 21%
Coinhive 18%
WannaMine 3%
Rubyminer 2%
other 13%

Mobile Malwares:
Hiddad 21%
xHelper 16%
Necro 10%
AndroidBauts 10%
Guerilla 9%
other 41%

Kaspersky
labs

Banking Malware:
zbot 23.10%
RTM 21.60 %
EMOTET 12.30%
SpyEye 7.10%
Nymaim 5.80%
Trickster 4.80%
Ramnit 4.40%
Neurevt 3.10%
CryptoShuffler 1.90%
Danabot 1.30%

Crypto-ransomware:
WannaCry 23.56%
phny 16.81%
GandCrypt 12.17%
Gen 6.26%
Crypmod 5.08%
Encoder 4.65%
Shade 2.66%
PolyRansome 2.43%
Crypren 2.28%
Stop 1.94%

Miners:
Trojan.Win32.Miner.bbb
13.45%
Trojan.Win32.Miner.ays
11.35%
Trojan.JS.Miner.m 11.12%
Trojan.Win32.Miner.gen
9.32%

Web-based attacks:
Malicious URL
Trojan.Script.Generic
Trojan.Script.Miner.gen
Trojan-Clicker.HTML.Iframe.d
g
Trojan.BAT.Miner.gen
Trojan-Downloader.JS.Inor.a
Trojan.PDF.Badur.gen
DangerousObject.Multi.Generic
0.21
Trojan-Downloader.Script.Gen
eric 0.17
Trojan-PSW.Script.Generic
0.15
Trojan.Script.Agent.gen 0.15

Local threats:
DangerousObject.Multi.Gener
ic 26.43
Trojan.Multi.BroSubsc.gen
9.48
Trojan.Script.Generic 6.19
Trojan.Multi.GenAutorunReg.
a 5.94
HackTool.Win64.HackKMS.b
4.40

62

Proof point
Q1 2019

Malware Category:
Botnet 61%
Banking 21%
Credential Stealer 9%
Downloader 7%
RAT 1%
Keylogger 1%
Ransomware 0%

Banking malware:
IcedID 44%
The Trick 24%
QBot 18%
Ursnif 9%
Ramnit 3%
UrlZone Banker 2%
Dridex 0%
DanaBot 0%
other 0%

FireEye Malware Category:
Backdoor 46%
Dropper 15%
Credential Stealer 9%
Ransomware 7%
POS 7%
other 16%

Overall top families:
Bacon 19%
Empire 14%
TrickBot 13%
ShortBench 13%
QakBot 11%
other 30%

Table 4. Summary of trending malware based on report [53][54][55][56]

2.2 Malware Case Study

Based on the malware statistics reports, the lab investigation scenario is based on

Emotet and Trickbot. This section introduces how Emotet and Trickbot deliver

themselves into the victim device and its impact.

2.2.1 Emotet

First appearing in 2014, Emotet is one of the most costly and destructive malware

affecting all the public and private industries, even the government. Emotet infections

have cost state, local, tribal, and territorial(SLTT) governments up to $1 million per

incident [67].

Emotet is an advanced, modular trojan that initially behaves as a downloader or dropper

of other banking trojans. It can also show polymorphic behavior that can evade typical

signature-based detection using auto-start registry keys and services and Dynamic Link

Libraries (DLLs) to continuously evolve and update its capabilities.

Emotet spread through spam or phishing emails that contain malicious links or

attachments (PDF or macro-enabled Microsoft word). The initial infection begins with

an opening malicious link, file, or macro-enabled Microsoft Word document included in

the email. As soon as Emotet is downloaded, it establishes persistence by injecting code

into explorer.exe and other running processes. It is also able to collect valuable

63

https://paperpile.com/c/pxO14y/zKVF
https://paperpile.com/c/pxO14y/VFj2

information like OS version, location, system name. After that, it usually connects to a

remote C&C server, and reports a new infection, uploads the collected data, download

and run file, receives instruction or configuration. The C&C server domain name

usually is a 16-letter name that ends in “.eu.”

Emotet instances often show paths like AppData\Local or AppData\Roaming

directories.

Also, Emotet creates randomly-named files in the system root directories can run as

Windows services and propagate the malware to adjacent systems via accessible

administrative shares.

Emotete’s impact [68]:

● Other dangerous malware groups can rent Emotet-infected devices for delivering

more malicious payloads.

● Stealing device sensitive data like system name, OS

● Stealing financial and banking information or user credentials

● Executing backdoor command to connect to other malicious websites

Figure 3. Emotet infection [68]

64

https://paperpile.com/c/pxO14y/LuIT

2.2.2 Trickbot

Trickbot is an establishment that often spreads through well-crafted phishing emails,

designed to appear as from trusted commercial or government brands. It can also be

delivered as one of the Emotet post infections. It is a banking Trojan that affects both

businesses and individuals.

Trickbot's goal is obtaining online accounts and including bank accounts to access

personally identifiable information that can be used in identity fraud. It can also be used

for delivering other malware, including ransomware and exploit kits [69].

The same as Emotet, Trickbot can:

● Steal sensitive personal or financial information including banking login

credentials

● Obtain detailed information about the infected host and the network

● Steal online credential and data including browsing history and cookies

● Connecting an infected host to the malicious networks by executing backdoors

and giving full control of the device to criminal third-parties

● Spread through the whole victim's network using SMB shares

● Download further malicious files or other malware [70]

65

https://paperpile.com/c/pxO14y/igMP
https://paperpile.com/c/pxO14y/Q1Nu

